
LOGICG~N 2+2

ASSEMBLE',R MANUAL

LOGICON INC.

1075 CAMINO DEL RIO, SOUTH

SAN DIEGO, CALIFORNIA

15 December 1970

Section

I

II

TABLE OF CONTENTS

PREFACE

NUMBER SYSTEM
General ••••

1-1
1-1

Representation of Information. 1-1
Machine Word •• o o o • • • 1-1
Alphanumeric Data o o • • • • • 1-2
One Word Binary Integers 1-2
Three Word Binary Integers. 1-2
Three Word Binary Floating-Point Numbers. • . 1-2
Four Word Binary Floa.ting-Point Numbers. 1-3

INSTRUCTIONS o

General ••• o

Formats .•
Abbreviations and Symbols ••

A = Accumulator Register
U = Upper Accumulator Register.
E = Exponent Register.
X = Index Register
P = Program Register.
B = Base of Stack Register.
T = Top of Stack Register •
L = Limit of Stack Space Register.
S = Status Register.
CO = Carryout
OF = Overflow .••••
Floating Point Overflow Trap ••
Floating Point Underflow Trap •
Notation

Address Interpretation ••••• o ••

Assembly Language Programming.
Label Field •• o

Operation Field •
Variable Field ••
Comments Field.
Field Separation.
Character Set
Symbols $ •••

i

2-1
2-1
2-1
2-5
2-5
2-5
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-7
2-7
2-8
2-8
2-8
2-9
2-9
2-9
2-10
2-10
2-10
2-10

Section

III

TABLE OF CONTENTS (Continued)

Types of Symbols ••
Symbol Definitions •
Expressions •••••
Symbolic Operation Coding and Modifiers

DESCRIPTION OF MACHINE INSTRUCTIONS
Loads and Stores

LDX ••••
LDXEAo o
LDXI.
STX.
XXM
LDU .. o

LDUI
STU.
LDAo
LDAEA •.
LDAI.
STA.
XAM
LDE ..
LDEI.
STE ..
LDM
STM.
PUSHM.
POPM
PUSHN.
MSKM

Input Output ••.
LDAC ...
LDMAP
LLDB .•.
SIM SET ..
DOUT.
DIN
IOC
SIL
RIL.

ii

. . .

Page

2-11
2-11
2-12
2-13

3-1
3 -1
3-1
3-3
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-8
3-8
3-8
3-8
3-9
3-9
3-9
3-9
3-10
3-10
3-11

Section

TABLE OF CONTENTS (Continued)

SRTRN ••
IRTRN.
HLT •••

Character Instructions
LDC.
STC •.
CPRS
GFC.
GFCT ••
GCI .•
GCIT.
IFC.
IFCT
!CL •
ICIT.

Privileged Instructions •
LDAOM
STAOM.
TSLOM ••.•••
LDAOMF
LDASM ••
STASM •.
LDXSM.
LDASMF .•
MRGM.
POPN ..
LDB.
STB ..
LDSP .•.••••
LDBTL.
STSP.
ST Z ••
LSABM •.
SSABM ••
MOVE
CLX ..••••
CLU ...
CLA .•
CLE ••

iii

. . . .

. . .

. . . .

3-11
3-12
3-12
3-13
3-13
3-13
3-13
3-14
3-14
3-15
3-15
3-16
3-16
3-16
3-17
3-17
3-18
3-18
3-18
3-18
3-19
3-19
3-19
3-19
3-19
3-20
3-20
3-21
3-21
3-21
3-21
3-22
3-22
3-22
3-23
3-23
3-23
3-23
3-23

Section

TABLE OF CONTENTS (Continued)

LDF.
STF.
LDD.
LINK
DLINK.

Inter-Register Instructions
RCPY.
RNEG ..
RXCH ••
XSA.
RDS.

Fixed-Point Arithmetic •.
ADX.
ADXI
AD XIS
SBX ..
RSBX ..
MPX
ADU ..
ADU!
SBU •.
ADA ...
ADA!.
SBA ••
RSBA .•
MPA
DVUA.
DVA .••
RDVA .•
RADD .••
RSUB .•
ADDM
SUBM
MINC .•
MDEC
TAD .•
NTAD .•
TSB.
RTSB

iv

3-23
3-24
3-24
3-24
3-25
3-25
3-25
3-25
3-25
3-26
3-26
3-26
3-26
3-26
3-27
3-27
3-27
3-27
3-27
3-27
3-28
3-28
3-28
3-28
3-28
3-28
3-29
3-29
3-29
3-29
3-30
3-30
3-30
3-30
3-31
3-31
3-32
3-32
3-32

TABLE OF CONT E:NTS (Continued)

Section !)a~e

TMP 3-32
TMPF 0 0 C) QI 0 3-33
TDV •• Q tot • Q 0 3-33
TDVF. • 0 Q • • 3-33
ADAS. 3-33
SBAS 3-33
RSBAS ••• 3-34
MPAS .• 3-34
DVAS •. 3-34
RDVAS. "' . . . 3-35
ADVS. • Q • 0 • 3-35
SB UA .. 0 0 0 • • 3-35
DVUAS 3-35
ADXS ... 3-36
SBXS ... 3-36
RSBXS. 3-36
MPXS .. 3-36
TADS •• 3-37
NT ADS. 3-37
TSBS 3-37
RTSBS. 3-38
TMPS. 3-38
TMPFS .. • 0 • • • • 3-38
TDVS .• 3-39
TDVFS. 3-39
TNEG .•. 3-40

Floating Point Arithmetic 3-40
FAD •.. 3-40
NFAD .• 3-40
FSB. 3-40
RFSB 3-41
FMP 0 • 0 3-41
FDV. 3-41
RFDV •. 3-41
FADS •• 3-41
NFADS. 3-42
FSBS •• 3-42
RFSBS. 3-42
FMPS .• • 0 0 • 0 3-43

v

Section

TABLE OF CONT ENT S (Continued)

FDVS ..•
RFDVS.
FIX •••
FLOAT ..
NORM
FNEG.

Logical Instructions
ANX •.
ANU •.
ANUI.
ANUA. e

ANA .•
ANAI
ORA ..
ORA!
XRA.
XRAI.
RAND .•
SET BA ••.
CLRBA .•.
CMPBA
SET BM.
CLRBM
CMPBM
ANAS •..
ORAS .•
XRAS ••
ANXS .•

Shift Inst ructions .
LLX/LRX.
ALU/ARU.
LLU/LRU.
RLU/RRU.
ALA/ARA.
LLA/LRA.
RLA/RRA.
LLUAE/LRUAE
ALUA/ARUA ••
LLUA/LRUA.

Vl

3-43
3-43
3-43
3-44
3-44
3-44
3-44
3-45
3-45
3-45
3-45
3-45
3-45
3-46
3-46
3-46
3-46
3-46
3-47
3-47
3-48
3-48
3-48
3-49
3-49
3-50
3-50
3-50
3-51
3-51
3-51
3-51
3-52
3-52
3-52
3-52
3-53
3-53
3-53

Section

TABLE OF CONTENTS (Continued)

RLUA/RRUA.
LLO ..

Compares and Tests.
SKXEI
SKXNI
SKAE ...
SKAN.
SKAEI
SKA NI
ACX ..
ACU •.
ACA .••
ACE ..
FCP.
FCPS ..
LCX .••
LCU •.
LCA ...
LCE.
MSK ..
SKZA ..
SKOA.
SKZM.
SKOM.
SKNOF ..
SKNCO
T SL •..
DSK

Jumps
JMP ..
JZE.
JNZ
JPL.
JM!.
XJP.
UJP.
AJP •.
EJP ..
TJP.

vii

. . ..

3-54
3-54
3-54
3-54
3-55
3-55
3-55
3-55
3-56
3-56
3-56
3-57
3-57
~-57

3-58
3-58
3-58
3-59
3-59
3-59
3-60
3-60
3-61
3-61
3-62
3-62
3-6Z
3-62
3-63
3-63
3-63
3-63
3-63
3-64
3-64
3-64
3-65
3-65
3-65

Section

IV

TABLE OF CONTENTS (Continued)

IJXN
DJXN ..
IJMP ••

Sub routine and System Linkage •
JSPX .••..•.
JSPM ••.
CALL ..
RTRN.
SCALL.
IJSPX •.
I JS PM
ICALL.

PSEUDO OPERATIONS
General
Control Pseudo Operations ••

RADIX 8.
RADIX 10
END

Program Linking Pseudo Operations .
ENTRYo ..
BENTRY.

Storage Allocation Pseudo Operations
BSS.
BES.

Symbol Defining Pseudo Operations ..
EQU.
SET.

Data Generating Pseudo Operations.
PAR .•
BPAR.
DATA.
STR •.
STRC.

Conditional Pseudo Operations
IF, ELSF, ELSE, and ENDF
RPT and ENDR

Introduction to Macros
MACRO, LMACRO, and ENDM.

viii

. ,' . .

3-66
3-66
3-66
3-66
3-66
3-67
3-67
3-67
3-68
3-69
3-69
3-69

4-1
4-1
4-1
4-1
4-1
4-1
4-3
4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-7
4-10
4-11
4-19

Section

TABLE OF CONTENTS (Continued)

Some Details of the Definition.
Dummy Arguments ..
Generated Symbols ••••
Concatenation •.•.•.•
Conversion of a VaJlue to a Digit String ...
A Note on Subscripts.
NARG and NCHR••.
Macro Calls •••••.•••
Example of Conditional Assembly and Macros o

V ASSEMBLER OPERATING INSTRUCTIONS.
Instructions ••
Examples •.•.•••..•••

VI LSIM LOADING, SIMULATING, AND DEBUGGING.
General ..••

Symbols ..•.
Constants .•.
Expressions
Open Registers or lvle:tno ry Cells

Commands .•.• •
Error Messages
Using LSIM on Tymshare.

Calling LSIM . . •
Programming Considerations .•
Escapes ..••••..

Multiple Processing •.
Modes " • " ••••••
Mode Commands •
Programming Considerations ••

ix

Page

4-19
4-20
4-22
4-23
4-23
4-24
4-24
4-25

! 4-27 . '

5-1
5-1
5-3

6-1
6-1
6-1
6-1
6-1
6-2
6-3
6-6
6-7
6-7
6-8
6-8
6-8
6-8
6-9
6-9

TABLE OF CONTENTS (Continued)

Section

APP. A LOGICON 2+2 CHARACTER SET.
APP. B

APP. c

APP. D

APP. E

Figure

4-1
4-2

Table

2-1

LOGICON 2+2 MNEMONICS IN
ALPHABETICAL ORDER•
LOGICON 2+2 MNEMONICS BY FORMAT.

LOGICON 2+2 MNEMONICS BY REGISTER o

LOGICON 2+2 MNEMONICS BY FUNCTION ..

LIST OF ILLUSTRATIONS

RPT Repeat Options, Flow Chart ...•.••.
Information Flow During Macro Processing

LIST OF TABLES

Inst ruction Formats ...•..•.•....•

3-1 Address Modifiers for Basic Instruction
Form at s I A, B, C, D • • . • • • • . . • . • . .

3-2 Conditions for all Skip/ Jump Instructions.

3-3 Definitions of Boolean Operations ••

3-4 Simulated System Calls ...•••••.

4-1 Initial Set of Offered Pseudo Operations.

x

. .

Page

A-1

B-1

C-1

D-1

E-1

4-12
4-16

Page

2-2

3-2

3-31

3-44

3-70

4-2

Preface

This Assernblcr Manual is the basic document for progrannning on th('

LOGICON 2+2 System. Essentially, it describes programming-relatNi
machint> features, the instruction repertoire, and the symbolic nfachine-
1 anguage-oriented Macro assembler. This manual is only on(' of a sc•t
of publications for prograrnming the LOGICON 2+2. The user shoi.dd
contact his LOGIC ON representative for others of the set to obtain al I
the pertinent and necessary progranuning inforn1ation.

This docun1ent is addressed to programmers experienced with co<ling
in the environrncnt of a con1puter installation. It assurrws knowl<'<lgC'
and experience in the use of address modification with indirection, and
other features norn1ally encountered in a computer with a very flexible'
instruction repertoire -- under control of a rnaster rnonitor progranL
It is also assurrwd that the programnwr is familiar with the 2.'s corn­
plen1ent number systen1 as used in a sign-nurnbcr n1achine. Note that
some of the examples given use SDS-940 instructions. These> W<'rf'

taken frorn the SDS-940 NARP rnanual as it was felt they would be help­
ful to the progran1mer unfamiliar with these features.

It is intend<:>d that this manual be updated and added to freq uPnt I y in
order to properly reflect errors, changes, and the required additions

leading to the final LOGICON 2+2 system.

GENERAL

I • • •

Number
System

The binary system of notation is used throughout the LOGICON 2+2
system.

In the "arithmetic'' case of addition, subtra~tion, and comparison,
operands and results are considered as binary numbers in 2's comple­
ment form. Subtraction, for example, is carried out internally by add­
ing the 2' s complement of the subtrahend.

The assumed location of the binary point has significance only for multi­
plication and division. For integer arithmetic, the binary point may be
assumed to the right of the least- significant bit position (i.e. , to the
right of bit position 15); and for fractional arithmetic, the position of
the binary point may be assumed to the left of the most-significant
position (i. e. , between bit positions 0 and I).

REPRESENTATION OF INFORMATION

The processor is fundamentally organized to deal with 16-bit grouping
of information. Special features are also included for ease of manip­
ulating bits, bytes, and multiple words as groups.

These bit groupings are used by the hardware and software to represent
a variety of forms of information ..

MACHINE WORD

The machine word consists of 16 bits. The numbering of bit position,
character positions, words, etc increases in the direction of conven­
tional reading from the most- to least-significant.

1-1

Data transfers between processor and memory are bit, byte, and word
oriented as illustrated belowo

Bit 0 I 2

Byte 0
(upper half)

ALPHANUMERIC DAT A

7 8

One machine word

Byte I
(lower half)

13 14 15

Alphanumeric data are represented by 8-bit bytes. One machine word
contains 2 bytes or characterso The character set used is standard
ASCII. Note, however, that for teletype use and access, the 64 charac­
ter subset indicated in Appendix A is all that is allowed within the
assembler.

ONE WORD BINARY INTEGERS

For the "algebraic" group of instructions, results are regarded as
signed binary numbers, the leftmost bit being used as a sign bit (a 0
being plus and I minus). When the sign is positive all the bits repre ...
sent the absolute value of the number; and when the sign is negative,
they represent the 2' s complement of the absolute value of the number.
Overflow occurs when the magnitude of a number does not fit within a
given word or register. That is, if the carryout of the sign position
does not agree with the resultant sign (bit position), overflow has
occurred. There are no conditions for underflow. A signed integer
ranges from -z 15 through z 15 - 1.

For the "logical" group of instructions, results are regarded as un­
signed, positive binary numbers in the range of 0 through zl6 - 1.

Tlffi.EE WORD BINARY INTEGERS

The three word integers are sign magnitude, the left most bit of the
first word is sign followed by 47 bits of magnitude. The range of
three-word extended integers is from -(z47 - I) through z47 - 1 = 140,
737, 488, 355, 327. Overflow occurs when the magnitude of a number
does not fit within the 4 7 bits.

Tlffi.EE WORD BINARY FLOATING-POINT NUMBERS

The instruction set contains instructions for binary floating-point
arithmetic with numbers of two-word precision. The lower word

1-2

represents the integral exponent E in 2's complement form, and the
upper two words (32 bits) represent the fractional mantissa Min sign
magnitude form. The notation for a floating-point number N is:

E
N = M x 2

The three word format is shown below. S represents the sign bit.

Register u A E

Word 1

~+
2

151
3

Bit I ~ I 1 ~ 11 151
, .. M .. t .. E • I

Any number with an absolute value in the range of • 353 x 10-9864
through • 708 x 109864 can be represented to more than nine significant
decimal digitso For normalized floating-point numbers, the binary
point is placed at the left of the most significant bit of the mantissa.
Numbers are normalized by shifting the mantissa (and adjusting the
exponent) until no leading zeros are present in the mantissa.

To maintain accuracy, the lowest possible exponent (-32768) together
with a zero mantissa has been defined as the machine representation
of the number zero.

FOUR WORD BINARY FLOATING POINT NUMBERS

These numbers are similar to the 3 word floating point with the ex­
ception of one more word of precision. This permits a number with
an absolute value in the range of • 353 x io-9864 through. 708 x io9864
to be represented to more than 14 significant decimal digits.

1-3

I I ...

Instruct Ions

GENERAL

Machine instructions are comprised of 10 different form.at types. ' In
addition, some of these formats may be subdivided into one or more
sub-formats.. Functionally, the forrnats are divided as follows:

L Basic instructions ..

2.. Miscellaneous instructions ..

3. System Calls.

4. Multi-register and register bit instructions.

5. Memory bit instructions ..

6. Two-word general instructions.

7. Register operation instructions.

8.. Single register shift instructions.

9. Double register shift instructions ..

IO. Immediate data instructionso

FORMATS

The specific formats (1 thru 10) are shown in Table 2-1, Instruction
Formats ..

2-1

TABLE 2-1. INSTRUCTION FORMATS

NUMBER TYPE FORMAT

I

(< 26~) I t I x I R I I I I 1A BASIC: I OP DISP

Io~
& I I I d IMMEDIATE FORM

'< 26D) Io 0. 1 0 0 0 0 0 0 0
1B

OF BASIC

I
I I I I I I DATA

I
I

, < 26~, f 1 I x f 1
I I 1' TWO-WORD FORM OF

OP 0 0 0 0 0 0 0
1C BASIC, WITHOUT B:

I r(• I & I

f ADDRESS

I 1
' I I

0 I OP
I

(< 260) (0 I x I 0 I 1 0 0 1 0 0

1D TWO-WORD FORM OF
BASIC, WITH B:

' " ' I I I I ADDReSS

I 1
I I I

1 f Moof
I

1 2 MISCELLANEOUS: 1 0 0 1 0 0 OP

f 1

I I I

1 I I I

1-
2B MISCELLANEOUS: 1 0 0 1 0 0 MOD I OP

f 1
.. ' ' I I 1 ·

3 SYSTEM CALL: 1 0 0 1 0 1 ol CALL NO.

l 1
& I I I

f o JXsfuSJA~es) 4A MUL Tl-REG. INST: 1 0 0 1 0 1 1 I OP

[1
I A I

1 (
I I I 48 REG. BIT INST.: 1 0 0 1 0 1 OP IN I BIT NO.

(1
I I

1 I x1 BI ' I

I 1 0 0 1 OP INI BIT NO.
5 MEMORY BIT

INSTRUCTION: I al I I I I I ADORE-SS

I 1
I I

oJaJxl I •
1 1 0 1 MOO OP

6A NORMAL TWO-WORD:

I • I
I I I I

I ADDRESS

2 2

TAlH,E 2-1. lNSTRUCTlON F0Hf\,1ATS (Cont)

NUMBER TYPE FORMAT

~1 '
0 I B [x l 0 I MOO I I

l 6B TWO-WORD, DIRECT 0 1 OP

BYTE ADDRESS:
[~ ' I I I

) BYTE ADDRESS

[,.-1
•

0 I B I x I 1 I MOD I I

]
6C TWO-WORD, INDIRECT

0 1 OP

BYTE ADDRESS

C1 • I I •
WORD ADDRESS l

~1
I

o I B Ix (xsfuSJASlesJ
I

I 60 MULTIPLE LOAD
0 1 OP

AND STORE: err ' I I I

1 ADDRESS

I

CC• 1'ofelxf I
I

I 6E "SPECIFIED MAP"
0 MOD OP

INSTRUCTIONS:

~
. I I I

I ADDRESS

~I ' o I B Ix J 1 I MODI
• I 6F "OTHER MEMORY"

0 1 OP

INSTRUCTIONS: c .& I ~ • I ADDRESS

~I •
of 1

I

1 6G TWO-WORD 0 1 1 0 MOD OP

IMMEDIATE:
[~ I I • I

I DATA

~ ' 1)souRcel DEST. l OP t><1 7A OPERATE (EXC. RNEG): 0 1 1 0

~
I

1 JsouRcEf 1 1 pEsT.~ 7B RNEG: 0 1 1 0 1

QJ
I

of xi
I I

) 8 ONE-REG. SHIFT: 0 1 1 1 OP I COUNT

~
I

1 Ix l OP 1 I

1 9 f'WO-REG. SHIFT: 0 1 1 1 COUNT

E!JJ : OP I
& I

l 10 IMMEDIATE DATA

2-· 3

The symbols used in Table 2-1 refer to fields of the different instruc -
tion formats, where:

OP =

I =

x =

R =

DISP =

DATA =

ADDRESS =

CALL NO. =

XS =

us =

AS =

ES =

BIT NO. =

N =

B =

BYTEADDRESS =

M =
Source =

Destination =

Count =

the operation code, can occur as a
2- to 8-bitfield.

indirect bit, indicating indirect
addressing.

indexing according to contents of
X register.

relative addressing with respect to the
P counter and the DISP field (i.e. ,
P + DISP or P +D).

displacement address (D).

9 -bit (Sign Extended) or 16 - bit (full
word) data field.

15-bit word address (<: 32768).
16 bits in case of 6B.

specified System Call number.

X-register select.

U-register select.

A-register select.

E-register select.

bit number referenced in register bit
instruction.

bit number; indexing by low order 4 bits
of X-register.

relative addressing with respect to
B-register.

16-bit byte address (< 65536).

specifies user or system map.

code indicates source register selected
(i.e., X, U, A, etc.)

code indicates destination register
selected (i.e., X, U, A, etc.)

shift count. (Left shift >0. Right shift, 0.)

2-4

ABBREVIATIONS AND SYMBOLS

The following abbreviations and symbols are used for description of the
machine operation.. All registers are 16 bits long, although quantities
contained within some of the registers may be less than 16 bits long.

A = Accumulator register

The primary accumulator in the machine. Arithmetic, logical and shift
operations are performed directly on this register. It may also be
linked with U to form a 32-bit accumulator. A is the low order hali of
this two-word accumulator.

U = Upper Accumulator register

Some arithmetic, logical, and shift operations are performed directly
on the register.. In other cases, it is linked with the A register to form
a 32-bit accumulator. In these cases, U is the high order half of the
two-word accumulator.

E = Exponent register

Contains the exponent in floating point operations. The exponent is ex­
pressed as a 2's complement number. This register can be loaded from
memory or other registers. It ha.s very limited arithmetic and logical
capabilities.

X = Index register

Indexing may be 15-bit word addrese1es, 16-bit byte addresses, or
16-bit 2' s complement displacement:s. Arithmetic operations on this
register do not affect the overflow o:r carryout status indicators.

P = Program Counter register

This register generally contains the address of the next instruction to
be executed. In forming relative addresses in basic instructions it con­
tains the address of the current instruction. The register is 16 bits
long but the addresses it contains are all 15-bit quantities.

B = Base of stack register

This register contains the 15-bit address of the base of the stack as
seen by the main program or subroutine currently running. Attempts
to "pop" the stack beyond this address will result in a stack underflow
trap.. If the high order bit is set, erroneous results and tests on B may
result.

2-5

T = Top of stack register

This register contains the 15-bit address of the next word to be pushed
into the stack. This address should not be less than the address con­
tained in B nor greater than that contained in L as the result of a stack
operation. Checks are made before the stack operation. Note that
checks are made only in the appropriate direction (i.e. , check for over­
flow on a "push", and underflow on a "pop").

L = Limit of stack space register

This register contains the 15-bit address of the first word beyond the
stack (i.e. , the address of the fir st word the stack is not allowed to
occupy). An attempt to "push" the stack beyond this address results in
a stack overflow trap.

S = Status register

Bits in this register describe the current status of the machine. Bit
positions within the word are defined in Figure 2-1, Status Word
Contents.

Current active interrupt level

Floating point underflow trap bit (1= enabled)

Floating point overflow trap bit(1= enabled)

Mode bit(1= user mode)

Previous mode bit

Instruction count field(O= not counting)

Delayed skip bit

Overflow bit

Carryout bit

Figure 2-1. Status Word Contents.

2-6

Mode - The current mode of the m.achine.

0 = system mode

1 = user mode.

Previous mode - Defined only if the mode is system.

0 = system mode

1 = user mode.

CO = Carryout

Describes the result of the previous arithmetic instructione

0 = no carryout occurred

1 = carryout occurred

This bit can be set to either state as a result of an arithmetic operation.

OF = Overflow

Describes the result of all arithmetic and shift instructions on U and A
(except register-register instructions) executed since the indicator was
last reset.

0 = no overflow has occurred

1 = at least one overflow has occurred.

Floating point Overflow Trap

Indicates whether floating point overflow will result in a trap, or be
ignore do

0 = ignored

1 = trap.

Floating point Underflow Trap

Indicates whether floating point underflow will result in a trap, or be
ignored.

0 = ignored

1 = trap.

Z-7

Notation

y

U,A, E, X, B, T, L

(Y)

YB

A.
1

®
CD
8
[LC]

[AC]

ADDRESS INTERPRETATION

= effective address of instruction

= respective registers

= contents of effective address Y

= effective address of byte Y

= bit position i of A register

= replaces

=AND

=OR

= Exclusive OR

= Logical compare

=Arithmetic compare

Instructions are translated in a number of ways. The manner of in­
terpretation is governed by the type of instruction. In general, there
are the following types of addresses:

• An instruction address, which is the address used for fetch­
ing instructions.

• A tentative address, which is the address used for fetching
an indirect word.

• An effective address, which is the final address produced
by the address modification process. It is the address used
for obtaining an operand, for storing a result, or for other
special operations during which memory is accessed using
the effective address.

ASSEMBLY LANGUAGE PROGRAMMING

The normal operating mode of the LOGICON 2+2 assembler in process­
ing input subprograms is relocatable; that is, each subprogram is
handled individually and is assigned memory locations nominally begin­
ning with zero and extending to the upper limit required for that sub­
program. Since a job stream can contain many such subprograms, it
is apparent that they cannot all be loaded into memory area starting
with location zero; they must be loaded into different areaso

2-8

Furthermore, they must be movable (relocatable) among the areaso
Then for relocatable subprograms, the LOGICON 2+2 assembler
provides:

• Delineators identifying each subprogram.

• Symbol linking information.

• Length of each subprogram.

• Relocation control bits for each assembled word.

Label Field

In machine instructions, certain pseudo-operations; and macros, this
location may contain a symbol (1 to 6 characters) or may be left blank
if no reference is made to the instruction.

Operation Field

The operation field may contain fron1 one to six characters. The group
of characters must be a LOGICON 2+2 operation code or pseudo­
operation, or a programmer defined macro operation code. Anything
else appearing in the operation field is illegal and results in an error
message.

An asterisk (*), appearing immediately following the operation code, is
a special modifier indicating indirect addressing.

Variable Field

The variable field contains zero, or more subfields separated by the
programmer through the use of comrnas placed between subfields.. The
number and type of subfields vary depending upon the content of the
operation field, machine instruction, pseudo-op, or macro operation.

The subfields within the variable field of machine instructions consist
of the address and address modifiers. The address may be any legiti­
mate expression. This is usually the first subfield of the variable field
and is separated from modifiers by a comma. Through address modi­
fication as directed by the modifier, a program address is defined.

The subfields used with pseudo-operations vary considerably; they are
described individually under each pseudo-operation. Subfields used
with macro operations are substitutable arguments which, in them­
selves, may be pseudo-operations, or other macro operations.. All of
these types of subfields are presented in the discussion on macro
operations.

2-9

The end of the variable fields is designated by the first blank, semi­
colon, carriage return, or end-of-file encountered in the variable field.

Any null subfield is interpreted to be zero.

Comments Field

The comments field exists solely for the convenience of the program­
mer; it plays no part in the assembly process. Programmer comments
normally follow the variable field and are separated from that field by
at least one blank column or by a semicolon.

A comment may be introduced in several ways:

• An asterisk (*) in column 1.

• A semicolon (;) in any column position.

• By detecting the end of the variable field.

Field Separation

Fields are separated by one or more blanks.

Character Set

All the characters listed in Appendix A have meaning except for '? '.
The following classification of character set is useful.

letter:

octal digit:

digit:

alphanumeric character:

terminator:

operator:

delimiter:

Symbols

A-Z

0-7

0-9

letter or digit

, ; blank CR (denotes carriage
return)

! # % & * + - I <=> @ f
"$'()[]

Any string of alphanumeric characters beginning with an alphabetic
character is a symbol, but only the first six characters distinguish the
symbol (thus, Q 12345 is the same symbol as Q 123456).

2-10

Types of Symbols

Symbols are classified as the following types:

• Absolute - if a symbol refers to a specific number ..

• Relocatable - if a symbol appears in the label field of an
ins true ti on.

• External - if a symbol is considered to be defined external

Symbol Definitions

to the subprogram being assembled, and is,
furthermore, considered specially by the loader ..

Due to the way in which programs are assembled on the Tymshare
version of the LOGICON 2+2 assembler, the statement that a symbol or
expression is "defined 11 usually means that it is defined at that instant
and not somewhere later in the program ... Thus, assuming ALPHA is
defined nowhere else, the following

BETA
ALPHA

EQU
BSS

ALPHA
3

is an error becuase the EQU pseudo·-op demands a defined operand and
ALPHA is not defined until the next :statement. This convention is not
strictly adhered to, however, since sometimes the statement XY Z is
not defined will mean that XYZ is defined nowhere in the program.

A symbol is defined in one of two ways: by appearing as a label or by
being assigned a value with an EQU pseudo-op (or equivalently, by being
assigned a value by NARG, NCHR) ..

• Labels: If a symbol appears in the label field of an instruc­
tion (or in the label field of some pseudo-ops) then it is de­
fined with the current value of the current location counter.
If the symbol is aiready defined, either as a label or as an
equated symbol, the re-defined error message is typed and
the old definition is completely replaced by the new one.

• Equated symbols: These symbols are usually defined by
EQU or SET, getting the value of the expression in the
operand field of the pseudo-op.. This expression must be
defined.. If the symbol has been previously defined as a
label, then the "redefined" error message is typed and the
old definition is completely replaced by the new one; if the
symbol has already been defined a.s an equated symbol, then
no error message is given, and the old value is replaced by

2-11

the new one. Thus, an equated symbol can be defined over
and over again, getting a new value each time.

