LOGICON 2+2
FORTRAN MANUAL

LOGICON, INC.
1075 CAMINO DEL RIO, SOUTH
SAN DIEGO, CALIFORNIA

15 December 1970

TABLE OF CONTENTS

Section

I INTRODUCTION

® o ¢ o o o 0 o @ o

General

* P @ o ¢ 9 0 @ 0 & & 0 s 0 e e 9

Format Rules for Statement
Line Number ,

Comment ,., ...
Statement Label
Continuation
Statement

* o o

e o o o o

II CONSTANTS, VARIABLES, SUBSCRIPTS

& EXPRESSIONS
Constants .,
Integer , ,,.,...
Extended Integer,
Double Precision,

e o o o @

® o o o o o

°

a

°

L]

Complex .,

Logical,
String . . 00000
IONAME. , ., ...
Variables
Subscripts « ¢« « s o o

.

.

Writing

Expressions. .« .o o000
Arithmetic Expressions
Logical Expressions . .
Relational Expressions.
Expression Evaluation .

III ASSIGNMENT STATEMENT.. .

v CONTROL STATEMENTS
Unconditional GOTO Statement

Computed GOTO Statement &
ASSIGN and Assigned GOTO Statement

Arithmetic IF Statement

' 1 | S T T T T S|

t

VNN INDNDNDNDNNNNNNDDDNDDNDDND
1

1
Vel

TABLE OF CONTENTS (Continued)

Logical IF Statement
DO Statement , , .,o eeeeoccoos
CONTINUE Statement
PAUSE Statement , .,00000eesees
END Statement ,,.....
STOP Statement ., .. .4 evssoooveooees
CHAIN Statement . o o v o ¢ ¢ e 0o v 0o 00 0o 0o

® o o o o ® o & ¢ 0 0 s s e 0

1

i

® e @& 2 ° 0 o 8 2 s 0 0 * o @

AR R R D D
]
[o:o3Ee BEES BEEN BEEN [SRR ¥V)

INPUT/OUTPUT STATEMENTS & . v e v 000 o0
File Designation « ¢ o« « o o o o 60 s 0 060 065 ¢«
The General Input/Output Statements. . . . «

t

Input o s o 0 6 o v 0t v v vt e v e n e v oo
OUtpPUt o o o ¢ s e 0 0o v o v o v e o oo ooooan
List Specifications « v v s e v v v e v e 00 v oo
Input/Output of Entire ATrays + ...,
FORMAT Statement « ¢ ¢ o « o ¢ s 000000
Numeric Field Descriptors ¢« ¢« o ¢ o o e o .
Complex Number Fields . . . ¢ 0o e 0o,
Alphanumeric Field Descriptors
Logical Field Descriptor « ..o e oo
Blank Field Descriptor « s o o s e 0 0 o o s »
Repetition of Field Format « ¢ ¢ ¢ o o ¢ o 5-14
Repetition of GroupsSe ¢ ¢ o« ¢ o o 0 6 0 ¢ o o 5-14

Ul gt ot oot O ot Ot O Ut
1
o 00~ =] T W DN NN

Ur-Un
i 1 !
—_—
w W NN

Scale FActOTS « ¢ o o 0 s 00 0 00060060000 5-14
Multiple-Record Formats « s ¢ ¢ ¢ s ¢ s o » 5-15
Carriage Control « ¢ o o o s o 0 s 6 0 0 6 ¢ oo 5-16
FORMAT Statement Read + ¢ ¢ ¢ s o o ¢ o

in at Object TimMe e o o ¢ o ¢ o ¢ o o ¢ o o s o » 5-16

Data Input Referringtoa. « e oo oo 0o .o
FORMAT Statement. ¢« ¢ v ¢ o ¢ o 0 00 v 0 0o 5-17

NAMELIST Statement o v ¢« v ¢ ¢ o 0 0 s 0 00 v 5-18
Data Input Referring to a NAMELIST. . .

Statement ¢« o o« ¢ o ¢ o 0 0 00006000000 5-1 9
Data Output Referring to a NAMELIST. .
Statement @ o 6 0 ° 06 0 8 9 0 0 0 v e s 8 e s s e e 5.2 1

ii

TABLE OF CONTENTS (Continued)

Section Page
Auxiliary Input/Output Statements, , ., 5-22
REWIND Statement , _ . . v v v v v o ooeess 5-22
BACKSPACE Statement, |, . . v v v v o v o 5-22
END FILE Statement, , . . . ¢ v v v o oo oo 5-22
Memory-to-Memory Data Conversion , , , . 5-23
ENCODE Statement v v v eeoesos 5-24
DECODE Statement ¢ . oeooeoo 5-24
Vi INDIRECT FILE & DATA BASE v v v v e oo

MANAGEMENT STATEMENTS ...t e e, 6-1
File Designation. « o o o o o o o ¢ o s ¢ o o o o « . 6-2
Directory Content Statements 6-2

CREATE a file « o ¢ 0t v v o v v oo 0vsaes 6-2
RENAME a fil€ o o e o o o s ¢ s o0 0000 oo 6-4
ERASE a fil€ o ¢ ¢ 6 o o ¢ 0o 0 0o 0ot s 0 0o eas 6-5
DESTROY a fil€ ¢ s ¢ o e ¢ ¢ 6 e s 0 00 v s o4 6-5
CLOSE a file e s ¢ 0 o o o 0 0 0686 060000 esa 6-6
General Input/Output Statements . . ¢« o o o 4 & 6-6
INPUL 4 6 o o o o 0 0o 0 0o 00 0o os oeowcesece 6-6
OQUEPUL o o ¢ o o o o0 070 0 0 o s v oo 0o oe o 6-8
VII SUBROUTINES, FUNCTIONS, &

PROGRAM STATEMENTS & 4 ¢ v 0t o o v v o oo es 7-1
Naming Subroutines . « v e v ¢ ¢ 0 o 0 s 0 s 0 « & 7-1
Defining Subroutines s« « o« o v o ¢ o ¢ o ¢ o o o o« 7-2

Statement Functions « « ¢ v v o ¢ o ¢ o ¢ s o & 7-2
Built-In Functions .« . ¢ o o o v ¢ o a6 o o o« -4
FUNCTION Subprogram+« -4
SUBROUTINE Subprogram. . « « o o « « & 7-8
- Returns from Subprograms 7-9
Multiple Entry Points into a
Subprogram, « « ¢ ¢ o ¢ 0 e 0 s 0 000 000 7-10
Additional Rules for Entry Points 7-11
Subprogram Names as Arguments. 7-12
Call Statement s o « o o o o o 0o s 0 6 0 0 0 0 600 7-14
Mathematical Functions « « ¢« s ¢ o 6 s o ¢ 7-14

BLOCK DATA Subprogram e o o o o o 0 0 v o e 7—1()

iii

TABLE OF CONTENTS (Continued)

Section

VIII SPECIFICATION STATEMENTS
DIMENSION Statement

Adjustable Dimensions
COMMON Statement

EQUIVALENCE Statement

Type Statements

e & 8 o o

INTEGER ¢ ¢ v v 6 660 s
EXTENDED INTEGER.
REAL ¢ cceveoenen
DOUBLE PRECISION .
COMPLEX 4 ¢ ¢ s 00 0

LOGICAL ..
STRING ¢ « &
IONAME. . .
EXTERNAL
DATA Statement

IX DIRECT STATEMENTS &

L]

* o e o o

Signature Characters . .

Direct Statements

FORTRAN ,
LIST
EDIT.....
DELETE ..
EXTRACT .
SOURCE ..
OBJECT ..
LOAD
COMPILE .
EXECUTE .
RUN ¢« ¢
QUIT ¢ ¢ ¢« &
TAPE « ...

D€ (Control D Character)

DEBUG: « « »

o o o o

e e o 8 e 0 0 0

iv

g
)
}Vé

] i]] H ! 1

[o=B¢ oo <R clike o e el velie ciie oo c v clie olite VR S lile e
[T T T N RS | [T T R I N
Nellie cleclile e Jie oo o Jile olie e Jie el e oRe <R 2 IR VLI o Bl o

[No N« BENo JNe JNo BN« BN BN« JENRENe BN o BN JENO SN o Ko JiNe O I 2]
)
Ol N OO U b RWwW NN

Section

Table

TABLE OF CONTENTS {(Continued)

MONITOR o ot ¢ 0o 0o 00000
SMONITOR ¢ v ¢ 0 o0 0008 0
BREAK ¢ e o 0000000000
SBREAK ¢ ¢ o 0o a0 009800
TRACE o e v 0000000000
“TRACE &+ ¢ e v o0 000000
PRINT ¢ ¢ 60 ¢ 6060060606000
LET oot e ooeeeeosoeose
GOTO 4t v et oo oasoesaos
STEP & et e eveseoscoees
CONTINUE ¢ 4 ¢t e 60 00ao0s
ESCAPE K€y v o e voveeeas
CREATE a File v o o ¢ ¢ o ¢ o «
RENAME a Filee ¢ ¢ ¢ ¢ ¢ o o«
ERASE a File v ¢ o ¢ ¢ o ¢ o ¢ @
DESTROY a File «v ¢ ¢ ¢ ¢ o o @

LIST OF ILLUSTRATIONS

Arithmetic Expressions +-%/ .., ..

Arithmetic Expressions-Exponent (¥

Use of Relational Operators.
Built-In Functions . . s e e o s ¢ s o s »

Mathematical FUNCTION Subprogram

BLOCK DATA Subprogram

LIST OF TABLES

Format Statement Field Descriptors

Page

9-8
9-10
9-10
9-11
9-11
9-13
9-13
9-14
9-15
9-16
9-17
9-17
9-18
9-19
9-20
9-20

Page

t
—_ = O U
()]

~N NN
1
fop

I...

Introduction

GENERAL

The LOGICON 2+2 FORTRAN is an automatic coding language resembling
the language of algebra. It provides the facility for readily expressing
problems requiring numerical computation. In particular, it can easily
handle problems involving large sets of equations and problems that
contain many variables. FORTRAN is especially suited for solving
scientific and engineering problems, while by the same merits it is

also suitable for many business applications.

The FORTRAN language consists of words and symbols arranged into
statements. A set of FORTRAN statements, describing each step in

the solution of a problem, is a FORTRAN program (a source language
program).

The basic unit of the FORTRAN language is the statement. Statements
may be classified according to the following groups:

1. Arithmetic statements specifying numerical or logical
computations.

2. Control statements governing the order of execution in the
program.

3. Input/Output statements and input/output formats which
' describe the form of the data.

4. Subprogram statements enablihg the programmer to define
and use subprograms.

5. Specification statements providing information about

variables used in the program, information about storage
allocation, and data assigned.

I-1

To write FORTRAN programs effectively, it is necessary to understand
the usage of the following terms and concepts:

1. Constanfs, such as 27 or 3.14159

2. Variables, such as X or TEMP3

3. Sl_lbscripted variables, such as X(I) or Y (I, J)

4, Mathematical expressions, such as X + Y or 3 *]J
5. Arithmetic statements, such as A= B/C

6. Control statements which specify the sequence of control,
such as GO TO 23 or IF (Z) 10,15, 65

7. Input/Output statements used for getting data into the
computer and producing hardcopy results, such as READ
(5,37)A,1,J or WRITE (6,43) W(6)

8. Subroutine and function statements permitting programs to
be incorporated into larger programs

9. Specification statements, such as, DIMENSION and
COMPLEX

The language of FORTRAN is augmented by the availability of prewritten
routines accompanying the system. These routines evaluate the standard
arithmetical functions, provide all input/output for the program, and
furnish the user with other services to aid in the problem solution.
Special purpose routines may be written by the user to be used as
subprograms.

The operations of addition and subtraction are indicated in the same was
as in mathematical notations; that is, the symbols plus (+) and minus (-)
Multiplication is denoted by the asterisk (%) while division is denoted by
the slash (/). The double asterisk (**) or the up arrow () is the
FORTRAN operation sign for exponentiation. The rule for using this
sign is that the quantity to the left of the sign is raised to the power
indicated on the right.

1-2

FORMAT RULES FOR STATEMENT WRITING

Liine Number

From one to five digits, less than 65536, including leading zeros. Line
number field is terminated by a non-numeric character or the sixth digit.
A program is processed in ascending line number order.

Comment
The character C immediately following the line number indicates a

comment statement. The comment appears in the program listing but
it does not affect the logic of the FORTRAN program.

Statement Label

A FORTRAN program statement may optionally contain a statement
label. This numeric field (1 thru 99999) follows the line number and
precedes the FORTRAN statement text. Blanks and leading zeros arec
ignored.

Continuation

A statement may be continued on more than one line by placing an
ampersand (&) immediately before the carriage return on the first line
and continuing the statement on the next line. Control may not be
transferred to the line number associated with the continued portion of
a statement. Continued statements may not contain a comment state-
ment and comment statements may not be continued.

Statement

The first alphanumeric character on the line identifies the actual
FORTRAN statement. Blanks do not have significance except where
they appear in a specific string of characters, e.g., in an H field or a
dquote string.

IT...

Constants, Variables,
Subscripts & Exprssions

Generally, a constant is a number in a mathematical expression that

is known prior to writing the FORTRAN STATEMENT, and whose value
does not change during program execution. Conversely, a variable
represents a number that is not known when a statement is written, and
it is able to take on different values during program execution. When a
single variable name is used to represent a list of numbers, it is
called a subscripted variable.

In FORTRAN, an expression is a combination of constants, variables,
and operation signs which defines a series of related mathematical
operations. Thus, using constants and variables, FORTRAN provides
a means of expressing quantities specified in an arithmetic formula
statement. The constants and variables may be either the fixed-point
integer or floating-point mode. The fixed-point mode is used for
counting and other operations involving whole (integer) numbers. The
floating -point mode is used for nearly all computation. The floating-
point number, consisting of an exponent and a fraction, accommodates
a greater range of values.

CONSTANTS

Integer

An integer constant requires one memory location and is a number in the
range -32767 to +32767. The decimal point of the integer is always omitted;
however, it is always assumed to be immediately to the right of the right-
most digit,

Extended Integer

An extended integer requires three contiguous memory locations and is a
number in the range -140, 737,488, 355,327 to +140, 737,488,355, 327, The
decimal point of the extended integer is always omitted; however, it is al-
ways assumed to be immediately to the right of the rightmost digit,

2-1

Real

A real constant requires three contiguous memory locations and is main-
tained in floating point mode.

1. One to ten significant decimal digits written with a decimal
point, but not followed by a decimal exponent.

2. A sequence of decimal digits written with or without a
decimal point, followed by a decimal exponent written as the
the letter E followed by a signed or unsigned integer
constant. When the decimal point is omitted, it is always
assumed to be immediately to the right of the rightmost
digit. The exponent value may be explicitly 0, and the
field following the E may not be blank.

A real constant has precision to nine digits,

Double Precision

A double-precision constant requires four contiguous memory locations

and is maintained in floating-point mode., It is a sequence of decimal digits
written with or without a decimal point, followed by a decimal exponent
written as the letter D followed by a signed or unsigned integer constant,
When the decimal point is omitted, it is always assumed to be immediately
to the right of the rightmost digit, The exponent value may be explictly 0,
and the field following the D may not be blank,

Examples:

7.0D4 (means 7.0 x 10%, 70000.)
7.0D-3 (means 7.0 x 10-3, .007)

Double-precision constants have precision to 14 digits.

Complex

A complex constant requires six contiguous memory locations and consists
of an ordered pair of signed or unsigned real constants separated by a com-
ma and enclosed in parentheses,

Examples:
(10.1, 7.03)is equal to 10.1 + 7.031i
(5.41, 0.0) is equal to 5.41 + 0. 0i
(7.0E4, 20.76) is equal to 70000. + 20. 76i

where i is the square root of -1.

