
LOGICftN 2+2 

FORTRAN MANUAL 

LOGICON, INC. 
1075 CAMINO DEL RIO, SOUTH 

SAN DIEGO, CALIFORNIA 

15 December 1970 



Section 

I 

II 

III 

IV 

TABLE OF CONTENTS 

INTRODUCTION •••• 
General ............... . 
Format Rules for Statement Writing 

Line Number • 
Comment • ., ••• 
Statement Label 
Continuation 
Statement ... 

CONSTANTS, VARIABLES, SUBSCRIPTS 

. . . . 

& EXPRESSIONS . . . . . . 
Constants ••••• 

Integer •••••••• 
Extended Integer •••••••• 
Double Precision, • 
Complex 
Logical •• 
String •• 
IO NAME. 

Variables 
Subscripts ••• , ••• 
Expressions. 

Arithmetic Expressions • 
Logical Express ions 
Relational Express ions •• 
Expression Evaluation • 

ASSIGNMENT STATEMENT .............. . 

CONTROL STATEMENTS 
Unconditional GOTO Statement 
Computed GOTO Statement •••••••• 
ASSIGN and Assigned GOTO Statement 
Arithmetic IF Statement •••••••••• 

i 

Page_ 

1 - 1 
1 - I 
1-3 
1-3 
1-3 
1-3 
1-3 
1-3 

2-1 
2-1 
2-l 
2-1 
2-2 
2-2 

2-3 
2-3 
2-3 
2-3 
2-4 
2-4 
2-4 
2-7 
2-8 
2-9 

3-1 

4-1 
4-1 
4-1 
4-2 
4-3 



v 

TABLE OF CONTENTS (Continued) 

Logical IF Statement •••••••• 
DO Statement ....... . 
CONTINUE Statement 
PAUSE Statement 
END Statement 
STOP Statement 
CHAIN Statement 

.... 

. . . . . . . . . . 
INPUT /OUTPUT STATEMENTS . . ..... . 

4-3 
4-4 
4-7 
4-7 
4-7 
4-8 
4-8 

5-1 
.File Designation • • • • • • • • • • • • • • • • • • 5-2 
The General Input/Output Statements. 5-2 

Input ••••••• 
Output •••••••• 

List Specifications • 
Input/Output of Entire Arrays 
FORMAT Statement ••••••• 

... 
Numeric Field Descriptors 
Complex Number Fields ••• 
Alphanumeric Field Descriptors 
Logical Field Descriptor 
Blank Field Descriptor ••• 
Repetition of Field Format 
Repetition of Groups •••• 
Scale Factors ••••••••• 

. . . 

Multiple-Record Formats · ••• 
Carriage Control •••••••••••• 
FORMAT Statement Read 
in at Object Time •••• 
Data Input Referring to 
FORMAT Statement •• 

NAMELIST Statement •• 

. . 
a. . . . 
. . . . . . . 

Data Input Referring to a NAME LIST ••• 
Statement •••••••••• 
Data Output Referring to a NAME LIST •• 
Statement ••••••••••• • •• • • •• • •• 

ii 

5-2 
5-3 
5-5 
5-7 
5-7 
5-8 
5-12 
5-12 
5-13 
5-13 
5-14 
5-14 
5-14 
5-15 
5-16 

5-16 

5-17 
5-18 

5-19 

5-21 



Section 

VI 

VII 

TABLE OF CONTENTS (Continued) 

Auxiliary Input/Output Statements. 
REWIND Statement • • • • • • •••• 
BACKSPACE Statement. ••••••• 
END FILE Statement •••••••• 

Memory-to-Memory Data Conversion 
ENC ODE Statement 
DECODE Statement , •••••• 

INDIRECT FILE & DATA BASE 
MANAGEMENT STATEMENTS 

File Designation .......... . 
Directory Content Statements 

CREA TE a file 
RENAME a file • o 

ERASE a tile ••• 
DESTROY a file ... 
CLOSE a file ..... 

General Input/Output Statements •• 
Input • 
Output ........... , • 

SUBROUTINES, FUNCTIONS, & 
PROGRAM STATEMENTS ••••• 

Naming Subroutines ... . 
Defining Subroutines '" .. . 

Statement Functions 
Built-In Functions •• 
FUNCTION Subprogram 
SUBROUTINE Subprogram .... 
Returns from Subprograms 
Multiple Entry Points into a 
Subprogram .•••••••••••• 
Additional Rules for Entry Points 
Subprogram Names as Arguments. 

Call Statement ......... . 
Mathematical Functions 

BLOCK DATA Subprogram 

iii 

Page 

5-22 
5-22 
5-22 
5-22 
5 - 2 .3 

5-24 
5-24 

6-1 
6-2 
()-2 

6-2 
6-4 
6-5 
6-5 
() - () 

() - () 

6-· 6 
6-8 

7-1 
7-1 
7-2 
7-2 
7-4 
7-4 
7-8 

7-9 

7-10 
7 - 11 
7-12 
7-14 
7-14 
7-16 



Section 

VIII 

IX 

TABLE OF CONTENTS (Continued) 

SPECIFICATION STATEMENTS • 
DIMENSION Statement 

Adjustable Dimensions 
COMMON Statement ••••• 
EQUIVALENCE Statement • 
Type Statements . . . 

. . . . INTEGER •••• 
EXTENDED INTEGER •• 
REAL ••••••••••• 
DOUBLE PRECISION 
COMPLEX 
LOGICAL. 
STRING ., 

. . 

. . . 
IONAME ............ . 
EXTERNAL 

DA TA Statement 

... 

.. 

. . . . . . . . 
DIRECT STATEMENTS & ENVIRONMENT •• 

Signature Characters 
Direct Statements •••• 

FORTRAN 
LIST 

. . . .... 

EDIT. 
DELETE 
EXTRACT 
SOURCE 
OBJECT 

. . . . . . . . . . . . . 

LOAD 
COMPILE 
EXECUTE 
RUN 
QUIT· 

... 

TAPE • • • • • • • • • 
De (Control D Character) 
DEBUG .•••• • ••••••••• 

iv 

..... 

Page 

8-1 
8-1 
8-2 
8-3 
8-5 
8-8 
8-8 
8-8 
8-8 
8-8 
8-8 
8-8 
8-8 
8-8 
8-8 
8-9 

9-1 
9-2 
9-2 
9-2 
9-2 
9-3 
9-3 
9-4 
9-4 
9-5 
9-5 
9-6 
9-6 
9-6 
9-7 
9-7 
9-7 
9-8 



Section 

Figure 

2-1 
2-2 
2-3 
7-1 
7-2 
7-3 

Table 

5-1 

TABLE OF CONTENTS (Continued) 

MONITOR 
-MONITOR. 
BREAK 
-BREAK 
TRACE ••• .. -TRACE 
PRINT. 
LET • 
GOTO 
STEP 
CONTINUE 
ESCAPE Key 
CREA TE a File • 
RENAME a File. 
ERASE a File .... 
DESTROY a File 

. . 

LIST OF ILLUSTRATIONS 

Arithmetic Expressions +->:~/ ••••••• 
Arithmetic Expressions-Exponent (>:0:~ or j) 

Use of Relational Operators •••••••• 
Built-In Functions .............. . 
Mathematical FUNCTION Subprogram. 
BLOCK DATA Subprogram ••••••• 

LIST OF TABLES 

. . . 

Format Statement Field Descriptors ••• o •••• 

v 

Page 

9-8 
9-10 
9-10 
9 - 1 l 
9 - 11 
9-13 
9-13 
9-14 
9-15 
9-16 
9-17 
9-17 
9-18 
9-19 
9-20 
9-20 

Page 

2-5 
2-5 
2-9 
7-5 

7-15 
7-16 

Page 





I ... 

lntroducti.on 

GENERAL 

The LOGIC ON 2+2 FOR TRAN is an automatic coding language resembling 
the language of algebra. It provides the facility for readily ·expressing 
problems requiring numerical com.putation. In particular, it can easily 
handle problems involving large sets of equations and problems that 
contain many variables. FORTRAN is especially suited for solving 
scientific and engineering problems, while by the same merits it is 
also suitable for many business applications. 

The FOR TRAN language consists of words and symbols arranged into 
staten1ents. A set of FORTRAN statements, describing each step in 
the solution of a problem, is a FORTRAN progran1 (a source language 
prograrn). 

The basic unit of the FOR TRAN language is the statement. Statements 
may be classified according to the following groups: 

1. Arithmetic statements specifying numerical or logical 
computations. 

2. Control statements governing the order of execution in the 
program. 

3. Input/Output statements and input/output formats which 
describe the form of the data. 

4. Subprogram statements enabling the programmer to define 
and use subprograms. 

5. Specification statements providing information about 
variables used in the program, information about storage 
allocation, and data assigned. 

1 -· 1 



To write FOR TRAN programs effectively, it is necessary to under stand 
the usage of the following terms and concepts: 

1. Constants, such as 27 or 3. 14159 

2. Variables, such as X or TEMP3 

3. S':1bscripted variables, such as X(I) or Y(I, J) 

4. Mathematical expressions, such as X + Y or 3 ):< J 

5. Arithmetic statements, such as A= B/C 

6. Control statements which specify the sequence of control, 
such as GO TO 23 or IF (Z) 10, 15, 65 

7. Input/Output statements used for getting data into the 
computer and producing hardcopy results, such as READ 
(5, 37)A, I, J or WRITE (6, 43) W(6) 

8. Subroutine and function statements permitting programs to 
be incorporated into larger programs 

9. Specification statements, such as, DIMENSION and 
COMPLEX 

The language of FOR TRAN is augmented by the availability of prewritten 
routines accompanying the system. These routines evaluate the standard 
arithmetical functions, provide all input/ output for the program, and 
furnish the user with other services to aid in the problem solution. 
Special purpose routines may be written by the user to be used as 
subprograms. 

The operations of addition and subtraction are indicated in the same was 
as in mathematical notations; that is, the symbols plus(+) and minus(-) 
Multiplication is denoted by the asterisk (*) while division is denoted by 
the slash (/). The double asterisk (*>:<)or the up arrow ( t ) is the 
FOR TRAN operation sign for exponentiation. The rule for using this 
sign is that the quantity to the left of the sign is raised to the power 
indicated on the right. 

1-2 



FORMAT RULES FOR STATEMENT WRITING 

Line Nun1ber 

From one to five digits, less than 65536, including leading zeros. Line 
number field is terminated by a non-numeric character or the sixth digit. 
A program is processed in ascending line number order. 

Comment 

The character C immediately following the lin·e number indicates a 
comrnent statement. The comment appears in the program listing but 
it does not affect the logic of the FORTRAN program. 

Statement Label 

A FORTRAN program statement may optionally contain a statement 
label. This numeric field (1 thru 99999) follows the line number and 
precedes the FORTRAN statement text. Blanks and leading zeros arc 
ignored. 

Continuation 

A statement may be continued on more than one line by placing an 
ampersand ( & ) immediately before the carriage return on the fir st 1 inC' 
and continuing the statement on the next line. Control may not be 
transferred to the line number associated with the continued portion of 
a staternent. Continued staten1ents imay not contain a comment statc-
1nent and comment statements may not be continued. 

Statement 

The first alphanumeric character on the line identifies the actual 
FOR TRAN statement. Blanks do not have significance except where 
they appear in a specific string of characters, c. g., in an H field or a 

quote string., 

1-3 





II.··. 

Constants, Variables, 
Subscripts & Exprssions 

Generally, a constant is a nun1ber in a :mathematical expression that 
is known prior to writing the FORTRAN STATEMENT, and whose value 
does not change during program execution. Conversely, a variable 
represents a number that is not known when a statement is written, and 
it is 2~blc to take on different values during program execution. When a 
single variable name is used to represent a list of nun1bers, it is 

called a subscripted variable. 

In FORTRAN, an expression is a combination of constants, variables, 

and operation signs which defines a series of related rnathernatical 
operations. Thus, using constants and variables, FORTRAN provides 
a ·means of expressing quantities specified in an arithmetic formula 
stakrncnt. The constants and variables may be either the fixed-point 
integer or floating-point mode. The fixed-point mode is used for 
counting and other operations involving whole (integer) nun1bers. The 
floating -point mode is used for nearly all computation. The floating­

point number, consisting of an exponent and a fraction, a.ccon1n10dates 

a greater range of values. 

CONSTANTS 

Integer 

An integer constant requires one memory location and is a nurnber in the 
range -32767 to +32767. The decimal point of the integer is always omitted; 

however, it is always assumed to be immediately to the right of the right­
most digit. 

Extended Integer 

An exten<led integer requires three contiguous memory locations and is a 
number in the range -140,737,488,355,327 to +140,737,488,355, 327. The 
decimal point of the extended integer is always omitted; however, it is al­
ways assumed to be immediately to the right of the rightmost digit .. 

2 -·I 



Real 

A real constant requires three contiguous memory locations and is main­
tained in floating point mode. 

1. One to ten significant decimal digits written with a decimal 
point, but not followed by a decimal exponent. 

2. A sequence of decimal digits written with or without a 
decimal point, followed by a decimal exponent written as the 
the letter E followed by a signed or unsigned integer 
constant. When the decimal point is omitted, it is always 
assumed to be immediately to the right of the rightmost 
digit. The exponent value may be explicitly 0, and the 
field following the E may not be blank. 

A real constant has precision to nine digits. 

Double Precision 

A double-precision constant requires four contiguous memory locations 
and is maintained in floating-point mode. It is a sequence of decimal digits 
written with or without a decimal point, followed by a decimal exponent 
written as the letter D followed by a signed or unsigned integer constant. 
When the decimal point is omitted, it is always assumed to be immediately 
to the right of the rightmost digit. The exponent value may be explictly 0, 
and the field following the D may not be blank. 

Examples: 

7. OD4 
7. OD- 3 

(means 7. 0 x 10 4 , 70000. ) 
(means 7.0 x io-3, .007) 

Double-precision constants have precision to 14 digits. 

Complex 

A complex constant requires six contiguous memory locations and consists 
of an ordered pair of signed or unsigned real constants separated by a com­
ma and enclosed in parentheses. 

Examples: 

( 10. 1, 7. 0 3) is equal to 10. 1 + 7. 0 3i 
(5. 41, 0. 0) is equal to 5. 41 + 0. Oi 
(7. OE4, 20. 76) is equal to 70000. + 20. 76i 

where i is the square root of -1. 

2-2 



The fir st real constant represents the real part of the co-mplex nmi1bcr; 
the second real constant represents the imaginary part of the complex 
number. The parentheses are required regardless of the context in 
which the complex constant appears. Each part of the complex constant 
may be preceded by a plus sign or a minus sign, or it may be unsigned. 

Logical 

A logical constant requires one mernory location and may take either of 
two values: 

• TRUE • 
• FALSE. 

and is represented in the machine as 

TRUE;eO 
FALSE=O 

String Constant 

A string constant requires a memory location for the character count, 
followed by two ASCII characters per location. When the character count 1s 
odd, a blank fills the last location. 

2 forms - ( 1) string nHxxx where n is character count 
(2) string enclosed in quotes "xxx" 
Neither string may contain FORTRAN or TTY 
control characters. 

IO NAME Constant 

An IO NAME constant requires four contiguous memory locations and con­
sists of one to eight ASCII characters, right justified and blank filledo 

VARIABLES 

A variable name may have from one to eight alphabetic or numeric 
characters. The fir st character must be alphabetic; 

Examples: 
K3 
SUMS 
ANSWER 
NOTE7 

The mode of the variable may be specified in one of two ways: 
Implicitly by name or explicitly by a Type statement (see "Type State­
ment" and "Naming .Subroutines" in the Index). Implicit type assignment 

2-3 



pertains only to integer and real, variable and function names, and is 
determined by the first character in the variable name. If the first 
character is I, J, K, L, M, or N, it is a fixed-point (integer) variable; 
if it begins with any other letter, it is a floating-point variable. Refer to 
Implicit statement. 

SUBSCRIPTS 

When a single variable name is to represent a list of values (array), 
subscripts provide a means of referring to a specific member of that 
list. The subscripts are arithmetic expressions whose value determines 
the member of the array to which reference is made. The array being 
referenced is of a predetermined length; therefore, the value of a 
subscript expression cannot be zero, less than zero, or greater than 
the dimensions (see dimensions in the Index) declared for the array 
referenced. 

A subscripted variable consists of a variable name followed by paren­
theses enclosing arithmetic subscripts expressions that are separated 
by commas. 

Each variable that appears in subscripted form must have the size of 
the array specified. (See DIMENSION, COMMON, or Type Statement 
in Index. ) 

Arrays are stored in column order in increasing storage locations, with 
the first of their subscripts varying most rapidly, and the last varying 
least rapidly. For example, the two-dimensional array A(m, n) is 
stored as follows, from the lowest core storage location to the highest: 

A1,1, Az,l , ... ,Am,l ,A1,2,A2,z, ... ,Am,2•···•Al,n,A2,n, ... ,Am,n 

EXPRESSIONS 

Arithmetic Expressions 

An arithmetic expression consists of certain legal sequences of constants, 
subscripted and nonsubscripted variables, and arithmetic function 
references separated by arithmetic operation symbols, commas, and 
parentheses. 

