
LOGICON 2+2

MONIIOR

SPECI FICt~ TION

LOGICON INC.
1075 CAMINO DEL RIO, S.

SAN DIEGO, CALIFORNIA

i 5 December 1970

-Section

1

2

3

4

5

6

7

8

TABLE OF CONTENTS

INTRODUCTION
1. l Background
1. 2 General Requirements.
1. 3 User Virtual Computer •
1. 4 Overview of Monitor Functions ..

SYSTEM STARTUP
2. 1 General •.........•..
2. 2 Bootstrap Program Load •.

USER ACTIVATION ..
3. 1 User Activation •.

PROCESS SCHEDULING
4. 1 General •......
4. 2 Ready Queues •...
4. 3 Scheduling Tables
4. 4 Example
4. 5 System Calls

PROCESS SWAPPING AND MEMORY CONTROL ...
5. 1 Swapping Control ..
5. 2 Memory Control

RESOURCE ACCOUNTING.
6. 1 Resource Accounting

PHYSICAL INPUT /OUTPUT CONTROL ..
7. 1 General
7. 2 Drum I/ 0 Control
7. 3 Disk I/ 0 Control
7. 4 Magnetic Tape I/ 0 Control. .
7. 5 Batch and Interactive Terminal I/ 0 Control
7. 6 Terminal I/ 0 Simulation •

FILE SYSTEM
8. l General
8. 2 Hierarchy of the File Structure
8. 3 Access Control
8. 4 Backup and Recovery
8. 5 System Calls ...

i

1-1
1- 1
1- l
1-3

1-10

2-1
2-1
2-1

3-1
3-1

4-1
4-1
4-2
4-3
4-5
4-8

5-1
5-1
5-4

6-1
6-1

7-1
7-1
7-1
7-8
7-9
7-9
7-9

8-1
8-1
8-2
8-4
8-5
8-5

Section

9

10

TABLE OF CONTENTS (Continued)

CRASH RECOVERY
9. 1 General
9. 2 Restart Provisions.
9. 3 Performance Monitoring

SYSTEM CALLS
10. 1 General
10. 2 Input/Output System Calls ..
10. 3 File System Calls
10. 4 Process Control System Calls

APP. A SYSTEM CALL DESCRIPTIONS

APP. B

Figure

5-1
8-1

Table

10-1
10-2
10-3

INTRALINE EDITING

LIST OF ILLUSTRATIONS

Memory Control System
An Example of a Hierarchy Without Links .. .

LIST OF TABLES

I/ 0 System Calls
File System Calls
Process Control System Calls .. -..

ii

9-1
9-1
9-2
9-2

10-1
10-1
10-2
10-6
10-8

A-1

B-1

5-6
8-3

10-3
10-8

10-10

I ...

I n trod u ct Ion

1. 1 BACKGROUND

This document describes the LOGICON 2+2 MONITOR subsystem. In
general, the MONITOR program plus the equipment configuration form
a hardware-software environment in which processes may be run for
many users at once in a ·time-sharing mode. Each user has access to
a virtual computer, which executes one or more processes in his behalf
free from undesired interaction with other users who may be using the
physical machine at the same time.

The functions and general organization of the MONITOR in order to
accomplish this are presented in the following sections.

1. 2 GENERAL. REQUIREMENTS

In order to give the appearance of servicing many users processes
simultaneously, it is necessary to share physical resources. It is also
necessary to protect the MONITOR from malfunctioning user processes,
and user processes from each other.

1. All user processes are executed by one physical computer,
which can only work on one process at a time. The execu­
tion time of this physical processor is time shared among
the active user processes, giving "time slices" to each
process in turn. The task of selecting the next process to
receive processor time is called scheduling.

2. The main memory from which processor instructions and
data are accessed during execution is limited in size; it
cannot contain all prograrn and data storage for all active
processes at once. Hence when the time slice for a process
ends, its memory and status must be saved in another stor­
age medium,, and the men1ory and status of the next process

1-1

to receive a time slice must be read into main men1ory.
This procedure is called swapping; the storage medium
that holds the status of processes that are active but not
running is called swapping storage (physically a drum).