The first real constant represents the real part of the complex nurmber;
the second real constant represents the imaginary part of the complex
number. The parentheses are required regardless of the context in
which the complex constant appears. Each part of the complex constant
may be preceded by a plus sign or a minus sign, or it may be unsigned.

Logical

A logical constant requires one memory location and may take either of
two values:

. TRUE,
.FALSE,

and is represented in the machine as

TRUE =0
FALSE=0

String Constant

A string constant requires a memory location for the character count,
followed by two ASCII characters per location, When the character count is
odd, a blank fills the last location,

2 forms - (1) string nHxxx where n is character count
(2) string enclosed in quotes ''xxx'
Neither string may contain FORTRAN or TTY
control characters.

10 NAME Constant

An IO NAME constant requires four contiguous memory locations and con-
sists of one to eight ASCII characters, right justified and blank filled,

VARIABLES

A variable name may have from one to eight alphabetic or numeric
characters, The first character must be alphabetic:

Examples:
K3
SUMS5B
ANSWER
NOTE7

The mode of the variable may be specified in one of two ways:
Implicitly by name or explicitly by a Type statement (see '"Type State-
ment'' and '"Naming Subroutines'' in the Index). Implicit type assignment

2-3

pertains only to integer and real, variable and function names, and is
determined by the first character in the variable name. If the first
character is I, J, K, L, M, or N, it is a fixed-point (integer) variable;
if it begins with any other letter, it is a floating-point variable. Refer to
Implicit statement.

SUBSCRIPTS

When a single variable name is to represent a list of values (array),
subscripts provide a means of referring to a specific member of that
list. The subscripts are arithmetic expressions whose value determines
the member of the array to which reference is made. The array being
referenced is of a predetermined length; therefore, the value of a
subscript expression cannot be zero, less than zero, or greater than

the dimensions (see dimensions in the Index) declared for the array
referenced.

A subscripted variable consists of a variable name followed by paren-
theses enclosing arithmetic subscripts expressions that are separated
by commas.

Each variable that appears in subscripted form must have the size of
the array specified. (See DIMENSION, COMMON, or Type Statement
in Index.)

Arrays are stored in column order in increasing storage locations, with
the first of their subscripts varying most rapidly, and the last varying
least rapidly. For example, the two-dimensional array A(m,n) is
stored as follows, from the lowest core storage location to the highest:

Al, 1, A2,15---sAm,1,A1,2,A2,2,---3sAm,2,.--,Al,n,A2,n,--->Am,n

EXPRESSIONS

Arithmetic Expressions

An arithmetic expression consists of certain legal sequences of constants,
subscripted and nonsubscripted variables, and arithmetic function
references separated by arithmetic operation symbols, commas, and
parentheses.

The following arithmetic operation symbols denote addition, subtraction,
multiplication, division, and exponentiation (¥% or t), respectively:

+ - % / sk 1
The rules for constructing arithmetic expressions are:

1. There are no mode restrictions when constructing expres-
sions with respect to +, -, %, and /. Operands for these
operators are promoted to the higher mode before the
operation is performed. Figure 2-1, shows the mode of
+, -, %, and /. Figure 2-2, shows the valid combinations
with respect to the ** or t operator.

l " I EI|R | D | C Legend
I I JEI |R | D | C C - Complex
EI|JEI|EI [R | D | C D - Double precision
R R R R |DC El - Extended Integer
D D| D D|D}|C I - Integer
C c| C c |C{C R - Real

Figure 2-1. Arithmetic Expressions + - * /

IJEI| R |D}|C
I I |EI| R |D|C C - Complex
EI|EI| EI | R | D | C D - Double precision
R R] R R [D]C EI - Extended Integer
D D D D D C N - Nonvalid
C c] C C c|]cC R - Real

Figure 2-2. Arithmetic Expreséions — Exponent (%% or t)
2. Any expression may be enclosed in parentheses.

3. Expressions may be connected by the arithmetic operation
symbols to form other expressions, provided that:

a. No two operators appear in sequence except *%, which
is'a single operator and denotes exponentiation.

b. No operation symbol is assumed to be present.
For example, (X)(Y) is not valid.

4. Preceding an expression by a plus or minus sign does not
affect the arithmetic type of the expression.

5. In the hierarchy of operations, parentheses may be used in
arithmetic expressions to specify the order in which
operations are to be computed. Where parentheses are
omitted, the order is understood to be as follows (from
innermost operations to outermost operations):

a. Function Reference

b. *% or } Exponentiation
c. *and / Multiplication and Division
d. + and - Addition and Subtraction

This hierarchy is applied first to the expression within the
innermost set of parentheses in the statement; this pro-
cedure continues through the outer parentheses until the
statement has been evaluated.

6. Defining a term as an unparenthesized sequerice of primary
operands and exponentiation pairs separated by * and /
operators only, the rule for the order of evaluation of
arithmetic expressions in the absence of parentheses is:
Within a term, the evaluation is left to right; across the
expression, terms are evaluated right to left; the sum of
the terms is formed from left to right.

The FORTRAN expression
A6, +Z [Y4k(W+(A+B)/X**K)
represents the mathematical expression

Z
<W + (A+B))
K
v X

Even if operators are on the same level, parentheses may be used if a
particular order of computation is required by the program.

6A +

Given I, R, and C as names of integer, real, and complex variables
respectively, the expression R+C/I is evaluated by promoting I to
complex, performing the division; promoting R to complex and forming
the sum.

R+I+I/1 is evaluated by finding the integer quotient I/I; converting I to
real and computing the sum R+I; promoting the integer quotient to real

and adding to the real sum,

Logical Expressions

A logical expression consists of sequences of logical constants, logical
variables, or references to logical functions separated by logical operation
symbols.

The logical operation symbols (where a and b are logical expressions)
are:

Symbol Definition

.NOT. a Produces the one's complement of a.
a. AND. b Produces the logical product a AND b.
a.OR. b Produces the logical sum a OR b.

The logical operators NOT, AND, and OR must always be preccded and
followed by a period. The following are the rules for constructing
logical expressions:

1. A logical expression may consist of a single logical constant,
a logical variable, or a reference to a logical function.

2. The logical operator . NOT. must be followed by a logical
expression, and the logical operators . AND. and . OR.
must be preceded and followed by logical expressions to
form more complex logical expressions.

3. _Any logical expression may be enclosed in parentheses;
however, the logical expression to which the . NOT. applies
must be enclosed in parentheses if it contains two or more
quantities.

Relational Expressions

A relational expression consists of sequences of arithmetic variables,
constants, or function references separated by relational operation
symbols. Relational expressions can be combined with logical expres-
sions to produce relational expressions. Relational expressions always
result in a . TRUE. or . FALSE. evaluation.

The symbols for the six relational operations are:

Symbol Definition
.GT. or > Greater than
.GE. Greater than or equal to
.LT. orx Less than
. LE. Liess than or equal to
. EQ. Equal to
. NE. Not equal to
Example:

A.GT. B has the value . TRUE. if the quantity A is
strictly greater than the quantity B, and value . FALSE.
otherwise.

The realtional operators must always be preceded and followed by a
period. The following are the rules for constructing logical and
relational expressions:

1. Figure 2=-3 indicates which constants, variables, functions,
and arithmetic expressions may be combined by the
relational operators to form a relational expression. In
Figure 2-3, Y indicates a valid combination and N indicates an
invalid combination. The relational expression will have
the value . TRUE. if the condition expressed by the relational
operator is met; otherwise, the relational expression will
have the value . FALSE. |

.GT.,.GE.,. LT.,
%LE. ,. EQ.,.NE. I JEI|R R ClL}JF]S Legend

I I |EIlIR D Cxl LI N |N

EI EIlEIIR D cxi NI NN D - Double Precision

R R RI|R D lexI NI NN EI - Extended Integer

D D D}|D D JCxI N}J NN F - IO NAME

ES % " e i

¢ ¢ cxlex)c C¥I NI NN I - Integer

L N NN N N{N|IN|N L - Logical

F N[N|[N]| NN N]F]N N - Nonvalid

s N|N|N|N|N|N|N]|Ss - Tonvan

R - Real
* EQ. or .NE. only 5 - String

Figure 2-3. Use of Relational Operators

2. The numeric relationships that determine the true or false

evaluation of relational expressions are:

a. For numeric values having unlike signs, the positive
value is considered larger than a negative value,
regardless of the respective magnitude ; €. 8o, +3>-5
and +5>-5.

b. For numeric values having like signs, the magnitude of
the sign of the values determines the relationship;
€.8., +3>+2 and -8 «-4.

3. The logical operator . NOT. must be followed by a logical
or relational expression, and the logical operators . AND.
and . OR. must be preceded and followed by logical ore
relational expressions to form more complex logical
expressions.

Expression Evaluation

In the hierarchy of operations, parentheses may be used in logical,
relational, and arithmetic expressions to specify the order in which
operations are to be computed. Where parentheses are omitted, the
order is understood to be as follows (from innermost operation to outer-
most operations):

a. Function Reference

b. %k or ¢ Exponentiation

2-9

c. #*and/ | Multiplication and Division
d. + and - Addition and Subtraction

e, <,.LT.,.LE...EQ,.
.NE., »,.GT.,.GE.

f. . NOT.
g. .AND:
h. .OR.

This hierarchy is applied first to the expression within the innermost
set of parentheses in the statement; this procedure continues through
the outer parentheses until the statement has been evaluated.

2-10

III...

Assignment Statement

The assignment statement, consists of a variable name (subscripted or
not) followed by an equals sign, followed in turn by any desired expression,
The equals sign of the FORTRAN statement implies '"is replaced by'" and
not mathematial equality,

The expression may be a single constant, a single variable, or a com-
plex combination of operations. In essence, the machine computes the
complete expression on the right of the equals sgign and assigns that
computed value to the variable whose name appears on the left of the
equals sign.

General Form

v = e
where

v is a subscripted or nonsubscripted re-
placement variable

e is an expression

the equals sign implies "'is replaced by"

Examples:
PI = 3.1416
W =N
E() = 1. +EXP(Z)
T =.FALSE.
. A =R.EQ.RI.OR. V

ALPHA ="8 CHARS"

Figure 3-1 indicates the legitimate combinations of expressions and
variables in an arithmetic assignment statement. In Figure 3-1, Y
indicates a valid statement with the resulting type of expression on the
left side of the equals sign. N indicates a nonvalid statement.

E
v I |[IEI}R|D|C|L |S}| F Legend
I YIY|]Y|Y|[Y|N [IN|JN C - Complex
D - Double Precision
E .
Y (Y[Y[y y|v NI N EI - Extended Integer
RJIY|Y|YIY]Y|N |[N|N F « I0 NAME
D YI|Y|Y|Y]YININ|N I - Integer
L - Logical
c ¥ Y Y Y|IYIN NN N - Nonvalid
L NIN|N|IN|N|Y IN|IN R - Real
S N n|nIn|IN{Nlv]y S - String
FiIn|nN|n|N|[N|N|Y]Y ¥ - Valid

Figure 3-1, Arithmetic Statement Combinations

IV...

Control Statements

Control statements enable the programmer to control, terminate, and
alter the sequential order in executing statements. To execute a
statement which is not in sequence, the programmer assigns a state-
ment label to it for referencing by other statements. Any statement
may have an assigned label; however, the numerical value of a state-
ment label has no bearing on the order of execution, and it is not
necessary that each statement be labeled.

UNCONDITIONAL GO TO STATEMENT

General Form

GO TO n

where

n is a statement labeled

This statement causes control to be transferred to n. In the following
example, controlis transferred to the statement labeled 31.

GO TO 31

COMPUTED GO TO STATEMENT

General Form

GO TO (n3,np,...,nm), 1
where
n,,n,,...,n are statement labels
12772 m

i is an arithmetic expression

This statement causes control to be transferred to the statement

labeled ny, nj,...,n, depending on whether the integer value of i is

1, 2, 3,...,m, respectively, at the time of execution. The value of i
cannot be negative or zero. During execution, if i is greater than m or
iis less than 1, an error comment is output and the execution terminates,
Thus, in the following example, if K is 3 at the time of execution, a trans-
fer to the third statement in the list (statement 39) occurs,

GO TO (17, 21, 39,5), K

ASSIGN AND ASSIGNED GO TO STATEMENT

General Form

GO TO i, (nl,nz,.. . ,nm)

where

i is a variable appearing in a previously
executed ASSIGN statement

ny,n,,...,n are statement labels

Note: (n,, Ny, ... nm) is optional

General Form

ASSIGN n TO i
where
n is a statement label

i is a variable that appears in an assigned
GO TO statement

ASSIGN sets i to the value of the machine location corresponding to the
FORTRAN statement number n, which represents any statement label
in the program unit,

Later in the execution of the program, a GO TO i, (nl,nz, ceenp)
transfers control to the statement label n referenced in the ASSIGN
statement.

In the example

ASSIGN 24 TO M

GO TO M, (1,22,41, 24, 36)

the M in GO TO M assumes the machine address of statement 24,
transferring control to the fourth statement label in the list, 24.

ARITHMETIC IF STATEMENT

General Form

IF (a) nl, nz, n3

where
a is an arithmetic expression (not complex)

ni,np,n3 are statement labels

This statement causes control to be transferred to the statement labeled
ny,n,, Or nj, if the value of a is less than, equal to, or greater than
zero, respectively, Thus in the example:

IF (A(J,K)-B) 10,4, 30

IF (A(J,K)-B) < 0 control goes to statement 10
IF (A(J,K)-B) = 0 control goes to statement 4
IF (A(J,K)-B) > 0 control goes to statement 30

LOGICAL IF STATEMENT

General Form

IF(t)s
where
t is a logical expression

s is any executable statement except DO or
another logical IF

If the logical expression t is . TRUE., statements is executed. Control
is then transferred to the next sequential statement unless s causes a
transfer in which case control is transferred.

If tis . FALSE., control is transferred to the next sequential statement.

If tis . TRUE., and s is a CALL statement that does not take a non-
standard return, control is transferred to the next sequential statement
upon return from the subprogram.

The following examples illustrate several uses of the logical IF.

IF (A. AND. B) F = SIN (R)

IF (16. GT. L) GO TO 24

IF (D.OR.X.LE. Y) GO TO (18, 20), I
IF (Q) CALL SUB

B N

In example 1, if (A. AND. B) is true, compute F and return to the
statement following IF.

In example 2, if (16. GT. L), control transfers to statement 24.

In ex"ample 3, if (D.OR.X.LE.Y) is true, control transfers to statement
18 or 20 depending upon whether I is 1 or 2.

In example 4, if (Q) is true, control goes to the subprogram SUB.

DO STATEMENT

General Form

DOni-= my, m,, Mg
where
n is a statement label
1 is a nonsubscripted integer variable

m),m,, and mg must be arithmetic expressions
greater than zero; if m3 is not stated, it is taken to
be 1. mj,m> and m3 are converted to integer type
if required before the loop is open.

This statement causes repeated execution of the statements that follow,
up to and including the statement labeled n. The statements in the
range of the DO are executed repeatedly with i equal to mj, then i equal
to my + ma, then i equal to my + Zrn3, etc., until i is equal to the
highest value in this sequence that does not exceed m;. The statements
in the range of the DO will be executed at least once.

1.

The range of a DO is that set of statements that will be
executed repeatedly; i.e., it is the sequence of consecutive
statements immediately following the DO statement, up to
and including the statement labeled n. After the last
execution of the range, the DO is said to be satisfied.

The index of a DO is the integer variable i. Throughout the
range of the DO, the value of the index is available for
computation, either as an ordinary integer variable or as a
subscript. Upon exiting from a DO by satisfying the DO,
index i must be redefined before it is used in computation.
Upon exiting from a DO by transferring out of the range of
the DO, the index i is available for computation and is equal
to the last value it attained.