Note that both the SET and EQU pseudo-ops are processed by the EQU
pseudo-op when using the Tymshare version of the LOGICON 2+2
assembleru In the final version, both pseudo-ops will be implemented.
SET should be used when "redefinition" is desired. The reader should
choose the pseudo-op appropriately.

A defined symbol is always local, and may also be external. If a sym.­
bol in routine A is to be referred to from routine B, it must be declared
external in routine A. This is done in one of the following ways:

Declared external by $: If a label or equated symbol is preceded by a
$ when it is defined, then it is declared external.

$LABEL1
LABEL 2
$GAMMA

LDA
STA
EQU

ALPHA
BETA
DELTA

LABEL2 IS LOCAL ONLY

Declared external by the ENTRY pseudo-op: The symbol in the label
field is dedared external; it may have already been declared external
or may even have a $ preceding it.

If a given symbol is referred to in a program, but is not defined when
the END directive is encountered, then it is assumed that this symbol
is defined as external in some other package. Whether this is the case
cannot be determined until the various packages have been loaded.
Such symbols are called "undefined symbols" or "external symbol
references." It is possible to perform arithmetic upon them (e.g.,
LDA UNDEF + 1); an expression in post-fix Polish form will be trans -
mitted to the loaderg

Expressions

Loosely speaking, an expression is a sequence of constants and symbols
connected by operators. Examples:

100-Z*ABC I (ALPHA+BET A)
GAMMA
F>=Q

The value of an expression is obtained by applying the opera tors to the
values of the constants and symbols, evaluating from left to right ex­
cept when this order is interrupted by the precedence of the operators
or by parenthesis "(,)"; the result is interpreted as a 16-bit signed
integer. The following table describes the various operators and lists

2-12

their precedences (the higher the precedence, the tighter the operator
binds its operands):

02erator Precedence Comment

t 6 exponentiation; exponent must be
~o.

,,, 5 multiplication '•'

I 5 integer division
+(u) 4 unary plus
-(u) 4 negation (arithmetic)
+ 4 addition

4 subtraction
<; 3 less than
<= 3 less than or equal to result of bpera-
= 3 equal to tion is 0 if re-
3 not equal to lation is false,
;;>:::- 3 greater than or equal to otherwise 1
:> 3 greater than
@ (u) 2· logic.al not
& I logical and llogical opera-

0 logical or tion applied to
% 0 logical exclusive or all 16 bits

If an expression contains an illegal or undefined symbol, then the entire
expression is undefinedo

Symbolic Operation Coding and Modifiers

There are several symbolic syntactical elements. They are defined as
follows:

$

Label

Opcode

*

Operand

A label preceded by a dollar sign is declared
external.

The label is defined with the current value of
the location counter.

The opcode must be an instruction, pseudo­
operation, or macro operation already defined.

If an asterisk follows immediately after the
opcode then the indirect bit of the instruction is
set ..

The operand can be an expression which may or
may not be defined.

2-13

Modifiers

*

p

B

The modifiers affect address translation. There
are several such characters, and their effect or
use is governed by the particular operation code
appearing in the operation code field. The
symbols allowed are the following:

The asterisk is a multi-functional element. It is
used as the multiplication operator, designates a
comment line, and also indicates indirect
addressing. In addition to the above inter pr eta -
tions, it may be used to refer to the location of
the instruction in which it appears; for example,

AlO JMP *+2

is equivalent to

AlO JMP Al0+2

and represents a jump to the second location fol­
lowing the jump instruction. Note, however, that
because of the complexity of implementing the
LOGICON 2+2 assembler on Tymshare, this
element may appear only as the first character of
an expression. Thus,

AlO JMP *+2

is legal, but

AlO JMP 2+*

is not.

the displacement field (D) is computed relative to
the P counter (P + D).

LDA A (effective address is P + D)

is equivalent to

LDA A, P (effective address is P + D)

The presence of the P modifier forces relative
to P counter addressing ..

the displacement field (D) is computed relative to
the contents of the B register (B + D) where
D = A-P. Thus,

LDA A, B

results in the effective address, B + D.

2-14

x

=

E

Bit

the contents of the index register is added to the
computed address to complete address translation.
Thus,

LDA A, XP :results in P + D + X

signifies an effective address. If the variable
following the equals sign is a literal (i.e .. ,
constant), the literal itself is generated as the
second word of the instruction. If the variable is
a label, the address of the label is generated as
the second word of the instruction. The = sign
only applies to lB and 6G formats.

is used to indicate an extended or two-word ex­
pansion for certain instructions. This is neces­
sary, in many instances due to limitations
imposed by the 8·ftbit displacement field. This
field allows direct addressing of locations only
within the range of the P counter - 128:::: D::: 127.

When it is necessary to access a memory loca­
tion outside of this range, two word formats are
necessary to accommodate full 15-bit word and/
or 16-bit byte addresses.

For example,

LDA Ag E

generates (P + I) as an address - - which me ans
the contents of the second location is used as the
effective address for the instruction. The pro­
grammer uses the "E" to indicate to the assern­
bler the address A is not in range of the current
instruction.

No. an absolute expression used to select a particular
bit involved in a memory- or register -bit type
instruction. The bit number is a 4-bit field and
may be modified (computed modulo 16) ..

N modifier symbol used in memory- and register­
bit instruction to indicate that the low order 4
bits of the X register are to be added to the bit
number field.

2-15

Selected
Registers X, U ,· A, E

Instructions involving multiple registers or
multiple loads and stores, the symbols X, U, A,
and E are placed in the variable field to indicate
the registers involved in loads, stores, pushes,
and pops. The symbols X, U, A, and E rep­
resent the X, U, A, and E registers respectively ..

2-16

GENERAL

III ...

Description of
Machine Instructions

In describing each instruction, five items may appear underlined
preceding the instruction summary. The items are:

Mnemonic Name OpCode (Mc~ Format

LOADS AND STORES

LDX Load X 00 IA, B, C, D

(y) - x

Load the contents of memory into the X register.
Modifiers: P, X, E, B, *, =
Refer to Table 3-1 for the allowable address modifiers (and legal com­
binations) for basic instructions undier formats lA, B, C, D.

lA formats. In general, these are used most frequently to load and
store variables where the "address" is within the range of the displac.e­
ment field, D. That is,

-128 ~~ address ~ 127

is within the range of the current instruction.

lB formats. These are used, generally, to access constants. It is the
closest thing to a literal in the 2+2 assembler. Literal pools, them­
selves, do not exist.

IC formats. This is the extended or two word form of the basic instruc­
tion and is used to access address outside the range of the displacement
field.

3-1

TABLE 3-1. ADDRESS MODIElERS FOR BASIC
INSTRUCTION FORMATS lA, B, C, D

where,

* = Indirect Addressing x = Indexing
p = Relative to P counter B = Relative to B register
E = Extended address format (2 word form)

and,

• All other combinations of modifiers are illegal

• The modifiers may be specified in any order

• "A" may not be a literal but is the address of the word to be
loaded

Format Example
Address Modifier

Restrictions
Code Codes

I x R

lA LDA A P+D 0 0 l D = A-P; -128 s D :!:: 12 7

IA LDA* A (P+D) l 0 I D = A-P; -128 s D :!:: 127

IA LDA A,X D+X or 0 1 0 if - I 2 8 s A s I 2 7

P+D+X 0 1 l if A< - I28 or A > I27

lA LDA A;XP P+D+X 0 1 l D = A-P; -128 s D :!:: 127

lA LDA* A,X (P+D)+X 1 I I D = A-P; -128 s D :!:: 127

lA LDA A,B B+D 0 0 0 D = A-P; -128S D s 127

IA LDA~~ A,B (B+D) 1 0 0 D = A-P; -128 s D s 127

lA LDA~~ A,BX {B+D)+X 1 I 0 D = A-P; -128 s D s 127

lB LDA :A P+l

lC LDA A,E (P+l)

lC LDA* A,E ((P+l))

lC LDA A,EX (P+I)+X

IC LDA):c A,XE ((P+l))+X

lD LDA A,BE B + (P + 1)

lD LDA::c A,EB (B + (P + 1))

lD LDA A,BXE B + (P + 1) + X

ID LDA>lc A. EXB (B + {P + I)) + X

3-2

10 format. The format is used to force address translation relative
to the base of stack or B reg~ster. This is needed only if the displace­
ment added to the contents of B is nc~t in the -128 to +127 range, or if
both B and X are to be added to the displacement.

LDXEA Load X with Effective Address 04(0)

Y-X

Load the effective address of memo:ry into the X register.

Modifiers: B, X, *
LDXI Load X, Immediate 00 10

LIT9-X

6A

The 9-bit literal contained in bit positions 7-15 of the instruction is
loaded into the X register. The si.gtJL of the literal is extended through

Xo-6·

Modifiers: None.

STX Store X 01 lA, C, D

(X)-y

Store the contents ·of the X register in memory location y.

Modifiers: P, X, B, E, *
XXM Exchange X and Memory 05(0) 6A

(y) -X; (X)- y

The contents of the X register and memory location y are exchanged.

Modifiers: B, X, *
LDU Load U 02 lA, B, C, D

(y) -· u

Load the contents of memory into the U register.

Modifiers : P, X , E , B, *, =

3 .. 3

LDUI LoadU, Immediate 01 10

LIT9-U

The 9-bit literal contained in bit positioning 7-15 of the instruction is
loaded into the U register. The sign of the literal is extended through

Uo-6·

Modifiers: None.

STU Store U 03 lA, C, D

(U)-y

Store the contents of the U register in memory location y.

Modifiers: P, X, B, E, *
LDA Load A 04 lA, B, C, D

(y)-A

Load the contents of memory into the A register.

Modifiers: P, X, E, B, *, =

LDAEA Load A with Effective Address 04(2)

y-A

6A

Load the effective address of memory into the A register.

Modifiers: B, .X, *
LDAI Load A, Immediate 02 10

LIT9-A

The 9-bit literal contained in bit positions 7-15 of the instruction is
loaded into the A register. The sign of the literal is extended through

Ao-6·

Modifiers: None.

3-4

STA Store A 05 lA, C, D

(A)- y

Store the contents of the A register i1l'l memory location y.

Modifiers: P, X, B, E, *
XAM Exchange A and Memory 05(22) 6A

(y) -A; (A) -y

The contents of the A register and m,emory location y are exchangedo

Modifiers: B, X, *
LDE Load E 06 lA, B, C, D

(y)-E

Load the contents of memory into the: E register.

Modifiers : P, X, B, E, *, =

LDEI Load E, Immediate 03 10

LIT9-E

The 9-bit literal contained in bit positions 7-15 of the instruction is
loaded into the E register. The sign of the literal is extended through

Eo-6·

Modifiers: None.

STE Store E 07 lA, C, D

(E)-y

Store the contents of the E register in memory location y.

Modifiers: P, X, B, E, *

3 •. 5

LDM Load Multiple 01, 41 6D

(y, • • . , y +n, 0 :5 n :5 3) - X, U , A, and I or E

The selected registers, X, U, A, and/or E, are loaded from the con­
tents of memory locations y, y+l, .•• , y+n, where n is determined by
the number of registers selected. The variable field of the instruction
has three subfields: the selected registers, the memory address, and
modifiers, if any. For example:

LDM EU, A, X

The contents of A + X is loaded into the U register, and A + X + 1 is
loaded into the E register. Registers are always loaded in the order
X, U, A, and/or E, no matter how the order is specified in the
symbolic instruction.

Modifiers: B, X, *
STM Store Multiple 02, 42 6D

(X, U, A, and Io r E) - y, .•• , y+n, 0 :5 n :5 3

The contents of the X, U, A, and/or E registers are stored in memory
locations y, y+l, o •• , y+n, where n is determined by the number of
registers selected.

The variable field for .this instruction contains three subfields: the
selected registers, the memory address, and modifiers; if any. For
example:

STM AX,A,B

The contents of the X and A registers are stored in memory locations
B+A and B+A+l, respectively. Registers are always stored in the
order X, U, A, and/ or E, no matter how the order is specified in the
symbolic instruction.

Modifiers: B, X, *
PUSHM Pu sh Multiple 0 4A

(X, U, A, and I or E) - {T), .•• , {T) + n; 0 ~ n :5 3
(T) + n + l -T

3-6

The contents of the selected registers, X, U, A, and/ or E are stored
in consecutive locations defined by the contents of the top of stack
pointe.r, T. Tis then incremented by n + l so that the pointer is set
to the next available word in the stack. Registers are pushed into
the stack in the order X, U, A, and/ or E, no matter how the order
is specified in the symbolic instruction.

Stack overflow trap if (T) > (L) o

Modifiers: None.

POPM Pop Multiple l 4A

((T) - 1), ... , ((T) - n - 1)- E, A, U, and/or X;
0 ~ n ~ 3 ; (T) -· n - l - T

The selected registers, E, A, U, and/or X are loaded from the
memory location specified by the top of stack pointer, T.

T is then decremented by n + l to re:flect the next available word in the
stack. Registers are popped from the stack into registers in the
order E, A, U, and/or X, regardless of the order specified in the
symbolic instruction.

Stack underflow trap if (T) < (B).

Modifiers: None.

PUSHN Push Null 06(0) 6A, G

(T) + (y)-T

The contents of the top of stack pointer, T, is incremented by the con­
tents of the memory location y. There are two forms to the instruction:

6A format - Normal two word form

PUSHN A

The contents of A are added to the T register.

Modifiers: B, X, *
6G format - Immediate or literal form

PUSHN =A

The address or value A is added to the T register.

Modifiers: None.

Stack overflow trap if (T) > (L). Stack underflow trap if (T) < (B).

Modifiers: None.

3,_7

"Specified map" instructions will be set to select the user map, which
is the map in which the address is valid.

~KM Mask Mode Bit 56(.Q) 2

The complement of the previous mode bit in the status register is
logically "anded" with bit 0 of the X register, and the result left in
bit 0 of the X register. That is, if the previous mode bit is 1, bit 0
of the X register is cleared. This is useful for passing addresses
back from a system call to a calling routine: if the calling routine is
sys tern code, then bit 0 (map· select bit) is left alone. If the calling
routine is user code, then bit 0 (which is no longer map select in user
code) is. cleared.

!NPUT OUTPUT

LDAC Load A from Console Switches 57 2

The 16 data switches on the i;>rogrammer's console are interrogated
and their state placed in the A register.

]LDMAP Load Map 60 2

A number of consecutive map entries are set from consecutive core
locations: the starting map page number is inA (00-77, system map
pages 00 to 77; 100-177, user map pages 00 to 77), the starting core
location is in X, and the number of map cells to be loaded is in U.
The format of the core locations to be transferred to the map is as
follows:

0

Not Used

5 6 7 8

Executt;;! Protect

Write Protect

--- Read Protect

15

Physical Page Number
000 - 177 8

-- Dirty Bit (Normally Set to 0)

3-8

LLDB Locate Leading Dirty Bit 70 2'~

The map entries are inspected, begi11ning at the page number in X, for
a "dirty" bit that is set. If one is found, the next instruction will be
skipped and X will contain the page number of the page containing the
dirty bit. If none is fourid, the next instruction will be executed with
no skip. The format of the X registe:r when a dirty bit is found is as
follows:

0 9 10

Not Used

15

---- Virtual Page Number
00 - 77 8,

0 = System Map
1 = User Map

SIM SET Interrupt Mask 75 6A, 6G

The ope rand is logically ANDed with a constant of 13 7777B (all 1 's
except for the sys tern stack overflow interrupt mask bit) and placed
in the software interrupt mask register. The firmware interrupt
mask register is then loaded from the software mask down to, but
not including, the bit number specifiE~d in bits 12-15 of the current
status register. The system stack overflow interrupt is generated
by firmware rather than by an external signal, so it is always en­
abled regardless of the contents of the mask registers.

DOUT Direct Output 75 2

The contents of the X register are placed on the I/O address lines.
The contents of the A register are placed on the I/O data lines, and
an I/O cycle is initiated. See descriptions of the I/0 system for the
address codes used to access the various I/O devices.

DIN Direct Input 74 2

The contents of the X register are placed on the I/O address lines.
The I/O data lines are sampled after an appropriate delay and the data
sampled is placed in the A register. See descriptions of the 1/0 sys­
tem for the address codes used to access the various I/O devices.

3-9

IOC Input/ Output Control 71 2

This instruction is used in the Disk, Tape, and Communications I/O
subsystems. A channel code is given in X and a function code in A, to
control input or output to a tape unit, disk drive or communications
channel. The register formats are:

X Register (Channel Code)

0 6 7 8

I I I
T

0 Communications
Input

I Communications
Output

Z Tape
3 Disk

A Register (Function Code)

0

15

I: I

15

LNot Used

SIL Set Interrupt Lo_ckout 72(0) 2

(Start communications
character mode input)

The firmware interrupt mask is set to zero, locking out all interrupts
except system stack overflow. The software mask is unchanged.

3-10

RIL Release Interrupt Lockout 73 (0) 2

The firmware interrupt mask is loaded from the software mask down
to, but not including, the bit number specified in. bits 12-15 of the
current status register.

SR TRN System Return 2 4A

This instruction is used to return from system calls. It resets the
status, program location COUnter, atLd stack pointers to the States
they had when the sys tern call was entered. It also restores any of
the registers X, U, A, and E that are not used for passing parameters.
If a return to user mode occurs, the1rl. the stack pointers are shifted
back to the user stack. Symbolically,

(B)-7 - T

((T)) - s
((T)+l) - x
((T)+Z) - u

((T)+3) - A

((T)+4) - E

((T)+S) - P

((T)+6) - B

if X flagged in instruction

if U flagged in instruction

if A flagged in instruction

if E flagged in instruction

If (B) > (T), stack underflow trap

If mode is now user (after S i.s restored), then:

((T)-3) - B

((T)-1) - L

((T)- 2) - T

The instruction count mechanism may be activated by setting ((B)- 7)
properly before executing SR TRN.

3-11

IR TRN Interrupt Return 64 2

Return from an interrupt routine, restoring registers to the state they
had when the interrupt became active:

(B)-7 - T

{(T)) - S

{(T)+l) - x
({T)+2) - u
{(T)+3) - A

{ (T)+4) - E

((T)+S) - p

((T) +6} - B

If (B)>(T}, stack underflow trap

If mode is now user (after S is restored), then:

((T)-3) - B

((T)-1) - L

((T)-2) - T

The firmware interrupt mask is loaded from the software interrupt
1nask down to but not including the bit number specified in bits 12-15
of the restored status register. This enables all interrupts of higher
priority (lower number) than the one to which the return is made.

HLT Halt 77 2

The processor enters the halt mode, lights the HALT status light on
the control panel, and stops executing instructions. The programmers
control panel is enabled while the processor is in the halt mode.

3-12

CHARACTER INSTRUCTIONS

LDC Load Character

Load the contents of byte location YB into bit positions 8-15 of the A
register. Bit positions 0-7 of A are set to zero.

Modifiers: B, X, *
STC Store Character

Store bit positions 8-15 of the A regi:ster into byte location yB. The A
register is unchanged.

Modifiers: B, X, *
CPRS Compare Strings 052 :z
Two byte strings in memory are compared. The byte addresses of the
first character of each string must initially be contained in the X and
A registers. The number of characters to be compared must be con­
tained in the U register.

A simple ASCII comparison is performed, character by character.
Hence, "G" is .:> "F", and ''5" is > ''~~".

If the string designated in the A register> string in the X register, the
next sequential instruction is executed.

If the string designated in the A register = string in the X register, the
next sequential instruction is skipped, and execution continues with the
following instruction.

If the string designated in the A register < string in the X register, the
next two sequential instructions are skipped, and execution continues
with the following instruction.

If an equal compare is made, the contents of the X and A registers
point one character beyond the last character compared. If an unequal
compare is made, the contents of the X and A registers point to the
characters found .to be unequal.

3- ll 3

The CPRS instruction is interruptable and may be restarted.

Modifiers: None.

GFC Get First Character 65(0) 6A

Memory location y contains a byte address used to access a string.
The instruction loads the contents of the specified byte address into
bit positions 8-15 of the A register. Bit positions 0-7 of the A regis­
ter are set to zero.

The byte address referred to above is interpreted as a string pointer.
A string is thought of as being defined by two string pointers: a left
pointer (LP), and a right pointer (RP). For purposes of utilizing the
character instructions, these pointers are thought of as occurring in
pairs, left and right, respectively. The pointers are described in
more detail in the subsequent discussion of the GFCT instruction. The
reader is referred to this section for further explanation.

The GFC instruction simply loads one byte of a string into the A regis­
ter. No modification of the string pointers occurs. Therefore,
repeated execution of a GFC instruction results in repeatedly loading
the same byte.

Modifiers: B, X, *

GFCT Get First Character with Test 65(1) 6A

String is tested for null; If not null, ((y)B)-A 8 _15; O-Ao-7

Assume that the memory word pair BA and BA + 1 are memory loca­
tions containing byte addresses for two string pointers - the left pointer
and right pointer, respectively,

:~E--·---~-:--41
Both the left and right pointers (LP and RP) are 16 bit byte addresses.
The left pointer indicates the first byte of the string. The right pointer
is set at the last byte of the string plus one.

3- 14

The length of a designated string is a,lways defined as RP-LP. A
string is defined as null if LP 2::: RP. That is, if the left pointer has
caught up with or passed beyond the :right pointer. All "get'' and
"insert" character instructions acce1ss and modify strings via the left
and right string pointers.

The instruction GFCT executes in th1e following manner. First the
string pointers indicated at memory locations y and y + 1 are tested
for a null string. If the left pointer is greater than. or equal to the
right pointer (LP ~ RP), the string ia null, and execution continues
with the next sequentfal instruction. The contents of the A register
are unchanged.

If the string is not null, the contents of the byte address specified in
memory location y are loaded into bit positions 8-15 of the A register.
Bit positions 0-7 of A are set to zero. The next sequential instruction
is skipped and execution continues with the following instruction.

Modifiers: B, X, *
GCI Get Character and Increment 65(2) 6A

Memory location y contains a byte address used to access a string.
The instruction loads the contents of the specified byte address into bit
positions 8-15 of the A register. Bit positions 0-7 of A are set to
zero, and the byte address is incremented by one.

Modifiers: B, X, *

GCIT Get Character and Increment with Test 65(3) 6A

String is tested for null; If not null, ((y)B)-+A 8 _15 ; O-+A 0 _7 ;

·(y) +1-y

The string pointers indicated at memory locations y and y + 1 are
tested for a null string. If the left pointer is greater than or equal to
the right pointer (LP ~ RP), the string is null and execution resumes
at the next sequential instructlon. The contents of A are unchanged,
and the left pointer is not incrementied.

If the string is not null, the contents of the byte address specified in
memory location y are loaded into bit positions 8-15 of the A register.

3-15

Bit position 0-7 of A are set to zero, and the byte address left pointer
is incremented by one. The next sequential instruction is skipped, and
execution resumes with the following instruction.

Modifiers: B, X, *

IFC Insert First Character 65(4) 6A

The contents of bit positions 8-15 of the A register replace the contents
of the byte address referred to by the contents of memory location y of
the instruction.

The byte in the A register is placed in the byte address defined by the
left pointer of the string. This instruction may develop a null string
since no test concerning the right pointer is made.

Modifiers: B, X, *

IFCT Insert First Character with Test 65(5) 6A

String is tested for null; If not null, (As-15)-(y)B

The string pointers indicated at memory location y and y + 1 are tested
for a null string. If the left pointer is greate;r than or equal to the
right pointer (LP2:RP), the string is null and execution resumes at the
next sequential instruction. The byte specified by the left pointer is
unchanged.

lf the string is not null, the contents of bit positions 8-15 of the A
register replace the contents of the byte address referred to by the con­
tents of memory location y of the instruction. The next sequential
instruction is skipped and execution resumes with the following
instruction.

Modifier s : B , X, *
ICI Insert Character and Increment 65(6) 6A

The contents of bit positions 8-15 of the A register replace the contents
of the byte address referred to by the contents of memory location y of
the instruction. The byte address (left pointer) is incremented by one.

3-16

This instruction may develop a null 1string since no test concerning the
right pointer is made.

Modifiers: B, X, *
!CIT Insert Character and Increment, with Test 65(7) 6A

String is tested for null; if not null, (As-is) -(y)B; (y) + 1- y

The string pointers indicated at memory locations y and y + 1 are
tested for a null string. If the left p<)inter is greater than or equal to
the right pointer (LP~ RP), the strin.g is null and execution continues
with the next sequential instruction. The byte specified by the left
pointer is unchanged, and the left pointer is not incremented.

If the string is not null, the contents of bit positions 8-15 of the A
register replace the contents oi the byte address referred to by the con­
tents of memory location y of the instruction. The byte address (left
pointer) is incremented by one. The next sequential instruction is
skipped and execution continues with the following instruction.

Modifiers: B, X, *
PRIVILEGED INSTRUCTIONS

The machine operates in either systE:~m mode or user mode. The sys­
tem mode is the basic operating mode of the cornputer .. In this mode,
all legal operations are permissible. It is assumed that there is a
resident monitor that controls and St:lpports the operation of all other
programs.

The user mode is the normal problem-solving mode of the computer.
In this mode, certain privileged instJructions are prohibited. Privi­
leged instructions are those relating. to input/output and to changes in
the basic control state of the comput«~r. Any attempt by a program to
execute a privileged instruction whilE~ the computer is in the user mode
results in a trap that returns control to the resident monitor. This
uncondition~lly aborts execution of the instruction and may result in
aborting the job or program.

A user program cannot directly change the computer mode from user
to system. However, the user program can gain direct access to cer­
tain privileged program operations by means of the System Call
instructions. The operations available through System Calls are
established by the resident monitor.

3- ll 7

~DAOM Load A from Other Memory 74(0) 6F

The addressed cell in "other memory" is loaded into the A register.
If executed in the AP, the addressed cell in CP memory will be ob­
tained. If executed in the CP, the (unmapped) addressed cell in AP
memory will be obtained. No protection violation is possible in either
case. One level of indirect addressing through own, not other, mem­
ory is allowed.

STAOM Store A in Other Memory 74(2) 6F

The contents of the A register are stored in the addressed cell in
"other memory." If executed in the AP, the contents of A are stored
in CP memory. If executed in the CP, the contents of A are stored in
AP memory (unmapped). No protection violation is possible. One
level of indirect addressing through own, not other, memory is
allowed.

~fSLOM Test and Set Lock in Other Memory 74(3) 6F

The contents of the addressed cell in other memory are set to O; if the
previous contents of bit 15 of the addressed cell in other memory were
l, skip. Otherwise take a normal return. This instruction is used to
interlock critical areas of code between processors. Note that the
address is unmapped and that no protection violation is possible. One
level of indirect addressing through~· not other, memory is
allowed.

LDAOMF Load A From Other Memory With Force 74(1) 6F

The addressed cell in other memory (as in LDAOM) is loaded into the
A register. No parity trap is permitted. The contents of the memory
status register at the completion of the memory reference are loaded
into the U register with the format

0 8 15

Not Used (=0)

1 = Parity Error
Not Used (=0)

1 = Parity Error

One level of indirect addressing through own, not other, memory is
allowed.

3-18

LDASM Load A throug.h Specified Map 73t21_ 6E

The addressed cell is loaded into the A register, using bit 0 of the
final address as a "map select" bit. Bit #0=0 means use system map,
bit 1#0=1 means use user map. (AP only)

STASM Store A through Specified Map 73(2) 6E

The contents of the A register are stored in the addressed cell, using
the specified map as in LDASM. (AP only)

LDXSM Load X through Specified Map 73 (3} 6E

The addressed cell is loaded into the X register using the specified
map as in LDASM. Then the "specified map" bit is logically ''ored"
with bit 0 of the X register. This ine1truction is used for referencing
addresses: the address obtained will have a "specified map" bit ap­
pended that specifies the map used to read the address. Thus the
address will be interpreted through the map through which it was
addressed. (AP only)

LDASMF Load A through Specified Map with Force 73(1) 6E

The contents of the ·addressed cell in AP memory are loaded into the
A register using the specified map ae1 in LDASM. No parity or protec­
tion traps are allowed. The contents of the memory status register
after memory reference are loaded into the U register with the format

0 8 9

C I
1 = Parity Error

Not Used (~0)

Execute Protect Bit F'rom VAT

l = Parity Error

MRGM Merge Mode Bits 55(0) 2

The "previous mode" bit of the computer's status register is logi­
cally "ored'' with bit O of the X register, and the result left in bit 0 of
the X register. This is useful for passing parameter addresses
from one system call to another: if the parameter address came
from user code, then the high order bit (map select bit in

3-19

POPN Pop Null 06(1) 6A, G

(T) - (y) -T

The contents of the top of stack pointer, T, is decrem~nted by the con­
tents of memory location y. There are two for ms to the instruction:

6A format - Normal two word form

POPN A

The contents of A are subtracted from the T register.

Modifiers: B, X, *
6G format - Immediate or literal form

POPN =A

The address or value A is subtracted from the T register.

Modifiers: None.

Stack overflow trap if (T)
Stack underflow trap if (T)

(L).
(B).

LDB Load B 07 6A, G

(y) -B

The contents of memory are loaded into the base of stack pointer B.
There are two forms to the instruction:

6A format - Normal two word form

LDB A

The contents of A are loaded into the B register.

3-20

Modifiers: B, X, *

6G format~ Immediate or literal form

LDB =A

The address or value A is loaded into the B register.

Modifiers: None.

STB Store B 10(0) 6A

(B)- y

Store the contents of the B registe-r in memory location y.

Modifiers: B, X, *
LDSP Load Stack Pointers 11(0) 6A

(y, y+l, y+2)-B, T, L

Load the contents of memory locations y, y + 1, and y + 2 into the
stack pointers B, T, and L, respectively.

Stack overflow trap if (T) > (L)
Stack underflow trap if (T) < (B)

Modifiers: B, X, *
LDBTL Load B, T, and L - 11(1) 6A

This instruction is the same as LDSP except that no stack overflow or
underflow checks are made.

STSP · Store Stack Pointers 10(ll) 6A

(B, T, L} - y, y + 1, y + Z

Store the contents of the B, T, and I., registers in memory locations y,
y + l , and y + Z .

