
LOG ICON1 2 +2

BASIC MANUAL

LOGICON INC.

1075 CAMINO DEL RIO, SOUTH

SAN DIEGO, CALIFORNIA

15 December 1970

Section

I

II

III

TABLE OF CONTENTS

PREFACE

INTRODUCTION

LANGUAGE CONVENTIONS
Statement Number
Line Length
Spaces .. .
Numbers .. .
Identifiers . .
Arithmetic Expressions
Mathematical Functions
Relational Expressions

ELEMENTS OF THE LANGUAGE
DATA_,
DEF
DIM
END
FOR-TO-STEP
NEXT ..
GOSUB
GO TO
IF THEN ELSE
IF END DA TA THEN
INPUT
LET
ON - GO TO
PRINT
Assigning and Printing String Values .
Picture Formatting
PRINT IN IMAGE Statements

Integer Field
Decimal Field
E Format Field
Field of Strings
Descriptive Text in A Format

i

1 - 1

2- l
2-1
2-1
2-1
2-1
2-2
2- 2
2-3
2-4

3-1
3-1
3-1
3-l
3-3
3-3
3-4
3-6
3-8
3-9
3-9
3-10
3 - 11
3-11
3-12
3-15
3-15
3-15
3-16
3-16
3-17
3-19
3-19

Section

IV

v

TABLE OF CONTENTS (Continued)

Floating $ Field
The *Field
Image Repetition

PRINT IN FORM Statements

READ

Numeric, String, and Blank Fields
$ and * Fields
Character and Field Replication
Field for Descriptive Text
Carriage Return in a Format
The Single #

REM or!
RESTORE
RETURN
STRING ...

BASIC EDITING CAPABILITIES
Deleting Statements
Editing Statements

FILE & DATA BASE MANAGEMENT
STATEMENTS

Page

3-20
3-20
3-21
3-22
3-22
3-22
3-23
3-24
3-24
3-25
3-25
3-26
3-26
3-27
3~ 27

4-1
4-1
4-2

5-1
General 5- 1
Indirect Statements . . . 5 - 2

File Designation 5- 2
Directory Content Statements . 5- 2

CREATE a File . 5-2
RENAME a File . . 5 - 3
ERASE a File . . 5-4
DESTROY a File 5-4
CLOSE a File 5-5

General Input/Output Statements . 5-5
Input 5 - 5
Output 5 - 6

Direct Statements . . . 5- 9
CREATE a File 5-9

ii

Section

VI

VII

TABLE OF CONT.ENTS (Continued)

RENAME a File
ERASE a File . . .
DESTROY a File

DIAGNOSTICS AND DEBUGGING AIDS ..
General
Direct Statements

GOTO Statement
LET Statement ..
PRINT Statement

Debug Aids
CONTINUE Statement ..
STEP Statement
BREAK Statement ..
- BREAK St:atement .
TRACE Statement ..
- TRACE Statement .
MONITOR Statement .
- MONITOR Statement

Program Control Statements
COMPILE Statement
EXECUTE Statement
RUN Statement ...
SOURCE Sta. tement
OBJECT Statement ..
LOAD Statement
LIST Staternent
EDIT Statement
DELETE Statement
EXTRACT Statement
TAPE Statement
QUIT Staten1ent

PROGRAM DIAGNOSTICS ~ ..

iii

Page

5-10
5-10
5-11

6-1
6-1
6-1
6-1
6-2
6-3
6-4
6-4
6-4
6-4
6-5
6-5
6-6
6-6
6-7
6-7
6-8.
6-8
6-8
6-9
6-9
6-9
6-10
6-10
6-10
6-11
6-11
6-11

7-1

LIST OF TABLES

Table Page

2-1 Arithmetic Operators .. 2-2

2-2 Standard Ma th Functions 2-4

3-1 Summary of String Functions 3-35

7-1 Compilation Errors 7-2

7-2 Execution Errors 7-4

iv

Pref ace

This user's manual is intended as a reference guide in the use of the
BASICR function of the LOGICON 2+2 System.

BASIC is a conversational, problem.-solving language developed by
Dartmouth College, Hanover, New Haimpshire and is copyrighted by
the Trustees of Dartmouth College. The development of BASIC was
supported by the National Science Foundation under the terms of a grant
to Dartmouth College. Under this grant, Dartmouth College developed,
under the direction of Professors John G. Kemeny and Thomas E.
Kurtz, the BASIC language. We would like to thank Dartmouth College
for the privilege of using their BASIC Manual, 4th Edition as a
reference in writing this manual.

BASIC is used to solve both simple and complex mathematical problems
from your teletype console, and it is particularly suited to time­
sharing. With BASIC, you type your computational procedure as a
series of numbered statements, utilizing common English syntax and
familiar mathematical notation. If BASIC is new to you, you need
spend only an hour or so learning the elementary commands necessary
for solving most business or scientific: problems. With experience,
you may add the advanced comn1ands needed to perform more intricate
manipulations and to express .. your problems more efficiently and
concisely.

Once you have entered your statements via your console, simply type
RUN to initiate execution of your routine and receive your results
instantaneously.

RRegistered: Trustees of Dartmouth College

~-lk1tlR:~l~~~-········-.~'!9·.······!9·.··•fl'..~·.!!·.-.·.·····~·······--··········'fl!·

I ...

I ntrductlon

A program is a set of directions used to tell a computer how to solve
and provide the answer(s) to some problem. In general, a program
provides numerical answers to computational type problems.

Any program must meet two requirements before it can be carried out.
The first is that it must be presented in a language that is understood
by the computer. The computer language discussed in this manual is
BASIC (Beginner's All- Purpose .§_ymbolic !nstruction Code). The
second requirement for all programs is that they must be completely
and precisely stated. This requirernent is crucial when dealing with a
digital computer, which has no ability to infer what you mean - - it
does what you tell it to do, not what you meant to tell it.

As an introduction to the BASIC programming language, we will solve
a system of two simultaneous linear equations in two variables.

ax+ by= c

dx + ey = f

If ae - bd is not equal to O, this system. can be solved by:

ce - bf af - cd
x = and y - ----

ae - bd - ae - bd

If ae - bd = 0, there is either no solution or many, but there is no
unique solution. Study this example carefully - in most cases tpe
purpose of each line in the program is self-evident - and then read
the commentary and explanation.

I 0 READ A, B, D, E.J
15 LET G = A >.'< E - B * D)
20 IF G = 0 THEN 65)

I -1

30 READ C, E)
37 LET X = (C*E - B*F) / G)

42 LET Y = (A*F - C*D) / G.)

5 5 PRINT X, Y..)
60 GO TO 30_)
65 PRINT "NO UNIQUE SOLUTION')
70 DA TA 1, 2, 1>
80 DATA 2, -7, ~
85 DATA I, 3, 4, -1;
90 END...>

NOTE

All statements are terminated by pres sing the
RETURN key (represented in this text by the
symbol)) .. The RETURN key echoes as a
carriage return, line feed.

Each line of the program begins with a line number and serves to
identify each line as a statement. A program is made up of such
statements, most of which are instructions to the computer. Line
numbers serve to specify the order in which these statements are
to be performed. Before the program is run, BASIC sorts out and
edits the program, putting the statements into the order specified by
their line numbers. This means that the program statements can be
typed in any order, as long as each statement is prefixed with a line
number indicating its proper sequence in the order of execution. Each
statement starts after its line number with an English word which
denotes the type of statement. Spaces have no significance in BASIC,
except in messages which are printed out, as in line number 65 above.
Thus, spaces may be used, or unused, at will to modify a program
and make it more readable.

With this preface, the preceding example can be followed through step­
by-step.

10 READ A, B, C, D

The first statement, I 0, is a READ statement and must be accompanied
by one or more DATA statements. When the computer encounters a
READ statement while executing a program, it will cause the variables
listed after the READ to be given values according to the next available
numbers in the DATA statements. In this example, we read A in state­
n:1ent 10 and assign it the value 1 from statement 70 and, similarly,

1-2

with B and 2, and with D and 4. At this point, the available data in
statement 70 has been exhausted; however, there is more in statement
80, and so we pick up the value 2 from 80 to be assigned to E.

1 5 LET G = A >!< E - B * D

Next, in statement· 15, which is a LET statement, a formula is to be
evaluated. (The asterisk 11 >:< 11 is obviously used to denote multiplication.)
In this statement we compute the value of AE - BD, and call the result
G. In general, a LET statement directs the computer to set a variable
equal to the formula on the right side of the equal sign.

20 ~F G = 0 THEN 65

If G is equal to zero, the system has no unique solution. Therefore,
we next ask, in line 20, if G is equal to zero.

65 PRINT "NO UNIQUE SOLUTION"
7 0 DAT A 1 , 2, 4
80 DAT A 2, - 7, 5
85 DA TA 1, 3, 4, - 7
90 END

If the computer discovers a "yes" answer to the question, it is directed
to go to line 65, where it prints "NO UNIQUE SOLUTION". Inasmuch
as DA TA statements are not "executed", it then goes to line 90, which
tells it to "END" the program.

30 READ C, F

If the answer to the question "Is G equal to zero?" is "no", the com­
puter goes to ~ine 30. The computer is now directed to read the next
two entries, - 7 and 5, from the DA TA statements (both are in state­
ment 80) and to assign them to C and F respectively.

The computer is now ready to solve the system:

x + 2y :: -7
4x + 2y = 5

37 LET X = (C>!<E - B :>i'<F) / G
42 LET Y + (A*F - C*D) / G.

1-3

In statements 3 7 all;d 42, we compute the value of X and Y according to
the formulas provided, using parentheses to indicate that CE - BF
is divided by G.

55 PRINT X, Y
60 GO TO 30

The computer prints the two values X and Y, in line 55. Having done
this, it moves on to line 60 where it is reverted to line 30. With addi­
tional numbers in the DATA statements, the computer is told in line 30
to take the next one and assign it to C, and the one after that to F.
Thus,

x + 2y = I
4x + 2y = 3

As before, it finds the solutions in 37 and 42, prints them out in 55,
and then is directed in 60 to revert to 30.

In line 30 the computer reads two more values, 4 and - 7, which it finds
in line .85. It then proceeds to solve the system:

x + 2y = 4
4x + 2y = -7

and print out the solutions. Since there are no more pairs of numbers
in the DATA statement available for C and F, the computer prints:
110UT OF DATA IN 30'' and stops.

If we had omitted line number 55 (PRINT X, Y), the computer would
have solved the three systems and then told us when it was out of data.
Had we omitted line 20, and G were equal to zero, the computer would
print "DIVISION BY ZERO IN 37" and "DIVISION BY ZERO IN 42".
I-lad we left out statement 60 (GO TO 30), the computer would have
solved the first system, printed out the values of X and Y, and then
gone on to line 65, where it would be directed to print "NO UNIQUE
SOLUTION".

The particular choice of line numbers is arbitrary as long as the state­
ments are numbered in the order the machine is to follow. We would
normally number the statements 10, 20, 30, ... , 130, so that we can
later insert additiop.al statements. Thus, if we find that we have left
out two statements between those numbered 40 and 50, we can give
them any two numbers between 40 and 50 - say 44 and 46. In regards

1-4

to DA TA statements, we need only put the numbers in the order that
we want them read (the first for A, the second for B, the third for D,
the fourth for E, the fifth for C, the sixth for F, the seventh for the
next C, etc.). In place of the three s:tatements numbered 70, 80, and
85, we could have put:

75 DATA 1, 2, 4, 2, -7, 5, 1, 3, 4, -7

or we could have written, perhaps more naturally:

7 0 DAT A 1 , 2, 4, 2
75 DATA -7., 5
80 DATA 1, 3
85 DATA 4, -7

to indicate that the coefficients appear in the first data staten1ent and
the various pairs of right-hand constants appear in the subsequent
statements.