Within the range of a DO statement may be other DO
statements; such a configuration is called a DO nest. If

the range of a DO includes another DO, all of the statements
in the range of the latter must also be in the range of the
former.

Transfer of control and DO ranges. Control may not be
transferred into the range of a DO from outside its range.
Thus, the following configurations show permitted and non-
permitted transfers.

Permitted Not Permitted

—

é) 5
LS

5. Restrictions on statements in the DO range:

Any statement that redefines the index or any of the
indexing parameters (m's) is not permitted in the range
of a DO.

The range of a DO cannot end with an arithmetic IF-or

GO TO-type statement, with a nonexecutable statement,
with a nonexecutable statement, with a- RETURN or STOP
statement or with another DO statement. The range of

a DO may end with a logical IF; in this case, if the

logical expression t has the value . FALSE., the DO is
reiterated; if the logical expression t has the value « TRUE,,
statement s is executed and then the DO is reiterated,
However, if .t has the value , TRUE, and s is an arith-
metic IF or transfer type statement, control is transferred
as indicated.

6. When a reference to a subprogram is executed in the range
of a DO, the called subprogram must not alter the DO index
or the indexing parameters.

7. When two or more nested DO statements end in the same
CONTINUE statement, a transfer to this DO ending is only
allowed from within the innermost DO.

An example of the DO statement follows:

K=20
DO10I=1,3
DO10J-1,2
K=K+I+

10 CONTINUE

where the K values are computed as:

old new

K I 7J K
K 0
K 0O+1+1= 2
K 2+1+2= 5
K 5+2+1= 8
K 8+2+2=12
K=12+3+1=16
K=16 +3+2=21

CONTINUE STATEMENT

General Form

CONTINUE

CONTINUE is a dummy statement that does not generate any instructions
in the object program. It is most frequently used as the last statement
in the range of a DO. When it is necessary to bypass one or more
executable statements at the end of a DO loop, and still continue looping,
the nonexecutable CONTINUE statement provides this facility (see DO
example).

PAUSE STATEMENT

General Form

PAUSE or PAUSE s

where

s is a string constant

The message PAUSE "HIT RETURN TO CONTINUE" is output to the
terminal, and program execution is suspended until the user types a
carriage return.

Examples:
PAUSE
PAUSE "AACD"
PAUSE 4HABCD

END STATEMENT

General Form

END

The END statement terminates compilation of a program or subprogram
and physically it must be the last statement of the program or subprogram.

STOP STATEMENT

General Form

STOP
STOP s

where

s is a string constant

The STOP statement terminates the execution of any program by
returning control to the operating system. The string constant is
printed,

CHAIN Statement

General Form

CHAIN IO NAME

The file "IO NAME'" will be executed next. If the file is symbolic it will be
compiled, loaded, and executed. If the file is relocatable binary, it will be

loaded and executed. If the file is absolute binary, it will be executed.
Common and open files are saved.

V...

Input/ Ouput

Statements

In FORTRAN, input/output statements specify transmission of informa-
tion to or from input/output files. Rather than be concerned with
specific types of input/output devices (for example, card reader,
magnetic tape or terminal), the FORTRAN programmer need only con-
cern himself with the manipulation of data files. The statements are
grouped as follows:

1.

General Input/Output Statements

The statements READ and WRITE cause the transmission
of a specified list of quantities between core storage and
an input/output file. The statements READ and PRINT
cause transmission of information from or to core storage
to the user terminal.

FORMAT and NAMELIST Statements

Either of these two nonexecutable statements (the FORMAT
statement or the NAMELIST statement) may be used with
the general input/output statements.

The FORMAT statement, which can be used with any general
input/output statement, specifies the arrangement of data

in the input/output record. If the FORMAT statement is
referred to by a READ statement, the input data must meet
the specifications described in '""Data Input Referring to a
FORMAT Statement''.

The NAMELIST statement specifies an input/output list of
variables and arrays. Input/output of the values asso-

ciated with the list is effected by reference to the list in a
READ or WRITE statement. If the NAMELIST statement

is referred to by a READ statement, the input data must
meet the specifications described in '"Data Input Referring
to a NAMELIST Statement''.

FILE DESIGNATION

Files may be designated by a file name constant or file name variable.
Within the FORTRAN system, the file name ("' ') blank is used to
designate the user terminal.

THE GENERAL INPUT/OUTPUT STATEMENTS

Input

The READ statement inputs the data to be processed by the computer
program. The following table gives the forms of the READ statement,
where

f is a file designator which references the input file

n is a FORMAT statement label

X is a NAMELIST name

y is a variable format

1 is a statement label
Type of Input General Form
ASCII record READ, list
ASCII record READ n, list
ASCII record READ (f, n) list
ASCII record READ (f, x)
ASCII record READ (f,y) list
Binary record READ (f) list
ASCII record READ (f,n, END=L)

1. The READ, LIST statement causes ASCII record file to be
input from the new user terminal,

2. The READ n, list statement causes records to be read in
ASCII mode according to format n,

3. The READ (f,n) list statement causes ASCII information to
be read from file f according to format n,

5-2

4, The READ (f, x) statement causes ASCII information relating

to variables and arrays associated with the NAMELIST
name x to be read from file f,

5. The READ (f,y) list statement causes ASCII information to be
read from file f via a variable format.

6. The READ (f) list statement causes binary information to be
read from file f.

7. If end of file occurs, control is transferred to statement label 1.
The END = statement label may appear at the end of any of the
parenthesized parameters.

Under the first four forms of the READ statement, successive records
are read until the entire input list has been read, converted, and
stored in the locations specified by the list,

Binary conversion of input numbers is identical, whether the numbers
are compiled into the program, appear in a DATA statement, or are
read in at execute time.

Examples:

READ 10, (A(I), I=1,5)

READ ("ABC'",10)A, B, (D(J), J=1,10)
READ ("DEF'",10)K,DC(J)

READ ("ABCDE")(A(J),J=~1,10)
READ (ABCYA(J),J-1,10)

READ (XYZ,NAM1)

READ (XYZ,FMT)A, B, (C(I), I, 5)

Output
The following table gives the forms of the output statement, where

f (file name designating an unsigned integer constant, or a
nonsubscripted integer variable) is a reference to a file

n is a FORMAT statement label
X is a NAMELIST name

y is a variable format

Type of Output General Form
ASCII record PRINT, list
ASCII record PRINT n, list
ASCII record WRITE (f,n) list
ASCII record WRITE (f, x)
Binary record WRITE (f) list
ASCII record WRITE (f, y) list

1. The PRINT, list statement causes an ASCII record to be
output to the user terminal. A list is required.

2. The PRINT n, list statement causes ASCII data to be output
to the user terminal according to format n.

3. The WRITE (f,n) list statement causes ASCII information
to be written on file f according to the format specified in
statement n.

If f=" '"blanks output is to the user terminal

4, The WRITE (f, x) statement causes all variable and array
names, as well as their values that belong to the namelist
name x, to be written on file f.

5. The WRITE (f) list statement causes binary information to
be written on file f,

The PRINT n, WRITE n, and WRITE (f,n) statements cause successive
records to be written in accordance with the FORMAT statement until the
list has been satisfied, The WRITE (f) list statement causes the writing of
one logical record consisting of all the words specified in the list,

When a WRITE statement refers to a NAMELIST name, the values and
names of all variables and arrays belonging to the NAMELIST name
are written, each according to its type. A complete array is written
out by columns. The output data is written such that the fields for the
data are large enough to contain all the significant digits.

Examples:

PRINT 20, (A(J),T=1,6)
- PRINT 2,(A(J),J=1,6)
WRITE ("ABC",10)A, B, (C(J),J=1, 10)
WRITE ("DEF', 11)K, D(J)
WRITE ("ABCDE")(A(J), J=1,10)
WRITE (ABC)A, B, C
WRITE (XYZ, NAMI)
WRITE (XYZ, FMT)A, B, (C(l), I=1, 5)

LIST SPECIFICATIONS

If arrays or variables are transmitted by using a read or write binary,
or with a FORMAT statement, an ordered list of the quantities to be
transmitted must be included in the general input/output statement. The
order of the input/output list must be the same as the order in which the
information exists in the input/output medium.

The following notes on the information and meaning of an input/output
list are most clearly understood by considering the following input/
output list:

A, B(3), (C(I), D(, K), I=1, 10),
((E@EJ), I=1, 10,2), F(J, 3), J=1,K)

This list implies that the information in the external input/output
medium is arranged as follows:

A, B(3),C(l1),D(1,K),C(2), D(2,K), ...,
C(10), D(10,K), E(1,1),E(3,1),...,
EO,1),F(1,3),E(1,2),E(3,2),...,
E(9,2),F(2,3),...,F(K,3)

An input/output list is a string of list items separated by commas. A
list item may be:

A subscripted or nonsubscripted variable.
An implied DO.

An input/output list reads from left to right with repetition of variables
enclosed in parentheses.

A constant may appear in an input list only as a subscript or as an
indexing parameter.

Expressions may appear in an output list.

The execution of an input/output list is exactly that of a DO loop, as
though each left parenthesis (except subscripting parentheses) were a
DO, with indexing given immediately before the matching right
parenthesis, and with the DO range extending up to that indexing infor-
mation. The order of the input/output list A, B(3), (C(I), D(I, K), I=1,
10), ((E(,T), I=1, 10,2), F(J, 3), J=1,K) may be considered equivalent
to the following:
A
B(3)
DO51=1,10 (C1), b(1,K),1=1,10)
C(I)
5 D(I, K)
DO 9 J=1,K
DO 8 I=1,10,2 ((E(1,J),I=1,10,2),
8 E(L,J) F(J, 3),J=1,K)
9 F(J, 3)

An implied DO is best defined by an example. In the input/output list
previously shown, the list item (C(I), D(I, K),I=1,10) is an implied DO;
it is evaluated as shown. The range of an implied DO must be clearly
defined by parentheses.

On input, if the list has the form

K, A(K)
or .
K, (A(D,I=1, K)

where the definition of an index or an indexing parameter appears
earlier in the list than its use, the indexing is carried out with the
newly read-in value.

Any number of quantities may appear in a single list. However, each
quantity must have the correct format as specified in a corresponding
FORMAT statement. Essentially, it is the list that controls the quantity
of data read. If there are more quantities to be transmitted than are in
the list, only the number of quantities specified in the list are trans-
‘mitted, and remaining quantities are ignored. Conversely, if a list
contains more quantities than are given on one ASCII input record,

5-6

more records are read; if a list contains more quantities than are given
in one binary record, zero data is placed in the remaining list items.

When an end-of-file occurs and the user requests control (via END=L),
the variables in the READ list are unchanged.

INPUT/OUTPUT OF ENTIRE ARRAYS

If input/output of an entire array is desired, an abbreviated notation may
be used in the list of the general input/output statement. Only the name
of the array need be given and the indexing information may be omitted.
The array name used in this manner is called a short-list variable.

1. If A has previously been listed in a statement containing
dimension information, the following statement is sufficient
to read in all of the elements of the array A (see the 'Input'
section).

READ (5,10)A

2. The elements read in by this notation are stored in accord-
ance with the description of the arrangement of arrays in
storage (see the '"Subscripts'' section).

3. If A has not been dimensioned, only one element will be
read in. (Either double-precision or complex is con-

sidered to be one element.)

FORMAT STATEMENT

The ASCII input/output statements require, in addition to a list of
quantities to be transmitted, reference to a FORMAT statement that
describes the type of conversion to be performed between the internal
machine language and the external notation for each quantity in the list.

General Form

n FORMAT (S,, S ..,sn/s'l, S’Z""’S:q/"')

2"
where

n is the statement label
each subfield, Sl’ is a format specification

FORMAT statements are not executed.

The FORMAT statement indicates, among other things, the maximum

size of each record to be transmitted. Therefore, it must be remembercd
that the FORMAT statement is used with the list of some particular
input/butput statement, except when a FORMAT statement consists
entirely of alphanumeric fields. In all other cases, control in the object
program switches back and forth between the list, which specifies

whether data remains to be transmitted, and the FORMAT statement,
which gives the specifications for transmission of that data.

Slashes are used to specify unit records.

Thus, FORMAT (3F9.2,2F10.4/8E14, 5) would specify records in which
the first, third, fifth, etc., have the format (3F9.2,2F10. 4) and the
second, fourth, sixth, etc., have the format (8E1l4.5).

During input/output of data, the object program scans the FORMAT
statement to which the relevant input/output statement refers. When a
specification for a numerical field is found in the format and list items
in the statement remain to be transmitted, input/output takes place
according to the specification, and scanning of the FORMAT statement
resumes. If no items remain, transmission ceases and execution of
that particular input/output statement is terminated. Thus, an ASCII
input/output operation is brought to an end when there are no items
remaining in the list.

The field descriptors used in the FORMAT statement are listed in Table 5-1.

Numeric Field Descriptors

Numeric field descriptors are specified in the forms Dw.d, Ew.d, Fw.d,
Iw, Ow, where:

1. D, E, F, G, I, and O represent the type of conversion.

Table 5-1,

FORMAT STATEMENT FIELD DESCRIPTORS

Field Type Manner Specified Usage
I riw Integer Field (123)
F rFw.d External fixed point decimal (1. 23)
E rEw.d Floating Point '1. E09)
D rDw.d Double precision (1. D09)
G rGw.d Generalized (for E formats)
L rLw Logical (T or F)
A rAw Alphanumeric (JONES)
H wHs Hollerith (3HEND)
K nsn ("END")
$ ré$w $AAXX, XXX, XX where w = 12
X wX Spacing - spaces w times
T Tw Tab (spaces to column w)
P fp Scaling
/ / Generates a Carriage Return
O Ow Octal integers
Symbols
w - field width (entire number of characters required)
d - number of decimal digits
i - number of integer digits
s - string of characters
f - power of 10
r - repeat count

5«9

w=2

d=4 w=§

The w is an unsigned integer constant representing the
field width for converted data; this field width may be
greater than required to provide spacing between numbers.

The d is an unsigned integer or zero representing the
number of digits of the field that appear to the right of the
decimal point.

For example, the statement FORMAT (12,E12. 4,08, F10. 4,
D25.16) might cause the following line to be printed:

d=16

@-0.932 ER025773427 H—O.w-—o.|787897790950067ﬂDH03'
a=4

<

" w=10 w=25

w=12
12 Y—u—" 08 ——\ ~— -

El2.4 F10.4 D25.16

where ¥ indicates a blank space.

The following are notes on D-, E-, F-, G-, I-, and 0- conversion.

1.

No format specification should be given that provides for"
more characters than permitted for a relevant input/output
record. Thus a format for an ASCII record to be printed
should not provide for more characters (including blanks)
than the capabilities of the printer.

Information transmitted with 0-conversion may have real or
integer names; information transmitted with G-conversion
may have real, integer, or complex names; information
transmitted with E-, and F-conversions must have real or
complex names; information transmitted with I-conversion
must have integer names; information transmitted with
D-conversion must have double-precision names.

The numeric field descriptor Gw. d indicates that the
external field occupies w positions with d significant digits.
The value of the list item appears, or is to appear,
internally as a real datum.

Input processing is the same as for the F-conversion.

The method of representation in the external output string is a function
of the magnitude of the real datum being converted. Let N be the
magnitude of the internal datum. The following tabulation exhibits a
correspondence between N and the equivalent method of conversion that
will be effected:

Magnitude Equivalent Conversion

of Datum Effected
0.l =N<1 F(w-4) . d,4X
1 =N<«<Il10 F(w-4) . (d-1), 4X
104-2 = N < 109-1 F(w-4). 1,4X
104-1 « N <109 F(w-4) . 0,4X
Otherwise sEw.d -

Note that the effect of the scale factor is suspended unless
the magnitude of the datum to be converted is outside of the
range that permite effective use of F-conversion.