Modifiers : B , X, *

STZ Store Zeros 12(n) 6A

0-y, ••• , y+n-l;l~n~B

Words of zeros are placed in memory locations y, ... , y + n - 1.

The variable field for this instruction contains three subfields: the
number n (absolute expression), the beginning memory address, and

·modifiers, if any.

Modifiers: B, X, *
LSABM Load Sign of A from Bit in Memory 1 5

(A 1- lS) unchanged

where i is a designated bit number.

The sign position of the A register is loaded from the bit position of
memory location y, designated by the bit number in the variable field
of the instruction.

The variable field of the instruction has three subfields: the bit number
(absolute expression), the memory address, and modifiers, if any.

The rules for modifiers X, and N are the same as those defined for the
SETBM instruction.

Modifiers: X, B, N, *
SSA BM Store Sign of A in Bit in Memory 2 5

where i is a designated bit number.

The sign position of the A register is stored in the bit P<?Sition of mem­
ory location y, designated by the bit number in the variable field of the
ins true ti on.

3-22

The variable field of the instruction contains three subfields: the bit
number (absolute expression), the memory address, and modifiers,
if any.

The rules for modifiers X, and N are the same as those defined for the
SETBM instruction.

Modifiers: X, B, N, *
MOVE Move Word String 003 2

Move (U) words from (X) to (A)

N words, specified in the U registei;-, are moved from a source mem­
ory location, specified in the. X regiister, to a destination memory
location, specified in the A register.. The instruction may be inter­
rupted and restarted without affecting its execution.

Modifiers: None.

CLX Clear X 00 10

This instruction is the same as LD:XI 0

CLU Clear U 01 10

This instruction is the same as LDUl 0

CLA Clear A 02 10

This instruction is the same as LDAl 0

CLE Clear E 03 10

This instruction is the same as LDE:I 0

LDF Load Floating Point Registers 41(3) 60

This instruction is the same as LDM UAE.

3- 2~3 .

STF Store Floating Point Registers 42(3)

This instruction is the same as STM UAE.

LDD Load Double 41(3) 6D

This instruction is the same as LDM UA.

LINK Link Item Item Into FIFO List 67(0) 6A

The LINK and DLINK instructions address a first in·, first out (FIFO)
queue with the following structure:

Addressed Cell
3

0 3778

Data 377g

0 3778

Data 1

0 377g

The addressed cell contains start and end pointers for the elements of
the queue. The cell following the addressed cell is queue entry number
O. There are a maximum of 3773 entries in the queue (0 to 376

8
). A

pointer of 3778 is used to mean "no pointer". Thus if the queue is
empty, the addressed cell will contain 3778 in each byte. The example
shows a queue of two entries, number 3 and number I.

The LINK instruction operates as follows:

The contents of the X register, 0 !:: (X) s 376
8

, are the entry number to
be added to the queue. This entry must not already be linked into the
queue, (i.e., must have a forward pointer of 377. and must not be
pointed to by the queue end pointer). If this test tans then a no skip
return is given. Otherwise a new queue entry is added to the end, with
the data given in the low order 8 bits of A.

3-24

DLINK Remove Item from FIFO Lii:st 67(1) 6A

The number of the first item in the queue is placed in X, the data is
placed in the lower byte of A, the item is removed from the queue, and
a skip return is given. If there arer no items in the queue a no skip re­
turn is given.

INTER-REGISTER INSTRUCTIONS

RCPY Register Copy 0 7A

(5) D

where Smay be X, U, A, E, B, T, L, or 1
and D may be X, U, A, E, B, T, o:r L.

The contents of the source register S are loaded into the destination
register D. For example,

RCPY IE

places the constant 1 in the E register.

Modifiers: None.

RNEG Register Negate 7B

(S) - D

where Smay be X, U, A, E, B, T, L, or I
and D may only be X, U, A, or E.

The contents of the source register S are negated and the result is
loaded into the destination register JD. When the source and destination
registers are the same the argument need only be specified once. Hence,

RNEG UU

is equivalent to RNEG U

Modifiers: None.

RXCH Register Exchange

(S) D; (D) - S

where S may be X, U, A, or E
and D may be X, U, A, or E.

005-012 z

The contents of the specified registers are exchanged.

3- 2:5

For example,

RXCH AE

exchanges the contents of the A and E registers.

Modifiers: None.

XSA Extend Sign of A 014 2

(A0) - U

The sign of A, bit position 0, is extended through the U register. This
instruction is very useful in preparing a single word argument for a
double word instruction - as in a fixed point divide, etc.

Modifiers: None.

RDS Read Status 015 2

(Status) - A

where (Status) = machine status.

The contents of the (Status) register are placed into the A register.
Bit positions and functions are described in Table 2, Status Word
Contents.

Modifiers: None.

FIXED-POINT ARITHMETIC

ADX Add to X 12 IA, B, C, D

(X) + (y) - X

The contents of memory location y are added to the contents of the X
register.

Modifiers: P, X, E, B, *, =

ADXI Add to X, Immediate 04 10

(X) t LITO - X

The 9-bit literal contained in bit positions 7-15 of the instruction (with
sign extended) is added to the contents of the X register.

Modifiers: None.

3-26

AD XIS Add to X, Immediate and Skip 05 10

Skip if X = O; if not set (X) + LIT9 _.,. X

If X is zero, the next sequential instruction is skipped and the following
instruction is executed. If X is not :i~ero, the literal in bit positions
7-15 is added to the X register as in the ADXI instruction.

Modifiers: None.

SBX Subtract from X 16 IA, B, C, D

(X) - (y) X

The contents of memory location y are subtracted from the contents of
the X register.

Modifiers: P, X, E, B, *, =

RSBX Reverse Subtract X 15(1) 6A, G

(y) - (X) _.. X

The contents of the X register are subtracted from the memory location y.

Modifiers: P, X, E, B, *, =

MPX Multiply X 13(0) 6A 11 G

(X) * (y) - X

The contents of the X register and niernory location y are multiplied.
The result is placed in the X register.

Modifiers: B, X, *, =

ADU ADD to U 14(0) 6A, G

(U) + (y) - U

The contents of memory location y are added to the contents of the U
register. Overflow (OF) may be set:. Carryout (CO) .is set or reset.

Modifiers: B, X, *, =

ADU! Add to U, Immediate 06 10

(U)+LIT9-U

The 9-bit literal contained in bit pos.itions 7-15 of the instruction (with
sign extended) is added to the U regiLster. Overflow (OF) may be set.
Carryout (CO) is set or reset.

Modifiers: None.

3-27

SBU Subtract from U 14(I) 6A, G

(U) - (y) - U

The contents of memory location Y are subtracted from the U register.
Overflow (OF) may be set. Carryout (CO) is set or reset.

Modifiers: B, X, *, =

ADA Add to A 10 IA, B, C, D

(A) + (y) - A

The contents of memory location y are added to the A register. Over­
flow (OF) may be set. Carryout (CO) is set or reset.

Modifiers: P, X, E, B, *• =

ADA! Add to A, Immediate 07 10

(A)+ LIT9 - A

The 9-bit literal contained in bit positions 7-15 of the instruction (with
sign extended) is added to the A register. Overflow (OF) may be set.
Carryout (CO) is set or reset.

Modifiers: None.

SBA Subtract from A 14 IA, B, C, D

(A) - (y) - A

The contents of memory location y are subtracted from the A register.
Overflow (OF) may be set. Carryout (CO) is set or reset.

Modifiers: P, X, E, B, *, =

RSBA Reverse Subtract A 14(2) 6A, G

(y) - (A) - A

The contents of the A register are subtracted from memory location y.
The result is placed in the A register. Overflow (OF) may be set.
Carryout (CO) is set or reset.

Modifiers: B, X, :.:~, =

MFA Multiply A 13(1) 6A, G

(A) ~' { y) - U, A

The contents of the A register and memory location y are multiplied.
The two word product is placed in the extended accumulator U, A. If

3-28

the product does not fit in one register, overflow (OF) is set. That is,
if either (A

0
) = 0 and (U) = 0, or if (.A

0
) = 1, and (U) = 17 7 7 7 7.

Modifiers: B, X, *, =

DVUA Divide U and A 16(0) 6A, G

(U, A) I (y) - A; Remainder - U

The contents of the extended accumulator U, A a:re· divided by the con­
tents of memory location y. The quotient is placed in the A register.
The remainder is placed in the U register. Overflow (OF) may be set.

Modifiers: B, X, *, =

DVA Divide A 16(1) 6A, G

(A) I (y) - A; Remainder U

The contents of the A register are divided by the contents of memory
location y. The quotient is placed in the A register. The remainder
is placed in the U register. Overflow (OF) may be set.

Modifiers: B, X, *, =

RDVA Reverse Divide A 16(3) GA, G

(y) I (A) - A; Remainder - U

The contents of memory location y are divided by the contents of the A
register. The quotient is placed in the A register. The remainder is
placed in the U register. Overflow (OF) may be set.

Modifiers: B, X, *, =

RADD Register Add 1 7A

(D) + (S) - D

where Smay be X, U, A, E, B, T, L, or 1
and D may be X, U, A, E, B, T, or L.

The contents of the source register S are added to the contents of the
destination register D. If the sourc1e and destination registers are the
same, the argument need only be spiecified once. Hence,

RADD XX

is equivalent to RADD X

Modifiers: None.

3- 29

RSUB Register Subtract 2 7A

(D) - (S) - D

where S = X, U, A, E, B, T, L, or 1

and D = X, U, A, E, B, T, or L.

The contents of the source register S are subtracted from the contents
of the destination register D. If the source and destination registers
are the same, the argument need only be specified once. Hence,

RSUB TT

is equivalent to RSUB T

Modifiers: None.

ADDM. Add to Memory

(y) + (A) - y

17(0) 6A

The contents of the A register are added to the contents of memory
location y. Overflow may be set. Carryout is set or reset. The con­
tents of A are not changed.

Modifiers: B, X, *

SUBM Subtract from Memory 17(I)
~~~~-.:..~~~-'---""--~~-

6A 

(y) - (A) - y 

The contents of the A register are subtracted from the contents of 
memory location y. Over.flow may be set. Carryout is set or reset. 
The contents of A are not changed. 

Modifiers: B, X, * 

MING Memory Increment, Sk_i~p __ 2_0 __ (~S_C___._) __ 6_A 

(y) + I - y; Skip on Condition 

The contents of memory location y are incremented by one. The con­
tents of memory location y are compared to zero. If the specified con­
dition is met, the next sequential instruction is skipped and the follow­
ing instruction is executed. 

The variable field of the instruction may have three subfields. They 
are: The skip condition, the address, and modifiers, if any. For 
example, 

MING GE, A 

3-30 



The contents of A are increased by oitte. If the result is "greater than 
or equal to'' (GE) zero, the next sequential instruction is skipped. 

Refer to Table 3-2 for the mnemonic.sand meaning for all skip condition 
instructions. 

TABLE 3-2. CONDITIONS FOR ALL SKIP/JUMP INSTRUCTIONS 

Condition Meaning 

N 
GT 
EQ 
GE 
LT 
NE 
LE 
u 

MDEC 

Never Skip (Jump} 
Greater than 
Equal 
Greater than or Equal to 
Less than 
Not Equal 
Less than or Equal to 
Unconditional Skip (Jump} 

Memory Decrement, Skip 2l(SC) 

(y) - 1 - y; Skip on Condition 

Skip/ Jump Condition 
bits 7, 8, 9 of instruction 

6A 

000 
001 
010 
011 
100 
101 
110 
111 

The contents of memory location y are decremented by oneo If the 
specified condition is met, the next sequential instruction is skipped 
and the following instruction executed. 

The variable field of instruction may have three subfields. They are: 
the skip condition, the address, and modifiers, if any. For example, 

MDEC EQ, A 

The contents of A are decremented by one. If the result is zero, the 
next sequential instruction is skipped. 

Modifiers: B, X, * 
TAD Triple Add 26(0) 6A 

(U,A,E) + (y, y + 1, y + 2) ·- U,A,E 

The contents of the memory location:s y, y + 1, and y + 2 are added to 
the contents of U, A, E. If the sign magnitude add results in an over -
~low, the results are right shifted one and the overflow bit is set. 

Modifiers: B, X, * 

3-31 



NTAD Negate Triple Add 26(3) 6A 

-( U, A, E) - ( y, y + 1, y + 2) - U, A, E 

The contents of U,A, E and (y, y + l, y + 2) are negated. After ne­
gated both the results are added and placed in U, A, E. If overflow 
occurs, the results are right shifted one and the overflow bit is set. 

Modifiers: B, X, * 
TSB Triple Subtract 26( 1) 6A 

·~~~~~~~~ 

( U, A, E) - ( y, y + 1, y + 2) - U, A ,E 

The contents of the memory locations (y, y + 1, y + 2) are subtracted 
from the contents of U,A, E. If overflow occurs, the results are right 
shifted one and the overflow bit is set. 

Modifiers: B, X, >:< 

RTSB Reverse Triple Subtract 26(2) 6A 

Y, y + 1, y + 2) - (U,A, E) - U,A, E 

The contents of U, A, E are subtracted from (y, y + l, y + 2) and the 
results placed in U, A, E. If an overflow occurs, the results are right 
shifted one and the overflow bit is set. 

Modifiers: B, X, * 

TMP Triple Multiply 24( 1) 6A 

(U,A, E) ~:: (y, y + l, y + 2) - U,A, E 

This is a 3 word (sign magnitude) integer multiply. If an overflow occurs, 
the overflow bit will be set. 

Modifiers: B, X, ~:c 

TMPF Triple Multiply Fractional 24(3) 6A 

(U,A, E) (y~ y + l, y + 2) - U,A, E 

This instruction was implemented for use within a 4 word floating point 
multiply routine. This instruction ignores both input signs and us es the 
sign bit of the result to return an extra bit of significance. For example: 

010 0 ~< 010 0 = 010 0 
110 0 ::c 010 0 = 010 0 
110 0 ::(< 110 0 = 010 0 
01111 ... l * 01111 ... 1 = 1111 

This instruction does not affect overflow or carryout bits. 

3-32 



TDV Triple Divide 25( 1) 6A 

(U,A, E) I (y, y +l, y + 2) ... U,A, E 

This is a 3 word (sign magnitude) int1eger divide. If any number is 
divided by zero, overflow will occur and the overflow bit will be set. 

Modifiers: B, X, * 
TDVF Triple Divide Fractional 25(3) 6A 

(U,A, E) I (y, y + 1, y + Z) ·• U,A, E 

This instruction was implemented for use within a 4 word floating 
point divide routine. This instruction ignores both input signs and us es 
the sign bit of the result to return thE~ most significant bit of the r~sults. 
For example: 

010 0/010 u = 10 -0 
110 0/010 0 = 10 0 
110 0/110 u = 10 0 
0111 ••. 1 /OlU--'1> = 1111 ••. 1 
010 0/01111 ••• 1 = 01000 .•. 

This instruction does not affect overflow or carryout bits. 

ADAS Add to A, Stack 020 z 

(( T) - 1) + (A) - A; ( T) - 1 .... T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is added to the contents of the A register. The entry is 
popped from the stack when the contEmts of the T register are decre­
mented by 1. 

Overflow may be set. Carryout is siet or reset. Stack underflow trap 
occurs if ( T) < ( B). 

Modifiers: None. 

SBAS Subtract from A, Stack 021 2 

(A) - {( T) - 1) - A; ( T) - 1 - T 

The most current item in the stack (pointed to by the top-of- stack 
pointer T) is subtracted from the contents of the A register. The entry 
is popped from the stack when the contents of the T register are decre­
mented by one. 

3-33 



Overflow may be set. Carryout is set. Carryout is set or rest. Stack 
underflow trap occurs if ( T) < ( B). 

Modifiers: None. 

RS BAS Reverse Subtract from A, Stack 022 2 

(( T) - I) - (A) - A; ( T) - 1 - T 

The contents of the A register are subtracted from the most current 
item in stack (pointed to by the top-of-stack pointer T)o The result is 
placed in the A register. The entry is popped from the stack when the 
contents of the T register are decremented by oneo 

Overflow may be set. Carryout is set or reset. Stack underflow 
occurs if ( T) < ( B). 

Modifiers: None 

MPAS Multi ply A, Stack 023 2 

(A) * ((T) - 1) - U, A; (T) - I - T 

The most current item in the stack is multiplied by the contents of the A 
register. The double word product is placed into the extended accumulator 
U, A. The entry is popped from the stack when the contents of the T 
register are decremented by one. 

Stack underflow trap occurs if (T) < (B). Overflow is set if either (Ao) = 0 
and (U) I: 0, or, if-(Ao) = 1 and (U) ~ 177777. That is, if the product does 
not fit into one register. 

Modifier: None. 

DVAS Divide A, Stack 024 2 

(A)/((T)-1) - A; (T) - - T; Remainder - U 

The contents of the A register are divided by the most current item in the 
stack. The quotient is placed in the A register, and the remainder is 
placed in the U register. The entry in the stack is popped when the 
contents of the T register are decremented by one. 

Overflow may be set. Stack underflow trap occurs if (T) < (B). 

Modifiers: None. 

.3 - 34 



RDVAS Reverse Divide A, Stack 025 2 

((T) -1)/(A) - ,A.; (T) - 1 - T; Remainder - U 

The most current item in the stack i.s divided by the c.ontents of the A 
registero The quotient is placed in the A register, and the remainder 
is placed in the U register. The entry in the stack is popped when the 
contents of the T register are decremented by one~ 

Overflow may be set.. Stack underflow trap occurs if (T) < (B ). 

Modifiers: None. 

ADUS Add to U, Stack 25(0) Z 

(( T) - 1) + ( U) - A; ( T) - l - T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is added to the contents of the U register. The entry is 
popped from the stack when the contents of the T register are decre­
mented by 1. 

Overflow may be set. Carryout is :set or reset. Stack underflow trap 
occurs if ( T) < ( B ). 

Modifiers: None. 

SBUA Subtract from A, Stack OZ 1 z 

( U) - ( ( T) - 1) ... U; ( T) - 1 - T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is subtracted from the C4:>ntents of the U register. The entry 
is popped from the stack when the contents of the T register are decre­
mented by one. 

Overflow may be set. Carryout is set.. Carryout is set or reset. Stack 
under fl ow trap occurs if ( T) < ( B). 

DVUAS Divide UA, Stack z 7( 0) 2 

( U, A) / (( T) - 1) ... A Rernainder - U ( T) - 1 - T 

The contents of the U, A registers a.re divided by the most current item 
in the stack. The quotient is placed in the A register, and the remainder 

3-35 



is placed in the U register. The entry in. the stack is popped when the 
contents of the T register are decremented by one. 

Overflow may be set. Stack underflow trap occurs if ( T) < (B). 

Modifiers: None. 

ADXS Add to X, Stack 020 2 

(( T) - 1 + (.X) - X; ( T) - 1 ... T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is added to the contents of the X register. The entry is 
popped from the stack when the contents of the T register are decre­
mented by 1. 

Overflow may be set. Carryout is set or reset. Stack underflow trap 
oc c ur s if ( T) < ( B). 

Modifiers: None. 

SBXS Subtract from X, Stack 021 2 

( X) - ( { T) - I - A; ( T) - 1 - T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is subtracted from the contents of the X register. The entry 
is popped from the stack when the contents of the T register are decre­
mented by one. 

Overflow may be set. Carryout is set. Carryout is set or reset. Stack 
underflow trap occurs if (T) < (B). 

Modifiers: None. 

RS BXS Reverse Subtract from X, Stack 022 2 
------~----

((T) - 1) - {X) - X; (T) - 1 - T 

The contents of the X register are subtracted from the most current 
item in· stack (pointed to by the top-of-stack pointer T). The result is 
placed in the X register. The entry is popped from the stack when the 
contents of the T register are decremented by one. 

Overflow may be set. Carryout is set or reset. Stack underflow occurs 
if(T)<{B). 

Modifiers: None. 

MP.XS Multiply X, Stack 023 2 c -------
(X) * (( T) - 1) - X; ( T) - 1 - T 

3-36 



The most current item in the stack i:s multiplied by the contents of the 
X register. The product is placed into the X register. The entry is 
popped from the stack when the contEmts of the T register are decre­
mented by one. 

Stack underflow trap occurs if (T) < (B). 

Modifier: None. 

TADS Triple Add Stack 33( 0) 2 

(U,A,E) + ((T) - 3, (T) - 2, (T) - 1) - U,A,E; (T) - 3 - T 

The three most current words in the stack (pointed to by the top of 
stack pointer T) are added to the thr.ee-word accumulator U,A, E.. The 
value is automatically popped fron1 the stack when the T register is 
decremented by three. If the sign m.agnitude add results in an overflow, 
the results are right shifted one and the overflow bit is set. 

An overflow or underflow. trap may occur. Stack underflow trap occurs 
if initially ( T) - 3 < ( B). 

Modifiers: None. 

NTADS Negative Tri pl~ Add Sta.ck: 33(3) 2 

-(U,A,E) - ((T - 3, (T) - 2, (T) - I) - U,A,E; (T) - 3 - T 

U, A, E and its 3 most current words in the stack are negated, then 
added together and. results placed in U, A, E. The value is automatically 
popped from the stack when the T register is decremented by three. 

If overflow occurs, the results are right shifted one and the overflow 
bit is set. 

Modifiers: None. 

TSBS Triple Subtract, Stack 33( 1) 2 

(U,A,E) - ((T) - 3, (T) - 2, (T) - 1 - U,A,E; (T) - 3 - T 

The three most current words in the stack (pointed to by the top-of- stack 
pointer T) is subtracted from the 1:hree-word accumulator U,A, E. The 
value is automatically popped from the stack when the T register is 
decremented by three. If overflow occurs, the results are right shifted 
one and the overflow bit is set. 

An overflow or underflow trap may occur. Stack underflow trap occurs 
if in it ia 11 y ( T) ... 3 < ( B). 

Modifiers: None. 

3-37 



RTSBS Reverse Triple Subtract, Stack 33(2) 2 

((T) - 3, (T) - 2, (T) - 1) - (U,A,E) - U,A,E; (T) - 3 -T 

The quantity in the three-word accumulator U, A, E is subtracted from 
the three most current words in the stack. The result is placed in 
U,A, E. The item is automatically popped from the stack when the T 
register is decremented by three. If an overflow occurs, the results 
are right shifted one and the overflow bit is set. 

An overflow or underflow may occur. Stack underflow trap occurs if 
initially ( T) - 3 < ( B). 

Modifiers: None. 

TMPS Triple Multiply, Stack 31( 1) 2 

(U,A,E) * ((T) - 3, (T) - 2, (T) -1) - U,A,E; (T) - 3 - T 

The 3 word (sign magnitude) integer in the accumulator U, A, E, is 
multiplied by the three most current words in the stack. The product 
is placed in U, A, E. Three words are automatically popped from the 
stack when the T register is decremented by three. If an overflow occurs, 
the overflow bit will be set. 

A stack overflow or underflow may occur. Stack underflow trap occurs 
if initially ( T) - 3 < ( B). 

Modifiers: None. 

TMPFS Triple Multiple Fractional Stack 31( 3) 2 

( U, A, E) ~:~ (( T) - 3, ( T) - 2, ( T) - 1) - U, A, E; ( T) - 3 - T 

The quantity in the three-word accumulator U, A, E, is multiplied by the 
three most current words in the stack. The product is placed in U, A,E. 
The 3 words are automatically popped from the stack when the T regis­
ter is decremented by three. 

The instruction was implemented for use within a 4 word floating point 
multiply routine. This instruction ignores both input signs and uses 
the sign bit of the result to return an extra bit of significance. 

010 0 * 010 0 = 010 0 
110 0 ~:~ 010 0 = 010-0 
110 0 ~:~ 110-0 = 010 0 
01111 ..• 1 * 01111 ..• 1 = 1111 

This instruction does not affect overflow or carryout bits. 

3-38 



A stock overflow or underflow m.ay occur. Stack underflow trap occurs 
if initially ( T) - 3 < ( B). 

Modifiers: None. 

TDVS Triple Divide, Stack 32( ll) z 

(U,A, E) / ((T) - 3, (T) - Z, (T) - 1) - U,A, E; (T) - 3 - T 

The 3 word (sign magnitude) integer in the accumulator U,A, E, is 
divided by the three most current words in the stack. The quotient is 
placed in U, A, E. The item is auto1natically popped from the stack 
when the T register is decremented by three. If any number is divided 
by zero, overflow will occur and the overflow bit will be set. 

A stack overflow or underflow trap nna.y occur. Stack underflow trap 
occur s if ini t ia 11 y ( T) - 3 < ( B). 

Modifiers: None. 

TDVFS Triple Divide Fractional, Stack 3Z(3) 

(U,A,E) / ((T)- 3, (T) - Z, (T)- 1) - U,A,E; (T) - 3 .... T 

The quantity in the three-word accurnulator U, A, E, is divided by the 
three most current words in the stac:k. The quotient is placed in 
U, A, E. Three words are automatically popped from the stack when 
the T register is decremented by three. 

This instruction was implemented fo:r use within a 4 word floating point 
divide routine. This instruction igw:>res both input signs and uses the 
sign bit of the result to return the m.ost significant bit of the results. 
For example: 

. 
010 0/010 0 = 10 0 
110 0/010 0 = 10 0 
110 0/110 0 = 10 0 
01111 ..• 1/010----0 = 1111 ... 1 
010 0/01111 •.• 1 = 01000 .•. 

This instruction does not affect overflow or carryout bits. 

A stack overflow or underflow trap 1rnay occur. Stack underflow trap 
occurs if initially ( T) - 3 < ( B). 

Modifiers: None. 

3-39 



TNEG Triple Negate 53 2 

H ((U) G) (A) $ (E)) 0 Then (Uo) - Uo 

This instruction changes the sign bit of the U register if U, A, and E 
are not all equal to zero. If U = 0, A = 0, and E = 0 the instruction is 
a NOP • 

.Modifiers: None 

FLOATING P01N'T ARITHMETIC 

FAD Floating Add 23(0) 6A 

(U, A, E) + (y, y + 1, y + 2)- U, A, E 

The floating-point quantity contained in memory locations y, y + 1, and 
y + 2, is added to the contents of the three-word floating-point accumu­
lator U, A, and E. The result is normalized. 

A floating-point overflow or underflow trap may occur. 

Modifiers: B, X, * 
NFAD Negated Floating Add 23(3) 6A 

- (U, A, E) - (y, y + 1, y + 2) - U, A, E 

U, A, E and the floating-point quantity contained in memory locations 
y, y + I, y + 2, are negated. After negating the two quantities are add 
and the results placed in U, A, E. 

A floating-point overflow or underflow trap may occur. 

Modifiers: B, X, * 
FSB Floating Subtract 23( I) 6A 

(U, A, E) - (y, y + 1, y + 2) - U, A, E 

The floating-point quantity contained in memory locations y, y + 1, 
y + 2, is subtracted from the contents of the three-word accumulator 
U, A, E. The result is normalized. 

A floating-point overflow or underflow trap may occur. 

Modifiers: B, X, * 

3-40 



RFSB Reverse Floating Subtrf1,ct _E_{_Z):-.-_6_A_ 

(y, y + 1, y + Z) - (U, A, E) .. U, A, E 

The floating-point quantity contained in the 3 word accumulator U, A, 
E; is subtracted from the contents of memory locations y, y + 1, y + 2. 
The result is normalized and placed into the three -word accumulator U, 
A, E. 

A floating-point overflow or underflow trap may occur. 

Modifiers: B, X, * 
FMP Floating Multiply 24(0) 6A 

(U, A, E) * (y, y + 1, y + 2) - U, A, E 

The floating-point quantity contained in the three-word accumulator, 
U, A, E, is multiplied by the contents of memory location y, y + 1, 
y + 2. The result is normalized. 

A floating-point overflow or underflow trap may occur. 

Modifiers: B, X, * 
FDV Floating Divide 25(0) 6A 

(U, A, E) I (y, y + 1, y + 2) - U, A, E 

The floating-point quantity contained in the three-word accumulator U, 
A, E, is divided by the contents of the memory locations y, y + 1, 
y + 2. The result is normalized and placed in U, A, E. 

A floating-point overflow or underflow or underflow trap may occur. 

Modifiers: B, X, * 
R __ F_D __ V ____ R __ e_v_e_r_s_e __ F_l_o_a_t_in_g;;_D_1_·v_i_d_e __ ~25(2.~)~~6_A~ 

(y, y + 1, y + Z) / (U, A, E) - U, A, E 

The contents of memory locations y, y + 1, y + 2 are divided by the 
floating-point quantity contained in the three -word accumulator U, A, 
E. The result is normalized and placed in U, A, E. 

A floating-point overflow or underflow trap may occur. 

Modifiers: B, X, * 
Floating Add, Stack 30(0)i 

~--~~-------='--~-------------
FADS 2 

(U , A , E) + (( T ) - 3 , ( T ) ·· 2. , ( T ) - 1 ) - U , A , E ; ( T) - 3 - T 

The most current floating-point quantity in the stack (pointed to by the 
top of stack pointer T) is added to the three-word accumulator U, A, E. 

3-41 



The value is automatically popped from the stack when the T register is 
decremented by three. 

A floating-point overflow or underflow trap may occur. Stack under -
flow trap occur s if ini ti ally (T) -3 < ( B). 

Modifiers: None. 

NFADS Negated Floating Add, Stack 30(3) 2 

- (U, A, E) - ((T) - 3, (T) - 2, (T) - 1)-U, A, E; (T) -3- T 

U, A, E and the 3 most current words in the stack are negated, then 
added together and results placed in U, A, E. The value is auto­
matically popped from the stack when the T register is. dee remented 
by three. 

A floating-point overflow or underflow trap may occur. Stack under­
flow trap occurs if initially (T)-3 < (B). 

Modifiers: None. 

FSBS Floating Subtract, Stack 30( 1) z 
(U, A, E) -((T) - 3, (T) - Z, (T) - 1) - U, A, E; (T)-3 - T 

The most current floating-point quantity in the stack (pointed to by the 
top-of-stack pointer T) is subtracted from the three-word accumulator 
U, A, E. The value is automatically popped from the stack when the 
T register is decremented by three. 

A floating-point overflow or underflow trap may occur. Stack under­
flow trap occurs if initially {T) - 3 < (B). 

Modifiers: None. 

RFSBS Reverse Floating Subtract, Stack 30(2) 2 

((T) - 3, (T) - 2, (T) - 1) - (U, A, E) - U, A, E; (T)-3 - T 

The floating-point quantity in the three-word accumulator U, A, E is 
subtracted from the most current floating-point item in the stack. The 
result is placed in U, A, E. The item is automatically popped from the 
stack when the T register is decremented by three. 

A floating-point overflow or underflow may occur. Stack underflow trap 
occurs in initially (T) - 3 < (B). 

Modifiers: None. 

3-42 

;11111,-----·----------------------------------------· 



FMPS Floating Multiply, Stack 31(0) 2 

(U, A, E) * {{T) - 3, (T) - 2, {T) - 1) - U, A, E; (T) - 3 - T 

The floating-point quantity in the threie-word accumulator U, A, E, is 
multiplied by the most current floating point item in the stack. The 
product is placed in U, A, E. The itE~m is automatically popped from 
the stack when the T register is decrE~mented by thr~e. 

A floating-point overflow or underflow may occur. Stack underflow 
trap occurs if initially (T) - 3 < (B). 

Modifiers: None. 

FDVS Floating Divide, Stack 32(0) 2 

(U, A, E) / ((T) - 3, (T) - 2, (T) - 1) - U, A, E; (T)-3 - T 

The floating-point quantity in the thre1e-word accumulator U, A, E, is 
divided by the .most current floating-point item in the stacko The 
quotient is placed in the U, A, E. The item is automatically popped 
from the stack when the T register is decremented by three. ' 

A floating-point overflow or underflow trap may occur. Stack underflow 
trap occurs if initially (T)-3 < (B). 

Modifiers: None. 

RFDVS Reverse Floating Divide, Sta.ck 32(2) 2 

((T) - 3, (T) - 2, (T) - 1) / (U, A, E)-U, A, E; (T) -3 -T 

The most current floating-point item :in the stack is divided by the con­
tents of the three -word accumulator U, A, E. The quotient is placed 
in U. A, E. The item is automatically popped from the stack when the 
T register is decremented by three .. 

A floating-point overflow or underflow trap may occur. Stack under­
flow trap occurs if initially (T)-3 < (B). 

Modifiers: None. 

FIX Fix a Floating-point Number 041 2 

The floating-point quantity contained in the three-word accumulator U, 
A, E is converted to a fixed-point intE~ger and placed in the A register. 

Overflow may be set. 

Modifiers: None. 

3-43 



FLOAT Float an integer 042 2 

The fixed-point integer in the A register is converted to a floating-point 
quantity and placed in the three-word accumulator U, A, E. 

Modifiers: None 

NORM Floating Normalize 043 2 

The instruction normalizes the floating-point quantity contained in the 
three-word accumulator U, A, E. 

Modifiers: None. 

FNEG Floating Negate 54(0) 2 

If [(U} <±> {A)]?! 0 then {U0 )-U0 

If U and A are not both zero, the sign bit of U will be changed. If U = 0 
and A = 0 the instruction is a NOP. 

LOGICAL INSTRUCTIONS 

In Boolean operations, the operators @, (±), and 8 have the defini­
tions shown in Table 3 -3. 

TABLE 3-3 DEFINITIONS OF BOOLEAN OPERATIONS 

Operator Meaning Definition 

® AND; intersection 0 ® 0 = 0 
0 ® 1 = 0 
1 ® 0 = 0 
1 ® 1 = I 

@ OR, inclusive, union 0 © 0 = 0 
0 <±) 1 = 1 
I 4) 0 = 1 
I G) 1 = 1 

0 EXCLUSIVE OR, 0 0 0 = 0 
symmetric difference 0 G I = I 

I G 0 = I 
I 0 1 = 0 

3-44 



A~N_X~ ___ A_N __ D_w~it_h_X_· ____ 2_7~(0~} ____ 6~A.~L. 

(X) @ (y) - X 

The contents of memory location y ar 1e ANDed with the contents of the 
X register. 

Modifiers: B, X, *, = 

ANU AND with U 27(1) 6A, Ci 

(U) ® (y) -u 

The contents of memory location y ar 1e ANDed with the contents of the 
U register. 

Modifiers: B, X, *, = 

ANUI AND with U, Immediate 10 10 

(U) ® LIT9 - U 

Tl1e 9-bit literal contained in bit position 7-15 of the instruction (with 
sign extended) is ANDed with the cont1ents of the U register. 

Modifiers: None. 

ANUA And with U and place results in A 27(3) 6A, 6G 

(U) ® (y) - A 

The contents of memory location y ar1e ANDed with the contents of the 
U registers (U is left unchanged) and the results are placed in the A 
registers. 

ANA AND with A 20 

(A) ® (y) - A 

The contents of memory location y ar1e ANDed with the contents of the 
A register. 

Modifiers: P, X, B, E, *, = 

ANAI AND with A, Immediate 11 10 

(A) ® LIT9 -A 

The 9-bit literal contained in bit positions 7-15 of the instruction (with 
sign extended) is ANDed with the contents of the A register. 

Modifiers: None. 

3-45 



ORA OR with A 22 IA, B, C, D 

(A) (f) (y) -A 

The contents of memory location y are ORed with the contents of the A 
register. 

Modifiers: P, X, B, E, *, = 

ORAI OR with A, Immediate 12 10 

(A) (±) LIT9 -A 

The 9-bit literal contained in bit positions 7-15 of the instruction (with 
sign extended) is ORed with the contents of the A register. 

Modifiers: None. 

XRA EXCLUSIVE OR with A 24 IA, B, C, D 

(A) 8 (y) -A 

The contents of memory location y are EXCLUSIVE ORed with the 
contents of the A register. 

Modifiers: P, X, B, E, *, = 

XRAI EXCLUSIVE OR with A, Immediate 13 10 

(A) G .LIT9 - A 

The 9-bit literal contained in bit positions 7-15 of the instruction (with 
sign extended) is EXCLUSIVE ORed with the contents of the A register. 

Modifiers: None. 

RAND Register AND 3 ?A 

(S) ® (D) - D 

where Smay be X, U, A, E, B, T, L, or 1 
and D may be X, U, A, E, B, T, or L 

The contents of the source register S are ANDed with the contents of the 
destination register D. For example. 

RAND EX 

the E register is ANDed with the X register. The result is placed in the 
X registers. 

Modifiers: None. 

3-46 



SETBA Set Bit in A 

I-A. 
1 

3 4B 

where i is a designated bit number. 

The bit number in the A register, designated in the variable field of 
the instruction, is set to a one. The bit number specified must be an 
absolute expression. There are two forms of the instruction. 

SE TBA 3 

sets bit position 3 of the A register to a one; and, 

SETBA 3,N 

where N is a modifier indicates the bit number (in the example, 3 ), is 
modified by the .X register with the result, truncaied to four bits, used 
as the effective bit number. 

Modifiers: N 

CLRBA Clear Bit in A 

O-A. 
1 

4 4B 

where i is a designated bit number~ 

The bit position in the A register, designated by the bit number in the 
variable field of the instruction, is S4~t to zero. The bit number speci­
fied must be an absolute expression. There are two forms of the 
instruction. 

CLRBA 13 

sets bit position 13 of the A register to zero; and, 

CLRBA 13, N 

·where N specifies a modifier indicating the bit number is modified by the 
X register with the result truncated to four bits, used as the effective bit 
number. 

Modifiers: N 

3-47 



CMPBA Complement Bit in A 5 4B 

-(A.) A. 
1 1 

where i is a designated bit number. 

The bit position in the A register, designated by the bit number in the 
variable field of the instruction, is complemented. The bit number 
specified must be an absolute expression. 

Modifiers: N 

SET BM Set Bit in Memory 

1-y. 
1 

3 

where i is a designated bit number. 

5 

The bit position of memory location y, designated by the bit number in 
the variable field of the instruction, is set to a one. 

The variable field of the instruction contains three subfields: the bit 
number (absolute expression), the memory address, and modifiers, if 

~Er· 

If the instruction is modified by X and not N, the memory address is 
modified by all 16 bits of the X register. 

If the instruction is modified by N and not X, the bit number is modified 
by the low order four bits of the X register (modulo 16). 

If the instruction is modified by both X and N, the memory address is 
modified by the high order 12 bits of the X register (bit positions 0-11); 
and the bit number is modified by the low order four bits of the X 
register (bit positions 12-15 ). If there is carryout after modifying the 
bit number (> 15), the carry is added to the memory address calculation 
for y. 

Modifiers: X, B, N, * 
CLRBM Clear Bit in Memory 

o-y. 
1 

4 

where i is a designated bit number. 

3-48 

5 



The bit position of memory location y, designated by the bit number in 
the variable field of the instruction, is set to zero. 

The variable field of the instruction contains 3 subfields: the bit num­
ber (absolute expression), the memory address, and modifiers, if any. 

If the instruction is modified by X and not N, the memory address is 
modified by all 16 bits of the X register. 

If the instruction is modified by N and not X, the bit number is modified 
by the low order 4 bits of the X register (modulo 16). 

If the instruction is modified by both :X and N, the memory address is 
modified by the high order 12 bits of the X register (bit positions 0-11); 
and the bit number is modified by the low order four bits of the X 
register (bit positions 12-15). If there is a carryout after modifying 
the bit number ( 1 > 15), the carry is added to the memory address 
calculation for y. 

Modifiers: X, B, N, * 
CMPBM Complement Bit in Memory 5 5 

- (y.)---y. 
1 1 

where i is a designated bit number. 

The bit position of memory location y, designated by .the bit number in 
the variable field of the instruction, is complemented. 

The variable field of the instruction contains three subfields: the bit 
number (absolute expression), the memory address, and modifiers, if 
any. 

The rules for modifiers X, and N are the same as those defined for the 
SETBM instruction. 

Modifiers: X, B, N, * 
A_._N_A_S~ __ A_N_D~w_1_·t_h_A~,_S_ta_c_k ____ 2_2_(!1_ ___ 2 

(A)© ((T)-1)---A; (T'~ - 1 - T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is ANDed with the contents of the A register. The entry is 

3-49 



automatically popped f~om the stack when the contents of the T register 
are decremented by one. 

Stack underflow trap occurs if (T) < (B). 

Modifiers: None. 

ORAS OR with A, Stack 22(2) 2 

(A) (f) ((T) - 1) - A; (T) - 1)-T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is ORed with the contents of the A register. The entry is 
automatically popped from the stack when the contents of the T register 
are decremented by one. 

Stack underflow trap occurs if (T) < (B). 

Modifiers: None. 

XRAS EXCLUSIVE OR with A, Stack 22(3) 2 

{A) 0 ((T)-1)-A; (T) - 1 - T 

The most current item in the stack {pointed to by the top-of-stack 
pointer T) is EXCLUSIVE ORed with the contents of the A register. 
The entry is automatically popped from the stack when the contents of 
the T register are decremented by one. 

A stack underflow trap occurs if (T) < (B). 

Modifiers: None. 

ANXS AND with X, Stack 22(0) 
·~~~~~---~~~ 

2 

(X) ® ((T) - l ) - X; (T) - 1 - T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is ANDed with the contents of the X register. The entry 
is automatically popped from the stack when the contents of the T 
register are decremented by one. 

Stack underflow trap occurs if (T) < (B). 

Modifiers: None. 

3-50 



SHIFT INSTRUCTIONS 

A note concerning modification of shift counts by indexing. On all 
shifts, indexing is performed modulo z5 (or 26 for double register 
shifts). The sign of the result is bit. position 11 (or 10). That is, the 
5- or 6-bit shift count is added to thie contents of the X register. The 
result is treated modulo 25 (or 26). 

LLX/LRX Logical Left/Right Shift x 0 8 

The contents of the X register are shifted left or right C (C = count) 
places, with zeros filling vacated bit positions. Bits shifted past bit 
position 0 (left), or bit position 15 (right) are lost. 

The direction of shift is determined by the count, C, after indexing. If 
count > 0, then left shift. If count < 0, then right shift. 

Modifiers: X 

ALU/ARU Arithmetic Left/Right Shift U 1 8 

The contents of the U register are shifted left or right C (C = count) 
places. If the shift is to the left, zeros are filled into vacated bit posi­
tions on the right. If the shift is to right, the contents of bit position 0 
are filled into vacated positions on the left. Bits shifted past bit posi­
tions 0 (left) or bi.t position 15 (right:) are lost. 

The direction of shift is determined by the count, C, after indexing. If 
count > 0, then left shift. If count< 0, then right shift. 

If the sign bit changes during a left ~~hift, overflow is set. 

Modifiers: X 

LLU/LRU Logical Left/Right Shift U__ _2 __ 8 

The contents of the U register are shifted left or right C (C = count) 
places, with ze.ros filling vacated bit positions. Bits shifted past bit 
position 0 (left), or bit position 15 (Jright) are lost. 

The direction of shift is determined by the count, C, after indexing. If 
count> 0, then left shift. If count< 0, then right shift. 

Modifiers: X 

3-51 



l{_L_U_/_RR __ U __ R_ot_a_t_e Left/Right U 3 8 

The contents of the U register. are circular shifted left or right C 
places. For a rotate left, bits shifted past bit position 0 are placed 
into bit position 15. For a rotate right, bits shifted past bit position 
15 are placed into bit position O. 

No bits are lost. The direction of rotation is determined by the count, 
C, after indexing. If count> 0, then rotate left. If count< 0, then 
rotate right. 

Modifiers: X 

ALA/ARA Arithmetic Left/Right Shift A 4 8 

The contents of the A register are shifted left I right C places. If the 
shift is to the left, zeros are filled into vacated bit positions on the 
right. If the shift is to the right the contents of bit position 0 are 
filled into vacated positions on the left. Bits shifted past bit position 
0 (left), or bit position 15 (right) are lost. 

The direction of shift is determined by the count, C, after indexing. If 
count> 0, then left shift. If count< 0, then right shift. 

If the sign bit changes during a left shift, overflow is set. 

Modifiers: X 

LLA/LRA Logical Left/Right Shift A 5 8 

The contents of the A register are shifted left or right C places, with 
zeros filling vacated bit positions. Bits shifted past bit position 0 (left), 
or bit position 15 {right) are lost. 

The direction of shift is determined by the count, C, after indexing. If 
count> 0, then left shift. If count< 0, then right shift. 

Modifiers: X 

RLA/RRA Rotate Left/Right A 6 8 

The contents of the A register are circular-shifted left or right C 
places. For a rotate left, bits shifted past bit position 15 are placed 
into bit position O. 

3-52 



No bits are lost. The direction of rotation is determined by the count, 
C, after indexing. If count> 0, then rotate left. If count< 0, then 
rotate right. 

Modifiers: X 

LLUAE/LRUAE Logical Left/R!.sJb.t Shift UAE 0 9 

The contents of the three registers U, A 1 E are shifted left or right C 
places, with zeros filling vacated bit positions. For a left shift, bits 
shifted past bit position 0 of E are placed into bit position 15 of the A 
register; bits shifted past bit positioill 0 of A are placed in bit position 
15 of U, bit shifted past ~it position 0 of U are lost. For a right shift, 
bits shifted past bit position 15 of E are lost. 

·The direction of shift is determined by the count, C, after indexing. 
If count> 0, then left shift. If count._, 0, then right shift. 

Mod.Hiers: X 

ALUA/ARUA Arithmetic Left/Shift U, A 
·~----~~~~~~-

1 9 

The contents of the double U, A registers are shifted left or right C 
places. If the shift is to the left, bits shifted past bit position 0 of A 
are placed into bit position 15 of the U register; bits shifted past bit 
position 0 of U are lost. If the shift is to the right, bits shifted past 
bit position 15 of U are placed into bit position 0 of the A register; bits 
shifted past bit position 0 are filled into vacated positions on the left; 
bits shifted past bit position 15 of A are lost. 

The direction of shift is determined by the count, C, after indexing. If 
count> 0, then left shift. If count< 0, then right shift. 

If the sign bit of U changes during a left shift, overflow is set. 

Modifiers: X 

LLUA/LRUA Logical Left/Right Shift U, A 2 9 
~~~~~~~~~ 