The program and the resuiting run is shown below exactly as it
appears on the teletype.

READ A, B, D, E.J 10
15
20
30
37

LET G = A * E - B * ~
IF G = 0 THEN 6~
READ C, E)
LET X = (C >:< E ·- B):c F) / G)

4 2 LET Y = (A * F ·- C):< D) / G..)
55 PRINT X, ~
60 GO TO 30...)
65 PRINT "NO UNIC~UE SOLUTION')
7 0 DAT A 1 , 2, 4_)
80 DA TA 2, - 7, ~
85 DAT A I , 3, 4, - °0
90 EN~

RU~

1..
0.666667

-3.66667

OUT OF DATA IN 30

1 --5

-5.50000

0.166667

3.83333

NOTE

Typeouts from BASIC or from the Monitor are
indicated in this text by underscoring.

After typing the program, we type RUN followed by a carriage return
which directs the computer to compile execute the program.

1-6

~i~,~~~~mwa
.•f1!..e•.•.•.•,,•,,•,,•··~···•••••••••••••e•Nfi!..•iJ!..•e•e"i/'!e•••••••

STATEMENT NUMBER

I I .. ~

Language
Coventlons

All indirect statements in the program begin with a number. These
numbers identify the statements in the program and specify the order
in which the statements are to be executed. Before the program is
compiled, the statements are ordered by ascending line number.

NOTE

Statement numbers must be decimal integers
between 0 and 32767.

LINE LENGTH

The maximum number of characters that may be typed in a line is 7 2.
Pressing the Line Feed key, while a statement is being typed, con­
tinues the statement on the next line. A statement may be continued
for several lines provided that the maximum limit of 256 characters,
including line feeds and carriage retu:rns, is not exceeded. At the
end of each entire statement, a Carriage Return must be typed.

SPACES

Spaces have no significance in BASIC except when they are included in
strings. Spaces are used to improve the readability of the printed
copy.

NUMBERS

A number may be positive or negative, contain up to nine digits, and is
expressed in decimal form. For exarnple, all of the following are

2-1

numbers in BASIC: 2, -3, 675, 1 23456789, - . 9876543 21, and 483. 4156.
The following are not numbers in BASIC: 14/3, j7, and . 00123456789.
The first two are formulas, but not numbers, and the last one has more
than nine digits .

We gain additional flexibility by use of the letter E, which stands for
"times ten to the power". Thus, we may write .00123456789 in a form
acceptable to the system in any of several forms: . l 23456789E- 2 or
l 23456789E-l 1 or 1234. 56789E-6. We may write ten million as 1 E7
and 1965 as 1. 965E3. We do not write E7 as a number, but must write
I E7 to indicate that it is I that is multiplied by 10 7.

IDENTIFIERS

Identifiers are the names by which variables and arrays are referenced
in BASIC. Their form is:

• Any letter A to Z
• Any letter followed by any digit from 0 to 9

ARITHMETIC EXPRESSIONS

Arithmetic expressions are formed by combining numbers and/or
variables with arithmetic operators as in ordinary mathematical
formulas. There are five arithmetic operators in BASIC (Table 2-1).

TABLE 2-1. ARITHMETIC OPERATORS

Symbol Meaning Example

t Exponentiation Ct2

* Multiplication 3 *B ·(=3.xB)

I Division 1 /4(=1 + 4)

+ Addition 8+Fl

- Subtraction C8-5

Parentheses often are required in BASIC arithmetic expressions where
they might not be needed in ordinary mathematical notation. For

example, if you type A~B as A+B/C in BASIC, the expression will be

2-2

interpreted as A + ~ . This is because BASIC performs division before
A+B

addition, unless parentheses are used to denote otherwise. Thus, c
must be typed as (A+B) /C.

The order in which BASIC performs arithmetic operations is as follows:

L Whatever is enclosed in parentheses will be computed first 0

When sets of parentheses appear within other sets of
parentheses, the innermost set is evaluated first, then
the next set, and so on.

2. Exponentiation.

3. Multiplication and Division.. If >:< and I appear in the same
expression, BASIC calculates from left to right; that is,
3/Bt2>:<C is equivalent to

(~2) x c

4. Addition and Subtraction. Similarly as above, if these two
operators appear in the same expression, BASIC calculates
from left to right.

MATHEMATICAL FUNG TIONS

A number of standard mathematical :functions are available in BASIC.
Each one has the same form: The name of the function followed by the
argument enclosed in parentheses •. Some of these functions are listed
in the chart on the following page (See Table 2-2).

These functions may be included in any statement; for example, all of
the following are acceptable:

80 LET B4 = Z8-EXP(Xl+LOG(5/Xl))
90 LET T = SQR(SIN~[R)t2+COS(Q) + 2
100 LET W4 = LOG(N*X-SIN(PI/N))

2-3

TABLE 2-2. STANDARD MATH FUNCTIONS

i
i Function Meaning

SIN(X) Sine of X (X in radians)

COS (X) Cosine of X (X in radians)

TAN (X) Tangent of X (X in radians)

ATN (X) Arctangent (in radians, over the
range - rr/2 to +rr/2) of X

EXP (X) Natural exponential of X, eX.

ABS (X) Absolute value of X

LGT (X) Logarithm of X (base 10)
-

LOG (X) Natural logarithm of X

SQR (X) Square root of X

_RELATIONAL EXPRESSIONS

A relational expression is one that compares one value to another
i~where the values may be represented by variables or arithmetic
expressions), using the following relational operators:

SYMBOL

<
<=
=

>=
>

<>

MEANING

Less than
Less than or equal to
Equal to
Greater than or equal to
Greater than
Not equal to

{Relational expressions commonly occur in an IF statement where the
THEN of the statement will be executed only if the specified relation is
true.)

2-4

III ...

Elements of
the Language

The BASIC Language is composed of the following distinct statements:

DATA

Provides values to be as signed to variables by a READ statement.

General Form

The values listed in DATA statements can be either numbers or literal
strings, not expressions, and must be separated by commaso

The lo ca ti on of DA TA statements in a program is arbitrary, although
the usual procedure is to place them in a group at the end of the pro­
gramo The only requirement is that the statements be numbered in the
order in which the data is to be read.

DEF

Allows the user to define a function.

General Form

DEF namef(parameters) == expression of function

Where namef is FN followed by a letter (unique
ID). Parameters are enclosed in () and separa­
ted by commaso

.. Restrictions: • Value of function must be computed in a
single statemento

• Dummy pararneters are local.

3-1

In addition to the standard BASIC library functions, the user may define
any other function that he expects to use a number of times in a pro­
gram. The indirect command DEF is used for this purpose. The
names of programmer defined functions must contain three letters, the
first two of which must be FN. Function names must be unique and
they cannot be redefined within a program.

The form of the DEF statement is shown below; the programmer
defines a function that will calculate the sine of an angle in degrees,
using a library function.

10 DEF FNS(X) = SIN(X*3. 14159/180)

An argument used in defining a function (X in the above example) is
called a parameter. A programmer defined function can have either
no parameters or any number of parameters (separated by commas and
enclosed in parentheses). Parameters are "dummy" arguments; that
is, when a defined function is used, certain specified values will
temporarily replace the parameters where they appear in the function
definition. For example,

> 10 DEF FND(A, B) = 4*A*B+A 12
> 2 0 Y = FN D(2, I)
>30 PRINTY
>RUN
>12

When the defined function was used in line 20, 2 and 1 replaced A and
B respectively in the function definition in line 10. Thus, Y was set
to (4*2*1)+22, or 12.

Parameters can have any variable name, including the names of varia­
bles used in the same program; in other words, the parameters are
local to the function definition.

DIM

Dimension limits of 1, 2 or 3 dimensional arrays.

General Form

DIM name(d1, dz, d3), namez •••

3-2

If an array is to have a subscript different than 10, the size of the
array must be specified by the DIM commando This command instructs
BASIC to reserve a specified ·amount of space for array elements. For
example,

10 DIM A(IS)

will reserve 15locations for element:s A(l) toA(l5). The DIM state­
ment does not define any array elements; it simply allows a certain
number of values to be accepted as in.put to the array.

Any number of arrays can be dimensioned in a single DIM statement as
follows:

60 DIM K(ZO), L(3, 3), AS(12)

The user may save storage space by dimensioning arrays with sub­
scripts less than 10, even though such dimensioning is not required.
Thus, DIM E(3, 5) will reserve space for exactly 15 elements, whereas
without the DIM statement, 100 (I OX IO) spaces would be reserved for
the array E.

Subscripts always start from 1.

END

Terminates program execution.

General Form

END

The END statement identifies the physical end of the main program and
results in transfer of control to the executive at object time. If sub­
routines have been identified in the rnain program by a GOSUB state­
ment, the subroutines must follow the END statement.

FOR-TO-STEP

Specifies initial, increment value, and test value for loop iterations.

3-3

NEXT

General Form

FOR var name = initial value TO final value
STEP increment

or

FOR var name = initial value TO final value

where the step size is implied to be 1.

The increment, test, and iterate statement(s) of a loop.

neral Form

EXT var name
·~~~~~~~~~~~~~~~~~~____,

NOTE

If omitted - no test and increment occurs.
Loop body is executed once and falls thr~ugh.

Since loops are so important and are used so often in programming,
BASIC provides the two indirect commands FOR and NEXT to simplify
loop specification. For example, suppose we want to write a program
that will print out a table of the first 100 positive integers and their
square roots.

10 FOR N = 1 TO 100
20 PRINT N, SQR(N)
30 NEXT N

Statement 10 specifies that N is initialized to the value I and that N
should not be set to a value greater than 1001. The modification, an
increase of 1 each time through the loop, is implied in this statement.
The body of the loop is statement 20. The NEXT command in state­
ment 30 instructs BASIC to return to the FOR statement for the next
value of N. When the body of the loop has been executed for every
specified value of N, BASIC will go to the statement following the
NEXT.

NOTE

The value of N after exit from the loop is the
final value assigned to N, 100.

3-4

N could have been increased to 100 in steps of any size other than the
implied I. To do this, we must specify the step size in a STEP clause.
For example, suppose we want to priLnt the square roots of the first 50
even integers. The program would be written as the one above with
statement 10 replaced by:

10 FOR N = 2 TO 100 STEP 2

The specified step size may be negativee For example, if we want to
print the square roots of the first 100 integers in descending order,
statement 10 would be:

10 FOR N = 100 TO 1 STEP -1

In the following example, statement 10 specifies that K should not be
set to a value greater than 7. The final value assigned to K is 7.

> 10 FOR K ::: 5 TO 7.
>20 PRINT K
>30 NEXT K
>RUN

5
6

>7

It is often usefUl to have loops within loops. The order in which BASIC
must execute these nested loops is illustrated in the following skeleton
examples:

ALLOWED ALLOWED

~ORX FOR X
FOR Y FOR Y

[NEXT Y ~OR Z
NEXT X EXT Z

NOT ALLOWED
[FORW

NEXT W
NEXT Y

~FORX ~OR Z
FOR Y EXT Z
NEXT X NEXTX
NEXT Y

3-5

Nested FOR loops of any complexity are allowed, but cr.ossed FOR
loops are not allowed.

GOSUB

A return jump to a closed subroutine. The subroutine is identified by
line number.

