

A e

SYSTEM MAP for Release 2.0

** indicates location of tab divider in binder

Thesc manuals are part of your Lambda documentation. but are not part of a binder.

hitro to Lambda
ZewzLISP-Plus Commands

Here are the binders and their contents:

**1.MI Lambda Ficld Service Manual

**NuMachine Installation and User Manual

M
RELEASE NOTES:
**Release 2.0 Overview & Notes
**Release 2.0 Inst & Conversion
**I.diting Lambda Site Files
**Tapc Software & Streams
**CGommon LISP Notes

M
LISP 1: The LISP Machine Manual, Part 1

**Introduction
Primitive Object Types
Evaluation
Flow of Control
Manipulating List Structure
**Qymbols
Numbers
Arrays
Strings
**Functions
Closures
Stack Groups
Locatives
Subprimitives
Arcas
**The Compiler
Macros
The LOOP Iteration Macro
**Defstruct

Mi
BASICS:
**LMI Lambda Technical Summary

%) LIS 20 The LISP Machine Manual, Part 2
**Objects. Message Passing, and Flavors
**The 170 System
Naming of IMlles
The Chaosnet
**Packages
Maintaining Large Systems
Processes
Errors and Debugging
“**How to Read Assembly Language
Querying the User
Initializations
Dates and Times
Miscellaneous Usceful Functions
**Indices

LMI

@3') LISP 3:
**Introduction to the Window System

**The Window System Manual
*¥FZNMALL Overview
*TAMALL

LMI

@39 EDITORS:
*ZAMACS Introductory Manual

FIMACS Reference Manual
**Nince

% UNIN

**NuMachine Release and Update Information
**NuMachine Qperating System

**UNIX Programmer’s Manual, V. 1: Section 1
** Sections 2-8

Mi :
UNIX 2:UNIX Programmer’s Manual, Vol. 2
**The UNIX Time-sharing Svstem
UNIX for Beginners - Second Edition
A Tutorial Introduetion to the UNIX Text Editor
Advanced Editing On Unix
An Introduction to the UNIX Shell
Typing Documents on the UNIX System
A Guide to Preparing Documents with -ms
Tbl-A Program to Format Tables
NROFF/TROFF User's Manual -
A TROFF Tutorial
**The C Programming Language Reference Manual
Recent Changes to C
Lint, A C Program Checker
Make-A Program for Maintaining
Computer Programs
**UNIX Programming-Second Edition
A Tutorial Introduction to ADB
Yace: Yet Another Compiler-Compiler
Lex-A Lexical Analyzer Generator
**A Portable Fortran 77 Compiler
RATFOR- A Preprocessor for a
Rational Fortran
The M4 Macro Processor
SIED- A Non-Interactive Text Editor
Awk- A Pattern Scanning and
Processing Language (2d. ed.)
DC- An Interactive Desk Calculator
BC-An Arbitrary Precision
Desk-Calculator Language
An Introduction to Display Editing
with Vi
**The UNIX 1/0 System
On the Security of UNIX
Password Security: A Case llistory

ﬁ' HARDWARE 1:
**NuMachine Technical Summary

**<PHU Monitor User's Manual
SHU General "Deseription
**Mouse Manual
**L M1 Printer Software Manual
**\VR-Series Monitor
72249 Monitor

g

| .
HARDWARE 2:
**Tape Drive
**Disk Drive ™

**Rermit

¥

,_
<

OPTIONS,
**{varies according 1o options purchased)
Prolog
Interlisp
Foriran Instaliation Memo
Seribbie
Fthernet Mulithus
Mediun Kev Color Sysiem
NTE Svstee b

¥

LMI Release 2.0 Package
 May 1,1985 Zyeds:
y el

24-0100340-0001

Published by LMI 1000 Massachusetts Avenue. Cambridge MA 02138 USA

Copyright © 1985 Lisp Machine Incorporated.

SYSTEM MAP {for Release 2.0
** indicates location of tab divider in binder

These manuals are part of your Lambda documentation, but are not. part of a binder.

Intro to Lambda
Zetal)sP-Plus Commands

Here are the binders and their contents:

% BASICS: .
! **L.MI] Lambda Technical Summary

**LLM1 Lambda Ficld Service Manual
**NuMachine Installation and User Manual

Mi
RELEASE NOTES:
**Release 2.0 Overview & Notes

**Release 2.0 Inst & Conversion
**Iditing Lambda Site Files
**Tape Software & Streams
**CGommon LISP Notes

@Llsp 1: The LISP Machine Manual, Part 1

**Introduction
Primitive Object. Types
Evaluation
Flow of Contro)
Manipulating List Structure
**Qymbols
Numbers
Arrays
Strings
**Functions
Closures
Stack Groups
Locatives
Subprimitives
Arcas
**The GCompiler
Macros
The LOOP leration Macro

**Defsiruct

%} LAISE 20 The LISP Machine Manual, Part 2
**0Objects, Message Passing, and Flavors
**The 1/0 System
Naming of Files
The Chaosnet
**Packages
Maintaining Large Systems
Processes
Irrors and Debugging
**How to Read Assembly Language
Querying the User
Initializations
Dates and Times

Miseellancous Useful Functions
**Indices

Mi
LISP 3:
**Introduction to the Window System

**The Window System Manual
*¥7ZMAIL Overview
*FLAMAILL

r'
<

EDITORS:
*INACS Introductory Manual
**ZMACS Reference Manual
**Nince

¥

ININ 1:
**NuMachine Release and Update Information
**NuMachine Operating Systemn
**UNIX Programmer’s Manual, V. 1: Scction 1
bl Sections 2-8

%

M :
UNIX 2:UNIX Programmer’s Manual, Vol. 2
**The UNIX Time-sharing System
UNIX for Beginners - Second Edition
A Tutorial Introduction to the UNIX Text Editor
Advanced Editing On Unix
An Introduction to the UNIX Shell
Typing Documents on the UNIX System
A Guide to Preparing Documents with -ms
Thbi-A Program to Format Tables
NROFF/TROFF User's Manual
A TROFF Tutorial
**The C Programming Language Reference Manual
Recent Changes to' C
Lint, A C Program Checker
Make-A Program for Maintaining
Computer Programs
**UNIX Programming-Second Edition
A Tutorial Introduction to ADB
Yace: Yet Another Compiler-Compiler
Lex-A Lexical Analyzer Generator
**A Portable Fortran 77 Compiler
RATFOR-A Preprocessor for a
Rational Fortran
The M4 Macro Processor
SED- A Non-Interactive Text Editor
Awk--A Pattern Scanning and
Processing Language (2d. ed.)
DC-An Interactive Desk Caleulator
BC-An Arbitrary Precision
Desk-Calculator Language
An Introduction to Display Editing
with Vi
**The UNIX 1/O System
On the Security of UNIX
assword Security: A Case History

Mi
HARDWARE 1:

** NuMachine Technical Summary
¥*RPU Monitor User's Manual
SHiT General Description
**Mouse Manual
**LMI Printer Software Manual
**\'R-Series Monitor
729 Monitor

r‘
<

I .
JTARDWARE 2:
** Pape Drive
**Disk Drive ™

*FRermi

r-
<

OPTIONS.
**{varies according to options purchased?
Pro L
Interhs

¥

P

Fortran Instalistion Meme
Seribbie

Iithernes Mujtibus

LMI Release 2.0 Package 1 Introduction

_ Introduction

This is your LMI Release 2.0 documentation. It is organized to reflect basic information about,
the software, general conditions of its use, and specific new features.

With it, we are upgrading some other features of your documentation to make it more conve-
nient for you to use.

Chief among these are some new introductory manuals to the Lambda system. ZMail
Overview and Introduction to the Window System bridge the gap between previously
available reference materials and your needs as a new user.

ZetaLISP-Plus Commands, our pocket-sized reminder book, summarizes the most fre-
quently used commands in ZMACS, the HELP facility, and the Debugger.

With this release we are also distributing WindowMaker (tm), a new LMI facility
allowing you to create windows graphically and edit automatically produced code.
WindowMaker ends the tedium of writing multiple-window environments and allows
you to customize your programming environment in minimal time.

KERMIT, an industry-standard uploading and downloading facility, is now available
on the Lambda With this release you will receive LMI and full CUCCA documentation
on KERMIT.

In order to make your tape and disk drive documentation more readily available to
you, we have included new, shorter documentation on these features.

If you have chosen to receive the Microcompiler, our new facility for compiling directly
LISP to microcode, your Microcompiler documentation will also be included in this
package.

Your Release 2.0 information consists of the following;:

Release 2.0 Overview—Read this first to see the advantages and new capabilities of
Release 2.0.

Release 2.0 Notes—System release notes, covering all features of the system in detail.
Installation—How to install your new system.
Release 2.0 Conversion—Converting older ZetaLLISP code to Release 2.0.

Editing the Lambda’s Site Information—Customizing your site for your software up-
grade or new Lambda.

Lambda Tapc Software—Full information on tape functions.

Interprocessor Communrication: The Extended STREAMS Interface—How to commu-
nicate among processors in your Lambda.

Note for upgrade customers only (new customers have these changes incorporated in their
manual sets):

In order to make these manuals more easily available to you, we request that you make the
following changes to your document set.

1.

In your RELEASE NOTES binder, discard the System 94 Notes, System 98 Notes,
and Release 1.2 Notes. (Your set may not contain all of these notes.)

The new RELEASE NOTES binder organization is as follows:

LMI Release 2.0 Package 2 Introduction

New Release Notes table-of-contents sheet (striped cover stock sheet, be-
ginning "Release 2.0 Overview and Notes")

Red tab

Release 2.0 Overview

Release 2.0 Notes

Yellow tab

Release 2.0 Installation

Release 2.0 Conversion

Green tab

Editing the Lambda’s Site Files

Blue tab

Lambda Tape Software

Interprocessor Communication: The Extended Streams Interface
Purple tab

Common LISP Notes

2. Please include the following in your LISP 3 binder:

New table-of-contents sheet, beginning “Introduction to the Window Sys-
tem”, should be substituted for old.

The WindowMaker, documentation on LMI's new automatic window-making
facility, should be inserted. -

The ZMail Overview should be inserted.

If you are a new or upgraded customer as of May 1, you will receive a copy of the
revised Introduction to the Window System shortly.

3. Please discard all the contents of HARDWARE 2 and HARDWARE 3, except the “LMI
Lambda” index tabs. In HARDWARE 2, insert the following:

New table-of-contents, beginning “Tape Drives”
Red tab

Tape Drives package

Yellow tab

Disk Drives package

Green tab

KERMIT package

Blue tab

Purple tab

HARDWARE 3 will not currently be used.

Thank you for your help in making LMI documentation work better for you. If you have sug-
gestions and comments on LMI documentation, please contact me directly, via your LMI electronic
mail account (my username is swrs), by telephone via LMI Customer Service, or by US mail at

LMI, 1000 Massachusetts Ave., Cambridge MA 02138 USA.

(Dr.) Sarah Smith

Director of Documentation, LMI

Release 2 Overview

Published by 1.MI1 1000 Massachusetis Avenue. Cambridge MA 02138 USA

Copyright ©® 1985 Lisp Machine Incorporated.

Introduction

Release 2 offers subtantial improvements over Release 1 in almost every aspeet; it is laster,
has more features, and is less susceptible to bugs. The most important advance of Release 2 on
the Lambda is the adoption of 25-bil pointers; now the address space is twice as large as before,
so that user programs now have up to 16000K words more space to use. Execution speed has been
increased. Release 2 contains improvements in the user interface (notably in the rubout handler
and Zmacs, the cditor). In addition, Common LISP is supported in full.

Common LISP

The most noticeable software change for Release 2 is the addition of support for Common
LISP. Although Common LISP and ZetalLISP-Plus are very close, there are differences; you have a
choice of what incompatible Common LISP functions you would like to use. Ilere are the gencral
diflerences:

e Constructs (functions and variables) tend to have more regular names. (The names
of many Zetal.LISP-Plus system variables are the same as those in Maclisp and IFranz
LISP.). For example, in Common LISP, base becomes *print-base*.

e Some functions and situations are more well-defined.

¢ Some Common LISP features are oriented towards conventional architectures. (On the
LISP Machine they are legal, but superfluous.)

Common LISP and ZetalLISP-Plus exist side by side in LMI software. For incompatible fune-
tions with the same name in both dialects, and when the input syntax is slightly different, the
machine interprets the dialeet that the form is in aceording to the time when the form is entered.
(This is implemented with readtables.) When the machine is running code, instead of declaring a
“mode” for Common LISP, one tells the editor or the LISP Listener what dialect is desired.

e Programmers can use new, upward-compatible Common LISP functions from Zetal.ISP-
Plus without special arr‘mg,oment

e Incompatible Common LISP functions can be used from Zetal.ISP-Plus programs by
explicitly referencing the Common LISP incompatible (CLI) package.

o Incompatible Zetal.ISP-Plus functions can be used from Common LISP, if nceded, by
explicitly referencing the GLOBAL package.

e Both the old and the new, Common LISP names of variables can be used; for Zetal.ISP-
Plus, no “preferred” name is enforeed.

This set of fcatures make it possible to port an existing ZetaLISP-Plus program to Common
LISP function by function, file by file.

What does Common LISP bring to ZetaLISP-Plus ?

Many aspeets of Common LISP can be adopted by programmers without using incompatible
functions. The following is a list of what is immediately available for programmers in Zetal.ISP-
Plus:

Better names for certain functions and variables.

Long awaited printer/reader features. A wider range of structures can be read and
printed by the LISP function (READ).

Compatibility with other LISP implementations (the next NIL, Spice LISP, Standard
LISP).

Lexical scoping. Many locally special declarations are no longer needed. Local function
and macro definitions are now possible.

Upward compatible changes to many existing Zetal.ISP-Plus functions. (One of the
more important is the tighter definition of SETF.)

A more comprehensive type system.
Character objects, rational and complex numbers.

Genecrie scquence functions that accept both vectors (one-dimensional arrays) and lists.
Many of these functions express common programming idioms that are usually not
defined as part of LISP.

Other Improvements

Besides the adoption of Common LISP, Release 2 features some new functions, many bug fixes,
and improved implementations of important system facilities.

DEFSUBST is fixed; certain bugs associated with the previous implementation have
gone away. :

Translation for logical hosts can now be automatically updated.

The rubout handler has been improved. For example, one can edit the end of one’s
input, and have it be re-input, if syntactically possible, with a single keystroke.

The default font CPTFONT is more readable. The lower-case letters have been enlarged
slightly, so LISI code in lower case should be more readable.

More fonts have a wider range of characters. IZarlier on, only a few fixed-width (onts
actually had glyphs for every printing character in the LISP Machine character set.
However, many of the text-oriented fonts (the HL/Helvetica series, the TR/Times Ro-
man serics) have had more characters added to them. For example, backquote (the
character ¢ should now be available in all text fonts.

Notifications arc handled differently. Now, only the appropriate flavors of windows
will print out notifications on d themselves. Most windows will handle notifications
by telling you about them (via the documentation window at the bottom of the screen);
there are commands to view notifications at your leisure with a command.

Editor and ZMail Improvements

The most useful improvement to the editor (meaning Zmacs, which implements both
Zwei and ZMail) is that “undoability” of editing is now allowed for all modifications.
Before, only a few operations had methods for undo the changes; now, any change to
text can be undone. The editing history is maintained on a per-section basis, so that

you can now undo changes sclectively in one unit of your buffer. Usually, that unit
will be a LISP defining form (defun, defmethod, and so on) or a paragraph.

A common application for such generalized ‘undoability’ is program modification. You
no longer neced to save away changed scetions of programs while modifying them, but
can simply undo the changes that are local to a section.

o In Zwei, some commands have been renamed to more cleverly exploit command com-
pletion. , 5 Wl
e Zwei also has commands for supporting Common LISP. (These commands the attribute * ver?
list of the buffer you are editing, to allow to use either dialcct on a per-buffer basis.)
Zwei understands the slight differences between Common LISP and ZetaLl.ISP-Plus
syntax.

o The ‘modified’ flag (*) in editor modelines has been moved to the left so that a modified
buffer is more noticeable. Formerly, it was sometimes hard to discern a modified bulffer
if one was editing a file with a long name.

e ZMail performance has been improved; in addition, several bugs have been fixed. There
are new profile variables for more customization, and a new Undigestify command (for
reading mailing list digests) has becn provided.

Using Release 2

Because the internals of Release 2 are so different from Release 1, all user files (including init
files and ZMail init files) will need to be recompiled. The details are specified in the Release 2
Conversion Notes. The compiler, of course, will pick up the errors, but you will probably want to
read the conversion advice to ease the transition. Note that many old constructs are still supported,
even though newer ones are preferred.

Documentation

Because Release 2 has so many changes, there is a good amount of documentation to accompany
it. Other documents describe some aspeets of Release 2 in more detail; this is an overview of the
major features of Release 2.

e Common LISP Release Notes: Describe the new features from Common LISP. Almost
of’allithe document is now contained in the latest version of the LISI> Machine Manual,
but the Notes provide a convenient way to peruse the many features. These Notes are
already provided in your manual set.

e Release 2 Notes: A comprchensive summary of Release 2 changes, with special at-
tention to the package system and the DEFSTRUCT facility. All programming, user
interface, editor, and site maintenance changes are documented here in detail.

e Release Conversion Notes: General advice for converting from Release 1 (Lambda
System 1, CADR System 94) to this Release.

e LISP Machine Manual, Sixth IJdition: The new edjtion, available as the LIS I and
LISP 1I binders of the LMI documentation set. (Itis also available separatcly, in one v

volume, as an orange-covered paperback.) The manual corresponds to the current
release.

e Common LISP: Written by Guy Steele and available from Digital Press, this is the
definitive doecument of Common LISP. It is not necessary, however, to acquire this
book to use Common LISP with LMI software.

In the document package you receive with this release is documentation corresponding to
further features included in Release 2.

| Release 2 Notes

24-0100330-0001

Published by LMI 1000 Massachusetts Avenue. Cambridge MA 02138 USA

[P st Ve SR S RS e i vt s

This document corresponds to Release 2.0. It supersedes the System 98 Release Notes.

LMI Lambda is a trademark of Lisp Machine, Incorporated.

Symbolics is a trademark of Symbolics, Inc. UNIX is a trademark of AT&T Bell Laboratories.
VMS is a trademark of Digital Equipment Corporation.

Principal writers of this document were Richard M. Stallman and Rlchard Mlynarik of MIT,
and Robert Krajewski of LMI. Formatted with BoTEX.

Copyright © 1985 Lisp Machine Incorporated.