2-4 



The following arithmetic operation symbols denote addition, subtraction, 
multiplication, division, and exponentiation (** or t ), respectively: 

The rules for constructing arithmetic expressions are: 

1. There are no mode restrictions when constructing expres­
sions with respect to+, -, ~:<, and/. Operands for these 
operators are promoted tc;> the higher mode before the 
operation is performed. Figure 2-1, shows the rr10de of 
+, - , >:<, and I. Figure Z - 2, shows the valid combinations 
with respect to the >:o:c or t operator. 

I EI R D c Legend 

I I EI R D c c - Complex 

EI EI EI R D c D - Double precision 

R R R R D c EI - Extended Integer 

D D D D D c I - Integer 

c c c c c c R - Real 
•--' 

Figure 2-1. Arithmetic Expressions + - ~:< I 

I EI R D c 
--,,! 

I I EI R D c c - Complex 

EI EI EI R D c D- Double precision· 

R R R R D c EI - Extended Integer 

D D D D D c N - Non valid 

c c c c c c R - Real 

Figure 2-2. Arithmetic Expressions - Exponent (>:o:< or t) 

2. Any expression may be enclosed in parentheses. 

3. Expressions may be connected by the arithmetic operation 
symbols to form other expressions, provided that: 

a. No two operators appear in sequence except >:o:<, which 
is·a single operator and denotes exponentiation. 

2-· 5 



b. No operation symbol is assumed to be present. 
For example, (X) (Y) is not valid. 

4. Preceding an expression by a plus or minus sign does not 
affect the arithmetic type of the expression. 

5. In the hierarchy of operations, parentheses may be used in 
arithmetic expressions to specify the order i_n which 
operations are to be computed. Where parentheses are 
omitted, the order is understood to be as follows (from 
innermost operations to outermost operations): 

a. Function Reference 

b. ~:0:~ or 

c. ):~ and I 

d. + and -

Exponentiation 

Multiplication and Di vision 

Addition and Subtraction 

This hierarchy is applied first to the expression within the 
innermost set of parentheses in the statement; this pro­
cedure continues through the outer parentheses until the 
statement has been evaluated. 

6. Defining a term as an unparenthesized sequence of primary 
operands and exponentiation pairs separated by :>:~ and I 
operators only, the rule for the order of evaluation of 
arithmetic expressions in the absence of parentheses is: 
Within a term, the evaluation is left to right; across the 
expression, terms are evaluated right to left; the sum of 
the terms is formed from left to right. 

The FORTRAN expression 

A~:~6. + z I y):~):~ (W +(A+ B) /X:>!{*K) 

represents the mathematical expression 

Even if operators are on the same level, parentheses may be used if a 
particular order of computation is required by the program. 

2-6 



Given I, R, and C as names of integer, real, and complex variables 
respectively, the expression R+C/I is evaluated by promoting I to 
complex, performing the division; pirom.oting R to complex and forming 
the sum. 

R+I+I/I is evaluated by finding the integer quotient I/I; converting I to 
real and computing the sum R+I; promoting the integer quotient to real 
and adding to the real sum. 

Logical Express ions 

A logical expression consists of sequences of logical constants, logical 
variables, or references to logical functions separated by logical operation 
symbols. 

The logical operation sy1nbols (where a and bare logical expressions) 
are: 

Symbol Definition 

. NOT. a Produces the one's complement of a. 

a. AND. b Produces the logical product a AND b. 

a. OR. b Produces the logical sum a OR b. 

The logical operators NOT, AND, and OR must always be preceded and 
followed by a period. The following are the rules for constructing 
logical expressions: 

1. A logical expression may consist of a single logical constant, 
a logical variable, or a reference to a logical function. 

2. The logical operator . NOT. must be followed by a logical 
expression, and the logical operators . AND. and . OR. 
must be preceded and followed by logical expressions to 
form more complex logical expressions. 

3. Any logical expression rnay be enclosed in parentheses; 
however, the logical expression to which the . NOT. applies 
must be enclosed in parentheses if it contains two or more 
quantities. 

2-7 



Relational Expressions 

A relational expression consists of sequences of arithmetic variables, 
constants, or function references separated by relational operation 
symbols. Relational expressions can be combined with logical expres­
sions to produce relational expressions. Relational expressions always 
result in a . TRUE. or . FALSE. evaluation. 

The symbols for the six relational operations are: 

Symbol 

.GT. or> 

.GE. 

. LT. or< 

Example: 

. LE. 

.EQ . 

. NE. 

Definition 

Greater than 

Greater than or equal to 

Less than 

Less than or equal to 

Equal to 

Not equal to 

A. GT. B has the value . TRUE. if the quantity A is 
strictly greater than the quantity B, and value . FALSE. 
otherwise. 

The realtional operators must always be preceded and followed by a 
period. The following are the rules for constructing logical and 
relational express ions: 

1. Figure 2-3 indicates which constants, variables, functions, 
and arithmetic expressions may be combined by the 
relational operators to form a relational expression. In 
Figure 2-3, Y indicates a valid combination and N indicates an 
invalid combination. The relational expression will have 
the value . TRUE. if the condition expressed by the relational 
operator is met; otherwise, the relational expression will 
have the value . FALSE. 

2-8 



. GT. , . GE. , . LT. , 

. LE.,. EQ.,. NE. I EI R R c L F s Legend 

I I EI R D C* L N N 

EI EI EI R D C* N N N 

R R R R D C* N N N 

D D D D D c:i:c N N N 

c C* C* C* c~:c C>:c N N N 

L N N N N N N N N 

F N N N N N N F N 

s N N N N N N N s 

*. EQ. or . NE. only 

Figure 2-3. Use of Relational Operators 

D - Double Precision 

EI - Extended Integer 

F - IO NAME 

I - Integer 

L - Logical 

N - Nonvalid 

R - Real 

S - String 

2. The numeric relationships that determine the true or false 
evaluation of relational expressions are: 

a. For numeric values having unlike signs, the positive 
value is considered larger than a negative value, 
regardless of the respective magnitude; e.g., +3 >-5 
and +5 >-5. 

b. For numeric values having like signs, the magnitude of 
the sign of the values determines the relationship; 

e.g., +3>+2 and -8<-4. 

3. The logical operator . NOT. must be followed by a logiqil 
or relational expression, and the logical operators . AND. 
and . OR. must be preceded and followed by logical ore 
relational expressions to form more complex logical 

expressions. 

Expression Evaluation 

In the hierarchy of operations, parentheses may be used in logical, 
relational, and arithmetic expressions to specify the order in which 
operations are to be computed. Wh.~re parentheses are omitted, the 
order is understood to be as follows (from innermost operation to outer­

most operations): 

a. Function Reference 

b. ~:~~:~ or t Exponentiation 



c. 

cl. +and -

e. < , • LT.,. LE.,. EQo, 
• NE. , > , • GT. , • GE. 

f. . NOT. 

g .. AND: 

h. . OR. 

Multiplication and Division 

Addition and Subtraction 

This hierarchy is applied first to the expression within the innermost 
set of parentheses in the statement; this procedure continues through 
the outer parentheses until the statement has been evaluated. 

2-10 



~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~~1~1~1~1~1~1~1~~~1~1~~1~1~1~~1~1~~1~1~11~! 
:::::::::::::.;::::::·::::::::::::::::::::::::::::::::::::::::::~::::::::~=:=:~;::::::::~:=:=:=~~~=~:::::: 
:::::::::::::::::::::~::::::::::::::~::::::::::::::::::::::::::::::::::::~:::::::::::::::::::::::::~·:=:=~:::::: 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~::::::::~:::::*::::::::::::::: 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

·················~························································•f'-.e•.•.•6*!),•f/!.e•·D·······•·!;•········· ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::· 

III ... 

Assignment Statement 

The assignment statement, consists of a variable name (subs er ipted or 
not) followed by an equals sign, followed in turn by any desired expression .. 
The equals sign of the FOR TRAN statement implies "is replaced by" and 
not m.athematial equality. 

The expression may be a single constant, a single variable, or a com­
plex combination of operations. In essence, the machine computes the 
complete expression on the right of the equals sign and assigns that 
computed value to the variable whose name appears on the left of the 
equals sign. 

Exan1ple s: 

PI 
w 
E(I) 
T 
A 

General Form 

v = e 

where 

= 
= 
= 
= 

= 

vis a subscripted or nonsubscripted re­
placement variable 

e is an expression 

the equals sign irnplie s "is replaced by" 

3. 1416 
N 
1. +EXP(Z) 
. FALSE. 
R. EQ. Rl. OR. V 

ALPHA= "8 CHARS" 

3-1 



Figure 3-1 indicates the legitimate combinations of expressions and 
variables in an arithmetic assignment statement. In Figure 3-1, Y 
indicates a valid statement with the resulting type of expression on the 
left side of the equals sign. N indicates a nonvalid statement. 

[g: I EI R D 

I y y y y 

EI y y y y 

R y y y y 

D y y y y 

c y y y y 

L N N N N 

s N N N N 

F N N N N 

c L s 

y N N 

y N N 

y N N 

y N N 

y N N 

N y N 

N N y 

N N y 

F 

N 

N 

N 

N 

N 

N 

y 

y 

Legend 

C - Complex 
D - Double Precision 

EI - Extended Integer 

F - IO NAME 

I - Integer 
L - Logical 
N • Nonvalid 
R - Real 

S - String 

Y - Valid 

Figure 3-1. Arithmetic Statement Combinations 

3-2 



IV ... 

Control Statements 

Control statements enable the progra.m.rner to control, terminate, and 
alter the sequential order in executing statements. To execute a 
staternent which is not in sequence, the progra.mmer assigns a state­
ment label to it for referencing by other statements. Any statement 
may have an assigned label; however, the numerical value of a state­
ment label has no bearing on the order of execution, and it is not 
necessary that each statement be labeled. 

UNCONDITIONAL GO TO STATEMENT 

General Form 

GO TO n 

where 

n is a statement labeled 

This statement causes control to be transferred to n. In the following 
example, control is transferred to the statement labeled 31. 

GO TO 31 

COMPUTED GO TO STATEMENT 

General Form 

GO TO (n1, nz, ... , n:m), i 

where 

n 1 , n
2

, ... , nn
1 

a.re statement labels 

i is an arithmetic expression 

4 ·-1 



This statement causes control to be transferred to the statement 
labeled ni, n 2 , ... , nm depending on whether the integer value of i is 
1, 2, 3, ... , m, respectively, at the time of execution. The value of i 
cannot be negative or zero. During execution, if i is greater than m or 
i is less than 1, an error comment is output and the execution terminates. 
Thus, in the following example, if K is 3 at the time of execution, a trans­
fer to the third statement in the list (statement 39) occurs. 

GO TO (17, 21, 39, 5), K 

ASSIGN AND ASSIGNED GO TO STATEMENT 

General Form 

G 0 T 0 i, ( n l , n 2 , . . . , nm) 

where 

i is a variable appearing in a previously 
executed ASSIGN statement 

n 1 , n 2 , ... , nm are statement labels 

Note: (n1, n 2 , ... nm) is optional 

General Form 

ASSIGN n TO i 

where 

n is a statement label 

i is a variable that appears in an assigned 
GO TO statement 

ASSIGN sets i to the value of the machine location corresponding to the 
FOR TRAN statement number n, which represents any statement label 
in the program unit. 

Later in the execution of the program, a GO TO i, (n 1 , n 2 , ... nm) 
transfers control to the statement label n referenced in the ASSIGN 
statement. 

4-2 



In the example 

ASSIGN 24 TO M 

GO TOM, (1, 22, 41, 24, 36) 

the M in GO TO M assumes the machine address of statement 24, 
transferring control to the fourth statement label in the list, 24. 

ARITHMETIC IF STATEMENT 

General Form 

IF (a) n 1 , n 2 , n 3 

where 
a is an arithmetic: expression (not complex) 

n1' n2, n3 are staten1ent labels 

This statement causes control to be transferred to the state1nent labeled 
n

1
, n

2
, or n

3
, if the value of a is less than, equal to, or greater than 

zero, respectively. Thus in the example: 

IF' (A(J, K)-B) 10, 4, 30 

IF (A(J, K)-B) < 0 control goes to statement 10 
IF (A(J,K)-B) 0 control goes to statement 4 
IF (A(J, K)-B) > 0 control goes to statement 30 

LOGICAL IF STATEMENT 

General Form 

IF(t)s 

where 

tis a logical expression 

s is any executable statement except DO or 
another logical IF 

4-3 



If the logical expression t is . TRUE., statements is executed. Control 
is_ then transferred to the next sequential statement unless s causes a 
transfer in which case control is transferred. 

If t is . FALSE. , control is transferred to the next sequential statement. 

If tis . TRUE., and s is a CALL statement that does not take a non­
standard return, control is transferred to the next sequential statement 
upon return from 'the subprogram. 

The following examples illustrate several uses of the logical IF. 

1. IF (A. AND. B) F = SIN (R) 
2. IF (16. GT. L) GO TO 24 
3. IF (D. OR. X. LE. Y) GO TO (18, 20), I 
4. IF (Q) CALL SUB 

In example 1, if (A. AND. B) is true, compute F and return to the 
statement following IF. 

In example 2, if (16. GT. L), control transfers to statement 24. 

In example 3, if (D. OR. X. LE. Y) is true, control transfers to statement 
18 or 20 depending upon whether I is 1 or 2. 

In example 4, if (Q) is true, control goes to the subprogram SUB. 

DO ST A TEMENT 

General Form 

DO n i = m 1,m2 ,m3 

where 

n is a statement label 

i is a nonsubscripted integer variable 

in1 , m 2 , and m 3 must be arithmetic expressions 
greater than zero; if m3 is not stated, it is taken to 
be 1. m1, mz and m3 are converted to integer type 
if required before the loop is open. 

4-4 



This statement causes repeated execution of the statements that follow, 
up to and including the statement labeled n. The statements in the 
range of the DO are executed repeatedly with i equal to m1, then i equal 
to m 1 + m 3 , then i equal to m 1 + 2m3 , etc., until i is equal to the 
highest value in this sequence that does not exceed m 2 . The statements 
in the range of the DO will be executed at least once. 

1. The range of a DO is that set of statements that will be 
executed repeatedly; i.e .. , it is the sequence of consecutive 
statements immediately following the DO statement, up to 
and including the statement labeled n. After the last 
execution of the range, the DO is said to be satisfied. 

2. The index of a DO is the integer variable i. Throughout the 
range of the DO, the value of the index is available for 
computation, either as an ordinary integer variable or as a 
subscript. Upon exiting from a DO by satisfying the DO, 
index i must be redefined before it is used in cornputation. 
Upon exiting from a DO by transferring out of the range of 
the DO, the index i is available for computation and is equal 
to the last value it attained. 

3. Within the range of a DO statement may be other DO 
statements; such a configuration is called a DO nest. If 
the range of a DO includes another DO, all of the statements 
in the range of the latter must also be in the range of the 
former. 

4. Transfer of control and DO ranges. Control may not be 
transferred into the range of a DO from outside its range. 
Thus, the following configurations show permitted and non­
permitted transfers. 

Permitted Not Permitted 

--~ 

4-5 



5. Restrictions on statements in the DO_range: 

a. Any statement that redefines the index or any of the 
indexing parameters (m's) is not permitted in the range 
of a DO. 

b. The range of a DO cannot end with an arithmetic IF-or 
GO TO-type statement, with a nonexecutable statement, 
with a nonexecutable statement, with a RETURN or STOP 
statement or with another DO statement. The range of 
a DO may end with a logical IF; in this case, if the 
logical expression t has the value . FALSE., the DO is 
reiterated; if the logical expression t has the value • TRUE., 
statement s is executed and then the DO is reiterated. 
However, if . t has the value • TRUE. and s is an ar ith­
metic IF or transfer type statement, control is transferred 
as indicated. 

6. When a reference to a subprogram is executed in the range 
of a DO, the called subprogram must not alter the DO index 
or the indexing parameters. 

7. When two or more nested DO statements end in the same 
CONTINUE statement, a transfer to this DO ending is only 
allowed from within the innermost DO. 

An example of the DO statement follows: 

K=O 
DO 10 I = 1, 3 
DO 10 J - 1, 2 
K=K+I+J 

10 CONTINUE 

where the K val"1es are computed as: 

old new 
K I J K 

K= 0 
K= 0 + 1 + 1 = 2 
K= 2 + 1 + 2 = 5 
K= 5 + 2 + 1 = 8 
K= 8 + 2 + 2 = 12 
K= 12 + 3 + 1 = 16 
K= 16 + 3 + 2 = 21 

4-6 



CONTINUE STATEMENT 

General Form 

CONTINUE 

CONTINUE is a dummy statement that does not generate any instructions 
in the object program. It is most frequently used as the last statement 
in the range of a DO. When it is necessary to bypass one or more 
executable statements at the end of a. DO loop, and still continue looping, 
the nonexecutable CONTINUE statement provides this facility (see DO 
example). 