~neral Form :=]
~SUB ljne numbe~

When a part of a program is repeated several times in different places,
it can be programmed more efficiently as a subroutine. Subroutine
statements are written only once but can be used many times from any
place in the main program. All subroutines must follow the end of the
main program and be separated from the main program by an END
statement. The c om.m.and is used to transfer control to a subroutine.
Its form is GOSUB followed by the line number of the first statement
of the subroutine. The GOSUB command is similar to GO TO followed
by a line number, in that it transfers unconditionally to another part of
the program. GOSUB differs in that it does not go beyond the end of
the subroutine, which must be indicated by a RETURN command. After
a subroutine has been executed, return is to the statement following
the one in which the GOSUB command was given.

The following example of a small subroutine shows two sections of the
main program in which the GOSUB comm.and is used.

IOS = 3
20 GOSUB 400
30 PRINT H, P, X

1005 = 7
110 GOSUB 400
120 Z = 3*H+P/X

390 END
400 H = S*SOR(2)
405 P = 2*S+H
410 IF P < = 10 THEN X = 1 ELSE X = 2

3-6

420 RETURN

When this program is run, line 20 instructs BASIC to transfer to the
subroutine beginning at line 400. When the RETURN command at the
end of the subroutine is reached, a. return is made to line 30 (the line
following the GOSUB command). Sin1ilarly, when the subroutine is
called later from line 110, the return is to line 120.

A GO TO or an IF statement within a subroutine can cause transfer out
of the subroutine before the RETURN command is reached. In addi­
tion, a subroutine can contain a GOSUB statement, which calls another
subroutine.

Example:

40X = SIN(Y+Z)
50 GOSUB 200
60 PRINT X

190 END
200 Q = X+R/S
2 10 IF Q < • 5 TH EN 2 40
220 PRINT "Q=";Q

230 GOSUB 500
240 RETURN

500 V = Q+R/S
510 PRINT "V =";V
520 RETURN

The subroutine beginning at line 200 contains both an IF THEN
statement and a GOSUB command, which calls another subroutine.. As
specified in line 210, if Q <. 5, a return is made (to line 60) .. When

3-7

Q > =. 5, the program continues with the next statements, in order,
until it reaches the GOSUB 500 command. A transfer is then made to
the subroutine beginning at line 500. Note the effect of the RETURN
commands in this program; line 520 causes a return to line 240, which
in turn causes a return to line 60 (the statement following the GOSUB
200 command).

Subroutines must be isolated from the main program; this is not done
automatically by BASIC. The sequence of steps in the program must
be designed so that the statements of the subroutine are executed only
after a GOSUB command.

The indirect command END is used to isolate subroutines. This com­
mand causes execution of the program to terminate. All subroutines
must be placed at the end of the main program and separated from the
main program by an END statement as illustrated by the following:

GO TO

10 ! MAIN PROGRAM BEGINS

100 GOSUB 700

690 END ! MAIN PROGRAM END
700 ! SUBROUTINE BEGINS

790 RETURN SUBROUTINE ENDS

Unconditional trans£ er of control.

General Form

GO TO line number

The GO TO statements permit the programmer to alter the sequence
in which program statements are executed. The statement transfers
control to the specified statement number.

3-8

IF THEN ELSE

Conditional transfer of control.

General Form

IF condition THEN line number

or

IF condition THEN line number ELSE line
number

The IF-THEN statement permits a conditional branch in a program.
When the condition following the IF i:s true, control will be transferred
to the designated line number. The next statement is executed when
the condition is false.

The word ELSE, followed by a line number, can be added to the IF­
T.HEN sequence. The form allows control to be transferred to the line
number following the ELSE, if the condition is false.

Examples:

> 70 IF X = • 5 THEN 200 ELSE 300

(If X is • 5, the program goes to line 200; otherwise, it goes
to line 300.)

>100 IF X < 6 THEN 250

(If X is less than 6, the program transfers control to line 250.
When X is greater than or equal to 6, the line following 100
is executed next.)

IF END DATA THEN

l General. Form

IF END DATA THEN line nurnber

3-9

The IF END DATA statement determines if all the data has been read.
If it has, control is transferred to the statement referenced by THEN.
If all the data has not been read, all READ statements are initialized
so that when one of them encounters the end of the data, it trans£ ers
to the statement designated by the IF END DA TA statement.

INPUT

Accepts input typed in reply. Used to initialize variables in the list.
Allows dynamic setting of values during program execution.

General Form

INPUT Var1, Varz, ••• Varn

There are times when it is desirable to have data entered during
running of a program.. This is particularly true when one person
writes the program and enters it into memory, and other persons are
to supply the data. This may be done by an INPUT statement, which
acts as a READ statement but does not draw numbers from a DATA
statement. If, for example, you want the user to supply values for X
and Y into a program, you will type:

40 INPUT X, Y

before the first statement that is to use either of these numbers. When
it encounters this statement, the system types a question mark. The
user types two numbers, separated by a comma, presses the return
key, and the system goes on with the rest of the program.

Frequently, an INPUT statement is combined with a PRINT statement
to make sure that the user knows what values to put in. You might
type:

20 PRINT "WHAT ARE YOUR VALUES OF X, Y, AND Z",
30 INPUT X, Y, Z
40 END

3-10

and the system types:

WHAT ARE YOUR VALUES OF X, Y, AND Z?

Without the comma at the end of line 20, the question mark would have
been printed on the next line.

Data entered via an INPUT statement is not saved with the program.
Furthermore, it might take a long time to enter a large amount of data
using INPUT; therefore, INPUT should be used only when small
amounts of data are to be entered, or when it is necessary to enter
data during the running of the program such as with game-playing
programs.

LET

Verb (optional) that identifies statement type as as signm.ent.

General Form

LET var = expression

or

var = expression

Where expr~ssion is. a constant, variable name,
or arithmetic expression,.

This statement is not a statement of algebraic equality; rather, it is
a command to the system to perform certain computations and to
assign the answer to a certain variable. The word LET is optional on
all assignment statements.. For exarnple, the following statements
are identical in the BASIC language.

50 A = B + C/D
50 LET A = B + C/D

ON - GO TO

Provides for the computed transfer of control.

3 .. 11

General Form

ON expression GO TO line1' line2, •••

where line1, line2, ••• is a sequence of line
numbers to which the program transfers,
depending on the value of the expression.
If the value of the expression is 1, the pro­
gram transfers to line 1; if the value of the
expression is 2, the program transfers to
line2, and so on.

For example,

ON I*J GO TO 60, 70, 85

transfers to lines 60,, 70, or 85 depending on whether the value of the
expression I*J is 1, 2, or 3 respectively.

If the value of the expression is less than one or greater than the num­
ber of line nwnbers, an error message is printed. If the value of the
expression is not an integer, the value will be truncated.

PRINT

The PRINT statement has the following different uses:

• To print out the result of some computations.

• To print out, verbatim, a me$sage included in the program.

• To perform a combination of a and b.

• To skip a line.

F.ach type is slightly different in form, but all start with PRINT after
the line number.

Examples of type a:

100 PRINT X, SQR (X)
135 PRINT X, Y, Z, B*B - 4*A*C, EXP (A-B)

The first will print X and then, a few spaces to the right of that num­
ber, its square root. The second will print five different numbers:: X,

3-12

Y, Z, B2 - 4AC, and eA-B. The system will compute the two formu­
las and print them for you, as long as you have already given values
to A, B, and C. It can print up to five numbers per line in this format.

Examples of type b:

100 PRINT "NO UNIQUE SOLUTION"
430 PRINT "X VALUE", "SINE", "RESOLUTION"

Both have been encountered in the saimple programs. The first prints
that simple statement; the second prints the three labels with spaces
between them. The labels in 430 automatically line up with three
numbers called for in a PRINT statement.

Examples of type c:

150 PRINT "THE VALUE OF XIS", X
30 PRINT "THE SQUARE ROOT OF" X,
"IS II SQR (X)

If the first has computed the value of X to be 3, the system prints out:
THE VALUE OF X IS 3. If the second has computed the value of X to
be 625, the system prints out: THE SQUARE ROOT OF 625 IS 25.

Examples of type d:

250 PRINT

The system advances the paper one line when it encounters this
command.

Although the format of answers is automatically supplied for the
beginner, the PRINT statement permits a greater flexibility for the
more advanced programmer who wishes a different format for his
output.

The teletypewriter line is divided into five zones of fifteen spaces each ..
Some control of the use of these comes from the use of the comma: a
comma is a signal to move to the next print zone or, if the fifth print
zone has just been filled, to move to the first print zone of the next line.

10 FOR I = 1 T 0 15
20 PRINT I
30 NEXT I
40 END

3-13

In the above example, the teletypewriter would print 1 at the beginning
of a line, 2 at the beginning of the next line, and so on, finally printing
15 on the fifteenth line. However, by changing line 20 to read:

20 PRINT I,

you would have the numbers printed in the zones, reading:

I
6

11

2
7

12

3
8

13

4
9

14

5
10
15

You should remember that a label inside quotation marks is printed
just as it appears; and also, that the end of a PRINT line signals a new
line, unless a comma or semicolon is the last symbol. When a label
is followed by a semicolon, the label is printed with no space after it.

Thus, the instruction:

50 PRINT X, Y

results in the printing of two numbers and the return to the next line,
while:

50 PRINT X, Y,

results in the printing of these two values and no return - the next num­
ber to be printed occurs in the third zone, after the values of X and Y in
in the first two.

Because the end of a PRINT statement signals a new line, you will
remember that:

250 PRINT

causes the teletypewriter to advance the paper one line. It puts a blank
line in your program, if you want to use it for vertical spacing of your
results, or it ca us es the completion of a partially filled line, as
illustrated in the following fragment of a program:

50 FOR M = 1 TO N
ll 0 FOR J = 1 TO M
120 PRINT B(M, J),
130 NEXT J

3-14

140 PRINT
150 NEXT M

This program prints B(l, 1) .. Without line 140, the teletypewriter
would then go on printing B(2, 1), and B(2, 2) on the same line, and even
B(3, 1), B(3, 2), etc .. , if there were room. Line 140 directs the tele­
typewriter, after printing the B(1, M) value to start a new line and to
do the same thing after printing the value of B(2, M), etc.

ASSIGNING AND PRINTING STRING VALUES

A string value, like a numeric value, can be assigned to a variable
with either an assignment statement, an INPUT statement, or a R.EAD
statement. Strings need be enclosed in quotation marks only in the
event that commas are to be part of the string rather than a delimiter.
Everything inside the quote marks is accepted except a Line Feed. A
Line Feed indicates that the data is continued on the next line.

All forms of the PRINT command can be used to print strings. The
effect of the comma is the same for printing string variables as for
other print statements.

PICTURE FORMATTING

The user can specify his own format, for output, in addition to using
the conventional BASIC forms of output. This feature, known as picture
formatting, is useful in presenting calculated results in the form of
tables and reports.

PRINT IN IMAGE STATEMENTS

The user may specify the exact format of his output by typing special
characters in a string and using a PRINT IN IMAGE statement, as
illustrated in the following example.

10 INPUT A, B
20 S = "E FORMAT#######~ INTEGER%"
30 PRINT IN IMAGE S:A, B
RUN

? 200,5.67
E FORMAT • 2E+03, INT.EGER 6

In this example, S is a string variable that specifies the picture format
to be used.. The # signs in the string caused A to be printed in E
format; the % signs caused the value of B to be rounded and printed as

3-15

in integer. All other characters in the string (including spaces) were
printed as specified. The format symbols #and %, which.are explained
below, cannot be printed as part of the picture format because of their
special significance.