Release 2 Note_s | i Ta:b—lefac;f: ‘Contents

Table of Contents

Introduction O S |
1. Common LISP Is Supported o e 3
2. Incompatible Changes e e e e e e e e e e e 5
21 Tail Recursion L e e e e e e e e e e e .. .5
2.2 Returning Storage L0 0 L e e e e e e e e e e e e e e e e e 5
2.3 Clarification on Fill Pointers e e e e e 5
2.4 Changes Related to Common Lisp 5
2.4.1 Decimal Radix Has Become the Default .-. 5
2.4.2 Ratio Reading and Printing e e e e e 6
2.4.3 Case-Sensitive and -Insensitive String Comparison Functions. 6
2.4.4 'COMPILE No Longer Neededin PROGN 7
2.4.5 Arrays Stored in Row-Major Order e e e e e e e e e 7
246 &KEY Arguments L L L o e e e e e e e e e e e e 7
2.4.7 Common Lisp Package Conventions 8
2471 Keywords o0 e e e e S -
2.4.7.2 Referring toPackages L 0o Lo 8
2.4.8 Local SPECIAL Declarations to Change in Meaning 8
2.4.9 SELECTQ now uses EQL as its test function. 9
2410 CATCHand THROW e e e e e e e e 9
2.4.11 EVALHOOK/APPLYHOOK Incompatible Change 10
2.4.12 Changes to FORMAT control argument 10
2.4.13 New Treatment of Square Roots 11
2.5 Pointer Fields Now 25 Bits; FlagBit Gone e . 11
2.6 EVAL-WHEN Rationalized e e e e e e e e e 11
2.7 Change to SLFULL-GC-INITIALIZATION-LIST 12
2.8 PROGV With More Variables Than Values 12
2.9 %BPAGE-STATUS Change v v v v v v v e e e e e oo e e 12
2.10 Character Bits Moved e oo e e 12

- 2.11 Time Functions Return Exact Year 12
2.11.1 Primitive Printer Functions Changed 12
2.12 New List Matching Constructs T e e e e e e e e e e e e e e e 13
2.13 BREAK Arguments Changed 13
2.14 Macro Expander Functions Take Two Arguments e .. 14
2.15 SETF and LOCF Definitions Done Differently 14
2.16 Y-OR-N-P And YES-OR-NO-P Arguments Changed e e e e e e 14
2.17 COPY-FILE Takes Keyword Arguments 14
2.18 MAKE-PATHNAME Change v v o v v i v v v v v v v v 15
3. Compatible LISP Programming Changes 17
3.1 All Objects Except Symbols and Lists Are Constants 17
3.2 Nonlocal GOand RETURN 17
3.3 Common Lisp Control Constructs BLOCK and TAGBODY 17
3.4 LEXPR-FUNCALL And APPLY Now Synonymous. 18
3.5 :ALLOW-OTHER-KEYS As A Keyword Argument e e e e 18
3.6 GET and GETHASH with Three arguments. e e e e e e e e 18
3.7 New Macros TYPECASE, PUSHNEW 18
3.8 Microcoded Functions Interruptible 19
3.9 Selecting a Returned Value, 19

Release 2 Notes ii - ' Table of Contents

3.11 Remainder, Log Functions Extended o000 19
3.12 New Arithmetic Condition o oo v oo oo 19
3.13MacroChangeso e e e e e e e e e e e e 20
3.13.1 All Macros Are Displacing In Interpreted Code 20
3132 MACROEXPAND-ALL o 0 v v v v v v v e v v e e e e e e 20
3.13.3 New Function DEFF-MACRO e e e e e e e e e e e e .21
3.13.4 DEFINE-SYMBOL-MACRO o v v v v v v v v v v 21
.3.14 Named Structure Operations e e e e e e e e 21
3.14.1 DEFSELECT and Named Structures« o .. 21
3.14.2 Named Structure Operation :FASLOAD-FIXUP e e e e 22
3.15 DEFSUBST Preserves Order of Evaluation e e e 22
3.16 CAR-SAFE,Ete. v v i v i e e e e e e e e e e e e e e e e 22
3.17 Global Value Funetions e e e e e e 22
3.18 LOCATION-MAKUNBOUND Takes Two Arguments 23
3.19 DEFSELECT-INCREMENTAL e e e e e e e e e e e e e 23
3.20 :NO-ERROR Clauses in CONDITION-CALL L e 24
3.21 Top Level Forms Specially Treated In The Compiler 24
3.22 Compiler Optimization Changed e e e e e e e e e e e e 24
3.23 TV:BITBLT-CLIPPED e e e e e e e e e e e e e e e e e 24
3.24 %BLT-TYPED. Proper Use of Pointer Subprimitives 25
3.25 Growing the Stack Lo o s e e e e 26
3.26 Flavor Changes e e e e e e e e e e e e e 26
3.26.1 Delaying Flavor Recompilation e e e e e e 26
3.26.2 Method Combination Improvements e e e e e e e 26
3.26.3 Undefinition ¢ . . . o e e e e e e e e e e e e e 27
3.26.4 New DEFFLAVOR options« v o v v v v v v v v v 27
3.27 File System Changes ¢ ¢ o v i v v v v v e e e e e e e e e e 28
3.27.1 Additional Arguments to FS:PARSE-PATHNAME e e e e 28
3.27.2 Merging Pathname Components o000 29
3273 Logical Hosts« oo 000 oo e e e e 30
3.27.4 :-DEVICE-WILD-P, ctc., Pathname Operations 32
3.27.5 WITH-OPEN-FILE-SEARCH o oo oo oo v 32
3.27.6 New :PROPERTIES operation on file streams 32
3.27.7 Creating Liinkso 0 0o e e e e e 32
3.27.8 New :SUBMIT option for opening files 33
3.27.9 File-Reading Special Forms 00000 33
3.27.10 VMS Default Device« L 0o o e e e e e e 34
3.27.11 Improved File Error Handling e e e e 34
3.28String Changes v vt v v vt e e e e e e e e e e e e e e e e L. 34
3.29 New Keyword Arguments to MAKE-PLANE e e e e e e e e e e 34
3.30 New Resource Features e e e e e e e e 35
3.31 Flushed Processes . . . v v v v v v v v v v v v v o v v v e e e e e e e e 35
3.32 Indenting Format Directive00 0oL 36
3.33 Input Read Function Changes e e e e e 36
3.33.1 READLINE and Friends ¢ ¢ o o v v v v v e e e 36
3.33.2 New Function READ-DELIMITED-STRING 36
3.33.3 :STRING-LINE-IN Stream Operation « . « . « v o o o . 36
3.33.4 PROMPT-AND-READ Improvements o . o . 37
3.33.5 The Rubout Handler o« o oo oo 38

3.34 Readtables i i e 40

Release 2 Notes iii Table of Contents

3.34.1 Syntax Deseriptions e e e e e e e e e e e e e e e 40
3.34.2 Named Readtables 41
3.35 Fasdumping Functions Record Package 42
3.36 Process Queues L L L. L L e e e e e e e e e e e C 42
3.37 New Function SLPATCH-LOADED-P P 42
338DateFormats, e e e e e e e e e e 43
3.39 Network Changes 0 . i e e e e e e e e e 44
3.39.1 Host Network Operations e e e e e e 44
3.39.2 New Error Condition SYS:NO-SERVER-UP 45
3.39.3 Some Chaosnet Functions Renamed 45
3.39.4 Chaosnet Listening Streams 45
3.39.5 New Chaos Routing Inspector Funetions 46
3.40 Infix Expressions.o oo, W e e e e e 46
3.41 Bug Reports for User Systems 48
4. DEFSTRUCT o o e e e e s e e s e e e e, ... 49
41 New Options L e e e e e e e e 49
4.2 Documentation for Structureso 0. 50
4.3 Slot Options oL e e e e e e e e e e 50
4.4 Changes to the INCLUDE Option 52
441 DEFSTRUCT o e e e e e e s s e s e e e e e 52
4.4.2 New Slot-Accessor Functions Generated 52
4.5 DEFSTRUCT Tries to Determine an Appropriate Array Type 52
4.6 New Predefined Structure Types e e e e e e e e e ... 53
4.7 Common Lisp Support. e e e e e e 53
4.8 Changes to DEFSTRUCT-DEFINE-TYPE Options 54
4.8.1 New Per-Type Method of Declaring DEFSTRUCT Options 54
4.8.2 :KEYWORDS Option to Renamed :CONS-KEYWORDS 55
5. The New Package System 57
5.1 Specific Incompatibilities 0oL L. e e e e e e e e 57
5.2 The Current Package e e e e 58
5.3 Finding All Packages 59
5.3.1 Package Naming oo 59
5.4 Creation and Destruction of Packages e e e e e e 60
5.5 Package Inheritance L0000 . 63
5.6 External and Internal Symbols L0 L. 64
5.7 Looking Up Symbols 65
5.8 Looping Over Symbols L. L. 66
5.9 The USER Package 0 v v v v i 67
5.10 Package Prefixes e e e e 67
5.11 Shadowing and Name Conflicts 67
6. Window System Changes 69
6.1 The FONTS Package No Longer Uses Global 69
6.2 New way of initializing process of TV:IPROCESS-MIXIN 69
6.3 TV:SHEET-FORCE-ACCESS Does Not Prepare the Sheet 69
6.4 TV:MAKE-WINDOW Now Identical to MAKE-INSTANCE 69
6.5 TV:MOUSE-WAKEUP and TV.MOUSE-RECONSIDER 70
6.6 Mouse Clicks Are Blips By Default 70
6.7 :PREEMPTABLE-READ for TV.:STREAM-MIXIN 70
6.8 Menu Item Types e e e e e e e e 70

6.9 TV:iMOUSE-WAIT Takes Who-state as Argument S 70

Release 2 Notes iv Table of Contents

6.10 Mouse Characters ¢ ¢ v v v v v v b 0 e e e e e e e e e e e e 70
6.11 TV:MARGIN-SPACE-MIXIN e e e e e e e e e e e e e 71
© 6.12 TV:ADD-SYSTEM-KEY Improvement e e e e e ae e e e e e e e e 71
6.13 New String Drawing Primitive o 00000000 71
7. User Interface Changes 0 v o oo 00 d e e e e e oo 73
7.1 New function COMMON-LISP o o v v v v v v . 73
72NewRunBar e e e e e e e e e e 73
7.3 Arguments to APROPOS and WHERE-IS changed 73
74Beep Types v v v v v i e e e e e e e e e e e e e e e e e e e 73 .
7.5 *VALUES* for Evaluator Loops « ¢ o v v v v v v v e e e e e 74
7.6 Variable Ratio Mouse Motion o000 00w 74
7.7 Evaluating/Compiling Multi-Font Files. oo . ..o o000 .. 74
7.8 Debugging Changes v o 0 v i e e e e e e e e e 74
7.8.1 Evaluation in the Debugger o000 000000 74
782UNADVISE o000 s e e e N 75
7.8.3 :STEPCOND Argumentto TRACE 75
7.8.4 MONITOR-VARIABLE No Longer Exists 75
7.8.5 Describing Condition Handlers« . .. o000 75
7.8.6 Overriding *DEBUG-1IO* e e e e e e 75
7.9 Choose Variable Values Windows oo 75
7.10 Output of Character Names o v v v v v v v v 76
7.11 Terminal T Change « « « o o v v v v v v v i e e e e e e e 76
7.12 Terminal c-Clear-Input is now Terminal ¢-M-Clear-Input e e e 76
7.13 DRIBBLE-START, DRIBBLE-END gone« o 76
7.14 Compiler Behavioro 000 s e e e 76
7.15 MAKE-SYSTEM Improvements o o o o i v v v v v v 77
7.16 APROPOS and SUB-APROPOS Extended 77
7.17 LOAD Defaults Are the Default Defaults 7
7.18 Hardecopy Options « « v v v v v v v v v v e e e e e e e e e e e e e 77
7.19 ZMail Changes« . o L 0 v e e e e e e e e e e e e e e e e e 77
7.19.1 Message-ID Fields. o v o 0000 0o e e e 77
7.19.2 New Command M-X Undigestify Message 77
7.19.3 Usual mail file directory option for ZMail 78
8. Editor Changes e e e e e e e e e e e e e e e e 79
818electiveUndo« . . v oo o000 e e e e e e e e e 79
8.2 Yank Command Improvements « . . v 0 000 e e e e e 79
8.3 More Rubout Handler Commands oo oo 80
8.4 Sectionization Improvements00 000000000 80
8.5 Buffer Selection History Now Per Window 81
8.6 Per-Buffer Local Variables e e e e e e e e e e e e e e 81
8.7 Shifted Mouse Clicks v o v o v L e e e e e e e e 81
8.8 Close Parenthesis Displayed for Open Parentheses 82
8.9 Editor Aids for Common Lisp e e e e e e e e e e e e 82
8.10 Lisp Case Changing Commands Renamed 82
8.11 Font Handling Changes« . . v« o v v v v v v v e e 82
8.11.1 Yankingand Fonts 000 s 0 s 82
8.11.2 New Font Change Commands 8:
8.12 New Meta-X Commands v o . v v v v v v e e e e 83
8.13 CONTROL-X 4 J Jumps to Saved Point in Other Window 83
8.14 Minor Command Changes 0 v 0 e e e e e 81

Release 2 Notes v Table of Contents

8.15 Commentinga Region 00000000 84
816Dired oL Lo s s 84
9. Site File Changes e e e e e e e e e e e e e e e e e e 85
9.1 Logical Host Definitions Kept in the SITE directory e e e e e e 85
9.2 Specification of File Servers o000 e e, 85
9.3 New site option :STANDALONE« o o v v v v v v v .. 86
ConceptIndex L. e e e e e e e 87
CLispIndex o e e e e e e e e e e e e e e e e 89

Release 2 Notes 1 Introduction

Introduction

This manual describes these changes to the system in Release 2:

COMMON LISP Support: New functions; usage on the LMI Lambda.

Incompatible Changes: Some mcompatlble changes are due to COMMON LISP. Many
of the others involve the increase in size of the LAMBDA’s address space, or ratio-
nalizing the behavior of some constructs (like eval-when) that sometimes had hard-to-
understand conseqgeunces.

Compatible LISP Programming Changes: This covers certa,m basic changes that are
neccessary for and compatible with COMMON LISP. Improvements have been made
to the rubout handler, the “system system, the file system mterface, networks, and
miscellaneous low-level constructs in ZETALISP.

Window System Changes

User Interface Changes: This covers the way the user interacts with the machine
(usuaHy the window system) and ZMail, which is a new part of the LAMBDA software
in Release 2.

Editor Changes

Defstruct Changes

Package Changes

Site File Changes: If you are reqponsxble {‘or maintaining site information, you should
read this.

The changes for the defstruct facility and the package system are noteworthy enough to be
placed in their own chapters. Many changes related to COMMON LISP are documented in the
Common Lisp Release Notes; the new edltlon of the Lisp Machine Manual also documents these

changes.

Although the new edition of the Lisp Machine Manual has been produced only recently, there
are some omissions and changes which are included in this document.

In this document, fonts are used to highlight words and text in a number of ways:

arg

cons
c-X
FOO

Here, the text mentions arg, which is an argument to the current definition. This is
applicable for the documentation of functions, macros, operations, and special forms.

arg could also stand for a value that was passed in some some pattern, as in (:option
arg).

Here, we are mentioning a-LISP construct in text.

This same font is also used for mention names of characters, or sequences of keystrokes.
Usually, this kind of font is used in examples that are set off from the rest of the text.

If this font is used inline, it is usually to emphasise the way something could be entered
into the Lisp Machine.

The “bucky” shift keys have the names Control, Meta, Super, and Hyper. The character formed
by typing the X key while holding down the Control and Super keys can be written as Control-Super-
X. Sometimes, this is abbreivated to use only the first letters of the bucky bits: c-s-X. If the Shift
key is also used, the character is represent as Control-Super-Shift-X or c-s-sh-X,

common

Release 2 Notes _ 2 ' Introduction

common

Release 2 Notes ‘ ’ 3 : Common LISP Is Supported

1. Common LISP Is Supported

Most of the differences between Common LISP and the traditional LISP machine dialect of
LISP are compatible extensions. These extensions are available in all programs.

There are some incompatibilities between COMMON LISP and the traditional Lisp machine
system, however. For the sake of existing programs, in most cases the system still works the
traditional way.

In Release 2.0, the Lisp Machine will boot with ZETALISP being the default in the initial Lisp

Listener. To use make a Lisp Listener use COMMON LISP reader syntax and functions by default,
do -

~ (setq *readtable* si:common-lisp-readtable)
or equivalently, (common-lisp t)

To use traditional ZETALISP syntax and functions, do

(setq *readtablex si:standard-readtable) or (common-lisp nil)

To make a file read in using COMMON LISP syntax, and use incompatible COMMON LISP functions
when neccessary, put Readtable: Common-Lisp or Readtable: CL in the attribute list (the =%~
line) of the file. To make a file always read using traditional syntax and functions, use Readtable:
Traditional or just Readtable: ZL. The attribute Syntax is a synonym for Readtable.

The new editor command m-X Set Readtable is the recommended way to change the readtable
attributes of a file (and the editor buffer). See section 8.11.1, page 82 for more information.” =~

The readtable variable is bound at the top level of each process, so setting it applies only to
the current process. Lisp Listeners check the variable before each form, so it works to set the
variable while operating in the listener.

The current value of *readtable* is important for two reasons:

e First, there are some (small) differences between the syntax of COMMON LISP and
ZETALISP.

e The readtabie also has information about the symbols that name functions that are
incompatible between the two dialects. The CL readtable will substitute cli:listp for
listp at read time, for example. Because the support is implemented this way, there is
no special variable that needs to tell the Lambda which way to behave at run time, in
the case of an incompatibility.

A few things in COMMON LISP are not yet supported completely:

* transcendental functions of complex numbers
* ‘“alternative” definitions (as macros) of nonstandard special forms

* inline and notinline deciarations.

~ Some features of COMMON LISP are not yet supported exactly per the COMMON LISP spec:

* &rest arguments are not valid beyond the dynamic extent of a function; incorrect but
legal values will result if such an argument is returned out of a function. To return a
&rest argument as a true list, use the function copy-list.

Zero-dimensional arrays may not be displaced or indirected.

* A number of COMMON LISP special forms are actually ZETALISP macros, a situation
which could confuse some program-analyzing tools. special-form-p is COMMON LISP
compatible, however; one should use that predicate and dispatch when needed before
checking if a form is a macro-call.

common

Release 2 Notes 4 : Common LISP Is Supported

incompat

There are COMMON LISP names that are ZETALISP specxal forms and thus are not
redefinable.

If one makes a free reference to a variable in the interpreter, but does not declare it
special, one gets thrown into the error handler. Currently, there is a proceed option
that will subsequently allow this to happen without an error occurmg This proceed
option will go away after Release 2.

The ZETALISP implementation uses the tag values (catch and throw tags) of t, nil, and
0 for internal purposes. User programs should refrain from using these-mgs P

In order t¢'for files with font changes in them to be read correctly, reader macros must
use the functions si:xr-xrtyi and si:xr-xruntyi instead of read-char and unread-char. Use
of the special functions will be made unneccessary in a future release.

Release 2 Notes 5 Incompatible Changes

2. Incompatible Changes

This chapter describes various changes to ZETALISP that are likely to affect user programs.
Most of the COMMON LISP changes have either been taken in through the cli package and readtable
mechanism or have been documented elsewhere.

2.1 Tail Recursion

The variable tail-recursion-flag has no effect on the behavior of the system in Release 2. It is
unlikely that it will ever be reinstated.

2.2 Returning Storage

Stricter conventions need to be observed when using return-storage and return-array than are
alluded to in the Lisp Machine Manual. It implies that returning the storage and then clobbering
the pointer (using without-interrupts) is adequate protection against improper reference. In fact,
the PDL-buffer management in the microcode makes this not so. The only guaranteed technique
is the

(return-storage (progi pointer (setq pointer nil)))

idiom, which the compiler optimizes into code that actually clobbers pointer before it calls
return-storage. 1t is probably not a terribly good idea to call these functions from the interpreter.
(Actually, with the new garbage collector on the way, it’s probably not a good idea to call them
at all.)

2.3 Clarification on Fill Pointers

Two clarifications need to be made about fill pointers in ZETALISP: .

e Apparently, the documentation for fill-pointer has been wrong since Release 1. The
documentation (including the most recent edition of the Lisp Machine Manual) states -
that fili-pointer returns nil if it argument (a vector) does not have a fill pointer. However,
it has always signalled an error. (The condition flavor is sys:array-has-no-leader because,
in ZETALISP, fill pointers are implemented as element zero of the array’s leader.)
Interestingly enough, the actual behavior of fill-pointer agrees with what COMMON
LISP specifies. So, only the documentation will change.

¢ Fill pointers are only defined for vectors. Arrays that are not vectors, of course, may
have leaders, but element zero of such a leader will not be considered a fill pointer
by any system array function; nor will the function array-has-fill-pointer-p return t for
such an array.

2.4 Changes Related to Common Lisp

The following changes have been made to ZETALISP for compatibility with COMMON Lisp.

2.4.1 Decimal Radix Has Become the Default

incompat

Release 2 Notes 6 Incompatible Changes

Base 10. is now the default. This is a COMMON LISP change. However, it is still possible
to specily the radix for each file individually. To avoid any difficulties, place Base: 8; in the
attribute list (the -*- line) of any file which is supposed to be in octal. '

To get back the old behaviour, do :

(setq *print-base* 8. *read-base* 8. *nopoint nil)

2.4.2 Ratio Reading and Printing

Ratios used to be always read and printed usi‘ng decimal notation when using ZETALISP syntax.
Thus, #5r-10\12 (or #5r-10/12 in COMMON LISP syntax) now represents “minus five sevenths.”

2.4.3 Case-Sensitive and -Insensitive String Comparison Functions.

The function equal now considers the strings "A" and "a" to be distinct. Use equ‘alp if you
wish to ignore case in the comparison. This is a COMMON LISP change:

Because equal has changed, the ZETALISP functions member, assoc, rassoc, remove, delete,
and find-position-in-list-equal are affected when strings are involved. (Note that the epynomous
COMMON LISP functions use eql as the default comparison function.) Also affected are hash
tables which use equal as the comparison function.

char-equal and string-equal always ignore case. To consider case in comparing characters or
strings this way, use char= for characters and the new function string= for strings.

Here are some ways to compensate for the change in equal when you have been usmg strings
as “keys” in lists (as sets), association lists, or in equal-based hash tables.

— In lists:

Release 1: (member key *known-words)
Release 2: (cli:member key *known-words* :test #’string-equal)

— In association lists:

Release 1: (assoc person nickname-alist)
Release 2: (cli:assoc person nickname-alist :test #’string-equal)

— In hash tables

Release 1: (defvar *things* (make-equal-hash-table :size 42))
Release 2:
(defvar *things* (make-equal-hash-table
:8ize 42 :comparison-function #’string-equal))

samepnamep now considers case significant.

The functions of the string-search series now take an extra optional argument which says
whether to consider case.

alphabetic-case-affects-string-comparison Variable:
The old flag alphabetic-case-affects-string-comparison is now used only by the %string-search
and %string-equal microcode primitives. These primitives now consider font significant as
well as case when the flag is non-nil.

incompat

Release 2 Notes 7 Incompatible Changes

2.4.4 "COMPILE No Longer Needed in PROGN

Any progn encountered at top level by the compiler is now handled by treating each element
as if it had been found at top level. Macros that used to expand into (progn ‘compile forms...) can
now expand into just (progn forms...)

2.4.5 Arrays Stored in Row-Major Order

Arrays used to be stored in column-major order. Now, they are stored in row-major order,
which means that successive locations differ in the last subscript. The value of sys:array-index-order
~ is now t; it was nil in Release 1. The change is irreversible and cannot be affected by changing the
value of this variable. The change in storage layout does not aflect user programs except when
they do one of these four things: :

1. Access screen arrays of windows using aref. Since the TV hardware has not been
changed, the horizontal dimension is still the one that varies fastest in memory, which
means it is now the second dimension rather than the first. The function ar-2-reverse
(and its related versions for setting and getting locatives) was introduced in Release 1
so that code which was really using two-dimensional arrays in z/y terms would work
no matter what the status of the index order was. If you used this function in such an
application, you should have no problems.

2. Use multidimensional displaced arrays or arrays displaced to multidimensional arrays.

3. Deal with large multidimensional arrays and want to optimize paging behavior. For
example, this piece of code will run with acceptable paging behavior in Release 1, but
“pessimally” in Release 2 because it touches the elements of the array that are the
farthest apart (in the first dimension) in the innermost loop.

(defvar *space* (make-array ’(100 100 100)))

(defun make-space-centered ()
(dotimes (iz 100)
(dotimes (iy 100)
(dotimes (ix 100)
(setf (aref *spacex ix iy iz)
(make-space-vector (- ix) (- iy) (- iz2)))))))

Notice that this example is written starting with an outer loop concerned with the
zaxis. Most programmers would probably use the opposite approach if they did not
care about paging performance at all, since it is “natural” to nest loops according the
order of the indices as they are written.