PAUSE STATEMENT 

Gener al Forrn 

PAUSE or PAUSE s 

where 

s is a string constant 

The message PAUSE 11 HIT RETURN TO CONTINUE 11 is output to the 
terminal, and program execution is suspended until the user types a 
carriage return. 

Examples: 

PAUSE 
PAUSE ''AACD'' 
PAUSE 4HABCD 

END STATEMENT 

General Form 

END 

The END statement terminates compilation of a program or subprogram 
and physically it must be the last staternent of the program or subprogram. 

4-7 



STOP STATEMENT 

General Form 

STOP 

STOP s 

where 

s is a string constant 

The STOP statement terminates the execution of any program by 
returning control to the operating system .. The string constant is 

printed. 

CHAIN Statement 

General Form 

CHAIN IO NAME 

The file "10 NAME'' will be executed next. If the file is symbolic it will be 
compiled, loaded, and executed. If the file is relocatable binary, it will be 
loaded and executed. If the file is absolute binary, it will be executed. 
Common and open files are saved. 

4-8 



v ... 
Input/ Ouput 
Statements 

In FORTRAN, input/output staternents specify transmission of informa­
tion to or from input/output files. Rather than be concerned with 
specific types of input/output devices (for example, card reader, 
magnetic tape or terminal), the FOR TRAN programmer need only con­
cern himself with the manipulation of data files. The statern.ents are 
grouped as follows: 

1. General Input/Output Statements 

The statements READ and WRITE cause the transmission 
of a specified list of quantities between core storage and 
an input/output file. The statements READ and PRINT 
cause transmission of information from or to core storage 
to the user terminal. 

2. FORMAT and NAMELIST Statements 

Either of these two nonexecutable statements (the FORMAT 
statement or the NAMELIST statement) may be used with 
the general input/output statements. 

The FORMAT statement, which can be used with any general 
input/ output statement, specifies the arrangement of data 
in the input/output record. If the FORMAT statement is 
referred to by a READ statement, the input data. must meet 
the specifications described in "Data Input Referring to a 
FORMAT Statement''. 

The NAMELIST statement specifies an input/output list of 
variables and arrays. Input/output of the values asso­
ciated with the list is effected by reference to the list in a 
READ or WRITE statement. If the NAMELIST statement 

5-· 1 



is referred to by a READ statement, the input data must 
meet the specifications described in "Data Input Referring 
to a NAME LIST Statement". 

FILE DESIGNATION 

Files may be designated by a file name constant or file name variable. 
Within the FOR TRAN system, the file name (" 11

) blank is used to 
designate the user terminal. 

THE GENERAL INPUT/OUTPUT STATEMENTS 

The READ statement inputs the data to be processed by the computer 
program. The following table gives the forms of the READ statement, 
where 

f is a file designator which references the input file 

n is a FORMAT statement label 

x is a NAMELIST name 

y is a variable format 

1 is a statement label 

Type of Input 

ASCII record 
ASCII record 
ASCII record 
ASCII record 
ASCII record 
Binary record 
ASCII record 

General Form 

READ, list 
READ n, list 
READ (£, n) list 
READ (f, x) 
READ (£, y) 11 st 
READ (£) list 
READ (£, n, END=L) 

1. The READ, LIST statement causes ASCII record file to be 
input from the new user terminal. 

2. The READ n, list statement causes records to be read in 
ASCII mode according to format n. 

3. The READ (£, n) list statement causes ASCII information to 
be read from file f according to format n. 

5-2 



4. The READ {f, x) statement causes ASCII information relating 
to variables and arrays associated with the NAM.ELIST 
name x to be read from file £. 

5. The READ {f, y) list statement causes ASCII information to be 
read from file f via a variable format. 

6. The READ (f) list statement causes binary information to be 
read from file f. 

7. If end of file occurs, control is transferred to statement label 1. 
The END = statement label may appear at the end of any of the 
parenthesized parameters. 

Under the first four forms of the RE:AD statement, successive records 
are read until the entire input list has been read, converted, and 
stored in the locations specified by the list. 

Binary conversion of input numbers is identical, whether the numbers 
are compiled into the program, appear in a DATA statement, or are 
read in at execute time. 

Output 

Examples: 

READ 10, (A(I), I=l,5) 
READ ( 11 ABC", lO)A, B, (D(J), J=l, 10) 
READ {11 DEF 11

, 1 O)K, DC(J) 
READ ( 11ABCDE 11 )(A(J), J-1, 10) 
READ (ABC)(A(J), J-1, 10) 
READ (XYZ, NAMl) 
READ (XY Z, FMT)A, B, (C(I), I, 5) 

The following table gives the forms of the output statement, where 

f (file name designating an unsigned integer constant, or a 
nonsubscripted integer variable) is a reference to a file 

n is a FORMAT statement label 

x is a NAMELIST name 

y is a variable format 

5-3 



Type of Output 

ASCII record 
ASCII record 

ASCII record 
ASCII record 
Binary record 
ASCII record 

General Form 

PRINT, list 
PRINT n, list 

WRITE (£, n) list 
WRITE (£, x) 
WRITE (f) list 
WRITE (f, y) list 

1. The PRINT, list statement causes an ASCII record to be 
output to the user terminal. A list is required. 

2. The PRINT n, list statement causes ASCII data to be output 
to the user terminal according to format n. 

3. The WRITE (£, n) list statement causes ASCII information 
to be written on file f according to the format specified in 
statement n. 

If f = 11 11 blanks output is to the user terminal 

4. The WRITE {£, x) statement causes all variable and array 
names, as well as their values that belong to the namelist 
name x, to be written on file £. 

5. The WRITE (f) list statement causes binary information to 
be written on file £. 

The PRINT n, WRITE n, and WRITE (£, n) statements cause successive 
records to be written in accordance with the FORMAT statement until the 
list has been satisfied. The WRITE (£) list statement causes the writing of 
one logical record consisting of all the words specified in the list. 

When a WRITE statement refers to a NAMELIST name, the values and 
names of all variables and arrays belonging to the NAMELIST name 
are written, each according to its type. A complete array is written 
out by columns. The output data is written such that the fields for the 
data are large enough to contain all the significant digits. 

5-4 



Examples: 

PRINT 2 0, (A( J), J = 1, 6) 
PRINT 2, (A(J), J=l, 6) 
WRITE ("ABC", 1 O)A, B, (C(J), J=l, 10) 
WRITE ("DEF II. 11 )K. D (.J) 
WRITE ("AB CDE")(A(J), J=l, 10) 
WRITE (ABC)A, B, C 
WRITE (XYZ, NAM!) 
WRITE (XY Z, FMT)A, B, (C(I), I=l, 5) 

LIST SPECIFICATIONS 

If arrays or variables are transmitted by using a read or write binary, 
or with a FORMAT statement, an ordered list of the quantities to be 
transmitted must be included in the general input/output statement. The 
order of the input/output list must be the same as the order in which the 
information exists in the input/ output medium. 

The following notes on the information and meaning of an input/output 
list are most clearly understood by considering the following input/ 
output list: 

A, B(3), (C(I), D(I, K), I=l, 10), 
( (E(I, J), I=l, 10, 2), F(J, 3), J=l, K) 

This list implies that the information in the external input/ output 
medium is arranged as follows: 

A, B(3), C(l), D(l, K), C(Z), D(Z, K), ... , 
C (10), D( 1 0, K), E ( 1, I ) , E ( 3, 1 ), ... , 
E(9, 1 ), F(l, 3), E(l, 2), E(3, 2), ... , 
E(9, 2), F(2, 3), ... , F(K, 3) 

An input/output list is a string of list items separated by commas. A 
list item may be: 

A subscripted or nonsubscripted variable. 

An implied DO. 

An input/output list reads from left to right with repetition of variables 
enclosed in parentheses. 



A constant n-iay appear in an input list only as a subscript or as an 
indexing parameter. 

Expressions may appear in an output list. 

The execution of an input/output list is exactly that of a DO loop, as 
though each left parenthesis (except subscripting parentheses) were a 
DO, with indexing given immediately before the matching right 
parenthesis, and with the DO range extending up to that indexing infor­
mation. The order of the input/output list A, B(3), (C(I), D(I, K), I=l, 
10), ((E(l,J), I=l, 10,Z), F(J,3), J=l,K) may be considered equivalent 
to the following : 

A 
B (3) 
DO 5 I= 1, 10 
C(I) 

5 D(I, K) 
DO 9 J=l,K 
DO 8 I= 1 , 1 0, 2 

8 E(I,J) 
9 F(J, 3) 

(C(I), D(I, K), I= 1, 10) 

( ( E (I, J), I= 1 , 1 0, 2), 
F(J, 3), J=l, K) 

An implied DO is best defined by an example. In the input/output list 
previously shown, the list item (C (I), D(I, K), I= 1, 10) is an implied DO; 
it is evaluated as shown. The range of an implied DO must be clearly 
defined by parentheses. 

On input, if the list has the form 

K, A(K) 
or 
K, (A(I), I= 1, K) 

where the definition of an index or an indexing parameter appears 
earlier in the list than its use, the indexing is carried out with the 
newly read-in value. 

Any number of quantities may appear in a single list. However, each 
quantity must have the correct format as specified in a corresponding 
FORMAT statement. Essentially, it is the list that controls the quantity 
of data read. If there are more quantities to be transmitted than are in 
the list, only the number of quantities specified in the list are trans­
mitted, and remaining quantities are ignored. Conversely, if a list 
contains more quantities than are given on one ASCII input record, 

5-6 



more records are read; if a list contains more quantities than are given 
in one binary record, zero data is placed in the remaining list items. 

When an end-of-file occurs and the user requests control (via END=L), 
the variables in the READ list are unchanged. 

INPUT/OUTPUT OF ENTIRE ARRAYS 

If input/output of an entire array is desired, an abbreviated notation may 
be used in the list of the general input/output statement. Only the name 
of the array need be given and the indexing information may be omitted. 
The array name used in this manner is called a short-list variable. 

1. If A has previously been listed in a statement containing 
dimension information, the following statement is sufficient 
to read in all of the elem.ents of the array A (see the "Input 11 

section). 

READ (5, lO)A 

2. The elements read in by this notation are stored in accord­
ance with the description of the arrangement of arrays in 
storage (see the "Subscripts" section). 

3. If A has not been dimensioned, only one element will be 
read in. (Either double·-precisibn or complex is con­
sidered to be one element. ) 

FORMAT STATEMENT 

The ASCII input/ output statements require, in addition to a list of 
quantities to be transmitted, reference to a FORMAT statement that 
describes the type of conversion to be performed between the internal 
machine language and the external notation for each quantity in the list. 

General Form 

where 

n is the statement label 
each subfield, Sl' is a format specification 

5.-· 7 



FORMAT statements are not executed. 

The FORMAT statement indicates, among other things, the maximum 
size of each record to be transmitted. Therefore, it must be remembered 
that the FORMAT statement is used with the list of some particular 
input/output statement, except when a FORMAT statement consists 
entirely of alphanumeric fields. In all other cases, control in the object 
program switches back and forth between the list, which specifies 
whether data remains to be transn1itted, and the FORMAT statement, 
which gives the specifications for transmission of that data. 

Slashes are used to specify unit records. 

Thus, FORMAT (3F9. 2, 2Fl0. 4/8El4. 5) would specify records in which 
the first, third, fifth, etc., have the format (3F9. 2, ZFIO. 4) and the 
second, fourth, sixth, etc., have the format (8El4. 5). 

During input/ output of data, the object program scans the FORMAT 
statement to which the relevant input/output statement refers. When a 
specification for a numerical field is found in the format and list items 
in the statement remain to be transmitted, input/ output takes place 
according to the specification, and scanning of the FORMAT statement 
resumes. If no items remain, transmission ceases and execution of 
that particular input/ output statement is terminated. Thus, an ASCII 
input/output operation is brought to an end when there are no items 
remaining in the list. 

The field descriptors used in the FORMAT statement are listed rn Table 5-1. 

Numeric Field Descriptors 

Numeric field descriptors are specified in the forms Dw. d, Ew. d, Fw. d, 
Iw, Q\\', where: 

1. D, E, F, G, I, and 0 represent the type of conversion. 

5-8 



Table 5-1. FORMAT STATEMENT FIELD DESCRIPTORS 

Field Type Manner Specified Usage 

I riw Integer Field ( 123) 

F rFw.d External fixed point decimal (1. 23) 

E rEw.d .Floating Point '1. E09) 
D rDw.d Double precision (I. D09) 
G rGw.d Generalized (for E formats) 
L rLw .Logical (T or F) 
A rAw Alphanume1·ic (JONES) 
H wHs Hollerith ( 3HEND) 

'' "S" (
11 END 11

) 

$ r$w :$~X, XXX. XX where w :~ 12 

x wX Spacing - spaces w times 
T Tw Tab (spaces to column w) 
p f p Scaling 

I I Generates a Carriage Return 
0 Ow Octal integers 

Symbols 

w - field width (entire number of characters required) 

d - number of decimal digits 

i - number of integer digits 

s - string of characters 

f - power of l 0 

r - repeat count 

-~ 

5 ... 9 



2 

W•2 
~ 

I2 

2. The w is an unsigned integer constant representing the 
field width for converted data; this field width may be 
greater than required to provide spacing between numbers. 

3. The d is an unsigned integer or zero representing the 
number of digits of the field that appear to the right of the 
decimal point. 

For example, the statement FORMAT (12, El2. 4, 08, FlO. 4, 
D25. 16) might cause the following line to be printed: 

-0 ·f 9 3 2 _jEll'O 773427 16-0.007 -o.es1s977909soo61f~o 

d•4 w-8 d•4 d•l6 

~ 
~ ~ \, w-25 ) 

08 ............. 

El2.4 Fl0.4 D2S.16 

where \fj indicates a blank space. 

The following are notes on D-, E-, F-, G-, I-, and 0- conversion. 

1. No format specification should be given that provides for · 
more characters than permitted for a relevant input/output 
record. Thus a format for an ASCII record to be printed 
should not provide for more characters (including blanks) 
than the capabilities of the printer. 

2. Information transmitted with 0-conversion may have real or 
integer names; information transmitted with G-conversion 
may have real, integer, or complex names; information 
transn1itted with E-, and F-conversions must have real or 
complex names; information transmitted with I-conversion 
must have integer names; information transmitted with 
D-conversion must have double-precision names. 

3. The numeric field descriptor Gw. d indicates that the 
external field occupies w positions with d significant digits. 
The value of the list item appears, or is to appear, 
internally as a real datum. 

Input processing is the same as for the F-conversion. 

5-10 



The method of representation in the external output string is a function 
of the magnitude of the real datum being converted. Let N be the 
magnitude of the internal datum. The following tabulation exhibits a 
correspondence between N and the equivalent method of conversion that 
will be effected: 

Magnitude 
of Datum 

0. 1 :s N < 1 
1 :s N < 10 

10<l-2 :s N < 10d-l 

10cl-l :s N < 10cl 

Otherwise 

!~qui valent Conversion 
Effected 

F(w-4) 
F(w-4) 

F(w-4) 

F(w-4) 
sEw. cl 

cl, 4X 
(d-1), 4X 

1, 4X 

0, 4X 

Note that the effect of the scale factor is suspended unless 
the magnitude of the datum to be converted is outside of the 
range that permits effective use of F-conversion. 

4. The field width w, for D-, E-, F- and G-conversions, must 
include a space for the decimal point and a space for the 
sign. The D-, E-, and G-conversions also require space 
for the exponent. For example, for D- and E- and G­
conver sions on output:, w 2: d+6, and for F-conversion, 
w 2: cl+2. 

5. The exponent, which may be used with D- and E-conversions, 
is the power of 10 to which the number must be raised to 
obtain its true value. The exponent is written with an E 
(for E-conversion) or D (for D-conversion) followed by a 
minus sign if the exponent is negative, or a plus sign or a 
blank if the exponent is positive, and then followed by two 
numbers that are the exponent. For example, the number 
. 002 is equivalent to the number . 2E-02. 

6. If a number converted by I-conversion requires more 
spaces than are allowed by the field width w, the mo st 
significant part of the number is truncated to fit the field. 
If the number requires fewer than w spaces, the leftmost 
spaces are filled with blanks. If the number is negative, the 
space preceding the leftrnost digit contains a minus sign if 
sufficient spaces have been reserved. 

5-ll 1 



8. If an output number that is converted by D-, E-, F-, G-, 
of I-conversions rf'quires n1ore spaces than at°l' allo\vt·d by 
the field width w, the most significant part of the number 
is truncated to fit the field. If the number requires fewer 
than w spaces, the leftmost spaces are filled with blanks. 

