
pSOSystem Product Family

pSOSystem Programmer’s
Reference

PowerPC Processors

000-5437-001

pr.book  Page i  Thursday, January 28, 1999  9:18 AM



Integrated Systems, Inc. • 201 Moffett Park Drive • Sunnyvale, CA 94089-1322

LICENSED SOFTWARE - CONFIDENTIAL/PROPRIETARY
This document and the associated software contain information proprietary to Integrated
Systems, Inc., or its licensors and may be used only in accordance with the Integrated
Systems license agreement under which this package is provided. No part of this
document may be copied, reproduced, transmitted, translated, or reduced to any
electronic medium or machine-readable form without the prior written consent of
Integrated Systems.

Integrated Systems makes no representation with respect to the contents, and assumes
no responsibility for any errors that might appear in this document. Integrated Systems
specifically disclaims any implied warranties of merchantability or fitness for a particular
purpose. This publication and the contents hereof are subject to change without notice.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS252.227-7013 or its equivalent. Unpublished rights reserved under the copyright
laws of the United States.

TRADEMARKS
AutoCode, ESp, MATRIXX, pRISM, pRISM+, pSOS, SpOTLIGHT, and Xmath are registered
trademarks of Integrated Systems, Inc. BetterState, BetterState Lite, BetterState Pro,
DocumentIt, Epilogue, HyperBuild, OpEN, OpTIC, pHILE+, pLUG&SIM, pNA+, pREPC+,
pROBE+, pRPC+, pSET,  pSOS+, pSOS+m, pSOSim, pSOSystem, pX11+, RealSim,
SystemBuild, and ZeroCopy are trademarks of Integrated Systems, Inc.

ARM is a trademark of Advanced RISC Machines Limited. Diab Data and Diab Data in
combination with D-AS, D-C++, D-CC, D-F77, and D-LD are trademarks of Diab Data, Inc.
ELANIX, Signal Analysis Module, and SAM are trademarks of ELANIX, Inc. SingleStep is a
trademark of Software Development Systems, Inc. SNiFF+ is a trademark of TakeFive
Software GmbH, Austria, a wholly-owned subsidiary of Integrated Systems, Inc.

All other products mentioned are the trademarks, service marks, or registered trademarks
of their respective holders.

Copyright  1999 Integrated Systems, Inc. All rights reserved. Printed in U.S.A.
Document Title: pSOSystem Programmer’s Reference, PowerPC Processors
Part Number: 000-5437-001
Revision Date: January 1999

Corporate pSOS or pRISM+ Support MATRIX X Support

Phone 408-542-1500 1-800-458-7767, 408-542-1925 1-800-958-8885, 408-542-1930

Fax 408-542-1950 408-542-1966 408-542-1951

E-mail ideas@isi.com psos_support@isi.com mx_support@isi.com

Home Page http://www.isi.com

pr.book  Page ii  Thursday, January 28, 1999  9:18 AM



pr.book  Page iii  Thursday, January 28, 1999  9:18 AM
Contents
About This Manual vii

Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii

Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii

Organization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii

Related Documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Notation Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 System Services

bootp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

bootpd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

Client API Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13

DHCP Client. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-33

DNS and Static Name Resolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-42

FTP Client  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-50

FTP Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-59

Loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-62

pLM+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-80
iii



Contents pSOSystem Programmer’s Reference

pr.book  Page iv  Thursday, January 28, 1999  9:18 AM
mmulib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-101

NFS Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-111

pSH+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-115

pSH Loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-142

RARP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-144

routed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-145

Telnet Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-148

Telnet Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-156

TFTP Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-159

TFTP Server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-162

2 Interfaces

DISI (Device Independent Serial Interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

DISIplus (Device Independent Serial Interface) . . . . . . . . . . . . . . . . . . . . . . . . . 2-31

KI (Kernel Interface). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-71

NI (Network Interface)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-85

SLIP (Serial Line Internet Protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-106

3 Standard pSOSystem Block I/O Interface

pHILE+ Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

SCSI (Small Computer System Interface) Driver . . . . . . . . . . . . . . . . . . . . . . . . 3-23

4 Standard pSOSystem Character I/O Interface

Character I/O Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

HTTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

pSEUDO Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17

MEMLOG  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
iv



pSOSystem Programmer’s Reference Contents

pr.book  Page v  Thursday, January 28, 1999  9:18 AM
NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32

PIPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34

RDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40

TFTP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-44

DITI (Device Independent Terminal Interface) . . . . . . . . . . . . . . . . . . . . . . . . . . 4-49

5 pSOSystem Configuration File

Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

sys_conf.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5

Adding Drivers to the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32

Customizing the System Startup Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-34

6 Configuration Tables

Node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

Multiprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6

pSOS+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10

pROBE+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17

pHILE+  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23

pREPC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-28

pLM+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30

pNA+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-32

pMONT+  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-43

pRPC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-45
v



Contents pSOSystem Programmer’s Reference

pr.book  Page vi  Thursday, January 28, 1999  9:18 AM
7  Memory Usage

pSOS+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

pHILE+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7

pREPC+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10

pNA+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12

pRPC+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-16

pMONT+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17

pLM+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18

8 pNET: Ethernet Debugging Without Using pNA

8.1 Overview of pNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

8.2 Configuration of PNET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

Index index-1
vi



pr.book  Page vii  Thursday, January 28, 1999  9:18 AM
About This Manual
Purpose

This manual is part of a documentation set that describes pSOSystem, the modular,
high-performance real-time operating system environment from Integrated Systems.
This manual documents pSOSystem services and provides important reference
material on device drivers, configuration tables, error codes, and memory usage.

For conceptual information or information on other areas of pSOSystem, refer to the
other manuals of the pSOSystem basic documentation set, which includes
pSOSystem System Concepts, pSOSystem Advanced Topics, pSOSystem Application
Examples, pSOSystem System Calls, pROBE+ User’s Guide as well as installation
guides and the Getting Started manuals.

Audience

This manual is targeted primarily for embedded application developers who want to
implement pSOSystem. Basic familiarity with UNIX terms and concepts is assumed.

Organization

This manual is organized as follows:

■ Chapter 1, System Services, describes pSOSystem system services, such as boot
ROMs, FTP Client and FTP Server, pSOSystem Loader, NFS Server, pSH+ com-
mand line interface, Telnet Client and Telnet Server, and TFTP Server.

■ Chapter 2, Interfaces, describes the pSOSystem Network Interface and Kernel
Interface.
vii



Using This Manual pSOSystem Programmer’s Reference

pr.book  Page viii  Thursday, January 28, 1999  9:18 AM
■ Chapter 3, Standard pSOSystem Block I/O Interface, describes block I/O inter-
face concepts, pHILE+ and the SCSI driver.

■ Chapter 4, Standard pSOSystem Character I/O Interface, discusses the charac-
ter I/O interface concepts and document the character I/O driver components
of pSOS.

■ Chapter 5, pSOSystem Configuration File, gives an overview of the configuration
table associated with the corresponding pSOSystem component, tells how to
start up each component, contains formulas for changing the starting address
of software components, and defines the trap vectors.

■ Chapter 6, Configuration Tables, describes each software component’s configu-
ration table, which contains parameters that characterize the hardware and
application environment.

■ Chapter 7, Memory Usage, describes formulas used to calculate the amount of
RAM required by each pSOSystem software component.

■ Chapter 8, pNET: Ethernet Debugging Without Using pNA, provides the target
debug solution based on the UDP/IP protocol.

Related Documentation

When using pSOSystem you might want to have on hand the other manuals in-
cluded in the basic documentation set:

■ pSOSystem System Concepts: provides theoretical information about the opera-
tion of pSOSystem.

■ pSOSystem System Calls: describes the system calls and C language interface to
pSOS+, pHILE+, pREPC+, pNA+, pRPC+, and pX11+.

■ pROBE+ User's Guide: describes how to use the pROBE+ System Debugger/
Analyzer.

■ User’s Guide: contains an introduction to the pSOSystem within the develop-
ment environment, tutorials, and information on files and directories.

■ pSOSystem Advanced Topics: contains information on how to customize your
usage of your pSOSystem. It contains sections on using and creating BSPs and
Assembly Language information.

■ pSOSystem Application Examples: describes the application examples that are
provided for you and tutorials on how to use these examples.
viii



pSOSystem Programmer’s Reference Using This Manual

pr.book  Page ix  Thursday, January 28, 1999  9:18 AM
Based on the options you have purchased, you might also need to reference one or
more of the following manuals:

■ C++ Support Package User’s Manual: describes how to implement C++ applic-
ations in a pSOSystem environment.

■ SNMP User's Guide: describes the internal structure and operation of SNMP,
Integrated System’s Simple Network Management Protocol product. This man-
ual also describes how to install and use the SNMP MIB (Management Informa-
tion Base) Compiler.

■ LAP Driver User’s Guide describes the interfaces provided by the LAP (Link
Access Protocol) drivers for OpEN product, including the LAPB and LABD
frame-level products.

■ OpEN User’s Guide: describes how to install and use the pSOSystem OpEN
(OpEN Protocol Embedded Networking) product.

■ TCP/IP for OpEN User’s Guide: describes how to use the pSOSystem Streams
based TCP/IP for OpEN (OpEN Protocol Embedded Networking) product.

Notation Conventions

This section describes the conventions used in this document.

Font Conventions

This sentence is set in the default text font, Bookman Light. Bookman Light is used
for general text, menu selections, window names, and program names. Fonts other
than the standard text default have the following significance:

Courier: Courier is used for command and function names, file names,
directory paths, environment variables, messages and other
system output, code and program examples, system calls,
prompt responses, and syntax examples.

bold Courier: bold Courier  is used for user input (anything you are
expected to type in).
ix



Using This Manual pSOSystem Programmer’s Reference

pr.book  Page x  Thursday, January 28, 1999  9:18 AM
Sample Input/Output

In the following example, user input is shown in bold Courier , and system re-
sponse is shown in Courier .

commstats

Number of total packets sent 160
Number of acknowledgment timeouts 0
Number of response timeouts 0
Number of retries 0
Number of corrupted packets received 0
Number of duplicate packets received 0
Number of communication breaks with target 0

Symbol Conventions

This section describes symbol conventions used in this document.

italic: Italics are used in conjunction with the default font for empha-
sis, first instances of terms defined in the glossary, and publi-
cation titles.

Italics are also used in conjunction with Courier  or bold
Courier  to denote placeholders in syntax examples or generic
examples.

Bold Helvetica narrow: Bold Helvetica narrow font is used for buttons, fields, and icons in a
graphical user interface. Keyboard keys are also set in this font.

[ ] Brackets indicate that the enclosed information is optional. The brackets
are generally not typed when the information is entered.

| A vertical bar separating two text items indicates that either item can be
entered as a value.

˘ The breve symbol indicates a required space (for example, in user input).

% The percent sign indicates the UNIX operating system prompt for C shell.

$ The dollar sign indicates the UNIX operating system prompt for Bourne and
Korn shells.
x



pSOSystem Programmer’s Reference Using This Manual

pr.book  Page xi  Thursday, January 28, 1999  9:18 AM
Support

Customers in the United States can contact Integrated Systems Technical Support
as described below.

International customers can contact:

■ The local Integrated Systems branch office.

■ The local pSOSystem distributor.

■ Integrated Systems Technical Support as described below.

Before contacting Integrated Systems Technical Support, please gather the following
information available:

■ Your customer ID and complete company address.

■ Your phone and fax numbers and e-mail address.

■ Your product name, including components, and the following information:

● The version number of the product.

● The host and target systems.

● The type of communication used (Ethernet, serial).

■ Your problem (a brief description) and the impact to you.

In addition, please gather the following information:

■ The procedure you followed to build the code. Include components used by the
application.

■ A complete record of any error messages as seen on the screen (useful for track-
ing problems by error code).

■ A complete test case, if applicable. Attach all include or startup files, as well as
a sequence of commands that will reproduce the problem.

The symbol of a processor located to the left of text identifies processor-
specific information (the example identifies 68K-specific information).

Host tool-specific information is identified by a host tools icon (in this
example, the text would be specific to the XXXXX host tools chain).

68K

XXXXX
xi



Using This Manual pSOSystem Programmer’s Reference

pr.book  Page xii  Thursday, January 28, 1999  9:18 AM
Contacting Integrated Systems Support

To contact Integrated Systems Technical Support, use one of the following methods:

■ Call 408-542-1925 (U.S. and international countries).

■ Call 1-800-458-7767 (1-800-458-pSOS) (U.S. and international countries with
1-800 support).

■ Send a FAX to 408-542-1966.

■ Send e-mail to psos_support@isi.com .

■ Access our web site: http://customer.isi.com .

Integrated Systems actively seeks suggestions and comments about our software,
documentation, customer support, and training. Please send your comments by
e-mail to ideas@isi.com or submit a Problem Report form via the internet
(http://customer.isi.com/report.shtml).
xii



pr.book  Page 1  Thursday, January 28, 1999  9:18 AM
1

1

System Services
This section describes the pSOSystem system services.

NOTE: The Network Utilities product is referred to as Internet Applications.

Function Description

Bootp Pseudo driver that requests BOOTSTRAP protocol infor-
mation. (See page 1-3.)

Bootpd † Implementation of the BOOTSTRAP protocol server. (See
page 1-6.)

Client API Support † Provides API support for accessing the client protocols,
which are Telnet, FTP, and TFTP. Also, it provides inter-
faces common to all the Internet Applications modules.
(See page 1-13.)

DHCP Client † Provides framework for passing configuration information
to TCP/IP hosts on the network. (See page 1-33.)

DNS and Static Name
Resolver †

Allows pSOSystem target to resolve host names to IP
addresses. (See page 1-42.)

FTP Client † Transfers files to and from a remote system.
(See page 1-50.)

FTP Server † Allows remote systems running FTP to transfer files to and
from a pHILE+ device. (See page 1-59.)

Loader Allows run-time target loading and unloading of applica-
tion programs. (See page 1-62.)

pLM+ Provides information on the Shared Library Manager. (See
page 1-80.)
1-1



System Services pSOSystem Programmer’s Reference

pr.book  Page 2  Thursday, January 28, 1999  9:18 AM
MMU Library Provides mapping tables for the Memory Management
Unit. (See page 1-101.)

NFS Server † Allows systems to share files in a network environment.
(See page 1-111.)

pSH+† Interactive command line shell. (See page 1-115.)

pSH Loader † Provides a simple interface to the loader library in pSOS-
ystem. (See page 1-142.)

RARP† Reverse Address Resolution Protocol which can be used to
identify a workstation’s IP address, or obtained a dynami-
cally assigned IP address from a domain name server
(DNS). (See page 1-144.)

Routed † Implementation of the Routing Information Protocol, or
RIP. (See page 1-145.)

Telnet Client † Supports communication with a remote system running a
Telnet Server. (See page 1-148.)

Telnet Server † Allows remote systems running the Telnet protocol to log
into pSH+. (See page 1-156.)

TFTP Client † Provides a simple command-line user interface for using
the TFTP Client protocol. (See page 1-159.)

TFTP Server † Allows TFTP clients to read and write files interactively on
pHILE+ managed disks. (See page 1-162.)

†.  This feature is part of the Internet Applications product.

Function Description
1-2



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 3  Thursday, January 28, 1999  9:18 AM
bootp

Description

With the bootp client feature, you can send a BOOTPrequest packet and get the
necessary information for booting your target. As a minimum, this includes your IP
address; it can also include the IP address of your router, the client’s subnet mask,
and the IP address of your domain name server (DNS).

NOTE: The bootp client is provided as source in the pSOSystem PSS_ROOT/
drivers  directory.

BOOTP Client Code

The BOOTPclient code uses User Datagram Protocol (UDP) and implements the fol-
lowing procedure:

get_bootp_params {
   long    (ni_entry)(),
   char    *bootp_file_name,
   char    *bootp_server_name,
   int     num_retries,
   int     flags,
   char    *ret_params
   };

ni_entry Network interface entry point. This parameter is set to the
network interface entry procedure (for example, NiLan )
defined in the lan.c  file in the applicable board-support
package.

bootp_file_name The BOOTP filename is copied into the file field in the BOOTP
request packet. It can be null, or its length can be up to 127
bytes.

bootp_server_name The BOOTP server name is copied into the sname field in the
BOOTP request packet. It can be null, or its length can be up
to 63 bytes.
bootp 1-3



System Services pSOSystem Programmer’s Reference

pr.book  Page 4  Thursday, January 28, 1999  9:18 AM
BOOTP Client Code Example

The following code segment provides an example of how to use the
get_bootp_params  procedure:

...

bootpparms_t bootp_parms;

extern long NiLan();

...

memset(&bootp_parms, 0, sizeof(bootpparms_t));

get_bootp_params(NiLan, 0, "ram.hex", 10, COOK, &bootp_parms);

...

num_retries This parameter sets the number of retries for BOOTP re-
quests. The retry interval is exponentially increased with the
first retry interval of one second, the second retry interval of
two seconds, and so on. If this parameter is set to zero,
get_bootp_params  uses BOOTP_RETRIES as the default
value.

flags The BOOTP flags include the following:

RAW:   Return a raw BOOTP reply packet.

COOK: Return extracted information from the BOOTP reply.

PSOSUP:  Set this flag if the pSOS+ kernel is already run-
ning when get_bootp_params  is called.

ret_params If the RAW flag is turned on, it should point to a data struc-
ture of type bootppkt_t , or it should point to a data struc-
ture of type bootpparms_t ; both types are defined in the
bootpc.h file. The result is copied into the area indicated by
this parameter.

If the COOK flag is set, all the parameters related to an IP
address (gateway IP address, bootp server address, netname,
etc.) are returned in networking byte order. You are required
to use ntohl()  to convert them to host byte order. If RAW
flag is set, the whole bootp  packet is returned so all fields
will be in network byte order.
1-4 bootp



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 5  Thursday, January 28, 1999  9:18 AM
Bootp client is released in source form, in the drivers/bclient.c file. To include
this in a pSOSystem application, add the following lines in the makefile of the appli-
cation. Add bclient.o in the list of PSS_DRVOBJSand the following lines in the
appropriate section of the makefile:

bclient.o : $(PSS_ROOT)/drivers/bclient.c\
$(PSS_ROOT)/bsp.h\

makefile
$(CC) $(COPTS) -o bclient.o - c $(PSS_ROOT)/drivers/bclient.c
bootp 1-5



System Services pSOSystem Programmer’s Reference

pr.book  Page 6  Thursday, January 28, 1999  9:18 AM
bootpd

Description

The bootpd server contained in pSOSystem’s Internet Applications product is an
implementation of the BOOTSTRAP protocol server and is based on RFC951 and
RFC1395.

NOTE: The bootpd is provided in the Internet Applications library as position
dependent code.

It provides additional features by implementing: (a) a tag field (ps ) in the bootpd
configuration database, which identifies the forwarding server to which bootpd
requests from a specific hardware device can be forwarded; (b) an optional default
parent bootpd server address (parentIP ) in the bootpd configuration table to
which unresolved BOOTP requests can be forwarded.

bootpd creates a daemon task, BTPD, to handle BOOTP requests from clients.
When BTPD starts, it reads configuration information from a user-supplied string,
which it stores in its hash tables. When a BOOTP request comes in, if there is a
match in the BTPD configuration database, BTPD first verifies whether the forward-
ing server field (ps ) is set for the matching address. If it is set, the request is for-
warded to the specified server regardless of other fields. Otherwise, BTPD processes
the request and may send back a reply packet, if appropriate. If no match is found
in BTPD’s configuration database and a parent bootpd server is supplied when
BTPD starts, BTPD forwards requests to its parent server.

The bootpd server in pSOSystem always ignores the server name field in BOOTP
requests.

System/Resource Requirements

To use the bootpd  server, you must have the following components installed:

■ pSOS+ Real-Time Kernel.

■ pNA+ TCP/IP Network Manager.

■ pREPC+ Run-Time C Library.

■ (Optional) pHILE+ File System Manager (not required for a bootpd server that
only forwards requests).
1-6 bootpd



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 7  Thursday, January 28, 1999  9:18 AM
In addition, bootpd  requires the following system resources:

■ Four Kbytes of task stack.

■ Two UDP sockets. One is used to receive BOOTP requests and send/forward
BOOTP replies. The other is used to set an ARP cache entry in certain cases.

■ The static memory requirement is four Kbytes. The dynamic memory size is
affected by the server’s database entries.

Starting the BOOTP Daemon

To use bootpd in an application, you need to link the pSOSystem Internet Applica-
tions library.

bootpd is started with bootpd_start(bootpdcfg_t*) . If bootpd is started suc-
cessfully, bootpd_start() returns zero; otherwise, it returns a non-zero value on
failure. The error value can be any pSOS+ error.

The following code fragment gives an example of a database string and shows how to
start bootpd :

#include <netutils.h>
char *bootp_table =
"scg.dummy:\

sm=255.255.255.0:\
td=3.0:\
hd=/tftpboot:\
bf=null:\
dn=isi.com:\
hn:\n\

subnetscg.dummy:\
tc=scg.dummy:\
gw=192.103.54.14:\
ps=1.2.3.4:\n\

board1:\
tc=subnetscg.dummy:\
ht=ethernet:\
ha=08003E20F810:\
ip=192.103.54.229:\
bf=ram.hex:\
bs=123:\
ps@:\

";
void start_bootpd_server()
{
static bootpdcfg_t bootpd_cfg;

bootpd.priority = 200;
bootpd 1-7



System Services pSOSystem Programmer’s Reference

pr.book  Page 8  Thursday, January 28, 1999  9:18 AM
bootpd_cfg.flags = BOOTPD_SYSLOG;
bootpd_cfg.bootptab = bootp_table;
bootpd_cfg.parentIP.s_addr = htonl(0xC0D8E61D);
if (bootpd_start(&bootpd_cfg))
printf("bootpd_start: failed to start\n");

}

The BOOTP Daemon Configuration Table and Database String

The bootpd  server requires a user-supplied configuration table, defined as follows:

struct {
unsigned long priority; /* Priority of BTPD task */
unsigned long flags; /* Optional flags */
char *bootptab; /* The bootpd database string */
struct in_addr parentIP; /* Parent BOOTP server IP address */
unsigned long reserved[2]; /* Reserved for future */
} bootpdcfg_t;

typedef struct bootpdcfg_t;

priority This defines the priority at which the BTPD daemon task starts
executing.

flags This specifies the following bootpd  server options:

BOOTPD_SYSLOG: This displays logging information on the
pREPC+ standard error channel.

bootptab This is a pointer to a string that contains the bootpd  configu-
ration database. The string is defined as follows:

"hostname:\
tg=value:\
...\
tg=value:\n\
hostname:\
tg=value:\
...\
tg=value:"

where hostname is the actual name of a BOOTPclient and tg is a
two-character tag symbol. Most tags must be followed by an
equals sign and a value, as above. Some may also appear in a
boolean form with no value (i.e. tg:). For a list of currently rec-
ognized tags, see Two-Character Tag Symbols on page 1-9.

parentIP This is the IP address in network byte order of this server’s par-
ent server, to whom this server can forward requests.
1-8 bootpd



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 9  Thursday, January 28, 1999  9:18 AM
Two-Character Tag Symbols

The following tags are currently recognized by the bootpd  server:

bf Bootfile

bs Bootfile size in 512-octet blocks

cs Cookie server address list

dn Domain name

ds Domain name server address list

gw Gateway address list

ha Host hardware address

hd Bootfile home directory

hn Send client's hostname to client

ht Host hardware type (see Assigned Numbers RFC)

im Impress server address list

ip Host IP address

lg Log server address list

lp LPR server address list

ns IEN-116 name server address list

rl Resource location protocol server address list

rp Root path to mount as root

sa TFTP server address client should use

ps BOOTP server address forwarding server should use

sm Host subnet mask

sw Swap server address

tc Table continuation (points to similar “template” host entry)

td TFTP root directory used by TFTP servers

to Time offset in seconds from UTC (Universal Time Coordinate)
bootpd 1-9



System Services pSOSystem Programmer’s Reference

pr.book  Page 10  Thursday, January 28, 1999  9:18 AM
There is also a generic tag, T n, where n is an RFC1084 vendor field tag number.
Thus, it is possible to immediately take advantage of future extensions to RFC1084
without being forced to modify bootpd first. Generic data may be represented as ei-
ther a stream of hexadecimal numbers or as a quoted string of ASCII characters.
The length of the generic data is automatically determined and inserted into the
proper field(s) of the RFC1084-style BOOTP reply.

The following tags take a whitespace-separated list of IP addresses: cs , ds , gw, im ,
lg , lp , ns , rl , and ts . The ip , sa , ps , sw, and sm tags each take a single IP ad-
dress. All IP addresses are specified in standard Internet “dot’’ notation and may
use decimal, octal, or hexadecimal numbers (octal numbers begin with zero, hexa-
decimal numbers begin with '0x' or '0X').

The ht tag specifies the hardware type code as either an unsigned decimal, octal, or
hexadecimal integer, or as one of the following symbolic names: ethernet or ether
for 10Mb Ethernet, ethernet3 or ether3 for 3Mb experimental Ethernet,
ieee802 , tr , or token-ring for IEEE 802 networks, pronet for Proteon ProNET
Token Ring, or chaos , arcnet , or ax.25 for Chaos, ARCNET, and AX.25 Amateur
Radio networks, respectively. The ha tag takes a hardware address, which must be
specified in hexadecimal; optional periods and/or a leading '0x' may be included for
readability. The ha tag must be preceded by the ht tag (either explicitly or implicitly;
see tc  below).

The td tag is used to inform bootpd of the root directory used by tftpd . The hd tag
is actually relative to the root directory specified by the td tag. For pHILE+ files, the
td tag should always be there to include the volume name. For Sun files, the td tag
is optional. For example, if your BOOTP client bootfile is /tftpboot/bootimage
on volume 3 in your system, then specify the following in the bootptab  string:

:td=3.0:hd=/tftpboot:bf=bootimage:

The hostname, home directory, and bootfile are ASCII strings that may be optionally
surrounded by double quotes ("). The client's request and the values of the hd and
bf symbols determine how the server fills in the bootfile field of the BOOTPreply
packet.

If the client specifies an absolute pathname (an absolute pathname in pHILE+ be-
gins with a volume name followed by a complete path) and that file exists on the
server machine, that pathname is returned in the reply packet. If the file cannot be
found, the request is discarded; no reply is sent. If the client specifies a relative

ts Time server address list

vm Vendor magic cookie selector
1-10 bootpd



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 11  Thursday, January 28, 1999  9:18 AM
pathname, a full pathname is formed by prepending the value of the hd tag and
testing for existence of the file. If the hd tag is not supplied in the configuration file
or if the resulting boot file cannot be found, then the request is discarded.

Clients that specify null boot files always elicit a reply from the server. The exact re-
ply depends again upon the hd and bf tags. If the bf tag gives an absolute path-
name and the file exists, that pathname is returned in the reply packet. Otherwise,
if the hd and bf tags together specify an accessible file, that filename is returned in
the reply. If a complete filename cannot be determined or the file does not exist, the
reply will contain a zeroed-out bootfile  field.

In all these cases, existence of the file means that, in addition to actually being
present, the file must have read access to public, since this is required by tftpd to
permit the file transfer. Also, all filenames are first tried as filename.hostname and
them simply as filename, thus providing for individual per-host bootfiles.

The sa tag may be used to specify the IP address of the particular TFTP server you
wish the client to use. In the absence of this tag, bootpd tells the client to perform
TFTP to the same machine bootpd is running on.

The ps tag may be used to specify the IP address of a peer BOOTPserver address to
which the BOOTP request will forward.

The time offset to may be either a signed decimal integer specifying the client's time
zone offset in seconds from UTC, or the keyword auto , which sets the time zone off-
set to zero. Specifying the to symbol as a boolean has the same effect as specifying
auto  as its value.

The bootfile size bs may be either a decimal, octal, or hexadecimal integer specifying
the size of the bootfile in 512-octet blocks, or the keyword auto , which causes the
server to automatically calculate the bootfile size at each request. As with the time
offset, specifying the bs symbol as a boolean has the same effect as specifying auto
as its value.

The vendor magic cookie selector (the vm tag) may take one of the following key-
words: auto (indicating that vendor information is determined by the client's re-
quest), rfc1048  or rfc1084  (which always forces an RFC1084-style reply).

The hn tag is strictly a boolean tag; it does not take the usual equals-sign and value.
It's presence indicates that the hostname should be sent to RFC1084 clients.
bootpd attempts to send the entire hostname as it is specified in the configuration
file; if this will not fit into the reply packet, the name is shortened to just the host
field (up to the first period, if present) and then tried. In no case is an arbitrarily-
truncated hostname sent (if nothing reasonable will fit, nothing is sent).
bootpd 1-11



System Services pSOSystem Programmer’s Reference

pr.book  Page 12  Thursday, January 28, 1999  9:18 AM
Often, many host entries share common values for certain tags (such as name serv-
ers, etc.). Rather than repeatedly specifying these tags, a full specification can be
listed for one host entry and shared by others via the tc (table continuation) mech-
anism. Often, the template entry is a dummy host that does not actually exist and
never sends BOOTP requests. Note that bootpd allows the tc tag symbol to appear
anywhere in the host entry. Information explicitly specified for a host always over-
rides information implied by a tc tag symbol, regardless of its location within the
entry. The value of the tc tag may be the hostname or IP address of any host entry
previously listed in the configuration file.

Sometimes it is necessary to delete a specific tag after it has been inferred via tc .
This can be done using the construction tag @ which removes the effect of tag. For
example, to completely undo an IEN-116 name server specification, use ":ns@: " at
an appropriate place in the configuration entry. After removal with @, a tag is eligi-
ble to be set again through the tc  mechanism.

Host entries are separated from one another by newlines in the configuration string;
a single host entry may be extended over multiple lines if the lines end with a back-
slash (\ ). It is also acceptable for lines to be longer than 80 characters. Tags may
appear in any order, with the following exceptions: the hostname must be the very
first field in an entry, and the hardware type must precede the hardware address.
1-12 bootpd



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 13  Thursday, January 28, 1999  9:18 AM
Client API Support

Description

Client Application Programming Interface (API) Support is used to provide a pro-
grammatic interface to the client protocols, which are FTP, Telnet, and TFTP. Client
API Support is contained in pSOSystem’s Internet Applications product. This API
support provides the following advantages:

■ Isolate client functions from pSH+. You are able to run the client functions from
your own custom-made shells.

■ Use client functions from your own application programs (for example, HTTP
servers). You do not need to run the client functions from an interactive shell.

Client API support is designed to be similar for all the client applications; however,
details differ depending on the application.

The Client API Support requires the same resources as required by the correspond-
ing FTP, TFTP, or Telnet clients for each of their sessions. See FTP Client, TFTP Cli-
ent, or Telnet Client sections for additional details.

Generic Client API Functions

Before you use a client application, a task will need to create a handle for it. This
handle is only used from the task that created it and can not be shared across mul-
tiple tasks. The following is an example of how to create a handle:

xxx_handle_t
xxx_create (int indev, int outdev,.... )

where xxx  can be one of the following tftp , ftp , or telnet .

This API call is passed an input and output device that will be used as stdin and
stdout for this client session. The call will remap the task’s stdio , which is
mapped to the console port by default to the device that you passed. Subsequently,
all the stdio operations executed by the client program (for example, gets() for
input and printf() for output) are redirected to your supplied device. In addition,
this call allocates memory for a session structure from Region 0, which is used to
store the parameters related to this session. When the task needs to end the ses-
Client API Support 1-13



System Services pSOSystem Programmer’s Reference

pr.book  Page 14  Thursday, January 28, 1999  9:18 AM
sion, the following API call is used to destroy the session structure and free the
associated memory:

xxx_destroy(xxx_handle_t xxx)

After the handle is created, the task can use other client API calls to perform various
operations. All of the API calls require you to pass a handle as one of the parame-
ters. The specific API calls are dependent on the particular client applications. See
TFTP API Functions, FTP API Functions, and Telnet API Functions sections for a com-
plete list of all the API calls.

The DEV_NULL sample driver is provided with the Internet Applications library.
While creating an application handle xxx_create() call, the device number of this
device can be used as indev and outdev parameters. This provides the functions
similar to/dev /null on UNIX systems — all the output written to this will be lost
and input from it will always be end-of-file (EOF). It is used as default stdio device
by the application that needs to run the client API calls in non-interactive mode
without the output displayed anywhere and no input needed. For example, while
creating a FTP client API handle, the following call is used:

ftp_handle_t hand= ftp_create(DEV_NULL, DEV_NULL, envp);

For all of the subsequent API calls using this handle, the output is not displayed
anywhere and if any user input is needed by any of the calls, it will always be re-
turned EOF.

Several API calls require the output not to be displayed anywhere, but they may
need to parse the data. For example, if an application task creates a FTP client API
handle and calls ftp_dir() and lists the files in a remote directory. The applica-
tion will need to examine the list of output files returned by the API call to select a
file to transfer. This is achieved by using another generic API call, which is used for
all of the client APIs. The following is how it can be accomplished:

■ The application creates a handle using DEV_NULL as indev and outdev
parameters. The following API call is called to install your own input and output
routines for the DEV_NULL driver:

nuapi_installio(DEV_NULL, read_fn, write_fn);

If any of the client API calls prints any output on its stdout , the data gets
directed to DEV_NULLdevice that invokes write_fn() , which you provide and
it passes the buffer and buffer length. By using this, you can capture the output
of the client application APIs. nuapi_installio() is used as a generic API
function by all the client APIs.
1-14 Client API Support



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 15  Thursday, January 28, 1999  9:18 AM
The following is the prototype definition for this function:

int nuapi_installio(int device, int(*write_fn)(char *buf, int
len), int(*read_fn)(char *buf, int len))

NOTE: The device driver DEV_NULL is a regular pSOS+ driver and each read/
write function to be installed using nuapi_installio() should be done
on a separate minor device (for example, DEV_NULL+1, DEV_NULL+2, and
so on).

Note that all API calls except create and destroy return CLIENT_SUCCESSon
success or an error code on failure. See Error Codes for Client APIs section for a list
of all the error codes.

NOTE: All of the IP addresses and port number parameters in this section should
be in network byte order.

TFTP API Functions

The prototypes for the API functions are included in the header file nu_api.h .

The following are descriptions of the TFTP API functions:

#include <nu_api.h>
tftp_handle_t tftp_create(int indev, int outdev, char *cvol, char

*cdir)

Create a TFTP handle with the given input/output devices.

indev Specifies the device used as standard input (stdin ).

outdev Specifies the device used as standard output
(stdout ).

cvol Specifies the volume for the local volume as a NULL
terminated string up to 32 characters (for example,
“3.0”).

cdir Specifies the pathname to the local directory as a
NULL terminated string up to 32 characters (for
example, “/tftpboot ”).

This function returns a TFTP client API handle if successful; other-
wise, NULL if fails to create. All subsequent TFTP operations on file
will be done at the volume and directory specified as arguments.
Client API Support 1-15



System Services pSOSystem Programmer’s Reference

pr.book  Page 16  Thursday, January 28, 1999  9:18 AM
int tftp_destroy(tftp_handle_t hand)

Destroy the client handler and frees the memory resources associated
with this session.

hand Specifies the client API handle.

int tftp_connect(tftp_handle_t hand, struct in_addr *ipaddr, int
port)

Connect to a TFTP server at the ipaddr  address and port port . If
port is zero, use the default TFTP Server port. If this call is used. the
calls tftp_fget()  and tftp_fput()  need not specify the remote
hostname. Otherwise, they need to specify the filename in
hostaddress : filename  format.

hand Specifies the client API handle.

ipaddr Specifies the IP address of the host to connect to.
This is specified in host byte order.

port Specifies the port number of the TFTP server. Use
the default port if this is zero.

This function returns zero on success or an error code on failure.

int tftp_mode(tftp_handle_t hand, char *mode)

Set the mode of the TFTP file transfer, which can be ascii or binary
mode.

hand Specifies the client API handle.

mode Specifies “ascii”  or “binary”  mode for the TFTP
file transfer.

This function returns zero on success or an error code on failure.

int tftp_fget(tftp_handle_t hand, char *rem_file, char *loc_file)

Get a remote file rem_fil e and copy it as loc_file . If loc_file is
NULL, it creates a local file with the same name as the rem_file .

hand Specifies the client API handle.
1-16 Client API Support



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 17  Thursday, January 28, 1999  9:18 AM
rem_file Specifies the remote file to be transferred as a NULL
terminated string up to 32 characters.

loc_file Specifies the local file to be copied as a NULL termi-
nated string up to 32 characters.

This function returns zero on success or an error code on failure.

int tftp_fput(tftp_handle_t hand, char *locfile, char *remfile)

Put a file locfile  at a remote site as the remfile . If remfile  is
NULL, it creates a remote file with the same name as locfile .

hand Specifies the client API handle.

locfile Specifies the local file to be transferred as a NULL
terminated string up to 32 characters. This can be a
regular file or a pSOS+ device (for example, “13.0”).

remfile Specifies the remote file to be copied as a NULL ter-
minated string up to 32 characters.

This function returns zero on success or an error code on failure.

int tftp_retxmits(tftp_handle_t hand, int no_retx)

Set the number of retransmits before timing out a transaction for this
session.

hand Specifies the client API handle.

no_retx Specifies the number of retransmits before timeout.

This function returns zero on success or an error code on failure.

int tftp_timeout(tftp_handle_t, int timeout)

Set the timeout value for retransmission for this session.

hand Specifies the client API handle.
Client API Support 1-17



System Services pSOSystem Programmer’s Reference

pr.book  Page 18  Thursday, January 28, 1999  9:18 AM
timeout Specifies timeout (in seconds) before retransmitting
a packet.

This function returns zero on success or an error code on failure.

int tftp_blksize(tftp_handle_t, int blksize)

Set the block size for TFTP file transfers for this session. The default
size is 512 bytes.

hand Specifies the client API handle.

blksize Specifies the blocksize for transfer.

This function returns zero on success or an error code on failure.

int tftp_option(tftp_handle_t, char*)

Toggle the option specified in option  (enable or disable) for this
session.

hand Specifies the client API handle.

option Specifies the name of the option to be toggled. The
option can be either “blksize ,” “timeout ,” or
“tsize .”

This function returns zero on success or an error code on failure.

int tftp_filesize(tftp_handle_t hand, int filesz)

Set the maximum file size supported for TFTP transfers on this
session.

hand Specifies the client API handle.

filez Specifies the maximum file size supported for
transfer.

This function returns zero on success or an error code on failure.
1-18 Client API Support



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 19  Thursday, January 28, 1999  9:18 AM
int tftp_verbose(tftp_handle_t hand)

Toggle the verbose mode for the TFTP session.

hand Specifies the client API handle.

This function returns zero on success or an error code on failure.

int tftp_status(tftp_handle_t hand)

Display the status information for this session.

hand Specifies the client API handle.

This function returns zero on success or an error code on failure.

int tftp_trace(tftp_handle_t hand)

Toggle the packet tracing for this TFTP session.

hand Specifies the API handle.

This function returns zero on success or an error code on failure.

int tftp_help(tftp_handle_t hand, char *cmd)

Display help information about the command cmd. If cmd is NULL, it
displays all of the commands.

hand Specifies the client API handle.

cmd Specifies the name of the command

This function returns zero on success or an error code on failure.
Client API Support 1-19



System Services pSOSystem Programmer’s Reference

pr.book  Page 20  Thursday, January 28, 1999  9:18 AM
FTP API Functions

The prototypes for the API functions are included in the header file nu_api.h .

The following are the descriptions for the FTP API functions:

#include <nu_api.h>
ftp_handle_t ftp_create(int indev, int outdev, char *cvol,

char *cdir)

Create a FTP handle with the given input/output devices.

indev Specifies the device to be used as standard input
(stdin ).

outdev Specifies the device to be used as standard output
(stdout ).

cvol Specifies the volume for the local directory as a
NULL terminated string up to 32 characters (for
example, “3.0”).

cdir Specifies the pathname to the local directory as a
NULL terminated string up to 32 characters (for
example, “/ftpdir ”).

This function returns a client API handle if successful; otherwise,
NULL if it fails to create. All subsequent FTP operations will be per-
formed at the volume and directory specified as arguments.

int ftp_destroy(ftp_handle_t hand)

Destroy the client handler and free the memory resources associ-
ated with this session.

hand Specifies the client API handle.

int ftp_connect(ftp_handle_t hand, struct in_addr *ip_addr,
int port)

Connect to the remote FTP server at address ip_addr  and port
port . If the port  is zero, it connects to the default FTP server port.

hand Specifies the client API handle.

ip_addr Specifies the IP address of the remote host to con-
nect. This is specified in host byte order.

port Specifies the port number of the FTP server to con-
nect. This is specified in host byte order.
1-20 Client API Support



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 21  Thursday, January 28, 1999  9:18 AM
int ftp_close(ftp_handle_t hand)

Close the current FTP session.

hand Specifies the client API handle.

int ftp_login(ftp_handle_t hand, char *user, char *passwd)

Log in at the remote site as user user and with a password passwd .

hand Specifies the client API handle.

user Specifies the username as a NULL terminated
string up to 32 characters.

passwd Specifies the password for the user as a NULL ter-
minated string up to 32 characters.

int ftp_fget(ftp_handle_t hand, char *rem_file, char *loc_file)

Copy the remote file rem_file  to the local file named loc_file . If
loc_file  is NULL, it will create a local file with name rem_file
and copy to this file.

hand Specifies the client API handle.

rem_file Specifies the name of the remote file as a NULL ter-
minated string up to 32 characters.

loc_file Specifies the name of the local file to copy to as a
NULL terminated string up to 32 characters. This
can be a regular file or pSOS+ device (for example,
“13.0”).

int ftp_fput(ftp_handle_t, char *loc_file, char *rem_file)

Copy the local file loc_file  to the remote file named rem_file . If
rem_file  is NULL, it will create a remote file named loc_file
and copy to this file.

hand Specifies the client API handle.

loc_file Specifies the name of the remote file as a NULL ter-
minated string up to 32 characters.

rem_file Specifies the name of the remote file as a NULL ter-
minated string up to 32 characters.
Client API Support 1-21



System Services pSOSystem Programmer’s Reference

pr.book  Page 22  Thursday, January 28, 1999  9:18 AM
int ftp_account(ftp_handle_t hand, char *account)

Send an account command to the remote server.

hand Specifies the client API handle.

account Specifies the account name as a NULL terminated
string up to 64 characters.

int ftp_ttype(ftp_handle_t hand, char *type)

Set the file transfer type to type .

hand Specifies the client API handle.

type Specifies the file transfer mode. It can be either
“ascii”  or “binary .”

int ftp_bell(ftp_handle_t hand)

Enable beep when the command completes.

hand Specifies the client API handle.

int ftp_cddir(ftp_handle_t hand, char *dir)

Change the directory at the remote site to dir .

hand Specifies the client API handle.

dir Specifies the directory name at the remote site as a
NULL terminated string up to 64 characters.

int ftp_cdup(ftp_handle_t hand)

Change the directory at the remote site to one level up.

hand Specifies the client API handle.
1-22 Client API Support



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 23  Thursday, January 28, 1999  9:18 AM
int ftp_dir(ftp_handle_t hand, char *opts, char *remdir)

List the remote directory remdir  along with the options opts .

hand Specifies the client API handle.

opts Specifies the directory listing options as a NULL
terminated string up to 32 characters.

remdir Specifies the remote directory as a NULL termi-
nated string up to 32 characters.

int ftp_delete(ftp_handle_t hand, char *filename)

Delete the remote file named filename .

hand Specifies the client API handle.

filename Specifies the name of the remote file as a NULL ter-
minated string up to 32 characters.

int ftp_hash(ftp_handle_t hand)

Toggle the printing # symbol to indicate the progress of the file
transfer.

hand Specifies the client API handle.

int ftp_help(ftp_handle_t hand)

Display all of the supported commands.

hand Specifies the client API handle.

int ftp_lcd(ftp_handle_t hand, char *dir)

Change to the directory named dir  at the local site.

hand Specifies the client API handle.

dir Specifies the name of the local directory as a NULL
terminated string up to 64 characters.
Client API Support 1-23



System Services pSOSystem Programmer’s Reference

pr.book  Page 24  Thursday, January 28, 1999  9:18 AM
int ftp_mdelete(ftp_handle_t hand, int number, char **list)

Delete the multiple files that are specified in list at the remote site.

hand Specifies the client API handle.

number Specifies the number of names in the list.

list Specifies the list of names to be deleted. These file-
names are specified as a list of NULL terminated
strings.

int ftp_mdir(ftp_handle_t hand, int number, char **list)

List the multiple directories that are specified in list at the remote
site.

hand Specifies the client API handle.

number Specifies the number of directories in the list.

list Specifies the list of directory names to be dis-
played. These filenames are specified as a list of
NULL terminated strings.

int ftp_mget(ftp_handle_t hand, int number, char **list)

Get the multiple files that are specified in list from the remote site
and copy them locally.

hand Specifies the API handle.

number Specifies the number of names in the list.

list Specifies the list of filenames to be copied locally.
These filenames are specified as a list of NULL ter-
minated strings.

int ftp_mput(ftp_handle_t hand, int number, char **list)

Put the multiple files that are specified in list from the local site at
the remote site.

hand Specifies the client API handle.

number Specifies the number of names in the list.

list Specifies the list of filenames to be copied. These
filenames are specified as a list of NULL terminated
strings.
1-24 Client API Support



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 25  Thursday, January 28, 1999  9:18 AM
int ftp_mkdir(ftp_handle_t hand, char *dir)

Create a directory named dir  at the remote site.

hand Specifies the client API handle.

dir Specifies the name of the directory to be created as
a NULL terminated string up to 64 characters.

int ftp_prompt(ftp_handle_t hand)

Toggle forcing interactive prompting on multiple commands.

hand Specifies the client API handle.

int ftp_sendport(ftp_handle_t hand)

Toggle the use of PORT command for each data connection.

hand Specifies the client API handle.

int ftp_pwd(ftp_handle_t hand)

Display the working directory path at the remote site.

hand Specifies the client API handle.

int ftp_quote(ftp_handle_t hand, char *quote)

Send a quote to the remote site.

hand Specifies the client API handle.

quote Specifies the quote to be sent to the remote site as
a NULL terminated string up to 64 characters.

int ftp_rmthelp(ftp_handle_t hand, char *remote)

Get help from the remote server. If the remote argument is NULL,
help on all commands are requested from the server.

hand Specifies the client API handle.

remote Specifies the command on which the remote help
is needed.
Client API Support 1-25



System Services pSOSystem Programmer’s Reference

pr.book  Page 26  Thursday, January 28, 1999  9:18 AM
int ftp_rename(ftp_handle_t hand, char *fromfile, char *tofile)

Rename the remote file fromfile  to tofile .

hand Specifies the client API handle.

fromfile Specifies the file name to be renamed as a NULL
terminated string up to 32 characters.

tofile Specifies the file name to be named as a NULL ter-
minated string up to 32 characters.

int ftp_reset(ftp_handle_t hand)

Clear the queued command replies.

hand Specifies the client API handle.

int ftp_rmdir(ftp_handle_t hand, char *remdir)

Remove the directory named remdir  at the remote site.

hand Specifies the client API handle.

remdir Specifies the name of the directory to be removed
as a NULL terminated string up to 64 characters.

int ftp_runique(ftp_handle_t hand)

Toggle the storing unique names for local files.

hand Specifies the client API handle.

int ftp_sunique(ftp_handle_t hand)

Toggle storing unique filenames on remote machines.

hand Specifies the client API handle.

int ftp_status(ftp_handle_t hand)

Show the status of this FTP session.

hand Specifies the client API handle.
1-26 Client API Support



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 27  Thursday, January 28, 1999  9:18 AM
Telnet API Functions

The prototypes for the API functions are included in the header file nu_api.h .

The following are the descriptions for the Telnet API functions:

int ftp_verbose(ftp_handle_t hand)

Toggle the verbose mode for this FTP session.

hand Specifies the client API handle.

tnp_handle_t telnet_create(int indev, int outdev, char *term_type,
char *tn_prompt)

Create a Telnet handle with the given input and output devices.

indev Specifies the device to be used as standard input
(stdin ).

outdev Specifies the device to be used as standard output
(stdout ).

term_type Specifies the terminal type on which this Telnet
session is operating as a NULL terminated string
up to 32 characters.

tn_prompt Specifies the prompt string for this Telnet session
as a NULL terminated string up to 32 characters.

This function returns a client API handle if successful; otherwise,
NULL if fails to create. If term_type  is specified as NULL, the de-
fault ansi  terminal type is used.

int telnet_destroy(tnp_handle_t hand)

Destroy the client handler and free the memory resources associ-
ated with this session.

hand Specifies the client API handle.

int telnet_connect(tnp_handle_t hand, struct in_addr *ip_addr, int
port)

Connect to the remote telnet server at the ipaddress ip_addr  and
port number port . If port  is zero, connect to the default telnet
server port.
Client API Support 1-27



System Services pSOSystem Programmer’s Reference

pr.book  Page 28  Thursday, January 28, 1999  9:18 AM
pHILE+ Independence

You do not need to have pHILE+ component to use some of the Internet Applications
modules. The Internet Applications components that do require you to use pHILE+
are some commands of pSH, FTP, TFTP, FTPD, TFTPD, and NFSD. However, the
Internet Applications components that do not require you to use pHILE+ are some
pSH commands, Telnet, routed, Domain Name System (DNS) Static Name Resolver,
and Dynamic Host Configuration Protocol (DHCP).

NOTE: You do not have to use nuapi_installfs() call to use Internet
Applications without any file system related functions. The user
applications can be linked without pHILE+ component in pSOSystem to
some of the Internet Applications modules, which are not dependent of
pHILE+ component.

If you do use pHILE+ component and your application requires some of the Internet
Applications modules that are dependent of pHILE+, you need to invoke
nuapi_installfs() API call at startup. nuapi_installfs() is used as a generic
API function. The following structure can be initialized and passed to the
nuapi_installfs()  function:

#include <nu_api.h>
typedef struct {

ULONG(*create_f)(char *name, ULONG expand_unit, ULONG mode);
ULONG(*remove_f)(char *name);
ULONG(*open_f)(ULONG *fid, char *name, ULONG mode);
ULONG(*close_f)(ULONG fid);

hand Specifies the client API handle.

ip_addr Specifies the IP address of the remote host to con-
nect. This is specified in host byte order.

port Specifies the port number of the telnet server to
connect. This is specified in host byte order.

void telnet_command(tnp_handle_t hand)

Run the Telnet command mode for this session. This provides a Tel-
net interactive shell. This call creates another Telnet client task,
which is needed to read from stdin  and run the Telnet protocol. It
returns to the caller after you exit the Telnet session.

This call uses the stdio  provided at the creation of the handler.

hand Specifies the client API handle.
1-28 Client API Support



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 29  Thursday, January 28, 1999  9:18 AM
ULONG(*read_f)(ULONG fid, void *buffer, ULONG bcount, ULONG
*tcount);

ULONG(*write_f)(ULONG fid, void *buffer, ULONG bcount);
ULONG(*lseek_f)(ULONG fid, ULONG position, long offset, ULONG

*old_ptr);
ULONG(*fstat_f)(ULONG fid, struct stat *buf);
ULONG(*move_f)(char *oldname, char *newname);
ULONG(*get_fn)(char *name, ULONG *fn);
ULONG(*open_fn)(ULONG *fid, char *device, ULONG fn, ULONG mode);
ULONG(*stat_f)(char *file, struct stat *buf);
ULONG(*stat_vfs)(char *file, struct statvfs *buf);

}nu_fileops_t;

typedef struct{
ULONG(*make_dir)(char *name, ULONG mode);
ULONG(*change_dir)(char *name);
ULONG(*open_dir)(char *dirname, XDIR *dir);
ULONG(*read_dir)(XDIR *dir, struct dirent *buf);
ULONG(*close_dir)(XDIR *dir);

}nu_dirops_t;

typedef struct{
ULONG(*sync_vol)(char *device);

}nu_volops_t;

extern void nuapi_installfs(nu_fileops_t *, nu_dirops_t *,
nu_volops_t *);

The following code example illustrates how to use nuapi_installfs() call to in-
stall pHILE+ function calls in the Internet Applications library:

/* Set the file system calls to pHILE */
fops.create_f=create_f; fops.remove_f=remove_f; fops.open_f=open_f;
fops.close_f=close_f; fops.read_f=read_f; fops.write_f=write_f;
fops.lseek_f=lseek_f; fops.fstat_f=fstat_f; fops.move_f=move_f;
fops.get_fn=get_fn; fops.open_fn=open_fn; fops.stat_f=stat_f;
fops.stat_vfs=stat_vfs;
dops.make_dir=make_dir; dops.change_dir=change_dir;
dops.open_dir=open_dir;
dops.read_dir=read_dir; dops.close_dir=close_dir;
vops.sync_vol=sync_vol;
nuapi_installfs(&fops, &dops, &vops);

Protocol Stack Independence

The Internet Applications library from version 3.0 onwards will work with either
pNA+ or TCP/IP for OpEN. A new function is provided to initialize the library with
the required socket system calls. Before any other library functions are invoked,
Client API Support 1-29



System Services pSOSystem Programmer’s Reference

pr.book  Page 30  Thursday, January 28, 1999  9:18 AM
this function is called to register the socket calls in the library by the application
from the ROOT task.

The sockcall structure is initialized with the appropriate socket functions and
passed as an argument to the nuapi_installsock()  function.

NOTE: If you do not invoke this function, pNA+ is assumed to be the default.

The sample application shows the usage of this function.

The API for using this function is defined in the nuapi.h file. The following is an ex-
ample of the structure that is used to initialize socket calls that is used by the Inter-
net Applications library.

struct sockcall {
int pna;

#define NULIB_PNA 1
#define NULIB_OTCP 0

long (*accept)(int s, struct sockaddr_in *addr, int *addrlen);
long (*add_ni)(struct ni_init *ni);
long (*bind)(int s, struct sockaddr_in *addr, int addrlen);
long (*close)(int s);

long (*connect)(int s, struct sockaddr_in *addr, int addrlen);
long (*getpeername)(int s, struct sockaddr_in *addr, int *addrlen);
long (*getsockname)(int s, struct sockaddr_in *addr, int *addrlen);
long (*getsockopt)(int s, int level, int optname, char *optval,

int *optlen);
long (*get_id)(long *userid, long *groupid, long *);

long (*ioctl)(int s, int cmd, char *arg);
long (*listen)(int s, int backlog);
long (*recv)(int s, char *buf, int len, int flags);

long (*recvfrom)(int s, char *buf, int len, int flags,
struct sockaddr_in *from, int *fromlen);

long (*recvmsg)(int s, struct msghdr *msg, int flags);
long (*select)(int width, struct fd_set *readset, struct fd_set

*writeset, struct fd_set *exceptset, struct timeval *timeout);
long (*send)(int s, char *buf, int len, int flags);
long (*sendmsg)(int s, struct msghdr *msg, int flags);

long (*sendto)(int s, char *buf, int len, int flags, struct sockaddr_in
*to, int tolen);

long (*setsockopt)(int s, int level, int optname, char *optval,
int optlen);

long (*set_id)(long userid, long groupid, long *);
int (*shr_socket)(int s, unsigned long tid);
long (*shutdown)(int s, int how);

int (*socket)(int domain, int type, int protocol);
1-30 Client API Support



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 31  Thursday, January 28, 1999  9:18 AM
mblk_t *(*allocb)(int size, int pri);
mblk_t *(*esballoc)(unsigned char *base, int size, int pri, frtn_t

*frtn);
void (*freeb)(mblk_t *bp);
void (*freemsg)(mblk_t *mp);

};

extern void nuapi_installsock(struct sockcall *);

Memory Management

The Internet Applications library provides an API to configure memory management
functions. You need to configure these functions before using any of the other li-
brary functions. The following API is used to configure memory management func-
tions in the Internet Applications library:

#include <nu_api.h>

typedef struct {
    void *(*nu_malloc)(size_t );
    void (*nu_free)(void *);
    void *(*nu_realloc)(void *,size_t );
    void *(*nu_calloc)(size_t ,size_t );
} nu_memmgmt_t;

extern void nuapi_memmgmt(nu_memmgmt_t *);

The Internet Applications sample applications uses standard pREPC+ functions
malloc() , free() , realloc() , and calloc() for this purpose. You can use the
pREPC+ functions or devise your own memory management, which can provide the
same functionality.

NOTE: The functions that you choose must behave similar as pREPC+ functions.

The following is an example of how the memory management API can be used:

mcall.nu_malloc = malloc;
mcall.nu_free = free;
mcall.nu_realloc = realloc;
mcall.nu_calloc = calloc;

nuapi_memmgmt(&mcall);

NOTE: If you do not invoke nuapi_memmgmt() , pREPC+ functions are used as
the default. If you are using a C++ package for pSOSystem v2.2, use
lc_malloc() , lc_free() , lc_realloc() , and calloc()  functions.
Client API Support 1-31



System Services pSOSystem Programmer’s Reference

pr.book  Page 32  Thursday, January 28, 1999  9:18 AM
Error Codes for Client APIs

The error values are defined in netutils.h . The following error codes are returned
by the Client API calls:

CLIENT_SUCCESS  Client API successful.

CLIENT_INVALID One or more arguments that are passed to the client API call
are invalid or out of range.

CLIENT_PROTOERR Due to some invalid condition, the client API call resulted in
a client protocol error. For example, the remote server
rejected a FTP port command.

CLIENT_SYSERR The client API call failed due to some system resource error,
such as not able to allocate memory or a data structure.

CLIENT_FILEERR This is due to a file system call failure. Check errno  for
details.

CLIENT_PNAERR This is due to pNA+ system call failure. Check errno for
details.

CLIENT_GENERR General error. These errors are due to some invalid states
which should not occur during normal execution.
1-32 Client API Support



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 33  Thursday, January 28, 1999  9:18 AM
DHCP Client

Description

The Dynamic Host Configuration Protocol (DHCP) provides a framework for passing
configuration information to the TCP/IP hosts on the network. DHCP is contained in
pSOSystem’s Internet Applications product.

DHCP is based on the extension to the BOOTP protocol, which provides framework
for dynamic usage of IP addresses on a network. With dynamic addressing, a device
can have a different IP address every time it connects to the network.

DHCP supports the following three mechanisms for allocating IP addresses:

■ Automatic allocation — Assigns a permanent IP address to a host.

■ Dynamic allocation — Assigns an IP address to a host for a limited period of
time or until the host relinquishes the address.

■ Manual allocation — Assigns an IP address configured by the administrator.
DHCP is used to simply convey the address.

The DHCP clients can request for an IP address and other configuration parameters
similar to BOOTP from a DHCP server. The configuration parameters will have an
associated lease-time, after which the client should either release the configuration
(for example, so it can be reassigned to another client by the server) or request the
server to renew the lease. See RFC1541 for additional information about the DHCP
protocol.

NOTE: The DHCP Client is provided in the Internet Applications library.

The DHCP function is implemented as part of two tasks: main DHCP task and
DHCP receiver task. The main task is responsible for processing user events, which
include requests to start to process DHCP on any interface or to stop DHCP. This
task also handles timer events for any retransmits or lease renewals in the DHCP
protocol.

The DHCP receiver task is responsible for receiving DHCP responses and passing
them to the main task.
DHCP Client 1-33



System Services pSOSystem Programmer’s Reference

pr.book  Page 34  Thursday, January 28, 1999  9:18 AM
System/Resource Requirements

DHCP Client requires the following:

■ pSOS+ Real-Time Kernel.

■ pNA+ TCP/IP Network Manager.

■ pREPC+ Run-Time C Library.

In addition, DHCP requires the following system resources:

■ One queue is used to communicate between DHCP main task and other tasks
using DHCP services.

■ One User Datagram Protocol (UDP) socket for the DHCP task and another UDP
socket for the DHCP receiver task. The DHCP framework also opens another
UDP socket whenever there is any IP address change on an interface, and closes
it immediately after changing the IP address.

■ Dynamic memory is used in DHCP to allocate 48 bytes of memory on each inter-
face on which it is supported. Also, for each DHCP request that is started on an
interface, it allocates another 100 bytes of dynamic memory. It is freed when
DHCP is stopped on that interface. Dynamic memory is allocated from Region 0.
DHCP also allocates memory for constructing packets and frees it after sending
them on the network.

■ Each of the two DHCP tasks run in supervisor mode. Each task requires
4Kbytes of supervisor stack.

Configuration and User Interface

As part of the Internet Applications library, the following API is provided for using
DHCP client services:

#include <dhcpcfg.h>
struct dhcp {

unsigned long task_prio; /* DHCP task priority */
unsigned long max_ifs; /* max interfaces needing

DHCP support */
unsigned long log_msgs; /* to enable debugging info */

};
1-34 DHCP Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 35  Thursday, January 28, 1999  9:18 AM
The interface parameter in the following APIs refer to the pNA+ interface number.

The following API functions are provided for using DHCP client protocol:

task_prio Specifies the priority of the DHCP task. This should be less
than the priority of any other task that will call DHCP API
functions.

max_ifs Specifies the maximum number of network interfaces that
will be supported by DHCP.

log_msgs Indicates the progress of DHCP operation to enable debug-
ging messages. The setting is zero to disable logging.

int DHCP_start(dhcpcfg_t *dhcpcfg)

This routine is called by an user application (for example, preferably from
a ROOT task) to initialize and start DHCP operations. In addition, it starts
a DHCP task that is responsible for all of the DHCP operations and an-
other DHCP task when it needs to start processing DHCP responses.

dhcpcfg Specifies the DHCP configuration.

This routine returns zero on success or non-zero value if DHCP fails to
start. This call fails if it is unable to start a DHCP task or create a pSOS+
queue.

int DHCP_halt(void)

When it no longer needs to have DHCP services, this routine is called by
an user application to stop DHCP. It also deletes the DHCP tasks and
frees up the memory resources.

This routine returns zero on success or non-zero value on failure.
DHCP Client 1-35



System Services pSOSystem Programmer’s Reference

pr.book  Page 36  Thursday, January 28, 1999  9:18 AM
int DHCP_coldint(char ifno, dhcp_handler_t *hand)

This routine will start a DHCP operation on one of the network interfaces
numbered ifno . This will initiate the DHCP state machine for that net-
work interface in INIT state. See RFC1541 for an explanation of the DHCP
states.

Before calling this function, the IP address for this network interface is
0.0.0.0. This routine is responsible for allocating an IP address by re-
questing the DHCP server on the network, and configuring the interface
with this address. You need to provide a handle function, which is in-
voked whenever the DHCP state machine needs to notify you for any
event. Once this is invoked on an interface, the DHCP library is also
responsible for renewing the lease from the server.

ifno Specifies the interface number on
which to start DHCP.

hand Specifies the handler that you pro-
vide to be invoked whenever the
library needs to have user inter-
vention.

The dhcp_handler_t  handler is the following type:

typedef void (*dhcp_handler_t)(void *app_cookie,
dhcp_hdr_t *msg_cookie,
void *state_cookie,
dhcp_event_t event,
struct in_addr *server)

The parameter app_cookie  is for future extensions and should not be
used.

The parameter msg_cookie  is the pointer to the DHCP packet header.

The parameter state_cookie  should be stored by the application and
they should be used to invoke DHCP_request()  to accept a DHCP offer.

The parameter server  is the IP address of the server that made the
DHCP offer. This should be used by the application to make a decision
whether to accept the offer or wait for more offers. This address is in net-
work byte order.
1-36 DHCP Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 37  Thursday, January 28, 1999  9:18 AM
This routine allows you to be notified of certain events. You may not need
to take any action for all of the events. The parameter event indicates the
type of event.

The following are the list of events that are defined in dhcpcfg.h :

DHCP_EVT_GOT_RESPONSE Indicates the received packet is an
OFFER.

DHCP_EVT_TIMEOUT_CHOOSE_OFFERIndicates the timeout is up. Pick
an OFFER.

DHCP_EVT_TIMEOUT_NO_RESPONSE Indicates we never got an OFFER.

DHCP_EVT_LEASE_RENEWING Starts address requisition.

DHCP_EVT_LEASE_REBINDING Broadcasts address requisition.

DHCP_EVT_ADDRESS_LOST Indicates the lease is up or exten-
sion was NAKd.

DHCP_EVT_CANT_ADD_ADDR_MASK Indicates the add addr  failed —
bad netmask.

DHCP_EVT_CANT_ADD_ADDR_BRD Indicates the add addr  failed —
bad bcast addr .

DHCP_EVT_CANT_ADD_ADDR_MEM Indicates the add addr  failed —
malloc  failure.

DHCP_EVT_CANT_ADD_ADDR_UNK Indicates the add addr  failed —
unknown reason.

DHCP_EVT_BOUND Indicates the add addr  suc-
ceeded.

DHCP_EVT_MSG_TO_GO Indicates the DHCP message is
about to be sent.

DHCP_EVT_DECLINE Indicates the DHCPDECLINE is
about to be sent.

DHCP_EVT_BOOTP_MSG Indicates the packet has no mes-
sage type option.

DHCP_EVT_QUITTING Quits DHCP operation.

This function returns zero on success and an error code on failure. The
error code can be any pSOS+ error.
DHCP Client 1-37



System Services pSOSystem Programmer’s Reference

pr.book  Page 38  Thursday, January 28, 1999  9:18 AM
int DHCP_warminit(char ifno, struct in_addr *ipaddr, dhcp_handler_t
*hand)

This function is similar to DHCP_coldinit() except that the DHCP state
machine is started in INITREBOOT state rather than INIT state. It is used
to renew a previously allocated IP address, and is called on an interface
with a preconfigured IP address.

ifno Specifies the interface number on
which to start DHCP.

ipaddr Specifies the IP address which the
client is requesting to renew (in
network byte order). This address
should be passed in network byte
order.

hand Specifies the handler that you pro-
vide to be invoked whenever the
library needs to have user inter-
vention. For the list of events, see
DHCP_coldinit()  API function.

This routine allows you to be notified of certain events. You may not need
to take any action for a few of the events. These events are defined in
dhcpcfg.h . See DHCP_coldint()  API function for the list of the events.

This function returns zero on success and an error code on failure. The
error code can be any pSOS+ error.

dhcp_err_t dhcp_add_option(dhcp_hdr_t * msg_cookie,
bits8_t opt_tag,
bits8_t opt_len,/*

ignored if tag known */ bits8_t
* opt_value);

This function adds an option to the outgoing packet.

msg_cookie Specifies the pointer to the DHCP
packet header.

opt_tag Specifies the DHCP option tag that
needs to be added to the outgoing
packet. The possible values for the
DHCP option tags can be found in
the dhcpcfg.h  include file.

opt_len Indicates the length of the DHCP
option.
1-38 DHCP Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 39  Thursday, January 28, 1999  9:18 AM
opt_value Indicates the value of the DHCP
option.

This function returns zero on success or any of the dhcp_err_t  error
codes on failure. These error codes are described in the dhcpcfg.h  file.

dhcp_err_t dhcp_get_option(dhcp_hdr_t *msg_cookie,
bits8_t tag,
int * buflen,
bits8_t * buffer);

This function gets an option out of a received DHCP packet.

msg_cookie Specifies the pointer to the DHCP
packet header.

opt_tag Specifies the DHCP option tag that
needs to be read from the DHCP
packet. The possible values for the
DHCP option tags can be found in
the dhcpcfg.h  include file.

buflen Points to the maximum length of
the buffer and upon return from
this function, it contains the size of
the option copied in the buffer.

buffer Specifies the pointer to the value of
the DHCP option once the function
returns. This buffer should be
passed by you.
DHCP Client 1-39



System Services pSOSystem Programmer’s Reference

pr.book  Page 40  Thursday, January 28, 1999  9:18 AM
int DHCP_request(void *state_cookie,dhcp_hdr_t *offer)

This routine needs to be called to send a DHCP REQUEST packet by re-
sponding to one or more DHCP OFFER messages received by the client.
The decision on which the DHCP client accepts the DHCP OFFER is left to
the user. You need to call DHCP_request()  with the OFFER that needs
to be accepted.

state_cookie Specifies the state_cookie
passed by the library to the DHCP
handler.

offer Specifies the pointer to the DHCP
packet header passed by the
library to the DHCP handler.

int DHCP_decline(char ifno)

When the client does not like some of the options in DHCP ACK packet,
this routine needs to be called to send DHCP DECLINE packet to the
server.

ifno Specifies the interface number on
which DHCP decline is sent.

This function returns zero on success and an error code on failure. The
error code can be any pSOS+ error.

int DHCP_release(char ifno)

This routine needs to be called to send DHCP RELEASE packet to release
an IP address that is no longer needed.

ifno Specifies the interface number on
which the DHCP release should be
sent.

This function returns zero on success and an error code on failure. The
error code can be any pSOS+ error.
1-40 DHCP Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 41  Thursday, January 28, 1999  9:18 AM
int DHCP_rmintf(char ifno)

This routine is called to disable DHCP on a particular interface. By using
this routine, it might lead to a protocol violation (for example, DHCP lease
expires); therefore, this should be used with caution.

ifno Specifies the interface number on
which DHCP should be shutdown.

This function returns zero on success and an error code on failure. The
error code can be any pSOS+ error.
DHCP Client 1-41



System Services pSOSystem Programmer’s Reference

pr.book  Page 42  Thursday, January 28, 1999  9:18 AM
DNS and Static Name Resolver

Description

DNS and Static Name resolver is contained in pSOSystem’s Internet Applications
product.

Name resolution provides name-to-address mapping service to the application pro-
grams. Currently, only host name resolution is supported. The resolution is done by
looking up either the statically configured tables, which you initialize at startup and
modify, or by using the dynamic name resolution protocol called Domain Name
Service (DNS).

The Resolver service provides API’s for configuring static host and network tables,
and also the APIs for name resolution by using either static tables or the DNS proto-
col. The Resolver functions are executed as part of the user’s calling tasks. One
Resolver task RESt is created to maintain DNS cache entries.

NOTE: The Resolver is provided in the Internet Applications library.

System/Resource Requirements

The following pSOSystem resources are required to implement the resolver:

■ pSOS+ Real-Time Kernel.

■ pNA+ TCP/IP Network Manager.

■ pREPC+ Run-Time C Library.

In addition, the resolver requires the following system resources:

■ The Resolver allocates 28 bytes of dynamic memory from Region 0 for each en-
try of the static host or network table. It also allocates 100 bytes for each entry
of the search list and 600 bytes for each DNS cache entry. Therefore, the total
memory depends on the number of each of these parameters that you configure
at the Resolver startup.

■ The Resolver dynamically opens one UDP socket for sending DNS requests, and
closes this socket after receiving a response or timeout.

■ One semaphore RESs is used by the Resolver for protecting critical regions.

■ The Resolver task RESt requires 2Kbytes of task stack.
1-42 DNS and Static Name Resolver



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 43  Thursday, January 28, 1999  9:18 AM
Name resolution is done using either user-configured static tables or by using DNS.
The system can be configured so that either of the methods or both are used to do
the name resolution.

Before using name resolution APIs, you need to initialize the Resolver by calling
res_start() by passing rescfg_t structure. This structure includes parameters
such as the search priority. All the other subsequent resolution requests are han-
dled by using these parameters. Subsequently, you can change these parameters by
using res_modify() .

Configuration and User Interface

The name resolver is started by invoking the res_start() function with the spe-
cific application parameters. Example 1-1 illustrates how the parameters are
passed.

EXAMPLE 1-1: Name Resolver Structure

#include <rescfg.h>
struct rescfg_t{

long res_priority; /* priorities for resolution (encoded) */
#define RES_STATIC 0x01
#define RES_DNS 0x02

long res_dns_task_prio; /* priority for resolver timer
task */

int res_dns_query_mode; /* Query mode */
#define DNS_MODE_NOCHG 0x0000
#define DNS_MODE_NOCACHE 0x0001
#define DNS_MODE_CACHE_NET 0x0002
#define DNS_MODE_CACHE_NONET 0x0003

long res_dns_max_ttl; /* maximum TTL for DNS RRs */
long res_dns_res_timeout; /* wait period for resolver

timeouts */
long res_dns_res_retxmits; /* number of times resolver

retransmits */
long res_dns_max_cache; /* maximum Cache entries */
long res_dns_no_servers; /* No of DNS servers */
long *res_dns_servers; /* List of DNS servers to probe */
char **res_dns_search_path; /* DNS search path */
long res_max_hosttab; /* Maximum entries in static host

table */
long res_max_nettab; /* Maximum entries in static net table */
long res_dns_marktime; /* Mark time in seconds for DNS cache */
long res_dns_sweeptime /* Sweep time in seconds for DNS cache */

};
typedef struct rescfg_t rescfg_t;
DNS and Static Name Resolver 1-43



System Services pSOSystem Programmer’s Reference

pr.book  Page 44  Thursday, January 28, 1999  9:18 AM
The following describes the configuration parameters used for name resolvers.

res_priority Defines the priority at which the name resolution works.
The possible values are encoded from RES_DNS (DNS re-
solver) and RES_STATIC (static resolver). The least signifi-
cant byte (LSB) signifies the first preferred method. The
most significant byte determines the least preferred
method of name resolution.

Currently, the two methods that are supported are DNS
and static resolution (RES_DNS and RES_STATIC). There-
fore, the following are the four possible values:

RES_STATIC Searches only static tables.

RES_DNS Searches only DNS.

RES_STATIC|(RES_DNS<<8) Searches static tables first
then DNS next.

RES_DNS|(RES_STATIC<<8) Searches DNS first then
static tables next.

res_dns_task_prio Defines the task priority of the DNS daemon task RESt.

res_dns_query_mode Defines the query mode for the DNS name resolver. The
possible values are DNS_MODE_NOCACHE and
DNS_MODE_CACHE_NET that disable the cache and enable
the cache respectively, and DNS_MODE_NONETthat dis-
ables requests going to the network.

res_dns_max_ttl Defines the maximum time-to-live (TTL) for the DNS cache
entries (in seconds).

res_dns_timeout Defines the time-out value in milliseconds for DNS que-
ries. The minimum value is 5000 (5 seconds). Values set to
less than the minimum are reset to 5000.

res_dns_max_rexmits Defines the maximum number of retransmits for DNS que-
ries before timing out. For each retransmit, the time out
value increases.

res_dns_max_cache Defines the maximum entries in the DNS cache. See Sys-
tem/Resource Requirements section for details on memory
requirements for cache entries.

res_dns_no_servers Defines the number of DNS servers configured. A maxi-
mum of ten servers can be specified.

res_dns_servers Lists the DNS servers configured. These servers are speci-
fied using their IP address in the network byte order.
1-44 DNS and Static Name Resolver



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 45  Thursday, January 28, 1999  9:18 AM
The resolver is initialized by calling res_start(rescfg_t *cfg) function, which
starts the DNS daemon task, allocates required memory for static tables, and initial-
izes the resolver parameters.

If the resolver is started successfully, res_start() returns zero; otherwise, it re-
turns a non-zero value on failure. The error value can be E_RESTASK_STARTUPif
the DNS task is unable to start or receive any pSOS+ error. All error codes specific
to Internet Applications reside in <netutils.h> .

Subsequently, some of the resolver parameters can be changed by calling
res_modify(rescfg_t *cfg) . The parameters that can be changed using
res_modify() are res_priority , res_dns_query_mode , and
res_dns_servers .

The following example shows the usage of both res_start(rescfg_t *cfg) and
res_modify(rescfg_t *cfg)  functions:

rescfg_t cfg;
cfg.res_priority = RES_STATIC<<8|RES_DNS;
cfg.res_xxx = yyy; /* other parameters related to resolver

configuration */

res_start(&cfg);

res_dns_search_path Defines the list of DNS names that are concatenated to the
host name strings for searching. The list configured here
determines the stack space requirement of the calling task
for DNS queries. If this entry is NULL, only fully qualified
names (for example, chief.isi.com) are supported. If more
entries are listed in the search path, the DNS queries may
take more time to respond and also the calling task needs
more stack space. A maximum of six entries can be given
in a search path.

res_max_hosttab Defines the maximum entries in the static host table. See
System/Resource Requirements section for information
about static host tables.

res_max_nettab Defines the maximum entries in the static network table.
This is for future extensions and should be set to zero.

res_dns_marktime Specifies the time in seconds after which DNS task RESt
wakes up and searches the DNS cache entries for any
timeout elements. They will be marked for subsequent
deletion.

res_dns_sweeptime Specifies the time in seconds after which the DNS task
wakes up and deletes the timed out cache entries.
DNS and Static Name Resolver 1-45



System Services pSOSystem Programmer’s Reference

pr.book  Page 46  Thursday, January 28, 1999  9:18 AM
The host entry structure, which is found in rescfg.h , is shown in the following
example:

#include <rescfg.h>
struct hostent
{

char *h_name; /* official name of host */
char **h_aliases /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */

#define MAX_ADDR_LIST 10
char *h_addr_list[MAX_ADDR_LIST]; /* list of addresses from name

server */
#define h_addr h_addr_list[0] /* address, for backward

compatibility */
};

The following API routines are provided for name-to-address mapping:

int gethostbyname(char *name, struct hostent *hostp)

Given the hostname, this routine finds the corresponding IP address
and returns it.

name Specifies the name of the host whose IP address is
to be resolved.

hostp Specifies the pointer to a structure that is filled
with the resolved address. Note that
h_addr_list[]  array needs to be initialized. See
the example in the following sections.

This routine returns zero on success or -1 on failure if it is not able
to resolve the name.

int gethostbyaddr(char *addr, int len, int type, struct hostent
*hostp)

Given the address, this routine finds the corresponding host name
and returns it.

addr Specifies the pointer to the address to be resolved
to a name.

len Specifies the length of the address (for example, 4
for IPv4 addresses).

type Specifies the type of the address format. This is
only for the internet format that is supported and
is set to AF_INET.
1-46 DNS and Static Name Resolver



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 47  Thursday, January 28, 1999  9:18 AM
The following API routines are provided to configure and search the static host
table, which provides mapping between the hostname and the ipaddresses.

hostp Specifies the pointer to a structure that is filled
with the resolved name. You should preallocate the
buffer to store the resolved name. The resolved
name can be up to 255 characters long (See
Example 1-2).

This routine returns zero on success or -1 on failure if it is not able
to resolve the address.

set_hostentry(unsigned long ipadd, char *hostname)

Adds an entry for the ipadd and hostname pairs in the static host table.

ipadd Specifies the IP address of the host.

hostname Specifies the name of the host as a NULL ter-
minated string up to 16 characters.

This routine returns zero on success; otherwise, it returns a non-zero
value on failure. The possible error values are:

E_RESTASK_INVALID Determines that one or more parameters are
invalid.

E_RESHOST_FULL Determines if the table is full.

pSOS+ Error Codes See pSOSystem System Calls, Appendix B,
Error Codes, pSOS+ Error Codes section for all
the possible error codes.

del_hostentry(unsigned long ipadd)

Removes the entry whose IP address is ipadd .

ipadd Specifies IP address of the host.

This routine returns zero on success; otherwise, it returns a non-zero
value on failure. The possible error values are:

E_RESTASK_INVALID Determines that one or more parameters are
invalid.

E_RESHOST_FULL Determines if the table is full.

pSOS+ Error Codes See pSOSystem System Calls, Appendix B,
Error Codes, pSOS+ Error Codes section for all
the possible error codes.
DNS and Static Name Resolver 1-47



System Services pSOSystem Programmer’s Reference

pr.book  Page 48  Thursday, January 28, 1999  9:18 AM
The usage of the functions differ from their counterparts on UNIX systems.
Example 1-2 on page 1-49 illustrates the code segments for the usage of gethost-
byname()  and gethostbyaddr() functions.

NOTE: None of the Resolver API functions can be called from Interrupt Service
Routines (ISRs).

get_hentbyname(char *hostname, unsigned long *addr)

Returns the host IP address for the given name. Only the static table
is searched, and you are required to use a more generic interface
gethostbyname()  if DNS resolution is required.

hostname Specifies the name of the host.

addr Specifies the pointer to the address to be
retrieved.

This routine returns zero on success; otherwise, it returns a non-zero
value on failure. The possible error values are:

E_RESTASK_INVALID Determines that one or more parameters are
invalid.

E_RESHOST_FULL Determines if the table is full.

pSOS+ Error Codes See pSOSystem System Calls, Appendix B,
Error Codes, pSOS+ Error Codes section for all
the possible error codes.

get_hentbyaddr(unsigned long addr, char *hostname)

Returns the host name given its IP address. Only the static table is
searched, and you are required to use a more generic interface
gethostbyaddress()  if DNS resolution is required.

addr Specifies the address of the host.

hostname Specifies the pointer to the hostname to be
retrieved.

This routine returns zero on success; otherwise, it returns a non-zero
value on failure. The possible error values are:

E_RESTASK_INVALID Determines that one or more parameters are
invalid.

E_RESHOST_FULL Determines if the table is full.

pSOS+ Error Codes See pSOSystem System Calls, Appendix B,
Error Codes, pSOS+ Error Codes section for all
the possible error codes.
1-48 DNS and Static Name Resolver



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 49  Thursday, January 28, 1999  9:18 AM
EXAMPLE 1-2:  Resolver Example

#include <rescfg.h>

/* To resolve name to address */
name_to_address(char *name) /* name to be resolved */
{

unsigned long ipaddr;
struct hostent hostp;
....

memset((char *)&hostp, 0, sizeof(struct hostent));
hostp.h_addr_list[0] = (char *)&ipaddr;
if (gethostbyname(name, &hostp))

printf("Host address not found\n");
else

printf("Hostname: %s, Hostaddress: 0x%x\n", name,
ipaddr);

...

}

/* To resolve address to name */
address_to_name(unsigned long ipaddr) /* address to be resolved */
{

struct hostent hostp;
char hostname[256];
....

hostp.h_name = hostname;
hostp.h_addr_list[0] = (char *)&ipaddr;
if (gethostbyaddr((char *)&ipaddr, sizeof(long), AF_INET,

&hostp))
printf("Host name not found\n");

else
printf("Hostname: %s, Hostaddress: 0x%x\n", hostname,

ipaddr);

....
}

NOTE: All of the IP addresses mentioned in this section will either expect or pass
the addresses in network byte order.
DNS and Static Name Resolver 1-49



System Services pSOSystem Programmer’s Reference

pr.book  Page 50  Thursday, January 28, 1999  9:18 AM
FTP Client

Description

The FTP (File Transfer Protocol) Client contained in the Internet Applications prod-
uct, transfers files to and from a remote system. The remote system must run an
FTP server program that conforms to the ARPANET File Transfer Protocol. The FTP
Client runs as an application under pSH+ and is invoked with the following
command:

pSH+ > ftp [ remote_system ]

where remote_system is a remote system IP address or a hostname if Name
Resolver is configured.

If no arguments are given, FTP Client enters command mode (indicated by the ftp>
prompt). In command mode, FTP accepts and executes commands described under
FTP Commands on page 1-51.

If the command contains arguments, FTP executes an open command with those
arguments. See FTP Commands on page 1-51 for a description of open and the
other FTP commands.

The normal abort sequence, [CTRL]-C does not work during a transfer.

NOTE: The ftp client is provided in the Internet Applications library as position
dependent code.

Configuration and Startup

The FTP Client requires the following:

■ pSOS+ or pSOS+m Real-Time Kernel.

■ pREPC+ Run-Time C Library.

■ pHILE+ File System Manager.

■ pSH+ interactive shell command.
1-50 FTP Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 51  Thursday, January 28, 1999  9:18 AM
In addition, each session of the FTP requires the following system resources:

■ 8978 bytes of dynamic memory allocated from Region 0. This is allocated to
store session information and freed when the session exits.

■ Two TCP sockets. One is used for FTP control connection. The other is used for
data connection. Both sockets are closed when the session exits.

■ The stack space needs to be configured by the user. If the user stack size is set
to -1, the task is started in supervisor mode.

pSH+ starts FTP Client by calling ftp_main() . The Internet Applications library in-
cludes a pre-configured version of pSH+ and FTP Client, but to add FTP Client to
pSH+, an entry for it must be made in the pSH+ list of user applications. The follow-
ing shows an example of a user application list containing FTP and Telnet:

struct appdata_t appdata[] = {
{"ftp", "file transfer application", ftp_main, "ft00", 250,

4096, 4096,1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}

};

You can define the other elements in the preceding example ("ft00 ", and so on).

FTP Commands

The following commands can be entered at the FTP prompt (ftp> ). File naming
conventions and descriptions of transfer parameters follow these command
descriptions.

! [ command] Run command as a shell command on the local machine.

account [ passwd ] Provide a supplemental password required by a remote system
for access to resources after a successful login. If no argument
is included, you are prompted for an account password in a
non-echoing input mode.

append local_file [ remote_file ]

Append a local file to a file on the remote machine. If
remote_file is unspecified, the local filename is used to name
the remote file. File transfer uses the current settings for repre-
sentation type, file structure, and transfer mode.

ascii Set the representation type to network ASCII (the default type).

bell Sound a bell after each file transfer command completes.
FTP Client 1-51



System Services pSOSystem Programmer’s Reference

pr.book  Page 52  Thursday, January 28, 1999  9:18 AM
binary Set the representation type to image.

bye Terminate the FTP session to the remote server and exit FTP.
An EOF also terminates the session and causes an exit.

cd remote_directory

Change the working directory on the remote machine to
remote_directory.

cdup Change the working directory on the remote machine to the
parent of the current working directory on the remote machine.

close Terminate the FTP session with the remote server and return to
the command interpreter.

cr Toggle [RETURN] stripping during network ASCII-type file re-
trieval. Records are denoted by a [RETURN] or [LINEFEED] se-
quence during a network ASCII-type file transfer. When cr is on
(the default), [RETURN] characters are stripped from this se-
quence to conform to the UNIX system single-LINEFEED record
delimiter. Records on non-UNIX system remote hosts may con-
tain single [LINEFEED] characters; when a network ASCII-type
transfer is made, the [LINEFEED] characters can be distin-
guished from a record delimiter only when cr  is off.

delete
remote_file

Delete the file remote_file on the remote machine.

dir [ remote_directory ] [ local_file ]

Print a listing of the directory contents in the directory, the re-
mote directory, and, optionally, the local file. If no directory is
specified, the current working directory on the remote machine
is used. If no local file is specified or if the local file is specified
by a dash (-), output goes to the terminal.

disconnect Synonymous to close .
1-52 FTP Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 53  Thursday, January 28, 1999  9:18 AM
get remote_file [ local_file ]

Retrieve the remote file and store it on the local machine. If the
local filename is not specified, it receives the same name it has
on the remote machine. When no name is specified, the pro-
gram-generated name can be altered because of the current
case , ntrans , and nmap settings. The current settings for rep-
resentation type, file structure, and transfer mode apply during
file transfers. The local_file parameters can be also a device
number (for example, “13.0”).

glob Toggle globbing (filename expansion) for mdelete , mget  and
mput . If globbing is off, filenames are taken literally.

Globbing for mput is done the same as with the csh UNIX com-
mand. For mdelete  and mget , each remote filename is
expanded separately on the remote machine, and the lists are
not merged.

Expansion of a directory name is likely to be very different from
expansion of the name of an ordinary file: the exact result
depends on the remote operating system and FTP server. The
result can be previewed by executing the following:

mls   remote_files   -

The mget and mput commands are not meant to transfer entire
directory subtrees of files: instead, transfer directory subtrees
of files by transferring a tar  (UNIX command) archive of the
subtree (using the image representation type as set by the
binary  command).

hash Toggle hash-sign (#) printing for each data block transferred.

help [ command] Print information about the command. With no argument, ftp
lists the known commands.

lcd [ directory ] Change the working directory on the local machine. If no direc-
tory is specified, the user's home directory is used.

ls [ remote_directory ] [ local_file ]

Print a listing of the contents of a directory on the remote
machine. If remote_directory is unspecified, the current working
directory is used. If no local file is specified or if local_file is a
dash (-), the output goes to the terminal.

mdelete [ remote_files ]

Delete the specified remote_files on the remote machine.
FTP Client 1-53



System Services pSOSystem Programmer’s Reference

pr.book  Page 54  Thursday, January 28, 1999  9:18 AM
mdir remote_files local_file

The mdir  command is like dir , except that mdir  supports
specification of multiple remote files. If interactive prompting is
on, ftp  prompts you to verify that the last argument is the
local file targeted to receive mdir  output.

mget remote_files

Expand the remote_files on the remote machine and execute a
get  for each filename thus produced. See glob  for details the
filename expansion. Resulting filenames are then processed
according to case , ntrans , and nmap settings. Files are trans-
ferred into the local working directory, which can be changed
by executing lcd directory. New local directories can be created
with !mkdir directory.

mkdir [ directory_name ]

Make a directory on the remote machine.

mls remote_files local_file

The mls command resembles ls (1V), except that mls supports
specification of multiple remote files. If interactive prompting is
on, ftp  prompts you to verify that the last argument is the
local file targeted to receive mls  output.

mode [ mode_name] Set the transfer mode to mode_name. The only valid mode
name is stream , which corresponds to the default stream
mode.

mput local_files Expand wild cards in the list of local files given as arguments
and do a put  for each file in the resulting list. See glob  for
details on filename expansion.

nlist [ remote_directory ] [ local_file ]

Print an abbreviated listing of the contents of a directory on the
remote machine. If remote_directory is unspecified, the cur-
rent working directory is used. If no local file is specified or if
local_file is a dash (-), the output goes to the terminal.
1-54 FTP Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 55  Thursday, January 28, 1999  9:18 AM
open host [ port ] Establish a connection to the specified host FTP server. A port
number is optional. If port is specified, ftp attempts to contact
an FTP server at that port. If the auto-login option is on (the
default), ftp  also attempts to automatically log the user into
the FTP server (refer to the description of user ). host  can be
the IP address of the FTP server or hostname if Name Resolver
is configured.

prompt Toggle interactive prompting. Interactive prompting during
multiple file transfers allows you to selectively retrieve or store
files. Prompting is on by default. If prompting is off, an mget or
mput  transfers all files, and an mdelete  deletes all files.

put local_file  [ remote_file ]

Store a local file on the remote machine. If remote_file is un-
specified, the local filename is used to specify the remote file.
File transfer uses the current settings for representation type,
file structure, and transfer mode.

pwd Print the name of the current working directory on the remote
machine.

quit Synonymous to bye .

quote arg1
arg2 ...

Send the arguments specified verbatim to the remote FTP
server. A single FTP reply code is expected.

recv remote_file  [ local_file ]

Synonymous to get .

remotehelp [ command_name]

Request help from the remote FTP server. If a command_name
is specified, it also goes to the server.

rename from to Rename the file specified by from on the remote machine to
have the name specified by to.

reset Clear reply queue. This command synchronizes command/re-
ply sequencing with the remote FTP server. Synchronization
may be necessary if the remote server violates FTP protocol.

rmdir
directory_name

Delete a directory on the remote machine.
FTP Client 1-55



System Services pSOSystem Programmer’s Reference

pr.book  Page 56  Thursday, January 28, 1999  9:18 AM
runique Toggle storing of files on the local system with unique filena-
mes. The generated unique filename is reported. The runique
command does not affect local files generated from a shell com-
mand. By default runique  is OFF.

If a file already exists with the same name as the target local
filename for a get or mget , a.1 is appended to the name. If the
resulting name matches another existing filename, a .2  is
appended to the original name. If the additions reach .99 , an
error message is printed, and the transfer does not take place.

send local_file [ remote_file ]

Synonymous to put .

sendport Toggle the use of PORT commands. By default, ftp attempts to
use a PORT command when it establishes a connection for
each data transfer. The use of PORT commands can prevent
delays during multiple file transfers. If the PORT command
fails, ftp  uses the default data port. When the use of PORT
commands is disabled, no attempt is made to use PORT com-
mands for each data transfer. This is useful for certain FTP
implementations that ignore PORT commands but incorrectly
indicate they have been accepted.

status Show the current status of FTP.

sunique A toggle for storing of files on a remote machine under unique
filenames. For successful file storage, the remote FTP server
must support the STOU command. The remote server reports
the unique name. The default state is OFF.

tenex Set the representation type to the value needed for communica-
tion with TENEX machines.

type [ type_name ] Set the representation type to type_name. Valid type names
are as follows:

ascii   For network ASCII.

binary  or image For image.

tenex   For local byte size of eight bits (used to talk to
TENEX machines).

If no type is specified, the current type is printed. The default
type is network ASCII.
1-56 FTP Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 57  Thursday, January 28, 1999  9:18 AM
A command argument can have embedded spaces if the argument is enclosed in
quote marks (").

If a required command argument is absent, ftp  prompts for that argument.

File Naming Conventions for FTP Command Arguments

Arguments for some commands in the preceding list can be local files. Local files
specified as arguments to FTP commands are processed according to the following
rules:

■ If the specified filename is a dash (-), the standard input (for reading) or stan-
dard output (for writing) is used.