The picture format string can include any of the specifications listed
below. The numeric fields allow up to nine significant digits of a num­
ber to be printed, depending on the number of symbols used in the
format string. If the specified format cannot be used for the number
to be printed (for example, if an insufficient number of places is
,specified), the message, CANNOT FIT THIS FORM, is printed.

~[nteger Field

One or more 3 signs denote an integer field. One % sign must be typed
for each digit of the number to be printed. Negative numbers require
a.n additional % sign because of the preceding minus sign. A non­
integer value will be rounded if an integer field is specified for it.
:For example,

A = 24, B = 174. 78
PRINT IN IMAGE "%%%%%%%%":A, -A, B
24 -24 175

Note the alternate form of the PRINT IN IMAGE statement illustrated
above. Instead of a string variable whose value specifies the format,
the picture format string itself is typed following IN IMAGE.

Integer fields are right justified; that is, if fnore % signs are specified
than are necessary, leading spaces will be printed before the number.
For example, the format "%%%"would cause 24 to be printed with one
space before it, and 4 to be printed with two spaces before it.

Decimal Field

One or more % signs with an embedded decimal point denote a decimal
field. The number to be printed is rounded to the specified number
of decimal places. If the number is an integer or has fewer decimal
places than the format specifies, trailing zeroes are printed. Negative
numbers require an additional % sign because of the preceding minus
sign.

3-16

Example:

10 x = 175. 65' y = 11
20 D = "%%%. %% %%%%. %% %%. %"
30 PRINT IN IMAGE D:X, -X, Y
RUN
175 .. 65 - 175. 65 11.. 0

Decimal fields are right justified; that is, if more % signs before the
decimal point are specified than are necessary, leading spaces are
printed before the number ..

NOTE

Whatever type of numeric field is specified in
BASIC picture formatting, no more than nine
significant digits of a number can be printed.
If a number containing more than nine signifi­
cant digits is printed with a field of more than
nine symbols, the following occurs:

• Integer places, past the ninth significant
digit, are filled with zeroes. For example,
fourteen %' s will print the number
12345678901234 as IZ345678901000.

• Decimal places, 'past the ninth significant
digit, are replaced by blanks; for example,
the field "%%%%%%%%.%%%%%"(in which
eight %' s precede the decimal point and
five follow it) will print the number
12345678. 90123 and 12345678. followed by
five blanks.

E Format Field

There are two forms for a field of E format:

1. A series of seven or mori;! # signs ..

2.. One or more # signs, followed by a decimal point and a
series of five or more # s1igns.

3-17

If the first form is used, the number printed begins with a decimal
point. The second form allows the user to specify the number of digits
before the decimal point. This is shown as follows:

10 c = 500
20 PRINT IN IMAGE "#######":C
30 PRINT IN IMAGE "##. #####":C
40 PRINT IN IMAGE "##. ##### 11 :-C
RUN
• SE+-3
50 .. E+Ol
-50. E+Ol

In the first form of the E format field, a minimum of seven# signs is
needed:

1. The first # is for the leading space or minus sign of the
mantissa (the number to the left of E).

2. The second # is for the decimal point of the mantissa.

3. The third # is for the minimum of one digit for the mantissa.

4. The fourth # is for the character E.

5. The fifth # is for the plus or minus sign of the exponent.

6. The sixth and seventh #' s are for the two digit integer
exponent ..

In the second form of the E format field, the # signs are used as follows:

1. A minimum of one # before the decimal point is for the
mantissa.

2. Four #' s after the decimal point are for the exponential
part.

3. The last # is for the leading space or minus sign of the
mantissa.

3-18

NOTE

In the case of a positive number in E format, the
leading space must be accounted for and always
will be printed, while the integer and decimal
fields allow this space to be suppressed.

Field of St rings

One or more % signs or # signs may be used to denote a string field.
The number of symbols specified in the format determines how many
characters of the string will be printed. For example, if A =
"STRING", the format "%%%%%%''of ''######"may be used to print A.
In the following example,

10 T = "CODE XY"
20 PRINT IN IMAGE "%%%%%%%":T
30 PRINT IN IMAGE "%%%%":T
RUN
CODE XY
CODE

the entire string is printed first; then, only four characters of the
string are printed ..

A string field is left justified; that is 1, if more % or # signs are speci­
fied than the number of characters in the string, trailing spaces are
printed.

Descriptive Text in A Format

Any literal text may be included in the picture format string.. Every
character is printed exactly as it appears in the format, except for %,
#, more than three $or * symbols, 1 and decimal points. For example,
the results of a program calculating the perimeter P and the area A of
a triangle may be printed as follows:

l lOS = "PERIMETER IS%%.%, AREA IS%%%.%''
120 PRINT IN IMAGE S:P,A

1 the meaning of these symbols is explained as follows:

3-19

Floating $ Field

This field is used to specify that a $ is to be printed immediately pre­
ceding an integer or decimal value (or a string). For example:

R = "$$$. $$ $$$. $$ $$$$"
PRINT IN IMAGE R:2. 045,. 7, 300
$2.05 $.07 $300

These formats printed the specified values as the % formats would
have, except that the last of the preceding spaces is replaced by a $.
The $ always floats to the position before the first digit. If the $
field is specified so that there are no preceding spaces (that is, no
room for the $), BASIC prints an error message. For example, 23. 06
cannot be printed with the format "$$. $$".

The $ field must consist of four or more $ signs. For example, "$$$"
is not a legal field, nor is "$$. $", since each of these contains only
three $ signs. If these illegal fields were included in a format string,
die characters would be taken as literal text and not a field designators.
For example:

PRINT IN IMAGE "$%. %%":2. 334

$2.33 1' I
~---Field designators

Text to be printed

The *Field

The * field is used to specify the * symbols are to appear before the
number (or string) in place of the usual prebeding spaces. For
example,

s : "*** **• ** ***• **II
PRINT IN IMAGE S:23, 8. 625, 3. 2
*23 *8.63 **3.20

These formats printed the specified values as the % formats would
have, except that each preceding space is replaced by an *· If the *
field is specified so that there are no preceding spaces (no room for
an *), BASIC prints an error message. For example, 19. 72 cannot be
printed with the format "**· **"·

3-20

The):< field has the same restriction as the $ field. A minimum of four
symbols is necessary. In the following example, "~~~"c*" is interpreted as
literal text rather than a field specification, and is printed as specified:

PRINT IN IMAGE; "***##":"NOTE"
***NO

The ~~ field is useful for check protection; that is, preceding *' s instead
of spaces prevents anyone from adding to the beginning of the dollar
amount on a check.

Image Repetition

Since the "picture" specified in an IMAGE format is the image of a
line, a Carriage Return is supplied when the format is exhausted. Thus,
if more values are to be printed than the number of fields specified,
more than one line of the same image results.

Example 1:

PRINT IN !MAGE "%%": 16. 3, Jl 9
16
19

Example 2:

10 W = "%
RUN
1 2
4 5
7 8

3. 00
6. 00

% %. %%"

NOTE

A picture format can also .be specified by a
string, formed by concat6nation, that is:

G = "%%%"
F - II OU11 01 II

- /0 /0• /0

PRINT IN IMAGE F+G:l6. 3295
16.3295

3-21

PRINT IN FORM STATEMENTS

In addition to the line image type of picture format described above,
BASIC provides a second type of form.at that uses IN FORM instead of
IN IMAGE. The form of the output statements is similar; that is:

PRINT IN FORM S:A, B
PRINT ON 3 IN FORM S:X*Y, Z, W or
WRITE ON 3 IN FORM S:X*Y, Z, W

However, the format is field-oriented rather than line-oriented. The
picture format string is not an image of the printed line, but specifies
fields for whatever is to be printed, whether numbers, strings, de­
scriptive text, or blanks.

Numeric, String, and Blank Fields

The symbols used to specify numeric and string fields are identical for
IN FORM and IN IMAGE statements. One of the major differences be­
tween the two types of format statements is that when IN FORM is used,
blanks typed between fields in the format string serve to separate the
fields, but are not printed. For example, if M = 12 and N = 56. 88,
the statement

PRINT IN FORM "%% %%. %%":M, N

prints the values of Mand N with no spaces between them. The blank
in the preceding format serves only to separate the field for M from the
field for N. To print blanks between numbers, use one or more B's to
denote a field of bJsa.nks. Thus,

PRINT IN FORM "%% BBB %%. %%'':M, N

prints the values of Mand N with at least three spaces between them.

$ AND * FIELDS

These fields used with PRINT IN FORM yield the same results as when
used with PRINT IN IMAGE, except that the sign of negative numbers is
not printed. For example:

FIELD PRINTS IN IMAGE IN FORM

$$$$ -16 $-16 $16

*****·** -4.029 ***-4.03 ****4.03

3-22

CHARACTER AND FIELD REPLICATION

When IN FORM is used, the picture format can be written in a
"shorthand" notation; that is, replication of characters and fields is
permitted by using a multiplier. The following chart gives several
examples of IN FORM character replication:

THE FORMAT

"%%%"

"%%%%. %%%"

"#######"

"##. #####II

"%% BBBB %%. %"

MAY BE TYPED AS

"3%"

114%. 3 %11

II 7# II

11 2#. 5# II

"2% 4B 2%. %"

"IO*. 2*"

The user also may specify the number of times a format field is to be
used.. The form of this field replication is,

N(format field)

where N is the number of times the format is to be used.

Exa:m.ple 1:

The format 112(3%. 2% B)"
is equivalent to "%%% .. %% B %%%. %% B"

Example 2:

10 A = 543 .. 66, B = 78. 743,C ::: 345. 788
20 G = "2(3%. 3% 4B) %%%"
30 PRINT IN FORM G:A, B, C
RUN
543. 660 78. 743 346

In this example, the field 3%. 3% 413 is used twice (to print A and B);
then the field %%% is used to print C.

3-23

Example 3:

PRINT IN FORM "3(3%)'': 16, 5, -1
16 5 -1

This statement specified three integer fields of three symbols each,
with no blanks between the fields and, therefore, is equivalent to:

PRINT IN FORM "3% 3% 3%": 16, 5, -1

Example 4:

The format: "20(4%. 2% B 4(3% B)/)"

illustrating two levels of field replication, may be used to print
twenty lines, each with a decimal number and four integer num­
berso A I generates a Carriage Return (see below).

NOTE

Up to four levels of field replication are allowed
in a format.

!~ield for Descriptive Text

When IN FORM is used, any literal text that is to be ~rinted must be
enclosed in single quote marks to denote a text field. For example,

10 D = "'X EQUALS' B. 6%
20 X = Pl/180
30 PRINT IN FORM D:X
RUN
X EQUALS • 017453

Carriage Return in a Format

Unlike a format used in an IN IMAGE statement, no Carriage Return is
given when the IN FORM format is exhausted. Thus, if fewer fields are
specified than the number of values to be printed, the format is repeated
on the same line as shown below.

1
I£ the format string is enclosed in single rather than double quote
marks, the literal text to be printed is enclosed in double quotes.

3-24

1 0 T = II% 2 B %. % 2 B II
20 PRINT IN FORM T:I FOR I = 1 TO 5
RUN
1 2. 0 3 4:. 0 5

A slash(/) can be used in a format to generate a Carriage Return. Con­
secutive slashes may be used to generate blank lines.. Note the results
when the format above is modified to end with a I instead of 2B:

10 T = II% 2 B %. % I II
20 PRINT IN FORM T:I FOR I = 1 TO 5
RUN
1 2 .. 0
3 4 .. 0
5

Remember, because an IMAGE format is the image of a line, a Carriage
Return is always generated automatically when the format is exhausted.