9. Specifications for successive fields are separated by commas 
and/or slashes. (See the section "Multiple-Record Formats 11 

in this chapter. ) 

Complex Number Fields 

Since a con1plex quantity consists of two separate and independent real 
numbers, a complex number is transmitted either by two successive 
real number specifications or by one real number specification that is 
repeated; e.g., ZElO. 2=El0. 2, ElO. 2. 

The following is an example of a FORMAT statement that transmits an 
array consisting of six complex numbers. 

FORMAT (2El0. 2, E8. 3, E9. 4, ElO. 2, F8. 4, 3(El0. 2, F8. 2) ) 

Alphanu.meric Field Descriptors 

FOR TRAN provides two ways for transmitting alphanumeric informa­
tion; both specifications result in storing the alphanumeric information 
internally in ASCII. 

1. The specification Aw causes w characters to be read into, 
or written from, a variable or array name. 

2. The specification nH or a coded string constant allows 
placing alphanumeric information into a FORMAT 
statement. 

The basic difference between A- and H-descriptor is that information 
handled by A-descriptor is given a variable name or array name that 
can be referred to for processing and modification; information handled 
by string descriptors is not given a name and may not be referred to 
or rnanipulated in storage in any way. 

A-Descriptor. The variable name to be converted by the A-descriptor 
may be any type of variable. 

5-12 



1. On input, nAw is interpreted to mean that the next n 
successive fields of w characters each are to be stored as 
ASCII information. For a real variable if w is greater than 
6, only the 6 r~ghtmost characters will be significant. If 
w is less than 6, the characters will be left-adjusted and 
the work filled out with blanks. 

2. On output, nAw is interpreted to n1ean that the next n 
successive fields of w characters each are to be the result 
of transmission from storage without conversion. 

Logical "Field Descriptor 

Logical variables may be read or written using the specification Lw, 
where L represents the logical type of conver stion and w is an integer 
constant that represents the data field width. 

1. On input, a value representing either true or false is stored 
if the first nonblank character in the field of w characters 
is a Tor an F, respectively. If all thew characters arc 
blank, a value representing false is stored. 

2. On output, a value of. TRUE. or . FALSE. in storage 
causes w minus 1 blanks, followed by a Tor an F, 
respectively, to be written out. Output is right justified. 

Blank Field Descriptor 

The specification nX introduces n blank characters into an input/output 
record where 0 < n :5 132. 

1. On input, nX causes n characters in the input record to be 
skipped, regardless of what they are. 

2. On output, nX causes n blanks to be introduced into the 
output record. 

5-13 



Repetition of Field Format 

It may be desired to print or read n successive fields in the same forrr1at 
within one record. This may be specified by using n, an unsigned 
integer, before D-, E-, F-, G-, I-, L-, 0-, or A-descriptor. Thus, 
the field specification 3El2. 4 is the same as writing El2. 4, El2. 4, 
El2. 4. 

Repetition of Groups 

A limited parenthetical expression is permitted to enable repetition of 
data fields according to certain format specifications within a longer 
FORMAT statement. Thus, FORMAT (2(Fl0. 6, ElO. 2), 14) is equivalent 
to FORMAT (FlO. 6, ElO. 2, FlO. 6, ElO. 2, 14). (See the "Multiple-Record 
Formats" section. } Two levels of parentheses, in addition to the 
parentheses required by the FORMAT statement, are permitted. The 
second level of parentheses facilitates the transmission of complex 
quantities. 

Scale Factors 

To permit more general use of D-, E-, F-, and G-descriptors, a 
scale factor followed by the letter P may precede the specification. 
The magnitude of the scale factor must be between -8 and +8, inclusive. 
The scale factor is defined for input as follows: 

-scale factor . 10 x external quantity = internal quantity. 

For output, the scale factor is defined as follows: 

external quantity = internal quantity x 1 oscale factor 

For input, scale factors have effect only on F-conversion. For example, 
if input data is in the form xx. xxxx and it is desired to use it internally 
in the form . xxxxxx, then the FORMAT specification to effect this 
change is 2PF7. 4. For output, scale factors may be used with D-, 
E-, F-, and G-conversion. 

For example, the statement FORMAT (12, 3Fll. 3) might output the 
following printed line: 

27~~~~-93.209~~~~~-0.008~~~~~~0. 554 

5-14 



.But the statement FORMAT (12. 1P3F'll. 3) used with the same data 
would output the following line: 

27~MMM-932.094~M~~~-o. 76~~M~MM5. 536 

whereas, the statement FORMAT (12!, -1P3Fll. 3) would output the 
following line: 

A positive scale factor is assumed to be zero if no other value has been 
given. However, once a value has been given, it holds for all D-, E-~ 
F-, and G-conversions following the scale factor within the same 
FORMAT statement. This applies to both single-record formats and 
multiple-record formats. Once the scale factor has been gi vcn, a 
subsequent scale factor of zero in the same FORMAT statern.ent must 
be specified by OP. For F-type conversion, output of numbers, 
whose absolute value is greater than or equal to 235 after scaling, is 

output in E-conver sion. Scale factors have no effect on 1- and 
0-conver sion. 

Multiple-Record Formats 

To deal with a block of more than one line of print, a FORMAT 
specification may have several different one-line formats separated 
by a slant to indicate the beginning of a new blank line. Thus, FORMAT 
(3F9. 2, 2Fl0. 4/8El4. 5) would specify a multiline block of print in 
which lines 1, 3, 5, ... have format (3F9. 2, 2Fl0. 4), and lines 2, 4, 
6, ... have format (8El4. 5). 

If a multiple-line format is desired in which the first two lines are to 
be printed according to a special format, and all remaining lines 
according to another format, the last line- specification should be 
enclosed in a second pair of parentheses; for example: 

FORMAT (12, 3El2. 4/ZFlO. 3, 3F9. 4/(10Fl2. 4) ) 

If data items remain to be output after the format specification has been 
completely "used", the format repeats from the last previous paren­
thesis, which is a zero or a first level parenthesis. For example, 
consider the FORMAT statement: 

FORMAT (3El0. 3, (12, 2 (Fl2. 4, FlO. 3) ), D28. 17) 
0 1 2 21 0 

5-15 



The parentheses labeled 0 are zero level parentheses; those labeled 1 
are fir st le ve 1 pare n the s e s ; and those labeled 2 a r e second level 
parentheses. If more items in the list are to be transmitted after the 
format statement has been completely used, the FORMAT repeats from 
the last first-level left parenthesis; that is, the parenthesis preceding I2. 

As these examples show, both the slash and the final right parenthesis 
of the FORMAT staternent indicate a termination of a record. 

Blank lines may be introduced into a multiline FORMAT statement by 
inserting consecutive slashes. When n+l consecutive slashes appear at 
the end of the FORMAT, they are treated as follows: for input, n+l 
records are skipped; for output, n blank lines are written. When n+l 
consecutive slashes appear in the middle of the FORMAT, n records are 
skipped for both input and output. 

Carriage Control 

The WRITE (f, n) list and PRINT n, list statements prepare ASCII files 
in edited format for the printer. The first character of each ASCII record 
is examined to see if it is a control character to regulate the spacing. 
If the first character is recognized as a control character, it is 
replaced by a blank in the printed line and the line printed after the 
prop,er spacing has been effected. The control characters which will 
be recognized are: 

Character 

Blank 
0 
1 

Effect 

Single space before printing 
Double space before printing 
Eject before printing 

FORMAT Statement Read in at Object Time 

FOR TRAN perm.its specifying a FORMAT for an input/ output list at 
object time. 

In the following example, A, B, and the array C are converted and 
stored according to the FORMAT specifications read into the array 
FMT at object time . 

. DIMENSION FMT (12) 
FORMAT (12A6) 
READ ("ABC", l)(FMT(I(,I=l, 12) 
READ ("ABC", FMT)A, B, (C(I), I=l, 5) 

5-16 



The format read in at object time must take the same form as a source 
program FORMAT statement. except that the word FORMAT is omitted; 
that is, the variable format begins with a left parenthesis and terminates 

with a right parenthesis. 

Data Input Referring to a FORMAT Statement 

These specifications must be followed when data is input to the object 
program. 

1. The data must correspond in order, type, and field with 
the field specifications in the FORMAT statement. Punch­
ing begins in card colum.n 1. 

2. Plus signs may be omitted or indicated by a +. Minus 
signs must be indicated. 

3. Blanks in nurneric fields are regarded as z.cros; however, 
leading zeros are suppressed. 

4. Numbers for E- and F-conversion may contain any number 
of digits, but only the high-order 9 digits of precision are 
retained. For D-conversion, the high-order 14 digits of 
precision are retained. In both cases, the nun1ber is 
rounded to 9 or 14 digits of accuracy, as applicable. 

To permit economy in typing, certain relaxations in input data format 
are permitted. 

1. Numbers for D-, E-, and F-conversion need not have their 
decimal point punched; the format specification suffices. 
For example, the number -09321+2 with the specification 
E 12. 4 is treated as though the decimal point had been 
punched between the 0 and the 9. If the decimal point is 
punched in the card, its position overrides the position 
indicated in the FORMAT specification. 

2. Field width in an input record can be overruled by using a 
comma as a delimiter. 

5-17 



NAMELIST STATEMENT 

The NAMELIST statement and modified forms of the READ and WRITE 
statements provide for reading, writing, and converting data without 
using an input/output list in the input/output statement. Reference is 
made to a NAMELIST statement instead of a FORMAT statement. 

Gener al Form 

NAMELIST/X/A, B, ... , C/Y/D, E, ... F/Z/G, H, ... , I 

where 

X, Y, Z, ... are NAMELIST names 

A, B, C, D, ... are variable or array names 

Each list that is mentioned in the NAME LIST statement is given a 
NAMELIST name. Thereafter, only the NAMELIST name is needed in 
an input/output statement to refer to that list. The following rules 
apply to as signing and using a NAME LIST name: 

1. A NAMELIST name consists of one to eight alphanumeric 
characters; the first character must be alphabetic. 

2. A NAMELIST name is enclosed in slashes. The field of 
entries belonging to a NAMELIST name ends either with a 
new NAMELIST name enclosed in slashes or with the end 
of the NAMELIST statement. 

3. A variable name of any array name may belong to one or 
more NAMELIST names. 

4. A NAMELIST name must not be the same as any other name 
in the program. 

5. A NAMELIST name may be defined only once by its appear­
ance in a NAMELIST statement. After it has been defined 
in the NAMELIST statement, the NAMELIST name may 
appear only in READ, or WRITE, or PRINT statements. 

5-18 



6. A dumtny argument of a subprogram cannot be used as a 
variable in a NAMELIST statement. 

In the following examples, the arrays A, I, and Land the variables B 
and J belong to the NAME LIST name, NAMl; the array A and the 
variables C, J, and K belong to the NAMELIST name, NAM2. 

DIMENSION A(lO), 1(5, 5), L(lO) 
NAME LIST /NAMl /A, B, I, J, L/NAM 2/ A, C, J, K 

Data Input Referring to a NAMELIST Statement 

When a READ statement refers to a NAMELIST name, the designated 
input file is readied and input of data is begun. The first input data 
record is searched for a $ as the first character, immediately 
followed by the NAME LIST name, irnmediately followed by a comma or 
one or more blank characters. If the search fails, additional records 
are examined consecutively until there is a successful match or end-of­
file. When a successful match is made of the NAMELIST name on a 
data record and the NAMELIST nam.e referred to in a READ statement, 
data items are converted and placed in storage. 

Empty fields (detected as one of the pairs (=,), (16, ), or (,,) ) cause a 
zero to be stored. The data items rnust be separated by commas. The 
end of a group of data is signaled by a $ following the last item either 
in the same data record as the NAMELIST name or anywhere in any 
succeeding records. 

The form that data items may take is: 

1. Variable name = constant 

CON= 17. 5 
X(6) = 26. 4 

where the variable name may be an array element name or 
a simple variable name. Subscripts must be integer 
constants. 

2. Array name= set of constants (separated by comn1as) 

5-19 



where k>:'- constant may be included to represent k constants 
(k must be an unsigned integer). The number of constants 
must be equal to the number of elements in the array. 

3. Subscripted variable = set of constants (separated by 
commas) 

where k>:~ constant may be included to represent k constants 
(k must be an unsigned integer). A data item of this form 
results in the set of constants being placed in array elements, 
starting with the element designated by the subscripted 
variable. 

The number of constants given cannot exceed the number of 
elements in the array that are included between the given 
element and the last element in the array, inclusive. 

4. Variable l /Variable 2 = constant 

where Variable 1 is a counter which is set after the data 
has been input, indicating the number of constants that 
have been stored for Variable 2. 

Constants used in the data items may take any of the following forms: 

a. Integer s , e. g . , 1 , 2 , 3 

b. Real numbers, e.g., 1., 2., 3. 3 

c. Double-precision numbers, e.g., -Z. 63Dl5 

d. Complex nwnbers, which must be written in the usual form, 
(C 1, CZ), where C 1 and CZ are real numbers. 

e. Logical constants, which must be written as T or . TRUE., 
and For . FALSE. 

f. String constants. 

5-20 



Any selected set of variable or array names belonging to the NAMEI..iIST 
name, referred to by the READ statement, may be used as specified in 
the preceding description of data items. Narnes that arc made equiv­
alent to these names may not be used unless they also belong to the 
NAMELIST name. 

First Data Card 

Second Data Card 

I(2,3)=5,J=4.2#B=4, 

,6.4,L=2,3,8*4.3$ 

If this data is input to be used with the NAMELIST statement previously 
illustrated and with a READ statement, the following actions take place. 
The input file designated in the READ statement is prepared and the 
first record is read. The record is searched for a $ in column 2, 
immediately followed by the NAMELIST name, NAMl. Since the search 
is successful, data items are converted and placed in core storage. 

The integer constant 5 is placed in 1(2, 3), the real constant 4. 2 is 
converted to an integer and placed in J, and the integer constant 4 is 
converted to real and placed in B. Since no data items rcn1ain in the 
record, the next input record is read. The integer constant 7 is 
converted to real and placed in A(3), and the real constant 6. 4 is placed 
in the next consecutive location of the array, A(4). Since Lis an 
array name not followed by a subscript, the entire array is filled with 
the succeeding constants. Therefore, the integer constants 2 and 3 are 
placed in L( 1) and L(2), re spec ti vely, and the real constant 4. 3 is 
converted to an integer and placed in L(3), L(4), ... , L(lO). The $ 
signals termination of the input for the READ operation. 

Data Output Referring to a NAMELIST Statement 

When data is output via NAMELIST, e.g., WRITE (6, LISTI), all 
variables associated with LIST 1, as specified in the NAME LIST st?-te -
ment, will be output. The output values are labeled with the variable 
nan1e. 

5-21 



AUXILIARY INPUT/OUTPUT STATEMENTS 

The following set of statements enable the user to manipulate magnetic tapes 
and sequential disk or drum files: 

REWIND Statement 

General Form 

REWIND el' e 2 , e
3

, .. . 'e n 

where the e. are integer, real, or double precision 
. 1 

expressions. 

Execution of a REWIND statement causes the units whose logical unit nurn­
bers are the integer values of the. e. to be rewound, in the order written. 

1 

BACKSPACE Statement 

General Form 

BACKSPACE e 
1

, e
2

, e
3

, ... , en 

where the e. are integer, real, or double precision 
. 1 

expressions. 

\A/hen a BACKSPACE statement is executed, the units referenced by the 
integer values of the e. are each backspaced one logical record. 

1 

REWIND and BACKSPACE statements that are executed for tapes already 
positioned at "load point'' have no effect. 

END FILE Statement 

General Form 

. • ' e n 

where the e. are integer, real, or double precision 
exp res sions

1 
whose values determine the units on 

which end-of-file marks are to be written. 

5-22 



This statem.ent causes end-of-file marks to be written on the specified 
units. Sometimes it is desirable to take a program that has been written 
for output on magnetic tape and as sign that logical unit number to son1e 
other device (such as a line printer). Since such programs often write an 
end-of-file and rewind their tapes at the end of the job, it is permissible 
to specify an ENDFILE or REWIND operation on any device. When the 
device is not a magnetic tape or sequential disk or drum file, the statements 
have no effect. It is not permissible'to backspace such· devices. 

MEMORY-TO -MEMORY DATA CONVERSION 

The ENCODE and DECODE statements resemble ASCII WRITE and READ 
statements; however, in an ENCODE/DECODE operation, there is no true 
input/output, but rather a data conversion between an input/output list and 
an internal buffer. The buffer is often an integer array and is established 
by the programmer. Because there are definite physical limits to an extern­
al record, the length of the simulated imternal record in an ENCODE/DECODE 
operation can be established by the programmer. If several records are iden­
tified by the FORMAT being used, the second and subsequent records are 
stored in rnemory in order of increasing n1erhory address. 