4. Store multidimensional arrays in QFASL files. A QFASL file records the elements of
an array in the order they appear in storage. Therefore, if an array is dumped in an
earlier system and loaded into Release 2, it will appear to be transposed.

The functions ar-2-reverse, make-pixel-array and others are provided to make it easier for you to
change your code so that it works in both Release 2 and older system versions. See these functions
in the Lisp Machine Manual.

L 3

2.4.6 KEY Arguments

incompat

Release 2 Notes 8 Incompatible Changes

It is no longer ever an error to omit a keyword argument defined with &key. &Optional now
has no effect on the treatment of &key arguments. This change is for COMMON LISP.

2.4.7 Common Lisp Package Conventions

For more information about changes to the package system, see section 5.1, page 57. The
changes documented here simply give a very cursory overview of the most obvious visible changes.

2.4.7.1 Keywords

The user package is now just like all other packages in requiring that colons be used in front
of keyword symbols. For example, you can no longer write just tyi instead of :tyi if your program
is in user.

All symbols in the keyword package — that is to say, symbols that you write with a colon, such
as :string-out —are now automatically set up to evaluate to themselves. Thus, you can now wrile

(send stream :tyi)
instead of
(send stream ’:tyi)

This Common LISP change ought not to invalidate any reasonable programs.

2.4.7.2 Referring to Packages

In COMMON LISP you must refer to an internal symbol of another package by using two
colons (::). ZETALISP does not actually require you to use this construct, and you are free to
access internal symbols with a plain colon in a package prefix. You can also suppress local package
nicknames with #:. As of Release 2, the situation is:

foo:bar Refers to external symbol of package foo (but actually you can use it for any symbol
in fooj. ‘
foo::bar Refers to an internal symbol of package foo, in strict Common LISP.

foo#:bar Refers to external (really, any) symbol in the package whose global name or nickname
is foo, ignoring any local nickname foo for any other package.

#:bar Makes an uninterned symbol named bar.

Currently, internal symbols in other packages are indicated with ::. However, only the COM-
MON LISP readtable enforces the distinctions between external and internal symbols.

2.4.8 Local SPECIAL Declarations to Change in Meaning

For the sake of Common LISP, a special declaration within a function will have to be present
in the construct (let, prog, etc.), which binds a variable in order to make the binding be special.
Thus, for example,

(defun foo (a)
(declare (special b)) N
(let (b)
N

will no longer make b special. Instead, you must write

incompat

Release 2 Notes 9 Incompatible Changes

(defun foo (a)
(let (b)
(declare (special b))
o))

where the local declaration appears just inside the construct that binds the variable in question.

- A further unfortunate consequence of this is that local-declare cannot be used any more to
make a binding special, as in :

(defun foo (a)
(local-declare ((special b))
(let (b)
D))

because this too would fail to put the declaration just inside the let.

To facilitate the changeover, this change has not actually been made. Local special declarations
will still affect code just as they used to. However, any code that depends on this will get a warning
reminding you to fix the code. The actual change will occur in a future system version.

Note that local-declares of special around an entire function, affecting arguments of the func-
tion, will continue to work. Also, if you are just examining or setting the variable, as in

(local-declare ((special a))
(+ abB) ...)

and not rebinding it, then your code will not be affected.

2.4.9 SELECTQ now uses EQL as its test function.

selectq formerly performed all its comparisons using eq. Since everything that is eq is also eql,
and the only things which are eql but not eq are flonums, bignums and ratios (which should never
have been used as tests for selectq in the past for this very reason) there should be no effect on
any existing code. selectq and the COMMON LISP macro case are thus now identical.

2.4.10 CATCH and THROW

catch and throw used to be defined in a way which was compatible with Maclisp. (catch form
tag) used to be what (catch 'tag form) is now, and (throw form tag) used to be what (throw ‘tag
form) is now. Since Maclisp itself has been issuing warnings for years saying to ase-*catch, this - -
should cause no problems.

The implementation-related restrictions and general weirdness associated with the values from
catch (a/k/a *catch) in older system versions have been fixed; catch now returns all the values from
the last form executed (if no throw occurs) or else the values supplied by the second argument, to
throw.

In Release 2, throw can pass multiple values to catch: catch used to return exactly four argu-
ments, of which the first one was a single value given to throw; the other three had complicated
meanings. Now, catch returns any number of values: either the values thrown, or the values of the
last, form inside the catch, if no throw was done.

To throw more than one value, make the second subform of a *throw something which returns
multiple values. Thus,

(catch 'foo (throw ‘foo (values ’a ’'b)))

incompat

Release 2 Notes 10 S | Incompatible Changes

returns the two values a and b.

In addition, catch-all now returns all the values of the body or all the values thrown, plus three
more: the tag, action and count, a la *unwind-stack. (Yes, it is peculiar for a function to return n
values followed by three specific ones, but it has to work that way.)

If you want to receive all these values, you should use catch-all within a multiple-value-list and

then use (butlast list 3) to get the values thrown or returned and (nleft 3 list) to get the three
specific values.

2.4.11 EVALHOOK/APPLYHOOK Incompatible Changé

- Evalhook and applyhook functions are now passed two additional arguments, which describe
the interpreter environment that the evaluation or application was going to take place in. See the
section on evaluation in the Common Lisp Release Notes for more information.

2.4.12 Changes to FORMAT control argument

"X (HeX)
Usage: ~width,padchar,commacharX — Prints its argument in hexadecimal (analogous
te 0, “B and “D). This command used to be used to insert spaces into the output.
Use ~“number-of-spaces@T to achleve the same result as the old "number-of-spacesX
directive. e

“F (Floating point}
Usage: ~width,decimal-places,scale,overflowchar,padcharF — Prints a floating-point

number in nonexponential notation. Multiplies by 105¢2€ pefore printing if scale is
specified. Prints in width positions, with decimal-places digits after the decimal point.
Pads on left with padchar if necessary. If the number doesn’t fit in width positions,
and overflowchar is specified, this command just fills the width positions with that
character.

This directive used to just take one optional prefix control arg, which specified how
many mantissa digits to print. This is the same as decimal-places+2 for the new format.
Use ~,n+2F to achieve the same result as the old “nF directive.

“E (Exponential) :

Usage: ~width, decimal-places, exponent-places,scale, overflowchar,padchar,exptcharE
— Prints a floating-point number in exponential notation. Prints in width positions,
with exponent-places digits of exponent. If scale (default is 1) is positive, prints scale
digits before point, decimal-places-scale+1 after. If scale is zero, prints decimal-places
digits after the point, and a zero before if there’s room. If scale is negative, prints
decimal-places digits after the point, of which the first -scale are zeros. If exptchar is
spec1ﬁed it is used to delimit the exponent (mstead of “e” or whatever.) If overflowchar
is specified, then if the number doesn’t fit in the specified width, or if the exponent
doesn’t fit in exponent-places positions, the field is filled with overflowchar instead.

This directive used to just take one optional prefix control arg, which specified how
many mantissa digits to print. This is the same as decimal-places+2 for the new format.

Use =, n+2E to achieve the same result as the old “nE directive,

G (Generalized floating-point)
Usage: ~width,decimal-places, exponent-places,scale, overflowchar,padchar,exptcharG
— Like “E, but if the number fits without an exponent, it is printed without one.

incompat

Release 2 Notes . 11 o Incompatible Changes

This command used to be used to go to a particular argument. Use ~argument-
number@* to achieve the same result as the old ~“argument-numberG directive.

2.4.13 New Treatment of Square Roots

sqrt number Function
Return the square root of number, returning a complex number if needed. In Release
1, if number was negative, a condition of the flavor sys:negative-sqrt would be signalled.”
However, since this error never occurs in Release 2, the condition flavor has been flushed.

2.5 Pointer Fields Now 25 Bits; Flag Bit Gone

Each typed data word in LISP machine memory used to have one bit called the “flag bit”,
which was not considered part of the contents of the word. This is no longer so. There is no longer
a flag bit; instead, the pointer field of the word is one bit larger, making it 25 bits in all.

This extra bit extends the range of integers that can be represented without allocation of
storage, and also extends the precision of small-floats by one bit.

On the LMI Lambda processor, the maximum size of virtual memory is doubled. This is the
primary reason for the change. Unfortunately, the CADR mapping hardware is not able to use
the extra bit as an address bit, so the maximum virtual memory size on a CADR is unchanged.

The functions %24-bit-plus, %24-bit-difference and %24-bit-times still produce only 24 bits of
result. If you wish to have a result the full size of the pointer field, however wide that is, you
should use the functions %pointer-difference and %pointer-times (the last is new), and %pointer-
plus to do addition. (The new %pointer- functions are documented in more detail in the Lisp
Machine Manual.) ' ‘

The functions %float-double, %divide-double, %remainder-double and %multiply-fractions use
the full width of the pointer field.

The values returned by sxhash have not changed. They are always positive fixnums léss than
23
2
Because of the change in pointer format, short-floats now have 17 bits of mantissa, 7 bits of
exponent magnitude, and 1 bit of exponent sign. (Short floats used to have 16 bits of mantissa.)

2.6 EVAL-WHEN Rationalized

The treatment of (eval-when (load) forms...) by the compiler is now identical to the treatment
of forms encountered with no eval-when. They are put into the file to be evaluated on loading, or
compiled if they are defuns, and any macros defined are made available for expansion during the
compilation.

As a consequence, you can no-op an eval-when by supplying (load eval) as its first argument.
It is then equivalent in all cases to no eval-when at all.

Nested eval-whens now eflectively intersect their list of times to evaluate. As a result,

(eval-when (compile load eval)
compile-time-forms. . .
(eval-when (load eval)

forms...))

incompat

e b+ s

Release 2 Notes 12 : Incompatible Changes

treats the forms in the ordinary manner, overriding the special treatment given to the compile-
time-forms. '

(eval-when (compile) (eval-when (load) ignored-forms...))
does not do anything with the ignored-forms.

- 2.7 Change to'SI:FULL-GC-INITI__ALIZATION—LIST

The si:full-gc-initialization-list initializations are now run before the garbage collection in si:full-
gc, rather than after. A new initialization list, si:after-full-gc-initialization-list, is run after. The old
list which now runs before GC can be requested with the keyword :full-gc in add-initialization, and
the new list which runs after can be requested with :after-full-gc.

This change is for greater compatibility with Symbolics systems.

2.8 PROGYV With More Variables Than Values

The function progv accepts a list of variables and a list of values. In the past, if the list of
variables was longer, nil was used in place of the missing values. Now, in this case, the extra
variables which have no corresponding values will be made “unbound.” This is a COMMON LISP
. change.

2.9 %PAGE-STATUS Change

The subprimitive %page-status now returns the entire first word of the page hash table entry
for a page, if the page is swapped in; or nil for a swapped-out page, or for certain low-numbered
areas (which are all wired, so their pages’ actual statuses never vary). The argument is an address
in the page you are interested in—data type is irrelevant. The %%phti- symbols in SYS: SYS;
QCOM LISP are byte pointers you can use for decoding the value.

2.10 Character Bits Moved

The Control, Meta, Super, and Hyper bits now occupy a new position in character codes. This
is so that they will not overlap the field used by the character’s font number.

You can continue to use the byte pointers %%kbd-control to examine and set the bits; these
byte pointers have different values now but your code will work anyway. No change to the source
is needed. :

2.11 Time Functions Return Exact Year_

The functions decode-universal-time, time:get-time and get-decoded-time now return the correct
year number (a number greater than 1900.) rather than the year number modulo 1900.

2.11.1 Primitive Printer Functions Changed

The functions si:print-object and si:print-list no longer accépt the slashify-p argument. Instead,
they look at the current value of *print-escape®.

incompat

Release 2 Notes 13 Incompatible Changes

si:print-object object prindepth stream &optional which-operations Function

si:print-list list prindepth stream &optional which-operations Function
These are the primitive printer functions in the system. The recommended way to change
the style of printed representation of all objects in the system is to advise these functions.

2.12 New List Matching Constructs

The syntax of select-match has been changed so as to avoid use of the construct #?. This is
to avoid defining the construct #7, leaving it free for users to define. In addition, new instructions
test extremely quickly whether a list has certain elements and then extract the others.

As before, select-match takes an expression for an object to be tested followed by any number
of clauses to try. Each clause contains a pattern, a conditional form, and more forms that make
the body of the clause. The first clause whose pattern matches the object and for which the
conditional form produces a non-NIL value is the chosen clause, and its body is executed. The last
clause can be an otherwise clause.

The change is that the pattern is now an expression made with the * character, with commas
indicating a variable ip the pattern. For example, in

(éelect-match foo
(‘(a ,b ,b) (symbolp b) (print b))
(otherwise (print foo)))

the first clause matches if foo is a list of three elements, the first being the symbol a, and the
second and third being the same symbol. The second clause matches anything that slips through
the first.

select-match and list-match-p also accept logical combinations of patterns, using and, or, and
not at top level. Note that matching specifications for patterns actually containing the symbols
and, or, and not will not conflict with the use of this feature, since select-match and list-match-p
are special forms which interpret their arguments specially.

(defun hack-add-sub (x)
(select-match x -
((or “(+ ,y0) (- ,y0O) ‘“+yN) ¢t
)
((not (or ‘(+ . ,ignore) ‘(- . ,ignore)))
(ferror nil "You lose"))

(t x))) ‘

Note that variables used in the patterns (such asy in the example above) are bound locally by
the select-match.

You can get the effect of a single select-match pattern with list-match-p:

list-match-~p list pattern Macro
Returns t if the value of list matches pattern. Any match variables appearing in pattern
will be set in the course of the matching, and some of the variables may be set even if the
match fails.

2.13 BREAK Arguments Changed

incompat

Release 2 Notes 14 Incompﬁtible Changes

The function break is being changed to accept a format string and format arguments. It used
to take an unevaluated first argument, normally a symbol, and simply print it.

To make the changeover easier, break evaluates its first argument by hand, unless it is a
symbol-then its pname is used as the format string. However, the compiler issues a warning if you
use break in the old way.

2.14 Macro Expander Functions Take Two Arguments

A macro’s expander function used to be passed only one argument, the macro call to be
expanded. Now it is passed a second argument as well. It is an “environment” object, and it is
used to record the local macro definitions currently in effect.

Since many old macros are still compiled to accept only one argument, macroexpand- 1 is smart
and will pass only one argument in such a case. So there is no need to alter or recompile your
macro definitions now.

However, if you have anything else that calls macro expander functions directly, it must be
changed to do what macroexpand-1 does. The easiest way is to write

(call expander-function nil form :optional environment)
If you define a macro using macro (instead of defmacro) you should change the arp‘llst yoursell
to accept a second optional argument, even if it is just ignore.

Another change to these functions is that they return a second value which is t if any expansion
was done.

2.15 SETF and LOCF Definitions Done Differently

You no longer use setf and locf properties to define how to do setf or locf on some kind of form.
Instead, you use the macro defsetf to define how to setf it, and you do

(deflocf function ...)
to define how to do locf on it. See the section in the Common Lisp Release Notes that talks
about setf.

One exception: (defprop foo si:unsetfable setf) still works, by special dispensation. Likewise
for si:unlocfable. However, it is preferable to say, in the case of a function that should not allow
setf, to say

(defsetf function) or (defun function si::nosetf)

‘2..16 Y-OR-N-P And YES-OR-NO-P Arguments Changed

y-or-n-p format-string &rest format-arguments v Function
yes-or-no-p format-string &rest format-arguments Function
These two functions now take just a format string and format arguments. They no longer
accept the stream to use as an argument; they always use the value of *query-io*.
If you used to pass two arguments, you must now bind *query-io* around the call instead.

2.17 COPY-FILE Takes Keyword Arguments

incompat

Release

2 Notes 15 Incompatible Changes

copy-file filename new-name &key (error t) (copy-creation-date t) (copy-author Function

2.18

t) report-stream (create-directories :query) (characters :default) (byte-size :default)
Copies the file named filename to the file new-name. ’
characters and byte-size specify what mode of 1/O to use to transfer the data. characters
can be t to specify character input and output, nil for binary, :ask meaning ask the user
which one, :maybe-ask meaning ask if it is not possible to tell with certainty which method
is best, or :default meaning to guess as well as possible automatically. '

If binary transfer is done, byte-size is the byte size to use. :default means to ask the file
system for the byte size that the old file is stored in, just as it does in open.

The copy-author and copy-creation-date arguments say whether to set those properties of
the new file to be the same as those of the old file. If a property is not copied, it is set to
your login name (for the machine on which the target file resides) or the current date and
time. '

report-stream, if non-nil, is a stream on which a message should be printed describing the
file copied, where it is copied to, and which mode was used.

create-directories says what to do if the output filename specifies a directory that does not
exist. It can be t meaning “create the directory”, nil meaning “treat it as an error”, or
:query meaning ask the user which one to do.

error, if nil, means that if an error happens then this function should just return an error
indication.

If filename contains wildeards, multiple files are copied. The new name for each file is
obtained by merging new-name (parsed into a pathname) with that file’s truename as a
default. The mode of copy is determined for each file individually, and each copy is reported
on the report-stream if there is one. If error is nil, an error in copying one file does not
prevent the others from being copied. '
The value returned is a list with one element for each file which was to be copied. Each
element is either an error object, if an error occurred copying that file (and error was nil),
or a list (old-truename new-truename characters). The two truenames are those of the file
copied and the newly created copy. characters is t if the file was copied in character mode.
The value can also be just an error object, if an error happened in making a directory
listing to find out which files to copy (for a wildeard pathname).

MAKE-PATHNAME Change

The meaning of the defaults argument to make-pathname is changed. Now all pathname
components that are not specified or specified as nil are defaulted from the defaults, if you give
defaults. If you do not give defaults, then the host alone defaults from *default-pathname-defaults*,
as it used to. '

compat

Release 2 Notes 16 Incompatible Changes

compat

Release 2 Notes 17 Compatible LISP Programming Changes

3. Compatible LISP Programming Changes

3.1 All Objects Except Symbols and Lists Are Constants

All arrays, instances, fefs, characters, closures, etc. now evaluate to themselves. Evaluating
such objects used to be an error; this new behavior therefore cannot, hurt anything. Keywords (see
section 2.4.8, page 8), which are symbols in the keyword package, also evaluate to themselves.

The only kinds of objects that currently can evaluate to anything but themselves are symbols
and lists. However, it is not guaranteed that no other kind of object will ever be defined to evaluate
to other than itself.

3.2 Nonlocal GO and RETURN

You can now ge or return from an internal lambda expression to the containing function.
Example:

(prog O
(mapc #’(lambda (x) (if (numberp x) (return T))) -
inputs))

returns t if any element of inputs is a number. So does

(prog O
(mapc #’(lambda (x) (if (numberp x) (go ret-t)))
inputs)
(return nil)
ret-t
(return t))

3.3 Common Lisp Control Constructs BLOCK and TAGBODY

block takes a block name and a body:

(block name body...)
and executes the body, while allowing a return-from name to be used within it to exit the block.
If the body completes normally, the values of the last body form are the values of the block.
A block whose name is nil can be exited with plain return, as well as with (return-from nil).

block can be thought of as the essence of what named progs do, isolated and without the other
features of prog (variable binding and go tags).

Every function defined with defun whose name is a symbol contains an automatically generated -

block whose name is the same as the function’s name, surrounding the entire body of the function.

tagbody, on the other hand, is the essence of go tags. A tagbody form contains statements and
tags, just as a prog’s body does. A symbol in the tagbody form is a tag, while a list is a statement
to be evaluated. The value returned by a tagbody is always nil. tagbody does not have anything
to do with return.

prog is now equivalent to a macro

compat

Release 2 Notes 18 ~ Compatible LISP Programming Changes

(macro prog (form)
(let* ((name (and (symbolp (cadr form)) (cadr form)))
(vars (if name (caddr form) (cadr form)))
(body (if name (cdddr form) (cddr form))))
(if name
‘(block ,name
(block nil

(let ,vars .
: (tagbody . ,body))))
‘(block nil :
(let ,vars '
(tagbody . ,body))))))

if we ignore the added complication of progs named t and return-from-t.

3.4 LEXPR-FUNCALL And APPLY Now Synonymous.

apply now accepts any number of arguments and behaves like lexpr-funcall. lexpr-funcall with
two arguments now works the way apply used to, passing an explicit rest-argument rather than
spreading it. This eliminates the old reasons why lexpr-funcall was not the best thing to use in
certain cases, and paves the way for apply to translate into it. lexpr-funcall is now considered
somewhat obsolete

3.5 :ALLOW-OTHER-KEYS As A Keyword Argument
:allow-other-keys has a special meaning as a keyword when passed to a function that takes &key

arguments. If followed by a non-nil value, it prevents an error if any keyword is not recognized.
Thus, given the function

(defun foo (&key a b) (list a b))
you would get an error if you do (foo :a 5 :c t) because :c is not recognized. But if you do

(foo :a 5 :c t :allow-other-keys t)
you get no error. The :c and its argument are just ignored.

3.6 GET and GETHASH with Three arguments.

get and gethash now take an optional third argument, which is a default value to be returned
as the value if no property or hash table entry is found.

3.7 New Macros TYPECASE, PUSHNEW
There is now a typecase macro, compatible with COMMON LISP. Sec the Lisp Machine Manual

for details.
pushnew pushes an element onto a list only if it was not there (using cli:member) before.

(pushnew elt place)

compat

Release 2 Notes 19 Compatible LISP Programming Changes

is equivalent to

(or (cli:member elt place)
(setf place (adjoin elt place)))

except that elt and place are evaluated only once. The value returned by pushnew is the new
list. The keywords :key, :test, and :test-not are accepted by pushnew; they get passed to along to
cli:member to change the test for the “newness” of elt.