■ If the filename is not a dash and if globbing is enabled, local filenames are ex-
panded according to the rules used in the csh UNIX command. (See also the
glob command.) If the FTP command expects a single local file (for example,
with a put command), only the first filename generated by the globbing opera-
tion is used.

■ For mget and get commands that have unspecified local filenames, the local
filename is the same as the remote filename. The resulting filename can then be
altered if runique  is on.

user username [ password ] [ account ]

Identify the user to the remote FTP server. If the password is
not specified and the server requires it, ftp  prompts for the
password after it disables local echo. If an account field is un-
specified and the FTP server requires one, the user prompts for
an account field.

If the remote server does not require an account input for login
and if it is nevertheless specified, an account command is re-
layed to the remote server after the login sequence is com-
pleted. Unless ftp  is invoked with auto-login  disabled, this
process is done automatically upon initial connection to the
FTP server.

verbose Toggle verbose mode. In verbose mode, all responses from the
FTP server are displayed to the user. If verbose mode is on, sta-
tistics about the efficiency of the transfer are reported when a
file transfer completes. By default, verbose mode is on if FTP
commands come from a terminal (and off otherwise).

? [ command] Synonymous to help .
FTP Client 1-57



System Services pSOSystem Programmer’s Reference

pr.book  Page 58  Thursday, January 28, 1999  9:18 AM
■ For mput and put commands with unspecified remote filenames, the remote
filename is the local filename. The resulting filename can then be altered by the
remote server if sunique  is on.

File Transfer Parameters

FTP command specification (described in the preceding pages) includes three pa-
rameters that can affect a file transfer. The three parameters are the representation
type, the file structure, and the transfer mode. The representation type can be one of
the following:

■ Network ASCII

■ EBCDIC

■ Image

The network ASCII and EBCDIC types also have a subtype. This subtype specifies
whether vertical format control ([NEWLINE] characters, form feeds, and so on) are to
be processed in one of the following ways:

■ Passed through (nonprint)

■ Provided in Telnet format (TELNET format controls)

FTP supports the network ASCII (subtype non-print only) and image types.

Next, the file structure can be one of file (no record structure), record , or page .
FTP supports only file .

Lastly, the transfer mode can be either stream , block , or compressed . FTP sup-
ports only stream .

FTP Client Limitations

Correct execution of many commands depends on correct operation by the remote
server. An error in the treatment of carriage returns in the 4.2 BSD code handling
transfers with a representation type of network ASCII has been corrected. This cor-
rection can result in incorrect transfers of binary files to and from 4.2 BSD servers
using a representation type of network ASCII. Avoid this problem by using the image
type.
1-58 FTP Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 59  Thursday, January 28, 1999  9:18 AM
FTP Server

Description

FTP Server is contained in pSOSystem’s Internet Applications product.

FTP Server allows remote systems that are running the ARPANET File Transfer Pro-
tocol to transfer files to and from a pHILE+ device. FTP Server is implemented as a
daemon task named ftpd . The ftpd daemon listens for connection requests from
clients and creates server tasks for each FTP session that a client establishes.

NOTE: The ftpd task is provided in the Internet Applications library as position
dependent code.

Configuration and Startup

FTP Server requires the following:

■ pSOS+ Real-Time Kernel.

■ pHILE+ File System Manager.

■ pNA+ TCP/IP Network Manager.

■ pREPC+ Run-Time C Library.

■ Eight Kbytes of task stack and two Kbytes of supervisor stack per session.

■ One TCP socket, which is used to listen for client session requests, and two ad-
ditional TCP sockets per session.

■ Eight Kbytes of dynamic storage, which a pREPC+ malloc() system call allo-
cates

■ A user-supplied configuration table.

The user-supplied FTP Server Configuration Table defines application-specific
parameters, and the following is a template for this table. This table should be stat-
ically allocated by the application and passed to the library. This template exists in
the include/netutils.h  file.

struct ftpcfg_t {
long task_prio; /* priority for ftpd task */
long max_sessions; /* max # of concurrent sessions */
char *vol_name; /* name of the login volume */
FTP Server 1-59



System Services pSOSystem Programmer’s Reference

pr.book  Page 60  Thursday, January 28, 1999  9:18 AM
char **hlist; /* ptr list of trusted clients */
ulist_t *ulist; /* ptr list of trusted users */
int abort_cmd; /* To support ABORT while data xfer */
long reserved[1]; /* reserved for future use, must be 0 */
};

Definitions for the FTP Server Configuration Table entries are as follows:

FTP Server comes as one object module and must be linked with a user application.

task_prio Defines the priority at which the daemon task ftpd  starts
executing.

max_sessions Defines the maximum number of concurrently open sessions.

vol_name Defines the name of the volume to use when a client logs into
pSOSystem.

hlist Allows you to put a list of IP addresses in dot notation with a
NULL at the end. If this field is zero, FTP Server accepts a con-
nection from any client.

ulist Points to a list of structures that contain login information of
permitted users. If this field is zero, all users are allowed to log
in. The following is a template for one of these structures:

struct ulist_t {
char *login_name; /* user name */
char *login_passwd; /* user password */
long reserved[4]; /* must be 0 */
};

The following is an example structure with three entries:

struct ulist_t ulist[] {
{"guest", psos0", 0, 0, 0, 0},
{"scg", "andy0", 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0}
}

abort_cmd Supports ABORT command if it is set to one while conducting a
file transfer. This enables you to abort a file transfer (from a
client) in a graceful manner. However, enabling this option will
slow down the FTP transfer rate.

reserved Reserved for future use, and each must be zero.
1-60 FTP Server



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 61  Thursday, January 28, 1999  9:18 AM
Calling the function ftpd_start(ftpdcfg) at any time after pSOSystem initial-
ization (when ROOT is called) starts it. The parameter ftpdcfg is a pointer to the
FTP Server Configuration Table. If FTP Server starts successfully, ftpd_start()
returns zero; otherwise, it returns a non-zero value on failure. The error value can
be any pSOS+ error.

Configuration Table Example

The following code fragment shows an example configuration table and the call that
starts FTP Server. The complete example code exists in the apps/netutils/
root.c  file.

EXAMPLE 1-3: apps/netutils/root.c  file example

#include <ftpdcfg.h>
start_ftp_server() {

/* FTP server configuration table */
static ftpcfg_t ftpcfg =
{
250, /* Priority for ftpd task */
4, /* Maximum number of concurrent sessions */
"4.0", /* Name of the login volume */
0, /* List of trusted clients */
0, /* List of permitted users */
0, 0 /* Must be 0 */
};
/* start the FTP server */
if (ftpd_start(&ftpcfg))
printf("ftpd_start: failed to start\n");
}

NOTE: The FTP server can be used to transfer files to or from regular files or
pSOS+ devices (for example, “13.0”).
FTP Server 1-61



System Services pSOSystem Programmer’s Reference

pr.book  Page 62  Thursday, January 28, 1999  9:18 AM
Loader

Description

The pSOSystem loader included in the pSOSystem base package, provides a pro-
grammatic interface for controlling run-time target loading and unloading of appli-
cation programs from a variety of I/O interfaces. The loader is supplied as a library
of functions that can be called from a user application.

Powerful loader applications can be written using just three functions (load ,
unload , and release ). The loader library has been designed to depend only on
pSOS+ system services; it does not depend on any other components. However, you
may need to include other components like pHILE+ and pNA+, depending on the
type of I/O interface being used to load applications.

The loader supports the loading of object files residing on pHILE+ media (pHILE+
volumes, CD_ROM volumes, MS-DOS volumes, or remote file systems mounted
through NFS). The loader also supports loading from any device driver that con-
forms to the interface standard defined by pREPC+. Additional requirements for
device drivers are described in Guidelines for Writing Device Drivers on page 1-79. A
pseudo device driver that uses TFTP (Trivial File Transfer Protocol) to transfer files
from a remote host is also provided with pSOSystem. You can use the TFTP device
driver in conjunction with the loader.

The loader can load object files that are either in Motorola S-record (SREC) format
or in the ELF format. The following types of object files are supported by the loader:

■ SREC object files containing absolute (position-dependent) code.

■ SREC object files containing position-independent code.

■ ELF object files containing absolute code.

■ ELF object files containing relocatable code.

The term relocatable refers to object files that contain relocation information. Such
object files are produced as intermediate files during the compilation/linking pro-
cess. The relocatable object (.o ) files are produced by various host tools, as follows:

■ All object files produced by the assembler are relocatable.

■ Object files produced by the C compiler with the -c option specified are relocatable.
1-62 Loader



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 63  Thursday, January 28, 1999  9:18 AM
■ Object files produced with the incremental linking (-i) option specified are relo-
catable.

The ability to load relocatable files with the loader provides extra flexibility. For
example, you can generate position-dependent code but defer the decision of where
to place the code in target memory until runtime.

NOTE: Relocatable files must not contain unresolved external symbol references.

Loader Configuration

The following files are associated with the loader:

sys/libc/libloadr.a Library file containing the loader.

include/loader.h Header file that contains typedefs, defines, and func-
tion prototypes for the functions provided in the
loader library.

configs/std/ldcfg.c Configuration file for customizing the loader. It con-
trols what modules get linked with the user loader
application.

apps/loader/README Contains detailed on-line instructions for generating
and running a sample loader application.

apps/loader/makefile Contains the rules to build a sample loader applica-
tion and is used by the UNIX make utility.

apps/loader/sys_conf.h The pSOSystem configuration file.

apps/loader/*.[csh] Source programs for the sample application demon-
strating how to use loader functions in applications.
To run this sample application, you may need to con-
figure pREPC+, pHILE+, pRPC+, pNA+, and/or the
TFTP pseudo device driver in the system.

apps/loader/loadable/* Source files for a simple pSOSystem application that
is intended to be loaded by the sample loader
application.

configs/std/beginapi.s Application startup file for use by position- indepen-
dent loadable applications (similar to the begina.s
file provided with pSOSystem).

configs/std/loadable.lnk is a linker command file for linking relocatable and
position independent applications.
Loader 1-63



System Services pSOSystem Programmer’s Reference

pr.book  Page 64  Thursday, January 28, 1999  9:18 AM
The loader contains two user-configurable modules. One supports the loading of
Motorola S-records and the other supports the loading of ELF object files. It is possi-
ble to generate a loader application that contains any one or both of the modules. By
default, both of the modules are enabled. The apps/loader/sys_conf.h file con-
tains the following two #define statements:

#define LD_SREC_MODULE YES /* Motorola S-record support */
#define LD_ELF_MODULE YES /* ELF file support */

To exclude a particular module from getting linked to the loader application, change
YES to NOfor the module you want to exclude.

sys_conf.h also contains the following #define , which determines the maximum
number of loading operations that can be handled simultaneously by the code in the
loader library:

#define LD_MAX_LOAD 8 /* Max number of simultaneously active load */

You must make any necessary changes to LD_SREC_MODULE, LD_ELF_MODULE, or
LD_MAX_LOAD by modifying sys_conf.h  before generating the loader application.

In addition to the files listed above, a host-executable utility called ld_prep is
present under the various bin/<host> subdirectories in the pSOSystem directory
tree. You must include the proper subdirectory in your PATH, depending on the host
environment you are using for pSOSystem application development.

For example, if using a Sun SPARCstation as the development platform, modify your
path as follows:

set path = ($path $PSS_ROOT/bin/sunos) # if csh is the working shell

or

PATH=$PATH:$PSS_ROOT/bin/sunos # if sh or ksh is the working shell

where PSS_ROOTis an environment variable specifying the pathname of the
pSOSystem root directory.

Copy the files under the apps/loader directory to a working directory of your
choice before making any modifications or generating the sample application. (The
UNIX cp -r or MS-DOS xcopy commands can be used for this purpose.) The
READMEfile contains detailed information about the sample application. It also con-
tains instructions for generating and running this application. You must follow
these instructions to compile and run the sample loader application. Run this appli-
cation and view the sample code to help familiarize yourself with the loader.
1-64 Loader



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 65  Thursday, January 28, 1999  9:18 AM
Concepts and Operation

The loader is useful in situations where you are dealing with multiple applications
(running simultaneously on a target), and they can be partitioned so that no two ap-
plications share symbol references with each other. There can be many reasons for
partitioning applications into multiple executable files and/or using dynamic load-
ing. Some of these are as follows:

■ All of the applications, taken together, are too big to fit in target memory. In cer-
tain cases, you may want to load/unload the applications on an as-needed
basis.

■ Depending on the hardware configuration, you may want to configure and load
certain applications at runtime.

■ In the development environment, you may want to load a new version of an
“already-running” application without bringing down the whole system.

■ In a situation where it is difficult or impossible to determine the final load ad-
dress of an application, you may want to delay this decision until runtime.

Typically, you will make the loader run as part of the root task. This task remains
resident on the target and loads other applications as and when needed. This is one
of the suggested approaches and, as demonstrated by the sample application, the
loader functions can be used in many other ways.

For ease of explanation, assume the presence of a single task called the loader
task, which takes care of loading other application tasks, called loadable applica-
tions. The loader task is linked with pSOSystem and gets loaded on the target sys-
tem using the standard method for bootstrapping the system. First, an outline is
provided of a simple method for writing the loader task using the functions provided
by the loader library, libloadr.a.

The load() function is provided for loading loadable applications. These applica-
tions may remain resident on the target forever, or only temporarily. Loadable appli-
cations can be unloaded using the unload() function. A call to unload() frees up
any memory allocated by load() for the run-time image of a loadable application; it
also frees up any state information associated with the loadable application [saved
by the loader library during the call to load() ].

If the loadable application is to remain resident on the target forever, the release()
function must be called to free up any state information associated with the load-
able application. A call to release() does not free up the memory occupied by the
Loader 1-65



System Services pSOSystem Programmer’s Reference

pr.book  Page 66  Thursday, January 28, 1999  9:18 AM
run-time image of the loadable application, and the application can keep running
without any hindrance. A detailed description of these functions is provided later in
this section.

You open the file containing the loadable application using either the pHILE+
open_f() call or the de_open() function, which opens the device driver through
which the loadable application will be read. The file descriptor returned by
open_f() or the device number of the device driver must be passed to the load()
function as the first argument (fd ). You must also specify whether the first argu-
ment refers to a pHILE+ file descriptor or a device number. This is done by setting
either LD_DESC_PHILEor LD_DESC_DEVin the second argument (flags ) passed to
load() .

The load() function reads in the loadable application using either the pHILE+
read_f() function or the de_read() function, whatever the case may be. It deter-
mines the object file format of the loadable application and invokes the appropriate
module (SREC or ELF) to convert the object file into a binary image suitable for exe-
cution. The exact behavior of load() depends on the type of code (position indepen-
dent, absolute, or relocatable), as follows:

■ Loading Absolute Code
Any object files containing absolute code (that is, position-dependent and non-
relocatable code) are loaded at the address specified at the time of linking. The
load() function does not allocate any memory for loading the run-time image.
It is the responsibility of the calling task to make sure that it is safe to load the
application at the address to which it was linked. You cannot override the de-
fault addresses, as it does not make sense to load absolute code at a location to
which it was not linked.

■ Loading Position-Independent Code
When loading object files containing position-independent code, the load ad-
dresses that were specified during the time of linking are ignored. load() allo-
cates the memory needed to load the binary image from pSOS+ Region 0 (RN#0).
It is possible to override the addresses selected by load() .

■ Loading Relocatable Code
Object files containing relocatable code are also treated like files containing
position-independent code. By default, the needed memory is allocated from
Region 0, and it is possible to override the default load addresses. Internally,
the load() function does the necessary processing to relocate an otherwise
position-dependent code using the relocation information present in the object
file.
1-66 Loader



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 67  Thursday, January 28, 1999  9:18 AM
Loading absolute code is a one-step process. Similarly, loading position-indepen-
dent or relocatable code at the default load address chosen by the loader is also a
one-step process. You simply call load() with the LD_LOAD_DEFflag set in the
flags argument.

If for some reason you want to control where the various parts (sections) of an object
file get loaded into target memory, a two-step process must be followed:

1. Call load() with the LD_GET_INFO flag set in the flags argument. The
load() function reads in the object file information from the header present
therein and returns a pointer to this information in the third argument
(of_info ) passed to load() . You can modify the load addresses (part of the in-
formation returned through of_info ) of one or more of the sections.

2. Call load() again with the LD_LOAD_MODflag set in the flags argument and
with the modified object file information (pointed to by *of_info ) passed as the
third argument.

Once the load() call returns, you are free to close the object file (or device
driver) by calling close_f() (or de_close() ). At this point the binary image of
the loadable application has been loaded into memory. If the binary image corre-
sponds to a pSOS+ task, you can create and start the task at any time. In most
cases, the entry point to the task can be obtained from the object file informa-
tion returned by load() . If the entry point is not known, it is set to zero by
load() . You must call the t_create() and t_start() system services of
pSOS+ with appropriate arguments to create and start the task, respectively.

Once the task is running there are two possibilities, as explained earlier:

■ You want the task to keep running and you never intend to stop it and unload it
from the memory. In this case, the release() function must be called with the
object file information returned by load() as the only argument. Once re-
lease()  is called, you must not reference the object file information.

■ The other possibility is that after the loaded task completes its job, you may
want to delete the task and free up the memory it was using. In such cases, you
must call unload() , with the only argument to unload() being the object file
information returned by the earlier call to load() . Once unload() is called,
you must not reference the object file information. It is your responsibility to de-
lete the task being unloaded in a graceful manner, so that it unlocks any locked
resources and frees up any allocated resources before it gets deleted and un-
loaded. The sample loadable applications provide examples for your reference.
Loader 1-67



System Services pSOSystem Programmer’s Reference

pr.book  Page 68  Thursday, January 28, 1999  9:18 AM
The Loader API

Following is a template for the three data structures used by the pSOSystem loader.
The first is the OF_INFO structure, a pointer to which is returned by load() and
also gets passed to unload() and release() . The second is the SECN_INFOstruc-
ture, which is contained in the OF_INFO structure. The third is the TASK_INFO
structure, which is also contained in the OF_INFO structure. These structures are
defined in the include/loader.h  file.

typedef struct OF_INFO{
int desc; /* Object file descriptor */
char format[5]; /* Object file format */
char code_type; /* Code Type (Absolute/Relocatable) */
char filler[2]; /* Reserved, do not use */
int nsecns; /* Number of sections */
SECN_INFO *secn_info; /* Section information */
TASK_INFO task_info; /* Info needed to create & start task */
} OF_INFO;

desc Used by the loader to identify the loaded object file. This is a
read-only element. You must not modify it.

format Four-character null-terminated string that identifies the object
file format of the file loaded by the loader. The values returned
in this field are SREC or ELF, which correspond to Motorola
S-record or ELF formats, respectively. This is a read-only
element.

code_type Can take one of the values: LD_ABSOLUTE, LD_PIC , or
LD_RELOCATABLE. LD_ABSOLUTE implies that the code is posi-
tion dependent, and LD_RELOCATABLEimplies that the code is
either position independent or the object file contains reloca-
tion information and can be loaded anywhere in target memory.
LD_PIC  implies that the object file is position independent.
This is a read-only element.

nsecns Tells the number of independently loadable sections of the
object file. A file in SRECformat always has one section. This is
a read-only element.
1-68 Loader



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 69  Thursday, January 28, 1999  9:18 AM
The second structure, SECN_INFO, contains information regarding the individually
loadable sections of an object file and is defined as follows:

typedef struct secn_info{
char name[LD_SECNAMELEN]; /* Name of the section */
unsigned long type; /* Type of the section */
unsigned long size; /* Size of the section */
unsigned long base; /* Section load address */
} SECN_INFO;

Modifications done to any other fields of this structure in between any two loader
calls are ignored by the loader.

The third structure, TASK_INFO, contains information necessary to create and start
a task. This structure is not used by the loader but is intended to be used by the ap-
plication to create the task and start it after it has been loaded using the pSOS+
t_create() and t_start() system services. This information is obtained from
the object file by load() and can be stored in the object file by running ld_prep on
the object file and specifying the appropriate values for various task-specific param-

secn_info Points to an array of SECN_INFO structures that has nsecns
elements. As described below, the SECN_INFO structure con-
tains information regarding each of the separately loadable
sections of the object file.

task_info Structure of type TASK_INFO. The information contained
herein may be used by the loader to create and start the task,
once the loader has loaded the object file into target memory.

name Describes the name of the section. This field is compiler depen-
dent and is supplied for your information. The loader does not
make use of this field. This is a read-only element.

type Describes the type of the section. This field is This field is
compiler dependent and is supplied for your information. The
loader does not make use of this field. This is a read-only
element.

size Specifies the size of the section in bytes. This is a read-only
element.

base Specifies the address in memory where the section will be
loaded. You can modify base , as explained in the description of
the load()  function later in this section, to control the place-
ment of the section in memory if the code_type  is
LD_RELOCATABLE or LD_PIC .
Loader 1-69



System Services pSOSystem Programmer’s Reference

pr.book  Page 70  Thursday, January 28, 1999  9:18 AM
eters (see the man page for ld_prep for further details). TASK_INFO is defined as
follows:

typedef struct task_info{
char name[4]; /* Name of the task to be created */
unsigned long priority; /* Task priority */
unsigned long sstack_sz; /* Supervisor stack size */
unsigned long ustack_sz; /* User stack size */
unsigned long create_flags; /* Flags used by t_create() */
unsigned long start_mode; /* Mode used by t_start() */
void (*entry) (); /* Task entry point */
} TASK_INFO;

All elements in the TASK_INFO structure are read-only.

The load() Function

The load() function is defined as follows:

#include <loader.h>
unsigned long load (

unsigned long    fd,
unsigned long    flags,
OF_INFO    **of_info
);

load() reads an object file from an open file descriptor fd and converts the incom-
ing stream of data into a binary image ready for execution. The information about
the object file is read and a pointer to it is returned in the location pointed by
of_info . The fd is either a file descriptor returned by a call to the pHILE+
open_f() routine or it is the device number of a pREPC+-compatible device driver.

name Four-character name of the task passed to t_create() .

priority Starting priority of the task passed to t_create() .

sstack_sz Size of the supervisor stack (in bytes) passed to t_create() .

ustack_sz Size of the user stack (in bytes) passed to t_create() .

create_flags Flags passed to t_create() .

start_mode Mode passed to t_start() .

entry Entry point, if any, for the task passed to t_start() .
1-70 Loader



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 71  Thursday, January 28, 1999  9:18 AM
You must set the LD_DESC_PHILEor LD_DESC_DEVfields in the flags argument to
specify whether fd  is a file descriptor returned by open_f()  or a device number.

The exact behavior of load() is controlled by the load type specified by the flags
argument. You can specify one of three load types (LD_GET_INFO, LD_LOAD_DEF,
LD_LOAD_MOD) by bitwise OR-ing one of the three values in the flags  argument.

If LD_LOAD_DEFis specified, load() reads the object file and loads the binary im-
age into target memory, using the default load address specified by the object file
header. The values used to load the file are stored in an OF_INFO structure, and a
pointer to this structure is returned through of_info .

If LD_GET_INFO is specified, load() reads the object file header information and
returns a pointer to it through of_info . No binary image of the object file is loaded
in target memory.

You can modify certain values returned in the OF_INFO structure and call load()
to load the binary image by specifying the load type as LD_LOAD_MOD.

load() can handle both absolute and relocatable object files. The term relocatable
also covers the position-independent code.

If the object file is absolute, it is always loaded at the address specified by the object
file header, and you may not be able to modify these values. Also, it is assumed that
it is safe to load an absolute object file at the address specified by the object file
header. If the object file is relocatable, then the memory needed to load the object
file is automatically allocated by load() .

For relocatable object files, you can control the loading of file on a per-section basis
by modifying the relevant fields in the OF_INFO structure returned by calling
load() with load type LD_GET_INFO, and passing the modified structure to
load()  with load type LD_LOAD_MOD.

On success, load()  returns zero; otherwise, it returns a non-zero error number.

The following errors are returned by load() :

ERR_SYNTAX The loader encountered a syntactic construct in the object file
that is not understood by the loader.

ERR_INVALID An invalid operation was attempted (like trying to call load()
with flags LD_LOAD_MOD without previously calling load()
with flags LD_GET_INFO). Also, this error is returned if the
desc  field of of_info  is invalid, or an invalid flag is specified.
Loader 1-71



System Services pSOSystem Programmer’s Reference

pr.book  Page 72  Thursday, January 28, 1999  9:18 AM
Other errors may be returned due to the failure of either a pSOS+ system call or a
call made internally by the loader to pHILE+ or a device driver.

CAUTION: When calling load() with flags LD_GET_INFO or LD_LOAD_DEF,
you must not allocate memory for the of_info structure, as this is
done by load(). The proper way of calling load() is as follows:

#include <loader.h>
OF_INFO *my_of_info;
unsigned long fd, flags;

  ...
  ...

load (fd, flags, &my_of_info);
  ...
  ...

ERR_NO_OFM The format of the object file being loaded is not supported by
the loader.

ERR_OFM_FULL An attempt was made to load an object file while the configured
maximum number of files has already been loaded and has nei-
ther been released nor unloaded.

ERR_UNSUPP The object file being loaded contains some unsupported feature
(like an ELF relocatable file containing unresolved externals).

ERR_NOT_EXEC The object file did not compile properly and is not ready for
execution.

ERR_INTERNAL The loader discovers an inconsistency in the internal data
structures.

ERR_BADOP A bad I/O operation, like seeking back on an I/O device, was
attempted internally by the loader.

ERR_UNDEFSYM The object file contains unresolved symbols.

ERR_NOSYMTAB The symbol table needed by the relocatable loader is missing in
the object file.

ERR_RELOC Relocation error due to an unknown relocation type or due to
incorrect relocatable value for a relocation entry.

ERR_UNKWNSZ Missing or incomplete section in the object file.
1-72 Loader



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 73  Thursday, January 28, 1999  9:18 AM
The unload() Function

The unload()  function is defined as follows:

#include <loader.h>
unsigned long unload (

OF_INFO *of_info
);

This function unloads an executable file image from the target memory, where it
was loaded previously using load() . of_info points to the object file information
returned by a previous call to load() .

If the type of executable being unloaded is LD_ABSOLUTE, the unload() function
does nothing to free the memory associated with the executable -- it is the responsi-
bility of the caller to free up the memory (if any) that it allocated previously.

If the type of executable is LD_RELOCATABLEor LD_PIC , this function frees up any
memory allocated earlier for loading the executable. However, it does not free any
memory for sections of executable files that were allocated by the caller. Those must
be taken care of by the caller.

unload() frees up any state information associated with of_info and preserved
internally by the loader. It also frees up the object file information pointed to by
of_info , and it must not be referred to subsequently by the caller.

The unload() function must be called only after the task(s) associated with the
loaded executable have been deleted, since all of the memory allocated to load exe-
cutable code and data is returned to the free storage pool by unload() and can be
re-used for any purpose at any time.

On success, unload()  returns zero; otherwise, it returns a non-zero error number.

The following errors are returned by unload() :

Other errors may be returned that can be due to the failure of a pSOS+ system call
made internally by the loader.

ERR_INVALID The desc  field of of_info  is invalid. or you tried to unload an
executable that has never been loaded.
Loader 1-73



System Services pSOSystem Programmer’s Reference

pr.book  Page 74  Thursday, January 28, 1999  9:18 AM
The release() Function

The release() function is defined as follows:

#include <loader.h>
unsigned long release (

OF_INFO *of_info
);

This function frees up the object file information pointed to by of_info , and also
any state information associated with of_info and preserved internally by the
loader. It must be called in one of the following situations:

■ You have called load() with the LD_GET_INFOflag but decide not to load the
executable image.

■ You have loaded the executable with load() by specifying either LD_LOAD_DEF
or LD_LOAD_MODflags and do not intend to ever unload these executables (that
is, if the executable corresponds to task(s) that remain memory resident
forever).

The object file information pointed to by of_info must not be referred to subse-
quently by the caller.

On success, release() returns zero; otherwise, it returns a non-zero error
number.

The following errors are returned by release() :

Other errors may be returned that can be due to the failure of a pSOS+ system call
made internally by the loader.

The ld_prep Utility

The syntax for ld_prep is as follows:

ld_prep  {-a|-r}  [-v]  [-d defaults_file  ]  [-n task_name  ]
[-p priority  ]  [-c create_flags  ]  [-m task_mode  ]
[-e entry_point  ] [-s supv_stack_size  ]
[-u user_stack_size  ] [-o out_file  ] in_file

ld_prep is a post-processor that must be run on an object file in_file before it can
be loaded by the pSOSystem loader. The object file can be in either Motorola SREC

ERR_INVALID The desc  field of of_info  is invalid, or you tried to release a
stale of_info .
1-74 Loader



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 75  Thursday, January 28, 1999  9:18 AM
format or ELF format. ld_prep analyzes the input object file, prepends a header to
it, and writes the file to a user-specified output file out_file (or to a file out.ld by
default). The header contains certain information about the object file that is used
by the loader.

You must specify whether the input object file has to be loaded at the absolute ad-
dress specified at link time or whether it can be relocated by the loader to any ad-
dress of its choosing. You must specify whether the input object file is absolute or
relocatable.

Additionally, if the file being loaded corresponds to a task that will be created and
started eventually by the user, it is possible to specify all of the task-specific infor-
mation using ld_prep . This information is passed to the loader application via the
TASK_INFO sub-structure of the OF_INFO structure, the pointer to which is re-
turned by load() . This information typically consists of the task name, the priority
at which it runs, the sizes of the user and supervisor stacks, the task entry point,
and various other task attributes that get passed to t_create()  and tstart() .

You must run ld_prep on an object file that needs to be loaded by the loader or else
an error will be flagged by the loader at runtime.

The following options are provided:

-a Specifies that the input object file is absolute.

-r Specifies that the input object file is relocatable.

-v Specifies the verbose option. Some useful information about
the file is printed on stdout .

-d defaults_file Specifies the name of the file from which the defaults must
be picked up for options not specified on the command line.
The defaults_file must have one or more lines containing the
options as they are specified on the command line. A sample
defaults_file is shown in the examples.

-n task_name Specifies the user-assigned name of the task. If this option is
omitted, the task name is set to LDBL.

-p priority Specifies the task’s initial priority within the range 1 to 239.
If this option is omitted, the priority is set to zero.
Loader 1-75



System Services pSOSystem Programmer’s Reference

pr.book  Page 76  Thursday, January 28, 1999  9:18 AM
-c create_flags Specifies the flags that get passed to t_create() . The flags
can be one or both of G and F.

The Gflag specifies that the task is global and addressable by
external tasks residing on other nodes. If this flag is omitted,
the task is assumed to be local.

The F flag specifies that the task uses floating point units. If
this flag is omitted, the task is assumed not to use floating
point units.

-m task_mode Specifies the task mode that gets passed to t_start() . The
mode can be one or more of A, N, T, and S.

A Specifies that the task’s ASRs are disabled. If this
flag is omitted, the task’s ASRs are assumed to be
enabled.

N Specifies that the task is non-preemptible. If this flag
is omitted, the task is assumed to be preemptible.

T Specifies that the task can be timesliced. If this flag
is omitted, it is assumed that the task cannot be
timesliced.

S Specifies that the task runs in supervisor mode. If
this flag is omitted, the task is assumed to run in
user mode.

-e entry_point Specifies the address at which the task execution is to begin.
If this option is omitted, ld_prep  first tries to find out the
execution start address from the file and stores that in the
header. If it cannot be determined, it is set to zero.

-s supv_stack_size Specifies the size of the task’s supervisor stack in bytes, and
must be greater than 512. If unspecified, it is set to zero.

-u user_stack_size Specifies the size of the task’s user stack in bytes, and may
be zero if the task executes only in supervisor mode. If un-
specified, it is set to zero.

-o out_file Specifies the name of the output file that will become input
to the loader. If this option is omitted, ld_prep creates a file
out.ld  in the current directory by default.

in_file Object file.
1-76 Loader



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 77  Thursday, January 28, 1999  9:18 AM
If you specify a defaults file using the -d option, it is parsed first to pick up the
defaults. Next, ld_prep parses any command line options. Options specified on the
command line override values specified in the defaults file

In most cases, when an option is specified neither in the defaults file nor on the
command line, the corresponding parameter is set to zero. When detecting the zero
values, the loader application must determine the appropriate values to use. Note
that you must specify either the -a or -r option, either in the defaults file or on the
command line; otherwise, an error is flagged by ld_prep.

ld_prep exits with status zero upon successful execution; otherwise, it exits with
exit status one and an error message is printed to stderr . The error messages are
self explanatory.

Examples

ld_prep -r -o app.ld app.x

ld_prep -a -v -p 180 -n NApp -cF -mAT -e 0x3c0000 -s 512 -o napp.ld newapp.x

is the same as

ld_prep -d task.defs -o napp.ld newapp.hex

where the file task.defs  contains the following line:

-a -v -p 180 -n NApp -cF -mAT -e 0x3c0000 -s 512 -o app.ld

Note that a command line option overrides the options specified in the defaults file (-
o in the above example).

Warnings

If an option is specified more than once on the command line, the last (rightmost)
such definition takes precedence over any previous definition. However, if an option
is specified more than once in the defaults file, the behavior of ld_prep is unde-
fined.

A warning is issued if the defaults file contains the -d option and the option is
ignored.

Supported Platforms

The ld_prep utility is provided for Sun workstations, Hewlett Packard series 700
workstations, and machines running Windows 95 or NT.
Loader 1-77



System Services pSOSystem Programmer’s Reference

pr.book  Page 78  Thursday, January 28, 1999  9:18 AM
Compiling and Running Applications Using the pSOSystem Loader

The procedure for compiling and running applications using the loader is as follows:

1. Write the loader task, then compile and link it with the loader library and
pSOSystem to generate the ram.hex  file.

2. Next, decide whether to use the SREC format or the ELF format for the applica-
tions that get loaded through the loader task. The SREC format must be chosen
if you are generating position-independent code or if the application’s location
in target memory can be determined at compile time. The ELF format must be
chosen when you cannot generate position-independent code and it is not pos-
sible to determine at compile-time where the application gets loaded in target
memory. The ELF can also be chosen for loading absolute code.

3. Change the sys_conf.h configuration files and Makefiles provided with the
sample loader application for your application and use it to generate app.hex
(the SREC version) or app.elf (the ELF version) files for the application task,
which are to be loaded with the loader.

4. Run the ld_prep utility with app.hex (or app.elf ) as the input file. On the
ld_prep command line, specify the entry point, the code type (relocatable/ab-
solute), and any other parameters that may be appropriate. A file out.ld will be
generated, by default, in the current working directory. If you want, you can
specify a name of your choice (instead of out.ld ) using the -o command-line
option to ld_prep .

5. Copy the file produced in Step 4 to the appropriate file system volume and
directory from where the loader has been programmed to load this application.
For example, when using TFTP pseudo driver to load applications, you may
need to copy this file to the /tftpboot directory on certain host systems that
provide a restricted TFTP facility.

6. Using the bootstrap loader on the target, load the ram.hex file generated in
Step 1 and restart pSOSystem. If the loader task runs successfully, you should
be able to load your application.
1-78 Loader



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 79  Thursday, January 28, 1999  9:18 AM
Guidelines for Writing Device Drivers

As stated earlier, a device driver that interfaces with the loader must meet the inter-
face requirements set by pREPC+. See the guidelines for writing device drivers in
Chapter 2. The loader calls only the de_read() function internally. It passes an I/O
parameter block with the following format:

typedef struct {
unsigned long count; /* Number of bytes to read */
void *address; /* Address of data buffer */
} iopb;

The loader needs the device driver to be capable of skipping data (i.e. seeking in the
forward direction). To seek in the forward direction, the loader calls de_read()
with the count field in the iopb structure set to the number of bytes to skip, and
with the address  field in the iopb structure set to (void *)NULL .

The device driver read function, on receipt of an iopb structure with address field
set to NULL, reads count number of bytes from the device and discards those. Thus,
this case is treated the same as any other read operation, except that the driver
does not copy the data. This is the only additional requirement set by the loader,
and it is very easy to implement. For an example, you can refer to the TFTP pseudo
device driver sources that are provided with pSOSystem in the drivers  directory.
Loader 1-79



System Services pSOSystem Programmer’s Reference

pr.book  Page 80  Thursday, January 28, 1999  9:18 AM
pLM+

Description

The process of building a shared library and an application that calls it in the host
is shown in Figure 1-1.

Library
Definition

File
sample.def

shlib
Template

File
shlibtpl

Stub
File

sl_stub.s

Dispatch
File

sl_disp.s

Shared
Library
Source
File(s)

Shared
Library
Object
File(s)

Application
Source
File(s)

Application
Object
File(s)

Linked
Application

Linked
Shared
Library

Loadable
Shared
Library

shlib

Assembler
Assembler

and/or
Compiler

Linker

ld_prep

Assembler
and/or

Compiler

Linker

Stub
Object File
sl_stub.o

Dispatch
Object File
sl_disp.o

Assembler

ld_prep

Loadable
Application

FIGURE 1-1 Building a Shared Library and an Application That Calls It
1-80 pLM+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 81  Thursday, January 28, 1999  9:18 AM
The step that makes a loadable application or a loadable shared library is needed
only if the pSOSystem loader would be used to load either one of them. A host util-
ity, shlib , is used in building a shared library. It takes as input a library definition
file, and a shared library template file. It outputs two files: a stub file (in assembly),
and a dispatch header file (in assembly).

The syntax of the shlib  command is below.

shlib [-s stub-file] [-d dispatch-file] [-notarget-symtbl]
 [-t shlib-template-file] library-definition-file

shlib interprets its command line as follows. The stub file is written to the file
specified by the -s option, otherwise to sl_stub.s in the current directory. The
dispatch header file is written to the file specified by the -d option, otherwise to
sl_disp.s in the current directory. The shlib template file is specified by the -t
option. If -t option is present, the named file is used as the shlib template file.
Otherwise, as a default, file shlibtpl in the current directory is used as the shlib
template file.

The library definition file describes the shared library by listing the functions that
are exported by the library. The library definition file is written by the programmer
of the shared library. The shlib template file customizes the output assembly files
(stub and dispatch header) for a specific target processor and tool chain. An shlib
template file will be provided for supported processors and tool chains.

The stub file is responsible for locating and calling the correct function in the shared
library. It is assembled and linked with the code images that call the shared library.
Note that only the stub object is linked with the executables and not the actual code
of the shared library functions. The stub file contains one label and associated code,
called the binding, for each function exported by the shared library. The label
matches the function name exactly so that the linker will resolve all the application
code references to that function using the label in the binding.

Application and library programmers using implicit calling method must decide
which shared libraries that the program will be using at the program build time and
link in the appropriate stubs of the libraries. Note that a code image can not link
with two different shared libraries that happen to export the same symbol. Also, it is
not possible to interpose on the shared library symbols. Neither the finally linked
application nor the finally linked shared libraries can have unresolved symbols. If a
program makefile is modified to use the shared libraries instead of static libraries,
the program may not link the same way. This is due to the fact that the search order
may not be the same and also there may be more or less number of exported sym-
bols brought into the name space from the stubs of the shared libraries. If a shared
library uses other shared libraries by implicit calling method, its library definition
pLM+ 1-81



System Services pSOSystem Programmer’s Reference

pr.book  Page 82  Thursday, January 28, 1999  9:18 AM
file must contain the names and versions of the dependent libraries (first level) and
the library must be appropriately linked with their stub objects as explained above.
Independent shared library vendors may ship their definition file and object files of
the shared library to the customers, if they want to leave some symbols unresolved.
Customers can complete the build of the shared library at their installation by re-
solving the unresolved symbols through the linker, either from other static libraries
or shared libraries.

The dispatch header file is assembled and linked with the object files containing the
executable code for the library such that the dispatch header object is placed at the
start of the code segment of the final shared library. This header object contains the
C structure sl_header  shown below:

typedef USHORT index_t;

typedef ULONG offest_t;

typedef struct sl_dependent {
offset_t deplibname; /* Dependent library: Name

    (Offset of string) */
offset_t deplibinfo; /* Dependent lib: LM_LOADCO call-out

info (Offset of function) */
ULONG deplibscope; /* Dependent library: Scope */
ULONG deplibver; /* Dependent library: Version */

} sl_dependent_t;

typedef struct sl_header {
UCHAR magic[4];   /* ISI shared library magic number "pLM+" */
USHORT type;      /* ISI Shared library type */
USHORT machine;   /* CPU: 0-68K, 1-PPC, 2-MIPS, 3-x86 */
offset_t name;    /* Library name (Offset of string) */
ULONG key;        /* Library key */
ULONG version;    /* Library version number */
offset_t libinfo; /* Library LM_BINDCO callout info.

 (Offset of strubg) */
ULONG ndeplibs;   /* Number of dependent libraries */
offset_t deplibs; /* Dependent libraries

 (Offset of array [ndeplibs]
 of sl_dependent_t */

UINT   max_id;    /* Maximum symbol ID (Size of sym. tbl.)*/
offset_t addr_tbl;/* Symbol address table

 (Offset of array [max_id] of offset */
offset_ sym_tbl;  /* Symbol name table

 (Offset of array [max_id] of offset of
string) */

USHORT nbuckets;  /* # of buckets in hash table */
USHORT ncells;    /* # of hash table cells

 (max_id+1+nbuckets) */
1-82 pLM+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 83  Thursday, January 28, 1999  9:18 AM
offset_t buckets; /* Hash table buckets
 (Offset of array [nbuckets] of index_t
  in cells) */

offset_t cells;   /* Hash table cells
 (Offset of array [ncells] of index_t

in sym_tbl and addr_tbl) */
offset_t sl_entry;/* Lib. entry fn ptr

 (Offset of function) */
ULONG reserved;   /* Reserved for future use */

} sl_header_t;

This structure contains (or points to) information such as the library magic number,
type, name, key, version, bind callout info, the names, scopes, versions and load
callout infos of the other shared libraries used (directly linked with), the names and
addresses of exported functions (or symbols) in the library, hash table and other li-
brary attributes. Note that to ensure position independence, all the pointers or ad-
dresses are stored as offsets from the beginning of this dispatch header structure.
Hence, at run time one must add the address of this structure in memory to any
pointer fields’ offsets to compute the absolute addresses. During registration, ad-
dress of this structure is passed to pLM+ which stores it in its table of pointers to li-
brary headers at an entry pointed to by the index assigned to the library.

The hash table is generated using an internal hash function shown below for index-
ing the addresses of the exported symbol efficiently using the symbol names. The
sl_hash field in the header is set to 0 by shlib to denote that pLM+ should use the
internal hash function listed below to access the hash table to implement
sl_getsymaddr() service. If this entry is set by the user to point to a nonzero
value, pLM+ will access the hash table using the code pointed by sl_hash . How-
ever, the user is responsible to hand code the hash table in the library dispatch
header in this case.

ULONG sl_hash(const char *symname) {
ULONG key =0; /* Hash key */
UCHAR character; /* One character of symname */

while ((character = *symname++) != ‘\0’) {
   /* Rotate left 8 bits */
   key = (key << 8) | (key >> (8 * (sizeof(key) - 1)))

   /* Exclusive or in the next character of symname */
   key ^= character;
}

/* Key can not be KEY_UNKNOWN (0). */
if (key == KEY_UNKNOWN)  key = KEY_UNKNOWN + 1;
pLM+ 1-83



System Services pSOSystem Programmer’s Reference

pr.book  Page 84  Thursday, January 28, 1999  9:18 AM
return h;
}

The buckets array stores indices that point to the cells array to the beginning of
the list of indices of the symbols that have the same hash value. To denote a empty
list or the end of a list, the value -1 is used. The symbol indices in the cells array
can be used to index into both sym_tbl and addr_tbl . The hash function accepts
a symbol name and returns a value that can be used to compute a buckets index.
Consequently, if the hashing function returns the value x for some name,
buckets[x%nbuckets] gives an index y , into the cells table. If the cells[y] is
-1 then the symbol is not in the hash table. Otherwise, if sym_tbl[cells[y]] is
not the desired name, then cells[y+1] gives the next symbol with the same hash
value. sl_getsymaddr() follows the cells links until either the selected sym_tbl
entry is of the desired name or the cells entry contains the value -1. If
sym_tbl[cells[y]] is the desired name, then addr_tbl[cells[y]] gives the
address (offset) of the symbol of given name.

By default, the symbol table of all exported functions and the hash table will be gen-
erated in the dispatch header file. The symbol and hash tables generation can be
disabled by using the -notarget-symtbl option. If disabled, the sym_tbl field
would point to 0 and the hash table entries nbuckets , ncells , buckets , and
cells  would all be 0.

The sl_entry field is set to the address (offset) of the library entry function, if de-
fined. Otherwise, it is set to 0. The library entry function is described in the next
section.

Library Entry Function

Each shared library can optionally define an entry function in its dispatch header
which performs initialization and cleanup. This entry function if defined, as deter-
mined by a nonzero pointer in the dispatch header of the library, is called by pLM+
whenever the library is registered, attached, detached and unregistered. The syntax
of the entry function is shown below.

ULONG <libname>_entry(ULONG index, ULONG event) {
   switch(event) {

case SL_REGEV:
   /* Do system initialization */
break;
case SL_UNREGEV:
   /* Do system cleanup */
break;
case SL_ATTACHEV:
   /* Do per process initialization */
1-84 pLM+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 85  Thursday, January 28, 1999  9:18 AM
break;
case SL_DETACHEV:
   /* Do per process cleanup */
break;

   }
   return 0;
}

The entry function is called with its event parameter set to the reason for which it
is being called, so that the library can perform the appropriate system or per pro-
cess initialization and cleanups. When a shared library is registered, pLM+ will call
the entry function with SL_REGEVas the event parameter. When the library is un-
registered pLM+ will call the entry function with SL_UNREGEVas the event parame-
ter. This allows the shared library to perform system initialization and cleanup, if
necessary. The entry function is called in the context of the process that is register-
ing or unregistering the library.

Similarly, when a process attaches to the library by calling sl_acquire() , pLM+
will call the entry function with SL_ATTACHEVas the event parameter. When the
process detaches from the library by calling sl_release() , pLM+ will call the en-
try function with SL_DETACHEVas the event parameter. The entry function is called
in the context of the process that is attaching to or detaching from the library. This
allows the shared library to perform per process initialization and cleanup, if neces-
sary. Since acquiring and releasing libraries may also result in registering and un-
registering them, their entry functions are also called with SL_REGEV and
SL_UNREGEV event parameters respectively, when that happens.

The index parameter represents the library index assigned by pLM+. This may be
used by the library to identify itself. It should not be used within the entry function
during SL_REGEVand SL_UNREGEVevents. The entry function returns 0 on success
and a nonzero value on failure. If a nonzero value is returned, registration and pro-
cess attach will fail. Process detach and unregistration ignore the return value but
they do report an information code, denoting that the entry function returned a
nonzero value.

The specifications of library definition file and the shlib template file are explained
next.
pLM+ 1-85



System Services pSOSystem Programmer’s Reference

pr.book  Page 86  Thursday, January 28, 1999  9:18 AM
Library Definition File

The library definition file defines the name and version of the library, the names and
versions of the first level dependent shared libraries, if any, the names, number of
parameters, and IDs of the functions exported by the library, and, optionally, the
library’s entry function. The syntax for the library definition file is in Figure 1-2 on
page 1-87.

Every exported function is assigned a function ID which is used only within the stub
file to call the function. If the optional parameter function ID of the <exported func-
tion> is not specified by the user, the function-id is calculated by shlib by add-
ing one to the highest function ID so far or is 0 for the first function. Otherwise the
function ID is function-id .

The <dependent library list> lists the libraries (direct dependence only) that must be
registered in the system before this library can be used. This list will be embedded
in the dispatch header in the dispatch file.

The <entry function> can be used to set the entry function pointer in the dispatch
header. If set, this function will be called when the library is registered, attached,
detached and finally, when unregistered.

The shared library key is a nonzero 32-bit unsigned integer. It is used to uniquely
identify a library in the table of pLM+. It is specified by the operational parameter
library-key of the LIBRARY command. If not supplied, it will be computed by
shlib .

The shared library version number is a nonzero 32-bit unsigned integer. It is written
in the library definition file as major.minor . The value is constructed by using ma-
jor as the most significant 16 bits, and minor as the least significant 16 bits. There-
fore the range of major and minor is 0 to 65,535 and the range of the version
number is 0 to 4,294,967,295. It is specified by the library-version-numbe r pa-
rameter of the LIBRARY command.

The shared library version scope is used to check if the version available is the ver-
sion desired. It can be one of exact, compatible or any. In exact scope, exact match
of the major and minor version numbers is required. In compatible scope, exact ma-
jor version and equal or higher minor version (than the desired minor version) is re-
quired. In any scope, any major and minor version is accepted. It is specified by the
<version scope>  parameter of the USE command.
1-86 pLM+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 87  Thursday, January 28, 1999  9:18 AM
■ <library definition file> ::= <library> [<library commands>]
[<dependent library list>] <exported function list>

■ <library> ::= LIBRARY library-name library-version-number
<prefix_enable> [library-key] \n

■ <prefix_enable> ::= on | off

■ <library commands> ::= <library command> [
<library commands>]

■ <library command> ::= <bindco libinfo> | <entry function>

■ <bindco libinfo> ::= BINDCO_LIBINFO bindco-libinfo \n

■ <entry function> ::= ENTRY_FUNCTION function-name \n

■ <dependent-library-list> ::= <dependent libary> [
<dependent library list>]

■ <dependent library> ::= USE library-name <version scope>
version-number [loadco-libinfo] \n

■ <version scope> ::= sl_exact | sl_comp | sl_any

■ <exported function list> ::= <exported function>
[<exported function list>]

■ <exported function> ::= EXPORT function-name
function-parameters [function-id] \n

■ Blank lines are allowed anywhere in the file.

■ Any line that starts with # is a comment. Comment lines
can be anywhere in the file.

■ Any command line in the file can contain a comment on the same
line starting with a # after all required parts of the command.

FIGURE 1-2 shlib Library Definition File: Syntax in BNF
pLM+ 1-87



System Services pSOSystem Programmer’s Reference

pr.book  Page 88  Thursday, January 28, 1999  9:18 AM
To supply information to the callouts in order to locate the libraries at run time, the
binding callout (LM_BINDCO) information for the library and the load callout
(LM_LOADCO) information for the dependents may optionally be provided. Typically,
this parameter can be used to denote the search pathname for locating the library in
the system. The library BINDCO information is specified by the optional
BINDCO_LIBINFO command. The dependent library LOADCOinformation is speci-
fied by the USE command optional parameter, loadco-libinfo .

shlib Template File

The template file defines the contents of the stub file and the dispatch file. The syn-
tax for the shlib template file is shown in Figure 1-3 on page 1-89. The stub and
dispatch output files are computed using <stub file definition> and <dispatch file
definition> respectively. The *_ONCE commands are used to output file prologue,
starting a table, and file epilogue. The *_FOREACHcommands are used to output
stubs, and table entries. In order, for each of these commands in the template file,
the text lines are copied to the appropriate output file with the pattern substitutions
shown in Table 1-1 on page 1-90. They are copied once for *_ONCEcommands, and
zero or more times for *_FOREACHcommands. The *_FOREACHcommands are cop-
ied once for each occurrence of their unit parameter: hash table bucket, hash table
cell, dependent library, or exported function for units BUCKET, CELL, DEPENDENT,
and FUNCTION, respectively. STUB_FOREACH allows only FUNCTION.
DISPATCH_FOREACH allows any of them.

Any DISPATCH_ONCEand DISPATCH_FOREACHcommand can be made conditional
by adding two optional parameters: <condition type> and <condition value>. The
four combinations are ENTRY 1, ENTRY 0, SYMBOL 1, and SYMBOL 0which output
only if an entry function was specified, an entry function was not specified, a target
symbol table is produced, and a target symbol table is not produced, respectively.
1-88 pLM+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 89  Thursday, January 28, 1999  9:18 AM
■ <shlib-template-file> ::= <tool chain> <id increment>
<function prefix> <stub file definition> <dispatch file definition>

■ <tool chain> ::= TOOL_CHAIN tool-chain-name \n

■ <id increment> ::= ID_INCREMENT id-increment \n

■ <function prefix> ::= FUNCTION_PREFIX function-prefix \n

■ <stub file definition> ::= <stub command> [<stub file definition>]

■ <stub command> ::= <stub once> | <stub foreach>

■ <stub once> ::= STUB_ONCE \n text-lines

■ <stub foreach> ::= STUB_FOREACH <stub unit> \n text-lines

■ <stub unit> ::= FUNCTION

■ <dispatch file definition> ::= <dispatch command> [
<dispatch file definition>]

■ <dispatch command> ::= <dispatch once> | <dispatch foreach>

■ <dispatch once> ::= DISPATCH_ONCE [<condition>] \n text-lines

■ <dispatch foreach> ::= DISPATCH_FOREACH <dispatch unit> [
<condition>] \n text-lines

■ <dispatch unit> ::= BUCKET | CELL | DEPENDENT | FUNCTION

■ <condition> ::= <condition type> <condition value>

■ <condition type> ::= ENTRY | SYMBOL

■ <condition value> ::= 0 | 1

■ Blank lines are allowed anywhere before the first
<stub file definition> line.

■ Any line that starts with # is a comment. Comment lines are allowed
anywhere before the first <stub file definition> line.

■ Any command line in the file can contain a comment on the
same line starting with a # after all required parts of the command.
This is not allowed in text-lines fields.

FIGURE 1-3 shlib  Template File Commands: Syntax in BNF
pLM+ 1-89



System Services pSOSystem Programmer’s Reference

pr.book  Page 90  Thursday, January 28, 1999  9:18 AM
TABLE 1-1 shlib Pattern Substitutions

Pattern Replacement

%L Library: Name

%H Library: Key
Substituted as a decimal number

%V Library: Version Number
Substituted as a hexadecimal number

%I Library: BINDCO libinfo

%E Library: Entry function

%P Library: Function prefix

%M Maximum valid function ID
Substituted as a decimal number

%F Current function: Name

%D Current function: ID
Substituted as a decimal number

%C Current function: Index in cell table
Substituted as a decimal number

%S Current function Index in symbol table
Substituted as a decimal number

%u Number of dependent libraries
Substituted as a decimal number

%l Dependent library: Name

%s Dependent library: Scope
Substituted as a decimal number

%v Dependent library: Version
Substituted as a hexadecimal number

%i Dependent library: LOADCO libinfo

%b Number of buckets
Substituted as a decimal number

%% %
1-90 pLM+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 91  Thursday, January 28, 1999  9:18 AM
The TOOL_CHAINcommand is required to document the tool chain that is described
by the file. It is not used to calculate the output files.

The ID_INCREMENTcommand is used to scale the function code values used in the
stub file. This can avoid scaling them in the code in the stub file that computes a
function address. If scaling is not required specify an id-increment  of 1.

Some checks are made to partially verify the template file. An error is reported if cer-
tain commands are out of order, missing, or repeated. An error is reported if an in-
valid pattern is found. In any text line field patterns with any of the following
characters are valid: “LHVIEMub%.” In only *_FOREACH commands with unit
DEPENDENTthe following patterns are valid: “lsvi .” In only *_FOREACHcommands
with all units except DEPENDENTthe following patterns are valid: “FDCS.” An error is
reported if a required pattern is not found. Table 1-2 shows the required patterns.

The contents of a template file is not completely specified by the BNF. Twenty-five
commands are needed to produce a stub file, and a dispatch file with all stubs,
headers, and tables needed by pLM+. Table 1-3 on page 1-92 lists these twenty-five
commands in the order that they appear in the template file. The details are in the
next two sections which explain how to write the two main parts of a template file:
the <stub file definition> and the <dispatch file definition>.

TABLE 1-2 shlib Template File: Required Patterns

Command Required Pattern(s)

DISPATCH_FOREACH BUCKET C

DISPATCH_FOREACH CELL S

DISPATCH_FOREACH DEPENDENT l

DISPATCH_FOREACH FUNCTION F

DISPATCH_ONCE ENTRY 1 E

STUB_FOREACH_FUNCTION FD
pLM+ 1-91



System Services pSOSystem Programmer’s Reference

pr.book  Page 92  Thursday, January 28, 1999  9:18 AM
TABLE 1-3 shlib Template File: Contents

Order Command Purpose

Patterns

Code or
Labels

(Necessary)

Comments
or Labels
(Optional)

1 TOOL_CHAIN Documents proces-
sor and tool chain.

n/a

2 ID_INCREMENT Prescales function ID. n/a

3 STUB_ONCE Stub file prologue
Start assembly file
Structure definitions
Data section
Start of code section

LV

4 STUB_FOREACH
FUNCTION

Stub definition FD

5 STUB_ONCE Stub file epilogue
Common code used
by all stubs
Shared library
LM_BINDCO libinfo
End assembly
language file

HILV

6 DISPATCH_ONCE Dispatch file prologue
Start assembly file
Most of dispatch
header

HVuM L

7 DISPATCH_ONCE
SYMBOL 1

Symbol name table
and hash table point-
ers if a target symbol
table is produced

Mb L

8 DISPATCH_ONCE
SYMBOL 0

Null symbol name
table and hash table
pointers if a target
symbol table is not
produced

L

1-92 pLM+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 93  Thursday, January 28, 1999  9:18 AM
9 DISPATCH_ONCE
ENTRY 1

Entry function
pointer if there is an
entry function

E L

10 DISPATCH_ONCE
ENTRY 0

Null entry function
pointer if there is not
an entry function

L

11 DISPATCH_ONCE End of dispatch
header
Start of dependent
library table

L

12 DISPATCH_FOREACH
DEPENDENT

Dependent library
entry

lsv L

13 DISPATCH_ONCE Start of symbol
address table

L

14 DISPATCH_FOREACH
FUNCTION

Symbol address table
entry

F L

15 DISPATCH_ONCE
SYMBOL 1

Start of symbol name
table if a target sym-
bol table is produced

L

16 DISPATCH_FOREACH
FUNCTION SYMBOL 1

Symbol name table
entry if a target sym-
bol table is produced

F LS

17 DISPATCH_ONCE
SYMBOL 1

Start of cell table if a
target symbol table is
produced

L

18 DISPATCH_FOREACH
CELL  SYMBOL 1

Cell table entry if a
target symbol table is
produced

S CF

TABLE 1-3 shlib Template File: Contents (Continued)

Order Command Purpose

Patterns

Code or
Labels

(Necessary)

Comments
or Labels
(Optional)
pLM+ 1-93



System Services pSOSystem Programmer’s Reference

pr.book  Page 94  Thursday, January 28, 1999  9:18 AM
<stub file definition>

A <stub file definition> contains commands 3 through 5 in Table 1-3 on page 1-92.
The first STUB_ONCEspecifies the stub file prologue which contains assembler
pseudo operations necessary to begin an assembler file, for example, selection of the
code section. The STUB_FOREACH FUNCTIONspecifies the stub definition. There are
many ways to write a stub definition. The stub definition contains a public data
symbol through which the exported function is called (implicitly with a call to
sl_bindindex() ) and supplies the function ID used to compute the address of the
function. The second STUB_ONCEspecifies the stub file epilogue. The stub file

19 DISPATCH_ONCE
SYMBOL 1

Start of bucket table
if a target symbol
table is produced

L

20 DISPATCH_FOREACH
BUCKET  SYMBOL 1

Bucket table entry if
a target symbol table
is produced

C

21 DISPATCH_ONCE Start of dependent
library string table

L

22 DISPATCH_FOREACH
DEPENDENT

Dependent library
string table entry

li

23 DISPATCH_ONCE
SYMBOL 1

Start of symbol string
table if a target sym-
bol table is produced

L

24 DISPATCH_FOREACH
FUNCTION SYMBOL 1

Symbol string table
entry if a target sym-
bol table is produced

F S

25 DISPATCH_ONCE Dispatch file epilogue
Shared library name
Shared library
BINDCO libinfo
End assembly file

LI L

TABLE 1-3 shlib Template File: Contents (Continued)

Order Command Purpose

Patterns

Code or
Labels

(Necessary)

Comments
or Labels
(Optional)
1-94 pLM+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 95  Thursday, January 28, 1999  9:18 AM
epilogue contains any common code used by all stub definitions, and assembler
pseudo operations necessary to end an assembler file, for example END. One must
follow the stub mechanism explained by the shared library implicit calling mecha-
nism to write the stub definition and the stub file epilogue. See, Shared Library Im-
plicit Calling Mechanism on page 1-96.

<dispatch file definition>

A <dispatch file definition> contains commands 6 through 25 as shown in Table 1-3
on page 1-92. The dispatch file prologue contains assembler pseudo operations nec-
essary to begin an assembler file, for example, selection of the code section, and a
dispatch file header. Table 1-4 shows the contents of the dispatch file header as
defined by the C structure sl_header and which commands output them. Some of
the fields are offsets. These are written as the difference between the target and the
label that starts the dispatch file header. Some of the header fields are offsets to ad-
ditional tables. Table 1-4 also shows the commands that are used to output the
start, and each entry of these tables. The commands that output the table start are
needed since the header refers to a label that starts the table. Two of these tables
contain offsets to entries in two string tables. Table 1-3 on page 1-92 also shows the
commands that are used to output the string tables. These start commands could
be omitted or just contain comments without labels since the string table start
labels are not used. However, the string table entry commands must contain labels
since these are used. The dispatch file epilogue contains strings referred to directly
by the dispatch file header, and assembler pseudo operations necessary to end an
assembler file, END for example.

TABLE 1-4 Dispatch File Header

Offset Field
Command Order in Table 1-3

Output By Target Output By

0 Magic number - pLM+ 6

4 Library Type 6

6 Processor architecture 6

8 Offset of Library name 6 25

12 Library key 6

16 Library version number 6

20 Offset of Library binding callout
info

6 25
pLM+ 1-95



System Services pSOSystem Programmer’s Reference

pr.book  Page 96  Thursday, January 28, 1999  9:18 AM
Shared Library Implicit Calling Mechanism

A code image that implicitly calls a shared library must be linked with the stub of
the library generated by shlib . The stub code is a assembly language file that con-
tains a binding for each function exported by the shared library. Binding is essen-
tially a label and associated code. The label matches the function name exactly so

24 Number of dependent libraries 6

28 Office of Dependent library table 6 11 (Start) and
12 (Entry) then
their targets
21 (Start) and
22 (Entry)

32 Maximum symbol ID 6

36 Offsaet of Symbol address table 6 13 (Start) and
14 (Entry)

40 Offset of symbol name table 7 (Included) or
8 (Excluded)

15 (Start) and
16 (Entry) then
their targets
23 (Start) and
24 (Entry)

44 # of buckets in hash table 7 (Included) or
8 (Excluded)

46 # of cells in hash table 7 (Included) or
8 (Excluded)

48 Offset of bucket table of hash
table

7 (Included) or
8 (Excluded)

19 (Start) and
20 (Entry)

52 Offset of cells table of hash table 7 (Included) or
8 (Excluded)

17 (Start) and
18 (Entry)

56 Offset of the entry function 9 (Exists) or 10
(Does not exist)

60 Reserved 11

TABLE 1-4 Dispatch File Header (Continued)

Offset Field
Command Order in Table 1-3

Output By Target Output By
1-96 pLM+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 97  Thursday, January 28, 1999  9:18 AM
that the linker will resolve application code references to a library function using the
label in the binding. For example, if a library contains a function named foo , then
the binding will contain a label foo . When a call to foo() is executed from the code
image, control comes to the binding for foo in the stub. Each binding is responsible
for locating and passing control to the appropriate function within the target library.

Each stub file has a single data section variable which, once initialized, holds the in-
dex of the library. The first time any function in the library is called, the contents of
this variable is indeterminate. This case is detected and sl_bindindex() is called
to get the index of the library. This index is then stored in the variable for future
use. Subsequent calls to the same library use the cached copy of the index stored in
the variable.

Using the index of the shared library, the stub code first locates the address of the
desired shared library by accessing pLM+’s table directly. Once the address of the
library is known, the stub code makes sure that the library at that address is com-
patible. If it is compatible, then the address of a specific function is located by ex-
amining a function address table in the shared library header. For this purpose, a
unique function ID (or index) associated with each shared library function is used
by the binding for each function. Thus, each binding in the stub file uses a unique
function ID. Otherwise, the code for each binding is identical.

Except for on the first call, this entire process may be performed very efficiently.
Depending upon the processor, the overhead is about 20 to 100 instructions. On the
first call, a single call to sl_bindindex()  is required.

Note that the validity of the cached index is verified on every implicit function call so
that if the library is unregistered or replaced by another library, any subsequent
calls will fail and the wrong library or bad address will not be called. To provide fast
and reliable validation of the cached index, the name of the associated library is
hashed to produce a 32-bit key. The hash function is carefully chosen to minimize
or avoid any key collisions. This key is calculated by shlib and stored both in the
stub file and the library header file. The library key may also be optionally provided
by the user in the library definition file which is used by shlib instead of the above
calculation. When the library is registered, the address of the shared library header
is stored in the pLM+ table of pointers to library headers at the corresponding entry.

Every time the library is implicitly called, the cached index is first compared with
the maximum allowable value of the pLM+ table indices. If it is too large, it cannot
be valid. This comparison avoids wild memory references the first time the stub code
is executed. If the index is in an allowable range, the address stored at the entry cor-
responding to the index in the pLM+ table of library header pointers is checked if
valid (nonzero). If the header address is valid, then the key stored in the stub is
pLM+ 1-97



System Services pSOSystem Programmer’s Reference

pr.book  Page 98  Thursday, January 28, 1999  9:18 AM
compared with the library key stored in the header. If the index is out of range or if
the header address is invalid (zero) or if the keys do not match, the stub assumes
that the index is invalid and calls sl_bindindex() to get the correct index. Note
that the pLM+ table is cleared whenever pSOS+ is initialized so that following a
warm restart, all the pLM+ table entries will have address of 0 and appear invalid. If
the keys match, the version in the library header is checked for compatibility
against the version stored in the stub. If the version in the library header does not
have the same major version and the same or higher minor version as the stub ver-
sion, the stub decides that the library corresponding to the cached index is incom-
patible and calls sl_bindindex() to get an index that is compatible. If compatible,
then the stub code computes the address of the required function using the offsets
within the library header and then jumps to that address. It is also possible to
ignore the version compatibility checking in the stub code by customizing shlib .

The following C like code demonstrates the above mechanism. However, the real
stub code is in assembly. The stub contains a static global variable slib_index to
cache the index of the shared library. In the code below, foo is the binding for an
exported library function named foo . The binding initializes the function ID and
jumps to the common code executed by all bindings in the stub. Note that the jump
to the shared library function is shown as a call, but in assembly language it is a
real jump and the target shared library function returns directly to the caller of the
binding. The parameters a and b to the exported function may be in registers or
stack and are unaltered.

/* SLIB_NAME - library name in the stub. */
/* SLIB_KEY  - library key in the stub. */
/* SLIB_VER  - library version in the stub. */
/* SLIB_INFO - library LM_BINDCO callout info. in the stub */

extern const NODE_CT *anchor;
static ULONG slib_index; /* Cached index of shared library */

foo:  /* Binding for foo */
const plm_CT *plmct; /* pLM+ config table */
const sl_header *header; /* Shared lib header */
ULONG err; /* Error code */
ULONG fnid; /* Function id */
FUNCPTR func_ptr; /* Pointer to exported function */

fnid = FOO_ID; /* Code specific to binding for foo */
goto COMMON;

/* Common code for all bindings. Uses sl_bindindex() implicitly */
COMMON:
TRY_AGAIN:

if((plmct = anchor->plmct) == 0) /* pLM+ not present? */
1-98 pLM+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 99  Thursday, January 28, 1999  9:18 AM
   goto TRY_AGAIN;
/* Is slib_index within bounds? */
if (slib_index >= plmct->lm_maxreg)
   goto INIT_BIND; /* No */
/* Read the address at the pLM+ table entry */
header = plmct->data->slhdrs[slib_index];
if(header==0) /* Valid library address? */
  goto INIT_BIND;

      if(header->key != SLIB_KEY) /* Valid key? */
   goto INIT_BIND;  /* No */
/* Is version of library at index compatible? */
if(header->version != SLIB_VER) {
  if(MAJOR(header->version) != MAJOR(SLIB_VER))
    goto INIT_BIND;        /* Incompatible */
  /* Minor versions are not equal */
  if(MINOR(header->version) > MINOR(SLIB_VER))
    goto INIT_BIND; /* Not a later revision */

}
/* Compatible index. Get ptr. to the exported function. */

func_ptr = (FUNCPTR) (header +
           ((ULONG *)(header+header->addr_tbl))[fnid]);
/* Jump to the shared library function. */

return (*func_ptr)(a, b);

INIT_BIND:

/* Update slib_index */
      err = sl_bindindex(SLIB_NAME, SL_COMP, SLIB_VER, SLIB_INFO,

   &slib_index);
goto TRY_AGAIN;
/* Never reached */

The specification of sl_bindindex()  is as follows:

ULONG sl_bindindex(
const char *libname, /* Name of the shared library */
ULONG scope,         /* See below */
ULONG version,       /* Version of the shared library */
void *libinfo,       /* Info parameter for LM_BINDCO */
ULONG *index)         /* Returns index of shared library */

sl_bindindex() searches the pLM+ table for a registered library having the same
name as specified by the null terminated string pointed to by libname and a suit-
able version number specified by version depending on the scope parameter. The
scope parameter can be SL_EXACT, SL_COMP, or SL_ANY. In SL_EXACTscope, it
checks for the exact match of the major and minor version numbers. In SL_COMP
scope, it checks for exact major versions and equal or higher minor versions (revi-
sions) of the registered library. In SL_ANYscope, it ignores the version number and
any library with the same name is accepted. If suitable library is found,
pLM+ 1-99



System Services pSOSystem Programmer’s Reference

pr.book  Page 100  Thursday, January 28, 1999  9:18 AM
sl_bindindex() returns its index by storing it into the variable pointed to by
index . Also, it returns 0 as the return value. Note that the returned version of the
library may be different than the requested version in the case of SL_COMP or
SL_ANYscopes. In general, SL_COMPscope is mostly used since the stub code typi-
cally checks if the library is of a compatible version. If one needs to customize the
stub code to ignore version checking then SL_ANY scope can be used. Or if one
needs to customize the stub code for strict exact match, SL_EXACTscope can be
used.

sl_bindindex() neither attaches the calling process to the shared library nor it
requires the calling process to be attached to the shared library. If a suitable library
is not found, sl_bindindex() will call a user established system callout
LM_BINDCO, if there is one, with one of the following error codes as its error param-
eter. Also, sl_bindindex() will pass libname , scope , version and libinfo as
parameters to this callout. Note that the bind callout info parameter libinfo is
not interpreted by sl_bindindex()  in any way, and is passed as is to the callout.

The callout may handle the error appropriately and return, or simply terminate the
process. If the callout returns, lm_bindindex() will search the pLM+ table again
for a suitable library. If a suitable library is still not found, sl_bindindex() will
return any of the above error codes.

LME_NOTFOUND Library with the given name is not found.

LME_MAJORVER The currently registered library has a different major
version if scope is SL_EXACT or SL_COMP.

LME_MINORVER The currently registered library has a different minor
version if scope is SL_EXACT. If scope is SL_COMP, the
currently registered revision has a lower minor version.
In both cases, the currently registered library is of the
expected major version.
1-100 pLM+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 101  Thursday, January 28, 1999  9:18 AM
mmulib

Description

The mmulib included in the pSOSystem base package provides the following mem-
ory management services for PowerPC 603 and 604 processors:

■ Creation of MMU maps (page or block tables for the Memory Management Unit)

■ Control of attributes for individual pages or blocks in those maps

■ Activation of the maps and enabling of the MMU

mmulib supports only a logical-equal-to-physical mapping. This allows the access
characteristics of memory to be managed without introducing the complexities asso-
ciated with virtual addresses.

mmulib can be used to disable caching of certain areas of memory. This is most use-
ful for memory that is used for I/O, DMA (direct memory access), or memory that is
shared between multiple CPUs (and hardware snooping is not implemented).

mmulib can also be used to restrict write access to certain areas of memory. This al-
lows protection of both the OS and application code. Additionally, access to certain
data areas can be limited to a particular task or set of tasks.

A map specifies the access characteristics of a segment of memory. That segment
can be as large as the entire 4 Gigabyte address space. A map divides an address
space into pages, and/or blocks. Each page or block contains 4 Kbytes and each
block contains between 128K and 256M bytes. All memory locations within the
same page or block have the same access characteristics. A particular map is imple-
mented via a page or block table stored in memory and Block Address Translation
(BAT) registers.

Several maps can exist simultaneously; however, only one may be in use by the
MMU hardware at any given time. The map that is in use by the MMU hardware is
referred to as the active map.

A page or block (and the memory it contains), which is explicitly described by a
mapping table entry, is said to be defined by the map. All other pages or blocks are
undefined. Any attempt to access a page or block that is not defined by the active
map causes a hardware exception.
mmulib 1-101



System Services pSOSystem Programmer’s Reference

pr.book  Page 102  Thursday, January 28, 1999  9:18 AM
mmulib Concepts and Operation

Control of memory defined by the MMU map is done on the scale of a page or block.
Pages and blocks defined by a map have associated attributes that further control
access to memory within that page or block. Every defined page or block may have
none, some, or all of the following attributes:

mmulib lets you provide a default map and additional maps associated with individ-
ual tasks. Additional mmulib services examine and modify maps, and they integrate
mmulib  with pSOS+ and pROBE+ operations.

Mapping tables are created by the mmulib call map_create() . The caller provides
a description of the desired map via a map template. Memory to store the mapping
tables can be provided by the caller, or it can be dynamically allocated by the
map_create() call. This call sets a map ID, which is used in subsequent mmulib
calls. Numerous mapping tables can be created by calling map_create() multiple
times.

Once created, any page or block defined by the map can be examined with the
map_getattr() call. The attributes associated with any page or block defined by
the map can be altered via the map_setattr() call. However, undefined pages or
blocks can not be added to the map. Thus, the map template should define enough
memory to cover anticipated needs, even if this amount is initially invalid.

Following the creation of at least one map, the MMU can be enabled and a map
made active. You can control which map is active at any time by defining a default
map, and you can define other maps associated with one or more tasks. When a
task with no associated map is executing, the default map is the active map. Other-
wise, the task’s associated map is the active map. The user and supervisor mode
maps are always the same.

No-access Accessing the page or block is disabled. Any attempt to access
it causes a hardware exception.

Read-Only The page or block is write protected. Any attempt to write to it
causes a hardware exception.

Cache-Disabled The page or block is not cached.

Copyback If cache is enabled, use copyback as opposed to write-through
mode.

Guarded The page or block is guarded. Speculative accesses are dis-
abled.
1-102 mmulib



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 103  Thursday, January 28, 1999  9:18 AM
The map_default() call is used to define the default map and to enable the MMU
with the default map active. Note that because it must alter the MMU registers,
map_default()  must be called from supervisor mode.

If all tasks are to use the default map (for example when the MMU is simply being
used to inhibit data caching in certain memory areas), then no further action is re-
quired. If some tasks require a map that is different from the default map, then
map_task()  is used to associate an alternate map with a task.

As can be seen, a single map can be associated with many tasks. The default map
can also be associated with one or more tasks through the use of the map_task()
call (although this is a superfluous operation).

Finally, the map_getid() service returns either the ID of the map associated with a
task or the ID of the default map.

Page/Block Attributes

When application code exchanges page or block attributes with mmulib , a bit map
is used. For each attribute, the bit positions and meanings are defined in mmulib.h
by the following constants:

Map Template

You can create mapping tables by using the map_create() call, which puts infor-
mation into an array of structures. Each map_t structure describes one contiguous
area of physical memory, defined in mmulib.h as follows:

struct map_t
{

MAP_IBAT When set, instruction block address translation is used.

MAP_DBAT When set, data block address translation is used, i.e. this ele-
ment is a block rather than a page.

MAP_INVBIT When set, the page or block has no access.

MAP_WPBIT When set, the page or block is read only. This bit is ignored if
MAP_INVBIT is set.

MAP_CIBIT When set, the page or block is cache inhibited.

MAP_CBBIT When set, copyback mode is used.

MAP_SERBIT When set, the page/block is guarded.
mmulib 1-103



System Services pSOSystem Programmer’s Reference

pr.book  Page 104  Thursday, January 28, 1999  9:18 AM
void *addr,
unsigned long len,
unsigned long attr
}

where addr is the start address of the section, len is it length in bytes, and attr
specifies its initial attributes. addr must be on a page or block boundary and len
must be either a multiple of the page size or the exact block size. Blocks are re-
stricted to sizes from 217 to 228. The number of IBATs and DBATs are limited as
specified by the define statements below. attr is created by OR-ing together any
combination of MAP_IBAT, MAP_DBAT, MAP_INVBIT, MAP_WPBIT, MAP_CIBIT ,
MAP_CBBIT, and MAP_SERBIT.

mmulib Functions

mmulib provides two types of functions, user-callable and callout. User-callable
functions are called from a user application. Callout functions are called from
pSOS+ and pROBE+ code. mmulib.h contains prototypes of all mmulib  functions.

User-Callable Functions

User-callable mmulib  functions are as follows:

PAGE_ALIGMENT Mask that can be used to test an address to see if it is aligned
to a page boundary.

PAGE_SIZE Define that gives the size of a page of memory.

MIN_BAT_SIZE Define statement that gives the minimum size of a block of
memory.

MAX_BAT_SIZE Define statement that gives the maximum size of a block of
memory.

MAX_IBATS Define statement that gives the maximum number of IBATs al-
lowed.

MAX_DBATS Define statement that gives the maximum number of DBATs al-
lowed.

map_create Create a memory map.

map_default Define default map and enable MMU.

map_getattr Get the attributes of a page.
1-104 mmulib



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 105  Thursday, January 28, 1999  9:18 AM
The syntax of the map_create()  function is as follows:

#include <mmulib.h>

map_create( struct map_t *map,
unsigned long maplen,
void *mapmem,
unsigned long mapmemlen,
unsigned long *mapid,
unsigned long *tablesize
)

map_create() creates a page table and stores the BAT information from a map de-
scription provided by the array of map_t structures pointed to by map. maplen
specifies the number of array elements in map.

mapmempoints to the memory area to hold the page table and BAT information.
mapmemlen specifies the length, in bytes, of mapmem. If mapmemis zero, mmulib allo-
cates memory for the page table and BAT information from Region 0. In this case,
mapmemlen is ignored.

If mapmem is not zero, mapmemlen specifies the page table size plus
BAT_ARRAY_SIZE. The page table size is restricted to sizes from 216 to 225. mapmem
must be a multiple of the page table size. If mapmemis too small or Region 0 lacks
sufficient space, or mapmem is not on a page table boundary, then a fatal error oc-
curs. An error code is returned, and the page table is not created.

mmulib calculates the amount of memory required to hold the page table and BAT
information and returns it in the variable pointed to by tablesize . If a new map is
successfully created, the ID of the map is returned in the variable pointed to by
mapid . This ID is then used in subsequent calls to mmulib .

map_create()  returns zero or an error code, which can be one of the following:

map_getid Get the ID of a task’s map or of the default map.

map_setattr Change the attributes of a map.

map_size Calculate the page table size for a size of contiguous memory.

map_task Associate a map with a task.

BAT_ARRAY_SIZE Define statement that gives the size of the BAT information.

MIN_PGTBL_SIZE Define statement that gives the minimum size of a page table.

MAX_PGTBL_SIZE Define statement that gives the maximum size of a page table.
mmulib 1-105



System Services pSOSystem Programmer’s Reference

pr.book  Page 106  Thursday, January 28, 1999  9:18 AM
The syntax for map_default()  is as follows:

void map_default (unsigned long mapid)

map_default() makes the map specified by mapid the default map and enables
the MMU. Unless the calling task has an associated map, upon return, the map
specified by mapid is active. Since it enables the MMU, map_default() must be
called from supervisor mode or a privilege violation occurs.

map_default() is normally called just once. However, if it is called multiple times,
the most recent call determines the default map.

map_default() has no return value. It does not check the validity of mapid . If it is
not valid, a hardware exception or other erroneous behavior is likely to result.

The syntax for map_task()  is as follows:

map_task ( unsigned long tid, unsigned long mapid )

map_task() associates the map specified by mapid with the task specified by tid .
If mapid is zero, then the task’s current association, if any, is removed so that the
task subsequently uses the default map. If tid is zero, then calling task’s map is
changed.

EMMU_INSUFMEM Map area was too small or map_create() could
not allocate enough memory from Region 0.

EMMU_DUP_PAGE_ENTRY Duplicate page is referenced in the map_t  array.

EMMU_ADDR_NOT_ON_PAGE Starting address of a section is not on a page
boundary.

EMMU_LEN_NOT_PAGE_MULT Length of a section is not a multiple of the page
size.

EMMU_INV_BAT_SIZE Length of a BAT is invalid.

EMMU_ADDR_NOT_ON_BAT Starting address of a section is not on a BAT
boundary.

EMMU_EXCEED_MAX_BATS Number of BATs defined exceeds the max num-
ber allowed.

EMMU_PGTABLE_ALIGN Page table address is not on a page table bound-
ary or the page table size is invalid.
1-106 mmulib



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 107  Thursday, January 28, 1999  9:18 AM
The new map does not become active until the task next gains the CPU through a
context switch. If a task sets its own map and needs it to be active before proceed-
ing, the task should use tm_wkafter()  to block for one clock tick.

map_task()  returns zero or the following error code:

EMMU_TID_NOT_VALID The task ID is not valid.

map_task does not check the validity of mapid . If not valid, a hardware exception or
other erroneous behavior will probably result.

map_setattr() alters the attributes of a contiguous memory area.
map_setattr()  syntax is as follows:

map_setattr(
unsigned long mapid,
void *addr,
unsigned long len,
unsigned long mask,
unsigned long attr
)

mapid specifies the map to be changed. addr specifies the start address of the
memory region and len specifies its length. If len is zero, then the attributes of the
single page containing addr are changed. Otherwise, addr must be on a page or
block boundary, and len must be a multiple of the page size. For BATs, len is
ignored. If an address in the BAT which contains addr is changed then the whole
BAT is changed.

mask specifies which attributes of the region are to be changed. It is formed by OR-
ing together any or all of the page attributes:

MAP_IBAT, MAP_DBAT, MAP_INVBIT, MAP_WPBIT, MAP_CIBIT , MAP_CBBIT,
MAP_SERBIT, MAP_SUPBIT

attr specifies the new attributes of the region and is also formed by OR-ing to-
gether any or all of the above attributes. If a bit is set in mask, then the value in the
corresponding bit of attr is assigned to the page(s). If a bit is not set in mask, the
corresponding bit in attr  is ignored and remains unchanged.

If the map is active, the changes take effect immediately. Otherwise, they take effect
the next time the map becomes active.
mmulib 1-107



System Services pSOSystem Programmer’s Reference

pr.book  Page 108  Thursday, January 28, 1999  9:18 AM
map_setattr() returns zero or an error code. Possible error returns by
map_setattr  are:

map_getattr() returns the attributes of a given page or block as defined by the
map specified by mapid . The syntax for map_getattr()  is as follows:

map_getattr (
unsigned long mapid,
void *addr,
unsigned long *attr )
)

addr is any memory location within the page or block. attr points to a variable that
is used both as an input and an output. The variable must specify whether to get the
attributes of a page, IBAT, or DBAT. The attr variable must be set to zero for a page,
MAP_IBAT for an IBAT, or MAP_DBATfor a DBAT. The page or BAT attributes are then
returned in the variable pointed to by attr . The value returned is formed by OR-ing
together any or all of the following page attributes, as appropriate:

MAP_IBAT, MAP_DBAT, MAP_INVBIT, MAP_WPBIT, MAP_CIBIT , MAP_CBBIT,
MAP_SERBIT, MAP_SUPBIT

map_getattr()  returns zero or the following error code:

EMMU_ADDR_NOT_ON_PAGEThe starting address of a section is not on a page
boundary.

EMMU_LEN_NOT_PAGE_MULTThe length of a section not a multiple of the page size.

EMMU_PAGE_NOT_DEFINEDA page in the memory area is not defined.

EMMU_ADDR_NOT_ON_BATStarting address of a section is not on a BAT boundary.

EMMU_EXCEED_MAX_BATSNumber of BATs defined exceeds the max number
allowed.

EMMU_BAT_NOT_DEFINED BAT in the memory area is not defined.

EMMU_PAGE_NOT_DEFINED A page in the memory area is not defined.

EMMU_BAT_NOT_DEFINED BAT in the memory area is not defined.
1-108 mmulib



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 109  Thursday, January 28, 1999  9:18 AM
The syntax for map_getid()  is as follows:

unsigned long map_getid (
unsigned long tid,
unsigned long *defmapid,
unsigned long *taskmapid
)

map_getid() returns, in the variables pointed to by defmapid and taskmapid ,
respectively, the ID of the default map and the ID of the map associated with the
task specified by tid . A tid of zero refers to the calling task. If the specified task
has no associated map, then zero is returned in taskmapid .

map_getid()  returns zero or the following error code:

Callout Functions

mmulib includes several functions which must be called during system state
changes.

NOTE: If you are using the pSOSystem Application Development Environment,
calls to these functions are automatically generated at the appropriate
points. You need not be concerned with the details of the calls.

Callout mmulib  functions are as follows:

map_cocs() is a special-purpose procedure that change the active map when a
context switch occurs. Unless all tasks use the default map, one of these two proce-
dures must be called from the pSOS+ context switch callout. The syntax for these
functions is as follows:

void map_cocs (unsigned long NewTID,
unsigned long *NewTCBptr,
unsigned long OldTID,
unsigned long *OldTCBptr
)

EMMU_TID_NOT_VALID The task ID is not valid.

map_cocs Context switch callout procedure

map_reco pROBE+ entry callout procedure

map_rxco pROBE+ exit callout procedure

map_start Task start callout procedure
mmulib 1-109



System Services pSOSystem Programmer’s Reference

pr.book  Page 110  Thursday, January 28, 1999  9:18 AM
The address of map_cocs() can be entered directly into the kc_switchco entry in
the pSOS+ Configuration Table.

NewTCBptr is the pointer to the task control block of the task that is gaining the
CPU. NewTID is the task ID of the task that is gaining the CPU.

map_reco() and map_rxco() are special purpose procedures that can be called
from the user supplied pROBE+ ENTRYand EXIT callouts, respectively. They must
be used together.

The syntax for these functions is as follows:

void map_reco(void)
void map_rxco(void)

map_reco() stores the current MMU state and then disables the MMU. This en-
sures that the pROBE+ debugger has complete access to all physical memory.
map_rxco()  restores the MMU to its state prior to the last map_reco()  call.

map_reco() and map_rxco() should be called from a function which is put into
the pROBE+ Configuration Table entry td_statechng . Code for this is given in
probecfg.c in the configs/std directory. The function name is ProbeState-
Chng.

map_start is a special-purpose procedure that saves the startup state of the cache
and the mmu. Then on a restart these saved values will be used to restore the state.
The syntax for this function is as follows:

void map_start (void);

The address of map_start() can be entered directly into the kc_startco entry of
the pSOS+ Configuration Table.
1-110 mmulib



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 111  Thursday, January 28, 1999  9:18 AM
NFS Server

Description

NFS Server contained in the Internet Applications product allows systems to share
files in a network environment. It permits NFS clients to read and write files trans-
parently on pSOSystem disks that pHILE+ manages.

The pSOSystem NFS Server is implemented as two application daemon tasks. The
mntd task is the mount daemon. It processes requests for mounting and listing ex-
ported directories. The nfsd task processes all other NFS requests after exported
directories have been mounted.

NOTE: The mntd task and nfsd task are provided in the Internet Applications
library as position dependent code.

Configuration and Startup

NFS Server requires:

■ pSOS+ Real-Time Kernel.

■ pHILE+ File System Manager.

■ pNA+ TCP/IP Network Manager.

■ pRPC+ Remote Procedure Call Library.

■ pREPC+ Run-Time C Library.

In addition, NFS Server requires the following system resources:

■ Total of 16 Kbytes of task stack.

■ Two UDP datagram sockets used to listen for client requests (port number 2049
is bound to one of these sockets and therefore unavailable) set in pNA+ configu-
ration table.

■ Two Kbytes of dynamic storage (which a pREPC+ malloc() system call allo-
cates) from Region 0.

■ A user-supplied configuration table.
NFS Server 1-111



System Services pSOSystem Programmer’s Reference

pr.book  Page 112  Thursday, January 28, 1999  9:18 AM
The user-supplied NFS Server Configuration Table defines application-specific pa-
rameters. A template for this configuration table (shown below) exists in the in-
clude/netutils.h  file.

struct nfscfg_t
{

long task_prio; /* Priority for nfsd task */
long unix_auth; /* UNIX authentication-required flag */
long error_opt; /* Error reporting option */
long vol_blksize; /* System-wide volume block size */
char *def_vol_name; /* Name of the default volume */
nfselist_t *elist; /* Pointer to the list of exported directories */
long reserved[4]; /* Must be zero */

};

Definitions for the NFS Server Configuration Table entries are as follows:

task_prio Defines the initial priority of the daemon tasks mntd  and nfsd .

unix_auth Determines if client authorization is checked. If unix_auth
equals one (TRUE), NFS Server checks a client’s UNIX ID for the
value zero (indicating a root client) before mounting. If
unix_auth  equals zero (FALSE), any client on a trusted ma-
chine can mount any of the exported directories.

error_opt Relates to error response. If error_opt  equals one (TRUE),
NFS Server returns the appropriate error status on operations
that attempt to modify file attributes. If error_opt equals zero
(FALSE), NFS Server returns ok even if the requested operation
did not happen. This allows UNIX utilities that modify file
attributes to operate on pHILE+ files even when pHILE+ does
not behave exactly the same as UNIX.

vol_blksize Defines the system-wide block size of the volumes that pHILE+
manages. The system-wide block size must match the size de-
fined by the pHILE+ Configuration Table entry fc_logbsize .
However, the notation for the vol_blksize  value differs from
that of fc_logbsize , as follows: vol_blksize  is specified as
the actual block size, and fc_logbsize  is specified as the ex-
ponent of two for the block size. For example, if vol_blksize
is 512 bytes, then fc_logbsize is 9 (29 = 512).

def_vol_name Defines the name of the default volume to use when a client
issues a mount request without specifying a volume name.
1-112 NFS Server



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 113  Thursday, January 28, 1999  9:18 AM
NFS Server comes as one object module and must be linked with a user application.

Calling the function nfsd_start(nfscfg) any time after pSOSystem initialization
(by calling ROOT) starts NFS Server. The parameter nfscfg points to the NFS
Server Configuration Table. If NFS Server is started successfully, nfsd_start() re-
turns zero; otherwise, it returns a non-zero value on failure. The error values are:

Example

The following code fragment shows an example configuration table and the call that
starts NFS Server. The complete example code exists in the apps/netutils/
root.c  file.

elist Points to a structure. The structure contains a list of exported
directories and trusted clients. If elist equals zero, NFS
Server looks for the export information in the /etc/exports
file on the default pHILE+ volume (defined by def_vol_name ).
If no such file exists, NFS Server assumes everything in the sys-
tem is exportable and accepts all mount requests. When elist
is specified, its structure must be as follows:

struct nfselist_t
{

char *dir_path; /* Export list */
char *hlist; /* List of trusted clients*/

};

The following is an example of an export list with three entries:

struct nfselist_t nfselist[] =
{

{"4.0/", "111.111.11.111", 999.999.99.999"},
{"5.0/etc", 0},
{0, 0}

};

where the first entry permits the client machines with IP ad-
dresses 111.111.11.111 and 999.999.99.999 to mount on the
root directory / on volume 4.0, and the second entry allows any
client to mount on directory etc  on volume 5.0. The last entry
defines the end of the export list.

reserved Reserved for future use, and each must be zero.

E_NFSD_CFGPARAM Determines that one or more parameters are invalid.

E_NFSD_START Indicates if it is unable to start NFS tasks.
NFS Server 1-113



System Services pSOSystem Programmer’s Reference

pr.book  Page 114  Thursday, January 28, 1999  9:18 AM
EXAMPLE 1-4: Calling NFS Server

#include <nfsdcfg.h>
start_nfs_server()
{
/* NFS server configuration table */
static nfscfg_t nfscfg =

{
250, /* Task priority for nfsd task */
1, /* Requires "root" UNIX client to mount */
0, /* No error reporting */
512, /* System-wide volume block size */
"4.0", /* Default volume name */
0, /* Everything exported */
0, 0, 0, 0 /* Zeros for all reserved entries */
};

/* start the NFS server */
if (nfsd_start(&nfscfg))

printf("nfsd_start: failed to start\n");
}

The following features are not supported in the current version:

■ Symbolic and hard link files.

■ File truncation (for example, ftruncate()  in SunOS).