The contents of the double U, A registers are shifted left or right C
places, with zeros filling vacated bit positions. For a left shift, bits
shifted past bit position of 0 of A cU(~ placed into bit position 15 of the
U register; bits shifted past bit position 0 of U are lost. For a right
shift, bits shifted past bit position. 15 of U are placed into bit position
0 of the A register; bits shifted pa.st bit position of A are lost.

3 ·-53

The direction of shift is determined by the count, C, after indexing. If
count> 0 then left shift. If count< 0, then right shift.

Modifiers: X

RLUA/RRUA Rotate Left/Right U, A 3 9

The contents of the double U, A registers are circular shifted left or
right C places. For a rotate left; bits shifted past bit position 0 of U
are placed into bit position 15 of the A register; bits shifted past bit
position 0 of A are placed into bit position 15 of the U register. For a
rotate right; bits shifted past bit position 15 of A are placed into bit
position 0 of the U register; bits shifted past bit position 15 of U are
placed into bit position 0 of the A register.

No bits are lost. The direction of rotation is determined by the count,
C, after indexing. If count> 0, then rotate left. If count< 0, then
rotate right.

Modifiers: X

LLO Locate Leadi_n_g_O_n_e ___ 0_4_4 ___ 2

The contents of the A register are searched and shifted to locate a
leading one bit.

If the contents of A are zero, the next sequential instruction is executed.

If the contents of A are non-zero, A is shifted left until a one bit is
shifted into bit position zero. Bits are zero filled from the right of A.
The X register is incremented by the number of shifts that have
occurred. Bit position 0 of the A register is set to zero. The next
sequential instruction is skipped and execution continues with the fol­
lowing instruction.

Modifiers: None.

COMPARES AND TESTS

SKXEI Skip if X Equal, Immediate 14 10

Skip if (X) = LIT 9

If the 9-bit literal contained in bit position 7-15 of the instruction (with
sign extended) is equal to the contents of the X register, the next

3-54

sequential instruction is skipped. 01therwise, the next instruction is
executed.

Modifiers: None.

SKXNI Skip if X Not Equal, Im.mediate 15 10

Skip if (X) ;t1; LIT 9

If the 9-bit literal contained in bit positions 7-14 of the instruction (with
sign extended) is not equal to the cO.t'lLtents of the X register, the next
sequential instruction is skipped. Otherwise, the next instruction is
executed.

Modifiers: None.

SKAE Skip if A Equal to Memory 26 lA, B, C, D

Skip if (A) = (y)

If the contents of the A register are equal to the contents of memory
location y, the next sequential inst.ruction is skipped. Otherwise, the
next instruction is executed.

Modifiers: P, X, B, E, *, =

SKAN Skip if A Not Equal to Mem~ __ 3_0 ___ l_A_,_B_, _C_,_D_

Skip if (A) ¢ (y)

If the contents of the A register are not equal to the contents of memory
location y, the next sequential instruction is skipped. Otherwise, the
next instruction is executed.

Modifiers: P, X, B, E, *• =

SKAEI Skip if A Equal, Immediate 16 10

Skip if (A) = LIT9

If the 9-bit literal contained in bit positions 7-15 of the instruction (with
sign extended) is equal to the contents of the A register, the next
sequential instruction is skipped. Otherwise, the next instruction is
executed.

Modifiers: None.

SK AN I Skip if A Not Equal, Immediate· 17 10

Skip if (A) ¢ LIT9

If the 9-bit literal contained in bit positions 7-15 of the instruction (with
sign extended) is not equal to the contents of the A register, the next
sequential instruction is skipped. Otherwise, the next instruction is
executed.

ACX Arithmetic Compare X 30(SC) 6A, G

(X) [AC J (y); Skip on Condition

The contents of the X register are algebraically compared to the con­
tents of memory location y. If the specified skip condition is met, the
next sequential instruction is skipped. Otherwise the next instruction
is executed.

The variable field of the instruction may have three subfields: the skip
condition, the address, and modifiers, if any.

Refer to Table 3-2 for the mnemonics and meaning of all skip condi­
tions.

Modifiers: B, X, *, =

ACU ArithrnetiC Compare U 3 l(SC) 6A, G

(U) [AC] (y); Skip on Condition

The contents of the U register are algebraically compared to the con­
tents of memory location y. If the specified skip condition is met, the
next sequential instruction is skipped. Otherwise, the next instruction
is executed.

The variable field may have three subfields: the skip condition, the
address, and modifiers, if any.

Refer to Table 3-2 for the mnemonics and meaning of all skip conditions.

Modifiers: B, X, *• =

3-56

ACA Arithmetic Compare A 32(SC) 6A,G

(A) [AC] (y); Skip on Condition

The contents of the A register are algebraically compared to the con­
tents of memory location y. If the specified skip condition is met, the
next sequential instruction is skipped Otherwise, the next instruction
is executed.

The variable field may have three subfields: the skip condition, the
address, and modifiers, if any.

Refer to Table 3 -2 for the mnemonic :s and meaning of all skip conditions.

Modifiers: B, X, *, =

ACE Arithmetic Compare E 331(SC) 6A, G

(E) [AC] (y); Skip on Condition

The contents of the E register are algebraically compared to the con­
tents of memory location y. If the specified skip condition is met, the
next sequential instruction is skipped.. Otherwise, the next instruction
is executed.

The variable field may have three subfields: the skip condition, the
address, and modifiers, if any.

Refer to Table 3-2 for the mnemonics and meanings of all skip conditions.

Modifiers: B, X, *, =

FCP Floating Compare 22(SC) 6A

UAE (AC] (y, y + 1, y + 2) Skip on Condition

The normalized floating point numbe1· in UAE is algebraically compared
to the normalized floating point number in memory location y, y + 1,
y + 2. If the specified skip condition is met, the next sequential instruc­
tion is skipped. Otherwise, the next instruction is executed.

The variable field may have three subfields: the skip condition, the
address, and modifiers, if any.

Refer to Table 3-2 for the mnemonics and meaning of all skip conditions.

3-57

Modifiers: B, X, *, =

FCPS Floating Compare, Stack 36(SC) 2B

U. A. E [AC] (T) - 3, (T) - 2, (T) -1 Skip on Condition

The normalized floating point number in UAE is algebraically com­
pared to the normalized floating point in the Stack. If the specified
skip condition is met, the next sequential instruction is skipped.
Otherwise, the next instruction is executed.

The variable field may have three subfields: the skip condition, the
address, and modifiers, if any.

Refer to Table 3-2 for the mnemonics and meaning of all skip
conditions.

The value of the T register .is unchanged in either case.

Modifiers: B, X, *, =

LCX Logical Compare X 34(SC) 6A, G

(X) [LC] (y); Skip on Condition

The contents of tqe X register are logically compared to the contents
of memory location y. If the specified skip condition is met, the next
sequential instruction is skipped. Otherwise, the next instruction is
executed. Refer to Table 3-2 for the mnemonics and meaning of all
skip conditions.

The variable field may have three subfields: the skip condition, the
address, and modifiers, if any.

Modifiers: B, X, *, =

LCU Logical Compare U 35(SC) 6A, G

(U) [LC] (y); Skip on Condition

The contents of the U register are logically compared to the contents
of memory location y. If the specified skip condition is met, the next
sequential instruction is skipped. Otherwise, the next instruction is
executed. Refer to Table 3-2 for the nmemonics and meaning of all
skip conditions.

3-58

::•-----·---

The variable field may have three subfields: the skip condition, the
address , and modifiers, if any.

Modifiers: B, X, *• =

LCA Logical Compare A 36(SC:) 6A, G

(A) [LC] (y); Skip on Condition

The contents of the A register are logically compared to the contents of
memory location y. If the specified skip condition is met, the next
·sequential instruction is skipped.

Otherwise, the next instruction is executed. Refer to Table 3-2 for the
mnemonics and meaning of all skip conditions.

The variable field may have three subfields: the skip condition, the
address and modifiers, if any.

Modifiers: B, X, *, =

_L_C_E ___ L_o_g_ic_a_l_C_o_m __ p'"-a_r_e_E __ 3_7_(.SC) 6A, G

(E) [LC] (y); Skip on Condition

The contents of the E register are logically compared to the contents
of memory location y. If the specified skip condition is met, the next
sequential instruction is skipped. Otherwise, the next instruction is
executed. Refer to Table 3-2 for the mnemonics and meaning of all
skip conditions.

The variable field may have three subfields: the skip condition, the
address, and modifiers, if any.

Modifiers: B, X, *• =

MSK Memory Skip 40(SC) 6A, G

(y) [AC] O; Skip on CondiUon

The contents of memory location y are algebraically compared to zero.
If the specified skip condition is me1c, the next sequential instruction is
skipped. Otherwise, the next instruction is executed. Refer to Table
3-2 for the mnemonics and meaning of all skip conditions.

3-59

The variable field may have three subfields: the skip condition, the
address, and modifiers, if any.

Modifier s : B , X, * , =

SKZA Skip if Zero in A 6 4B

where i is a designated bit numbero

Bit Ai of the A register is tested. If the bit is a zero, the next sequen­
tial instruction is skipped II the bit in A is a one, the next instruction
is executed. There are two forms to the instruction ..

SKZA 5

checks bit position 5 of the A register for a zero. If the bit is zero,
the skip is executed. Otherwise, no skip. And,

SKZA 5,N

where N is a modifier indicates the bit number (in the example, 5) is
modified by the low order 4 bits of the X register (bit positions 12- 15).

Modifiers: N

SKOA Skip if (Ai) = 1 7 4B

where i is a designated bit number.

Bit Ai of the A register is tested. If the bit is a one, the next sequential
instruction is skipped. If the bit is a zero, the next instruction is
executed. There are two forms to the instruction.

SKOA 14

skips the next sequential instruction if A 14 is a one. And,

SKOA O,N

modifies the bit number, 0, by the low order 4 bits of the X register to
form the effective bit number, i.

Modifiers: N

3-60

SKZM Skip if Zero in Memory, Y:i..__6. __ s_

Skip if (Yi) = 0

where i is a designated bit number.

The bit position of memory location y, designated by the bit number in
the variable field, is tested. If the bit is zero, the next sequential
instruction is skipped. If the bit is one, the next instruction is
executed.

The variable field of the instruction contains three subfields: the bit
number (absolute expression), the memory address, and modifiers, if
any.

If the instruction is modified by X and not N, the memory address is
modified by all 16 bits of the X regiHter.

If the instruction is modified by N and !!2! X, the bit number is modified
by the low order 4 bits of the X register (modulo 16).

If the instruction is modified by both X and N, the memory address is
modified by the high order 12 bits of the X register (bit positions 0-11);
and the bit number is modified by the low order 4 bits of the X register
(bit positions 12-15). If there is any carryout after modifying the bit
number (15), the carry is added to the memory address calculations
for y.

Modifiers: X, B, N, *
SKOM Skip if One in Memory, Yi 7 5

Skip if {Yi) = 1

where i is a designated bit number.

The bit position of memory location y, designated by the bit number in
the variable field, is tested. If the bit is one, the next sequential
instruction is skipped. If the bit is .zero, the next instruction is
executed.

The variable field may contain 3 subfields: the bit number (absolute
expression), the memory address, and modifiers, if any.

3-61

The rules for modifiers X, and N are the same as those defined for the
SKZM instruction.

Modifiers: X, B, N, *
SKNOF Skip if No Overflow 45(0) 2

Skip if (OF) = 0; 0 - OF

The overflow indicator is tested. If overflow is not set ((OF) = 0), then
the next sequential ins true ti on is skipped. If overflow is set ((OF) = l),
then the very next instruction is executed. In both cases, the overflow
indicator is reset (0 OF)

Modifiers: None

SK NCO Skip if No Carryout 46(0) 2

Skip if (CO) = O; 0 - CO

The carryout indicator is tested. If carryout is not set ((CO) = 0), then
the next sequential instruction is skipped. If carryout is set ((CO) = 1),
then the very next instruction is executed. In both cases, the carryout
indicator is reset (0 - CO).

Modifiers: None

TSL Test and Set Lock 43(0) 6A

Skip if (y) 1 5 = 1 0 - y

Bit position 15 of memory location y is tested. If the bit is a one, the
next sequential instruction is skipped. If bit position 15 of y is zero,
the next instruction is executed. In both cases, memory location y is
set to zero.

Modifiers: B, X, *
DSK Delayed Skip 47(0) 2

After the next instruction has been executed, the instruction logically
following it will be skipped.

3-62

JUMPS

JMP Jump Unconditfonally 11 lA, C, D

y--P

The next instruction executed is determined by the effective address
specified in the variable field of the instruction.