3.8 Microcoded Functions Interruptible

Many microcoded functions, including last, memgq, assq and get, are now interruptible. This
means in particular that if you pass a circular list to any of them you can now abort successfully.

3.9 Selecting a Returned Value

The function nth-value makes it convenient to select one of the values returned by a function.
For example, (nth-value 1 {foo)) returns the second of foo’s values. nth-value operates without
_ consing in compiled code if the first argument’s value is known at compile time.

nth-value value-number expression ' ' Special form
Evaluates expression, then returns one of its values as specified by value-number (with 0
selecting the first value).

3.10 New types NON-COMPLEX-NUMBER and REAL

(typep x (non-complex-number low high)) returns t if x is a non-complex number (ie a floating-
point number, a ratic or an integer) between low and high, the limits as usual being inclusive
normally,or exclusive if they consist of a list of one element. Note that complex-numbers with
an imaginary part of 0 are never of the type non-complex-number, since they are always of type
complex. To account for this additional case, there is another new type, real, which is defined such
that (typep x (real Jow high)} returns t if x is a either a non-complex number between low and high,
or a complex number with a zero imaginary part and a real part lying between low and high.

3.11 Remainder, Log Functions Extended

“Xxy : Function

remainder x y Function
In Release 1, the remainder function only took integer (fixnum & bignum) arguments. In
Release 2, it takes any sort of numeric arguments, and returns whatever is necessary to
represent the exact resuit, as per the Common Lisp specification.

log n &optional (base (exp 1)) : Function
Return the base base logarithm of n, where base defauits to e. Previously, log only took
one argument, and the base always e.

3.12 New Arithmetic Condition

compat

Release 2 Notes ‘ 20 Compatible LISP Programming Changes

Because COMMON LISP has a such a rich structure of numeric types, there are now cases .
(especially in the transcendental functions) where raising a number to a power may produce an
undefined result. '

sys:illegal-expt (sys:arithmetic-error) Condition
The condition sys:illegal-expt is signalled whenever an attempt is made to raise a number to
a power in some case where the result is not defined. The condition supports the following
operations:

:base-number :
The base of the exponentiation (the first argument to expt, for example).

:power-number . .
The power of the exponentation (the second argument to expt, for example).

3.13 Macro Changes

Because of COMMON LISP, some subtle changes have occurred in the behavior of macros in
interpreted code. Macro expander functions now take another argument, the lexical environment,
to account for macros which need to be aware of the local macro. definitions.

3.13.1 All Macros Are Displacing In Interpreted Code

All macros are displacing when encountered by eval. defmacro-displace, and so on, are now
synonyms for defmacro, and so on. This is not exactly a compatible change for the interpreter.
‘It was always made clear in the Lisp Machine Manual that part of a compiled function’s behavior
would be affected by the state of the macros it used at compile-time, no matter if the macro was
- displacing or not. On the other hand, it would matter in the interpreter whether the macro was
displacing or not. If a macro defined with macro (not a COMMON LISP construct, by the way) or
defmacro changed between invocations of a interpreted function that used it, the change would be
seen by the function, because the maecro would get expanded every time it is encountered by the
interpreter. On the other hand, when a macro call uses a displacing macro, it is really expanded
only once: the first time it is seen. So, if the macro changes, the changes will not noticed by the
interpreter if it encounters a macro call which it has already expanded.

Note that this behavior is closer to being analogous to the ecompiler, but not exactly so. In order
for that to be true, the interpreter would have to expand the macros in function-making forms
(the def family and Jambda) immediately. In general, COMMON LISP implementations are free to
~ expand macros whenever they see fit, so users should be wary of depending on the implementation
to notice changes in their macros when using interpreter.

- 3.13.2 MACROEXPAND-ALL

The function macroexpand-all is called like macroexpand. It expands macro definitions not only
at the top level of a form but also in its subexpressions. It is never confused by a macro name,
appearing at the start of a list, that is not a subexpression.

macroexpand-all form &optional environment Function
Expands macro definitions at all levels in form and returns the result. environment is used
for finding local macrolet macro definitions; it is like the second argument to macroexpand
(see previous page).
Only one value is returned.

compat

Release 2 Notes : 21 Compatible LISP Programming Changes

3.13.3 New Function DEFF-MACR_O

deff-macro "e function-spec &eval definition o Special form

' defines function-spec as definition, just like deff. The difference comes in compiling a file,
where the compiler assumes that deff-macro is defining a macro and makes the definition
available for expansion during this compilation. deff, on the other hand, is just passed
through to be evaluated when the file is loaded. To use deff-macro properly, definition
must be a list starting with macro or a suitable subst function (a list starting with subst
or a compiled function which records an interpreted definition which is a list starting with
subst).

3.13.4 DEFINE-SYMBOL-MACRO

define-symbol-macro has not been implemented in LMI/MIT ZETALISP.

The effect of (define-symbol-macro foo (print "huh)) would be that evaluating the symbol foo
would execute (print ‘huh). “Binding” such a symbol with let would probably have undefined or
counterintuitive behavior.

If users find this useful or necessary for compatibility with Symbolics systems, it will be im-
plemented.

3.14 Named Structure Operations

You can now funcall a named structure to invoke a generic operation on it, just as you would
a flavor instance. In fact, you can have code which operates on named structures and flavor
instances indiscriminately, if you make sure that the named structures you are using support.
whichever operations you plan to use.

For example,

(send *package* :describe) ; Use send here to make it clear.

invokes the :describe operation on the current package, just as

(named-structure-invoke :describe *package*)

would do.

Invoking a named structure has not been made ultra-fast, but that can bedone in a future
“microcode rejease. :

3.14.1 DEFSELECT and Named Structures

defselect, by default, defines the function to signal an error if it is called with a first argument,
not defined in the defselect (except for :which-operations, which is defined implicitly by defselect).

If you use defselect to define the handler function for a named structure type, and you use this
default behavior, you will get errors at times when the system invokes operations that you may
not know or care about, such as :sxhash or :fasload-fixup.

To avoid this problem, specify ignore as the default handler in the defselect. ignore accepts any
arguments and returns nil. Also, defselect-incremental (see page 23) may be useful when defining a
set, of operations on a named structure.

compat,

Release 2 Notes 22 Compatible LISP Programming Changes

3.14.2 Named Structure Operation :FASLOAD-FIXUP

The named structure operation :fasload-fixup is invoked by fasload whenever a named structure
is created according to data in a QFASL file. This operation can do whatever is necessary to make
the structure properly valid, in case just reloading it with all its components is not right. For most
kinds of structures, this operation need not do anything; it is enough if it does not get an error.

3.15 DEFSUBST Preserves Order of Evaluation

It used to be the case that if a defsubst’s body used an argument more than once, or used
its arguments out of order, the forms supplied as arguments would be evaluated multiple times
or in the wrong order. This has been fixed. The arguments passed to a defsubst function will be
evaluated exactly once, in the order they are written.

For example, after (defsubst foe (a b) (cons b a)), the reference (foo x (setq x y))
used to turn into (cons (setq x y) x), which is incorrect since it uses the new value of x twice.
To be correct, the old value of x should be used for the second argument to cons.

Now, the expansion will be something effectively like

(let ((temp x)) (cons (setq x y) temp))

3.16 CAR-SAFE, Etc.

‘car-safe x , ‘ Function
car-safe is like car when operating on a list. If x is not a list, car-safe returns nil. car-safe
never gCtS an crror.

cdr-safe x Function
cddr-safe x Function
nth-safe n x : Function
nthcdr-safe n x ’ Function

These are other functions which are analogous to car-safe. If x is not a cons, nil is returned.

3.17 Global Value Functions

There are now functions to use to examine or set the global binding of a variable, as opposed
to the binding currently in effect. The global binding is the one that is in effect in all processes or
stack groups that have not rebound the variable. '

- They work by forking off another process and examining or setting the variable in that process.
The bindings of your own process are not visible in the other process, and that process establishes
no bindings of its own, so references to the symbol there access the global binding.

symeval-globally symbol . Funection
Returns the global binding of symbol. '

setq-globally unevaluated-symbol value unevaluated-symbol value... Function
Sets the global binding of each symbol to the corresponding value.

set-globally symbol value ' Function
Sets the global binding of symbol to value. symbol is an evaluated argument.

compat

Release 2 Notes 23 Compatible LISP Programming Changes

makunbound-globally symbol ‘ _ _ Function
Makes the global binding of symbol be void.

boundp-globally symbol : . Function
Returns t if the global binding of symbol is not void.

These functions are used primarily so that init files can set variables that are bound by the
load function, such as package or base. If your init file does

(setq package (find-package ’£00))
this will be nullified as soon as load exits and its binding of package goes away. If you do

(setq—globally‘ package (find-package ’foo))

the current binding established by load is actually not changed, but when the load exits and
the global binding is in effect again, foo will be the current package.

3.18 LOCATION-MAKUNBOUND Takes Two Arguments

location-makunbound now takes a second, optional argument. This argument supplies a pointer
value to use in the void marker that is stored.

A void location actually contains a pointer with data type dtp-null. This pointer is supposed
to point to the object whose value or function definition is void. In the case of a symbol’s value
cell or function cell, the object would be the symbol itself.

location-makunbound makes the location point to whatever object you supply as the second
value.

3.19 DEFSELECT-INCREMENTAL

defselect-incremental fspec default-handler ’ Special form
With defselect-incremental you can define a defselect that starts out empty and has methods
added to it incrementally with individual defuns.
You do (defselect-incremental fspec default-handler) to define fspec as a select-method func-
tion that has no methods except the standard ones (:which-operations, :operation-handled-p,
and :send-if-handles).
Then, to define the individual methods, use defun on function specs of theTorm (:select-
method fspec operation). Note that the argument list of the defun must explicitly provide
for the fact that the operation will be the first argument; this is different from what you
do in an ordinary defselect. Example:

(defselect-incremental foo ignore)

i The function ignore is the default handler.

(defun (:select-method foo :lose) (ignore a)
(1+ A))

defines FOO just like

(defselect (foo ignore)
(:lose (a) (1+ a)))

compat

Release 2 Notes 24 - Compatible LISP Programming Changes

The difference is that reevaluating the defselect gets rid of any methods that used to exist .

but have been deleted from the defselect itself. Reevaluating the defselect-incremental has
no such effect, and reevaluating an individual defun redefines only that method.

3.20 :NO-ERROR Clauses in CONDITION-CALL

The last clause in a condition-call or condition-call-if may now be a :no-error clause. This looks
and works about the same as a :no-error clause in a condition-case: it is executed if the body returns
without error. The values returned by the body are stored in the variables that are the elements
of the list that is the first argument of the condition-call, and the values of the last form in the
clause are returned by the condition-call form itself.

3.21 Top Level Forms Specially Treated In The Compiler

Following is a partial list of symbols, which, when appearing as the first element of a top-level
form, will cause that form to be treated specially by the compiler. Only those whose meanings
have changed, or require clarification, are listed here.

progn Treat all following forms as if they also were at top level. Note that in Maclisp and in
Release 1 and earlier, it was necessary for the first form of the body to be "compile for
this to happen. This curious behaviour has been eliminated.

proclaim The arguments are evaluated, and relevant proclamations (such as special, notinline)

are used in the remainder of the compilation. This is as if the form were contained
within a (eval-when (eval compile load) ...)

export import in-package make-package shadow

shadowing-import unexport unuse-package use-package
These perform their relevant actions as if the form contained within a (eval-when
(eval compile load) ...).

require Ditto; this is relevant for COMMON LISP modules.

To cause a form not to be treated specially at top-level by the compiler, enclose it in an
eval-when. Eg:

(eval-when (load) ; don’t want this package to be consed up when we’re just compzlmg
(make-package "lossage" :use nil :size 69))

3.22 Compiler Optimization Changed

Many compiler optimizers have been reimplemented, and should often produce better code.
The most visible change is that any form is only optimized once, no matter where it appears.
(In earlier systems, a form could sometimes be optimized twice, which could produce duplicate
compiler warnings) In addition, the order in which optimizations are carried out has changed. All
the arguments to a function are optimized before the call to the function on those arguments,
unless the “function” is a macro or special form, in which case it is expected to take responsibility
for doing its own optimizations.

3.23 TV:BITBLT-CLIPPED

compat

Release 2 Notes 25 - Compatible LISP Programming Changes

tv:bitblt-clipped is just like tv:bitblt, except that if you specify transfers that include points
outside the bounds of either the source or destination array, only the part of the transfer that is
within the bounds of both arrays will take place.

The height and width you specify must be positive.

3.24 Z%BLT-TYPED. Proper Use of Pointér Subprimitives

%blt-typed is called just like %blt and does about the same thing: it copies any number of

consecutive memory words from one place in memory to another. The difference is that %blt is
only properly used on data that contains no pointers to storage, while %blt-typed is only properly
“used on boxed data.

Both %blt and %blt-typed can be used validly on data that is formatted with data types (boxed)
but whose contents never point to storage. This includes words whose contents are always fixnums
or small flonums, and also words that contain array headers, array leader headers, or FEF headers.
Whether or not the machine is told to examine the data types of such data makes no difference
since, on examining them, it would decide that nothing needed to be done.

For unboxed data (data that is formatted so as not to contain valid data type fields), such
as the inside of a numeric array or the instruction words of a FEF, only %blt may be used. If
%blt-typed were used, it would examine the data type fields of the data words and would probably
halt due to an invalid data type code. :

For boxed data that may contain pointers, only %blt-typed may be used. If %blt were used, it
would appear to work, but problems could appear mysteriously later because nothing would notice
the presence of the pointer there. For example, the pointer might point to a bignum in the number
consing area; moving it with %blt would fail to copy it into a nontemporary area. Then the pointer
would become invalidated the next time the number consing area was emptied out. There could
also be problems with lexical closures and with garbage collection. ‘

%p-store-tag-and-pointer should be used only for storing into boxed words, for the same reason
as %blt-typed: the microcode could halt if the data stored is not valid boxed data.

%p-dpb and %p-dpb-offset should be used only when the word being modified does not contain
a pointer. It may be an unboxed word, or it may be a boxed word containing a fixnum, small-flonum
or array header. The same goes for %p-deposit-field and %p-deposit-field-offset.

Here are some new subprimitives that test vahies for pointerhood.

% pointerp object Funection
returns non-nil if object points to storage. For example, (%pointerp "foo") is t, but (%point-
erp 5) is nil.

%p-pointerp location ' ~ Function

returns non-nil if the contents of the word at location points to storage. This is similar
to (%pointerp (contents location)), but the latter may get an error if location contains
a forwarding pointer, a header type, or an void marker. In such cases, %p-pointerp will
correctly tell you whether the header or forward points to storage.

%p-pointerp-offset location offset Funection
similar to %p-pointerp but operates on the word offset words beyond location.

% p-contents-safe-p jocation Funetion
returns non-nil if the contents of word location are a valid Lisp object, at least as far as
data type is concerned. It is nil if the word contains a header type, a forwarding pointer, or
an unbound marker. If the value of this function is non-nil, you will not get an error from
(contents Jocation).

compat

Release 2 Notes 26 Compatible LISP Programming Changes

%p-contents-safe-p-offset location offset | Function
similar to %p-contents-safe-p but operates on the word offset words beyond location.

% p-safe-contents-offset location offset ' Function
returns the contents of the word offset words beyond location as accurately as possible
without getting an error.

"o If the data there are a valid Lisp object, it is returned exactly.

e If the data are not a valid Lisp object but do pomt to storage, the value returned
is a locative which points to the same place in storage.

o If the data are not a valid LIsp object and do not point to storage, the value
returned is a fixnum with the same pointer field.

%pointer-type-p data-type Function
returns non-nil if the specified data type is one whlch points to storage. For example,
(%pointer-type-p dtp-fix) returns nil.

3.25 Growing the Stack

When the PDL (stack) overflows, a condition is signalled, and the process usually falls in the
debugger. If a function is going to use up a lot of stack space, then the function eh:require-pdl-room
can be used to grow the stack, and thus avoid the debugger.

eh:require-pdl-room regpdl-space specpdl-space Funetion
Makes the current stack group larger if necessary, to make sure that there are at least
regpdl-space free words in the regular pdl, and at least specpdl-space free words in the
special pdl, not counting what is currently in use.

3.26 Flavor Changes

3.26.1 Delaying Flavor Recompilation

si.*dont-recompile-ﬂavors"‘ Variable
Normally the system recompiles combined methods automatically when you make a change
that requires this. If you plan to make more than one change, you might wish to recompile
only once. To do this, set the variable si:*dont-recompile-flavors* non-nil before you make
the changes. Then set it back to nil, and use recompile-flavor to perform the appropriate
recompllatlons

3.26.2 Method Combination Improvements

When using method combination types such as :list, :progn, :append and :pass-on, which for-
merly allowed any number of untyped methods and nothing else, you can now use the method
combination type keyword as a method type. For example, when using :or combination for opera-
tion :doit, you can now define a method (myflavor :or :doit) as well as (myflavor :doit). The method
is combined the same way whichever name you use. However, when the operation is invoked, all
the typed methods are called first, followed by all the untyped methods.

compat

Release 2 Notes | 27 - Compatible LISP Progranlming Changes

There is no longer a limit of three values passed back from the primary method when :after
methods are in use. As many values as the primary method chooses to return will be passed back
to the ultimate caller.

3.26.3 Undefinition

undefllavor flavor-name - ' » Function
Removes the definition of flavor-name. Any flavors that depend on it are no longer valid
to instantiate.

3.26.4 New DEFFLAVOR options

Several new kéyword options for defflavor have been badded for Release 2.

:instance-area-function function

This feature can control in which area flavor instances are consed, on a per-flavor basis,
by giving a flavor an instance-area function. This is a functlon which will be called
whenever the flavor is instantiated, and expected to return the area to cons in (or nil, if
it has no opinion). The function is passed one argument, the init-plist, so if you want
to have an init option for the caller to specify the area, the instance-area function can
use get to get the value the caller specified.

The instance-area function is inherited by flavors which use this one as a component.

:required-init-keywords init-keywords...
This option specifies that each of the keywords in init-keywords must be prov1ded when
trying to make an instance of this flavor. Then, whenever the flavor (or any flavor that
depends on it) is instantiated, it will be an error if any of those init keywords fails to
be specified. For example, after

(defflavor foo (a) :inittable~instance-variables
(:required-init-keywords :a))

it is an error to do (make-instance "foo) since the :a keyword is not provided.

tinstantiation-flavor-function function-name ‘
This aliows a flavor to compute what flavor make-instance will actually use. When a
flavor which uses this option is passed to make-instace, it calls a function to decide
what flavor it should really instantiate (not necessarily the original flavor).
When (make-instance ‘foo keyword-args) is done, the function specified is called with
two arguments: the flavor name specified (foo in this case) and the init plist (the list
of keyword args). It should return the name of the flavor that should actually be
instantiated.
Note that the instantiation flavor function applies only to the flavor it is specified for.
It is not inherited by dependent flavors.

:run-time-alternatives clauses...

:mixture clauses...
A run-time-alternative flavor is a way to define a collectlon of similar flavors, all built
on the same base flavor but having various mixins as well, and choose which one to
instantiate based on init options. (This is implemented using the :instantiation-flavor-
function feature.)
A simple example would be:

compat

Release 2 Notes 28 Compatible LISP Programming Changes

(defflavor foo () (basic-foo)
(:run-time-alternatives
. (:big big-foo-mixin))

(:init-keywords :big))
Then, {(make-instance "foo :big t) will get you an instance of a flavor whose components
are big-foo-mixin as well as foo. But (make-instance 'foo) or (make-instance ‘foo :big
nil) will get you an instance of foo itself. The clause (:big big-foo-mixin) in the :run-
time-alternatives says to incorporate big-foo-mixin if :big’s value is t, but not if it is
nil.
You can have several clauses in the :run-time-alternatives. Each one is processed inde-
pendently Thus, you could have keywords :big and :wide mdependently control two
mixins and get four possibilities.
You can test for values of a keyword other than just t or nil. The clause

(:size (:big big-foo-mixin) (:small small-foo-mixin)
(nil nil))

allows the value for the keyword :size to be :big, :small, or nil (or omitted). If it is nil or
omitted, no mixin is used (that’s what the second nil means). If it is :big or :small, an
appropriate mixin is used. This kind of clause is distinguished from the simpler kind
by having a list as its seccond element. The values you check for can be anything, but
eq is used to compare them.

You can also have the value of one keyword control the interpretation of others by
inserting clauses within clauses. After the place where you put the mixin name or nil for
no mixin, you can put other clauses which specify keywords and their interpretation.
These other clauses are acted on only if the contammg alternative is chosen. For
example, the clause

(:etherial (t etherial-mixin)
(nil nil
(:size (:big big-foo-mixin) (:small small-foo-mixin)
(nil nil))))

says to consider the :size keyword only if :etherial is nil.

3.27 File System Changes

3.27.1 Additional Arguments to FS:PARSE-PATHNAME

fs:parse-pathname thing &optional with-respect-to defaults (start 0) end junk- Function

compat

allowed

Parses thing into a pathname and returns it. thing can be a pathname, a string or symbol,
or a Maclisp-style namelist. If it is a pathname, it is returned unchanged, and the other
arguments do not matter. with-respect-to can be nil or a host or a host-name.

e If it is noi nil, the pathname is parsed for that host and it is an error if the
pathname specifies a different host.