To avoid having to always swap all of memory, swapping is
done in units of 512 words, each of which is called a page.
To allow freedom of overlapping execution and swapping,
each 512 word block of physical core memory is independ­
ently assigned a location in a user's virtual address space.
The correspondence between a virtual address space and a
physical memory is called a mapping. As a user's process
is executed, the mapping from virtual to physical addresses
is implemented in hardware by the Virtual Address Trans­
lator (VAT).

3. There may be many processes for different users in various
stages of execution in the system at once. Many of these
processes will include undebugged programs. They must
not, due to programming errors, be allowed to interfere
with each other or with the MONITOR program. The pre­
vention of such inadvertant interference is called protection.
Protection in the LOGIC ON 2+2 Sy stem has several aspects:

a. Cornputer instructions involving input/ output, mapping,
or protection are privileged and may be executed only
in system mode (the MONITOR runs in system mode;
all user processes run in user mode). This protection
feature is implemented in computer firmware.

b. Memory access is controlled on a page basis. A given
program may have no access, read access, write
access, execute access, or any combination of these,
to a given page of memory. This feature is implemented
by the VAT and by firmware, and is used to prevent
user processes from accessing each other's memory
or MONITOR memory.

c. Monitor functions are invoked on behalf of a user pro­
cess via system calls. The use of system calls is
restricted, by means of a capabilities access list
belonging to each user, to certain users or certain
pr.aces se s, so that those system calls that could be
misused will not fall into the wrong hands. System

1-2

programmers will be the only individuals with the capa­
bility of causing a system crash.

d. Files of data or programs are very strictly access
protected, so that a given user's files may be accessed
only by himself and those other users for whom he
specifically allowed access.

1. 3 USER VIRTUAL COMPUTER

The virtual machine which a user of the LOGICON 2+2 System may
utilize has the following properties:

1. A processor capable of executing all non-privileged LOGICON
2+2 processor instructions, plus all system calls perm.itted
by the user's ca~abilities access list.

2. Up to 128K of swapping storage:

a. Shared memory - shared memory consists of system
code, such as the Executive, Basic Compiler, etc.,
that is shared among all users. Only one copy of this
code exists in swapping storage, and this copy is shared
by all users wanting it. It is write protected and non­
self modifying.

b. Private memory - a user's private memory contains
his own procedures a.nd data. He controls access
restrictions to this rnemory.

3. Up to eight independently scheduled and protected processes
arranged in a tree or fork structure. The reason a user
may wish to divide his total task into separate processes is
protection: any process rnay be protected from other unde­
bugged processes running under it in the tree structure.
For example, a new BASIC program would be run as a
separate process under the BASIC run time system until
it was debugged.

4. Each process has a 32K address space and a 16K to 32K
working set (depending on main memory size). A user
controls the mapping of his 128K of swapping storage into
32K address spaces for ea.ch process, and controls the
selection of a work~ng set from the address space. The

1-3

working set is the memory that is swapped into main mem­
ory when the process is to be activated, or executed.

5. Each process has certain dedicated cells for interrupt and
trap entrances in its address space as follows:

Location8

0

1

2

3-10

11

12

13

14

15

16

17

20

21

22-41

Use

Normal Entry

Continue Entry (resume execution after
return to Exec)

Interrupt 0

Interrupts 1 - 6

Memory Panic Interrupt

Command Abort Interrupt

Subsystem Abort Interrupt

Stack Overflow Interrupt

Stack Underflow Interrupt

Illegal Instruction Interrupt

Floating Point Overflow Interrupt

Floating Point Underflow Interrupt

Panic in Subsidiary Process or Panic
Abort from Controlling Terminal

Interrupts 20 8 through 40 8 .

NOTE: The interrupts a process may receive are software
interrupts controlled by the MONITOR. All hardware inter­
rupts are processed by the MONITOR.