Modifiers: P, X, B, E, *
Jump if A Zero 13 lA, C, D

~~~~~~----~~~~~~~~~~· 

JZE 

If (A) = 0 then y ..... P 

If the contents of the A register are .zero, control is transferred to the 
instruction specified by the variable field. Otherwise, the next instruc­
tion in sequence is executed. .. 

Modifiers: P, X, B, E, * 
JNZ Jump if A Non Zero 15 lA, C, D 

If (A) ¢ 0 then y - P 

If the contents of the A register are :non-zero, control is transferred to 
the instruction specified by the variable field. Otherwise, the next 
sequential instruction is executed. 

Modifiers: P, X, B, E, * 
_J_P_L ___ J_u_m__.._p_1_· f_A __ P_l_u_s __ l_7 ___ l_A, , C, D 

If (A) 2: 0 then y - P 

If the contents of the A register are greater than or equal to zero, con­
trol is transferred to the instruction specified by the variable field. 
Otherwise, the next sequential instrt1c tion is executed. 

Modifiers: P, X, B, E, * 

3 .. 63 



JMI Jump if A Minus 21 IA, C, D 

If (A) < 0 then y - P 

If the contents of the A register are less than zero, control is trans -
ferred to the instruction specified by the variable field. Otherwise, 
the next sequenti.al instruction is executed. 

Modifiers: P, X, B, E, * 
XJP X Jump. 44(JC) 6A 

If (X) condition met, then y - P 

The contents of the X registe·r are algebraically compared to zero. If 
the specified jump condition is met, control is transferred to the 
instruction specified by the address portion of the variable field. 
Otherwise, the next sequential instruction is executed. 

The variable field of the instruction contains 3 subfields: the jump 
condition, the address, and modifiers, if any. 

Refer to Table 3-2 for the mnemonics and meaning of alljump 
conditions. 

Modifiers: B, X,. * 
_U_J_P~~U~Ju_m __ p_~~4~JC) 6A 

If (U) condition is met, then y - P 

The contents of the U register are algebraically compared to zero. If 
the specified jump condition is met, control is transferred to the 
instruction specified by the address portion of the variable field. 
Otherwise, the next sequential instruction is executed. 

The variable field of the instruction contains 3 subfields: the jump con­
dition, the address, and modifiers, if any. 

Refer to Table 3-2 for the mnemonics and meaning of all jump 
conditions. 

Modifiers: B, X, * 

3-64 



AJP A Jump 46(JC) 6A 

If (A) condition met, ·then 'l - P 

The contents of the A register are algebraically compared to zero. If 
the specified jump condition is met, control is transferred to the 
instruction specified by the address portion of the variable field. 
Otherwise, the next sequential instruction is executed •. 

The variable field of the instruction contains 3 subfields: the jump 
conditions, the address, and modifi4ers, if any. 

Refer to Table 3-2 for the m.nemonh:s and meaning of all jump 
conditions. 

Modifiers: B, X, * 
EJP E Jump 47(JC) 6A 

If (E) condition met, then. y - P 

The contents of the E register are algebraically compared to zero. If 
the specified jump condition is met c:ontrol is transferred to the instruc­
tion specified by the address portion of the variable field. Otherwise, 
the next sequential instruction is eXE!cuted. 

The variable field of the instruction contains 3 subfields: the jump 
condition, the address, and modifier·s, if any. 

Refer to Table 3-2 for the mnemonics and meaning of all jump 
conditions. 

Modifiers: B, X, >:c 

TJP Triple Jump, UA 50(JC) 6A 

If (U), A, E) condition met, then y - P 

The contents of the triple U, A, E registers are algebraically compared 
to zero. If the specified condition is met, control is transferred to the 
instruction specified by the address portion of the variable field. 
Otherwise, the next sequential instruction is executed. 

The variable field of instruction contains 3 subfields: the jump con­
dition, the address, and modifiers, if any. 

3-65 



Refer to Table 3-2 for the mnemonics and meaning of all jump 
conditions. 

Modifiers: B, X, * 
IJXN Jump if Non Zero, Increment X 25 IA, G, D 
----------~---------------------------~------------------------------------------------------------------~ 

If {X) ~ 0 then y - P; {X) + 1 - X 

If X is non-zero, control is transferred to the instruction specified by 
the variable field. Otherwise, the contents of the X register are 
incremented by one and the next sequential instruction is executed. 

Modifiers: P, X, B, E, * 
DJXN Jump if Non Zero, Decrement X 27 IA, C, D 

If (X) ~ 0 then y - P; (X) - 1 - X 

If Xis non-zero, then control is transferred to the instruction speci­
fied by the variable field. Otherwise, the contents of the X register 
are decremented by one and the next sequential instruction is executed. 

Modifiers: P, X, B, E, * 
Indirect Jump 55(0) 

~~--------------------~· ~-------------------------------------------
6A IJMP 

(y) - p 

The address of the next instruction to be executed is determined by the 
effective address specified in the variable field of the instruction. 

Modifiers: B, X, * 
SUBROUTINE AND SYSTEM LINKAGE 

JSPX Jump, Store P in X 23 lA, C, D 

(P) + 1 - X; y - P 

The contents of the P register plus one, are stored in the X register. 
Control is transferred to the instruction specified by the variable field. 

Modifiers: P, X, B, E, * 

3-66 



JSPM Jump, Store P in Memory 56(7) 6A 

(P) + 1 - (y); y + 1 - P 

The contents of the P register plus one, are stored in the location 
specified by memory location y. Control is transferred to memory 
location y + 1. 

Modifiers: B, X, * 
CALL Subroutine Call Linkage 63(7) 6A 

(P) + 1 ... (T); (B) - (T) + 1; (T) + 2 - B ..... T; y - P 

The contents of the P register plus one, is stored in the location 
specified by the top of the stack pointer T. The contents of the base· 
of stack B register is stored in the location specified by the T register 
plus one. The address, sp~cified by the contents· of the T register plus 
two, is stored in both the Band T registers. Control is transferred 
to the instruction specifi~d by the va~riable field. 

In this way, the return location fron1 the subroutine, and the original 
values of the B and T registers are preserved. Various subroutine 
stack pointers are automatically protected from routine to routine. 

A stack overflow trap occurs if (T) :?: (L). 

Modifiers: B, X, * 
RTRN Subroutine Relu:i:n Linka~ __ 0_5_0 ___ 2_ 

(B) - 2 -+T; ((T) + 1) -B; ((T)) - P 

The contents of the base of stack B :register minus two, is stored in the 
T register. This restores the top of stack T to the value at the time 
of the subroutine CALL. The contents of the value contained in the top 
of stack pointer T plus one, is stored in the B register. This restores 
the value of the B register to the value at the time of the subroutine 
CALL. 

Control is transferred to the memory location contained in the T 
register. This effectively returns control to the instruction following 
the subroutine CALL with the value::s of the B and T registers restored. 

A stack underflow track occurs if (T) < (B). 

3-67 



Modifiers: None. 

SC ALL System Call 3 

System Calls are those calls concerned with defining, determining, 
and manipulating the system environment of a process. 

There are limited number of System Calls simulated by Tymshare. 
These calls are primarily used to: 

• open and close files 

• I/O to and from files, TTY 

• manipulate edited lines 

Most of the calls will have counterparts in the final version of the 
LOGICON 2 + 2 assembler. They are identified in Table 3-4 with 
mnemonics. Some calls are unique to the Tymshare version, and, as 
such, no mnemonics are defined for them. 

There are two allowable forms to the System Call instruction. The 
general form is: 

(label) SCA LL (System Call no.) 

Note that System Call numbers are octal. All existing (simulated) 
calls can be made via this form. Those calls having a unique 
innemonic may be accessed by the name as: 

(label) (System Call Name) 

For example, the Get Edited Line System Call, GEL, may be written 

(label) SCA LL 204B 

or, (label) GEL 

Table 3-4 shows all of the simulated System Calls, characteristics, and 
any anomalies. For a detailed description of each of the System Calls, 
the user is referred to the LOGICON 2+2 MONITOR SPECIFICATION. 

Modifiers: None. 

3-68 



IJSPX Indirect Jump, Store Pin X 55( 1) 6A 

(P) + I - X; (y) ... P 

The contents of the P register plus one, is stored in the X register. 
Control is transferred to the addresis specified by the variable field. 

Modifiers: B, X, * 
IJSPM Indirect Jump, Store P in ,_M_e_m_o_r_.y.__ __ 5_5 ...... (2 ..... ) _____ 6A_ 

(P) + 1 - ((y)); (y) + 1 - P 

The contents of the P register plus ,,:me, is stored at the address speci­
fied by memory location y. Control is transferred to the location 
following the address specified by the variable field. 

Modifiers: B, X, * 
I CALL Indirect Subroutine Call Linkage 55(3) 6A 

(P) + 1 -- (T); (B) -. (T) + 1; (T) + 2 .... B - T; (y) - P 

The contents of the P register plus e>ne, is stored in the location speci­
fied by the top of the stack pointer T. The contents of the base of 
stack B register i.s stored in the location specified by the T register 
plus one. The address, specified by the contents of the T register 
plus two, is stored in both the B and T registers. Control is trans­
ferred to the address specified by the variable field. 

In this way, the return location from the subroutine, and the original 
values of the B and T registers are preserved. Various subroutine 
stack pointers are automatically protected from routine to routine. 

A stack overflow trap occurs if (T) =~ {L). 

Modifiers: B, X, * 

3-69 



TABLE .3-4. SIMULATED SYSTEM CALLS 

Name 
Num-

Input Output Function 
ber 

Terminal 2008 __ ... -- (A)a-15 = Input one 
TCI Character character character 

Input from TTY 

Terminal 2018 (A)8-15 = --- -- Output one 
TCO Character character character to 

Output TTY 

Set Line 2028 Same as ----- Same as 2 +2 
SLEM Editing 2 + 2 spec spec 

Mode except (A) 
and (U) 
ignored 

Leave Line 2038 ----- ----- Same as 2 +2 
LLEM Editing spec 

Mode 

GEL 
Get Edited 2048 Same as Same as Same as 2 +2 
Line 2 + 2 spec 2 + 2 spec spec 

Build 2058 Same as Same as Same as 2 +2 
BEL Edited 2 + 2 spec 2 + 2 spec spec 

Line 

Get Status 2068 Same as Same as Same as 2 +2 
GSEL of Edited 2 + 2 spec 2 + 2 spec spec 

Line 

_Open File 2078 (U, A) = (A) = file no. Open specified -- for Input string (X) = file file for input. 
pointers size Skip return if 

(U) = file O.K. 
type 

3-70 



TABLE 3-4. SIMULATED SYSTEM CALLS (Cont) 

Name 
Num-

Input Output Function 
ber 

Open File 2108 (U, A) = (A) = file no. Open specified -- for Output file for output. string 
pointers. Skip return if 
(X) =file O.K. 
type 

1/0 char- 2118 (U) = file 110. (A) = char- Input or Out-

-- acter to or (A) =char- acter if file put one char-
from file acter if fille open for acter from or 

open for input to file 
output 

-- Close File 2128 (U) = file ltlO. .. --.. - Close specified 
file. 

·--+· 

Simulated 2138 (A) = drunn --- -- Reads or -- Drum Call block num- writes 512 
ber (max. words from/ 

20010>· to the simu-
lated drum. 

(U) = core1 Skip return if 
block num- O.K. Illegal 
ber (un- instruction 
mapped aJ1d trap if ;L LSIM 
ahyays in command not 
CPU re- executed before 
gardless Qf SCALL 213B. 
from which 
processor 
the call is 
executed). 

(X) = 0 re:ad 
from drmn. 

(X) ¢ 0 write 
on drum. 

3-71 





GENERAL 

IV ... 

Pseudo 
Operations 

Pseudo-operations are defined as such because of their similarity to 
machine operations in an object program. They work indirectly on a 
problem by performing machine conditioning functions, such as mem­
ory allocating, and by directing the preparations of machine coding as 
in the case of macros. A pseudo-operation may generate several, one, 
or no words in the object program. 

The initial set of implemented pseudo-operations by functional group, 
principal use, and name are given in Table 4-1, Initial Set of Pseudo­
Operations. 

CONTROL PSEUDO-OPERATIONS 

RADIX 8 Interpret integers as octal 

The radix for integers is set to eight so that all following integers are 
interpreted as octal. 

RADIX 10 Interpret integers as decimal 

The radix for integers is set to ten so that all following integers are 
interpreted as decimal. When an assembly begins, the radix is ini­
tialized to ten, so that RADIX 10 need never be used unless the RADIX 
8 pseudo-op has been used. 

END End of Assembly 

When the pseudo-op is encountered, the assembly terminates. 

The END pseudo-op must not appear in a macro, nor following an 
unterminated MACRO, LMACRO, IF, or RPT pseudo-op. 

4-1 



TABLE 4-1. INITIAL SET OF OFFERED PSEUDO-OPERATIONS 

Pseudo-op Function Principal Use Name 

Control Select and control the opera- RADIX 8 
tions of assembler. RADIX 10 

END 

Program Linking Generate linking information ENTRY 
from subprogram to sub- BENTRY 
program. 

Storage Allocation Control use of memory. BSS 
BES 

Symbol Defining Define assembler source EQU 
program symbols. SET 

- ---l 

Data Generating Produce data words for the PAR 
assembly program. BPAR 

DATA 
STR 
STRC 

Conditional Conditional assembly of IF 
variable numbers of input ELSE 
words. ELSF 

ENDF 
RPT 
ENDR 

-

Macros Generation of argument MACRO 
symbols and repeated sub- ENDM 
sti tution of arguments LMACRO 
within macros. NARG 

NCHR 

4-2 



PROGRAM LINKING PSEUDO-OPERATIONS 

ENTRY Define a symbol as external 

The pseudo-op is used to declare a symbol as external when it is to be 
referred to from another subprograrn. 

The format is: 

(symbol) ENTRY (no operand) 

The symbol in the label field is declared external. 

BENTRY Define a byte symbol as external 

This pseudo-op is temporarily defined exactly as the ENTRY pseudo­
op, and is interpreted as such by the Tymshare version of the LOGICON 
2+2 assembler. In the final assembler, the pseudo-op will be utilized 
to define byte external symbols. 

STORAGE ALLOCATION PSEUDO--OPERATIONS 

BSS Block starting symbol 

The BSS pseudo-op is most commonly used to reserve a block of mem­
ory for use as data or working storage. Its format is as follows: 

(symbol) BSS (expression) 

If there is a symbol in the label field it is defined as the value of the 
current location counter. The counter is then incremented by the value 
of the expression in the variable field, which must be predefined and 
absolute (8K:se<8K). 

When the counter is incremented (or decremented, if the value of the 
expression is negative) the cells skipped over are not initialized or 
modified in any way. 

BES Block ending symbol 

The BES pseudo-op is commonly used to reserve a block of cells for 
use as working storage as follows: 

(symbol) BES (expression) 

4-3 



The current counter is incremented by the value of the expression in 
the variable field, which must be predefined and absolute (8K:se<8K). 
If there is a symbol in the name field it is then defined as· the new 
value of the counter. When the counter is incremented (or decre­
mented), the cells skipped over are not initialized nor modified in any 
way. 

Note that the only difference between the BSS and BES pseudo-ops is 
that BSS defines the name first and then increments the counter, while 
BES increments fir st and then defines the name. Thus, NAME BSS N 
reserves a block of N cells and assigns NAME to the first cell, and 
NAME BES N reserves a block of N cells and assigns NAME to the last 
cell plus one. 

SYMBOL DEFINING PSEUDO-OPERATIONS 

EQU Equate a symbol to a value 

The form of the EQU pseudo-op is: 

(symbol) EQU (expression) 

The symbol is defined with the value of the expression. 

If the symbol is already defined, its value is redefined. The expres­
sion in the variable field must be defined. If the symbol has been de­
clared external before, the EQU pseudo-op preserves the information. 
The redefinition capability just described is available only for the 
Tymshare version of the LOGICON 2+2 assembler. When redefinition 
is desired, the SET pseudo-op would be used as described below. 

SET Symbol redefinition 

The SET pseudo-op defines or redefines a symbol as being equal to an 
expression. Its form is: 

(symbol) SET (expression) 

The symbol in the nam.e field is given the same value as the expression 
contained in the variable field. If the symbol has already been defined 
by a previous SET or by the increment list of a previous RPT pseudo­
op, it is redefined.. The expression in the variable field must be pre­
defined. A symbol defined by a SET pseudo-op (or by the increment 
list of a RPT pseudo-op) must be so defined at least once before it is 
referenced. 

4-4 



DA TA GENERA TING PSEUDO-OPERATIONS 

PAR Parameter 

The PAR pseudo-op generates a data word containing a 15-bit word 
address, with an optional indirect addressing flag. The format is as 
follows: 

(symbol) PAR (expression) 

or, 

(symbol) PAR* (expression) 

One word is generated, whose low-order 15 bits contain the value :of 
the expression in the first subfield.. The expression must be a word 
address. If an asterisk appears after the pseudo-operation code the 
high-order bit of the word will be set to one, indicating indirect ad­
dressing; if not, the high-order bit will be zero. 

If there is a symbol in the label field it is defined as the location of the 
word generated .. 

BPAR Byte parameter 

This pseudo-op is temporarily defined exactly as the DATA pseudo-op 
and is interpreted as such by the Tyrnshare version of the LOGICON 
2+2 assembler. In the final assembler, the pseudo-op will be utilized 
to define byte data parameters. 

DATA Generate data 

The DATA pseudo-op is used to generate one or more 16 bit data words. 
Its format is as follows: 

(symbol) DATA 

One data word, containing the value of the corresponding expression, 
is generated for each subfield in the variable field. There is no re­
striction on expression type. 

If there is a symbol in the label field it is defined as the location of the 
first word generated. 

4-5 



Generate_ string 
~~~~~~~-~~-

STR

The STR pseudo-op is used to convert a string of characters to a string
of ASCII 8-bit bytes. The format is:

(symbol) STR (string of characters enclosed in unique
delimiters)

Each character in the string between the delimiters is converted to an
8-·bit byte, and pairs of bytes are packed into successive 16-bit words.
If the total number of characters is odd, the last word is filled out with
a null (zero) byte.. Thus, for an N-character string the total number
of words generated is (N+l)/2.

If there is a symbol in the label field, it is defined as the location of
the first word generated. Note that the symbol is defined a.s a word
address, not a byte address.

STRC Generate string with cormts

The STRC pseudo-op is used to convert a string of characters to a
string of ASCII 8- bit bytes headed by a one word count. The count
word contains the byte or character count of the string. The format is
as follows:

(symbol) STRC {string of characters enclosed in unique
delimiters)

One word is generated containing the byte count. Each character in the
string is converted to an 8-bit byte and pairs of bytes are packed into
successive 16-bit words. If the total number of characters in the
string is odd, the last word is filled out with a null (zero) byte. Thus,
for an N-character string the total number of words generated is
(N+3)/2.

If there is a symbol in the label field it is defined as the location of the
first word generated. Note that the symbol is defined as a word ad­
dress, not a byte address.

CONDITIONAL PSEUDO-OPERATIONS

A note concerning conditional expressions and true-false values. The
Tyms.hare version of the LOGICON 2+2 assembler defines the value of
true as >0, and false as :sO. A potential problem develops in going to

4-6

the final LOGICON 2+2 assembler where these definitions will be
changed. The final version of the assembler will define true as <0,
and false as :::0.

This means that, in using the Tymshare version of the assembler, ex­
pressions that evaluate to true or false cause no problem in the final
assembler. However, if expressions are used that evaluate to a nu­
meric value, then definite problems are generated when going from
one assembler to the other.

IF, ELSF, ELSE, AND ENDF If statements

It is frequently desirable to permit the assembler either to assemble
or to skip blocks of statements, depending on the value of an expres­
sion at assembly time. This is primarily what is meant by conditional
assembly. Conditional assemblies aJre done by using either an if state­
ment or a repeat statement.

The format of an if statement is

IF expression
<if body>
ENDF

The if body is any block of statements, in particular, it may contain
directives of the form

ELSF expression

and

ELSE

If the operand of IF is true, then the block of code up to the matching
ENDF (or ELSF or ELSE) is processed; otherwise, it is skipped. The
values for true and false are:

true : value of expression >0
false: value of expression :-sO

4-7

Examples:

IF 1>0
LDA ALPHA
STA BETA

processed

ENDF

IF 0
LDA GAMMA
STA DELTA

skipped

ENDF

Often there are more than two alternatives,, so the ELSF directive is
used in the if bodyo When ELSF is encountered while skipping a block
of statements,, its operand is evaluated (just as for IF) to decide wheth­
er to process the block following the ELSF.

Examples:

IF 0 >l
LOA ALPHA skipped
F:LSF l>O
LDA BETA processed
ENDF

IF O>l
LDA ALPHA skipped
ELSF 0>1
I_,DA BETA skipped
ENDF

IF 1>0
LDA ALPHA processed
ELSF 1>0
LDA BETA skipped
ENDF

IF 0 >l
LDA ALPHA skipped
ELSF l>O
LDA BETA processed
ELSF l>O
LDA GAMMA skipped
ENDF

4-8

From the last two examples above it should be clear that either no
blocks are processed or precisely one is; thus, as soon as one block
is processed, all following blocks are skipped regardless of whether
the ELSF expressions are true.

An ELSE directive is equivalent to an ELSF directive with a true ex­
pression.

Example:

IF 0>1
LDA ALPHA skipped
ELSE
LDA BETA processed
ENDF

As a more general example, consider the following:

IF el
<body l>
ELSF e2
<body 2>
ELSF e3
<body 3>
ELSE
<body 4>
ENDF

There are four possibilities:

1. el>O

2. el:S 0, e2>0

3. el :s 0, e2:s0, e3 0:

4. els 0, e2s0, e3:SO:

process body 1, skip the other three.

process body 2, skip the other three.

process body 3, skip the other three.

process body 4, skip the other three.

The bodies between the IF, ELSF, ELSE, and ENDF directives may
contain arbitrary statements, in particular they may contain other if
statements. This nesting of if statements may go to any level.

' When evaluating the expression in the operand field of IF or ELSF, all
undefined symbols are treated as if they were defined with value -1.
These expressions must be absolute.

4-9

RPT and ENDR Repeat Statements

A repeat statement is a means of processing the same text many times.
The format is

(symbol) RPT
<repeat body>
ENDR

expression [, increment list]

The value of the RPT operand (which must be defined and absolute)
determines how many times the repeat body will be processed, while
the increment list (described below) is a mechanism to allow the values
of various symbols to be changed each time the repeat body is
processed ..

Example:

ABC RPT 4
DATA 0
ENDR

This is equivalent to

ABC DATA 0
DATA 0
DATA 0
DATA 0

An increment list has the form (s=el [, e2])s=el [, e2]) where s
stands for a symbol and el and e2 denote expressions, (which must be
absolute; undefined symbols are treated as if they were defined with
the value -1). Before the repeat body is processed for the first time,
each symbol in the list is given the value of its associated el. There­
after, each symbol is incremented by the value of its associated e2 just
before the repeat body is processed. If e2 is missing, the value 1 is
assumed. There is no limit on the number of elements that may appear
in an increment list.

Example:

RPT 3, (I = 4) (J = 0, -1)
DATA I
DAT A J ~:~ I + 1
ENDR

4-10

This results in code equivalent to the following:

DATA 4
DATA Q>:<4+1 = 1
DATA 5
DATA -1~:<5 + 1 = -4
DATA 6
DATA -2 * 6 + 1 = -11

There is another format for RPT:

(symbol) RPT (s=el [, e2.J , e3) [increment list]

In this case, the number of times the repeat body is processed is de­
termined by the construct (s=el [,e2] ,e3). This is the same as an
increment list except that it includes a third expression (which must be
absolute; all undefined symbols are treated as if they were defined with
the value -1), namely a bound on the value of the symbol. As soon as
the bound is passed, processing of the repeat body stops. In the exam­
ple above, the same effect could have been achieved by writing the head
of the repeat statement as

RPT (J = 0, - 1, -2) (I = 4)

or as

RPT (I = 4, 6) (J = 0, - 1)

Note that the bound does not have to be positive or greater than the
initial value of the symbol being incremented; the algorithm for deter -
mining when the bound has been passed is given below.

Figure 4-1 illustrates precisely the actions of the RPT repeat options:

RPT expression [, increm.ent list]

The contents of a repeat body may contain any NARP code, in particular
it may contain other repeat statements; the nesting of repeat statements
may go to any level.

INTRODUCTION TO MACROS

On the simplest level a macro name may be thought of as an abbrevia­
tion or shorthand notation for one or more assembly language state­
ments. In this respect it is like an opcode in that an opcode is the name

4-11

Skip the whole
repeat block

START

Count: = value

of expression

Initialize symbols in
increment list;

evaluate all e2

expressions

Process the
repeat body

Increment the
symbols in
the increment list

Count: count ·1

The el and e2 .
expressions
are evaluated
just once.

Figure 4-1. RPT Repeat Options, Flowchart.

4-12

RPT (S = el [, e2 J, e3) [increment list]

"---S-T_.A,..R:),

----....S:= J

YES

Evaluate e2 and e3;
initialize symbols in
increment list; evaluate
all e2 expressions.

NO

Proceu=-1 repr.at::J
Increment the
symbols in
the increment list

S: = :S+e2

_ ---i All expressions are
evaluated just once.

Figure 4-1. RPT Repeat Options, Flowchart (Continued)

4-13

of a machine command and a macro name is the name of a sequence
of assembly language statements.

The "940" has an instruction for skipping if the contents of a specified
location are negative, but there is no instruction for skipping if the
accumulator is negative. The instruction SKA (skip if memory and
the accumulator do not compare ones) will serve when used with a cell
whose contents mask off all but the sign bit. The meaning of SKA when
used with such an operand is "skip if A is positive." Thus a pro­
grammer writes

SKA
BRU

=4B7
NEGCAS NEGATIVE CASE

However, it is more than likely the case that the programmer wants to
skip if the accumulator is negative. Then he must write

SKA
BRU
BRU

=4B7
~:~+2

POSCAS POSITIVE CASE

Both of these situations are awkward in terms of assembly language
programming.

But we have in effect just developed simple conventions for doing the
operations SKAP and SKAN (skip if accumulator positive or negative).
Define these operations as macros:

SKAP

SKAN

MACRO
SKA
ENDM

MACRO
SKA
BRU
ENDM

=4B7

=4B7
~:~+z

Now, more in keeping with the operations he had in mind, the pro­
grammer may write

A22 SKAN
BRU POSCAS

4-14

The advantages of being able to use SK.AP and SKAN should be appar­
ent. The amount of code written in the course of a program is reduced;
this in itself tends to reduce errors. A greater advantage is that SKAP
and SK.AN are more indicative of the action that the programmer had
in mind, so that programs written in this way tend to be easier to read.
Note, incidentally, that a label may be used in conjunction with a
macro. Labels used in this way are usually treated like labels on in­
structions; they are assigned the current value of the location counter.
This will be discussed in more detail later.

Before discussing more complicated uses of macros, some additional
vocabulary should be established. A macro is an arbitrary sequence
of assembly language statements together with a symbolic name. Dur­
ing assembly, the macro is stored in an area of memory called the
string storage. Macros are created (or, as is more frequently said,
defined) by giving a name and the associated sequence of statements ..
The name and the beginning of the sequence of statements are desig­
nated by the MACRO pseudo-op:

name MACRO

•
•

ENDM

The end of the sequence of statements is indicated by the ENDM
pseudo-op.

Refer to Figure 4-2. When the assembler encounters a MACRO
pseudo-op, switch B is thrown to position 1 so that the macro is simply
copied into the string storage; note that the assembler does ~ normal
processing but simply copies the source language. When the ENDM
terminating the macro definition is encountered, switch B is put back
to position 0 and the assembler goes on processing as usual.

It is possible that within a macro definition other definitions may be
embedded. The macro defining machinery counts the occurrences of'
the MACRO pseudo-op and matches them against the occurrences of
ENDM. Thus switch B is actually placed back in position 0 only when
the ENDM matching the first MACRO is encountered. Therefore,

4--15

A B

0 0

0

0

EFFECT

Normal assembly

Macro definition

Macro expansion

Macro definition during
macro expansion

SOURCE
LANGUAGE

BINARY
MACHINE

LANGUAGE

ASSEMBLER

STRING
STORAGE

Figure 4- 2. Inforn1ation Flow During Macro Processing

MACRO and ENDM are opening and closing brackets around a segment
of source language. Structures like the following are possible:

name 1
name 2
name 3

name 4

name 5

MACRO
MACRO
MACRO
ENDM
MACRO
ENDM
ENDM
MACRO
ENDM
ENDM

4-16

The utility of this structure will not be discussed here. Use of this
feature of imbedded definitions should in fact be kept to a minimum
since the implementation of this asse:mbler is such that it uses large
amounts of string storage in this case. What is important, however,
is an understanding of when the various macros are defined. In par­
ticular, when name 1 is being defined, name 2, 3, etc., are not
defined; they are merely copied into string storage. Name 2, for
example, will not be defined until nar.ne 1 is expanded.

The use of a macro name in the opcode field of a statement is referred
to as a call. The assembler, upon encountering a macro call, moves
switch A to position 1 (see Figure 4-~q. Input to the assembler from
the original source file temporarily stops and comes instead from the
string storage. During this period the macro is said to be undergoing
expansion. It is clear that a macro rnust be defined before it is called.

An expanding macro may include other rnacro calls, and these, in turn,
may call still others. In fact, macros may even call themselves; this
is called recursion. Examples of the recursive use of macros are
given later. When a new macro expansion begins within a macro ex­
pansion, information about the progress of the current expansion is
saved. Successive macro calls cause similar information to be saved.
At the end of each expansion the information about each previous ex­
pansion is restored. When the final expansion terminates, switch A is
placed back in position 0, and input is again taken from the source file.

Now let us carry our example one step further. One might argue that
the action of skipping is itself awkward. It might be preferable to
write macros BRAP and BRAN (branch to specified location if contents
of accumulator are positive or negative).. How is one to do this? The
location to which the branch should go is not known when the macro is
defined, in fact, different locations will be used from call to call. The
macro processor, therefore, must enable the programmer to provide
some of the information for the macro expansion at call time. This is
done by permitting dummy argument:s in macro definitions to be re­
placed by arguments (i .. e., arbitrary substrings) supplied at call time.
Each dummy argument is referred to in the macro definition by a sub­
scripted symbol.. This symbol or dummy name is given in the operand
field of the MACRO pseudo-op.

4-17

Let us define the macro BRAP:

BRAP MACRO
SKAN
BRU
ENDM

LABEL

LABEL(!)

When called by the statement 'BRAP POSCAS', macro will expand to

SKA
BRU
BRU

=4B7
>!<+2
POSCAS

Note that BRAP was defined in terms of another macro, SKAN. Also
note that, as defined, BRAP was intended to take only one argument;
other macros may use more than one argument.

The macro CBE (compare and branch if equal) takes two arguments.
The first argument is the location of a cell to be compared for equality
with the accumuiator; the second is a branch location in case of
equality. The definition is

CBE MACRO
SKE
BRU
BRU
ENDM

D
D(1)
::::<+2
D(2)

When CBE is called by the statement

CBE =21B, EQLOC

the statements generated will be

SKE
BRU
BRU

=21B
':<+2
EQLOC

Note that in the macro call, the arguments are separated by commas.

The following sections describe macro definitions and calls in more
detail.

4-18

~----------·---------------------------~~~~

MACRO, LMACRO, and ENDM Macro definition

The form of a macro definition is:

name {

MACRO }

L::CRO

[dummy [, generated, expression]

where name, generated, and dumrny are all symbols, and expression
is an expression.

LMACRO is completely equivalent to MACRO except that if name is
defined as a macro with MACRO the construct

label name argurnents

will automatically cause label to be defined as the current value of the
location counter, whereas if name were defined with LMACRO this
automatic definition of label would not occur.