■ Lseek  beyond the end of a file.

■ Specification of a file's attributes for mode (read/write/execute), ownership
(uid/gid), and time (accessed/created/modified).

■ File locking.

On the other hand, the following parameters do apply:

■ A file's access, create, and modification times are all updated to the same value
whenever a file's content is modified.

■ All files are owned by root  (uid=0 and gid=0).

■ All users have read, write, and execute permissions for all regular files.

■ All users have read and execute permissions for all directory files. All users have
read permission for all system files.
1-114 NFS Server



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 115  Thursday, January 28, 1999  9:18 AM
pSH+

Description

pSH+ contained in the Internet Applications product provides an interactive, com-
mand line shell. pSH+ consists of two parts:

■ Application task(s) (pshn ), which provide the login shell(s) on the console or
other serial ports.

■ An application daemon task (pshd ), which listens for connection requests from
the Telnet server daemon and dynamically spawns shell tasks to process Telnet
logins.

pSH+ is provided as part of the Internet Applications object library (sys/libc/
netutils.a ). pSH+ contains a set of built-in commands. Commands or complete
applications that will be spawned as separate tasks can be added to pSH+.

Configuration And Startup

pSH+ requires the following components:

■ pSOS+ Real-Time Kernel.

■ (optional) pHILE+ File System Manager (only if none of the configured shell com-
mands require pHILE+).

■ pNA+ TCP/IP Network Manager.

■ pREPC+ Run-Time C Library.

In addition, each session of pSH+ requires the following system resources:

■ Two Kbytes of dynamic memory is allocated from Region 0 for each shell session
and it is freed when the session exits. In addition, some of the pSH commands
allocate and free memory from Region 0 during their operation.

■ One TCP socket, which is used to listen for Telnet server requests, and two ad-
ditional TCP sockets per shell session.

The user-supplied pSH+ Configuration Table defines application-specific parame-
ters. The following is a template for this configuration table. This structure should
be statically allocated by the application and passed to the library. The template ex-
ists in the file include/netutils.h :
pSH+ 1-115



System Services pSOSystem Programmer’s Reference

pr.book  Page 116  Thursday, January 28, 1999  9:18 AM
struct pshcfg_t {
long flag; /* Services options */
long task_prio; /* Priority for each shell task */
char *def_vol_name; /* Default login volume name */
struct ulist_t *ulist; /* List of permitted users */
appdata_t *app; /* Pointer to the list of user apps */
cmddata_t *cmd; /* Pointer to the list of user cmds */
unsigned long console_dev;/* The pSH+ console device number */
unsigned long psedo_dev; /* pSH+ pseudo device number */
char *cprompt; /* Console prompt */
char *tprompt; /* Telnet prompt */
unsigned long supv_stack; /* Supv stack size */
unsigned long user_stack; /* User stack size */
char *psh banner; /* Banner to be used */
};

Definitions of the pSH+ Configuration Table entries are as follows:

flag The interpretation of this field is different from earlier releases
of Internet Applications. This flag is a bit mask used to control
pSH task modes. If PSH_FPUis set, the pSH task is started with
T_FPU mode. If PSH_SUPV bit is set, the pSH task is started in
supervisory mode on processors supporting USER/SUPER-
VISOR mode.

task_prio Defines the priority at which shell tasks start executing.

def_vol_name Names of the default volume to use when a user logs into
pSOSystem. This should be set to NULL if pHILE+ component
is not configured.
1-116 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 117  Thursday, January 28, 1999  9:18 AM
ulist Points to a list of structures. The structures contain login infor-
mation about permitted users. If this field is zero, a user callout
function is invoked. This function should return zero upon a
successful validation of your login, or -1 if the login sequence
fails. The structure format is as follows:

struct ulist_t
{
char *login_name; /* User name */
char *login_passwd; /* User password */
long reserved[4]; /* Must be 0 */
};

If ulist is provided, the last structure in the array must be all
zeroes to indicate the end of the list. The following example
defines two users:

struct ulist_t ulist[] = {
{"guest", "psos0", 0, 0, 0, 0},
{"scg", "andy0", 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0}
};

The user callout function should be implemented as part of the
user application. The prototype declaration for this user callout
is as follows:

int psh_validate_user(char *login)

login After a successful login, the login name should be
copied to this buffer. This should be a NULL termi-
nated string of up to 20 characters. The callout
function should either return zero for a successful
login or -1 on failure.

NOTE: Another use for this callout function could be
to run any command or application
automatically as soon as the user logs in.
pSH+ 1-117



System Services pSOSystem Programmer’s Reference

pr.book  Page 118  Thursday, January 28, 1999  9:18 AM
app Points to a list of structures. Each of the structures contains
information for executing a user application. The app  entry
allows users to add system applications (FTP, Telnet, and so on)
and user-defined applications to the shell. The structure for-
mat is as follows:

struct appdata_t {
char *app_name; /* Application name */
char *app_help; /* Help string */
void (*app_entry)(); /* Entry point */
char *app_tname; /* Task name */
long app_tprio; /* Task priority */
long app_sssize; /* System stack size */
long app_ussize; /* User stack size */
short app_reentrant_flag;/* Reentrant flag */
short app_reentrant_lock;/* Reentrant lock */
};

The last structure in the array must be all zeroes to indicate the
end of the list. The following is an example with two entries:

struct appdata_t appdata[ ] = {
{"ftp", "file transfer application", ftp_main,

"ft00", 250, 2048, 2048,1, 0},
{"telnet", "telnet application", telnet_main,

"tn00",
250, 2048, 2048, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}
};

cmd Points to a list of structures. The structures contain informa-
tion for executing user commands. pSH+ comes with a number
of built-in commands (such as cd , pwd, ls ), and users can add
commands. The built-in commands must be manually added to
the cmd table. The cmd entry allows users to add commands to
the shell. (The subsection pSH+ Built-In Commands on
page 1-124 describes built-in commands, and on page 1-120
explains how to specify user-defined commands to pSH.) The
structure format is as follows:

struct cmddata_t {
char *cmd_name; /* Command name */
char *cmd_help; /* Help string */
void (*cmd_entry)(); /* Entry point */
short cmd_reentrant_flag; /* Reentrant flag */
short cmd_reentrant_lock; /* Reentrant lock */
};
1-118 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 119  Thursday, January 28, 1999  9:18 AM
The last structure in the array must be all zeroes to indicate the
end of the list. The following is an example with three entries:

struct cmddata_t cmddata[] = {
{"type", "list content of a file", type_main, 1,
0},

{"volume", "show current working volume",
volume_main, 1, 0},

{0, 0, 0, 0, 0}
};

For each built in command, users can add an entry to cmd-
data[], for example:

{"xxx",xxxman,psys_xxx,1,0}

The type definitions for xxxman and psys_xxx  is in
<netutils.h> .

xxx is any built-in command supported by Internet Applica-
tions library.

console_dev Represents the device for this application. The name
console_ dev  is not accurate, but it is retained for compati-
bility. This device number can be any serial device supporting
the Device Independent Terminal Interface (DITI) interface on
which the pSH session can be started.

pseudo_dev Stands for the pseudo device, used for I/O redirection. It is set
to DEV_PSEUDO, and is defined in sys_conf.h The pseudo
driver is provided as part of the Internet Applications package.
The pseudo driver is used for redirecting socket or file I/O to
standard I/O and vice-versa.

cprompt Stands for the pSH+ prompt. If null, the cprompt is set to
“<pSH+>”.

tprompt Telnet prompt for incoming telnet connections. If null, the
tprompt is set to “<pSH+>”.

supv_stack Specifies the supervisor stack size to be used for the pSH task.

user_stack Specifies the user stack size to be used for the pSH task.

psh banner Specifies the banner string to be displayed for pSH. This is a
NULL_TERMINATED static string pointer. This string is dis-
played by pSH at startup.
pSH+ 1-119



System Services pSOSystem Programmer’s Reference

pr.book  Page 120  Thursday, January 28, 1999  9:18 AM
NOTE: On most processors, a task can execute only in supervisor mode. Thus, a
task can have only a supervisor task. On these processors, user_stack
is added to supv_stack to create a supervisor stack of the combined
sizes.

Making the psh_start(pshcfg) system call from the application, starts pSH+.
The parameter pshcfg is a pointer to the pSH+ Configuration Table. If pSH+ is
started successfully, psh_start() returns zero; otherwise, it returns a non-zero
value on failure. The error value can be any pSOS+ error. When this error occurs (a
non-zero value) an error message will not be displayed. Check your pshcfg table
entries for input errors.

The following code fragment shows an example configuration table and the call that
starts pSH+. The complete example code exists in the apps/netutils/root.c file.

start_psh()
{
/* user configured command list */
cmddata_t cmds_tab[] = {

{"arp", arpman, psys_arp, 1, 0},
{"cat", catman, psys_cat, 1, 0},

   ...
{0,0,0,0,0}
};

{
/* psh configuration table */
static struct pshcfg_t pshcfg =

{
0x03, /* Services options */
250, /* Priority for each shell task */
"4.0", /* Default login volume name */
0, /* List of permitted users */
0, /* Pointer to the list of user apps */
0, /* Pointer to the list of user cmds */
DEV_CONSOLE, /* Console device */
DEV_PSEUDO, /* Pseudo device */
"pSH+>", /* Pshell prompt */
"Telnet+>", /* Incoming telnet connection prompt */
0, 0, /* Must be 0 */
};

/* start the FTP server */
if (psh_start(&pshcfg))

printf("psh_start: failed to start\n");
}

The pSH daemon is started by making the pshd_start(pshcfg) system call from
the application. This task is responsible for pSH sessions over telnet connections.
1-120 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 121  Thursday, January 28, 1999  9:18 AM
The parameter pshcfg is a pointer to the configuration table, which is the same as
the pSH+ configuration table pshd_start() .

The commands and applications can be added to pSH+ so that they can be invoked
from the shell. Both commands and applications can be passed parameters, which
follow the command or application name. The following is an example:

pSH+> ls -1

or

pSH+> telnet < hostname>

For the parameters, a space character is used as token separators. If the parameter
contains a space character, the entire parameter needs to be included in double-
quotes. A double-quote immediately followed by another double-quote is interpreted
as one double-quote character. The following is an example:

pSH+> ls -1 "my file"

Adding Commands to pSH+

The command set of pSH+ can be extended by specifying the command handlers in
a table. The cmd entry in the pSH+ Configuration Table must contain the address of
this table. The pSH+ task then executes these commands as subroutines. This dif-
fers from applications because they execute as separate tasks.

The command table must have the following information about each command:

■ The name of the command.

■ The starting address of the routine that performs the command.

■ An optional help  string for the command.

■ Whether or not the routine that implements the command is reentrant: if a
command is not reentrant, pSH+ prevents simultaneous calls to the handler by
different shell tasks.

When a shell command is executed, the parameters argc , argv , and env are
passed to the subroutine.

The int argc parameter is the number of arguments on the command line that
were used to invoke the command. The number of arguments includes the com-
mand itself.
pSH+ 1-121



System Services pSOSystem Programmer’s Reference

pr.book  Page 122  Thursday, January 28, 1999  9:18 AM
The char *argv[] parameter is an array of pointers to null-terminated character
strings, and each string contains one of the arguments to the command as parsed
by the shell: argv[0] points to the command name as entered on the command
line; argv[1]  points to the first argument (if any); and so on.

The char *env[] parameter is an array of pointers to null-terminated character
strings. The strings contain the definitions of all of the environment variables. The
last element in env[] is a null pointer that indicates the end of the environment
variables. Two of the environment variables, CVOL and CDIR, define the current
working volume and current working directory, respectively.

When a command completes, it exits by executing a return  to pSH+.

If any of the user commands need to change its stdio settings (for example, turn-
ing off echo), you can do this by invoking de_cntrl() in a transparent manner.
The user applications called from either local or remote pSH sessions use the
Pseudo device to send IOCTL messages using a uniform interface. If the Pseudo
driver detects that IOCTL is coming from a task running on a local serial port, it re-
directs IOCTL to the appropriate driver. However, if IOCTL comes from a task that
runs on a remote pSH session, the Pseudo  driver will handle it appropriately.

The following example illustrates how a command can change the stdio settings
that can be used on any local or telnet pSH+ ports:

#include <diti.h>

change_mode()
{

unsigned long ioretval;
TermCtl termctl;
struct termio tio;
termctl.arg = (void *)&tio;

termctl.function = TCGETA;
if (de_cntrl(DEV_PSEUDO, &termctl, &ioretval)) {

perror("de_cntrl");
}
tio.c_lflag &= ~ECHO;
termctl.function = TCSETAF;
if (de_cntrl(DEV_PSEUDO, &termctl, &ioretval)) {

perror("de_cntrl");
}

}

1-122 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 123  Thursday, January 28, 1999  9:18 AM
Adding Applications to pSH+

pSH+ applications can be added by placing entries in a table. This table is pointed to
by the app entry in the pSH+ Configuration Table. Each application described by
the table requires:

■ The name of the application.

■ The starting address of the application.

■ An optional help  string for the application.

■ The name and priority to be used for the application task.

■ The sizes of the supervisor and user stacks for the application task (in bytes).

■ Whether or not the code that implements an application is reentrant. If it is
nonreentrant, pSH+ prevents simultaneous instances of the application.

When a shell command is entered with the name of an application, that application
is invoked and entered at the specified entry point. The application is also passed
five parameters: argc , argv , env , exit_param , and console_dev . The first three
parameters are defined in the same way for applications as they are for commands
(see the preceding subsection). exit_param is a parameter used in the psh_exit
function when an application terminates. console_dev parameter is the device on
which this application is currently running. The shell sets up the application task
with the stdio pointing to this device. If this application starts other tasks, the
console_dev parameter can be used by the application to redirect stdio of these
tasks.

pSH+ applications inherit both the mode and flags from the pSH+ task. If pSH+
starts in supervisor mode, all the applications started from this shell are started in
supervisor mode.

Similarly, if the pSH+ task starts with the FPU flag set, all the applications started
from pSH+ inherit this flag. If the user stack size is set to -1, the pSH+ application is
started in supervisor mode (irrespective of the mode of pSH+ task starting it).
pSH+ 1-123



System Services pSOSystem Programmer’s Reference

pr.book  Page 124  Thursday, January 28, 1999  9:18 AM
Subroutines

pSH+ provides two subroutines that can be called from the code that implements
user-commands and/or applications. The subroutines are psh_getenv and
psh_exit . psh_getenv gets the pointer to the value of an environment variable. It
has the following syntax:

char *psh_getenv (name , env);

where name is the name of an environment variable (for example, CDIR), and env is
the same parameter passed at the entry point of an application or command.

psh_exit is used when an application that was invoked from pSH+ terminates. It
has the following syntax:

void psh_exit (exit_param);

where exit_param is the same parameter passed at the entry point of an applica-
tion.

NOTE: An application cannot interpret the contents of exit_param .

pSH+ Built-In Commands

This subsection contains descriptions of the built-in pSH+ commands. To enable
these commands, they must be manually added to the cmd table. The shell task
executes each of these commands as a subroutine. The commands are as follows:

cat Concatenate and display files.

cd Change working directory.

clear Clear the terminal screen.

cmp Perform a byte-by-byte comparison of two files.

cp Copy files.

du Display disk blocks usage.

date Display or set the date.

echo Echo arguments to the standard output.

setenv Set environment variables.

getid Get NFS user ID and group ID.
1-124 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 125  Thursday, January 28, 1999  9:18 AM
getpri Get task priority.

head Display the first few lines of the specified files.

help Display reference manual pages.

kill Terminate a task.

ls List the contents of a directory.

mkdir Create a directory.

mkfs Construct a pHILE+ file system.

mount Mount a pHILE+ file system.

mv Move or rename files.

netstat Show network status.

nfsmount Mount a NFS file system.

pcmkfs Construct an MS-DOS file system.

pcmount Mount an MS-DOS file system.

ping Send ICMP ECHO REQUEST packets to network hosts.

popd Pop the directory stack.

pushd Push current directory onto the directory stack.

pwd Display pathname of the current working directory.

resume Resume a task.

rm Remove files.

rmdir Remove directories.

setid Set NFS user ID and group ID.

setpri Set task priority.

sleep Suspend execution for a specified interval.

suspend Suspend a task.

sync Force all changed blocks to disk.

tail Display the last part of a file.
pSH+ 1-125



System Services pSOSystem Programmer’s Reference

pr.book  Page 126  Thursday, January 28, 1999  9:18 AM
The following are descriptions of the pSH+ commands:

touch Update the modification time of a file.

umount Unmount a file system.

cat [ -benstv ] [ filename ...]

cat Concatenate and display. cat  sequentially reads each file-
name and displays the contents of each named file on the stan-
dard output. The following input displays the contents of
goodies  on the standard output:

psh> cat goodies

Note that cat  does not redirect the output of a file to the same
file. For example, cat  fails for filename1 > filename1  or
filename1 >> filename1 . You should avoid this type of
operation, because it can cause the system to go into an inde-
terminate state. cat  options are as follows:

b Number the lines, but omit the line numbers from blank
lines (similar to -n ).

e Display non-printing characters, and additionally display
a $ character at the end of each line (similar to -v ).

n Precede each line output with its line number.

s Substitute a single blank line for multiple adjacent blank
lines.

t Display non-printing characters (like the -v  option), and
additionally display [TAB] characters as ^I  (a [CTRL]-I).

v Display non-printing characters (with the exception of
[TAB] and [NEWLINE] characters), so they are visible.
Control characters print like ^X (for [CTRL]-X); the [DEL]
character (octal 0177) prints as ^? . Non-ASCII characters
(with the high bit set) are displayed as M-x  where M-
stands for ‘‘meta’’ and x  is the character specified by the
seven low-order bits.

cd  [ directory ] Change working directory. The argument directory becomes the
new working directory.
1-126 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 127  Thursday, January 28, 1999  9:18 AM
cmp [-ls] filename1 filename2  [ skip1 ] [ skip2 ]

cmp Perform a byte-by-byte comparison of filename1 and
filename2. With no arguments, cmp makes no comment if the
files are the same. If they differ, it reports the byte and line
number at which differences occur, or else it reports that one
file is an initial subsequence of the other. Arguments skip1 and
skip2 are initial byte offsets into filename1 and filename2,
respectively, and can be either octal or decimal (a leading zero
denotes octal). cmp options are as follows:

l Silent. Print nothing for differing files.

s Silent. Print nothing for differing files.

cp [ -i ] filename1 filename2

cp -rR [ -i ] directory1 directory2

cp [ -irR ] filename ...  directory

cp On the first line of the synopsis, the cp  command copies the
contents of filename1 to filename2. If filename1 is either a
symbolic link or a duplicate hard link, the contents of the file
that the link refers to are copied, but the links are not pre-
served.

On the second line of the synopsis, cp  recursively copies
directory1 along with its contents and subdirectories to
directory2. If directory2 does not exist, cp  creates it and
duplicates the files and subdirectories of directory1 within it.
If directory2 does exist, cp  makes a copy of directory1 (as a
subdirectory) within directory2, along with its files and
subdirectories.

On the third line of the synopsis, each filename is copied to the
indicated directory. The basename of the copy corresponds to
that of the original. The destination directory must already exist
for the copy to succeed.
pSH+ 1-127



System Services pSOSystem Programmer’s Reference

pr.book  Page 128  Thursday, January 28, 1999  9:18 AM
cp  does not copy a file to itself. cp  options are as follows:

cp i Interactive: a prompt for confirmation of the copy appears
whenever the copy would overwrite an existing file. A y
answer confirms that the copy should proceed. Any other
answer prevents cp  from overwriting the file.

r See R.

R Recursive. If any of the source files are directories, copy
the directory along with its files (including any subdirecto-
ries and their files). The destination must be a directory.

In the following example, the first command line entry starts
the copy operation. The second command line lists the contents
of the directory to verify the results of the copy.

To copy a file:

psh> cp goodies goodies.old
psh> ls
goodies   goodies.old

To copy a directory, first to a new and then to an existing direc-
tory, enter the following:

psh> cp  -r  src  bkup
psh> ls  -R  bkup
x.c  y.c  z.sh
psh> cp  -r  src  bkup
psh> ls  -R  bkup
src  x.c  y.c  z.sh
src:
x.c  y.c  z.sh

date  [ yyyymmddhhmm  [ .ss ] ]

Without an input argument, date displays the current date and
time. Otherwise, date sets the current date according to the
input argument.

The argument part yyyy is the four digits of the year; the first
mm is the month number; dd is the day number in the month;
hh is the hour number (24 hour system); the second mm is the
minute number; and .ss (optional) specifies seconds. If yyyy is
the current year, it can be omitted because the current year
value is the default.

To set the date to Oct 8, 12:45 AM, type

date  10080045
1-128 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 129  Thursday, January 28, 1999  9:18 AM
du [ - sa ]
[ filename  ... ]

Display the number of 512-byte disk blocks used per file
or directory. This command can display the block count of
one or more specified files; all files in either the current or
another specified directory; or, recursively, the number of
blocks in directories within each specified directory. If no
filename is given, the current directory (symbolized by a.)
is used. Filenames can contain wildcards.

du options are as follows:

s Display only the total for each of the specified file-
names.

a Generate an entry for each file.

Entries are generated only for each directory in the ab-
sence of options.

The following is an example of du usage in a directory.
The example uses the pwd command to identify the direc-
tory, then uses du to show the usage of all the subdirecto-
ries in that directory. The total number of blocks in the
directory (1211) is the last entry in the display:

psh> pwd
/junk
psh> du
5    ./junk1
33   ./xxxxx
44   ./vvvvv/vvvv.junk1
217  ./vvvvv/vvvv.junk2
401  ./vvvvv
144  ./mmmmm
80   ./gggggg
388  ./ffffff
93   ./mine
15   ./yours
1211 .

echo [ -n ]
[ argument  ... ]

Echo argument(s) to the standard output. Arguments
must be separated by [SPACE] characters or [TAB] char-
acters and terminated by a [NEWLINE].

The -n option keeps a [NEWLINE] from being added to the
output.
pSH+ 1-129



System Services pSOSystem Programmer’s Reference

pr.book  Page 130  Thursday, January 28, 1999  9:18 AM
getid Get the user ID and group ID of the shell task. For
example:

psh> getid
uid: 23, gid: 140

where the second line is output displayed on standard
output.

getpri tname |- tid Return the priority of a task, specified by either the task
name (tname) or the task identifier (tid). For example:

psh> getpri ROOT
ROOT task priority = 250

head [ -n ]
filename ...

Copy the first n lines of each filename to the standard out-
put. The default value of n is 10.

When more than one file is specified, the start of each file
appears as follows:

==>filename<==

For example, the following line

psh> head  -4  junk1  junk2

produces

==> junk1 <==
This is junk file one
==> junk2 <==
This is junk file two
1-130 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 131  Thursday, January 28, 1999  9:18 AM
help [ command_name] Print information about shell commands to the console. If
a valid command name is given, help  prints out informa-
tion about that command. With no command name for an
input, help  prints out a list of shell commands.

The following example shows the results of help  without
an argument:

psh> help

cat cmp echo help mkfs pcmkfs pushd rmdir
sleep cd cp getid kill mount pcmount pwd setenv
suspendclear date getpri ls mv ping resume
setid sync console du head mkdir nfsmount popd
rm setpri

The following example shows the result of help cat .

psh> help cat

cat - concatenate and display (reentrant, not
locked)

kill tname |- tid Terminate the task indicted by either the task name
(tname) or the task identifier (tid). The kill  command
does this by calling t_restart  with a second argument
of -1. The task must be designed to read this second argu-
ment and do its own resource cleanup, then terminate.
For example:

psh> kill tftd

ls [ - aACdfFgilqrRs1  ] filename  ...

ls For each filename that is a directory, ls lists the contents
of the directory; for each filename that is a file, ls repeats
its name and any other information requested. By default,
the output is sorted alphabetically. ls  options are as
follows:

a

A

List all entries.

(ls only) Same as -a , except that the. and the.. are
not listed.

C Force multi-column output, with entries sorted
down the columns; for ls , this is the default when
output goes to a terminal.
pSH+ 1-131



System Services pSOSystem Programmer’s Reference

pr.book  Page 132  Thursday, January 28, 1999  9:18 AM
ls d If argument is a directory, list only its name (not its
contents); often used with -l  to get the status of a
directory.

f Force each argument to be interpreted as a direc-
tory and list the name found in each slot. This op-
tion turns off -l , -s , and -r  and turns on -a ; the
order is the same as the order of the entries appear-
ing in the directory.

F Mark directories with a trailing slash */ and execut-
able files with a trailing asterisk (*).

g Shows group ownership of the file in a long output.

i For each file, print the i-number in the first column
of the report.

l List in long format. Long format shows the mode,
the number of links, the owner, the size (in bytes),
and the time of each file’s last modification. If the
last modification occurred more than six months
ago, the display format is month-date-year ; the
format for files modified in six or less months is
month-date-time .

q Display nongraphic characters in filenames as the ?
character; for ls , this is the default when output
goes to a terminal.

r Reverse the order of the sort either to reverse the al-
phabetic order or list the oldest data first.

R Recursively list subdirectories encountered.

s Give size of each file. Include indirect blocks used to
map the file. Display in Kbytes.

l Force single-column output.
1-132 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 133  Thursday, January 28, 1999  9:18 AM
mkdir [ -p ]
dirname ...

Create a directory. The -p  option allows missing parent
directories to be created, as needed. For example:

psh> ls -lR
total 8
-r--r--r-- 1 root 512 Mar 31 94 00:00 BITMAP.SYS
-r--r--r-- 1 root 2048 Mar 31 94 10:01 FLIST.SYS
drwxrwxrwx 1 root 32 Mar 31 94 13:34 test_dir
./test_dir:

psh> mkdir -p new_dir/next_dir

psh> ls -lR
total 9
-r--r--r-- 1 root 512 Mar 31 94 00:00 BITMAP.SYS
-r--r--r-- 1 root 2048 Mar 31 94 10:01 FLIST.SYS
drwxrwxrwx 1 root 16 Mar 31 94 13:36 new_dir
drwxrwxrwx 1 root 32 Mar 31 94 13:34 test_dir
./new_dir:
total 0

mkfs [ -i ] volume_name label size num_of_fds

Initialize a file system volume_name and label it with la-
bel. The argument size is the volume size, and
num_of_fds is the number of file descriptors.

The -i option initializes a device driver for the device. For
example:

psh> mkfs 5.6 HDSK 2096 512

Warning: this operation will destroy all data
on the specified volume.

Do you want to continue (y/n)? y
psh>
pSH+ 1-133



System Services pSOSystem Programmer’s Reference

pr.book  Page 134  Thursday, January 28, 1999  9:18 AM
mount volume_name  [ sync_mode ]

mount Mount a pHILE+ formatted volume on the file system. (A
volume must be mounted before any file operations can
be executed on it.)

Permanent (non-removable media) volumes need to be
mounted only once. Removable volumes must be
mounted and unmounted as required. The sync_mode is
one of the following:

0

1

2

Specifies immediate-write synchronization mode.

Specifies control-write synchronization mode.

Specifies delayed-write synchronization mode (the
default).

For example:

psh> mount 5.6/
1-134 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 135  Thursday, January 28, 1999  9:18 AM
mv [ -if ] filename1 filename2

mv [ -if ] directory1 directory2

mv [ -if ] filename...  directory

Move around files and directories in the file system. A side
effect of mv is that it renames a file or a directory. The
three major forms of mvappear in the preceding synopses.

The first form of mv moves (and changes the name of)
filename1 to filename2. If filename2 already exists, it
is removed before filename1 is moved.

The second form of mv moves (and changes the name of)
directory1 to directory2 but only if directory2 does not
already exist. If directory2 exists, the third form applies.

The third form of mv moves one or more filenames (can
also be directories) with their original names into the last
directory in the list.

mv does not move either a file to itself or a directory to it-
self. mv options are as follows:

i Interactive mode. mv displays the name of the file
followed by a question mark whenever a move
would replace an existing file. If a line starts with y ,
mv moves the specified file; otherwise, mv does noth-
ing with the file.

f Force. Override any mode restrictions and the i
option.

netstat [-airs] netstat displays the contents of various network-related
data structures in various formats. netstat  with no op-
tion will display all sockets other than the ones related to
server tasks.

netstat  options are as follows:

a Show the state of all sockets including ones that are
listening (server tasks).

i Show the state of all network interfaces.

r Show the routing tables.

s Show per-protocol statistics.
pSH+ 1-135



System Services pSOSystem Programmer’s Reference

pr.book  Page 136  Thursday, January 28, 1999  9:18 AM
nfsmount host: host_directory directory

Mount the remote file system using NFS protocol. The
host host should advertise the directory, host_directory
for this command to complete successfully. The host
argument can be either an IP address or a hostname if the
Name Resolver is configured.

pcmkfs [ -i ] volume_name size

Do a pcinit_vol  of the volume volume_name for the
disk type size, where size is one of the following:

1

2

3

4

360 Kbyte (5 1/4" double density)

1.2 Mbyte (5 1/4" high density)

720 Kbyte (3 1/2" double density)

1.4 Mbyte (3 1/2" high density)

The -i option initializes the device. For example:

psh> pcmkfs 5.3 4
Warning: this operation will destroy all data
on the specified volume.
Do you want to continue (y/n)? y

pcmount volume_name  [ sync_mode ]

Mount an MS-DOS file system volume_name. (A volume
must be mounted before any file operations can be exe-
cuted on it.) The argument sync_mode can be one of the
following:

0

1

2

Immediate write synchronization mode.

Control write synchronization mode.

Delayed write synchronization mode (default).

For example:

psh> pcmount 5.3
1-136 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 137  Thursday, January 28, 1999  9:18 AM
pwd Display the pathname of the current working directory.
For example:

psh> cd 5.5//usr
psh> pwd
5.5//usr

resume tname  | - tid Resume a suspended task by the task name (tname) or
the task identifier tid. For example:

psh> resume ROOT

rm [ -fir ]
filename ...

Remove (unlink directory entries for) one or more files. If
an entry was the last link to the file, the contents of that
file are lost. rm options are as follows:

f Force removal of files without displaying permis-
sions or questions and without reporting errors.

i Prompt whether to delete each file and, under -r ,
whether to examine each directory.   (This is some-
times called the interactive option.)

r Recursively delete the contents of a directory, its
subdirectories, and the directory itself.

Examples:

psh> ls -lR
total 9
-r--r--r-- 1 root 512 Mar 31 94 00:00 BITMAP.SYS
-r--r--r-- 1 root 2048 Mar 31 94 10:01 FLIST.SYS
drwxrwxrwx 1 root 16 Mar 31 94 13:36 new_dir
drwxrwxrwx  1 root 32 Mar 31 94 13:34 test_dir
./new_dir:
total 0
drwxrwxrwx 1 root 0 Mar 31 94 00:00 next_dir
./new_dir/next_dir:
./test_dir:
total 1
-rwxrwxrwx 1 root 33 Mar 31 94 00:00 test_file
psh> rm -rf new_dir
psh> ls -lR
total 8
-r--r--r-- 1 root 512 Mar 31 94 00:00 BITMAP.SYS
-r--r--r-- 1 root 2048 Mar 31 94 10:01 FLIST.SYS
drwxrwxrwx 1 root 32 Mar 31 94 13:34 test_dir
./test_dir:
total 1
-rwxrwxrwx 1 root 33 Mar 31 94 00:00 test_file
pSH+ 1-137



System Services pSOSystem Programmer’s Reference

pr.book  Page 138  Thursday, January 28, 1999  9:18 AM
ping [ -s ] host  [ timeout ]

The ping  command uses the ICMP protocol's mandatory
ECHO_REQUEST datagram to elicit an ICMP
ECHO_RESPONSE from the specified host or network gate-
way. ECHO_REQUEST datagrams (pings) have an IP and
ICMP header followed by a struct timeval and then an
arbitrary number of bytes to pad out the packet. If the
host responds, ping  prints host is alive  on the stan-
dard output and exits. Otherwise, after timeout seconds,
it writes no answer from host . The default value of
timeout is 10.

When the s option is specified, ping  sends one datagram
per second and prints one line of output for every
ECHO_RESPONSEthat it receives. No output is produced if
no response occurs. The default size for a datagram
packet is 64 bytes. The host  argument can be either an
IP address or a hostname if the Name Resolver is
configured.

When using ping  for fault isolation, first ping  the local
host to verify that the local network interface is running.
For example:

psh> ping 192.103.54.190
PING (192.103.54.190): 56 data bytes
192.103.54.190 is alive

popd Pop the directory stack and change to the new top direc-
tory. For example:

psh> pushd test_dir
psh> pwd
5.5/test_dir

psh> popd
psh> pwd
5.5/

pushd directory Push the current directory onto the directory stack and
change the current working directory to that directory.
For example:

psh> pwd
5.5/

psh> pushd test_dir
psh> pwd
5.5/test_dir
1-138 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 139  Thursday, January 28, 1999  9:18 AM
rmdir directory ... Remove each named directory. rmdir removes only empty
directories.

setenv variable_name value

Change a pSH+ environment variable_name to a new
value. If used without arguments, setenv prints a list of
pSH+ variables and their values.

Note that the only variable that can be changed is TERM.

Examples:

psh> setenv
CVOL=5.5
CDIR=/
SOFLIST=5
LOGNAME=guest
IND=0
OUTD=0
TERM=sun

psh> setenv TERM vt100

psh> setenv
CVOL=5.5
CDIR=/
SOFLIST=5
LOGNAME=guest
IND=0
OUTD=0
TERM=vt100

setid uid gid Change the uid and gid ID of the current pSH+ session.
For example:

psh> getid
uid: 23, gid: 140

psh> setid 2 3

psh> getid
uid: 2, gid: 3
pSH+ 1-139



System Services pSOSystem Programmer’s Reference

pr.book  Page 140  Thursday, January 28, 1999  9:18 AM
setpri tname | -tid new_priority

Set the new_priority of the task identified by either the
task name (tname) or task identifier (tid). For example:

psh> getpri ROOT
ROOT task priority = 76
psh> setpri ROOT 252
psh> getpri ROOT
ROOT task priority = 252

sleep time Suspend execution for the number of seconds specified by
time.

suspend tname | -tid Suspend the task identified by either the task name
(tname) or the task identifier (tid). For example:

psh> suspend tnpd

sync Update a mounted volume by writing to the volume all
modified file information for open files and cache buffers
that contain modified physical blocks.

This call is superfluous under immediate-write synchroni-
zation mode and is not allowed on an NFS volume. For
example:

psh> sync

tail + | - number  [lc] filename

Copy filename to the standard output beginning at a des-
ignated place.

tail  options are typed contiguously and are not sepa-
rated by dashes (-). The options are as follows:

+number    Begin copying at distance number from the
beginning of the file. number is counted in units of lines
or characters, according to the appended option l  or c .
When no units are specified, counting is by lines. If
number is not specified, the value 10 is used.

-number   Begin copying at distance number from the
end of the file. The number argument is counted in units
of lines or characters according to the appended option l
or c . When no units are specified, counting is by lines. If
number is not specified, the value 10 is used.

l number is counted in units of lines.
1-140 pSH+



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 141  Thursday, January 28, 1999  9:18 AM
c number is counted in units of characters.

touch [ -cf ]
filename ...

Set the access and modification times of each argument to
the current time. A file is created if it does not already
exist. touch  options are as follows:

c Do not create file if it does not already exist.

f Attempt to force the touch regardless of read and
write permissions on filename.

umount directory Unmount a previously mounted file system where
directory is the mount point of the file system. Unmount-
ing a file system causes it to be synchronized (all memory-
resident data is flushed to the device). For example:

psh> mount 5.6
psh> cd 5.6/

psh> ls
BITMAP.SYS      FLIST.SYS

psh> cd 5.5/
psh> umount 5.6

psh> cd 5.6/
5.6/: no such file or directory
pSH+ 1-141



System Services pSOSystem Programmer’s Reference

pr.book  Page 142  Thursday, January 28, 1999  9:18 AM
pSH Loader

Description

The pSH Loader is implemented as part of the user application and is provided in
the loader interface source, which is located in apps/netutils/loader directory.
This feature provides a simple interface to a loader library in pSOSystem.

The loader is implemented as a pSH command, which is invoked from the pSH user
interface either on the console or Telnet session. The loader command provides a
simple interface, which is similar to other pSH applications like Telnet or FTP.

System/Resource Requirements

pSH Loader requires the following components:

■ Loader Library.

■ pNA+ TCP/IP Network Manager.

■ TFTP Driver.

pSH Loader Commands

The loader application is invoked from a pSH session by the command loader . At
the loader>  prompt, you can enter commands to load or unload applications.

The following is a list of the commands that are supported by the pSH loader:

load The load  command is used to load an application from either the
RAM disk file, SCSI disk file, or TFTP host file.

The following are examples used for the load  command:

loader> load /r <local file>

loader> load <tftp file>

display The display  command displays the loaded application on the
system.

The following is an example of the display  command:

loader> display
1-142 pSH Loader



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 143  Thursday, January 28, 1999  9:18 AM
unload The unload  command is used to unload a loaded application.

The following is an example of the unload  command:

loader> unload <module name>

help The help  command displays the supported commands.

The following is an example of the help  command:

loader> help

exit The exit  command returns to the pSH prompt.
pSH Loader 1-143



System Services pSOSystem Programmer’s Reference

pr.book  Page 144  Thursday, January 28, 1999  9:18 AM
RARP

Description

With RARP(Reverse Address Resolution Protocol), you can send a RARP request (for
example, from a diskless workstation) and identify a workstation’s IP address, or
obtain a dynamically assigned IP address from a domain name server (DNS).

This function returns the IP address of the given network interface. The RARP
request is a link-layer broadcast with the following syntax:

ULONG RarpEth(long(*NiLanPtr)())

RARP Dialog Example

The following example shows a typical RARP dialog:

8:0:20:3:f6:24 ff:ff:ff:ff:ff:ff rarp 60
rarp who-is 8:0:20:3:f6:24 tell 8:0:20:3:f6:24

0:0:c0:6f:2d:20 8:0:20:3:f6:24 rarp 24
rarp reply 8:0:20:3:f6:24 at sun

8:0:20:3:f6:24 0:0:c0:6f:2d:20 ip 56:
sun.24999 > bsdi.tftp: 32 RRQ "8CFC0D21.SUN4C"

RARP can be quite useful, but if you need to identify more than an IP address or if
you need to query a domain name server (DNS) located across a router, you can use
the BOOTP client feature described in BOOTP Client Code on page 1-3.

NOTE: If your RARP request fails, it returns a zero (0) for no reply or 0xffffffff for
other network errors.

NiLanPtr Network interface pointer. This parameter is the address of the
network interface entry procedure (for example, NiLan ) in the
lan.c  file in the applicable board-support package.
1-144 RARP



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 145  Thursday, January 28, 1999  9:18 AM
routed

Description

The routed daemon contained in pSOSystem’s Networking Utilities product is an
implementation of the Routing Information Protocol, or RIP. routed creates two
tasks, RTDM and RTDT. The former maintains the daemon’s routing tables, ex-
changes RIP information, and modifies pNA+ routing tables, as appropriate. The
latter serves as a timer that wakes up every 30 seconds to remind RTDM to time out
some routing information and to broadcast a routing message. The two tasks use a
semaphore, RTSM, to achieve mutual exclusion on their shared data.

System/Resource Requirements

To use the routed  daemon, you must have the following components installed:

■ pSOS+ Real-Time Kernel.

■ pNA+ TCP/IP Network Manager.

In addition, the routed  daemon requires the following system resources:

■ Four Kbytes of task stack used by each RTDM and RTDT.

■ Two UDP sockets. One is used to exchange routing information. The other is
used to acquire information about the networking interface.

■ One pSOS semaphore for mutual exclusion between task RTDM and RTDT.

■ The static memory requirement is 2.5 Kbytes. The dynamic memory size is
decided by routing entries. For each routing entry, routed needs 68 bytes for
its routing entry structure and 74 bytes for its interface structure.

The Routing Daemon Configuration Table

routed  requires a user-supplied configuration table, defined as follows:

struct routedcfg_t  {
unsigned long priority;
int intergtwy;
int supplier;
int syslog;
int maxgates;
struct gateways *gways;
routed 1-145



System Services pSOSystem Programmer’s Reference

pr.book  Page 146  Thursday, January 28, 1999  9:18 AM
};
typedef struct routedcfg_t routedcfg_t;

where

The gateway structure supplies routed with “distant” passive and active gateways
that can not be located using only information from the SIOGIFCONF ioctl() op-
tion. Each parameter is used as follows:

priority This defines the priority at which two daemon tasks, RTDM and
RTDT, start executing.

intergtwy This flag is set either to one or zero. One means an inter-net-
work router, which offers a default route. This is typically used
on a gateway to the Internet, or on a gateway that uses another
routing protocol whose routes are not reported by other local
routers.

supplier This flag is set to either one or zero. One forces routed  to sup-
ply routing information, whether it is acting as an inter-net-
work router or not. This is the default if multiple network
interfaces are present, or if a point-to-point link is in use.

syslog This defines the device number of the serial port for the log dis-
play. A negative integer means the log display is disabled.

maxgates This defines the number of entries in the gateways  structure.

gways This is a pointer to the following structure:

struct gateways
{

struct in_addr destination;
struct in_addr gateway;
int metric;
int state;
int type;

};

destination Defines destination address in network byte order.

gateway Defines gateway address in network byte order.

metric Defines hop count to the destination.
1-146 routed



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 147  Thursday, January 28, 1999  9:18 AM
Starting the Routing Daemons

In order to use routed in an application, you must link the Internet Applications li-
brary.

routed is started with routed_start(routedcfg_t *) . If routed is started suc-
cessfully, routed_start() returns zero; otherwise, it returns a non-zero value on
failure. The error value can be any pSOS+ error.

The following code fragment gives an example of a configuration table and shows
how to start routed :

#include <netutils.h>
#include "sys_conf.h"

void start_routed_server() {
static routedcfg_t rcfg;
static gateways_t gways[] = {0xC0d8e800, 0xC0d8e702, 2,

RT_ACTIVE, RT_NETWORK};

rcfg.priority = 250;
rcfg.intergtwy = 0;
rcfg.supplier = 1;
rcfg.syslog = DEV_SERIAL+2;
rcfg.maxgates = 1;
rcfg.gways = gways;
if (routed_start(&rcfg))
printf("routed_start: failed to start\n");

}

state Identifies passive(RT_PASSIVE) , active(RT_ACTIVE)  or
external(RT_EXTERNAL) . A passive router does not run
routed to exchange RIP packets. An active router runs routed
to exchange routing information. The use of an external router
indicates that another routing daemon will install the route.
Active and passive routers are added into the pNA+ routing
table. External routers are kept in the routed internal routing
table. Only active routers are broadcast in RIP packets.

type Indicates whether the destination type is a host(RT_HOST) or
a network(RT_NETWORK) . When the destination is of host
type, routed  treats it as a point-to-point link.
routed 1-147



System Services pSOSystem Programmer’s Reference

pr.book  Page 148  Thursday, January 28, 1999  9:18 AM
Telnet Client

Description

The Telnet Client contained in the Internet Applications product supports commu-
nication with a remote system that is running a Telnet Server. The Telnet Client
runs as an application under pSH+ and is invoked with the following command:

pSH+ > telnet [remote_system [port] ]

where remote_system can be either a system name or an IP address in dot nota-
tion. The port option specifies the port number on the remote system to establish
the connection.

If no arguments are present, Telnet Client enters command mode (indicated by the
telnet> prompt). In command mode Telnet accepts and executes the commands
described under Telnet Commands on page 1-150.

Once a connection has been opened, Telnet enters character-at-a-time input mode.
Typed text immediately goes to the remote host for processing.

If the localchars toggle is TRUE, the user's quit , intr , and flush characters are
trapped locally and sent as Telnet protocol sequences to the remote side. Options
exist that cause this action to flush subsequent output to the terminal (see toggle
autoflush and toggle autosynch in the Telnet Commands section). The flush
proceeds until the remote host acknowledges the Telnet sequence. In the case of
quit  and intr , previous terminal input is also flushed.

While a connection to a remote host exists, Telnet command mode can be entered
by typing the Telnet escape character. Initially, the escape character is ^] (a [CTRL]-
right-bracket). In command mode, the normal terminal editing conventions are
available.

Configuration and Startup

A Telnet Client requires:

■ pSOS+ or pSOS+m Real-Time Kernel.

■ pNA+ TCP/IP Network Manager.

■ pREPC+ Run-Time C Library.

■ pSH+ interactive shell command.
1-148 Telnet Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 149  Thursday, January 28, 1999  9:18 AM
In addition, each Telnet session requires the following system resources:

■ 3952 bytes of dynamic memory allocated from Region 0 to store session param-
eters. This memory is freed when the session exits.

■ Three TCP sockets are used for each Telnet session, which are closed when the
session exits.

■ Stack size is configured by the user. If the user stack size is given as -1 or if
pSH+ from which Telnet Client is started is in supervisor mode, the telnet task
is started in supervisor mode.

The Telnet Client can be started from any pSH session on any of the serial ports, or
from a pSH session over the Telnet login.

pSH+ starts Telnet Client by calling telnet_main() . The Internet Applications li-
brary includes a pre-configured version of pSH+ and Telnet Client, but to add Telnet
Client to pSH+, an entry for it must be made in the pSH+ list of user applications.

The following shows an example of a user application list that contains Telnet and
FTP:

struct appdata_t appdata[] = {
{"telnet", "telnet application", telnet_main, "tn00", 250,
  4096, 4096, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}

};

You can define the other elements in the preceding example ("tn00 ", and so on). The
telnet_main() function expects five parameters: argc , argv , env ,
exit_param,  and console_dev . Their definitions as follows:

int argc Number of arguments on the command line that were used to
invoke the command. The number of arguments includes the
command name itself.

char *argv[] Array of pointers to null-terminated character strings, and each
string contains one of the arguments to the command as
parsed by the shell: argv[0]  points to the command name as
entered on the command line; argv[1] points to the first argu-
ment (if any); and so on.
Telnet Client 1-149



System Services pSOSystem Programmer’s Reference

pr.book  Page 150  Thursday, January 28, 1999  9:18 AM
Telnet Commands

This subsection describes Telnet commands and supported arguments. You need
only type enough of each command to uniquely identify it. This also applies to argu-
ments of the mode, set , toggle , and display  commands.

char *env[] Array of pointers to null-terminated character strings. The
strings contain the definitions of all of the environment vari-
ables. The last element in env[] is a null pointer that indicates
the end of the environment variables. Two of the environment
variables, CVOL and CDIR, define the current working volume
and current working directory, respectively.

int exit_param Value to use when exiting by way of the psh_exit()  call.

int console_dev Device number of the device on which this Telnet session is op-
erating on.

close Close a Telnet session and return to command mode.

display
[ argument ...]

Display all or some of the set and toggle values (refer to the
set  and toggle  descriptions).

? [ command] Get help. With no arguments, Telnet prints a help summary.
If a command is specified, Telnet prints the help information
for that command.

mode argument
value

Enable the Telnet Client and Server as a line mode option.
The supported variables follow:

char Set to character-by-character default mode.

line Set to line-by-line mode.

open host  [ port ] Open a connection to the specified host. If no port number is
specified, Telnet attempts to contact a Telnet server at the
default port. The host specification must be an Internet ad-
dress specified in dot notation or a hostname if DNS or Static
Name Resolver is configured. For example:

telnet> open 192.9.9.9 or
telnet> open MyHostName

quit Close any open Telnet session and exit Telnet. An EOF (in
command mode) also closes a session and exits.
1-150 Telnet Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 151  Thursday, January 28, 1999  9:18 AM
send arguments Send one or more special character sequences to the remote
host (more than one argument per command is allowed).
The supported arguments are as follows:

escape Send the current Telnet escape character.
Initially, the escape character is ^] (input by
a [CTRL]-right-bracket).

synch Send the TELNET SYNCH sequence. This
sequence causes the remote system to
discard all previously typed--but not yet
read--input. This sequence is sent as TCP
urgent data (and may not work if the remote
system is a 4.2 BSD system: if it does not
work, a lowercase r might be echoed on the
terminal).

brk Send the TELNET BRK (Break) sequence,
which might be significant to the remote
system.

ip Send the TELNET IP (Interrupt Process)
sequence, which should cause the remote
system to abort the currently running
process.
Telnet Client 1-151



System Services pSOSystem Programmer’s Reference

pr.book  Page 152  Thursday, January 28, 1999  9:18 AM
send arguments ao Send the TELNET AO (Abort Output)
sequence, which should cause the remote
system to flush all output from the remote
system to the user's terminal.

ayt Sends the TELNET AYT (Are You There)
sequence, to which the remote system may
or may not respond.

ec Sends the TELNET EC (Erase Character)
sequence, which should cause the remote
system to erase the last character entered.

el Sends the TELNET EL (Erase Line)
sequence, which should cause the remote
system to erase the line currently being
entered.

ga Sends the TELNET GA (Go Ahead) sequence,
which probably has no significance to the
remote system.

nop Sends the TELNET NOP (No Operation)
sequence.

? Prints out helpful information for the send
command.

set argument value Set one of the Telnet variables to a specific value. The special
value off turns off the function associated with the variable.
The values of variables can be interrogated with the display
command. The supported variables follow:

escape This Telnet escape character (initially `^]')
causes entry into Telnet command mode
(when connected to a remote system).

interrupt If Telnet is in localchars  mode (see
toggle localchars ) and the interrupt
character is typed, a TELNET IP sequence is
sent to the remote host (see the send ip
description). The initial value for the inter-
rupt character is taken to be the terminal’s
intr  character.
1-152 Telnet Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 153  Thursday, January 28, 1999  9:18 AM
set argument value quit If Telnet is in localchars  mode (see
toggle localchars ) and the quit
character is typed, a TELNET BRK sequence
is sent to the remote host (see also the send
brk  description). The initial quit  character
value becomes the terminal's quit
character.

flushoutput If the flushoutput  character is typed and
Telnet is in localchars  mode (see toggle
localchars ), a TELNET AO sequence is
sent to the remote host. (See also the send
ao description.) The initial value for the
flush  character is taken to be the termi-
nal's flush  character.

erase If Telnet is in localchars  mode (see
toggle localchars ), a TELNET EC
sequence is sent to the remote system when
the erase  character is typed. (See also the
send ec  description) The initial value for
the erase character becomes the terminal's
erase  character.

set argument value kill If Telnet is in localchars  mode (see
toggle localchars ), a TELNET EL
sequence is sent to the remote system when
the kill  character is typed. (See also the
send el  description.) The initial value for
the kill  character becomes the terminal's
kill  character.

status Show the current status of Telnet. The status information
also describes the current mode and the peer to which the
user is connected.
Telnet Client 1-153



System Services pSOSystem Programmer’s Reference

pr.book  Page 154  Thursday, January 28, 1999  9:18 AM
toggle argument
...

Toggle various flags (TRUE or FALSE) that control how Telnet
responds to events. More than one argument can be speci-
fied. The state of these flags can be checked with the dis-
play  command. The valid arguments are:

localchars If localchars  is TRUE, the flush , inter-
rupt , quit , erase , and kill  characters
are recognized locally (see the set  descrip-
tion). These five characters are also trans-
formed into appropriate Telnet control
sequences (ao, ip , brk , ec , and el , respec-
tively). Refer also to the send  description).
The initial value for localchars  is FALSE.

autoflush If autoflush  and localchars  are both
TRUE, when the ao, intr , or quit  charac-
ters are recognized and transformed into
Telnet sequences, Telnet does not display
data on the user-terminal until the remote
system acknowledges its Telnet sequence
processing by issuing a Telnet Timing Mark.
(See also the set  description.)

autosynch If autosynch  and localchars  are both
TRUE, when either the intr or quit
characters are typed the resulting Telnet
sequence sent is followed by the TELNET
SYNCH sequence. (See set  for descriptions
of the intr and quit  characters). This pro-
cedure should cause the remote system to
begin discarding all previously typed input
and continue to do so until both of the
Telnet sequences have been read and acted
upon. The initial value of this toggle is
FALSE.
1-154 Telnet Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 155  Thursday, January 28, 1999  9:18 AM
Limitations in the Current Version

The normal abort sequence ([CTRL]-C) does not work during a transfer.

toggle argument... crmod Toggle RETURN mode. When this mode is
enabled, most RETURN characters received
from the remote host are mapped into a
RETURN followed by a LINEFEED. This
mode does not affect the characters typed by
the user: it affects only those received from
the remote host. This mode is not very useful
unless the remote host sends only RETURN
(never LINEFEED). The initial value for
crmod  is FALSE.

options Toggle the display of some internal Telnet
protocol processing (having to do with Telnet
options). The initial value for options  is
FALSE.

localflow Toggle local XON/XOFF flow control. If dis-
abled (for example, the default of the opera-
tion), the Telnet Client will not handle XON/
XOFF characters and forwards them to the
server. If enabled, the Telnet Client handles
XON/XOFF flow control locally.

netdata Toggle the display of all network data (in
hexadecimal format). The initial value for
this toggle is FALSE.

? Display the legal toggle commands.

binary Toggle between binary and network virtual
terminal (NVT) mode. If set to binary mode,
telnet options DO BINARY and WILL BINARY
are sent to the server. If the server accepts
them, the session is configured in binary
mode. The telnet escape character is not
accepted. The only way to go back to NVT
mode is to disable this option from the
server.

See the applicable Telnet RFC for an expla-
nation on BINARY option and other telnet
commands such as DO and WILL.
Telnet Client 1-155



System Services pSOSystem Programmer’s Reference

pr.book  Page 156  Thursday, January 28, 1999  9:18 AM
Telnet Server

Description

Telnet Server contained in the Internet Applications product allows remote systems
that are running the Telnet protocol to log into pSH+. It is implemented as a daemon
task named tnpd . Telnet listens for connection requests from clients and creates
server tasks for each Telnet session established by a client.

Configuration and Startup

Telnet Server requires:

■ pSOS+ Real-Time Kernel.

■ pNA+ TCP/IP Network Manager.

■ pREPC+ Run-Time C Library.

■ Eight Kbytes of task stack per session.

■ One TCP socket, which is used to listen for client session requests, and two ad-
ditional TCP sockets per session.

■ Two Kbytes of dynamic storage (which a pREPC+ malloc() system call allo-
cates).

■ A user-supplied configuration table.

The user-supplied Telnet Server Configuration Table defines application-specific
parameters. The following is a template for this configuration table. This table is
statically allocated by the application and passed to the library. The template exists
in the include/netutils.h  file.

struct tnpcfg_t {
long task_prio; /* Priority for tnpd task */
long max_sessions; /* Maximum number of concurrent sessions */
char **hlist; /* Ptr to the list of trusted clients */
int (*get_shell_port) (void); /* To contact the shell */
char *tnpd_banner; /* Banner to display on telnet session */
};
1-156 Telnet Server



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 157  Thursday, January 28, 1999  9:18 AM
Definitions for the Telnet Server Configuration Table entries are as follows:

Telnet Server comes as one object module and must be linked with a user applica-
tion.

Calling the function tnpd_start(tnpdcfg) any time after pSOSystem initializa-
tion (when ROOT is called) starts Telnet Server. The parameter tnpdcfg is a pointer
to the Telnet Server Configuration Table. If Telnet Server is started successfully,
tnpd_start() returns zero; otherwise, it returns a non-zero value on failure. The
error value can be any pSOS+ error.

Configuration Table Example

The following code fragment shows an example configuration table and the call that
starts Telnet Server. The complete example code exists in the apps/netutils/
root.c  file.

#include <tnpdcfg.h>

start_telnet_server()
{

/* Telnet Server Configuration Table */

task_prio Defines the priority at which the daemon task tnpd  starts
executing.

max_sessions Defines the maximum number of concurrently open sessions.

hlist Points to a list of IP addresses of the trusted clients. If this field
is zero, Telnet Server accepts connection from any client.

get_shell_port Specifies the function that is invoked by the Telnet server when
it needs to connect to a shell. This function should return the
TCP port number. The telnet server tries to connect to this port
(over a local TCP connection). If this field is set to NULL, the
telnet server uses a default function psh_get_dport()  and
connects to the pSHELL session.

This field enables you to provide your own shell for remote login
users instead of the default pSHELL.

tnpd_banner Initializes the banner string that is printed when a remote tel-
net user logins to the telnet server. If this field is set to NULL,
the telnet server prints a default banner.

This field enables you to provide your own banner for remote
login users instead of the default telnet server banner.
Telnet Server 1-157



System Services pSOSystem Programmer’s Reference

pr.book  Page 158  Thursday, January 28, 1999  9:18 AM
static telcfg_t telcfg
{

250, /* Priority for tnpd task */
4, /* Maximum number of concurrent sessions */
0, /* List of trusted clients */
0, 0 /* Must be 0 */

};
}
if(tnpd_start(&tnpdcfg))

printf("tnpd_start failed\n");
1-158 Telnet Server



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 159  Thursday, January 28, 1999  9:18 AM
TFTP Client

Description

Trivial File Transfer Protocol (TFTP) Client in the Internet Applications library pro-
vides a simple, command-line user interface to the client side of the TFTP protocol.
TFTP Client is contained in pSOSystem’s Internet Applications product.

TFTP Client runs as an application under pSH+ and is invoked by the following
command:

pSH+> tftp[remote system]

If no arguments are given, it enters in a command mode.

Configuration and Startup

A TFTP Client requires:

■ pSOS+ Real-Time Kernel.

■ pNA+ TCP/IP Network Manager.

■ pREPC+ Run-Time C Library.

■ pSH+ interactive shell.

In addition, each session of TFTP requires the following system resources:

■ One UDP socket that is used to send and receive TFTP packets.

■ 100 bytes of dynamic memory for each session allocated from Region 0. This is
freed when the TFTP session exits. Additionally, TFTP allocates dynamic mem-
ory for sending packets, and frees it after the packet is sent over the network.

pSH starts TFTP Client by invoking tftp_main() . An entry should be made in the
list of pSH+ applications, which is illustrated in the following example:

struct appdata_t appdata[] = {
{"tftp", "TFTP protocol", tftp_main, "tf00", 250, 4096, 4096, 1, 0}.
{0, 0, 0, 0, 0}
};

If the user stack size is given as -1 or if pSH+ from which TFTP Client is started is in
supervisor mode, TFTP Client is started in supervisor mode.
TFTP Client 1-159



System Services pSOSystem Programmer’s Reference

pr.book  Page 160  Thursday, January 28, 1999  9:18 AM
The routine tftp_main() , which runs as a separate pSH+ task, allocates memory
for the session and initializes the session parameters to the default values. Subse-
quently, the parameters can be changed using the TFTP command line interface.
The session parameters include the timeout value used for TFTP retransmission,
the number of times a packet is retransmitted, and so forth.

Additional Options

The TFTP client and server support RFCs 1782 – 1785. These RFCs define the op-
tion negotiation in the TFTP protocol, which is described in RFC1782. The applica-
tion for this negotiation to blocksize, filesize, and timeout parameters are described
in RFC1783, RFC1784, and RFC1785. The option negotiation facilitates TFTP Client
and TFTP Server to agree on some of the operating parameters, which were earlier
hardcoded values. The parameters include blocksize for transfer, timeout value for
retransmission, and size of the file to be transferred. See RFCs 1783 – 1785 for more
detailed description on these parameters.

TFTP Client Commands

The following TFTP commands are supported by the TFTP Client:

connect <host-address>[port] Connect to a site. This can be an IP
address or a hostname if the Resolver
is configured.

mode <ascii/binary> Set the mode of transfer to ASCII or
BINARY.

put <loc_file> [host:rem-file] Put a file at a remote site. If
rem_file argument is not present, a
remote file is created with the same
name as loc_file .

get [host:]<rem-file> [loc-file] Get a file from a remote site. The
loc_file  argument is a regular file
or a pSOS+ device (for example,
“13.0”). If loc_file is not specified, a
local file is created with the same
name as rem_file .

verbose Toggle setting and disabling verbose
mode.

trace Toggle setting and disabling packet
tracing option.
1-160 TFTP Client



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 161  Thursday, January 28, 1999  9:18 AM
remxit <no-retransmits> Set the number of retransmits.

timeout <timeout> Set the value of timeout for retrans-
mission (in seconds).

quit Quit the tftp session.

status Show status of tftp session.

option  <blksize|timeout|trsize> Enable and disable option negotiation
of the parameters.

blksize <blocksize for transfer> Set the blocksize to negotiate for
transfer. If the negotiation succeeds,
use this for transfers.

filesize <max filesize for transfer> Set the maximum size of the file that
can be transferred. This is useful only
when the client is able to negotiate
the trsize  option with the server.

help Provide help for commands.
TFTP Client 1-161



System Services pSOSystem Programmer’s Reference

pr.book  Page 162  Thursday, January 28, 1999  9:18 AM
TFTP Server

Description

TFTP Server in the Internet Applications component allows TFTP clients to read and
write files interactively on the pSOSystem file systems that pHILE+ manages. The
transfer modes that are currently supported are netascii  and binary .

TFTP Server is implemented as one application daemon task named TFD$. TFD$ lis-
tens for client connection requests on the TFTP PORT. When it detects a connection
request, TFD$ calls on a child to process the request, then it resumes listening.

Two objects are created for communications between a child and the parent tasks.
The objects are a semaphore named TSM4 and an error message queue named TFEQ.

Configuration and Startup

TFTP Server requires:

■ pSOS+ Real-Time Kernel.

■ pHILE+ File System Manager.

■ pNA+ TCP/IP Network Manager.

■ pREPC+ Run-Time C Library.

In addition, TFTP server requires the following system resources:

■ Sixteen Kbytes of task stack for TFD$ daemon task.

■ One UDP socket, which is used to listen for client session requests, and one
additional UDP socket per session.

■ 2656 bytes of dynamic storage per session, which a pREPC+ malloc() system
call allocates.

■ One semaphore.

■ One message queue.

The user-supplied TFTP Server Configuration Table defines application-specific
parameters. The following is a template for this configuration table. This table is
1-162 TFTP Server



pSOSystem Programmer’s Reference System Services

1

pr.book  Page 163  Thursday, January 28, 1999  9:18 AM
statically allocated by the application and passed to the library. The template exists
in the include/netutils.h  file:

struct tftpdcfg_t {
char *tftpdir; /* Default directory for files */
long task_prio; /* Priority for "TFD$" task */
long num_servers; /* Maximum number of concurrent sessions */
long verbose; /* 1 - yes; 0 -no */
long enable_log; /* Logging 1 = yes, 0 = no */
long reserved[1]; /* Must be 0 */
 };

Definitions for the TFTP Server Configuration Table entries are as follows:

TFTP Server comes as an object module in the networking utilities library. To use it,
sys/libc/netutils.lib  must be linked with the user application.

Calling the function tftpd_start(tftpdcfg) at any time after pSOSystem initial-
ization (when the ROOT task is called) starts TFTP Server. The parameter tftpdcfg
points to the TFTP Server Configuration Table. If TFTP Server is started success-
fully, tftpd_start() returns zero; otherwise, it returns a non-zero value on fail-
ure. E_TFTPD_MALLOCis the error value for memory allocation failure or it can be
any pSOS+, pHILE+, or pNA+ error.

Additional Options

The TFTP client and server are enhanced to support RFCs 1782 – 1785. These RFCs
define the option negotiation in the TFTP protocol, which is described in RFC1782.

tftpdir Defines the volume and directory that serves as the default
TFTP directory for read and write operations. (The runtime path
name specified by a client can override tftpdir .)

task_prio Defines the priority at which the daemon task TFD$ starts exe-
cuting. All child daemon tasks run at level task_prio  - 1.

num_servers Defines the maximum number of concurrently open sessions.

verbose Determines if log messages are printed by way of a pREPC+
printf() . If verbose  is one, TFTP Server runs in verbose
mode. A zero disables it.

enable_log Determines the logging code where:

1 = yes
0 = no

reserved Reserved for future use, and each must be zero.
TFTP Server 1-163



System Services pSOSystem Programmer’s Reference

pr.book  Page 164  Thursday, January 28, 1999  9:18 AM
The application for this negotiation to blocksize, filesize, and timeout parameters are
described in RFC1783, RFC1784, and RFC1785. The option negotiation facilitates
TFTP Client and TFTP Server to agree on some of the operating parameters, which
were earlier hardcoded values. The parameters include blocksize for transfer, time-
out value for retransmission, and size of the file to be transferred. See RFCs1783 –
1785 for more detailed description on these parameters.

Configuration Table Example

The following code fragment shows an example configuration table and the calls
that start and stop TFTP Server. The complete example code exists in the apps/
netutils/root.c  file.

#include <netutils.h>
start_tftp_server()
{

/* TFTP server configuration table */
static struct tftpdcfg_t tftpdcfg =
{

"4.0/tftpboot" /* Default tftpboot directory */
250, /* Priority for tftpd task */
4, /* Maximum number of concurrent sessions */
0, /* Not verbose */
0, /* Not logging */

0, /* Must be 0 */
};
if (make_dir (tftpdcfg. tftpdir))

printf("tftpd_start: failed to make directory\n")

/* start the TFTP server */
if (tftpd_start(&tftpdcfg))

printf("tftpd_start: failed to start\n");
/* do other stuff */
/* ... */

/* this usually is not desired */
if (tftpd_stop())

printf("tftpd_stop: failed to shut\n);
}

The preceding example illustrates the use of tftpd_stop() . The tftpd_stop()
call shuts down TFTP Server gracefully. It frees all the resources that TFTP Server
allocated, then returns. A return value of zero indicates a successful shut down.
Otherwise, the return value indicates the error status.

NOTE: The TFTP Server is used to transfer files to or from a regular file or pSOS+
devices (for example, “13.0”).
1-164 TFTP Server



pr.book  Page 1  Thursday, January 28, 1999  9:18 AM
2

2

Interfaces
Introduction

pSOSystem contains a set of standard interfaces that can be used between upper
level hardware independent and lower level device dependent drivers. Table 2-1 list
the interfaces described in this chapter.

TABLE 2-1 pSOSystem Interfaces Documented in this Chapter

Interface Description Page

DISI Device Independent Serial Interface. An interface
between the device dependent and independent
parts of a serial driver

2-2

DISIplus Superset of the DISI specification that provides
enhancements to its features such as additional I/O
control calls and specifications for the use of HDLC
(High-level Data Link Control).

2-31

KI Kernel Interface. Provides a set of standard services
that pSOS+m uses to transmit and receive packets.

2-71

NI Network Interface. A interface to pNA+. 2-85

SLIP Serial Line Internet Protocol. Packet framing
protocol.

2-106
2-1



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 2  Thursday, January 28, 1999  9:18 AM
DISI (Device Independent Serial Interface)

Overview

The Device Independent Serial Interface (DISI) is the interface between the device
dependent and independent parts of a serial driver. The DISI interface is used by
pSOSystem Terminal, SLIP, PPP, and pROBE+ upper level drivers to interface with
the chip dependent lower level driver.

Operation

The DISI is the standard interface between the upper level hardware independent
drivers to a low level hardware dependent driver. You would use this interface spec-
ification if you needed to write a serial driver for a serial controller that will interface
with the upper level hardware independent serial protocols of the pSOSystem. This
specification provides the information required on the lower level hardware depen-
dent functions you need to write and the functionality they need.

A template of a lower level serial driver, that you can use as a starting point, is pro-
vided. This template contains skeleton functions and some common code that can
help you organize the hardware dependent part of your driver. This template is
called disi.c and is located in drivers/serial . There is an include file in the
include directory called disi.h that contains definitions of the #define state-
ments and structures discussed in this specification.

You can also use this specification if you have a new protocol or custom serial needs
that you want to add on top of a lower level serial controller driver that conforms to
the DISI interface. This specification informs you as to what services are provided to
those drivers. Figure 2-1 on page 2-3 illustrates the DISI interface.
2-2 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 3  Thursday, January 28, 1999  9:18 AM
The DISI interface consists of the following components:

■ Functions that must be provided by the lower level hardware dependent device
driver.

■ Callback functions that must be provided by the upper level hardware indepen-
dent device driver.

Function Calls

The DISI function calls are called from the upper level serial driver to:

■ Initialize the interface.

■ Initialize and open a serial channel.

■ Send data.

pROBE+

SLIP/PPPTerminal Driver

Serial Devices

DISI

SerialCloseSerialInit SerialOpen SerialSend SerialIoctl

pROBE+
Interface Driver

pREPC+ pNA+/STREAMS

FIGURE 2-1 DISI Interface

(asynchronous)(DIPI) (DITI)
DISI (Device Independent Serial Interface) 2-3



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 4  Thursday, January 28, 1999  9:18 AM
■ Issue control operation.

■ Close down a serial channel.

The five functions that must be implemented in the device dependent lower level
serial code are listed in Table 2-2.

NOTE: All of these functions must be non-blocking asynchronous functions.

Callback Functions

The callback functions are supplied by one of the upper level drivers such as the
pROBE+ interface driver, SLIP, PPP, and Terminal driver. The callback functions are
called from the device dependent lower level serial driver to:

■ Indicate data reception

■ Indicate exception condition

■ Confirm data sent

■ Confirm a control operation

■ Access memory services

TABLE 2-2 Device Dependent Lower Level Serial Code Functions

Function Description

SerialInit Initialize the driver.

SerialOpen Open a channel.

SerialSend Send data on the channel.

SerialIoctl Perform a control operation on the channel.

SerialClose Close the channel.
2-4 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 5  Thursday, January 28, 1999  9:18 AM
The callback functions that must be supported by the upper level serial driver are
listed is Table 2-3.

The addresses to these callback functions are passed to the lower level serial code
when the SerialOpen function is called. Figure 2-2 illustrates function calls and
callback routines in the serial interface:

TABLE 2-3 Upper Level Serial Driver Callback Functions

Callback Function Description

UDataInd Indicate reception of data.

UExpInd Indicate an exception condition.

UDataCnf Indicate completion of a SerialSend  operation.

UCtlCnf Indicate completion of a SerialIoctl  operation.

UEsballoc Attach external buffer to message block.

UAllocb Allocate a message block triplet.

UFreemsg Free a message block triplet list.

Device Dependent Lower Level Code

SerialInit
initialize
interface

open a
channel command

send control close a
channel

UEsballocUDataInd UAllocb UFreemsgUCtlCnfUDataCnf

Serial Devices

FIGURE 2-2 Function Calls and Callbacks in the Serial Interface

Memory Access Callback

send data
SerialOpen SerialSend SerialIoctl SerialClose

UExpInd

Upper Level Serial Driver
DISI (Device Independent Serial Interface) 2-5



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 6  Thursday, January 28, 1999  9:18 AM
Data is transferred between the upper level drivers and the DISI using the
SerialSend call to send data out a channel. The UDataInd callback function is
used by the lower level device dependent part of the driver to inform the upper level
driver that data has been received. Data is transferred using the Streams message
block structure.

The DISI implements various features such as:

■  Asynchronous character mode

■ Asynchronous block mode

■ Flow control, using special character detection

If a feature is not supported by a chip set, it should be emulated by software in the
device dependent lower level code.

DISI Functions

The following sections describe the functions that must be implemented in the de-
vice dependent layer of the DISI.

SerialInit Function

The SerialInit  function initializes the device dependent lower level code.

void SerialInit (void);

SerialInit is called at boot time before any components are initialized. It sets the
driver to a default state with: all channels closed, interrupts off, and all buffer pools
empty. It should set the hardware to a known state. Because it is called before
pSOS+ is initialized, it cannot use any system calls.

SerialOpen Function

The SerialOpen  function opens a channel for a particular mode of operation.

long SerialOpen(
unsigned long channel,
ChannelCfg *cfg,
Lid *lid,
unsigned long *hdwflags
);
2-6 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 7  Thursday, January 28, 1999  9:18 AM
Example 2-1 shows the use of a SerialOpen function call used by an upper level
serial driver, such as the DITI driver, to open a channel.

EXAMPLE 2-1: SerialOpen Function Call

/*********************************************************/
/* The Open function is an example of the use of the */
/* SerialOpen function */
/**/
/* It takes one argument the channel number to open. */
/*********************************************************/

/*********************************************************/
/* The global array called lids will be used to store */
/* the lower IDs */
/*********************************************************/
unsigned long lids[NUMBER_OF_CHANNELS];

unsigned long Open(int channel)
{
ChannelCfg channelcfg;

/*********************************************************/
/* Set up configuration structure that will be passed */
/* to DISI interface. */
/*********************************************************/
/* Clear the ChannelCfg structure */
/*********************************************************/
bzero(&channelcfg, sizeof(ChannelCfg));

/*********************************************************/
/* Set Mode to UART mode */

Input channel Indicates the serial channel to be opened.

cfg Points to the configuration table that defines various
configuration parameters such as baud rate, line
parameters, and the addresses of the callback func-
tions. See Data Structures on page 2-27 for more
details on the configuration table.

Output lid Set by the lower level driver and is the reference ID
of this channel used by the lower level. All calls to
the DISI by the upper layer pass lid  except for the
SerialInit  command.

hdwflags Reserved field. Not used for DISI.
DISI (Device Independent Serial Interface) 2-7



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 8  Thursday, January 28, 1999  9:18 AM
/*********************************************************/
channelcfg.Mode = SIOCASYNC;

/*********************************************************/
/* Set character size to 8 bits */
/*********************************************************/
channelcfg.Cfg.Uart.CharSize = SCS8;

/*********************************************************/
/* Set Flags for software flow control and to cause an */
/* interrupt when a break is received. */
/*********************************************************/
channelcfg.Cfg.Uart.Flags = SBRKINT | SWFC;

/*********************************************************/
/* Set Xon and Xoff characters to be used for software */
/* flow control */
/*********************************************************/
channelcfg.Cfg.Uart.XOnCharacter = XON;
channelcfg.Cfg.Uart.XOffCharacter = XOFF;

/*********************************************************/
/* Set the len of transmit request to 4 so there can */
/* be only 4 requests outstanding at one time */
/*********************************************************/
channelcfg.OutQLen = 4;

/*********************************************************/
/* Set the channels baudrate.NOTE SysBaud is a global */
/* variable defined by pSOSystem to the default baud rate*/
/*********************************************************/
channelcfg.Baud = SysBaud;

/*********************************************************/
/* Set the line mode to full duplex */
/*********************************************************/
channelcfg.LineMode = FULLD;
/*********************************************************/
/* Set the pointers to the call back functions */
/*********************************************************/
channelcfg.dataind = term_dataind;
channelcfg.expind = term_expind;
channelcfg.datacnf = term_datacnf;
channelcfg.ctlcnf = term_ctlcnf;
channelcfg.allocb = gs_allocb;
channelcfg.freemsg = gs_freemsg;
channelcfg.esballoc = gs_esballoc;

/*********************************************************/
/* Set the ID to be used by the lower driver when */
2-8 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 9  Thursday, January 28, 1999  9:18 AM
/* referencing this channel. */
/*********************************************************/
channelcfg.uid = channel;

/*********************************************************/
/* Call the DISI interface open */
/*********************************************************/
if(error = SerialOpen(channel, (ChannelCfg *)&channelcfg,
           (Lid )&lids[channel],
           (unsigned long *)&DChanCfg[minor].hdwflags))
    {
    /*****************************************************/
    /* Return error code. */
    /*****************************************************/
    switch (error)
        {
        case SIOCAOPEN:
             /********************************************/
             /* The Channel has already been opened by */
             /* another driver */
             /********************************************/
            return(1);

        case SIOCBADCHANNELNUM
            /*********************************************/
            /* Channel is not a valid channel for this */
            /* hardware */
            /*********************************************/
            return(2);

        case SIOCCFGNOTSUPPORTED
            /*********************************************/
            /* Hardware cannot be configured by the */
            /* DISI as given */
            /*********************************************/
            return(3);

        case SIOCBADBAUD:
            /*********************************************/
            /* Baud rate not supported by hardware. */
            /*********************************************/
            return(4);

        case SIOCNOTINIT:
            /*********************************************/
            /* This error shows that the lower driver */
            /* thinks it has not been initialized. */
            /*********************************************/
            return(6);
       }
DISI (Device Independent Serial Interface) 2-9



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 10  Thursday, January 28, 1999  9:18 AM
Error Codes

The following error codes can be returned by the SerialOpen  function:

SerialSend Function

The SerialSend function is used by the upper level serial driver to transfer data to
the lower level driver.

long SerialSend(
Lid lid,
mblk_t* mbp
);

Example 2-2 on page 2-11 shows the use of a SerialSend call to send data to the
lower serial driver.

SIOCAOPEN Channel already open.

SIOCBADCHANNELNUM Channel does not exist.

SIOCCFGNOTSUPPORTED Configuration not supported.

SIOCBADBAUD Baud rate not supported.

SIOCNOTINIT Driver not initialized.

SIOBADMINCHAR MinChar greater than Rbuffsize.

Input lid The lower level ID that was acquired during the
SerialOpen operation for the channel to which this
call is directed.

mbp A pointer to the message block that contains the
data to be transmitted.

Return A 0 return code indicates that the message block has been queued
to send. The UDataCnf  callback is used by the lower level driver
when the data in the message block has actually been sent.
2-10 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 11  Thursday, January 28, 1999  9:18 AM
EXAMPLE 2-2: SerialSend Function Call

/*-------------------------------------------------------------*/
/* This is an example of a function that will get a mblock from*/
/* the mblock pool, fill the mblock's data buffer with some    */
/* information and send it to the lower serial driver.         */
/*-------------------------------------------------------------*/
#include <gsblk.h>
#include <disi.h>

static char test_string[] = "This is a Test Buffer";

/***************************************************************/
/* SendData:  Gets a mblock, puts some data into it and sends  */
/*            it to the lower driver.                          */
/*                                                             */
/*              (Lid)lid lower level id gotten when the        */
/*               SerialOpen call was made.                     */
/*                                                             */
/*     RETURNS: 0 on success                                   */
/*              1 gs_allocb failure                            */
/*              2 SerialSend failure                           */
/*     NOTE(S):                                                */
/*                                                             */
/***************************************************************/
int SendData((Lid)lid)
{
int i;

/***************************************************************/
/* The typedefs frtn_t and mblk_t are found in pna.h.          */
/***************************************************************/
mblk_t *m;

/***************************************************************/
/* Call gs_allocb to get a buffer attached to a mblock         */
/* structure.                                                  */
/*                                                             */
/* gs_allocb is a function supplied by pSOSystem in the file   */
/* drivers/gsblk.c. It is compiled into bsp.lib.               */
/* gs_allocb takes two arguments                               */
/*           size: size of message block to be allocated       */
/*           pri: allocation priority (LO, MED, HI)            */
/*                                                             */
/* gs_allocb is a utility that allocates a message block of    */
/* type M_DATA and a buffer of a size greater than or equal to */
/* specified size. pri indicates the priority of the allocation*/
/* request. Currently pri is not used and should be set to 0   */
/* On success, gs_allocb returns a pointer to the allocated    */
DISI (Device Independent Serial Interface) 2-11



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 12  Thursday, January 28, 1999  9:18 AM
/* message block. gs_allocb returns a NULL pointer if it could */
/* not fill the request                                        */
/*                                                             */
/* mblk_t *gs_allocb( int size, int pri)                       */
/*                                                             */
/* A mblk_t structure looks like this:                         */
/*                                                             */
/*   struct msgb                                               */
/*       {                                                     */
/*       struct msgb    *b_next;   next msg on queue           */
/*       struct msgb    *b_prev;   previous msg on queue       */
/*       struct msgb    *b_cont;   next msg block of msg       */
/*       unsigned char  *b_rptr;   first unread data byte in   */
/*                                 buffer                      */
/*       unsigned char  *b_wptr;   first unwritten data byte   */
/*                                 in buffer                   */
/*       struct datab   *b_datap;  data block                  */
/*      }                                                      */
/***************************************************************/
if(m = gs_allocb(sizeof(test_string), 0) == 0)
    return(1);

/***************************************************************/
/* Copy data to buffer                                         */
/***************************************************************/
for (i = 0; i < sizeof(test_string); i++, m->b_wptr++)
    *(m->b_wptr) = test_string[i];

/***************************************************************/
/* Send mblock to lower driver                                 */
/***************************************************************/
if(SerialSend(lid, m) != 0)
    return(2);
else
    return(0);
}

Error Codes

The following error codes can be returned:

NOTE: If a SIOCOQFULLerror is received, no data was sent because the transmit
queue is full. The SerialSend function continues to return SIOCOQFULL
until the next UDataCnf callback happens. Since UDataCnf is the

SIOCNOTOPEN Channel not open.

SIOCOQFULL Output queue full, send failed.
2-12 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 13  Thursday, January 28, 1999  9:18 AM
confirmation of a message being sent, the transmit queue is no longer
full.

SerialIoctl Function

The SerialIoctl function specifies various control operations that modify the be-
havior of the DISI.

long SerialIoctl(
Lid lid,
unsigned long cmd,
void *arg           input
)

In some cases, a SerialIoctl operation may not complete immediately. In those
cases, the UCtlCnf function is called when the operation has completed with the
final status of the command.

Error Codes

The following error codes can be returned:

Input lid The lower level ID that is acquired during a
SerialOpen  operation.

cmd The type of control operation. (See, Table 2-4)

arg Specific information for the operation.

SIOCCFGNOTSUPPORTED Configuration not supported.

SIOCNOTOPEN Channel not open.

SIOCINVALID Command not valid.

SIOCBADBAUD Baud rate not supported.

SIOCWAITING Waiting for previous command to complete.

SIOBADMINCHAR MinChar greater than Rbuffsize
DISI (Device Independent Serial Interface) 2-13



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 14  Thursday, January 28, 1999  9:18 AM
SerialIoctl Commands

Table 2-4 list the SerialIoctl  commands available.

TABLE 2-4 SerialIoctl  Commands (cmd)

Command Description

SIOCPOLL Polls the serial device for asynchronous events such as
data and exception indication. It provides an ability to
perform as a pseudo ISR and call the callback func-
tions when the channel is in SIOCPOLL mode or when
interrupts are disabled. For example, when pROBE+ is
in control, the processor operates with interrupts
turned off. This command checks for data received,
data transmitted, or exceptions and then triggers the
callback function for these conditions, as needed.

SIOCGETA Gets the channel configuration and stores this infor-
mation into a ChannelCfg  structure pointed to by the
arg parameter. This command is immediate, so no call-
back is made.

SIOCPUTA Sets the channel configuration using the information
stored in a ChannelCfg  structure pointed to by the
arg  parameter. The effect is immediate, so no callback
is made.

SIOCSACTIVATE Activates the channel. This enables the receiver and
transmitter of the channel and waits until the channel
becomes active. In dial-in connections, the
SIOCSACTIVATE command puts the hardware in a
mode capable of handling an incoming call. The
UCtlCnf  callback is made when the call arrives.

SIOCBREAKCHK This command checks to see if a break character has
been sent. This command is used by pROBE+ to see if
the user wants to enter pROBE+. The arg parameter is
set to SIOCBREAKRif there has been a break sent to the
channel.

SIOCPROBEENTRY This command tells the driver that pROBE+ is being
entered. The driver should now switch to the debugger
callouts, uid , and switch from interrupt mode to polled
mode.
2-14 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 15  Thursday, January 28, 1999  9:18 AM
SIOCPROBEEXIT This commands tell the driver that pROBE+ is being
exited and the driver should now switch from the
debugger callouts to the normal callouts, normal uid ,
and allow interrupts. Normal callouts and uid  are the
ones from a SerialOpen  call. If pROBE+ is the only
user of the channel then the normal callouts and uid
and the debugger callouts and uid  will be the same.

SIOCMQRY This call queries the lower level driver about which
modem controls are supported by the channel. It stores
this information into the long int variable pointed to by
the arg parameter. A set bit indicates that the particu-
lar control line is supported by the channel. This com-
mand is immediate, so no callback is made. The
modem control lines are:

SIOCMDTR Data terminal ready

SIOCMRTS Request to send

SIOCMCTS Clear to send

SIOCMDCD Data carrier detect

SIOCMRI Ring indicator

SIOCMDSR Data set ready

SIOCMCLK Clock (sync support)

Since the interface is a DTE, control lines DTR and RTS
are outputs and CTS, RI, DSR, and DCD are inputs.

SIOCMGET Gets the current state of the modem control lines and
stores this information into the long int variable
pointed to by the arg parameter. The SIOCMGET com-
mand uses the same encoding as the SIOCMQRY com-
mand. Bits pertaining to control lines not supported by
the channel and the SIOCMCLK bit are cleared. This
command is immediate, so no callback is made.

TABLE 2-4 SerialIoctl  Commands (cmd) (Continued)

Command Description
DISI (Device Independent Serial Interface) 2-15



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 16  Thursday, January 28, 1999  9:18 AM
SIOCMPUT Sets the modem controls of the channel. The arg
parameter is a pointer to a long int variable containing
a new set of modem control lines. The modem control
lines are turned on or off, depending on whether their
respective bits are set or clear. The SIOCMPUT com-
mand uses the same encoding as the SIOCMQRY com-
mand. Bits pertaining to control lines not supported by
the channel and the SIOCMCLK bit have no effect. The
effect is immediate, so no callback is made.

SIOCRXSTOP Stops the flow of receive characters. This is used when
the upper level serial driver needs to stop the flow of
characters it is receiving. The lower level serial code
takes the correct action such as sending an XOFF char-
acter if software flow control is being used or changing
the hardware lines if hardware flow control is being
used. The effect is immediate so no call back is made.

SIOCRXSTART Indicates that the upper level serial driver wants to
continue to receive characters. The lower level serial
code takes the correct action such as sending an XON
character if software flow control is being used or
changing the hardware lines if hardware flow control is
being used. The effect is immediate so no call back is
made.

SIOCNUMBER Gets the total number of serial channels present in the
hardware and stores this information into the long int
variable pointed to by the arg  parameter. This com-
mand is immediate, so no call back is made.

TABLE 2-4 SerialIoctl  Commands (cmd) (Continued)

Command Description
2-16 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 17  Thursday, January 28, 1999  9:18 AM
Example 2-3 shows the use of a SerialIoctl function call to get the baud rate of
the channel.

EXAMPLE 2-3: SerialIoctl Function Call

/*********************************************************/
/* This get_number_of _ports function is an example of a */
/* SerialIoctl function call.                            */
/*********************************************************/
int get_number_of_ports(unsigned long number)
{
/*********************************************************/
/* Assume the lower level ID is stored by the SerialOpen */
/* call in a global array called lids. Use the           */
/* SIOCNUMBER I/O control command to get the total       */
/* number of serial channels and number as a place to    */
/* store that number.                                    */
/*********************************************************/
if(SerialIoctl(lids[channel], SIOCNUMBER, (void *)&number)
   return(-1);
else
   return(number);
}

SerialClose Function

The SerialClose function terminates a connection on a serial channel and re-
turns the channel to its default state.

long SerialClose(
Lid lid
)

Input lid The lower level ID that was acquired during
SerialOpen  operation for the channel that is to be
closed.

Return If the channel is not open, SIOCNTOPEN is returned.
DISI (Device Independent Serial Interface) 2-17



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 18  Thursday, January 28, 1999  9:18 AM
Example 2-4 shows a SerialClose  function call to close the channel.

EXAMPLE 2-4: SerialClose Function Call

/***************************************************************/
/* This function TermClose is an example of a SerialClose call */
/* SerialClose will close the channel. This will flush all     */
/* transmit buffers, discard all pending receive buffers and   */
/* disable the receiver and transmitter of the channel. All    */
/* rbuffers associated with the channel will be released       */
/* (freed) and the device will hang up the line                */
/*                                                             */
/***************************************************************/

void TermClose (channel)
{

SerialClose((Lid)lids[channel]);

/*All semaphores and queues for the channel should be deleted here.*/
}

Error Codes

The following error codes can be returned:

User Callback Functions

This section describes the templates of the callback functions that must be provided
by the upper level driver. Pointers to these functions are passed in the ChannelCfg
structure during the SerialOpen call of the channel to the device dependent lower
level code. These pointers can be changed via the SerialIoctl command
SIOPUTA.

NOTE: These user callback functions must be callable from within an interrupt.
Consequently, it is important that they do not block within the call and
only invoke OS functions that are callable from an ISR.

SIOCNOTOPEN Channel not open.
2-18 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 19  Thursday, January 28, 1999  9:18 AM
UDataInd Callback Function

The UdataInd callback function will be called during an interrupt by the device de-
pendent lower level code to indicate reception of data to the upper level serial driver.

static void UDataInd(
Uid uid,
mblk_t * mbp,
unsigned long b_flags
);

UDataInd  must unblock any task that is waiting for data from this channel.

NOTE: If the SerialOpen call returned hdwflags , with the SIOCHDWRXPOOLbit
set, then the lower level code has a receive buffer pool. This pool needs
replenishing through the use of a call to SerialIoctl function with the
command, SIOCREPLENISH.

The user supplied functions in the upper level serial driver must use the
SerialIoctl function to replenish the buffers. The upper level serial driver must
free the message block (pointed to by mbp) when it is emptied by calling the
UFreemsg  callback function.

Input uid The ID of the upper level serial driver for the associated
channel. The ID is passed to the lower lever serial driver
during the SerialOpen  call of the channel on which
the data is arriving.

mbp A pointer to message block that contains the data re-
ceived by the channel.

b_flags The status flags associated with this message block.
The flags can be:

SIOCOKX Received without error.

SIOCMARK Idle line condition.

SIOCBREAKR Break received.

SIOCPARITY Parity error.

SIOCOVERRUN Overrun of buffers.

SIOCCDLOST Carrier detect lost.
DISI (Device Independent Serial Interface) 2-19



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 20  Thursday, January 28, 1999  9:18 AM
Example 2-5 shows a UDataInd  function call to send data and status to a task.

EXAMPLE 2-5: UDataInd Function Call

/***************************************************************/
/* This function term_dataind is an example of a UDataInd      */
/* function. It will get as input:                             */
/*                                                             */
/*              Uid uid pointer to channels configuration      */
/*              mblk_t mblk message block containing data      */
/*              unsigned long b_flags condition code for block */
/*                                                             */
/* term_dataind will use a message queue to send the mblock    */
/* and status on to a task that is waiting for data.           */
/*                                                             */
/* Assume receive_ques is an array of message queue IDs.       */
/***************************************************************/
static void term_dataind(Uid uid, mblk_t *mblk, unsigned long
b_flags)
{
/***************************************************************/
/* Set up the message buffer with the pointer to the mblock    */
/* and status                                                  */
/***************************************************************/
msg_buf[0] = (unsigned long)mblk;
msg_buf[1] = b_flags;
/***************************************************************/
/* Send message to channels message queue.                     */
/***************************************************************/
q_send(receive_ques[(unsigned long)*uid], msg_buf);
}

2-20 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 21  Thursday, January 28, 1999  9:18 AM
UExpInd Callback Function

The UExpInd callback function is called by the device dependent lower level code to
indicate an exception condition.

static void UExpInd(
Uid uid,
unsigned long exp
);

Input uid The ID of upper level serial driver for the associated chan-
nel which is passed to the lower lever serial driver during
the SerialOpen  function call of the channel on which
the exception has occurred.

exp Type of exception. Exceptions can be one of the following:

SIOCMARK Idle line condition.

SIOCBREAKR Break received.

SIOCFRAMING Framing error.

SIOCPARITY Parity error.

SIOCOVERRUN Overrun of buffers.

SIOCCDLOST Carrier detect lost.

SIOCCTSLOST Clear to send has been lost.

SIOCCTS Clear to send found.

SIOCCD Carrier detect detected.

SIOCFLAGS Non idle line condition.
DISI (Device Independent Serial Interface) 2-21



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 22  Thursday, January 28, 1999  9:18 AM
UDataCnf Callback Function

The UDataCnf callback function is called by the device dependent lower level code
to confirm that the data sent using the SerialSend  call has been transmitted.

static void UDataCnf(
Uid uid,
mblk_t * mbp,
unsigned long b_flags
);

The UDataCnf function must unblock any task that was waiting for data to be sent.
The task is responsible for any maintenance necessary to the message block such
as freeing it or reusing it.

Input uid The ID of the upper level serial driver for the associ-
ated channel which is passed to the lower lever serial
driver during the SerialOpen  function call of the
channel on which the data was sent.

mbp Points to the message block sent using the
SerialSend  call.

b_flags Status flags associated with the message block. The
b_flags  must be one of the following:

SIOCOK Completed without error.

SIOCUNDERR Transmit underrun (HDLC).

SIOCABORT Transmit aborted.
2-22 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 23  Thursday, January 28, 1999  9:18 AM
Example 2-6 shows a UDataCnf  function call to confirm that data has been sent.