6. There are three principle control tables associated with each
process in the system. These tables contain data that links
them to resident monitor control tables such as the schedule
tables, user control tables, controlling device tables, etc.

A process is defined within the tables by the following
elements:

a. Process Status Table (PST)

The PST is used to convey status and control informa­
tion for creation and monitoring of a subprocess. There

1-4

is one PST for each process in the fork structure.
This table resides within the creating process for a
subprocess. This table communicates with the
subprocess through system calls. The PST contains
the following information:

• Content of registers: P, S, X, U, A, E, B, T,
and L.

• Ephemeral and permanent memory counts.

• Pointer to capabilities list (access to system calls).

• Pointer to relabeling registers (memory control).

• Pointer to user working set bits.

• Interrupt enabled masks.

• File access control bits.

• Status of the process.

The table is set up initially by the creating process. It
is updated whenever the creating process requests it
for monitoring and control purposes.

b. 1.Jser Context Block (UCB)

There is one UCB in 1:1ystem address space for each user.
The UCB consists of one or two pages (normally one), and
contains many tables. The UCB contains information perti­
nent to the relationship among all processes in the fork struc­
ture. It is initialized following login of the user and is mod­
ified as each new proicess is created or destroyed.
Further modification can be made through system calls
relating to any word in the UCB.

The UCB contains the following information:

For the User -

• Private Memory Table (PMT)

• Other user memory control information

• File control data

• Accounting data

For each process in the fork structure, a Process
Environment Table (PET), including -

• PET index of upper fork (creating process)

1-5

• PET index of lower fork (subsidiary process)

• PET index of parallel fork (parallel process -
created by same creating process).

• Interrupt enabled mask.

• Interrupt active mask.

• Access control bits for open files.

• Pointer to the drum address in PMT of the PCB
for this process.·

• Pointer to the scheduler queue entry assigned.

Process Status indicates the current condition of the
process. It is used primarily by the controlling pro­
cess to monitor the condition of a subprocess. There
are five status conditions currently defined.

Value

3

2

l

0

-1

-2

-3

-4

-5

-6

Meaning

Blocked waiting for file I/ 0 to complete

Blocked waiting for terminal I/ 0 to complete

Running or ready to run

Deactivated waiting for external event

Deactivated by parent

Deactivated by memory panic (interrupt not
armed)

Deactivated by illegal instruction panic
(interrupt not armed)

Deactivated by ESCAPE (interrupt not armed)

Deactivated by panic in subsidiary process
(interrupt not armed)

Destruction in progress

The PET indexes are indexes of UCB items which
describe a process. This is the manner in which pro­
cesses are able to maintain relationships to one another.

The interrupt enabled masks allow processes the abil­
ity to field specific interrupts during execution. One
bit corresponds to a predefined interrupt (software).

1-6

When the interrupt occurs the monitor is able to detect
from the mask which process or processes receive the
interrupt.

The file access control bits relate to the open user
files and provide prc>tection for files among the pro­
cesses.

The PCB pointer indexes the PMT entry containing the
drum address of the PCB for this pro·cess.

The PMT contains the drum address and protection bits
for all pages of all processes which the user has cre­
ated. The relabeling registers in the PCB point to
PMT entries. The relabeling registers in the PCB
are accessed using the upper 6 bits of the 15-bit
effective address of a memory location as an index.
The relabeling registers are byte addressable. The
PMT is word addressable.

Refer to Section V for a more detailed discussion of
relabeling registers and the PMT.

c. Process Context Block (PCB)

The PCB contains status and control information for a
process. Nine (9) words are the machine registers.
These registers hold the register contents at dismissal
or deactivation time. When a panic occurs, the regis­
ters may be read into the associated PST of the creating
process by creating process action. Other information
consists of the following:

• Memory use counts.

• Relabeling registers for system and user activations.

• Working set bits for system and user activations.

• Capabilities access bits.

• Memory access bits.

• Scheduler para1neters.

• System stack storage.