4, The field width w, for D-, E-, F- and G-conversions, must
include a space for the decimal point and a space for the
sign. The D-, E-, and G-conversions also require space
for the exponent. For example, for D- and E- and G-
conversions on output, w = d+6, and for F-conversion,

w = d+2.

5. The exponent, which may be used with D- and E-conversions,
is the power of 10 to which the number must be raised to
obtain its true value. The exponent is written with an E
(for E-conversion) or D (for D-conversion) followed by a
minus sign if the exponent is negative, or a plus sign or a
blank if the exponent is positive, and then followed by two
numbers that are the exponent. For example, the number
. 002 is equivalent to the number . 2E-02.

6. If a number converted by I-conversion requires more
spaces than are allowed by the field width w, the most
significant part of the number is truncated to fit the field.
If the number requires fewer than w spaces, the leftmost
spaces are filled with blanks. If the number is negative, the
space preceding the leftmost digit contains a minus sign if
sufficient spaces have been reserved.

5«11

8. If an output number that is converted by D-, E-, F-, G-,
of I-conversions requires more spaces than arc allowed by
the field width w, the most significant part of the number
is truncated to fit the field. If the number requires fewer
than w spaces, the leftmost spaces are filled with blanks.

9. Specifications for successive fields are separated by commas

and/or slashes. (See the section '""Multiple-Record Formats

in this chapter.)

Complex Number Fields

Since a complex quantity consists of two separate and independent real
numbers, a complex number is transmitted either by two successive
real number specifications or by one real number specification that is
repeated; e.g., 2E10.2=E10.2,EI10.2.

The following is an example of a FORMAT statement that transmits an
array consisting of six complex numbers.

FORMAT (2E10.2, E8.3, E9.4, E10.2, F8.4,3(E10.2,F8.2))

Alphanumeric Field Descriptors

FORTRAN provides two ways for transmitting alphanumeric informa-
tion; both specifications result in storing the alphanumeric information
internally in ASCIIL.

1. The specification Aw causes w characters to be read into,
or written from, a variable or array name.

2. The specification nH or a coded string constant allows
placing alphanumeric information into a FORMAT
statement.

The basic difference between A- and H-descriptor is that information
handled by A-descriptor is given a variable name or array name that
can be referred to for processing and modification; information handled
by string descriptors is not given a name and may not be referred to

or manipulated in storage in any way.

A-Descriptor. The variable name to be converted by the A-descriptor
may be any type of variable.

t

1. On input, nAw is interpreted to mean that the next n
successive fields of w characters each are to be stored as
ASCII information. For a real variable if w is greater than
6, only the 6 rightmost characters will be significant. If
w is less than 6, the characters will be left-adjusted and
the work filled out with blanks.

2. On output, nAw is interpreted to mean that the next n
successive fields of w characters each are to be the result
of transmission from storage without conversion.

Logical Field Descriptor

Logical variables may be read or written using the specification Lw,
where L represents the logical type of converstion and w is an integer
constant that represents the data field width.

1. On input, a value representing either true or false is stored
if the first nonblank character in the field of w characters
is a T or an F', respectively. If all the w characters are
blank, a value representing false is stored.

2. On output, a value of . TRUE. or . FALSE. in storage
causes w minus 1 blanks, followed by a T or an F,

respectively, to be written out. Output is right justified.

Blank Field Descriptor

The specification nX introduces n blank characters into an input/output
record where 0 < n <132,

1. On input, nX causes n characters in the input record to be
skipped, regardless of what they are.

2. On output, nX causes n blanks to be introduced into the
output record.

Repetition of Field Format

It may be desired to print or read n successive fields in the same format
within one record. This may be specified by using n, an unsigned
integer, before D-, E-, F-, G-, I-, L-, O-, or A-descriptor. Thus,
the field specification 3E12. 4 is the same as writing E12. 4, El2.4,

El2. 4.

Repetition of Groups

A limited parenthetical expression is permitted to enable repetition of
data fields according to certain format specifications within a longer
FORMAT statement. Thus, FORMAT (2(F10. 6, E10.2),14) is equivalent
to FORMAT (F10.6,E10.2,F10. 6, E10. 2,14). (See the '""Multiple-Record
Formats''section.) Two levels of parentheses, in addition to the
parentheses required by the FORMAT statement, are permitted. The-
second level of parentheses facilitates the transmission of complex
quantities.

Scale Factors

To permit more general use of D-, E-, F-, and G-descriptors, a
scale factor followed by the letter P may precede the specification.

The magnitude of the scale factor must be between -8 and +8, inclusive.
The scale factor is defined for input as follows:

19-scale factor . 4ornal quantity = internal quantity.

For output, the scale factor is defined as follows:
external quantity = internal quantity x 10Scale factor

For input, scale factors have effect only on F-conversion. For example,
if input data is in the form xx.xxxx and it is desired to use it internally
in the form . xxxxxx, then the FORMAT specification to effect this
~change is 2ZPF7.4. For output, scale factors may be used with D-,

E-, F-, and G-conversion.

For example, the statement FORMAT (I2,3F11. 3) might output the
following printed line:

27THBBY-93. 209BBBBYB-0. 008BVBHBBKBO. 554

But the statement FORMAT (12. 1P3F11l. 3) used with the same data
would output the following line:

27THBYB-932. 094BBYBY-0. 76BBBBBBS5. 536

whereas, the statement FORMAT (I2, -1P3F11. 3) would output the
following line:

27THBBYYB-9. 321BBBBB-0. 001 BBBBBI0. 055

A positive scale factor is assumed to be zero if no other value has been
given. However, once a value has been given, it holds for all D-, E-,
F-, and G-conversions following the scale factor within the same
FORMAT statement. This applies to both single-record formats and
multiple-record formats. Once the scale factor has been given, a
subsequent scale factor of zero in the same FORMAT statement must
be specified by OP. For F-type conversion, output of numbers,

whose absolute value is greater than or equal to 235 after scaling, is
output in E-conversion. Scale factors have no effect on I- and
O-conversion,

Multiple-Record Formats

To deal with a block of more than one line of print, a FORMAT
specification may have several different one-line formats separated

by a slant to indicate the beginning of a new blank line. Thus, FORMAT
(3F9.2, 2F10.4/8E1l4.5) would specify a multiline block of print in
which lines 1,3, 5,... have format (3F9.2,2F10.4), and lines 2, 4,
6,... have format (8E14. 5).

If a multiple-line format is desired in which the first two lines are to
be printed according to a special format, and all remaining lines
according to another format, the last line-specification should be
enclosed in a second pair of parentheses; for example:

FORMAT (12, 3E12.4/2F10.3,3%9.4/(10F12.4))

If data items remain to be output after the format specification has been
completely "used', the format repeats from the last previous paren-
thesis, which is a zero or a first level parenthesis. For example,
consider the FORMAT statement:

FORMAT (3E10.3, (12,2 (Fl2.4,F10.3)), D28.17)
0 1 2 21 0

The parentheses labeled 0 are zero level parentheses; those labeled 1
are first level parentheses; and those labeled 2 are second level
parentheses. If more items in the list are to be transmitted after the
format statement has been completely used, the FORMAT repeats from
the last first-level left parenthesis; that is, the parenthesis preceding I12.

As these examples show, both the slash and the final right parenthesis
of the FORMAT statement indicate a termination of a record.

Blank lines may be introduced into a multiline FORMAT statement by
inserting consecutive slashes, When n+l consecutive slashes appear at
the end of the FORMAT, they are treated as follows: for input, n+l
records are skipped; for output, n blank lines are written. When n+l
consecutive slashes appear in the middle of the FORMAT, n records are
skipped for both input and output.

Carriage Control

The WRITE (f, n) list and PRINT n, list statements prepare ASCII files

in edited format for the printer. The first character of each ASCII record
is examined to see if it is a control character to regulate the spacing.

If the first character is recognized as a control character, it is

replaced' by a blank in the printed line and the line printed after the

proper spacing has been effected. The control characters which will

be recognized are:

Character Effect
Blank Single space before printing
0 Double space before printing
1 Eject before printing

FORMAT Statement Read in at Object Time

FORTRAN permits specifying a FORMAT for an input/output list at
object time.

In the following example, A, B, and the array C are converted and
stored according to the FORMAT specifications read into the array
FMT at object time,

. DIMENSION FMT (12)
FORMAT (12A6)
READ ("ABGC'", 1)(FMT(I(, I=1, 12)
READ ("ABC', FMT)A, B, (C(1), I=1, 5)

5-16

The format read in at object time must take the same form as a source
program FORMAT statement, except that the word FORMAT is omitted;
that is, the variable format begins with a left parenthesis and terminates
with a right parenthesis.

Data Input Referring to a FORMAT Statement

These specifications must be followed when data is input to the object
program.

1. The data must correspond in order, type, and field with
the field specifications in the FORMAT statement. Punch-
ing begins in card column 1,

2. Plus signs may be omitted or indicated by a +. Minus
signs must be indicated.

3. Blanks in numeric fields are regarded as zcros; however,
leading zeros are suppressed.

4. Numbers for E- and F-conversion may contain any number
of digits, but only the high-order 9 digits of precision are
retained. For D-conversion, the high-order 14 digits of
precision are retained. In both cases, the number is
rounded to 9 or 14 digits of accuracy, as applicable.

To permit economy in typing, certain relaxations in input data format
are permitted.

1. Numbers for D-, E-, and F-conversion need not have their
decimal point punched; the format specification suffices.
For example, the number -09321+2 with the specification
El2.4 is treated as though the decimal point had been
punched between the 0 and the 9. If the decimal point is
punched in the card, its position overrides the position
indicated in the FORMAT specification.

2. Field width in an input record can be overruled by using a
comma as a delimiter.

5«17

NAMELIST STATEMENT

The NAMELIST statement and modified forms of the READ and WRITE
statements provide for reading, writing, and converting data without
using an input/output list in the input/output statement. Reference is
made to a NAMELIST statement instead of a FORMAT statement.

General Form

NAMELIST/X/A,B,...,C/Y/D,E,...F/2/G,H,...,1I

where

X,Y,Z,...are NAMELIST names

A,B,C,D,...are variable or array names

Fach list that is mentioned in the NAMELIST statement is given a
NAMELIST name. Thereafter, only the NAMELIST name is needed in’
an input/output statement to refer to that list. The following rules
apply to assigning and using a NAMELIST name:

1.

A NAMELIST name consists of one to eight alphanumeric
characters; the first character must be alphabetic.

A NAMELIST name is enclosed in slashes. The field of
entries belonging to a NAMELIST name ends either with a
new NAMELIST name enclosed in slashes or with the end
of the NAMELIST statement.

A variable name of any array name may belong to one or
more NAMELIST names.

A NAMELIST name must not be the same as any other name
in the program.

A NAMELIST name may be defined only once by its appear-
ance in a NAMELIST statement. After it has been defined
in the NAMELIST statement, the NAMELIST name may
appear only in READ, or WRITE, or PRINT statements.

6. A dummy argument of a subprogram cannot be used as a
variable in a NAMELIST statement.

In the following examples, the arrays A, I, and L and the variables B
and J belong to the NAMELIST name, NAMI; the array A and the
variables C, J, and K belong to the NAMELIST name, NAM2,

DIMENSION A(10), 1(5,5), L(10)
NAMELIST /NAMI1/A, B,1,J, L/NAM2/A, C,J,K

Data Input Referring to a NAMELIST Statement

When a READ statement refers to a NAMELIST name, the designated
input file is readied and input of data is begun. The first input data
record is searched for a $ as the fir st character, immediately
followed by the NAMELIST name, immediately followed by a comma or
one or more blank characters. If the search fails, additional records
are examined consecutively until there is a successful match or end-of-
file. When a successful match is made of the NAMELIST name on a
data record and the NAMELIST name referred to in a READ statement,
data items are converted and placed in storage.

Empty fields (detected as one of the pairs (=,), (B,), or (,,)) cause a
zero to be stored. The data items must be separated by commas. The
end of a group of data is signaled by a $ following the last item either
in the same data record as the NAMELIST name or anywhere in any
succeeding records.

The form that data items may take is:

1. Variable name = constant
CON=17.5
X(6) = 26.4

where the variable name may be an array element name or
a simple variable name. Subscripts must be integer
constants.

2. Array name = set of constants (separated by comrﬁas)

X=1.,2.,3.,5%6.3,2%3%4

where k* constant may be included to represent k constants
(k must be an unsigned integer). The number of constants
must be equal to the number of elements in the array.

3. Subscripted variable = set of constants (separated by
commas)

Y(4) = 9.,6.,19%1,8,3%7%2%4%0, 0

where k* constant may be included to represent k constants
(k must be an unsigned integer). A data item of this form
results in the set of constants being placed in array elements,
starting with the element designated by the subscripted
variable.
The number of constants given cannot exceed the number of
elements in the array that are included between the given
element and the last element in the array, inclusive.

4, Variable l/Variable 2 = constant
where Variable 1 is a counter which is set after the data
has been input, indicating the number of constants that
have been stored for Variable 2,

Constants used in the data items may take any of the following forms:
a. Integers, e.g., 1,2,3
b. Real numbers, e.g., 1.,2.,3.3

c. Double-precision numbers, e.g., -2.63Dl5

d. Complex nymbers, which must be written in the usual form,
(Cl, C2), where Cl and C2 are real numbers.

e. Logical constants, which must be written as T or . TRUE.,
and F or . FALSE.

f. String constants,

5«20

Any selected set of variable or array names belonging to the NAMIILIST
name, referred to by the READ statement, may be used as specified in
the preceding description of data items. Names that are made cquiv-
alent to these names may not be used unless they also belong to the
NAMELIST name.

1 s

First Data Card $NAM1} I(2,3)=5,0=4.2,B=4,

Second Data Card A(3)H7,6.4,1=2,3,8%4,3$

If this data is input to be used with the NAMELIST statement previously
illustrated and with a READ statement, the following actions take place.
The input file designated in the READ statement is prepared and the
first record is read. The record is searched for a $ in column 2,
immediately followed by the NAMEILIST name, NAMI. Since the search
is successful, data items are converted and placed in core storage.

The integer constant 5 is placed in I(2, 3), the real constant 4.2 is
converted to an integer and placed in J, and the integer constant 4 js
converted to real and placed in B. Since no data items remain in the
record, the next input record is read. The integer constant 7 is
converted to real and placed in A(3), and the real constant 6.4 is placed
in the next consecutive location of the array, A(4). Since L is an
array name not followed by a subscript, the entire array is filled with
the succeeding constants. Therefore, the integer constants 2 and 3 are
placed in L(1l) and L(2), respectively, and the real constant 4.3 is
converted to an integer and placed in L(3), L(4),..., L(10). The $
signals termination of the input for the READ operation.

Data Output Referring to a NAMELIST Statement

When data is output via NAMELIST, e.g., WRITE (6, LISTI1), all
variables associated with LISTI1, as specified in the NAMELIST state-
ment, will be output. The output values are labeled with the variable
name.

AUXILIARY INPUT/OUTPUT STATEMENTS

The following set of statements enable the user to manipulate magnetic tapes
and sequential disk or drum files:

REWIND Statement

General Form

REWIND el, e2,63, v e e er1

where the e, are integer, real, or double precision
. 1
expressions.

Execution of a REWIND statement causes the units whose logical unit num-
bers are the integer values of the‘ei to be rewound, in the order written.

BACKSPACE Statement

General Form

BACKSPACE e ,e_,e_,. . ., €
1" 2" 3 n

where the e are integer, real, or double precision
expressions.

When a BACKSPACE statement is executed, the units referenced by the
integer values of the e are each backspaced one logical record.