EXAMPLE 2-6: UDataCnf Function Call

/***************************************************************/
/* This function term_datacnf is an example of a UDataCnf      */
/* function. It takes as inputs:                               */
/*                                                             */
/*              Uid uid pointer to channels number             */
/*              mblk_t mblk message block containing data      */
/*              unsigned long b_flags condition code for block */
/*                                                             */
/* This code assumes that the driver is not waiting for        */
/* completion of a transmission.                               */
/***************************************************************/
static void term_datacnf(Uid uid, mblk_t *mblk, unsigned long
b_flags)
{
gs_freemsg(mblk);
}

UCtlCnf Callback Function

The UCtlCnf callback function is used to confirm the completion of a
SerialIoctl  control command.

static void UCtlCnf(
Uid uid,
unsigned long cmd
);

Input uid The ID of the upper level serial driver for the associ-
ated channel which is passed to the lower lever se-
rial driver during the SerialOpen  function call of
the channel on which the I/O control call was made.

cmd The command being confirmed.
DISI (Device Independent Serial Interface) 2-23



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 24  Thursday, January 28, 1999  9:18 AM
Example 2-7 shows a UCtlCnf function call to confirm the completion of a Seri-
alIoctl  control command.

EXAMPLE 2-7: UCtlCnF Function Call

/*********************************************************/
/* static void term_ctlcnf                               */
/*                                                       */
/* This function term_ctlcnf is an example of a UCtlCnf  */
/* function. It takes as inputs:                         */
/*                                                       */
/*              Uid uid pointer to a configuration       */
/*              unsigned long cmd I/O control cmd that   */
/*              is being confirmed.                      */
/*                                                       */
/* term_ctlcnf assumes that a task is waiting for a      */
/* semaphore.                                            */
/* semaphore_ctl_ids is an array that stores the ID for  */
/* each channel                                          */
/*********************************************************/
void term_ctlcnf(Uid uid, unsigned long cmd)
{

/*-------------------------------------------------------*/
/* Release the channels I/O Control semaphore            */
/*-------------------------------------------------------*/
sm_v(semaphore_ctl_ids[(unsigned long)*uid]);
}

Access Memory Services

The following callback functions are used to manage message blocks and a buffer
pool. The message blocks are similar to those used by Streams I/O. See the pna.h
file in the include directory of the pSOSystem release for a definition of the mes-
sage block structures used here. All of these functions are provided with the
pSOSystem software. They are found in the file drivers/gsblk.c .

UEsballoc Callback Function

The UEsballoc callback function returns a message block triplet by attaching the
user supplied buffer as a data block to a message block structure. See the
SendFrame example (Example 2-10 on page 2-43) under the SerialSend function
for an example of this call.
2-24 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 25  Thursday, January 28, 1999  9:18 AM
static mblk_t * UEsballoc(
char *bp,
long len,
long pri,
frtn_t *frtn
);

The UEsballoc call may be used by the upper or the lower levels of the interface. In
either case the user is who ever is making the call. One use of UEsballoc is a case
where there is a special RAM area to be used by the serial controller.

NOTE: This function corresponds to the gs_esballoc function supplied by
pSOSystem in the file drivers/gsblk.c source code file. It is compiled
into bsp.lib . You may use a pointer to gs_esballoc for the UEsballoc
callback function.

Input bp Points to the user supplied buffer.

len Specifies the number of bytes in the buffer

pri Specifies the priority for message block allocation.

frtn Pointer to the free structure of type frtn_t . This structure
is as follows:

typedef struct
 {
   void (*free_func)();
   void *free_arg;
 } frtn_t

free_func UFreemsg  calls the function pointed to
by free_func when the caller supplied
buffer needs to be freed. The caller must
supply the function pointed to by
free_func .

free_arg A pointer to the user supplied buffer.

frtn_t The pointer to frtn_t  must be stored
by the UEsballoc  call. This makes it
available to the UFreemsg  call when
UFreemsg  is used to free the message
block.
DISI (Device Independent Serial Interface) 2-25



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 26  Thursday, January 28, 1999  9:18 AM
UAllocb Callback Function

The UAllocb callback function returns a message block triplet or a NULL if no
buffer or message block could be found. See the SendData example under the
SerialSend  function (Example 2-2 on page 2-11) for an example of this call.

static mblk_t * UAllocb(
long size;
long pri
);

NOTE: This function corresponds to the gs_allocb function supplied by
pSOSystem in the file drivers/gsblk.c . It is compiled into bsp.lib .
You may use a pointer to the gs_allocb function for the UAllocb
callback function.

UFreemsg Callback Function

The UFreemsg callback function is used to free a message block. See Example 2-7
on page 2-24 the term_ctlcnf example under the UctlCnf function for an exam-
ple of this call.

static void UFreemsg(
mblk_t *mbp
);

NOTE: This function corresponds to the gs_freemsg function supplied by
pSOSystem in the file drivers/gsblk.c . It is compiled into bsp.lib .
You may use a pointer to the gs_freemsg function for the UFreemsg
callback function.

Input size Specifies the size of the buffer.

pri Specifies the priority for the message block.

Input mbp Points to the message block triplet for this specific
message block pool. If the message block was
formed using the UEsballoc  call, UFreemsg  calls
the function pointed by free_func with a pointer to
free_arg  as its argument.
2-26 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 27  Thursday, January 28, 1999  9:18 AM
Data Structures

Following are templates of data structures. They can be found in include/disi.h .

ChannelCfg

typedef struct ccfg {
unsigned long Mode;
Modecfg Cfg;
unsigned long NRBuffs;
unsigned long RBuffSize;
unsigned long OutQLen;
unsigned long Baud;
unsigned long LineMode;
void (*dataind)(uid,mblk_t, unsigned long);
void (*expind)(uid, unsigned long);
void (*datacnf)(uid,mblk_t,unsigned long);
void (*ctlcnf)(uid, unsigned long);
mblk_t * (*allocb)(long, long);
void (*freemsg)(mblk_t);
mblk_t * (*esballoc)(char,long, long,frtn_t);
Uid uid;
unsigned long Reserve[4];
} ChannelCfg;

Mode Mode can be:

SIOCASYNC Asynchronous mode must be set.

SIOCPOLLED Poll mode. If not set, interrupt mode is used.

SIOCLOOPBACK Local loop back mode.

SIOCPROBEMODEpROBE+ mode.

SIOCPROBEMODE is used to tell the lower
driver that it should save the call back func-
tion pointers and the uid  to be used for the
I/O control SIOCPROBEENTRY.

NRBuffs The number of receive buffers to allocate for the receive queue.

RBuffSize Not used.

OutQLen The maximum number of message buffers waiting to be trans-
mitted. If the maximum number is exceeded, the SerialSend
function fails with an SIOCOQFULL error.
DISI (Device Independent Serial Interface) 2-27



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 28  Thursday, January 28, 1999  9:18 AM
UartCfg

struct UartCfg{
unsigned long    CharSize;
unsigned long    Flags;
LineD            Lined[2];
unsigned char    XOnCharacter;
unsigned char    XOffCharacter;
unsigned short   MinChar;
unsigned long    MaxTime;
unsigned long    ParityErrs;
unsigned long    FramingErrs;
unsigned long    OverrunErrs;
unsigned long    Reserve[4];
}

Baud Set to the actual desired baud rate. If the selected baud rate is
not supported by the lower level device dependent code, the
SerialOpen or SerialIoctl functions fail, an error is returned.

LineMode Line mode, which can be:

HALFD Half duplex

FULLD Full duplex

dataind Pointer to a data indication routine. See UDataInd  for addi-
tional information.

expind Pointer to an exception indication routine. See UExpInd  for
additional information.

datacnf Pointer to a data confirmation routine. See UDataCnf  for addi-
tional information.

ctlcnf Pointer to a control confirmation routine. See UCtlCnf  for
additional information.

alloc Pointer to an allocate message block routine. See UAllocb  for
additional information.

freemsg Pointer to a free message list routine. See UFreemsg  for addi-
tional information.

esballoc Pointer to an attach message block routine. See UEsballoc for
additional information.
2-28 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 29  Thursday, January 28, 1999  9:18 AM
CharSize CharSize can be:

CS5 5 bits per character

CS6 6 bits per character

CS7 7 bits per character

CS8 8 bits per character

Flags Flags can be:

C2STOPB Send two stop bits, else one.

PARENB Parity enable. When PARENB is set, parity genera-
tion and detection is enabled and a parity bit is
added to each character. When parity is enabled,
odd parity is used if the PARODD flag is set, other-
wise even parity is used.

PARODD Odd parity, else even.

HWFC Hardware flow control on. When HWFC is set, the
channel uses CTS/RTS flow control. If the chan-
nel does not support hardware flow control, this
bit is ignored.

SWFC Software flow control on. When SWFC bit is set,
XON/XOFF flow control is enabled.

SWDCD Software data carrier detect. When SWDCD is set,
the channel responds as if the hardware data car-
rier detect (DCD) signal is always asserted. If
SWDCD is not set, the channel is enabled and dis-
abled by DCD.

LECHO Enable local echo.

BRKINT Interrupt on reception of a break character. When
BRKINT is set, the channel issues an UExpInd ex-
ception callback function if a break character is
received.

DCDINT Interrupt on loss of DCD. When DCDINT is set,
the channel issues an UExpInd  exception call-
back function upon loss of the DCD signal.

LineD Not used for DISI.
DISI (Device Independent Serial Interface) 2-29



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 30  Thursday, January 28, 1999  9:18 AM
Error Codes

The following error codes can be returned:

Multiplex Driver Implementation

See Chapter 5, Multiplexor Implementations of pSOSystem Advanced Topics for
information about multiplexor implementations.

XOnCharacter Software flow control character used to resume data transfer.

XOffCharacter Software flow control character used to temporarily terminate
data transfer.

ParityErrs Keeps track of the parity errors that happen on the channel.
This information is used by MIB.

ParityErrs Keeps track of the framing errors that happen on the channel.
This information is used by MIB.

OverrunErrs Keeps track of the overrun errors that happen on the channel.
This information is used by MIB.

SIOCAOPEN Channel already open.

SIOCBADCHANNELNUM Channel does not exist.

SIOCCFGNOTSUPPORTED Configuration not supported.

SIOCNOTOPEN Channel not open.

SIOCINVALID Command not valid.

SIOCBADARG Argument not valid.

SIOCOPERATIONNOTSUP Operation not supported.

SIOCOQFULL Output queue full, send failed.

SIOCBADBAUD Baud rate not supported.

SIOCWAITING Waiting for previous command to complete.

SIOCNOTINIT Driver not initialized.
2-30 DISI (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 31  Thursday, January 28, 1999  9:18 AM
DISIplus (Device Independent Serial Interface)

Overview

DISIplus is a superset of the DISI specification that provides enhancements to its
features. In addition to the features provided for by the DISI specification, DISIplus
provides several additional I/O control calls and specifications for the use of HDLC
(High-level Data Link Control).

Operation

DISIplus is the interface between the device dependent and the device independent
parts of a serial driver. The DISIplus interface is used by pSOSystem Terminal,
SLIP, PPP (Asynchronous) and pROBE+ upper level drivers to interface with the
hardware dependent lower level driver. DISIplus adds the use of X.25 and synchro-
nous PPP to the list of protocols used by the DISI specification.

The DISIplus is the standard interface between the upper level hardware indepen-
dent drivers to a low level hardware dependent driver. You would use this interface
specification if you needed to write a serial driver for a serial controller that will in-
terface with the upper level hardware independent serial protocols of the
pSOSystem. This specification provides the information required on the lower level
hardware dependent functions you need to write and the functionality they need.

A template of a lower level serial driver, that you can use as a starting point, is pro-
vided. This template contains skeleton functions and some common code that can
help you organize the hardware dependent part of your driver. This template is
called disi.c and is located in drivers/serial . There is an include file in the
include directory called disi.h that contains definitions of the #define state-
ments and structures discussed in this specification.

You can also use this specification if you have a new protocol or custom serial inter-
face requirements, that you want to add on top of a lower level serial controller
driver that conforms to the DISI interface. This specification informs you as to what
services are provided to those drivers. Figure 2-3 on page 2-32 illustrates the inter-
face.
DISIplus (Device Independent Serial Interface) 2-31



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 32  Thursday, January 28, 1999  9:18 AM
The DISIplus specification consists of the following components:

■ Functions that must be provided by the lower level hardware dependent device
driver.

■ Callback functions that must be provided by the upper level hardware indepen-
dent device driver.

SLIP/PPP Stacks
Protocol

(x.25)

Terminal Driver

Serial Devices

DISIplus

SerialCloseSerialInit SerialOpen SerialSend SerialIoctl

pROBE+
Interface Driver

pROBE+ pREPC+ pNA+/STREAMS

FIGURE 2-3 DISIplus Interface

PPP

(Synchronous)
(DIPI) (DITI) (asynchronous)
2-32 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 33  Thursday, January 28, 1999  9:18 AM
Function Calls

The DISIplus function calls are called from the upper level serial driver to:

■ Initialize the interface.

■ Initialize and open a serial channel.

■ Send data.

■ Issue control operation.

■ Close down a serial channel.

The five functions that must be implemented in the device dependent lower level
serial code are listed in Table 2-5.

NOTE:  All of these functions must be non-blocking asynchronous functions.

Callback Functions

The callback functions are supplied by one of the upper level drivers such as the
pROBE+ interface driver, SLIP, PPP, and Terminal driver. The callback functions are
called from the device dependent lower level serial driver to:

■ Indicate data reception

■ Indicate exception condition

■ Confirm data sent

■ Confirm a control operation

■ Access memory services

TABLE 2-5 Device Dependent Lower Level Serial Code Functions

Function Description

SerialInit Initialize the driver.

SerialOpen Open a channel.

SerialSend Send data on the channel.

SerialIoctl Perform a control operation on the channel.

SerialClose Close the channel.
DISIplus (Device Independent Serial Interface) 2-33



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 34  Thursday, January 28, 1999  9:18 AM
The seven callback functions that must be supported by the upper level serial driver
are Table 2-6.

The addresses to these callback functions are passed to the lower level serial code
when the SerialOpen function is called. Figure 2-4 illustrates function calls and
callbacks in the serial interface.

TABLE 2-6 Upper Level Serial Driver Callback Functions

Callback Function Description

UDataInd Indicate reception of data.

UExpInd Indicate an exception condition.

UDataCnf Indicate completion of a SerialSend  operation.

UCtlCnf Indicate completion of a SerialIoctl  operation.

UEsballoc Attach external buffer to message block.

UAllocb Allocate a message block triplet.

UFreemsg Free a message block triplet list.

Device Dependent Lower Level Code

SerialInit
initialize
interface

open a
channel command

send control close a
channel

UEsballocUDataInd UAllocb UFreemsgUCtlCnfUDataCnf

Serial Devices

FIGURE 2-4 Function Calls and Callbacks in the Serial Interface

Memory Access Callback

send data
SerialOpen SerialSend SerialIoctl SerialClose

UExpInd

Upper Level Serial Driver
2-34 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 35  Thursday, January 28, 1999  9:18 AM
Data is transferred between the upper level drivers and the DISI using the
SerialSend call to send data out a channel. The UDataInd callback function is
used by the lower level device dependent part of the driver to inform the upper level
driver that data has been received. Data is transferred using the Streams message
block structure.

The DISIplus implements various features such as:

■ Character mode asynchronous

■ Block mode asynchronous and block mode synchronous

■ Flow control, using special character detection and protocol control

If a feature is not supported by a chip set, it should be emulated by software in the
device dependent lower level code.

DISIplus Functions

The following sections describe the functions that must be implemented in the
device dependent layer of the DISIplus.

SerialInit Function

The SerialInit  function initializes the device dependent lower level code.

void SerialInit (void);

SerialInit is called at boot time before any components are initialized. It sets the
driver to a default state with: all channels closed, interrupts off, and all buffer pools
empty. It should set the hardware to a known state. Because it is called before
pSOS+ is initialized, it cannot use any system calls.
DISIplus (Device Independent Serial Interface) 2-35



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 36  Thursday, January 28, 1999  9:18 AM
SerialOpen Function

The SerialOpen  function opens a channel for a particular mode of operation.

long SerialOpen(
unsigned long channel,
ChannelCfg *cfg,
Lid *lid,
unsigned long *hdwflags
);

Input channel Indicates the serial channel to be opened.

cfg Points to the configuration table that defines various
configuration parameters such as baud rate, line pa-
rameters, and the addresses of the callback functions.
See Data Structures for more details on the configura-
tion table.

Output lid Set by the lower level driver and is the reference ID of
this channel used by the lower level. All calls to the
DISI by the upper layer pass lid except for the Seri-
alInit  command.

hdwflags Returned by the DISIplus to indicate the capabilities
of the lower level serial code. The hdwflags  flags can
be:

SIOCHDWHDL HDLC supported.

SIOCHDWRXPOOL Has receive buffer pool. If
SIOCHDWRXPOOL is set, the
lower level contains a buffer
pool to receive characters and,
as they are sent up through
the DISIplus, these buffers
need to be replenished. (See
the SerialIoctl  command,
SIOCREPLENISH and
UDataInd  call for more infor-
mation.)

SIOCHDMAXTIM Can do intercharacter timing.

SIOCAUTOBAUD Can do autobaud (sync only).
2-36 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 37  Thursday, January 28, 1999  9:18 AM
Example 2-8 shows the use of a SerialOpen function call used by an upper level
serial driver, such as the DITI driver, to open a channel.

EXAMPLE 2-8: SerialOpen Function Call

/*********************************************************/
/* The Open function is an example of the use of the */
/* SerialOpen function */
/* */
/* It takes one argument the channel number to open. */
/*********************************************************/

/*********************************************************/
/* The global array call lids will be used to store */
/* the lower IDs */
/*********************************************************/
unsigned long lids[NUMBER_OF_CHANNELS];

unsigned long Open(int channel)
{
ChannelCfg channelcfg;

/*********************************************************/
/* Set up configuration structure that will be passed */
/* to DISI interface. */
/*********************************************************/
/* Clear the ChannelCfg structure */
/*********************************************************/
bzero(&channelcfg, sizeof(ChannelCfg));

/*********************************************************/
/* Set Mode to UART mode */
/*********************************************************/
channelcfg.Mode = SIOCASYNC;

/*********************************************************/
/* Set character size to 8 bits */
/*********************************************************/
channelcfg.Cfg.Uart.CharSize = SCS8;

/*********************************************************/
/* Set Flags for software flow control and to cause an */
/* interrupt when a break is received. */
/*********************************************************/
channelcfg.Cfg.Uart.Flags = SBRKINT | SWFC;
DISIplus (Device Independent Serial Interface) 2-37



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 38  Thursday, January 28, 1999  9:18 AM
/*********************************************************/
/* Set the channels baudrate.NOTE SysBaud is a global */
/* variable defined by pSOSystem to the default baud rate*/
/*********************************************************/

channelcfg.Cfg.Uart.LineD[0].LChar = NL;
channelcfg.Cfg.Uart.LineD[0].LFlags = 0;
channelcfg.Cfg.Uart.LineD[1].LChar = EOT;
channelcfg.Cfg.Uart.LineD[1].LFlags = ENDOFTABLE;

/*********************************************************/
/* Set Xon and Xoff characters to be used for software */
/* flow control */
/*********************************************************/
channelcfg.Cfg.Uart.XOnCharacter = XON;
channelcfg.Cfg.Uart.XOffCharacter = XOFF;

/*********************************************************/
/* Set MinChar and MaxTime so at least one character will*/
/* be received and at most four characters. If three */
/* tens of a second pass between characters, a read */
/* request will be considered filled and the UDataInd */
/* function will be called */
/*********************************************************/
channelcfg.Cfg.Uart.MinChar = 4;
channelcfg.Cfg.Uart.MaxTime = 3;

/*********************************************************/
/* Set the receive buffer size to 4 characters */
/*********************************************************/
channelcfg.RBuffSize = 4;

/*********************************************************/
/* Set the len of transmit request to 4 so there can */
/* be only 4 requests outstanding at one time */
/*********************************************************/
channelcfg.OutQLen = 4;

/*********************************************************/
/* Set the channels baudrate. */
/*********************************************************/
channelcfg.Baud = SysBaud;

/*********************************************************/
/* Set the line mode to full duplex */
/*********************************************************/
channelcfg.LineMode = FULLD;
/*********************************************************/
/* Set the pointers to the call back functions */
/*********************************************************/
2-38 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 39  Thursday, January 28, 1999  9:18 AM
channelcfg.dataind = term_dataind;
channelcfg.expind = term_expind;
channelcfg.datacnf = term_datacnf;
channelcfg.ctlcnf = term_ctlcnf;
channelcfg.allocb = gs_allocb;
channelcfg.freemsg = gs_freemsg;
channelcfg.esballoc = gs_esballoc;

/*********************************************************/
/* Set the ID to be used by the lower driver when */
/* referencing this channel. */
/*********************************************************/
channelcfg.uid = channel;

/*********************************************************/
/* Call the DISI interface open */
/*********************************************************/
if(error = SerialOpen(channel, (ChannelCfg *)&channelcfg,
           (Lid )&lids[channel],
           (unsigned long *)&DChanCfg[minor].hdwflags))
    {
    /*****************************************************/
    /* Return error code. */
    /*****************************************************/
    switch (error)
        {
        case SIOCAOPEN:
             /********************************************/
             /* The Channel has already been opened by */
             /* another driver */
             /********************************************/
            return(1);

        case SIOCBADCHANNELNUM
            /*********************************************/
            /* Channel is not a valid channel for this */
            /* hardware */
            /*********************************************/
            return(2);

        case SIOCCFGNOTSUPPORTED
            /*********************************************/
            /* Hardware cannot be configured by the */
            /* DISI as given */
            /*********************************************/
            return(3);

        case SIOCBADBAUD:
            /*********************************************/
            /* Baud rate not supported by hardware. */
DISIplus (Device Independent Serial Interface) 2-39



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 40  Thursday, January 28, 1999  9:18 AM
            /*********************************************/
            return(4);

        case SIOCBADMINCHAR:
            /*********************************************/
            /* MinChar is greater then receive buffer */
            /* size. */
            /*********************************************/
            return(5);

        case SIOCNOTINIT:
            /*********************************************/
            /* This error shows that the lower driver */
            /* thinks it has not been initialized. */
            /*********************************************/
            return(6);
        }

SerialSend Function

The SerialSend function is used by the upper level serial driver to transfer data to
the lower level driver.

long SerialSend(
Lid lid,
mblk_t* mbp
);

Example 2-9 on page 2-41 shows the use of a SerialSend call to send data to the
lower serial driver.

Input lid The lower level ID that was acquired during the
SerialOpen operation for the channel to which this
call is directed.

mbp A pointer to the message block that contains the
data to be transmitted.

Return A 0 return code indicates that the message block has been queued
to send. The UDataCnf  callback is used by the lower level driver
when the data in the message block has actually been sent.
2-40 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 41  Thursday, January 28, 1999  9:18 AM
EXAMPLE 2-9: SerialSend Function Call

/*-------------------------------------------------------------*/
/* This is an example of a function that will get a mblock from*/
/* the mblock pool, fill the mblock's data buffer with some    */
/* information and send it to the lower serial driver.         */
/*-------------------------------------------------------------*/
#include <gsblk.h>
#include <disi.h>

static char test_string[] = "This is a Test Buffer";

/***************************************************************/
/* SendData:  Gets a mblock, puts some data into it and sends  */
/*            it to the lower driver.                          */
/*                                                             */
/*              (Lid)lid lower level id gotten when the        */
/*               SerialOpen call was made.                     */
/*                                                             */
/*     RETURNS: 0 on success                                   */
/*              1 gs_allocb failure                            */
/*              2 SerialSend failure                           */
/*     NOTE(S):                                                */
/*                                                             */
/***************************************************************/
int SendData((Lid)lid)
{
int i;

/***************************************************************/
/* The typedefs frtn_t and mblk_t are found in pna.h.          */
/***************************************************************/
mblk_t *m;

/***************************************************************/
/* Call gs_allocb to get a buffer attached to a mblock         */
/* structure.                                                  */
/*                                                             */
/* gs_allocb is a function supplied by pSOSystem in the file   */
/* drivers/gsblk.c. It is compiled into bsp.lib.               */
/*                                                             */
/* gs_allocb takes two arguments                               */
/*           size: size of message block to be allocated       */
/*           pri: allocation priority (LO, MED, HI)            */
/*                                                             */
/* gs_allocb is a utility that allocates a message block of    */
/* type M_DATA and a buffer of a size greater than or equal to */
/* specified size. pri indicates the priority of the allocation*/
/* request. Currently pri is not used and should be set to 0   */
DISIplus (Device Independent Serial Interface) 2-41



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 42  Thursday, January 28, 1999  9:18 AM
/* On success, gs_allocb returns a pointer to the allocated    */
/* message block. gs_allocb returns a NULL pointer if it could */
/* not fill the request                                        */
/*                                                             */
/* mblk_t *gs_allocb( int size, int pri)                       */
/*                                                             */
/* A mblk_t structure looks like this:                         */
/*                                                             */
/*   struct msgb                                               */
/*       {                                                     */
/*       struct msgb    *b_next;   next msg on queue           */
/*       struct msgb    *b_prev;   previous msg on queue       */
/*       struct msgb    *b_cont;   next msg block of msg       */
/*       unsigned char  *b_rptr;   first unread data byte in   */
/*                                 buffer                      */
/*       unsigned char  *b_wptr;   first unwritten data byte   */
/*                                 in buffer                   */
/*       struct datab   *b_datap;  data block                  */
/*       }                                                     */
/*                                                             */
/***************************************************************/
if(m = gs_allocb(sizeof(test_string), 0) == 0)
    return(1);

/***************************************************************/
/* Copy data to buffer                                         */
/***************************************************************/
for(i = 0; i < sizeof(test_string); i++, m->b_wptr++)
    *(m->b_wptr) = test_string[i];

/***************************************************************/
/* Send mblock to lower driver                                 */
/***************************************************************/
if(SerialSend(lid, m) != 0)
    return(2);
else
    return(0);
}

Example 2-10 on page 2-43 shows the use of the SerialSend function to take a list
of data buffers and attaches them to an mblock structure then chains the mblock
structures together so they are all part of one HDLC frame.
2-42 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 43  Thursday, January 28, 1999  9:18 AM
EXAMPLE 2-10: SerialSend Function Call

#include <gsblk.h>
#include <disi.h>

/****************************************************************/
/* In this sample we will use LEN as the length of the buffers  */
/* that are being sent. However the length of a buffer could    */
/* vary in the code. You just need a way to compute each        */
/* buffers length.                                              */
/****************************************************************/
#define LEN 512

/****************************************************************/
/* SendFrame: Attaches buffers of data to mblocks so that the   */
/*            buffers will be sent in a single HDLC frame. This */
/*            is also known as scatter-gather.                  */
/*                                                              */
/*      INPUTS: char **buffs - array of buffer pointers         */
/*              terminated by a null pointer.                   */
/*                                                              */
/*              (Lid)lid lower level id gotten when the         */
/*               SerialOpen call was made.                      */
/*                                                              */
/*     RETURNS: 0 on success                                    */
/*              1 gs_esballoc failure                           */
/*              2 SerialSend failure                            */
/*     NOTE(S):                                                 */
/*                                                              */
/****************************************************************/
int SendFrame(char **buffs, (Lid)lid)
{

/****************************************************************/
/* The typedefs frtn_t and mblk_t are found in pna.h.           */
/****************************************************************/
frtn_t frtn;
mblk_t *m, *mfirst, *mprevious = (mblk_t *)0;

while(*buffs)
    {

    /************************************************************/
    /* Set up the frtn structure so the retbuff function will   */
    /* be called with an argument that contains the pointer     */
    /* to the buffer that can be reclaimed.                     */
    /*                                                          */
    /* NOTE: retbuff is a function that needs to be supplied    */
    /*       by the user as part of the upper layer code.       */
DISIplus (Device Independent Serial Interface) 2-43



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 44  Thursday, January 28, 1999  9:18 AM
    /************************************************************/
    frtn.free_func = (void (*)())retbuff;
    frtn.free_arg = (char *) *buffs;

    /************************************************************/
    /* Call gs_esballoc to attach buffer to a mblock structure. */
    /*                                                          */
    /* gs_esballoc is a function supplied by pSOSystem in the   */
    /* file drivers/gsblk.c. It is compiled into bsp.lib.       */
    /*                                                          */
    /* gs_esballoc takes four arguments:                        */
    /*                                                          */
    /* unsigned char *base      Base pointer of user buffer     */
    /* int size                 Size of user buffer             */
    /* int pri                  Not Used                        */
    /* frtn_t *frtn             Free function and argument for  */
    /*                          user buffer.                    */
    /************************************************************/

if(m = gs_esballoc((unsigned char *)*buffs, LEN, 0, &frtn)) == 0)
    {

    /************************************************************/
    /* Free any mblocks used so far.                            */
    /************************************************************/
    while  (Mfirst)
        {
         m = mfirst;

         while (m->b_cont != (mblk_t *) 0)
             m = m->b_cont;

         if (m == mfirst)
             mfirst = (mblk_t *) 0;

         gs_freemgs(m);
         }

     return(1);
     }

    /************************************************************/
    /* Increment the mblock's write pointer so it points to     */
    /* the first unwritten character in the buffer.             */
    /************************************************************/
    m->b_wptr = (m->b_rptr + LEN);

    /************************************************************/
    /* If this is not the first mblock, then chain this mblock  */
    /* into the mblock chain by setting b_cont of the previous  */
    /* mblock to point the current mblock.                      */
2-44 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 45  Thursday, January 28, 1999  9:18 AM
    /*                                                          */
    /* If this is the first mblock then save a pointer to it    */
    /* in mfirst. mfirst will be used in the SerialSend call.   */
    /************************************************************/
    if(mprevious != (mblk_t *)0)
        mprevious->b_cont = m;
    else
        mfirst = m;
    mprevious = m;

    ++buffs;
    }

if(SerialSend(lid, mfirst) != 0)
    return(2);
else
    return(0);

Error Codes

The following error codes can be returned:

NOTE: If a SIOCOQFULLerror is received, no data was sent because the transmit
queue is full. SerialSend continues to return SIOCOQFULLuntil the
next UDataCnf callback happens. Since UDataCnf is the confirmation of
a message being sent, the transmit queue is no longer full.

SIOCNOTOPEN Channel not open.

SIOCOQFULL Output queue full, send failed.
DISIplus (Device Independent Serial Interface) 2-45



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 46  Thursday, January 28, 1999  9:18 AM
SerialIoctl Function

The SerialIoctl function specifies various control operations that modify the be-
havior of the DISI.

long SerialIoctl(
Lid lid,
unsigned long cmd,
void *arg           input
)

Not all operations listed below need be supported by the lower layer chip set code.
Any non-supported operation returns with the error code SIOCOPERATIONNOTSUP.

In some cases, a SerialIoctl operation may not complete immediately. In those
cases, the UCtlCnf function is called when the operation has completed with the fi-
nal status of the command.

Error Codes

The following error codes can be returned:

Input lid The lower level ID that is acquired during a
SerialOpen  operation.

cmd The type of control operation. (See, Table 2-4)

arg Specific information for the operation.

SIOCCFGNOTSUPPORTED Configuration not supported.

SIOCNOTOPEN Channel not open.

SIOCINVALID Command not valid.

SIOCBADBAUD Baud rate not supported.

SIOCWAITING Waiting for previous command to complete.

SIOBADMINCHAR MinChar greater than Rbuffsize
2-46 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 47  Thursday, January 28, 1999  9:18 AM
SerialIoctl Commands

Table 2-7 lists the SerialIoctl  commands available.

TABLE 2-7 SerialIoctl  Commands

Command Description

SIOCPOLL Polls the serial device for asynchronous events such as
data and exception indication. It provides an ability to
perform as a pseudo ISR and call the callback func-
tions when the channel is in SIOCPOLL mode or when
interrupts are disabled. For example, when pROBE+ is
in control, the processor operates with interrupts
turned off. This command checks for data received,
data transmitted, or exceptions and then triggers the
callback function for these conditions, as needed.

SIOCGETA Gets the channel configuration and stores this infor-
mation into a ChannelCfg  structure pointed to by the
arg parameter. This command is immediate, so no call-
back is made.

SIOCPUTA Sets the channel configuration using the information
stored in a ChannelCfg  structure pointed to by the
arg  parameter. The effect is immediate, so no callback
is made.

SIOCBREAKCHK This command checks to see if a break character has
been sent. This command is used by pROBE+ to see if
the user wants to enter pROBE+. The arg parameter is
set to SIOCBREAKRif there has been a break sent to the
channel.

SIOCPROBEENTRY This command tells the driver that pROBE+ is being
entered. The driver should now switch to the debugger
callouts, uid , and switch from interrupt mode to polled
mode.

SIOCPROBEEXIT This commands tell the driver that pROBE+ is being ex-
ited and the driver should now switch from the debug-
ger callouts to the normal callouts, normal uid , and
allow interrupts. Normal callouts and uid are the ones
from a SerialOpen  call. If pROBE+ is the only user of
the channel then the normal callouts and uid  and the
debugger callouts and uid  will be the same.
DISIplus (Device Independent Serial Interface) 2-47



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 48  Thursday, January 28, 1999  9:18 AM
SIOCBREAK Sends a break character out the channel. Any argu-
ment passed is ignored. This command is immediate,
no callback is made.

SIOCMQRY This call queries the lower level driver about which mo-
dem controls are supported by the channel. It stores
this information into the long int variable pointed to by
the arg parameter. A set bit indicates that the particu-
lar control line is supported by the channel. This com-
mand is immediate, so no callback is made. The
modem control lines are:

SIOCMDTR Data terminal ready

SIOCMRTS Request to send

SIOCMCTS Clear to send

SIOCMDCD Data carrier detect

SIOCMRI Ring indicator

SIOCMDSR Data set ready

SIOCMCLK Clock (sync support)

Since the interface is a DTE, control lines DTR and RTS
are outputs and CTS, RI, DSR, and DCD are inputs.

SIOCMGET Gets the current state of the modem control lines and
stores this information into the long int variable
pointed to by the arg parameter. The SIOCMGET com-
mand uses the same encoding as the SIOCMQRY com-
mand. Bits pertaining to control lines not supported by
the channel and the SIOCMCLK bit are cleared. This
command is immediate, so no callback is made.

TABLE 2-7 SerialIoctl  Commands (Continued)

Command Description
2-48 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 49  Thursday, January 28, 1999  9:18 AM
SIOCMPUT Sets the modem controls of the channel. The arg  pa-
rameter is a pointer to a long int variable containing a
new set of modem control lines. The modem control
lines are turned on or off, depending on whether their
respective bits are set or clear. The SIOCMPUT com-
mand uses the same encoding as the SIOCMQRY com-
mand. Bits pertaining to control lines not supported by
the channel and the SIOCMCLK bit have no effect. The
effect is immediate, so no callback is made.

SIOCFLGET Gets the current state of the flags (defined by the
UartCfg structure) and stores this information into an
unsigned long int variable pointed to by the arg  pa-
rameter. This call is ignored when the channel is being
used in synchronous mode (HDLC). This command is
immediate, so no call back is made.

SIOFLPUT Sets the flags for the channel. The arg  parameter is a
pointer to a long int variable containing a new set of
flags defined by the flag element in the UartCfg  struc-
ture. This call is ignored when the channel is being
used in synchronous mode (HDLC). The effect is imme-
diate, so no call back is made.

SIOCXFGET Gets the current XOFF character and stores this infor-
mation into the long int variable pointed to by the arg
parameter. This command is immediate, so no call back
is made.

SIOCXFPUT Sets the new XOFF character using the long int variable
pointed to by the arg  parameter. The effect is immedi-
ate, so no call back is made

SIOCXNGET Gets the current XON character and stores this informa-
tion the long int variable pointed to by the arg parame-
ter. This command is immediate, so no call back is
made.

SIOCXNPUT Sets the new XON character using the long int variable
pointed to by the arg  parameter. The effect is immedi-
ate, so no call back is made.

TABLE 2-7 SerialIoctl  Commands (Continued)

Command Description
DISIplus (Device Independent Serial Interface) 2-49



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 50  Thursday, January 28, 1999  9:18 AM
SIOCREPLENISH Causes the receive buffer pool (if any) to be replenished
with new buffers. In some cases, the lower level drivers
use a ring of buffers to receive data. As a buffer in the
ring is used, it is attached to a mblk structure and sent
to the upper level driver by way of a UDataInd call. For
more efficient operation and to keep the interrupt la-
tency down, the upper level driver must use the
SIOCREPLENISH command so the lower driver replen-
ishes those buffers. The upper level driver configures
the size of the buffers in the ring in the SerialOpen
call by the setting of RBuffSize  in the ChannelCfg
structure. The number of buffers in the ring is also set
in the SerialOpen call by setting NRBuffs . The upper
level driver code should keep track of the number of
buffers used (one used each time the UDataInd  func-
tion is called) and use the SIOCREPLENISH command
when it determines more should be added to the re-
ceive buffer pool. This level should be a factor of the
amount of data being received and the baud rate. It
should then be set so the lower level driver does not
run out of buffers. Of course, the upper level driver can
also use the SIOCREPLENISHcommand every time the
UDataInd function is called. Since the UDataInd func-
tion is called as part of the interrupt routine, using the
SIOCREPLENISH command causes the interrupt to
take longer.

The SIOCREPLENISHcommand is necessary only if the
hdwflags  structure passed in the SerialOpen  call
had the SIOCHDWRXPOOL bit set. If the
SIOCHDWRXPOOL bit is not set, the lower level driver
maintains its own buffer pool and the command is ig-
nored. This command is immediate, so no call back is
made.

SIOCGBAUD Gets the baud rate of the channel and stores this infor-
mation into the long int variable pointed to by the arg
parameter. This command is immediate, so no call back
is made.

TABLE 2-7 SerialIoctl  Commands (Continued)

Command Description
2-50 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 51  Thursday, January 28, 1999  9:18 AM
SIOCSBAUD Sets the new baud rate for the channel using the infor-
mation stored in the long int variable pointed to by the
arg  parameter. The effect is immediate so no call back
is made.

SIOCGCSIZE Gets the character size (in bits) and stores this infor-
mation into the long int variable pointed to by the arg
parameter. This command is immediate, no call back is
made.

SIOCSCSIZE Sets the new character size (in bits) using the informa-
tion stored in the long int variable pointed to by the
arg  parameter. The effect is immediate so no call back
is made.

SIOCSACTIVATE Activates the channel. This enables the receiver and
transmitter of the channel and waits until the channel
becomes active. In dial-in connections, the
SIOCSACTIVATE command puts the hardware in a
mode capable of handling an incoming call. The
UCtlCnf  callback is made when the call arrives.
When using HDLC (even when no dial up connection is
involved), the UCtlCnf  callback is made when the link
is active; it starts receiving flags.

SIOCSDEACTIVATE Deactivates the channel. This disables the receiver and
transmitter of the channel. The SIOCSDEACTIVATE
command drops the connection (DTR) and invalidates
the transmitter and the receiver. The effect is immedi-
ate so no call back is made.

SIOCTXFLUSH Discards all characters in the transmit queue for the
channel. The UDataCnf callback is made for each mes-
sage that was discarded with b_flags  set to
SIOCABORT. A UCtlCnf  callback is made when the
transmit queue is empty.

SIOCRXSTART Indicates that the upper level serial driver wants to con-
tinue to receive characters. The lower level serial code
takes the correct action such as sending an XON charac-
ter if software flow control is being used or changing the
hardware lines if hardware flow control is being used.
The effect is immediate so no call back is made.

TABLE 2-7 SerialIoctl  Commands (Continued)

Command Description
DISIplus (Device Independent Serial Interface) 2-51



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 52  Thursday, January 28, 1999  9:18 AM
Example 2-11 on page 2-53 shows the use of a SerialIoctl function call to get
the baud rate of the channel.

SIOCRXSTOP Stops the flow of receive characters. This is used when
the upper level serial driver needs to stop the flow of
characters it is receiving. The lower level serial code
takes the correct action such as sending an XOFF char-
acter if software flow control is being used or changing
the hardware lines if hardware flow control is being
used. The effect is immediate so no call back is made.

SIOCRXFLUSH Closes the current receive buffer. This causes the
UDataInd function to be called for the current mblock
structure. Serial interrupts must be blocked before
making this call. A UCtlCnf callback is made when the
command is completed. Serial interrupts should be en-
abled when the UCtlCnf  callback is received for this
command.

SIOCNUMBER Gets the total number of serial channels present in the
hardware and stores this information into the long int
variable pointed to by the arg  parameter. This com-
mand is immediate, so no call back is made.

SIOCAUTOBAUD Allows the channel to automatically set the baud in-
stead of using the given baud rate, parity, and charac-
ter size.

TABLE 2-7 SerialIoctl  Commands (Continued)

Command Description
2-52 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 53  Thursday, January 28, 1999  9:18 AM
EXAMPLE 2-11: SerialIoctl Function Call

/*********************************************************/
/* This get_baud_rate function is an example of a        */
/* SerialIoctl function call.                            */
/*********************************************************/
int get_baud_rate(unsigned long channel)
{
int baud;
/*********************************************************/
/* Assume the lower level ID is stored by the SerialOpen */
/* call in a global array called lids. Use the          */
/* SIOCGBAUD to get the baud rate and baud as a place to */
/* store the baud rate.                                  */
/*********************************************************/
if(SerialIoctl(lids[channel], SIOCGBAUD, (void *)&baud)
   return(-1);
else
   return(baud);
}

SerialClose Function

The SerialClose function terminates a connection on a serial channel and re-
turns the channel to its default state.

long SerialClose(
Lid lid
)

Example 2-12 on page 2-54 shows a SerialClose function call to close the
channel.

Input lid The lower level ID that was acquired during
SerialOpen  operation for the channel that is to be
closed.

Return If the channel is not open, SIOCNTOPEN is returned.
DISIplus (Device Independent Serial Interface) 2-53



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 54  Thursday, January 28, 1999  9:18 AM
EXAMPLE 2-12: SerialClose Function Call

/***************************************************************/
/* This function TermClose is an example of a SerialClose call */
/* SerialClose will close the channel. This will flush all     */
/* transmit buffers, discard all pending receive buffers and   */
/* disable the receiver and transmitter of the channel. All    */
/* rbuffers associated with the channel will be released       */
/* (freed) and the device will hang up the line                */
/*                                                             */
/***************************************************************/

void TermClose (channel)
{

SerialClose((Lid)lids[channel]);

/*All semaphores and queues for the channel should be deleted here.*/
}

User Callback Functions

This section contains the templates of the callback functions that must be provided
by the upper level driver. Pointers to these functions are passed in the ChannelCfg
structure during the SerialOpen of the channel to the device dependent lower level
code. These pointers can be changed using the SerialIoctl command, SIOPUTA.

NOTE: The user callback functions must be callable from an interrupt.
Consequently, it is important that they do not block within the call and
only call OS functions that are callable from an ISR.

UDataInd Callback Function

The UdataInd callback function will be called during an interrupt by the device-
dependent lower-level code to indicate reception of data to the upper level serial
driver.

static void UDataInd(
Uid uid,
mblk_t * mbp,
unsigned long b_flags
);
2-54 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 55  Thursday, January 28, 1999  9:18 AM
UDataInd  must unblock any task that is waiting for data from this channel.

NOTE: If the SerialOpen call returned hdwflags that had the SIOCHDWRXPOOL
bit set, then the lower level code has a receive buffer pool. This pool needs
replenishing through the use of a call to SerialIoctl with the
command, SIOCREPLENISH.

The user supplied functions in the upper level serial driver must use SerialIoctl
function to replenish the buffers. The upper level serial driver must free the mes-
sage block (pointed to by mbp) when it is emptied by calling the UFreemsg  function.

In the case of SIOCCONTROL(control character received) the control character will
be the last character in the receive buffer if REJECTCHARwas not set for the LineD
entry of that character. If REJECTCHARwas set, the control character will not be
part of the buffer. In this case the UDataInd function is called when the control
character is received with the current receive buffer. The last character in the buffer
is the character received just before the control character was received.

Input uid The ID of the upper level serial driver for the associated
channel. The ID is passed to the lower lever serial driver
during the SerialOpen  call of the channel on which
the data is arriving.

mbp A pointer to message block that contains the data re-
ceived by the channel.

b_flags The status flags associated with this message block.
The flags can be:

SIOCOKX Received without error.

SIOCLGFRAME Frame with exceeding length.

SIOCCONTROL Control character received.

SIOCMARK Idle line condition.

SIOCBREAKR Break received.

SIOCFRAMING Framing error

SIOCPARITY Parity error.

SIOCOVERRUN Overrun of buffers.

SIOCCDLOST Carrier detect lost.
DISIplus (Device Independent Serial Interface) 2-55



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 56  Thursday, January 28, 1999  9:18 AM
Example 2-13 shows a UDataInd  function call to send data and status to a task.

EXAMPLE 2-13: UDataInd Function Call

/***************************************************************/
/* This function term_dataind is an example of a UDataInd      */
/* function. It will get as input:                             */
/*                                                             */
/*              Uid uid pointer to channels configuration      */
/*              mblk_t mblk message block containing data      */
/*              unsigned long b_flags condition code for block */
/*                                                             */
/* term_dataind will use a message queue to send the mblock    */
/* and status on to a task that is waiting for data.           */
/*                                                             */
/* Assume receive_ques is an array of message queue IDs.       */
/***************************************************************/
static void term_dataind(Uid uid, mblk_t *mblk, unsigned long
b_flags)
{

/***************************************************************/
/* Set up the message buffer with the pointer to the mblock    */
/* and status                                                  */
/***************************************************************/
msg_buf[0] = (unsigned long)mblk;
msg_buf[1] = b_flags;

/***************************************************************/
/* Send message to channels message queue.                     */
/***************************************************************/
q_send(receive_ques[(unsigned long)*uid], msg_buf);
}

2-56 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 57  Thursday, January 28, 1999  9:18 AM
UExpInd Callback Function

The UExpInd callback function is called by the device dependent lower level code to
indicate an exception condition.

static void UExpInd(
Uid uid,
unsigned long exp
);

Input uid The ID of upper level serial driver for the associated chan-
nel which is passed to the lower lever serial driver during
the SerialOpen  function call of the channel on which
the exception has occurred.

exp Type of exception. Exceptions can be one of the following:

SIOCMARK Idle line condition.

SIOCBREAKR Break received.

SIOCFRAMING Framing error.

SIOCPARITY Parity error.

SIOCOVERRUN Overrun of buffers.

SIOCCDLOST Carrier detect lost.

SIOCCTSLOST Clear to send has been lost.

SIOCNAFRAME Frame not divisible by 8.

SIOCABFRAME Frame aborted.

SIOCCRCERR CRC error.

SIOCCTS Clear to send found.

SIOCCD Carrier detect detected.

SIOCFLAGS Non idle line condition.
DISIplus (Device Independent Serial Interface) 2-57



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 58  Thursday, January 28, 1999  9:18 AM
UDataCnf Callback Function

The UDataCnf callback function is called by the device dependent lower level code
to confirm that the data sent using SerialSend  call has been transmitted.

static void UDataCnf(
Uid uid,
mblk_t * mbp,
unsigned long b_flags
);

The UDataCnf function must unblock any task that was waiting for data to be sent.
The task is responsible for any maintenance necessary to the message block such
as freeing it or reusing it.

Example 2-14 on page 2-59 shows a UDataCnf function call to confirm that data
has been sent.

Input uid The ID of the upper level serial driver for the associ-
ated channel which is passed to the lower lever serial
driver during the SerialOpen  function call of the
channel on which the data was sent.

mbp Points to the message block sent using the
SerialSend  call.

b_flags Status flags associated with the message block. The
b_flags  must be one of the following:

SIOCOK Completed without error.

SIOCUNDERR Transmit underrun (HDLC).

SIOCABORT Transmit aborted.
2-58 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 59  Thursday, January 28, 1999  9:18 AM
EXAMPLE 2-14: UDataCnf Function Call

/***************************************************************/
/* This function term_datacnf is an example of a UDataCnf      */
/* function. It takes as inputs:                               */
/*                                                             */
/*              Uid uid pointer to channels number             */
/*              mblk_t mblk message block containing data      */
/*              unsigned long b_flags condition code for block */
/*                                                             */
/* This code assumes that the driver is not waiting for        */
/* completion of a transmission.                               */
/***************************************************************/
static void term_datacnf(Uid uid, mblk_t *mblk, unsigned long
b_flags)
{
gs_freemsg(mblk);
}

UCtlCnf Callback Function

The UCtlCnf callback function is used to confirm the completion of a
SerialIoctl  control command.

static void UCtlCnf(
Uid uid,
unsigned long cmd
);

Example 2-15 on page 2-60 shows a UCtlCnf function call to confirm the comple-
tion of a SerialIoctl  control command.

Input uid The ID of the upper level serial driver for the associ-
ated channel which is passed to the lower lever se-
rial driver during the SerialOpen  function call of
the channel on which the I/O control call was made.

cmd The command being confirmed.
DISIplus (Device Independent Serial Interface) 2-59



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 60  Thursday, January 28, 1999  9:18 AM
EXAMPLE 2-15: UCtlCnf Function Call

/*********************************************************/
/* static void term_ctlcnf                               */
/*                                                       */
/* This function term_ctlcnf is an example of a UCtlCnf  */
/* function. It takes as inputs:                         */
/*                                                       */
/*              Uid uid pointer to a configuration       */
/*              unsigned long cmd I/O control cmd that   */
/*              is being confirmed.                      */
/*                                                       */
/* term_ctlcnf assumes that a task is waiting for a      */
/* semaphore.                                            */
/* semaphore_ctl_ids is an array that stores the ID for  */
/* each channel                                          */
/*********************************************************/
void term_ctlcnf(Uid uid, unsigned long cmd)
{

/*-------------------------------------------------------*/
/* Release the channels I/O Control semaphore            */
/*-------------------------------------------------------*/
sm_v(semaphore_ctl_ids[(unsigned long)*uid]);
}

Access Memory Services

The following callback functions are used to manage message blocks and a buffer
pool. The message blocks are similar to those used by Streams I/O. See the pna.h
file in the include directory of the pSOSystem release for a definition of the mes-
sage block structures used here. All of these functions are provided with the pSOS-
ystem operating system. They are found in the file drivers/gsblk.c .

UEsballoc Callback Function

The UEsballoc callback function returns a message block triplet by attaching the
user supplied buffer as a data block to a message block structure. See the Send-
Frame example (Example 2-10 on page 2-43) under the SerialSend function for an
example of this call.

static mblk_t * UEsballoc(
char *bp,
long len,
long pri,
2-60 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 61  Thursday, January 28, 1999  9:18 AM
frtn_t *frtn
);

The UEsballoc call may be used by the upper or the lower levels of the interface. In
either case the user is who ever is making the call. One use of UEsballoc is a case
where there is a special RAM area to be used by the serial controller.

NOTE: This function corresponds to the gs_esballoc function supplied by
pSOSystem in the file drivers/gsblk.c . It is compiled into bsp.lib. You
may use a pointer to gs_esballoc  for the UEsballoc  callback function.

UAllocb Callback Function

The UAllocb callback function returns a message block triplet or a NULL if no
buffer or message block could be found. See the SendData example under the
SerialSend  function (Example 2-9 on page 2-41) for an example of this call.

Input bp Points to the user supplied buffer.

len Specifies the number of bytes in the buffer

pri Specifies the priority for message block allocation.

frtn Pointer to the free structure of type frtn_t . This structure
is as follows:

typedef struct
 {
   void (*free_func)();
   void *free_arg;
 } frtn_t

free_func UFreemsg  calls the function pointed to
by free_func when the caller supplied
buffer needs to be freed. The caller must
supply the function pointed to by
free_func .

free_arg A pointer to the user supplied buffer.

frtn_t The pointer to frtn_t  must be stored
by the UEsballoc  call. This makes it
available to the UFreemsg  call when
UFreemsg  is used to free the message
block.
DISIplus (Device Independent Serial Interface) 2-61



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 62  Thursday, January 28, 1999  9:18 AM
static mblk_t * UAllocb(
long size;
long pri
);

NOTE: This function corresponds to the gs_allocb function supplied by
pSOSystem in the file drivers/gsblk.c. It is compiled into bsp.lib .
You may use a pointer to the gs_allocb function for the UAllocb
callback function.

UFreemsg Callback Function

The UFreemsg callback function is used to free a message block. See the
term_ctlcnf example under the UDataCnf (Example 2-14 on page 2-59) function
for an example of this call.

static void UFreemsg(
mblk_t *mbp
);

NOTE: This function corresponds to the gs_freemsg function supplied by
pSOSystem in the file drivers/gsblk.c . It is compiled into bsp.lib .
You may use a pointer to the gs_freemsg function for the UFreemsg
callback function.

Data Structures

Following are templates of data structures. They can be found in include/disi.h .

ChannelCfg

typedef struct ccfg {
unsigned long Mode;
Modecfg Cfg;

Input size Specifies the size of the buffer.

pri Specifies the priority for the message block.

Input mbp Points to the message block triplet for this specific
message block pool. If the message block was
formed using the UEsballoc  call, UFreemsg  calls
the function pointed by free_func with a pointer to
free_arg  as its argument.
2-62 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 63  Thursday, January 28, 1999  9:18 AM
unsigned long RBuffSize;
unsigned long NRBuffs;
unsigned long OutQLen;
unsigned long Baud;
unsigned long LineMode;
void (*dataind)(uid,mblk_t, unsigned long);
void (*expind)(uid, unsigned long);
void (*datacnf)(uid,mblk_t,unsigned long);
void (*ctlcnf)(uid, unsigned long);
mblk_t * (*allocb)(long, long);
void (*freemsg)(mblk_t);
mblk_t * (*esballoc)(char,long, long,frtn_t);
Uid uid;
unsigned long Reserve[4];
} ChannelCfg;

Mode Mode can be:

SIOCSYNC Sync mode, asynchronous mode if not set.

SIOCPOLLED Poll mode, interrupt mode if not set.

SIOCLOOPBACK Local loop back mode.

The Mode parameters decides which structure to use. If
SIOCSYNC is set the HdlcCfg  structure is used, otherwise the
UartCfg  structure is used.

typedef union {
  struct HdlcCfg Hdlc;
  struct UartCfg Uart;
} ModeCfg;

RBuffSize The size of the receive buffers. RBuffSize  can only be set dur-
ing the SerialOpen  call. It cannot be changed by a
SerialIoctl  call.

NRBuffs The number of receive buffers to allocate for the receive queue.

OutQLen The maximum number of message buffers waiting to be trans-
mitted. If the maximum number is exceeded, the SerialSend
function fails with an SIOCOQFULL error.

Baud Set to the actual desired baud rate. If the selected baud rate is
not supported by the lower level device dependent code, the
SerialOpen or SerialIoctl functions fail, an error is returned.
DISIplus (Device Independent Serial Interface) 2-63



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 64  Thursday, January 28, 1999  9:18 AM
HdlcCfg

struct HdlcCfg{
unsigned char                    TxClock;
unsigned char                    RxClock;
unsigned char                    Modulation;
unsigned char                    Flags;
unsigned short                   Crc32Bits;
unsigned short                   MaxFrameSize;
unsigned short                   Address[4];
unsigned short                   AddressMask;
unsigned long                    FrameCheckErrs;
unsigned long                    TransmitUnderrunErrs;
unsigned long                    ReceiveOverrunErrs;
unsigned long                    InterruptedFrames;
unsigned long                    AbortedFrames;
unsigned long                    Reserve[4];
};

LineMode Line mode, which can be:

HALFD Half duplex

FULLD Full duplex

MULTIDROP Multi-drop lines

dataind Pointer to a data indication routine. See UDataInd  for addi-
tional information.

expind Pointer to an exception indication routine. See UExpInd  for ad-
ditional information.

datacnf Pointer to a data confirmation routine. See UDataCnf  for addi-
tional information.

ctlcnf Pointer to a control confirmation routine. See UCtlCnf  for ad-
ditional information.

allocb Pointer to an allocate message block routine. See UAllocb  for
additional information.

freemsg Pointer to a free message list routine. See UFreemsg  for addi-
tional information.

esballoc Pointer to an attach message block routine. See UEsballoc for
additional information.
2-64 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 65  Thursday, January 28, 1999  9:18 AM
TxClock  and RxClock  can be:

CLK_INTERNAL Internal clock (transmit only)

CLK_EXTERNAL External supplied clock

CLK_DPLL Digital phase lock loop

CLK_INVERT Transmit DPLL invert data

Modulation  can be:

MOD_NRZ

MOD_NRZI_MARK

MOD_NRZI_SPACE

MOD_FM0

MOD_FM1

MOD_MANCHESTER

MOD_DMANCHESTE
R

Flags Number of inter-frame flags

Crc32Bits Can be CRC32. If not set, 16 bit CRC is assumed.

MaxFrameSize Used to discard any frame that is greater than the
value of MaxFrameSize .

Address The addresses to be recognized. There must be 4 values
in the Address fields (duplicates are allowed) because,
in HDLC, no single character can serve as an end of list
indicator.

AddressMask Determines which of the possible 16 bits (of each
Address[i] ) are used to filter the addresses of the
received frames: 0 means no filtering, 0xFF means
8-bit addresses and 0xFFFF means 16-bit addresses.
Other masks are allowed to filter on fewer than 8 bits:
for example the mask 0x00F0 with Address[i]  set to
0x00C0 causes the driver to receive only frames that
have their first byte starting with 0xC0 to 0xCF.
DISIplus (Device Independent Serial Interface) 2-65



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 66  Thursday, January 28, 1999  9:18 AM
UartCfg

struct UartCfg{
unsigned long CharSize;
unsigned long  Flags;
LineD          Lined[2];
unsigned char  XOnCharacter;
unsigned char  XOffCharacter;
unsigned short MinChar;
unsigned long  MaxTime;
unsigned long  ParityErrs;
unsigned long  FramingErrs;
unsigned long  OverrunErrs;
unsigned long  Reserve[4];
}

FrameCheckErrs The total number of frames with an invalid frame check
sequence input from the channel since the system re-
initialized and while the channel was active. This data
is collected for the MIB.

TransmitUnderrunErrs The total number of frames that failed to be transmit-
ted on the channel since the system was re-initialized
and while the channel was active. TransmitUnder-
runErrs  can occur because data was not available to
the transmitter in time. This data is collected for the
MIB.

ReceiveOverrunErrs The total number of frames that failed to be received on
the channel since the system was re-initialized and
while the channel was active. ReceiveOverrunErrs
can occur because the receiver did not accept the data
in time. This data is collected for the MIB.

InterruptedFrames The total number of frames that failed to be received or
transmitted on the channel since the system was re-
initialized and while the channel was active.
InterruptedFrames can occur because of loss of mo-
dem signals. This data is collected for the MIB.

AbortedFrames The number of frames aborted on the channel since the
system was re-initialized and while the channel was
active. AbortedFrames  can occur due to receiving an
abort sequence. This data is collected for the MIB.

Reserved Reserved field.
2-66 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 67  Thursday, January 28, 1999  9:18 AM
CharSize  can be:

CS5 5 bits per character

CS6 6 bits per character

CS7 7 bits per character

CS8 8 bits per character

Flags  can be:

CANON Canonical mode. When the CANON flag is set,
the input is processed and assembled in blocks
of data with the use of the line delimiters in
LineD . When the block is assembled, the
UDataInd  callback function is called. The
MinChar  and MaxTime arguments are ignored
when the CANONflag is set. If the CANON flag is
not set, the delimiters in LineD are ignored and
the values of the MinChar  and MaxTime argu-
ments are used to determine when to call the
UDataInd  callback function.

C2STOPB Send two stop bits, else one.

PARENB Parity enable. When PARENB is set, parity gen-
eration and detection is enabled and a parity
bit is added to each character. When parity is
enabled, odd parity is used if the PARODDflag is
set, otherwise even  parity is used.

PARODD Odd parity, else even.

HWFC Hardware flow control on. When HWFC is set,
the channel uses CTS/RTS flow control. If the
channel does not support hardware flow con-
trol, this bit is ignored.

SWFC Software flow control on. When the SWFC bit is
set, XON/XOFF flow control is enabled.

SWDCD Software data carrier detect. When SWDCD is
set, the channel responds as if the hardware
data carrier detect (DCD) signal is always
asserted. If SWDCD is not set, the channel is
enabled and disabled by DCD.
DISIplus (Device Independent Serial Interface) 2-67



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 68  Thursday, January 28, 1999  9:18 AM
LECHO Enable local echo.

BRKINT When BRKINT is set, the channel issues an
UExpInd exception callback function if a break
character is received.

DCDINT Interrupt on loss of DCD. When DCDINT is set,
the channel issues an UExpInd  exception call-
back function upon loss of the DCD signal.

AUTOBAUDENBEnable autobaud. When AUTOBAUDENB is set,
the channel may use the auto baud feature if it
is supported by the lower level driver.

LineD An array of structures defined as follows:

typedef struct
{
unsigned char LChar;
unsigned char LFlags;
} LineD;

LChar Any 8 bit value that the user wants to use as a character that,
when received, causes an interrupt which invokes the
UDataInd  function.

LFlags A bit field that controls the characters use as follows:

ENDOFTABLE Invalid (last entry in table). If table has two en-
tries neither entry has this bit set.

REJECTCHA Character is rejected.

If REJECTCHAR is set, the character does not
become part of the buffer and an interrupt is
generated but the buffer is not closed (charac-
ters will still be received). If REJECTCHARis not
set, an interrupt is generated and the character
is the last character in the buffer. The buffer is
closed and another buffer is used to receive
data.

If this function is not supported by the chip set
it must be emulated by the lower level device
dependent code.

XOnCharacter Software flow control character used to resume data transfer.
2-68 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 69  Thursday, January 28, 1999  9:18 AM
XOffCharacter Software flow control character used to temporarily terminate
data transfer.

MinChar,
Maxtime

Used in non-canonical mode processing (CANON bit not set in
flags). In non-canonical mode input processing, input charac-
ters are not assembled into lines. The MinChar  and MaxTime
values are used to determine how to process the characters
received.

MinChar represents the number of characters that are received
before the UDataInd callback function is called. MinChar can-
not be larger than RBuffSize .

MaxTime is a timer of 0.10 second granularity that is used to
override the MinChar  value so the driver is not placed in an
endless loop waiting for characters. The four possible values for
MinChar and MaxTime and their interactions are described be-
low.

1. If MinChar > 0 and MaxTime > 0, then MaxTime serves as
an intercharacter timer and is activated after the first char-
acter is received. Since it is an intercharacter timer, it is re-
set after a character is received. The interaction between
MinChar and MaxTime is as follows: as soon as one char-
acter is received, the intercharacter timer is started. If
MinChar characters are received before the intercharacter
timer expires, UDataInd is called which sends the receive
buffer up to the next level. If the timer expires before
MinChar characters are received, UDataInd is called with
the characters received to that point.

2. If MinChar > 0 and MaxTime = 0, then, since the value of
MaxTime is zero, only MinChar is significant. The
UDataInd function is not called until MinChar characters
are received.

3. If MinChar = 0 and MaxTime > 0, then, since MinChar = 0,
MaxTime no longer represents an intercharacter timer but
serves as a read timer. It is activated as soon as a read()
is started. The UDataInd function is called as soon as a
single character is received or the timer expires.

4. If MinChar = 0 and MaxTime = 0, then no action is required
by the lower level code. The lower level code uses
RBuffSize as the number of characters to receive before
calling the UDataInd  function.

ParityErrs Keeps track of the parity errors that occur on the channel. This
information is used by MIB.
DISIplus (Device Independent Serial Interface) 2-69



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 70  Thursday, January 28, 1999  9:18 AM
Error Codes

The following error codes can be returned:

Multiplex Driver Implementation

See Chapter 5, Multiplexor Implementations of pSOSystem Advanced Topics for infor-
mation about multiplexor implementations.

FramingErrs Keeps track of the framing errors that occur on the channel.
This information is used by MIB.

OverrunErrs Keeps track of the overrun errors that occur on the channel.
This information is used by MIB.

Reserved Reserved.

SIOCAOPEN Channel already open.

SIOCBADCHANNELNUM Channel does not exist.

SIOCCFGNOTSUPPORTED Configuration not supported.

SIOCNOTOPEN Channel not open.

SIOCINVALID Command not valid.

SIOCBADARG Argument not valid.

SIOCOPERATIONNOTSUP Operation not supported.

SIOCOQFULL Output queue full, send failed.

SIOCBADBAUD Baud rate not supported.

SIOCBADMINCHAR MinChar  > RBuffSize .

SIOCWAITING Waiting for previous command to complete.

SIOCNOTINIT Driver not initialized.
2-70 DISIplus (Device Independent Serial Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 71  Thursday, January 28, 1999  9:18 AM
KI (Kernel Interface)

Overview

On every node in a multiprocessor system, user supplied Kernel Interface (KI) soft-
ware must be present. Its purpose is to provide a set of standard services that
pSOS+m uses to transmit and receive packets.

The pSOSystem supplies a shared memory Kernel Interface for supported boards
that can use shared memory by way of a VME bus. The pSOSystem contains a
generic driver for this purpose. Refer to the chapter on “Understanding and Develop-
ing Board Support Packages” in pSOSystem Advanced Topics manual for more
information on the generic shared memory driver.

Operation

The KI is dependent on the medium and logical protocol chosen for node-to-node
communication. For example, the connection may use a memory bus, Ethernet,
MAP, point-to-point link, or a mixture of the above. However, the KI interface to
pSOS+m is fixed, as are certain restrictions on its implementation and behavior.

The KI of a node must provide the services called by pSOS+m (see Table 2-8).

TABLE 2-8 Required KI Services

Service Function Code Description

KI_INIT 1 Initialize the KI of a node.

KI_GETPKB 2 Get a packet buffer from the KI.

KI_RETPKB 3 Return a packet buffer to the KI.

KI_SEND 4 Send a packet to another node.

KI_RECEIVE 6 Receive an incoming packet.

KI_SEND 7 Allow the KI to perform its own timing. For exam-
ple, to time transmission retries.

KI_ROSTER 9 Provide roster information to the KI.
KI (Kernel Interface) 2-71



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 72  Thursday, January 28, 1999  9:18 AM
pSOS+m calls the above KI operations as simple subroutines. The KI performs the
requested service and simply returns to pSOS+m using a subroutine return. The
operations and their calling interfaces are described in detail later in this section.

Packets and Packet Buffers

The fundamental unit of communication between nodes is a packet. Whenever
pSOS+m needs to communicate with its counterpart on another node, it prepares a
packet and then passes it to the KI for transmission. It is the responsibility of the KI
to reliably deliver the packet to the destination node.

Packets are physically contained within packet buffers. When pSOS+m calls the KI
to send a packet, it passes a pointer to a packet buffer containing the packet. Simi-
larly, when a packet is received, the KI passes the packet to pSOS+m by returning a
pointer to the packet buffer used to hold the packet.

The KI is responsible for maintaining a pool of packet buffers and allocating them to
pSOS+m. This approach results in optimum efficiency, notably by eliminating any
need for the KI to copy the packet. First, the KI can create the packet buffers within
a memory area best suited for direct retrieval and transmission. Second, for pur-
poses required by the communication protocol, the KI often needs an envelope for
the packet. This is certainly a common requirement for all network connections. In
such cases, the KI can easily maintain a pool of envelopes. When pSOS+m requests
a packet buffer, the KI allocates an envelope, and returns to pSOS+m a pointer to
the packet that is contained inside the envelope. pSOS+m does not need to know
about the envelope.

pSOS+m uses the ki_getpkb and ki_retpkb services to allocate and return
packet buffers, respectively. The number of such packet buffers necessary is depen-
dent on the implementation and hardware requirements of the KI.

Packet Buffer Sizes

When requesting a packet buffer, pSOS+m passes the KI the length of the packet to
be sent so that the KI can allocate a packet buffer of the appropriate size. With two
exceptions, all packets sent through the KI take no more than 100 bytes. These ex-
ceptions are as follows:

■ Systems with mc_nnode > 576 nodes. In such systems, whenever a node joins,
the master node requests the packet buffer of size:

28 + ceil(mc_nnode / 32) * 4

where ceil  is the ceiling function.
2-72 KI (Kernel Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 73  Thursday, January 28, 1999  9:18 AM
For example, if the system has 900 nodes, then a packet buffer containing 144
bytes is required whenever a node joins.

■ Systems that transmit variable length messages larger than 28 bytes. Whenever
such a message is sent or requested, pSOS+m requests the packet buffer of
size:

72 + message size

For example, if a q_vreceive call is made with buf_len equal to 128, then
pSOS+m requests a 200-byte packet buffer from the KI.

If neither of the above exceptions applies to a system, then the KI can ignore the
packet size parameter and simply provide fixed size 100-byte packet buffers. This is
the simplest implementation. However, if the characteristics of a system require that
the KI provide packet buffers of widely varying sizes, then a more sophisticated KI
implementation may be required.

For example, if it is known that a node sends and receives messages of lengths 256
and 512 bytes, then the KI could create three pools of buffers having sizes 100, 328
and 584 bytes. When ki_getpkb is called, the KI can allocate the buffer from the
appropriate buffer pool based on the required size.

The Multiprocessor Configuration Table entry mc_kimaxbuf specifies the maximum
buffer size that the KI is capable of allocating. It must be the same on every node,
and a slave node is not allowed to join if its mc_kimaxbuf is different from that of
the master node. pSOS+ uses mc_kimaxbuf  in the following two ways:

■ During startup, pSOS+m verifies the mc_kimaxbuf is at least 100 and also
large enough based on the value mc_nnode . If not, a fatal startup error occurs.

■ Any attempt to create a global variable length message queue fails if
mc_kimaxbuf is too small to accommodate the largest message that might be
sent to the queue.

pSOS+m also provides the KI with the packet size when calling ki_send . However,
do not confuse packet size with packet buffer size. For example, pSOS+m may re-
quest a packet buffer for a packet of size 80 bytes. The KI may allocate a packet
buffer of size 256 bytes. Subsequently, pSOS+m calls ki_send to send the packet.
At this time, pSOS+m will pass a packet size of 80 bytes, not 256 bytes. If the KI has
multiple packet buffer pools, then certain KI services, most notably ki_retpkb ,
needs to know the packet buffer size of a packet provided by pSOS+m. This is best
accomplished by embedding the packet buffer size in the packet envelope.
KI (Kernel Interface) 2-73



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 74  Thursday, January 28, 1999  9:18 AM
Packet Transmission

pSOS+m calls the KI to send a packet as a result of numerous system activities. To
prepare and send a packet, pSOS+m does the following:

■ It uses ki_getpkb  to obtain a packet buffer.

■ It constructs and stores the packet in the packet buffer.

■ It calls ki_send to send the packet to the destination node. This call has the re-
sponsibility of returning the packet buffer to the KI.

The KI on the source node must deliver the packet to the KI on the target node. The
KI of the target node is then responsible for delivering the packet to pSOS+m on that
node.

Packet Reception

On most systems, the arrival of a packet at a node triggers an interrupt. In this
case, the following actions occur on the receiving node:

■ The interrupt vectors control to a packet ISR, which should be part of the KI,
and the packet ISR receives the packet into a packet buffer.

■ The ISR calls the pSOS+m Announce_Packet entry (see page 2-75) to inform
pSOS+m that one or more packets are pending in the KI.

■ The ISR exits using the pSOS+m i_return  system call.

■ At the next dispatch (normally part of i_return ), pSOS+m calls ki_receive
to obtain the received packet.

■ pSOS+m processes the packet.

What happens from this point is dependent on the packet. Since several packets
may arrive nearly simultaneously at a single node, the KI may have to maintain an
inbound packet queue. If implemented, this queue must preserve the order of the
packets received. Since several packets may be in the queue after pSOS+m pro-
cesses a packet, pSOS+m actually returns to the action of calling ki_receive to ob-
tain queued packets. If the queue is empty, ki_receive returns a NULL pointer
and pSOS+m terminates packet processing.
2-74 KI (Kernel Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 75  Thursday, January 28, 1999  9:18 AM
If hardware or other limitations make it impossible or impractical for an incoming
packet to generate an interrupt, then a node must periodically poll for packets that
have arrived. This is normally accomplished from the real-time clock/timer ISR. The
ISR simply calls a routine (which is normally part of the KI) to check for arrived
packets and processes it as described in the first two actions listed above.

NOTE: While a polled KI does not affect the features available with pSOS+m, it
does significantly affect the transmission time, since in the worst case, an
entire clock tick may elapse before the packet is delivered to pSOS+m.

The pSOS+m Announce_Packet Entry

When a packet arrives at a node, the KI must inform pSOS+m by calling the special
pSOS+m Announce_Packet entry. The address of this entry point is passed by
pSOS+m as input when it calls ki_init .

The KI must call Announce_Packet from supervisor mode. This pSOS+m subrou-
tine neither accepts nor returns any parameters.

NOTE: Announce_Packet must be called only from an ISR. If an inbound
packet causes an interrupt at the node, it is natural to call it from the
packet ISR. On the other hand, if a node must poll for incoming packets,
then this polling should be done, and Announce_Packet called, from the
real-time clock/timer ISR of the node.

Transmission Requirements

pSOS+m assumes that the KI implements the following requisites:

■ Reliable Transmission

■ Order Preservation

■ No Duplication

To achieve compliance with these requisites the KI must adhere to the following
rules:

■ Rule No.1: Packets must be delivered correctly to the destination node or an error
code must be returned to pSOS+m. The KI must be responsible for delivery of
packets. Failure detection, retransmission (if necessary) and reporting must be
done in the KI.

■ Rule No. 2: Between any node pair, packet order must be strictly preserved.
Between any two nodes, packets must be received in exactly the order in which
KI (Kernel Interface) 2-75



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 76  Thursday, January 28, 1999  9:18 AM
they are sent. However, packets destined for different nodes may be sent or re-
ceived out of temporal order.

■ Rule No. 3: Packets must be delivered without duplicates. pSOS+m cannot han-
dle duplicates of the same packet.

Aside from the above requirements, pSOS+m does not impose any restrictions re-
garding routing, protocol, or any other implementation dependent KI behavior.

KI Error Conditions

Every KI service call must return an error code to pSOS+m. A value of 0 indicates
the call completed successfully. Any other value indicates an error occurred. No
specific KI error codes are defined since they are implementation dependent. How-
ever, pSOS+ reserves error codes 0x10000 and above for user generated errors, in-
cluding KI errors. No ISI product generates a code in this range.

Although supported by pSOS+m, most multiprocessor applications do not antici-
pate and hence do not tolerate node failure. In these cases, the best KI implementa-
tion is to always return 0. In the event of any error condition, the KI should simply
call k_fatal() and trigger a system abort. This simple implementation has the
advantage that the application does not need to manage errors resulting from low-
level KI failures, which will be, at best, difficult to recover.

Systems that tolerate node failure need to use KI error codes, since the KI services
ki_getpkb and ki_send may fail if the destination node has failed. In these cases,
the KI may first take corrective action such as aborting either the source or destina-
tion node via k_fatal() or k_terminate() , and then, if k_fatal() was not
called, return an error code to pSOS+m. pSOS+m then takes further actions based
on the identity of the source and destination nodes and type of packet that it was
trying to deliver.
2-76 KI (Kernel Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 77  Thursday, January 28, 1999  9:18 AM
Table 2-9 describes actions, which are based on three types of node to node com-
munication cases, that pSOS+m follows when ki_getpkb or ki_send returns an
error.

If ki_init , ki_retpkb , ki_receive , ki_time , or ki_roster return an error,
pSOS+m simply shuts down the node. Even in systems that tolerate node failure,
these KI calls should never return an error.

TABLE 2-9 pSOS+m Actions Following ki_getpkb  or ki_send  Error Return

Case Action

Slave to
Master

If a slave node cannot send a packet to the master node, then
pSOS+m on the slave node shuts down operation of the slave
node. The ability to communicate with the master node is essen-
tial to slave node operation.

Master to
Slave

If the master node cannot send a packet to a slave node,
pSOS+m on the master node internally invokes k_terminate()
to terminate the slave node. Again, communication between the
master and slave is essential to proper slave node operation. In
addition, if the packet was an RSC, then pSOS+m on the master
node returns the KI error code to the calling task.

Slave to
Slave

The only packets that are passed between two slave nodes are
RSC, RSC reply and asynchronous RSC error notification pack-
ets (see pSOSystem System Concepts). If an RSC packet cannot
be delivered, the RSC call is aborted and the error code returned
by the KI is passed back to the calling task. If an RSC reply or
asynchronous RSC error notification packet cannot be delivered,
then pSOS+m on the source node internally invokes
k_terminate()  to abort the destination node.
KI (Kernel Interface) 2-77



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 78  Thursday, January 28, 1999  9:18 AM
KI Conventions and Restrictions

The psos+m kernel calls KI services by way of the KI entry routine specified in the
psos+m multiprocessor configuration table. It passes the KI service function code
and parameters using the C language calling conventions. The syntax of the KI en-
try routine is:

ULONG ki_call(UNLONG fcode, param1, param2, ..)

The KI entry routine executes appropriate KI services depending on the function
code, refer to Table 2-8 on page 2-71. A return value of zero indicates successful op-
eration. All other return error codes must be greater than 0x10000. When psos+m
invokes the function, ki_call() , the processor is in the supervisor state. In the KI
services, interrupts may be disabled but must be restored to their original state
prior to returning to the kernel.

The KI is logically an extension to pSOS+ kernel. It is not, and must not be confused
with, a pSOS+m I/O driver. As such, there are critical restrictions regarding the
pSOS+m system calls that can be made from the KI. In general, the KI may use any
of the system calls allowed from an ISR. In addition, the KI can make a system call if
the following are true:

1. The call does not generate a recursive request to the KI (an RSC, for example).
This is normally not a problem, since the pSOS+m system calls needed by the
KI are unlikely to require remote service.

2. The call does not attempt to block. Recall that the KI executes as an extension
to the kernel, not in the context of any particular task. Therefore, blocking is
not possible. This is also not a serious limitation, since most KI implementa-
tions should have no need to block. If blocking is needed, then the KI should de-
fer some of its operations to a server task, which of course can block.

Note carefully the following consequence of the first limitation. The KI can use a
pSOS+m local-only (i.e. un-exported) partition to create its packet buffer pool and to
allocate and deallocate packet buffers. This is sufficient for a network-connected
system. Now consider a memory-bus-connected system. Whereas it may appear
convenient and natural, to create a pSOS+m global partition and use it as the KI
packet buffer pool, in practice this is difficult. The reason is that the pt_create()
system call, if called from ki_init to create and export this partition, will recur-
sively call the KI to deliver the partition information to the master node.
2-78 KI (Kernel Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 79  Thursday, January 28, 1999  9:18 AM
KI Services

ki_getpkb

The ki_getpkb service obtains a packet buffer from the KI. The ki_getpkb service
is called by way of the KI entry routine, ki_call , with the following parameters:

unsigned long ki_call (
unsigned long fcode,
unsigned long dest,
void **pkt_ptr,
unsigned long size

);

The packet size and destination node number is provided for KI implementations
that need to allocate the buffer from different pools, based on either the node to
which the packet is sent, the size of the packet, or both. This might be the case, for
example, in a shared memory implementation that writes the packet directly into
the visible memory on the target node. Most KI implementations can likely ignore
one or both parameters.

Input fcode Function code. Must be 2.

dest Destination node number. 0 means packet will be
broadcast.

pkt_ptr Pointer to the variable that will hold the packet
buffer address.

size Size of the packet requested.

Return 0, or KI-specific error code.

Output Packet buffer address is returned in the variable pointed to by
pkt_ptr  if return code is 0.
KI (Kernel Interface) 2-79



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 80  Thursday, January 28, 1999  9:18 AM
ki_init

The ki_init service initializes the KI of a node. The ki_init service is called by
way of the KI entry routine, ki_call , with the following parameters:

unsigned long ki_call (
unsigned long fcode,

void (*notify_fn)()
);

The ki_init service is called during pSOS+ startup to initialize the KI. It is only
called once for each system startup. This ki_init  service should do the following:

■ Initialize the communication hardware.

■ Initialize all KI data structures.

■ Create a pool of packet buffers. If enough buffers are not created, a system fail-
ure can result.

■ Save the pSOS+ Announce_Packet  entry address.

The ki_init service is called after all local pSOS+m facilities (including creation of
the ROOT and IDLE tasks) have been initialized, and are thus usable. This service is
subject to the same restrictions as all other KI services (see KI Error Conditions on
page 2-76) with the following exceptions:

■ It is always called when the interrupts is disabled

■ ki_init can enable the interrupt, provided that the necessary steps have been
taken (for example, setting up ISRs) to handle any possible interrupt sources,
and the interrupt is disabled again before returning to the pSOS+m kernel.

Input fcode Function code. Must be 1.

notify_fn Address of pSOS+ Announce_Packet  Entry.

Return 0, or KI-specific error code.
2-80 KI (Kernel Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 81  Thursday, January 28, 1999  9:18 AM
ki_receive

ki_receive obtains a received packet. The ki_receive service is called by way of
the KI entry routine, ki_call , with the following parameters:

unsigned long ki_call (
unsigned long fcode,

void **pkt_ptr
);

pSOS+ calls ki_receive only after a call has been made by the KI to the special
pSOS+ Announce_Packet  entry.

ki_retpkb

The ki_retpkb service returns a packet buffer to the KI. The ki_retpkb service is
called by way of the KI entry routine, ki_call , with the following parameters:

unsigned long ki_call (
unsigned long fcode,
void *pkt

);

NOTE: pSOS+m does not provide the size of the packet buffer. If the KI needs this
information, it can embed the size in the packet buffer envelope.

Input fcode Function code. Must be 6.

pkt_ptr Pointer to the variable that will hold the packet
buffer address.

Return 0, or KI-specific error code.

Input fcode Function code. Must be 3.

pkt Pointer to packet buffer.

Return 0, or KI-specific error code.
KI (Kernel Interface) 2-81



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 82  Thursday, January 28, 1999  9:18 AM
ki_roster

The ki_roster service provides roster information to the KI. The ki_roster ser-
vice is called by way of the KI entry routine, ki_call , with the following parame-
ters:

unsigned long ki_call (
unsigned long fcode,
unsigned long change,
void **roster,
unsigned long parm1,
unsigned long parm2,
unsigned long parm3

);

Input fcode Function code. Must be 9.

change Specifies the type of change as listed below.

Value Change Description

0 Initial roster. The roster  parameter points to
the internal pSOS+m roster.

1 A node joined. The parm1 and parm2 parameters
contain, respectively, the node number and se-
quence number of the new node.

2 A node has failed. The parm1 , parm2 , and parm3
parameters contain, respectively, the node num-
ber of the failed node, the failure code, and the
node number of the node that initiated removal
of the node from the system (which may be the
failed node itself).

Return 0, or KI-specific error code.
2-82 KI (Kernel Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 83  Thursday, January 28, 1999  9:18 AM
ki_send

The ki_send service sends a packet to another node. The ki_send service is called
by way of the KI entry routine, ki_call , with the following parameters:

unsigned long ki_call (
unsigned long fcode,
unsigned long size,
unsigned long dest,
void *pkt

);

The ki_send service must deliver the packet to the destination node. The packet
size, specified in D1, is provided for systems which must transmit the packet over a
relatively slow medium. In such cases, the KI can transmit only the packet, if it is
much smaller than 100 bytes. Most kernel interfaces can likely ignore this parame-
ter.

The ki_send service is responsible for returning the packet buffer after a success-
ful transmission, or whenever it is no longer needed.

NOTE: pSOS+m does not provide the size of the packet buffer. If the KI needs this
information, it can embed the size in the packet buffer envelope.

Input fcode Function code. Must be 4.

size Packet size in bytes.

dest Destination node number.

pkt Pointer to packet buffer.

Return 0, or KI-specific error code.
KI (Kernel Interface) 2-83



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 84  Thursday, January 28, 1999  9:18 AM
ki_time

The ki_time service allows the KI to implement its own timing and timing depen-
dent operations, if necessary. The ki_time service is called by way of the KI entry
routine, ki_call , with the following parameters:

unsigned long ki_call (
unsigned long fcode

 );

The ki_time service is called by pSOS+m at each clock tick to allow, if necessary,
the KI to implement its own timing and timing dependent operations, such as trans-
mission retries.

If the KI does not need any timing operations, then ki_time  should simply return.

Input fcode Function code. Must be 7.

Return 0, or KI-specific error code.
2-84 KI (Kernel Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 85  Thursday, January 28, 1999  9:18 AM
NI (Network Interface)

Overview

pNA+ accesses a network by calling a user provided layer of software called the
Network Interface (NI). The interface between pNA+ and the NI is standard and inde-
pendent of the physical media or topology of the network. This interface isolates
pNA+ from the physical characteristics of the network.

The NI is essentially a device driver that provides access to a transmission medium.
The terms network interface, NI, and network driver are all used interchangeably in
this section when describing the Network Interface.

Operation

There must be one NI for each network connected to a pNA+ node. In the simplest
case, a node is connected to just one network and has just one NI. However, a node
can be connected to several networks simultaneously and can therefore have sev-
eral network interfaces. Each NI must be assigned a unique IP address.

A network interface to the pSOSystem must include the pNA+ service calls listed in
Table 2-10:

These services are defined by #define statements within the include/ni.h
header file. In addition, the NI can include an interrupt service routine (ISR) to han-
dle packet interrupts.

TABLE 2-10 Network Interface Service Calls

Service Function Code Description

NI_INIT 1 Initialize the NI.

NI_GETPKB 2 Get an NI packet buffer.

NI_RETPKB 3 Return an NI packet buffer.

NI_SEND 4 Send an NI packet.

NI_BROADCAST 5 Broadcast an NI packet.

NI_POLL 6 Poll for pROBE+ packets.

NI_IOCTL 7 Perform I/O control operations.
NI (Network Interface) 2-85



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 86  Thursday, January 28, 1999  9:18 AM
Packets and Packet Buffers

The fundamental unit of communication in pNA+ is a packet. To transmit data,
pNA+ prepares a packet and then passes it to the NI for transmission. It is the
responsibility of the NI to deliver the packet to the specified destination.

pNA+ supports two types of packet interfaces:

■ pNA+ Independent Packet Interface (Nonzero-Copy)

■ pNA+ Dependent Packet Interface (Zero-Copy).

pNA+ determines which type of packet interface the supporting device driver uses,
by checking the flag element in the ni_init structure of the interface table entry
for each driver. Refer to the include/ni.h header file for a description of the
ni_init structure. If the pNA+ independent packet Interface is used, the
IFF_RAWMEMbit is not set. If the pNA+ dependent packet interface is used, the
IFF_RAWMEM bit is set.

pNA+ Independent Interface

This interface supports packets that are contained in contiguous blocks of memory
called packet buffers. When pNA+ calls the NI to send a packet, it passes a pointer to
the packet buffer containing the packet. Similarly, when a packet is received, the NI
passes the packet to pNA+ by returning a pointer to the packet buffer that holds the
packet.

The NI is responsible for maintaining a pool of packet buffers and allocating them to
pNA+. This approach enables the NI to have its own memory management. First, the
NI can create packet buffers within an area of memory best suited for direct retrieval
and transmission. Second, for purposes required by the communications protocol,
the NI often needs an envelope for the packet. In such cases, the NI can easily main-
tain a pool of envelopes. When pNA+ requests a packet buffer, the NI allocates an
envelope, and returns to pNA+ a pointer to the packet that is contained inside the
envelope. pNA+ does not need to know about the envelope.

pNA+ uses the NI_GETPKBand NI_RETPKBservices, respectively, to allocate and re-
turn packet buffers. The number of packet buffers necessary is dependent on the
implementation and hardware requirements of the NI.
2-86 NI (Network Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 87  Thursday, January 28, 1999  9:18 AM
pNA+ Independent Packet Transmission

To prepare and send a packet, pNA+ performs the following sequence of events:

■ Uses NI_GETPKB to obtain a packet buffer.

■ Stores data in the packet buffer.

■ Calls NI_SEND or NI_BROADCASTto send the packet to the destination. These
services have the responsibility of returning the packet buffer to the NI packet
pool.

pNA+ Independent Packet Reception

On most systems, the arrival of a packet triggers an interrupt. In this case, the fol-
lowing sequence of actions occur on the receiving system:

■ The interrupt transfers control to a packet ISR. This ISR is part of the NI, and
receives the packet into a packet buffer.

■ For each pending packet (several may arrive nearly simultaneously), the packet
ISR calls the pNA+ Announce_Packet entry function (see The pNA+
Announce_Packet Entry on page 2-89) to transfer the packet to pNA+. pNA+
queues the packet and returns to the ISR.

■ After all packets have been transferred to pNA+, the ISR exits using the pSOS+
kernel i_return system call (see pROBE+ Debug Support on page 2-93 for one
exception to this rule).

■ pNA+ processes the packets just received.

■ pNA+ calls NI_RETPKB to return each packet buffer to the NI.

It is also possible to implement a system in which incoming packets are detected us-
ing polling by setting the POLLflag of the NI. If this flag is set, the NI_POLL function
is called every 100 milliseconds.
NI (Network Interface) 2-87



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 88  Thursday, January 28, 1999  9:18 AM
pNA+-Dependent Interface

Internally, pNA+ uses optimized memory management to transfer packets between
various protocol layers. Each packet is represented by a linked list of data structure
triplets: message block, data block and data buffer.

The dependent interface supports packet transfer using message block linked lists.
When pNA+ sends a packet, it passes the NI a pointer to a message block. Similarly,
when the driver receives a packet, it attaches a message block to the data buffer and
passes pNA+ a pointer to the message block by way of the Announce_Packet entry.

This facility offers maximum performance by eliminating the need for copying be-
tween the NI and pNA+. Also, the driver requires less memory to operate, since the
need for transmit buffers is eliminated.

A pointer to the memory management routines pna_allocb , pna_esballoc ,
pna_freeb , and pna_freemsg is passed to the NI during NI_INIT calls. The NI
must use these routines to allocate and deallocate message block triplets.

A pointer to an interface callback function is passed to the NI during an NI_INIT
call. The callback function may be used by the NI to inform pNA+ of changes in the
status of the interface.

pNA+ Dependent Packet Transmission

pNA+ calls NI_SEND or NI_BROADCASTto prepare and send a packet to a destina-
tion. pNA+ passes a pointer to a message block list to be transmitted. The services
are responsible for freeing the message block link list.

pNA+-Dependent Packet Reception

Upon receipt of a packet, typically by way of an ISR, the driver performs the follow-
ing sequence of actions:

■ The interrupt routine transfers control to a packet ISR. The packet ISR is part of
the NI, and receives the packet into a packet buffer.

■ The driver attaches the packet buffer to a message block using the
pna_esballoc service call. The driver then calls the Announce_Packet entry
function and passes the message block pointer to pNA+. pNA+ queues the
2-88 NI (Network Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 89  Thursday, January 28, 1999  9:18 AM
packet and returns to the ISR. The driver repeats this process for each pending
packet.

■ The ISR then exits using the pSOS i_return system call. (If you are using the
pROBE+ debugger, there is an exception to this action. See section titled,
pROBE+ Debug Support on page 2-93 for further information.)

■ pNA+ processes the packet and then calls the free buffer routine (passed by way
of the pna_esballoc  function) to free the buffer.

The pNA + Announce_Packet Entry

When a packet arrives, the NI driver must inform pNA+ by calling the pNA+
Announce_Packet function. The address of this entry point is passed to the NI by
pNA+ as input when it calls NI_INIT .

The C syntax for the announce_packet  function is:

*announce_packet (
unsigned long   type,
char           *buff_addr,
unsigned long   count,
unsigned long   if_num,
char          * src_addr,
char          * dest_addr,
)

In the above syntax, announce_packet is the function pointer handed to the NI
driver from pNA+ in the NI_INIT  service call.

Announce_Packet takes six input parameters. Each parameter is 32 bits long. The
parameters are:

type Type of packet. It must be one of the following:

0x00000800 = IP packet
0x00000806 = ARP packet

Packets with headers other than IP or ARP are not passed to
pNA+ and are discarded by the NI.

buff_addr Pointer to the packet buffer containing the packet. When
IFF_RAWMEM is set, buff_addr  contains a pointer to the mes-
sage block list containing the packet.

count Size, in bytes, of the packet.
NI (Network Interface) 2-89



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 90  Thursday, January 28, 1999  9:18 AM
To summarize, upon receiving control by way of the Announce_Packet function,
pNA+ expects contents in registers r3 through r8 to look like the following:

The Announce_Packet entry returns a pSOS+ kernel status flag, which is used by
the ISR, if pNA+ is providing communication facilities for pROBE+. (See section
pROBE+ Debug Support on page 2-93.)

pNA+ Interface Callback

pNA+ provides the NI with an interface callback function. The callback function is
passed to the NI by pNA+ during an NI_INIT service call. The callback function
may be used by the NI to inform pNA+ of changes in the status of the interface. The
calling format resembles the pNA+ ioctl()  function.