Memory Use Counts are used to count the number of
pages of ephemeral and permanent memory for this
process. Acquisition and deletion of memory is affected
by these counts. Ephemeral memory is memory that is
automatically released when no process is using it.

1-7

The relabeling registers select certain PMT pages
and map them into the address space of the process.

The relabeling registers, working set bits, and mem­
ory protection bits are all divided into 2 parts - sys­
tem and user. The system part is further subdivided
into one part used during system activations, and a
part used during user activations. A system activation
is one that occurs during performance of a system func­
tion, when no user code will be executed. This allows
the same 'virtual' address space to be used by both
system and user. The physical separation is controlled
by the monitor through the PMT and associated ancillary
tables.

The working set bits indicate which pages are swapped
whenever the process is executed. Each bit corresponds
to a relabeling register. Only the memory specified
by the working set bits is loaded to reduce swapping
time and memory space.

By manipulating the working set bits and relabeling
registers, sharing memory and overlaying can be
effected in an efficient manner.

The capabilities access bits refer to the system calls.
Their use is to provide a convenient method for
restricting the capabilities passed to a subsidiary
process. If a process attempts to use a system call
so restricted, it will be deactivated.

Memory access bits are indicators that control access
to a page of memory. Access may be any combination
of read, write, or execute. Indirect address references
may be made if either read or execute accesses is
allowed. Each page has 2 sets of access bits. One set
is the maximum access for the page, the second is the
currently allowed access. Whenever the .page is
swapped, the current access bits are loaded into the
user map from. which the hardware is able to detect
violations and interrupt the processing.

The scheduling parameters provide linkage to the
monitor schedule control table.

The process control tables are core resident only
when one of a user's processes is running or is sched­
uled. next. The UCB is resident when any of a user's

processes are scheduled or unning; the PST is resident
only when a parent pJrocess is running; and the PCB is
resident when the particular process it describes is
scheduled or running.

7. Input/Output - Each user communicates with his processes
via a terminal (his controlling terminal). He can attach or
link to other terminals if they are not otherwise utilized.

A user may set up a file from card input by submitting a
deck with the proper control cards and the proper request
form to the system operator. After the cards have been
read into the file, he may access the file from an interac­
tive or remote batch tern1inal.

A user may set up a file to be printed on the high-speed
line printer by entering the appropriate information in a
file and requesting that the file be printed. The actual
printing will be done by a system process when the printer
is available.

The drum and disk are cornpletely invisible to the user - they
are used for swapping and file storage respectively, and
do not permit directly user-controlled input/ output operations.
Magnetic tape is used primarily for file backup, in which
application it is also invisible to the user. Magnetic tape
may also serve as an interface with other systems, but the
mechanism is to have an operator-controlled procedure
transfer data from magnetic tape to a system file. There­
fore, magnetic tape is also invisible to most users.

Batch terminals are like interactive terminals, except that
the command language :is punched on cards, and processing
is non-interactive.

8. File System - A user may create, manipulate, control
access to, and destroy named files of programs and data
arranged in a hierarchical structure which he creates and
controls. The file mechanism permits a user to save
programs and data from one terminal session to another.
He may bring files or parts of files into his address space
and working set in order to· examine, manipulate, or exe­
cute their contents. File access at the MONITOR level is
on a page at a time basis.

1-9

l. 4 OVERVIEW OF MONITOR FUNCTIONS

The Monitor occupies all of CP memory and from 12K to l 6K of AP
memory. It may not all be core resident. It performs the following
functions:

--·-·--····-------

1. System Bootstrap Start - initial program load, initializa­
tion, prestart equipment tests, and system startup.

2. Connect and Input Monitoring - monitoring all inactive
input lines, testing for user activity, and placing him in
communication with the EXECUTIVE.

3. Process Scheduling - Allocation of central processor time
to user processes; control of swapping and process execution.

4. Swapping - writing all pages of current process that have
been changed since last swap (dirty pages) back to drum;
reading all required pages of next process that are not
already i_n core into core; setting the hardware map for the
new process.