REWIND and BACKSPACE statements that are executed for tapes already
positioned at 'load point' have no effect.

END FILE Statement

General Form

END FILE el,ez,e3, e e

where the e. are integer, real, or double precision

. i . .
expressions whose values determine the units on
which end-of-file marks are to be written,.

This statement causes end-of-file marks to be written on the specified
units. Sometimes it is desirable to take a program that has been written
for output on magnetic tape and assign that logical unit number to some
other device (such as a line printer). Since such programs often write an
end-of-file and rewind their tapes at the end of the job, it is permissible

to specify an ENDFILE or REWIND operation on any device. When the
device is not a magnetic tape or sequential disk or drum file, the statements
have no effect. It is not permissible'to backspace such devices.

MEMORY -TO -MEMORY DATA CONVIERSION

The ENCODE and DECODE statements resemble ASCII WRITE and READ
statements; however, in an ENCODE/DECODE operation, there is no true
input/output, but rather a data conversion between an input/output list and

an internal buffer. The buffer is often an integer array and is established

by the programmer. Because there are definite physical limits to an extern-
al record, the length of the simulated internal record in an ENCODE/DECODE
operation can be established by the programmer. If several records are iden-
tified by the FORMAT being used, the second and subsequent records are
stored in memory in order of increasing memory address.

General Form

ENCOD
{DLECODPI:D} (e £y 850 D

where

c is the number of characters per internal record (an arith-
metic expression converted to integer mode)

f specifies a FORMAT statement (a FORMAT statement lable
or the name of some array that contains a FORMAT statement)

s is the starting location of the buffer area (an array name, an
array element, ar a scalar variable)

n is an integer variable (optional) into which the number of gen-

erated or scanned characters is stored, upon completion of the
operation

k is an input/output list,"

Bw23

ENCODE Statement

ENCODE converts the list to ASCII character strings, in accordance with the
FORMAT established by f, and places those strings in a buffer area that begins
at the starting location specified by s, When the number of characters generated
by the FORMAT statement exceeds the limits of the record, the overflow charac-
ters are lost and are not placed in the next record. When fewer characters are
generated than are required to fill the record, it is completed with trailing
blanks, As with a WRITE statement, the first operation accomplished on each
record is to fill it with blanks, even before any characters have been generated.

DECODE Statement

DECODE initiates decoding of the character string starting at location s, in
accordance with the FORMAT indicated by f, and stores the decoded informa-
tion i1n the list k, If the FORMAT statement specifies more characters from
a record than are indicated by c, it is assumed that the extra characters are
to be blanks and, therefore, they are not taken from the following record. A

new record is started only when it is requested specifically by the FORMAT
statement,

The setting of n is optional; when it is desired, it is set to the number of char-

acters scanned. This can be used to advantage when scanning with widthless
formats. '

5«24

VI...

Indirect File and

Data Base Management
Statements

In addition to the ''standard'" FORTRAN input/output statements, described
in Section V, the 2+2 FORTRAN subsystems provides an interface to the
more general 2+2 file and data-base manager subsystem. This interface
consists of a simple set of declarative and operational statements useful
in building, manipulating, and accessing data bases used in storing and
retrieving information.

With respect to the data-base manager, a file may be considered to be a
named space consisting of an ordered sequence of elements. All internal
structuring defined for a file, and all access to the contents of a file, are
controlled by the data-base manager. ‘

The structure, access, and control of a file is determined by the "schema"
definition associated with a file, A ''schema'' allows for the definition of

file to include logical "areas'" within the file. '""Records' within "areas'' of

a file are also defined. A '"record" is further defined into elements consisting
of a name, type, mode, and size., '"Schema', '""areas', and '"records', once
defined are referred to by name. Rather than be concerned with the form or
structure of the data-base manager, itself, the FORTRAN programmer need
only concern himself with the manipulation of files and data bases in terms of
the statements described below.

NOTE
For a complete description of the data-base manager, the FORTRAN
programmer is advised to obtain the 2+2 system documentation of the

data-base manager for a detailed description of ''schema'’, '"area',
"record", etc.

6-1

The statements are grouped as follows:

l.

Directory Content Statements

The statements CREATE, RENAME, ERASE, and DESTROY
transmit information to the file manager used to build, modify
and update files. CLOSE file indicates deactivation of a
previously active file.

General Input/Output Statements

The RETRIEVE statement causes transmission of a set of
quantities from a file to core storage,

The statements, INSERT, APPEND, REPLACE, and REMOVE
cause transmission of a set of quantities from core storage to
a file in a manner appropriate to the specified statement.

IFILE DESIGNATION

Files may be designated by a file name constant or file name variable,
Within the FORTRAN system, the file name ("A'') blank is used to designate
the user terminal.

DIRECTORY CONTENT STATEMENTS

1. CREATE a file

The CREATE statement is used to enter a new file name in the user's
directory. The file is initially set to contain no information, Optionally,
access privileges and additional user access may be specified.

General Form

CREATE file name

where: file name is a file designator which
may be a file name constant or file
name variable.

Examples:

CREATE "A"
CREATE "BETA"
CREATE "PAYABLES"

The creator of a file is assigned full access privileges to that file.
Those privileges include READ, WRITE, and EXECUTE access.

To assign privileges to other users who wish to access a file, the
CREATE statement may be expanded in the following form:

CREATE file name/USER ID/ACCESS/USER ID/ACCESS...

Where file name is file designator:

USER ID is a unique user identification string (not currently

defined as to form or length) delimited by slashes
(division signs).

ACCESS is any combination of the following words separated by
commas, -READ, -WRITE, EXECUTE, APPEND, or PASSWORD.

Any number of users may be authorized access to a file. However,
access privileges must be specified for each authorized user. Public

access is specified by a null user ID(i.e., //). Consider,

CREATE "PAYROLL"/AB234/READ/J. SHMOE/APPEND, EXECUTE

6-3

2,

Creates the file named MILLISIN. It also makes the file public with
both READ and EXECUTE privileges.

RENAME a file

The RENAME statement allows a user to rename any file currently in

a user's directory. Optionally, additional users and access privileges
may be specified,

General Form

RENAME file name, file name

where: file name is a file designator which
may be a file name constant or file
name variable,

Example:

RENAME "NEWTRANS", "OLDTRANS"

This renames the file currently in the user's directory as NEWTRANS
to a file named OLDTRANS. The name NEWTRANS is removed from
the user's directory, replaced by the name OLDTRANS.

Additional access privileges may be specified while renaming a file by
attaching user ID's and access. For example,

RENAME "ABC", "DEF"/USER27/READ, WRITE/USER33/EXECUTE

File ABC is renamed as file DEF. In addition, USER27 is authorized
to READ and WRITE the file, and USER33 is granted execute only access.

3.

ERASE a file

The ERASE statement allows a user to erase or clear the information
currently contained in one or more files.

General Form

ERASE file name, filename, ...

where: file name is a file designator which
may be a file name constant or file
name variable.

Examples:

ERASE "R"
ERASE "MONTHO04", "MONTHO05'", "MONTHO06"

DESTROY a file

The DESTROY statement provides the method for destroying both the
information contained in a file and removing the entry containing the
name of the file in the user's directory. That is, both the contents and
the name of the file are destroyed and unrecoverable,

General Form

DESTROQY file name, file name,

where: file name is a file designator which
may be a file name constant or file
name variable,

6-5

Examples:

DESTROY "ACCOUNTS"
DESTROY "SMALLESTY,"AVERAGE" | "LARGEST"

5. CLOSE a file

The CLOSE statement is used to signal the system that processing of

an active file has been completed. The specified file is deactivated,
Subsequent statements referencing the file will reactivate the file and

its contents. This statement need only be executed if a given FORTRAN
program is concerned about simultaneously activating more files than
the maximum number of allowable active files defined by the 2+2 system.

General Form

CLOSE file name, filename,....

where: file name is a file designator which may
be a file constant or file name variable.

Examples:

CLOSE "XYzZ"
CLOSE "FILE1","FILE3","FILE5"

GENERAL INPUT/OUTPUT STATEMENTS

Input

The RETRIEVE statement inputs quantities from a file to be processed by the
computer program,

6-6

General Form

RETRIEVE file name (schema(area(record))) list :

where: file name is a file designator.
schema is the schema name applied to file name.
area is an area name within the schema being accessed.
record is a record name within the area of a schema.
list is a list specification as defined under LIST
SPECIFICATION (Section V, pg. 5-5).

The RETRIEVE statement reads one record from file name using schema/
area/record name to isolate the desired record. The contents of the variables
named in the accessed record replace the contents of those same variables in
the FORTRAN program and may be used for computation.

The list specification is optional and need only be used when it is desirable
to access only a few of the items defined in a record definition.

There must be a one-to-one correspondence between the variable names in
the FORTRAN program, and the variable names used in a schema/area/record
name definition. .

The parenthesized arguments - area name and record name are optional so
long as no ambiguity exists within the schema.

Examples:

RETRIEVE "MASTFILE" (SCHI(AREAZ(REC3)))

RETRIEVE "MASTFILE"(SCHI(AREAZ(REC3)))A, B
In this example, assume the definition of REC3 defined
the variables A, B,C,D&E. Only variable A,B are
accessed via this statement,

RETRIEVE "MASTFIL"(SCHI1)
This statement would be equivalent to example 1 if
the schema, SCHI1, defined only 1 area and 1 record.

Output

The statements, INSERT, APPEND, REPLACE, and REMOVE, output
quantities contained in FORTRAN program variables to a file managed
by the data-base manager.

General Form

APPEND

INSERT NEXT

INSERT PRIOR file name (schema(area{record))) list
REMOVE

REPLACE

where: file name is a file designator

schema is the schema name applied to file name.

area is an area name within the schema being accessed
accessed,

record is a record name within the area in the
schema.,

list is a list specification as defined under LIST
SPECIFICATIONS (Section V),

The output statements write one record from core storage to file name
according to the schema/area/record names specified. The contents of
variables in core storage (FORTRAN program) defined by the schema are
written appropriately into the specified file using the desired schema.

The APPEND statement adds a record at the end of the file according to
the specified schema.

The INSERT NEXT statement inserts a record after the current record
position of the file according to the specified schema.

The INSERT PRIOR statement inserts a record just before the current
record position of the file according to the specified schema.

6-8

The REMOVE statement removes or deletes the record at the current
record position of the file. In this case, the schema definition is used
only to isolate and remove the desired record from the file.

The REPLACE statement replaces the record at the current record
position of the file according to the specified schema.

The list specification is optional and need only be used when it is desirable
to write out fewer items in a record than specified in the schema definition
of a given record,

There must be a one-to-one correspondence between the variables names
in the FORTRAN program, and the variable names used in a schema/area/
record name definition.

The parenthesized arguments - area name and record name are optional
so long as no ambiguity exists within the schema.

Examples:

APPEND "ORDERS'"(ORDSCH(NEWAREA(NEWREC)))

APPEND "ORDERS'"(ORDSCH)

This statement is equivalent to the first example
if the "ORDERS'" file consists of one area and one
record type.

INSERT NEXT "DATEFILE" (DATSCH(HOLIDAY)))

This statement writes one record in the "DATEFILE"
according to the schema DATSCH. Area HOLIDAY

is written, and the statement assumes only one

one record type, hence no record name appears.

6-9

INSERT PRIOR "'SIGMAS" (STATSCH(SQUARES(SUM))) A, B

This statement inserts a record prior to the current
record position of the file SIGMAS. The schema
STASCH, with area SQUARES, containing record SUM
is written. However, since a list is specified, only
variables A & B of record SUM are written - even if
the record definition defined more elements than A & B.

REMOVE "CATALOG" (CATSCH((NAMREC)))

The parenthesized quantities in the example show a record
deleted from the file "CATALOG'". This example assumes
the schema CATSCH defines only one area. Within the one
area, the current record NAMREC is deleted.

The following examples illustrate possible combinations of optional parameters.
REPLACE "ENGFIL'" (SCHEMA1(AREA2(REC3)))
REPLACE "ENGFIL" (SCHEMA1(AREAZ(REC))) A,B,C
REPLACE "ENGFIL" (SCHEMAI1(AREA2))
REPLACE "ENGFIL'" (SCHEMAI1((REC3)))

REPLACE "ENGFIL" (SCHEMALl)

VII...
Subroutines, Functions
3

Subprogram Statements

The three basic elements of scientific programming languages -
arithmetic, control, and input/output — are given added flexibility
through subroutines. Subroutines are program segments executed
under the control of another program and are usually tailored to per-
form some often-repeated set of operations. A subroutine is written
only once, but may be used again and again; it avoids a duplication of
effort by eliminating the need for rewriting program segments for use
in common operations. There are four classes of subroutines in
FORTRAN: statement functions, built-in functions, FUNCTION
subprograms, and SUBROUTINE subprograms. The major differences
among; the four classes of subroutines are as follows:

1. The first three classes may be grouped as functions; they
differ from the SUBROUTINE subprogram in the following
respects:

a. Functions return a value that is utilized in evaluating
an expression,

b. A function is referred to by an arithmetic expression
containing its name; a SUBROUTINE subprogram is
referred to by a CALL statement.

2. The statement function and built-in function are open sub-
routine; that is, a subroutine that is incorporated into the
object program each time it is referred to in the source
program. The two other FORTRAN subroutines are closed;
that is, they appear only once in the object program.

NAMING SUBROUTINES

All four classes of subroutines are named in the same manner as a
FORTRAN variable

1. A subroutine namec consists of one to cight alphanumeric
characters, the first of which must be alphabetic.

2. The type of the function, which determines the type of the
result, may be defined as follows:

a. The type of statement function may be indicated by the
name of the function or by placing the name in a Type
statement.

b. The type of a FUNCTION subprogram may be indicated
by the name of the function (if it is real or integer) or
by the name of the function (if it is real or integer) or
by writing the type (REAL, INTEGER, COMPLEX,
DOUBLE PRECISION, LOGICAL) preceding the word
FUNCTION. In the latter case, the type implied by
name is overridden. The type of the FUNCTION sub-
programs in the Subroutine Library (the mathematical
subroutines) is defined. Therefore, they need not be
typed elsewhere.

c. The type of a built-in function is indicated within the
FORTRAN compiler and need not appear in a Type
statement

3. The name of a SUBROUTINE subprogram has no type and is
not defined, since the type of results returned is dependent
only on the type of the variable names in the dummy
argument list.

DEFINING SUBROUTINES

Statement Functions

Statement functions are defined by a single arithmetic statement and
apply only to the source of the program unit containing the definition.

General Form

a=b

where

a is a function name followed by parentheses enclosing
its arguments, which must be distinct, nonsubscripted
(dummy) variables, separated by commas

b is an expression that does not involve subscripted
variables. Any statement function appearing in b must
have been previously defined.

1. As many as desired of the variables appearing in b may be
stated in a as the arguments of the function. Since the
arguments are dummy variables, their names, which
indicate the type of the variable, may be the same as
names appearing elsewhere in the program of the same
type.

2. Variables appearing in the function-defining expression b
that are not dummy variables stated in a are considered to
be variables defined within the parent program.

3. A statement function definition must precede the first usage
in the source program,

4. The type of any statement function name or argument that
differs from its implicit type must be defined preceding
its use in the statement function definition.

Examples:

FIRST(X) = A%X+B
JOB(X, B) = C*X+B
THIRD(D) = FIRST(E)/D
MAX(A,I) = A¥*[-B-C

A¥x¥2, GE.C/D

LOGFCT(A, C)

The arithmetic statement function FIRST(C), in the previous example,
might be used as follows:

A

> 0w

1

6.2
3.3
2.0+5.2*FIRST(C)

Built-In Functions

Built-in functions are predefined as opén subroutines that exist within
the FORTRAN compiler. A list of available built-in functions is given
in Figure 7-1.