The NI may set parameters such as the IP address, IP mask, IP destination address
for point-to-point links, the MTU, IP broadcast address or the flags of the interface.
This callback function is only meant to be used for setting interface parameters and
not for retrieving them. For instance, PPP may use this callback function to notify
pNA about the new IP address after a negotiation is complete and that the interface
is now active.

if_num Network interface number of the NI that received the packet.
Network interface numbers are assigned to each NI by pNA+
during initialization and are returned to the NI by the NI_INIT
service call.

src_addr Pointer to the source hardware address of the packet.

dest_addr Pointer to the destination hardware address of the packet.

Registers Contents

r3 type

r4 buff_addr

r5 count

r6 if_num

r7 src_addr

r8 dest_addr
2-90 NI (Network Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 91  Thursday, January 28, 1999  9:18 AM
The Interface_Callback function takes four parameters. Each parameter is 32
bits long. The parameters are:

Zero-Copy NI Driver

The zero-copy NI driver transfers ownership of the data buffer occupied by the re-
ceived packet to pNA+. This section describes some design considerations for devel-
oping a zero-copy NI driver.

The zero-copy NI driver cannot receive an IP packet if the number of fragments for
the packets exceeded the receive buffers configured in NI. The receive buffer is un-
available to the NI driver until pNA+ has finished processing the packet. pNA+ IP re-
assembly cannot be completed until the last fragment of the IP packet is received. If
the fragments for a single IP packet exceed the number of receive buffers in the NI
driver, the packet can never be received because NI will exhaust all of its receive
buffers before all the fragments of the packets can be received. Even though pNA+
has allocated sufficient memory buffers, the LAN driver cannot utilize those memory
blocks.

NOTE: This is not an issue with a nonzero copy NI driver since pNA+ makes a
copy of the received buffer and relinquishes its ownership back to the
driver.

cmd The command code. This must be one of:

SIOCSIFADDR Set the interface address.

SIOCSIFBRDADDR Set the IP broadcast address of the NI.

SIOCSIFDSTADDR Set point-to-point address for the interface.

SIOCSIFNETMASK Set the network mask.

SIOCSIFMTU Set the maximum transmission unit of the NI.

SIOCSIFFLAGS Set interface flags field. Currently, only the
IFF_UP  flag can be set.

argbuf Pointer to the command data. This must be filled with the ifreq
structure which is defined in the net/if.h  header file.

size Size of the argbuf  parameter. Must be sizeof(struct ifreq) .

if_num Network interface number of the NI making the request. It is the num-
ber returned by the NI_INIT  call.
NI (Network Interface) 2-91



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 92  Thursday, January 28, 1999  9:18 AM
To address this problem, the zero-copy NI driver can maintain a receive buffer
threshold called a low water mark. The driver keeps count of the remaining receive
buffers and whenever the number of receive buffers reaches a minimum threshold
value, the driver issues an indication to pNA+. This is done by logical ORing the
NI_RX_LOW_WATERMARK_REACHEDflag to the type parameter to announce the
packet. The NI_LOW_WATERMARK_REACHEDflag uses the upper 16 bits of the type
parameter (which were not used in versions of pNA+ prior to 4.0).

pNA+ copies the packet into its internal buffer and returns the receive buffers to the
driver by calling the free buffers function of the driver.

If the number of receive buffers in the driver goes above the receive low water mark,
the driver again indicates to pNA+, in a similar manner, by using the flag
NI_RX_ABOVE_LOW_WATERMARK.

This return value indicates to pNA+ that the receive threshold in the driver for a
specific IF_NUM no longer exists, and pNA+ resumes the zero-copy program.

The NI_RX_LOW_WATERMARK_REACHEDand NI_RX_ABOVE_LOW_WATERMARKflags
are defined in the include/ni.h  header file as follows:

#define NI_RX_LOW_WATERMARK_REACHED 0x00010000
#define NI_RX_ABOVE_LOW_WATERMARK 0x01000000

When pNA+ receives a low water mark indication from the zero-copy NI driver, it
temporarily switches to nonzero-copy mode and frees the receive buffer immedi-
ately; thus avoiding the conditions described above.

Promiscuous Mode Operation

When communication takes place between end stations that traverse through a
gateway, the packet contains the hardware address of the gateway at the MAC or
link layer, and the network address of the final destination at the network layer. A
host, capable of forwarding packets, generates ICMP redirect packets to the source
if it receives a packet which cannot be forwarded directly. This happens if the receiv-
ing host determines the received packets must be again forwarded to a gateway,
which resides on the same physical network as the source of the received packets.
Thus, the route is redirected.

The LAN driver receives all traffic on the LAN while operating in promiscuous mode.
Every packet is sent to pNA+ for processing. Without knowing the mode of operation
of the LAN driver for certain packets, this can result in packet forwarding by pNA+.
In addition, pNA+ generates unnecessary ICMP redirect packets to the sources of
2-92 NI (Network Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 93  Thursday, January 28, 1999  9:18 AM
those packets. This results in excess traffic being introduced into the network incor-
rectly and valuable network bandwidth is wasted.

To avoid this, pNA+ queries the LAN driver for its mode of operation at runtime, and
the promiscuous mode of operation for the LAN driver is enabled or disabled
through pNA+. This ensures that pNA+ correctly performs the packet forwarding
function.

pROBE+ Debug Support

If pNA+ is used by the pROBE+ debugger to communicate with the source level de-
bugger, then two additional requirements must supported by the NI.

The first requirement arises because pNA+ (and the NI) may be operating before
pSOS+ kernel is initialized. Normally, every ISR should exit by calling the pSOS+
kernel i_return system call. Obviously, this is not possible if pSOS+ kernel is not
running. Therefore, the NI ISR must be coded so that is only calls the pSOS+ kernel
I_ENTER and I_EXIT entries after pSOS has initialized. Before pSOS has initialized,
the NI ISR should not call into pSOS at all. This requirement can be met either by
installing a new ISR once pSOS has initialized, or by coding the ISR such that it
checks a flag to see whether pSOS is initialized. The flag can be cleared by the sys-
tem initialization code and set by the 'ROOT' task.

The variable PSOS_FLAGmust be zero prior to pSOS+ initialization, and nonzero af-
terwards. There are a number of ways the ISR can detect pSOS+ initialization. How-
ever, to simplify the process, Announce_Packet returns a pSOS+ status flag in
register D0. This flag indicates the status of pSOS+ as follows:

0x00000000 = pSOS+ not initialized
0x00000001 = pSOS+ initialized.

By storing the low byte of D0 into PSOS_FLAGafter each Announce_Packet call,
the above code fragment operates correctly.

The second requirement is a result of the fact that the pROBE+ debugger sometimes
polls for incoming packets. The NI must provide an additional NI service called
NI_POLL, which is described in the section NI Services below.
NI (Network Interface) 2-93



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 94  Thursday, January 28, 1999  9:18 AM
NI Services

The NI services explained in this section must be provided by the specific NI driver.
For each service, the structure of the arguments passed to the driver, and the argu-
ments themselves are explained in this section. The driver may be written in C code.
The pSOSystem provides a union that can be used to facilitate the argument pass-
ing in C code. This union is called nientry . The nientry union is defined in the
header file include/ni.h . The syntax to the entry point of the NI driver is as
follows:

long NiLan (unsigned long function, union nientry *args)

Following is a description of the arguments used by the NiLan  function call:

function Code of the function to execute. Function codes may be one of
the following:

Function Code Description

NI_INIT NI initialization call.

NI_GETPKB NI get buffer call.

NI_RETPKB NI return buffer call.

NI_SEND NI send packet call.

NI_BROADCAST NI broadcast call.

NI_POLL NI poll call.

NI_IOCTL NI I/O control call.

These codes definitions are located in the include/ni.h
header file.

args Pointer to the argument structure for a particular function
code. The individual structures, their names, and the specific
return value for the function code are explained in the specific
section that covers the function code.
2-94 NI (Network Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 95  Thursday, January 28, 1999  9:18 AM
NI_BROADCAST

The NI_BROADCASTfunction is called by pNA+ to transmit a packet to all nodes in
the network.

The C structure in the nientry union for the NI_BROADCASTservice routine is as
follows:

struct nibrdcast
{
char *buff_addr;     /* Address of the packet buffer */
long count           /* Size of the packet */
long type            /* Type of the packet ARP/IP */
long if_num          /* NI interface number */
} nibrdcast;

 The parameter block for this service is as follows:

Following is a field description of the nibrdcast  structure:

An example of addressing the count  field of the structure is as follows:

args->nibrdcast.count

Returns

NI_BROADCASTreturns 0 if the packet is successfully broadcast. Otherwise, it
returns an error.

buff_addr Address of the buffer containing the packet. When RAWMEM is
set, buff_addr  contains a pointer to the message block list.

count Size of the packet in bytes.

type Packet type. Its use depends on the data link protocol imple-
mented (Ethernet, token ring, and so on).

if_num Network interface number assigned to this NI.

 pblock + 0 buff_addr

             + 4 count

             + 8 type

             + 12 if_num
NI (Network Interface) 2-95



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 96  Thursday, January 28, 1999  9:18 AM
Notes

● NI_BROADCASTis responsible for returning the packet buffer whether or
not the packet is successfully broadcast.

● This service is similar to NI_SEND except that NI_BROADCASTtransmits the
packet to all other nodes in the network. If the medium (Ethernet, for exam-
ple) permits, this can be accomplished by a single transmission. Otherwise,
the packet must be individually sent to each node.

● If the application does not use ARP or does no IP broadcasts, this service is
unnecessary, and pNA+ never calls it.

NI_GETPKB

NI_GETPKB is called by pNA+ to allocate a packet buffer. This call is not necessary
for the drivers that support the pNA+ dependent packet interface, that is if:

IFF_RAWMEM == TRUE

The C structure in the nientry union for the NI_GETPKB service routine is as
follows:

struct nigetpkb
{
long count;      /* Size of the packet */
char *hwa_ptr;      /* Pointer to dest hardware address */
long if_num      /* NI interface number */
} nigetpkb;

The parameter block for this service is as follows:

pblock + 0 count

 + 4 hwa_ptr

 + 8 if_num
2-96 NI (Network Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 97  Thursday, January 28, 1999  9:18 AM
Following is a field description of the nigetpkb  structure:

An example of addressing the count  field of this structure is as follows:

args->nigetpkb.count

Returns

NI_GETPKB should return either the address of the allocated buffer, or a -1 if no
buffers are available.

Notes

● In most cases, the NI allocates all buffers from a pool of fixed size buffers.
The input parameters passed by pNA+ can, however, be used to select dif-
ferent sized buffers, based on the size of the requested buffer and the desti-
nation of the packet.

NI_INIT

NI_INIT is called by pNA+ to initialize the NI. It is called during pNA+ initialization
if the NI is defined in the initial NI table. Otherwise, it is called when add_ni() is
used to install the NI.

NI_INIT should initialize the network hardware; create a pool of packet buffers;
and initialize all other NI data structures. In addition, it should save the pNA+
Announce_Packet Entry address and the network interface number, both of which
are passed to NI_INIT  by pNA+ in the parameter block.

count Specifies the size of the requested packet buffer. NI can allocate
a larger buffer but not a smaller one. Normally, this parameter
is not used (see Notes).

hwa_ptr Points to the destination hardware address. Normally, this
parameter is not used (see Notes).

if_num Network interface number assigned to this NI.
NI (Network Interface) 2-97



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 98  Thursday, January 28, 1999  9:18 AM
The C structure in the nientry union for the NI_INIT service routine is as follows:

struct niinit
{
long (*ap_addr) (); /* pNA entry to receive packet */
long if_num; /* NI interface number */
long ip_addr; /* NI interface IP address */
struct ni_funcs *funcs; /* pNA functions (memory) */
} niinit;

The parameter block for this service is as follows:

Following is a field description of the niinit  structure:

An example of addressing the if_num  field of this structure is as follows:

args->niinit.if_num

Returns

The NI must return a pointer to the hardware address of the network interface. A
return value of -1 signifies that the network interface is not functional.

ap_addr Address of the Announce_Packet  entry point and is returned
by pNA+. The NI must save this address.

if_num Network interface number assigned to this interface and is
returned by pNA+. The NI must save this address.

ip_addr Internet address of the network interface. This is the address
provided by the user in the network interface table and is
passed by pNA+. Normally it can be ignored.

ni_funcs Pointer passed to memory management routines (pna_allocb ,
pna_esballoc , pna_freeb , and pna_freemsg ), and the
interface callback routine (pna_intf_cb ). It points to the
ni_funcs  structure defined in pna.h  header file.

pblock + 0 ap_addr

            + 4 if_num

            + 8 ip_addr

            + 12 ni_funcs
2-98 NI (Network Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 99  Thursday, January 28, 1999  9:18 AM
Notes

● If the interface is not using ARP, the hardware address returned by
NI_INIT  is not used.

● NI_INIT may raise the processor interrupt level. It should never lower the
interrupt level. On exit, it must restore the level to its value upon entry to
NI_INIT . If NI_INIT is called from pNA+ initialization, the interrupt level is
always 7. If NI_INIT is called as a result of an add_ni() , the interrupt
level is the same as that of the calling task.

● If called during pNA+ initialization (that is, the NI is in the initial NI table),
then NI_INIT must not make pSOS+ system calls. If NI initialization re-
quires pSOS+ services, NI_INIT can set a flag that is detected during the
next NI call. If NI_INIT is called as a result of an add_ni() call, pSOS+
services can be used.

NI_IOCTL

NI_IOCTL is called by pNA+ to perform various I/O control operations on the net-
work interface. The requested operation is indicated by the value of the command
element (see Table 2-11) in the parameter block passed to the function.

The C structure in the nientry union for the NI_IOCTL service routine is as
follows:

struct niioctl
{
long cmd;          /* ioctl command */
long *arg;         /* Pointer to ioctl argument */
long if_num;       /* NI interface IP address */
} niioctl;

The parameter block for the NI_IOCTL  service is as follows:

pblock + 0 command

+ 4 arg

+ 8 if_num
NI (Network Interface) 2-99



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 100  Thursday, January 28, 1999  9:18 AM
Following is a field description of the niioctl  structure:

An example of addressing the if_num  field of this structure is as follows:

args->niioctl.if_num

The commandelement is specified by a constant. The allowable constants are listed
in Table 2-11, and are defined in the include files pna.h  and pna_mib.h .

command Operation to be performed by the NI. The operations that can
be called by pNA+ are defined in header file pna.h . Valid
command values are listed in Table 2-11.

arg Argument for the operation indicated by command. Unless spec-
ified, arg  is a pointer to data type structure ifreq  (defined in
pna.h ). For MIB-II related operations, arg  is a pointer to the
data type struct mib_ifreq , which is defined in the C header
file pna_mib.h .

if_num Network interface number to which the call is made.

TABLE 2-11 NI_IOCTL  Operation Commands

Command Operation Description

Interface Related Operations:

SIOCSIFADDR Inform the NI of setting of its IP address.

SIOCSIFDSTADDR Inform a Point-to-Point NI of the destination IP
address.

SIOCPSOSINIT Inform NI that pSOS is initialized.

Multicasting Related Operations:

SIOCADDMCAST Add multicast hardware address for packet re-
ception. The arg  parameter is a pointer to the
data type structure mib_ifreq , defined in the C
header file pna_mib.h .

SIOCDELMCAST Delete multicast hardware address for packet
reception. The arg  parameter is a pointer to the
data type structure mib_ifreq , which is defined
in the C header file pna_mib.h .
2-100 NI (Network Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 101  Thursday, January 28, 1999  9:18 AM
SIOCMAPMCAST Map a protocol multicast address to a hardware
address. The arg  parameter is a pointer to
ni_map_mcast  structure which is defined in
pna.h . The type  field in the structure defines
the type of protocol. For the IP a value of 0x0800
is set. The hardware multicast address must be
returned in the field hdwraddr .

MIB-II Related Operations:

SIOCSGIFDESCR Get the NI descriptor.

SIOCGIFTYPE Get NI type.

SIOCGIFMTUNIT Get NI maximum transmission unit.

SIOCGIFSPEED Get NI interface speed.

SIOCGIFPHYSADDRESS Get NI physical address.

SIOCGIFADMINSTATUS Get NI administrative status.

SIOCGIFOPERSTATUS Get NI operational status.

SIOCGIFLASTCHANGE Get NI last change of status.

SIOCGIFINOCTETS Get number of octets received by the NI.

SIOCGIFINUCASTPKTS Get number of unicast packets received by the
NI.

SIOCGIFINNUCASTPKTS Get number of multicast/broadcast packets
received by the NI.

SIOCGIFINDISCARDS Get number of packets discarded by the NI.

SIOCGIFINERRORS Get number of error packets received by the NI.

SIOCGIFINUNKNOWNPROTOS Get number of packets with unknown higher
layer protocols.

SIOCGIFOUTOCTETS Get number of octets sent by the NI.

SIOCGIFOUTUCASTPKTS Get number of unicast packets sent by the NI.

TABLE 2-11 NI_IOCTL  Operation Commands (Continued)

Command Operation Description
NI (Network Interface) 2-101



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 102  Thursday, January 28, 1999  9:18 AM
Returns

The NI returns a 0 if successful, or an error value if an error condition exists.

Notes

● MIB-II operations might not be implemented if the application does not
require MIB-II support. A call to the NI to retrieve or set the MIB object is
made when the application makes an ioctl()  call on the NI MIB object.

● The operations SIOCSIFADDR and SIOCSIFDSTADDRare called by pNA+
when an application changes the IP address of the NI or the IP address of
the destination (Point-to-Point links) by using the ioctl()  function call.

● NI can implement a private operation, and the call can be made available to
the ioctl()  call.

● The operation SIOCPSOSINIT is called when pNA+ is initialized by pSOS+
kernel. This call is useful when pNA+ is used by the pROBE+ debugger.
Since the memory of pNA+ is re-initialized during the pSOS+ initialization,
the driver should remove all references to pNA+ data structures. The driver
typically has references to message block pointers.

SIOCGIFOUTNNUCASTPKTS Get number of multicast/broadcast packets sent
by the NI.

SIOCGIFOUTDISCARDS Get number of outbound packets discarded by
the NI due to resource problems.

SIOCGIFOUTERRORS Get number of outbound packets discarded due
to errors.

SIOCGIFOUTQLEN Get length of outbound queue of the NI.

SIOCGIFSPECIFIC Get NI specific object.

SIOCSIFADMINSTATUS Set NI administrative status.

TABLE 2-11 NI_IOCTL  Operation Commands (Continued)

Command Operation Description
2-102 NI (Network Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 103  Thursday, January 28, 1999  9:18 AM
NI_POLL

NI_POLL is called by pNA+ on behalf of the pROBE+ debugger to poll for incoming
packets. It is only called when pNA+ is being used by pROBE+ to support network
debugging.

If a packet has been received, NI_POLL must pass the packet to pNA+ using the
Announce_Packet entry point as described in the pSOSystem System Concepts
manual.

The C structure in the nientry union for the NI_POLL service routine is as follows:

struct nipoll
{
long if_num;      /* NI interface number */
} nipoll;

The parameter block is as follows:

Following is a field description of the nipoll  structure:

An example of addressing the if_num  field of this structure is as follows:

args->nipoll.if_num

Returns

NI_POLL should always return 0.

Notes

● Only one packet can be passed to pNA+ with each Announce_Packet call.
Announce_Packet should continue to be called until all packets have been
transferred to pNA+.

if_num Network interface number assigned to this NI by pNA+.

pblock + 0 if_num
NI (Network Interface) 2-103



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 104  Thursday, January 28, 1999  9:18 AM
NI_RETPKB

NI_RETPKB is called by pNA+ to return a packet buffer to the NI. This call is not
necessary for drivers that support the pNA+ Dependent Packet interface, that is if:

IFF_RAWMEM == TRUE

The C structure in the nientry union for the NI_RETPKB service routine is as fol-
lows:

struct niretpkb
{
char *buff_addr;  /* Address of the buffer */
long if_num /* NI interface number */
} niretpkb;

The parameter block is as follows:

Following is a field description of the niretpkb  structure:

An example of addressing the if_num  field of this structure is as follows:

args->niretpkb.if_num

Returns

This service should always return 0.

NI_SEND

NI_SEND is called by pNA+ to send a packet.

The C structure in the nientry union for the NI_SEND service routine is as follows:

struct nisend
{
char *hwa_ptr;     /* Pointer to dest hardware address */
char *buff_addr; /* Address of the packet buffer */

buff_addr Address of the packet buffer being returned.

if_num Network interface number assigned to this NI by pNA+.

pblock + 0 buff_addr

 + 4 if_num
2-104 NI (Network Interface)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 105  Thursday, January 28, 1999  9:18 AM
long count; /* Size of the packet */
long type; /* Type of the packet IP/ARP */
long if_num; /* NI interface number */
} nisend;

The parameter block is as follows:

Following is a field description of the nisend structure:

An example of addressing the if_num  field of this structure is as follows:

args->nisend.if_num

Returns

This service returns 0 if the packet is successfully sent. Otherwise, it returns an
error code.

Notes

● The NI_SEND function is responsible for returning the packet buffer
whether or not the packet was successfully sent. When the RAWMEMflag is
set the system call pna_freemsg is used to free the message block linked
list.

hwa_ptr Pointer to the hardware address of the destination.

buff_addr Address of the packet buffer containing the packet. When
IFF_RAWMEMis set it contains the pointer to the message block list.

count Size of the packet in bytes.

type Packet type. Its use depends on the data link protocol implemented
(Ethernet, token ring, and so on).

if_num Network interface number assigned to this NI.

           + 4 buff_addr

+ 8 count

+ 12 type

 + 16 if_num

pblock + 0 hwa_ptr
NI (Network Interface) 2-105



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 106  Thursday, January 28, 1999  9:18 AM
SLIP (Serial Line Internet Protocol)

Description

Serial Line Internet Protocol (SLIP) is a packet framing protocol that defines a se-
quence of characters to frame IP packets on a serial line. It does not provide ad-
dressing, packet type identification, error detection or correction, or compression
mechanisms. SLIP is commonly used on dedicated serial links and is usually used
with line speeds between 1200bps and 19.2Kbps. It is useful for allowing a mix of
hosts and routers to communicate with one another. For example: host-host, host-
router and router-router are all common SLIP network configurations.

The SLIP driver in pSOSystem is an implementation of the SLIP protocol as defined
in RFC1055. It also supports Van Jacobson TCP/IP header compression as defined
in RFC1144. The driver is implemented as a Network Interface (NI) to the pNA+ com-
ponent to allow TCP/IP operations over serial lines. It can be used by networking
applications or it can be configured as a standard pNA+ Network Interface to sup-
port the Integrated Systems source level debugger.

SLIP driver can be configured into pNA+ either by using a add_ni() call or by con-
figuring it into the pNA+ Network Interface table. It must be configured into the ini-
tial Network Interface table if it is to be used by the debugger.

Configuration

There are several site dependent parameters that are required to configure the SLIP
driver into pSOSystem. These are defined in the file slip_conf.h . The parameters
are defined using the C #define  statement.

SLIP_CHANNEL Specifies the serial channel number for the SLIP interface.

SLIP_MTU Specifies the Maximum Transmission Unit (MTU) for the SLIP
interface. This value must be equal to the MTU of the peer. The
parameter additionally defines the size of the buffers allocated
at the local node.

CSLIP If set to 1, Van Jacobson TCP/IP header compression is per-
formed on the SLIP interface. If set to 0, Van Jacobson header
compression is not performed on the SLIP interface.

SLIP_LOCAL_IP Defines the IP address of the SLIP interface.
2-106 SLIP (Serial Line Internet Protocol)



pSOSystem Programmer’s Reference Interfaces

2

pr.book  Page 107  Thursday, January 28, 1999  9:18 AM
SLIP_CONF Example

An example of a slip_conf.h  file is shown in Example 2-16.

EXAMPLE 2-16: slip_conf.h file

/***********************************************************************/
/* */
/*   MODULE: slip_conf.h */
/*   PRODUCT: pNA+ */
/*   PURPOSE: User configurations for SLIP driver */
/*   DATE: 93/11/15 */
/* */
/********************************************************************* */
/* */
/*              Copyright 1998, Integrated Systems Inc. */
/*                      ALL RIGHTS RESERVED */
/* */
/*   This computer program is the property of Integrated Systems Inc. */
/*   Santa Clara, California, U.S.A. and may not be copied */
/*   in any form or by any means, whether in part or in whole, */
/*   except under license expressly granted by Integrated Systems Inc. */
/* */
/*   All copies of this program, whether in part or in whole, and */
/*   whether modified or not, must display this and all other */
/*   embedded copyright and ownership notices in full. */
/* */
/***********************************************************************/

#ifndef __SLIP_CONF_H__
#define __SLIP_CONF_H__

/*====================================================================*/
/* User configuration parameters */
/*====================================================================*/

#define SLIP_CHANNEL 3 /* which channel to use as SLIP */
#define SLIP_MTU 1006 /* also used for buffer size */
#define CSLIP 1 /* define to 0 for plain SLIP! */
#define SLIP_LOCAL_IP 0xc1000002 /* 193.0.0.2  */
#define SLIP_PEER_IP 0xc1000004
#define SLIPBUFFERS 32 /* Number of slip buffers */

SLIP_PEER_IP Defines the peer IP address of the SLIP interface.

SLIPBUFFERS Defines the number of buffers configured in the SLIP driver.
This includes both the receive and transmit buffers. The size of
the buffers configured will be twice the SLIP_MTU value.
SLIP (Serial Line Internet Protocol) 2-107



Interfaces pSOSystem Programmer’s Reference

pr.book  Page 108  Thursday, January 28, 1999  9:18 AM
/*====================================================================*/
/* End of user configurations */
/*====================================================================*/

#endif /* __SLIP_CONF_H__ */
2-108 SLIP (Serial Line Internet Protocol)



pr.book  Page 1  Thursday, January 28, 1999  9:18 AM
3

3

Standard pSOSystem Block
I/O Interface
Introduction

This chapter discusses the standard pSOSystem Block I/O Interface. It provides:

■ A general overview of the block I/O interface.

■ Detail information regarding the use of pHILE+ block I/O devices.
(See page 3-3.)

■ The specification for the SCSI device driver; a block I/O type interface.
(See page 3-23.)

Overview

The standard pSOSystem Block I/O Interface, defines the interface through which
application programs interact with block oriented I/O devices. It also serves as a ref-
erence to developers working on writing device drivers for block oriented devices to
work under the pSOSystem environment.

The block device driver interface document is an extension to the standard pSOS+
device driver interface which is documented in the pSOSystem System Concepts
manual. The block device driver interface document merely defines the structure of
the I/O Parameter Block (IOPB) passed to the various driver entry points. The fol-
lowing discussion assumes that you are already familiar with the standard pSOS+
device driver interface.

There are two types of block oriented I/O devices: sequential, such as tape; and ran-
dom access, such as disk. This discussion covers only random access block oriented
devices.
3-1



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 2  Thursday, January 28, 1999  9:18 AM
Who must understand and follow this specification?

As an application developer, you need to understand this specification if your appli-
cation needs to directly interact with the device through the de_* services provided
by the pSOS+ kernel. A random access block oriented I/O device, such as a disk, is
usually not accessed that way. Instead the random access device contains one or
more volumes which each contains a file system. The application accesses the file
system using pHILE+ by calling standard pREPC+ ANSI C library functions, the C++
I/O streams package, or pHILE+. Therefore it is not necessary to have a detailed un-
derstanding of the device driver interface to access a file system. However, you may
still need to understand a few details, like how to address the device (such as the
device naming convention) and how to use de_cntrl() to initialize the disk (low
level physical format of floppy disks or creating primary disk partitions on hard
disks). pHILE+ itself, not disk drivers, handles the next step after disk initialization,
namely volume initialization (writing a boot record or root block, and creating an
empty file system).

Note that all the standard pSOSystem drivers that perform block I/O follow this
specification. Many custom drivers for block oriented I/O devices are expected to
follow this specification. As a driver developer, pSOSystem does not require you to
follow any specific I/O driver interface. However, if you want your driver to work
with other pSOSystem software (like pHILE+) that perform block I/O, you must
write the driver to follow this specification.

What is a Block Oriented I/O Device?

A block oriented I/O device stores data in blocks. All I/O starts and stops on block
boundaries. It is not possible to read or write part of a block. Blocks can be either all
the same size, or variable sized. A disk drive has fixed size blocks with 512 bytes,
the most common size today. With fixed sized blocks, the I/O size and starting block
number, for example BUFFER_HEADERmembers, b_bcount and b_blockno , re-
spectively, are in units of blocks.

When reading from or writing to a block oriented device the data read or written can
be read again. A random access block oriented I/O device requires only de_read() ,
either directly or from pHILE+.
3-2



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 3  Thursday, January 28, 1999  9:18 AM
pHILE+ Devices

This section initially discusses the aspects of pHILE+ devices that are common to all
driver entries, as well as introducing the aspects that only apply to particular driver
entries. The remaining portions of this section discuss each driver entry and the
aspects that apply to that entry.

Except for NFS volumes, the pHILE+ file system manager accesses a volume by call-
ing a device driver via the pSOS+ I/O switch table. When needed, the pHILE+ file
system manager calls the driver corresponding to the major and minor device num-
ber specified when the volume was mounted.

Device drivers are not initialized by the pHILE+ file system manager. They must be
initialized by your application before mounting a volume on the device. Refer to the
pSOSystem System Concepts manual for more information about initializing of de-
vice drivers.

The pHILE+ file system manager uses driver services for the following three pur-
poses:

■ I/O operations

■ First time initialization of disk partitions and magneto-optical disks

■ Media change

Of these three purposes, only I/O operations, is required. Therefore, the corre-
sponding driver entries de_read() and de_write() are required to be supplied by
every driver. The other two purposes are optional.

I/O operations

The de_read() and de_write() entries are used for I/O operations. They are
required in all drivers used with pHILE+.

First time initialization of disk partitions and magneto-optical disks

The de_cntrl() driver entry is called with cmd set to DISK_GET_VOLGEOMto
get the geometry of the partition or unpartitioned disk. Without this,
pcinit_vol() supports re-initialization but not first-time initialization of disk
partitions and arbitrary unpartitioned disk geometries since the geometry is not
known. (pcinit_vol() always supports first time initialization of six built-in
floppy disk formats and one built-in magneto-optical disk format.)
pHILE+ Devices 3-3



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 4  Thursday, January 28, 1999  9:18 AM
Media change

The de_cntrl() entry cmd DISK_SET_REMOVED_CALLBACKis required for a
driver to report a media change to pHILE+. It could be provided by drivers for
devices with removable media such as floppy disks and magneto-optical disks.
It could also be provided by drivers for removable devices, for example, a
PCMCIA SCSI card. Here, the media might not be removable but the whole
device is.

A driver can implement driver services not used by the pHILE+ file system manager
for additional functions; for example, physical I/O, error sensing, formatting, and so
forth. A driver can implement the de_init() , de_open() , and de_close() driver
entries even though they are not called by the pHILE+ file system manager. A driver
can add additional cmd values to the de_cntrl()  entry.

Before a driver exits, it must store an error code indicating the success or failure of
the call in ioparms.err . A value of zero indicates the call was successful. Any
other value indicates an error condition. In this case, the pHILE+ file system man-
ager aborts the current operation and returns the error code back to the calling ap-
plication. Error code values are driver defined. Check the error code appendix of
pSOSystem System Calls for the error code values available to drivers.

Disk Partitions

This section discusses aspects of disk partitions that apply to more than one device
driver entry point. Disk partitions are discussed again underneath the driver entry
points to present the aspects that apply to only that device driver entry point.

Disks can be either partitioned or unpartitioned. Normally, hard disks are parti-
tioned, and other disks are not. A partitioned disk is divided by a partition table,
into one or more partitions each of which contains one volume. An unpartitioned
disk is not divided. The entire disk contains one volume. Note, an unpartitioned
disk and a partitioned disk with only one partition are not the same.

The partitions on a partitioned disk do not all have to contain the same format vol-
umes. For example, a disk with four partitions could have two partitions containing
pHILE+ format volumes, one containing an MS-DOS FAT12 format volume, and one
containing an MS-DOS FAT16 format volume, or any other combination.

Our supported disk partitioning is compatible with MS-DOS. The device drivers
supplied by Integrated Systems use the same disk partition table format as
MS-DOS. This is entirely separate from the file system format used inside a parti-
tion. Since the disk table format is the same as MS-DOS, if a partition contains an
3-4 pHILE+ Devices



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 5  Thursday, January 28, 1999  9:18 AM
MS-DOS format volume, that partition can be accessed by MS-DOS or Windows if
the disk is connected to a computer running those operating systems.

The partition number and drive number are encoded within the 16-bit minor device
number field. The standard mapping is as follows:

■ The upper eight bits are the partition number.

■ The first partition is one. Zero is used if the disk is unpartitioned.

■ The lower eight bits are the drive number.

Table 3-1 shows the mapping of minor device number to drive number and partition
number for drive number zero. All disk drivers supplied by Integrated System, Inc.
implement this standard mapping.

In custom device drivers, a nonstandard mapping of 16-bit minor number to parti-
tion number and drive number is possible. Disk partitions are implemented by disk
drivers, not by pHILE+ itself. pHILE+ passes the 32-bit device number including the
16-bit minor device number to the device driver without interpretation. There is only
one place internally that pHILE+ divides the 16-bit minor device number into a par-
tition number and a drive number: parsing volume names when they are specified
as major.minor.partition. With a non-standard mapping, an application must use
major.minor and encode the drive number and partition number into the 16-bit
minor number. For example, if custom device driver 3 uses the bottom 12 bits for
the drive number and the top 4 bits for the partition number, an application must
use 3.0x1002 or 3.4098, not 3.2.1, for driver 3, drive 2, partition 1.

TABLE 3-1 Minor Number to Drive/Partition Mapping

Minor Number Drive Partition

0 (0x0) 0 Unpartitioned

256 (0x100) 0 1

512 (0x200) 0 2

768 (0x300) 0 3

1024 (0x400) 0 4

1280 (0x500) 0 5

1536 (0x600) 0 6

...
pHILE+ Devices 3-5



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 6  Thursday, January 28, 1999  9:18 AM
The Buffer Header

A buffer header is used to encapsulate the parameters of a disk read or write. In the
de_read() and de_write() entries of a device driver, the IOPB parameter block
pointed to by ioparms.in_iopb is a buffer header. One parameter of the applica-
tion I/O error callback is a buffer header to describe the operation that failed.

A buffer header has the following structure, which is defined in pSOSystem
include/phile.h :

typedef struct buffer_header
{

unsigned long b_device; /* device major/minor number */
unsigned long b_blockno; /* starting block number */
unsigned short b_flags; /* block_type: data or control */
unsigned short b_bcount; /* number of blocks to transfer */
void b_devforw; /* system use only */
void b_devback; /* system use only */
void b_avlflow; /* system use only */
void b_avlback; /* system use only */
void *b_bufptr; /* address of data buffer */
void b_bufwaitf; /* system use only */
void b_bufwaitb; /* system use only */
void *b_volptr; /* system use only */
unsigned short b_blksize; /* size of blocks in base 2 */
unsigned short b_dsktype; /* type of disk */

} BUFFER_HEADER;

A driver uses only six of the parameters in the buffer header. They are the following:

b_blockno Specifies the starting block number to read or write.

b_bcount Specifies the number of consecutive blocks to read or write.

b_bufptr Supplies the address of a data area; it is either the address of a
pHILE+ cache buffer or a user data area. During a read operation,
data is transferred from the device to this data area. Data flows in
the opposite direction during a write operation.

b_flags Contains a number of flags, most of which are for system use only.
However, the low order two bits of this field indicate the block type,
as follows:

Bit 1 Bit 0 Explanation

0 0 Unknown block type

0 1 Data block

1 0 Control block
3-6 pHILE+ Devices



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 7  Thursday, January 28, 1999  9:18 AM
The remaining fields are for system use only.

The contents of the buffer header should not be modified by a driver. It is strictly a
read-only data structure.

Driver Initialization Entry

This section discusses initialization requirements unique to disk drivers. This in-
cludes media change, disk partitions, logical disk geometry, and write-protect.

Media Change

The only media change initialization required is to zero the stored address of the
pHILE+ device removed callback routine. This allows the driver to work with older
pHILE+ versions that do not support media change.

Disk Partitions and Logical Disk Geometry

Initialization of disk partitions and logical disk geometry are interrelated. Disk parti-
tion initialization reads the on-disk partition tables to initialize the driver's in mem-
ory partition table. This table contains for each partition the sys_ind field of the
partition table, the start as a disk logical block address, and the size. Both the start
and the size are in units of 512-byte blocks.

b_flags is used by more sophisticated drivers that take special
action when control blocks are read or written. Most drivers will
ignore b_flags .

b_flags  low bits = 00 (unknown type) can occur only when
read_vol()  or write_vol()  is issued on a volume that was
initialized with intermixed control and data blocks. In this case, the
pHILE+ file system manager will be unable to determine the block
type. If read_vol() or write_vol() is used to transfer a group of
blocks that cross a control block/data block boundary, these bits
will indicate the type of the first block.

b_blksize Specifies the size (in base 2) of blocks to read or write.

b_dsktype Specifies the type of MS-DOS disk involved. It is set by the dktype
parameter of pcinit_vol()  and is only valid when pHILE+ calls
the driver as a result of a call to pcinit_vol() . During all other
system calls, this value is undefined. pcinit_vol()  is described
in the pSOSystem System Concepts and the pSOSystem System
Calls manuals.
pHILE+ Devices 3-7



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 8  Thursday, January 28, 1999  9:18 AM
Logical disk geometry initialization calculates both sectors per track and number of
heads and stores them for use by the de_cntrl() function DISK_GET_VOLGEOM:
Get volume geometry . These two initializations are done differently by each type of
disk driver. The calculations are briefly explained in the subsections that follow for
non-removable media. The explanation for removable media is in
DISK_GET_VOLGEOM: Get Volume Geometry on page 3-16 since it is not done at
driver initialization time. For full details see the pSOSystem disk device drivers.

Your driver should recognize partition 0 as a partition spanning the entire disk; that
is, your driver should not perform partition table translation on accesses in parti-
tion 0.

Assuming your driver follows these guidelines, prepare and make use of DOS hard
drives in the pHILE+ environment as described in the pSOSystem System Concepts
manual.

Partitioned SCSI Disk

Disk partitions (Done first)—Both the start and the size are computed from the
start_rsect and nsects partition table fields. The CHS fields cannot be used
since the logical disk geometry is not known. The start_rsect field of a primary
partition and of the first extended partition is absolute. The start_rsect field of
all other extended partitions is relative to the first extended partition. The
start_rsect field of a logical partition is relative to the containing extended parti-
tion. See the pSOSystem SCSI driver for more specifics.

The disk drivers supplied with pSOSystem support the following partitioning
scheme. The driver reads logical sector 0 (512 bytes) of the disk and checks for a
master boot record signature in bytes 510 and 511. The signature expected is 0x55
in byte 510 and 0xAA in byte 511. If the signature is correct, the driver assumes the
record is a master boot record and stores the partition information contained in the
record in a static table. This table is called the driver’s partition table.

The driver’s partition table contains entries for each partition found on the disk
drive. Each entry contains the beginning logical block address of the partition, the
size of the partition, and a write-protect flag byte. The driver uses the beginning
block address to offset all reads and writes to the partition. It uses the size of the
partition to ensure the block to be read or written is in the range of the partition.
3-8 pHILE+ Devices



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 9  Thursday, January 28, 1999  9:18 AM
If the driver finds a master boot record, it expects the disk’s partition table to start
at byte 446. The driver expects the disk’s partition table to have four entries, each
with the following structure:

struct ide_part {
unsigned char boot_ind; /* Boot indication, 80h=active */
unsigned char start_head; /* Starting head number */
unsigned char start_sect; /* Starting sector and cyl (hi)*/
unsigned char start_cyl; /* Starting cylinder (low) */
unsigned char sys_ind; /* System Indicator */
unsigned char end_head; /* Ending head */
unsigned char end_sect; /* Ending sector and cyl (high) */
unsigned char end_cyl; /* Ending cylinder (low) */
unsigned long start_rsect; /* Starting relative sector */
unsigned long nsects; /* # of sectors in partition */

};

The driver computes the starting relative sector and size of each partition table en-
try. If the driver is an IDE driver, it computes these values from the cylinder, head,
and sector fields (start_head through end_cyl ). If the driver is a SCSI driver, it
computes these values from the starting relative sector (start_rsect ) and number
of sector (nsects ) fields.

The driver checks the system indicator (sys_ind ) element of the first entry. If the
system indicator is 0, the driver considers the entry to be empty and goes on to the
next entry. If the system indicator is 0x05, the driver considers the entry to be an
extended partition entry that contains information on an extended partition table. If
the system indicator is any other value, the driver considers the entry to be a valid
entry that contains information on a partition on the disk. The driver then stores
the computed starting relative sector and the computed size of the partition in the
driver’s partition table. (The driver never uses cylinder/head/sector information.)

If an extended partition entry is found, the starting relative sector (start_rsect ) is
read as an extended boot record and checked the same way the master boot record
is checked. Each extended boot record can have an extended partition entry. Thus,
the driver may contain a chain of boot records. While there is no limit to the number
of partitions this chain of boot records can contain, there is a limit to the number of
partitions the driver will store for its use in its partition table. This limit is set to a
default value of eight. This value may be changed by editing the SCSI_MAX_PART
define statement found in the include/drv_intf.h file in pSOSystem, and com-
piling the board support package you are using for your application.
SCSI_MAX_PART can be any integer between 1 and 256, inclusive.

NOTE: Once an extended partition entry is found, no other entries in the current
Boot Record are used. In other words, an extended partition entry marks
the end of the current disk partition table.
pHILE+ Devices 3-9



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 10  Thursday, January 28, 1999  9:18 AM
Refer to, SCSI (Small Computer System Interface) Driver on page 3-23 for more infor-
mation on the SCSI driver interface.

Logical disk geometry (Done second)—Computed by solving the equations from
equating the logical block address corresponding to the partition table CHSand rela-
tive sector fields of the start and end of the first partition. See the pSOSystem SCSI
driver for more information.

Unpartitioned SCSI Disk

Disk partitions—Not applicable. Mark the disk as unpartitioned.

Logical disk geometry—If you need to interchange this disk with another computer,
you should pick values using the same algorithm as the SCSI disk partition soft-
ware of that other computer. That allows a pSOSystem partition application to call
this de_cntrl() function and partition your SCSI disk such that it is interchange-
able with that other computer. The Integrated Systems’ SCSI disk driver uses an
algorithm compatible with Adaptec SCSI adapters. They are the SCSI adapters sup-
ported by pSOSystem/x86. If you don't need interchangeability with another com-
puter or never partition a SCSI disk with pSOSystem, pick any legal values as the
RAM disk does.

Partitioned IDE Disk

There are three methods. The first two are preferred. The pSOSystem IDE disk
driver supports both of the first two.

Logical disk geometry

■ (Done first) Query the IDE drive for the physical geometry. Translate that to
logical geometry. See the pSOSystem IDE driver.

■ (Done first) For x86, obtain the logical geometry from CMOS. See the
pSOSystem IDE disk driver.

■ (Done second) Compute it the same as the SCSI driver does partitioned disks.

Disk partitions

■ (Done second) This is used with the first two logical disk geometry methods.
Compute the starting and ending blocks from the CHS partition table fields us-
ing the logical disk geometry.

■ (Done first) This is used with the third logical disk geometry method. Compute it
the same as the SCSI driver does partitioned disks.
3-10 pHILE+ Devices



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 11  Thursday, January 28, 1999  9:18 AM
Unpartitioned IDE Disk

Disk partitions—Not applicable. Mark the disk as unpartitioned.

Logical disk geometry— There are three methods. The first two are preferred. The
pSOSystem IDE disk driver supports both of the first two.

■ Query the IDE drive for the physical geometry. Translate that to logical geome-
try. See Integrated Systems’ IDE driver.

■ For x86, obtain the logical geometry from CMOS. See Integrated Systems’ disk
driver.

■ Compute it the same as the SCSI driver does unpartitioned disks.

de_read() and de_write() Entries

The de_read() and de_write() driver entries are required in every pHILE+ device
driver. They are used for I/O operations.

In the de_read() and de_write() entries of a pHILE+ device driver, the IOPB
parameter block pointed to by ioparms.in_iopb is a buffer header. (See The Buffer
Header on page 3-6).

If you want interchangeability of MS-DOS FAT format file systems with an MS-DOS
or Windows computer use only devices with a 512-byte sector size. Although the
pHILE+ file system manager allows you to initialize an MS-DOS partition file system
on devices with other sector sizes, if you connect such devices to an MS-DOS or
Windows system, it will not be able to read them.

You can set the write-protect byte through an I/O control call to the driver. The
driver checks this byte whenever a write is attempted on the partition. If the write-
protect byte is set, it does not perform the write and returns an error to indicate the
partition is write-protected.

I/O Transaction Sequencing

pHILE+ drivers must execute transaction (i.e. read and write) requests that refer to
common physical blocks in the order in which they are received. For example, if a
request to write blocks 3-7 comes before a request to read blocks 7-10, then, be-
cause both requests involve block 7, the first request must be executed first.

If a pSOS+ semaphore is used to control access to a driver, then that semaphore
must be created with FIFO queuing of tasks. Otherwise, requests posted to the
driver might not be processed in the order in which they arrive.
pHILE+ Devices 3-11



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 12  Thursday, January 28, 1999  9:18 AM
Logical-to-Physical Block Translation

The b_blockno , b_count , and b_blksize parameters together specify a sequence
of logical blocks of a volume that must be read or written by the driver. Up to four
translations are required to convert this to the physical block addresses on the de-
vice. These translations are listed below in the order that they are applied.

1. Block size scaling

This translation converts from a sequence of arbitrary-sized logical blocks of a
volume to a sequence of logical blocks of a volume that are sized to match the
physical block size of the volume.

This translation is nearly never needed with MS-DOS format since most disks
today have a 512 byte physical block size, which is the same as the logical block
size of MS-DOS format. However, pHILE+ format can have logical block sizes of
any power of 2 from 28 = 256 bytes to 215 = 32K bytes. Therefore, this transla-
tion is required for pHILE+ format.

The physical block size of the disk drive can be the same or smaller than the
logical block size of the read or write request. Therefore, b_blockno and
b_count  must be scaled.

This translation is implemented as follows. If the physical block size is greater
than the logical block size, the driver returns an error without any disk access,
e.g. SCSI returns ESODDBLOCKin pSOSystem include/drv_intf.h . Other-
wise, the driver multiplies both b_blockno and b_count by the quotient of log-
ical block size, i.e. 1 << b_blksize , divided by the physical block size.

2. Partition translation

This translation converts from a sequence of standard-sized logical blocks of a
volume to a sequence of standard-sized logical blocks of a disk.

If the partition number is 0, the access is to an unpartitioned disk. No transla-
tion is made. b_blockno and b_count are compared to the total disk capacity
to detect accessing beyond the end of the disk.

If the partition number is nonzero, the access is to a partition. The first partition
is one. The driver looks up in a table the partition's starting block number and
number of logical blocks. b_blockno and b_count are compared against the
partition size to detect accessing beyond the end of the partition. Then, the par-
tition's starting logical block number is added to b_blockno .
3-12 pHILE+ Devices



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 13  Thursday, January 28, 1999  9:18 AM
3. Logical block number to Logical CHS (Only IDE disks)

This translation converts from a sequence of logical block numbers on a disk to
a sequence of logical cylinder/head/sector parameters on a disk. The logical
CHS parameters match the geometry used in the CHS partition table entries.

This translation uses the following equations:

Cylinder = block/(sectors-per-track * heads)
Head = (block/sectors-per-track) MOD heads
Sector = (block - ((block/sectors-per-track)*sectors-per-track)) + 1

Block starts at 0. Cylinder is 0 to 1023. Head is 0 to 254 or 255. Sector is 1 to
63. This gives a maximum partitioned IDE disk capacity of 1024 cylinders * 255
heads * 63 sectors-per track * 512 bytes per sector which is between 7.8 and 7.9
gigabytes.

4. Logical CHS to Physical CHS (Only large IDE disks)

This translation converts the cylinder/head/sector parameters from the logical
geometry used by the partition table entries to the physical geometry used at
the IDE hardware interface to the disk. These are not the same for IDE disks
with over 1,024 cylinders.

This translation is a result of differing field widths for cylinder/head/sector
information in the partition table entries and the IDE hardware interface. See
Table 3-2 on page 3-19 for specifics. If field sizes are limited to the smaller of the
two, no translation from partition table geometry to IDE geometry is needed.
Above this geometry, i.e. IDE disks with over 1,024 cylinders or over 63 sectors-
per-track, translation is required.

This translation creates another problem. The translation was never standard-
ized and can vary from one BIOS to the next. Thus, an IDE disk that requires
translation might not be accessible by a computer other than the one that parti-
tioned it, or even by the same computer if the computer's motherboard is
replaced or the BIOS is upgraded. This is a problem for interchanging a disk
between two MS-DOS computers, and also between an MS-DOS computer and
a pSOSystem computer. Fortunately, one of the translation methods seems to
be much more common than the others; that is, the one implemented in the
pHILE+ Devices 3-13



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 14  Thursday, January 28, 1999  9:18 AM
pSOSystem IDE drivers. Therefore, most of the time IDE disks can be inter-
changed between pSOSystem and MS-DOS.

The implementation of this translation is not explained here. Refer to the
pSOSystem IDE device driver.

Media Change

If a pHILE+ device driver supports removable media it can notify pHILE+ whenever
media is removed by calling the disk removed callback routine. The address of this
callback routine is provided to the de_cntrl() device driver entry cmd
DISK_SET_REMOVED_CALLBACK. It stores the disk removed callback routine’s ad-
dress in a local variable where it is accessible to the de_read() and de_write()
device driver entries. Only one scalar variable is needed since the same callback
routine is called for every drive and partition. The driver should not call the callback
routine if the stored address is zero. This allows using the driver with older pHILE+
versions that do not support media change.

The device removed callback routine has the following C interface type:

unsigned long (*)(unsigned long dn, unsigned long bitmask);

The bitmask parameter is used to mark removed multiple volumes in one call; that
is, all partitions on one disk, or all disks on one SCSI adapter. The zero bits are
ignored when checking whether to mark a mounted volume. Therefore, the extreme
values of 0 and ~0UL (zero unsigned long, or -1) would mark all mounted volumes,
or only one volume, respectively. The SCSI driver supplied by Integrated Systems,
Inc. divides the 16-bit minor device number as follows:

Cylinder
(bits)

Head
(bits)

Sector
(bits)

Partition table 10 8 6

IDE interface 16 4 8

No translation 10 4 6

3 bits logical unit number

5 bits partition number

3 bits adapter number

5 bits target ID
3-14 pHILE+ Devices



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 15  Thursday, January 28, 1999  9:18 AM
Therefore, the bitmask value used should be 0xffffe0ff to ignore only the partition
number. The same bitmask value can be used for other Integrated Systems, Inc.
disk drivers.

If a custom disk driver implements a different mapping for the minor device num-
ber, it would use a different bitmask value that corresponds to its minor device
number mapping. It can call the callback multiple times if no bitmask value marks
all of the required volumes in a single call.

Two types of devices are supported:

■ Type 1—Devices that generate an interrupt when media is removed or the door
securing media is opened, as in the case of a floppy disk drive.

■ Type 2—Devices that do not report media has been removed until the device is
accessed after the removal, for example: a SCSI driver.

The de_read() and de_write() entries of a type 2 device must be programmed as
follows. First, they determine that the media was removed without successfully per-
forming the read or write. This could happen two ways. Either they poll the device
before I/O to determine whether the media was changed, or after a media change
the device returns an error code instead of performing a requested read or write.
Second, they call the device removed callback routine to report the media removal to
pHILE+. Third, they return an error code to pHILE+. The value doesn't matter. The
error code will be ignored since the media removal was already reported.

The de_read() and de_write() entries of a type 1 device can be programmed the
same as a type 2 device. In this case, either the device's media-removed interrupt is
disabled, or the media removed interrupt merely sets a flag in the disk driver which
is checked during the poll for media removal above.

Alternately, the de_read() and de_write() entries of a type 2 device can be pro-
grammed to report media removals to pHILE+ within the media-removed interrupt
handler. The media-removed interrupt handler calls the pHILE+ disk removed
callback. The de_read() and dw_write() entries do not call the disk removed
callback.

de_cntrl() Entry

The de_cntrl() driver entry of a pHILE+ device driver is optional. It is used by first
time initialization of disk partitions and magneto-optical disks, which is done by
pcinit_vol() with dktype DK_DRIVER . It is also used to set the disk removed
callback, which the disk driver can use to notify pHILE+ that a disk has been
removed. If not supported, these features are not available.
pHILE+ Devices 3-15



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 16  Thursday, January 28, 1999  9:18 AM
In the de_cntrl() entry of a pHILE+ device driver, the IOPB parameter block
pointed to by ioparms.in_iopb is a structure whose first field is an unsigned long
that contains a function code. The remaining fields in the structure, if any, depend
on the value of the function code. pHILE+ reserves de_cntrl() function codes 100
through 199. Other function code values can be used to provide additional
de_cntrl() features not used by pHILE+ itself. struct disk_ctl_iopb is modi-
fied to provide a definition of the IOPB parameter blocks used by all de_cntrl()
function codes common to more than one disk driver by adding additional fields to
the enclosed union u . Symbols for the pHILE+ reserved function code values and
struct disk_ctl_iopb  are defined in pSOSystem include/phile.h .

DISK_GET_VOLGEOM: Get Volume Geometry

The de_cntrl() function code DISK_GET_VOLGEOMis used to obtain the volume
geometry. pHILE+ pcinit_vol() with dktype DK_DRIVER calls this to obtain the
volume geometry and file system parameters needed to compute the MS-DOS boot
record of either an unpartitioned disk, such as partition number 0, or a single-disk
partition. The IOPB parameter block is struct disk_ctl_iopb with union field
vol_geom . The structure definition is listed below. This function returns results in
struct vol_geom .

Optional fields are either calculated or defaulted if they are zero. Zero will always
work. The only time a nonzero value would be used is if it is necessary to exactly
match a standard floppy or magneto-optical disk format and the calculated or
default value is different.

typedef struct
{
unsigned long begin; /* Partition: Beginning logical block

* address or Unpartitioned: 0 */
unsigned long nsects; /* Number of sectors in partition/disk */
unsigned long secpfat; /* (Optional) Number of sectors per FAT */
unsigned short nrsec; /* (Optional) Number of reserved sectors

* Default 1 */
unsigned short nrdent; /* (Optional) Number of root directory

* entries
* Partition: Usually 512
* Unpartitioned: Varies
* Default 512
*/

unsigned short secptrk; /* Number of sectors per track (Maximum
* 64) */

unsigned short nheads; /* Number of heads (Maximum 255 or 256) */
unsigned char sys_ind; /* Partition: System indicator

* Unpartitioned: 0
*/
3-16 pHILE+ Devices



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 17  Thursday, January 28, 1999  9:18 AM
unsigned char media; /* Boot record's media descriptor */
unsigned char secpcls; /* (Optional) Number of sectors per cluster

* This must be a power of 2.
* pHILE+ supports 1 to 64.
*/

unsigned char nfats; /* (Optional) Number of FATs
* pHILE+ supports 1 or 2.
* Default 2
*/

unsigned char pad0[16]; /* Reserved. Should be 0. */
} DISK_VOLUME_GEOMETRY;

/* de_cntrl() iopb */
struct disk_ctl_iopb
{
unsigned long function; /* Function code - values defined below */
union

{
DISK_VOLUME_GEOMETRY vol_geom; /* For DISK_GET_VOLGEOM */
void * removed_call_back; /* DISK_SET_REMOVED_CALLBACK */
} u;

};

The fields are grouped below. All fields are in terms of a sector size of 512 bytes.
pHILE+ Devices 3-17



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 18  Thursday, January 28, 1999  9:18 AM
Standard floppy formats can be obtained by specifying all the optional values. The
geometry and file system parameters of several standard floppy disk formats are
given in Table 3-1 on page 3-5. If this format is built-in pcinit_vol() the corre-
sponding dktype  is given.

Size
This describes either the whole unpartitioned disk, if partition number 0, or else a
single disk partition.

nsects Number of sectors on the disk or in the partition.

Logical Geometry of the Disk
These fields are the logical geometry used by CHS partition table fields and
recorded in the boot record:

secptrk Sectors-per-track

heads Number of heads, i.e. number of surfaces per cylinder.

Partition parameters

begin Partition beginning logical block address, or 0 if
unpartitioned.

table_size Size of partition table immediately preceding this partition. If
unpartitioned, this is zero. If the first primary partition, this is
the same as begin. If the first, and usually only, logical parti-
tion within an extended partition, this is the beginning of the
immediately enclosing extended partition. Otherwise, this is
zero.

sys_ind System indicator field of the partition table entry, or 0 if
unpartitioned. (See pSOSystem include/diskpart.h  for
the definition of a partition table entry.)

File System Parameters:

media Boot record's media descriptor.

nrdent (Optional) Number of root directory entries.

nrsec (Optional) Number of reserved sectors.

nfats (Optional) Number of FATs.

secpfat (Optional) Sectors per FAT.

secpcls (Optional) Number of sectors per cluster.
3-18 pHILE+ Devices



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 19  Thursday, January 28, 1999  9:18 AM
Different types of disk drivers calculate these fields differently. The calculations for
each type of disk driver are briefly explained below. The calculation of secptrk and
heads for non-removable media is explained in section Driver Initialization Entry on
page 3-7 since it is done by the driver initialization entry and stored for use by this
de_cntrl() function. The calculation of secptrk and heads are given here only
for removable media.

TABLE 3-2 Standard Floppy Disk Formats

Format

dk
ty

pe

siz
e

se
cp

trk

he
ad

s

m
ed

ia

nr
de

nt

nr
se

c

nf
at

s

se
cp

fa
t

se
cp

cls

DD360 5.25" DD 360K DK_360 720 9 2 0xfd 112 1 2 2 2

DH120 5.25" DH 1.2M DK_12 2400 15 2 0xf9 224 1 2 7 1

DD720 3.5" DD 720K DK_720 1440 9 2 0xf9 112 1 2 3 2

DH144 3.5" DH 1.44M DK_144 2880 18 2 0xf0 224 1 2 9 1

DQ288 3.5" DQ 2.88M DK_288 5760 36 2 0xf0 240 1 2 9 2

NEC120 5.25" NEC 1.2M DK_NEC 2400 15 2 0x98 240 1 2 9 2

M2511A Fuji M2511A
124M Optical

DK_OPT 244824 25 1 0xf8 512 1 2 31 32

SS160 5.25" DD Single
sided 160K

N/A 320 8 1 0xfe 64 1 2 1 1

SS180 5.25" DD Single
sided 180K

N/A 360 9 1 0xfc 64 1 2 2 1

DD320 5.25" DD 320K N/A 640 8 2 0xff 112 1 2 1 2

SH320 5.25" DD Single
sided 320K

N/A 640 8 1 0xfa 112 1 2 1 2

DH360 5.25" DH Single
sided 360K

N/A 720 9 1  0xfc 112 1 2 2 2

DH640 3.5" DH 640K N/A 1280 8 2 0xfb 112 1 2 2 2

DH720 3.5" DH 720K N/A 1440 9 2 0xf9 112 1 2 3 2
pHILE+ Devices 3-19



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 20  Thursday, January 28, 1999  9:18 AM
TABLE 3-3 RAM Disk

start_rsect ,
sys_ind

Zero since unpartitioned.

media Always use 0xF8 .

secptrk ,
heads

Pick any legal values; for example: secptrk  1 to 63 and
heads 1 to 16. It is optimal to pick values whose product
divides evenly into nsect , but this is not necessary for a
RAM disk. For a simple way, see the pSOSystem RAM disk
driver.

Optional fields All optional fields are zero. You could supply values to match
the standard floppy formats listed in Table 3-2 on page 3-19
when the size matches one of the sizes in the table. Normally,
this is not needed. However, it does allow you to test an appli-
cation that uses a floppy disk with a RAM disk of exactly the
same format.

TABLE 3-4 Floppy Disk

start_rsect ,
sys_ind

Zero since unpartitioned.

media ,
secptrk ,
heads ,
optional fields

Sense the density of the floppy disk in the drive. If this is not
possible, either hard code one size if only one size floppy disk
is used, or add a device specific de_cntrl()  function code
to set the size of floppy disk in the drive. Supply the corre-
sponding values from the table of standard floppy formats to
reproduce the proper size standard floppy disk format.

TABLE 3-5 SCSI Controlled Floppy Disk

start_rsect ,
sys_ind

Zero since unpartitioned.

media ,
secptrk ,
heads ,
optional fields

Use the SCSI READ_CAPACITY command to determine the
size of the floppy disk in the drive. Supply the corresponding
values from the table of standard floppy formats to repro-
duce the proper size standard floppy disk format.
3-20 pHILE+ Devices



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 21  Thursday, January 28, 1999  9:18 AM
TABLE 3-6 Partitioned SCSI Disk

start_rsect ,
sys_ind

From the partition table computed by the driver
initialization entry.

media Always use 0xF8 .

secptrk ,
heads

Use the logical geometry values computed by the driver
initialization entry.

Optional fields All optional fields are zero.

TABLE 3-7 Unpartitioned SCSI Disk

start_rsect ,
sys_ind

Zero since unpartitioned.

media Always use 0xF8 .

secptrk ,
heads

Use the logical geometry values computed by the driver
initialization entry.

Optional fields All optional fields are zero.

TABLE 3-8 Partitioned IDE Disk

start_rsect ,
sys_ind

From the partition table computed by the driver
initialization entry.

media Always use 0xF8 .

secptrk ,
heads

Use the logical geometry values computed by the driver
initialization entry.

Optional fields All optional fields are zero.

TABLE 3-9 Unpartitioned IDE Disk

start_rsect ,
sys_ind

Zero since unpartitioned.

media Always use 0xF8 .
pHILE+ Devices 3-21



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 22  Thursday, January 28, 1999  9:18 AM
DISK_REINITIALIZE

Repeat the initialization done at the driver's initialization entry or when a disk is
changed. Primarily, this consists of re-reading the on-disk partition tables and
re-initializing the partition table variables in the disk driver. This de_cntrl() func-
tion would be called by a pSOSystem disk partition application after it changes disk
partition tables so that future disk accesses would be according to the new partition
tables.

Media Change

The IOPB parameter block is struct disk_ctl_iopb with the union field
removed_call_back. That contains the address of a disk removed call back
within pHILE+. The disk driver needs to remember this value in a local variable so
that it can be called when media is removed. The callback routine has the following
C definition:

unsigned long (*)(unsigned long dn, unsigned long bitmask);

secptrk ,
heads

Use the logical geometry values computed by the driver
initialization entry.

Optional fields All optional fields are zero.

TABLE 3-9 Unpartitioned IDE Disk (Continued)
3-22 pHILE+ Devices



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 23  Thursday, January 28, 1999  9:18 AM
SCSI (Small Computer System Interface) Driver

Description

The SCSI driver is divided into two components which are referred to as the upper
and lower level drivers. The source file named, scsi.c , which resides in the
drivers directory comprises the upper level driver and the source file named,
scsichip.c , which resides in the src directory makes up the lower level driver.
The location of the src directory depends on the CPU board as the following path il-
lustrates:

bsps/ board /src

where board can be, for example, m162, m167, and so on.

The scsi.c source file is a system supplied file that is an interface to all systems
that support a SCSI interface. It contains the I/O switch table subroutine calls that
pSOS+ uses as an entry point into the SCSI driver. The scsi.c file contains the
driver code that responds to a SCSI call by formatting a SCSI command and passing
it the lower level driver. The code within the source file, scsichip.c, contains in-
structions that execute the SCSI operation in a method determined by the hardware
on the individual board.

The scsichip.c lower level driver is the software interface to the SCSI device inter-
face (often one or more SCSI chips). The code within, scsichip.c , contains in-
structions that take the SCSI operation passed from the upper level driver, then it
controls the execution of that operation through the SCSI hardware interface. The
status of the operation is subsequently returned to the upper level driver.

User Interface

The application interacts with the SCSI driver through system calls to the pSOS+
kernel. These system calls are described in this section and are:

NOTE: The de_read and de_write calls are the direct way to access a SCSI
device. However, a file system type device (such as a disk drive) can be
accessed and managed through pHILE+ by using calls to pHILE+. When
pHILE+ is used, it supplies the pointer of the buffer_header structure
to the SCSI driver. For more information, refer to the pSOSystem System
Concepts manual.

de_init de_read de_write de_cntrl
SCSI (Small Computer System Interface) Driver 3-23



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 24  Thursday, January 28, 1999  9:18 AM
de_init

The de_init function initializes the SCSI driver. It must be the first call to the SCSI
driver. The syntax for this function is:

de_init(long DEV, long *IOPB, long *return, long *data_area)

where:

NOTE: IOPB, return and data_area are pointers that the SCSI driver does not
use and must be set to NULL.

de_read

The de_read function is used to read from a SCSI device. The syntax for this func-
tion is:

de_read(long Dev, long *IOPB, long *return)

where:

DEV The major device number of the SCSI driver.

IOPB Not used.

return Not used.

data_area Not used.

DEV Dev is the result of a logical OR of the major device number of the
SCSI driver (upper 16 bits) with the minor number of the specific
SCSI device (lower 16 bits).

IOPB IOPB is a pointer to the SCSI-specific I/O parameter block structure.
(See section, SCSI Specific I/O Parameter Block on page 3-26.)

return The return  parameter is a pointer to the return value.
3-24 SCSI (Small Computer System Interface) Driver



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 25  Thursday, January 28, 1999  9:18 AM
de_write

The de_write function is used to write to a SCSI device. The syntax for this func-
tion is:

de_write(long Dev, long *IOPB, long *return)

where:

de_cntrl

The de_cntrl call performs special functions on the SCSI device. Although
de_cntrl can be optional for some devices, the SCSI interface requires it. The SCSI
commands are described in section, SCSI Control Functions on page 3-27. The syn-
tax for this function is:

de_cntrl(long Dev, long *IOPB, long *return)

where:

DEV Dev is the result of a logical OR of the major device number of the
SCSI driver (upper 16 bits) with the minor number of the specific
SCSI device (lower 16 bits).

IOPB IOPB is a pointer to the SCSI-specific I/O parameter block structure.
(See section, SCSI Specific I/O Parameter Block.)

return The return  parameter is a pointer to the return value.

DEV Dev is the major/partition/minor device number. Bits 0 through 7
are the minor number of the SCSI device. This is the SCSI target ID of
the device. Bits 8 through 15 are the partition number on the hard
disk drive.

NOTE: Partition is only used for hard disk drives. Bits 16 through 31
are the major number for the SCSI driver.

For example, device 0x50203, is the SCSI driver in the device
switch table index 5. The partition number of the hard disk
drive is 2 and the SCSI target ID of the device is 3.

IOPB IOPB is a pointer to the SCSI-specific I/O parameter block structure.
(See section, SCSI Specific I/O Parameter Block.)

return The return  parameter is a pointer to the return value.
SCSI (Small Computer System Interface) Driver 3-25



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 26  Thursday, January 28, 1999  9:18 AM
SCSI Specific I/O Parameter Block

The specification for the SCSI specific I/O parameter block (IOPB) that the de_read
and de_write functions pass, is contained in the phile.h include file. The
phile.h file is located in the include directory. The IOPB has the following format:

/*---------------------------------------------------------*/
/* Device Driver Buffer Header Structure                  */
/*-------------------------------------------------------------*/

typedef struct buffer_header{

ULONG b_device;
ULONG b_blockno;
USHORT b_flags;
USHORT b_bcount;
void *b_devforw;
void *b_devback;
void *b_avlflow;
void *b_avlback;
void *b_bufptr;
void *b_bufwaitf;
void *b_bufwaitb;
void *b_volptr;
USHORT b_blksize;
USHORT b_dsktype;

} BUFFER_HEADER;

Table 3-10 lists the only elements from the buffer_header structure that a SCSI
driver uses:

TABLE 3-10 buffer_header  elements Used by the SCSI Driver.

Element Description

b_device Must contain the minor device number (the SCSI ID of the de-
vice).

b_blockno Must contain the starting block number of the device to start
reading or writing.

b_bcount Must contain the number of blocks to be read from the device.

b_bufptr Pointer to the buffer to read or written.

b_blksize Size of the block (in base 2) to be read or written.
3-26 SCSI (Small Computer System Interface) Driver



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 27  Thursday, January 28, 1999  9:18 AM
SCSI Control Functions

The #define statements for the SCSI control commands reside in the drv_intf.h
include file. This file resides in the include directory. The SCSI-specific IOPB that
the de_cntrl  function call passes appears in the drv_intf.h  file as follows:

struct scsi_ctl_iopb
{
long function
union

{
void * arg;
struct scsi_info info;
struct scsi_cmd cmd;
} u;

}

Table 3-11 lists the SCSI control functions supported:

TABLE 3-11 SCSI Control Commands

Command Description

SCSI_CTL_FORMAT Formats the disk drive referenced by the minor
number specified in Dev.

SCSI_CTL_INFO Fills in the info  element of the scsi_ctl_iopb
structure for use by the application. The
scsi_info  structure appears in the drv_intf.h
file as follows:

struct scsi_info
 {

UCHAR devtype; /* Type of device - values
                    defined below */
  UCHAR scsi_id; /* Device address on the
                    SCSI bus */
  UCHAR char lun; /* Device LUN */
  UCHAR removable;/* Removable media */
  char vendor[SCSI_VENDOR_SIZE];

/* Device’s manufacturer */
  char product[SCSI_PRODUCT_SIZE];

/* Model name */
  long blocks; /* Capacity in blocks */
  long blocksize;/* Size of each block in
                    bytes */

};
SCSI (Small Computer System Interface) Driver 3-27



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 28  Thursday, January 28, 1999  9:18 AM
SCSI_CTL_CMD Passes a SCSI command through the SCSI driver.
The application must fill in the command structure.
The scsi_cmd  structure appears in the
drv_intf.h  file as follows:

struct scsi_cmd
{
UINT target_id;
UCHAR *data_ptr;
ULONG data_in_len;
ULONG data_out_len;
ULONG command_len;
UCHAR *cdb;
};

where:

target_id Is the SCSI device ID.

data_ptr Points to the data buffer.

data_in_len The byte length of the buffer that
stores input data. If the data is
output data, this must be 0.

data_out_len The byte length of the buffer that
stores output data. If the data is
input data, this must be 0.

command_len Is the byte length of the SCSI
Command Descriptor Block (CDB)

cdb Points to the CDB. The CDB de-
scribes the actual command that
goes to the SCSI device. The CDB
and SCSI command must be
supported by the SCSI device
being addressed.

TABLE 3-11 SCSI Control Commands (Continued)

Command Description
3-28 SCSI (Small Computer System Interface) Driver



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 29  Thursday, January 28, 1999  9:18 AM
SCSI_CTL_TEST_UNIT_READY

Issues a test unit ready command to the device. If
the device is ready, the de_cntrl  function returns
0. If the device is not ready, the de_cntrl  func-
tion returns a nonzero value and retval  contains
the SCSI driver error code.

SCSI_CTL_PARTITION Partitions a disk drive into a group of primary
partitions that can then be made into separate file
systems. This command takes as an argument a
pointer to an array of four of the following
structures:

typedef struct
{
  int begin;  /* beginning physical block */
  int size;   /* size in physical (512 byte)
                 blocks */
} PARTITION_ENTRY;

where:

begin The begin  element is the begin-
ning physical block number of
the partition.

size The size element is the number
of physical (SCSI 512 byte)
blocks in the partition. It is not
the number of logical (pHILE+)
blocks.

TABLE 3-11 SCSI Control Commands (Continued)

Command Description
SCSI (Small Computer System Interface) Driver 3-29



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 30  Thursday, January 28, 1999  9:18 AM
This typedef is located in include/drv_intf.h
header file.

An example of code to partition a disk drive is as
follows:

PARTITION_ENTRY part_info[4];

part_info[0].begin = 0;
part_info[0].size = 20000;

part_info[1].begin = 20000;
part_info[1].size = 20000;

part_info[2].begin = 40000;
part_info[2].size = 20000;

part_info[3].begin = 60000;
part_info[3].size = 20000;

iopb.function = SCSI_CTL_PARTITION;
iopb.u.arg = (void *)part_info;

if (error= de_cntrl(dev_harddisk, (void
*)&iopb, &retval))
{

printf("ioctl de_cntrl
SCSI_CTL_PARTITION error %x\n", error);

k_fatal(retval, 0);
}
else

printf("ioctl de_cntrl
SCSI_CTL_PARTITION done\n");

This partitioning is not a MS DOS primary partition
and cannot be used by MS DOS.

SCSI_CTL_READ_ONLY_P Marks the given partition referenced by Dev as
read-only and the SCSI driver does not allow writes
to this partition.

SCSI_CTL_READ_WRITE_P Marks the given partition referenced by Dev as
read/write and the SCSI driver allows reads or
writes to the partition (default state).

SCSI_CTL_START_DEVICE Issues a start/stop unit command to the device to
start the device. This tells a disk drive to spin up
and become ready.

TABLE 3-11 SCSI Control Commands (Continued)

Command Description
3-30 SCSI (Small Computer System Interface) Driver



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 31  Thursday, January 28, 1999  9:18 AM
SCSI Tape Drive

The application interface to the SCSI tape driver consists of open, close, read, write,
and I/O control calls. These are all done through the pSOS+ de_ interface function.

SCSI_CTL_STOP_DEVICE Issues a start/stop unit command to the device to
stop the device. This tells the device to spin down
and stop.

SCSI_CTL_STOP_COMMANDS

Stops any queued SCSI commands from being sent
to the device. This does not abort any command
that is in progress.

SCSI_CTL_START_COMMANDS

Allows commands to be sent to the device. This is
the default state.

SCSI_CTL_SKIP Skips to the next file mark on a tape device. The
arg  element of the scsi_ctl_iopb  must be set to
the number of file marks to be skipped.

SCSI_CTL_REWIND Issues a rewind command to a tape device.

SCSI_CTL_UNLOAD Issues an unload command to a tape device.

SCSI_CTL_ERASE Issue an erase tape command to a tape device.

SCSI_CTL_WRITE_FILE_MARK

Causes a file mark to be written to a tape device.

SCSI_CTL_SET_BLOCK_MODE

Sets a tape device to block mode and sets the block
size. The arg element of the scsi_ctl_iopb must
be set to the block size.

TABLE 3-11 SCSI Control Commands (Continued)

Command Description
SCSI (Small Computer System Interface) Driver 3-31



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 32  Thursday, January 28, 1999  9:18 AM
Tape Open

The open tape command has the following purposes.

■ It allows the user to have exclusive control of the tape device. Only the task that
has opened the tape device may use the tape device.

■ It tells the driver to rewind the tape device when the device is closed.

The syntax of the tape open command is:

de_open(unsigned long dev_tape, void *iopb, void *retval);

where:

Tape open uses the following iopb  structure:

struct scsi_open_iopb
{
unsigned char exclusive;
unsigned char rewind;
};

where:

Tape Close

Closing a tape device releases the tape drive from exclusive control of a task, if that
is the way it was opened, or decrements the count of tasks that have the tape driver
open, if it was not opened with the exclusive control flag set.

dev_tape The input of the MAJOR/MINOR number of the tape device.

iopb An input pointer to a scsi_open_iopb  structure.

retval An output that points to a driver specific return value.

exclusive The element exclusive  is set to one by the caller if the tape
device is to be used only by the task that is opening the tape
device. If exclusive  is zero then the SCSI tape driver allows
other tasks the use of the tape device at the same time.

rewind The element rewind  is set to one by the caller if the tape is to
be rewound on close. If rewind  is set to zero the tape in the
tape device remains at the next block to be accessed on close.
3-32 SCSI (Small Computer System Interface) Driver



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 33  Thursday, January 28, 1999  9:18 AM
The syntax of the tape close command is:

de_close(unsigned long dev_tape, void *iopb, void *retval);

where:

Tape READ/WRITE

The tape read and write commands are used to read and write data to a tape drive.
Both of these commands have the same syntax as follows:

de_read(unsigned long dev_tape, void *iopb, void *retval);
de_write(unsigned long dev_tape, void *iopb, void *retval);

where:

The TAPE_BUFFER_HEADER structure is defined as follows:

typedef struct scsi_rw_iopb
{
unsigned long b_device; /* device number*/
unsigned long b_bcount; /* data length*/
void *b_bufptr; /* data area*/
} TAPE_BUFFER_HEADER;

where:

dev_tape The input of the MAJOR/MINOR number of the tape device.

iopb Not used.

retval An output that points to a driver specific return value.

dev_tape The input of the MAJOR/MINOR number of the tape device.

iopb The input pointer to a TAPE_BUFFER_HEADER structure. This
structure is found in drv_intf.h  and is defined below.

retval An output that points to a driver specific return value.

b_device The MAJOR/MINOR number of the tape device.
SCSI (Small Computer System Interface) Driver 3-33



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 34  Thursday, January 28, 1999  9:18 AM
pSOS-to-Driver Interface

Table 3-12 and Table 3-13 list the I/O switch table entries needed to use the SCSI
drivers.

To use the SCSI disk driver:

To use the SCSI tape driver:

b_bcount The data length for this transfer. The data length may be the
number of characters to be transferred, if the tape is being used
in a variable block size mode, or the number of blocks to trans-
fer, if the tape is in a fixed block mode. The mode is controlled
by a SCSI_CTL_SET_BLOCK_MODE I/O control call.

b_bufptr Pointer to the data area the transfer takes place from, if this is
a read call, or to if this is a write call.

TABLE 3-12 Function Entry Point for SCSI Disk Driver

Function Entry Point

Initialization (Init ) SdrvInit

Open N/A

Close N/A

Read SdskRead

Write SdskWrite

I/O Control SdrvCntrl

TABLE 3-13 Function Entry Point for SCSI Tape Driver

Function Entry Point

Initialization (Init ) SdrvInit

Open StapeOpen

Close StapeClose

Read StapeRead
3-34 SCSI (Small Computer System Interface) Driver



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 35  Thursday, January 28, 1999  9:18 AM
The pSOS-to-driver interface consists of data structures and subroutine calls
(shown below) that the pSOS+ kernel uses to send requests to the SCSI device
driver.

/*----------------------------------------------------------------*/
/* I/O Driver Parameter Structure */
/*----------------------------------------------------------------*/
struct ioparms{

unsigned long used; /* Set by driver if out_retval/err used */
unsigned long tid; /* task id of calling task */
unsigned long in_dev; /* Input device number */
unsigned long status; /* Processor status of caller */
void *in_iopb; /* Input pointer to IO parameter block */
void *io_data_area; /* not used */
unsigned long err; /* For error return */
unsigned long out_retval; /* For return value */

};

The upper driver contains the following subroutines, which comprise the pSOS to
driver interface:

Write StapeWrite

I/O Control SdrvCntrl

void SdrvSetup(void)

This subroutine initializes variables that require a starting value before the
subroutine SdrvInit  can be called. pSOS+ calls SdrvSetup  during system
initialization.

void SdrvInit(register struct ioparms *s_ioparms)

This subroutine initializes the SCSI driver and any DMA driver needed for
SCSI operation. pSOS+ calls SdrvInit when a de_init call is made for the
SCSI driver.

void SdrvCntrl(register struct ioparms *s_ioparms)

This subroutine can issue commands to the SCSI interface; return informa-
tion about a SCSI device; or format a SCSI device. pSOS+ calls SdrvCntrl
when a de_cntrl  call is made for the SCSI driver.

TABLE 3-13 Function Entry Point for SCSI Tape Driver (Continued)

Function Entry Point
SCSI (Small Computer System Interface) Driver 3-35



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 36  Thursday, January 28, 1999  9:18 AM
The upper driver subroutines listed above create the proper SCSI CDB and call
lower driver routines to communicate with the SCSI device interface.

Upper-to-Lower Driver Interface

The interface between the upper level and lower level SCSI drivers has the following
features:

■ Provides the support for the lower level drivers which service more than one
SCSI chip.

■ Allows the integration of multiple lower level SCSI drivers into the system.

The upper level driver accesses the lower level driver through the SCSI multiplexor
which maintains the SCSI driver table. Before a lower level driver can be used, it
must be installed by calling InstallSCSIDriver() . If the SCSI lower level driver
services multiple SCSI chips, the InstallSCSIDriver() function must be called
for each chip. This function stores the lower level driver and the SCSI chip related
information in the SCSI driver table.

To identify a SCSI chip serviced by a lower level driver, the logical adapter number
and the physical adapter number are introduced. Each SCSI chip in the system has a
unique logical adapter number. This number is actually the index into the SCSI driver
table and it is unique because each SCSI chip has a unique entry in the SCSI driver
table. The physical adapter number is used to identify a SCSI chip within the given
SCSI lower level driver. The physical adapter number is only used by the interface be-
tween the SCSI multiplexor and the lower level SCSI drivers. This number is zero
based, meaning the first SCSI chip serviced by a lower level driver has the value 0.

The lower driver, which is contained in the scsichip.c source file, must include
the subroutines listed below. These subroutines comprise the upper to lower driver
interface. All board support packages from ISI that support SCSI devices contain
the upper to lower driver interface. User created board support packages must con-

void SdskRead(struct ioparms *sd_ioparms)

This subroutine reads blocks of data from a SCSI disk. pSOS+ calls
SdskRead  when a de_read  call is made for the SCSI driver.

void SdskWrite(struct ioparms *sd_ioparms)

This subroutine writes blocks of data to a SCSI disk. pSOS+ calls SdrvWrite
when a de_write  call is made for the SCSI driver.
3-36 SCSI (Small Computer System Interface) Driver



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 37  Thursday, January 28, 1999  9:18 AM
tain an appropriate user supplied upper to lower driver interface. In either case, the
interface must contain the following subroutines:

The status that the chipexec  function returns must be one of the following:

The statuses that can be returned by the chipexec function are specified using
#define statements. These declarations are contained in the scsi.h include file,
which is located in the include  directory.

long chipinit(void) This function initializes the lower SCSI driver and re-
turns status. The upper driver subroutine SdrvInit
calls chipinit .

long dma_init() This function initializes any DMA device that SCSI opera-
tion requires and then returns status. This subroutine
may be empty if no DMA initialization is necessary. The
preferable location for this function is the dma.c  file.

long chipexec(TRANS_blk)

This function takes a CDB input, executes the SCSI com-
mand, and returns status. The chipexec function is the
entry point to the lower driver from the upper driver.

TABLE 3-14 chipexec  Return Status

Status Value Description

STAT_OK 0 Operation was successful.

STAT_CHECKCOND 1 Contingent allegiance condition (issue a Request
Sense to get cause of failure).

STAT_ERR 2 A gross error has occurred. A command may be
formatted incorrectly. A retry may correct the
problem.

STAT_TIMEOUT 3 A selection timeout occurred. More than likely no
device exists at this SCSI ID.

STAT_BUSY 4 Device is busy. It cannot accept another command.

STAT_SEMFAIL 5 An sm_p operation has failed, and the driver can-
not continue with the current command.
SCSI (Small Computer System Interface) Driver 3-37



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 38  Thursday, January 28, 1999  9:18 AM
The following typedef must be defined in drv/scsichip.h (lower driver). It must
contain the elements in the list that follows. For individual applications, users can
add appropriate elements to this typedef for the lower driver’s use.

/***************************************/
/* Transaction interface structure */
/***************************************/
typedef struct trans_blk{

unsigned int id; /* SCSI device id/interrupt level */
unsigned int lun; /* Logical Unit Number */
unsigned int cmdl; /* Command Descriptor Block Length */
unsigned char cmd[MAX_CDB]; /* Command Descriptor Block */
unsigned int data_len; /* Number of data bytes to transfer */
unsigned char *data_ptr; /* Pointer to data area */
unsigned char *original_data_ptr; /* Data area to use */
int original_data_len; /* Data out length (actual) */
unsigned char *next_trans_blk; /* Pointer to next trans_blk */
TARGET_DEV *target_dev; /* Pointer to target device

struct */
}TRANS_BLK

The upper driver passes the trans_blk transaction structure to the lower driver by
executing the chipexec subroutine. The structure contains all the information
needed to perform the requested SCSI operation.

Function Calls of the Low Level SCSI Driver

The lower level SCSI driver must provide the following six functions to the upper
level driver ($PSS_ROOT/drivers/scsi.c ) to execute the corresponding requests:

TABLE 3-15 Low Level SCSI Driver Function Calls

Function Request Description

Init Initialize the interface.

DmaInit Initialize the DMA channel used
by the SCSI chip.

Exec Execute the SCSI commands.

Shutdown Execute the shutdown operation.

StopCmd Stopping the SCSI chip.

StartCmd Starting the SCSI chip.
3-38 SCSI (Small Computer System Interface) Driver



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 39  Thursday, January 28, 1999  9:18 AM
Init

Before the SCSI chip can be used, the lower level driver and the SCSI chip must be
initialized. The syntax of the initialization function is:

long  (* Init) (int adaptorNum,
SCSI_DRV_CFG *drvCfg,
SCSI_DRV_INFO *drvInfo);

where:

When the lower level driver successfully completes the initialization, drvInfo ,
points to the data structure which is filled by the lower level driver with the follow-
ing information:

adaptorNum The physical adapter number that identifies which SCSI chip is
being addressed, within the lower level SCSI driver.

drvCfg Points to the data structure containing the hardware parame-
ters needed by the lower level SCSI driver for its SCSI chip and
data structure initialization. (See the description of the function
InstallSCSIDriver() in Installing a Lower-Level SCSI Driver
on page 3-42.)

adptNum The physical adapter number of this SCSI chip.

hostID SCSI ID of this SCSI chip.

maxTargets The maximum number of target devices. This number may be
either 8 or 16, depending on whether or not the SCSI chip
supports wide SCSI.

queSemFlag Indicates that the lower level driver needs a semaphore for
interrupt driven I/O processing. The semaphore is created by
the upper level driver for each TRANS_BLK.

dmaSemFlag Indicates that the lower level driver needs a semaphore created
for each target device for DMA processing.

chip_tb_size The size of the lower level driver specific control block for each
SCSI command execution. This block is allocated by the upper
level driver and passed to the lower level driver when the upper
level driver sends the SCSI command execution request to the
lower level driver.
SCSI (Small Computer System Interface) Driver 3-39



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 40  Thursday, January 28, 1999  9:18 AM
Both data structures of SCSI_DRV_CFGand SCSI_DRV_INFO are defined in the
header file, $PSS_ROOT/include/scsi.h .

Upon successful completion of the initialization function, STAT_OKis returned. If
initialization fails, an error code is returned.

DmaInit

Some lower level drivers use DMA channels which must be initialized before the
driver can be used. The syntax of the initialization function for the DMA channel is:

long   (*DmaInit) (int adaptorNum);

where:

When the DMA channel initialization is complete, STAT_OKis returned. If initializa-
tion fails, an error code is returned. When no DMA channel is being initialized, the
lower level driver must provide an empty function stub which returns, STAT_OK.

Exec

To execute a SCSI command, the upper level SCSI driver calls the SCSI command
execution function provided by the lower level driver. The syntax of this function is:

long     (* Exec)(TRANS_BLK *pTransBlk);

where:

When the SCSI command execution is complete, STAT_OKis returned. If the SCSI
command execution fails, an error code is returned.

adaptorNum The physical adapter number.

pTransBlk Points to the TRANS_BLK data structure specifying the SCSI
command being executed and the input and output data areas.
The structure is defined in the header file,
$PSS_ROOT/include/scsi.h .
3-40 SCSI (Small Computer System Interface) Driver



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 41  Thursday, January 28, 1999  9:18 AM
Shutdown

To execute a shutdown operation, the upper level SCSI driver calls the shutdown
function provided by the lower level driver. The syntax of this function is:

long     (* Shutdown)(int adaptorNum);

where:

Upon receiving the shutdown request, the lower level driver must release all re-
sources it has been allocated for the specified SCSI chip. The lower level driver must
also disable the SCSI chip. After shutdown, the lower level driver does not allow
other requests for the specified SCSI chip until the SCSI chip initialization is called
again.

When the shutdown operation is complete, STAT_OKis returned. If the shutdown
operation fails, an error code is returned.

StopCmd/StartCmd

Sometimes, the application may want to stop the SCSI chip activities and resume
them later. To stop and start the SCSI chip activities, the upper level SCSI driver
calls the functions provided by the lower level driver. The syntaxes of these func-
tions are:

void     (* StopCmd)(int adaptorNum);
void     (* StartCmd)(int adaptorNum);

adaptorNum The physical adapter number.

adaptorNum The physical adapter number.
SCSI (Small Computer System Interface) Driver 3-41



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 42  Thursday, January 28, 1999  9:18 AM
Installing a Lower-Level SCSI Driver

Before a SCSI chip can be accessed from the upper level SCSI driver, the lower level
SCSI driver for this SSCI chip must be installed. A lower level SCSI driver is in-
stalled by calling the function InstallSCSIDriver() .

The syntax of this function is:

long InstallSCSIDriver(
                        int logAdaptorNum,
                        int phyAdaptorNum,
                        SCSI_DRV_FUNCS *sfuncs,
                        SCSI_DRV_CFG   *scfg,
                          unsigned long *pMinor);

where:

If the lower level SCSI driver services more than one SCSI chip, for each SCSI chip
the InstallSCSIDriver()  function must be called.

logAdaptorNum Specifies the logical adaptor number for this SCSI chip if it is
not SCSI_ANY_LOG_ADPT. Otherwise, a free logical adaptor
number is allocated.

phyAdaptorNum The physical adaptor number identifying the SCSI chip serviced
by the lower level driver.

sfuncs Points the data structure containing the function pointers of
the lower level driver. This data structure is not copied, only its
address is remembered in the SCSI driver table. Therefore, this
data structure should not reside, for example, in the stack area
of the caller.

scfg Points to the data structure containing the hardware parame-
ters which are passed to the lower level driver when the initial-
ization function is called. These parameters are copied into the
SCSI driver table. The meaning of these parameters are lower
level driver specific. They are not used or interpreted by the up-
per SCSI driver and the SCSI multiplexer.

For example, the caller can specify the I/O address of the SCSI
chip, the interrupt level and the SCSI ID of the chip in this data
structure.

pMinor Points to the location where the minor number for the SCSI
chip is returned.
3-42 SCSI (Small Computer System Interface) Driver



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 43  Thursday, January 28, 1999  9:18 AM
The following values are returned by this function:

Uninstalling a Lower level SCSI Driver

To uninstall a SCSI lower level driver, the following function call is used:

long UninstallSCSIDriver(unsigned long minor, SCSI_DRV_FUNCS
*sfuncs);

The following values may be returned by this function:

If the lower level SCSI driver services more than one SCSI chip and you want to
remove the lower level driver completely from the SCSI multiplexer, you have to call

STAT_OK The request is successfully executed.

SCSI_ADAPTOR_NUM_BADThe given adaptor number is invalid, for example, if it
exceeds the maximum adapter number specified by
BSP_MAX_SCSI_ADAPTORS.

SCSI_MUXFULL The SCSI driver table is full.

SCSI_DRVINUSE A SCSI lower level driver is already installed for the
logical adaptor specified by the input parameter
logAdaptorNum  or the lower level SCSI driver is
already installed for the SCSI chip specified by
phyAdaptorNum .

minor The minor number returned through the pMinor  parameter
when the driver is installed.

sfuncs Points to the data structure which must contain the same
content as the one when the driver has been installed, see the
description of InstallSCSIDriver() . This parameter is used to
verify if the request is valid or not.

STAT_OK The request is successfully executed.

SCSI_ADAPTOR_NUM_BADThe given adaptor number is invalid, for example, if it
exceeds the maximum adapter number specified by
BSP_MAX_SCSI_ADAPTORS.

SCSI_DRVBADTYPE No SCSI lower level driver is installed for this SCSI chip
or the content of the data structure pointed by sfuncs
does not match the one given by the function
InstallSCSIDriver() .
SCSI (Small Computer System Interface) Driver 3-43



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 44  Thursday, January 28, 1999  9:18 AM
the InstallSCSIDriver() function for each chip serviced by this lower level SCSI
driver.

SCSI Multiplexor Initialization

The SCSI Multiplexor is initialized by calling the function, InitSCSIMux() . The
syntax of this functions is:

void InitSCSIMux(void);

When the upper level SCSI driver is called, it indirectly calls InitSCSIMux if the
SCSI Multiplexer is not initialized. The BSP or application can also explicitly call
this function before any parts of the upper level driver code is executed.

The InitSCSIMux() function calls brdInstallSCSIDriver() , the board specific
function. The syntax of this function is:

void brdInstallSCSIDriver(void);

This function must be provided by the BSP which installs its lower level SCSI driv-
ers during the execution of this function.