Release

2 Notes 29 Compatible LISP Programming Changes

o If with-respect-to is nil, then defaults is used to get the host if none is specified.
defaults may be a host object in this case. '

start and end are indices specifying a substring of thing to be parsed. They default to 0
for start and nil (meaning end of thing) for end.

e If junk-allowed is non-nil, parsing stops without error if the syntax is invalid,
and this function returns nil. The second value is the index in thing at which
parsing stopped, which is the index of the invalid character if there was invalid
syntax.

o If junk-allowed is nil, invalid syntax signals an error.

3.27.2 Merging Pathname Components

fs:merge-pathname-components pathname &optional defaults Funetion

compat

&key default-name always-merge-name default-type always-merge-type default-version

always-merge-version
This function extends the functionality of both the commonlisp function merge-pathnames
and the old Lisp Machine function fs:merge-pathname-defaults.
merge-pathname-components defaults components that are of pathname which are nil, and
returns the defaulted pathname. defaults is a pathname or a defaults-list to get defaults
from. If non-nil, default-name, default-type and default-version respectively are used as the
defaults for the name, type and version components if those components are not supplied by
pathname. Otherwise, those components are defaulted from defaults in the usual manner.
always-merge-name, always-merge-type and always-merge-version respectively mean that
the version and type components should always be merged in (from either default-zzz or
from defaults) even if the relevant component is already specified by pathname.

(merge-pathnames pathname defaults default-version) is thus equivalent to: -

(merge-pathnames-components pathname default)
:default-version default-version
:always-merge-version t)

since COMMON LISP specifies that the default-version argument to merge-pathnames is
merged into the resulting even if pathname already had a version component.
fs:merge-pathname-components differs from fs:merge-pathname-defaults in that it performs
only the merging operation of filling nil components of one pathname with (possibly nil)
components from the defaults, whereas fs:merge-pathname-defaults will never return a path-
name with a nil name or type component. :

fs:merge-pathname-defaults is thus a function useful for defaulting a pathname that the user
has just entered for some purpose, such as to be read. fs:merge-pathname-componments
will perform a single merging (and may return a pathname which is not accceptable for
performing file operations upon — such as a pathname with a name of nil.) It is useful
for programs which need to manipulate filenames in an exact manner (such as the file
server) and do not want any user-oriented heuristics happening “behind its back.” It
ignores such variables as *always-merge-type-and-version and *name-specified-default-type*,
which fs:merge-pathname-defaults uses. merge-pathnames is a simpler version of fs:merge-
pathname-components which COMMON LISP implementations understand.

A typical use of fs:merge-pathname-components is

Release 2 Notes : 30 Compatible LISP Programming Changes

(setq qfasl-file ,
(fs:merge-pathname-components gqfasl-file lisp-file
:always-default-version t
:default-type :qfasl
:always-default-type t))

which will produce a file whose version is the same as that of lisp-file and whose type
is always gfasl, and whose other components are the (perhaps nil) results of merging the
components of lisp-file with fasl-file. :

Some examples:

(setq pni (make-pathname :host twenex-host :name "FOO" :version 259))
=> #CFS: :TOPS20~-PATHNAME "TWENEX:F00.=.259"> ,

(setq pn2 (make-pathname :host twenex-host :device "DP" :type :TEXT))
=> #CFS: :TOPS20-PATHNAME "TWENEX:DP:= .TEXT.="D>

(fs:merge-pathname-components pni pn2)
=> #CFS: :TOPS20-PATHNAME "TWENEX:DP:F00.TEXT.259">
(fs:merge-pathname-components pni pn2 :default-version 5)
=> #CFS: :TOPS20-PATHNAME "TWENEX:DP:F0O.TEXT.259"D
(fs:merge-pathname-components pni pn2 :default-version 5
:always-merge-version t)
=> #CFS::TOPS20~-PATHNAME “TWENEX:DP:F00.TEXT.5"D
(fs:merge-pathname-components pnl pn2 :default-version 5
:default-type :lisp
:always-merge-version t)
=> #CFS: :TOPS20-PATHNAME "TWENEX:DP:F0O0.LISP.5"D>

(fs:merge-pathname-components pn2 pni)

=> #CFS: :TOPS20-PATHNAME "TWENEX:DP:F00.TEXT.2569">
(fs:merge-pathname-components pn2 pnl :always-merge-type t)

=> #CFS: :TOPS20-PATHNAME "TWENEX:DP:F0O.+=.259"D> ; merges in null type!
(fs:merge-pathname-components pn2 pnl :default-type :lisp)

=> #CFS: :TOPS20-PATHNAME "TWENEX:DP:F00.TEXT.259">
(fs:merge-pathname-components pn2 pni :default-type :lisp

:always-merge-type t)
=> #CFS::TOPS20-PATHNAME "TWENEX:DP:F00.LISP.259">

3.27.3 Logical Hosts

compat

Logical hosts can now have their translations specified by pattern matching, instead of
using just literal directory names. A translation now consists of a pair of pathnames or
namestrings, typically containing wildeards. Unspecified components in them default
to :wild. The from-pathname of the translation is used to match against the pathname
to be translated; if it matches, the corresponding to-pathname is used to construct
the translation, filling in its wild fields from the pathname being translated as in the
:translate-wild-pathname operation.

Most commonly the transiations contain pathnames that have only directories specified,
everything else wild. Then the other components are unchanged by translation.

Each translation is specified as a list of two strings. The strings are parsed into
pathnames and any unspecified components are defaulted to :wild. The first string of

Release 2 Notes . 31 - Compatible LISP Programming Changes

the pair is the source pattern; it is parsed with logical pathname syntax. The second
string is the target pattern, and it is parsed with the pathname syntax for the specified
physical host. :

For example, suppose that logical host FOO maps to physical host BAR, a Tops-20,
and has the following list of translations:

(("BACK;" "PS:<F00.BACK>")
("FRONT;* QFASL" "SS:<F00.QFASL>*.QFASL")
("FRONT;" "PS:<F00.FRONT>"))

Then all pathnames with host FOO and directory BACK translate to host BAR, device
PS and directory <FOO.BACK> with name, type and version unchanged. All path-
names with host FOO, directory FRONT and type QFASL translate to host BAR, de-
vice SS, directory <FOO.QFASL> and type QFASL, with name and version unchanged.
All other pathnames with host FOO and directory FRONT map to host BAR, device
PS and directory <FOO.FRONT>, with name, type and version unchanged. Note that
the first translation whose pattern matches a given pathname is the one that is used.
Another site might define FOO’s to map to a Unix host QUUX, with the following
translation list:

(("BACK;" "//nd//foo//back//")
("FRONT;" "//nd//foo//front//"))

This site apparently does not see a need to store the QFASL files in a sepai‘at_é dlrectory

Note that the slashes are duplicated to quote them for Lisp; the actual namestrings
contain single slashes as is usual with Unix.

If the last translation’s source pattern is entirely wild, it applies to any pathname not
so far handled. Example: '

(("BACK;" "//nd//foo//back//")
(" *//nd//fool//*//"))

fs:add-logical-pathname-host logical-host physical-host translations Function
fs:set-logical-pathname-host logical-host &key physical-host translations Function

compat

Both create a new logical host named logical-host. Its corresponding physical host (that
is, the host to which it should forward most operations) is physical-host. logical-host and
physical-host should both be strings. translations should be a list of translation specifi-
cations, as described above. The two functions differ only in that one accepts positional
arguments and the other accepts keyword arguments. Example:

(add-logicél-pathname-host "MUSIC" "MUSIC-10-A"
* (("MELODY ;" "SS:<MELODY>")
("DOC;" "PS:<MUSIC-DOCUMENTATION>")))

This creates a new logical host called MUSIC. An attempt to open the file

MUSIC:DOC;MANUAL TEXT 2
will be re-directed to the file
MUSIC-10-A:PS:<MUSIC-DOCUMENTATION>MANUAL.TEXT.2

(assuming that the host MUSIC-10-A is a TOPS-20 system).

Release 2 Notes 32 - Compatible LISP Programming Changes

fs:make-logical-pathname-host name Funetion
Requests that the definition of logical host name be loaded from a standard place in the file
system: namely, the file SYS: SITE; name TRANSLATIONS. This file is loaded immediately
with load, in the fs package. It should contain code to create the logical host; normally, a
call to fs:set-logical-pathname-host or fs:add-logical-pathname-host, above. '
The same file is automatically reloaded, if it has been changed, at appropriate times: by
load-patches, and whenever site information is updated.

3.27.4 :DEVICE-WILD-P, etc., Pathname Operations

The operation :device-wild-p operation on a pathname object is defined to return non-nil
if the pathname’s device component contains a wildcard.

:directory-wild-p, :name-wild-p, :type-wild-p and :version-wild-p are snmlar, for their
respective pathname components.

3.27.5 WITH-OPEN-FILE-SEARCH

with-open-file-search is a new macro for opening a file and trying various pathnames
until one of them succeeds. The pathnames tried differ only in their type components.

with-open-file-search (streamvar (operation defaults auto-retry) types-and- — Macro
pathname opl;rons) &body body

Tries opening various files until one succeeds; then binds streamvar to the stream and
executes body, closing the stream on exit.
types-and-pathname should evaluate to two values, the first being a list of types to try and
the second being a pathname, called the base pathname. Each pathname to try is made by
merging the base pathname with the defaults defaults and one of the types. options should
evaluate alternately to keywords and values that are passed to open.
If all the names to be tried fail, a fs:multiple-file-not-found error is signaled. operatwn is
provided just so that the :operation operation on the error object can return it. It is usually
the user-level function for that the with-open-file-search is being done.
If auto-retry is non-nil, an error causes the user to be prompted for a new base pathname.
The entire set of types specified is tried anew with this pathname.

3.27.6 New :PROPERTIES operation on file streams

Sending a :properties message to a file stream returns two values: a property list, like
the kind which is a element of the list returned by fs:directory-list, and a list of settable
properties. There is the usual optional error-p argument, as well. This operation uses
a new PROPERTIES command in the Chaosnet file protocol, so it may not work with
servers running old software.

3.27.7 Creating Links

fs:create-link link-name link-to &key (error t) Function
Creates a link named link-name that points to a file named link-to. An error happens if the
host specified in link-name does not support links (or because of any of the usual problems
that can happen in creating a file).

compat

Release 2 Notes 33 Compatible LISP Programming Changes

3.27.8 New :SUBMIT option for opening files

A new :submit option available in open and other constructs that use open (such as
with-open-file and friends). When this option is t and the direction is :output, the file
is submitted for batch processing on the host. The :submit option is currently effective
on VMS and Twenex Chaosnet FILE servers.

An example:

(defun retrieve-twenex-file (F)
"Submit a batch job that will retrieve the file F"
(setq f (fs:parse-pathname F)) '
(w1th-open~f11e (s (send (send (send (send f :host)
:sample-pathname)
:homedir)
:new-pathname :name " retrleve"
:type "ctl" :version :newest)
:direction :output
:temporary t :submit t)
(format s "@retrieve "A~%" (send f :string-for-host))))

3.27.9 File-Reading Special Forms

These two special forms are a straightforward aid in writing code that reads Lisp
forms from a file, while obeying the attribute list of the file. (The attribute list file’s
pathname object or generic pathname object is not updated with this special form.)

fs:reading-from-file (form file} body... Macro
fs:reading-from-file-case (form file error) clauses... ‘ Magcro
The following form prints out the result of evaluating each form in the file:

(fs:reading-from-file (form file)
(format t "Values from ~S are: " form)
(format:print-list t ""S" (multiple-value-list (eval form))))

The body of the form is executed for every form in the file. fs:reading-from-file-case is a cross
between fs:reading-from-file and with-open-file-case, except there’s an additional argument
error argument (which is bound to the error object) for use in the clauses.

(fs:reading-from-file-case (form file error)
((fs:file-not-found
(format t ""&Options file ~A not found, using default values."
file))
(fs:file-error
(format t "“&Error: "A" (send error :report-string)))
(:no-error (process-option form))))

Here, the :no-error clause, which must be present and consists of any number of forms, is
executed for every form in the file. {But any error clause would be executed just once.)
The value of the error variable is not defined in the :no-error clause

The following function does the actual work of getting the attribute list of a stream.

compat

Release 2 Notes ' 34 Compatible LISP Programming Changes-

fs:extract-attribute-bindings stream Function
returns two values: a list of variables, and a correspondmg list of values to bind them to,
to set up an environment to read data from stream in accordance with stream’s attrxbute
list.

3..27.10 VMS Default Device

The “primary device” for VMS hosts now defaults USRD$ rather thanSYS$SYSDSK.
However, it is also possible specify what the default device using the :host-default-
device-alist option in the site description; see section 9.3.2.2, page 85 for more details.

3.27.11 Improved File Error Handling

When there is an error accessing a file and the system asks for a new pathname, you
now have the option of entering the debugger instead. Simply type End.

3.28 String Changes

string-length can give you the length of anything string can coerce into a string. In
Release 2, it would not accept characters or symbols.

make-string length &key initial-element &allow-other-keys Function
The “other” keyword which is the most interesting to use here is :fill-pointer. (Only the
sinitial-element keyword is supported in COMMON LISP.)

Clarification: note that string-append and the related functions do not create strings
with fill pointers. .

3.29 New Keyword Arguments to MAKE-PLANE

The arguments initial-dimensions and -initial-origins are now accepted. You can use
them to specify which part of the infinite plane the initially allocated storage should
be for. ‘

make-plane rank &key type default-value extension initial-dimensions initial- Function
origins
Creates and returns a plane. rank is the number of dimensions. The keyword arguments
are

type The array type symbol (e.g. art-1b) specifying the type of the array out of which
the plane is made.

default-value
The default component value as explained above.

extension The amount by which to extend the plane, as explained above.

initial-dimensions
nil or a list of integers whose length is rank. If not nil, each element corresponds
to one dimension, specifying the width to allocate the array initially in that
dimension.

compat

Release 2 Notes 35 Compatible LISP Programming Changes

initial-origins ’

nil or a list of integers whose length is rank. If not nil, each element corresponds
to one dimension, specifying the smallest index in that d1mensxon for which
storage should 1n1tlally be allocated. :

Example:

(make-plane 2 :type ’art-4b :default-value 3)
creates a two-dimensional plane of type art-4b, with default value 3.

3.30 New Resource Features

A new option to defresource called :deinitializer has been added. The value is either
a function of one argument, or a form contammg a reference to the variable object.
The deinitializer is called when an object is deallocated. There are two storage-related
reasons for specifying a deinitializer:

1. Sometimes, a resource may have pointers to objects that are only valid
(w1th respect to the Lisp Machine storage conventions) when the object
is allocated. When the object is deallocated, some objects to which it
might point may no longer be around. This situation only arises when us-
ing dangerous features such as pointer-making subprimitives or temporary
areas.

Even when an object of a resource is deallocated, the garbage collector
can still find it. Thus, “dangerous” pointers should be thrown away by the
deinitializer.

2. An object of a resource might the only object to point to another big object
that should otherwise be freed by the garbage collector.

In either case, the deinitializer will deference the objects to whlch it points by setting
slots of itself to nil.

There are also two new operations on resources:

map-resource function resource-name &rest extra-args Funetion
Operates with function on each object created in resource resource-name.

Each time function is called, it receives three fixed args, plus the extra-args. The three
fixed args are:

e an object of the resource;

o tif the object is currently allocated (“in use”
o the resource data structure itself.

deallocate-whole-resource resource-name Function
Deallocates each object in resource resource-name. This is equivalent to doing deallocate-
resource on each one individually. This function is often useful in warm-boot initializations.

3.31 Flushed Processes

A flushed process now has the symbol si:flushed-process as its wait function. This
function is equivalent to false in that it always returns nil, but it is distinguishable

compat

Release 2 Notes 36 Compatible LISP Programming Changes

from false. Thus, flushed processes can reliably be distinguished from those that have
done process-wait-forever.)

3.32 Indenting Format Directive

format output within a “— ... ~“+~ construct is printed with each line indented to match
the indentation that was current when the “— was reached.

3.33 Input Read Function Changes

3.33.1 READLINE and Friends

readline and readline-trim have been extended to return a second value. This value is t
if end-of-file was encountered.

Note that end-of-file can still be an error if encountered at the beginning of the line,
and this is still controlled by the eof-option argument. But if the function does return,
the second argument always says whether there was an end-of-file.

The new function readline-or-nil is like readline-trim except that it returns nil rather
than "" if the input line is empty or all blank.

© 3.33.2 New Function READ-DELIMITED-STRING

read-delimited-string &optional delimiter stream eof rubout-handler-options Function
bufler-size

Reads input from stream until a delimiter character is reached, then returns all the input
before but not including the delimiter as a string. delimiter is either a character or a list
of characters that all serve as delimiters. 1t defaults to the character End. stream defaults
to the value of *standard-input®.
If eof is non-nil, then end-of-file on attempting to read the first character is an error.
Otherwise it just causes an empty string to be returned. End-of-file once at least one
character has been read is never an error but it does cause the function to return all the
input so far.
Input is done using rubout handling and echoing if stream supports the :rubout-handler
operation. In this case, rubout-handler-options are passed as the options argument to that
‘operation.
buffer-size specifies the size of the string buffer to allocate initially.
Three values are returned:

e the string of input read;
e 2 flag which is t if input ended due to end of file;

e and the delimiter character which terminated input (or nil if end of file was
reached).

:run-time-alternatives can also be called :mixture, for compatibility with other systems.

3.33.3 :STRING-LINE-IN Stream Operation

compat

Release 2 Notes 37 Compatible LISP Programming Changes

:string-line-in is a new standard input stream operation, supported by all the input streams
provided by the system. It fills a user-supplied buffer with text from the stream until either the
buffer is full, end of file is reached, or a Return is found in the input. If input stops due to a Return,
the Return itself is not put in the buffer.

Thus, this operation is nearly the same as :string-in, except that :string-in always keeps going
until the buffer is full or until end of file.

- :string-line-in returns three values:

e The index in the buffer at which filling stopped. (If the buffer has a fill pointer, it is
set to this value as well.)

o tif end of file was reached.

e t if the line is not complete; that is, input did not encounter a Return character. In
that case, there may be more text in the file belonging to the same line.

3.33.4 PROMPT-AND-READ Improvements

There are several new options you can give to prompt-and-read, and some existing options now
take arguments. Remember that the first argument to prompt-and-read is an option that is either
a keyword or a list of a keyword followed by arguments (alternating keywords and values). The
rest of the arguments are a string and additional args passed to format to print the prompt.

Here are the options which have been changed incompatibly:

:eval-form-or-end
Is changed so that, if the user types just End, it returns :end as the second value. It
“used to return #\end as the second value in that case. The first value will still be nil.

:eval-form-or-end :default object

:eval-form :default object
If the user types Space, meaning use the default, the second value will now be :default
rather than #\Space. The first value will still be object, the default.

Here are the options that now take additional arguments:

:pathname :defaults default-list :version default-version
A pathname is read, and returned using fs:merge-pathname-defaults: default-list is
passed as the second argument, and default-version is passed as the fourth argument.

:number :input-radix radix :or-nil nil-ok-flag A

Reads a string terminated by Return or End, and parses it into a numb-ervusing radlx |

radix if the number is a rational. The number is returned. If nil-ok-flag is non-nil, then
you may also type just Return or End, and nil is returned.

Here are the new options:

:character Reads a singie character and return a fixnum representing it.

:date :never-p never-ok :past-p past-required
Reads a string terminated by Return or End and parses it as a date /time. The universal
time number representing that date/time is returned. If past-required is non-nil, the
date must, be before the present time, or else you get an error and must rub out and use
a different date. If never-ok is non-nil, then you may also type "never"; nil is returned.

:expression
Is the same as :read: read a LISP object using read and return it.

compat

Release 2 Notes 38 Compatible LISP Programming Changes

:expression-or-end
Reads a LISP object using read, but alternately allows just End to be typed and returns
the two values nil and :end.

:pathname-or-nil
Reads a file name and returns a pathname object, but if the user types just End then
returns nil instead. The pathname is defaulted with fs:merge-pathname-defaults.

:pathname-or-nil :defaults default-list :version default-version
A pathname is read, and returned using fs:merge- pathname defaults: default-list is
passed as the second argument, and default—verszon is passed as the fourth argument.

3.33.5 The Rubout Handler

There are some new options for use in controlling the rubout handler; some other options are
changed. The new options are :no-input-save, :activation, :command and :preemptable. The changed
options are :do-not-echo, :pass-through and :prompt.

Recall that the options are the first argument to the :rubout-handler stream operation; the re-
maining arguments being the parsing function and arguments to call it with. The options argument
is an alist; each element should look like one of these patterns:

(:no-input-save t)
Does not save this bateh of input in the input history when it is done. yes-or-no-p
specifies this option.

(:full-rubout value)
Causes immediate return from the :rubout-handler operation if the buffer ever becomes
empty duc to deletion of text.

Two values are returned: nil and value.
The debugger uses this option so it can erase "Eval:" from the screen if you rub out
all the characters of the form to be evaluated.

(cinitial-input string)
Starts the buffer with string.

(:initial-input-pointer n) :
Starts by placing cursor n chars from the beginning of the buffer This is used with
sinitial-input.

(:activation fn args...)
Activates if certain characters are typed in. An activation character causes the buflered
input to be read immediately, and moves the ediling pointer to the end of the buffer.
fn is used to test whether characters are activators. It is called with an input character
{(never a bhp) as the first arg and args as additional args If fn returns non-nil, the
character is an activator.
The activation character does not go in the buffer itself. However, after the parsing
function has read the entire contents of the bufler, it reads a blip (:activation char
numeric-arg) where char is the character that activated and numeric-arg is the numeric
argument that was pending for the next rubout handler command.

(:do-not-echo chars...)
Poor man’s activation characters. Like :activation except: the characters that should
activate are listed explicitly, and the character itself is returned, rather than a blip,
after all the buffered input.

(:command fn args...)