The compiler checks the type or number of arguments for a built-in
function. Using the wrong type of argument results in an automatic
conversion produced by the compiler. Using the wrong number of
arguments results in that function being processed as an external.

Examples:

A = ABS(X)
AA = FLOAT (II)
C = AMAXI(C1,C2,C3,C4)

FUNCTION Subprogram

FUNCTION subprograms are defined by a special FORTRAN statement,
FUNCTION.

General Form
FUNCTION name (aj,ap,..., an)
REAL FUNCTION name (aj,a,,...,2a,)
INTEGER FUNCTION name (al, ass ey an)
EXTENDED INTEGER FUNCTION name
DOUBLE PRECISION FUNCTION name (aj,as,...,a,)
COMPLEX FUNCTION name (aq, Ay, ey an)
LLOGICAL FUNCTION name (al, COIRRRE an)
STRING FUNCTION name
where
name is the symbolic name of a function
the arguments ajsan, ...y, of which there must be
at least one, are dummy names
the type of the function may be explicitly stated preceding
the word FUNCTION, or implicitly indicated by the first
letter of the FUNCTION name

1-4

Number of Type of
Functlon Definition Argumenta Name Argument Function
Absolute value | Argl 1 ABS Real Real
IARS Integer Integer
Truncation Sign of Arg 1 AINT Real Real
times largest INT Real Integer
integer | Arg|
Remaindering Argl (mod Argz) 2 AMOD Real Real
(see note below) oD Real Real
MOD Integer Integer
Choosing an(Argl, 22 AMAXO | Integer Real
largest value Argz,...) AMAX1 Real Real
MAXO Integer Integer
MAX1 Real Integer
Choosing Min(Argl, =2 AMINO | Integer Real
smallest value Atgz,...) AMIN1 | Real Real
’ MINO Integer Integer
MIN1 Real Integer
Float Conversion from 1 FLOAT | Integer Real
integer to real
Fix - Conversion from 1 IFIX Real Integer
real to integer
with truncation
Transfer Sign of Ar 2 SIGN Real Real
of sign times| Arglr ISIGN | Integer Integer
Positive Arg. - Min 2 DIM Real Real
difference (Argl, Argz) IDIM Integer Integer
Obtaln most 1 SNGL Double Real
significant part
of double-
precision
argument
Obtain real 1 REAL Complex Real
part of complex
argument
Obtain 1 ATMAG | Complex Real
imaginary part
of complex
argument
Absolute value | Arg| 1 DABS Double Double
Truncation sign of Arg 1 IDINT Double Integer
times largest
integer <| Argl
Choosing Hax(ArgI, 22 IMAX1 Double Double
largest Argz,...)
value
Choosing Min(Argl, 22 DMIN1 | Double Double
smallest Argz,...)
value
Transfer Sign of Argz 2 DSIGN | Double Double
of sign timea|Argﬂ
Express single~ D=(Arg, 0) 1 DBLE Real Double
precision
argument
in double-
precision form
Express two real C-Atgl+1Argz 2 CMPLX | Real Complex
arguments in
complex form
Obtain conjugate For Arg=X+iY, 1 CONJG | Complex Complex
of a complex C=X-1Y
argument

NOTE: The function HOD(Argl,Argz) is defined as Arg] -[ArgI/Argz] Arg,, where rArgI/Argzﬁ

is the truncated value of that quotient.

Arg, should not exceed 1011* Argz.

Figure 7-1.

Built-In Functions

7-5

Examples:

FUNCTION ARCSIN (RADIAN)

REAL FUNCTION ROOT (A, B, C)

INTEGER FUNCTION CONST (ING, SG)

DOUBLE PRECISION FUNCTION DBLPRE (R, S, T)
COMPLEX FUNCTION CCOT (ABI)

LOGICAL FUNCTION IFTRU (D, E, F)

1. The FUNCTION statement must be the first statement of a
FUNCTION subprogram. At least one dummy name must
be enclosed in parentheses.

2. The name of the function must appear at least once as a
variable on the left side of an assignment statement or in an
input statement.

Example:

FUNCTION CALC (A, B)

CALC=7+B

RETURN

By this method the output value of the function is returned
to the calling program. Unlike arithmetic statement
functions, those variables not appearing in the FUNCTION
statement as dummy variables are considered to be
defined within the FUNCTION subprogram.

The calling program is the program in which a subprogram
is referred to or called.

The called program is the subprogram that is referred to or
called by the calling program.

The arguments may be considered dummy variable names
that are replaced at the time of execution by the actual
arguments supplied in the function reference in the calling
program. The actual arguments must correspond in number,
order, and type with the dummy arguments.

-When a dummy argument is an array name, a statement
with dimension information must appear in the FUNCTION
subprogram,; also, the corresponding actual argument must
be a dimensioned array name.

None of the dummy arguments may appear in an EQUIV-
ALENCE statement in the FUNCTION subprogram nor may
they appear in a COMMON, DATA, or NAMELIST statement,

The FUNCTION subprogram must contain one path logically

terminated by a RETURN statement and physically terminated
by an END statement.

The FUNCTION subprogram may contain any FORTRAN
statements except SUBROUTINE, BLOCK DATA, or
another FUNCTION statement.

The actual arguments of a FUNCTION subprogram may be
any of the following:

a. A constant.

b. A subscripted or nonsubscripted variable or an array
name.

c. An arithmetic or a logical expression.
d. The name of a FUNCTION or SUBROUTINE subprogram.
A FUNCTION subprogram is referred to by using its name

as an operand in an arithmetic expression and following it
with the required actual arguments enclosed in parentheses.

7=

The following example shows the use of a FUNCTION subprogram?

Calling Program Called Program

FUNCTION CALC (A, B)

X=Y#*%2+D*CALC(F, Q) CALC

RETURN

SUBROUTINE Subprogram

General Form

SUBROUTINE name (al, P IRER an) or SUBROUTINE name

where

name is the symbolic name of the subprogram

each argument a, if any, is a dummy name or is the
character asterisk and denotes a nonstandard return.

Examples:

SUBROUTINE MATMPY (A, N, B, J, *, %)
SUBROUTINE QDRTIC (B, A, C, ROOTI1, ROOT?2)
SUBROUTINE OUTPUT

1.

The SUBROUTINE statement must be the first statement of
a SUBROUTINE subprogram.

The SUBROUTINE subprogram may use one or more of its
arguments to return output. The arguments so used must
appear on the left side of an arithmetic statement or in an
input list within the subprogram.

The arguments may be considered dummy variable names
that are replaced at the time of execution by the actual
arguments supplied in the CALL statement, which refers
to the SUBROUTINE subprogram. The actual arguments
must correspond in number, order, and type with the
dummy arguments. Unlike FUNCTIONS, ‘a SUBROUTINE
need not have any arguments.

78

4. When a dummy argument is an array name, a statement
containing dimension information must appear in the
SUBROUTINE subprogram; also the corresponding actual
argument in the CALL statement must be a dimensioned
array name,

5. None of the dummy arguments may appear in an EQUIV-
ALENCE, DATA, NAMELIST, or COMMON statement in the
SUBROUTINE subprogram.

6. The SUBROUTINE subprogram must contain at least one
path that terminates with a RETURN statement and phys-
ically terminates with an END statement.

7. The SUBROUTINE subprogram may contain any FORTRAN
statements except FUNCTION, another SUBROUTINE
statement, or BLOCK DATA.

8. The character *, found as an argument, denotes an alternate
EXIT from the subroutine.

Returns from Subprograms

A logical termination of any subprogram is the RETURN statement,
which returns control to the calling program. There may be any
number of RETURN statements in the program.

General Form

RETURN
RETURN i

where
i is an arithmetic expression whose truncated value, n,

denotes the nth dummy statement reference indicated by
an * in the argument list, reading from left to right

The normal sequence of execution following the RETURN statement of
a SUBROUTINE subprogram is to the next executable statement
following the CALL statement in the calling program. It is also
possible to return to any labeled executable statement in the calling
program by using a special return from the called subprogram. This
return must not violate the transfer rules for DO loops. (For an
example, see nonstandard return in the CALL STATEMENT section.)

7=9

Nonstandard returns may be best understood by considering that a CALL
statement using the nonstandard return is logically equivalent to a CALL,
a LOGICAL IF, and a computed GO TO statement in that sequence.

FUNCTION subprograms must not have nonstandard returns.

Multiple Entry Points into a Subprogram

The normal entry into a SUBROUTINE subprogram from the calling
program is by a CALL statement that refers to the subprogram name.
The normal entry into a FUNCTION subprogram is made by a function
reference in an expression. Entry is made at the first exccutable
statement following the SUBROUTINE or FUNCTION statement.

It is also possible to enter a subprogram at an alternate entry point by
a CALL statement or a function reference that refers to an ENTRY
statement in the subprogram. Entry is made at the first executable
statement following the ENTRY statement.

ENTRY statements are nonexecutable and, therefore, do not affect
control sequencing during normal execution of a subprogram. The
order, type, and number of arguments need not agrec between the
SUBROUTINE or FUNCTION statement and the ENTRY statements,
nor do the ENTRY statements have to agree among themselves in these
respects, Each CALL or FUNCTION reference, however, must agree
in order, type, and number with the SUBROUTINE, FUNCTION, or
ENTRY statement that it refers to.

The general form of the ENTRY statement in the called subprogram is:

General Form

ENTRY name (bl’ bZ’ Ce ey bn)

where
name is the symbolic name of an entry point

each b, is a dummy argument name corresponding to an
actual argument in a CALL statement or in a function
reference. An ENTRY into a FUNCTION subprogram must
have at least one argument

an ENTRY into a SUBROUTINE subprogram may have
arguments of the form? indicating nonstandard returns
(dummy statement references)

7=10

Example:

Calling Program Called Program

SUBROUTINE SUB1(U,V,W,X,Y,7)

1 CALL SUBI1(A,B,C,D,E, F) .
10 U=V

2 CALL SUB2(G,H,P) .
GO TO 60

ENTRY SUB2(T, U, V)
GO TO 10
3 CALL SUB3 60

. ENTRY SUB3
END
END
In the preceding example, the execution of statement 1 causes entry into
SUBI1, starting with the first executable statement of the subroutine.
Execution of statements 2 and 3 also cause entry into the called program,

starting with the first executable statement following the ENTRY SUB2
(T,U, V) and ENTRY SUB3 statements, respectively.

Additional Rules for Entry IPoints

The following rules also apply to entry points:

1. A dummy argument may not appear in any statement unless
it appeared in an argument list of a previously executed
FUNCTION, SUBROUTINE, or ENTRY statement.

2. In a FUNCTION subprogram, only the FUNCTION name may
be used as the variable to return the function value to the
using program. The ENTRY name may not be used for this
purpose. |

3. An ENTRY name may appear in an EXTERNAL statement
in the same manner as a FUNCTION or SUBROUTINE

name.

4. Entry into a subprogram initializes all references in the
entire subprogram from items in the argument list of the
CALL or function reference. (For instance, if, in the
example that appeared in the section '"Multiple Entry Points
into a Subprogram, ' entry is made at SUB2, the variables
in statement 10 will refer to the argument list of SUB2.)

5. The appearance of an ENTRY statement does not alter the
rules regarding the placement of statement functions in
subroutines. Statement functions may follow an ENTRY
statement only if they precede the first usage following

the SUBROUTINE or FUNCTION statement.

6. None of the dummy arguments of an ENTRY statement may
appear in an EQUIVALENCE, COMMON, NAMELIST, or
DATA statement in the same subprogram,

Subprogram Names as Arguments

FUNCTION and SUBROUTINE subprogram names may be the actual
arguments of subprograms. To distinguish these subprogram names
from ordinary variables or array names when they appear in an
argument list, they must appear in an EXTERNAL statement.

Examples:

EXTERNAL SIN, COS
CALL SUBR(A, SIN, B)

CALL STATEMENT

The CALL statement is used to refer to a SUBROUTINE subprogram.

General Form

CALIL subr (al, YRR an)

where

subr is the name of a SUBROUTINE subprogram

ajsa,,...,a are the n arguments
n

Examples:

CALL MATMPY(X,5,10,Y,7,2)

CALL QDRTIC(9.732,Q/4.536, R-S*%2. 0,X1, X2)
CALL OUTPUT

CALL ABC(X, B, C, *5, %200)

The CALL statement transfers control to a SUBROUTINE subprogram
and presents it with the actual arguments.

The arguments may be any of the following:
1. A constant.

2. A subscripted or nonsubscripted variable or an array
name.

3. An arithmetic or logical expression.
4. The name of a FUNCTION or SUBROUTINE subprogram.

5. *n where n is the statement label for a nonstandard return
and * differentiates a statement label from an integer
constant.

The arguments presented by the CALL statement must agree in number,
order, type, and array size (except as explained under the DIMENSION
statement) with the corresponding dummy arguments in the SUBROUTINE
or ENTRY statement of the called subprogram.

Example of a nonstandard return:

Calling Program

10 CALL SUB(A, B, C, %30, *40)
20 ---

39 -
40 S

END

100
200
300
400

Called Program

SUBROUTINE SUB(X, Y, 7, %, %)

IF (R) 200, 300,400
RETURN
RETURN
RETURN 2
END

In the preceding example, execution of statement 10 in the calling
program causes entry into subprogram SUB. When statement 100 is
executed, the return to the calling program will be via statement 20,
30, or 40, if R is less than, equal to, or greater than zero,

respectively.

Mathematical Functions

Many commonly used mathematical functions are provided for use in a
FORTRAN program. All the names of these subprograms are auto-
matically typed by the FORTRAN IV Compiler; therefore, they need not

appear in Type statements.

Variables used as arguments of mathematical functions are checked for

type and converted if required.
in Figure 7-2.

7=-14

The mathematical functions are listed

Kumbar of Type of
Function Definition Arguments Name Atgument Function
Exponential .Arg) 1 EXP Beal Real
Natural log. (Arg) 1 ALOG Real Raal
logaritha :
Common logm(Au) 1 ALOG10 Real Real
logarithm
Arctangent arctan(Arg) in radians 1 ATAN Real Real
arctan 0“'81 lAl:g2 I 2 ATAN2 Real Real
Trigonometric sin(Arg in radians) 1 SIN Real Real
sine
Trigonometric cos{Arg in radiang) 1 Ccos Real Real
cosine
Hyperbolic tanh (Arg) 1 TANH Real Real
tangent '
Square root (At;)llz 1 SQRT Real Real
Remaindering Argy (mod Arg,) 2 ™MOD Double Double
Exponential .Arg 1 DEXP Double Double
Natural log.. (Arg) 1 DLOG Double Double
logarithm
Common logm(Arg) 1 DLOG10 Double Double
logarithm
Arctangent arctan(Arg) in radians 1 DATAN Double Double
‘ arctan(Arg, /Arg, ¥ 2 DATAN2 Double Double
Trigonometric sin(Arg in radians) 1 DSIN Double Double
sine
Trigonometric cos (Arg in radians) 1 DCOS Double Double
cosine
Square root (Arg) 172 1 DSQRT Double Doub le
For Arg=X+iY
Absolute value C= 1 CABS Complex Real
o)t/
Exponential .Arg 1 CEXP Complex Complex
Natural losa (Arg) 1 CLOG Complex Complex
logarithm
Trigonometric sin(Arg in radians) 1 CSIN Complex Complex
sine
Trigonometric cos (Arg in rsdisns) 1 CCOoS Complex Complex
cosine
Square root (Atg)ll 2 1 CSQRT Complex Complex

* In the source statement, Arg‘ and Atgz are separated by a comma.

Figure 7-2.

Mathematical FUNCTION Subprogram

BLOCK DATA SUBPROGRAM

A way to enter data into a labeled COMMON block during compilation is
by using a BLLOCK DATA subprogram. (Data may also be entered into
blank COMMON by the use of a DATA statement in any program or
subprogram.) This subprogram may contain only the DATA, COMMON,
DIMENSION, and Type statements associated with the data being
defined.