General Form 

~ENCODE} DECODE 
(c,f,s,n,)k 

where 

c is the number of characters per internal record (an arith­

metic expression converted to integer mode) 

f specifies a FORMAT statement (a FORMAT statement lable 

or the name of some array that contains a FORMAT statement) 

s is the starting location of the buffer area (an array name, an 
array element, or a scalar variable) 

n is an integer variable (optional) into which the number of gen­
erated or scanned characters is stored, upon completion of the 
operation 

k is an input/ output list. 1 

5-Z3 



ENCODE Statement 

ENCODE converts the list to ASCII character strings, in accordance with the 
FORMAT established by f, and places those strings in a buffer area that begins 
at the starting location specified by s. When the number of characters generated 
by the FORMAT statement exceeds the limits of the record, the overflow charac­
ters are lost and are not placed in the next -record. When fewer characters are 
generated than are required to fill the record, it is completed with trailing 
blanks. As with a WRITE statement, the first operation accomplished on each 
record is to fill it with blanks, even before any characters have been generated. 

DECODE Statement 

DECODE initiates decoding of the character string starting at location s, in 
accordance with the FORMAT indicated by f, and stores the decoded informa­
tion in the list k. If the FORMAT statement specifies more characters from 
a record than are indicated by c, it i_s assumed that the extra characters are 
to be blanks and, therefore, they are not taken from the following record. A 
new record is started only when it 1.s requested specifically by the FORMAT 
statement. 

The setting of n is optional; when it is desired, it is set to the number of char­
acters scanned. This can be used to advantage when scanning with widthless 
formats. 

5-24 



VI ... 

Indirect Fiie and 
Data Base Management 
Statements 

In addition to the "standard" FORTRAN input/output statements, described 
in Section V, the 2+2 FORTRAN subsystems provides an interface to the 
inore general 2+2 file and data-base manager subsystem. This interface 
consists of a simple set of declarative and operational statements useful 
in building, manipulating, and accessil1g data bases used in storing and 
retrieving information. 

With respect to the data-base manager, a file may be considered to be a 
named space consisting of an ordered :sequence of elements. All internal 
structuring defined for a file, and all access to the contents of a file, are 
c:::ontrolled by the data-base manager. 

The structure, access, and control of a file is determined by the "s c he1na" 
definition associated with a file. A "schema" allows for the definition of 
file to include logical "areas'r within the file. "Records" within "areas" of 
a. file are also defined. A "record" is further defined into elements consisting 
of a name, type, mode, and size. 11 Schen1a11

, "areas", .and "records", once 
defined are referred to by name. Rather than be concerned with the form or 
:structure of the data-base manager, itself, the FORTRAN programmer need 
only concern himself with the manipulation of files and data bases in terms of 
the statements described below. 

NOTE 

For a complete description of the data-base manager, the FORTRAN 
programmer is advised to obtain the 2+2 system documentation of the 
data-base manager for a detailed description of" schema", "area", 
"record", etc. 

6-ll 



The statements are grouped as follows: 

1. Directory Content Statements 

The statements CREA TE, RENAME, ERASE, and DESTROY 
transmit information to the file manager used to build, modify 
and update files. CLOSE file indicates deactivation of a 
previously active file. 

2. General Input/Output Statements 

The RETRIEVE statement causes transmission of a set of 
quantities from a file to core storage. 

The statements, INSERT, APPEND, REPLACE, and REMOVE 
cause transmission of a set of quantities from core storage to 
a file in a manner appropriate to the specified statement. 

FILE DESIGNATION 

Files may be designated by a file name constant or file name variable. 
Within the FOR TRAN system, the file name (''~") blank is used to designate 
the user terminal. 

DIRECTORY CONTENT STATEMENTS 

1. CREA TE a file 

The CREATE statement is used to enter a new file name in the user's 
directory. The file is initially set to contain no information. Optionally, 
access privileges and additional user access may be specified. 

6-2 



General Form 

CREA TE file name 

Examples: 

where: file narne is a file designator which 
may be a file name constant or file 
name variable. 

CREA TE "A" 
CREATE ''BETA'' 
CREATE "PA YABLES 11 

The creator of a file is assigned full access privileges to that file. 
Those privileges include READ, WRITE, and EXECUTE access. 

To assign privileges to other users who wish to access a file, the 
CREATE statement may be expanded in the following form: 

CREATE .file name/USER ID/ACCESS/USER ID/ACCESS ... 

Where file name is file designator: 

USER ID is a unique user identification string (not currently 
defined as to form or length) delimited by slashes 
(division signs). 

ACCESS is any combination of the following words separated by 
commas, -READ, -WRITE, EXECUTE, APPEND, or PASSWORD. 

Any number of users may be authorized access to a file. However, 
access privileges must be specified for each authorized user. Public 
access is specified by a null use:r ID(i. e., //). Consider, 

CREATE 11 PA YROLL' 1 /AB234/READ/J. SHMOE/APPEND, EXECUTE 

6-3 



Creates the file named MILLISIN. It also makes the file public with 
both READ and EXECUTE privileges. 

2. RENAME a file 

The RENAME statement allows a user to rename any file currently in 
a user's directory. Optionally, additional users and access privileges 
may be specified. 

General Form 

Example: 

RENAME file name, file name 

where: file name is a file designator which 
may be a file name constant or file 
name variable. 

HENAME "NEW TRANS", II OLDTRANS" 

This renames the file currently in the user's directory as NEWTRANS 
to a file named OLDTRANS. The name NEWTRANS is removed from 
the user's directory, replaced by the name OLDTRANS. 

Additional access privileges may be specified while renaming a file by 
attaching user !D's and access. For example, 

RENAME "ABC", "DEF" /USER27 /READ, WRITE/USER33/EXECUTE 

File ABC is renamed as file DEF. In addition, USER27 is authorized 
to READ and WRITE the file, and USER.33 is granted execute only access. 

6-4 



3. ERASE a file 

The ERASE statement allows a user to erase or clear the inforrnation 
currently contained in one or more files. 

General Form 

ERASE file name, filename, 

Examples: 

where: file name is a file designator which 
may be a file name constant or file 
name variable. 

ERASE 11 R 11 

ERASE "MONTH04", 11 MONTH05", 11 MONTH06 11 

4. DESTROY a file 

The DESTROY statement provides the method for destroying both the 
information contained in a file and removing the entry containing the 
name of the file in the user 1 s directory. That is, both the contents and 
the name of the file are destroyed and unrecoverable. 

General Form 

DESTROY file name, file name, .••. 

where: file name is a file designator which 
may be a file name constant or file 
name variable. 

6-5 



Examples: 

DESTROY "ACCOUNTS" 
DESTROY 11 SMALLEST 11

, 
11 AVERAGE", ''LARGEST" 

S. CLOSE a file 

The CLOSE statement is used to signal the system that processing of 
an active file has been completed. The specified file is deactivated. 
Subsequent statements referencing the file will reactivate the file and 
its contents. This statement need only be executed if a given FOR TRAN 
program is concerned about simultaneously activating more files than 
the maximum number of allowable active files defined by the 2+2 system. 

General Form 

CLOSE file name, filename, .... 

where: file name is a file designator which may 
be a file constant or file name variable. 

Examples: 

CLOSE 11 XYZ 11 

CLOSE 11 FILEl", "FILE3", "FILE5" 

GENERAL INPUT/OUTPUT STATEMENTS 

Input 

The RETRIEVE statement inputs quantities from a file to be processed by the 
computer program. 



General Form 

RETRIEVE file name (schema.(area(record))) list 

where: file name is a file designator. 
schema is the scherna name applied to file name. 
area is an area name within the schema being accessed. 
record is a record name within the area of a. schema. 
list is a list specification as defined under LIST 

SPECIFICATION (Section V, pg. 5- 5). 

The RETRIEVE statement reads one record from file name using schema/ 
area/record name to isolate the desired record. The contents of the variables 
named in the accessed record replace the contents of those same variables in 
the FOR TRAN program and may be used for computation. 

The ·list specification is optional and need only be used when it is desirable 
to access only a few of the items defined in a record definition. 

There n1ust be a one-to-one correspondence between the variable names in 
the FORTRAN program, and the variable names used in a schema/area/record 
name definition .. 

The parenthesized arguments - area name and record name are optional so 
long as no ambiguity exists within the schema. 

Examples: 

RETRIEVE 11 MASTFILE" (SCH 1 (AREA2(REC3))) 

RETRIEVE 11 MASTFILE 11 (SCHl(AREA2(REC3)))A, B 
In this example, assume the definition of REC3 defined 
the variables A, B, C, D&E. Only variable A, B are 
accessed via this statement. 

RETRIEVE 11 MASTFIL''(SCHl) 
This statement would be equivalent to example 1 if 
the schema, SCH 1, defined only 1 area and 1 record. 

6-7 



Output 

The statements, INSERT, APPEND, REPLACE, and REMOVE, output 
quantities contained in FOR TRAN program variables to a file managed 
by the data-base manager. 

General Form 

APPEND 
INSERT NEXT 
INSERT PRIOR 
REMOVE 
REPLACE 

file name (schema(area(record))) list 

where: file name is a file designator 
schema is the schema name applied to file name. 
area is an area name within the schema being accessed 

accessed. 
record is a record name within the area in the 

schema. 
list is a list specification as defined under LIST 

SPECIFICATIONS (Section V). 

The output statements write one record from core storage to file name 
according to the schema/area/record names specified. The contents of 
variables in core storage (FOR TRAN program) defined by the schema are 
written appropriately into the specified file using the desired schema. 

The APPEND statement adds a record at the end of the file according to 
the specified schema. 

The INSERT NEXT statement inserts a record after the current record 
position of the file according to the specified schema. 

The INSERT PRIOR statement inserts a record just before the current 
record position of the file according to the specified schema. 

6-8 



The REMOVE staten1ent removes or deletes the record at the current 
record position of the file. In this case, the schema definition is used 
only to isolate and remove the desired record from the file. 

The REPLACE statement replaces the record at the current record 
position of the file according to the specified schema. 

The list specification is optional and need only be used when it is desirable 
to write out fewer items in a record than specified in the schema definition 
of a given record. 

There must be a one-to-one correspondence between the variables names 
in the FORTRAN program, and the variable names used in a schema/area/ 
record name definition. 

The parenthesized arguments - area name and record name are optional 
so long as no ambiguity exists within the schema. 

Examples: 

APPEND 11 0RDERS 11 (0RDSCH(NEWAREA(NEWREC))) 

APPEND II ORDERS" (ORDSCH) 

This staten1ent is equivalent to the first example 
if the 11 ORDERS'' file cons is ts of one area and one 
record type. 

INSERT NEXT "DA TE FILE" (DATSCH(HOLIDA Y) )) 

This statement writes one rec·ord in the 11 DATEFILE 11 

according to the schema DATSCH. Area HOLIDAY 
is written, and the statement assumes only one 
one record type, hence no record name appears .. 

6--9 



INSERT PRIOR 11 SIGMAS 11 (STATSCH(SQUARES(SUM))) A, B 

This statement inserts a record prior to the current 
record position of the file SIGMAS. The schema 
STASCH, with area SQUARES, containing record SUM 
is written. However, since a list is specified, only 
variables A & B of record SUM are written - even if 
the record definition defined more elements than A & B. 

REMOVE "CATALOG" (CATSCH((NAMREC))) 

The parenthesized quantities in the example show a record 
deleted from the file "CATALOG". This example assumes 
the schema CATSCH defines only one area. Within the one 
area, the current record NAMREC is deleted. 

The following examples illustrate possible combinations of optional parameters. 

REPLACE 11 ENGFIL 11 (SCHEMAl(AREA2(REC3))) 

REPLACE "ENGFIL" (SCHEMAl(AREA2(REC))) A, B, C 

REPLACE "ENGFIL" (SCHEMAl(AREAZ)) 

REPLACE 11 ENGFIL 11 (SCHEMA 1 ((REC3))) 

REPLACE "ENG FIL" (SCHEMA 1) 

6-10 



VIl ... 
Subroutines, Functions 

& 
Subprogram Statements 

The three basic elements of scientific programn1ing languages 
arithmetic, control, and input/ output - are given added flexibility 
through subroutines. Subroutines are program segments executed 
under the control of another prograrn and are usually tailored to per -
form some often-repeated set of operations. A subroutine is written 
only once, but may be used again and again; it avoids a duplication of 
effort by eliminating the need for rewriting program segments for use 
in common operations. There are four classes of subroutines in 
FOR TRAN: statement functions, built-in functions, FUNCTION 
subprograms, and SUBROUTINE subprograms. The major differences 
among; the four classes of subroutines are as follows: 

1. The fir st three classes n'.lay be grouped as functions; they 
differ from the SUBROUTINE subprogram in the following 
respects: 

a. Functions return a value that is utilized in evaluating 
an expression. 

b. A function is referred to by an arithmetic expression 
containing its name; a SUBROUTINE subprogram is 
referred to by a CALL statement. 

2. The statement function and built-in function are open sub­
routine; that is, a subroutine that is incorporated into the 
object program each time it is referred to in the source 
program. The two other FORTRAN subroutines are closed; 
that is, they appear only once in the object program. 

NAMING SUBROUTINES 

All four classes of subroutines are named in the same manner as a 
FOR TRAN variable 

7-1 



1. A subroutine nan1C consists of one to l'ighl alphanunwric 
characters, the first of which must be alphabetic. 

2. The type of the function, which determines the type of the 
result, may be defined as follows: 

a. The type of statement function may be indicated by the 
name of the function or by placing the name in a Type 
statement. 

b. The type of a FUNCTION subprogram may be indicated 
by the name of the function (if it is real or integer) or 
by the name of the function (if it is real or integ c r) or 
by writing the type (REAL, INTEGER, COMPLEX, 
DOUBLE PRECISION, LOGICAL) preceding the word 
FUNCTION. In the latter case, the type implied by 
name is overridden. The type of the FUNCTION sub­
programs in the Subroutine Library (the mathematical 
subroutines) is defined. Therefore, they need not be 
typed elsewhere. 

c. The type of a built-in function is indicated within the 
FOR TRAN compiler and need not appear in a Type 
statement 

3. The name of a SUBROUTINE subprogram has no type and is 
not defined, since the type of results returned is dependent 
only on the type of the variable names in the dummy 
argument list. 

DEFINING SUBROUTINES 

Statement Functions 

Statement functions are defined by a single arithmetic statement and 
apply only to the source of the program unit containing the definition. 

7-2 



General Forrn 
. ·-

a= b 

where 

a is a function name followed by parentheses enclosing 
its arguments, which must be distinct, nonsubscripted 
(dummy) variables, separated by commas 

b is an expression that does not involve subscripted 
variables. Any statement function appearing in b must 
have been previously defined. 

1. As many as desired of the variables appearing in b may be 
stated in a as the arguments of the function. Since the 
arguments are dumn1y variables, their nan1es, which 
indicate the type of the variable, may be the same as 
names appearing elsewhere in the program of the same 
type. 

2. Variables appearing in the function-defining expression b 
that are not dummy variables stated in a are considered to 
be variables defined within the parent program. 

3. A statement function definition must precede the first usage 
in the source program. 

4. The type of any state1nent function name or argument that 
differs from its implicit type must be defined preceding 
its use in the statement function definition. 

Examples: 

FIRST(X) = A~:'X+B 
JOB(X, B) = c~:,x+B 
THIRD(D) = FIRST(E)/D 
MAX (A, I) = A~:o:q_. B-- C 
LOGFCT(A, C) = A~:'*2 .. GE. C/D 

The arithmetic statement function FIRST(C), in the previous example, 
might be used as follows: 

A= 1 
B = 6. 2 
c = 3. 3 

AA= 2. 0+5. z~:'FIRST(C) 

7-3 



Built-In Functions 

Built-in functions are predefined as open subroutines that exist within 
the FOR TRAN compiler. A list of available built-in functions is given 

in Figure 7 - 1. 

The compiler checks the type or number of arguments for a built-in 
function. Using the wrong type of argument results in an automatic 
conversion produced by the compiler. Using the wrong number of 
arguments results in that function being processed as an external. 

Examples: 

A= ABS(X) 
AA= FLOAT (II) 

C = AMAX 1 ( C 1 , C 2, C 3, C 4) 

FUNCTION Subpro_g_ram 

FUNCTION subprograms are defined by a special FORTRAN statement, 

FUNCTION. 