————— e

Makes certain characters preemptive commands. A preemptive command returns in-

compat

Release 2 Notes 39 Compatible LISP Programming Changes

stantly to the caller, of the :rubout-handler operation, regardless of the input in the
buffer. It returns two values: a list (:command char numeric-arg) and the keyword
:command. Any buffered input remains in the buflfer for the next time input is done.
In the meantime, the preemptive command character can be processed by the com-
mand loop.

In testing for whether a character should be a preemptive command, this works just
like :activation.

(:preemptable value) | [P

Makes all blips act as preemptlve commands. If this option is specified, the rubout

handler returns immediately when it reads a blip, leaving buffered input for next time.
Two values are returned: the blip that was read, and value.]

(:pass-through (char doc) ...)

Defines editing commands to be executed by the parsing function itself. Each char is
such a command, and doc says what it does. doc is printed out by the rubout handler’s
help command. If any of these characters is read by the rubout handler, it is returned
immediately to the parsing function regardless of where the input pointer is in the
buffer. The parsing function should not regard the character as part of the input.

There are two reasonable things that the parsing function can do:

o

e print some output .
o :force-kbd-input

If output is printed, the :refresh-rubout-handler operation should be invoked afterward.
This causes the rubout handler to redisplay so that the input being edited appears
after the output that was done. If input is forced, it will be interpreted as rubout
handler commands.

There is no way to act directly on the buffered input because different implementations
of the rubout handler store it in dnfferent ways.

(:prompt fn-or-string})
Directs prompting for the input being read. If fn-or-string is a string, it is printed;
otherwise it is called with two args: the stream, and a character that is an editing
command that says why the prompt is belng printed.

(:reprompt fn-or-string)
Same as :prompt except used only if the input is reprinted for some reason after editing
has begun. The :reprompt option is not used on initial entry. If both :prompt and
:reprompt are specified, :prompt is used on initial entry and :reprompt thereafter.

A new convenient way to invoke the rubout handler on a stream if the stream supports it is
to use with-input-editing.

with-input-editing (stream options) body... : Macro
Invokes the rubout handler on stream, if it is supported, and then executes body. body
is executed in any case, within the rubout handler if possible. body’s values are returned
by with-input-editing. However, if a preemptive command is read, with-input-editing returns
immediately with the values being as specified above under :command or :preemptable.
options are used as the rubout handler options.

sys:parse-error Condition

sys:read-error {parse-error) Condition
All rubout handlers now check for the condition name sys:parse-error when they decide
whether to handle an error. They used to check for sys:read-error. All the errors signaled

compat

Release 2 Notes : 40 Compatible LISP Programming Changes

by the system that have the condition name sys:read-error now have sys:parse-error as well,
so no change in behavior should be apparent. However, you can signal an error that has
sys:parse-error but not sys:read-error if you wish (say, if the error happens in some function
other than read).

sys:parse-error is also the condition name that the compiler looks for in its efforts to continue
from errors that happen while reading text to be compiled.

sys:parse-ferror format-string &rest format-args : Function
The function sys:parse-ferror is a convenient way to signal such an error, if you do not
want any additional condition names besides sys:parse-error and the ones it implies. If
sys:parse-ferror is called while reading text to be compiled, it will return nil automatically.

3.34 Readtables |

Because of the adoption of COMMON LISP, some of the Lisp reader syntax internals have been
changed or extended. In addition, a mechanism has been added for named readtables, which may
be helpful in more easily supporting languages with different syntaxes from ZETALISP

3.34.1 Syntax Descriptions

Remember, that even though the following changes have been documented as a result of
COMMON LISP, the syntax descriptions and the way there are modified are not acce.sed exactly
this way in COMMON Li1sP itself.

si:set-syntax-from-description char description &optional readtable ' Function
There are new syntax descriptions that you can pass to this function:

si;escape A quote-one-character character. In the ZETALISP readtable / is such a char-
acter. In the COMMON LisSp readtable, \ has this syntax description.

si:multiple-escape
A quote-several-characters character. In the ZETALISP readtable | is such a
character.

si:character-code-escape
Is followed by a character’s octal code. In the ZETALISP readtable ® is such a
character.

si:digitscale
A character for shlftmg an integer by digits. In the ZETALISP readtable *
such a character.

si:bitscale A character for shifting an integer by bits. In the ZETALISP readtable _ is such
a character.

si:non-terminating-macro
A magcro character that is not recognized if a token is already in progress. In
the ZETALISP readtable # is such a character. (It is also a dispatching macro,
but that is another matter.) The correct way to make a character be a macro
is with set-macro-character, not with this deseription.

The syntax descriptions si:slash and si:circlecross are still implemented but it is preferable
to use si:escape or si:character-code-escape. The syntax si:verticalbar is no longer defined;
use si:multiple-escape. Unfortunately, it is no longer possible to define si:doublequote, since
Doublequote (") is now just a macro character.

compat

Release 2 Notes ' 41 Compatible LISP Programming Changes

3.34.2 Named Readtables

To aid in the support for COMMON LISP in Zetalisp, readtables were given names so that
they could be referred to symbolically. The readtable and syntax file attributes use this feature to
distinguish COMMON LISP files from Zetalisp files. Named readtables may be useful for similar
applications. (Note that for a readtable to be accessible from the file attribute list, one of its names
must readable as a symbol - so it should have one short name with no whitespace in it.)

There are two ways to get a named readtable:

e The first way is to use the readtable éompller, to make a readtable from scratch. In
the section of the readtable deﬁmtlon file where the options (:opts) go, use the :names
option. :

(:OPT :NAMES ’("Lisp Machine COBOL" "FCOBOL"))

- o The second way is to copy another readtable, and give it some names. You can actual]y
override another readtable’s name by pushing your readtable in front of it on si:*all-
readtables*, so be careful about this feature, which may or may not always be thc right
thing for an application.

(defvar *strange-table* :unbound
"For slightly modified Common Lisp syntax")

(defun set-up-strangeness ()

(let ((rt (copy-readtable nil))) v
(setf (si:rdtbl-names rt) ’("strange Common Lisp" "STRANGE"))
(push rt si:*all-readtablesx*)

(setq *strange-table* rt)))

The COMMON LISP readtable has, among other names, CL and Common-Lisp for nicknames.
- The standard Zetalisp readtable can be found with the names T, Tradltlonal ZL, and Zetalisp.

si:find-readtable-named name create-p Function
Find or possibly create a readtable named name If there is a readtable which has a name
string-equal to it, we return that readtable. Otherwise, we may create such a readtable,
depending on create-p

nil
:error Get an error.
find Return nil
:ask Ask whether to create a readtable named name which is a copy of the current
readtable (*readtable*), and returns it if so.
t Create the readtable (a copy of *readtable*) and return it.
si:*all-readtables™ Variable

This is a list of all readtables ezcept those created with copy- -readtable, which does not
automatically put new readtables on this list.

si:rdtbl-names readtable Function
The accessor for the names (strings) of the readtable, the first name being the one printed
out at the beginning of Lisp interaction]oops The rather constrained name of the function
is due to historical reasons.

compat

TR SR I S B

Release 2 Notes 42 Compaiible LISP Programming Changes

3.35 Fasdumping Functions Record Package

These functions:

dump-forms-to-file -
compiler:fasd-symbol-value
compiler:fasd-font

and compiler:fasd-file-symbols- propertles

now always record, in the QFASL file created the name of the package in whlch the file was
written. This makes sure that the symbols used when the file is loaded will be the same as when
" it was dumped.

In dump-forms-to-file, you can specify the package to use by mcludmg a package attribute in
the attribute-list argument. For example, if that argument is the list (:package :si) then the file
is dumped and loaded in the si package. If you do not specify a package, the file is dumped and
loaded in user. With the other three functions, the file is always dumped and loaded in user.

3.36 Process Queues

A process queue is a kind of lock, that can record several processes that are wantmg for the
lock and grant them the lock in the order that they requested it. The queue has a fixed size. If the
number of processes waiting remains less than that size, then they will all get the lock in the order
of requests. If too many processes are waiting, then the order of requesting is not remembered for
the extra ones.

si:make-process-queue name size Function
Makes a process queue object named name, able to record size processes. size includes the
process that owns the lock.

si:process-enqueue process-queue &optional lock-value who-state Function
Attempts to lock process-gueue on behalf of lock-value. If lock-value is nil then the locking
is done on behalf of current-process. : :
If the queue is locked, then lock-value or the current process is put on the queue. Then
this function waits for that lock value to reach the front of the queue. When it does so,
the lock has been granted, and this function returns.
who-state appears in the who line during the wait. It defaults to "Lock".

si:process-deqeueue process-queue &optional lock-value Function
Unlocks process-queue. lock-value (that defaults to the current process) must be the value
that now owns the lock on the queue, or an error occurs. The next process or other object
on the queue is granted the lock and its call to si:process-enqueue will therefore return.

si:reset-process-queue process-queue - o Function
Unlocks the queue and clears out the list of things waiting to lock it.

sx.process-queue-locker process-queue Function
Returns the object in whose name the queue is currently locked, or nil if it is not now
locked.

3.37 New Function SI:PATCH-LOADED-P

compat

Release

2 Notes 43 Compatible LISP Programming Changes

si:patch-loaded-p major-version minor-version &optional (system-name Function

3.38

"SYSTEM™")
Returns t if the changes in patch number major-version.minor-version of system system-
name are loaded. If major-version is the major version of the system currently loaded, then
the changes in that patch are loaded if the current minor version is greater than or equal
to minor-version. If the currently loaded major version is greater than major-version, then
it is assumed that the newer system version contains all the improvements patched into
earlier versions, so the value is t.

Date Formats

time:*default-date-print-mode* | ' Variable

compat

This defines the default way to print the date for functions in the time package that accept
a print-mode argument, which currently include:

! * ‘time:print-time
time:print-universal-time
time:print-brief-universai-time
time:print-date
time:print-universal-date
time:print-current-time
time:print-current-date

o T A R B

Following is a description of the possible values, using ZETALISP syntax.

:dd/[mm/[yy
Prints out as 27/10{/66}

:dd//mm//yyyy
27/10{/1966}

:mm/[dd/[yy
10/27¢/66}

:mm//dd/[yyyy
10/27{/1966)
:dd-mm-yy 27-10{-66}
:dd-mm-yyyy
27-104{-1966}
:dd-mmm-yy
27-Oct{-66}
:dd-mmm-yyyy
27-Oct{-1966}
:dd/ mmm/ yy
27 Oct{ 66} — Note that the print name of this symbol really does contain a
space; backslash would be used to enter the symbol in COMMON LISP syntax.
:dd/ mmm/ yyyy
27 Oct{ 1966}

:ddmmmyy
270ct{66}

Release 2 Notes 44 Compatible LISP Programming Changes

:ddmmmyyyy
270ct{1966}

;yymmdd 661027

:yyyymmdd
19661027

;yymmmdd
{66}Oct27

:yyyymmmdd
{1966}0ct27

:Yy-mmm-dd
{66-}Oct-27

:yyyy-mmm-dd
{1966-}Oct-27

;yy-mm-dd {66-}10-27

yyyy-mm-dd
{1966-}10-27

These last four, and all the yyyy ones are new since the manual.

The default value is :mm//dd//yy. If one wishes to customize this for a site (usually, a
site not in the United States) simply put a setq of time:*default-date-print-mode* to the
appropriate value something in the SYS: SITE: SITE LISP file.

The time parser now accepts ISO format dates. 1980-3-15 means 15 March, 1980; 1980-MAR-15
means 15 March, 1980.

3.39 Network Chahges

Some of the site changes (section 9.3.2.2, page 85) are also network-related.

3.39.1 Host Network Operations

si:parse-host string error-p (unknown-ok t) Function

si:parse-host’s third argument, unknown-ok, now defaults to t. That meansbhat if it can’t

find the host on si:host-alist, it tries contacting a host table server to see if it knows about
the host. If the server contact does not, an error is signalled (or nil is returned) as usual. The
change was made to minimise the penalty for not loading the latest site files. (Maintaining
up-to-date site information can be a problem at large installations.)

The list of hosts that may be contacted on the Chaosnet for this service are listed in the
site option :chaos-host-table-server-hosts.

:network-addresses ‘ Operation on si:host
The operation :network-addresses, on a host object returns an alternating list of network
names and lists of addresses, such as

(:chaos (3104) :arpa (106357002)) _
You can therefore find out all networks a host is known to be on, using getf.

compat

Release 2 Notes 45 - Compatible LISP Programming Changes

:network-address network &optional smart-p Operation on sizhost
Returns a network address, if possible, for the host on network. The network address
returned is the primary one (determined ultimately by the order found in the host table
‘source) unless smart-p is non-nil; then, some optimal address as defined by network is
returned. : ’

The actual format of the network address is left unspecified; it is usually the “unparsed”
form which is passed to the network entry point functions.

:unparsed-network-address network &optional smart-p Operation on sithost
Like :network-address, but returns an unparsed network address (a string), where the string
‘representation is defined by the network. -

zinternet-connect socket protocol &key timeout (ascii-translation = Operation on si:host

t) (direction :bidirectional) ’
This is the current interface for using Internet in LMI ZETALISP, to connect to the host
at socket using protocol, a keyword. Currently, the only legal value is :tcp. timeout, in
sixtieths of a second, currently defaults to some reasonable value. The remaining keyword
arguments are only applicable when the Internet protocol requested is :tcp. direction can be
one of symbols acceptable to chaos:open-stream: :input, :output, or :bidirectional. Currently,
ascii-translation defaults to t, since most TCP servers and protocols are oriented to the ASCII
character set.

3.39.2 New Error Condition SYS:NO-SERVER-UP .._

sys:no-server-up (sys:connection-error) ' Condition
The error condition sys:no-server-up is signalled by certain requests for a service from any
available network host, when no suitable host is currently available.

3.39.3 Some Chaosnet Functions Renamed

Some functions in the chaos package have had their names changed. This is so we can avoid
having two advertised system functions with the same name in different packages. The old names
still work.

0ld Name -+ New Name
chaos:finish chaos:finish-conn i
chaos:close chaos:close-conn
chaos:finished-p chaos:conn-finished-p

3.39.4 Chaosnet Listening Streams

Now you can listen for a Chaosnet connection and open a stream at the same time. To do this,
call chaos:open-stream with nil as the host argument. You must still pass a non-nil contact-name
argument. The function will return a stream to you as soon as someone attempts to connect to
that contact name.

At this time, you must accept or reject, the connection by invoking the stream operation :accept
or :reject. :reject takes one argument, a string to send back as the reason for rejection. Before you
decide that to do, you can use the :foreign-host operation to find out where the connection came
from.

compat

Release 2 Notes 46 ‘Compatible LISP Programming Changes

3.39.5 New Chaos Routing Inspector Functions

These two functions make use of the DUMP~-ROUTING-TABLE protocol, documented in the new
edition of the Lisp Machine Manual. They are primarily for inspecting the operatlon of the network
and the localisation of bridging and routing problems. .

chaos:show-routing-table host &optional (stream *standard-output*) ' Function
Prints out the routing table of host onto stream. : o

chaos:show-routing-path &key (from si: loca.l-host) to (stream *standard— Function
output*)
Shows how packets will flow from from to to, using the routing information supplied by
from and any intervening bridges to figure out the path.

For example, (chaos:show-routing-path :from "charon™ :to "nu-1") may produce the following
output:

MIT-CHARON will bounce the packet off MIT-SIPB-11 at cost 81.
MIT-SIPB-11 will bounce the packet off MIT-INFINITE at cost 63.
MIT-INFINITE will bounce the packet off MIT-BYPASS at cost 51.
MIT-BYPASS will bounce the packet off MIT-0Z-11 at cost 37.
MIT-0Z-11 will bounce the packet off XI (XX-Network-11) at cost 23.
Direct path from XI (XX-Network-1i1) to host MIT-NU-1 on subnet 32 at
interface 1i.

3.40 Infix Expressions.

You can now include infix expressions in your Lisp code. For example,

#OX:Y+CAR(AL[I,J1)¢
The ¢ character is Altmode.

is equivalent to

(setq x (+ y (car (aref al i j))))
#¢ begins an infix expression. and ¢ ends it.

The atomic terms of infix expressions include
e symbois: use “ to quote special characters.

e numbers: any valid Lisp real or imaginary number is accepted. Complex numbers can
be constructed by addition or subtraction.

e strings: the same as in ordinary Lisp syntax.
e raw Lisp data: ! followed by any Lisp expression, as in
#{ FOO . !1(CAR BAR) ¢ => (list* foo (car bar))

Combining operations:

Highest precedence
ali] (AREF a 1)
ali,j] (AREF a i j) andsoon

infix

A coeae ot e e s e

Release 2 Notes 47 Compatible LISP Programming Changes

infix

examples
X[1,3#3] => (AREF X (+ J 3)) ' :
(GET-MY-ARRAY(F00))[I] => (AREF (GET-MY-ARRAY F00) I)

f(a) (f a)
f(a,b) (f a b) and so on
examples

CAR(X) => (CAR X)

(exp) exp parentheses control order of evaluation
exXamples :
(X+1)*Y => (x (+X1)Y)

(el, e2) (PROGN el e2) and so on
examples
(X:5, X*X) => (PROGN (SETQ X 5) (*+ X X))

[elt] (LIST elt)
[el,e2] (LIST el €2) andsoon
examples

[’x,Y,z2} => (LIST ’'X Y Z)

Precedence i80 on left, 20 on right
a:b (SETF a b)
examples
X: 1 +Y: 2+46 => (SETQ X (+ 1 (SETQ Y (+ Z 5))))

Precedence 140
a*b (EXPT a b) right associative
examples
X N~2 => (EXPT X (EXPT N 2))

Precedence 120

ax *b (* a b)
ax *b x ¥ (% g b ¢) and so on
a/ b (// a b}

a/ *b / *c (// a be¢) andsoon

Precedence 10C

- a ; (- a)

at *b (+ a b)

a+ *b + *¢ (+ a b e) andsoon

a~ *b (- a b)

a- *b - ¢ (-~ abe) and so on

Precedence 95

a. b (LIST* a b)

a. b.c¢ (LIST* 2 b ¢) and so on
a@ b (APPEND a b)

a@ b ¢ (APPEND a b ¢) and so on

Release 2 Notes 48 Compatible LISP Programming Changes

Precedence 80

aeb (MEMQ a b)
a= b (=ab) .
a= b =¢ (= abo) " and so on

<, >, #, >, < are like =.

Precedence 70

NOT a (NOT a)
Precedence 60

a AND b “(AND a2 b)

a AND b AND ¢ (AND a b e¢) . andsoon
Precedence 50

aOR b (OR a b) :

aOR b OR ¢ , (ORabc)_andsoon
Precedence 45 for c¢, 26 for a and b.

IF ¢ THEN 2 (IF ¢ a)

IF ¢ THEN a ELSE b (IF ¢ a b)

It is easy to define new operators. See SYS: 101; INFIX LISP.

3.41 Bug Reports for User Systems

To make it easier to collect bug reports about a system, there is now a :bug-reports option
to defsystem. Two values are supplied: the name of the topic, and a documentation string. The
topic name is usually the name of the system. The documentation string appears in the mouse
documentation line when the user sends a bug report from ZMail. For example:

(defsystem foo

(:bug-reports "FOO" "Tell about a bug in the FOO system")

)
For this to really work, there must be a mailing address named bug-foo on the bug report
host (that is, the host named by the site option :host-for-bug-reports).
This feature does not work with the Control-M debugger command, because the error handler
presets the address according to the value of the string returned by sendlng the bug—report-reuplent-
system message to the error instance.

defstruct

Release 2 Notes 49 ‘ DEFSTRUCT

4. DEFSTRUCT

This describes changes to the defstruct feature as implemented in Release 2.
The compatible changes to defstruct as discussed in this section of the manual are:

New Options
Documentation for Structures
Slot Options

. Changes to the :include option

defstruct Tries to Determine an Appropnate Array Type
New Predefined Structure Types
COMMON LISP Support

One change is that defstruct no longer generates any sort of eval-when. If you want the
expansion of a defstruct to be inside an eval-when, simply write an eval-when around the defstruct.

4.1 New Options

The following are now accepted by defstruct in addition to the options described in the Lisp
Machine Manual.

:callable-constructors

:subtype

defstruct

Giving this option a value of t (i.e. by writing (:callable-constructors t)) causes con-
structors for this structure to be functions, rather than macros, as they used to be.
This, however, means that code like the following, which works w1th a macro-defined
constructor, will usually cause an error if it is a function:

(make-foo a 1 b ’bee)

The syntax to use for callable constructors is like that for &key functions (which is
actually how they are defined):

(make-foo :a 1 :b ’bee).

Macro-defined constructors now accept keywords for slot-names also. Just to facili-
tate changing the kind of constructor you use, it is probably best to always use this
syntax. However, an irresolvable mcompatxbxllty exists in the way the two types of
constructors handle the constructor options such as :times and :make-array. When
:callable-constructors is nil, they should not be quoted, and when it is t, they must be
quoted. For example, in the first case we would say:

(make-frobboz :slot-i ’foo :make-array (:leader-length 2))
With callable constructors the :make-array argument must be quoted:

‘(make-frobboz :slot-1 *foo :make- array ’(:leader-length 2))

This option is valid only when used with structure-types that include :subtype among
their :defstruct-keyword keywords (see be]ow) Such types include things like :array and
:array-leader, for which a subtype of the primary array-type is a meaningful concept.
In the case of arrays, this could be used to make a structure of this type use a specific
array-type, rather than the default art-q. The subtype can also be implicitly specified

Release 2 Notes 50 DEFSTRUCT

:typé

through the :type option. Types such as :list or :fixnum-array do not have any any
meaningful subtypes, and hence do not support the :subtype option. It is an error to
use :subtype with such types.