Some details of the definition

If generated appears, it should not be the same symbol as dummy, and
neither of them should be "MACRO", "LMACRO", or "ENDM".

If name is already defined as an opcode, the old definition is completely
replaced by the new.

If the MACRO (or LMACRO) directive has no operand, then name is
defined as an opcode that takes no operand. Otherwise, name becomes
an opcode that may or may not take an operand.

Whole-line comments (lines beginning with *) in the macro body are not
saved in string storage as part of the macro definition, but comments
following instr:µctions are. Thus, it behooves the programmer to avoid
the latter, as they eat string storage.

When a macro body is placed in string storage, superfluous blanks are
removed. Thus, any contiguous string of blanks is compressed to one
blank with the following exceptions:

1. Blanks enclosed in single quotes(') are not compressed.

2. Blanks enclosed in double quotes(") are not compressed.

3. Blanks enclosed in parentheses are not compressed. In
this use, the nesting of parentheses is taken into account,
but a parenthesis between single or double quotes is not
considered as part of the nesting structure ..

4-19

In m.ost cases the programmer need not worry about these conventions,
although there are times when he may get pinchedo For example, if

ASC %A222B%

appears in a macro definition, it will be expanded as

ASC o/oA2B%

To avoid such problems use

ASC 'A222B'

Dummy argun1.ents

The dummy argument specified as an operand of the MACRO pseudo-op
may appear anywhere in the macro body, followed by a subscript.. At
call time the subscript is evaluated and its value is used to select the
appropriate argument supplied in the call. Before describing the
various kinds of dummy arguments a few conventions are needed:

l. In the following, "argun1ent" will refer to the character
string as given in the macro call after possible enclosing
~rentheses have been removed.

Z. The number of arguments supplied by the call is n (n~O).

3. The number of characters in argument ei is n(ei).

4. The structure ei for i an integer stands for an.expression.
(However, its value stands for some argument usually, so

ei will be used somewhat ambiguously to stand for an ex­
pression or the value of an expression.) The first argument
in a call is numbered I.

S. The durr1n1.y argument is assumed to be "D".

With the preceding in mind, we consider the three forms of dummy
arguments:

I. D(e I)

This expands to argument el (which may be the null string),
where 0'.Sel$n. (If el= 0 then D(el) expands to the label
field of the macro call)

4-20

Special no ta ti on: D() = rn[I)

2. D(e 1, e2)

If el >e2 then this expands to the null string (range of values
of el and e2 is arbitrary), otherwise, this expands to argu­
ment e I through e2, where 0~e1::::; e2 ~ n, with each argument
enclosed in parentheses and a comma inserted between each
argument. For example, D(3, 3) = (D(3)).

Special notation: D(,) == D(1, n)

3. D(el$e2, e3)

D(, e 1) == D(l, el)
D(e 1,) == D(e 1, n)

In all cases, 0::::; e 1 ::s n must be true.. If e2 > e3 then this' ex­
pands to the null string (range of values of e2 and e3 is
arbitrary), otherwise, it expands to characters e2 through
e3 of argument el, counting the first character of an argu­
ment as character 1. If either e2 or e3 lies outside the
argument, then the nearest boundary is chosen. To be
more precise, before using e2 and e3 to select the piece of
argument el that is desired, the following transformation
is made:

e 2 : = max (1 , e 2) ;
e2:= min (n(el), e2);

e 3 : = max (1 , e 3) ;
e3: = min (n(e 1), e3);

If argument e 1 is the null string, then the dummy argument
expands to the null string regardless of the values of e2 and
e3 ..

Special notations:

D(e I $,) = D(e 1 $ 1, n(ie 1)) = D(e 1)
D (e 1 $, e 2) = D(e 1 $ l , e 2)
D(el$e2,) = D(el$e2, n(el))
D(el$e2) = D(el$e2, e2)
D(e 1 $) = D(e I $1) = Di(e 1 $1, 1)

In any of the forms mentioned above, el may be missing; if so, 1 is
assumed, e.g., D($) = D(1$1, 1).

A general rule that will help in remembering what the special notations
mean is the following: "Whenever an expression is missing from a

form, the value 1 is assumed unless the expression is rnissing from a

·4-21

place where an upper bound is expected (as in D(3,) or D(3$2,), in
which case the largest 'reasonable' value is assumed.

In any of the preceding three cases, if an expression which designates
an argument is out of range, then an error message is typed and argu­
ment 0 is taken ..

Generated symbols

A macro should not, of course, have in its definition an instruction hav­
ing a label. Successive calls of the macro would produce a multiply­
defined symbol. Sometimes, however, it is convenient to put a label
on an instruction within a macro. There are at least two ways of doing
this. The first involves transmitting the label as a macro argument
when it is called. This is most reasonable in many cases; it is in fact
often desirable so that the programmer can control the label being de­
fined and can refer to it elsewhere in the program.

However, situations do arise in which the label is used purely for rea­
sons local to the macro and will not be referred to elsewhere. In
cases like this it is desirable to allow for the automatic creation of
labels so that the programmer is freed from worrying about this tasko
This may be done by means of the generated symbol.·

A generated symbol name may be declared when a macro is defined,
specifying the name and the maximum number of generated symbols
which will be encountered during an expansion. These two items follow
the dummy symbol name given in the MACRO pseudo-op if the pro­
grammer wishes to use generated symbols in a macro. For example,

MUMBLE MACRO D, G, 4
<macro body>
ENDM

might contain references to G(l), G(2), G(3), and G(4), these being
individual generated symbols.

With regard to generated symbols the macro expansion machinery
operates in the following fashion: A generated symbol base value for
each macro is initialized to zero at the beginning of assembly. As each
generated symbol is encountered, the expression constituting its sub­
script is evaluated.. This value is added to the base value, and the sum
is produced as a string of digits concatenated to the generated symbol

4-22

,, ________________________ _

name; the first digit is always 0 to :reduce the likelihood of the genera­
ted symbol being identical to a norm.al symbol defined elsewhere by
the programmero Thus, the first timie MUMBLE is called, G(2} will
be expanded as G02, G(4) as G04, etc.

At the end of a macro expansion the generated symbol base value is
incremented by the amount designated by the expression following the
generated symbol name in the MACRO directive. This is 4 in the
case of MUMBLE. Thus, the second call of MUMBLE will produce
in place of G(2), G06, the third call wilLproduce G0 10, etc. It should
be clear that the generated symbol name should be kept as short as
possible.

The expression in the macro head. (call it m) must have a value in the
range (1, 1023] • A generated symbol subscript must have a value in
the range [l, m] •

Conca tena ti on

Occasionally, it is desirable to have a dummy argument follow imme­
diately after an alphanumeric character, for example, to have D(l}
follow just after ALPHA. But then the assembler would not recognize
the dummy because it would see ALPHAD(I). To get around this prob­
lem the concatenation symbol '· &' is introduced. Its sole purpose is
to separate a dummy argument (or conceivably a generated symbol}
from a preceding alphanumeric character during macro definition.
Thus, the example becomes ALPHA •. &D(1). The concatenation symbol
is not stored in string storage so it does not appear during expansion.

The concatenation symbol may appear anywhere in a macro definition,
but it is only necessary in the case described above. If one macro is
defined within another, any concatenation symbols within the inner
macro will not be removed during the definitio'1 of the enclosing macro.

Conversion of a value to a digit string

As an adjunct to the automatic generation of symbols (or for any other
purposes for which it may be suited) a capability is provided in the
assembler's macro expansion machinery for conversion of the value
of an expression at call time to a st:ring of decimal digits. The
construct

($expr.ession)

4-Z3

will be replaced by a string of digits equal to the value of the expres­
sion. For example, if X=S then

AB($2~:~x+l)

will be transformed into

ABll

If the value of the expression is zero then the digit string is 'O'; if it is
negative then the digit string is preceded by a minus sign.

This conversion scheme can also be used inside repeat blocks; for
example

TEMP($!)
RPT
BSS
ENDR

(I=l, 10)
1

creates 10 cells labeled TEMPI through TEMPlO.

A note on subscripts

The expressions used as subscripts for dummy arguments and gener­
ated symbols, as well as the expressions used in the conversion to a
digit string must be absolute. Any undefined symbols appearing in
these expressions are treated as if they were defined with the value -1.
These expressions may themselves contain dummy arguments, gener­
ated symbols, and($ •••), so constructs like (R4+D(p:~n(3))) are
possible.

NARG and NCHR Number of arguments and number of characters

Macros are more useful if the number of arguments supplied at call
time is not fixed. The precise meaning of a macro (and indeed, the
result of its expansion) may depend on the number or arrangements of
its arguments.. In order to permit this, the macro undergoing expan­
sion must be able to determine at call time the number of ·argument
supplied. The NARG directive makes this possible.

NARG functions like EQU except that no expression is used with it. Its
form is

(symbol) NARG

4-24

The function of the directive is to equate the value of the syn1bol to
the number of arguments supplied to the macro currently undergoing
expansion. The symbol can then be used by itself or in expressions
for any purposeo NARG may appear in any macro, even one which
has no dummy argument (and thus never has any arguments at call
time); it is an error for NARG to appear outside a macro.

It is also useful to be able to determine at call time the number of
characters in an argument. NCHR functions by equating the symbol in
its label field to the number of characters in its operand field. Its
form is

(symbol) NCHR [character string]

where "character string" has exactly the same form as an argum.ent
supplied for a macro call, i. e. , if it involves blanks, commas, or
semicolons it should be enclosed in parentheses. NCHR can appear
anywhere, both inside and outside macros, but it is most useful in
macros for determining the length of arguments.

EXamples:

A
B
c

Macro calls

NCHR
NCHR
NCHR

ABCDEF A:=6
(,,XYZ,,) B:=7
D(I) G·=·?

The format of a macro call is:

(symbol) macroname [arg string]

Such a call causes the macro whose name appears in the opcode field
to be expanded, with the dummy argument in the macro body replaced
by the actual arguments of the argst:ring.

The label field is always transmitted as argument 0, so that D(el),
where el has value 0, is always legal inside a macro. An occurrence
of D(el), where el=O, will be replaced by the label field. If the label
field is empty, then D(el) expands to,the null string .. At most seven
characters will he transmitted this way: the first six characters of the
symbol in the label field, preceded by '$' if the label field begins with
I$'•

4-25

If the user wishes to transmit an argument to a macro in the label
field of the macro call, but does not wish to have the symbol in this
field defined, he should define the macro with LMACRO rather than
MACRO. As an example:

NT

D(O)

when called by:

DTE

expands as:

DTE

LMACRO D
RPT D(1)
DATA D(Z)
ENDR
DATA -D(1)
ENDM

NT 4, 4B7

DATA 4B7
DATA 4B7
DATA 4B7
DATA
DATA

4B7
-4

Notice that this would have caused a doubly-defined symbol error had
MACRO been used rather than LMACRO.

A macro call may or may not have an arg string. If an arg string is
present, it may contain any number of arguments, in fact, more than
are ref erred to by the macro.

Before describing an arg string, the following should be noted: blanks,
commas, semi-colons, and parentheses that are enclosed in single or
double quotes are treated exactly like ordinary characters enclosed in
quotes; they do not serve as terminators, separators, delimiters, or
the like. In effect, when the argument collector is collecting argu­
ments for a macro call, the occurrence of a quote causes it to stop
looking for special characters except for a matching quote (and, of
course, carriage return, which is an absolute terminator). A single
quote enclosed in double quotes is not a special character and vice
versa. Thus, when a blank, comma, semi-colon, or parenthesis is
referred to in the following, it is understood that it is riot enclosed in
quotes.

4-26

,_, ________________________ _

An arg string for a macro call has the following format:

< arg> , < arg> , •• o , < arg> <terminator>

where a terminator is a blank, semi--colon, or carriage return. There
are three forms of arg:

1. < arg> may be the null string.

2. If the first char ac te r of <a r g > is !!:£.!. a 1 e ff parenthesis then
< arg) is a string of characters not containing blank,
comma, semi-colon, or carriage return (remember that
blanks, commas, and seimi-colons may appear in (arg)
if they are enclosed in quotes).

3. If the first character of < arg> is a left parenthesis the
< arg> does not terminate until a blank, comma, or semi­
colon is encountered afte! the right parenthesis which
matches the initial left parenthesis ("matches" rn.eans that
all left and right parentheses in the argument are noted
and paired off with each other so that a nested parenthesis
structure is possible). Of course, a carriage return at
any point immediately terminates <arg> o Again, remem­
ber that blanks blanks, commas, semi-colons, and paren­
theses enclosed in quotes are ignored when < arg> is being
delimited. The initial left parenthesis and its matching
right parenthesis (which need not be the last character in
< arg >) are removed before < arg> is transmitted to the
macro. Examples:

AMAC
D(1)
D(Z)
D(3)
D(4)

=
:::

=
=

(,.!_;u), , 'HOUSE,..!. ROGER', (AB'')")

'L'L!
null string
'HOUSE,L ROGER'
AB") 11

Example of conditional assembly and macros

The following macro, MOVE, takes any number of pairs of arguments;
the first argument of each pair is moved to the second, but an argu­
ment may itself be a pair of arguments, which may themselves be
pairs of arguments, etc. MOVE extracts pairs of argument structures
and transmits them to a second macro MOVEl.

MOVE MACRO D
x NARG

RPT (Y=l,2,X)
MOVE I D(Y), D(Y+l)
ENDR
ENDM

The main work is done in MOVE! which calls itself recursively until
it comes up with a single pair of arguments.

MOVE I MACRO D, G, 2
G(I) NARG
G(2) EQU 0

IF G(I) =2
LDA D(I)
STA D(2)
ELSE
RPT G(1)/2, (G(2)=G(2)+1)
MOVE I D(G(2)), D(G(2)+G(1)/2)
ENDR
ENDF
ENDM

When MOVE is called by

MOVE A, B

the code generated is

LDA A
STA B

When called by

. MOVE A,B,C,D,

the code generated is

LDA A
STA B
LDA C
STA D

4-28

And when called by

MOVE ((A 1, B), (C, D)), ((E, F), (G, H))

the code generated is

LDA A
STA E:
LDA B
STA F'
LDA C
STA G
LDA D
STA H

It is instructive to trace the example by hand to see how the recursive
calls of MOVEl work. This is an exercise left to the reader.

INSTRUCTIONS

1. Calling the Assembler.

v .. .
Assembler
Operating
Instructions

When the EXEC asks for a new command by typing"-",
type the sequence: "(P) ITRAN". (See any example)

2. Input File.

The assembler will ask for the name of the input file by
typing: "INPUT: ".
The operator should respond by typing the name of the
input file. (See any example)

3. Output File.

The assembler will ask for the name of the output file by
typing: "OUTPUT: "
The operator should respond by typing the name of the out­
put file. (See Example 1)
The assembler will respond with "NEW FILE" (See
Example 1) or "OLD FILE" (See Example 2). If the
response is correct the operator should verify it by typing
a carriage return. (See any example)

4. Second Input File.

When the input translation phase of the assembly is com­
plete, the assembler will space two lines and ask for
another input file by typing "INPUT: ". If the operator
does not have another input file, he should respond by
typing a carriage return. (See Example l)o If the operator
has another input file to be appended to the first file and
assembled with it, he should respond by typing the file
name. (See Example 5) This step will be repeated until
the operator runs out of input files and types a carriage

5 ·-1

return in response to the "INPUT: " message. The
operator can cause the request for a second (or nth) input
file to be skipped by typing a line feed following the name
of the first (or n- ISt) input file name. (See Example 3).

5. Pass 2 of the Assembly.

The second phase of the assembly process is performed by
the 940 NARP assembler running on commands retrieved
from a commands file generated by the input translator.
As it runs, three lines such as the following will be printed.

SOURCE FILE:
I SEC

?
0 ERR

(See any example)

OBJECT FILE:
33 (2 7) WRD

NEW FILETEXT FILE:
(S:6, o:52, L:O, M:O, U:O)

The first line is produced by NARP asking for information
that is supplied from the commands file, and can be
ignored. The second line is a summary printed by NARP.
The time given is for the NARP pass only. The total time
taken by the assembly is approximately twice the time
given. The number of errors given is the number detected
by NARP. The word count is the number of words of out­
put gene rated. The meaning of the remainder of the sum­
mary is unknown. The question mark on the third line is
printed as the commands file terminates. It has no
meaning, but there appears to be no way to get rid of it.

6. Errors During Input Translation Pass

If any errors are detected during the input translation phase
(hopefully near! y all errors will be detected in this phase),
two lines will be printed for each. The first line gives the
symbolic address of the offending statement and an error
message. The second line is the offending statement
exactly as it was received.

When the operator indicates that he has no more input files,
!TRAN will print a message of the following form: "n
ERRORS - CONTINUE? (Y OR N) "· The operator should
respond with "N" if he wishes to terminate the assembly
process at this point and correct his errors, or with "Y" if

he wishes to ignore the errors and continue with the assem­
bly. Continuation will frequently result in a second error
message being produced by NARP. In general that message
will not be meaningful. (The "Y" or "N" typed in response

5-2

to the CONTINUE question must be followed by a carriage
returno)
(See Examples 6 and 7)

If the operator types "N" in response to the CONTINUE
question, a question n1ark will print on the next line. This
is caused by the commands file terminating and should be
ignored. (See Example 6)

7. Intermediate Files

The assembler uses two intermediate files, I ASSEMCOMM/
and I ASSEMINTERNAL/. If the operator has any files by
either of these names, they will be destroyed. If the as­
sembly is terminated under unusual circumstances, such as
with an ESCAPE, one or both of these files may be left in
the operators directory.

EXAMPLES

-(P)ITRAN
INPUT: TEST
OUTPUT: BTEST
NEW FILE

INPUT:
SOURCE FILE:

1 SEC 0 ERR

?

-(P)ITRAN
INPUT: TEST 1

?

INPUT: TEST
OUTPUT: BTEST

OLD FILE

INPUT:
SOURCE FILE:

1 SEC 0 ERR

Example 1

OBJECT FILE:

33 (27) WRD

Example 2

OBJECT FILE:

33 (27) WRD

5·-3

NEW FILETEXT FILE:

(S:6, 0:52, L:O, M:O, U:O)

OLD FILETEXT FILE:

(S:6, 0:52, L:O, M:O, U:O)

-(P)ITRAN
INPUT: TEST
OUTPUT: BTEST

OLD FILE
SOURCE FILE:

I SEC
?

-(P)ITRAN

0 ERR

INPUT: TEST
OUTPUT: TEST
FILE NOT BINARY
OUTPUT: TEST I

NEW FILEN

OUTPUT: BTEST
OLD FILE

INPUT:
SOURCE FILE:

1 SEC 0 ERR

?

-(P)ITRAN
INPUT: TEST
OUTPUT: BTEST

OLD FILE

INPUT: TEST 1

INPUT:
SOURCE FILE:

1 SEC 0 ERR

?

Example 3

OBJECT FILE:

33 (27) WRD

OLD FILETEXT FILE:

(S:6, 0:52, L:O, M:O, U:O)

Example 4

OBJECT FILE:

33 (27) WRD

OLD FILETEXT FILE:

(S:6, 0:52, L:O, M:O, U:O)

Example 5

OBJECT FILE:

61 (49) WRD

5-4

OLD FILETEXT FILE:

(S:6, 0:52, L:O, M:O, U:O)

-(P)ITRAN
INPUT: TEST 2
OUTPUT: BTEST

NEW FILE

Example 6

AB + 6 - ILLEGAL ADDRESS MODIFIER
LDE AB, BX

INPUT:

1 ERRORS - CONTINUE? (Y OR N)i N
?

-(P)ITRAN
INPUT: TEST 2
OUTPUT: BTEST

NEW FILE

Exa1nple 7

AB + 6 - ILLEGAL ADDRESS MODIFIER
LDE AB, BX

INPUT:

1 ERRORS - CONTINUE? (Y ORN) Y
SOURCE FILE: OBJECT FILE: NEW FILETEXT FILE:

1 SEC 0 ERR 34 (28) WRD (S:6, 0:52, L:O, M:O, U:O)

?

5-5

GENERAL

VI ...

LSIM Loading,
Slmulatlng, and
Debugging

LSIM is a loader, simulator and debugger for the LOGIC ON 2+2
machine which runs on Tymshare.. It has facilities for loading re­
locatable NARP output, linking external symbols and expressions,
typing out and altering the contents of registers and memory cells,
and inserting breakpoints. References in commands and type out of
symbols may be numeric to any radix between 2 and 10 or symbolic.

Symbols

A symbol is any string of alphanumeric characters beginning with an
alphabetic character. Symbols may not contain more than six charac­
ters. There are two special symbols that are recognized only as the
first operand in an expression: "." and "$". Their meaning will be
explained below. Symbols are introduced to LSIM in two different
ways: they may be read in from assembly output or they may be
entered via a command. If an undefined symbol is rea_d when inputting
a command, LSIM will type the error message (U).

Constants

A constant is any string of numeric characters. The value of a con­
stant is computed to the current radix which is initially 8 and may be
set to any value between 2 and 10 by a command. When constants are
typed out they are also converted through the current radix.

Expressions

Expressions are composed of symbols, constants, and the operators
+ and -. Evalucition is strictly left to right and parentheses are not
allowed.

6 ·-1

Open Registers or Memory Cells

The I command causes a memory cell to be opened. This means that
the contents of the memory cell is typed out as an unsigned integer
(followed by a quote and the current radix evaluated in decimal to avoid

confusion) followed by 3 spaces. LSIM then waits for the user to t~.e
somethingo If he types a symbol or constant followed by a @ , L ,
or t the value of the symbol or constant typed is entered in 'h(e ope
memory celL If he types any other command or an expression followed
by a command the contents of the open cell is taken as the first operand
in the following expression whose value becomes the argument for the
following command~ Consider the following example:

typed by LSIM

ABC/ 3'8 ;X

The user opens cell ABC whose contents is 3g. He then types the ;X
command that sets the current radix. The 3g is taken as the argument
to the ;X command causing the current radix to be set to 3. A further
example:

ABC/
I I

t

LSIM ~~CI 1 rf.s-i +z·x y
user user

This sequence will cause the 3 to be used as the first operand of the
following expression which is then used as the argument to the com­
mand changing the current radix to 5. In both of the above examples
the contents of cell ABC is not altered. The following sequence will
enter the value of the symbol XYZ in cell ABC~

ABC/ 3'8 XYZ t;:'cl
L__J I q

user LSIM user

The ;R con1mands do for the central registers exactly what the I com­
mand does for memory cells (see list of commands below).

6-2

COMMANDS

Symbols:

n =
e

s =

=

$ =

e;X

;D

e=

e

unsigned integer ..

expressions consisting of symbols, integers evaluated
to the current radix, and the operators +and -

symbol or integer ..

address of last men1ory cell openedo

address + 1 of last cell loaded.

sets current radix to value of e.

sets current radix to 10 (decimal).

types values of e as an unsigned integer.

types value of e as a symbol +displacement; if the value
of e is less than the smallest symbol loaded "O+e" is
typed.

el opens memory location e.

equivalent to typing • -1 I

(1£) equivalent to typing . + 1 I

;RA

;RB

;RX

;RE

;RL

;RU

;RP

;RT

opens the

opens the

opens the

opens the

opens the

opens the

opens the

·opens the

A- register just as

B- register just as

X- register just as

E- :register just as

L-register just as

U-register just as

P-register just as

T-register just as

if it were a memory cell.

if it were a memory cell.

if it were a memory cell.

if it were a memory cell.

if it were a memory cell.

if it were a memory cell.

if it were a memory cell.

if it were a memory cell.

;RW opens switch register just as if it were a memory cell.

;I opens the status register just as if it were a memory cell.

e ;F if the value of e is between 0 and 77B then same as ;RA
for mapping register e; if the value of e is between lOOB
and 177B then system mapping register e-lOOB is opened;
e is computed modulo ZOOB.

;U lists all undefined symbols.

6-·3

e ! sets breakpoint 0 at lo cation e.

e I, e2 ! sets breakpoint e 1 at location e2;e1 is computed
modulo 4.

e; ! clears breakpoint e.

clears all breakpoints.

e ;G begins execution at location e.

;P begins execution ·,at the current location.

e:S executes e instrudions in trace mode; the trace prints
L (P) X U A before execution of (P).

e ;T types 3 spaces and waits for user to type a file name
from which program and/or symbols are to be loaded;
file name is terminated by a (er); LSIM then types last
location loaded +I; e specifies the starting address of
the load. Symbolic addresses of any range errors are
typed in the form R: address.

;T same as e ;T except that loading is started following the
last load; if there was no previous load then loading is
started at I OOOB.

e;Y same as e;T except that local symbols are not loaded.

;Y same as ;T except that local symbols are not loaded.

;C prints elapsed Logicon 2+2 cpu time in microseconds.

e ;C resets cpu time counter to O. 00; the value of e is
ignored except that if e contains any symbols they must
be defined.

;J prints the symbolic address of the last jump instruction.

e;l sets lower bound for memory search to the value of e.

e ;2 sets upper bound for memory search to the value of e.

e ;M sets mask for memory search to the value of e.

e ;W for every location between upper and lower bound, the
value of the mask is anded with the contents of the cell
and compared with the value of e; if the match is suc­
cessful, the symbolic address of the cell is typed.

6-4

e 1, ez ;K types 3 spaces and waits for the name of an output file.
if the name is valid, LSIM writes out a binary core
image and the contents on the registers of the given file ..
If e1 is absent it is assumed to be zero .. e1 and ez
specify the range of memory location to be written out.

;K types 3 spaces and waits for the name of a binary input
file previously written by the e 1, ez ;K command. If the
name is valid, the data from the file is loaded into
memory and the central registerso L~IM then types the
starting and ending addresses of the load; these should
match the values of e 1 and ez in the command when the
file was written out. A ;P command following this one
should restart the program in the same state that it
was dumped, except for open files.

e;H types the value of e in hexadecimal. e must be zZO_ l.

;L types 3 spaces and waits for the name of a binary file
(new or old) to be used as the simulated drum for
SCALL 213B.

e;L closes the current simulated-drum file (does not delete,
etc ..)

e ;N punches an absolute binary paper tape in Logicon 2 +2
bootstrap format. The range punched is between the
upper and lower bound set by ; 1 and ;2 com1nands.
The expression supplied to ;N is the transfer address

;O

. I '.

e;P

e"

e <s>

·punched at the end of the tape. After typing e;N turn
on the punch and type CR to start the punching
operationo

prints all defined symbols and their values in the
current radixo

types the symbolic addresses of all existing breakpoints •

resumes execution at the current value of P and con­
tinues until e breakpoints have been encountered, then
breaks, e.g. , 2 ;P will stop at the second breakpoint
encountered. If e is absent it is assumed to be 1.

types the value of e in ASCII characters; control
characters are preceded by & and OOOB (null character)
prints as &@.

defines the symbol as the value of e.. s must be previ­
ously undefined; if a program already loaded contains a
reference to s the newly defined value of s will be in­
serted into the referenceo

6-·5

e ;$ sets $ to the value of e.

e i, e2; Z zeros memory between e 1 and e2; if e 1, is absent it
is assumed to be zero.

ERROR MESSAGES

LSIM responds with a ? if it cannot execute or fails to recognize a
command. The following error messages are typed while a program
is executing if the given error condition occurs.

LSIM Error Messages

LOGICON 2+2 MEM TRAP

READ ERROR

EARLY EOF

ILLEGAL CONTROL WORD

SYMBOL TABLE OVERFLOW

ILLEGAL MEMORY ACCESS

an attempt was made to access a
real core address greater than
77777B.

I/O error was detected during
reading of the input file for loading.

an EOF was encountered on the
input file during loading before
loading was completed.

bad control word on the file; usu­
ally means a binary file not pro­
duced by NARP was being loaded.

LOGICON 2+2 uses four symbol
tables, one for external symbols,
one for undefined symbols, one for
defined symbols, and one for ex­
ternal expressions; this message
indicates that one of the tables
overflowed; the current limit is
100 undefined, and 3 00 defined
symbols; the external symbol table
is reset at the start of each load,
the other 3 tables are cumulatively
filled during the total load.

usually indicates an attempt to ref­
erence a cell containing a reference
to an undefined symbol; this mes­
sage can also occur when refer­
encing uncleared memory that was

6-6

2 + 2 READ VIOLATION

2 + 2 WRITE VIOLATION

2 + 2 EXECUTE VIOLATION

HALT AT

ILLEGAL INSTRUCTION

UNIMPLEMENTED
INSTRUCTION

INSTR. PANIC AT

MEMORY PANIC AT

USING LSIM ON TYMSHARE

Calling LSIM

not loaded; the message also gives
the address of the instruction at­
tempting to make the memory
reference.

LOGICON 2+2 mapping unit pro­
tection violation.

LOGICON 2+2 mapping unit pro­
tection violation.

LOGICON 2+2 mapping unit pro­
tection violation.

a 144477B instruction was executed.

an attempt was made to execute a
privileged instruction in user mode.

an attempt was made to execute an
unrecognized extended op-code;
this includes LOGICON 2+2 in­
structions not implemented in the
simulator such as I/O instructions.

in the course of simulation the
simulator executed an illegal 940
instruction; this is usually caused
by illegal parameters in a CALL;
could also be a bug in the simulator.

in the course of simulation the
simulator caused a 940 system
memory panic; this message should
be caused only by a bug in the
simulator.

LSIM is on the system as a public GO file under user name P. Thus,
it can be called by typing GO (P) LSIM (in the exec) or j~ (P) LSIM.
When LSIM is ready to accept commands it will type a ~ .

6·-7

Programming Considerations

LSIM simulates a full 32K LOGICON 2+2 machine, but it has a working
set of only BK on the 940. The simulator demand pages to get addi­
tional memory. Thus, programs larger than 6K will execute rather
slowly.

Escapes

LSIM execution can be inte~pted by depressing the escape button.
This will cause a bell and ~ to be typed when the interrupt is rec­
ognized. Two successive escapes will cause an exit to the exec. The
CONTINUE command in Tymshare will usually restart LSIM in usable
condition.