General Form 

FUNCTION name (a 1 , az, ... , an) 

REAL FUNCTION name (a 1 , a 2 , ... , an) 

INTEGER FUNCTION name (a 1 , a 2 , ... , an) 

EXTENDED INTEGER FUNCTION name 

DOUBLE PRECISION FUNCTION name (a 1 , a 2 , ... , an) 

COMPLEX FUNCTION name (a 1 , a 2 , ... , an) 

LOGICAL FUNCTION name (a 1 , a 2 , ... , an) 

STRING FUNCTION name 

where 

name is the symbolic name of a function 

the arguments a 1 , a 2 , ... , an, of which there must be 
at least one, are dummy names 

the type of the function may be explicitly stated preceding 
the word FUNCTION, or implicitly indicated by the first 
letter of the FUNCTION name 

7-4 



Number of Type of 
Function Definition Arguments Name Argument Function 

Absolute value I Argl l ABS Real RC'al 
IARS Integer Integer 

Truncation Sign of Arg 1 AINT Real Real 
times largest INT Real Integer 
integer .,;j Argj 

Remaindering Arg
1 

(mod Arg
2

) 2 AMOD Real Real 
(see note below) IJolOD Real Re.al 

K>D Integer Integer 

Choosing Max(Arg
1

, ;,.,2 AMAXO Integer Real 
largest value Arg

2
, ••• ) AMAXl Real Real 

MAXO Integer Integer 
MAXI Real Integer 

Choosing Min(Arg
1

, <!:2 AMINO Integer Real 
sma I lest value Arg

2
, ••• ) AMINI Real Real 

MINO Integer Integc>r 
MINI Real Integer 

Float Conversion from 1 FLOAT Integer RC' al 
integer to real 

··------1 
Fix - Conversion from 1 !FIX Real Integer 

real to integer 
with truncation 

Transfer Sign of Arf2 
2 SIGN Real Real 

of sign times! Arg 1 
I SIGN Integer Intc>gc>r 

Positive Arg 1 - Min 2 DIM Real Real 
difference (Arg

1
, Arg

2
) IDIM Integer Integer 

--OOtain most -,--- SNGL Double Real 
significant part 
of double-
precision 
argwnent --- --
Obtain real 1 REAL Complex Real 
part of complex 
argument 

Obtain 1 AIMAG Complex Real 
imaginary part 
of complex 
argument 

Absolute value I Argj 1 Do\BS Double Double 
Truncation sign of Arg 1 IDINT Double Integer 

times largest 
integer ,;;j Argj 

Choosing Max(Arg
1

, ;,.,2 IllAXl Double Double 
largest Arg2 , ••• ) 
value 

Choosing Min(Arg
1

, :<?2 IlfINl Double Double 
smallest Arg

2
, ••• ) 

value 

Transfer Sign of Arg
2 

2 DSIGN Double Double 
of sign times! Arg~ 

Express single- D-(Arg, 0) 1 DBLE Real Double 
precision 
argument 
in double-
precision form -
Express two real C•Arg

1 
+iArg

2 
2 CMPLX Real Complex 

arguments in 
complex form 

Obtain conjugate For Arg•X+i Y, 1 CONJG Complex Complex 
of a complex C•X-iY 
argument --'--· 

NOTE: The function MOD(Arg 1 ,Arg2 ) is defined as Arg1 -(Arg 1 /Arg2 ~ Ars2 , where f Arg 1 /Arg2 ~ 

is the truncated value of that quotient. 

Arg 1 should not exceed 10
11* Ar82. 

Figure 7-1. Built- In Functions 



Examples: 

FUNCTION ARCSIN (RADIAN} 
REAL FUNCTION ROOT (A, B, C) 
INTEGER FUNCTION CONST {ING, SG) 
DOUBLE PRECISION FUNCTION DBLPRE (R, S, T) 
COMPLEX FUNCTION CCOT {ABI) 
LOGICAL FUNCTION IFTRU (D, E, F) 

1. The FUNCTION statement must be the first statement of a 
FUNCTION subprogram. At least one dummy name must 
be enclosed in parentheses. 

2. The name of the function must appear at least once as a 
variable on the left side of an assignment statement or in an 
input statement. 

Example: 

FUNCTION CALC (A, B} 

CALC=Z+B 

RETURN 

By this method the output value of the function is returned 
to the calling program. Unlike arithmetic statement 
functions, those variables not appearing in the FUNCTION 
statement as dummy variables are considered to be 
defined within the FUNCTION subprogram. 

The calling program is the program in which a subprogram 
is referred to or called. 

The called program is the subprogram that is referred to or 
called by the calling program. 

7-6 



3. The arguments may be considered dummy variable names 
that are replaced at the time of execution by the actual 
arguments supplied in the function reference in the calling 
program. The actual arguments must correspond in number, 
order, and type with the dummy arguments. 

4. ·When a dummy argument is an array name, a statement 
with dimension information must appear in the FUNCTION 
subprogram; also, the corresponding actual argument n1ust 
be a dimensioned array name. 

5. None of the dummy argurnents may appear in an EQUIV­
ALENCE statement in the FUNCTION subprogram nor may 
they appear in a COMMON, DATA, or NAMELIST statement. 

6. The FUNCTION subprogram must contain one path logically 
terminated by a RETURN statement and physically terminated 
by an END statement. 

7. The FUNCTION subprogram may contain any FOR TRAN 
statements except SUBROUTINE, BLOCK DATA, or 
another FUNCTION statement. 

8. The actual arguments of a FUNCTION subprogram may be 
any of the following: 

a. A constant. 

b. A subscripted or nonsubscripted variable or an array 
name. 

c. An arithmetic or a logical expression. 

d. The name of a FUNCTION or SUBROUTINE subprogram. 

9. A FUNCTION subprogra1n is referred to by using its name 
as an operand in an arithmetic expression and following it 

with the required actual arguments enclosed in parentheses. 

7-7 



The following example shows the use of a FUNCTION subprogram: 

Calling Program Called Program 

FUNCTION CALC (A, B) 

CALC 

RETURN 

SUBROUTINE Subprogram 

General Form 

SUBROUTINE name (a 1 , a
2

, ... , an) or SUBROUTINE name 

where 

name is the symbolic name of the subprogram 

Examples: 

each argument a, if any, is a dummy name or is the 
character asterisk and denotes a nonstandard return. 

SUBROUTINE MATMPY (A, N, B, J, ~', )!<) 

SUBROUTINE QDRTIC (B, A, C, ROOT!, ROOT2) 
SUBROUTINE OUTPUT 

1. The SUBROUTINE statement must be the first statement of 
a SUBROUTINE subprogram. 

2. The SUBROUTINE subprogram may use one or more of its 
arguments to return output. The arguments so used must 
appear on the left side of an arithmetic statement or in an 
input list within the subprogram. 

3. The arguments may be consider.ed dummy variable names 
that are replaced at the time of execution by the actual 
arguments supplied in the CALL statement, which refers 
to the SUBROUTINE subprogram. The actual arguments 
must correspond in number, order, and t.ype with the 
dummy arguments. Unlike FUNCTIONS, a SUBROUTINE 
need not have any arguments. 

7-8 



4. When a dummy argument is an array name, a statement 
containing dimension information must appear in the 
SUBROUTINE' subprogram; also the corresponding actual 
argument in the CALL statem.ent must be a dimensioned 
array name. 

5. None of the dummy argu·ments may appear in an EQUIV­
ALENCE, DATA, NAME:LIST, or COMMON statement in the 
SUBROUTINE subprogram. 

6. The SUBROUTINE subprogram must contain at least one 
path that terminates with a RETURN statement and phys­
ically terminates with an END statement. 

7. The SUBROUTINE subprogram may contain any FOR TRAN 
statements except FUNCTION, another SUBROUTINE 
statement, or BLOCK DATA. 

8. The character *, found as an argument, denotes an alternate 
EXIT from the subroutine. 

Returns from Subprograms 

A logical termination of any subprogram is the RETURN statement, 
which returns control to the calling program. There may be any 
number of RETURN statements in the program. 

General Form 

RETURN 
RETURN 

where 

i is an arithmetic expression whose truncated value, n, 
denotes the nth dummy statement reference_ indicated by 
an >:~ in the argument list, reading from left to right 

The normal sequence of execution following the RETURN statement of 
a SUBROUTINE subprogram is to the next executable statement 
following the CALL statement in the calling program. It is also 
possible to return to any labeled executable statement in the calling 
prograrr1 by using a special return from the called subprogram. This 
return must not violate the transfer rules for DO loops. (For an 
example, see nonstandard return in the CALL STATEMENT section.) 

7-9 



Nonstandard returns may be best understood by considering that a CALL 
statement using the nonstandard return is logically equivalent to a CALL, 
a LOGICAL IF, and a computed GO TO statement in that sequence. 

FUNCTION subprograms must not have nonstandard returns. 

Multiple Entry Points into a Subprogram 

The normal entry into a SUBROUTINE subprogram from the calling 
program is by a CALL statement that refers to the subprogram name. 
The normal entry into a FUNCTION subprogram is made by a function 
reference in an expression. Entry is made at the first executable 
statement following the SUBROUTINE or FUNCTION statement. 

It is also possible to enter a subprogram at an alternate entry point by 
a CALL staten1ent or a function reference that refers to an ENTRY 
staten1ent in the subprogram. Entry is made at the first executable 
statement following the ENTRY statement. 

ENTRY statements are nonexecutable and, therefore, do not affect 
control sequencing during normal execution of a subprogram. The 
order, type, and number of arguments need not agree between the 
SUBROUTINE or FUNCTION statement and the ENTRY statements, 
nor do the ENTRY statements have to agree among themselves in these 
respects. Each CALL or FUNCTION reference, however, must agree 
in order, type, and number with the SUBROUTINE, FUNCTION, or 
E:NTR Y statement that it r(~fors to. 

The general form of the ENTRY statement in the called subprogram is: 

General Form 

ENTRY name (b
1

, b
2

, ... , bn) 

where 

na.me is the symbolic name of an entry point 

each bi is a dummy argument name corresponding to an 
actual argument in a CALL statement or in a function 
reference. An ENTRY into a FUNCTION subprogram must 
have at least one argument 

an ENTRY into a SUBROUTINE subprogram may have 
arguments of the form>:~ indicating nonstandard returns 
(dummy statement references) 

7-10 



Example: 

Calling Program 

1 CALL SUBI (A, B, C, D, E, F) 

2 CALL SUB2(G, H, P) 

3 CALL SUB3 

END 

Called Program 

SUBROUTINE SUBl (U, V, W, X, Y, Z) 

10 

60 

U=V 

GO TO 60 

ENTRY SUB2(T, U, V) 
GO TO 10 

ENTRY SUB3 

END 

In the preceding example, the execution of statement 1 causes entry into 
SUB 1, starting with the fir st executable statement of the subroutine. 
Execution of statements 2 and 3 also cause entry into the called program, 
starting with the fir st executable statement following the ENTRY SUB2 
(T, U, V) and ENTRY SUB3 statements, respectively. 

Additional Rules for Entry Points 

The following rules also apply to entry points: 

I. A dummy argument may not appear in any statement unless 
it appeared in an argument list of a previously executed 

FUNCTION, SUBROUTINE, or ENTRY statement. 

2. In a FUNCTION subprogram, only the FUNCTION name may 
be used as the variable to return the function value to the 
using program. The ENTRY name may not be used for this 
purpose. 

7-11 



3. An ENTRY name may appear in an EXTERNAL statement 
in the same manner as a FUNCTION or SUBROUTINE 
name. 

4. Entry into a subprogram initializes all references in the 
entire subprogram from items in the argument list of the 
CALL or function reference. (For instance, if, in the 
example that appeared in the section "Multiple Entry Points 
into a Subprogram, 11 entry is made at SUBZ, the variables 
in statement 10 will refer to the argument list of SUBZ. ) 

5. The appearance of an ENTRY statement does not alter the 
rules regarding the placement of statement functions in 
subroutines. Statement functions may follow an ENTRY 
statement only if they precede the fir st usage following 

the SUBROUTINE or FUNCTION statement. 

6. None of the dummy arguments of an ENTRY statement may 
appear in an EQUIVALENCE, COMMON, NAME LIST, or 
DATA statement in the same subprogram. 

Subprogram Names as Arguments 

FUNCTION and SUBROUTINE subprogram names may be the actual 
arguments of subprograms. To distinguish these subprogram names 
from. ordinary variables or array names when they appear in an 
argument list, they must appear in an EXTERNAL statement. 

Examples: 

EXTERNAL SIN, COS 
CALL SUBR(A, SIN, B) 

CALL STATEMENT 

The CALL statement is used to refer to a SUBROUTINE subprogram. 

7-12 



General Form 

CALL subr (a 1 , a
2

, ... , an) 

where 

subr is the name of a SUBROUTINE subprogram 

a
1

, a
2

, ... , an are the n arguments 

Examples: 

CALL MATMPY(X, 5, 10, Y, 7, 2) 
CALL QDRTIC(9. 732, Q/4. 536, R-S**2. 0, Xl, X2) 
CALL OUTPUT 
CALL ABC(X, B, C, *5, *:200) 

The CALL statement transfers control to a SUBROUTINE subprogram 
and presents it with the actual argurn.ents. 

The arguments may be any of the following: 

1. A constant. 

2. A subscripted or nonsubscripted variable or an array 
name. 

3. An arithmetic or logical expression. 

4. The name of a FUNCTION or SUBROUTINE subprogram. 

5. *n where n is the staten1ent label for a nonstandard return 
and * differentiates a statement label from an integer 
constant. 

The arguments presented by the CALL statement must agree in number, 
order, type, and array size (except as explained under the DIMENSION 
statement) with the corresponding dummy arguments in the SUBROUTINE 
or ENTRY statement of the called subprogram. 

7-13 



Example of a nonstandard return: 

Calling Program 

10 CALL SUB(A,B,c,::in0,*40) 

20 

39 

40 

END 

100 
200 
300 
400 

Called Program 

SUBROUTINE SUB(X, Y, Z, ::i:<, ::i:<) 

IF (R) 200, 300, 400 
RETURN 
RETURN 
RETURN 2 

END 

In the preceding example, execution of statement 10 in the calling 
program causes entry into subprogram SUB. When statement 100 is 
executed, the return to the calling program will be via statement 20, 
30, or 40, if R is less than, equal to, or greater than zero, 

respectively. 

Mathematical Functions 

Many commonly used mathematical functions are provided for use in a 
FORTRAN. program. All the names of these subprograms are auto­
matically typed by the FORTRAN IV Compiler; therefore, they need not 

appear in Type statements. 

Variables used as arguments of mathematical functions are checked for 
type and converted if required. The mathematical functions are listed 

in Figure 7-2. 

7-14 



"'-

Humber of Type of 
Function Definition Argument• Name Argument Function 

Exponential •Ara 1 EXP Real Real 

Natural loa.<Ara> 1 ALOG Real bal 

logaritha 

Coimon loa10CArg) 1 ALOGlO Real Real 

logarithm 

Arctangent •rctan(Arg) in radiana 1 ATAN Real Real 

arctan(Ara
1

/Ar1z>* 2 ATAN2 Real Real 

Trigonometric ain(Ara in radiana) 1 SIN Real Real 

aine 

Trigonometric coa(Arg in radiana) 1 cos Real Real 

coaine 

Hyperbolic tanh(Arg) 1 TANH Real Real 

tangent 

Square root (Arg)l/2 1 SQR1' Real Real 

Remaindering .Ar11 (mod Ar1z) 2 IH>D Double Double 

Exponential 
8

Ar1 l DEXP Double Double 

Natural log
9

(Arg) 1 m.OG Double Double 

logarithm 

Comon 10110(Arg) 1 m.oGlO Double Double 

logaritha 

Arctangent arctan(Arg) in radian• 1 DA.TAN Double Double 

arctan(Ara1 /Arai>* 2 DlTAN2 Double Double 

Trigonometric ain(Arg in radian•) 1 DSIN Double Double 

1ine 

Trigonomet rte coe(Ara in radian8) 1 DOOS Double Double 

coeine 

Square root (Arg)l/2 1 DSQR1' Double Double 

For Arg•X+iY 

Absolute value C• 1 CABS Complex Real 
cr+i'->112 

Exponential •Ara 1 CEXP Complex Complex 

Natural 101
8 

(Ara) 1 CLOG Complex Complex 

logaritha 

Trigonomtric stn(Arg in radiana) 1 CSIN Complex Complex 

sine 

Trigonometric coa(Arg in radian•) l ccos Complex Complex 
cosine 

Square root (Arg)l/2 1 CSQRT Complex Complex 

-

* In the eource etatement, Ara1 and Arai are eeparated by a c~. 

Figure 7-2. Mathematical FUNCTION Subprogram 

7-15 



BLOCK DATA SUBPROGRAM 

A way to enter data into a labeled COMMON block during compilation is 
by using a BLOCK DATA subprogram. (Data may also be entered into 
blank COMMON by the use of a DATA statement in any program or 
subprogram.) This subprogram may contain only the DATA, COMMON, 
DIMENSION, and Type statements associated with the data being 
defined. 

General Form 

BLOCK DATA 

1. The BLOCK DATA subprogram may not contain any 
executable statements. 

2. The first statement of this subprogram must be the BLOCK 
DATA statement. 

3. All elements of a COMMON block must be listed in the 
COMMON statement even though they do not all appear in 
the DAT A statement; for example, the variable A in the 
COMMON statement in Figure 7-3 does not appear in the 
DATA statement. Therefore, A remain·s undefined until 
execution of the program. 

4. If two or more BLOCK DAT A subprograms occur for the 
same application, the data specified by each of them is 
entered into the appropriate COMMON blocks. The data 
from the last such subprogram is retained for any area of 
a COMMON block that is referred to more than once. 