This is by no means a new option but its syntax has been extended. Previously,
this option could be used only in the form (:type defstruct-type). It is now possible
to write (:type (defstruct-type subtype)), the effect being hke specifying both (itype
defstruct-type) and (:subtype subtype). For example:

(defstruct (foo (:type (:array ART-4B))) A B)
or
(defstruct (foo (:type (:vector (mod 16)))) a b)

using a COMMON LISP type defines a structure with two slots, each of which can
contain only fixnums in the range [0,15]. This is a COMMON LISP change, but is
worthwhile to use in any case as this syntax is more transparent and cleaner than the
present technique of writing:

(defstruct (foo (:type :array) (:make-array (:type art-4b))) a b)

:print-function

The argument to this option is a function of three arguments, which will print an
object of.the type being defined. This function will be called with three arguments -
the structure to be printed, the stream to print it on, and the current printing depth
(which should be compared with *print-level*). The function is expected to observe the
values of the various printer-control variables. Example:

(defstruct (bar :named
(:print-function
(lambda (struct stream depth)
(format stream "#<This is a BAR, with ring-ding index ~S>"
(zap struct)))))
"The famous bar structure with no known use."
(zap ’yow) random-slot)

(MAKE-BAR) => #<This is a BAR, with ring-ding index YOW>

This option is similar in application to the ex1st1ng option :print. Its introduction is a
COMMON LISP change.

4.2 Documentation for Structures

- defstruct now interprets a string occurring after the structure name and options as documen-
tation for this structure. The doecumentation can be accessed by:

(documentation structure-name ’structure)

and changed by setfing such a form.

4.3 Slot Options

Slots within a strueture may now include one or more slot options. The extended syntax for
defining slots is either:

defstruct

Release 2 Notes 51 DEFSTRUCT

slot-name
or

(slot-name (default-init
(slot-option-1i option-value 1
slot-option-2 option-value-2 ...)))

or

((slot-name-1 byte-spec-1 (default-init-1

(slot-option-1-1 option-value-1i- 1..9))
(slot-name -2 byte spec~2 (default-init-1

(slot-option-2-1 option-value-2-1 ...)))

o)

Here are the currently defined slot-options:

:read-only flag
Specifies that this siot mat not be setfed if flag is non-nil. The contents of thls slot are
not supposed to be changed after you construct the structure.

itype type Declares that this siot is expected to be of a given type. The LISP machine compiler
does not use this for any assumptions, but sometimes the information enables defstruct
to deduce that it can pack the structure into less space by using a numeric array type.

:documentation documentation-string
Makes documentation-string the documentation for the slot’s accessor function. It also
goes in the defstruct-siot-description-documentation for this siot. Example:

(defstruct (eggsample :named :conc-name
(:print-function #’(lambda (s stream ignore)
(format stream "#<Eggsample ~S ~S “g>"

(eggsample-yolk s)
(eggsample-grade s)
(eggsample-albumen s)))))

(yolk ’a :type symbol :documentation "First thlng you need in

an eggsample.")

(grade 3 :type (mod 4))

(albumen nil :read-only t))
=> eggsample
(setq egg (make-eggsample :albumen whlte))
=> #<Eggsample A 3 WHITE>
(setf (eggsample-yolk <c-sh-d>

EGGSAMPLE-YOLK: (EGGSAMPLE)
"First things you need in an eggsample."

(setf (eggsample-yolk egg) 19.5)
=> 19.5 ; no type checking !
egg
=> #<Eggsample 19.5 3 WHITE>
(setf (eggsample-albumen egg) ’eggsistential)
=> >>ERROR: SETF is explicitly forbidden on

[P

defstruct

Release 2 Notes 52 DEFSTRUCT

(EGGSAMPLE ALBUMEN EGG)
While in the function SI::UNSETFABLE « SI::LOCF-APPLY
+— 8I::SETF-1

4.4 Changes to the :INCLUDE Option

4.4.1 DEFSTRUCT

defstruct now accepts slot—optlons in the speclﬁcatlon for included slots. This extended syntax
is illustrated here: :

(defstruct one :conc-name :named v _
(slot-1 O :type fixnum :documentation "The very first" :read-only t)
(slot-2 ’bar)
slot~3)

(defstruct (two :conc-name :named
(:include one (slot-1 6 :documentation "The second first")

(slot-3 ’(a b) :type cons :read-only t))) B
(slot-3 5)) ’

two will be a structure whose first siot has default value 6, has the documenation, and is read-
only and of type fixnum, these last iwo attributes being inherited from the included structure. The
third slot will have a default value of "(a b), should be a cons, and is read-only.
The following example will cause an error: ‘

(defstruct (loser :named :conc-name
(:include one (slot-1 O :read-only nil :type symbol))}))

This is because (i) the slot is specified to be not read-only, when the included slot was, and (ii)
the slot was glven a ’Lype that is not a subtype of the included slot type.

4.4.2 New Slot—Accessor Functions Generated

Previously no accessor called two-slot-1 was generated in the example above, and you had to
access that slot using the function one-slot-1. Now such accessors are generated for all the included
slots, using the conc-name of the including structure. Note that the accessors need not necessarily
be the same as the accessors used in the included structure. That is, they may have different
documentation, or be read-only. '

4.5 DEFSTRUCT Tries to Determine an Apf)ropriate Array Type

If all the slots to defstruct are given :type slot-options and the structure is based on an array
that can be of a specialised type (such as :array, :typed-array, :grouped-array or :vector) and no
:subtype is explicitly given, then defstruct will attempt to find the most storage-efficient array-type
(subtype) for the structure. Example:

defstruct

Release 2 Notes 53 S DEFSTRUCT

(defstruct (foo)
(eh 3 :type (mod 7))
(be 0 :type (mod 1)))

will define a structure that makes arrays of type art-4b. This feature can be overridden by
explicitly giving a :subtype, or by just not giving all the slot-types.

4.6 New Predefined Strucfure Types

The system now has a number of new predefined structure types:
:typed-array
This is the same as :array, for use with :named-typed-array.

:named-typed- -array
This is an named array type with which you can specify a subtype restricting the type
of elements. The named structure symbol is always put in leader slot 1.

:named-fixnum-array
Named :fixnum-array; the named-structure-symbol is stored in the leader.

:named-ﬂdnum-array
Named :flonum-array; the named-structure-symbol is stored in the leader.

:vector Same as :typed-array. This is used for COMMON LISP.

:named-vector
Same as :named-typed- array This is the default for COMMON LISP structures.

:phony-named-vector
This is what you get in COMMON L1sP if you say (:type :vector) and :named.

Examples:

(defstruct (foo (:type (:vector (mod 4)))) a)
(defstruct (foo (:type (:vector art-fat-string))) a)
(defstruct (bar (:type :fixnum-array) :named) x y z)

4.7 Common Lisp Support

There now exists a macro cli:defstruct to support the COMMON LISP defstruct feature. The
only difference between cli:defstruct and regular defstruct is that the COMMON LISP version has
different defaults for certain options:

:conc-name ' »
Defaults to name-, where name is the defstruct being defined. (Normally, it is nil by
default.)

:predicate Defaults to t, producmg a predicate called name-p, if no predicate name is requested
by the user. (Default is normally nil.)

:callable-constructors
Defaults to t (normally nil).

salterant Defaults to nil, i.e. no alterant macro is defined (traditionally a macro called alter-name
is defined).

defstruct

Release 2 Notes 54 - ' DEFSTRUCT

If you do not specify :type, you get :named-vector, which makes a named structure. You get a
predicate by default. You may specify how to print the structure.

If you do specify :type, you never get a named structure. You either get a plain list or a plain
vector. You do not get a predicate by default, and you may not request one. You may not specify
how to print.

If you specify :named along with :type, you do not get a named structure. You get either
type :named-list or type :phony-named-vector. Both of these types store the structure type in the
structure somewhere, and both of them allow you to define a predicate that looks there to see
whether an object appears to be a structure of thé sort you defined. Neither type is recognizable
by typep, and anyone randomly creating a llst or vector with the nght thmg in it at the right place

" will find that it satisfies the predicate.

4.8 Changes to DEFSTRUCT-DEFINE—TYPE Options

4.8.1 New Per-Type Method of Declaring DEFSTRUCT Options

defstruct used to check whether a keyword appearing as an option was valid by checking
whether the keyword had a non-nil si:defstruct-description property. The problem with this tech-
nique is that keywords that are appropriate to only one type of structure are accepted by defstruct
as options for other structures for which they are meaningless. (For example, the :times option
for grouped arrays has no meaning for other currently-defined structure types.) The new way to
achieve this functionality is via the :defstruct-keywords option to defstruct-define-type, which has
the same syntax as the old :keywords option, for example, (:defstruct-keywords keyword-1 keyword-2
...). A typical use is the following, which is the actual definition of the :grouped-atray type:

(defstruct-define-type :grouped-array
(:cons-keywords :make-array :times :subtype)
(:defstruct-keywords :make-array :times :subtype)
(:defstruct (description)

(defstruct-hack-array-supertype description))
(:cons (arg description etc) :alist
(11spm~array for-defstruct
arg
#'(lambda (v a i) ‘(aset ,v .,a ,i))
description etc nil nil nil
(or (cdr (or (assq :times etc)
(assq :times
(defstruct-description-property-alist))))
1)
nil))
(:ref (n description index arg)
description ; ignored
(cond ((numberp index)
‘(aref ,arg ,(+ n index))).
((zerop n)
‘(aref ,arg ,index))
(t ‘(aref ,arg (+ ,n ,index))))))

The :cons-keywords specifies the valid keywords that can be supplied to a constructor for this

defstruct

" Release 2 Notes 55 o " DEFSTRUCT

type. :defstruct-keywords (which happens to be the same in this case) specifies valid keywords to
appear in the structure definition of a grouped array, making

(defstrﬁct (foo (:type :grouped-array) :times 7) a b)
a valid defstruct, while

(defstruct (foo (:type :grouped-array) :typo 7) a b)
and

(defstruct (foo (:type :array) :times 7) a b)

signal an error.
The old type-independent method of saying

(defprop :make-array t :defstruct-option)
is obsolete, although still supported se that programs using this continue to work.

4.8.2 :KEYWORDS Option to Renamed :CONS-KEYWORDS

This has been done because defstruct-define-type now knows about more than one type of key-
word relevant to the structure, namely :cons-keywords and :defstruct-keywords, which are relevant
to the construction and definition respectively of structures of a given type. Previously, there were
no :defstruct-keywords, and so there was no ambiguity in calling this option plain :keyword. As this
is largely a change for consistency’s sake, the old syntax continues to be supported.

packl

Release 2 Notes 56 ' DEFSTRUCT

packl

Release 2 Notes 57

The New Package System

5. The New Package System

A new package system has been created; it is essentially that of COMMON LISP with some
added compatibility features. Its highlights are:

Symbols in a package are now marked as either internal or external. Only the external
symbols are inherited by other packages.

Packages are no longer arranged in a hierarchy; inheritance is no longer reqﬁired to be
transitive. Now you ean specify exactly which other packages’ external symbols are to
be inherited by a new package.

keyword and user are now two distinct packages. No symbol is shared between keyword
and global, so that compile and :compile are two distinct symbols, and so are nil and
nil. You must now be careful to use the correct symbol (keyword or global) in your
code, whereas it used to make no difference.

All package names are now global in scope; they mean the same thing regardless of

which package is current. It is also possible to define local nicknames, in effect in only
one package, but this is usually not done.

Package prefixes can now contain #: in place of just :. They also sometimes contain
two colons in a row.

These things have not changed in the new package system:

A package is still an object used by intern to map names into symbols. At any time
one package is current; it is the value of *package®, and is used by default in intern and
read. Packages can still have their own (“local”) symbols while inheriting additional
symbols from other packages.

read still looks up symbols in the current package by default. It still allows you to
specifly another package with a package prefix, a package name followed by a colon, as
in si:fuli-gc. ‘

There is still a package called global, which contains the fundamental function and
variable symbols of LISP, such as eval, cond, setq, t and package. By default, new
packages inherit from this package alone.

There is still a keyword package whose symbols are normally referred to with a package
prefix that is just a colon, as in :noselective.

Nearly all the old documented functions for operating on packages still work, though
not always exactly in the same way.

5.1 Specific Incompatibilities

Here are the specific incompatibilities between the old and new package systems.

packl

list and :list are now two distinet symbols. No symbol is now shared between the
global package and the keyword package. This means that in many cases where a
colon prefix used to make no difference, it is now significant. You must be careful
to use package prefixes when you want the keyword symbol. The documentation has
made the distinction even when it did not matter. If you are lucky, you followed the
documentation as if you did not realize that list and :list were the same symbol, and
your old code will still work.

Files loaded into the user package will not work if they omit the colon on keyword
symbols, as they were formerly allowed to do. See the section “The USER Package”,
below, for more information. With luck, these problems will be infrequent.

———

Release 2 Notes 58 The New Package System

e pkg-subpackages no longer exists. There is no way to simulate the old meaning of this
function, since there is no equivalent of “subpackages” close enough to the old concept.

e pkg-super-package does still exist, but it uses a heuristic. Its new definition manages
to satisfly most aspects of this function’s old contract, but not quite all. If you define a
package with package-declare, pkg-super-package will still return the same package that
it used to return. But for packages defined in other, newly available ways, there may
be no unique way of defining the “superpackage”. The global package will probably be
returned as the “superpackage” in this case. '

° pkg—refname -alist still exists and its value is used in roughly the same way. However,
it is no longer the case that most package names are found there. In fact, these lists
will normally be nil. :

e Some hairy undocumented features of package-declare are no longer supported

o apropos, who-calls and what-files-call take different keyword arguments. They used
to accept keywords :superiors and :inferiors to specify whether to look in the super-
package and subpackages of the specified package. Now that packages do not have
superpackages and subpackages, the keywords have been changed to :inherited and
:inheritors.

e Package names are now treated much like symbol names with regard to case. In package
prefixes, letters are converted to upper case unless quoted with a slash or vertical bar,
so it does not matter what case you use. In functions that accept a package name
to look up a package, the string or symbol you specify is compared, with case being
significant. Thus, if you use a string, the string must contain upper-case letters if the
package name does. If you supply a symbol, you can type the symbol in upper or
lower-case because read converts the characters of the symbol to upper case anyway.

5.2 The Current Package

package . Variable

package ' - Variable
These are now synonymous names for a variable whose value is the current package. *pack-
age* is the COMMON LISP name for package.

packagep anything Funection
Returns t if anything is a package. '

pkg-bind (package} body... ’ e Macro

Executes body with *package* bound to package

pkg-goto package Function
Sets *package* to package, but only if package is suitable. A pacl\age that automatlcally
exports new symbols is not suitable and causes an error without setting *package. This is
because typing expressions with such a package current would create new external symbols
and interfere with other packages that use this one.

pkg-goto-globally package Funetion
Sets the global binding of *package* (in effect in all processes that do not bind *package*)
to package. An error occurs if package automatically exports new symbols. Note that
the LISP read-eval-print loop binds *package®*, so such loops are not affected by the global
binding. Conversely, doing pkg-goto inside a LISP read-eval-print loop would not change
the global binding. load also binds the current package, so in order to change the global
binding from your init file, you must use this function.

packl

Release 2 Notes 59 The New Package System

5.3 Finding All Packages

*all-packages™ Variable
all-packages is a new variable whose value is a list of all packages.

list-all-packages Funetion
The function list-all-packages, with no arguments, returns the same list. This is a standard
COMMON LISP construct. Strangely, *all-packages* is not.

5.3.1 Package Naming

A package has one name, also called the primary name, and can have, in addition, any number
of nicknames. All of these names are defined globally, and all must be unique. An attempt to
define a package with a name or nickname that is already in use is an error.

Either the primary name of a package or one of its nicknames counts as a name for the
package. All of the functions described below that accept a package as an argument will also
accept a name for a package (either a string or a symbol whose pname is used). Arguments that
are lists of packages may also contain names among the elements. However, for transportable
COMMON LISP, one must not use this feature.

When the package object is printed, its primary name is used. The name is also used by
default when printing package prefixes of symbols. However, when you create the package you can
specify that one of the nicknames should be used instead for this purpose. The name to be used
for this is called the prefix name.

Case is significant in package name lookup. Usually package names should be all upper case.
read converts package prefixes to upper case except for quoted characters, just as it does to symbol
names, so the package prefix will match the package name no matter what case you type it in,
as long as the actual name is upper case: TV:F00 and tv:foo refer to the same symbol. In the
functions find-package and pkg-find-package, and others that accept package names in place of
packages, if you specify the name as a string you must give it in the correct case:

(find-package "TV") finds the tv package
(find-package "tv") finds nothing

You can alternatively specify the name as a symbol; then the symbol’s pname is used. Since
read converts the symbol’s name to upper case, you can type the symbol in either upper or lower
case: (find-package 'TV) and (find-package ’tv) both find the tv package since both use the
symbol whose pname is "TV".

Each package has a list of local nicknames, which are mapped into packages. These local

“nicknames serve as additional names for those other packages, but only when this package is
current, and only for the sake of package prefixes in read. It is permissible to define a local
nickname that is the same as the name of some existing package; this is useful for “redirecting”
symbol references with package prefixes to packages other than the ones named in the code.

Relevant functions:

package-name package Function
Returns the name of package (as a string).

package-nicknames package ' Function
Returns the list of nicknames (strings) of package.

package-prefix-print-name package Function

packl

Release 2 Notes - ' 60 The New Package System

(Not in COMMON LISP) Returns the name to be used for printing package prefixes that
refer to package. Note that COMMON LISP does not have such a feature.

rename-package package new-name &optional new-nicknames : Function

Makes new-name be the name for package, and makes new-nicknames (a list of strings,
possibly nil) be its nicknames. An error is signalled if the name or any of the nicknames is
already in use. :

find-package name &optional use-local-names-package Function

Returns the package that name is a name for, or nil if there is none. If use-local-names-
package is non-nil, the local nicknames of that package are checked first. Otherwise only

_actual names and mcknames are accepted. use-local-names-package should be supplied only

when interpreting package preﬁxes The use of the second argument is not transportable
COMMON LIsP. :

If a package is supplied as name, it is returned.

If a list is supplied as name, it is interpreted as a specification of a package name and how

to create it. The list should look like (name super-or-use size}. If name names a package,
it is returned. Otherwise a package with name name is created with make-package (see
page 60) and then returned. size is specified as the size. super-or-use should be either the
name of a single package, to be specified as the super argument to make-package, or a list
of package names, to be specified as the use argument to make-package.

pkg-find-package name &optional create-p Function

(Not in COMMON LISP) name and use-local-nickname-pkg are passed to find-package (see
page 60). If that returns a package, pkg-find-package returns the same package. Otherwise,
a package may be created, according to the value of create-p. These values are allowed:

nil An error is signaled if an existing package is not found.
t A package is always created.

find nil is returned.

:ask The user is asked whether to create a package.

If a package is created, it is done by calling make-package with name as the only argument.
This function is not quite for compatlblhty only, since certain values of create-p provide
useful features.

5.4 Creation and Destruction of Packages

While package-declare still works, the standard way to create a package now is the new funetion
make-package or the defining construct defpackage. To eliminate one, use kill-package (see page 63).

make-package name &key nicknames use super shadow export prefix-name size Function

paickl

invisible import shadowing-import import-from relative-names relative-names-for-me
Creates a new package with name name (a string) and nicknames nicknames (a list of
strings). It is initially made large enough to hold at least size symbols before needing
expansion. The package is returned as the value.

The following keyword arguments are accepted:

use A list of packages or names for packages from which the new package should
inherit or a single name or package. It defaults to just the global package.
:super If this is non-nil, it should be a package or name to be the superpackage of the

new package. The new package will inherit from the superpackage and from all

Release 2 Notes ‘ 61 _ The New Péckage System

the other packages from which the superpackage inherits. The superpackage
itself is marked as autoexporting; see the section “External and Internal Sym-
bols” for more information. Superpackages are implemented for compatibility
only; they are not recommended for use in any new package definitions.

:prefix-name :
This specifies the name to use for printing package prefixes that refer to this
package. It must be either the name or one of ther nicknames. The default is
-to use the name.

:shadow A list of strings that are names for symbols that should be shadowed in the
"~ newly created package. This argument is passed directly to the function shadow
(see page 68).
:export A list of symbols or names to export in the new package. This is handled by
the function export (see page 64).
:nicknames and :use are the only arguments allowed in transportable COMMON
LisP. All of keyword arguments are for ZETALISP only.

sinvisible If non-nil, means that this package should not be put on the list *all-packages*
(see page 59). As a result, find-package will not find this package, either by its
name or by its nicknames. You can make normal use of the package in all other
respects (passing it to intern, passing it to use-package to make other packages
inherit from it or it from others, and so on).

simport If non-nil, is a symbol or a list of symbols to be 1mported into this package. You
could accomplish as much by calling lmport after you have created the package.

:shadowing-import
If non-nil, is a symbol or a list of symbols to be imported into this package with
shadowmg You could accomplish as much by calling shadowing-import after
you have created the package.

:import-from
If non-nil, is a list containing a package (or package name) followed by names of
symbols to import from that package. Specifying import-from as (chaos "open"
"close") is nearly the same as specifying import as (chaos:open chaos:close},
the difference being that with import-from the symbols open and close are not
looked up in the chaos package until it is time to import them.

:relative-names
An alist specifying the local nicknames to have in this package for other pack-
ages. Each element looks like (Jocalname . package), where package is a
package or a name for one, and localname is the desired local nickname.