The Single #

A single #may be used with PRINT IN FORM to specify what is known
as "free field" format. Any number or string may be printed with this
field. Up to eleven significant digits of a number can be printed. If
the free field format is used to print a string, the entire string is
printed. For example:

READ

10 A = "STRING''
20 B = 68. 9
30 c = 666
40 PRINT IN FORM "#":A, B, C, PI
RUN
STRING 68 .. 9 666. 3. 1415926535
PRINT IN FORM "# 11 :123456789012345
• 12345678901E+15

Used, in conjunction with DATA, to assign values to variables.
- -

neral Form

EAD Var
1

, Var
2

, Varn

---------------------M--•

3-25

The READ command is always followed by a variable name or a list of
variable names separated by commas. When BASIC executes a READ
statement, the first variable listed in the statement is assigned the first
value in the collection of DA TA statements (the "data block"), the next
variable is assigned the next value, and so on.

REM or !

Allows the inclusion of remarks in program or following statement
(if ! used)

20 REM THIS IS A COMMENT
or

30 ! THIS TOO IS A COMMENT
40 LET M = A/2 ! MIS SET TO A DIVIDED BY 2

Either an exclamation point (!) or the word REM is used to insert
remarks or comments as indirect statements.

Rem.arks are listed along with the rest of the program, but are not
printed out when the program is run. Any characters can be typed
.after ! or REM.

In addition, ! can be used to insert comments at the end of statements.

RESTORE

Resets pointer to beginning of data block such that the next READ
executed is read from first word of data block.

General Form

RESTORE ___ ___,

Once all the data has been read from a data block, another READ
request will cause an error message telling you that you are out of
data. However, if you wish at any time during the program to reread
all or part of the data block, you can do this with a RESTORE command.
When this command is executed, the next READ command starts read­
ing data from the beginning of the data block; that is, from the first
value in the first DATA statement.

3-26

RETURN

Provides exit from a block of code identified as a subroutine.

General Form

50 RETURN

A subroutine· can only be exited via a RETURN statement. Control is
given to statement following the one in which the GOSUB command was
giveno A subroutine may contain several RETURN statements; however,
the fir st one executed returns control to the calling program.

STRINGS

In sample programs throughout this n1anual, use has been made of the
ability of the PRINT command to print straight text that has been
enclosed either in a set of quotation n1arks or a set of apostrophes:

10 FOR N=l TO 4
15 READ X
20 PRINT X; "SQUARED IS";Xt2
25 NEXT X
3 0 DAT A 9. 2, 12. 0 4, 3 7, 7. 3 4
35 END

The phrase "SQUARED IS", in line 20, is called a "string". Such
strings can be made up of any mixture of alphabetic characters,
numerals, and the special characters (including blank).

The use of strings is not confined to the PRINT statement. Strings can
be considered in the same class as numeric values and can be handled
in much the same way. String values can be assigned to variables ..
They can be entered via INPUT state:rnents of DATA and READ state­
mentso They can be elements of arrays. As an example:

100 STRING A, B, C
200 A="INCOME"
300 B="EXPENSES"
400 c =II BALANCE"
500 PRINT A, B, C
600 END

3-27

Execution of this program results in the print out of the columnar
headings:

INCOME EXPENSES BALANCE

Note that line 100 was needed to establish that the variables A, B, C
are string variables. The absence of line 100 would have left A, B, C
a.s REAL variables and would have caused an error.

The length of a string is the count of the characters appearing between
the quotation marks or apostrophes" Strings can be of any length up to
;;~55 characters. String variables are automatically set to accept strings
of length up to 16 characters. If a string variable is to accept a string
that is longer than 16 characters, suitable provision must be made in
the string variable declaration:

150 STRING A:20, B, C:45

Line 150 prepares A to receive any string of up to 20 characters, B to
receive any string of up to 16 characters, and C to receive any string
of up to 45 characters. When a string value is assigned to a variable
and the length of the string is longer than allowed for in the variable,
truncation from the right takes place.

As an example of entering string values with an INPUT statement:

10 STRING A, B, C, D, E
20 INPUT A, B, C, D, E
30 PRINT A
40 PRINT B
50 PRINT C;D;E
60 END

When the INPUT statement is executed, BASIC looks for five values as
input data. Suppose the user supplies (from his terminal or from data
statements) the line:

"J. JONES", "82 MAIN ST.", "MYTOWN, ", "CAL.", "92061"

Completion of execution of this program results in the printout:

J. JONES
82 MAIN ST.
MYTOWN, CAL. 92061

3-28

As another example, illustrating string values in DATA statements:

STRING C, D
16 READ C, D.
18 READ A, B
20 X=A*B
22 PRINT C:A;D:X
24 DATA "PRINCIPLE:=", UIINTEREST=-"
26 DATA 1200,. 06
28 END

The printout resulting from the execution of this program is:

PRINCIPLE= 1200 INTEREST=72

Within strings, any enclosed blanks are retained; in fact, a string can be
made entirely of blanks:

100 STRING A, B, C
120 A="COLUMN l"
140 B=" "
160 C="COLUMN 2"
180 PRINT A:B:C
185 END

When this program is executed, the colons in line 180 causes the printed
phrase COLUMN 1 to be separated by the printed phrase COLUMN 2 by
exactly the number of blank spaces between the quotation marks in the
string value as signed to string variable Bo

Strings are always handled just as strings even when they comprise
totally valid numbers, e.g., "123. 60"t Thus, arithmetic is not per­
formed on strings. However, the pl.us sign(+) can be used to concate­
nate strings:

100 STRING M, N, P
200 M="l2345"
210 N="67890"
220 P=M+N
300 PRINT P
350 END

3-29

The printout from execution of this program is:

1234567890

Of course the same printout would result if line 300 had instead read
PRINT M:N or even PRINT M+N.

And another example, the program:

10 STRING A, B
20 A="PAR T NO. II

30 B="AN703 II
40 PRINT A+B+", NOT AVAILABLE"

results in the printout:

PART NO. AN703, NOT AVAILABLE

There are standard functions that the user can call for the manipulation
of strings in BASIC. One of these converts strings, made up of charac­
ters expressing a number into numeric values, which can be used in
arithmetic expressions and calculations. These functions are VAL(x),
which convert the numeric string x to its REAL value respectively.

The following program illustrates the use of each of these functions on
a string made up of numeric characters and a decimal point. Because
this string has more than 16 characters, its declaration must include
the announcement of its length:

110 STRING X:l9
120 X="234. 567891011121314"
130 A=VAL(X)
260 PRINT "A=":A
350 END

Execution of this program causes the following printout:

A=2. 3456789101E2

An operation, opposite to the one above, can be performed which con­
verts a numeric expression to a string of numeric characters. This
function is STR(x).

3-30

The following program illustrates the use of each of these functions on
a numeric value expressed as a type DOUBLE number:

70 DEF AULT STRING
80 DOUBLE Y
90 Y=234.567891011121314

100 A=STR(Y)
160 PRINT "A==":A
210 END

Execution of this program results in the following printout:

A=2. 3456789101E2

It was necessary to include line 120 in order for the contents of C not to
be truncated to the standard rnaximu1m of 16 characters. Note that even
though line 120 reserved space for 30 characters in string C, string C
was assigned a string having only 21 characters.

Bear in mind that the contents of string variable A above is a string
even though it appears to be a num.ber. This string value, of course,
cannot be used in arithmetic expressions.

There are three string functions in BASIC that permit extraction of
portions of string values and assigning these portions to other string
variables. The LEFT function extracts the number of characters
specified by the second argument, starting with the leftmost character,
from the string given or referenced in the first argument:

50 STRING A, T
100 A="JONES:$500"
150 T=LEFT(A, 5)
200 PRINT "T=":T
250 END

Execution of this program results in the following printout:

T=JONES

The RIGHT function is the same but the character count begins with
the rightmost character:

100 PRINT RIGHT ("JONES:$500", 4)
150 END

3-31

Execution of this program causes the printout:

$500

Central portions of a string may be extracted with the SUBSTR function
by specifying in the argument the position of the desired starting charac­
ter, before specifying the number of characters to be extracted:

10 N=2
20 STRING A, B
30 A="ELEMONOPEE"
40 B=SUBSTR(A, 4, N+l)
50 PRlliT "B=":B
60 END

Execution of this program causes N+l characters to be extracted from
the string starting with the. fourth character:

B=MEN

To count the number of characters in a string, the LENGTH function is
used:

15 STRING X
20 X="ROTTERDAM"
25 Y=LENGTH(X)
30 PRINT "Y=":Y
35 END

Execution of this program prints out:

Y=9

To determine where a substring starts within another string, the
INDEX function is used:

10 STRING X
12 X=''GOBBLEDYGOOK''
20 A=INDEX(X, "B'')
3 0 B=INDEX(X, "GOO")
35 C=INDEX(X, "M")
39 PRINT A;B;C
40 END

3-32

The printout from execution of this program is:

3 9 0

A string of spaces can be generated byuse of the SPACE function:

STRING A, B, C, D, X
20 A="SMITH"
30 B="HARRY", C="VIOLET", D="JIMMY' 1

40 X=SPACE(lO)
50 PRINT A:SPACE(lO-LENGTH(A)):B
60 PRINT X:C
70 PRINT X:D
80 END

Execution of this program prints out:

SMITH HARRY
VIOLET
JIMMY

(The colons in this program could alternatively be plus signs.)

Strings can be compared with each other using relational operators in
conditional expressions.

5 STRING A
10 INPUT A, B
20 IF A="OVERDRAFT" THEN B=-1
30 PRINT "BALANGE=":B
40 END

Strings need not he compared only :for one-to-one match or mismatch.
They can also be compared to see if one is ''greater than 11 or "lesser
than" the other. This can be done because BASIC assigns each charac­
ter a hierarchical position. Numerals are ordered in accordance with
their value. Alphabetic characters have higher positions than numerals
and are in alphabetic order. Thus:

3<8<C<R

3-33

As an example of the application of this capability:

100 DEFAULT STRING
200 INPUT X
250 Y=LEFT(X, I)
270 PRINT X;
280 IF y < "N" PRINT "Fmsr HALF" ELSE PRINT

"ZND HALF"
300 END

If strings to be compared are of different lengths, the shorter is com­
pared with the same number of characters first appearing in the longer
word. H they match, the shorter is considered the lesser.

Because pairs of either quotation marks (") or of apostrophes (') can
be used to delimit strings, quotations can be included within a string.
Thus the line:

70 PRINT "THE PROGRAM IS CALLED 'PAYROLL"'

will result in the following printout:

THE PROGRAM IS CALLED 'PAYROLL'

The roles of the quotation marks and apostrophes in line 70 could be
interchanged. It is only necessary that pairs be matched.

The table below is a summary listing of BASIC string functions.

In the following example:

20 STRING A(l2): 10, B(3, 5):11

reserves space for a 12 element string array A, each element of which
can contain up to 10 characters, and a 15 element array B with maxi­
mum string length of 11 characters per element.

3-34

TABLE 3-1. SUMMARY OF STRING FUNCTIONS
-------------.----------------------·-----------·------·-----·· ---

Function

VAL(x)

STR(x)

LEFT (x,n)

RIGHT (x, n)

SUBSTR(x, n, m)

LENGTH(x)

INDEX(x, g)

SPACE(x)

Result

REAL value of numeral string x.

Numeral string from the REAL value of numeric
expression x.

A string of the first n characters of string x.

A string of the last n characters of string x.

A string of m characters from str.ing x starting
at the nth character.

The number of characters in string x.

The starting position of string g within string x.

A string of x spaces (blanks).

IV

Basic Editing
Capabilltes ·

This section describes the editing features that are included in the
BASIC language. These features include the ability to change, add, and
delete a statement. In addition, the capability exists for copying parts
of a statement, backspacing, etc.