BLOCK DATA 
COMMON/ELN/C, A, B/RMC/Z, Y 
DIMENSION B(4), Z(3) 
DOUBLE PRECISION Z 
COMPLEX C 
DATA (B(I), I=l, 4)/1. 1. 1. 2, 2*1. 3/, C/(2. 4, 3. 769)/, 

Z(l)/7. 6498085DO/ 
END 

Figure 7-3. BLOCK DATA Subprogram 

7-16 



VIII ... 

Specification Statements 

Specification statements provide information about storage requirem.ents 
and about the constants and variables used in the program. 

DIMENSION STATEMENT 

General Form 

DIMENSION v l (i 1 ),v2 (i 2 ), ... , v n (in) 

where 

each vn is an array variable 

each in is composed of from one to seven unsigned integer 
constants or integer variables, separated by comn1as 
(Integer variables may be a component of in only when the 
DIMENSION statement appears in a subprogram. ) 

The DIMENSION statement provides the information necessary to 
allocate storage for arrays in the object program, and it defines the 
maximum size of the arrays. An array may be declared to have from 
one to seven dimensions by placing it in a DIMENSION statement with 
the appropriate number of subscripts appended to the variable. 

1. The DIMENSION statement must precede the fir st appear -
ance of any executable statement, any NAMELIST statement, 
or any DAT A statement iln the program, except when 
NAMELIST is used for DEBUG. 

2. A single DIMENSION statement may specify the dimensions 
of any number of arrays .. 

8-1 



3. If a variable is dimensioned in a DIMENSION statement, it 
must not be dimensioned elsewhere. 

4. Dimensions may also be declared in a COMMON or a Type 
statement. If this is done, these statements.are subject to 
all the rules for the DIMENSION statement. 

In the following examples, A, B, and C are declared to be array 
variables with 4, 1, and 7 dimensions, respectively. 

Examples: 

DIMENSION A(l, 2, 3, 4), B(lO) 
DIMENSION C(Z, 2, 3, 3, 4, 4, 5) 

Adjustable Dimensions 

The name of an array and the constants that are its dimensions may be 
passed as arguments to a subprogram. In this way, a subprogram may 
perform calculations on arrays whose sizes are not determined until 
the subprogram is called. The following example illustrates the use of 
adjustable dimensions. 

SUBROUTINE MAYMY( ... , R, L, M, ... ) 

DIMENSION ... , R(L, M), ... 

DO 100 I=l, L 

1. Variables may be used as dimensions of an array only in 
the DIMENSION statement of a FUNCTION or SUBROUTINE 
subprogram. For any such array, the array name and all 
the variables used as dimensions must appear as dummy 
arguments in the FUNCTION, SUBROUTINE, or ENTRY 
statement. 

2. The adjustable dimensions are not alterable within the 
subprogram. The values are scanned on entry so the 
variables may be used as the programmer sees fit. 

8-2 



3. The true dimensions of an actual array must be specified 
in a DIMENSION statement of the calling program. 

4. The calling program passes the specific dimensions to the 
subprogram. These specific dimensions are those that 
appear in the DIMENSION statement of the calling program. 
Variable dimension size may be passed through inore than 
one level of subprogram. The specific dimensions passed 
to the subprogram as actual arguments cannot exceed the 
true dimensions of the indicated array. 

5. Variables used as dimensions must be integers. If these 
variables are not implicitly typed by their initial letters, a 
Type statement must precede the dimension in which they 
are used as adjustable dimensions. 

Example: 

SUBROUTINE SUB(X, Y, Z) 
INTEGER Y, Z 
DIMENSION X(Y, Z) 

COMMON STATEMENT 

General Form 

COMMON a, b, c, ... /r/d, e, f, ... /s/g, h, ... 

where 

a, b, ... are variables tha.t may be dimensioned 

Ir I, Is I, . . . are labels that are block names 

Examples: 

COMMON A, B, C/X/Q, R/YY /M, P, Q 
COMMON /Z/G, H, JI /D, F 

There are two types of COMMON storage provided in FORTRAN IV. 
Blank Common provides an. area in which data ca.n be exchanged between 
various subprograms which may or 1nay not reside in memory at the 
same time. Labeled Comn~on provides a similar area where data can 
be exchanged only between those subprograms which currently reside in 
memory and which make reference to the Labeled Common block. 

8-3 



Variables, including array names, appearing in a COMMON statement 
arc assigned locations relative to the beginning of a particular COMMON 
block. This COMMON area may be shared by a program and its 
subprograms. 

1. If the variables appearing in a COMMON statement 
contain dimension information, they must not be 
dimensioned elsewhere. 

2. The order in which storage is assigned in the COMMON 
area is determined by the sequence in which the variables 
appear in the COMMON statement, beginning with the fir st 
COMMON statement of the program. 

3. Elements placed in COMMON may be placed in separate 
labeled blocks. These separate blocks may share space 
in core storage at object time. Blocks are given names 
and those with the same name occupy the same space. 

4. COMMON block names. The symbolic name of a block. 
which is one to eight alphanumeric characters the first of 
which is alphabetic, precedes the variable names belonging 
to the block. The block name is always embedded in 
slashes; for example, /BB/. It must not be the same as 
the name of any other subprogram that is part of the same 
job; however, it can be the same as a variable name. In 
the two types of COMMON blocks: 

a. Blank COMMON is indicated either by omitting the 
block name if it appears at the beginning of 'the COMMON 
statement or by preceding the blank COMMON variable 
by two consecutive slashes. 

b. Labeled COMMON is indicated by preceding the labeled 
COMMON variables by the block name embedded in 
slashes. 

5. The field of entries pertaining to a block name ends with a 
new block name, the end of the COMMON statement, or a 
blank COMMON designation. 

8-4 



6. Block name entries are cumulative throughout the program. 
For example, the COMMON statements 

COMMON A, B, C/R/D, E/S/F 
COMMON G, H/R/l/S/P 

have the same effect as the statement 

COMMON A, B, C, G, H/R/D, E, I/S/F, P 

7. Blank COMMON may be any length. Labeled COMMON 
must conform to the following size requirement: All 
COMMON blocks of a given nam.e must have the same 
length in all the program.s that are executed together. 

8. Variables brought into a COMMON block through EQUIV­
ALENCE statements may increase the size of the block, 
but they may not reestablish the origin of the block nor 
reorder the sequence in which variables are stored in the 
block. 

9. Two variables in COMMON may not be made equivalent 
to each other, directly or indirectly. 

EQUIVALENCE STATEMENT 

General Form 

EQUIVALENCE (a, b, c, ... ), (d, e, f, ... ), ... 

where 

a, b, c, d, e, f, ... are variables that may be subscripted; 
these subscripts must be integer constants 

the number of subscripts appended to a variable must be 
either equal to the nun1ber of dimensions of the variable or 
must be one 

Examples: 

DIMENSION B(S), C(lO, 10), D(5, 10, 15) 
EQUIVALENCE (A, B(l ), C(5, 4)), (D{l, 4, 3), E) 



The EQUIVALENCE statement controls the allocation of data storage 
by causing two or more variables to share the same core storage 
location. 

1. Each pair of parentheses in the statement list encloses the 
names of two or more variables that are to be assigned the 
same location during execution of the object program; any 
number of equivalences (sets of parentheses) may be given. 

2. When using the EQUIVALENCE statement with subscripted 
variables, two methods may be used to specify a single 
element in the array. For example, D(l,2, 1) or D(P) may 
be used to specify the same element, where p(>O) is the 
(p-1 )th element following the fir st element of the D array 
as it will reside in storage. Hence, D(p) references the 
pth element of the array in storage. (See SUBSCRIPTS for 
array placement in storage. ) 

In the preceding example, the EQUIV ALEN CE statement 
indicates that A and the B and C arrays are to be as signed 
storage locations so that the elements A, B(l), and C(S, 4) 
are to occupy the same location. In addition, it also 
specifies that D{l,4,3) and E are to share the same 
location. 

3. Quantities or arrays that are not mentioned in an EQUIV­
ALENCE statement will be assigned unique locations. 

4. Locations can be shared only among variables, not among 
constants. 

5. The sharing of locations requires a knowledge of which 
FOR TRAN statements will cause a new value to be stored 
in a location. There are four such statements: 

a. Execution of an arithmetic statement stores a new 
value in the location as signed to the variable on the 
left side of the equal sign. 

b. Execution of an ASSIGN i TO n statement stores a new 
value in the location as signed to n. 

8-6 



c. Execution of a DO statement or an impli.ed DO in an 
input/ output list sometimes stores a new indexing 
value. 

d. Execution of a READ statement stores new values in the 
location assigned to the variables mentioned in the input 
list. 

6. Variables brought into a COMMON block through EQUIV­
ALENCE statements may increase the size of the block 
indicated by the COMMON statements, as in the following 
example; 

COMMON /X/A, B~ C 
DIMENSION D(3) 
EQUIVALENCE (B, D(l)) 

The layout of core storage indicated by this example 
(extending from the lowest location of the block to the 
highest location of the block) is: 

A 
B, D(l) 
C, D(Z) 

D(3) 

7. Since arrays must be stored in consecutive forward loca­
tions, a variable may not: be made equivalent to an element 
of an array in such a way as to cause the array to extend 
beyond the beginning of the COMMON block. 

8-7 



8. In non-COMMON, the effect of the EQUIVALENCE state-
1nents must be such that the high-order word of any 
double-word variable is an even number of words away 
from the start of any other double-word variable linked to 
it through EQUIV ALEN CE statements. 

9. Two variables in one COMMON block or in two diffe~ent 
COMMON blocks must not be made equivalent. 

10. The EQUIVALENCE statement does not make two or more 
elements mathematically equivalent. 

11. Equivalenced variables must not appear as dummy arguments 
in a FUNCTION, SUBROUTINE, or ENTRY statement. 

TYPE STATEMENTS 

The type of a variable or function may be specified by means of one of 
the six Type statements. 

General Form 

INTEGER a(i 1 ), b{i 2 ), c{i 3 ), ... 

EXTENDED INTEGER (a{i 1 ), b(i2 ), c(i 3 ) 

RE AL a ( i l ) , b ( i 2 ), c ( i 3 ) , . . . 

DOUBLE PRECISION a(i 1 ), b(i 2 ), c(i 3 ), ... 

COMPLEX a(i 1 ), b(i2 ), c(i 3 ), ... 

LOGICAL a(i
1 

), b(i
2

), c(i
3

), ••• 

STRING a(i
1
):c

1
, b 1 i

2
):c

2
, c(i 3 J:c 3 , • • · 

IONAME a(i l ), b(i
2

), c(i
3

), ••• 
\ 

EXTERNAL x, y, z, ••• 
where 

a, b, c, ... are variable or function names appearing within 
the program 

c 
1

, c 
2

, c 
3 

are the ASCII character counts for a, b, c 
respectively 

IONAME is defined as 8 ASCII characters long, left 
justified, and blank filled, 

x, y, z, ... are function narnet1 appea1·ing within t.hc progr-a1n 

each in represents an optional dimension composed of from 
one to seven integer constants and/or integer variables 

8-8 



Examples: 

INTEGER BIXF, X, QF, LSL 
EXTENDED INTEGER CJYG, Y, RG, MTM 
REAL IMINM, LOG, GRN, KLW 
DOUBLE PRECISION Q, J, DSIN 
EXTERNAL SIN, MATMPY, INVTRY 
INTEGER A(lO, 10), B 
COMPLEX C(4, 5, 3), D 

The variable or function names following the type (INTEGER, REAL, 
etc. ) in the Type statement are defined to be of that type and remain so 
throughout the program; the type may not be changed. 

Note in the examples that LSL and GRN need not appear in their 
respective Type statements since their type is implied by their first 
characters. Also DSIN (double-precision sine) need not appear in its 
statement if it is used as a function in the program since mathematical 
subroutines in the FOR TRAN library are automatically typed by the 
FORTRAN IV Compiler. 

1. The appearance of a name in any Type statement overrides 
the implicit type assignment. 

2. Variables that appear in EXTERNAL statements are sub­
program names. Subprogram names must appear in an 
EXTERNAL statement if they are the arguments of other 
subprograms or if they are the name of a built-in function 
that is used as the name of a FUNCTION or SUBROUTINE 
subprogram. 

3. A Type statement may also be used to dimension variables. 
However, any variable that is din1ensioned by a Type 
statement may not be din1ensioned elsewhere; that is, it 
may not appear in a DIMENSION statement or in a COMMON 
statement that contains dimension information. 

DATA STATEMENT 

Data may be compiled into the object program by means of the DATA 
statement. 

8-9 



Gener al Form 

DATA list/d 1, d 2 , ... , dn/, list/d1 , d 2 ,k)!~cl 3 , ... , dm/' ... 

where 

list contains the names of the variables being defined 

d is the data literal 

k=k 1 :>!< k 2 :>:<, ... , = is an integer constant used as a repeat 
modifier 

Examples: 

LOGICAL LA, LB, LC, LD 
DATA R, Q/14. 2, 3HEND/, Z /07 
DATA(B(I), C(I), 1=2. 40, 2)/2. 0, 3. 0, 38:>!~100. 0/ 
DATA LA,LB,LC,LD/F, .. TRUE.,. FALSE., T/ 
DAT A(HOL(KY), KY= I, 3) / 6HANY16 DA, 6HT A16HER, 6HE 16}.6161616 I 

1. .!:Jist. Subscripted variables may appear in the list. When 
the subscript is a variable, it must be under control of 
DO-implying parentheses and associated parameters. Sub­
scripts not so controlled must be integer constants. The 
DO-defining parameters must be integer constants. 

2. d. The data literals may take either of the following forms: 

• Any constant previously defined. 

• An octal constant is written as the letter O, optional 
six digits. 

3. k. The number k may appear before a cl-field to indicate that 
the field is to be repeated k times. An asterisk must follow 
the letter k to separate it from the field to be repeated. K 
may be recursed (i.e. , K=K 

1 
;:<K

2
, ••• ) 

4. There must be a one-to-one correspondence between the 
list items and the data literals. Each data literal (integer, 
extended integer, real, alphanumeric, complex, logical, 
double-precision, octal constant or string constant) corr es -
ponds to one nondimensioned variable or subscripted array 
reference on a word basis. 

DATA G 1 1)/ 16HDATA16IS16READ/ 

8-10 



However, the following would be illegal: 

DATA G/16HDATA16T016BE16READ16/ 
DATA G/3. 0, 16HDATA16T016BE16READ16, 4. 0, 5. 0, 6. 0/ 

5. The BLOCK DATA subprogram, which includes a DATA 
statement, compiles data into the labeled COMMON area 
of the program. 

6. The DAT A statement may not be used to enter data into 
blank COMMON. 

7. DATA defined variables that are redefined during execution 
assume their new values regardless of the DATA statement. 

8. Where data is to be compiled into an entire array, the name 
of the array (with indexing information omitted) can be 
placed in the list. The number of data literals must 
exactly equal the size of the array. 

For example, the statem.ents 

DIMENSION B(25) 
DATA A, B, C/24*4. 0, 3. 0, 2. 0, 1. 0/ 

define the values of A, B(l), ... , B(23) to be 4. 0, 
and the values of B(24), B(25), and C to be 3. 0, 
2. 0, and 1. 0, respectively. 

9. No check is made between the type of the variable in the 
variable list and the type of the data in the corresponding 
data list. 

8-11 





1. 

2. 

3. 

4_ 

5. 

6. 

7. 

8. 

9. 

lo. 
11. 

12. 

1 3 ~ 

14 0 

1 5 e 

IX • • • 

Direct Statements 
& Environment 

FORTRAN DIRECT STATEMENTS 

FORTRAN 16. MONITOR arg 

LIST (arg) 17. -MONITOR (arg) 

EDIT arg 18. BREAK arg 

DELETE arg 19. -BREAK (arg) 

EXTRACT arg 20. TRACE arg 

SOURCE arg 21. -TRACE 

OBJECT arg 22. PRINT arg 

LOAD arg 23. LET arg 

COMPILE (arg) 24. GOTO arg 

EXECUTE (arg) 25. STEP 

RUN (arg) 26. CONTINUE 

QUIT 27. ESCAPE key 

TAPE (arg) >!< 28. CREATE arg 
c 

- D) RENAME D (control ,,, 29. arg ,,, 

DEBUG >:< 30. ERASE arg 

>:c: 31. DESTROY arg 

NOTE: "arg" indicates: arguments required. 

"(arg)" indicates arguments optional. 

~:~ indicates file management statements 

9-ll 



SIGNATURE CHARACTERS 

• Normal FOR TRAN signature character is 11 #11
, lb. sign. 

This character precedes indirect, and some, direct FOR TRAN 

statements. 

• Debug mode FORTRAN signature character is 11 ?"question mark. 

• Request for input from a terminal during program execution is 

preceded by a 11 ? 11
, question mark. 

DIRECT STATEMENTS 

1. FOR TRAN - the name of the 2+2 FOR TRAN IV subsystem. 

While in the FOR TRAN subsystem, the statement FOR TRAN is 

recognized - but nothing is done. The subsystem responds to 

the statement with the signature character #. 