5. Resource Utilization Accounting - maintaining logs of con­
nect time, processor time, storage, and other facilities
employed by a user for account billing purposes; maintain­
ing logs of usage frequency and execution time of system
code for optimization purposes.

6. System Call Mechanization - responding to user requests
made via system calls.

7. Input/ Output Control - controlling all physical I/ 0, both
on explicit user request via system calls, and as required
by the swapping and file control functions.

8. File System Implementation - Implementing the basic file
system including backup and recovery.

9. System Crash Recovery - Responding to all types of sys­
tem crash conditions, including power down/power up
sequences, equipment failures, and catastrophic system
failures.

1-10

2. 1 GENERAL

II ...

System
Startup

System startup involves a bootstrap program load, prestart equipment
tests, system initialization, and entering normal system operation.

2. 2 BOOTSTRAP PROGRAM LOAD

When power is turned on to a processor, it starts executing microcode
at a fixed location (cell O). It is necessary for the microcode to deter­
mine whether the power up sequence is the last half of a power down/
power up cycle, (in which case it should trigger the software power up
interrupt routine), or a cold start (in which case it should wait for an
operator-initiated bootstrap load request). These cases will be dis­
tinguished by a time-delay relay on the computer master power switch:
If power up was caused by activation of this switch, then the microcode
will assume a cold start and will wait for a bootstrap start signal.

Bootstrap program load may be performed from drum, disk, or mag­
netic tape at operator option. A 512 word page from a reserved loca­
tion on the selected device will be read into physical page 0 of AP
memory, and an interrupt to the CP generated. The CP determines
that this is a bootstrap start, and relays the interrupt to the AP,
which must execute the program in page 0 to do the following:

1. Load additional programs in AP and CP memory as
necessary.

2. Inform the CP that programs are loaded and it can start·
execution.

3. Test the integrity of the hardware system, notifying the
operator of any discrepancies.

2-1

4. Test the integrity of programs permanently on the drum,
automatically reloading the drum if necessary.

5. Test the integrity of the file system, invoking the recovery
sequence if necessary.

6. Load the normal monitor program in core, verify the load,
and start normal monitor operation, waiting for the first
user to log in.

2-2

III. • •

User Activation

3. 1 USER ACTIVATION

The Monitor periodically tests all terminals not attached to a user
process for signs of user activity. Upon detecting a connect signal
followed by a signature character, the Monitor notifies the LISTENER
process which establishes the user in the system with the controlling
terminal attached, initiates a single process (the User Executive) in
the fork structure for that user, and places the user's terminal in
communication with his EXECUTIVE.

3-1

4. 1 GENERAL

IV ...

Process
Sche4u I Ing

The process scheduler (or simply the scheduler) has two primary
functions:

1. To allocate certain system resources (mainly processor
time) among the various competing processes in such a
manner that each gets its "fair" share.

2. To allocate these system resources such that a "reasonable"
balance is achieved between efficient system utilization and
fast response to trivial requests.

Since the mea·nings of "fair" and "reasonable" as used above are not
clearly defined, the Monitor must allow operational personnel to change
resource allocation quickly and easily.

The mechanism for selecting the next process to run employs a set of
scheduling tables and a set of queues. The scheduling tables provide
an easily modifiable means of associating one of several different
classes of service with each process in the system. The queues aid in
keeping track of the status of the various processes.

Associated with each process known to the system is a small table
called a Scheduler Queue Entry (SQE). The SQE' s remain in core and
contain enough identifying and control information to keep track of the
process and its status when it is not running. Each of the queues is a
linked list of SQE' s. When the SQE associated with a given process is
linked onto some queue, the process is said to be in that queue.

There are three classes of queues in the system: the 'inactive' queue,
the 'blocked' queue, and the 'ready' queues. A process is placed in
the 'inactive' queue at the explicit request of the process or one of its
ancestors, as a result of some panic condition, as a result of an

4-· l

action at the user's terminal. Once a process has been placed in this
queue, some action external to the process is required to get it out
again. The action can come from another process or from the user's
terminal.