Delete and Edit command formats for BASIC differ from commands
with the same name available through the Editor, in the manner of
designating a statement or line of text. Designation of a statement is
done by specifying the statement number.

DELETING STATEMENTS

The DELETE command allows the user to delete, from his source
input, a specified statement or statements. One or more statements
can be deleted with one command. Multiple statement numbers must
be separated by commas, and the com,mand is completed with a car­
riage return. on· completion of the co1mmand, the response at the
terminal is, "nDELETED", where n is the statement number.

Example 1:

>DELETE 1~
10 DELETED

The preceding command would cause statement 10 to be deleted from
the source record or file.

4-1

Example 2:

>DELET.E 10, 20, 25)
10, 20, 25 DELETED

The preceding command causes statements 10, 20, and 25 to be
deleted from the source record or file.

EDITING STATEMENTS

The EDIT command allows the user to select a specified source state­
ment for editing. On completion of the command, the response will be
the selected line being typed on the terminal. Editing of the line can
proceed on receipt of a signature character, > , at the terminal.

Example 1:

>EDIT 20)
20 LET A (i,j) = (B(i,k) + C (10, 20))/F
>

The ability to back space, delete the previous word, delete the pre­
vious character, etc., is provided; Intraline Editing. When the
edit is complete, the edited line replaces the original line in the
program.

#1

#2

>10 A(i, j) = B(K, L~
>15 C(IO, 20) = D_)
>DELETE I~

15 DELETED
>zc =

'>/ LJ(BELL)
I '

-BASIC STATEMENT
-BASIC STATEMENT
-EDIT COMMAND TO DELETE

STATEMENT 15
-TERMINAL RESPONSE
-COPY PREVIOUS STATEMENT

TO=
-THIS INDICATES THAT zc IS

NOT VALID BECAUSE THERE
IS NO PREVIOUS LINE

>IO A(i,j) = Ct2 + Dt3) -BASIC STATEMENT
>20 B(i, j) = A(i, j) + B(i, jb-BASIC STATEMENT

4-2

#3

#4

>EDIT 1°)

lOA(i,j) = Ct2 +Dt~
>zc +

> 1 0 A(i, j) = C t 2 +

>10 C = Dt2 + Ef2)
>15 G = ct9
>QC

"-A/
LJ(BELL)

I "'-

DtZ)

>10 c = Dt2 + Et2)
Ct2 QC >15 G =

>.LIST
10 c - Dt2 + Et2

-·EDIT COMMAND TO EDIT
STATEMENT 10

-·TERMINAL RESPONSE
COPY PREVIOUS STATEMENT

TO+
-·RESPONSE AT TERMINAL
-·EDITED PORTION INPUT BY

USER

-·BASIC STATEMENT
-·BASIC STATEMENT
-·INTRALINE EDIT COMMAND

TO DELETE PREVIOUS LINE
-· THE TERMINAL RESPONSE

RINGS A BELL TO INDICATE
THAT THE Qc IS NOT VALID,
ANDSTATEMENT15SHOULD
BE DELETED BY A DELETE
COMMAND

-·BASIC STATEMENT
.... BASIC STATEMENT, DELETE

VIA QC

.... LIST SOURCE COMMAND
-·RESPONSE TO LIST

4-3

GENERAL

v ...
Fiie and
Data Base Management
Statements

BASIC provides an interface to a more general 2+2 file and data-base
manager subsystem. This interface consists of a simple set of declar­
ative and operational statements useful in building, manipulating, and
accessing data bases used in storing and retrieving information.

With respect to the data- base manager., a file may be considered to be
a named space consisting of an ordered sequence of elements. All
internal structuring defined for a file, and all access to the contents of
a file, are controlled by the data-base manager.

The structure, access, and control of a file is determined by the
"schema" definition associated with a file. A "schema" allows for the
definition of file to include logical "areas'' within the file. "Records"
within "areas" of a·file are also defined. A "record" is further
defined into elements consisting of a na.me, type, mode, and size.
"Schema", "areas", and "records", once defined are referred to by
name. Rather than be concerned with the form or structure of the
data-base manager, itself, the BASIC programmer need only concern
himself with the manipulation of files and data· bases in terms of the
:statements described below.

NOTE

For a complete description of the data-base
manager, the BASIC programnier is advised
to obtain the 2+2 system documentation of
the data- base manager for a detailed descrip­
tion of i 1schema", "area", 111 record", etc.

5-1

INDIRECT STATEMENTS

The statements are grouped as follows:

I. Directory Content Statements

The statements CREATE, RENAME, ERASE, and
DESTROY transmit information to the file manager used to
build, modify and update files. CLOSE file indicates
deactivation of a previously active file.

2. General Input/ Output Statements

The RETRIEVE statement causes transmission of a set of
quantities from a file to core storage.

The statements, INSERT, APPEND, REPLACE, and
REMOVE cause transmission of a set of quantities from
core storage to a file in a manner appropriate to the
specified statement.

File Designation

Files may be designated by a file name constant or file name variable.
Within the BASIC system, the file name ("~") blank is used to
designate the user terminal.

Directory Content Statements

CREATE a File. The CREATE statement is used to enter a new file
name in the user's directory. The file is initially set to contain no
information. Optionally, access privileges and additional user access
may be specified.

Examples:

General Form

CREATE file name

where: file name is a file designator which
may be a file name constant or file
name variable.

CREATE "A"
CREA TE "BETAt 1

CREATE "PAYABLES"

5-2

The creator of a file is assigned full access privileges to that file ..
Those privileges include READ, WRIT.E, and EXECUTE access ..

To assign privileges to other users who wish to access a file, the
CREATE statement may be expanded in the following form:

CREATE file name/USER ID/ACCESS/USER ID/ACCESS •••

Where file name is file designator:

USER ID is a unique user identification string (not currently
defined as to form or length) delimited by slashes (division
signs).

ACCE.5S is any combination of the following words separated by
commas, -READ, -WRITE, EXECUTE, APPEND, or
PASSWORD.

Any number of users may be authorized access to a file. However,
access privileges must be specified for each authorized user. Public
access is specified by a null user ID (i .. e .. , I/). Consider,

CREA TE "PA YROOL"/AB234/READ/J. SHMOE/APPEND, EXECUTE

Creates the file named MILLISIN. It also makes the file public with
both READ and EXECUTE privileges.

RENAME a File. The RENAME statement allows a user to rename any file
file currently in a user's directory. Optionally, additional users and
access privileges may be specified.

Example:

General Form

RENAME file name, file name

where: file name is a file designator which
may be a file name constant or file
name variable.

RENAME ''NEWTRANS'', ''OLJDTRANS''

5-3

This renames the file currently in the user's directory as NEWTRANS
to a file named OLDTRANS. The name NEWTRANS is removed from
the user's directory, replaced by the name OLDTRANS.

Additional access privileges may be specified while renaming a file by
attaching user !D's and access. For example,

RENAME ''ABC'', ''DEF''/USER27/READ, WRITE/USER33/EXECUTE

File ABC is renamed as file DEF. In addition, USER27 is authorized
to READ and WRITE the file, and USER 33 is granted execute only
access.

ERASE a File. The ER.ASE statement allows a user to erase or clear
the information currently contained in one or more files.

Examples:

General Form

ERASE file name, filename, •••

where: file name is a file designator which
may be a file name constant or file
name variable.

ERASE ''R''
ERASE "MONTH04", "MONTHOS 11

,
11MONTH06 11

DESTROY a File. The DESTROY statement provides the method for
destroying both the information contained in a file and removing the
entry containing the name of the file in the user's directory. That is,
both the contents and the name of the file are destroyed and unrecover­
able.

General Form

DESTROY file name, file name, ••••

where: file name is a file designator which
may be a file name constant or file
name variable.

5-4

Examples:

DESTROY ''ACCOUNTS''
DESTROY ''SMALLEST'', ''AVERAGE'', ''LARGEST''

CLOSE a File. The CLOSE statem.ent is used to signal the system
that processing of an active file has been completed. The specified
file is deactivated. Subsequent staternents referencing the file will
reactivate the file and its contents. This statement need only be
executed if a given BASIC program is concerned about simultaneously
activating more files than the maximum number of allowable active
files defined by the 2+2 systemo

Examples:

General Form

CLOSE file name, filenan1e,

where: file name is a file designator which
may be a file constant or file name
variable ..

CLOSE ''XYZ''
CLOSE "FILE!", "FILE3 ", "FILES II

General Input/ Output Statements

Input. The RETRIEVE statement inputs quantities from a file to be
processed by the computer program.

General Form

RETRIEVE file name (schema(area(record)))
list

where: file name is a file designator.
schema is the schema name applied to

file name.
area is an area name within the schema

being accessed
record is a record name within the

area of a scherri.a ..
list is a list specification.

5-5

The RETRIEVE statement reads one record from the file name using
schema/area/record name to isolate the desired record. The contents
of the variables named in the accessed record replace the contents of
those same variables in the BASIC program and may be used for com­
putation.

The list specification is optional and need only be used when it is
desirable to access only a few of the items defined in a record defini­
tion.

There must be a one-to-one correspondence between the variable
names in the BASIC program, and the variable names used in a schema
schema/area/record name definition.

The parenthesized arguments - area name and record name are
optional so long as no ambiguity exists within the schema.

E:xamples:

RETRIEVE ''MASTFILE'' (SCHl(AR.EA2(REC3)))

RETRIEVE "MASTFILE"(SCHl(AREA2(REC3)))A, B
In this example, assume the definition of REC3 defined the
variables A, B, C, D, &E. Only variable A, Bare accessed
via this statemento

RETRIEVE ''MASTFIL''(SCHl)
This statement would be equivalent to example 1 if the
schema, SCHl, defined only l area and l record.

Output. The statements, INSERT, APPEND, REPLACE, and REMOVE,
output quantities contained in BASIC program variables to a file
1nanaged by the data-base manager.

5-6

General Form

APPEND
INSERT NEXT
INSERT PRIOR file name

(schema(area(record))) list
REMOVE
REPLACE

where: file name is a file designator
schema is the schen1a name applied

to file name.
area is an area name within the

s cherna being ace es s ed.
record is a record name within the

area in the schema ..
list is a list specification.

The output statements write one record from core storage to file name
according to the schema/area/record names specified. The contents of
variables in core storage (BASIC program) defined by the schema are
written appropriately into the specified file using the desired schema.

The APPEND statement adds a record at the end of the file according
to the specified schema.

·The INSERT NEXT statement inserts a record after the current
record position of the file according to the specified schema.

The INSERT PRIOR statement inserts: a record just before the current
record position of the file according to the specified schema.

The REMOVE statement removes or deletes the record at the current
record position of the file. In this case, the schema definition is used
only to isolate and remove the desired record from the file.

The REPLACE statement replaces the record at the current record
position of the file according to the specified schema.

The list specification is optional and need only be used when it is
desirable to write out fewer items in a record than specified in the
schema definition of a given record.

5-7

There ~be a one-to-one correspondence between the variables
names in the BASIC program, and the variable names used in a
schema/area/record name definition.

The parenthesized arguments - area name and record name are
optional so long as no ambiguity exists within the schema.

Examples:

APPEND ''ORDERS''(ORDSCH(NEWAREA(NEWREC)))

APPEND "ORDERS"(ORDSCH)
This statement is equivalent to the first example if the
"ORDERS" file consists of one area and one record type.

INSERT NEXT "'DATEFILE"(DATSCH(HOLIDAY)))
This statement writes one record in the "DATEFILE"
according to the schema DATSCH. Area HOLIDAY is
written, and the statement assumes only one record type,
hence no record name appears.