2. LIST 

or 

LIST LN l , LN 
2 

- LN 
3

, LN 
4

, LN 
5 

- LN 
6

, ••. 

the LIST statement causes the current source program to be listed 

as follows: 

9-2 



LIST 

LIST 

with no arguments lists the whole source program 

--- with arguments - lists the designated statements 

or range of statements. LIST, 30, 10-15, 40 lists lines 

10 through 40 (inclusive), line 30, and line 40. No 

diagnostic or comrnent is made if designated line 

numbers are not present. 

3. EDIT LN
1

, LN
2

-LN
3

, LN
4

, LN
5

-LN
6

, •.•• 

The EDIT statement prepares the subsystem for editing or 

modifying one or more source statements in the current source 

program. For example: 

EDIT 10, 20""25 

Line 10 is printed at the user terminal. The user modifies or 

changes the statement. Following a carriage return, line 20 is 

printed and can be edited. Next, line 21, 22, .•. thru line 2 5 a 

Statements are edited one at a time until the argument list is 

exhausted. Missing line nu:mbers are ignored. 

4. DELETE LN
1

, LN
2

-LN
3

, LN
4

, LN
5

-LN
6

, ••. 

The DELETE statement causes portions of the current source 

program to be erased. Note that the execution of DELETE docs 

not affect the permanently saved program unless the statement 

SOURCE file name is executed after the DELETE statement. 

9-3 



DELETE 35, 75-350, 900, 990 

causes the deletion from the program of line number 35, line 

75 thru 350, line 900, and line 990. 

The EXTRACT statement is the complement of the DELETE 

statement. EXTRACT deletes all of the current source program 

but the referenced line numbers. It is useful in taking portions 

of one program and preparing them for insertion in another 

program. Note that execution of EXTRACT does not affect the 

permanently saved program unless the statement SOURCE file 

name is executed after the EXTRACT statement. 

EXTRACT 100-300, 500-600 

causes line numbers 100 thru 300, and line numbers 500 thru 600 

to be "pulled out" of the current source program. All other line 

numbers are deleted. 

6. SOURCE file name 

The SOURCE statement saves the current source program, as it 

exists, in a: permanent file designated by "file name". The system 

responds with 1rNEW FILE 11 if the file name does not exist in the 

user's directory. The system responds with 11 0LD FILE" if this 

name already appears in the user's directory. The user responds 

to 11 NEW FILEu or 11 OLD FILE" by typing a carriage return (which 

9-4 



creates a new file, or replaces .an old file), or, aborting the 

statement by using the ESCAPE KEY. 

7. OBJECT file name 

The OBJECT statement is identical to the SOURCE statement 

but saves the current object program, as it exists, in a permanent 

file designated by 11 file name 11
• The system responds with "NEW 

FILE 11 if the file name does not exist in the user 1 s directory. 

The system responds with "OLD FILE 11 if this name already 

appears in the user's directory. The user responds to 11 NEW 

FILEu or 11 0LD FILEtr by typing a carriage return (which creates 

a new file, or replaces an old file), or, aborting the statement 

using the ESCAPE KEY. 

8. LOAD file na·me 

The LOAD statement retrieves the per1nanently saved file designated 

by file name and places it in working storage for FOR TRAN. The 

file may be in either source or object form. If in source form, 

the file may be listed, edited, compiled or executed. If the file 

is in object form, it may only be executed. 

9-!5 



9. COMPILE 

or 

COMPILE file name 

The COMPILE statement initiates compilation of either the 

current source program, or the file designated by file name. 

If the designated file is not FOR TRAN source code, an error 

diagnostic is initiated. 

The whole source program is compiled. Any errors during 

compilation are listed at the user 1s terminal. 

10. EXECUTE 

or 

EXECUTE file name 

The EXECUTE statement initiates execution of an object (or 

compiled) program. EXECUTE with no arguments executes the 

current object program in the user's working area. EXECUTE 

with file name executes the file designated by file name - if the 

designated file is in object form. 

11. RUN 

or 

RUN file name 

The RUN statement is a combination of the COMPILE and EXECUTE 

statements. Either the current source program or the file designated 

by file name, is compiled into object form and then executed. 

Execution begins only if no compilation errors are present. 

9-6 



12. QUIT 

The QUIT statement transfers control from the FORTRAN 

subsystem to the executive subsystem. The statement is used 

to terminate processing under FORTRAN. The user may then 

invoke another subsystem or log off of the system. 

13. TAPE 

or 

TAPE file name 

The TAPE statement causes the FOR TRAN subsystem to accept 

source statements prepared on punched paper tape. The statements 

are accumulated into either the users working storage are, or into 

the file designated by file name. 

Normally, the system acknowledges the receipt of each source 

statement by sending a line feed and signature character to the 

user terminal. The Tape state1nent indicates that the line feed 

and signature character response are to be deleted since they 

would interfere with the printout at the user terminal. 

c 
14. D (control D character) 

The DC character is used to reset system operation to the normal 

mode after having read in a punched paper tape. 

9-7 



15. DEBUG 

The DEBUG statement is used to interrupt an executing program 

and enter the DEBUG mode. 

The DEBUG statement is valid only when typed during program 

execution. Furthermore, the DEBUG statement only has meaning 

when the executing program has statements compiled in the debug 

mode. 

When 11 DEBUG11 is typed at the user's terminal, program execution 

is suspended at the first debuggable statement in the program. The 

live number of interrupted statement and the debug signature 

character (11 ? 11
) are typed at the user's terminal. The user may then 

execute any of the debug statements; alter MONITOR, BREAK, and 

TRACE statements; set single or continue step mode; and then 

continue execution of the program. 

Where: LN is a line number. 

VAR is a simple variable or array name (i.e., ABC, 
DEF (3, 4) ). 

N is an occurrence count. 

The MONITOR statement applies only to statements compiled 

in debug mode. Line numbers and variables can be monitored 

during program execution. For example, 

MONITOR 1000-1010, 257, SDOT, YDOT, ZDOT 

causes the following: 

9-8 



• whenever any of the line numbers, 1000 thru 1010, 

inclusive, are executed, the line numbers are printed 

at the user 1 s terminal. 

e line number 257 is monitored whenever executed by 

printing the line number at the user 1s terminal. 

• the contents of the variables XDOT, YDOT, and ZDOT 

are printed at the user 1 s terminal whenever they appear 

on the left hand side of an assignment statement. The 

value printed is that re sulti:p.g after execution of the 

statement~ If XDOT is referred to at line number 2110, 

the printout would be: 

2110 XDOT = XXXXXX 

An additional argument form for the MONITOR, statement can be 

illustrated with: 

MONITOR (VELOCITY, 5-8) 

This statement causes the variable VELOCITY to be monitored 

only for the 5th thru 8th tirne it occurs. This allows the user to 

monitor a variable only during significant portions· of execution, 

thus reducing the amount of information output to the user's terminal. 

MONITOR may only be used with a program compiled in debug mode. 

9-9 



17. -MONITOR 

or 

-MONITOR LN 
1

, LN
2

-LN
3

, VAR, (VAR, N 
1
-N

2
), ••• 

Where: LN is a line number. 

VAR is a simple variable or array name. 

N is an occurrence count. 

The -MONITOR statement resets or directs FOR TRAN to UN 

monitor the specified line numbers or variables. . -MONITOR 

with no argument ttturns offtt all previously referenced monitor 

functions. -MONITOR with an argument list turns off only those 

variables and line numbers specified in the argument list. 

The interpretation of arguments is described under the MONITOR 

statement (Item· l 7). 

18. BREAK LN 
1

, LN
2

-LN
3

, VAR, (VAR, N 
1
-N

2
), ••• 

The BREAK statement is similar in execution to the MONITOR 

statement. The BREAK statement allows the user to set br.eak 

points within the· executable program. 

Whenever a line number or variable mentioned as an argument 

of a BREAK statement is executed, the item is printed at the 

user's terminaL The debug mode signature character (?) is 

printed, program execution is temporarily suspended, and 

9-10 

·-·-----------·-----------------------------------------------------------------------------~~~· 



FORTRAN nters debug mode. The user may then execute any 

of the .debug statements or continue execution. Interpretation 

of the argument list is described under the MONITOR system 

(Item 17). BREAK may only be used with a program compiled 

in de bug mode. 

19. -BREAK 
or 

-BREAK 

The -BREAK statement resets oir directs FOR TRAN to UN break 

the specified line numbers or variables. -BREAK with no argurment 

11 turns 0££11 all previously referenced break functions. -BREAK 

with an argument list turns off only those variables and line 

numbers specified in the argument list. 

The interpretation of arguments is described under the MONITOR 

statement (Item 17). 

20. TRACE LINE 
LABEL 

SUBPROG 
SOURCE 

The TRACE statement is used to logically trace execution of a 

program according to one or more of the four available 1nodes. 

9-11 



TRACE LINE Each line number executed is traced for the 

user. Rather than tracing long sequences of 

sequential portions of a program, only line 

numbers following transfer of control are 

printed at the user 1s terminal. 

TRACE SUBPROG Execution of a program is traced through 

execution of each subprogram. The subprogram 

name is output at the user's terminal. The main 

program is indicated by 11 
•• MAIN •• 11 

TRACE SOURCE The entire source program is traced. As each 

abbreviated source statement is reproduced 
at the user's terminal. Expressions are 
printed as the value by type. 

Multiple traces may be initiated via the TRACE statement. 

For example, 

TRACE LINE, SUBPROG 

causes a trace by both subprogram name and internal line number. 

9-12 



TRACE may only be used with a program compiled in 

debug mode. 

21. -TRACE 

The -TRACE statement clears all references to any traces 

previously initiated. It is used to delete any traces currently 

in effect. 

22. PRINT VAR, VAR, VAR, ... 

Where: VAR is a simple variable or array name. 

The PRINT statement may only be invoked during program execution 
' 

in debug mode. The debug mode is entered by executing a BREAK 

statement, the DEBUG statement, or via some run-time error 

diagnostics. The PRINT statement may be used after receiving 

the debug mode signature characterv (? ), question mark, at the 

user's terminal. 

Arguments for the PRINT staten1ent may be variable names, array 

names, or elements of an array. No expressions are evaluated. 

For example, 

? PRINT X, B, C (3, 5) 

where X is a variable 

Bis an array dimensioned. as B(5) 

C (3, 5) is an element of the array C, 

9-13 



results in the following output at the user's terminal: 

x = xxxx 

B(l) ::: XXXX 

B(2) = XXXX 

B(S) = XXXX 

C(3, 5) = XXXX 

The PRINT statement may be executed any time the program 

execution is suspended in debug mode. 

2.3. LET VAR = JLITERAL} t VAR 

Where: VAR is a variable or array element name 

LITERAL is a numeric or string constant 

The LET statement may only be invoked during program execution 

in debug mode. The debug mode is entered by executing a BREAK 

statement; the DEBUG statement; or via some run-time error 

diagnostics. The LET statement may be used after receiving 

the debug mode signature character, (? ), question mark at the 

user 1 s terminal. 

9-14 



The arguments for the LET statement may be variables and 

literals. A variable is a variable, name or an array element 

name. A literal is a .numeric constant or a string constant. No 

expressions are evaluated. Consider 

? LET A ( 2, 3, 4) = 2 7 • 5 

when execution of the program is resumed, the array element 

A(2, 3, 4) will contain the value of the literal, 27. 5. 

? LET X = B(32) 

when execution is resumed the variable X will contain the value 

contained in B (32). 

The LET statement may be executed any time program execution 

is suspended in debug mode. 

24. GOTO LN 

Where: LN is a line number 

The GOTO statement may be invoked only during program 

execution in debug mode. The debug is entered by executing a 

BREAK statement; the DEBUG statement; or via some run-time 

error diagnostics. The GOTO statement may be used after receiving 

the debug mode signature character (?), question mark, at the user's 

terminal. 

9-15 



The argument of the GOTO statement is the line number of 

the program at which it is desired that execution of the program 

resume. 

? GOTO 1220 

resumes execution of the program at line number 1220. 

The GOTO statement may be executed any time program execution 

is suspended in debug mode. 

25. STEP 

The STEP statement may be invoked only during execution of a 

program compiled in debug mode. Debug mode is entered as 

described in PRINT, LET, and GOTO (Items 23 - 25). 

STEP sets the mode of execution of a program to sirigle step 

mode. Statements compiled in debug mode are executed in single 

step. That is after execution of each statement, the program is 

interrupted; the line number of the statement and the debug 

signature character(?) are typed at the user's terminal. The 

user may then execute any of the debug statements; alter MONITOR, 

BREAK and TRACE statements; reset the continue mode; and 

resume execution of the program. 

The STEP statement may be executed any time program execution 

is suspended in debug mode. 

9-16 



26. CONTINUE 

The CONTINUE statement may be invoked only during execution 

of program compiled in debug mode. Debug mode is entered as 

described in PRINT, LET, and GOTO (Items 2 3 - 2 5). 

CONTINUE sets the mode of execution program to normal or multiple 

step mode. It should be used to reset the STEP statement when 

single step execution is no longer desired. 

The CONTINUE statement may be executed any time program 

execution is suspended in debug rnode. 

27. ESCAPE KEY (ALT MODE) 

The ESCAPE (or ALT MODE) key is used to immediately interrupt 

and abort the current function being performed by the FOR TRAN 

subsystem. The function is terminatedo The following interpretation 

applies to the ESCAPE (ALT MODE) key: 

Typing 1 ESCAPE 

Typing 2 ESCAPES -

aborts current function and returns 
control to FOR TRAN direct statement 
processor. 

the FOR TRAN subsystem; itself, is 
aborted and contro is returned to the 
EXEC· subsystem. 

The ESCAPE (ALT MODE) key may be used any time while under 

control of the FOR TRAN subsystem. 

9-17 



28. CREATE a file 

The CREATE statement is used to enter a new file name in the 
user's directory. The file is initially set to contain no infor­
mation. Optionally, access privileges and additional user access 
may be specified. 

The simplest form of the statement is: 

CREATE file name 

where, file name is any legal user file name not 
exceeding eight characters. 

Examples: 

CREATE Z 
CREA TE ALPHA 
CREATE MASTFILE 

The creator of a file is assigned full access privileges to that 
file. Those privileges include (currently) READ, WRITE, 
EXECUTE, and APPEND access. 

To assign privileges to other users who wish to access a file, 
the CREATE statement may be expanded in the following form: 

CREATE file name /user ID/access/user ID/access ... 

where file name is any legal file name of 1 to 8 characters 

user ID is a unique identification string delimited by 
slashes. 

access is any combination of the following words 
separated by commas: READ, WRITE, EXECUTE, 
APPEND, or PASSWORD. 

Any number of users may be authorized access to a file. However, 
access privileges must be specified for each authorized user. 
Public access is specified by a null user ID (i.e., 11). Consider, 

9-18 



CREATE PAYROLL /AB2.34:/READ/J. SHMOE/ APPEND, 
EXECUTE 

The file PAYROLL is created. User AB234 is given 
READ access, and J. SHMOE is authorized to EXECUTE 
and APPEND to the file. The statement, 

CREATE MILLISIN //READ, EXECUTE 

creates the file named MILLISIN. It also makes the 
file public with both READ and EXECUTE privileges. 

29. RENAME a file 

The RENAME statement allows a user to rename any file currently 
in a user's directory. Optionally, additional users and access 
privileges may be specified. 

The simplest form of the statement is: 

RENAME file name, file name 

where file name is any legal file name of 1 to 8 characters. 

Example: 

RENAME NEWTRANS, OLDTRANS 

This renames the file currently in the user's directory as 
NEWTRANS to a file named OLDTRANS_ The name NEWTRANS 
is removed from the user's directory, and is replaced by the name 
OLDTRANS. 

Additional access privileges ma.y be specified while renaming a 
.file by obtaining user ID' s and a.ccess. 

Example: 

RENAME ABC, DEF/USER27/READ, WRITE/USER33/EXECUTE 

9-19 



File ABC is renamed DEF. In addition, USER27 is authorized 
to READ and WRITE the file, and USER33 is granted execute only 
access. 

30. ERASE a file 

The ERASE statement allows a user to erase or clear the information 
currently contained in one or more files. The form is: 

ERASE file name, file name, ••. 

where file name is any legal file name of 1 to 8 characters. 

Examples: 

ERASE Q 
ERASE WEEK32, WEEK33, WEEK34 

31. DESTROY a file 

The DESTROY statement provides the method for destroying both 
the information contained in a file and removing the entry con­
taining the name of the file in the user's directory. That is, both 
the contents and the name of the file are destroyed. The form is: 

DESTROY file name, file name, • . • 

where file name is any legal file name of 1 to 8 characters. 

Examples: 

DESTROY FIRST 
DESTROY SECOND, THIRD, FOURTH 

9-20 

______ ..._ _____ , _____________________ ... ____________________________________________________________ !_ 