Driver Error Codes

The error codes returned by the lower level SCSI driver are divided into two groups.
One group is common for all lower level drivers and the other group is lower level
driver specific. The error codes in the lower level driver specific group have the val-
ues between 0 to 0xFF. The error codes in the common group are defined in the
header file, $PSS_ROOT/include/scsi.h and have the values ranging from
0x0100 to 0xFF00. Below are listed some of the common error codes and their
values:

TABLE 3-16 Common SCSI Driver Error Codes

Error Code Value

STAT_CHECKCOND 0x100

STAT_ERR 0x200

STAT_TIMEOUT 0x300

STAT_BUSY 0x400

STAT_SEMFAIL 0x500
3-44 SCSI (Small Computer System Interface) Driver



pSOSystem Programmer’s Reference Standard pSOSystem Block I/O Interface

3

pr.book  Page 45  Thursday, January 28, 1999  9:18 AM
SCSI Device Minor Number

The 16-bit minor device number passed to the upper level SCSI driver is divided into
the following parts:

Board Specific Functions and Macros

The following macros should be contained in the bsp.h  header file:

The following function has to be provided by the BSP if the lower level SCSI drivers
comply with the pSOSystem 2.5 interface:

void brdInstallSCSIDriver(void);

This function is called when the SCSI multiplexer is initialized. Normally, it installs
the lower level SCSI drivers supported by the BSP.

where:

Unit The logical unit number within a SCSI target.

Partition The partition number. This is only valid for a partitioned SCSI block
device.

Adapter The logical adaptor number identifying the lower level driver and
the SCSI chip serviced by this driver.

SCSI ID The SCSI ID of the device connected to the SCSI bus serviced by the
given SCSI chip.

BSP_SCSI_DRV_LEVEL Defines whether the lower level SCSI drivers provide
the pSOSystem 2.5 interface. If you are using the
SCSI driver written for pSOSystem 2.1.x and 2.2.x,
you set this macro to 220. If this macro is not de-
fined, the upper level driver assumes the lower level
SCSI drivers comply with the pSOSystem 2.5 inter-
face.

BSP_MAX_SCSI_ADAPTORS Specifies the maximum number of SCSI chips sup-
ported by this BSP. If this macro is not defined, it as-
sumes the maximum number is 1.

Unit     |     Partition    |    Adapter    |     SCSI ID

15   13 12                 8  7                 5  4               0 Bit
SCSI (Small Computer System Interface) Driver 3-45



Standard pSOSystem Block I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 46  Thursday, January 28, 1999  9:18 AM
3-46 SCSI (Small Computer System Interface) Driver



pr.book  Page 1  Thursday, January 28, 1999  9:18 AM
4
 Standard pSOSystem
Character I/O Interface
4

Overview

The standard pSOSystem character I/O Interface, defines the interface through
which application programs interact with the character oriented I/O devices. It also
serves as a reference to the developers working on writing drivers for character ori-
ented devices to work under pSOSystem environment. The character driver inter-
face definition is an extension to the standard pSOS+ device driver interface, which
is documented in the pSOSystem System Concepts manual; it merely defines the
structure of the I/O Parameter Block (IOPB) passed to the various driver entry
points. This chapter assumes that you are already familiar with the standard
pSOS+ device driver interface.

The chapter contains a description of the character I/O interface as well as the
details for individual character oriented I/O device drivers provided by the
pSOSystem.

The individual I/O device drivers described in this chapter are:

■ HTTP (See page 4-12)

■ pSEUDO (See page 4-40)

■ MEMLOG (See page 4-29)

■ NULL (See page 4-32)

■ PIPE (See page 4-34)

■ RDIO (See page 4-40)

■ TFTP (See page 4-44)

■ DITI (See page 4-49)
4-1



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 2  Thursday, January 28, 1999  9:18 AM
Who must understand and follow this specification?

As an application developer, you need to understand this specification if your appli-
cation needs to directly interact with the device through the de_* services provided
by the pSOS+ kernel. If you are using the standard pREPC+ ANSI library functions
or the C++ I/O Streams package to perform I/O to and from the device, it is not nec-
essary to have a detailed understanding of the character I/O interface. However, you
may still need to understand a few details, like how to address the device (such as
the device naming convention) and how to pass optional parameters that control the
device.

All the standard pSOSystem drivers that perform character oriented I/O follow this
specification, and many custom drivers for character oriented I/O device are ex-
pected to follow this specification.

As a driver developer, pSOSystem does not require you to follow any specific I/O
driver interface, however, if you want your driver to work with other pSOSystem
software (like pREPC+ ANSI C library and C++ I/O Streams) that perform character
oriented I/O, you must write the driver to follow this specification.

What is a character oriented I/O device?

A character oriented I/O device does not impose any boundaries like records or
blocks around the data (as opposed to block oriented devices). An I/O request to
character device can request any amount of data to be read from or written to the
device. The character oriented devices, typically, do not have random access capa-
bility, and the data originating from (or destined to) the device can be thought of as
a single continuous byte stream.

When performing I/O to a character oriented device, once some data is read from
the device, it is removed from the data stream; there is usually no way to obtain the
same data item again. Similarly, once a data is sent to a character oriented device, it
is committed and cannot usually be overwritten or discarded. This behavior is typi-
cal of the most common character oriented devices like asynchronous and synchro-
nous serial communication devices.

It is possible to write a driver for a device that has random access capability as a
character oriented device driver (and some drivers do support both block and char-
acter interfaces). However, there is no way to utilize the random access capability of
such a device, through the character oriented device interface.
4-2



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 3  Thursday, January 28, 1999  9:18 AM
The Interface

Device Initialization Entry

The device initialization entry point of a driver is invoked as a result of a de_init()
call made by the application. There is no I/O Parameter Block (IOPB) defined for this
entry. If the device is configured to allow auto-initialization by pSOS+, the drivers
must expect a NULL pointer to be passed as the IOPB. No other pSOSystem compo-
nents explicitly invoke the initialization entry of a driver.

Under pSOSystem environment, device initialization is typically the responsibility of
the ROOT task. If there are circumstances whereby a custom driver needs to obtain
some configuration parameters from the application at the initialization time, it is
allowed to have the driver define an IOPB for device initialization.

Device Open Entry

The open entry point of a driver is invoked as a result of de_open() call made by
the application. A pointer to the following PssCharOpenIOPB structure (which is
defined in include file, drv_intf.h ) is passed by the application as the second ar-
gument of de_open()  function:

typedef struct {
char           *params;
unsigned long   flags;
unsigned long   cloneDev;

} PssCharOpenIOPB;

The params field is a null-terminated string that contains optional parameters that
are interpreted by the driver being opened. The params string consists of one or
more comma separated name value pairs of the form:

name1=value1 , name2=value2

The flags field is currently reserved to pass file open mode information to the
driver. No values are currently defined for flags , and the driver writers should nei-
ther define nor depend on any value passed by way of the flags  parameter.

The cloneDev field exists to support cloneable devices. Cloneable devices like
PSEUDO, TFTP, PIPE, HTTP, for example, provide multiple I/O channels, each of
which offers the same capabilities. Since an application has usually no interest in
opening a specific channel, such drivers accept a parameter (typically of the form
channel=-1 ) to let an application request the driver to assign an available channel.
The cloneDev field is used by the driver to return the device number corresponding
4-3



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 4  Thursday, January 28, 1999  9:18 AM
to the channel opened by it. Note that the drivers that do not support cloning may
not necessarily modify this field to indicate the channel opened. However, the driv-
ers that support cloning, always modify this field to indicate the channel opened,
even if the request is made to open a specific channel.

An instructive way to understand how these parameters are used is to describe
them as defined by the TFTP driver. When opening a channel on a TFTP driver for
the purpose of transferring a file from a remote TFTP server, the driver open routine
needs to know the IP address of the remote host, as well as the pathname of the file
on the remote server to be transferred. For example, in order to request a TFTP
driver to open a connection with remote TFTP server at IP address 192.103.54.36 to
transfer the file, /programs/pdemo.hex, the TFTP driver expects a parameter
string of the form:

ipaddr=192.103.54.36,pathname=/programs/pdemo.hex

Device Close Entry

The close entry point of a driver is invoked as a result of a de_close() call made by
the application. There is no I/O Parameter Block (IOPB) defined for this entry.

Device Read Entry

The read entry point of a driver is invoked as a result of de_read() call made by
the application. A pointer to the PssCharRdwrIOPB structure (which is defined in
include file drv_intf.h ) is passed by application as the second argument of the
de_read()  function:

typedef struct {
unsigned long   count;
char           *address;

} PssCharRdwrIOPB;

The count field contains the maximum number of bytes that the driver should
transfer from the device to the buffer pointed to by the address field. The actual
number of bytes transferred by the driver is returned back to the caller by way of
the third argument (retval ) of the de_read()  call.

A driver may block until the requested number of bytes are available, or return after
transferring whatever amount of data can be transferred without blocking, depend-
ing on whether the driver is operating in blocking or non-blocking mode. A non-
blocking read request usually returns an error if no data can be transferred and an
end of file condition is usually signified by returning 0 as the number of bytes read.
4-4



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 5  Thursday, January 28, 1999  9:18 AM
These rules are followed by most of the drivers that follow character I/O driver inter-
face, however, you must refer to individual driver manual page to verify if the driver
makes an exception to these rules, and whether or not the blocking and non-block-
ing I/O modes are supported.

Device Write Entry

The write entry point of a driver is invoked as a result of de_write() call made by
the application. The IOPB passed by application as the second argument of
de_write()  function is the same as the one passed to the device read entry:

typedef struct {
unsigned long   count;
char           *address;

} PssCharRdwrIOPB;

The count field contains the number of bytes that the driver should transfer from
the buffer pointed to by the address field to the device. The actual number of bytes
transferred by the driver is returned back to the caller in the third argument,
(retval ), of the de_write()  call.

A driver operating in blocking mode may block until the data is committed to the de-
vice. A non-blocking write request attempts to write as much data as possible with-
out blocking, and returns the number of bytes written. If it is not possible to write
even a single byte of data an error is returned. If an end of file condition is defined,
it is also usually signalled by returning an error.

These rules are followed by most of the drivers that follow character I/O driver inter-
face, however, you must refer to the individual driver manual page to verify if the
driver makes an exception to these rules, and whether or not the blocking and non-
blocking I/O modes are supported.

Device I/O Control Entry

The I/O control entry point of a driver is invoked as a result of a de_cntrl() call
made by the application. A pointer to the IOPB passed by the application as the sec-
ond argument to the de_cntrl() function follows the following structure template
(which is defined in include file drv_intf.h ):

typedef struct {
unsigned long   fcode;
void           *arg[];

} PssCharCtrlIOPB;
4-5



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 6  Thursday, January 28, 1999  9:18 AM
The fcode field contains the function code of the I/O control operation to be per-
formed, and any other parameters required by that I/O control operation are passed
in one or more fields following fcode .

The I/O control operations are device specific, and you must refer to the documen-
tation of the individual driver for further details.
4-6



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 7  Thursday, January 28, 1999  9:18 AM
Character I/O Drivers

Introduction

The remaining portion of this chapter describes the various standard device drivers
provided with pSOSystem. The documentation for each driver follows a standard
organization convention and the contents of this subsection:

■ Explains how the information is organized and presented for the individual
drivers

■ Describes any special concepts and terminology used in the documentation, as
well as, where to find additional information

■ Lists the device drivers documented in this chapter, with a brief description of
each

Audience

The driver documentation has been written from the perspective of application pro-
grammers developing code that performs I/O to or from devices in their applica-
tions. In addition to the information contained in the character I/O driver
descriptions, developers writing device drivers for pSOSystem can find further infor-
mation within the pSOSystem System Concepts manual, and within the pSOSystem
Advanced Topics manual.

Organization

Each driver documented contains the following four sections:

■ Overview

■ Operation

■ Reference Information

■ Application Examples

These sections are described below:

Overview This section contains information about the purpose of the
driver, the special features offered by it, and a high level over-
view of its operation.
Character I/O Drivers 4-7



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 8  Thursday, January 28, 1999  9:18 AM
Operation This section describes the specifics of each I/O operation sup-
ported by the driver. Included is a description of the six services
offered by each of the device entry points: initialization, open,
close, read, write and control. This section contains information
for those who wish to understand the device operation in detail.

Reference
Information

This section contains a table of concise information related to
driver configuration and usage. If you are already familiar with
the operation of a driver, this section provides useful reference
information. The table entries contained in the Reference Infor-
mation section are described below:

Supported
interfaces

This entry lists the standard I/O interfaces
supported by the device driver. There are
three standard I/O driver interfaces defined
by pSOSystem, which are: character, block,
and streams.

It is recommended that you familiarize your-
self with the standard interfaces supported
before attempting to utilize a specific device
driver. Character (for example, DITI and DISI)
and block (for example, SCSI) device driver
descriptions are covered in this chapter.
Stream I/O device driver information can be
found in the OpEN User’s Guide.

Name registered
in pSOS+ DNT

DNT (Device Name Table) is a feature offered
by pSOS+ kernel that allows one to register
symbolic names for a device number. This
table entry lists the default device names that
are registered for a device at pSOSystem
system startup.

More information about DNT can be found in
the pSOS+ Real-Time Kernel chapter of the
pSOSystem System Concepts manual.
4-8 Character I/O Drivers



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 9  Thursday, January 28, 1999  9:18 AM
pRNC name pRNC (pSOSystem Resource Naming Conven-
tion) names are used when opening devices
through standard ANSI functions provided by
pREPC+. This table entry identifies the pRNC
name of the device.

Further information regarding pREPC+ can
be found in the pREPC+ ANSI C Library
chapter of the pSOSystem System Concepts
manual.

Minor number
encoding

The pSOSystem device is identified by a 32
bit device number. The lower 16 bits specify a
minor device number. The individual device
drivers define how the minor device numbers
are encoded. This table entry explains how
the driver interprets the information encoded
in the minor number.

For example, a driver serving multiple physi-
cal or logical devices, would assign a unique
minor number to identify each device it
serves.

The upper 16 bits of the device number spec-
ify the major device number, and identifies the
location of the device in the pSOS+ I/O Jump
Table. The minor device number is not used
by the pSOS+ device manager.

Driver specific
parameters
accepted by
device open
entry

The I/O parameter block, passed to a stan-
dard character driver contains a field called
params  which contains a string encoded
name value pairs. These name value pairs are
used for passing parameters to the device
open function, and may contain essential
information that a driver may need at the
time of opening an I/O channel.

This reference information lists the parame-
ters that are accepted by the driver open
entry, and their significance.
Character I/O Drivers 4-9



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 10  Thursday, January 28, 1999  9:18 AM
Supported Drivers

Table 4-1 lists the standard pSOSystem device drivers that are documented in this
chapter.

Associated
sys_conf.h
parameters

This entry contains information about the
various configurable parameters, defined in
the include file, sys_conf.h , that control
device operation.

pSOSystem
components
required

This table entry lists the pSOSystem compo-
nents whose services are accessed by the
driver. The pSOSystem components currently
defined are: pSOS+, pROBE+, pHILE+,
pREPC+, pLM+, pNA+, pSE+, and pMONT+.

Resources used
by the driver

This reference information describes various
system resources (mutex, semaphores,
queues, memory, sockets, for example) that
are used by the driver. This information can
assist you in configuring the system, ensur-
ing that adequate resources are available
during run-time for proper driver operation.

Application
Examples

This section contains code fragments demonstrating how the
main features of the driver could be accessed by application
programs. In some cases, this may be the first place to look for
developing key insight into the driver operation.

TABLE 4-1 pSOSystem Device Drivers Documented in this Chapter

Driver Description Page

HTTP A driver for transferring files from a remote server
using the Hyper Text Transport Protocol (HTTP).

4-12

pSEUDO A driver for dynamically mapping the standard I/O
channels to other pSOSystem drivers that follow
the Character I/O Interface.

4-17

MEMLOG A driver for logging system wide error and diagnos-
tic messages.

4-29

NULL A driver that acts as a null data-source and infi-
nite data sink.

4-32
4-10 Character I/O Drivers



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 11  Thursday, January 28, 1999  9:18 AM
PIPE A driver that provides similar named POSIX like
inter-task data communication facility.

4-34

RDIO A driver for performing I/O to or from the terminal
window of a remote debugger communicating with
the target ROM monitor, pROBE+, over a serial
channel or network connection

4-40

TFTP A driver for transferring files from a remote server
using the Trivial File Transfer Protocol (TFTP)

4-44

DITI A driver for performing Device Independent
Terminal I/O over synchronous and asynchronous
serial communication channels.

4-49

TABLE 4-1 pSOSystem Device Drivers Documented in this Chapter (Continued)

Driver Description Page
Character I/O Drivers 4-11



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 12  Thursday, January 28, 1999  9:18 AM
HTTP Driver for transferring files from an HTTP server

Overview

The HTTP driver provides a standard character device driver interface for obtaining
files from an HTTP server. HTTP is a widely adopted protocol used on the Internet.
The HTTP driver provides a standard interface so that any data stream obtained
from an HTTP server can be manipulated using standard ANSI-C stdio facilities.

The driver supports multiple channels that can operate simultaneously. The num-
ber of channels can be configured by the SC_MAX_HTTP_CHANparameter located in
the sys_conf.h header file. The number of channels that can be simultaneously
active may, however, be limited by the availability of other resources mentioned in
the Reference Information section, later.

Operation

Device Initialization

The device initialization of the HTTP driver involves allocating memory for bookkeep-
ing, and initializing the mutexes used for mutual exclusion. It is not necessary to
explicitly initialize the driver because it is automatically initialized at the time of
processing the first request to open the device. The initialization routine does not
expect an IOPB, and ignores any IOPB passed to it.

Device Open

The HTTP driver open function establishes connection with the HTTP server, speci-
fied by the drivers specific parameters passed via the standard character driver
open IOPB, as defined in section titled Character Device Interface: Device Open of
this manual. The params field of the IOPB points to a string of comma separated
name value pairs that is parsed by the driver open routine to obtain the IP address
and port number of the HTTP server, the path name that identifies the file (or other
data) to be obtained, and optionally the channel number of the HTTP driver to en-
gage for the purpose of data transfer. The flags field of the IOPB is ignored.
4-12 HTTP



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 13  Thursday, January 28, 1999  9:18 AM
Table 4-2 describes the format of various parameters as expected by the HTTP
driver open routine.

Device Close

The HTTP driver close function terminates the connection with the HTTP server.

TABLE 4-2 HTTP Parameters

Parameter Syntax and Description

channel A numeric value that specifies the channel number to
be opened. This is an optional parameter. If the
channel  parameter is omitted then the minor number
of the device passed to the de_open  call specifies the
channel to be opened, otherwise the device minor
number to which de_open call is directed is ignored and
the value of channel parameter determines the channel
to be opened as follows:

■ If a positive or zero value is specified, it is taken as
the channel to be opened.

■ If a negative value is specified, the driver allocates
an available channel and passes the device major
minor number corresponding to the allocated chan-
nel back to the caller by way of the cloneDev field
of the IOPB.

ipaddr This is a required parameter that specifies the IP ad-
dress of the HTTP server. It can be a decimal, octal, or
hexadecimal number. It can also be specified in the
standard dot notation used to specify IP addresses.

port This is an optional parameter that specifies the port
number of the HTTP server. If it is omitted, the port
number defaults to 80.

pathname This is a required parameter and it specifies the path-
name component of the URL (Uniform Resource Locator)
that specifies the remote resource to be accessed. The
remote resource can either be a file served by the server,
or the output generated by a CGI (Common Gateway
Interface) program.
HTTP 4-13



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 14  Thursday, January 28, 1999  9:18 AM
Device Read

The read operation follows the same interface and semantics as defined for the read
operation for a standard pSOSystem character device driver interface. Refer to sec-
tion, Device Read Entry on page 4-4, for details.

Device Write

The write operation is not defined for HTTP driver.

Device Control

There are no device control functions defined for HTTP driver.

Reference Information

Supported Interfaces Standard character I/O interface

Name registered in pSOS+ DNT http

pRNC Name ///dev/http?<params>

Minor number encoding 0 through 0xFFFF - channel
number

Driver specific
parameters accepted
by device open entry

channel The channel number to open

ipaddr The IP address of the HTTP
server

port The port number on the HTTP
server which to connect

pathname The path name component of the
URL specifying the file to trans-
fer from the HTTP server
4-14 HTTP



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 15  Thursday, January 28, 1999  9:18 AM
Associated
sys_conf.h
parameters

SC_DEV_HTTP The major number of the device
driver, or 0 if not to be config-
ured

DEV_HTTP The major number of device
driver shifted left by 16 bits; can
be used to create a valid pSOS+
device number

SC_MAX_HTTP_CHAN Maximum number of channels
that can be simultaneously acti-
vated

pSOSystem Components required pSOS+, pREPC+, pNA+

Resource
requirement

Mutexes One system wide

Memory 12 bytes per channel

Socket One per active channel
HTTP 4-15



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 16  Thursday, January 28, 1999  9:18 AM
Application Examples

The following example code fragment demonstrates how the de_open call can be
used to open a connection with the HTTP server at IP address 192.103.54.36 and
(default) port 80 to transfer a file named app.hex from the directory /download
relative to the ROOT of document tree on HTTP server. The channel parameter is
passed as -1 to request that the driver allocate any available channel.

PssCharOpenIOPB   open_iopb;
PssCharRdwrIOPB   rdwr_iopb;
Unsigned long     rc, retval;
char              buf[0x200];

open_iopb.params =
 "channel=-1,ipaddr=192.103.54.36,pathname=/download/app.hex";

rc = de_open(DEV_HTTP, &open_iopb, &retval);
if (rc != 0)
    k_fatal(rc, 0);

rdwr_iopb.count = 0x200;
rdwr_iopb.address = buf;

rc = de_read(open_iopb.cloneDev, &rdwr_iopb, &retval);

The following example code fragment demonstrates how HTTP driver can be used
with the standard ANSI stdio  functions provided by pREPC+.

FILE            *fp;
char              buf[0x200];

/*
 * Open the channel number two of the HTTP driver
 */
fp = fopen(
    "///dev/http?channel=2,ipaddr=204.71.177.159,pathname=/",
     "r" );

if (fp == NULL) {
    perror("Open");
    exit(1);
}

while(!eof(fp)) {
     count = fread(buf, 0x200, 1, fp);
     fwrite(buf, count, 1, stdout);
}

4-16 HTTP



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 17  Thursday, January 28, 1999  9:18 AM
pSEUDO Driver  General purpose I/O redirection driver.

Overview

This section describes the implementation of the pREPC+ pSEUDO driver in the
pSOSystem environment. In earlier versions of pSOSystem, the serial console is the
default stdin , stdout and stderr device. By providing a pSEUDO driver, the user
can redirect input and output to and from a specific device, other than the default
serial device. With this framework in place, the redirection of input and output can
be carried out on low-level drivers like Memory Log Driver (memlog), RBUG driver
(rdio ), Network driver, DITI driver or NULL (null ) device driver.

This section also provides the programming interface to redirect the input and out-
put to the desired device. Also provided is sample application code to redirect input
and output located in the section name Sample Application Source Listing on
page 4-27.

The pSEUDO driver provides a standard character driver interface for redirecting I/
O to:

■ another device driver that follows the standard character driver interface (exam-
ple of character device drivers that can be used with pSEUDO driver are: DITI,
HTTP, MEMLOG, NULL, PIPE, and TFTP), or

■ an open file that resides on a volume managed by pHILE+ file system compo-
nent, or

■ an open connection oriented socket managed by the pNA+ networking compo-
nent, or

■ an application defined module that can perform I/O operations as per the
pSEUDO driver specification

The pSEUDO driver provides up to 32K channels per task, the I/O to which can be
re-directed to a different file, device or socket, individually for each task in the sys-
tem. These are also referenced to as task private channels. It also provides up to
32K system wide channels to which the I/O can be redirected to a different file, de-
vice, or socket. The system wide channels are shared by all the tasks in the system
and hence they are known as task shared channels. One of the task shared chan-
nels is used as a redirectable system console (///dev/pscnsl ) by pSOSystem.
Also, three task private channels are used as redirectable standard input (///dev/
stdin ), output (///dev/stdout ), and error-output (///dev/stderr ) channels by
pSOSystem. Other channels, if configured, are available for application specific use.
pSEUDO Driver 4-17



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 18  Thursday, January 28, 1999  9:18 AM
The redirection is controlled through device control operations provided by the
pSEUDO driver, and can be performed any time. At first, the redirection facility may
seem similar to what can be achieved by the freopen() pREPC+ library service
call. However, there are distinct differences between the two facilities, and in some
situations the functionality provided by the pSEUDO driver cannot be achieved by
using freopen() . The major differences are listed below:

■ With pSEUDO driver the redirection can be done either on a per-task-basis, or
for all the tasks in the system. The freopen() based redirection works only on
a per task basis.

■ With freopen() , the redirection has to be done programmatically by the task
for which the redirection has to be performed. It is not possible to perform I/O
redirection using freopen() for any arbitrary task without its cooperation.
With the pSEUDO driver, redirection for a task can be performed, even for task
private channels of a different task, by another task in the system, and at any
time during the execution of a task.

■ The freopen() call does not work with sockets or open files, but pSEUDO
driver does.

■ The pSEUDO driver supports inheritance of task private redirected channels of
a task by the children tasks that it creates. Since inheritance is not defined for
open files and sockets by standard pSOSystem components, it is hard to
achieve the POSIX-like semantics of inheriting the descriptors of the parent pro-
cesses by a child process, otherwise.

When redirecting I/O to another device driver, the pSEUDO driver acts as a pass-
through driver; all device I/O requests are passed through to the target driver or
low-level driver with minimal intrusion. The target driver performs the actual I/O
operation.

When redirecting I/O to a file managed by pHILE+, the pSEUDO driver performs the
I/O using the read_f and write_f services of pHILE+. For task private channels
the I/O is performed directly in the context of the task that initiated the I/O opera-
tion.

When redirecting I/O to a socket managed by pNA+, the pSEUDO driver performs
the I/O using the recv and send services of pNA+. For task private channels the I/
O is performed directly in the context of the task that initiated the I/O operation.

When redirecting I/O to an application defined module, the pSEUDO driver passes
all I/O requests to the custom I/O functions for that module, which services the
actual requested I/O operations.
4-18 pSEUDO Driver



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 19  Thursday, January 28, 1999  9:18 AM
Figure 4-1 illustrates the implementation of the pSEUDO driver and other modules
in a pSOSystem environment.

Operation

Device Initialization

The application-callable initialization routine is simply a NULL function. The device
initialization of pSEUDO driver occurs automatically, early during system initializa-
tion process, even before the ROOT task has been created. This is done using the
driver system startup callout family.

PSOS App PSOS+ Application

pREPC+ Module

PSEUDO Driver Module

DITI Driver NET Driver * RBUG Driver NULL Driver MEMLOG

DISI Driver Socket PROBE

Common

Device Interface

FIGURE 4-1 pSEUDO Driver Implementation in pSOSystem

 Driver
PIPE Driver

* NET Driver is a submodule within the pSEUDO Driver in order to read/write from the socket.
pSEUDO Driver 4-19



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 20  Thursday, January 28, 1999  9:18 AM
Device Open

This is a null function and always returns zero.

Device Close

This is a null function and always returns zero.

Device Read

The read operation follows the same interface as defined for the read operation for a
standard pSOSystem character device driver interface. Refer to section Device Read
Entry on page 4-4 for details. The semantics of the read operation is the same as the
semantics of a read operation from the underlying driver, file, socket connection, or
the application defined module from which the I/O is directed.

Device Write

The write operation follows the same interface as defined for the read operation for a
standard pSOSystem character device driver interface. Refer to section Device Write
Entry on page 4-5 for details. The semantics of the write operation is the same as
the semantics of a write operation to the underlying driver, file, socket connection,
or the application defined module to which the I/O is directed.

Device Control

The pSEUDO driver provides device control functions for performing I/O redirection,
and to obtain the current redirection status of a channel. If the I/O control request
passed to the pSEUDO driver is not targeted to it, and I/O on that channel has been
redirected to another device driver or custom application defined module, the request
is passed through to the underlying device driver or module for processing.

As explained in section Device I/O Control Entry on page 4-5, the device control
function is passed an IOPB structure, whose first field (fcode ) identifies the I/O
control operation to be performed, and the remaining fields (args[] ), identify the
other parameters specific to the I/O control operation being performed. In each case
the device minor number specifies the channel number on which to operate.
Table 4-3 on page 4-21 lists the various device control operations supported by the
pSEUDO driver.
4-20 pSEUDO Driver



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 21  Thursday, January 28, 1999  9:18 AM
MAPIO_SET_REDIRECTION: Setting the I/O Redirection for a Channel

The function code for redirecting the I/O is MAPIO_SET_REDIRECTION. It takes as
the first parameter (arg[0] ), an unsigned long value that specifies whether the re-
direction is to be performed to a device, a file, a socket, or an application defined
module. The various values for arg[0] and the other required parameters that go
with them are as follows:

MAPIO_GET_REDIRECTION: Obtaining the Redirection Status of a Channel

The function code for registering an application defined custom module is
MAPIO_GET_REDIRECTION, and it takes as the first parameter (arg[0] ) a pointer to
a PssMapioRedirectStatus structure, defined in the include file drv_intf.h
and reproduced below, through which the current redirection status of a channel is
returned.

typedef struct {
unsigned long      type;
unsigned long      target;
unsigned long      useCount;

} PssMapioRedirectStatus;

TABLE 4-3 Device Control Operations Supported by the pSEUDO Driver

Function Code Description

MAPIO_SET_REDIRECTION Set the I/O redirection for a channel.

MAPIO_GET_REDIRECTION Get the I/O redirection status of a channel.

MAPIO_DEVICE Specifies that the I/O on this channel be redirected
to the device whose device number is specified by
arg[1] .

MAPIO_FILE Specifies that the I/O on this channel be redirected
to an open file whose file handle is specified by
arg[1].

MAPIO_SOCKET Specifies that I/O on this channel be redirected to an
open connection oriented socket whose socket de-
scriptor is specified by arg[1].

MAPIO_CUSTOM Specifies that I/O on this channel be redirected to a
custom application defined module whose module ID
is specified by arg[1] .
pSEUDO Driver 4-21



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 22  Thursday, January 28, 1999  9:18 AM
The useCount field specifies the current value of in use counter associated with the
channel. The type  field can have a value of:

■ MAPIO_DEVICE

■ MAPIO_FILE

■ MAPIO_SOCKET

■ MAPIO_CUSTOM

The type field value depends on whether the I/O is currently redirected to a device,
file, socket, or application defined module, respectively. Accordingly, the target
field is set to the device number, file handle, socket descriptor, or the module ID of
an application- specific module to which the I/O on this channel is currently redi-
rected.

If the I/O is not currently redirected, the type field is set to MAPIO_NONE, and the
values in other fields are undefined.
4-22 pSEUDO Driver



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 23  Thursday, January 28, 1999  9:18 AM
Reference Information

Supported Interfaces Standard character I/O inter-
face

Names registered in pSOS+ DNT stdin , stdout , stderr ,
psconsole

pRNC Names ///dev/stdin ,
///dev/stdout ,
///dev/stderr ,
///dev/psconsole ,

Minor number
encoding

0 Default task private stdin
channel

1 Default task private stdout
channel

2 Default task private stderr
channel

3 through 0x7FFF Other task private channels

0x8000 Default system console shared
by all the tasks in the system

0x8001 through
0xFFFF

Other task shared channels

Driver specific
parameters
accepted by device
open entry

None

Associated
sys_conf.h
parameters

SC_DEV_PSCONSOLE The major number of the device
driver, or 0 if not to be
configured

DEV_PSCONSOLE The major number of device
driver shifted left by 16 bits; can
be used to create a valid pSOS+
device number

DEV_STDIN stdin  device major minimum
number encoding

DEV_STDOUT stdout  device major minimum
number encoding
pSEUDO Driver 4-23



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 24  Thursday, January 28, 1999  9:18 AM
Application Examples

Figure 4-2 on page 4-25 demonstrates a scenario where the pSEUDO driver is used
for various types of I/O redirection supported by the pSEUDO driver. It is followed
by the example code fragments required to set up the redirections demonstrated by
the figure. For reasons of clarity, some of the obvious variable declarations and error
checking have been omitted.

Associated
sys_conf.h
parameters
(continued)

DEV_STDERR stderr  device major minimum
number encoding

SC_PSCNSL_SHARED
_CHAN

Maximum number of task-
shared multiplexing channels
that can be active simulta-
neously

SC_PSCNSL_PRIVAT
E_CHAN

Maximum number of task-pri-
vate multiplexing channels that
can be active simultaneously

SC_PSCNSL_DEFAUL
T_DEV

The default device driver to
which all the channels are
re-directed at the time of system
startup (DEV_SERIAL default)

SC_PSCNSL_MAX_CU
STOM

The maximum number of
custom I/O modules that can be
registered with the MAPIO driver

pSOSystem Components required pSOS+, pREPC+ and optionally:
pNA+ and pHILE+

Resource
requirement

Memory ((40 *
SC_PSCNSL_PRIVATE_C_CHAN
* KC_NTASK)  +
(40 *
SC_PSCNSL_SHARED_CHAN))
bytes

TSD Control Blocks One system-wide

Callout Control
Blocks

One system-wide
4-24 pSEUDO Driver



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 25  Thursday, January 28, 1999  9:18 AM
In this example, there are two tasks both of which are performing all the device I/O
through the pSEUDO driver. The first task has the stdin and stdout channels re-
directed to the serial driver, that happens to be the default redirection device for the
pSEUDO driver (set using the SC_PSCNSL_DEFAULT_DEVparameter which is
located in the sys_conf.h header file). The second task has redirected its stdin

C
h

a
n

 0

C
h

a
n

 2

C
h

a
n

 1

Task  1 Task  2

pSE
U

D
O

 SH
A

R
E

D

C
han 0x8000

C
han 0x8001

Serial
Driver

MEMLOG
Driver

RDIO
Driver

Low Priority
MEMLOG

listener task
LAN

COMMSERV

pSOsystem V2.5
Integrated Systems, Inc.
pSH+> ls
xx.txt    yy.txt    zz.txt

Custom
I/O
Module

Socket

LAN

Remote
Host

FIGURE 4-2 pSEUDO Redirection Example

C
H

A
N

N
E

LS

PRIVATE pSEU
D

O
C

H
A

N
N

E
L

Output Window in
Remote Debugger

stderr

std
ou

t

std
in

std
in

C
h

a
n

 0

C
h

a
n

 2

C
h

a
n

 1

PRIVATE pSEU
D

O
C

H
A

N
N

E
L

stderr

std
ou

t

pSEUDO Driver 4-25



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 26  Thursday, January 28, 1999  9:18 AM
and stdout channels to a socket that is potentially communicating to a remote cli-
ent simulating a simple remote terminal capability. Both the devices have redirected
their stderr channels to the MEMLOG driver for the purpose of error logging. The
messages logged to the MEMLOG are stored in a circular buffer for later examina-
tion (for details on MEMLOG driver, refer to section MEMLOG on page 4-29).

The I/O to the system console (pSEUDO channel), in this example, has been redi-
rected by the RDIO driver to the output window in the source level debugger, run-
ning on a remote host (for details on how to do this, refer to section RDIO on
page 4-40). Finally, the pSEUDO driver has been configured to have an additional
task shared channel (0x8001), the I/O to which is being redirected to an application
defined custom I/O module.

The various relevant sys_conf.h  entries that correspond to this example are:

#define LC_STDIN     "///dev/stdin"
#define LC_STDOUT    "///dev/stdout"
#define LC_STDERR    "///dev/stderr"

#define SC_PSCNSL_SHARED_CHAN        2
#define SC_PSCNSL_PRIVATE_CHAN       3

#define SC_PSCNSL_DEFAULT_DEV        DEV_SERIAL
#define SC_PSCNSL_MAX_CUSTOM 1

The sample application program below demonstrates the use of the pSEUDO driver,
to redirect I/O onto the memory log driver. Basically, the application opens the
pSEUDO driver, and writes a string to the default console. Next, the application
issues an IOCTL command (MAPIO_GET_REDIRECTION) to get the current mapping,
and prints the major device number that is currently mapped. Finally, the applica-
tion issues the MAPIO_SET_REDIRECTIONto remap the device to a new device with
major number 5 (say for example, The Memory Log driver is assigned a Major num-
ber 5), and writes a different string to the new device.
4-26 pSEUDO Driver



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 27  Thursday, January 28, 1999  9:18 AM
Sample Application Source Listing

/******************************************************************/
/* root: Task to demonstrate the pSEUDO driver capabilities using */
/* the PSEUDO Driver Interface routines. */
/* */
/* INPUTS: None */
/* */
/* RETURNS: */
/* OUTPUTS: */
/* NOTE(S): */
/* */
/******************************************************************/
void
root(void)
{

ULONG rc, ioretval, tid;
PssCharCtrlIOPB     ioctl_iopb;

:
:
:
:
:

/*-------------------------------------------------------------*/
/* Set the STDIN to DEV_MEMLOG (Memory Log Driver)             */
/*-------------------------------------------------------------*/
iopb.fcode   = MAPIO_SET_REDIRECTION;
iopb.args[0] = MAPIO_DEVICE;
iopb.args[1] = DEV_MEMLOG;
iopb.args[2] = tid;

if ((rc = de_cntrl(DEV_STDIN, &ioctl_iopb, &dummy)) != 0) {
PrintErrMessage(__FILE__, __LINE__, rc);

}

/*-------------------------------------------------------------*/
/* Set the STDOUT to DEV_MEMLOG (Memory Log Driver)            */
/*-------------------------------------------------------------*/
iopb.fcode   = MAPIO_SET_REDIRECTION;
iopb.args[0] = MAPIO_DEVICE;
iopb.args[1] = DEV_MEMLOG;
iopb.args[2] = tid;

if ((rc = de_cntrl(DEV_STDOUT, &ioctl_iopb, &dummy)) != 0) {
PrintErrMessage(__FILE__, __LINE__, rc);

}

/*-------------------------------------------------------------*/
pSEUDO Driver 4-27



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 28  Thursday, January 28, 1999  9:18 AM
/* Set the STDERR to DEV_RDIO (Remote Debugger).               */
/*-------------------------------------------------------------*/
iopb.fcode   = MAPIO_SET_REDIRECTION;
iopb.args[0] = MAPIO_DEVICE;
iopb.args[1] = DEV_RDIO;
iopb.args[2] = tid;

if ((rc = de_cntrl(DEV_STDERR, &ioctl_iopb, &dummy)) != 0) {
PrintErrMessage(__FILE__, __LINE__, rc);

}

/*-------------------------------------------------------------*/
/* Loop to write and read from Memlog driver and later output  */
/* to stderr                                                   */
/*-------------------------------------------------------------*/
while (1) {

fputs(WriteBuf, stdout);
fgets(ReadBuf, sizeof(ReadBuf), stdin);
fputs(ReadBuf, stderr);
tm_wkafter(360);

}
}

4-28 pSEUDO Driver



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 29  Thursday, January 28, 1999  9:18 AM
MEMLOG Driver for logging error and diagnostic messages

Overview

The MEMLOG driver provides a standard character device driver interface for log-
ging system wide error and diagnostic messages. The logged messages are main-
tained in a circular buffer, the size of which is a configurable parameter. Message
boundaries are maintained by delimiting each message by a NULL character. Any
data written by a single call to the write routine of the MEMLOG driver is treated as
a message, and the driver ensures that every message is written in an atomic man-
ner such that two concurrent write requests do not result in garbled data. The
driver allows messages to contain NULL characters, though NULL characters em-
bedded in the message would cause new message boundaries to be defined.

The read from MEMLOG driver always returns a NULL terminated message if suffi-
cient amount of buffer space is provided, else a partial message is returned. The
reads from MEMLOG drivers do not block while waiting for the availability of data. If
there are no messages available, a read call returns immediately, suggesting 0 bytes
read.

Operation

Device Initialization

The device initialization of MEMLOG driver involves initializing the buffer parame-
ter, and creating the mutex used for mutual exclusion. The initialization routine
does not expect an IOPB, and ignores any IOPB passed to it.

Device Open

The device open function of MEMLOG driver simply returns a successful status.

Device Close

The device close function of MEMLOG driver simply returns a successful status.
MEMLOG 4-29



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 30  Thursday, January 28, 1999  9:18 AM
Device Read

A read operation from the MEMLOG driver returns a NULL terminated message, if
the requested byte count is greater than the size of the next available message in the
buffer. Otherwise it returns a non-NULL terminated partial message of the size re-
quested. The maximum number of bytes that can be read from the MEMLOG driver
equals SC_LOG_BUFSIZE. The read operation is performed after obtaining a mutex
lock such that two concurrent read operations, or two concurrent read and write
operations do not interfere with each other.

Other than the behavior mentioned in the previous paragraph, the read operation
follows the same interface and semantics as defined for the read operation for a
standard pSOSystem character device driver. Refer to Device Read Entry on
page 4-4 for details.

Device Write

A write operation to the MEMLOG driver results in writing the requested number of
bytes up to SC_LOG_BUFSIZE-1, into the circular buffer maintained by the driver.
Any unread messages are overwritten. For messages that are bigger than
SC_LOG_BUFSIZE-1, the initial portion of the message that does not fit in the buffer
is discarded. The write operation is done by obtaining a mutex lock on the circular
buffer so that two concurrent write operations to the driver do not result in garbled
data. A NULL character is placed in the circular buffer after writing the data, and if
any task has been registered to be notified of the availability of a message, the regis-
tered set of events are sent to that task.

Other than the behavior mentioned in the previous paragraph, the write operation
follows the same interface and semantics as defined for the write operation for a
standard pSOSystem character device driver. Refer to section Device Write Entry on
page 4-5 for details.

Device Control

The only device control function defined for the MEMLOG driver supports flushing
the log buffer and attaching an external buffer for logging the data.
4-30 MEMLOG



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 31  Thursday, January 28, 1999  9:18 AM
Reference Information

Application Examples

The following example code fragment demonstrates how th e stderr stream of a
task can be redirected to the MEMLOG driver.

FILE    *fp;

fprintf(stderr, "This error message gets printed.\n");

fp = freopen("///dev/memlog", "w", stderr);

if (fp == NULL) {
    perror("freopen");
    exit(1);
}

fprintf(stderr, "This error message is logged!\n");

Supported Interfaces Standard character I/O
interface

Name registered in pSOS+ DNT memlog

pRNC Name ///dev/memlog

Minor number encoding None defined

Driver specific parameters accepted by device
open entry

None

Associated sys_conf.h
parameters

SC_DEV_MEMLOG The major number of the de-
vice driver, or 0 if not to be
configured

DEV_MEMLOG The major number of device
driver shifted left by 16 bit;
can be used to create a valid
pSOS+ device number

SC_LOG_BUFSIZE Size of the circular buffer in
number of bytes

pSOSystem Components required pSOS+

Resource requirement Mutexes One system wide
MEMLOG 4-31



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 32  Thursday, January 28, 1999  9:18 AM
NULL Driver that functions like a NULL data source and an infinite data sink

Overview

The NULL driver provides a standard character device driver interface that acts as a
sink of infinite depth for write operations, and as a data source with no data to be
read.

Operation

Device Initialization

The device initialization of NULL driver is not required. It simply returns a success-
ful status.

Device Open

The device open function of NULL driver simply returns a successful status.

Device Close

The device close function of NULL driver simply returns a successful status.

Device Read

A read operation from the NULL driver is always successful and returns 0 as the
number of bytes read. In other words, the device always acts as if the end of file con-
dition has been encountered. The read operation follows the same interface as de-
fined for the read operation for a standard pSOSystem character device driver. Refer
to section Device Read Entry on page 4-4 for details.

Device Write

A write operation to the NULL driver is always successful. All the data passed to the
driver is simply discarded and the number of bytes passed to the driver is returned
back as the number of bytes written. The write operation follows the same interface
as defined for the write operation for a standard pSOSystem character device driver.
Refer to section Device Write Entry on page 4-5 for details.
4-32 NULL



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 33  Thursday, January 28, 1999  9:18 AM
Device Control

There are no device control functions defined for NULL driver. The device control
command and any data passed to the driver is ignored and a successful status is
returned.

Reference Information

Application Examples

The following example code fragment demonstrates how the stderr stream of a
task can be redirected to the NULL driver such that any error messages produced by
the program are discarded.

FILE    *fp;

fprintf(stderr, "This error message gets printed!\n");

if ((fp = freopen("///dev/null", "w", stderr)) == NULL) {
    perror("freopen");
    exit(1);
}

fprintf(stderr, "This error message goes to the kitchen
sink!\n");

Supported Interfaces Standard character I/O interface

Name registered in pSOS+ DNT null

pRNC Name ///dev/null

Minor number encoding None defined

Driver specific parameters accepted by device
open entry

None

Associated sys_conf.h
parameters

SC_DEV_NULL The major number of the device
driver, or 0 if not to be configured

DEV_NULL The major number of device
driver shifted left by 16 bit; can
be used to create a valid pSOS+
device number

pSOSystem Components required None

Resource requirement None
NULL 4-33



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 34  Thursday, January 28, 1999  9:18 AM
PIPE Driver for inter-task data communication

Overview

The PIPE driver provides a standard character device driver interface for creating a
simplex channel for exchanging data between tasks. Functionally, it is similar to the
pipe facility provided by POSIX. The data stream obtained from a PIPE can be
manipulated using standard ANSI-C stdio facilities.

The driver supports multiple channels that can operate simultaneously. The num-
ber of channels can be configured using the SC_MAX_PIPE_CHANparameter located
in the sys_conf.h header file. The number of channels that can be simultaneously
active may, however, be limited by the availability of other resources mentioned in
the Reference Information section located on page 4-38.

There could be multiple readers or writers reading or writing to a single pipe. The
driver guarantees that for a given channel:

■ Readers and writers get access based on their priority

■ The read operation is performed atomically, if there is enough data in the PIPE
buffer such that the operation can be completed without blocking to wait for a
writer to write data to the PIPE

■ The write operation is performed atomically, if there is enough space in the PIPE
buffer such that the operation can be completed without blocking to wait for a
reader to empty the PIPE

■ In situations where all the requests can be completed without waiting for read-
ers to flush the PIPE or writers to fill the PIPE, no tasks are blocked for an un-
bounded time.

The driver supports both blocking and non-blocking I/O operations for both reading
from the PIPE and writing to the PIPE.

Operation

Device Initialization

The device initialization of PIPE driver involves allocating memory for bookkeeping
information, and initializing the mutex used for mutual exclusion. It is not neces-
sary to explicitly initialize the driver. The driver is automatically initialized at the
4-34 PIPE



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 35  Thursday, January 28, 1999  9:18 AM
time of processing the first request to open the device. The initialization routine does
not expect an IOPB, and ignores any IOPB passed to it.

Device Open

The PIPE driver opens the read or write end of one of the channels, specified by ei-
ther the device minor number passed by the caller or, optionally, the driver specific
parameters passed via the standard character driver open IOPB, as defined in sec-
tion, Device Open Entry on page 4-3.

■ The flags field of the IOPB is 0 if the channel is being opened for blocking I/O, or
it has a value of O_NONBLOCK(defined in the header file, fcntl.h ) if the
channel is to be opened for non-blocking I/O. Note that non-blocking status for
a channel is maintained separately for the read and write ends of the pipe, and
the end of the pipe being opened determines the end for which the blocking or
non-blocking mode is set. Also, note that if multiple readers (or writers) open a
channel, then even if a single reader (or writer) changes the mode for the read
(or write) end of the pipe to non-blocking, that mode becomes effective for the
rest of the readers (or writers) as well.

■ The params field of the IOPB points to a string of comma separated name value
pairs that is parsed by the driver open routine to obtain the size of buffer to be
associated with the channel being opened, the channel number of the PIPE
driver to engage for the purpose of data transfer, and whether the read or write
end of the driver is being opened. The flags field of the IOPB is ignored.
Table 4-4 describes the format of various parameters as expected by the PIPE
driver open routine.

TABLE 4-4 PIPE Driver Parameters

Parameter Syntax and Description

channel A numeric value that specifies the channel number to
be opened. This is an optional parameter. If the
channel  parameter is omitted then the minor number
of the device passed to the de_open  call specifies the
channel to be opened, otherwise the device minor num-
ber passed to the de_open  call is ignored.

■ If a positive or zero value is specified, it is taken as
the channel to be opened.

■ If a value of -1 is specified, the driver allocates an
available channel and passes the device major mi-
nor number corresponding to the allocated channel
back to the caller in cloneDev  field of the IOPB.
PIPE 4-35



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 36  Thursday, January 28, 1999  9:18 AM
Device Close

The PIPE driver close function closes the channel and end (read/write) of the PIPE
as specified by the device minor number passed by the caller. If there are no more
tasks that have this channel open, the resources like mutex, condition variables,
and memory associated with the channel are freed.

Device Read

The behavior of the PIPE for read operations (which is also consistent with the be-
havior defined for POSIX pipes) is as follows:

■ If an attempt is made to read from an empty pipe, then

● If no writers have opened the PIPE for writing, a value of zero is returned as
the number of bytes read indicating end of file

● If one or more tasks have opened the pipe for writing and the O_NONBLOCK
flag for the read end is set, then the read operation returns an error
PIPE_EMPTY

● If one or more tasks have opened the pipe for writing and the O_NONBLOCK
flag for the read end is clear, then the read operation blocks until the
request can be satisfied, or until all the writers close their end of the PIPE

mode This is an optional parameter that takes one of the two
string values, read  or write , that respectively specify
whether the read or write end of the PIPE driver is being
opened. If this parameter is omitted, then the most
significant bit of the minor number determines which
end of the PIPE is opened. Read contains the most
significant bit 0. Write is set to 1.

bufsize This is an optional parameter and it specifies the size of
buffer (in bytes) that shall be allocated and associated
with this channel for the purpose of buffering the data.
If this parameter is omitted, the buffer size is defaulted
to 1024 bytes. Also, this parameter is honored only for
the first open request for an inactive channel.

TABLE 4-4 PIPE Driver Parameters (Continued)

Parameter Syntax and Description
4-36 PIPE



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 37  Thursday, January 28, 1999  9:18 AM
The read operation follows the same interface as defined for the read operation for a
standard pSOSystem character device driver interface. Refer to section Device Read
Entry on page 4-4 for details.

Device Write

The behavior of the PIPE for write operations (which is also consistent with the be-
havior defined for POSIX pipes) is as follows:

■ If the O_NONBLOCKflag for the write end of the PIPE is clear (for example. the
PIPE is operating in the blocking mode), a write request always writes all the
data, and if the amount of data being written is more than what the PIPE can
buffer, the writer may block waiting for some reader to flush the data from the
buffer.

■ If the O_NONBLOCKflag for the write end of the PIPE is set then the behavior
depends on whether the amount of data being written is more or less than the
size of buffer associated with the PIPE:

● If the write request is less than or equal to the size of the buffer associated
with this PIPE then:

i. If there is sufficient space to write all the data to the buffer, it is written

ii. Else no data is transferred and error PIPE_FULL is returned to the
caller

● If the write request is more than the size of the buffer associated with this
PIPE then:

i. If at least one byte of data can be written to the PIPE, it is written

ii. Else if no data can be written, error PIPE_FULL is returned to the caller

The write operation follows the same interface as defined for the write operation for
a standard pSOSystem character device driver interface. Refer to section Device
Write Entry on page 4-5 for details

Device Control

There are no device control functions defined for PIPE driver.
PIPE 4-37



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 38  Thursday, January 28, 1999  9:18 AM
Reference Information

Supported Interfaces Standard character I/O in-
terface

Name registered in pSOS+ DNT pipe

pRNC Name ///dev/pipe?<params>

Minor number encoding 0 to 0x7FFF Channel numbers of the
read end of the pipe

0x8000 to 0xFFFF Channel numbers of the cor-
responding write end of the
pipe

Driver specific parameters
accepted by device open
entry

channel The channel number to open

bufsize The size (in bytes) of buffer
to allocate for buffering the
data in the channel. (note:
default is 1024 bytes)

Associated sys_conf.h
parameters

SC_DEV_PIPE The major number of the de-
vice driver, or 0 if not to be
configured

DEV_PIPE The major number of device
driver shifted left by 16 bits;
can be used to create a valid
pSOS+ device number

SC_MAX_PIPE_CHAN Maximum number of chan-
nels that can be simulta-
neously activated

pSOSystem Components required pSOS+, pREPC+

Resource requirement Mutexes One system wide and one
per active channel

Condition Variable One per active channel

Memory 56 bytes per channel, plus
the size of data buffer asso-
ciated with the channel
4-38 PIPE



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 39  Thursday, January 28, 1999  9:18 AM
Application Examples

The following example code fragment demonstrates how the de_open call can be
used to open the write end of the PIPE. The channel parameter is passed as -1 to re-
quest that the driver allocate any available channel.

PssCharOpenIOPB   open_iopb;
PssCharRdwrIOPB   rdwr_iopb;
Unsigned long     rc, retval;
char              buf[512];

open_iopb.params = "channel=-1,bufsize=512,mode=write";

rc = de_open(DEV_PIPE, &open_iopb, &retval);
if (rc != 0)
    k_fatal(rc, 0);

rdwr_iopb.count = 512;
rdwr_iopb.address = buf;

rc = de_write(open_iopb.cloneDev, &rdwr_iopb, &retval);

The following example code fragment demonstrates how PIPE driver can be used
with the standard ANSI stdio functions provided by pREPC+. This example demon-
strates how the PIPE driver can be requested to open a specific channel (3 in this
case).

FILE            *fp;
char              buf[512];

fp = fopen("///dev/pipe?channel=3,mode=read", "r" );

if (fp == NULL) {
    perror("Open");
    exit(1);
}

while(!eof(fp)) {
     count = fread(buf, 512, 1, fp);
     fwrite(buf, count, 1, stdout);
}

PIPE 4-39



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 40  Thursday, January 28, 1999  9:18 AM
RDIO Driver that performs I/O to or from a window in the remote
debugger

Overview

The RDIO driver provides a standard character device driver interface for interacting
with the target system from a window in the remote debugger over the communica-
tion link between the pROBE+ debugger running on the target, and the pRISM+
Communication Server running on the remote host system. It is especially useful for
redirecting the stdin , stdout and stderr streams of one or more tasks to a win-
dow in remote debugger when either:

■ The target system does not have an asynchronous serial port to which a termi-
nal could be connected for interaction, or

■ There is only one asynchronous serial port available on the target and it is being
used by pROBE+ for the purpose of remote debugging, or

■ The target is remotely located, and it is not possible to attach a terminal (for the
purpose of interacting with the target system) to one of the asynchronous serial
ports available on the target due to the distance limitations posed by the asyn-
chronous serial protocol.

Operation

Device Initialization

The device initialization of RDIO driver is not required. It simply returns a success-
ful status.

Device Open

The device open function of RDIO driver simply returns a successful status.

Device Close

The device close function of RDIO driver simply returns a successful status.

Device Read

A read request to RDIO device is converted into a data input request to the remote
debugger. The remote debugger, typically, designates a separate window for inter-
4-40 RDIO



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 41  Thursday, January 28, 1999  9:18 AM
acting with the target. Any input typed in this window is what is passed back in re-
sponse to a data input request from the target. Data obtained from the remote
debugger is then returned to the task performing the read operation on RDIO driver;
there is no data buffering done by pROBE+ or the RDIO driver. The amount of data
returned from a read operation depends largely on how the remote debugger imple-
ments the interactive I/O. Most remote debuggers usually implement line buffered
I/O. Therefore, the amount of data returned by the remote debugger may not be
equal to the amount of data requested, though it may not signify there is no more
data to be read.

Other than the behavior mentioned in the previous paragraph, the read operation
follows the same interface and semantics as defined for the read operation for a
standard pSOSystem character device driver. Refer to section Device Read on
page 4-14 for details.

Device Write

A write operation to the RDIO driver is converted into a data output request to the
remote debugger. The remote debugger, typically, displays the data in a separate
window designated for interacting with the target. The write operation follows the
same interface and semantics as defined for the write operation for a standard pSO-
System character device driver. Refer to section Device Write on page 4-14 for de-
tails.

Device Control

There are no device control functions defined for RDIO driver. The device control
command and any data passed to the driver is ignored and a successful status is
returned.
RDIO 4-41



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 42  Thursday, January 28, 1999  9:18 AM
Reference Information

Application Examples

The following example code fragment demonstrates how the stdin and stdout
streams of a task can be redirected to the RDIO driver.

FILE    *fp;
char      buf[80];

printf("Re-directing stdin and stdout to remote debugger!\n");

fp = freopen("///dev/rdio", "r", stdin);

if (fp == NULL) {
    perror("freopen stdin");
    exit(1);
}

fp = freopen("///dev/rdio", "w", stdout);

Supported Interfaces Standard character I/O
interface

Name registered in pSOS+ DNT rdio

pRNC Name ///dev/rdio

Minor number encoding None defined

Driver specific parameters accepted by device open
entry

None

Associated sys_conf.h
parameters

SC_DEV_RDIO The major number of the
device driver, or 0 if not to
be configured

DEV_RDIO The major number of device
driver shifted left by 16 bits;
can be used to create a valid
pSOS+ device number

pSOSystem Components required pSOS+, pROBE+, and
optionally pNA+ or pNET+

Resource requirement None
4-42 RDIO



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 43  Thursday, January 28, 1999  9:18 AM
if (fp == NULL) {
    perror("freopen stdout");
    exit(1);
}

printf("This message appears in the remote debugger window\n");

/* Read a line from the remote debugger window and echo back */
fgets (buf, 80, stdin);
fputs (buf, stdout);
RDIO 4-43



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 44  Thursday, January 28, 1999  9:18 AM
TFTP Driver for transferring files from a TFTP server

Overview

The TFTP (Trivial File Transfer Protocol) driver provides a standard character device
driver interface for obtaining files from a TFTP server. TFTP is a rather simple proto-
col used for transferring data between networked devices that use a datagram
socket for data communication. The TFTP driver provides a standard interface so
that any data stream obtained from a TFTP server can be manipulated using stan-
dard ANSI-C stdio facilities.

The driver supports multiple channels that can operate simultaneously. The num-
ber of channels can be configured using the SC_MAX_TFTP_CHANparameter which
is located in sys_conf.h header file. The number of channels that can be simulta-
neously active may, however, be limited by the availability of other resources.

In order to provide maximum concurrency between the activities of data transfer
over network and data processing by application, the TFTP driver creates a separate
task that performs the job of data transfer over the network using the TFTP protocol
and handles the protocol specific details like error detection, reordering datagrams,
and retrying to obtain lost packets. This task communicates with the application
task by way of a pSOS+ message queue. The driver sets aside 10 buffers of 516
bytes each for data transfer between the server task and the application.

NOTE: Despite the buffering provided by the driver, if a large amount of data is
being transferred that the application is unable to consume in a timely
manner, the TFTP server may timeout for lack of data request and may
drop the connection, resulting in an error returned by the device read
operation to the application. However, this is seldom a problem since the
server timeout value is of the order of several seconds.

Operation

Device Initialization

The device initialization of the TFTP driver involves allocating memory for bookkeep-
ing information, and initializing the mutexes used for mutual exclusion. It is not
necessary to explicitly initialize the driver. The driver is automatically initialized at
the time of processing the first request to open the device. The initialization routine
does not expect an IOPB, and ignores any IOPB passed to it.
4-44 TFTP



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 45  Thursday, January 28, 1999  9:18 AM
Device Open

The TFTP driver open function establishes connection with the TFTP server, speci-
fied by the driver specific parameters passed by way of the standard character driver
open IOPB, as defined in section Device Open on page 4-20. The params field of the
IOPB points to a string of comma separated name value pairs that is parsed by the
driver open routine to obtain the IP address of the TFTP server, the pathname that
identifies the file to be transferred, and optionally the channel number of the TFTP
driver to engage for the purpose of data transfer. The flags field of the IOPB is ig-
nored. Table 4-5 describes the format of various parameters as expected by the
TFTP driver open routine.

Device Close

The TFTP driver close function terminates the connection with the TFTP server, and
deletes the server task created at the time of device open.

TABLE 4-5 TFTP Driver Parameters

Parameter Syntax and Description

channel A numeric value that specifies the channel number to
be opened. This is an optional parameter. If the chan-
nel parameter is omitted then the minor number of the
device passed to the de_open call specifies the channel
to be opened, otherwise the device minor number
passed to the de_open  call is ignored.

■ If a positive or zero value is specified, it is taken as
the channel to be opened.

■ If a negative value is specified, the driver allocates
an available channel and passes the device major
minor number corresponding to the allocated chan-
nel back to the caller in the cloneDev field of the
IOPB.

ipaddr This is a required parameter that specifies the IP ad-
dress of the TFTP server. It can be a decimal, octal, or
hexadecimal number. It can also be specified in the
standard dot notation used to specify IP addresses.

pathname This is a required parameter and it specifies the path-
name of the remote file to be accessed.
TFTP 4-45



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 46  Thursday, January 28, 1999  9:18 AM
Device Read

The read operation follows the same interface and semantics as defined for the read
operation for a standard pSOSystem character device driver interface. Refer to sec-
tion Device Read on page 4-20 for details.

Device Write

The write operation is not defined for TFTP driver.

Device Control

There are no device control functions defined for TFTP driver.

Reference Information

Supported Interfaces Standard character I/O interface

Name registered in pSOS+ DNT tftp

pRNC Name ///dev/tftp?<params>

Minor number encoding 0 through 0xFFFF - channel
number

Driver specific
parameters ac-
cepted by device
open entry

channel The channel number to open

ipaddr The IP address of the TFTP server

pathname The complete path name of the file
to be transferred from the TFTP
server

Associated
sys_conf.h
parameters

SC_DEV_TFTP The major number of the device
driver, or 0 if not to be configured

DEV_TFTP The major number of device driver
shifted left by 16 bits; can be used
to create a valid pSOS+ device
number

SC_MAX_TFTP_CHA
N

Maximum number of channels that
can be simultaneously activated

pSOSystem Components required pSOS+, pREPC+, pNA+/pNET+
4-46 TFTP



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 47  Thursday, January 28, 1999  9:18 AM
Resource
requirement

Mutexes One system wide and one per
active channel

Task One per active channel

Queue Two per active channel

Memory 56 bytes per channel, and 5160
bytes per active channel

Socket One per active channel
TFTP 4-47



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 48  Thursday, January 28, 1999  9:18 AM
Application Examples

The following example code fragment demonstrates how de_open call can be used
to open a connection with the TFTP server at IP address 192.103.54.36 to transfer a
file named app.hex from the default directory of the TFTP server. The channel
parameter is passed as -1 to request that the driver allocate any available channel.

PssCharOpenIOPB   open_iopb;
PssCharRdwrIOPB   rdwr_iopb;
Unsigned long     rc, retval;
char              buf[0x200];

open_iopb.params =
    "channel=-1,ipaddr=192.103.54.36,pathname=app.hex";

rc = de_open(DEV_TFTP, &open_iopb, &retval);
if (rc != 0)
    k_fatal(rc, 0);

rdwr_iopb.count = 0x200;
rdwr_iopb.address = buf;

rc = de_read(open_iopb.cloneDev, &rdwr_iopb, &retval);

The following example code fragment demonstrates how TFTP driver can be used
with the standard ANSI stdio functions provided by pREPC+. This example demon-
strates how the TFTP driver can be requested to open a specific channel 3 in this
case).

FILE            *fp;
char              buf[0x200];

fp = fopen(
 "///dev/tftp?channel=3,ipaddr=204.71.177.159,pathname=/", "r" );

if (fp == NULL) {
    perror("Open");
    exit(1);
}

while(!eof(fp)) {
     count = fread(buf, 0x200, 1, fp);
     fwrite(buf, count, 1, stdout);
}

4-48 TFTP



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 49  Thursday, January 28, 1999  9:18 AM
DITI (Device Independent Terminal Interface)

Overview

The Device Independent Terminal Interface (DITI) is the interface between a task
and the terminal driver through the I/O Jump Table. The terminal driver uses the
Device Independent Serial Interface (DISI) to complete the device dependent part of
the driver.

A complete understanding of this interface is required only if the developer wants to
modify the behavior of the terminal driver or obtain the details of its behavior. If the
application is going to use the terminal driver only to read or write to the device,
then the developer can accomplish this by using pREPC+ calls such as printf and
scanf found in the C library. In this case, the application can use the AUTOINIT
feature to make pSOS+ initialize the terminal driver. This allows the application to
start using the driver directly for reading and writing.

Operation

The DITI is called by way of the pSOS+ I/O Jump Table. It can be used for serial
communications to devices such as terminals, printers, and other computers. The
DITI supplies an interface to:

■ Setup a serial channel to the requirements of the user. For example, baud rate,
time-outs, character size, and flow control,

■ Send and receive data,

■ Be used by pREPC to transfer data in asynchronous mode.

The DITI separates the task from the terminal driver and is the standard interface to
the terminal driver. Figure 4-3 on page 4-51 shows the DITI interface and how it fits
into the pSOSystem.

The DITI defines six functions, shown in Table 4-6 on page 4-50, that correspond to
the pSOS+ I/O driver table functions.
DITI (Device Independent Terminal Interface) 4-49



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 50  Thursday, January 28, 1999  9:18 AM
TABLE 4-6 DITI Functions

Entry for DITI DITI Call Description

de_init TermInit Initialize the console driver.

de_open TermOpen Open a channel.

de_read TermRead Read from a channel.

de_write TermWrite Write to a channel.

de_cntrl TermIoctl Perform a control operation on a channel.

de_close TermClose Close a channel.
4-50 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 51  Thursday, January 28, 1999  9:18 AM
de_init

SerialInit SerialOpen SerialIoctl

TermInit TermOpen TermRead TermWrite TermIoctl TermClose

term_dataind term_datacnf

term_ctlcnf

term_expind

de_open de_read de_write de_cntrl de_close

I/O Jump Table

DITI

Call-Backs

DISI

SerialSend

Device
Interrupts RXintr

TXintr
EXPintr

CNTLintr

SerialClose

Read
Queue

Configuration
and State Info

Channel Out Channel Control

DITI

Entry For DITI

FIGURE 4-3 DITI Interface
DITI (Device Independent Terminal Interface) 4-51



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 52  Thursday, January 28, 1999  9:18 AM
DITI Features

When a channel is opened it causes the task to wait until a connection is estab-
lished. A terminal associated with the opened channel ordinarily operates in full-
duplex mode (input and output can occur simultaneously). Input is stored in the
input buffers until the input buffers become full. Note that when the input buffer is
full, without warning to the application, the additional characters are deleted.

Canonical mode input processing

Terminal input is processed and assembled in units of lines. A line is delimited by a
newline (ASCII LF) character, an end of file (ASCII EOT) character, or an end of line
(ASCII CR) character. A newline character must be inputted before characters are
returned by the read call regardless of the number of characters specified by a
requesting program. Therefore, a program attempting a read is suspended until the
line delimiter, NL, has been inputted to the read call.

It is not necessary, however, for the program to retrieve a whole line at once from the
read call; one or more characters may be requested by the program in each read
without loss of information. The read will return from its input buffer the number of
characters requested by the program. If the input buffer already contains the num-
ber of characters requested by the program, the read returns immediately. If fewer
characters are contained in the input buffer than what is requested by the program,
the read fetches more characters from the channel.

During input, erase processing is normally done. The erase function (by default, the
character DEL) deletes the last character inputted. The erase function does not
remove characters beyond the beginning of the line. The ASCII character assigned to
the ERASE special character (see, Special Characters on page 4-55) can be config-
ured.

Non-Canonical mode input processing

In non-canonical mode input processing, input characters are not assembled into
lines and erase processing does not occur. Two parameters, MinChar and MaxTime
are used in non-canonical mode processing (CANON bit not set in flags) to deter-
mine how to process the characters received.
4-52 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 53  Thursday, January 28, 1999  9:18 AM
MinChar represents the minimum number of characters that are received to com-
plete the read and return to the calling program. MaxTime is a timer of one-tenth
second granularity that is used to time-out burst and short term data transmis-
sions. The four possible values for MinChar and MaxTime and their interactions are
described below.

Case A: MinChar > 0 and MaxTime > 0

In this case MaxTime serves as an inter-character timer and is activated
after the first character is received and is reset after each subsequent char-
acter input. The interaction between MinChar and MaxTime is as follows:

■ As soon as one character is received, the inter-character timer is
started.

■ If MinChar characters are received before the inter-character timer ex-
pires, the read is satisfied.

■ If the timer expires before MinChar characters are received, the charac-
ters received to that point are returned to the user.

NOTE: If MaxTime expires, at least one character is returned because the
timer is enabled only if a character was received. In this case
where MinChar > 0 and MaxTime > 0 the read blocks until the
MinChar and MaxTime mechanisms are activated by the receipt
of the first character.

Case B: MinChar > 0 and MaxTime = 0

In this case only MinChar is significant because MaxTime is set to zero. A
pending read is blocked until MinChar characters are received.

NOTE: A program that uses this case to read record based terminal I/O may
block indefinitely in the read operation.

Case C: MinChar = 0 and MaxTime > 0

In this case MaxTime no longer represents an inter-character timer but
serves as a read timer because MinChar is set to zero. It is activated as soon
as a read call is made. A read is satisfied on input of a single character or
expiration of the read timer. If no character is received within .1 x MaxTime
seconds after the read is initiated, the read returns with zero characters.

Case D: MinChar = 0 and MaxTime = 0

In this case, the return is immediate. The minimum of either the number of
characters requested or the number of characters currently available is re-
turned without waiting for more character input.
DITI (Device Independent Terminal Interface) 4-53



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 54  Thursday, January 28, 1999  9:18 AM
Comparison of the different cases (A, B, C, D) of MinChar, MaxTime interaction

Some points to note about MinChar and MaxTime:

■ In the following explanations, note that the interactions of MinChar and
MaxTime are not symmetric. For example, when MinChar > 0 and MaxTime = 0,
MaxTime has no effect. However, in the opposite case, where MinChar = 0 and
MaxTime > 0, both MinChar and MaxTime play a role (MinChar is satisfied with
the receipt of a single character).

■ Also note that in Case A, MaxTime represents an inter-character timer, whereas
in case C, MaxTime represents a read timer.

These two points highlight the dual purpose of the MinChar/MaxTime feature.
Cases A and B, where MinChar > 0, exists to handle burst mode activity (for exam-
ple, file transfer programs), where a program would like to process at least MinChar
characters at a time. In case A, the inter-character timer is activated by a user as a
safety measure; in case B, the timer is turned off.

Cases C and D exist to handle single character, timed transfers. These cases are
readily adaptable to screen based applications that need to know if a character is
present in the input queue before refreshing the screen. In case C, the read is timed,
whereas in case D, it is not.

Writing Characters

When one or more characters are written, after the processing of previously written
characters, they are sent to the terminal. When echoing is enabled, input characters
are echoed as they are typed. If a process produces characters faster than they can
be typed, causing its output queue to exceed a specified limit, it is blocked. When
the queue is drained down to its specified threshold, the program is resumed.
4-54 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 55  Thursday, January 28, 1999  9:18 AM
Special Characters

Certain characters cause special functions on input. These functions and their
default character values are summarized as follows:

NOTE: ERASE, EOL, STOP, and START values can be changed.

ERASE (DEL) Special character on input and is recognized if the ICANON flag
is set. It erases the previous character in the current line. The
ERASE character does not erase beyond the start of a line as de-
limited by a NL, EOF or EOL character. If ICANON is set, the
ERASE character is discarded when processed.

EOF (CTRL-D) Special character on input and is recognized if the ICANON flag
is set. When received, all the bytes waiting to be read are imme-
diately passed to the process, without waiting for a newline,
and the EOF is discarded. Thus, if there are no bytes waiting
(that is, the EOF occurred at the beginning of a line), a byte
count of zero is returned from the read() , representing an end
of file indication. If ICANON is set, the EOF character is dis-
carded when processed.

NL (ASCII LF) Special character on input and is recognized if the ICANON flag
is set. This is the normal end of line delimiter. This cannot be
changed.

EOL Special character on input and is recognized if the ICANON flag
is set. It is an additional end of line delimiter.

CR (ASCII CR) Special character on input and is recognized if the ICANON flag
is set. When ICANON and IGNCR are set, this character is ig-
nored. When ICANON and ICRNL are set and IGNCR is not set,
this character is translated into an NL and has the same effect
as an NL character. This cannot be changed.

STOP (CTRL-S or
ASCII DC3)

Special character used to stop output temporarily. It is used
with CRT terminals to prevent output from disappearing before
it can be read. While output is suspended, STOP characters are
ignored and not read.

START (CTRL-Q or
ASCII DC1)

Special character used to restart output that has been stopped
by a STOP function. If output is not suspended, START is ignored.
DITI (Device Independent Terminal Interface) 4-55



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 56  Thursday, January 28, 1999  9:18 AM
Terminal Parameters

The parameters that control the behavior of devices and modules providing the
termios interface are specified (and shown below) by the termios structure defined
in termios.h :

c_iflag; /* input modes */
c_oflag; /* output modes */
c_cflag; /* control modes */
c_lflag; /* local modes */
c_cc[NCCS]; /* control chars */

The special control characters are defined by the array c_cc . The size of the control
character array is specified by NCCS which is also defined in termios.h .

Input Modes

Table 4-7 describes the basic terminal input control modes. These modes are con-
trolled by the field settings of the c_iflag  flag which are defined in termios.h .

TABLE 4-7 Input Mode Fields

Field Description

BRKINT Interrupt on break. If BRKINT is set, the break condition discards
characters in the input and output queues. The next read of the
channel returns with 0 characters read and the error code of
TERM_BRKINT. If BRKINT is not set, a break condition is read as a
single ASCII NULL  character (\0 ).

INLCR Map NL to CR on input. If INLCR is set, a received NL is translated
into a CR.

IGNCR Ignore CR. If IGNCR is set, a received CR is not read.

ICRNL Map CR to NL on input. If ICRNL is set, a received CR is translated
into a NL.
4-56 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 57  Thursday, January 28, 1999  9:18 AM
The initial input control value sets the following flags:

■ BRKINT

■ ICRNL

■ IXON

■ IMAXBEL.

Output Modes

Table 4-8 describes system treatment of output. Output treatment is controlled by
the fields of the c_oflag  which are defined in the file, termios.h .

IUCLC Map upper case to lower case on input. If IUCLC is set, a received
upper case character is translated into the corresponding lower case
character.

IXON Enable start/stop output and/or input control. If IXON is set,  out-
put and/or input control is enabled. A received STOP suspends out-
put and/or input and a received START restarts output and/or input.
STOP and START perform flow control functions.

NOTE: The usage of IXON differs from the POSIX standard. As
per POSIX, two flags IXON and IXOFF are used to
control software flow control. If IXON is set, start/stop
output control is enabled. If IXOFF is set, start/stop
input control is enabled. In case of DITI, just one flag
IXON is used to control both input and output flow
control.

TABLE 4-8 Output Mode Fields

Field Description

OPOST Post-process output. If OPOST is set, the output characters are
post-processed as indicated by the remaining flags; otherwise,
characters are sent without change.

OLCUC Map lower case to upper case on output. If OLCUC is set, a lower
case character is sent as the corresponding upper case character.
This function is often used with IUCLC.

TABLE 4-7 Input Mode Fields (Continued)

Field Description
DITI (Device Independent Terminal Interface) 4-57



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 58  Thursday, January 28, 1999  9:18 AM
The initial output control value sets the following flags:

■ OPOST

■ ONLCR

Control Modes

Table 4-9 describes the fields used to specify the hardware flow control, (BAUD rate,
character size, and stop bits, for example) of the terminal. Hardware control is de-
termined by the settings of the c_cflag fields which are defined in the file,
termios.h .

ONLCR Map NL to CR-NL on output. If ONLCR is set, the NL character is
transmitted as the CR-NL character pair.

OCRNL Map CR to NL on output. If OCRNL is set, the CR character is trans-
mitted as the NL character.

ONOCR No CR output at column 0. If ONOCR is set, no CR character is
transmitted when at column 0 (first position).

ONLRET NL performs CR function. If ONLRET is set, the NL character is as-
sumed to do the CR function and the column pointer is set to 0.
Otherwise, the NL character is assumed to do just the line feed
function; the column pointer remains unchanged. The column
pointer is also set to 0 if the CR character is actually transmitted.

TABLE 4-9 Hardware Control Mode Fields

c_cflag  Field Description

CBAUD The CBAUDfield controls the BAUD rate. The CBAUDbits specify
the baud rate for both the input and output baud rates. For
any particular hardware, impossible speed changes are ignored
and the previous BAUD setting is used. Below are listed the
possible BAUD rate settings.

Setting BAUD Rate

B50 50

B75 75

TABLE 4-8 Output Mode Fields (Continued)

Field Description
4-58 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 59  Thursday, January 28, 1999  9:18 AM
B110 110

B134 134

B150 150

B200 200

B300 300

B600 600

B1200 1200

B1800 1800

B2400 2400

B4800 4800

B9600 9600

B19200 19200

B38400 38400

CSIZE The CSIZE field controls the character size. The CSIZE bits
specify the character size in bits for both transmission and re-
ception. This size does not include the parity bit. The possible
settings are listed below.

Setting Character Size in Bits

CS5 5

CS6 6

CS7 7

CS8 8

CSTOPB Send two stop bits, else one. If CSTOPB is set, two stop bits are
used; otherwise, one stop bit is used. For example, at 110
baud, two stops bits are required.

TABLE 4-9 Hardware Control Mode Fields (Continued)

c_cflag  Field Description
DITI (Device Independent Terminal Interface) 4-59



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 60  Thursday, January 28, 1999  9:18 AM
The initial hardware control value is B9600 , CS8 and CREAD.

Local Modes

The c_lflag field of the argument structure is used by the line discipline to control
terminal functions. The basic line discipline controls are described in Table 4-10.

The initial line-discipline control value is ICANON and ECHO.

CREAD Enable receiver. If CREAD is set, the receiver is enabled. Other-
wise, no characters are received.

PARENB Parity enable. If PARENB is set, parity generation and detection
is enabled, and a parity bit is added to each character. See also,
PARODD.

PARODD Odd parity, else even. If parity is enabled, the PARODDflag spec-
ifies odd parity if set; otherwise, even parity is used. See also,
PARENB.

CRTSCTS Enable output and/or input hardware flow control. If CRTSCTS
is set, output and/or input hardware flow control using the
RTS and CTS signals are enabled.

TABLE 4-10 Local Mode Fields

Field Description

ICANON Canonical input (erase processing). If ICANON is set, canoni-
cal processing is enabled. This enables the erase function,
and the assembly of input characters into lines delimited by
NL. If ICANON is not set, read requests are satisfied directly
from the input queue. A read is not satisfied until at least
MinChar characters have been received or the time-out value
MaxTime has expired between characters. This allows fast
bursts of input to be read while still allowing single charac-
ter input. The time value represents tenths of seconds.

ECHO Enable echo. If ECHO is set, input characters are echoed as
received. If ECHO is not set, input characters are not echoed.

ECHONL Echo NL. If ECHONL and ICANON are set, the NL character is
echoed even if ECHO is not set.

TABLE 4-9 Hardware Control Mode Fields (Continued)

c_cflag  Field Description
4-60 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 61  Thursday, January 28, 1999  9:18 AM
Minimum and Timeout

The MinChar and MaxTime values are described in the section, Canonical mode in-
put processing on page 4-52. The initial value of MinChar is 1, and the initial value
of MaxTime is 0.

Modem Lines

The modem control lines supported by the hardware can be read, and the modem
status lines supported by the hardware can be changed. Table 4-11 describes the
modem control and status lines.

NOTE: Not all of these modem control lines are necessarily supported by any
particular device.

DITI Functions

The following subsections describe the DITI functions that are entered into the I/O
switch table during the pSOSystem initialization. These DITI functions should not
be called directly by the application.

To access these DITI functions the application must use the following pSOS+ I/O
driver table functions:

■ de_init()

■ de_open()

■ de_read()

TABLE 4-11 Modem Control Lines

Control Line Description

TIOCM_DTR Data terminal ready

TIOCM_RTS Request to send

TIOCM_CTS Clear to send

TIOCM_CD/TIOCM_CAR Carrier detect

TIOCM_RI/TIOCM_RNG Ring

TIOCM_DSR Data set ready
DITI (Device Independent Terminal Interface) 4-61



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 62  Thursday, January 28, 1999  9:18 AM
■ de_write()

■ de_cntrl()

■ de_close()

TermInit

void TermInit (struct ioparms *parms);

This function initializes the terminal driver and is accessed by the application
through the pSOS+ call, de_init() :

unsigned long de_init(unsigned long dev, void *iopb, void
*retval, void **data_area);

This function sets the default values for all channels. All channels are closed except
for the pROBE+ host and console channels. This function should be called only
once in the system before using the terminal driver.

The parameters of de_init() are mapped to the fields in TermInit input parame-
ter parms  by pSOS+. The de_init()  parameters are:

Returns

The value returned by the TermInit function is obtained from parms->err . This
routine returns 0 on success or one of the error codes (see, Table 4-13 on page 4-80)
on failure.

dev The parameter, dev,  is mapped to parms->in_dev  and specifies
the major and minor device numbers, which are stored in the upper
and lower 16 bits, respectively.

iopb This parameter is not used by TermInit . This can be any uninitial-
ized unsigned long pointer.

retval The parameter, retval,  is mapped to parms->out_retval  and
contains any additional information that the TermInit  function
needs to return to the application, else it is set to 0.

data_area This parameter is not used by the TermInit  function. This can be
any uninitialized void pointer.
4-62 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 63  Thursday, January 28, 1999  9:18 AM
Notes

1. If SC_AUTOINIT is enabled, pSOS+ calls TermInit() directly. It initializes the
terminal driver. If SC_APP_CONSOLEis not 0 then the application channel is
opened. In this case, the application need not call de_init()  again.

2. If SC_AUTOINIT is not enabled, the application needs to call de_init() to ini-
tialize the terminal driver. If the minor device number passed to de_init() is
zero, de_init() returns after initializing the terminal driver. If it is nonzero,
that channel is opened after the initialization.

3. If the terminal driver is already initialized, de_init()  just returns.

Examples

Refer to the examples in section, TermOpen, which follows.

TermOpen

void TermOpen (struct ioparms *parms);

This DITI function opens a specific serial channel for use. It is accessed by the appli-
cation through pSOS+ call de_open() :

unsigned long de_open(unsigned long dev, void *iopb, void
*retval);

The parameters of de_open() are mapped to the fields in TermOpen input parame-
ter parms  by pSOS+. The parameters are:

dev This parameter is mapped to parms->in_dev  and specifies the major
and minor device numbers, which are stored in the upper and lower
16 bits, respectively.

iopb Not used by the TermOpen function. This can be any uninitialized
unsigned long pointer.

retval The retval  parameter is mapped to parms->out_retval  and contains
any additional information that the TermOpen function needs to return to
the application, else it is set to 0.
DITI (Device Independent Terminal Interface) 4-63



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 64  Thursday, January 28, 1999  9:18 AM
Returns

The value returned by the TermOpen function is obtained from parms->err . This
routine returns 0 on success, or upon failure, one of the error codes listed in
Table 4-13 on page 4-80.

Examples

Example 1: If the application only uses a serial channel for reading and writing:

1. Set SC_AUTOINIT in sys_conf.h  to IO_AUTOINIT .

2. Set SC_APP_CONSOLEin sys_conf.h to the minor device number of the chan-
nel to be used for reading and writing.

No de_init() or de_open() calls are needed in the application as pSOS+
initializes the terminal driver and opens the channel specified by
SC_APP_CONSOLE.

Example 2: If the application does not want pSOS+ to perform terminal driver ini-
tialization:

1. Set SC_AUTOINIT in sys_conf.h  to IO_NOAUTOINIT.

2. Set SC_APP_CONSOLEto the minor device number of the channel to be used by
the application.

3. In the application, add the code:

{
unsigned long retval, ioretval;
unsigned long iopb[4];
void *data;

if (retval = de_init(DEV_SERIAL|SC_APP_CONSOLE, iopb,
&ioretval, &data))

printf("Error in de_init : %x\n", retval);
}

In this case, the de_init() call not only initializes the terminal driver but also
opens the channel specified by the minor device number, SC_APP_CONSOLE.
Hence a separate de_open()  call is not needed.
4-64 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 65  Thursday, January 28, 1999  9:18 AM
Example 3: If the application is going to use more than one channel:

1. Set SC_AUTOINIT in sys_conf.h to IO_AUTOINIT to initialize the terminal
driver.

2. Set SC_APP_CONSOLEin sys_conf.h to the minor device number of the default
channel to be opened for reading and writing.

3. For opening all other channels, add the following code into the application:

#define APP_CONSOLE1 X1
#define APP_CONSOLE2 X2
:
{

unsigned long retval, ioretval;
unsigned long iopb[4];
void *data;

if (retval = de_open(DEV_SERIAL|APP_CONSOLE1, iopb,
&ioretval))

printf("Error in de_open for %d channel : %x\n",
APP_CONSOLE1, retval);

if (retval = de_open(DEV_SERIAL|APP_CONSOLE2, iopb,
&ioretval))

printf("Error in de_open for %d channel : %x\n",
APP_CONSOLE2, retval);

:
}

In this example, pSOS+ initializes the terminal driver and opens the default
channel specified by SC_APP_CONSOLE. The rest of the channels,
APP_CONSOLE1, APP_CONSOLE2, and so on, are opened by the application.
DITI (Device Independent Terminal Interface) 4-65



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 66  Thursday, January 28, 1999  9:18 AM
TermRead

void TermRead (struct ioparms *parms);

This DITI function reads from a channel and is accessed by the application through
the pSOS+ call de_read() ,

unsigned long de_read(unsigned long dev, void *iopb, void
*retval);

The parameters of the de_read() function are mapped to the fields in TermRead
input parameter parms  by pSOS+. The parameters are:

Returns

The value returned by the TermRead function is obtained from parms->err . This
routine returns 0 on success, or upon failure, one of the error codes listed in
Table 4-13 on page 4-80.

Notes

SC_APP_CONSOLEis the default serial channel used for reading when no minor
device number is specified in a de_read() call.

dev This parameter is mapped to parms->in_dev  and specifies the major
and minor device numbers, which are stored in the upper and lower
16 bits, respectively.

iopb This parameter is mapped to parms->in_iopb . This is a pointer of type
TermIO  structure:

typedef struct {
unsigned long length; /* length of read/write */
unsigned char *buffp; /* pointer to data buffer */

}TermIO;

The TermRead function fills the buffer pointed to by buffp  according to
the terminal parameters. The parameter, length , specifies the number of
characters to be read.

retval This parameter is mapped to parms->out_retval  and contains the
number of characters read.
4-66 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 67  Thursday, January 28, 1999  9:18 AM
Examples

Example 1: To read 10 characters into an array str[]  from SC_APP_CONSOLE:

{
unsigned long ioretval, retval;
struct TermIO tst_io;
unsigned char str[150];

tst_io.length = 10;
tst_io.buffp = str;
if (retval = de_read(DEV_SERIAL, (void *)&tst_io, &ioretval))

printf("Error in de_read : %x\n", retval);
}

Example 2: To read 10 characters into an array, str[] , from SC_APP_CONSOLE
without using struct TermIO :

{
unsigned long ioretval, retval;
unsigned long iopb[4];
unsigned char str[150];

iopb[0] = 10;
iopb[1] = (unsigned long)str;
if (retval = de_read(DEV_SERIAL, (void *)&iopb, &ioretval))

printf("Error in de_read : %x\n", retval);
}

NOTE: Instead of using struct TermIO , an array of type unsigned long with
first parameter set to length and second to the string can also be used
in a de_read() call.

Example 3: To read 10 characters from a channel other than SC_APP_CONSOLE:

{
unsigned long ioretval, retval;
unsigned long iopb[4];
unsigned char str[150];
iopb[0] = 10;
iopb[1] = (unsigned long) str;
if (retval = de_read(DEV_SERIAL| <minor_dev_no> , (void*)&iopb,

&ioretval))
printf("Error in de-read: %x\n", retval;

}

NOTE: <minor_dev_no>  is the channel number to read.
DITI (Device Independent Terminal Interface) 4-67



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 68  Thursday, January 28, 1999  9:18 AM
TermWrite

void TermWrite (struct ioparms *parms);

This DITI function writes to a channel. It is accessed by the application through
pSOS+ call de_write() ,

unsigned long de_write(unsigned long dev, void *iopb, void
*retval);

The parameters of the de_write() function are mapped to the fields in TermWrite
input parameter parms  by pSOS+. The parameters are:

Returns

The value returned by TermWrite is obtained from parms->err . This routine
returns 0 on success, or upon failure one, of the error codes listed in Table 4-13 on
page 4-80.

Notes

SC_APP_CONSOLEis the default serial channel used for writing when no minor
device number is specified in a de_write()  function call.

dev This parameter is mapped to parms->in_dev  and specifies the major
and minor device numbers, which are stored in the upper and lower
16 bits, respectively.

iopb This parameter is mapped to parms->in_iopb . This is a pointer of type
TermIO structure:

typedef struct {
unsigned long length; /* length of read/write */
unsigned char *buffp; /* pointer to data buffer */

}TermIO;

The TermWrite  function writes the characters pointed to by buffp
according to the terminal parameters. The parameter, length , specifies
the number of characters to be written.

retval This parameter is mapped to parms->out_retval  and contains the
number of characters written.
4-68 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 69  Thursday, January 28, 1999  9:18 AM
Examples

Example 1: To write a string Hello World  to SC_APP_CONSOLE:

{
unsigned long ioretval, retval;
struct TermIO tst_io;

tst_io.length = sizeof("Hello World\n");
tst_io.buffp = "Hello World\n";
if (retval = de_write(DEV_SERIAL, (void *)&tst_io, &ioretval))

printf("Error in de_write : %x\n", retval);
}

Example 2: To write a string Hello World to SC_APP_CONSOLEwithout using
struct TermIO :

{
unsigned long ioretval, retval;
unsigned long iopb[4];

iopb[0] = sizeof("Hello World\n");
iopb[1] = (unsigned long)Hello World\n";
if (retval = de_write(DEV_SERIAL, (void *)&iopb, &ioretval))

printf("Error in de_write: %x\n", retval);
}

NOTE: Instead of using struct TermIO , an array of type unsigned long with
the first parameter set to length and second to the string can also be
used in a de_write() call.

Example 3: To write to a channel other than SC_APP_CONSOLE,

{
unsigned long ioretval, retval;
struct TermID tst_io;
tst_io.length = sizeof("Hello World\n");
tst_io.buffp = "Hello World\n";
if (retval = de_write(DEV_SERIAL| <minor_dev_number> , (void *)

&tst_io, &ioretval))
printf("Error in dewrite: %x\n", retval);

}

NOTE: The channel number to write to is specified by
<minor_dev_number> .
DITI (Device Independent Terminal Interface) 4-69



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 70  Thursday, January 28, 1999  9:18 AM
TermIoctl

void TermIoctl(struct ioparms *parms);

The DITI function, TermIoctl , performs control functions on the channel. This
function is accessed by the application through pSOS+ call de_cntrl() ,

unsigned long de_cntrl(unsigned long dev, void *iopb, void
*retval);

Most of the TermIoctl control functions are used to change the configuration of a
device or get the current value of the configuration parameters.

The parameters of the de_cntrl() function are mapped to the fields in TermIoctl
input parameter parms  by pSOS+. The parameters are:

Returns

The value returned by TermIoctl is obtained from parms->err . This routine re-
turns 0 on success, or upon failure, one of the error codes listed in Table 4-13 on
page 4-80.

dev This parameter is mapped to parms->in_dev  and specifies the major and
minor device numbers, which are stored in the upper and lower 16 bits,
respectively.

iopb This parameter is mapped to parms->in_iopb . This is a pointer of type
TermCtl structure :

typedef struct {
unsigned long function; /* function code for the I/O

control call */
void *arg; /* pointer to function dependent

                             information */
}TermCtl;

The function  argument can be one of the functions listed in section, Ter-
mIoctl Functions on page 4-71, and arg  is the argument for that function.

retval This parameter is mapped to parms->out_retval  and contains any
additional information that TermIoctl  needs to return to the application.
Otherwise it is set to 0.
4-70 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 71  Thursday, January 28, 1999  9:18 AM
Notes

SC_APP_CONSOLEis the default serial channel used when no minor service number
is specified in de_cntrl() .

TermIoctl Functions

Table 4-12 describes the TermIoctl functions. Refer to section, TermIoctl on
page 4-70 for a description of the DITI TermIoctl  function call syntax.

TABLE 4-12 TermIoctl  Control Functions

Control Function Description

TCGETS The parameter, arg , is a pointer to a termios  struc-
ture. The current terminal parameters are fetched and
stored into that structure.