INSERT PRIOR "SIGMAS" (STATSCH(SQUARES(SUM))) A, B
This statement inserts a record prior to the current record
position of the file SIGMAS. The schema STASCH, with
area SQUARES, containing record SUM is written. How­
ever, since a list is specified, only variables A & B of
record SUM are written - even is the record definition
defined more elements than A & B.

REMOVE "CATALOG" (CATSCH((NAMREC)))
The parenthesized quantities in the example show a record
deleted from the file "CATALOG". This example assumes
the schema CA TSCH defines only one area. Within the one
area, the current record NAMREC is deleted.

The following examples illustrate possible combinations of optional
parameters.

REPLACE "ENGFIL" (SCHEMA! (AREAZ(REC3)))
REPLACE ''ENGFIL" (SCHEMAl(AREA2(REC))) A, B, C
REPLACE "ENGFIL" (SCHEMAI(AREA2))
REPLACE "ENG FIL" (SCHEMAI((REC3)))
REPLACE "ENGFIL" (SCHEMA!)

5-8

DIRECT STATEMENTS

CREA TE a File

The CREA TE statement is used to enter a new file name in the user's
directory. The file is initially set to contain no information. Option­
ally, access privileges and additional user access may be specified.

.Examples:

General Form

CREATE file name

where, file name is any legal user file name
not exceeding eight characters •

CREATE Z
CREATE ALPHA
CREATE MASTFILE

The creator of a file is assigned full access privileges to that file.
Those privileges include (currently) READ, WRITE, EXECUTE, and
APPEND access.

To assign privileges to other users who wish to access a file, the
CREA TE statement may be expanded in the following form:

CREATE file name/user ID/access/user ID/access

where file name is any legal file name of I to 8 characters

user ID is a unique identification string delimited by
slashes.

access is any combination of the following words
separated by comrnas: READ, WRITE, EXECUTE,
APPEND, or PASSWORD.

Any number of users may be authorized access to a file. However,
access privileges must be specified for each authorized user. Public
access is specified by a null user ID (.i.e .. , 11). Consider,

CREATE PAYROLL/AB234/READ/J. SHMOE/APPEND, EXECUTE

5-9

The file PAYROLL is created.. User AB234 is given READ access, and
J. SHMOE is authorized to EXECUTE and APPEND to the file. The
statement,

CREATE MILLISIN//READ, EXECUTE

creates the file named MILLISIN. It also makes the file public with
both READ and EXECUTE privileges.

RENAME a File

The RENAME statement allows a user to rename any file currently in
a user's directory. Optionally, additional users and access privi­
leges may be specified.

Example:

General Form

RENAME file name, file name

where file name is any legal file name of 1 to
8 characters.

RENAME NEWTRANS, OLDTRANS

This renames the file currently in the user's directory as NEWTRANS
to a file named OLDTRANS. The name NEWTRANS is removed from
the user's directory, and is replaced by the name OLDTRANS.

Additional access privileges may be specified while renaming a file by
obtaining user !D's and access.

Example:

RENAME ABC,DEF/USER27/READ, WRITE/USER33/EXECUTE

File ABC is renamed DEF. In addition, USER2 7 is authorized to
READ and WRITE the file, and USER33 is granted execute only access.

ERASE a File

The ERASE statement allows a user to erase or clear the information
currently contained in one or more files.

5-10

Examples:

General Form

ERASE file name, file name, •

where file name is any legal file name of I to
8 characters.

ERASE Q

ERASE WEEK32, WEEK33, W:E~EK34

DESTROY a File

The DESTROY statement provides the method for destroying both the
information contained in a file and removing the entry containing the
name of the file in the user's directory. That is, both the contents
and the name of the file are destroyed.

Examples:

Ge]jleral Form

DESTROY file name, file name, ••.

where file name is any legal file name of 1 to
8 characters.

DESTROY FIRST
D.ESTROY SECOND, TlilRD, FOURTH

5-11

GENERAL

VI ...

Diagnostics and
Debugging aids

Occasionally, a new program will be error free and give the correct
answer the first run - - but more com:monly, errors will be present and
have to be corrected. Errors are of two types: 1) grammatical or
form errors that prevent the running of the program, and 2) logical
errors in the program that cause the computer to produce incorrect
answers.

The BASIC language provides a set of diagnostic messages to aid the
programmer in identifying grammatical or form errors in a program.
Most diagnostic messages not only identify the type of error, but also
indicate the line number where the error occurred. Section VII pro­
vides a list of the diagnostic messages and their complete meaningso

Logical errors are usually more difficult to detect, particularly when
the program responds with answers that seem to be nearly correcta
BASIC provides the following capabilities to assist the programmer in
finding iogical program errors.

DIRECT STATEMENTS

Direct statements are elements of the basic language that are entered
without line numbers.. These state:ments are executed when received by
the system, and do not become a part of the program.

GOTO STATEMENT

General Form

GOTO LN

Where: LN is a line number

6-1

The GOTO statement may be invoked only during program execution in
debug mode. The debug is entered by executing a BREAK statement;
the DEBUG statement; or via some run-time error diagnostics. The
GOTO statement may be used after receiving the debug mode signature
character(?), question mark, at the user's terminal.

The argument of the GOTO statement is the line number of the program
at which it is desired that execution of the program resume.

? GOTO 1220

resumes execution of the program at line number 1220.

The GOTO statement may be executed any time program execution is
suspended in debug mode.

LET Statement

General Form

LET VAR = {LITERAL}
-- VAR

Where: VAR is a variable or array element
name

LITERAL is a numeric or string
constant

The LET statement may only be invoked during program execution in
debug mode. The debug mode is entered by executing a BREAK state­
ment; the DEBUG statement; or via some run-time error diagnostics.
The LET statement may be used after receiving the debug mode signa­
ture character, (?), question mark at the user's terminal.

The arguments for the LET statement may be variables and literals.
A variable is a variable name or an array element name. A literal
is a numeric constant or a string constant. No expressions are
evaluated. Consider

? LET A(2, 3, 4) = 27. 5

when execution of the program is resumed, the array element
A(2, 3, 4) will contain the value of the literal, 2 7. 5.

6-2

? LET :X = B(32)

when execution is resumed the variable :X will contain the value con­
tained in B(32).

The LET statement may be executed any time program execution is
suspended in debug mode.

PRINT Statement

General Form

PRINT VAR, VAR, VAR~,

Where: VAR is a simple variable or array
name.

The PRINT statement may only be invoked during program execution
in debug mode. The debug mode is entered by executing a BREAK
statement, the DEBUG statement, or via some run-time error diag­
nostics. The PRINT statement may be used after receiving the debug
mode signature character, (?), question mark, at the user's terminal.

Arguments for the PRINT statement rnay be variable names, array
names, or elements of an array. No expressions are evaluated. For
example,

? PRINT X, B, C(3, 5)

where X is a variable
Bis an array dimensioned as JB(5)
C(3, 5) is an element of the array C,

results in the following output at the user's terminal:

x = xxxx
B(1) = XXXX
B(2) = XXXX

B(S) = XXXX
C(3, 5) = XXXX

6-3

The PRINT statement may be executed any time the program execution
is suspended in debug mode.

DEBUG AIDS

The BASIC language provides five main debug aids. These are: con­
trolled execution, trace prior to statement execution, break prior to
statement execution, trace after a variable value change, and break
after a variable value change.

CONTINUE Statement

The CONTINUE statem.ent may be invoked only during execution of
program compiled in debug mode. Debug mode is entered as described
in PRINT, LET, and GOTO (Items 23 - 25).

CONTINUE sets the mode of execution program to normal or multiple
step mode. It should be used to reset the STEP statement when single
step execution is no longer desired.

The CONTINUE statement may be executed any time program execu­
tion is suspended in debug mode.

STEP Statement

The STEP statement may be invoked only during execution of a pro­
gram compiled in debug mode. Debug mode is entered as described in
PRINT, LET, and GOTO.

STEP sets the mode of execution of a program to single step mode.
Statements compiled in debug mode are executed in single step. That
is, after execution of each statement, the program is interrupted; the
line number of the statement and the debug signature character (?)are
typed at the user's terminal. The user may then execute any of the
debug statements; alter MONITOR, BREAK and TRACE statements;
reset CONTINUE mode; or reswne execution of the program.

The STEP statement may be executed any time program execution is
suspended in debug mode.

BREAK Statement

6-4

The BREAK statement is similar in e:xecution to the MONITOR state­
ment. The BREAK statement allows the user to set break points
within the executable program.

Whenever a line number or variable rnentioned as an argument of a
BREAK statement is executed, the item is printed at the user's ter­
minal. The debug mode signature character (?) is printed, program
execution is temporarily suspended, a.nd BASIC enters debug mode.
The user may then execute any of the debug statements or continue
execution. Interpretation of the argmnent list is described under the
MONITOR system (Item 17). BREAK may only be used with a program
compiled in debug mode.

-BREAK Statement

General Form

-BREAK

or

The -BREAK statement clears or directs BASIC to UN break the
specified line numbers or variables. -BREAK with no argument
"turns off" all previously referenced break functions. -BREAK with
an argument list turns off only those variables and line numbers speci­
fied in the argument list.

The interpretation of arguments is described under the MONITOR
statement (Item 1 7).

TRACE Statement

General Form

TRACE SN, SN-SN

The TRACE statement is used to logically trace execution of a program.

TRACE SN

Each statement number of the program is traced as executed. Each
statement number is printed at the user's terminal.

6-5

-TRACE Statement

The -TRACE statement clears all references to any traces previously
initiated. It is used to delete any traces currently in effect.

MONITOR Statement

General Form

MONITOR LN
1

, LN
2

-LN
3

, VAR,

(VAR, NI -N
2

), •••

Where: LN is a line number.

VAR is a simple variable or array
name (i. e., ABC, DEF (3, 4)).

N is an occurrence count.

The MONITOR statement applies only to statements compiled in debug
mode. Line numbers and variables can be monitored during program
execution. For example,

MONITOR 1000-1010, 257, XDOT, YDOT, ZDOT

causes the following:

• whenever any of the line numbers, I 000 thru I 0 I 0, inclu­
sive, are executed, the line numbers are printed at the
user's terminal.

• line number 257 is monitored whenever executed. The line
number is printed at the user's terminal.

• the contents of the variables XDOT, YDOT, and ZDOTare
printed at the user's terminal whenever they appear on the
left hand side of an assignment statement. The value
printed is that resulting after execution of the statement.
If XDOT is referred to at line number 2110, the printout
would be:

2110 XDOT = XXXXXX

6-6

An additional argument form for the MONITOR, statement can be
illustrated with:

MONITOR (VELOCITY, 5-8)

This statement causes the variable VELOCITY to be monitored only for
the 5th thru 8th time it occurs. This allows the user to monitor a
variable only during significant portions of execution, thus reducing
the amount of information output to the user's terminal. MONITOR
may only be used with a program compiled in debug mode.

-MONITOR Statement
----------------------------..

General Form

-MONITOR

or

-MONITOR LN
1

, LN
2

-.LN
3

, VAR,

(VAR, N l - N 2),

Where: LN is a line number.
VAR is a simple variable or array

name.
N is an occurrence count.

The -MONITOR statement clears or directs BASIC to UN monitor
the specified line numbers or variables. -MONITOR with no argument
"turns off" all previously referenced monitor functions. -MONITOR
with an argument list turns off only· those variables and line numbers
specified in the argument list.

The interpretation of arguments is described under the MONITOR
statement (Item 1 7).