MULTIPLE PROCESSING

Since the LOGICON 2+2 System will require two processors, the AP
and CP, a feature has been added to LSIM to allow operation of both of
these processors. LSIM now has two modes: CP and AP. Several
commands have been added for determining the current mode and
changing it.

Modes

LSIM is initialized in AP mode and will remain in that mode unless a
;A or ;B instruction is executed to change it. When in AP mode,
LSIM memory access is through the simulated map and a maximum
hardware address of 32K is allowed. In CP mode unmapped access to
BK of memory separate from the AP memory is allowed. LSIM main­
tains a separate set of registers for each processor and the commands
in Paragraph 6. 1 apply to the registers or memory of the processor
whose mode is currently in effect. Except for the special symbols .
and $, there is no distinction between symbols in the two modes. The
only other things unique to each mode are the breakpoints: LSIM keeps
a separate set of these for each mode.

Instructions executed will affect registers and memory of the processor
whose current mode is in effect.

Changing Modes. The current mode will change when a ;A command is
executed or when the instruction interval count reaches -1. This count
is set by the e;B command and is reset to its original value after it
reaches -1. It is decremented whenever an instruction is executed in
either mode.

6-B

Mode Commands

e ;A sets the current mode to CPU if e = 0 or CIOP if e 1 O.

To avoid confusion aif listings LSIM will print the new
mode in effect following this command.

;B locks the current mode so that another e;B or e;A
command is required before any commands or instruc­
tions can effect the other processor being simulated.

e ;B sets the instruction interval count to the value of e.

;E prints the current rnode.

Programming Considerations

The :memory for both the CPU and CIOP are demand paged from the
same 8K working set in the 940. This will make processing of pro­
grams larger than 8K total for both processors very sfow.

It takes about 150 sec. of 940 CPU time to change modes, thus using
an instruction interval of 0 will result in 25 to 50 percent slower exe­
cution. By increasing this interval to 100 or more the slowdown can
be reduced to • 5 percent or less.

6-9

ASCII A/N
CODE CHARS:

101 A
102 B
103 c
104 D
105 E
106 F
107 G
110 H
111 I
112 J
113 K
114 L
115 M
116 N
117 0
120 p

1 21 Q
122 R
123 s
124 T
125 u
126 v
1 27 w
130 x
131 y

132 z

060 0
061 1
062 2
063 3
064 4
065 5
066 6
067 7
070 8
071 9

APPENDIX A

LOGICON 2+2 CflARACTER SET

ASCII
CODE

012
015

040
041 !
042 II

043 #
044 $
045 %
046 &
047 I

050 (
051)

052 *
053 +
054

'
055 -
056 .
057 I
072 :
073 ;
074 <
075 =
076 >
077 ?
100 @

133 [
134 \
135]
136 t
137 -
376

SPECIAL
CHARS:

LINE FEED
CARRIAGE RETURN

SPACE
EXCLAMATION POINT
DOUBLE QUOTE
NUMBER SIGN
DOLLAR SIGN
PERCENT SIGN
AMPERSAND
APOSTROPHE OR SINGLE QUOTE
LEFT PARENTHESIS
RIGHT PARENTHESIS
ASTERISK
PLUS SIGN
COMMA
MINUS SIGN OR HYPHEN
PERIOD OR DECIMAL POINT
SLASH
COLON
SEMICOLON
LESS THAN
EQUALS SIGN
GREATER THAN
QUESTION MARK
AT SIGN
LEFT BRACKET
BACKWARDS SLASH
RIGHT BRACKET
UPARROW
LEFT ARROW

:E~ND- OF -FILE

A-ll

APPENDIX B

LOGICON 2+2 MNEMONICS IN ALPHABETICAL ORDER

r-···-· ------· -- -----··--
\1NEM FUNCTION

r---- -- -- --- ---- ------- -~-----------

ACA Arithmrtlc Compare A
ACE Arithmetic Compare E
ACU Arithmetic c.,mpare U
ACX Arithmetic Compare X
ADA Add to A
ADA! Add to A, Immediate
ADAS Add to A, Stack
ADDM Add to \fomory
ADE Add to F:
ADU Add to U
ADUI Add to U, ln1n1ediate
ADUS Add to U, Stack
ADX Add to X
AOXI Add to X, Immediate
AD XIS Add to X, Immediate and Skip
ADXS Add to X, Stack
AJP A Jump
ALA (ARA) Arithmetic Left/Right Shift A
ALU (ARU) Arithmetic Left/Right Shift U
ALUA {ARUA) Arithmetic Left/Right Shift U,
ANA AND with A
ANAi ANO with A, Immediate
ANAS AND with A, Stack
ANU AND with U
ANUA AND U with Memory to A
ANUI ANO with U, Immediate
ANX AND with X
ANXS AND with X, Stack

CALL Subroutine CALL Linkage
cu. Clear A
CLlt Clear F:
CLRBA Clear Bit in A
CLRBM Clear Bit in Memory
CLU Clear U
CLX Clear X
CMPaA Complement Bit in A
CMPBM Complement Bit in Memory
CPRS Compare Strings

DIN Direct Input*
DJXN Decrement and Jump if x .,. 0
DUNK Remove Item from List
DOUT Direct Output*
D8K Skip after Next Instruction
OVA Divide A
DY.AB Divide A, Stack
DVUA Divide U and A
DVUAS Divide U and A, Stack

EJP E Jump

J'AD Floating Add
FADS Floating Add, Stack

NI A - Not Applicable
*Privileged. ln•truction

A

PAGE NO. MNEM FUNCTION
~-------------

3-57 FCP Floatinii; Compare
3-57 FCPS Floatini;i Compare, String
3-56 Fc:w Floating Divide
3-56 FDVS Floating Divide, Stack
3-28 FIX Fix Floating Point Number
3-28 FLOAT Float Integ•H
3-33 FMP :noating Multiply
3-30 F'v!PS Floating Multiply, Stack
NA FNEG Floating Ne)l:ate
3-27 FSB Floating Subtract
3-2 7 FSBS Floating Subtract, Stack
3-35
3-26 GCI Get Character and Increment
3-26 GCIT Gel Character and Increment with Test
3-27 GFC Get First Character
3-36 GFCT Get First Character wlth Te'8t
3-6.5
3-5l HLT Halt*
3-51
3-53 ICALL Indirect Call
3-45 !CI Insert Character and Increment
3-45 IC:IT Insert Character and Increment with Test
3-49 IFC: Insert First Character
3-45 IF'CT Insert First Character with Test
3-45 IJMP Indirect Jump
3-45 IJSPM Indirect Jump, Store Pin Memory
3-45 IJSPX Indirect Jump, Store Pin X
3-50 I,JXN Inc1·emenl and Jump if x .,. 0

IOC Input/ Output Control''
3-67 IRTRN Interrupt Return*
3-23
3-23 JMI Jump if A Minu8
3-47 JMP Jump Unconditionally
3-48 JNZ Jump if A Non Zero
3-23 JPL Jump if A Plus
3-23 JSPM Jump, Store Pin Memory
3-48 JSPX Jump, Store Pin X
3-48 JZE Jump if A Zero
3-13

LCA Logical Compare A
3-9 LCE Logical Compare E
3-66 LCU Logical Compare U
3-25 LCX Logical Compare X
3-9 LDA Load A
3-62 LDAC Load A from Console Switch••*
3-29 LDAEA Load A with Effective Addi-eH
3-34 LDAI Load A, Immediate
3-29 LDAOM Load A from Other Memory*
3-35 LDAOMF Load A from Other Memory with Force*

LDASM Load A through Specified Map*
3-65 LDASMF Load A through Specified Map with Force*

LDB Load B
3-40 LDBTL Load B, T, and L
3-41

B-1

l'A(;r·: '.\!O.

l- "7
1-58
3-41
3-43
1-41
1-44
1-41
1-4 3
1-44
~-40

1-4l

3- IS
3-15
3-14
3-14

1- 12

3-6Q
3- 16
3- 17
3-16
3-16
3-66
3-69
3-6<J
3-66
3-10
3-12

3-64
3-63
3-63
3-63
3-67
3-66
3-63

3-59
3-59
3-58
3-58
3-4
3-8
3-4
3-4
3-18
3-18
3-19
3-19
3-20
3-21

..----~-r~~~~~~-~~~~--~~~~~~-r-~~~~-..-~-~~~..-~~~~~~~~~~~~~~~~--,,.--~~~--,

1'1:-.lEM

LDC
I.OE
LDEI
LOF
LDM
LDMAP
LDSP
LOU
LOU!
LOX
LDXEA
LDXI
LDXSM
LINK
LLA
LLDB
LLO
LLU
LLUA
LLX
LLUAE
LSABM

MDEC
MINC
MOVE
MPA
MPAS
MPX
MPXS
MllOM
MSI<
MSKM

NJ'AD
JQ'Al>S
JfC&M
ffTAD
NT ADS

RA.DD
RAND
RCPY
RDS
RDVA
RDVAS
RFDV

FUNCTION

Load Character
Load E
Load E, Immediate
Load Floating
Load Multiple
Load Map''
Load Stack Pointers
Load U
Load U, Immediate
Load X
Load X with F:ffective Address
Load X, Immediate
Load X through Specified Map*
Link Item into List
(LRAI Logical Left/Right Shift A
Locate Leading Dirty Bit•:•
Locate Leading One
(LRUJ Logical Left/Right Shift U
(LRUA) Logical Left/Right Shift U, A
(LRX) Logical Left/ Right Shift X
(LRUAE) Logical Left/Right Shift U, A, E
Load Sign of A from Bit in Memory

Memory Decrement, Skip
Memory Increment, Skip
Move Word String
Multiply A
Multiply A, Stack
Multiply X
Multiply X, Stack
Merge Mode Bite*
Memory Skip
Mask Mode Bit*

Negative Floating Add
Negative Floating·Add, Stack
Normalize Floating Point Number
Negative Triple Add
Negative Triple Add, Stack

OR with A
OR with A, Immediate
OR wl th A, Stack

Pop Multiple
Pop Null
Pwih Multiple
Pwib Null

Repster Add
Register AND
Register Copy
Read Status
Reverse Divide A
Reverse Divide A, Stack
Reverse Floating Divide

N/A • Not Applicable
*Privileged ln•truction

PAGE NO.

3-13
3-5
3-5
3-23
3-6
3-8
3-21
3-3
3-4
3-1
3-3
3-3
3-19
3-24
3-52
3-9
3-54
3-51
3-53
3-51
3-53
3-22

3-31
3-30
3-23
3-28
3-34
3-27
3-36
3-19
3-59
3-8

3-40
3-41
3-44
3-32
3-37

3-46
3-46
3-50

3-7
3-20
3-6
3-7

3-29
3-46
3-25
3-26
3-29
3-35
3;.41

MNEM

RFDVS
RFSB
RFSBS
RIL
RLA
RLU
RLUA
RNEG
RSBA
RSBAS
RSBX
RSBXS
RSUB
RTRN
RTSB
RTSBS
RXCH

SBA
SBAS
SBU
SBUS
SBX
SBXS
SCA LL
SE TBA
SETBM
·SIL
SIM
SKAE
SKA EI
SKAN
SKA NI
SKNCO
SKNOF
SKOA
SKOM
SKXEI
SKXNI
SKZA
SKZM
SRTRN
SSABM
STA
STA OM
STASM
STB
STC
STE
STF
STM
STSP
STU
-STX
STZ
SUBM

B-2

FUNCTION

Rever•e Floating Divide, Stack
Reverse Floating Subtract
Reverse Floating Subtract, Stack
Release Interrupt Lockout*
(RRA) Rotate Left/Right A
(RRU) Rotate Left/Right U
(RRUAI Rotate Left/Right U, A
Register Negate
Reverse Subtract A
Reverse Subtract A, Stack
Reverse Subtract X
Reverse Subtract X, Stack
Register Subtract
Subroutine Return Linkage
Rever11e Triple Subtract
Reverse Triple Subtract, Stack
Regieter Exchange

Subtract from A
Subtract from A, Stack
Subtract from U
Subtract U, Stack
Subtract from X
Subtract X, Stack
System Call
Set Bit in A
Set Bit in Memory
Set Interrupt Lockout*
Set Interrupt Mask*
Skip H A Equal
Skip i£ A Equal, Immediate
Skip if A Not Equal
Skip if A Not Equal, Immediate
Skip if No Carryout
Skip if No Overflow
Skip if One in An
Skip if One in Memory, Y n
Skip if X Equal, Immediate
Skip if X Not Equal, Immediate
Skip il Zero in A
Skip if Zero in r..femory, Y n
System Return*
Store Sisn of A in Bit in Memory
Store A
Store A in Other Memory*
Store A through Specified· Map*
Store B
Store Char.cter
Store E
Store Floating
Store Multiple
Store Stack Pointers
Store U
Store X
Store Zero•
Subtract Memory

PAGE NO.

3-43
3-41
3-42
3- l l
3-52
3-52
3-54
3-25
3-28
3-34
3-27
3-36
3-30
3-67
3-32
3-38
3-25

3-28
3-33
3-28
NA
3-27
3-36
3-68
3-47
3-48
3-10
3-9
3-55
3.55
3-55
3-56
3-62
3-62
3-60
3-61
3-54
3-55
3-60
3-61
3-11
3-22
3-5
3-18
3-19
3-21
3-13
3-5
3-Z4
3-6
3-21
3-4
3-.3
3-22
3-30

MNEM FUNCTION

TAD Triple Add
TADS Triple Add, Stack
TDV Triple Divide
TDVF Triple Divide, Fractional
TDVFS Triple Divide, Fractional, Stack
TDVS Triple Divide, Stack
TMP Triple Multiply
TMPF Triple Multiply, Fractional
TMPFS Triple Multiply, Fractional, Stack
TMPS Triple Multiple, Stack
TNEG Triple Negate
TSB Triple Subtract
TSBS Triple Subtract, Stack

•Privileged Inatruction

--.-
PAGE NO.

3-31
3-37
3-33
3-33
3-39
3-39
3-32
3-33
3-38
3-38
3-40
3-32
3-37

MNEM

TSL
TSLOM

UJP

XAM
X'JP
XRA
XRAI
XRAS
XSA
XXM

B-3

FUNCTION

Test and Set Lock
Test and Set Lock in Other Memory'~

U Jump

Exchange A and Memory
X Jump
EXCLUSIVE OR with A
EXCLUSIVE OR with A, Immediate
EXCLUSIVE OR with A, Stack
Extend Sign of A
Exchange X and Memory

PAGE NO.

3-6l
3-18

3-64

3-5
3-64
3-46
3-46
3-50
3-26
3-3

APPENDIX C

LOGICON 2+2 MNEMONICS BY FORMAT

OpCode Format

00 lA,B,C,D
01 lA,C,D
02 IA,B,C,D
03 lA,C,D
04 lA,B,C,D
05 lA,C,D
06 lA,B,C,D
07 lA,C,D
10 lA,B,C,D
11 lA,C,D
12 lA,B,C,D
13 lA,C,D
14 lA,B,C,D

. OpCode(Mod)

03(0)
05(0)
06(0)
07(0)
10(0)
11 (0)
12(0)
14(0)
15(0)
20(0)
20(1)
21(0)
22(0)
22(1)
22(2)
22(3)

FOR MA

Instruction (
-----1 -

LDX
STX
LDU
STU
LDA
STA
LDE
STE
ADA
JMP
ADX
JZE
SBA

T 1

)pCode

15
16
17
20
21
22
23
24
25
26
27
30

Format

lA,C,D
lA,B,C,D
lA,C,D
lA,B,C,D
lA,C,D
lA,B,C,D
lA,C,D
lA,B,C,D
lA,C,D
lA,B,C,D
lA,C,D
IA,B,C,D

-·

FOR 1\11.A T 2

Instruction Op Code(Mod)

MOVE 23(0)

RXCH XU 24(0)
RXCH XA 25(0)
RXCH XE 25 (1)

RXCH UA 25 (2)

RXCH UE 26(0)

RXCHAE 26(1)
XSA 27(0)
RDS 27(1)
ADXS 27(3)

RSBXS 30(0)
SBXS 30(1)

ANXS 30(2)

ANAS 30(3)
ORAS 31(0)
XRAS 31 (1)

C-1

_ __,
Instruction

--------1

JNZ
SBX
JPL
ANA
JM!
ORA
JSPX
XRA
IJXN
SKAE
DJXN
SKAN

-

Instruction
.. ---1

ADAS
SBAS
ADUS
SBUS
RSBAS
MPXS
MPAS
DVUAS
DVAS
RDVAS
FADS
FSBS
RFSBS
NF ADS
FMPS
TMPS

FORMAT 2 (Continued)

OpCode(Mod) Instruction Op Code (Mod)

31 (3) TMPFS 47(0)
32(0) FDVS 50(0)
3 2(1) TDVS 5 2(0)
32(2) RFDVS 54(0)
3 2(3) TDVFS 55 (0)
33 (0) TADS 56(0)
33(1) TSBS 57(0)
33(2) RTSBS 60(0)
33(3) NTADS 64(0)
36(0) FCPS 67(0)
40(0) DNEG 70(0)
41 (0) FIX 71 (O)
42(0) FLOAT 72(0)
43(0) NORM 73(0)
44(0) LLI(LLO) 74(0)
45(0) SKNOF 75 (0)
46(0) SK.NCO 76(0)

77(0)

*Privileged Instruction

FORMAT 3

SCA LL System Call

FORMAT 4

Op Code Instruction

0 PUS HM
1 POPM
2 SRTRN*
3 SE TBA
4 CLRBA
5 CMPBA
6 SKOA
7 SKIA

':< = Privileged
Ins true ti on

C-2

Instruction

DSK.
RTRN
CPRS

.FNEG
MRGM':c
MSKM*
LDAC':c

. LDMAP,:c
IRTRN>!c
RROM
LLDB*
IOC':c
SIL*
RIL':c
DIN>!c
DOUT':c
FCPS
HLT':c

FORMAT 5

OpCode Instruction

1 LSABM
2 SSA BM
3 SETBM
4 CLRBM
5 CMPBM
6 SK.OM
7 SKIM

Op Code Format

01, 41 6D
02, 42 6D
04(0) 6A
04(2) 6A
05(0) 6A
05 (2) 6A
06(0) 6A,G
06(1) 6A,G
07(0) 6A,G
l 0(0) 6A
l 0(1) 6A
11 (0) 6A
11 (1) 6A
l 2(N) 6A
13(0) 6A,G
13 (1) 6A,G
14(0) 6A,G
14(1) 6A,G
14(2) 6A,G
15 (O) 6A,G
16(0) 6A,G
16(1) 6A,G
16 (3) 6A,G
17 (0) 6A
17(1} 6A
20(SC) 6A
21 (SC) 6A
22(SC) 6A
23(0) 6A
23(1) 6A
23(2) 6A
24(0) 6A
25(0) 6A
25(1) 6A
25 (2) 6A

FOR MA T6

Instruction

LDM
STM
LDXEA
LDAEA
XXM
XAM
PUSHN
POPN
LDB
STB
STSP
LDSP
LDBTL
STZ
MPX
MPA
ADU
SBU
RSBA
RSBX
DVUA
DVA
RDVA
ADDM
SUBM
MINC
MDEC
FCP
FAD
FSB
RFSB
FMP
FDV
TDV
RFDV

(

4

4

"
4

4

4

4

'
4

-
~
~

~ -
-
~ -
~ -
~ -
~ -
~

~

~

I
~

~

~

~

~

~

~

~

~
~ -
~

E

E

E

E

)pCo de

~5 (3)

~6(0)

~6(1)

~6(2)

~6(3)

~7(0)

~7(1)

~7 (2)
~7(3)

~O(SC

~1 (SC
~2(SC

~3(SC

~4(SC

~S(SC

~6(SC

n(SC
lO(SC
n
l2
13(0)
l4(JC
l5(JC
l6(JC
l7(JC
>O(JC
;5 (0)
;5 (1)
; 5 (2)

>5(3)
>6(7)
)3(7)
)4(0)
)4(1)
)5(0)

)

)

)

)

)
)

)
)

)

)

)
)
)
)

SC = JC = Skip/ Jump Conditions

C-3

Format Ins true ti on
l

6A TDVF
6A TAD
6A TSB
6A RTSB
6A NTAD
6A,G ANX
6A,G ANU
6A,G ADE
6A,G ANUA
6A,G ACX
6A,G ACU
6A,_G ACA
6A,G ACE
6A,G LCX
6A,G LCU
6A,G LCA
6A,G LCE
6A,G MSK
6D LDM
6D STM
6A TSL
6A XJP
6A UJP
6A AJP
6A EJP
6A TJP
6A IJMP
6A IJSPX
6A IJSPM
6A !CALL
6A JSPM
6A CALL
6B,C LDC
6B,C STC
6A GFC

FORMAT 6 (Continued)

OpCode Format Instruction Opcode Format Instruction

65 (1) 6A GFCT 73(0) 6E LDASM,:c
65 (2) 6A GCI 73 (1) 6E LDASMF:i:c
65(3) 6A GCIT 73 (2) 6E STASM~c

65(4) 6A IFC 73(3) 6E LDXSM':c
65 (5) 6A IFCT 74(0) 6F LDAOM':c
65(6) 6A ICI 74(1) 6F LDAOMF':c
65(7) 6A !CIT 74(2) 6F STAOM*
67(0) 6A LINK 74(3) 6F TSLOM:i:c
67(1) 6A DLINK 75(0) 6A,G SIM':<

* = Privileged Instruction

FORMAT 7 FORMAT 8

OpCode Format Ins true ti on OpCode Instruction

0 7A RCPY 0 LLX/LRX
I 7A RADD I ALU/ARU
2 7A RSUB 2 LLU/LRU
3 7A RAND 3 RLU/RRU
- 7B RNEG 4 ALA/ARA

5 LLA/LRA
6 RLA/RRA

C-4

FORMAT 9 FORMATlO

OpCode Ins true ti on Op Code Instruction

0 LLUAE/LRUAE 00 LDXI
1 ALUA/ARUA 00 CLX
2 LLUA/LRUA 01 LDUI
3 RLUA/RRUA 01 CLU

02 LDAI
02 CLA
03 LDEI
03 CLE
04 ADXI
05 AD XIS
06 ADUI
07 ADAI
10 ANUI
11 ANAI
12 ORAI
13 XRAI
14 SKXEI
15 SKXNI
16 SKA EI
17 SKANI

C-5

APPENDIX D

LOGICON 2+2 MNEMONICS ARRANGED BY REGISTER

INSTRUCTIONS l'NVOLV'lNP A-R!XilSTER

LOADS <:LA LDA LOA.EA LDAI LDC LDM POPM ltOS · f.DM:
LDAO~I

LDAOMF
J.DASM
LDASMF -

STORES STA STC STM PUS HM STA OM STASJ\I

COMPARES ACA LCA CPRS

JUMP/SKIPS AJP TJP SKOA SKZA JZE .TNZ JPL
JMI SKAE SKA EI SKAN SKA NI -

EX'.HA~GF:S H.XCH XAM

lNTf:H.- RF:r.JSTl·:H. RADO RSUB RN.F.G RCPY RAND

F'IXED- POl:'\T ADA ADAI .ADAS ADDM DVUAS
SBA SBAS SUB:\t RSBA RSHAS
MPA MPAS
OVA DYAS DVUA RDVA ROVAS --

F'l.0..-\Tl'.\:G 1'01::\T FAD FADS FCP FXEG NTAD TA. IJS T\1 PJ.~
A:"D TllRF:E F'SB FSBS FCPS RFSf\ XTADS TDV T\f Pl·~S
WORD F\fP FMPS NFAD RFSHS RTSH TOVF' T\l I'S
ARlTll\fETIC FDV FDVS NFADSI RFDV RTSHS TDVFS T'.\: f:C

FIX FLOAT NORM RFOVS TAD TI>VS TSH
T\1P TSHS .I

LOGICAL AXA ANAi ANAS A'XUA ORA ORAi ORAS
XRA XRAI XRAS C:\fPBA LCA

SllIFTS ALA ARA ALUA ARUA LLA LRA LI.CAE
I.RUAE

LIXA LRUA RLA RRA RLUA RRUA I.LO

\10\' E: l\.10\'E

BIT/RYTE GCI GCIT GFC GFCT ICl ICIT
IFC IFCT LDC STC XSA
LSABM SSA BM SE TBA CLRBA C:\1PBA

INSTRUCTIONS INVOLVING X-REGISTER --
LOADS LOX LOX EA LDXI LDM POPM CLX

STORES STX STM PUS HM

COMPARES ACX LCX CPRS

JUMPS/SKIPS XJP SKXEI SKXNI IJXN "OJXN JSPX AD XIS IJSPX

EXCHANGES RXCH XXM

INTER-REGISTER. RADO RSUB RNECi RAND RCPY

FIXED· POINT ADX ADXI AD XIS SB:>C SBXS MPX
ADXS RSBX
MP.XS RSl:lXS

LOGICAL ANX ANXS

SHIFTS LL..~ LRX
MOVE MOVi:

D-1

INSTR.UCTlONS INVOLVING U·REOlSTER.

LOADS LOU LOUI LDM POPM CLU

STORES STU STM PUSHM

COMPARES ACU LCU CPRS

JUMPS/SKIPS UJP TJP

EXCHANGES RXCH

INTER- REGISTER RADO RSUB RNEG RAND RCPY

FIXED- POINT ADU ADUI SBU SBUS MPA MPAS
ADUS OVA OVAS OVUA ROVA ROVAS

FLOATING POINT FAD FADS FCP FNEG NTAO TAOS TMPF
AND THREE FSB FSBS FCPS RFSB NT ADS TOV TMPFS
WORD FMP FMPS NFAD RFSBS RTSB TDVF TMPS
ARITHMETIC FOV FDVS NF ADS RFDV RTSBS TDVFS TNEG

FIX FLOAT NORM RFDVS TAD TDVS TSB
TMP TSBS

LOGICAL ANU ANUI ANUA

SHIFTS
/

ALU ARU ALUA ARUA LLU LRU
LLUA LRUA LLUAE LRUAE RLU RRU
RLUA RRUA

:\tOVE MOVE

BIT XSA

INSTRUCTIONS INVOLVING E-REGISTER

LOADS LOE LDEI LD:-.t POP!l.t CLE

STORES STE ST\! PUSllM

\0\1 T'ARF:S ACE LCE

.I l."\IJ>S EJP T.TP

EXCllA::'\CE RXCll
--t------· ----·-----· --

l'.'\TF:R- RF:GISTER RADO RSUB R:'\:F.G RAND RCPY
1--- ----------·-····--·--r--------··-----·---~

fl>: l·:D- l'OI::'\T ADE
r

I
FJ.OATI:'\C POI:'\:T FAD FAOS FC J> F''.\:EG :'\TAD TADS T\IPF
A:":D TllREE FSP. FSHS F\.PS RFSB '.\:TADS TDV T\!PFS
\':ORD F\IP F\1 PS :-\FAD RFSDS RTSB TDVF T\tJ>s

! :\HIT II\! F.TIC FDV FDVS :'\FADS RFDV RTSHS TDV FS T:":F:G
I Fl:\ Fl.OAT :\OH\! RFDVS TAD TDVS TSB
I T\!JJ rsns

I S!IIFTS LLUAE: LH tJAE:

INSTRUCTIONS INVOLVING B-REGISTER

J.OADS I.DB I .DSP LDHTJ.