General Form

BLOCK DATA

1. The BLLOCK DATA subprogram may not contain any
executable statements.

2. The first statement of this subprogram must be the BLOCK
DATA statement.

3. All elements of a COMMON block must be listed in the
COMMON statement even though they do not all appear in
the DATA statement; for example, the variable A in the
COMMON statement in Figure 7-3 does not appear in the
DATA statement. Therefore, A remains undefined until
execution of the program.

4. If two or more BLOCK DATA subprograms occur for the
same application, the data specified by each of them is
entered into the appropriate COMMON blocks. The data
from the last such subprogram is retained for any area of
a COMMON block that is referred to more than once.

BLOCK DATA

COMMON/ELN/C,A,B/RMC/Z,Y

DIMENSION B(4), Z(3)

DOUBLE PRECISION Z

COMPLEX C

DATA (B(I),I=1,4)/1.1.1.2,2%1.3/,C/(2. 4, 3. 769)/
Z(1)/7.6498085D0/

END

Figure 7-3. BLOCK DATA Subprogram

7-16

VIII...

Specification Statements

Specification statements provide information about storage requirements
and about the constants and variables used in the program.

DIMENSION STATEMENT

General Form

DIMENSION vl(11), Vz(lz), e, Vn(ln)
where
each v, is an array variable

each i, is composed of from one to seven unsigned integer
constants or integer variables, separated by commas
(Integer variables may be a component of i,, only when the
DIMENSION statement appears in a subprogram.)

The DIMENSION statement provides the information necessary to
allocate storage for arrays in the object program, and it defines the
maximum size of the arrays. An array may be declared to have from
one to seven dimensions by placing it in a DIMENSION statement with
the appropriate number of subscripts appended to the variable.

1. The DIMENSION statement must precede the first appear-
ance of any executable statement, any NAMELIST statement,

or any DATA statement in the program, except when
NAMELIST is used for DEBUG.

2. A single DIMENSION statement may specify the dimensions
of any number of arrays.

3. If a variable is dimensioned in a DIMENSION statement, it
must not be dimensioned elsewhere.

4. Dimensions may also be declared in a COMMON or a Type
statement. If this is done, these statements are subject to

all the rules for the DIMENSION statement.

In the following examples, A, B, and C are declared to be array
variables with 4, 1, and 7 dimensions, respectively.

Examples:

DIMENSION A(l, 2, 3,4), B(10)
DIMENSION C(2,2,3,3,4,4,5)

Adjustable Dimensions

The name of an array and the constants that are its dimensions may be
passed as arguments to a subprogram. In this way, a subprogram may
perform calculations on arrays whose sizes are not determined until
the subprogram is called. The following example illustrates the use of
adjustable dimensions.

SUBROUTINE MAYMY(...,R, L, M,...)
DIMENSION. .., R(L, M), ...

DO 100 I=1, L

1. Variables may be used as dimensions of an array only in
the DIMENSION statement of a FUNCTION or SUBROUTINE
subprogram. For any such array, the array name and all
the variables used as dimensions must appear as dummy
arguments in the FUNCTION, SUBROUTINE, or ENTRY
statement.

2. The adjustable dimensions are not alterable within the

subprogram, The values are scanned on entry so the
variables may be used as the programmer sees fit,

8§-2

3. The true dimensions of an actual array must be specified
in a DIMENSION statement of the calling program.

4. The calling program passes the specific dimensions to the
subprogram. These specific dimensions are those that
appear in the DIMENSION staterment of the calling program.
Variable dimension size may be passed through more than
one level of subprogram. The specific dimensions passed
to the subprogram as actual arguments cannot exceed the
true dimensions of the indicated array.

5. Variables used as dimensions must be integers. If these
variables are not implicitly typed by their initial letters, a
Type statement must precede the dimension in which they
are used as adjustable dimensions.

Example:

SUBROUTINE SUB(X, Y, Z)
INTEGER Y, Z
DIMENSION X(Y, Z)

COMMON STATEMENT

General Form

COMMON a,b,c,.../r/d,e,f,.../s/g,h,...

where
a,b,...are variables that may be dimensioned
/r/,/s/,... are labels that are block names
Examples:

COMMON A, B,C/X/Q,R/YY/M,P,Q
COMMON /Z/G,H,J/ /D, F

There are two types of COMMON storage provided in FORTRAN IV,
Blank Common provides an area in which data can be exchanged between
various subprograms which may or may not reside in memory at the
same time. Labeled Common provides a similar area where data can
be exchanged only between those subprograms which currently reside in
memory and which make reference to the Labeled Common block.

Variables, including array names, appearing in a COMMON statement
are assigned locations relative to the beginning of a particular COMMON
block. This COMMON area may be shared by a program and its
subprograms.

l.

If the variables appearing in a COMMON statement
contain dimension information, they must not be
dimensioned elsewhere.

The order in which storage is assigned inh the COMMON
area is determined by the sequence in which the variables
appear in the COMMON statement, beginning with the first
COMMON statement of the program.

Elements placed in COMMON may be placed in separate
labeled blocks. These separate blocks may share space
in core storage at object time. Blocks are given names
and those with the same name occupy the same space.

COMMON block names. The symbolic name of a block.
which is one to eight alphanumeric characters the first of
which is alphabetic, precedes the variable names belonging
to the block. The block name is always embedded in
slashes; for example, /BB/. It must not be the same as
the name of any other subprogram that is part of the same
job; however, it can be the same as a variable name. In
the two types of COMMON blocks:

a. Blank COMMON is indicated either by omitting the
block name if it appears at the beginning of the COMMON
statement or by preceding the blank COMMON variable
by two consecutive slashes.

b. Labeled COMMON is indicated by preceding the labeled
COMMBON variables by the block name embedded in
slashes.

The field of entries pertaining to a block name ends with a
new block name, the end of the COMMON statement, or a

- blank COMMON designation.

Block name entries are cumulative throughout the program.
For example, the COMMON statements

COMMON A, B,C/R/D,E/S/F
COMMON G, H/R/1/S/P

have the same effect as the statement
COMMON A,B,C,G,H/R/D,E,1/S/F, P

Blank COMMON may be any length. Labeled COMMON
must conform to the following size requirement: All
COMMON blocks of a given name must have the same
length in all the programs that are executed together.

Variables brought into a COMMON block through EQUIV-
ALENCE statements may increase the size of the block,
but they may not reestablish the origin of the block nor
reorder the sequence in which variables are stored in the
block.

Two variables in COMMON may not be made equivalent
to each other, directly or indirectly.

EQUIVALENCE STATEMENT

General Form

EQUIVALENCE (a,b,c,...),(d,e,f,...),...

where

a,b,c,d,e,f,... are variables that may be subscripted;
these subscripts must be integer constants

the number of subscripts appended to a variable must be
either equal to the number of dimensions of the variable or
must be one

Examples:

DIMENSION B(5), C(10,10), D(5, 10, 15)
EQUIVALENCE (A, B(l), C(5, 4)), (D(1, 4, 3), E)

B=5

The EQUIVALENCE statement controls the allocation of data storage
by causing two or more variables to share the same core storage

location.

Each pair of parentheses in the statement list encloses the
names of two or more variables that are to be assigned the
same location during execution of the object program; any

number of equivalences (sets of parentheses) may be given.

When using the EQUIVALENCE statement with subscripted
variables, two methods may be used to specify a single
element in the array. For example, D(1,2,1) or D(P) may
be used to specify the same element, where p(>0) is the
(p-l)th element following the first element of the D array
as it will reside in storage. Hence, D(p) references the
pth element of the array in storage. (See SUBSCRIPTS for
array placement in storage.)

In the preceding example, the EQUIVALENCE statement
indicates that A and the B and C arrays are to be assigned
storage locations so that the elements A, B(1l), and C(5, 4)
are to occupy the same location. In addition, it also
specifies that D(1,4, 3) and E are to share the same
location.

Quantities or arrays that are not mentioned in an EQUIV-
ALENCE statement will be assigned unique locations.

Locations can be shared only among variables, not among
constants.

The sharing of locations requires a knowledge of which
FORTRAN statements will cause a new value to be stored
in a location. There are four such statements:

a. Execution of an arithmetic statement stores a new
value in the location assigned to the variable on the
left side of the equal sign.

b. Execution of an ASSIGN i TO n statement stores a new
value in the location assigned to n.

8=6

c. Execution of a DO statement or an implied DO in an
input/output list sometimes stores a new indexing
value.

d. Execution of a READ statement stores new values in the
location assigned to the variables mentioned in the input
list. ;

Variables brought into a COMMON block through EQUIV -
ALENCE statements may increase the size of the block
indicated by the COMMON statements, as in the following
example:

COMMON /X/A,B, C
DIMENSION D(3)
EQUIVALENCE (B, D(1))

The layout of core storage indicated by this example
(extending from the lowest location of the block to the
highest location of the block) is:

A

B, D(1)

C, D(2)
D(3)

Since arrays must be stored in consecutive forward loca-
tions, a variable may not be made equivalent to an element
of an array in such a way as to cause the array to extend
beyond the beginning of the COMMON block.

8=7

8. In non-COMMON, the effect of the EQUIVALENCE state-
ments must be such that the high-order word of any
double-word variable is an even number of words away
from the start of any other double-word variable linked to
it through EQUIVALENCE statements.

9. Two variables in one COMMON block or in two different
COMMUON blocks must not be made equivalent.

10. The EQUIVALENCE statement does not make two or more
elements mathematically equivalent.

11. Equivalenced variables must not appear as dummy arguments
in a FUNCTION, SUBROUTINE, or ENTRY statement.

TYPE STATEMENTS

The type of a variable or function may be specified by means of one of
the six Type statements.

General Form

INTEGER a(ij), b(i,), c(is), ...
EXTENDED INTEGER (a(i;), b(i,), c(is)
REAL a(iy), b(i,), c(is), ...

DOUBLE PRECISION a(i}), b(i,), c(iz), . ..
COMPLEX a(i}),b(iy), cliz), . ..
LOGICAL a(i,), b(i,), c(i,), . ..

STRING a(il):c 1’ bfiz):C ycliz)ic

5 SILIVRRE
IONAME a(il), b(iz), c(i3), ces

EXTERNAL x,y,2,...
where
a,b,c,...are variable or function names appearing within
the program

c 1’ cz, «:3 are the ASCII character counts for a, b, c
réspectively

IONAME is defined as 8 ASCII characters long, left
justified, and blank filled,

X,Ys4,...are function names appcaring within the program

each i, represents an optional dimension composed of from
one to seven integer constants and/or integer variables

8-8

Examples:

INTEGER BIXF, X, QF, LSL

EXTENDED INTEGER CJYG, Y, RG, MTM
REAL IMINM, LOG, GRN, KLW

DOUBLE PRECISION Q, J, DSIN
EXTERNAL SIN, MATMPY, INVTRY
INTEGER A(10, 10), B

COMPLEX C(4,5,3),D

The variable or function names following the type (INTEGER, REAL,
etc.) in the Type statement are defined to be of that type and remain so
throughout the program; the type may not be changed.

Note in the examples that LSL and GRN need not appear in their
respective Type statements since their type is implied by their first
characters. Also DSIN (double-precision sine) need not appear in its
statement if it is used as a function in the program since mathematical
subroutines in the FORTRAN library are automatically typed by the
FORTRAN IV Compiler,

1. The appearance of a name in any Type statement overrides
the implicit type assignment. '

2. Variables that appear in EXTERNAIL statements are sub-
program names. Subprogram names must appear in an
EXTERNAL statement if they are the arguments of other
subprograms or if they are the name of a built-in function
that is used as the name of a FUNCTION or SUBROUTINE
subprogram.

3. A Type statement may also be used to dimension variables.
However, any variable that is dimensioned by a Type
statement may not be dimensioned elsewhere; that is, it
may not appear in a DIMENSION statement or in a COMMON
statement that contains dimension information.

DATA STATEMENT

Data may be compiled into the object program by means of the DATA
statement.

General Form

DATA list/dy,d,,...,d /,list/d},d,, k¥ds, ..., d /,...

m
where
list contains the names of the variables being defined
d is the data literal

k=k1*k2*, ...,= 1is an integer constant used as a repeat
modifier

Examples:

LOGICAL LA, LB,LC,LD
DATA R,Q/14.2,3HEND/, Z/07

DATA(B(I), C(I),1=2.40,2)/2.0,3.0,38%100.0/

DATA LA,LB,LC,LD/F,.. TRUE.,. FALSE., T/
DATA(HOL(KY), KY=1, 3)/6HANYBDA, 6HTAYHER, 6HE bBBYI/

1. List. Subscripted variables may appear in the list. When
the subscript is a variable, it must be under control of
DO-implying parentheses and associated parameters. Sub-
scripts not so controlled must be integer constants. The
DO-defining parameters must be integer constants.

2. d. The data literals may take either of the following forms:

° Any constant previously defined.

[An octal constant is written as the letter 0, optional
six digits.

3. k. The number k may appear before a d-field to indicate that
the field is to be repeated k times. An asterisk must follow
the letter k to separate it from the field to be repeated. K
may be recursed (i.e., K=K1*K2, o)

4. There must be a one-to-one correspondence between the
list items and the data literals. Each data literal (integer,
extended integer, real, alphanumeric, complex, logical,
double-precision, octal constant or string constant) corres-
ponds to one nondimensioned variable or subscripted array
reference on a word basis.

DATA G’1)/16HDATABISBREAD/

8-10

However, the following would be illegal:

DATA G/16HDATABTOBBEBREADY/
DATA G/3.0,16HDATABTOBBEBREADWY, 4. 0,5.0, 6.0/

The BLOCK DATA subprogram, which includes a DATA
statement, compiles data into the labeled COMMON arca
of the program.

The DATA statement may not be used to enter data into
blank COMMON.

DATA defined variables that are redefined during execution
assume their new values regardless of the DATA statement.

Where data is to be compiled into an entire array, the name
of the array (with indexing information omitted) can be
placed in the list. The number of data literals must
exactly equal the size of the array.

For example, the statements

DIMENSION B(25)
DATA A,B,C/24%4.0,3.0,2.0,1.0/

define the values of A, B(l), .,B(23) to be 4.0,
and the values of B(24), B(25), and C to be 3.0,
2.0, and 1.0, respectively.

No check is made between the type of the variable in the
variable list and the type of the data in the corresponding
data list.

—
.

- - .

[N e N [SANNNNG)| N w oo
.

14,
15,

IX ...

Direct Statements
& Environment

FORTRAN DIRECT STATEMENTS

FORTRAN

LIST (arg)
EDIT arg
DELETE arg
EXTRACT arg
SOURCE arg
OBJECT arg
ILLOAD arg
COMPILE (arg)
EXECUTE (arg)
RUN (arg)
QUIT

TAPE (arg)

D¢ (control - D)
DEBUG

NOTE:

16.
17.
18.
19.
20.
21.
22,
23,
24,
25,
26.
27.
28.
29.
30.
31.

MONITOR arg
-MONITOR (arg)
BREAK arg
-BREAK (arg)
TRACE arg
-TRACE
PRINT arg
LET arg
GOTO arg
STEP
CONTINUE
ESCAPE key
CREATE arg
RENAME arg
ERASE arg
DESTROY arg

"arg' indicates arguments required.

'"(arg)' indicates arguments optional.

* indicates file management statements

SIGNATURE CHARACTERS

Normal FORTRAN signature character is '"#', lb. sign.
This character precedes indirect, and some, direct FORTRAN

statements.
Debug mode FORTRAN signature character is '' ?" question mark,

Request for input from a terminal during program execution is

receded by a ''?', question mark,
P y q

DIRECT STATEMENTS

l.