TCSETS The parameter, arg , is a pointer to a termios structure.
The current terminal parameters are set from the values
stored in that structure. The change is immediate.

This DITI TermIoctl  is equivalent to POSIX
tcsetattr()  function except that the DITI TermIo-
ctl  does not interpret the baud rate being equal to 0
condition. As per POSIX, if baud rate is 0, the connec-
tion should be terminated. In DITI, no such action is
taken.

TCSETSW The parameter, arg , is a pointer to a termios  struc-
ture. The current terminal parameters are set from the
values stored in that structure. The change occurs after
all characters queued for output have been transmit-
ted. This form should be used when changing parame-
ters that affect output.

TCSETSF The parameter, arg , is a pointer to a termios  struc-
ture. The current terminal parameters are set from the
values stored in that structure. The change occurs after
all characters queued for output have been transmit-
ted; all characters queued for input are discarded and
then the change occurs.

TCGETA This TermIoctl  function is the same as TCGETS.

TCSETA This TermIoctl  function is the same as TCSETS.
DITI (Device Independent Terminal Interface) 4-71



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 72  Thursday, January 28, 1999  9:18 AM
TCSETAW This TermIoctl  function is the same as TCSETSW.

TCSETAF This TermIoctl  function is the same as TCSETSF.

TCSBRK The parameter, arg , is not used. A break character is
sent out the channel.

This DITI TermIoctl  function is equivalent to POSIX
tcsendbreak()  function except that the DITI
TermIoctl  function just sends a BREAK  character out
the channel and does not use any argument to indicate
the duration of the BREAK (zero valued bits) sent out the
channel.

TCXONC Start/stop control. The arg  parameter is an int type
value. If arg  is TCIOFF(2) , input is suspended. If arg
is TCION(3) , suspended input is restarted.

This DITI TermIoctl  function is equivalent to the
POSIX tcflow()  function except that the DITI Term-
Ioctl  function does not support two actions, TCOOFF
(suspend output) and TCOON (restart suspended out-
put).

TCFLSH The arg  parameter is an int type value. If arg  is:
TCIFLUSH(0) , flush the input queue
TCOFLUSH(1), flush the output queue
TCIOFLUSH(2) , flush both input and output queues

TIOCMBIS The arg  parameter is a pointer to an int type whose
value is a mask containing modem control lines to be
turned on. The control lines whose bits are set in the
arg  are turned on; no other control lines are affected.

TIOCMBIC The arg  parameter is a pointer to an int type whose
value is a mask containing modem control lines to be
turned off. The control lines whose bits are set in the
arg  are turned off; no other control lines are affected.

TIOCMGET The parameter, arg , is a pointer to an int  type. The
current state of the modem status lines is fetched and
stored in the int pointed to by arg .

TABLE 4-12 TermIoctl  Control Functions (Continued)

Control Function Description
4-72 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 73  Thursday, January 28, 1999  9:18 AM
TIOCMSET The parameter, arg , is a pointer to an int type contain-
ing a new set of modem control lines. The modem con-
trol lines are turned on or off, depending on whether
the bit for that mode is set or clear.

TERMGETDEFTERM Copies the current minor number of the system console
to the unsigned long pointed to by arg .

TERMPUTDEFTERM Changes the current value of the system console to the
unsigned long pointed to by arg .

TERMHWFC The channel uses CTS/RTS flow control. This com-
mand has no effect if the channel does not support
hardware flow control.

TERMNUMOFCHANNELSThe arg  is a pointer to a unsigned long that is filled in
with the total number of serial channels.

TERMGETASYNCSTAT The arg parameter is a pointer to a ASYNC_STATstruc-
ture which is filled in with the channels asynchronous
status. This command is used by the MIB (Management
Information Base) agent to get information on the chan-
nel. The ASYNC_STAT structure is as follows:

typedef struct
{
unsigned long ParityErrs; /* number of parity errors */
unsigned long FramingErrs; /* number of framing errors */
unsigned long OverrunErrs; /* number of overrun errors */
unsigned long AutoBaudEnb; /* is auto baud enabled */
} ASYNC_STAT

TABLE 4-12 TermIoctl  Control Functions (Continued)

Control Function Description
DITI (Device Independent Terminal Interface) 4-73



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 74  Thursday, January 28, 1999  9:18 AM
Examples

Example 1: To get termio  structure and extract the following information:

● Baud rate of the channel

● Whether operating in canonical or non-canonical mode

● Values of MinChar and MaxTime

● Output mode information

#include <disi.h>
#include <diti.h>
#include <termios.h>
{

unsigned long retval, ioretval, baudrate;
TermCtl tst_ctrl;
struct termio tst_termio;

/* Get the current configuration */
tst_ctrl.function = TCGETS;
tst_ctrl.arg = (void *)&tst_termio;
if (retval = de_cntrl(DEV_SERIAL, (void *)&tst_ctrl,

&ioretval))
printf("Error in de_cntrl TCGETS : %x\n", retval);

TERMGETSYNCSTAT The arg  parameter is a pointer to a SYNC_STAT struc-
ture which is filled in with the channels synchronous
status. This command is used by the MIB agent to get
information on the channel. The SYNC_STAT structure
is as follows:

typedef struct
{
 unsigned long FrameCheckErrs;  /* number of frame check errors */
 unsigned long TransmitUnderrunErrs;  /* number of transmit
                                         underrun errors */
 unsigned long ReceiveOverrunErrs;    /* number of receive
                                         overruns errors */
 unsigned long InterruptedFrames;     /* number of frames that
                                         were stopped */

unsigned long AbortedFrames; /* number of frames that were aborted */
} SYNC_STAT;

TABLE 4-12 TermIoctl  Control Functions (Continued)

Control Function Description
4-74 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 75  Thursday, January 28, 1999  9:18 AM
/* Extract baud rate information */
baudrate = tst_termio.c_cflag & CBAUD;
printf("Baud rate of the channel is : %d\n", baudrate);

/* Extract information of input mode processing */
if (tst_termio.c_lflag & ICANON) {

printf("Input mode processing is CANONICAL\n");
printf("MinChar and MaxTime do not play any role\n");

}
else {

printf("Input mode processing is NON-CANONICAL\n");
printf("MinChar : %d\n", tst_termio.c_cc[VMIN]);
printf("MaxTime : %d\n", tst_termio.c_cc[VTIME];

}

/* Extract output mode information */
if (tst_termio.c_oflag & OPOST) {

if (tst_termio.c_oflag & ONLCR)
printf("ONLCR set\n");

if (tst_termio.c_oflag & ONOCR)
printf("ONOCR set\n");

}
else

printf("No post processing of output\n");
}

Example 2: To change the following parameters:

● Baud rate to 19200

● Set to non-canonical mode with MinChar=10 and MaxTime=10 seconds

● Set to no ECHO

● Set CSIZE to 7

● Set only OLCUC in output flags

● Enable IXON in input flags

#include <disi.h>
#include <diti.h>
#include <termios.h>
{

unsigned long retval, ioretval;
TermCtl tst_ctrl;
struct termio tst_termio;

/* Get the current configuration */
DITI (Device Independent Terminal Interface) 4-75



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 76  Thursday, January 28, 1999  9:18 AM
tst_ctrl.function = TCGETS;
tst_ctrl.arg = (void *)&tst_termio;
if (retval = de_cntrl(DEV_SERIAL, (void *)&tst_ctrl,

&ioretval))
printf("Error in de_cntrl TCGETS : %x\n", retval);

/* Set baudrate to 19200 */
tst_termio.c_cflag = tst_termio.c_cflag & ~CBAUD | B19200;

/* Set to non-canonical and no echo mode */
tst_termio.c_lflag = tst_termio.c_lflag & ~ICANON & ~ECHO;

/* Set MinChar=10, MaxTime=10 sec or 100 0.1 secs */
tst_termio.c_cc[VMIN] = 10;
tst_termio.c_cc[VTIME] = 100;

/* Set CSIZE to 7 */
tst_termio.c_cflag = tst_termio.c_cflag & ~CSIZE | CS7;

/* Set only OLCUC in output flags */
tst_termio.c_oflag = OPOST | OLCUC;

/* Enable IXON in input flags */
tst_termio.c_iflag |= IXON;

/* Set the changed configuration after discarding any input */
/* and completing all output */
tst_ctrl.function = TCSETSF;
tst_ctrl.arg = (void *)&tst_termio;
if (retval = (de_cntrl(DEV_SERIAL, (void *)&tst_ctrl,

&ioretval))
printf("Error in de_cntrl TCSETSF : %x\n", retval);

}

Example 3: To activate hardware flow control:

#include <disi.h>
#include <diti.h>
#include <termios.h>
{
unsigned long retval, ioretval;
TermCtl tst_ctrl;

tst_ctrl.function = TERMHWFC;
tst_ctrl.arg = 0;  /* not used */
if (retval = (de_cntrl(DEV_SERIAL, (void *)&tst_ctrl, &ioretval))

printf("Error in de_cntrl TERMHWFC : %x\n", retval);
}

4-76 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 77  Thursday, January 28, 1999  9:18 AM
Example 4: To suspend input:

#include <disi.h>
#include <diti.h>
#include <termios.h>
{

unsigned long retval, ioretval;
TermCtl tst_ctrl;

tst_ctrl.function = TCXONC;
tst_ctrl.arg = TCIOFF;  /* Suspend input */
if (retval = (de_cntrl(DEV_SERIAL, (void *)&tst_ctrl,

&ioretval))
printf("Error in de_cntrl TCXONC: %x\n", retval);

}

Example 5: To get status of RTS and CTS modem lines:

#include <disi.h>
#include <diti.h>
#include <termios.h>
{

unsigned long retval, ioretval;
TermCtl tst_ctrl;

tst_ctrl.function = TIOCMGET;
tst_ctrl.arg = 0;  /* Not used as input parameter */
if (retval = (de_cntrl(DEV_SERIAL,  (void *)&tst_ctrl,

&ioretval))
printf("Error in de_cntrl TIOCMGET : %x\n", retval);

if (*(ULONG *)arg & TIOCM_RTS)
printf("RTS signal set");

if (*(ULONG *)arg & TIOCM_CTS)
printf("CTS signal set");

}

Example 6: To determine errors such as framing or parity on an asynchronous
channel:

#include <disi.h>
#include <diti.h>
#include <termios.h>
{

unsigned long retval, ioretval;
TermCtl tst_ctrl;

tst_ctrl.function = TERMGETASYNCSTAT;
tst_ctrl.arg = 0;  /* Not used as input parameter */
if (retval = (de_cntrl(DEV_SERIAL, (void *)&tst_ctrl,
DITI (Device Independent Terminal Interface) 4-77



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 78  Thursday, January 28, 1999  9:18 AM
&ioretval))
printf("Error in de_cntrl TERMGETASYNCSTAT : %x\n", retval);

printf("Parity errors  : %d\n",
(ASYNC_STAT *)arg)->ParityErrs);

printf("Framing errors : %d\n",
(ASYNC_STAT *)arg)->FramingErrs);

printf("Overrun errors : %d\n",
(ASYNC_STAT *)arg)->OverrunErrs);

}

NOTE: In all the above examples, the channel used is SC_APP_CONSOLE. If any
other channel needs to be used, logically OR DEV_SERIAL with that
minor device number.

TermClose

void TermClose (struct ioparms *parms);

This DITI function closes the channel and is accessed by the application through
pSOS+ call de_close() ,

unsigned long de_close(unsigned long dev, void *iopb, void
*retval);

This function flushes all transmit buffers, discards all pending receive buffers and
disables the receiver and transmitter of the channel. All buffers associated with the
channel are released (freed) and the device will hang up the line. All further reads,
writes or TermIoctl  functions to the channel return with the error TERM_NOPEN.

All channels that are opened either through de_init() or de_open() calls need to
be closed by using a de_close()  function call.

The parameters of the de_close() function are mapped to the fields in TermClose
input parameter parms  by pSOS+. The parameters are:

dev This parameter is mapped to parms->in_dev  and specifies the major
and minor device numbers, which are stored in the upper and lower
16 bits, respectively.

iopb This parameter is not used by the TermClose  function. This can be any
uninitialized unsigned long pointer.

retval This parameter is mapped to parms->out_retval  and contains any
additional information that the TermIoctl  function needs to return to
the application. Otherwise, it is set to 0.
4-78 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 79  Thursday, January 28, 1999  9:18 AM
Returns

The value returned by TermClose is obtained from parms->err . This routine
returns 0 on success, or upon failure, one of the error codes listed in Table 4-13 on
page 4-80.

Notes

SC_APP_CONSOLEis the default channel used if no minor device number is speci-
fied in de_close() .

Examples

Example 1: To close SC_APP_CONSOLE:

{
unsigned long retval, ioretval;
unsigned long iopb[4];

if (retval = de_close(DEV_SERIAL, iopb, &ioretval))
printf("Error in de_close : %x\n", retval);

}

Example 2: To close any channel other than SC_APP_CONSOLE:

{
unsigned long retval, ioretval;
unsigned long iopb[4];
if (retval = de_close(DEV_SERIAL| <minor_dev_no> , iopb,

&ioretval))
printf("Error in de_close: %n", retval);

}

NOTE: <minor_dev_no>  is the channel number to be closed.
DITI (Device Independent Terminal Interface) 4-79



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 80  Thursday, January 28, 1999  9:18 AM
Error Codes

Table 4-13 lists the error codes that are located in the header file, diti.h .

TABLE 4-13 DITI Functions Error Codes

#define TERM_HDWR 0x10010200 /* Hardware error */

#define TERM_MINOR 0x10010201 /* Invalid minor device */

#define TERM_BAUD 0x10010203 /* Invalid baud rate */

#define TERM_NINIT 0x10010204 /* driver not initialized */

#define TERM_DATA 0x10010205 /* Unable to allocate driver
data area */

#define TERM_SEM 0x10010206 /* Semaphore error */

#define TERM_AINIT 0x10010210 /* Terminal already
initialized */

#define TERM_CHARSIZE 0x10010211 /* bad character size */

#define TERM_BADFLAG 0x10010212 /* flag not defined */

#define TERM_NHWFC 0x10010213 /* Hardware flow control not
 supported */

#define TERM_BRKINT 0x10010214 /* Terminated by a break
character */

#define TERM_DCDINT 0x10010215 /* Terminated by loss of
DCD */

#define TERM_NBUFF 0x10010216 /* No buffers to copy
characters */

#define TERM_NOPEN 0x10010217 /* minor device has not been
opened */

#define TERM_AOPEN 0x10010218 /* channel already opened */

#define TERM_ADOPEN 0x10010219 /* channel already opened
by another driver */

#define TERM_CFGHSUP 0x10010220 /* hardware does not
support channel as

   configured */
4-80 DITI (Device Independent Terminal Interface)



pSOSystem Programmer’s Reference Standard pSOSystem Character I/O Interface

4

pr.book  Page 81  Thursday, January 28, 1999  9:18 AM
#define TERM_OUTSYNC 0x10010221 /* out of sync with DISI */

#define TERM_BADMIN 0x10010222 /* MinChar > RBuffSize */

#define TERM_LDERR 0x10010223 /* Lower driver error may
be corrupted structure */

#define TERM_QUE 0x10010224 /* que error */

#define TERM_RXERR 0x10010225 /* data receive error */

#define TERM_TIMEOUT 0x10010226 /* Timer expired for read
or write */

#define TERM_ROPER 0x10010228 /* redirect operation
error */

#define TERM_MARK 0x10010229 /* received a SIOCMARK */

#define TERM_FRAMING 0x10010230 /* framing error */

#define TERM_PARITY 0x10010231 /* parity error */

#define TERM_OVERRUN 0x10010232 /* overrun error */

#define TERM_NMBLK 0x10010233 /* no buffer headers
   (esballoc failed) */

#define TERM_TXQFULL 0x10010234 /* transmit queue is full */

#define TERM_WNWCONF 0x10010235 /* MaxWTime & WNWAIT
both set*/

#define TERM_BADCONSL 0x10010236 /* Bad default console
number */

#define TERM_WABORT 0x10010237 /* Write was aborted */

#define TERM_NOMEM 0x10010238 /* Not enough memory in
Region 0 */

TABLE 4-13 DITI Functions Error Codes (Continued)
DITI (Device Independent Terminal Interface) 4-81



Standard pSOSystem Character I/O Interface pSOSystem Programmer’s Reference

pr.book  Page 82  Thursday, January 28, 1999  9:18 AM
4-82 DITI (Device Independent Terminal Interface)



pr.book  Page 1  Thursday, January 28, 1999  9:18 AM
5
 pSOSystem Configuration File
5

The pSOSystem software is a scalable environment and a large part of its function-
ality is provided in software component building blocks. Note that not all of the soft-
ware components are built into a pSOSystem configuration, because the
components to include depend on the capabilities required by the system being
implemented. Each software component, however, has its own configuration and
startup requirements. By default, the pSOSystem startup code takes care of these
requirements. This chapter describes the configuration and startup elements used
for customizing the startup code.

Many system parameters are controlled by #define statements located within the
sys_conf.h header file. These statements range from specifying the device drivers
that are built into the system to the maximum number of tasks that can be active
concurrently. You can easily change the pSOSystem configuration by editing the
sys_conf.h header file which resides in the application directory. This chapter
documents the sys_conf.h  system parameters and their significance.
5-1



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 2  Thursday, January 28, 1999  9:18 AM
Overview

Software components are the basic building blocks of the pSOSystem environment.
Each component has an associated configuration table, which the component uses
to obtain all of its configurable parameters. Figure 5-1 shows the relationships
between the various elements that the components use to find their parameters,
data areas, and other configuration information.

The node anchor is the single, fixed point of reference for all the installed software
components in the system. This anchor is a critical link because each component is
code and data position independent and thus depends on the anchor to locate its
configuration information.

In the pSOSystem environment, the global symbol anchor serves as the node an-
chor. An anchor is a pointer to the node configuration table. Each configuration
table entry is described in, Chapter 6, Configuration Tables.

CPU_TYPE

MP_CT

pSOS_CT

pROBE_CT

pHILE_CT

pREPC_CT

pNA_CT

Multiprocessor
Configuration

Table

pSOS+
Configuration

Table

Node Anchor

pNA+
Configuration

Table

Subcomponent
Tables

Node
Configuration

Table

pSE_CT

pMONT_CT

pLM_CT

Reserved

Reserved

FIGURE 5-1 Node Configuration Table
5-2 Overview



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 3  Thursday, January 28, 1999  9:18 AM
Since the pSOSystem startup code sets up these tables, you do not need to under-
stand all table entries during the initial phases of development. However, as you
experiment with changing the pSOSystem configuration, this manual provides the
reference information that enables you to configure the pSOSystem to your exact
requirements.

System Configuration File

During system startup, the pSOSystem software initializes all the required compo-
nent configuration tables. The code that initializes the configuration tables resides
in the shared directory PSS_ROOT/configs/std . The source code in these files
contains many conditional compiled C statements where compilation depends on
values defined in the sys_conf.h  header file. This includes the following:

■ The core components that are built into the system.

■ The serial channel characteristics of the target.

■ Whether the system includes a LAN driver and, if so, the IP address of the target
system.

■ Whether the system includes a shared memory network interface (SMNI) and, if
so, IP address of the system.

■ The optional device drivers in the system: the SCSI and RAM disk drivers, the
TFTP driver, pseudo-driver, and any application specific drivers added to the
system.

■ The values used for most of the component configuration table entries. For ex-
ample, definitions in the sys_conf.h header file determine the maximum
number of concurrently active tasks and message queues of the system.

Each of the sample applications supplied with the pSOSystem software includes a
sys_conf.h header file that contains configuration values appropriate for that ap-
plication. See section, sys_conf.h on page 5-5, for the description of the values you
must define in sys_conf.h .
Overview 5-3



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 4  Thursday, January 28, 1999  9:18 AM
Parameter Storage and the Startup Dialog

Sometimes the only differences between pSOSystem configurations are the values of
the parameters defined in sys_conf.h . For this reason, the pSOSystem software
allows you to place some of the sys_conf.h parameter values in a dedicated stor-
age area in the memory of the target system. An optional startup dialog can be built
into the operating system that allows review and possible modification of these
parameters when the pSOSystem software initializes itself. The pSOSystem Boot
ROMs is an example of a pSOSystem application that uses the startup dialog.
5-4 Overview



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 5  Thursday, January 28, 1999  9:18 AM
sys_conf.h

This section describes the parameters that sys_conf.h must supply. Parameter
definitions in sys_conf.h have the form of C macro definitions, as in the following
example:

#define SC_PROBE     YES /* pROBE+ processor services ) */
#define KC_NTASK     20  /* Max. of 20 active tasks */

You may find it helpful to refer to the example sys_conf.h files in the pSOSystem
sample applications while reading this section.

To improve the readability of sys_conf.h , macros should be used to define the
values of some of the parameters. The code in sysinit.c (and other files that in-
clude sys_conf.h ) assumes the use of these macros. Therefore, sys_conf.h
should include the macro definitions file before any of the parameter values are
defined:

#include   <sys/types.h>
#include   <sysvars.h>
#include   <psos.h>

#define USE_RARP           NO

Storage and Dialog Parameters

Table 5-1 lists the storage and dialog parameters, which alter the way many of the
other parameters in sys_conf.h are used.

TABLE 5-1 Storage and Dialog Parameters

Parameter Possible Values

SC_SD_PARAMETERS STORAGE (default), SYS_CONF

SC_STARTUP_DIALOG NO (default), YES

SC_BOOT_ROM NO (default), YES. NO for RAM appli-
cation, YES for ROM applications.

SD_STARTUP_DELAY Any decimal integer (Default is 60
seconds.)

SC_SD_DEBUG_MODE STORAGE(default), DBG_SA, DBG_XS,
DBG_XN, DBG_AP
sys_conf.h 5-5



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 6  Thursday, January 28, 1999  9:18 AM
The values of the parameters in sys_conf.h with names beginning with SD_ can
be determined either by the definitions given in the sys_conf.h file or by the data
in the parameter storage area of the target. For example, if SC_SD_PARAMETERSis
set to SYS_CONF, the values in the sys_conf.h file are always used for the SD_
parameter values. If SC_SD_PARAMETERSis set to STORAGE, then the pSOSystem
software attempts to use the values in the parameter storage area of the target for
the SD_ variables. The values located in sys_conf.h become default values to use
if the parameter storage area has not been initialized or has been corrupted.

If SC_SD_PARAMETERSis defined as STORAGE, you can enable the startup dialog by
setting SC_STARTUP_DIALOGto YES. The startup dialog executes on the target sys-
tem at startup time and allows you to view and optionally change the parameter
values in the storage area. If the dialog is enabled, SD_STARTUP_DELAYspecifies the
number of seconds the dialog waits for input before it boots the system.

The SC_SD_DEBUG_MODEsetting determines how the system operates according to
the possible values shown in Table 5-2.

TABLE 5-2 Debug Mode Values

Value Description

DBG_SA Boot the pROBE+ debugger in standalone mode.

DBG_AP Boot the pROBE+ debugger in standalone mode, and do a
silent startup.

DBG_XS Boot into the pROBE+ debugger and wait for the host
debugger through a serial connection.

DBG_XN Boot into the pROBE+ debugger and wait for the host
debugger through a network connection.

STORAGE Use the mode found in the parameter storage area
(DBG_SA, DBG_XS, DBG_XN, or DBG_AP). If a valid mode is
not found, use DBG_SA.
5-6 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 7  Thursday, January 28, 1999  9:18 AM
Operating System Components

The following parameters, listed in Table 5-3, indicate which components are in the
system. The USEROMoption is dependent on the CPU architecture and may not be
available for all the components.

TABLE 5-3 Operating System Components

Parameter Possible Values Component

SC_PSOS YES, NO,USEROM pSOS+ real-time kernel

SC_PSOSM YES, NO,USEROM pSOS+ real-time multiprocessing
kernel

SC_PSOS_QUERY YES, NO pSOS+ kernel query services

SC_PROBE YES, NO,USEROM pROBE+ processor services

SC_PROBE_DISASM YES, NO,USEROM pROBE+ disassembler

SC_PROBE_CIE YES, NO,USEROM pROBE+ console executive

SC_PROBE_QUERY YES, NO,USEROM pROBE+ query services

SC_PROBE_DEBUG YES, NO,USEROM pROBE+ debug interface executive

SC_PROBE_HELP YES, NO,USEROM pROBE+ help command handler

SC_PHILE YES, NO,USEROM pHILE+ file system manager

SC_PHILE_PHILE YES, NO,USEROM pHILE+ real-time file system

SC_PHILE_MSDOS YES, NO,USEROM pHILE+ MS-DOS FAT file system

SC_PHILE_NFS YES, NO,USEROM pHILE+ NFS client

SC_PHILE_CDROM YES, NO,USEROM pHILE+ ISO 9660 CD-ROM file
system

SC_PREPC YES, NO,USEROM pREPC+ C runtime library

SC_PNA YES, NO,USEROM pNA+ TCP/IP networking manager

SC_PNET YES, NO,USEROM pNET library for BOOT ROMs

SC_PRPC YES, NO,USEROM pRPC+ Remote Procedure Call
(RPC) component

SC_PSE_PRPC YES, NO,USEROM pRPC+ component over pSE+
sys_conf.h 5-7



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 8  Thursday, January 28, 1999  9:18 AM
A component parameter set to YES causes the component to be built into the sys-
tem. The USEROMoption allows you to use the component from the boot ROM. The
USEROMoption allows you to save memory in the specified component. To use this
option the component should be built into the boot ROM.

NOTE: It is incorrect to set both SC_PSOS, for the pSOS+ kernel, and SC_PSOSM,
for the pSOS+m multiprocessing kernel, to YES.

The target resident pROBE+ debugger consists of five submodules, which you may
include in the executable image. To include any of these modules, the system must
have the processor services module. To include the processor services module, set
SC_PROBEto YES. SC_PROBE_DISASMand SC_PROBE_QUERYare used to enable the
disassembler and query services, respectively (both are optional). You should set
one or both of SC_PROBE_CIEand SC_PROBE_DEBUGto YES. If you plan to use the
pROBE+ debugger in console mode, set SC_PROBE_CIEto YES. If you plan to use

SC_PSE YES, NO,USEROM pSE+ streams component

SC_PSKT YES, NO,USEROM pSKT SKT library component

SC_PTLI YES, NO,USEROM pTLI+ TLI library component

SC_PMONT YES, NO,USEROM pMONT+ component

SC_PLM YES, NO,USEROM pLM+ Shared Library Manager

SC_PROFILER YES, NO RTA profiler configuration

SC_RTEC YES, NO RTA run-time error checker library

SC_POSIX YES, NO POSIX core component

SC_POSIX_MESSAGE_PASSING

YES, NO POSIX message queue services

SC_POSIX_SEMAPHORES

YES, NO POSIX semaphore services

SC_POSIX_THREADS YES, NO POSIX pthread services

SC_POSIX_TIMERS YES, NO POSIX clock and timer services

TABLE 5-3 Operating System Components (Continued)

Parameter Possible Values Component
5-8 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 9  Thursday, January 28, 1999  9:18 AM
the pROBE+ debugger as a back end for a source level debugger, set
SC_PROBE_DEBUG to YES.

SC_PROBE_HELPcan be set to YES to enable the help (he) command. This com-
mand displays all the pROBE+ console mode commands.

Bindings for pSOS+ System Calls

Table 5-4 lists the parameter associated with the Quick bindings function.

There are two paths for entry into the pSOS+ kernel when a pSOS+ system call is
invoked from an application. In the normal path (with normal bindings), a trap or
system call exception is generated to enter the kernel, and switch the processor
supervisory mode. In the quick path (with quick bindings), no trap is raised for a
pSOS+ system call. Instead, the entry into the kernel is by way of a simple jump to
the service entry point. The application can choose to employ normal bindings by
setting SC_QBINDto NO. If SC_QBINDis set to YES, then the quick bindings for the
pSOS+ system calls is used. Quick bindings cannot be supported for applications
with USER mode tasks. So, if SC_QBINDis set to YES, it should be ensured that the
USER mode tasks in the application do not access any pSOS+ system calls.

Auto Initialization Sequence Enabling

Table 5-5 lists the parameter associated with auto-initialization.

If SC_AUTOINIT is set to IO_AUTOINIT , device drivers that are installed by the
InstallDriver function have their auto-initialization field set. This causes pSOS+
to call the initialization function of the driver when pSOS+ starts up. If this is done,
the de_init  call does not have to be invoked for each driver.

NOTE: Auto-initialization does not work on all drivers. Setting IO_AUTOINIT
only effects drivers that can use the auto-initialization feature.

TABLE 5-4 Quick Bindings Parameter

Parameter Possible Values

SC_QBIND YES, NO  (default)

TABLE 5-5 Auto Initialization Parameter

Parameter Possible Values

SC_AUTOINIT IO_AUTOINIT , IO_NOAUTOINIT
sys_conf.h 5-9



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 10  Thursday, January 28, 1999  9:18 AM
Serial Channel Configuration

The designation for each serial channel on a target takes the form of the channel
number and driver number. Channel numbers start at one and driver numbers
start at zero. For example, a target with eight serial channels per driver and with
three drivers would have channel numbers shown in Table 5-6.

The serial driver number (SERIAL_DRVRNUM(x)) macro extracts the driver number
based on the maximum number of serial ports per driver
(BSP_MAX_SER_PORTS_PER_DRIVER) and maximum number of serial drivers
(BSP_MAX_SER_DRIVERS) defined in bsp.h . Table 5-6 lists the channel number
calculations based on the default setting, which are:

#define BSP_MAX_SER_DRIVERS           8
#define BSP_MAX_SER_PORTS_PER_DRIVER  8

TABLE 5-6 Serial Driver Number to Channel Number Mapping Table

Serial Driver Name Driver Number CHANNEL Number Effective Channel

Driver0 0 1+(SERIAL_DRVRNUM(0)) 1

Driver0 0 2+(SERIAL_DRVRNUM(0)) 2

Driver0 0 3+(SERIAL_DRVRNUM(0)) 3

Driver0 0 4+(SERIAL_DRVRNUM(0)) 4

Driver0 0 5+(SERIAL_DRVRNUM(0)) 5

Driver0 0 6+(SERIAL_DRVRNUM(0)) 6

Driver0 0 7+(SERIAL_DRVRNUM(0)) 7

Driver0 0 8+(SERIAL_DRVRNUM(0)) 8

Driver1 1 1+(SERIAL_DRVRNUM(1)) 9

Driver1 1 2+(SERIAL_DRVRNUM(1)) 10

Driver1 1 3+(SERIAL_DRVRNUM(1)) 11

: : : :

: : : :

Driver1 1 8+(SERIAL_DRVRNUM(1)) 16

Driver2 2 1+(SERIAL_DRVRNUM(2)) 17

: : :
5-10 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 11  Thursday, January 28, 1999  9:18 AM
 The parameters shown in Table 5-7 control the serial channels.

SC_DEF_BAUDspecifies the default baud rate for the serial channels. A de_cntrl()
call can be used to change the baud rate dynamically.

SC_APP_CONSOLEspecifies the effective serial channel number used for the console
channel of the application. The console channel can be changed dynamically by
making a de_cntrl()  call to the serial driver.

NOTE: You must assign different serial channels to SC_APP_CONSOLE.

SC_PROBE_CONSOLEspecifies the effective serial channel number that the pROBE+
debugger should use for its console channel (in standalone mode). The pROBE+
console displays output and receives commands on this channel.

SC_RBUG_PORTspecifies the serial channel to use for remote host debugger com-
munication if debugger over serial channel is enabled. The default setting is 0 for
disabled.

The number of non-pSOS users of serial channels is indicated using
SC_NumNon_pSOSChan. These are users that are initiated before pSOS, such as
pROBE+.

NOTE: These channels are not closed on a soft reset of the target board.

TABLE 5-7 Serial Channel Configuration Parameters

Parameter Possible Values

SD_DEF_BAUD 4800, 9600 (default), 19200, 38600 (valid baud
rates)

SC_APP_CONSOLE Valid serial channel number of the form
Channel + DriverNum(n) as described in

Table 5-6.

SC_PROBE_CONSOLE Valid serial channel number of the form
Channel + DriverNum(n) as described in

Table 5-6.

SC_RBUG_PORT Valid serial channel number of the form
Channel + DriverNum(n) as described in

Table 5-6. 0 + (SERIAL_DRVRNUM(n) ) is used to
disable the channel.

SC_NumNon_pSOSChan 1, 2
sys_conf.h 5-11



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 12  Thursday, January 28, 1999  9:18 AM
LAN Configuration

Table 5-8 lists the parameters that control the configuration of the LAN interface.

If the target board has a LAN interface, you can enable it by setting SD_LAN1to YES.
If SD_LAN1is NO, the values of the other SD_LAN1_* parameters are ignored or not
used.

The maximum number of multicast addresses to be used by the LAN interface is
specified by SC_LAN1_NMCAST. The value must not exceed the maximum number of
addresses supported by the LAN driver.

VME Bus Configuration

The following parameters control the configuration of the VME interface:

SD_VME_BASE_ADDRspecifies the base address of the dual ported memory on the
VME bus of the target board. This parameter is insignificant for non-VME based tar-
get boards.

TABLE 5-8 LAN Configuration

Parameter Explanation

SD_LAN1 Setting this to YES enables the LAN interface, and
NO disables it

SD_LAN1_IP IP address to use for LAN interface

(SD_LAN1_IP can be set to USE_RARP, in which
case the pSOSystem software uses RARP to obtain
the IP address)

SD_LAN1_SUBNET_MASK Subnet mask to use for LAN interface, or 0 for
none

SC_LAN1_NMCAST Maximum number of multicast addresses

Parameter Explanation

SD_VME_BASE_ADDR Specifies the VME bus address of dual ported RAM
of a target board. The default is 0x0100’0000.
5-12 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 13  Thursday, January 28, 1999  9:18 AM
Shared Memory Configuration

Table 5-9 lists the parameters that control the configuration of the shared memory
interfaces.

On systems that support shared memory, you can configure a shared memory net-
work interface (SMNI) for use with the pNA+ network manager, a shared memory
kernel interface (SMKI) for use with the pSOS+m kernel or both. In either case, you
need to assign a node number to each target board in the system. Node numbers
are integers and start at 1. The SD_SM_NODE #define setting must be the same
as the node number of the board.

SD_NISMmust be set to either YESor NO. It depends on whether a shared memory
network interface is included. If SD_NISM is YES, then SD_NISM_IP,
SD_NISM_SUBNET_MASK, and SC_NISM_BUFFS specify the IP address, subnet
mask, and number of buffers of the interface, just as the corresponding parameters
do for the LAN interface.

SD_NISM_DIRADDRis the bus address of a system wide directory structure which
must be accessible to all nodes in the system.

TABLE 5-9 Shared Memory Configuration Parameters

Parameter Explanation

SD_SM_NODE Node number for this node.

SD_NISM YES to enable SMNI, otherwise NO (default).

SD_NISM_IP IP address of this node.

SD_NISM_DIRADDR Bus address (global) of SMNI directory structure.

SC_NISM_BUFFS Number of buffers (default is 30).

SC_NISM_LEVEL For downloaded system specify 2, for ROM resident
use 1.

SD_NISM_SUBNET_MASK Subnet mask to use for SMNI.

SD_KISM Number of nodes in the system that use SMKI, 0
for none (default).

SD_KISM_DIRADDR Bus address (global) of SMKI directory structure.

SC_KISM_BUFFS Number of buffers for SMKI.
sys_conf.h 5-13



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 14  Thursday, January 28, 1999  9:18 AM
SC_NISM_LEVELshould be set to 2, with one exception. For the pSOSystem Boot
ROMs, it should be 1 to allow a second, downloaded shared memory system to
share the same directory structure that the Boot ROMs use.

To configure a shared memory kernel interface (SMKI), set SD_KISM to the number
of nodes in the system. Setting this to 0 disables SMKI. SD_KISM_DIRADDRis set to
the bus address of the system wide directory structure.

Usually, the directory structures are placed in one of the dual ported RAM areas of
the board. Each pSOSystem board support package reserves some space for these
structures. Refer to pSOSystem Advanced Topics manuals to find the locations for
these structures.

Miscellaneous Parameters

This section describes the miscellaneous defines.h  file.

SD_DEF_GTWY_IPspecifies the default gateway for the pNA+ network manager to
use for packet routing. The default gateway is explained in the Boot ROM section of
this manual.

NOTE: If SC_PNA is set to NO, SD_DEF_GTWY_IP is meaningless.

Normally, the pSOSystem software uses all of the unassigned memory on a board
for dynamic allocation (Region 0). You can override this by setting SC_RAM_SIZEto
a nonzero value. If you do, pSOSystem does not use any memory beyond
SC_RAM_SIZEbytes. This is useful when building a Boot ROM because it allows you
to make most of the RAM on the board available for downloading code.

TABLE 5-10 Gateway Node Default IP Address

Parameter Explanation

SD_DEF_GTWY_IP IP address of default gateway node 0 for none)

TABLE 5-11 Target Memory Amount

Parameter Explanation

SC_RAM_SIZE Amount of target memory to use (0 for all)
5-14 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 15  Thursday, January 28, 1999  9:18 AM
I/O Devices

The parameters shown in Table 5-12 control the configuration of the I/O devices.

TABLE 5-12 I/O Devices

Parameter Explanation

SC_DEV_SERIAL Major device number of serial driver (preset to 1; value
should not be changed)

SC_DEV_TIMER Major device number of periodic tick timer (preset to 2;
value should not be changed)

SC_DEV_RAMDISK Major device number of RAM disk (0 for none)

SC_DEV_CONSOLE PC-Console driver

SC_DEV_SCSI Major device number of SCSI driver (0 for none)

SC_DEV_SCSI_TAPE Major device number for SCSI bus, tape device

SC_DEV_IDE IDE driver

SC_DEV_FLOPPY Floppy driver

SC_DEV_NTFTP New TFTP pseudo driver

SC_DEV_TFTP Old TFTP pseudo-driver 0 for none)

SC_DEV_HTTP HTTP pseudo driver

SC_DEV_SPI SPI driver

SC_DEV_DLPI DLPI pseudo driver

SC_DEV_OTCP Major device number for TCP/IP for OpEN†

SC_IP Major device number for IP for OpEN†

SC_ARP Major device number for ARP for OpEN†

SC_TCP Major device number for TCP for OpEN†

SC_UDP Major device number for UDP for OpEN†

SC_RAW Major device number for RAW for OpEN†

SC_LOOP Major device number for LOOP for OpEN†
sys_conf.h 5-15



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 16  Thursday, January 28, 1999  9:18 AM
SC_DEV_SOSI Major device number for OSI for OpEN†

SC_DEV_PSCONSOLE Pseudo console driver

SC_DEV_MEMLOG Memory log driver

SC_DEV_RDIO pROBE+ RDIO driver

SC_DEV_NULL Null device driver

SC_DEV_PARALLEL Parallel port driver

SC_DEV_CMOS CMOS driver

SC_DEV_WATCHDOG Watchdog driver

SC_DEV_OLAP LAP drivers

SC_PHPI Phpi driver

SC_LAPB LAPB driver change 0 to 1

SC_DEV_OX25 X25 drivers

SC_X25 X.25 plp driver

SC_SNDCF sndcf driver

SC_IPCONV ip convergence driver

SC_DEV_ISDN ISDN drivers

SC_PH PH driver

SC_LAPD LAPD driver change 0 to 1

SC_IPCD IPCD driver change 0 to 2

SC_DEV_MLPP MultiLink PPP drivers

SC_FRMUX FRMUX driver

SC_PPP PPP driver change 0 to 1

SC_PIM PIM driver change 0 to 2

SC_DEV_LOG Streams log driver

TABLE 5-12 I/O Devices (Continued)

Parameter Explanation
5-16 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 17  Thursday, January 28, 1999  9:18 AM
To include a device in the system, you must specify a major device number for it. The
major device number determines the slot number for the device in the pSOS+ I/O
switch table. To leave a device driver out of the system, use 0 or NO for the major
number.

NOTE: When working with major device numbers, consider the following:

● Major device 0 is reserved and cannot be used to specify a device because it
means the device is not built into the system.

● The major device number cannot exceed SC_DEVMAX. However, you can
raise the value of SC_DEVMAX, if necessary.

SC_DEV_PSMUX Sample Mux driver

SC_DEV_PSLWR Sample loopback driver

SC_DEV_SLLWR Sample loopback driver

SC_DEV_PIPE Pipe driver

SC_DEVMAX Maximum major device number in system

†. For information about OpEN, see the OpEN User’s Manual.

TABLE 5-12 I/O Devices (Continued)

Parameter Explanation
sys_conf.h 5-17



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 18  Thursday, January 28, 1999  9:18 AM
You should include the following lines in sys_conf.h after the SC_DEV_*
definitions:

#define DEV_SERIAL      (SC_DEV_SERIAL     << 16)
#define DEV_PARALLEL    (SC_DEV_PARALLEL   << 16)
#define DEV_TIMER       (SC_DEV_TIMER      << 16)
#define DEV_RAMDISK     (SC_DEV_RAMDISK    << 16)
#define DEV_SCSI        (SC_DEV_SCSI       << 16)
#define DEV_SCSI_TAPE   (SC_DEV_SCSI_TAPE  << 16)
#define DEV_PSCONSOLE   (SC_DEV_PSCONSOLE  << 16)
#define DEV_SYSCONSOLE  ((SC_DEV_PSCONSOLE  << 16) + SYSCONSOLE_DEV)
#define DEV_PSEUDO      ((SC_DEV_PSCONSOLE  << 16) + PSEUDO_DEV)
#define DEV_STDIN       ((SC_DEV_PSCONSOLE  << 16) + STDIN_DEV)
#define DEV_STDOUT      ((SC_DEV_PSCONSOLE  << 16) + STDOUT_DEV)
#define DEV_STDERR      ((SC_DEV_PSCONSOLE  << 16) + STDERR_DEV)
#define DEV_NULL        (SC_DEV_NULL       << 16)
#define DEV_MEMLOG      (SC_DEV_MEMLOG     << 16)
#define DEV_RDIO        (SC_DEV_RDIO       << 16)
#define DEV_DLPI        (SC_DEV_DLPI       << 16)
#define DEV_TFTP        (SC_DEV_TFTP       << 16)
#define DEV_NTFTP       (SC_DEV_NTFTP      << 16)
#define DEV_HTTP        (SC_DEV_HTTP       << 16)
#define DEV_SPI         (SC_DEV_SPI        << 16)
#define DEV_WATCHDOG    (SC_DEV_WATCHDOG   << 16)
#define DEV_FLOPPY      (SC_DEV_FLOPPY     << 16)
#define DEV_IDE         (SC_DEV_IDE        << 16)
#define DEV_CMOS        (SC_DEV_CMOS       << 16)
#define DEV_CONSOLE     (SC_DEV_CONSOLE    << 16)
#define DEV_IP          (SC_IP             << 16)
#define DEV_ARP         (SC_ARP            << 16)
#define DEV_TCP         (SC_TCP            << 16)
#define DEV_UDP         (SC_UDP            << 16)
#define DEV_RAW         (SC_RAW            << 16)
#define DEV_LOOP        (SC_LOOP           << 16)
#define DEV_PHPI        (SC_PHPI           << 16)
#define DEV_LAPB        (SC_LAPB           << 16)
#define DEV_X25         (SC_X25            << 16)
#define DEV_SNDCF       (SC_SNDCF          << 16)
#define DEV_IPCONV      (SC_IPCONV         << 16)
#define DEV_PH          (SC_PH             << 16)
#define DEV_LAPD        (SC_LAPD           << 16)
#define DEV_IPCD        (SC_IPCD           << 16)
#define DEV_FRMUX       (SC_FRMUX          << 16)
#define DEV_PIM         (SC_PIM            << 16)
#define DEV_PPP         (SC_PPP            << 16)
#define DEV_LOG         (SC_DEV_LOG        << 16)
#define DEV_PSMUX       (SC_DEV_PSMUX      << 16)
#define DEV_PSLWR       (SC_DEV_PSLWR      << 16)
#define DEV_SLLWR       (SC_DEV_SLLWR      << 16)
#define DEV_PIPE        (SC_DEV_PIPE       << 16)
5-18 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 19  Thursday, January 28, 1999  9:18 AM
Pseudo Driver Parameters

Table 5-13 lists the pSEUDO driver configuration parameters.

The SC_PSCNSL_SHARED_CHANparameter controls the number of shared channels
that needs to be configured in the system. The shared channels are devices attached
to the pseudo driver and are used by more that one task for I/O. The system console
is one such channel. This parameter is used to allocate the control block associated
with a shared channel.

The SC_PSCNSL_PRIVATE_CHANparameter controls the number of private chan-
nels needed to be configured in the system. Private channels are endpoints used by
tasks for exclusive use for I/O on the channel. The stdin , stdout and stderr
functions associated with a task are examples of the private channels. This parame-
ter is used to allocate the control block for with private channel.

The SC_PSCNSL_MAX_CUSTOMparameter controls the number of custom modules
that can be plugged into the pseudo driver for use.

SC_PSCNSL_DEFAULT_DEVparameter controls the default device to be mapped by
the pseudo device as the default console. All reads and writes to the pSEUDO device
driver are transferred to the default device. Users can change the default device by
issuing I/O controls to the pSEUDO device driver. Refer to Chapter 4, Standard
pSOSystem Character I/O Interface for more information on the pSEUDO device
driver.

TABLE 5-13 pSEUDO Driver Configuration Parameters

Parameter Value Description

SC_PSCNSL_SHARED_CHAN 2 Number of shared channels

SC_PSCNSL_PRIVATE_CHAN 4 Number of private channels

SC_PSCNSL_MAX_CUSTOM 1 Number of custom device

SC_PSCNSL_DEFAULT_DEV CONSOLE Default console device (default
device is CONSOLE)
sys_conf.h 5-19



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 20  Thursday, January 28, 1999  9:18 AM
Other Parameters

Table 5-14 lists the TFTP, HTTP and PIPE configuration parameters.

Table 5-15 contains the Memory Management Library configuration parameter.

The SC_MMULIB parameter controls the MMU library callouts when pROBE+ is en-
tered. Setting this to YES enables the callouts, while setting this to NOdisables the
callouts when pROBE+ is entered, and MMU (BSP_MMU in bsp.h ) is enabled.

Component Configuration Parameters

The values of many configuration table entries are controlled by #define state-
ments in sys_conf.h . The following subsections list the parameters that #define
statements can control. The configuration tables section of this manual describes
these parameters. Note that the names of the configuration table entries shown in
this section are in lowercase, and the corresponding sys_conf.h parameters are in
uppercase. For example, fc_nbuf in the pHILE+ configuration table is controlled
by FC_NBUF in sys_conf.h .

Although most of the component configuration table entries are determined by
sys_conf.h , others are not because sys_conf.h cannot specify them. For exam-
ple, kc_code in the pSOS+ configuration table contains the starting address of the
pSOS+ kernel, but as this is determined by where the linker places the pSOS+ ker-
nel, sys_conf.h  cannot specify the address.

TABLE 5-14 Pseudo Console, TFTP, HTTP and PIPE Configuration Parameters

Parameter Value Description

SC_MAX_TFTP_CHAN 1 Maximum number of TFTP channels

SC_MAX_HTTP_CHAN 1 Maximum number of HTTP channels

SC_MAX_PIPE_CHAN 1 Maximum number of PIPE channels

TABLE 5-15 Memory Management Library Configuration Parameters

Parameter Value

SC_MMULIB NO
5-20 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 21  Thursday, January 28, 1999  9:18 AM
pSOS+ Configuration Table Parameters

Table 5-16 lists the parameters found in sys_conf.h that control the values of the
corresponding entries in the pSOS+ configuration table.

TABLE 5-16 pSOS+ Configuration Table Parameters

Parameter Explanation

KC_RN0USIZE Region 0 unit size (the smallest unit of allocation).
(0x100 default)

KC_NTASK Maximum number of tasks

KC_NQUEUE Maximum number of message queues

KC_NSEMA4 Maximum number of semaphores

KC_NTIMER Maximum number of timers

KC_NMUTEX Maximum number of mutexes

KC_NCVAR Maximum number of conditional variables

KC_NTVAR Maximum number of task variables

KC_NCOCB Maximum number of callouts

KC_NTSD Maximum number of TSD objects

KC_NLOCOBJ Maximum number of local objects

KC_NMSGBUF Maximum number of message buffers

KC_TICKS2SEC Clock tick interrupt frequency (100 default)

KC_TICKS2SLICE Time slice quantum, in ticks (10 default)

KC_MAXDNTENT Maximum number of device names in DNT

KC_DNLEN Maximum length of a device name in DNT

KC_SYSSTK pSOS+ system stack size (bytes)

KC_ROOTSSTK ROOT supervisor stack size

KC_IDLESTK IDLE stack size

KC_ROOTUSTK ROOT user stack size
sys_conf.h 5-21



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 22  Thursday, January 28, 1999  9:18 AM
pSOS+m Configuration Table Parameters

Table 5-17 lists the parameters found in sys_conf.h that control the values of the
corresponding entries in the multiprocessor (pSOS+m) configuration table:

KC_ROOTMODE ROOT initial mode (T_SUPV | T_ISR )

KC_ROOTPRI ROOT initial priority (230 default)

KC_NIO Number of devices in initial iojtab  (SC_DEVMAX + 1)

KC_MAXIO Maximum number of devices in the system
((SC_DEVMAX + 3))

KC_FATAL Fatal error handler address (disabled by default)

KC_STARTCO Address of user-defined callout at task activation

KC_DELETECO Address of user-defined callout at task deletion

KC_SWITCHCO Address of user-defined callout at task switch

KC_IDLECO IDLE task callout

TABLE 5-17 pSOS+ Configuration Table Parameters

Parameter Explanation

MC_NGLBOBJ Size of global object table on each node

MC_NAGENT Number of RPC agents in this node

MC_FLAGS Operating mode flags (SEQWRAP_ON)

MC_ROSTER Callout address for user roster change (0)

MC_KIMAXBUF Maximum length of KI packet buffer (100)

MC_ASYNCERR Error callout address for asynchronous calls (0)

TABLE 5-16 pSOS+ Configuration Table Parameters (Continued)

Parameter Explanation
5-22 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 23  Thursday, January 28, 1999  9:18 AM
pROBE+ Configuration Table Parameters

Table 5-18 lists the parameters in sys_conf.h that control the values of the corre-
sponding entries in the pROBE+ configuration table.

For additional information on pROBE+ parameters, see the pROBE+ User’s Guide.

pHILE+ Configuration Table Parameters

Table 5-19 lists the parameters located in sys_conf.h that control the values of
the corresponding entries in the pHILE+ configuration table. The default settings
are in parentheses.

TABLE 5-18 pROBE+ Configuration Table Parameters

Parameter Explanation

TD_BRKOPC Instruction break trap (0)

TD_DBGPRI Priority of debugger system tasks (244)

TD_ILEV pROBE+ interrupt mask
(MAXILEV << 12)

TD_FLAGS Initial pROBE+ flag settings
(NODOTS_MASK | TD_ILEV |
NOUPD_MASK)

TD_DATASTART pROBE+ data area starting address

TABLE 5-19 pHILE+ Configuration Table Parameters

Parameter Explanation

FC_LOGBSIZE Block size with base-2 exponent (9 default)

FC_NBUF Number of cache buffers (6 default)

FC_NMOUNT Maximum number of mounted volumes (3 default)

FC_NFCB Maximum number of opened files per system (10 default)

FC_NCFILE Maximum number of opened files per task (2 default)

FC_NDNLC Maximum number of cached directory entries for CD-ROM
(0 default)

FC_ERRCO I/O error call out (no default)
sys_conf.h 5-23



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 24  Thursday, January 28, 1999  9:18 AM
pLM+ Configuration Parameters

You must include the plm.h header file in your application source code to use pLM+
definitions in your application.

Table 5-20 list the pLM+ configuration parameters.

Set LM_DEFAULT_COUTSto YES if you need to use the pSOSystem default pLM call-
outs. Set it to NOif you are providing the callouts. Setting LM_DEFAULT_COUTSto NO
needs the LM_LOADCO and LM_UNLOADCO definitions to be valid function addresses.

If the application is going to use the pSOSystem default call outs, set LM_LOADCO
and LM_UNLOADCO to 0.

User defined call outs must be added to the pSOSystem callouts table using
PssRegister_pLM_couts  and removed with PssDeregister_pLM_couts .

FC_DATA Address of pHILE+ data area or 0 to allocate from region 0

FC_DATASIZE Size of pHILE+ data area or 0 to allocate from region 0

TABLE 5-20 pLM+ Configuration Parameters

Parameter Explanation

LM_MAXREG Maximum number of registered libraries

LM_DATA pLM+ data area or 0 to allocate from region
0

LM_DATASIZE pLM+ data area size or 0 to allocate from
region 0

LM_DEFAULT_COUTS Controls pSOSystem default pLM callout

LM_LOADCO Load callout

LM_UNLOADCO Unload callout

TABLE 5-19 pHILE+ Configuration Table Parameters (Continued)

Parameter Explanation
5-24 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 25  Thursday, January 28, 1999  9:18 AM
To have user callouts follow the steps below:

1. In the user application source file add the following lines (these definitions are
required by plmcfg.c ):

#include <plm.h>
extern ULONG user_load_co(const char *libname, ULONG scope,
                          ULONG version, const void *libinfo,
                          sl_attrib *attr);
extern ULONG user_unload_co(const sl_attrib *attr);

2. In the sys_conf.h file set the LM_LOADCOand LM_UNLOADCOdefine state-
ments as follows:

#define LM_LOADCO      user_load_co
#define LM_UNLOADCO    user_unload_co

pREPC+ Configuration Table Parameters

The following parameters located in the sys_conf.h header file, and listed in
Table 5-21, control the values of the corresponding entries in the pREPC+ configu-
ration table. The default settings are in parentheses.

TABLE 5-21 pREPC+ Configuration Table Parameters

Parameter Explanation

LC_BUFSIZ I/O buffer size (1 << FC_LOGBSIZE)

LC_NUMFILES Maximum number of open files per task (5)

LC_WAITOPT Wait option for memory allocation (0)

LC_TIMEOPT Timeout option for memory allocation (0)

LC_STDIN Default standard in device

LC_STDOUT Default standard out device

LC_STDERR Default standard error device

LC_TEMPDIR Default TEMPDIR device
sys_conf.h 5-25



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 26  Thursday, January 28, 1999  9:18 AM
pNA+ Configuration Table Parameters

The following parameters located in the sys_conf.h header file, and listed in
Table 5-22, control the values of the corresponding entries in the pNA+ configura-
tion table. The default settings are in parentheses.

TABLE 5-22 pNA+ Configuration Table Parameters

Parameter Explanation

NC_NNI Size of pNA+ Network Interface (NI) table (5)

NC_NROUTE Size of pNA+ routing table (10)

NC_NARP Size of pNA+ ARP table (20)

NC_DEFUID Default User ID of a task, used for NFS (0)

NC_DEFGID Default Group ID of a task, used for NFS (0)

NC_HOSTNAME Host name of the node (“scg ”)

NC_NHENTRY Number of host table entries (8)

NC_NMCSOCS Number of IP multicast sockets (0)

NC_NMCMEMB Number of distinct IP multicast group member-
ships per interface (0)

NC_NNODEID Network NODE ID for unnumbered link (0)

NC_NSOCKETS Sockets in the system(4)

NC_NDESCS Socket descriptors or tasks (4)

NC_MBLKS Message blocks in the system (300)

NC_BUFS_0 Number of 0-length buffers (64)

NC_BUFS_32 Number of 32-byte buffers (0)

NC_BUFS_64 Number of 64-byte buffers (0)

NC_BUFS_128 Number of 128-byte buffers (256)

NC_BUFS_256 Number of 256-byte buffers (0)

NC_BUFS_512 Number of 512-byte buffers (0)

NC_BUFS_1024 Number of 1-Kbyte buffers (16)
5-26 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 27  Thursday, January 28, 1999  9:18 AM
NC_BUFS_2048 Number of 2-Kbyte buffers (48)

NC_BUFS_4096 Number of 4-Kbyte buffers (0)

NC_MAX_BUFS Maximum number of NC_BUFS types (9)

NC_PNAMEM_NEWSCHEME Apply new pNA+ memory management scheme
(YES)

NC_BUFS_XX_INTERNAL Number of buffers for internal pNA+ usage (20
of 128-byte buffers)

NC_MBLKS_INT_PERCENT Percentage of mblks reserved for internal pNA+
usage (15)

NC_MBLKS_TX_PERCENT Percentage of mblks reserved for transmission
memory pool (40)

NC_BUFS_0_TX_PERCENT Percentage of 0 byte buffers used for transmis-
sion (50)

NC_BUFS_32_TX_PERCENT Percentage of 32 byte buffers used for transmis-
sion (50)

NC_BUFS_64_TX_PERCENT Percentage of 64 byte buffers used for transmis-
sion (50)

NC_BUFS_128_TX_PERCENT Percentage of 128-byte buffers used for trans-
mission (50)

NC_BUFS_256_TX_PERCENT Percentage of 256-byte buffers used for trans-
mission (50)

NC_BUFS_512_TX_PERCENT Percentage of 512-byte buffers used for trans-
mission (50)

NC_BUFS_1024_TX_PERCENT Percentage of 1-Kbyte buffers used for trans-
mission (50)

NC_BUFS_2048_TX_PERCENT Percentage of 2-Kbyte buffers used for trans-
mission (50)

NC_BUFS_4096_TX_PERCENT Percentage of 4-Kbyte buffers used for trans-
mission (50)

NC_DATA pNA+ data area start address (0)

TABLE 5-22 pNA+ Configuration Table Parameters (Continued)

Parameter Explanation
sys_conf.h 5-27



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 28  Thursday, January 28, 1999  9:18 AM
pRPC+ Configuration Parameters

The following parameters located in the sys_conf.h header file, and listed in
Table 5-23, control the values of the corresponding entries in the pRPC+ configura-
tion table:

NC_DATASIZE pNA+ data area size

NC_DTASK_SSTKSZ pNAD daemon task supervisor stack size
(0x800)

NC_DTASK_USTKSZ pNAD daemon task user stack size (0x400)

NC_DTASK_PRIO pNAD daemon task priority (255)

NC_NEW_MULTITASK_SYNC Deploy pNA+ sync scheme using locks (YES)

NC_USE_MUTEX Use pSOS mutex primitive (YES)

NC_SIGNAL pNA+ signal handler (0)

TABLE 5-23 pRPC+ Configuration Parameters

Parameter Explanation

NR_PMAP_PRIO Task priority (254)

NR_PMAP_SSTACK Supervisor stack size (0x2000)

NR_PMAP_USTACK User stack size (0x100)

NR_PMAP_FLAGS t_create  flags (T_LOCAL default)

NR_PMAP_MODE t_start  mode (T_SUPV default)

NR_DEBUG_FLAG Turn on debug messages from PMAP task
(NO)

NR_GETHOSTNAME Function to get local host name
(nr_gethostname )

NR_GET_HENTBYNAME Function to map host name to its IP address
(nr_get_hentbyname )

TABLE 5-22 pNA+ Configuration Table Parameters (Continued)

Parameter Explanation
5-28 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 29  Thursday, January 28, 1999  9:18 AM
pSE+ Configuration Parameters

The parameters in sys_conf.h control the values of the corresponding entries in
the configuration table for the pSE+ streams component. See OpEN User’s Guide for
additional information.

Loader Configuration Parameters

The following parameters located in the sys_conf.h header file, and listed in
Table 5-24, control the configuration for Loader. See the System Services section of
this manual for more information on Loader.

NR_DATA pRPC+ data area start address (0)

NR_DATASIZE pRPC+ data area size (0)

TABLE 5-24 Loader Configuration Parameters

Parameter Explanation

LD_MAX_LOAD Maximum number of active loads (8 de-
fault)

LD_ELF_MODULE Load ELF object-load-module

LD_SREC_MODULE Load SREC object-load-module

LD_COFF_MODULE Load ELF object-load-module

LD_IEEE_MODULE Load IEEE object-load-module

LD_IHEX_MODULE Load IHEX object-load-module

TABLE 5-23 pRPC+ Configuration Parameters (Continued)

Parameter Explanation
sys_conf.h 5-29



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 30  Thursday, January 28, 1999  9:18 AM
 pMONT+ Configuration Parameters

Table 5-25 lists the parameters located in the sys_conf.h header file that control
pMONT+ configuration.

General Serial Block Configuration Parameters

The parameters listed in Table 5-26 are located in the sys_conf.h header file,
which control the allocation of buffers for the General Serial Block buffer manager.
These buffers are used by various drivers that use the Device Independent Serial
Interface (DISI). See Chapter 2, Interfaces, for information on DISI.

TABLE 5-25 pMONT+ Configuration Parameters

Parameter Explanation

PM_CMODE pMONT+ communication mode, 1 = networking, 2 = serial

PM_DEV Major or minor device number for serial channel if used

PM_BAUD Baud rate for serial channel

PM_TRACE_BUFF If 0, the address of trace buffer is allocated by pSOSystem

PM_TRACE_SIZE Size of trace buffer

PM_TIMER Second timer for finer timing within data collection

TABLE 5-26 General Serial Block Configuration Parameters

Parameter Explanation

GS_BUFS_0 Number of 0-length buffers

GS_BUFS_32 Number of 32-byte buffers

GS_BUFS_64 Number of 64-byte buffers

GS_BUFS_128 Number of 128-byte buffers

GS_BUFS_256 Number of 256-byte buffers

GS_BUFS_512 Number of 512-byte buffers

GS_BUFS_1024 Number of 1K-byte buffers

GS_BUFS_2048 Number of 2K-byte buffers
5-30 sys_conf.h



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 31  Thursday, January 28, 1999  9:18 AM
The GSblkSetup routine sets up the Global Serial message and data blocks, using
the values set by #define  statements in the sys_conf.h  file.

Each application may have a different need for a particular size buffer, which de-
pends on the size of the message the application sends.

The parameter GS_MBLKScontrols the number of message block headers allocated
by the GSblkSetup  routine.

Set GS_MBLKSto the total number of data blocks represented by the total number of
buffers allocated in the preceding list. If the driver attaches user supplied data buff-
ers to a message block header, add an additional amount for these as necessary. For
example, the pSOSystem terminal driver needs additional message block headers
for user supplied buffers.

NOTE: Although the code can use a message block that does not have a data
buffer attached to it, the serial drivers currently have no use for a header
only message block.

TCP/IP for OpEN Configuration Parameters

The parameters located in the sys_conf.h header file control the configuration val-
ues for TCP/IP OpEN. See TCP/IP for OpEN User’s Guide for additional information.

GS_BUFS_4096 Number of 4K-byte buffers

GS_MBLKS Number of message blocks

SE_MAX_GS_BUFS Maximum number of stream buffer types

TABLE 5-26 General Serial Block Configuration Parameters (Continued)

Parameter Explanation
sys_conf.h 5-31



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 32  Thursday, January 28, 1999  9:18 AM
Adding Drivers to the System

To add drivers to the pSOS+ I/O jump table, edit drv_conf.c in the application
directory. This file contains a function called SetUpDrivers() , which calls
InstallDriver()  to install the driver into the I/O jump table.

If you want to add a driver, you should add an InstallDriver() call into
SetUpDrivers() function. The parameters passed to InstallDriver() are the
major device number, the pointers to the init , open , close , read , write , and
ioctl functions of the driver, and the two reserved entries in the pSOS+ I/O switch
table. For example, to add a driver with major device 6 (which processes only the
init  and read  calls), you add the following to SetUpDrivers() in sysinit.c :

InstallDriver(6, DriverInit, NULLF, NULLF, DriverRead, NULLF,
               NULLF, 0, 0);

where NULLF is a macro in sysinit.c  defined as a NULL function pointer.

Network interfaces are added in a manner similar to that of pSOS+ drivers. The
source file, drv_conf.c , also contains a routine called SetUpNi() , which calls
InstallNI()  to install each network interface in the pNA+ initial interface table.

To add a Network driver to pSOSystem, call InstallNi() function with the argu-
ments described below. This adds the Network Interface to the pNA+ Network
Interface table. The NI entry added using InstallNI() into the system is static, and
must be done only during system startup. The InstallNi() function takes the
following arguments:

Refer to Chapter 6, Configuration Tables, for more information about the Network
Interface table.

int (*entry)(); address of NI entry point

int ipadd; IP address

int mtu; maximum transmission length

int hwalen; length of hardware address

int flags; intErface flags

int subnetaddr; subnet mask

int dstipaddr; destination ip address
5-32 Adding Drivers to the System



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 33  Thursday, January 28, 1999  9:18 AM
pMONT+ Driver Usage

When pMONT+ is configured into the system, the drivers required by it are initial-
ized during system startup (auto-initialized). Note that if you enable auto-initializa-
tion for a particular device, the pSOS+ kernel calls the de_init() function of the
driver with a minor device number of 0 first and does so before any task starts run-
ning.

To use auto-initialization, the SC_AUTOINIT #define statement must be passed as
the last argument in the install driver. The following example shows the pSOSystem
convention for installing a driver in drv_conf.c (file residing in each pSOSystem
application directory):

InstallDriver(SC_DEV_SERIAL, CnslInit, NULL, NULL, CnslRead,\
CnslWrite, CnslCntrl, 0, SC_AUTOINIT;

For pMONT+ to run successfully, you must use auto-initialization to initialize the
timer device. For serial communication, you must also initialize the serial driver,
which then operates with the following characteristics:

■ Blocking I/O

■ ASCII mode

■ Echoing off

■ Carriage return to signal the end of a record

■ No conversions for a new-line character

pMONT+ uses the serial driver through the pSOS calls de_open() , de_read() ,
and de_write() . It makes the de_open() call before proceeding to use the driver
to make read and write calls. The de_open() call should thus set the driver for
pMONT+ usage if auto-initialization has not been done. We recommend using auto-
initialization to initialize the driver and the de_open() call to change settings (if
needed). In cases where the installed driver has specific functionality for each of the
I/O calls, a dummy driver could be installed for pMONT+ in which the de_open()
calls the actual serial driver to perform required initialization not done by the auto-
initialization function.
Adding Drivers to the System 5-33



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 34  Thursday, January 28, 1999  9:18 AM
Customizing the System Startup Sequence

The startup code supplied with the pSOSystem software, performs the required ini-
tialization and startup. The topics in this section are important only if you want to
customize the pSOSystem startup code or write your own startup code. This section
documents the initialization and startup requirements of the individual software
components.

The following checklist shows the required items for a typical pSOSystem based
system:

■ An optional user supplied boot module to perform power on or reset initializa-
tion and self test

■ The pSOS+ kernel and other appropriate components (for example, the pROBE+
debugger and the pHILE+ file manager)

■ The Node Anchor and node configuration table

■ Configuration tables for the pSOS+ kernel and other installed modules

■ Task, ISR, and device driver code and initialized data, if any for the application

■ Exception vectors with the correct settings

In a ROM based system, most of these items reside in ROM. For a RAM based sys-
tem or a system that is under test or integration, some of the items may be loaded
into RAM either by the user supplied boot module or the pROBE+ System Debug/
Analyzer. Furthermore, in a memory mapped system, it is possible to load the appli-
cation tasks or drivers dynamically at run time.

Figure 5-2 on page 5-35 shows the possible startup sequences.
5-34 Customizing the System Startup Sequence



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 35  Thursday, January 28, 1999  9:18 AM
Power

Boot Code

pROBE+
Present

pSOS+
or

pSOS+m
Present

Application
(function AppCode)

Note: No pSOS+ system
calls to be used.

pROBE+

(pROBE+ prompt if in
standalone mode)

pSOS+/pSOS+m
Other Configured Components

(pREP+, pRPC, pNA+)
Using GS Command if

in standalone mode

Application
Function root

(Using go command if
in standalone mode)

Yes

No

Yes

No

Yes

FIGURE 5-2 System Startup Sequences
Customizing the System Startup Sequence 5-35



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 36  Thursday, January 28, 1999  9:18 AM
Typically, applying power to the board or resetting the board passes control to the
boot code in ROM, which performs any necessary initialization and self test of the
board. It should also set up the required configuration environment for the software
components in the system. The configuration environment consists of:

■ The Node Anchor,

■ The Node Configuration Table and,

■ Other component configuration tables.

You can set up this environment as a single process or allow the startup sequence
to proceed incrementally. During debug, for example, you might set up the configu-
ration environment just enough to let the pROBE+ debugger take control and exe-
cute. If the pROBE+ debugger is present, the boot code passes control to it. The
pROBE+ debugger then passes control to the pSOS+ component to initialize
pSOS+/pSOS+m and other configured components, and starts execution of the
pSOS+ application. You can start the pSOS+ kernel in one of the following ways:

■ By passing control to the pSOS+ startup entry, as follows:

branch to START_of_PSOS + 0x40

NOTE: This assumes the CPU is in the supervisor state. If this is not the
case, you must set the system call vector, to point to this pSOS+
startup address and use the SC instruction to enter it.

■ From the pROBE+ debugger, enter the gs  command (stand alone mode).

■ Specify the silent startup mode in the pROBE+ configuration table, so that the
pROBE+ debugger initializes itself then passes control to pSOS+ startup with-
out stopping.

Upon entry, pSOS+ startup first uses the Node Anchor to locate the pSOS+ configu-
ration table. The pSOS+ kernel then takes a segment of memory from the beginning
of memory Region 0 for its data area. Within this area, it uses the bottom part for its
key data structures. The next memory segment contains the system stack. Above
the system stack, the pSOS+ kernel builds the required number of TCBs, QCBs,
SCBs, MGBs, TMCBs, and the Object Tables.

Next, the pSOS+ kernel checks the Node configuration table. If other runtime com-
ponents are present, the pSOS+ kernel locates and automatically calls the start up
functions for those components to allow them to set up and initialize.
5-36 Customizing the System Startup Sequence



pSOSystem Programmer’s Reference pSOSystem Configuration File

5

pr.book  Page 37  Thursday, January 28, 1999  9:18 AM
The last step in pSOS+ startup is to create and activate the IDLE system daemon
task and the user ROOT task. The pSOS+ startup function then dispatches ROOT,
which takes over and executes.

NOTE: The pSOS+ kernel treats any error it encounters during startup as a fatal
error. For a description of fatal error handling, see pSOSystem System
Concepts manual. Startup error codes and their meanings are described
in this manual. For a complete description of the startup flow and
configuration refer to the pSOSystem Advanced Topics manual.
Customizing the System Startup Sequence 5-37



pSOSystem Configuration File pSOSystem Programmer’s Reference

pr.book  Page 38  Thursday, January 28, 1999  9:18 AM
5-38 Customizing the System Startup Sequence



pr.book  Page 1  Thursday, January 28, 1999  9:18 AM
6
 Configuration Tables
6
The pSOSystem components configure themselves at system startup based on infor-
mation contained in a collection of user-supplied Configuration Tables. These tables
contain parameters that characterize the hardware and application environment.

The pSOSystem software contains functions that build all configuration tables for
you. A user supplied file called sys_conf.h is used for this purpose. This file contains
#define statements for the various parameters needed to construct the configura-
tion tables. See Chapter 5, pSOSystem Configuration File, for details on the use of
the sys_conf.h file. Also, examples of its use appear in all the sample applications.
This section explains the configuration tables on a more basic level for those who
want to build their own configuration tables or just want more detailed information
on it.

This chapter describes the structures for the following Configuration Tables:

■ Node (See page 6-4)

■ Multiprocessor (See page 6-6)

■ pSOS+ (See page 6-10)

■ pROBE+ (See page 6-17)

■ pHILE+ (See page 6-23)

■ pREPC+ (See page 6-28)

■ pNA+ (See page 6-32)

■ pMONT+ (See page 6-43)

■ pRPC+ (See page 6-45)
6-1



Configuration Tables

pr.book  Page 2  Thursday, January 28, 1999  9:18 AM
■ pLM+ (See page 6-30)

■ pSE+ (See OpEN User’s Guide)

■ pSKT+ (See OpEN User’s Guide)

■ pTLI+ (See OpEN User’s Guide)

The structure definitions for these configuration tables reside in the include
directory.

The Configuration Tables can be located anywhere in memory. pSOSystem locates
the tables via a Node Configuration Table, from which a set of pointers fans out to
the individual component configuration tables.

The Node Configuration Table can also be located anywhere in memory; it is located
through the Node Anchor, which is the only fixed point of reference. The Node
Anchor exists to enable any component to locate the Node Configuration Table, and
subsequently the individual configuration tables. Figure 6-1 on page 6-3 shows the
relationships between the Node Anchor and the various tables.

pSOSystem components expect the Node Anchor to be set up at memory address
0x44. It may be moved, if necessary, by making a patch within each individual
component.
6-2 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 3  Thursday, January 28, 1999  9:18 AM
CPU_TYPE

MP_CT

pSOS_CT

pROBE_CT

pHILE_CT

pREPC_CT

pNA_CT

Multiprocessor
Configuration

Table

pSOS+
Configuration

Table

Node Anchor

pNA+
Configuration

Table

Subcomponent
Tables

Node
Configuration

Table

pSE_CT

pMONT_CT

pLM_CT

Reserved

Reserved

FIGURE 6-1 Node Configuration Table
pSOSystem Programmer’s Reference 6-3



Configuration Tables

pr.book  Page 4  Thursday, January 28, 1999  9:18 AM
Node

ttypedef struct NodeConfigTable
{
unsigned long                 cputype;/* CPU type                  */
struct MultiProcConfigTable  *mp_ct;  /* ptr to Multi-proc cfg tab */
struct pSOSConfigTable       *psosct; /* ptr to pSOS+ config table */
struct pROBEConfigTable      *probect;/* ptr to pROBE+ cfg table   */
struct pHILEConfigTable      *philect;/* ptr to pHILE+ cfg table   */
struct pREPCConfigTable      *prepct; /* ptr to pREPC+ cfg table   */
struct pLMConfigTable        *plmct;  /* ptr to pLM+ config table  */
struct pNAConfigTable        *pnact;  /* ptr to pNA+ config table  */
struct pSEConfigTable        *psect;  /* ptr to pSE+ config table  */
struct pMONTConfigTable      *pmct;   /* ptr to pMONT+ cfg table   */
unsigned long rsvd2[2];               /* Unused entries            */
} NODE_CT;

Description

The Node Configuration Table is a user-supplied table that is used to locate each in-
dividual component configuration table; it contains a list of pointers, one for each
component configuration table. This table can reside anywhere in RAM or ROM. The
Node Anchor must contain a pointer to the location of the Node Configuration Table.
The C language template for the Node Configuration Table is located in include/
configs.h :

Definitions of the Node Configuration Table entries are as follows:

cputype CPU type and has the following meaning:

BITS MEANING

31 - 10 Must be all 0‘s

9 1 = Use MMU; 0 = No MMU used

8 1 = Use FPU; 0 = No FPU used

7 - 0 Processor type, as follows:

0 = PPC601

1 = PPC603

2 = PPC604

3 = PPC603e
6-4 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 5  Thursday, January 28, 1999  9:18 AM
The MMU or FPU bit should be 1 only if these units exist in the system.

4 = PPC403GA

5 = PPC821

6 = PPC604p, PPC604e

7 = PPC603p

8 = PPC860

9 = PPC604r

10 = MPC740, PPC740

11 = MPC750, PPC750

12 = MPC505, PPC505

mp_ct Starting address of the Multiprocessor Configuration Table: it
should be 0 if the system is single-processor.

probect Starting address of the pROBE+ Configuration Table: it should be
0 if pROBE+ is not installed.

philect Starting address of the pHILE+ Configuration Table: it should be 0
if pHILE+ is not installed.

prepct Starting address of the pREPC+ Configuration Table: it should be 0
if pREPC+ is not installed.

plmct Reserved for future use and should be set to 0.

pnact Starting address of the pNA+ Configuration Table: it should be 0 if
pNA+ is not installed.

psect Starting address of the pSE+ Configuration Table: it should be 0 if
pSE+ is not installed.

pmct Starting address of the pMONT+ Configuration Table: it should be
0 if pMONT+ is not installed

rsvd2[2] Reserved for future use and should be set to 0.

cputype CPU type and has the following meaning:
pSOSystem Programmer’s Reference 6-5



Configuration Tables

pr.book  Page 6  Thursday, January 28, 1999  9:18 AM
Multiprocessor

typedef struct MultiProcConfigTable
{
ULONG mc_nodenum;           /* this node’s node number */
void  (*mc_kicode)();       /* addr of this node’s kernel interface */
ULONG mc_nnode;             /* max number of nodes in system */
ULONG mc_nglbobj;           /* size of global obj table in each node */
ULONG mc_nagent;            /* number of RPC agents in this node */
ULONG mc_flags;             /* operating mode flags */
void  (*mc_roster)();       /* address of user roster change callout */
void *mc_dprext;            /* dual-port RAM external starting address */
void *mc_dprint;            /* dual-port RAM internal starting address */
ULONG mc_dprlen;            /* dual-port RAM length in bytes */
ULONG mc_kimaxbuf;          /* maximum KI packet buffer length */
void  (*mc_asyncerr)();     /* asynchronous calls error callout */
ULONG mc_reserved[6];       /* unused, set to 0 */
} MP_CT;

Description

The Multiprocessor Configuration Table is a user-supplied table that is used to
specify hardware- and application-specific parameters in a multiprocessor system.
This table can reside anywhere in RAM or ROM. The mp_ct entry in the Node
Configuration Table must contain the starting address of the Multiprocessor
Configuration Table. The C language template for this table is located in include/
psoscfg.h .
6-6 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 7  Thursday, January 28, 1999  9:18 AM
Parameters in this table describe characteristics, some of which are system-wide,
some of which are local to the node. Some of the parameters are verified by the mas-
ter node as part of the multiprocessor system startup verification procedure. Defini-
tions for parameters in the Multiprocessor Configuration Table entries are as
follows:

mc_nodenum Specifies the node number of the local node. The following rules
must be observed:

■ Node number 0 is reserved and must not be used.

■ Node number 1 is the master node.

■ The node number must be unique.

■ The node number must be less than or equal to mc_nnode ,
which specifies the maximum number of nodes in the sys-
tem.

mc_kicode Contains the address of the entry point for the user-supplied
Kernel Interface (KI) functions. See Section 2, “Interfaces and
Drivers” for detailed descriptions of the eight KI functions.

mc_nnode Specifies the maximum number of nodes in the system (must
not exceed 16383). This is a maximum number. Not all nodes
need to be present.

mc_nglbobj Specifies the maximum number of global objects that may be
created and exported by any one node in the system.
mc_nglbobj  must be the same on every node, so it should be
chosen to accommodate the node that creates the maximum
number of such exported objects. mc_nglbobj  is used during
pSOS+m initialization to calculate the amount of memory that
must be reserved for the Global Object Table

mc_nagent Specifies the number of agents allocated for this node. Agents
operate on behalf of RSCs that have been received from other
nodes in the system. In particular, if an RSC must be blocked
(e.g. a q_receive() call from a remote node), then one agent is
tied up until the RSC completes or times out. The number of
agents required may vary from one node to another. In general,
the more RSCs that are expected to be directed at a node, the
more agents that may be needed.

Agents are described in detail in the pSOSystem System
Concepts manual.
pSOSystem Programmer’s Reference 6-7



Configuration Tables

pr.book  Page 8  Thursday, January 28, 1999  9:18 AM
mc_flags Assigns values to either of two flags that control the operation
of the pSOS+m kernel:

KIROSTER: If set, the pSOS+m kernel will call the ki_roster
service whenever the node roster changes.

SEQWRAP: On a slave node, this flag determines the action
taken when its sequence number reaches the max-
imum allowable value. If SEQWRAP is set, then the
sequence number wraps around to 1. If clear, the
node fails to restart and shuts down instead. On
the master node, this bit is meaningless, since the
master node may not fail.

mc_roster Contains the address of an optional user-provided routine that
is used to provide roster information to the KI. If mc_roster is
not NULL, then the pSOS+m kernel calls this routine whenever
the node roster changes. The Power PC calling conventions are
used for the call. The syntax of the call is as follows:

void rst_change (unsigned long change, void *roster,
unsigned long parm1, unsigned long parm2, unsigned
long parm3);

Change = Tyoe of Change

0 This is the initial roster. roster points to the inter-
nal pSOS+m roster.

1 A node has joined. parm1  and parm2  contain, re-
spectively, the node number and sequence number
of the new node.

2 A node has failed. parm1 , parm2 , and parm3  con-
tain, respectively, the node number of the failed
node, the failure code, and the node number of the
node that initiated removal of the node from the
system (which may be the failed node itself).

mc_dprext,
mc_dprint,
mc_dprlen

Specify the local node’s dual-ported memory, if any. If there is
none, then all three entries must be set to 0. Note that only one
contiguous dual-port memory block can be entered here for au-
tomatic address conversion by the pSOS+ kernel. See the
pSOSystem System Concepts manual for a discussion on the
use of dual-ported memory.
6-8 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 9  Thursday, January 28, 1999  9:18 AM
NOTE: The parameters mc_nnode , mc_nglbobj and mc_kimaxbuf must be
identical on every node in a multiprocessor configuration. pSOS+m
startup validates this coherency; any discrepancy causes a fatal error.

mc_kimaxbuf Specifies the maximum size packet buffer that the KI can allo-
cate. Refer to Chapter 2, Interfaces, for a description of the this
value. Also, note the following:

1. As explained in Chapter 2, Interfaces, for most KI imple-
mentations, a value of 100 is sufficient.

2. Recall from the pSOSystem System Concepts manual that
this value must be the same on all nodes.

3. For compatibility with previous versions of the pSOS+m
kernel, a value of 0 means 100.

mc_asyncerr Contains the address of an user provided callout routine
described in the pSOSystem System Concepts manual. If no
mc_asyncerr  is provided, this entry should be 0 (NULL), in
which case the pSOS+m kernel generates a fatal error.

reserved3[6] Reserved for future use and must be set to 0.
pSOSystem Programmer’s Reference 6-9



Configuration Tables

pr.book  Page 10  Thursday, January 28, 1999  9:18 AM
pSOS+

typedef struct pSOSConfigTable {
void (*kc_psoscode)(); /* start address of pSOS+ */
void *kc_rn0sadr; /* region 0 start address */
unsigned long kc_rn0len; /* region 0 length */
unsigned long kc_rn0usize; /* region 0 unit size */
unsigned long kc_ntask; /* max number of tasks */
unsigned long kc_nqueue; /* max number of message queues */
unsigned long kc_nsema4; /* max number of semaphores */
unsigned long kc_nmsgbuf; /* max number of message buffers */
unsigned long kc_ntimer; /* max number of timers */
unsigned long kc_nlocobj; /* max number of local objects */
unsigned long kc_ticks2sec; /* clock tick interrupt frequency */
unsigned long kc_ticks2slice; /* time slice quantum, in ticks */
unsigned long kc_nio; /* num of I/O devices in system */
struct iojent *kc_iojtable; /* addr of I/O switch table */
unsigned long kc_sysstk; /* pSOS+ system stack size (bytes) */
void (*kc_rootsadr)(); /* ROOT start address */
unsigned long kc_rootsstk; /* ROOT supervisor stack size */
unsigned long kc_rootustk; /* ROOT user stack size */
unsigned long kc_rootmode; /* ROOT initial mode */
void (*kc_startco)(); /* callout at task activation */
void (*kc_deleteco)(); /* callout at task deletion */
void (*kc_switchco)(); /* callout at task switch */
void (*kc_fatal)(); /* fatal error handler address */
void (*kc_idleco)(); /* idle task callout */
unsigned long kc_reserved3; /* reserved */
unsigned long kc_idlestk; /* IDLE task stack size */
unsigned long kc_rootpri; /* ROOT task priority */
unsigned long kc_nmutex; /* # of mutexes */
unsigned long kc_ncvar; /* max number of condition variables */
unsigned long kc_maxio; /* maximum number of I/O Devices */
unsigned long kc_ntvar; /* max number of task variable */
unsigned long kc_maxdntent; /* max number of device names in DNT */
unsigned long kc_dnlen; /* max length of device name in DNT */
unsigned long kc_ntsd; /* max number of task-specific-data

entries */
void *kc_tsdanchor; /* Address of task-specific-data

anchor */
unsigned long kc_maxscmajor; /* max major no. of service call

extension */
unsigned long kc_ncocb; /* max number of callouts */
void (*kc_sysstartco)(); /* System startup callout */
unsigned long kc_reserved2[10]; /* reserved for future use */

} pSOS_CT;
6-10 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 11  Thursday, January 28, 1999  9:18 AM
Description

The pSOS+ Configuration Table is a user-supplied table used to specify hardware
and application-specific parameters required by pSOS+. This table can reside any-
where in RAM or ROM. The starting address of the pSOS+ Configuration Table must
be specified as the nc_psosct entry in the Node Configuration Table. The C
language template for the pSOS+ Configuration Table is located in include/psos-
cfg.h

The definition of the pSOS+ Configuration Table entries are as follows:

kc_psoscode Defines the starting address of pSOS+ code.

kc_rn0sadr Defines the starting address of region 0. This address must be
long word aligned.

kc_rn0len Defines the length of region 0 (in bytes). The value of
kc_rn0len  depends on the values of various entries in the
pSOS+ Configuration Table and, in a multi-processor configu-
ration, some values from the Multi-processor Configuration
Table. The sections of this manual that describe the memory
considerations for individual processors explain how to calcu-
late kc_rn0len  by using these configuration table entries.

kc_rn0usize Defines the unit size (in bytes) of region 0.

kc_ntask Defines the number of Task Control Blocks (TCB) that will be
statically preallocated by pSOS+ at startup. This value must
accommodate the expected number of simultaneously active
tasks (excluding ROOT and IDLE).

kc_nqueue Defines the number of Queue Control Blocks that will be stati-
cally preallocated by pSOS+ at startup.

kc_nsema4 Defines the number of Semaphore Control Blocks that will be
statically preallocated by pSOS+ at startup.
pSOSystem Programmer’s Reference 6-11



Configuration Tables

pr.book  Page 12  Thursday, January 28, 1999  9:18 AM
kc_nmsgbuf Defines the number of Message Buffers that will be statically
preallocated by pSOS+ at startup. If a task sends a message to
a queue where no task is presently waiting, the message (4 long
words) must be copied to a message buffer (5 long words, to
hold the message plus a link) obtained either from the system-
wide pool, or from the queue’s private pool, if any. If the system
or private buffer pool is temporarily exhausted, the message
cannot be posted, and an error condition is returned to the
message sender. Thus, kc_nmsgbuf  should reflect the antici-
pated number of system message buffers needed to buffer mes-
sages under the worst operating conditions.

One fail safe method for handling worst case scenario is to
always create queues with private buffers. Another method is to
set length limits on all queues, and then set the sum of all
queue limits as the size of the system message buffer pool.

kc_ntimer Defines the number of Timer Control Blocks that will be stati-
cally preallocated by pSOS+ at startup.

kc_nlocobj Defines the size of the Local Object Table for the current node.
The size of the Local Object Table is specified as the number of
object entries. Every task, queue, semaphore, partition, and
region created on a node (but not exported) requires an entry in
the Local Object Table. The size that kc_nlocobj represents is
the sum of kc_ntask , kc_nqueue , and kc_sema4  plus the
maximum number of memory partitions and regions expected
on the node (including region 0). kc_nlocobj  may not exceed
16383.

kc_ticks2sec Defines the number of clock ticks in one second (that is, the
frequency of the tm_tick  system call).

kc_ticks2slice Defines the number of clock ticks in a timeslice. If
kc_ticks2slice  is defined to be 5 and kc_ticks2sec  is 10,
for example, then pSOS+ performs roundrobin scheduling
among tasks of equal priority approximately every half-second,
other circumstances permitting.

kc_iojtable Contains the starting address of an I/O Switch Table.

kc_nio Specifies the number of major devices in the system.
6-12 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 13  Thursday, January 28, 1999  9:18 AM
kc_sysstk Specifies the size of the pSOS+ system stack. It must be large
enough to accommodate the worst case, nested interrupt us-
age. The sections of this manual that describe processor-
specific memory considerations explain how to determine
kc_sysstk .

kc_rootsadr Starting address of the ROOT task. The next three parameters
are used by pSOS+ when it internally calls t_create  and
t_start to create and activate the ROOT task. pSOS+ defaults
the task’s priority and flags to 240, local, and no FPU.

kc_rootsstk Defines the size (in bytes) of the ROOT task’s supervisor stack
(must be at least 128).

kc_rootustk Defines the size (in bytes) of the ROOT task’s user stack.

kc_rootmode ROOT task’s initial execution mode.

kc_startco Supplies the address of a user-defined, optional procedure that
is called during task startup. See below for additional details.

kc_deletco Supplies the address of a user-defined, optional procedure that
is called during task deletion. See below for additional details.
pSOSystem Programmer’s Reference 6-13



Configuration Tables

pr.book  Page 14  Thursday, January 28, 1999  9:18 AM
kc_switchco Supplies the address of a user-defined, optional procedure that
is called during task context switching.

The kc_startco , kc_deletco , and kc_switchco  pSOS+
callout procedures allow you to perform special functions at the
designated points within the normal execution of pSOS+. A zero
in any of the three callout entries indicates to pSOS+ that no
such procedure is necessary.

When implemented, callout procedures must observe the
following conventions:

1. Upon entry, the CPU is in the supervisor state. The user
procedure must not at any time cause the CPU to exit this
state. In addition, the hardware mask level is typically, but
not necessarily at 0. The user procedure must not drop this
mask level. However, it may raise the level, provided that it
also restores the original level before exiting.

2. Upon return, all registers and the stack must be restored.

3. Only those system calls that are allowed from ISRs are al-
lowed from callout procedures. See the pSOSystem System
Concepts manual for a list of such calls.

kc_switchco 4. kc_deletco is called after the target task has been re-
moved from all active-task structures, its stack segment re-
claimed, and the TCB returned to the free-TCB list.

5. kc_switchco is called after the context of the old running
task has been completely saved, and before the context of
the next task to be run is loaded.

Due to varying compiler procedure-linkage conventions, some
of which may alter register contents, you should exercise cau-
tion if you program any callout procedure in a high-level lan-
guage.
6-14 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 15  Thursday, January 28, 1999  9:18 AM
kc_fatal Contains the address of an optional, user-specified procedure
that is invoked by the pSOS+ shutdown procedure. kc_fatal
processes fatal errors detected during pSOS+ execution; these
result from several sources:

(a) Explicit k_fatal system calls from the user’s application
code;

(b) Configuration defects detected during pSOS+ startup;

(c) Certain non-recoverable run-time errors.

After a fatal error, pSOS+ consults the kc_fatal  entry. If this
entry is non-zero, pSOS+ jumps to this address. If kc_fatal is
zero, and the pROBE+ System Debug/Analyzer is present, then
pSOS+ simply passes control to the System Failure entry of
pROBE+. If pROBE+ is absent, pSOS+ internally executes a
divide-by-zero to cause a deliberate divide-by-zero exception. In
all cases, pSOS+ pre-loads the following:

kc_idleco This entry supplies the starting address of the user-defined
IDLE  task. This callout procedure allows you to perform spe-
cial functions when no other tasks are running in the system.
A zero in this entry instructs pSOS+ to use its own default
IDLE  task.