:relative-names-for-me

' An alist specifying local nicknames by which this package can be referred to
from other packages. Each element looks like (package localname), where
package is a package name and localname is the name to refer to this package
by from package. You will note that the elements of this list are not dotted
while those of :relative-names are.

pkg-create-package name &optional (super *package*) (size 200) , Function
(Not in COMMON LISP) Creates a new package named name of size size with superpackage
super. This is for compatibility only.

defpackage "e name keywords-and-values... Special form
(Not in COMMON LISP) This is the preferred way to create a package in ZETALISP. (It
is compatible with the defpackage introduced in Symbolics Release 5.) All the arguments

packl

Release 2 Notes 62 : The New Package System

are simply passed to make-package.(see page 60). The diflerences between this function
(actually, macro) and make-package are: : '

e defpackage does not evaluate any arguments.

e Re-evaluating a defpackage for an existing package is allowed; it modifies the
existing package in accordance with changes in the definition.

¢ The editor notices defpackage and records it as the “definition” of the package.

IMPORTANT: The latest edition of the Lisp Machine Manual documented this function
to take arguments in &key (property-list) style. However, the keywords and values are
actually supposed to be passed in an association list form. Ignore the version in the manual.
For example, here is the correct version of the example gwen the bottom of page 653 in the
Lisp Machine Manual:

(defpackage "EH"
(:size 1200)
(:use "GLOBAL" "SYS")
(:nicknames. "DBG" "DEBUGGER")
(:shadow "ARG")) ‘

Package attributes in a file’s -*- line can now have this format

Package: (name keyword value keyword value...) ;

* which means that the package to be used is name and, if that package does not exist, it should
be created by passing name and the keywords and values to make-package.

sys:package-not-found Condition
This error condition is signalled whenever you do: pkg-find-package with second argument
:error, nil or omitted, and the package you were looking for does not exist.
The condition instance supports the operations :name and :relative-to; these return whatever
was passed as the first and third arguments to pkg-find-package (the package name, and the
package whose local nicknames should be searched).

The proceed types :retry, :no-action, :new-name and :create-package may be available.

retry Says to search again for the specified name in case it has become defined; if it
is still undefined, the error occurs again.

:create- package
Says to search again for the specified name, and create a package with that
- name if none exists yet.

:new-name Is accompanied by a name (a string) as an argument. That name is used
instead, ignoring any local nicknames. If that name too is not found, another
€rTor occurs. :

:no-action (Available on errors from within read.) Says to continue with the entire read
as well as is possible without having a valid package.

package-declare "e name super size unused body... Special form
(Not in COMMON LISP) Is one old-fashioned equivalent of defpackage (sce page 61). It is
no longer recommended for use. It creates a package named name with supérpackage super
(another name) and initial size size. The unused argument must be nil. body is now allowed
to contain only these types of elements:

pack1

Release 2 Notes | 63 The New Package System

shadow names
Passes the names to the function shadow (see page 68).

external names
Does nothmg ThlS controlled an old feature that no longer exists.

intern names
Converts each name to a string and interns it in the package.

refname refname packagename
Makes refname a local nickname in this package for the package named pack-
agename.

myrefname packagename refname
Makes refname a local nickname in the package named packagename for this
package. If packagename is global, makes refname a global nickname for this
package

pkg-add-relative-name in-pkg name for-pkg Function
(Not in COMMON LISP) Defines name as a local nickname in in-pkg for for-pkg. in-pkg
and for-pkg may be packages, symbols or strings.

pkg-delete-relative-name in-pkg name Function
(Not in COMMON LISP) Eliminates name as a local nickname in in-pkg. '

kill-package name-or-package . Function
(Not in COMMON LIsP) Kills the package specified or named. The name pkg-kill is also
allowed for compatibility.

5.5 Package Inheritance

You now may completely control which packages are inherited by which other packages. In-
heritance no longer has to be transitive. x can inherit from y and y from z but without x inheriting
from z also. Inheritance can also be multiple. x can inherit from two unrelated packages y and
w. However, in any case, only external symbols are inherited. More mformatlon on internal vs
external symbols is in the following section.

In the past, a package would inherit only from its superior, its superior’s superior, and so on.
Thus, if bar and quux were two subpackages of global, a new package foo could inherit from bar and
global, or from quux and global, or just from global; but foo could not inherit from bar alone, or
quux alone, or from bar and quux, or from bar and quux and global. Now any of these possnblhtles
is possible.

The functions use-package and unuse-package are used to control the inheritance possibilities
of an existing package. The :use argument to make-package can be used to specify them when a
package is created. If foo inherits from bar, we also say that foo uses bar.

use-package packages &optional (in-package *package*) Funetion
Makes in-package inherit symbols from packages, which should be either a single package
or name for a package, or a list of packages and/or names for packages.

unuse-package packages &optional (in-package *package*) Function
Makes in-package cease to inherit symbols from packages.

package-use-list package Function
Returns the list of packages used by package.

packl

Release 2 Notes 64 : ‘ ~ The New Package System

package-used-by-list package | Function
Returns the list of packages that use package. '

You can add or remove used packages at any time.

If one package uses several others, the used packages are not supposed to have any two distinct
symbols with the same pname among them all. An attempt to create such a situation causes an
error, which you can override by shadowing. (See below.)

5.6 External and Internal Symbols
Each symbol in a packagev iS marked as external or internal in that package. Symbols created

in the package by intern are initially internal.. You must mark symbols as external if you want
them to be so.

The plan is that all the symbols in a package that are intended to be used from other packages B

will be marked as external. , v
The internal versus external distinction makes a difference at two times:

Only external symbols are inherited from other packages

In COMMON LIsP, only external symbols can be referred to with ordm'zry colon pre- -

fixes. :: prefixes must be used for internals.

intern (see page 65) works by first checking the current or specified package for any symbol,
whether external or not, and then checking all the inherited packages for external symbols only.
All the symbols in global and system are external to start with, so that they can still be inherited,
and all new symbols made in them are made external. All symbols in the keyword package are also
automatically external.

Some other packages also automatically export all symbols put in them. This happens, for
compatibility, in any package that has been specified as the “superpackage” in the old-fashioned
package-declare and pkg-create-package functions. You are not allowed to pkg-goto one of these
packages, and read makes a special check to prevent you from creating symbols in them with
package prefixes.

Relevant, f unctionS'

export symbols &optional (package *package*) . Function
Makes symbols external in package. symbols should be a symbol or string or a list of
symbols and/or strings. The specified symbols or strings are interned in package, and the
symbols found are marked external in package.
If one of the specified symbols is found by inheritance from a used package, it is interned
locally in package and then marked external.

unexport symbols &optional (package pa.ckage*) Function
Makes symbols not be external in package It is an error if any of the symbols to be marked
not external are not directly present in package.

globalize name-or-symbol &optional (into-package "GLOBAL") - Function
If name-or-symbol is a name (a string), interns the name in into-package and then forwards
together all symbols with the same name in all the packages that use into-package as well
as in into-package itself.
- If name-or-symbol is a symbol, interns that symbol in into-package, and then forwards
together all symbols with the same name.
The symbol ultimately present in into-package is also exported.

pack?2

Release 2 Notes ' 65 The New Package System

pkg-external-symbols package - Funection
Returns a list of all the external symbols of package. package can be a package or a package
name.

5.7 Looking Up Symbols ’ T

The four old functions for looking up symbols work with minor changes. There are also two
new ones. .

intern symbol-or-string &optional package ’ Function
Looks up the specified name in the specified package and inherited packages. If package is
omitted or nil, the current package is used.
If a string is specified, a symbol of that name is looked for first in the specified package
and then in each of the packages it inherits from. If a symbol is found, it is returned.
Otherwise, a new symbol with that name is created and inserted in the specnﬁed package,
and returned.
If a symbol is specified, lookup proceeds using the symbol’s pname as the string to look for.
But if no existing symbol is found, the specified symbol itself is inserted in the package. No
new symbol is made. Use of a symbol as argument is not defined in COMMON LISP.
intern actually returns three values. The first is the symbol found or created. The second is
a flag that says whether an existing symbol was found, and how. The third is the package
in which the symbol was actually found or inserted. It will be the specified package or a
package from which the specified package inherits.
The possible second values are:

nil Nothing was found. The symbol returned was just inserted.
sinternal The symbol was found as an internal symbol in the specified package.
:external The symbol was found as an external symbol in the specified package.

sinherited The symbol was inherited from some other package (where it was necessarily
an external symbol).

intern-soft symbol-or-string &optional package Function

find-symbol symbol-or-string &optional package Funetion
(find-symbol is the COMMON LISP name.) Looks for an ex1stmg' symbol like intern, but
never creates a symbol or inserts one into package. If no existing symbol is found, all three
values are nil.

package defaults to the eurrent package if it is omitted or given as nil.

intern-local symbol-or-string &optional package Function
(Not a COMMON LISP function) Like intern but looks only in package, ignoring the packages
package normally inherits from. If no existing symbol is found in package itself, the specified
symbol or a newly created symbol is inserted in package, where it permanently shadows
any symbol that previously would have been inherited from another package.
The third value is always package, and the second one is never :inherited.

package defaults to the current package if it is omitted or given as nil.

intern-local-soft symbol-or-string &optional package Function
(Not a2 COMMON LISP function) Like intern-soft but looks only in package, 1gnormg the
packages it normally inherits from. If no symbol with the specified name is found in
package, all three values are nil.

package defaults to the current package if it is omitted or given as nil.

pack2

Release 2 Notes 66 The New Package System

remob symbol &optional package Funetion

unintern symbol &optional (package *package*) Function
(unintern is the COMMON LISP name) Removes symbol from being present in package. In
remob, package defaults to symbol’s package. In unintern, it defaults to the current package.
If a shadowing symbol is removed, a previously-hidden name conflict between distinct sym-
bols with the same name in two USEd packages can suddenly be exposed, like a dxscovered
check in chess. This signals an error.

import symbols &optional {package package*) : Function
Is the standard COMMON LISP way to insert a specific symbol or symbols into a package.
symbols is a symbol or a list of symbols. Each of the specified symbols will be msert,ed into
package, just as intern (see page 65) would do.
If a symbol with the same name is already present (directly or by inheritance) in package,
an error is signaled. On proceeding, you can say whether to leave the old symbol there or
replace it with the one specified in import.

5.8 Looping Over Symbols

Several new macros are available for writing loops that run over all the symbols in a package.

do-symbols (var package result-form) body... ' Macro
Executes body once for each symbol findable in package either directly or through inher-
itance. On each iteration, the variable var is bound to the next such symbol. Finally the
result-form is executed and its values are returned.
Since a symbol can be directly present in more than one package, it is possible for the same
symbol to be processed more than once if it is present directly in two or more of package
and the inherited packages. :

do-local-symbols (var package result-form) body... Macro .
(Not a COMMON Lisp form) Executes body once for each symbol present directly in
package. Inherited symbols are not considered. On each iteration, the variable var is
bound to the next such symbol. Finally result-form is executed and its values are returned.

do-external-symbols (var package result-form) body... ’ Macro
Executes body once for each external symbol findable in package either directly or through
inheritance. On each iteration, the variable var is bound to the next such symbol. Finally
the result-form is executed and its values are returned.
Since a symbol can be directly present in more than one package, it is possible for the same
symbol to be processed more than once if it is present directly in two or more of package
and the inherited packages.

do-local-external-symbols (var package result-form) body... Macro
(Not a COMMON LI1sP form.) Executes body once for each external symbol present dn‘ect,ly
in package. Inherited symbols are not considered. On each iteration, the variable var is
bound to the next such symbol. Finally the result-form is executed and its values are
returned. '

do-all-symbols (var result-form) body... : Macro
Executes body once for each symbol present in any package. On each iteration, the variable
var is bound to the next such symbol. Finally the result-form is executed and its values are
returned.
Since a symbol can be directly present in more than one package, it is possible for the same
symbol to be processed more than once.

pack2

Release 2 Notes ’ 67 The New Package System

These old functions still work:

mapatoms function &‘opt,io_nal (package "GLOBAL") (inherited-p t) Function
Calls function successively on each of the symbols in package. Symbols inherited from other
packages are included if inherited-p is non-nil.

mapatoms-all function &optional (package "GLOBAL") "~ Function
Calls function successively on each of the symbols in package and all the packages that
inherit from package. When package has its default value, this will include just about all
packages. : '

5.9 The USER Package

In Release 2, the user package is an ordinary package that inherits from global.

The user package used to be the same as the keyword package, so in files read into user it was
not necessary to put a colon on any keyword. This is no longer the case. You must use colons in
the user package just as in any other package.

5.10 Package Prefixes

- In COMMON LISP, a package prefix is used before a symbol to refer to a symbol that is not
present or inherited in the current package. (In ZETALISP and NIL, one can also put prefixes in
front of any form, and the package prefix will be pervasive during the reading of that form.) tv:tem
is an example; it refers to the symbol with the print-name tem that is visible in the package named
tv. (tv can be the primary name or a nickname.)

Internal symbols that print with package prefixes will print ‘with :: prefixes, as in tv::item,
rather than as tvitem. This is because in COMMON LISP a simple colon prefix can be used only
for external symbols; a :: prefix must be used if the symbol is internal.

This restriction has not been implemented for ZETALISP programs. The colon prefixes in your
programs will still work ! But :: prefixes are being printed for informational purposes, and will
be accepted by the reader.

A prefix consisting of just #: indicates an uninterned symbol. Uninterned symbols are printed
with such prefixes, and #: can also be used in input to create an uninterned symbol.

Package prefixes are normally decoded when read by checking the local nicknames, if any, of
the current package and its superpackages before looking at the actual names and nicknames of
packages. You can use a # before the colon in the prefix to prevent the use of the local nicknames.
Suppose that the current package has tv as a local nickname for the xtv package. Then tv:sheet
will get the sheet in the xtv package, but tv#:sheet will get the one in the tv package. That symbol
will print out as tvi#:sheet as well, if the printer sees that tv:sheet would be misinterpreted by the
reader. _ ,

The package name in a package prefix is read just like a symbol name. This means that
slash and vertical bars can be used to include special characters in the package name. Thus,
foo/:bar:test refers to the symbol test in the foo:bar package, and so does [foo:bar|:test. Also,
letters are converted to upper case unless they are quoted with a slash or vertical bar. For this
reason, package names should normally be all upper case.

5.11 Shadowing and Name Conflicts

p:ick?.

Release 2 Notes 68 _ ‘The New Package System

If multiple symbols with the same name are available in a single package, counting both symbols
interned in that package and external symbols inherited from other packages, we say that a name
conflict exists.

Name conflicts are not permitted to exist unless a resolution for the conflict has been stated
" in advance by specifying explicitly which symbol is actually to be seen in package. This is done
by shadowing. If no resolution has been specified, any command that would create a name conflict
signals an error instead.

For example, a name conflict can be created by use-package if it adds a new inherited package
with its own symbol foo to a package which already has or inherits a different symbol with the
same name foo. export can cause a name conflict if the symbol becoming external is now supposed
to be inherited by another package that already has a conflicting symbol On either oceasion, if
shadowing has not already been used to control the outcome, an error is s1gnaled and the use or
- exportation does not oceur.

Shadowing means marking the symbol actually interned in a package as a shadowing symbol,
which means that any conflicting symbols are to be ignored.

package-shadowing-symbols package Funetion
Returns the list of shadowing symbols of package. Each of these is a symbol interned in
package. When a symbol is interned in more than one package, it can be a shadowing
symbol in one and not in another.
Once a package has a shadowing symbol named FOO in it, any other potentially conflicting
external symbols with name FOO can come and go in the inherited packages with no effect.

~ There are two ways to request shadowing: shadow and shadow-import.

shadow names &optional (package *package*) Function
Makes sure that shadowing symbols with the specified names exist in package. names is
either a string or symbol or a list of such; any symbols present in names are coerced into
their print-name strings. Each name specified is handled independently as follows:

o If there is a symbol of that name interned in package, it is marked as a shad-
owing symbol.

o Otherwise, a new symbol of that name is created and interned in package, and
marked as a shadowing symbol.

In any case, package will have a symbol with the specified name interned directly in it and
marked as a shadowing symbol.

 The primary application of shadow is for causing certain symbols not to be inherited from any
of the used packages. To avoid problems, the shadow should be done right after the package is
created. The :shadow keyword to make-package (see page 60) or defpackage (see page 61) lets you
specify names to be shadowed in this way when you create a package.

shadowing-import symbols &optional (package *package*) Function

: Interns the specified symbols in package and marks them as shadowing symbols. symbols
must be a list of symbols or a single symbol; strings are not allowed.
Each symbol specified is placed directly into package, after first removing any symbol with
the same name already interned in package. This is rather drastic, so it is best to use
shadowing-import right after creating a package.

shadowing-import is useful primarily for choosing one of several conflicting external symbols
present in packages to be used.

window

Release 2 Notes 69 Window System Changes

6. Window System Changes

6.1 The FONTS Package No Longer Uses Global

This means that any fonts created in earlier systems will have to be redumped in order to
work with Release 2. This has been done for all the system’s fonts appearing in the SYS: FONTS;
__directory. There are two ways to do update the fonts to run in Release 2. The first is to write out

(using fed) a kst format file of the font, load that into a Release 2 world and then write out a gfasl
font file. The other technique is to do the following (in Release 2):

(use-package "GLOBAL" "FONTS")
(load file-containing-font)
(unuse-package. "GLOBAL" "FONTS") _
" (compiler:fasd-symbol-value file-to-contain-font ’fonts:name-of-font)

6.2 New way of initializing process of TV:PROCESS-MIXIN

Normally, if the process keyword argument to make-instance of some window flavor incorpo-
rating tv:process-mixin is a symbol, it is used as the top level function and make-process is called
with no keyword arguments. But, as an exception, if process is t, the top level function is to send
the window a :process-top-level message with no arguments. So, for example, one could write:

(defflavor crock-window ()
(tv:process-mixin tv:window)
(:default-init-plist :process t)
(:documentation "A window which displays a crock."))

(defmethod (crock-window :process-top-level) ()
(draw-crock self)
(do-forever
(update-hands)
(process-sleep 60.)))

6.3 TV:SHEET-FORCE-ACCESS Does Not Prepare the Sheet

The macro tv:sheet-force-access (documented in the Window System Manual) used to put a
tv:prepare-sheet into its expansion unless an optional argument was supplied to inhibit doing so.

It turned out that most uses of the macro had no need to prepare the sheet but were neglecting
to supply the optional argument. Since combining the two facilities is unmodular, the prepare-sheet
has simply been flushed from tv:sheet-force-access. If you really want to do one, simply write a
tv:prepare-sheet explicitly in the body of the tv:sheet-force-access.

The old optional dont-prepare-flag argument is still accepted but has no effect now.

6.4 TV:MAKE-WINDOW Now Identical to MAKE-INSTANCE

Windows can now be created with make-instance just like any other flavor instances. The
function tv:make-window will be supported indefinitely since it is so widely used.

window

Release 2 Notes V 70 Window System Changes

6.5 TV:MOUSE-WAKEUP and TV:MOUSE-RECONSIDER

The window manual says that you should call the function tv:imouse-wakeup to report a change
in screen configuration. This is not exactly true.

The function tv:mouse-wakeup causes the mouse process to look again at the position of the
mouse. It is called by the function tv:mouse-warp, so that the mouse will be tracked to its specified
‘new position. It is also the thing to use if you redisplay a menu-like window with a new set of
menu items, for example, so that the mouse process will notice whether the mouse position is now
inside a different menu item.

However, actual changes in the window configuration may make it necessary to force recompu-
tation of which window owns the mouse. This is done by setting the variable tv:mouse-reconsider
non-nil. Calling tvimouse-wakeup may not be enough, since the current mouse position may still
be inside the old screen area of a no—longer-ellglble window.

6.6 Mouse Clicks Are Bllps By Default

If a window has an input buffer and does not define a handler for mouse clicks, they are
handled by putting :mouse-click blips into the input buffer. It used to be necessary to mix in
tv:list-mouse-buttons-mixin to get this behavior. Now that flavor is a no-op.

Refer to section 10.1 of the Window System Manual for more information.

6.7 :PREEMPTABLE-READ for TV:STREAM-MIXIN

Now all windows that handle :rubout-handler also handle the :preemptable-read operation. It
used to be necessary to mix in tv:preemptable-read-any-tyi-mixin to have this operatlon available.
That flavor is now a no-op.

Refer to page 55 of the Window System Manual for information on using this operation.

You can also do preemptable input using the :rubout-handler operation with the :preemptable
option. This is a new feature documented in this file.

6.8 Menu Item Types

———

The value of a :menu menu item can now be any form that evaluates to a suitable menu. A
menu itself is a special case of such a form, now that menus and other unusual objects evaluate to
themselves.

:funcall-with-self is a new type of menu item. The value associated with it is a function of one
argument. If the menu item is executed, the function will be called, with the menu (that is the
value self, in the menu’s :execute method) as its argument. The value that the function returns is
the value of executing the menu item.

6.9 TV:MOUSE-WAIT Takes Who-state as Argument

tv:mouse-wait takes an additional optional argument that, if specified, is displayed as the run
state in the who line while the function waits for mouse input.

6.10 Mouse Characters

window

Release 2 Notes 71 Window System Changes

You should no longer use the byte pointer %%kbd-mouse in making mouse characters or testing
whether a character is a mouse character. It still works at the moment, but may stop working in
the future. To avoid problems, convert code as soon as you have switched over to Release 2.

To test, use tv:char-mouse-p. To construct, use tv:make-mouse-char.

tvi:char-mouse-p char ' ‘ Function
t if char is a mouse character. This function was incorrectly documented as tv:kbd-mouse-p
in the Lisp Machine Manual. ' ” '

tv:make-mouse-char button n-clicks Function
Returns the mouse. character for clicking on button button, n-clicks times. Both button
and n-clicks range from 0 to 2; n-clicks is actually one less than the number of clicks. The
left button is button 0; the right one is 2.

Continue<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>