FORTRAN = the name of the 242 FORTRAN IV subsystem,
While in the FORTRAN subsystem, the statement FORTRAN is
recognized - but nothing is done. The subsystem responds to

the statement with the signature character #.

LIST
or

LIST LNI’ LNZ-LN3, LN4, LN5—LN

6 e

the LIST statement causes the current source program to be listed

as follows;

LIST with no arguments lists the whole source program

LIST --- with arguments - lists the designated statements
or range of statements. LIST, 30, 10-15, 40 lists lines
10 through 40 (inclusive), line 30, and line 40. No
diagnostic or comrent is made if designated line

numbers are not present.

EDIT LNI’ LNZ—LN3, LN4:, LN5~LN6,

The EDIT statement prepares the subsystem for editing or
modifying one or more source statements in the current source

program. For example:
EDIT 10, 20-25

Line 10 is printed at the user terminal. The user modifies or

changes the statement. Following a carriage return, line 20 is
printed and can be edited. Next, line 21, 22, ... thru line 25.
Statements are edited one at a time until the argument list is

exhausted. Missing line numbers are ignored,

DELETE LNI’ LN2—~LN3, LN4, LNS—LN6,

The DELETE statement causes portions of the current source
program to be erased. Note that the execution of DELETE does
not affect the permanently saved program unless the statement

SOURCE file name is executed after the DELETE statement.

DELETE 35, 75-350, 900, 990

causes the deletion from the program of line number 35, line
75 thru 350, line 900, and line 990.

EXTRACT LNI’ LN —LN3, LN4, LN_-LN,, ...

2 5 6’

The EXTRACT statement is the complement of the DELETE
statement., EXTRACT deletes all of the current source program
but the referenced line numbers. It is useful in taking portions
of one program and preparing them for insertion in another
program. Note that execution of EXTRACT does not affect the
permanently saved program unless the statement SOURCE file

name is executed after the EXTRACT statement.
EXTRACT 100-300, 500-600

causes line numbers 100 thru 300, and line numbers 500 thru 600
to be ""pulled out" of the current source program. All other line

numbers are deleted.

SOURCE file name

The SOURCE statement saves the current source program, as it
exists, in a permanent file designated by ''file name'. The system
responds with “NEW FILE' if the file name does not exist in the
user's directory. The system responds with "OLD FILE" if this
name already appears in the user's directory. The user responds

to "NEW FILE" or "OLD FILE" by typing a carriage return (which

9«4

creates a new file, or replaces an old file), or, aborting the

statement by using the ESCAPE KEY,

OBJECT file name

The OBJECT statement is identical to the SOURCE statement

but saves the current object program, as it exists, in a permanent
file designated by ''file name'. The system responds with "NEW
FILE' if the file name does not exist in the user's directory.

The system responds with ""OLD FILE' if this name already
appears in the user's directory. The user responds to '"NEW
FILE'" or "OLD FILE" by typing a carrié.ge return (which creates
a new file, or replaces an old file), or, aborting the statement

using the ESCAPE KEY.

LOAD file name

The LLOAD statement retrieves the permanently saved file designated
by file name and places it in working storage for FORTRAN., The
file may be in either source or object form. If in source form,

the file may be listed, edited, compiled or executed. If the file

is in object form, it may only be executed.

9.

10.

11.

COMPILE
or

COMPILE file name

The COMPILE statement initiates compilation of either the
current source program, or the file designated by file name.
If the designated file is not FORTRAN source code, an error

diagnostic is initiated.

The whole source program is compiled. Any errors during

compilation are listed at the user's terminal.

EXECUTE
or

EXECUTE file name

The EXECUTE statement initiates execution of an object (§r
comi;iled) program. EXECUTE with no arguments executes the
current object program in the user's working area. EXECUTE
with file name executes the file designated by file name - if the

designated file is in object form.

RUN
or

RUN file name

The RUN statement is a combination of the COMPILE and EXECUTE
statements. Either the current source program or the file designated
by file name, is compiled into object form and then executed.

Execution begins only if no compilation errors are present.

9-6

12,

13.

14,

QUIT

The QUIT statement transfers control from the FORTRAN
subsystem to the executive subsystem. The statement is used
to terminate processing under FORTRAN. The user may then

invoke another subsystem or log off of the system.

TAPE
or

TAPE file name

The TAPE statement causes the FORTRAN subsystem to accept
source statements prepared on punched paper tape. The statements
are accumulated into either the users working storage are, or into

the file designated by file name.

Normally, the system acknowledges the receipt of each source
statement by sending a line feed and signature character to the
user terminal., The Tape statement indicates that the line feed
and signature character response are to be deleted since they

would interfere with the printout at the user terminal,

D¢ (control D character)

The D° character is used to reset system operation to the normal

mode after having read in a punched paper tape.

9-7

15,

16.

DEBUG

The DEBUG statement is used to interrupt an executing program

and enter the DEBUG mode.

The DEBUG statement is valid only when typed during program
execution. Furthermore, the DEBUG statement only has meaning
when the executing program has statements compiled in the debug

mode.

When "DEBUG" is typed at the user's terminal, program execution
is suspended at the first debuggable statement in the program. The
live number of interrupted statement and the debug signature
character (''?') are typed at the user's terminal. The user may then
execute any of the debug statements; alter MONITOR, BREAK, and
TRACE statements; set single or continue step mode; and then
continue execution of the program.

)y een

MONITOR LNl’ LNZ—LN3, VAR, (VAR, Nl-N2

Where: LN is a line number.

VAR is a simple variable or array name (i.e., ABC,
DEF (3, 4)).

N is an occurrence count,

The MONITOR statement applies only to statements compiled
in debug mode. Line numbers and variables can be monitored

during program execution, For exarhple,
MONITOR 1000-1010, 257, SDOT, YDOT, ZDOT

causes the following:

9-8

® whenever any of the line numbers, 1000 thru 1010,
inclusive, are executed, the line numbers are printed

at the user's terminal.

® line number 257 is monitored whenever executed by

printing the line number at the user's terminal.

e the contents of the variables XDOT, YDOT, and ZDOT
are printed at the user's terminal whenever they appear
on the left hand side of an assignment statement. The
value printed is that resulting after execution of the
statement. If XDOT is referred to at line number 2110,

the printout would be:
2110 XDOT = XXXXXX

An additional argument form for the MONITOR, statement can be
illustrated with:

MONITOR (VELOCITY, 5-8)

This s’catemé‘nt causes the variable VELOCITY to be monitored

only for the 5th thru 8th time it occurs. This allows the user to
monitor a variable only during significant portions of execution,

thus reducing the amount of information output to the user's terminal.

MONITOR may only be used with a program compiled in debug mode.

17,

18,

-MONITOR
or

~-MONITOR LNl’ LNZ—LN3, VAR, (VAR, Nl-NZ),

Where: LN is a line number.
VAR is a simple variable or array name,

N is an occurrence count,

The -MONITOR statement resets or directs FORTRAN to UN
monitor the specified line numbers or variables. .-MONITOR
with no argument "turns off'' all previously referenced monitor
functions. -MONITOR with an argument list turns off only those

variables and line numbers specified in the argument list.

The interpretation of arguments is described under the MONITOR

statement (Item-17).

BREAK LNI' LNZ-LN3, VAR, (VAR, Nl-NZ),

The BREAK statement is similar in execution to the MONITOR
statement. The BREAK statement allows the user to set break

points within the executable program.

Whenever a line number or variable mentioned as an argument
of a BREAK statement is executed, the item is printed at the
user's terminal. The debug mode signature character (?) is

printed, program execution is temporarily suspended, and

9-10

19.

20,

FORTRAN nters debug mode. The user may then execute any
of the debug statements or continue execution. Interpretation
of the argument list is described under the MONITOR system
(Item 17). BREAK may only be used with a program compiled

in debug mode.

-BREAK
or
-BREAK LN , LN -LN

VAR, (VAR, N -N,), ...

3’
The -BREAK statement resets or directs FORTRAN to UN break

2

the specified line numbers or variables, -BREAK with no argurment
Yturns off" all previously referenced break functions. -BREAK
with an argument list turns off only those variables and line

numbers specified in the argument list.

The interpretation of arguments is described under the MONITOR

statement (Item 17).

TRACE LINE
LABEL
SUBPROG
SOURCE

The TRACE statement is used to logically trace execution of a

program according to one or more of the four available modes.

9«11

TRACE LINE

TRACE SUBPROG

TRACE SOURCE

Each line number executed is traced for the
user. Rather than tracing long sequences of
sequential portions of a program, only line
numbers following transfer of control are

printed at the user's terminal.

Execution of a program is traced through
execution of each subprogram. The subprogram
name is output at the user's terminal, The main

program is indicated by '..MAIN,."

The entire source program is traced. As each

abbreviated source statement is reproduced
at the user's terminal, Expressions are
printed as the value by type.

Multiple traces may be initiated via the TRACE statement,

For example,

TRACE LINE, SUBPROG

causes a trace by both subprogram name and internal line number,

9-12

21.

22.

TRACE may only be used with a program compiled in

debug mode.

-TRACE

The -TRACE statement clears all references to any traces
previously initiated. It is used to delete any traces currently

in effect,

PRINT VAR, VAR, VAR, ...
Where: VAR is a simple variable or array name.

The PRII\iT statement may only be invoked during program execution
in debug mode. The debug mode is entered by executing a BREAK
statement, the DEBUG statement, or via some run-time error
diagnostics. The PRINT statement may be used after receiving

the debug mode signature character, (?), question mark, at the

user's terminal,

Arguments for the PRINT statement may be variable names, array
names, or elements of an array. No expressions are evaluated.
For example,

? PRINT X, B, C (3, 5)

where X is a variable
B is an array dimensioned as B(5)

C(3,5) is an element of the array C,

9-13

23.

results in the following output at the user's terminal:

X = XXXX
B(l) = XXXX
B(2) = XXXX

B(5) = XXXX
C(3,5) = XXXX

The PRINT statement may be executed any time the program

execution is suspended in debug mode.

LET VAR - {L-ITERAL}

VAR

Where: VAR is a variable or array element name

LITERAL is a numeric or string constant

The LET statement may only be invoked during program execution
in debug mode. The debug mode is entered by executing a BREAK
statement; the DEBUG statement; or via some run-time error
diagnostics., The LET statement may be used after receiving

the debug mode signature character, (?), question mark at the

user's terminal,

- The arguments for the LET statement may be variables and
literals. A variable is a variable, name or an array element
name. A literal is a numeric constant or a string constant. No
expressioﬁs are evaluated. Consider

| ? LET A(2,3,4) = 27.5
when execution of the program is resumed, the array element

A(2,3,4) will contain the value of the literal, 27.5.
? LET X = B(32)

when execution is resumed the variable X will contain the value

contained in B(32).

The LET statement may be executed any time program execution

is suspended in debug mode.

GOTO LN

Where: LN is a line number

The GOTO statement may be invoked only during program

execution in debug mode. The debug is entered by executing a
BREAK sfatement; the DEBUG statement; or via some run-time
error diagnostics, The GOTO statement may be used after receiving
the debug mode signature character (?), question mark, at the user's

terminal,

25.

The argument of the GOTO statement is the line number of
the program at which it is desired that execution of the program
resume,

? GOTO 1220

resumes execution of the program at line number 1220.

The GOTO statement may be executed any time program execution

is suspended in debug mode.

STEP

The STEP statement may be invoked only during execution of a
program compiled in debug mode. Debug mode is entered as

described in PRINT, LET, and GOTO (Items 23 - 25),

STEP sets the mode of execution of a program to single step
mode. Statements compiled in debug mode aré executed in single
step. That is after execution of each statement, the program is
interrupted; the line number of the statement and the debug
signature character (?) are typed at the user's terminal. The
user may then execute any of the debug statements; alter MONITOR,
BREAK and TRACE statements; reset the continue mode; and

resume execution of the program.

The STEP statement may be executed any time program execution

is suspended in debug mode.

26. CONTINUE

21.

The CONTINUE statement may be invoked only during execution
of program compiled in debug mode. Debug mode is entered as

described in PRINT, LET, and GOTO (Items 23 - 25).

CONTINUE sets the mode of execution program to normal or multiple
step mode. It should be used to reset the STEP statement when

single step execution is no longer desired.

The CONTINUE statement may be executed any time program

execution is suspended in debug mode.

ESCAPE KEY (ALT MODE)

The ESCAPE (or ALT MODE) key is used to immediately interrupt
and abort the current function being performed by the FORTRAN
subsystem. The function is terminated. The following interpretation
applies to the ESCAPE (ALT MODE) key:

Typing 1 ESCAPE - aborts current function and returns

control to FORTRAN direct statement
processor,

Typing 2 ESCAPES - the FORTRAN subsystem; itself, is
aborted and contro is returned to the
EXEC subsystem.
The ESCAPE (ALT MODE) key may be used any time while under

control of the FORTRAN subsystem.

28.

CREATE a file

The CREATE statement is used to enter a new file name in the
user's directory. The file is initially set to contain no infor-
mation, Optionally, access privileges and additional user access

may be specified,
The simplest form of the statement is:

CREATE file name

where, file name i8 any legal user file name not
exceeding eight characters,

Examples:

CREATE Z
CREATE ALPHA
CREATE MASTFILE

The creator of a file is assigned full access privileges to that
file, Those privileges include (currently) READ, WRITE,
EXECUTE, and APPEND access,

To assign privileges to other users who wish to access a file,
the CREATE statement may be expanded in the following form:

CREATE file name /user ID/access/user ID/access .

where file name is any legal file name of 1 to 8 characters

user ID is a unique identification string delimited by
siashes.

access is any combination of the following words
separated by commas; READ, WRITE, EXECUTE,
APPEND, or PASSWORD,

Any number of users may be authorized access to a file. However,
access privileges must be specified for each authorized user.
Public access is specified by a null user ID (i.e.,, 11), Consider,

CREATE PAYROLI., /AB234/READ/J. SHMOE/ APPEND,
EXECUTE

The file PAYROLL is created. User AB234 is given
READ access, and J, SHMOE is authorized to EXECUTE
and APPEND to the file., The statement,

CREATE MILLISIN //READ, EXECUTE

creates the file named MILILISIN, It also makes the
file public with both READ and EXECUTE privileges.

29. RENAME a file

The RENAME statement allows a user to rename any file currently
~in a user's directory. Optionally, additional users and access
privileges may be specified.

The simplest form of the statement is:

RENAME file name, file name
where file name is any legal file name of 1 to 8 characters.
Example:
RENAME NEWTRANS, OLDTRANS
This renames the file currently in the user's directory as
NEWTRANS to a file named OLDTRANS, The name NEWTRANS
is removed from the user's directory, and is replaced by the name

OLDTRANS,

Additional access privileges may be specified while renaming a
file by obtaining user ID's and access,

Example:

RENAME ABC,DEF/USER27/READ, WRITE/USER33/EXECUTE

File ABC is renamed DEF, In addition, USER27 is authorized
to READ and WRITE the file, and USER33 is granted execute only
access, "

30. ERASE a file

The ERASE statement allows a user to erase or clear the information
currently contained in one or more files. The form is:

ERASE file name, file name,. . .
where file name is any legal file name of 1 to 8 characters,
Examples:

ERASE Q
ERASE WEEK32,WEEK33,WEEK?34

31. DESTROY a file

The DESTROY statement provides the method for destroying both
the information contained in a file and removing the entry con-
taining the name of the file in the user's directory. That is, both
the contents and the name of the file are destroyed. The form is:
DESTROY file name, file name,. . .
where file name is any legal file name of 1 to 8 characters,

Examples:

DESTROY FIRST
DESTROY SECOND, THIRD, FOURTH

9-20