Upon entry to the user IDLE task callout, the CPU is in the su-
pervisor state. Note that the user IDLE task must never return.

kc_idlestk Define the size (in bytes) of the IDLE task’s stack.

kc_rootpri Defines the initial priority of the ROOT task. For backward
compatibility, if this entry is zero, the ROOT task is assigned a
priority of 255.

kc_nmutex Defines the number of Mutex Control Blocks that will be stati-
cally pre-allocated by pSOS+ at startup.

kn_ncvar Defines the number of conditional variables that will be stati-
cally pre-allocated by pSOS+ at startup.

kc_maxio Defines the maximum number of IO devices in the system. It
corresponds to the size of the IO Switch table, pre-allocated by
pSOS+ at startup.

kc_ntvar Defines the number of Task Variable Control Blocks that will
be statically pre-allocated by pSOS+ at startup.
pSOSystem Programmer’s Reference 6-15



Configuration Tables

pr.book  Page 16  Thursday, January 28, 1999  9:18 AM
kc_maxdntent Defines the number of DNT entries that will be statically pre-
allocated by pSOS+ at startup, to construct the pSOS+ Device
Name Table.

kc_dnlen Defines the maximum length of a device name in the pSOS+
DNT. This is used by pSOS+ to calculate the size of a DNT entry
when pre-allocating the DNT at startup.

kc_ntsd Defines the number of task specific data (TSD) objects control
blocks that will be statically pre-allocated by pSOS+ at startup.

kc_tsdanchor Defines the address of the global task specific data (TSD) an-
chor which will be stored internally by pSOS+.

kc_maxscmajor The value of the maximum major number (a value between 16
and 255, inclusive) of a service call extension table.

kc_ncocb Defines the number of Callout Control Blocks that will be stati-
cally pre-allocated by pSOS+ at startup.

kc_sysstartco Supplies the address of the system startup callout routine that
is called in pSOS+ before tasking begins (only IDLE task has
been created and started). This callout is provided so that sys-
tem initialization can be done by various driver, bsps, libraries,
etc, in case of a warm restart of the system. The callout func-
tion is defined in <sysinit.c>  as the
PssSysStartCO()  function. It in turn invokes the callout
function provided by the various components and the
DrvSysStartCO()  function in <drv_conf.c> .

kc_reserved2 Should be all zeros for upward compatibility.
6-16 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 17  Thursday, January 28, 1999  9:18 AM
pROBE+

typdef struct pROBEConfigTable {
void (*td_code) ( ); /* Address of pROBE+ code module */
unsigned long *td_data; /* Address of pROBE+ data area */
unsigned long *td_stack; /* Top address of pROBE+ stack area */
void (*td_ce_code) ( ); /* Address of console interface executive */
void (*td_rd_code) ( ); /* Address of debug interface executive */
void (*td_qs_code) ( ); /* pSOS+ component query */
void (*td_ds_code) ( ); /* Disassembler component */
void (*td_reserved1[4] ( ); /* Each must contain 0’s (4 words long) */
unsigned long td_brkopc; /* Instruction break opcode */
unsigned long td_flags; /* Initial flag settings */
unsigned long td_dbgpri; /* Priority of debugger tasks */
long (*td_drv0) ( ); /* Communications driver 0 */
long (*td_drv1) ( ); /* Communications driver 1 */
void (*td_statechng) (ULONG) /* Debugger state change callout */
long (*td_urcom) ( ); /* Address of URCOM */
long (*td_urwrite) ( ); /* Controls data transfer to application */
long (*td_cacflsh) ( ); /* Cache flush routine */
unsigned long td_reserved2[5]; /* Each must contain 0’s (6 words long) */

} pROBE_CT;

Description

The pROBE+ Configuration Table is a user-supplied table used to specify hardware
and application-specific parameters required by pROBE+. The table can reside any-
where in RAM or ROM. The starting address of the pROBE+ Configuration Table
must be specified as the nc_probect entry in the Node Configuration Table. The C
language template for the pROBE+ Configuration Table is located in include/
probecfg.h :

Definitions for the pROBE+ Configuration Table entries are as follows:

The user-supplied pROBE+ Configuration Table specifies hardware and application-
specific parameters that the pROBE+ debugger uses. This table can be anywhere in
RAM or ROM. Its starting address is specified by the nc_probect entry in the Node
Configuration Table. The C language template for the pROBE+ Configuration Table
is in include/probecfg.h .

NOTE: For a more detailed explanation of the pROBE+ Configuration Table
entries, refer to the pROBE+ User’s Guide.
pSOSystem Programmer’s Reference 6-17



Configuration Tables

pr.book  Page 18  Thursday, January 28, 1999  9:18 AM
Definitions for the pROBE+ Configuration Table entries are as follows:

td_code Contains the starting address of the pROBE+ code.

td_data Defines the lowest RAM address that the pROBE+ debugger
uses for data. This field should be 0 for processor types that
require a static linked data area for components.

td_stack Used to define the beginning RAM address that the pROBE+
debugger uses for stack space. If interrupt activity can occur
while the pROBE+ debugger is running, the stack size must be
large enough to accommodate the worst-case stack require-
ments for all nesting ISRs.

td_ce_code Contains the address of the Console and Debug Interface
Executives.

td_rd_code Required by the user for the debug environment. The appropri-
ate executive is selected based on the RBUG bit in td_flags .

td_qs_code Contains the address of the pSOS+ Query Services module of
the target debugger. If no query services are installed,
td_qs_code  must be 0.

td_ds_code Contains the address of the pSOSystem or user-supplied disas-
sembler.

The pROBE+ debugger passes a pointer to the instruction to be
disassembled (inst_buf ) and a pointer to a 64-byte character
buffer (dis_buf ). td_ds_code places a string containing the
disassembled instruction in dis_buf and returns the length of
the string.

long (*td_ds_code)(inst_buf, dis_buf)
OPCODE_SIZE *inst;
char *dis_buf;

reserved1[4] Must be set to 0.

td_brkopc Must be 0.

td_flags Specifies the initial settings for the pROBE+ flags. Unused bits
should be set to 0. One bit in td_flags  corresponds to each
pROBE+ flag, as shown in the following table:
6-18 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 19  Thursday, January 28, 1999  9:18 AM
TD_FLAGS Bit Meaning

RBUG: 0 0 = Disabled

1 = Enabled

Reserved: 1 0 = Disabled

1 = Enabled

NODOTS: 2 0 = Disabled

1 = Enabled

NOMANB: 3 0 = Disabled

1 = Enabled

NOPAGE: 4 0 = Disabled

1 = Enabled

PROFILE: 5 0 = Disabled

1 = Enabled

NOTUPD 6 0 = Disabled

1 = Enabled

Reserved: 7 0 = Disabled

1 = Enabled

SMODE: 8 0 = Disabled

1 = Enabled

Reserved: 9 0 = Disabled

1 = Enabled

Reserved: 10 0 = Disabled

1 = Enabled

Reserved: 11 0 = Disabled

1 = Enabled
pSOSystem Programmer’s Reference 6-19



Configuration Tables

pr.book  Page 20  Thursday, January 28, 1999  9:18 AM
ILEVEL: 12 0 = Disabled

1 = Enabled

Reserved: 13 0 = Disabled

1 = Enabled

Reserved: 14 0 = Disabled

1 = Enabled

Bits 15 - 31 are reserved.

If you want to initialize the NOMANB and NOPAGE bits to be
on, for example, set td_flags = 0x00000018 . The default
state for all flag settings is off. So, unless you want one or more
to start in the on state, set td_flags = 0 . You can interac-
tively change any flag with the pROBE+ FL (flag) command. For
a description of each flag and the FL command, refer to the
pROBE+ User’s Manual.

dbgpri Defines the priorities for the four debugger tasks: the manager,
input, output, and the command processor. This entry se-
quences the priorities of the four tasks by assigning values,
with the lowest number assigned to the lowest priority task. If
dbgpri  is zero, all debugger tasks take the default values for
their priorities. If it is non zero, dbgpri  specifies the highest
priority of the debugger tasks - the priority of the manager task.
The priorities of other three tasks are dbgpri-1, dbgpri-2, and
dbgpri-3.

This entry is used primarily for remote debugging.

td_drv0
td_drv1

Contains the address of the Interface Communications Drivers
used by the Executives defined in td_rd_code and
td_cd_code . The drivers have a common interface, as follows:

long (*rc_drv)(mode, byte_cnt, MsgBuffer)
unsigned long mode; /* INIT, GET, PUT, STATUS */
long *byte_cnt; /* Number of bytes to transfer

or */
/* residing in buffer */

char *MsgBuffer; /* Pointer to buffer with
message */

TD_FLAGS Bit Meaning
6-20 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 21  Thursday, January 28, 1999  9:18 AM
td_statechng Contains the address of an optional user supplied routine that
is called whenever a debugger state change occurs. A debugger
state change occurs when the debugger needs complete access
to an aspect of system control. Currently, the pROBE+ debug-
ger makes this callout only when it assumes or releases control
over either, or both, of two system aspects: the MMU and
pSOS+ tasking. The following bits are passed as an argument
to indicate which state change(s) is taking place:

#define MMU_NORM 0x1
#define MMU_PROBE 0x2
#define TASKING_NORM 0x4
#define TASKING_PROBE 0x8
void (*td_statechng)(ULONG flags);

pROBE+ expects no return value from
td_statechng() .

td_urcom Specifies the address of an optional, user-supplied procedure.
The pROBE+ debugger calls the procedure when it encounters
an unrecognized command and thus allows you to extend the
pROBE+ command set. If no user-supplied procedure is in-
stalled, td_urcom  must be 0.

The interface to this procedure is as follows:

long (*td_urcom)(cmd_ptr)

char *cmd_ptr;

RETURNS: 0 = command accepted, -1 = command
unrecognized
pSOSystem Programmer’s Reference 6-21



Configuration Tables

pr.book  Page 22  Thursday, January 28, 1999  9:18 AM
td_urwrite Contains an optional, user-supplied procedure that controls
data transfers to and from application program space memory.
This procedure’s usage includes the following:

■  Setting and resetting breakpoints

■  Patching memory

■  Downloading code

It is called by the following interface:

long (*td_write)(address,byte_cnt, bufptr, nbytes)
unsigned long address; /* where to write to */
long byte_cnt; /* how many bytes to write */
char *bufptr; /* what to write */
unsigned long *nbytes; /* number of bytes actually

written */

RETURNS: 0 = buffer written correctly, -1 = error occurred on
write.

If no user-supplied procedure is installed, td_urwrite  must
be 0.

td_cacflsh Contains an optional, user-supplied procedure that is called
whenever the pROBE+ debugger has modified the application
program space. The interface to this procedure is as follows:

void (*td_cacflsh)(addr, num0fBytes);

void*addr: /* the start address of the memory
area to be flushed and
invalidated */

unsigned long: /* the size of the memory area in
the unit of byte */

This function should flush the data cache and invalidate the
instruction cache of the specified memory area. If num0fBytes
is zero, it should flush the whole data cache and invalidate the
whole instruction cache.

reserved2[5] Must be set to 0.
6-22 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 23  Thursday, January 28, 1999  9:18 AM
pHILE+

typedef struct pHILEConfigTable{
void (*fc_phile)( /* Address of pHILE+ module */
void *fc_data; /* Address of pHILE+ data area */
unsigned long fc_datasize; /* Size of pHILE+ data area */
unsigned long fc_logbsize; /* Block size, base-2 exponent */
unsigned long fc_nbuf; /* Number of cache buffers */
unsigned long fc_nmount; /* Max # of mounted volumes */
unsigned long fc_nfcb; /* Max # opened files per system */
unsigned long fc_ncfile; /* Max # opened files per task */
unsigned long fc_ndnlc; /* Max # cached dir. entries */
unsigned long res[2]; /* Must be 0 */
pHILE_SCT *fc_sct; /* add of sub-component cfg. tables */
pHILE_err_call_out_t fc_errco; /* Error call-out */
unsigned long res2[5]; /* Must be 0 */

} pHILE_CT;

Description

The pHILE+ Configuration Table is a user-supplied table that provides hardware
and application-specific information required by pHILE+. It can reside anywhere in
RAM or ROM. The starting address of the pHILE+ Configuration Table must be spec-
ified as the nc_philect entry in the Node Configuration Table. The C language
template for the pROBE+ Configuration Table is located in include/configs.h :

Definitions for the pHILE+ Configuration Table entries are as follows:

fc_phile Defines the starting address of the pHILE+ code.

fc_data Defines the starting address of the pHILE+ data area, which
must be located in RAM. You must reserve enough space for the
memory requirements of pHILE+.

If the fc_data  and fc_datasize  entries are both 0, pHILE+
automatically allocates the required amount of memory from
pSOS+ region 0 during initialization. In this case, fc_data  is
ignored. pHILE+ calculates the amount of memory it requires
by examining entries in its Configuration Table.

fc_datasize Defines the size of the pHILE+ data area. The value of
fc_datasize depends on various pHILE+ Configuration Table
entries.
pSOSystem Programmer’s Reference 6-23



Configuration Tables

pr.book  Page 24  Thursday, January 28, 1999  9:18 AM
fc_logbsize Defines two aspects of the block size for pHILE+ formatted vol-
umes. First, it defines the block size for all pHILE+ format vol-
umes initialized by init_vol() . Second, it defines the
maximum block size pHILE+ format volume that can be
mounted by mount_vol() . Unlike pHILE+ version 2.x.x and
3.x.x, mounted pHILE+ format volumes can have different
block sizes. The value is adjusted for the second purpose, but
not for the first, as follows. If the value is smaller, the value is
increased to 512 byte block size, and 2048 byte block size if
MS-DOS FAT file system format, and CD-ROM file system for-
mat, respectively, are included.

This parameter is specified as a base 2 exponent. For example,
if the desired block size is one Kbyte, fc_logbsize  is 10. The
range for fc_logbsize  is 8 through 15 (the smallest possible
block size is 256 bytes, and the largest is 32 Kbytes.) The disk
that contains the volume must have a logical block size of less
than or equal to the pHILE+ volume block size. Most disks in
use today have a logical block size of 512. Therefore on most
disks the range is 9 through 15, i.e. 8 can not be used.

fc_nbuf Defines the number of cache buffers used by pHILE+. The size
of each buffer is defined by fc_logbsize  but will not be less
than 512 if MS-DOS volumes are configured or not less than
2048 if CD ROM volumes are configured. The minimum num-
ber of cache buffers needed to ensure proper operation of
pHILE+ is given in the table below. Add up all rows for the final
number of cache buffers needed. If less than this are config-
ured, deadlock may occur within pHILE+.

File Format Cache Buffers Needed

pHILE+ # of mounted pHILE+ volumes + (2 x number of
concurrent tasks using pHILE+ volumes)

MS-DOS FAT (2 x # mounted MS-DOS FAT volumes) + 1

CD-ROM 2 x number of concurrent tasks using CD-ROM
volumes

NFS Client 0
6-24 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 25  Thursday, January 28, 1999  9:18 AM
This value is the single most influential parameter with respect
to optimizing overall file system throughput. With few excep-
tions, file data transfers always go through the buffer cache.
Therefore, the larger the number of cache buffers, the more
likely that a read or write request will find its data lingering in a
cache buffer, thus obviating the need to execute a physical read
operation. Increasing the number of buffers will directly im-
prove the throughput of the file system.

Experimentally determine the optimum number of cache buff-
ers for an application. In applications where file throughput is
important, one approach might be to allocate to the cache as
much memory as can be spared. Note that cache buffers are
not used with NFS volumes.

fc_nmount Specifies the maximum number of volumes that can be
mounted simultaneously. It defines the number of entries in
the mounted volume table.

fc_nfcb Defines the maximum number of files that can be open simul-
taneously; it is used to allocate space for file control blocks
(FCBs).

Note that this parameter should not be confused with the num-
ber of open files attached to each task. In particular, each FCB
may be connected to one or more tasks.

fc_ncfile Defines the maximum number of simultaneously open files that
a task can have. It determines the number of entries in each
task's open file table.

fc_ndnlc Defines the number of CD-ROM directory entries that can be
cached. This speeds up file name processing for CD-ROMs.
This parameter is ignored if CD-ROM file system format is ex-
cluded. If CD-ROM is included and this parameter is 0, it is
changed to 2 x fc_nmount .

res[2] Should be 0 for upward compatibility.
pSOSystem Programmer’s Reference 6-25



Configuration Tables

pr.book  Page 26  Thursday, January 28, 1999  9:18 AM
fc_sct Pointer to a table that contains pointers to configuration tables
for pHILE+ subcomponents. The table is defined as follows:

typedef struct pHILESubCompTables
{

pHILE_ST *fc_phile; /* pHILE+ (pHILE+ real-time
file sys) */

pHILE_ST *fc_msdos; /* pHILE+ (MS-DOS FAT file
system) */

pHILE_ST *fc_cdrom; /* pHILE+ (ISO 9660 CD-ROM
file sys) */

pHILE_ST *fc_nfs; /* pHILE+ (NFS client) */
pHILE_ST *res[6]; /* Must be 0 */

} pHILE_SCT;

The parameter definitions are as follows

fc_phile Points to the pHILE+ file system format configu-
ration table.

fc_msdos Points to the MS-DOS FAT file system format
configuration table.

fc_cdrom Points to the CD-ROM ISO 9660 file system for-
mat configuration table.

fc_nfs Points to the NFS client configuration table.

For now, the structure of all the above subcomponent configu-
ration tables are the same. They contain only a pointer to the
subcomponent code, i.e. fcs_code . However, there are other
fields which should all be set to zero for upwards compatibil-
ity.The structure of all the subcomponent tables follows:

typedef struct pHILESubconfigTable
{

void (*fcs_code)(); /* Subcomponent code
address */

void *fcs_data; /* Address of sub-
component data area */

unsigned long fcs_datasize; /* Size of subcomponent
data area */

unsigned long res[10]; /* Must be 0 */
} pHILE_ST;
6-26 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 27  Thursday, January 28, 1999  9:18 AM
fc_errco Defines the I/O call out routine. If nonzero pHILE+ calls this
whenever an I/O error occurs after a volume is mounted. The
callout routine can retry the operation, or terminate the opera-
tion with an error code, either the original I/O error code or a
new error code substituted by the callout routine.

res2[5] Should be 0 for upward compatibility.
pSOSystem Programmer’s Reference 6-27



Configuration Tables

pr.book  Page 28  Thursday, January 28, 1999  9:18 AM
pREPC+

typedef struct pREPCConfigTable{
void (*lc_code) ( ); /* Start address of pREPC+ code */
void *lc_data; /* Start address of pREPC+ data area */
unsigned long lc_datasize; /* Size of pREPC+ data area */
unsigned long lc_bufsize; /* I/O buffer size */
unsigned long reserved1; /* Reserved entry; must be 0 */
unsigned long lc_numfiles; /* Maximum number of open files per task */
unsigned long lc_waitopt; /* Wait option for memory allocation */
unsigned long lc_timeopt; /* Timeout option for memory allocation */
char *lc_tempdir; /* Pointer to temporary file directory */
char *lc_stdin; /* Pointer to stdin */
char *lc_stdout; /* Pointer to stdout */
char *lc_stderr; /* Pointer to stderr */
unsigned long lc_ssize; /* Obsolete */
unsigned long reserved[3]; /* Reserved, must be zero */

}; pREPC_CT;

Description

The pREPC+ Configuration Table is a user-supplied table that provides hardware
and application-specific information required by pREPC+. The table can reside any-
where in RAM or ROM. The starting address of the table must be specified as the
nc_prepct entry in the Node Configuration Table. The C language template for the
pREPC+ Configuration Table is located in include/prepccfg.h .

Definitions for the pREPC+ Configuration Table entries are as follows:

lc_code Defines the starting address of the pREPC+ code.

lc_data Defines the starting address of the pREPC+ data area, which
must be located in RAM. You must reserve enough space for the
memory requirements of pREPC+.

If lc_data  and lc_datasize are both 0, pREPC+ automati-
cally allocates the required amount of memory for its data area
from pSOS+ region 0 during initialization. In this case,
lc_data is ignored. pREPC+ calculates the amount of memory
it requires by examining entries in its Configuration Table.

lc_datasize Defines the length of the data area.

lc_bufsize Specifies the size of the buffers allocated for open files.
6-28 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 29  Thursday, January 28, 1999  9:18 AM
lc_numfiles Defines the maximum number of files that a task can have
open at the same time. (This number excludes stdin , stdout ,
and stderr .) This entry determines the number of file control
blocks that pREPC+ allocates.

lc_waitopt Input to rn_getseg  when pREPC+ calls pSOS+ to allocate
memory. If lc_waitopt  is 0 and a request is not satisfied, the
caller is blocked until either a segment is allocated or a timeout
occurs (if lc_timeopt  is non-zero). If lc_waitopt  is 1,
rn_getseg  returns unconditionally.

lc_timeopt Clock tick count that is input to rn_getseg  when pREPC+
calls pSOS+ to allocate memory. It is relevant only if
lc_waitopt  is 0.

lc_tempdir Supplies the address of a string that names a file directory. If
pHILE+ is not in the system or if the tmpfile() function is not
used, this entry should point to a NULL string.

lc_stdin Supplies the address of a string that contains the pathname for
stdin . It is opened automatically for every task that issues a
pREPC+ system call. stdin can be an I/O device or disk file. If
stdin  cannot be opened, a fatal error results.

lc_stdout Supplies the address of a string that contains the pathname for
stdout . It is opened automatically for every task that issues a
pREPC+ system call. stdout can be I/O devices or disk files. If
stdout  cannot be opened, a fatal error results.

lc_stderr Supplies the address of a string that contains the pathname for
stderr . It is opened automatically for every task that issues a
pREPC+ system call. stderr  can be an I/O device or disk file.
If stderr  cannot be opened, a fatal error results.

lc_ssize Obsolete. This configuration parameter is no longer used by
pREPC+.

reserved Should be 0 for upward compatibility.
pSOSystem Programmer’s Reference 6-29



Configuration Tables

pr.book  Page 30  Thursday, January 28, 1999  9:18 AM
pLM+

Hardware and application specific parameters required by pLM+.

Syntax

typedef struct pLMConfigTable
    {
    void (*lm_plm)();                /* Address of pLM+ module */
    void *lm_data;                   /* Address of pLM+ data area */
    unsigned long lm_datasize;       /* Size of pLM+ data area */
    unsigned long lm_maxreg;         /* Max # of registered libraries */
    lm_loadco_t   lm_loadco;         /* sl_acquire() Load call-out */
    lm_unloadco_t lm_unloadco;       /* sl_release() Unload call-out */
    unsigned long res[8];            /* Must be 0 */
    } pLM_CT;

Description

The pLM+ Configuration Table is a user supplied table that provides hardware and
application specific information required by pLM+. It can reside anywhere in RAM or
ROM. The starting address of the pLM+ Configuration Table must be specified as
the plmct entry in the Node Configuration Table. The C language template for the
pLM+ Configuration Table is located in include/plmcfg.h .

Definitions for the pLM+ Configuration Table entries are as follows:

lm_plm Defines the starting address of the pLM+ code.

lm_data Defines the starting address of the pLM+ data area, which must
be located in RAM. You must reserve enough space for the
memory requirements of pLM+.

If the lm_data  and lm_datasize  entries are both 0, pLM+
automatically allocates the required amount of memory from
pSOS+ region 0 during initialization. In this case, lm_data  is
ignored. pLM+ calculates the amount of memory it requires by
examining entries in its Configuration Table.

lm_datasize Defines the size of the pLM+ data area. The value of
lm_datasize  depends on various pLM+ Configuration Table
entries.
6-30 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 31  Thursday, January 28, 1999  9:18 AM
lm_maxreg Specifies the maximum number of shared libraries that can be
registered simultaneously. It defines the number of entries in
the registered shared library table.

lm_loadco Defines the load callout used to load shared libraries.

Unlike most pSOSystem callouts, which are optional, this call-
out is usually required. It is called whenever either acquiring or
calling via a stub any shared library that is not already regis-
tered, or registering with sl_register()  any shared library
whose dependents are not already registered.

It need not necessarily load anything. If the shared library is
part of the pSOSystem image, it need only look up the address
of the shared library in a table, and return that value.

If it does load something the pSOSystem loader or any other
loader can be used. (See Chapter 1, System Services.)

lm_unloadco Defines the unload callout used to unload shared libraries.

Unlike most pSOSystem callouts, which are optional, this call-
out is usually required. It is called whenever a shared library is
either unregistered with sl_unregister() or fully released by
all tasks by sl_release() and that shared library or one of its
dependents has an unloadmode of SL_AUTOUNLOAD.

res[8] Should be 0 for upwards compatibility.
pSOSystem Programmer’s Reference 6-31



Configuration Tables

pr.book  Page 32  Thursday, January 28, 1999  9:18 AM
pNA+

typedef struct pNAConfigTable {
void (*nc_pna) ( ); /* Address of pNA+ code module */
void *nc_data; /* Address of pNA+ data area */
long nc_datasize; /* Size of pNA+ data area */
long nc_nni; /* Size of pNA+ NI Table */
struct ni_init *nc_ini; /* Pointer to Initial pNA+ NI Table */
long nc_nroute; /* Size of pNA+ Routing Table */
struct route *nc_iroute; /* Pointer to Initial pNA+ Routing

Table */
long nc_defgn; /* Address of default gate node */
long nc_narp; /* Size of pNA+ ARP Table */
struct arp *nc_iarp; /* Pointer to Initial pNA+ ARP Table */
void (*nc_signal) ( ); /* Pointer to signal handling routine */
long nc_defuid; /* Default user ID of a task */
long nc_defgid; /* Default group ID of a task */
char *nc_hostname; /* Hostname of the node */
long nc_nhentry; /* Number of Host Table entries*/
struct htentry *nc_ihtab; /* Pointer to Initial Host Table */
pNA_SCT *nc_sct; /* Address of pNA+ subcomponent

config. table */
long nc_mblks; /* Number of mblks*/
struct pna_bufcfg *nc_bcfg; /* Pointer to buffer configuration

table */
long nc_nsockets; /* Number of sockets*/
long nc_ndescs; /* Number of descriptors per task*/
long nc_nmc_socs; /* Number of multicast sockets*/
long nc_nmc_memb; /* Number of multicast group

memberships*/
long nc_nnode_id; /* Network node ID or router ID*/
unsigned long nc_dtask_sstack; /* pNAD daemon task running stack

size */
unsigned long nc_dtask_ustksz; /* pNAD daemon task running stack

size */
unsigned long nc_dtask_prio; /* pNAD task running priority level */
unsigned long nc_new_multitask_sync; /* New multitasking sync scheme */
unsigned long nc_use_mutex; /* Use pSOS MUTEX primitive */

}  pNA_CT;

Description

The pNA+ Configuration Table is a user-supplied table that provides hardware and
application-specific information required by pNA+. The table can reside anywhere in
RAM or ROM. The starting address of the pNA+ Configuration Table must be speci-
fied as the nc_pnact entry in the Node Configuration Table. The C language tem-
plate for the pNA+ Configuration Table is located in include/pnacfg.h .
6-32 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 33  Thursday, January 28, 1999  9:18 AM
Definitions for the pNA+ Configuration Table entries are as follows:

nc_pna Defines the starting address of pNA+ code.

nc_data Defines the starting address of the pNA+ data area, which
must be located in RAM. You must reserve enough space for
the memory requirements of pNA+.

If nc_data and nc_datasize are both 0, pNA+ automatically
allocates the required amount of memory for its data area from
pSOS+ Region 0 during initialization. In this case, nc_data is
ignored. pNA+ calculates the amount of memory required by
examining its Configuration Table entries.

Note that if pNA+ is used by pROBE+ to communicate with the
source-level debugger for pSOSystem, nc_data must be used
to specify a pNA+ data area, and nc_datasize  must be non-
zero.

nc_datasize Defines the size of the pNA+ data area. The value of
nc_datasize  depends on various pNA+ Configuration Table
entries.

nc_nni Specifies the maximum number of Network Interfaces (NIs) to
be installed in your system (that is, the maximum number of
networks connected to pNA+). This entry is used by pNA+ to
define the size of its NI Table.

nc_ini Should point to an Initial Network Interface (NI) Table, which
defines the characteristics of the network interfaces that are
initially installed in your system. The contents of the Initial NI
Table will be copied to the actual NI Table during pNA+ initial-
ization. Note that the Initial NI Table may be smaller than the
actual NI Table. In other words, the Initial NI Table may have
less than nc_nni  interfaces defined. This is possible because
network interfaces may be added dynamically after pNA+ has
been started, using the add_ni  system call. Of course, it can
never have more.
pSOSystem Programmer’s Reference 6-33



Configuration Tables

pr.book  Page 34  Thursday, January 28, 1999  9:18 AM
The Initial NI Table contains a set of eight 32-bit entries for
each initially installed network interface. The table must be
terminated by a 0. The ni_init structure is defined in the file
include/pna.h . A template for one entry in the table is as
follows:

struct ni_init{
  int (*entry)(); /* Addr of NI entry point */
  int ipadd; /* Internet addr of the NI */

int mtu; /* MaxIMUM transmission unit */
  int hwalen; /* Length of hardware

address */
  int flags; /* Defines NI flags */
  int subnetaddr; /* Netmask */
  int dstipaddr; /* Destination network

address */
  int reserved[1]; /* Reserved for future use */
};

where

entry Defines the address of the NI driver's entry point.

ipadd Defines the internet address assigned to the network interface.

mtu Specifies the maximum transmission unit for the NI (minimum
64).

hwalen Specifies the length of the NI hardware address in bytes
(maximum 14).

flags Specifies the initial setting of the NI flags, as follows (all
unlisted bits must be 0):

 Flag Bit Meaning

 IFF_BROADCAST   0:   0 = Disabled

  1 = Enabled

 IFF_NOARP   1:   0 = Enabled

  1 = Disabled

 IFF_POINTTOPOINT   4:   0 = Disabled

  1 = Enabled

 IFF_UP   7:   0 = Disabled

  1 = Enabled
6-34 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 35  Thursday, January 28, 1999  9:18 AM
 IFF_PROMISC   8:   0 = Disabled

  1 = Enabled

 IFF_MULTICAST   11:   0 = Disabled

  1 = Enabled

 IFF_UNNUMBERED   12:   0 = Disabled

  1 = Enabled

 IFF_RAWMEM   13:   0 = Disabled

  1 = Enabled

 IFF_EXTLOOPBCK   14:   0 = Disabled

  1 = Enabled

 IFF_POLL   15:   0 = Disabled

  1 = Enabled

 IFF_INITDOWN   16:   0 = Disabled

  1 = Enabled

subnetaddr Defines the netmask (the netmask consists of the bits in the
internet address that should be included when extracting the
network identifier from an internet address).

dstipaddr Defines the IP address of the host on the other side of a point-
to-point network.

reserved Must be 0.
pSOSystem Programmer’s Reference 6-35



Configuration Tables

pr.book  Page 36  Thursday, January 28, 1999  9:18 AM
nc_nroute Determines the amount of memory required for the Routing
Table. It should be set equal to 1 plus the number of network
interfaces planned for the system, plus the number of addi-
tional user-supplied routes. In other words, the following for-
mula can be used to calculate the value of nc_nroute :
(nc_nroute = 1  + nc_nni  + User Supplied Routes). The
User Supplied Routes can be supplied by the Initial Routing
Table (see nc_iroute ), or by an ioctl()  system call.

nc_iroute Should point to the Initial Routing Table (if one exists). pNA+
copies the contents of the Initial Routing Table to the actual
Routing Table during initialization. If no routes are to be sup-
plied during initialization, nc_iroute should be 0. It is possi-
ble to add routes dynamically after pNA+ has been started,
using the ioctl()  system call.

The Initial Routing Table contains a set of four 32-bit vari-
ables for each route. The table is terminated by a 0.

The following is a template for one entry in the Initial Routing
Table:

struct route{
 unsigned long nwipadd; /* Host or Network addr */

unsigned long gwipadd; /* Gateway internet addr */
 unsigned long flags;   /* Route type */
 unsigned long netmask; /* Subnet mask use */
};

where

nwipadd Specifies an IP address of the destination.

gwipadd Defines the internet address of a gateway node
that should be used to route packets to the desti-
nation given by nwipadd .

flags Specifies the type of route (which can be the value
of either RT_HOST, RT_MASK, or RT_NETWORK de-
fined in the pna.h  file).

netmask Specifies the subnet mask associated with the
route. This field is ignored if the RT_MASK flag is
not set in flags .

If the number of Initial Routing Table entries is greater than
the number specified by nc_nroute , a fatal error occurs dur-
ing pNA+ initialization.
6-36 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 37  Thursday, January 28, 1999  9:18 AM
nc_defgn Specifies the internet address of a default gateway node (if one
is used). The nc_defgn  entry should be 0 if no default gate-
way exists on the system. The gateway must be reachable
through one of the initial network interfaces.

nc_narp Determines the amount of memory required for the ARP
Table. nc_narp  must be at least 1 plus the number of net-
work interfaces planned for the system.

nc_iarp Should point to the initial ARP Table (if one is supplied). pNA+
copies the contents of the Initial ARP Table to the actual ARP
Table during initialization. nc_iarp can be 0 if no Initial ARP
Table is supplied.

The Initial ARP Table contains four 32-bit entries to support
each internet address-to-hardware address mapping. A tem-
plate for one entry in the Initial ARP Table is as follows:

struct arp{
  long arp_ipadd; /* Internet addr for NI */
  char *arp_hadd; /* Hardware addr for NI */
  long reserved[2]; /* Reserved for future use */
};

Where:

arp_ipadd Specifies the internet address of a network
interface.

arp_hadd Supplies the address of the corresponding hard-
ware address for that NI.
pSOSystem Programmer’s Reference 6-37



Configuration Tables

pr.book  Page 38  Thursday, January 28, 1999  9:18 AM
reserved Values must be 0.

One question that arises is how to determine the size of the
ARP Table. Unfortunately, there is no definitive answer. The
larger the table, the more memory is consumed, but the better
the performance. If pNA+ does not find an <IP address, hard-
ware address> tuple in the table, it must execute ARP, which
takes time and creates network traffic. This suggests that the
size of the table should be equal to the number of nodes with
which pNA+ will communicate.

Of course, this has to be balanced against memory consump-
tion (that is, the table takes space). It may not be necessary to
have one entry for every other node on a network, if your ap-
plication rarely communicates with every node. However, the
number of ARP entries should at least be equal to 1 +
nc_nni .
6-38 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 39  Thursday, January 28, 1999  9:18 AM
nc_signal Contains the address of the user signal handler, if provided.
This entry should be 0 if no handler is present.

When implemented, the handler must observe the following
conventions:

1. Upon entry, the CPU is in the supervisor state. The handler
must not at any time cause the CPU to exit this state.

2. Upon return, all registers and the stack must be restored.

3. Only pSOS+ system calls that are allowed from ISRs are al-
lowed.

4. Upon entry, the stack is setup as follows:

Due to varying compiler procedure-linkage conventions, some
of which may alter register contents, exercise caution if pro-
gramming your signal handler in C.

nc_defuid Defines the user ID. This ID is assigned to a task upon the
task’s creation. Every task that uses NFS services must have a
user ID. An NFS server uses this value to recognize a client task
and either grant or deny services based on its identity. These
default values may be changed by the set_id system call. If
pHILE+ NFS services are not used, nc_defuid  can be 0.

nc_defgid Defines the group ID. Every task that uses NFS services must
have a group ID. An NFS server uses this value to recognize a
client task and either grant or deny services based on its iden-
tity. These default values may be changed by the set_id system
call. If pHILE+ NFS services are not used, nc_defgid can be 0.

stack ptr + 0             return address

              + 4              signal number

              + 8               tid/0

              + 12            socket descriptor/
interface number
pSOSystem Programmer’s Reference 6-39



Configuration Tables

pr.book  Page 40  Thursday, January 28, 1999  9:18 AM
nc_hostname Points to a null terminated string that contains the hostname
for the node. The maximum length for the hostname is 32
characters (including the terminating null character). The
nc_hostname value can be 0, in which case a null hostname is
used.

nc_nhentry Determines the amount of memory required for the Host Table.
nc_nhentry  must be at least the number of hostname-to-IP
address mappings installed in the system.

nc_ihtab Points to the Initial Host Table (if supplied). pNA+ copies the
contents of the Initial Host Table to the actual Host Table dur-
ing initialization. If no Initial Host Table is present, nc_ihtab
can be 0. The Initial Host Table contains four 32-bit variables
for each hostname-to-IP address mapping. The following is a
template for the Initial Host Table:

struct hentry{
  unsigned long ipadd; /* IP address of host */
  char *hname; /* Hostname */
  long reserved[2]; /* Reserved for future use */
};

where

ipadd Specifies the internet address of the host asso-
ciated with the hname field.

hname Character pointer to a null terminated string
specifying the host name (maximum 32 bytes).

reserved Are each 0. This parameter is retained for com-
patibility and must not be used.

nc_sct Points to a table that contains pointers to configuration tables
for pNA+ subcomponents. The table is defined as follows:

typedef struct{
  pXLIB_CT *px_cfg;         /* pX11+ Cfg. Table */
  struct nr_cfg *nr_cfg.;   /* pRPC+ Cfg. Table */
  long reserved[6];         /* for future use */
} pNA_SCT;

where

px_cfg Points to the pX11+ Configuration Table.

nr_cfg Points to the pRPC+ Configuration Table.

reserved Entries should be 0.
6-40 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 41  Thursday, January 28, 1999  9:18 AM
nc_nmblks Defines the number of mblks configured in the system.

nc_bcfg Pointer to the buffer configuration table, which contains entries
that define the data buffers configured in pNA+. Each entry
contains four 32-bit variables describing the characteristics of a
buffer. The table is zero terminated.

The structure of each buffer configuration table entry is as
follows:

struct pna_bufcfg {
  unsigned long pna_nbuffers; /* No of buffers */
  unsigned long pna_bsize; /* Size of buffer */

unsigned long reserved[2]; /* Reserved entries */
};

pna_nbuffers Defines the number of data buffers in the sys-
tem.

pna_bsize Defines the size of the data buffers to be config-
ured. For optimal results it is recommended
that the data buffer size be a multiple of 4
bytes.

reserved Used internally by pNA+.

nc_nsockets Defines the maximum number of sockets configured in the
system.

nc_ndescs Defines the maximum number of socket descriptors per task.

nc_nmc_socs Specifies the number of sockets that may be used for multicast
IP. This does not allocate new sockets in addition to
nc_nsockets .

nc_nmc_memb Specifies the total number of distinct multicast IP group
memberships that can be added in the system. A maximum of
IP_MAX_MEMBERSHIPS(defined in pna.h ) group memberships
(an internal constant) can be joined per multicast socket.
Adding a group membership address that matches an existing
group membership address on the same interface is not
counted as a new membership and is only the associated
reference count of the membership increment.

nc_nnode_id Defines the Network node ID or the Router ID. This is required
when configuring unnumbered links in the system. It could be
set to one of the IP addresses of the node.
pSOSystem Programmer’s Reference 6-41



Configuration Tables

pr.book  Page 42  Thursday, January 28, 1999  9:18 AM
nc_dtask_sstksz Determines the pNAD daemon task supervisor stack size.

nc_dtask_ustksz Determines the pNAD daemon task user stack size. It is not
used and should be set to zero.

nc_dtask_prio Determines the pNAD daemon task running priority level.

nc_new_multitask_sync

Defines the new multitasking synchronization scheme. Refer to
the pSOSystem System Concepts manual for details on various
synchronization schemes.

nc_use_mutex Defines the use of the pSOS mutex primitive. Refer to the pSO-
System System Concepts manual for details on various locking
schemes.
6-42 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 43  Thursday, January 28, 1999  9:18 AM
pMONT+

The pMONT+ configuration table is defined in the sys_conf.h file. The
sys_conf.h parameter settings become assignments in the following typedef struc-
ture located in the pmontcfg.h  file:

typedef struct
    {
void (* code)(); /* Address of pMONT+ module */
long data; /* start of pMONT data */
long dataSize; /* size of pMONT data */
long cmode; /* comm.mode:NETWORK_TYPE_CONN,PSOSDEV_..*/
long dev; /* IO dev maj/minor# in form pSOS expects */
char *traceBuff; /* Buffer for logging trace events */
long traceBuffSize; /* trace events buffer size */
unsigned long (* tmFreq)();  /* returns second timer frequency */
void (*tmReset)(); /* resets second timer */
unsigned long (* tmRead)(); /* reads counter value of second timer */
long res1;
long res2;
long res3;
long res4;
}
 pMONT_CT;

where the parameters are defined as follows:

code Starting address of pMONT+ code.

data Starting address of pMONT+ data area. If data  is 0, the data
area is allocated from Region 0.

dataSize The size of the pMONT+ data area. If you specify the address
with data , you must also specify dataSize .

cmode Specifies the communication that pMONT+ uses:

■ cmode=1 means Ethernet communication through the pNA+
network manager.

■ cmode=2 means serial communication through a pSOS+
device.

dev The pSOS+ I/O major :minor device number if cmode is 2. If
cmode is 1, dev  is not used.
pSOSystem Programmer’s Reference 6-43



Configuration Tables

pr.book  Page 44  Thursday, January 28, 1999  9:18 AM
If you are configuring pMONT under the pSOSystem environment, you can specify a
macro in the sys_conf.h file to set or disable the extra timer automatically by set-
ting PM_TIMER to YES or NO, respectively.

traceBuff Address of the buffer for logging trace data. If traceBuff  is 0,
traceBuffSize  defines the size, and the pSOSystem environ-
ment supplies the buffer. pMONT+ does not allocate traceBuff
from Region 0 because the buffer should remain intact. If
pMONT+ allocated traceBuff  from Region 0, system initializa-
tion could result in unreliable buffer content.

traceBuffSize The size of traceBuff  in bytes, 1 kilobyte minimum.

tmFreq Pointer to a user-supplied routine to return the frequency
(counts per second) of an extra timer for finer timekeeping dur-
ing resolution a data collection run.

tmReset Pointer to a user-supplied routine to reset the extra timer and
start counting.

tmRead Pointer to a user-supplied routine to return the current count of
the timer: the returned count must be between 0 and tmFreq
and must indicate a sequence counted up from 0. The count
must not exceed 24 bits within the span of 1 pSOS+ tick.

If you do not use timers and are not running under pSOSystem,
then all three of the preceding timer entries must be 0.

res[0-3] An array reserved for pMONT+ use. Each element of res[]
should be initialized to zeroes (0000).
6-44 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 45  Thursday, January 28, 1999  9:18 AM
pRPC+

typedef  struct  nr_cfg {
void (*nr_code) ( ); /* pRPC+ code address */
char *nr_data; /* Address of pRPC+ data area */
long nr_datasize; /* Length of pRPC+ data area */

int nr_opensubcomp; /* If set, pRPC is OpEN sub-component */
/* Default pRPC is pNA sub-component */

int (*nr_gethostname)(char *hostname, int hostnamelen);
/* User callout(): Get host name

function */

int  (*nr_get_hentbyname)(char *name, void *paddr);
/* User callout(): Name resolver

function. */

struct nr_pmap_info *nr_pmap_info; /* PMAP task parameters.
Default if null */

long nr_debug_flag; /* PMAP task will print debug messages
upon failure if this flag is set */

long reserved[5]; /* Reserved entries of pRPC+ */
} pRPC_CT;

Description

The pRPC+ Configuration Table is a user-supplied table that provides hardware and
application-specific information required by pRPC+. The table can reside anywhere
in RAM or ROM. The starting address of the pRPC+ Configuration Table must be
specified as the nr_cfg entry in the pNA+ Subcomponent Configuration Table.
(Refer also to the pNA+ Configuration Table in this manual.) The C language tem-
plate for the pRPC+ Configuration Table is located in include/prpccfg.h .

The meaning of this table’s entries are as follows:

nr_code Contains the starting address of the pRPC+ code.

nr_data Defines the starting address of the pRPC+ data area, which
must be located in RAM. You must reserve enough space for
the memory requirements of pRPC+.

If nr_data  and nr_datasize  are both 0, pRPC+ automati-
cally allocates the required amount of memory for its data
area from pSOS+ region 0 during initialization. In this case,
nr_data is ignored. pRPC+ calculates the amount of memory
it requires by examining entries in its Configuration Table.
pSOSystem Programmer’s Reference 6-45



Configuration Tables

pr.book  Page 46  Thursday, January 28, 1999  9:18 AM
nr_datasize Defines the size of the pRPC+ data area. The current value for
nr_datasize  is fixed at 2 Kbytes.

nr_opensubcomp Set to 1 if pRPC+ is configured as subcomponent of OpEN.
 Should be set to 0 if pRPC+ is subcomponent of pNA+.

nr_gethostname Contains the address of the user function that returns the lo-
cal host name.

The calling syntax is:
nr_gethostname(char *hostname, long hostnamelen);

The first parameter hostname  points to a buffer and second
parameter hostnamelen  points to the length of buffer
hostname .

This entry should be 0 if no handler is present.

If this entry is set, pRPC+ uses it for getting the host name. If
the entry is not provided and pRPC+ is a subcomponent of
pNA, the gethostname() function from pNA is used.

When pRPC+ is a subcomponent of OpEN, this entry must be
set since OpEN does not provide this function.

For forward compatibility with future revisions of pNA and
pRPC+, this entry must be set for both pNA and OpEN.
6-46 pSOSystem Programmer’s Reference



Configuration Tables

6

pr.book  Page 47  Thursday, January 28, 1999  9:18 AM
nr_get_hentbyname Contains the address of user function to retrieve the IP

address of a host.

The calling syntax is:
nr_get_hentbyname(char *name, void *paddr);

The input parameter name points to the host name. The
function should return the IP address in hex notation in the
return buffer pointed by paddr .

If this entry is set, pRPC+ uses it for getting the host name. If
the entry is not provided and pRPC+ is a subcomponent of
pNA, the get_hentbyname  function from pNA is used.

When pRPC+ is a subcomponent of OpEN, this entry must be
set since OpEN does not provide this function.

For forward compatibility with future revisions of pNA and
pRPC+, this entry must be set for both pNA and OpEN.
pSOSystem Programmer’s Reference 6-47



Configuration Tables

pr.book  Page 48  Thursday, January 28, 1999  9:18 AM
nr_pmap_info Points to structure containing portmapper task
configuration information. If this field is set to
0, default values will be used.

struct nr_pmap_info
    {
    unsigned long pmap_pri; /* task
priority */
    unsigned long pmap_sstack; /* supervisor
stack size */

unsigned long pmap_ustack; /* user stack size
*/
    unsigned long pmap_flags; /* t_create
flags */
    unsigned long pmap_mode; /* t_start mode */

long reserved[5]; /* Reserved entries of
pmap_CT */
    };

pmap_pri :  contains the priority of portmapper
task.
pmap_sstack :  contains system stack size for
portmapper task.
pmap_ustack :  contains user stack size for
portmapper task.
pmap_flags :  contains create flag value for
portmapper task.
pmap_mode:  contains start mode for portmapper
task.
reserved: these fields must be 0.

nr_debug_flag Indicates that the nr_debug_flag  is set to 1. The Portmap-
per task will print error messages if an error occurs during
it’s initialization.

reserved Should all be 0 for upward compatibility.
6-48 pSOSystem Programmer’s Reference



pr.book  Page 1  Thursday, January 28, 1999  9:18 AM
7
  Memory Usage
7

The amount of RAM required by each pSOSystem software component depends on
the user’s application. This section provides formulas for calculating these require-
ments based on application parameters. The following components are discussed:

■ pSOS+ Real-Time Kernel (See page 7-2)

■ pHILE+ File System Manager (See page 7-7)

■ pREPC+ Run-Time C Library (See page 7-10)

■ pNA+ TCP/IP Network Manager (See page 7-12)

■ pRPC+ Remote Procedure Call Library (See page 7-16)

■ pMONT+ (See page 7-17)

■ pSE+ (See OpEN User’s Guide)

■ pSKT+ (See OpEN User’s Guide)

■ pTLI+ (See OpEN User’s Guide)

■ pLM+ (See page 7-18)
7-1



Memory Usage pSOSystem Programmer’s Reference

pr.book  Page 2  Thursday, January 28, 1999  9:18 AM
pSOS+

Description

pSOS+ needs RAM for the following elements:

■ Data Area

■ Task and System Stacks

■ Region Header Memory

■ Partition Header Memory

■ TCB Extensions

■ Variable Length Queue Message Storage

■ Task Specific Data Memory

Data Area

pSOS+ uses the beginning of the user-defined memory Region 0 to build its data
area. The size of this data area is calculated as the sum of the items in the table that
follows. In the Size column of this table, the parameters that begin with kc and mc
are entries in the pSOS+ Configuration Table and the Multiprocessor Configuration
Table, respectively:

Usage Size (bytes, decimal)

Global Data 3812

System stack kc_sysstk

Task Control Blocks (TCBs) (kc_ntask  + 2) x 260

Queue Control Blocks (QCBs) kc_nqueue  x 84

Semaphore Control Blocks (SCBs) kc_nsema4  x 48

Message Buffers kc_nmsgbuf  x 20

Timer Control Blocks (TMCBs) kc_ntimer  x 48

Mutex Control Blocks (MCBs) kc_nmutex x 36
7-2 pSOS+



pSOSystem Programmer’s Reference Memory Usage

7

pr.book  Page 3  Thursday, January 28, 1999  9:18 AM
If Region 0 is not large enough to contain the pSOS+ data area and the Region 0
header, a fatal error occurs during pSOS+ startup. To accommodate future expan-
sion, it is recommended that the pSOS+ data area be padded with an extra 20% of
space.

Task and System Stacks

Every task must have a stack. The memory for all stacks is allocated from Region 0.
The sizes of a task’s stack is defined by parameters passed in the t_create() sys-
tem call. The following paragraphs describe issues that must be considered when siz-
ing these stacks.

First, sizing this task requires a determination of the worst case, nested procedure
stack usage.

Secondly, both pSOS+ kernel and interrupts are involved in sizing a task’s stack.
Any of the following can use a task’s supervisor stack:

■ The code of the task code (including its ASR and callouts)

Condition Variable Control Blocks
(CVCB)

kc_ncvar x 24

Task Variable Entries kc_ntvar x 12

TSD Objects Control Blocks (TSDCBs) kc_ntsd x 12

Service Call Extension Control Blocks
(SVCCB)

(kc_maxscmajor - 15 ) x (4 + 8 x 16) + 36 +
24

Callout Control Blocks (COCBs) kc_ncocb x 28

Local Object Table ((kc_nlocobj  + 3) x 32) + 84

Global Object Table (Master Node) mc_nnode  x ((mc_nglbobj  x 32) + 84)

Global Object Table (Slave Node) (mc_nglbobj  x 32) + 84

Agents mc_nagent  x 56

IO Devices (kc_maxio  x 36) + 36

Device Name Table kc_maxdntent x (20 + long word sized
ceiling of (kc_dnlen + 1)

Usage Size (bytes, decimal)
pSOS+ 7-3



Memory Usage pSOSystem Programmer’s Reference

pr.book  Page 4  Thursday, January 28, 1999  9:18 AM
■ The pSOS+ kernel, if the task makes pSOS+ system calls (The worst case use
within any pSOS+ system call is 256 bytes.)

■ Device drivers, if the task makes pSOS+ I/O calls (The worst case use within an
I/O call is 264 bytes plus the additional use within the user’s drivers.)

■ ISRs (the use because of interrupt activity is 184 bytes)

Since interrupt activities result in a switch from the stack of the running task to the
system stack, the system stack must be large enough to accommodate worst case
interrupt usage. This usage must include the nesting of all possible interrupt levels.
If an ISR makes a pSOS+ system call, pSOS+ usage of the stack must also be con-
sidered.

Region Header Memory Usage

When a region is created, some memory for its management is reserved at the begin-
ning of the region memory. This memory space is the Region Header. The size of a
Region Header is computed from the following formula:

80 + ( (length-80)/(unit_size + 6) x 6) bytes, rounded up to the next multiple of
unit_size

where length and unit_size are parameters to the rn_create()  call.

In addition to regions in general, this formula is also valid for Region 0 if length has
the value of the pSOS+ Configuration Table entry kc_r0len minus the memory
requirements of the pSOS+ Data Area. For example, if kc_r0len is 10 Kbytes and
the pSOS+ Data Area is 3 Kbytes, then length should be 7 Kbytes in the preceding
formula to calculate the Region 0 header size.

Segments obtained from a region have no additional memory overhead.

Partition Header Memory Usage

A Partition Header is the memory reserved in a partition for management of parti-
tion buffers. The formula for the amount of memory reserved for a Partition Header
is derived as follows:

rbsize = PTbsize rounded to next multiple of long word size.

Space till next rbsize-aligned address,

fbuf_size = (rbsize - ((PTaddr + 52) modulo rbsize)
7-4 pSOS+



pSOSystem Programmer’s Reference Memory Usage

7

pr.book  Page 5  Thursday, January 28, 1999  9:18 AM
End address of first buffer,

fbuf_end = PTaddr + 52 + fbuf_size

End address of last buffer,

lbuf_end = PTaddr + PTlength - ((PTaddr + PTlength) % rbsize)

Nrem = ((lbuf_end - fbufend) / rbsize) - (fbuf_size x 8)

if (Nrem > 0) then

remsize = rbsize x (Nrem - integer ceiling of (Nrem / (rbsize x 8 + 1)))

else

remsize = 0;

Hence, the size of the Partition Header is (52 + fbuf_size + remsize) bytes,

where PTaddr, Ptlength, and PTbsize are parameters passed to the pt_create()
call, and / means integer division. Buffers allocated from a partition have no addi-
tional memory overhead.

TCB Extensions

At task creation, pSOS+ can add memory blocks called TCB extensions to the task’s
Task Control Block (TCB) for specific functions. Example functions of a TCB exten-
sion are to save FPU status and to support the needs of other components in the
system.

If a task uses the FPU, 264 bytes are allocated for a TCB extension. The sizes of
other TCB extensions appear in each component’s Memory Usage section.

Variable Length Queue Message Storage

When a variable length message queue is created, pSOS+ allocates memory from
Region 0 to store any messages that are pending at the queue during use. The fol-
lowing formula gives the amount of memory requested from Region 0:

maxnum x ((maxlen + 11) & -4)

where ’&’ is the bit-wise AND operator, and maxnumand maxlen are input parame-
ters to q_vcreate() . No memory is allocated when either maxnum or maxlen is
zero. The actual amount of memory allocated depends on the unit size for Region 0.
pSOS+ 7-5



Memory Usage pSOSystem Programmer’s Reference

pr.book  Page 6  Thursday, January 28, 1999  9:18 AM
The pSOS+ Configuration Table entry kc_rn0usize specifies the unit size for
Region 0.

Task Specific Data Memory

At task creation, pSOS+ allocates at least (kc_ntsd x 4) bytes to a task, as its TSD
pointer array. In addition, for all existing TSD objects that were created with the
automatic allocation option, pSOS+ allocates the memory for the TSD areas of size
defined during tsd_create() . The size is rounded to the next multiple of long
word size.
7-6 pSOS+



pSOSystem Programmer’s Reference Memory Usage

7

pr.book  Page 7  Thursday, January 28, 1999  9:18 AM
pHILE+

Description

The pHILE+ file system manager needs RAM for the following elements:

■ Data Area

■ Stack

■ TCB Extensions

Data Area

Data area requirements for the pHILE+ file system manager depend on user-
supplied entries in the pHILE+ Configuration Table. The size of the data area is the
sum of the values generated by incorporating the relevant configuration table
entries (each of which begins with fc ) in the following formulas:

Usage Size in bytes CD-
ROM

DOS
FAT

pHILE+ NFS
Client

Static pHILE+
variables

948+ 24 200

Buffer headers fc_nbuf  x 48

Cache buffers fc_nbuf  x BUFFSIZE†

†. BUFFSIZE is max(2^fc_logbsize , 512 if DOS FAT format included, 2048 if
CD-ROM included).

Directory name
cache

fc_ndnlc ‡ x 36

Mounted volume
table

fc_nmount x formatsel †† 228 248 400 248

File control
blocks (FCB)

(fc_nfcb  + fc_nmount )
 x formatsel

52 68 72 160

Task extension
area

132 + ((fc_ncfile + 1)
 x formatsel c)

24 28 24 40

Directory name
cache

fc_ncfile  x 36
pHILE+ 7-7



Memory Usage pSOSystem Programmer’s Reference

pr.book  Page 8  Thursday, January 28, 1999  9:18 AM
NOTE: If fc_dnlc = 0, it is changed to fc_nmount x 2.

Memory for pHILE+’s data area can be allocated from Region 0, or it can be allocated
from a fixed location. The location depends on the pHILE+ Configuration Table entry
fc_data .

Stack Requirements

The pHILE+ file system manager executes in supervisor mode and uses the caller's
supervisor stack for temporary storage and automatic variables. pHILE+’s worst
case usage of the caller's stack is fewer than 4096 bytes. Therefore, a task that uses
pHILE+ should be created with at least that much stack space.

Task Extension Areas

With the pHILE+ file system manager in a system, pSOS+ kernel allocates a pHILE+
TCB extension for each task at task creation. Memory for a TCB extension comes
from Region 0, and the following table gives its sizes:

fc_ncfile is the entry in the pHILE+ Configuration Table that specifies the maxi-
mum number of open files allowed per task.

‡.fc_ndnlc is changed to 0 if CD-ROM is excluded, or to 2 x fc_nmount if zero and
CD-ROM is included.

††.formatsel = max(CD-ROM, DOS FAT, pHILE+, NFS Client)

Usage Size in bytes CD-
ROM

DOS
FAT

pHILE+ NFS
Client

Task extension
area

132 + ((fc_ncfile + 1)
 x formatsel †)

†. formatsel = max(CD-ROM, DOS FAT, pHILE+, NFS Client)

24 28 24 40
7-8 pHILE+



pSOSystem Programmer’s Reference Memory Usage

7

pr.book  Page 9  Thursday, January 28, 1999  9:18 AM
Example Memory Usage Computation

An example memory usage computation is below.

TABLE 7-1 Value Calculation

Parameter Value Parameter Value

fc_logbsize 9 fc_ndnlc 64

fc_nbuf 6 SC_PHILE_CDROM 0

fc_nmount 3 SC_PHILE_MSDOS 1

fc_nfcb 10 SC_PHILE_NFS 0

fc_nfile 2 SC_PHILE_PHILE 1

TABLE 7-2 Memory Usage Computation

Usage Computation

Static pHILE+ variables 1,008 = 984 + 24

Buffer headers 288 = 6 x 48

Cache buffers 3,072 = 6 x 2^9

Directory name cache 0

Mounted volume table 1,200 = 3 x max(248, 400)

File control blocks (FCB) 936 = (10 + 3) x max(68, 72)

Total data area 6,504

Task extension area 216 = 132 + ((2 + 1) x max(28, 24))
pHILE+ 7-9



Memory Usage pSOSystem Programmer’s Reference

pr.book  Page 10  Thursday, January 28, 1999  9:18 AM
pREPC+

Description

The pREPC+ library needs RAM for the following elements:

■ Data Area

■ Stack

■ TCB Extensions

Data Area

The pREPC+ library requires a fixed-size data area of 256 bytes. Memory for the
pREPC+ data area can be allocated from Region 0, or it can be allocated from a fixed
location. The location depends on the pREPC+ Configuration Table entry lc_data .

Stack Requirements

The pREPC+ library uses the caller’s stack for temporary storage and automatic
variables. The pREPC+ library requires a maximum of 1 Kbyte of stack space.

TCB Extensions

■ Per Task Data Area—pREPC+ allocates 60 bytes of memory as per-task data
storage at the time of task creation. This memory is freed when the task is de-
leted.

Dynamic Memory Requirements

The pREPC+ library allocates memory dynamically on an as needed basis, during
different stages of system operation. These requirements and the conditions under
which the allocation occurs are detailed below.

■ Memory for maintaining the bookkeeping information associated with memory
allocation—This memory is allocated from Region 0 at system startup time and
the size of the memory is given by the following formula:

if (kc_rn0usize  >= 128) then
mem_allocated  = (log2 (kc_rn0usize ) - log2(32)) x 16 +
(kc_rn0len /kc_rn0usize ) x 4
7-10 pREPC+



pSOSystem Programmer’s Reference Memory Usage

7

pr.book  Page 11  Thursday, January 28, 1999  9:18 AM
where:

kc_rn0usize and kc_rn0len are the pSOS+ configuration table parameters
for Region 0 unit size and Region 0 length, respectively.

■ Per Task Data for maintaining bookkeeping information associated with I/O
Streams—The first time any of the standard I/O functions are invoked by a
task, pREPC+ allocates memory. The memory allocation size is given by the fol-
lowing formula:

((lc_numfiles  + 3) x 36 + 4)

where:

lc_numfiles is the pREPC+ configuration table entry for maximum number of
simultaneously open I/O Streams that a task can have (excluding stdin , std-
out , and stderr ). This memory is freed when the task is deleted.

■ Memory for Data Buffers for I/O Streams—pREPC+ allocates lc_bufsiz bytes
of memory as a data buffer, every time an I/O Stream is opened. Note that the
stdin , stdout , and stderr streams are opened by pREPC+ automatically
when the first I/O operation is performed on these streams. These streams are
never opened for tasks that do not do any I/O operation on them.

The memory allocated for Data Buffers for I/O Streams is not freed when the
stream is closed. This expedites the opening of another stream that reuses the
stream control block. The memory for Data Buffers is freed when the task is
deleted.
pREPC+ 7-11



Memory Usage pSOSystem Programmer’s Reference

pr.book  Page 12  Thursday, January 28, 1999  9:18 AM
pNA+

Description

pNA+ needs RAM for the following elements:

■ Data Area and Buffers

■ Stack

■ TCB Extensions

Data Area and Buffer Requirements

Data area requirements for the pNA+ data area depend on user-specified entries in
the pNA+ and pSOS+ Configuration Tables. The size of the data area is the sum of
the values generated from the following formulas. The pNA+ Configuration Table
entries begin with the letters nc , and kc_ntask is a pSOS+ Configuration Table
entry. The parameters passed to pna_init()  are npages  and nmbufs .

Usage Size in Bytes

Static pNA+ variables 4856

Network Interface Table nc_nni  x 120

Routing Table nc_nroute  x 100

ARP Table nc_narp  x 40

Host Table nc_nhentry  x 44

Socket Control Blocks nc_nsockets  x 156

Protocol Control Blocks nc_nsockets  x 76

Open Socket Tables (kc_ntask  + 2) x 4 x (nc_ndescs )

Multicast sockets nc_nmc_socs x 92

Multicast memberships nc_nmc_membx 24
7-12 pNA+



pSOSystem Programmer’s Reference Memory Usage

7

pr.book  Page 13  Thursday, January 28, 1999  9:18 AM
The sum of the following is the total memory needed for pNA+ buffer configuration:

Memory for pNA+’s data area can be allocated from Region 0, or it can be allocated
from a fixed location. The location depends on the pNA+ Configuration Table entry
nc_data .

Stack Requirements

The pNA+ network manager uses the caller’s stack for temporary storage and auto-
matic variables. The worst case stack usage by the pNA+ network manager is
2 Kbytes plus the worst case stack usage for network interface drivers. The inter-
rupt stack size must be at least 2 Kbytes.

If the pROBE+ debugger is using the pNA+ network manager for communication
purposes, the pROBE+ stack size must be increased by 2 Kbytes plus the worst-
case stack usage for network interface drives. The stack size is configurable.

TCB Extensions

With the pNA+ network manager in a system, the pSOS+ kernel allocates a pNA+
TCB extension for each task at task creation. Memory for a pNA+ TCB extension
comes from Region 0, and its size is 28 bytes.

The pNA+ network manager uses STREAMS memory management internally for
data transfer. Data is represented in the form of messages. Each message is a three-
structure triplet: Message Block, Data Block, and Data Buffer.

Usage Size in Bytes

Message Blocks (mblks) nc_mblks  x 28

Data Block Table Number of different buffer sizes x 24

Nonzero-Sized Buffers pna_nbuffers  x pna_bsize

Data Blocks for Nonzero-Sized Buffers pna_nbuffers  x 24

Data Blocks for Zero-Sized Buffers pna_nbuffers  x 32
pNA+ 7-13



Memory Usage pSOSystem Programmer’s Reference

pr.book  Page 14  Thursday, January 28, 1999  9:18 AM
Message Blocks

A packet in the pNA+ network manager consists of a linked list of mblks (message
blocks). Each message block represents part of the packet. The message structure is
defined as follows:

struct msgb {
struct msgb *b_next; /* Next message on the queue */
struct msgb *b_prev; /* Previous message on the queue */
struct msgb *b_cont; /* Next message block */
unsigned char *b_rptr; /* First unread byte in buffer */
unsigned char *b_wptr; /* First unwritten byte in buffer */
struct datab *b_datap; /* Pointer to data block */
short whichp; /* Used internally */
short reserved; /* Future use */
};

typedef struct msgb mblk_t;

where

b_next Contains a pointer to the next message in the queue.

b_prev Contains a pointer to the previous message in the queue.

b_cont Contains a pointer to the next message block of the message
(packet).

b_rptr Pointer to the first unread byte in the data buffer referred by
the message block.

b_wptr Pointer to the first unwritten byte in the data buffer referred
by the message block.

b_datap Pointer to the data block referred by the message block. The
data block specifies the characteristics of the data buffer.
7-14 pNA+



pSOSystem Programmer’s Reference Memory Usage

7

pr.book  Page 15  Thursday, January 28, 1999  9:18 AM
Data Blocks

A data block specifies the characteristics of the data buffer to which it refers. The
structure is defined as follows:

struct datab {
struct datab *db_freep; /* Internal Use */
unsigned char *db_base; /* First byte of the buffer */
unsigned char *db_lim; /* Last byte+1 of buffer */
unsigned char db_ref; /* Number of refs to data buffer */
unsigned char db_type; /* Message type */
unsigned char db_class; /* Used internally */
unsigned char db_debug; /* Used internally */
unsigned char db_frtn; /* Free function and argument */
};

typedef struct datab dblk_t;

where

Data Buffers

A data buffer is a contiguous block of memory used for storing packets/messages.

db_freep Used internally by the pNA+ network manager.

db_base Points to the first byte in the data buffer.

db_lim Points to the last byte + 1 of the data buffer.

db_ref Number of references to the data buffer.

db_type Type of data buffer.

db_class Used internally by the pNA+ network manager.

db_debug Used internally by the pNA+ network manager.

db_frtn Free function and argument.
pNA+ 7-15



Memory Usage pSOSystem Programmer’s Reference

pr.book  Page 16  Thursday, January 28, 1999  9:18 AM
pRPC+

RAM requirements

Description

pRPC+ requires:

■ 4 Kbytes of supervisor stack (pRPC+ executes in supervisor mode only, uses the
calling task’s supervisor stack, and requires no user stack space.).

■ 76 bytes for pRPC+ extensions to each task control block.

■ 672 bytes for PowerPC variables.
7-16 pRPC+



pSOSystem Programmer’s Reference Memory Usage

7

pr.book  Page 17  Thursday, January 28, 1999  9:18 AM
pMONT+

pMONT+ requires memory for two reasons:

■ To keep track of information about creation and deletion of system objects.

This memory buffer is allocated from region 0 and the size is 96 * KC_NLOCOBJ
bytes. KC_NLOCOBJis the maximum number of pSOS+ kernel objects which is
set in the sys_conf.h file. In case of a multi-processor system with pSOS+m,
the equivalent number is 96 * (KC_NLCOBJ+ MC_NGLBOBJ). MC_NGBOBJis the
maximum number of global objects.

■ To Log the events occurring when an ESp experiment is on.

This memory buffer is know as the trace buffer can be specified in the
sys_conf.h file. If you want to allocate the memory for the trace buffer, the
variable PM_TRACE_BUFFshould be set to the starting address of such memory.
The PM_TRACE_SIZE should be set tot he size of this memory.

If PM_TRACE_BUFFsi zero and PM_TRACE_SIZEis non-zero, then pMONT+ allo-
cates this memory from FreeMemPtr during system startup.

PM_TRACE_SIZEshould be at least 1000 bytes for an ESp experiment to be
configured.
pMONT+ 7-17



Memory Usage pSOSystem Programmer’s Reference

pr.book  Page 18  Thursday, January 28, 1999  9:18 AM
pLM+

Description

The pLM+ shared library manager needs RAM for the following elements:

■ Data Area

■ Stack

■ TCB Extensions

Data Area

Data area requirements for the pLM+ shared library manager depend on user sup-
plied entries in the pLM+ Configuration Table. The size of the data area is the sum
of the values generated by incorporating the relevant table entries (each of which
begins with lm ) in the following formulas:

For example, if lm_maxreg is 8 the bit map size is 4 x (1 + floor (8/32)) which is 4.
The data area requirement is 112 + (40 x 8) + ((8 + 1) x 4) which is 468.

Memory for the data area of pLM+ can be allocated from Region 0, or it can be allo-
cated from a fixed location. The location depends upon the pLM+ Configuration
Table entry lm_data .

Stack Requirements

The pLM+ shared library manager executes in supervisor mode and uses the super-
visor stack of the caller for temporary storage and automatic variables. The worst
case supervisor stack usage of calls to sl_acquire() , sl_bindindex() , and
sl_register() that register new shared libraries depends upon the depth of the
dependency tree of shared libraries not already registered. The worst case caller’s
supervisor stack usage of all other pLM+ system calls, and of these system calls if

Usage Size in bytes

Static pLM+ variables 112

Table of registered libraries 40 x lm_maxreg

Bit maps (lm_maxreg  + 1) x Bit map size

Bit map size 4 x (1 + floor (lm_maxreg /32))
7-18 pLM+



pSOSystem Programmer’s Reference Memory Usage

7

pr.book  Page 19  Thursday, January 28, 1999  9:18 AM
no new shared libraries are registered, is fewer than 4096 bytes. In most cases this
should be enough for system calls that register new shared libraries. If not, and due
to deep shared library dependencies, use more. Therefore, a task that uses pLM+
should be created with at least that much stack space.

Task Extension Areas

With the pLM+ shared library manager in a system, the pSOS+ kernel allocates a
pLM+ TCB extension for each task at task creation. Memory for a TCB extension
comes from Region 0, and the following formula gives its size:

4 + (2 x lm_maxreg )

For example, if lm_maxreg  is 8 the TCB extension size is 4 + (2 x 8) which is 20.
pLM+ 7-19



Memory Usage pSOSystem Programmer’s Reference

pr.book  Page 20  Thursday, January 28, 1999  9:18 AM
7-20 pLM+



pr.book  Page 1  Thursday, January 28, 1999  9:18 AM
8
 pNET: Ethernet Debugging
Without Using pNA
8

8.1 Overview of pNET

pNET is derived from pNA, the networking component of the pSOS real-time operat-
ing system. pNET is designed and is developed to provide the target debug solution
based on the UDP/IP protocol over various transmission medium, for example,
Ethernet and serial line. pNET is highly portable, efficient, and exists in the mini-
mum amount of main memory throughout its operational lifetime. pNET is designed
mainly to service network service requests made by pROBE, for its communication
with the host debugger over various types of network; and by TFTP, for fast down-
loading of the application code to the remote target. Communication through pNET
assumes UDP as the transport protocol. As such, it is optimized for pROBE and
TFTP operation. pNET, unlike pNA, is a non-reentrant library. There does not exist a
daemon task for packet and IP/ARP timers related processing. pNET is independent
of pNA. TCP transport protocol is not supported in this version of the pNET. There-
fore, it is not possible for pMONT to operate over pNET.

8.2 Configuration of PNET

pNET is intended to fulfill the responsibilities of pNA to pROBE and TFTP in the ab-
sence of pNA. pNET configuration parameters map directly into pNA configuration
table, however, not every parameter from pNA configuration table is applicable to
pNET. Communication through pNET allows the host debugger to reside on net-
works different from that of the target. This is achieved through the default gateway
mechanism. Routing IP traffic through pNET seems irrelevant when pNET is
intended for host debugger to target communication. Therefore, pNET does not
maintain any routing information internally. pNET maintains the default informa-
tion when default gateway is enable, and regardless of the value of the NCNROUTE
parameter configured. Consequently, NC_NNODEIDwhich specifies the router ID is
8-1



pNET: Ethernet Debugging Without Using pNA pSOSystem Programmer’s Reference

pr.book  Page 2  Thursday, January 28, 1999  9:18 AM
ignored as well. Parameters relating to IP multicasting are ignored during pNET
configuration process. In pNA the ARP table provides the dynamic mappings of IP
addresses to corresponding hardware addresses. Again, as pNET emphasizes com-
munication between the host debugger and the remote target, only one ARP entry is
cached by pNET. Normally, this ARP cache contains the mapping of the host debug-
ger IP address to its corresponding hardware address. The ARP cache is invalidated
when the IP address of the outgoing packet does not match that of the ARP cache
entry. The ARP cache entry is permanent otherwise. The value of the NCNARP
parameter is ignored.

pNET has the same memory configuration procedure as pNA.

pNET and pNA cannot both be active at the same time. If both are selected, then
pNA takes precedence over pNET. To select pNET, set the SC_PNET parameter in
application sys_conf.h to YES.
8-2



pr.book  Page 1  Thursday, January 28, 1999  9:18 AM
Index
A
application

drivers 5-3

B
baud rate

default 5-11

bootpd

configuration database 1-8

configuration table 1-8

daemon task 1-6

generic tag 1-10

parent IP address 1-8

resource requirements 1-7

server options 1-8

starting Routing Daemons 1-7

system requirements 1-6

tag symbol 1-9

BTPD 1-6

buffer header 3-6

C
C macro definitions 5-5

channel

console 5-11

serial 5-3

serial configuration 5-10

channel number 5-10

Client API error codes

CLIENT_FILEERR 1-32

CLIENT_GENERR 1-32

CLIENT_INVALID 1-32

CLIENT_PNAERR 1-32

CLIENT_PROTOERR 1-32

CLIENT_SUCCESS 1-32

CLIENT_SYSERR 1-32

client API support 1-13

Client Application Programming Interface
(API) Support 1-13

cmode parameter 6-43

code

for system startup 5-34

code parameter 6-43

configuration table 5-2

pSOS+, pROBE+ 5-36

Configuration Tables 6-1

multiprocessor 6-6

pHILE+ 6-23

pNA+ 6-32

pREPC+ 6-28

pROBE+ 6-17

pRPC+ 6-45

pSOS+ 6-10
index-1



Index pSOSystem Programmer’s Reference

pr.book  Page 2  Thursday, January 28, 1999  9:18 AM
configuration tables

Node 5-2

console channel 5-11

D
data parameter 6-43

dataSize parameter 6-43

dev parameter 6-43

Device Driver

guidelines for writing 1-79

device drivers

pHILE+ 3-3

de_read() 3-11

de_write() 3-11

DHCP allocation

automatic 1-33

dynamic 1-33

manual 1-33

DHCP functions

dhcp_add_option 1-38

DHCP_coldint 1-36

DHCP_decline 1-40

dhcp_get_option 1-39

DHCP_halt 1-35

DHCP_release 1-40

DHCP_request 1-40

DHCP_rmintf 1-41

DHCP_start 1-35

DHCP_warminit 1-38

DHCP (Dynamic Host Configuration
Protocol) 1-33

directory structure 5-13

DISI 2-2

callback functions 2-4

data structures 2-27

error codes 2-10, 2-12, 2-13, 2-18,
2-30, 2-45, 2-46

features 2-6

function calls 2-3

multiplex driver mapping 2-30

SerialClose function 2-17

SerialInit function 2-6

SerialIoctl commands 2-14

SerialIoctl function 2-13

SerialOpen function 2-6

SerialSend function 2-10

user callback functions 2-18

DISIplus 2-31

callback functions 2-33

data structures 2-62

error codes 2-70

function calls 2-33

multiplex driver mapping 2-70

DNS (Domain Name Service) 1-42

Domain Name Service (DNS) 1-42

driver

application-specific 5-3

how to add 5-32

LAN 5-3

RAM disk 5-3

drv_conf.c 5-33

dual-ported RAM

VMEbus address 5-12

Dynamic Host Configuration Protocol
(DHCP) 1-33
index-2



pSOSystem Programmer’s Reference Index

pr.book  Page 3  Thursday, January 28, 1999  9:18 AM
F
FC_DATA 5-24

FC_DATASIZE 5-24

FC_ERRCO 5-23

FC_LOGBSIZE 5-23

FC_NBUF 5-23

FC_NCFILE 5-23

FC_NDNLC 5-23

FC_NFCB 5-23

FC_NMOUNT 5-23

file

sys_conf.h 5-3, 5-5, 5-18

files

drv_conf.c 5-33

FTP Client 1-50

commands 1-51

configuration 1-13, 1-50

help 1-53

startup 1-51

FTP Client Bugs 1-58

FTP Command

file naming conventions 1-57

file transfer parameters 1-58

FTP functions

ftp_account 1-22

ftp_bell 1-22

ftp_cddir 1-22

ftp_cdup 1-22

ftp_close 1-21

ftp_connect 1-20

ftp_create 1-20

ftp_delete 1-23

ftp_destroy 1-20

ftp_dir 1-23

ftp_fget 1-21

ftp_fput 1-21

ftp_hash 1-23

ftp_help 1-23

ftp_lcd 1-23

ftp_login 1-21

ftp_mdelete 1-24

ftp_mdir 1-24

ftp_mget 1-24

ftp_mkdir 1-25

ftp_mput 1-24

ftp_prompt 1-25

ftp_pwd 1-25

ftp_quote 1-25

ftp_rename 1-26

ftp_reset 1-26

ftp_rmdir 1-26

ftp_rmthelp 1-25

ftp_runique 1-26

ftp_sendport 1-25

ftp_status 1-26

ftp_sunique 1-26

ftp_ttype 1-22

ftp_verbose 1-27

FTP Server 1-59

configuration 1-59

configuration table 1-59

startup 1-61

G
gateway

default for pNA+ 5-14

default, address of 5-14
index-3



Index pSOSystem Programmer’s Reference

pr.book  Page 4  Thursday, January 28, 1999  9:18 AM
gateway structure 1-146

parameter 1-146

get 1-48

global symbol anchor 5-2

GS_BUFS_0 5-30

GS_BUFS_1024 5-30

GS_BUFS_128 5-30

GS_BUFS_2048 5-30

GS_BUFS_256 5-30

GS_BUFS_32 5-30

GS_BUFS_4096 5-31

GS_BUFS_512 5-30

GS_BUFS_64 5-30

GS_MBLKS 5-31

H
HTTP 4-12

I
IDLE task 5-37

initialization requirements 5-34

installing a driver 5-33

interface

SMNI IP addr., subnet mask, no. of
buffers 5-13

IOPB 3-6

IP address 5-3

I/O

block translation 3-12

transaction sequencing 3-11

I/O device configuration parameters 5-15

K
KC 5-21

KC_DELETECO 5-22

KC_DNLEN 5-21

KC_FATAL 5-22

KC_IDLECO 5-22

KC_IDLESTK 5-21

KC_MAXDNTENT 5-21

KC_MAXIO 5-22

KC_NCOCB 5-21

KC_NCVAR 5-21

KC_NIO 5-22

KC_NLOCOBJ 5-21

KC_NMSGBUF 5-21

KC_NMUTEX 5-21

KC_NQUEUE 5-21

KC_NSEMA4 5-21

KC_NTASK 5-21

KC_NTIMER 5-21

KC_NTSD 5-21

KC_RN0USIZE 5-21

KC_ROOTMODE 5-22

KC_ROOTPRI 5-22

KC_ROOTSSTK 5-21

KC_ROOTUSTK 5-21

KC_STARTCO 5-22

KC_SWITCHCO 5-22

KC_SYSSTK 5-21

KC_TICKS2SEC 5-21

KC_TICKS2SLICE 5-21

Kernel Interface 2-71

conventions 2-78

error conditions 2-76

packet buffer sizes 2-72

packets

packet buffers 2-72
index-4



pSOSystem Programmer’s Reference Index

pr.book  Page 5  Thursday, January 28, 1999  9:18 AM
services 2-79

transmission requirements 2-75

L
LAN

driver 5-3

interface configuration 5-12

interface, subnet mask 5-12

LC_BUFSIZ 5-25

LC_NUMFILES 5-25

LC_STDERR 5-25

LC_STDIN 5-25

LC_STDOUT 5-25

LC_TEMPDIR 5-25

LC_TIMEOPT 5-25

LC_WAITOPT 5-25

LD_ELF_MODULE 5-29

LD_IEEE_MODULE 5-29

LD_IHEX_MODULE 5-29

LD_MAX_LOAD 5-29

LD_SREC_MODULE 5-29

LM_DATA 5-24

LM_DATASIZE 5-24

LM_DEFAULT_COUTS 5-24

LM_LOADCO 5-24

LM_MAXREG 5-24

LM_UNLOADCO 5-24

Loader 1-62

concepts and operations 1-65

configuration 1-63

functions 1-62

load function 1-65, 1-70

load function errors 1-71

loader API 1-68

object files 1-62

procedure for compiling

running application on 1-78

release function 1-65, 1-74

release function errors 1-74

unload function 1-73

unload function errors 1-73

user configurable modules 1-64

M
major device number 5-17

maximum in system 5-17

RAM disk 5-15

SCSI driver 5-15

serial driver 5-15

tick timer 5-15

MC_ASYNCERR 5-22

MC_FLAGS 5-22

MC_KIMAXBUF 5-22

MC_NAGENT 5-22

MC_NGLBOBJ 5-22

MC_ROSTER 5-22

memory management

configuration 1-31

nuapi_memmgmt() 1-31

pREPC+ functions 1-31

Memory Usage 7-1

pHILE+ 7-7

pNA+ 7-12

pRPC+ 7-16

pSOS+ 7-2

message queues, maximum 5-3

mmulib 1-101
index-5



Index pSOSystem Programmer’s Reference

pr.book  Page 6  Thursday, January 28, 1999  9:18 AM
N
NC_BUFS_INTERNAL 5-27

NC_BUFS_0 5-26

NC_BUFS_0_TX_PERCENT 5-27

NC_BUFS_1024 5-26

NC_BUFS_1024_TX_PERCENT 5-27

NC_BUFS_128 5-26

NC_BUFS_128_TX_PERCENT 5-27

NC_BUFS_2048 5-27

NC_BUFS_2048_TX_PERCENT 5-27

NC_BUFS_256 5-26

NC_BUFS_256_TX_PERCENT 5-27

NC_BUFS_32 5-26

NC_BUFS_32_TX_PERCENT 5-27

NC_BUFS_4096 5-27

NC_BUFS_4096_TX_PERCENT 5-27

NC_BUFS_512 5-26

NC_BUFS_512_TX_PERCENT 5-27

NC_BUFS_64 5-26

NC_BUFS_64_TX_PERCENT 5-27

NC_DATA 5-27

NC_DATASIZE 5-28

NC_DEFGID 5-26

NC_DEFUID 5-26

NC_DTASK_PRIO 5-28

NC_DTASK_SSTKSZ 5-28

NC_DTASK_USTKSZ 5-28

NC_HMCSOCS 5-26

NC_HOSTNAME 5-26

NC_MAX_BUFS 5-27

NC_MBLKS 5-26

NC_MBLKS_INT_PERCENT 5-27

NC_MBLKS_TX_PERCENT 5-27

NC_MULTITASK_LOCKSYNC 5-28

NC_NARP 5-26

NC_NDESCS 5-26

NC_NHENTRY 5-26

NC_NMCMEMB 5-26

NC_NNI 5-26

NC_NNODEID 5-26

NC_NROUTE 5-26

NC_NSOCKETS 5-26

NC_PNAMEM_NEWSCHEME 5-27

NC_SIGNAL 5-28

NC_USE_MUTEX 5-28

Network Interface 2-85

packets

packet buffers 2-86

pNA+-dependent interface 2-88

pNA+-independent interface 2-86

pROBE+ debug support 2-93

promiscuous mode 2-92

services 2-85, 2-94

zero-copy NI driver 2-91

NFS Server 1-111

configuration table 1-112

startup 1-111

NI 2-85

Node Anchor 5-2, 5-36

Node configuration table 5-2

NR_DATA 5-29

NR_DATASIZE 5-29

nuapi_installfs() 1-28, 1-29
index-6



pSOSystem Programmer’s Reference Index

pr.book  Page 7  Thursday, January 28, 1999  9:18 AM
P
parameters

I/O device configuration 5-15

storage area 5-6

pHILE+

drivers 3-3

pHILE+ calls

nuapi_installfs() 1-28, 1-29

pMONT 5-30

cmode parameter 6-43

code parameter 6-43

data parameter 6-43

dataSize parameter 6-43

dev parameter 6-43

tmFreq 6-43

tmRead 6-43

tmReset 6-43

traceBuff parameter 6-43

traceBuffSize parameter 6-43

pMONT Configuration Table 6-43

PM_BAUD 5-30

PM_CMODE 5-30

PM_DEV 5-30

PM_TIMER 5-30

PM_TRACE_BUFF 5-30

PM_TRACE_SIZE 5-30

pROBE+

configuration table 5-36

pSH 1-115

adding applications to 1-123

adding commands to 1-121

built-in commands 1-124

command descriptions 1-126

configuration 1-115

shell 1-115

subroutines 1-124

pSH Loader

commands 1-142

description 1-142

resources 1-142

pSH Loader commands

display 1-142

exit 1-143

help 1-143

load 1-142

unload 1-143

pSOS+

configuration table 5-36

I/O switch table 5-32

startup entry 5-36

R
RAM

disk driver 5-3

RARP 1-144

Resolver configuration

res_start() structure 1-43

Resolver functions

del_hostentry 1-47

gethostbyaddr 1-46

gethostbyname 1-46

get_hentbyaddr 1-48

get_hentbyname 1-48

set_hostentry 1-47

Resolver parameters

res_dns_marktime 1-45

res_dns_max_cache 1-44
index-7



Index pSOSystem Programmer’s Reference

pr.book  Page 8  Thursday, January 28, 1999  9:18 AM
res_dns_max_rexmits 1-44

res_dns_max_ttl 1-44

res_dns_no_servers 1-44

res_dns_query_mode 1-44

res_dns_search_path 1-45

res_dns_servers 1-44

res_dns_sweeptime 1-45

res_dns_task_prio 1-44

res_dns_timeout 1-44

res_max_hosttab 1-45

res_max_nettab 1-45

res_priority 1-44

routed 1-145

configuration table 1-145

starting routing daemons 1-147

system/resource requirements 1-145

Rsolver configuration

res_start() initialization 1-45

S
SCSI

driver 5-3

pSOS-to-Driver interface 3-34

upper to lower driver interface 3-36

user interface 3-23

SC_APP_CONSOLE 5-11

SC_ARP 5-15

SC_AUTOINIT 5-9

SC_BOOT_ROM 5-5

SC_DEF_BAUD 5-11

SC_DEVMAX 5-17

SC_DEV_CMOS 5-16

SC_DEV_CONSOLE 5-15

SC_DEV_DLPI 5-15

SC_DEV_FLOPPY 5-15

SC_DEV_HTTP 5-15

SC_DEV_IDE 5-15

SC_DEV_ISDN 5-16

SC_DEV_LOG 5-16

SC_DEV_MEMLOG 5-16

SC_DEV_MLPP 5-16

SC_DEV_NTFTP 5-15

SC_DEV_NULL 5-16

SC_DEV_OLAP 5-16

SC_DEV_OTCP 5-15

SC_DEV_OX25 5-16

SC_DEV_PARALLEL 5-16

SC_DEV_PIPE 5-17

SC_DEV_PSCONSOLE 5-16

SC_DEV_PSLWR 5-17

SC_DEV_PSMUX 5-17

SC_DEV_RAMDISK 5-15

SC_DEV_RDIO 5-16

SC_DEV_SCSI 5-15

SC_DEV_SCSI_TAPE 5-15

SC_DEV_SERIAL 5-15

SC_DEV_SLLWR 5-17

SC_DEV_SOSI 5-16

SC_DEV_SPI 5-15

SC_DEV_TFTP 5-15

SC_DEV_TIMER 5-15

SC_DEV_WATCHDOG 5-16

SC_FRMUX 5-16

SC_IP 5-15

SC_IPCD 5-16

SC_IPCONV 5-16

SC_KISM_BUFFS 5-13

SC_LAN1_SUBNET_MASK 5-12
index-8



pSOSystem Programmer’s Reference Index

pr.book  Page 9  Thursday, January 28, 1999  9:18 AM
SC_LAPB 5-16

SC_LAPD 5-16

SC_LOOP 5-15

SC_NISM_BUFFS 5-13

SC_NISM_LEVEL 5-13

SC_NumNon_pSOSChan 5-11

SC_PH 5-16

SC_PHILE 5-7

SC_PHILE_CDROM 5-7

SC_PHILE_MSDOS 5-7

SC_PHILE_NFS 5-7

SC_PHILE_PHILE 5-7

SC_PHPI 5-16

SC_PIM 5-16

SC_PLM 5-8

SC_PMONT 5-8

SC_PNA 5-7

SC_PNET 5-7

SC_POSIX 5-8

SC_PPP 5-16

SC_PREPC 5-7

SC_PROBE 5-7

SC_PROBE_CIE 5-7

SC_PROBE_CONSOLE 5-11

SC_PROBE_DEBUG 5-7

SC_PROBE_DISASM 5-7

SC_PROBE_HELP 5-7

SC_PROBE_QUERY 5-7

SC_PROFILER 5-8

SC_PRPC 5-7

SC_PSE 5-8

SC_PSE_PRPC 5-7

SC_PSKT 5-8

SC_PSOS 5-7

SC_PSOSM 5-7

SC_PSOS_QUERY 5-7

SC_PTLI 5-8

SC_QBIND 5-9

SC_RAM_SIZE 5-14

SC_RAW 5-15

SC_RBUG_PORT 5-11

SC_RTEC 5-8

SC_SD_PARAMETERS 5-5, 5-6

SC_SNDCF 5-16

SC_STARTUP_DIALOG 5-5, 5-6

SC_TCP 5-15

SC_UDP 5-15

SC_X25 5-16

SD_DEF_BAUD 5-11

SD_DEF_GTWY_IP 5-14

SD_KISM 5-13

SD_KISM_DIRADDR 5-13

SD_LAN1 5-12

SD_LAN1_IP 5-12

SD_LAN1_SUBNET_MASK 5-12

SD_NISM 5-13

SD_NISM_DIRADDR 5-13

SD_NISM_IP 5-13

SD_NISM_SUBNET_MASK 5-13

SD_SM_NODE 5-13

SD_STARTUP_DELAY 5-5, 5-6

SD_VME_BASE_ADDR 5-12

serial channel 5-3

configuration 5-10

SetUpDrivers() 5-32

SE_DEBUG_MODE 5-5, 5-6

SE_MAX_GS_BUFS 5-31

silent startup mode 5-36
index-9



Index pSOSystem Programmer’s Reference

pr.book  Page 10  Thursday, January 28, 1999  9:18 AM
SMKI (Shared Memory Kernel Interface)
5-13

SMNI (Shared Memory Network Interface)
5-13

sockcall 1-30

socket initialization

sample code 1-30

sockcall 1-30

software component

startup requirements 5-34

startup

code 5-34

dialogue 5-4

system requirements 5-34

static name resolver 1-42

sysinit.c file 5-5

sys_conf.h file 5-1, 5-3, 5-6, 5-18,
5-20, 5-29

T
task

IDLE 5-37

user ROOT 5-37

tasks, maximum active 5-3

TD_BRKOPC 5-23

TD_DATASTART 5-23

TD_DBGPRI 5-23

TD_FLAGS 5-23

TD_ILEV 5-23

Telnet Client 1-148

commands 1-150

configuration 1-148

Telnet functions

telnet_command 1-28

telnet_create 1-27

telnet_destroy 1-27

Telnet Server 1-156

configuration 1-156

TFTP

pseudo-driver 5-3

TFTP functions

tftp_blksize 1-18

tftp_connect 1-16

tftp_create 1-15

tftp_destroy 1-16

tftp_fget 1-16

tftp_filesize 1-18

tftp_fput 1-17

tftp_help 1-19

tftp_mode 1-16

tftp_option 1-18

tftp_retxmits 1-17

tftp_status 1-19

tftp_timeout 1-17

tftp_trace 1-19

tftp_verbose 1-19

TFTP Server 1-162

configuration 1-162

tmFreq parameter 6-43, 6-44

tmRead parameter 6-43, 6-44

tmReset parameter 6-43, 6-44

traceBuff parameter 6-43, 6-44

traceBuffSize parameter 6-43, 6-44

U
user ROOT task 5-37
index-10


	Main Menu
	Operating System API Reference Menu 
	pSOS Manuals Menu
	Global Search...
	pSOSystem Programmer's Reference, PowerPC Processors
	Contents
	About This Manual
	Purpose
	Audience
	Organization
	Related Documentation
	Notation Conventions
	Support

	System Services
	bootp
	bootpd
	Client API Support
	DHCP Client
	DNS and Static Name Resolver
	FTP Client
	FTP Server
	Loader
	pLM+
	mmulib
	NFS Server
	pSH+
	pSH Loader
	RARP
	routed
	Telnet Client
	Telnet Server
	TFTP Client
	TFTP Server

	Interfaces
	DISI (Device Independent Serial Interface)
	DISIplus (Device Independent Serial Interface)
	KI (Kernel Interface)
	NI (Network Interface)
	SLIP (Serial Line Internet Protocol)

	Standard pSOSystem Block I/O�Interface
	pHILE+ Devices
	SCSI (Small Computer System Interface) Driver

	Standard pSOSystem Character I/O Interface
	Character I/O Drivers
	HTTP
	pSEUDO Driver
	MEMLOG
	NULL
	PIPE
	RDIO
	TFTP
	DITI (Device Independent Terminal Interface)

	pSOSystem Configuration File
	Overview
	sys_conf.h
	Adding Drivers to the System
	Customizing the System Startup Sequence

	Configuration Tables
	Node
	Multiprocessor
	pSOS+
	pROBE+
	pHILE+
	pREPC+
	pLM+
	pNA+
	pMONT+
	pRPC+

	Memory Usage
	pSOS+
	pHILE+
	pREPC+
	pNA+
	pRPC+
	pMONT+
	pLM+

	pNET: Ethernet Debugging Without Using pNA
	8.1 Overview of pNET
	8.2 Configuration of PNET

	Index