PROGRAM CONTROL STATEMENTS

An interactive control language is an integral part of BASIC. These
commands are used to build, compile, and execute a progran~.

6 ... ,
- '

COMPILE Statement

General Form

COMPILE

or

COMPILE file name

The COMPILE statement initiates compilation of either the current
source program, or the file designated by file name. If the designated
file is not BASIC source code, an error diagnostic is initiated.

The whole source program is compiled. Any errors during compila­
tion are listed at the user's terminal.

EXECUTE Statement

General Form

EXECUTE

or

EXECUTE file name

The EXECUTE statement initiates execution of an object (or compiled)
program. EXECUTE with no arguments executes the current object
program in the user's working area. EXECUTE with file name executes
the file designated by file name - if the designated file is in object
form.

RUN Statement

General Form

RUN

or

RUN file name

The RUN statement is a combination of the COMPILE and EXECUTE
statements. Either the current source program or the file designated
by the file name, is compiled into object form and then executed. Exe­
cution .begins only if no compilation errors are present.

6-8

SOURCE Statement

General Form ----~

SOURCE file name
------·----

The SOURCE statement saves the current source program, as it exists,
in a permanent file designated by "file name". The system responds
with "NEW FILE" if the file name does not exist in the user's directory.
The system responds with "OLD FILE:" if this name already appears in
the user's directory.. The user responds to "NEW FILE" or "OLD
FILE" by typing a carriage return (which creates a new file, or re­
places an old file}, or, aborting the statement by using the ESCAPE
KEY.

OBJECT Statement

General F~------~

OBJECT file nam~ ______ _J
The OBJECT statement is identical to the SOURCE statement but saves
the current object program, as it exists, in a permanent file designated
by "file name". The system responds with "NEW FILE" if the file
name does not exist in the user's directoryo The system responds with
"OLD FILE" if this name already appears in the user's directory. The
user responds to "NEW FILE" or OLD FILE" by typing a carriage re­
turn (which creates a new file, or repJlaces an old file), or, aborting
the statement using the ESCAPE KEY.

LOAD Statement

:::~a:il:o::_e _____ =J
The LOAD statement retrieves the permanently saved file designated
by file name and places it in working storage for BASIC. The
file may be in either source or object form. If in source form, the file
may be listed, edited, compiled or executed. If the file is in object
form, it may only be executed.

6-9

LIST Statement

General Form

LIST

or

LIST LN
1

, LN
2

-LN
3

, LN
4

, LN
5

-LN
6

, •••

The LIST statement causes the current source program to be listed
as follows:

LIST

LIST

EDIT Statement

with no arguments lists the whole source program

--- withargwnents - lists the designated state­
ments or range of statements. LIST, 30, 10-15,
40 lists lines 10 through 40 (inclusive), line 30,
and line 40. No diagnostic or comment is made
if designated line numbers are not present.

General Form

The EDIT statement prepares the subsystem for editing or modifying
one or more source statements in the current source program. For
example:

EDIT 10, 20-25

Line 10 is printed at the user terminal. The user modifies or changes
the statement. Following a carriage return, line 20 is printed and can
be edited. Next, line 21, 22, ••• thru line 250 Statements are edited
one at a time until the argument list is exhausted.. Missing line
numbers are ignored.

DELETE Statement

General Form

6-10

The DELETE statement causes portions of the current source program
to be erased.. Note that the execution of DELETE does nQ!. affect the
permanently saved program unless the statement SOURCE file name
is executed after the DELETE statement ..

DELETE 35, 75-350, 900, 990

causes the deletion from the progran1 of line number 35, line 75 thru
350, line 900, and line 990.

EXTRACT Statement

General Form

The EXTRACT statement is the complement of the DELETE statement.
·EXTRACT deletes all of the current source program but the referenced
line numbers. It is useful in taking portions of one program and pre­
paring them for insertion in another program. Note that execution of
EXTRACT does not affect the permanently saved program unless the
statement SOURCE file name is executed after the EXTRACT state­
ment.

EXTRACT 100-300, 500-600

causes line numbers 100 thru 300, and line numbers 500 thru 600 to be
"pulled out" of the current source program. All other line numbers
are deleted.

TAPE Statement

TAPE is valid any time prior to compilation of any source statements.
This causes source statements to be read from the paper tape, and
processed through the initial phase of compilation.

QUIT Statement

QUIT provides an exit to the EXECUTIVE; BASIC can be continued by
merely typing CONTINUE after performing EXECUTIVE functions.
BASIC is terminated for the present user jobs, however, if the user
should initiate a processing language (BASIC included) while EXECU­
TIVE is in control.

6·-11

~-lt~Wt-•1!~ .. ·•·•· ~ .. :;:;:-. ••••···•· ... ••·•••·•••····••••••·••••··••••·••·••••••••·•••·•·••·•·•••••·•··••••·•·••··•••
VII ...

Program
Diagnostics

Because most programs contain errors, a series of diagnostic mes­
sages are included in BASIC.. Some of these messages occur during
compilation and others during execution of a program. Many of the
messages not only identify the type of error, but indicate the line num­
ber where the error occurred. We expect that as the developm.ent of
the BASIC language continues these error messages will be revised.

During execution, certain messages occur which do not stop execution,
but inform you of irregular conditions existing in identified lines of
your program. Other messages, however, point out serious errors
which stop execution. Table 7-1 provides a list of compilation errors;
Table 7-2 provides a list of execution errors.

TABLE 7-1. COMPILATION ERRO.RS

Message Meaning

CUT PROGRAM OR DIMS

DIMENSION TOO LARGE
AT (LINE#)

·------------------·----!

Either the program is too long, or
the amount of space reserved by
the DIM statements is too large,
or a combination of these exists.
This mes sage can be eliminated
by cutting the length of the pro­
gram, reducing the size of the
lists and tables, reducing the
length of printed labels, or re­
ducing the number of simple
variables.

The size of a list or table is too
large for the available storage at
the line indicated.

7-1

TABLE 7-1. COMPILATION ERRORS (Cont)

Message Meaning

EXPRESSION TO COMPLI­
CATED IN (LINE#)

FOR'S NESTED TOO
DEEPLY AT (LINE#)

FOR WITHOUT NEXT IN
(LINE#)

ILLEGAL CHA.RAC TER IN
(LINE#)

ILLEGAL CONSTANT IN
(LINE#)

ILLEGAL FORMAT

ILLEGAL FORMULA IN
(LINE#)

ILLEGAL INSTRUCTION IN
(LINE#)

ILLEGAL LINE NUMBER
AFTER (LINE#)

Too many operations have been
attempted in a single expression.
Probably too many parentheses
have been used. Use two or
more simpler expressions in­
stead.

Corresponding NEXT statement
for preceding FOR statement must
occur before another FOR state­
ment can be us ed.

A NEXT statement is missing.

Use a valid character in place of
an illegal character.

More than nine digits or incorrect
form in a constant number, or a
number out of bounds.

The format of an instruction is
wrong. Check especially IF­
THEN' sand FOR's.

This may indicate missing paren­
theses, illegal variable names,
missing multiply signs, illegal
numbers, or many other errors.

Other than one of the fifteen legal
BASIC instructions has been used
in the line indicated.

Line number is of incorrect form,
or contains more than five digits.

7-2

TABLE 7-1. COMPILATION ERRORS (Cont)

Message Meaning

ILLEGAL LINE REFERENCE
IN (LINE#)

ILLEGAL RELATION

ILLEGAL VARIABLE IN
(LINE#)

INCORRECT NUMBER OF
ARGUMENTS IN (LINE#)

INCORRECT NUMBER OF
SUBSCRIPTS IN (LINE #)

MISMATCHED STRING
OPERATION IN (LINE #)

NEXT WITHOUT FOR IN
(LINE #)

NO END INSTRUCTION

NO NUMERIC DATA

There is some character other
than a number in a transfer state­
rnent (such as a GO TO) where
the line number should be.

A relational symbol other than one
of the six permissible ones has
been used in an IF-THEN state­
r.nent.

An illegal variable name has been
used ..

The number of arguments when
defined must equal the number of
arguments when referenced.

Indicates a matrix with one sub­
script or a vector with two.

You have attempted to combine
two strings algebraically, to com­
pare a string and a number, or to
assign a number to a string varia­
ble or vice versa.

A NEXT statement has been used
without an accompanying FOR
statement.

The program has no END state­
rnent"

There is at least one READ state­
rnent in the program calling for
numeric data but no numeric data
ha.s been given.

7-3

TABLE 7-1. COMPILATION ERRORS (Cont)

Message

NO STRING DATA

SYSTEM ERROR IN (LINE#)

*UNDEFINED LINE NUMBER
(LINE#) IN (LINE #)

':cuNDEFINED FUNCTION FN
(LETTER) IN (LINE#)

Meaning

There is at least one READ
statement in the program calling
for string data, but no string
data has been given.

An error in BASIC; please report
to your BPG.

The line number appearing in a
GOTO or IF-THEN statement
does not appear as a line number
in the program.

A function such as FNF() has been
used without appearing in a DEF
statement. Check for typograph­
ical errors.

=-:~These errors are not detected until run-time initialization

TABLE 7-2.

Message

ABSOLUTE VALUE RAISED
TO POWER IN (LINE#)

DIVISION BY ZERO IN (LINE
#)

EXP TOO LARGE IN (LINE#)

EXECUTION ERRORS

Meaning

A computation of the form (-3)t 2. 7
has been attempted. The system
supplies (ABS(-3))t 2. 7 and con­
tinues.

Note: (-3)t3 is correctly com­
puted to give -27.

A division by zero has been
attempted. The system assumes
the answer is +co and continues
running the program.

The argument of an exponential
function is supplied for the value
of the exponential and the running
is continued.

7-4

TABLE 7-2.. EXECUTION ERRORS (Cont)

Message Meaning

INPUT DA TA NOT IN COR­
RECT FORMAT - RETYPE IT

LOG OF NEGATIVE NUMBER
IN (LINE#)

LOG OF ZERO IN (LINE#)

ON EVALUATED OUT OF
RANGE IN (LINE#)

OUT OF DATA IN (LINE#)

RETURN BEFORE GOSUB
IN (LINE#)

SQUARE ROOT OF NEGA­
TIVE NUMBER IN (LINE#)

·--~~--~------~~~--~----i

Correct the input data.

The program has attempted to
ca.lculate the logarithm of a
negative number. The system
supplies the logarithm of the
absolute value and continues.

The program has attempted to
ca.lculate the logarithm of O. The
syste:m supplies - oo and continues
running the program.

The integer part of the variable in
the ON-GO TO statement is less
than l or greater than the number
of line numbers supplied by the
statement.

A READ statement for which
there is no DATA has been en­
countered. This may mean a
normal end of your program.
Otherwise, it means you haven't
supplied enough DATA. Execu­
tion stops.

This occurs if a RETURN is en­
countered before a GOSUB. (The
GOSUB does not require a lower
statement number, but must be
performed before a RETURN)
.E:rncution stops.

The program has attempted to
extract the square root of a nega­
tive number. The system sup-
plies the square root of the abso­
lute value and continues running
the program.

,___~~~~--------~~~~~~--'----~ -=-~------~~·--~---------------

7._5

TABLE 7-2. EXECUTION ERRORS (Cont)

Message

SUBSCRIPT ERROR IN
(LINE#)

ZERO TO A NEGATIVE
POWER IN (LINE #)

Meaning

A subscript has been called for
that lies outside the range speci­
fied in the DIM statement, or if
no DIM statement applies, out­
side the range through 10.
Execution stops.

A computation of the form Ot(-1)
has been attempted. The sys tern
+co and continues running the
program..

7-6