STOR J;;S STH STSP

JU:vf PS CALL RTR~ JC ALL

!'.'\TER- REGISTF:R RADO RSUJ\ HNBG RCPY RA!'-:D

D-2

INSTRUCTIONS INVO:L VINO T-REGISTER

LOADS LDSP POPM POPN LDBTL

STORES STSP PUS HM PUSHN

JUMPS CALL RTRN !CALL

INTER- REGISTER RADD RSUB RNEG RCP.Y RAND

FIXED- POINT ADAS SBAS RSBAS MPAS DVAS RDVAS

FLOATING POINT FADS FSBS RFSBS FMPS FDVS RFDVS

LOGICAL ANAS ORAS XRAS

INSTRUCTIONS INVOLVING L-REGISTER

LOADS LDSP LDBTL

STORES STSP

INTER- REGISTER RADD RSUB RNEG RCPY RAND

D-3

APPENDIX E

LOGICON 2+2 MNEMONICS ARRANGED BY FUNCTION

OP
CODE
(MOD) FORMAT MNEMONIC FUNCTION PAGE NOTES

LOAD AND STORE

00 lA,B,C,D LDX (Y) X 3-1
04(0) 6A LDXEA y x 3-3
00 10 LDXI LIT9 _.,. X 3-3
01 lA,C,D STX (X) -Y 3-3
05(0) 6A XXM (Y)-+ X;(X) - Y 3-3
02 lA,B,C,D LDU (Y) _.,. U 3-3
01 10 LDUI LIT9 - U 3-4
03 lA,C,D STU (U) ... X 3-4
04 lA,B,C,D LDA (Y) ... A 3-4
04(2) 6A LDAEA y - A 3-4
02 10 LDAI LIT9 - A 3-4
05 lA,C,D STA (A) - y 3-5
05(2) 6A XAM (Y) - A;(A) - y 3-5
06 lA,B,C,D LDE (Y)- E 3-5
03 10 LDEI LIT9 - E 3-5
07 lA,C,D STE (E:) - y 3-5
01, 41 6D LDM (Y ••• Y +N, 0 s N 3-6

s 3) - X, U, A
AND/ORE

02,42 6D STM (X, U,A AND/OR 3-6
E]I - Y ••• Y+N,

10 :SN=::; 3
0 4A PUSHM (X, U,A AND/OR 3-6 1

E :~ - (T) • • • (T)
+N; (T)+N+l - T

1 4A POPM ((T)-1) ••• (~T)-N 3-7 2
-1) E,A, U
AND/OR X; (T)-N
-1 T

06(0) 6A,6G PUSHN ('I')+(Y) - T 3-7 I, 2
06(1) 6A,6G POPN ('I')-(Y) - T 3-20 1, 2
07(0) 6A,6G LDB (Y} B 3-20
10(0) 6A STB (B) y 3-21
11(0) 6A LDSP (Y, Y+l, Y+2) ... B, 3-21 1, 2

T:, L
--·

E-1

0 p -,-- __ J _________ ----------J-------------------------r------ r---

CO DE
(MOD) FORMAT MNEMONIC FUNCTION PAGE NOTES

LOAD AND STORE (CONTINUED)

11 (1) 6A LDBTL (Y,Y+l,Y+2) 3-21
-B, T, L

10(1) 6A STSP (B,T,L) - Y, Y 3-21
+1, Y+2

12(N) 6A STZ 0 - Y ••• Y+N, 0 3-22
:SN:S7

1 5 LSABM (YN) -- A'b A 1 -15 3-22 11
UNCHAN ED

2 5 SSA BM (Ao)- YN 3-22 11
03(0) 2 MOVE MOVE WORDS: 3-23 14

(X) =SOURCE
ADDRESS

(A) = DESTINA-
TION AD-
DRESS

{U) = NO. OF
WORDS

00 10 CLX o- x 3-23
01 10 CLU o- u 3-23
02 10 CLA o- A 3-23
03 10 CLE 0- E 3-23
41(3) 6D LDF (Y, Y + 1, Y + 2) - U, 3-23

A,E
42(3) 6D STF (U,A,E)- Y, Y+l, 3-24

Y+2
01 6D LDD (Y, Y + 1) - U, A 3-24
02 6D STD {U, A) - Y, Y +I NA
67(0) 6A LINK If {Y) 0 _7 = X, 3-24 23

normal return
If (Y+l+X)B-15

I: l.3.5 n.normal re r
If (Y) o _ 7 = 2 5 5 ,

X - {Y)o-7
and .{Y)8-l5
{A)S-15 -
(Y+l+X)o-7
skip return

----·----------· ---------------------

E-2

I

OP

MNEMONIC I_~UNCTION I CODE
I

(MOD) FORMAT PAGE NOTES

LOAD AND STORE (CONTINUED)

If (Y) 0 _7 'i 255,
X-((Y)o-7 + y

+1)8-15
X-(Y)o-7
(A)s-15(Y + 1
+x) 0 _7 skip
return

67(1) 6A DLINK If (Y) 8 _ 15 = 255, 3-25 23
normal return

If (Y) 8- l 5 'i 2 5 5,
(Y)s-15-X
((Y)s-15+Y
+l)o-7 - A
((Y)s-15+Y
+l)s-15
-(Y)S-15
255 - (X+l+Y)
skip return

INTERREGISTER

0 7A RCPY (S)- D 3-25 3,4
- 7B RNEG ··(S) -D 3-25 3,5
05(0) 2 RXCH XU (X) - U;(U) - X 3-25
06(0) 2 RXCH XA (X) ·-A;(A) -x 3-25
07(0) 2 RXCH XE (X)-E;(E) -X 3-25
10(0) 2 RXCHUA (U) -A;(A) - U 3-25
11 (0) 2 RXCH UE (U) - E;(E) - U 3-25
12(0) 2 RXCH AE (A) - E;(E) - A 3-25
14(0) 2 XSA (Ao) - U 3-26
15(0) 2 RDS (STAT)- A 3-26

FIXED-POINT ARITHMETIC

12 lA,B,C,D .(\DX (:X)+(Y) - X 3-26
04 10 ADXI (:X)+LIT9 - X 3-26
05 10 AD XIS (.X)=LIT9 - X, 3-27

SKIP IF SIGN
CHANGED OR IF
RESULT= 0

E-3

., ----·---···· - .. - . --· - - ·- --

FUNCTION PAGE NOTES

FIXED-POINT ARITHMETIC {CONTINUED)

16 lA,B,C,D
15(1) 6A, 6G
13(0) 6A, 6G
14(0) 6A, 6G
06 10
14{1) 6A, 6G
10 lA,B,C,D
07 10
14 lA,B,C,D
14(2) 6A, 6G
13(1) 6A, 6G
16(0) 6A, 6G

16(1) 6A, 6G

16(3) 6A, 6G

2 7(2) 6A, 6G
1 7A
2 7A
17(0) 6A
17(1) 6A
20(SC) 6A

2l(SC) 6A

26(0) 6A

26(3) 6A

26(1) 6A

26(2) 6A

24(1) 6A

24(3) 6A

25(1) 6A

SBX
RSBX
MPX
ADU
ADU!
SBU
ADA
ADA!
SBA
RSBA
MPA
DVUA

DVA

RDVA

ADE
RADD
RSUB

1
ADDM

I SUBM
MINC

MDEC

TAD

NTAD

TSB

RTSB

TMP

TMPF

TDV

{X)-{Y) - X
(Y)-(X) - X
(X)*(Y) - X
(U)+(Y) - U
(U)+LIT9 -u
(U)_(Y) - U
{A)+(Y) - A
(A)+LIT9 - A
(A)-{Y) - A

(Y)-(A) -- A
{A)*(Y) -- (U, A)
{U,A)/{Y) -- A,
REMAINDER- U
(A)/{Y} A, RE­
MAINDER - U
{Y)/(A)-A, RE­
MAINDER - U
{E)+{Y) - E
{D)+(S} - D
{D)-(S) -D
{Y)+(A} - Y
(Y}-(A) - Y
(Y)+l -- Y, SKIP
ON CONDITION
{Y) - 1 - Y, SK IP
ON CONDITION

3-27
3-27
3-27
3-27 6
3-27 6
3-28 6
3-28 6
3-28 6
3-28 6
3-28 6
3-28 7
3-29 8

3-29 8

3-29 8

NA
-3-29 3, 4
3-30 3,4
3-30 6
3-30 6
3-30

3-31

(U, A, R) + (Y , Y + 1 , 3 -3 1 2 2
Y+2) -- U,A,E
{U,A,E)-(Y,Y+l, 3-32 22
Y+2) -- U ,A, E
{U, A, E)-{Y, Y +l, 3-32 22
Y+2) -- U,A,E
(Y, Y + 1, Y + 2) 3 -3 2 2 2
-(UAE)- U, A, E
{U,A,E)*{Y,Y+l, 3-32 22
Y+2) -- U,A,E
(U,A,E)*(Y,Y+l, 3-33 22
Y+2) -- U,A,E
(U,A,E)/(Y, Y+l, 3-33 22
Y+2) - U,A,E

E-4

OP
CODE
(MOD) FORMAT MNEMONIC FUNCTION PAGE NOTES

FIXED-POINT ARITHMETIC (CONTINUED)

25(3) 6A TDVF (U, A, E) I (Y, Y + 1, 3-33 22
Y+2) - U,A,E

23(0) 2 ADAS (i(T)-1)+(A) A, 3-33 2,-6
(T) - 1 - T

24(0) 2 SBAS (A)-((T)-1) -A, 3-33 2,·6
(T)-1 - T

25(2) 2 RSBAS UT)-1)-(A) -A, 3-34 2,·6
(T)-1 -T

26(1) 2 MPAS (A)*((T)-1) - U, 3-34 2, 7
A;(T)-1- T

27(1) 2 DVAS (.A)/((T)-1) - A, 3-34 2,8
REMAINDER
-.. U, (T)- I - T

27(3) 2 RDVAS ((T)-1)/(A) - A, 3-35 2,8
REMAINDER
- .. U, (T)- 1 - T

25(0) 2 ADUS ((T)-1)+(U)- U, 3-35 2,6
(1r)-l - T -

25(1) 2 SBUS (U) - ((T)- l) - U ,"· NA 2,6
-1 - T

27(0) 2 DVUAS (U,A)/((T)-1) 3-35 2,8
- ... (\,: REMAIND-
ER - U, {T)-1
- .. T

20(0) 2 ADXS ((T}-l)+)X) -X, 3-36 2,6
(T)-1 - T

21 (0) 2 SBXS (X)-((T)-lL -x, 3-36 2,6
(T)-1 - T

20(1) 2 RSBXS ((T)-1)-(X) -x, 3-36 2,6
(T)-1 - T

26(0) 2 MPXS (X)*((T)-1) -X, 3-36 2
('I')-1 - T

33(0) 2 TADS (U, A, E) +((T) - 3 , 3-37 22
('I')- 2, (T)-1)
-· U, A, E, (T)-3
-·T

33(3) 2 NT ADS (U, A, E)-((T)-3, 3-37 22
(T')-2, (T)-1)
-· U,A,E (T)-3
-T

E-5

------·---]:-----T- --r--

OP
CODE
(MOD) FORMAT MNEMONIC FUNCTION PAGE NOTES
----- -~-·------·------·-- ----- -----·--- - --- ---··---·--

FIXED-POINT ARITHMETIC (CONTINUED)

33 (1) 2 TSBS (U,A,E)-((T)-3, 3-37 22
{T)-2,(T)-l)
-U,A,E (T)-3
-T

33(2) 2 RTSBS ((T)-3, (T)-2, (T) 3-38 22
-1)-(U,A,E)
- U, A, E (T) - 3
-T

31(1) 2 TMPS (U,A, E)*((T)-3, 3-38 22
(T)-2(T)-l -u,
A, E (T)-3 -T

31 (3) 2 TMPFS (U,A,E)*((T)-3, 3-38 22
(T)-2(T)-l - U,
A, E (T)-3 - T

32(1) 2 TDVS (U,A,E)/((T)-3, 3-39 22
(T)- 2, (T)-1

- UAE (T)-3
- (T)

32(3) 2 TDVFS (U,A,E)/((T)-3, 3-39 22
(T)-2,(T)-l
- UAE (T)-3
-T

53 3 TNEG IF(UEBA@E)=O 3-40 22
then (Uo - Uo

FLOATING-POINT ARITHMETIC

23(0) 6A FAD (U, A, E)"+"(Y, Y 3-40 9, 10, 22
+l, Y+2)-U,A,E

23(3) 6A NFAD (U ,A, E)"-"(Y, Y 3-40 9, 10, 22
+l, Y+2)-U,A,E

23(1) 6A FSB (U ,A, E)"-"(Y, Y 3-40 9,10,22
+l, Y+2)-U,A,E

23(2) 6A RFSB (Y ' y + 1 ' y + 2) II - II 3-41 9,10,22
(U,A,E)- U,A,E

24(0) 6A FMP (U, A, E)"*"(Y, Y 3-41 9,10,22
+l, Y+2)-U,A,E

25(0) 6A FDV (U,A,E)"/"(Y, Y 3-41 9, 10, 22
+l, Y+2) -U,A,E

~---------·-- ---------- -·---------.....1-------L-------..----J

E-6

OP
CODE
(MOD)

25(2)

30(0)

I 30(3)

30(1)

30(2)

31(0)

32(0)

32(2)

41(0)

42(0)

FORMAT MNEMONIC I FU NCTION PAGE

FLOATING-POINT ARITH} vIBTI C (CONTINUED)

6A RFDV

2 FADS

2 NF ADS

2 FSBS

2 RFSBS

2 FMPS

2 FDVS

2 RFD VS

2 FIX

2 FLOAT
'

E-7

(
(
(

1, Y+2)"/"
,E) -U,A,E

Y,Y+
U,A
U,A, E)"="((T)··

-· 3, {T)-2, (T)-1)
-
-
(

.... u

.... T
, A, E;(T)-3

E)"-"((T) U,A,
3, (T -·)-2, (T)-1)

-
(

E - UA
U,A ,E)"-"((T)

-· 3, (T)-2, (T)-1
-- u ,A,E;(T)-3
-- (T)
((T)-3 ,(T)-2,(T)

-· 1)"­
..... u

"(U, A, E)
- ,A,E;(T)-3
-
(
- T
U,A , E)"*"((T)
-
-

)-2, (T)-1 3, (T
.... u ,A,E; (T)

-
f
-
-
-
(
-
-
-

(

F
F
I
I
(

T
'E) II I II ((T)

3-
U,A
3(T) -2, (T)-1)
-u ,A,E;(T)-3

- T
(T)- 3, (T)-2, (T)

"(U,A,E) 1)" I
-u
..... T

,A, E;{T)-3

ERT
TING

:ONV
'LOA
>QIN T NUMBER

,A,E) TO
GER IN (A).
ERT IN-

'I

N(U
NTE
:ONV
'EGE
'OF
>QIN

R IN (A)
'I LOA TING
F T NUMBER
Ij N{U , A, E).

-3-41

3-41

3-42

3-42

3-42

3-43

3-43

3-43

3-43

3-44

NOTES

9,10,22

2,9,10,
22

9, 10, 22

2,9,10,
22

2, 9, 10,
22

2,9,10,
22

2,9,10,
22

2,9,10,
22

8,22

22

TION PAGE t--~-0_g_~_)--t-_F_ORMAT ~-M-N_E_M-ONI FUNG

FLOATING-POINT ARITHMETIC (C ONTINUED)

43(0) 2

54(0) 2

27(0) 6A, 6G
27(1) 6A, 6G
10 10
27(3) 6A, 6G
20 lA,B,C,D
11 10
22 lA,B,C,D
12 10
24 IA,B,C,D
13 10
3 7A
3 4B
4 4B
5 4B
3 5
4 5
5 5
22(I) 2

22(2) 2

NORM

FNEG

G NOR-FLOATIN
MALIZE
011 -"(U,A
- (U ,A,
(''+" = FL

'E)
E)
OAT-

ING AD D
11

-
11 = FL OAT-

-ING SUB
TRACT

"*" = FL
ING MU

OAT-
LT!-

PLY
"/"=FL
ING DIV

OAT-
IDE)

LOGICAL

ANX
ANU
ANUI
ANUA
ANA
ANA!
ORA
ORA!
XRA
XRAI
RAND
SET BA
CLRBA
CMPBA
SET BM
CLRBM
SMPBM
ANAS

ORAS

E-8

-x (X)@(Y)
(U)©(Y)
{U)€)LIT

-u
9- u
-A
-A
9- A

(U)~(Y)
(A) (Y)
(A) x LIT
{A) + (Y
(A)(f)LIT
(A)8(Y)
(A)E)LIT
(S)@(D) -

)-A
9- A
-A
9- A

D
1- A n
o- A

n
(An) - A
1-Y n
0 -Yn

n

n
-1)

(Y n> - y
(A)@((T)
- A, {T)
{A)(±}((T)

-1 - T
-1)

- A, (T) -1 -T

3-44

3-44

3-45
3-45
3-45
3-45
3-45
3-45
3-46
3-46
3-46
3-46
3-46
3-47
3-47
3-48
3-48
3-48
3-49
3-49

3-50

NOTES
----I

9,22

22

3,4

11
11
11
2

2

OP

MNEMONICI
CODE
(MOD) FORMAT FUNCTION PAGE NOTES

LOGICAL (CONTINUED)

22(3) 2 XRAS (A)8((T)-l) 3-50 2
·- A, (T)-1 - T

22(0) 2 ANXS (X)@ ((T)-1 3-50 2
- X, (T)-1 - T

SHIFTS

0 8 LLX/LRX LOCIGAL LEFT/ 3-51
RIGHT X

1 8 ALU/ARU ARITHMETIC 3-51 12
LEFT/ RIGHT U

2 8 LLU/LRU LOGICAL LEFT/ 3-51
RIGHT U

3 8 RLU/RRU ROT A TE LEFT/ 3-52
RIGHT U

4 8 ALA/ARA ARITHMETIC 3-52 12
LEFT /RIGHT A

5 8 LLA/LRA LOGICAL LEFT/ 3-52
RIGHT A

6 8 RLA/RRA ROTATE LEFT/ 3-52
RIGHT A

0 9 LLUAE/ LOGICAL LEFT/ 3-53
LRUAE. RIGHT U,A,E

1 9 ALUA/ ARITHMETIC 3-53 12
ARUA LEFT /RIGHT UA

2 9 LLUA/ LOGICAL LEFT/ 3-53
LRUA RIGHT U,A

3 9 RLUA/ ROTATE LEFT/ 3-54
RRUA RIGHT U,A

44(0) 2 LLO LOCATE LEAD- 3-54
ING ONE (Dt~
RECTION OF
SHIFT IS DE-
TERMINED BY
SHIFT COUNT,
AFTER INDEX-
Il~G IF ANY:
COUNT> 0
..-.. LEFT SHIFT,

E-9

-------1::---- - ----

OP
CODE
(MOD) FORMAT MNEMONIC FUNCTION PAGE NOTES
---- ------------ ----·-------···-------.-.- -- -··-- -·-. -- --- --···------------..

SHIFTS (CONTINUED)

COUNT< 0
- RIGHT
SHIFT)

COMPARES AND TESTS

14 10 SKXEI SKIP IF (X) 3-54
= LIT9

15 10 SKXNI SKIP IF (X) 3-55
f:- LIT9

26 IA,B,C,D SKAE SKIP IF (A) 3-55
= (Y)

30 IA,B,C,D SKAN SKIP IF (A) 3-55
1 (Y)

16 10 SKAEI SKIP IF (A) 3-55
= LIT9

17 10 SKA NI SKIP IF (A) 3-56
1 LIT9

30(SC) 6A, 6G ACX (X) (AC] (Y), 3-56
SKIP ON CON-
DITION

31 (SC) 6A, 6G ACU (U) (AC] {Y), 3-56
s. o. c.

32(SC) 6A, 6G ACA (A) [AC] (Y), 3-57
s. o. c.

33(SC) 6A, 6G ACE (E) [AC] (Y), 3-57
s. o. c.

22(SC) 6A FCP U,A,E [AC] (Y' 3-57 22
Y+l, Y+2)S. 0. C ..

36(SC) 2B FCPS U,A,E (AC] ({T) 3-58 22
-3, (T)- 2, (T)- 1)
s. o. c. TIS UN-
CHANGED

34(SC) 6A, 6G LCX (X) [LC] (Y), S .. 3-58
o. c.

35(SC) 6A, 6G LCU (U) (LC] (Y), S., 3-58
o. c.

36(SC) 6A, 6G LCA (A) [LC] (Y), S. 3-59
0. c.

---- - -··-----·---- ---·-- ------

E-10

OP
CODE
{MOD}

37(SC)

40(SC)

6
7
6
7
45(0)

46(0)

I 43(0)

47(0)
I

I

11
13
15
17
21
44(JC)

45(JC)

46(JC)

PAGE NOTES
---·-------1~---t----t

MNEMONIC[FORMAT FUNCTION

COMPARES AND TES' rs (CONTINUED)

6A, 6G LCE

6A, 6G MSK

4B SKZA
4B SKOA
5 SKZM
5 SKOM
2 SKNOF

2 SKNCO

6A TSL

2 DSK

IA, C, D JMP
lA, C, D JZE
IA, C, D JNZ
IA, C, D JPL
IA, C, D JMI
6A XJP

6A UJP

6A AJP

(: ~) (LC] {Y) , 3 - 5 9
s. o. c.
r n (AC] O, SKIP 3-59
0 N CONDITION
s KIP IF (AN) = 0 3-60
s KIP IF {AN) = 1 3-60
s KIP IF (Y N) = 0 3 - 61
s KIP IF (YN) = 1 3-61
s KIP IF (OF) = 3 -62
O; 0 - OF
s KIP IF {CO) = 3-62
O; 0 - co
s KIP IF (Y is) = 3-62
1; 0-Y

s KIP AFTER 3-62
N EXT INSTRUC-
T ION

[1 ~C] MEANS AL­
EBRAIC
OMPARE

G
c
[: LC] MEANS

OGICAL
OMPARE

Lr
c

JUMPS

y - p 3-63
y - P IF {A) = 0 3 -63
y -. P IF (A) -/: 0 3 - 6 3
y - P IF {A) ~ 0 3 - 6 3
y - P IF (A)< 0 3-64
y - P IF (X) 3-64
c ONDIT ION MET
y - P IF (U) 3-64
c ONDITION MET
y - P IF (A) 3-65
c ONDITION MET

E-11

OP
CODE
(MOD) FORMAT -~N_EMo~IFuNcTroN PAGE

JUMPS (CONTINUED)

47(JC) 6A EJP Y - P IF (E) 3-65
CONDITION MET

SO(JC) 6A TJP Y - P IF (U, A, E) 3-65
CONDITION MET

25 lA, C, D IJXN Y - P IF (X) /: 0; 3-66
(X)+l - X

27 lA, C, D DJXN Y - P IF (X) -f- 0; 3-66
(X) -1 - X

55(0) 6A IJMP (Y) - p 3-66

SU BRO UTINE AND SYSTEM LINKAGE

23 lA, C, D JSPX (P)+l - X, Y -P 3-66
56(7) 6A JSPM (P)+l - (Y), 3-67

Y+l -P
63(7) 6A CALL (P)+l -(T), 3-67

(B) - (T)+l,
(T)+2 - B -T,
y -P

50(0) 2 RTRN (B)-2 - T, 3-67
((T)+l) - B,
((T)) - p

3 SCA LL SYSTEM CALL 3-68
If user mode:

(B,T,L)-
((BASE)+O, 1, 2))
(BASE)-B,
(BASE)+3 -T
(LIMIT)- L
If (T)+7 > L
(address compare
stack overflow
(SXUAEPB)-

((T)+O, 1--6)
(T)+7 -B, T
STATUS - S

SC BASE +Call
#-P

STATUS is old stl
tus with MODE -

E-12

NOTES

OP
CODE
(MOD)

55(1)

55(2)

55(3)

64(0)

64(1)
52(0)

FORMAT MNEMONIC FUNCTION PAGE NOTES

SUBROUTINE AND SYSTEM L INKAGE (CONTINUED)

PMODE O-FPOFl
FPUF, MODE,

-

3 SCA LL

6A IJSPX

6A IJSPM

6A I CALL

6B, 6C LDC

6B, 6C STC
2 CPRS

CO, OF
(P)+l -X, (Y)- 3-69
p

(P)+l -((Y)), 3-69
(Y)+l - P
(P)+l - (T), (B) 3-69
(T)+ 1 (T)+2 - B
-T, (Y) -P

0 -Ao-7• (YB) - 3-13
A 8-15
(. As-1s> -YB 3-13
c OMPARE 3-13
s TRINGS: CPRS

XPECTS THE E
B
0
c
E

YTE ADDRESSES
F THE FffiST
HARACTER OF
ACH STRING IN

(: K) AND (A), AND
'I' HE NUMBER OF

HARACTERS TO c:
B E COMPARED
Il ~ (U). IF STRIN
(.i. I.\.) > STRING (X),

EXT INST. IF
TRING (A)=
TRING (X), SKIP

N
s
s
1 • IF STRING (A)
< STRING (X),
s
E

KIP 2. ON A "> 'j
XIT (NEXT INSTl
R SKIP 2), (X) 0

A ND (A) POINT Tq
HE CHARACTERS
HAT WERE

T
T
F
u

E-13

OUND TO BE
NEQUAL ON AN ·

--~--±:·- -~------- ------ .-------

OP
CODE
(MOD) FORMAT MNEMONIC FUNCTION PAGE NOTES

------ -

SUBROUTINE AND SYSTEM LINKAGE (CONTINUED)

52(0) 2 CPRS II = II EXIT (SKIP 3-13
1), (X) and (A)
POINT ONE BE -
YOND THE LAST
CHARACTERS
COMPARED.

65(0) 6A GFC 0 - Ao-7' ((Y)B) 3-14

- AS-15
65(1) 6A GFCT GFC W/TEST 3-14
65(2) 6A GCI 0 - A 0 - 7 , ((Y) B) 3-15

- A8-15 (Y)+l
-Y

65(3) 6A GCIT GCI W/TEST 3-15
65(4) 6A IFC (As-15) - (Y)B 3-16
65(5) 6A IFCT IFC W /TEST 3-16
65(6) 6A IC! (Ag_ 15) - (Y)B 3-16

' (Y)+l - Y
65(7) 6A !CIT !CI W /TEST 3-17

OTHER MEMORY

74(0) 6F LDAOM (Y) - A 3-18
74(2) 6F STAOM (A) - y 3-18
74(3) 6F TSLOM Skipif (Y) 15 = 1, 3-18

0 -Y
74(1) 6F LDAOMF (Y)- A, Memory 3-18

Status - U

I
SPECIFIED MAP

\ 73 (0) 6E LDASM (Y)-A 3-19

173(2) 6E STASM (A)- (Y) 3-19
73(3) 6E LDXSM (Y)-X 3-19

I
IfY 0 = 1, set x 0
to 1

I 73(1) 6E LDASMF (Y) -A, Memory 3-19

I Status - U

I 55(0) 2 MRGM (X) 0 V (Previous 3-19
I Mode from Status L __________________ Register) - x 0

E-14

OP
CODE
(MOD)

56(0)

57(0)

60(0)

70(0)

75(0)

75(0)

74(0)

71(0)

FORMAT MNEMONIC FUN CT ION PAGE NOTES

SPECIFIED MAP (CONTINUE D)

2

2

2

2

6A,6G

2

2

2

MSKM (:X)o A (Pre vious 3-8
Status Mode from

Register) - Xo

INPUT OUTPUT

LDAC

LDMAP

LLDB

SIM

DOUT

DIN

IOC

E-15

(Console Sw itches) 3-8
-A

LOAD MAP 3-8
i(U) =Numb er of
Words
1(X) = Starti ng core
address
1(A) = Starti ng ma
page

Locate lead· mg 3-9
dirty bit. Begin-
ning with th e map
cell specifi ed in X
look for the next
dirty bit set • Ii
one is found , set

ress X to the add
of the map cell
containing i t and

tin­
If none

not

skip the nex
struction.
is found, do
skip
(Y)- Interr upt 3-9
E:nable Mas k
(X) -I/O Ad
(A)-I/O Da

dress 3-9
ta

(X)- I/O Ad dress 3-9
A I/O Data -

I/O Control 3-10
X = Channel
Number, U nit Type

OP -----------]:-- --- ----- --[-·--·----,--------------··-·-------·-----·----,

CODE
(MOD) FORMAT MNEMONIC FUNCTION PAGE NOTES

----+-- - -----

INPUT OUTPUT (CONTINUED)

71 (0) 2 IOC A = Channel Con- 3 -10
trol Cell Contents
(See I/O writeup)

72(0) 2 SIL Set Interrupt 3-10
Lockout

73(0) 2 RIL Release Interrupt 3-11
Lockout

CALL AND RETURN

2 4A SRTRN (B)-7 -T;((T)) 3-11
S; ((T)+l x if
IN ST l z = 1 ; ((T) + 2

- U if IN ST 13 = 1 ;
((T)+3) -A if
INST l4 = 1; ((T)+4;
- E if INST15 = l;

((T)+S) -P; ((T)+6)
-B

Stack underflow
trap if (B) > (T)

If mode now = 1,
((T)-3)--- ((T)-1)
-B, T, L

64(0) 2 IRTRN (B)-7 -T 3-12
((T)) - S
((T)+l) -X
((T)+2) - U
((T)+3) -A
((T)+4) -E
((T)+5) - P
((T)+6) - B
IF (B) >(T), stack
underflow trap
If mode now user,

then ((T)-3),
((T)-2), ((T)-1)
B,T,L

-·--------·------

E-16

OP
CODE
(MOD)

64(0) 2

77(0) 2

FORMAT MNEMONIC I F UNCTION

CALL AND RETURl' f (CO NTINUED)

ffiTRN

HLT

E-17

I
E

c

t interrupt tese
ma bl
Lll le

ed mask for
vels up to the

(eturned to. >ne r
:Ialt P
:nab

:E rocessor;
}1 le Panel

PAGE NOTES

3-12

3-12

NOTES

1. STACK OVERFLOW TRAP IF {T) ~ (L).

2. STACK UNDERFLOW TRAP IF {T) < (B).

3. s :: = XIUIA!ElBIT!Ll + 1

4.. D :: = XIUIAIEIBITIL

5. D :: = XJU/AIE

6. SETS OR RESETS CO, MAY SET OF.

7. SETS OF IF (Ao)= 0 AND (U) :f 0, OR IF {Ao)= 1 AND (U) * 177777

(i.e .. , IF PRODUCT DOES NOT FIT INTO ONE REGISTER).

8. MAY SET OF.

9. FLOATING POINT UNDERFLOW TRAP MAY OCCUR.

10. FLOATING POINT OVERFLOW TRAP MAY OCCUR.

11. SPECIAL ADDRESSING MODES ALLOW BIT INDEXING.

12. ARITHMETIC LEFT SETS OF IF SIGN BIT CHANGES DURING

SHIFT.

13. TESTS ON CHARACTER INSTRUCTIONS:

<
(Y) (LC] (Y+ 1)

PERFORM
INSTRUCTION

14. MAY BE INTERRUPTED AND RESTARTED.

P = P+l ..,_._....,..NEXT

INST.

15. Y IS A 16-BIT ADDRESS IN THE OTHER MEMORY {UNMAPPED).

16.. BIT 0 OF THE FINAL ADDRESS SPECIFIES THE MAP.

0 ::) SYSTEM MAP, 1 ~ USER MAP

The final address is formed by ORing the "previous mode" bit

with bit 0 of the effective address.. The effective address includes

(B) + (X) if specified.

17. THE ADDRESS IN X IS MAPPED THROUGH THE SYSTEM MAP.

E-18

18. BIT 9 OF THE MAP ADDRESS SPECIFIES THE MAP.

0 ~ SYSTEM MAP, 1 ~ USER MAP

19. BASE, LIMIT, and SC BASE are dedicated core locations.

STATUS is the S register with mode moved to previous mode,

and floating point underflow trap enable, floating point overflow

trap enable, mode, carryout, and overflow bits and instruction

counter set to zero.

20. Memory reference performed even if parity or protect violation

occurs, memory status returned for software analysis.

21. Privileged Instruction.

22. Implemented in AP only.

23. Implemented in CP only.

E-19

COMMENTS

1. The "current active interrupt level" in the status register will

contain all ones when no interrupt is being processed.

2. The "software" interrupt enabled mask is set by the SIM instruc­

tion. The "firmware" interrupt enabled mask is set by the firm­

ware when an interrupt is taken or an m TRN is processed. On

an interrupt, the "current active interrupt level", n, in the new

status register contents is set to the bit number of the interrupt

being accepted. Bits n to 15 in the "firmware" interrupt mask

are set to zero. On an IRTRN, the "firmware" interrupt mask

is set from the "software" interrupt mask with bits n to 15 set

to zero; n is the "current active interrupt level" in the status

word being restored.

3. User stack overflow should cause a trap.

4. System stack overflow should stop and print a message.

5. Memory violations should cause a trap. Like a system call with

the "specified map" form of the address at which the violation

occurred in X ..

E-20