A process is placed in the 'blocked' queue when it requests some ser­
vice (such as 1/0) that the monitor cannot provide immediately. It
remains in the 'blocked' queue until the 'activation condition' specified
in the SQE is satisfied. At that time it is transferred to one of the
'ready' queues.

4. 2 READY QUEUES

There are several 'ready' queues in the system. These are identified
by number and each has an associated priority (the lower the number
the higher the priority). In addition to the priorities there are other
special meanings associated with some of the ready queues.

4. 2. 1 Queue #1

'fhe first process in the queue is the next process to run. As soon as
it is in core and ready to run, the Monitor dismisses the running pro­
cess (unless it, too, came from queue 1) and turns on the new process.
The process will be allowed to run until it exhausts its long quantum
or is blocked or inactivated. It is anticipated that this queue will
rarely be used.

4.2.2 Queue #2

If this queue is not empty, the Monitor dismisses the running process
after a short time quantum (unless it came from queue 1 or 2) and
selects the first process in this queue as the next to run. Frequent
use of this queue is not anticipated.

4. 2. 3 Queue #3

The Monitor will try to service each entry in this queue within a speci­
fied time, Tl, after it becomes ready. Tl will initially be set to 30
drum revolutions (approximately . 522 seconds). It can be changed by
operational personnel.

4-2

4. 2. 4 Queue #4

The Monitor will try to service each entry in this queue within a spec­
ified time, T2, after it becomes ready. T2 will initially be set to 60
drum revolutions (approximately l. 044 seconds). It can be changed by
ope rational personnel.

4. 2. 5 Queue #5

The Monitor will try to service each entry in this queue within a spec­
ified time, T3, after it becomes ready. T3 will initially be set to 120
drum revolutions (approximately 2. 088 seconds). It can be changed by
operational personnel.

4. 2. 6 Queue #6 - Queue #n

The Monitor will service entries in these queues in order; first by
queue, and then by order of entry into the queue.

A process is placed in a 'ready' queue when it is ready to make use of
the AP. For example, a process 'blocked' for 1/0 would be placed in
a 'ready' queue when the 1/0 action is completed. If the running pro­
cess exhausts its time quantum without taking any action that causes
it to be blocked or inactivated, it is still ready to run and is placed in
the appropriate 'ready' queue. This is termed 'quantum overflow.'

The general rule is that the highest priority 'ready' process is the next
to run. One notable exception to this is that no two processes for the
same user will be in core running or about to run at the same time.
(This convention is introduced to facilitate the releasing of memory and to
ease certain other control problems. }

4. 3 SCHEDULING TABLES

One of the requirements of the systerri is that it must be possible to
assign different classes of service to different processes or users.
For example, a user at a remote terminal obviously requires better
response than a remote batch processing job. Scheduling tables are
used to define these different classes of service.

Each process in the system has an associated scheduling table as de­
fined by a field in the PCB. This table is generally not unique to the
process. It is assumed that the system will have a few different
classes of service (say half a dozen} and that all processes in a given

4-3

class will share the same scheduling table. This approach makes it
possible to alter a class of service simply by changing the contents of
a table. Only system operational personnel will have a sufficiently
privileged status to do this.

Scheduling tables have the format shown in the following examples:

Short Requested Long Next Row
Row Queue Quantum Quantum Quantum On Overflow

1 3 2 3 10 2

2 4 2 4 10 3

3 6 2 5 20 3

Scheduling table for a user-written interactive process.

Short Requested Long Next Row
Row Queue Quantum Quantum Quantum On Overflow

1 8 2 20 33 l

Scheduling table for a remote batch process.

The row number is strictly an identifier and is not part of the table. If
a table has more than one row, there can be an implicit relationship
between the rows of the table and the reason for dismissing the process.
In the first table this association might be:

Row 1 - Terminal input
Row 2 - Terminal output buffer full
Row 3 - All other except quantum overflow

The queue specified in the table is the 'ready' queue in which the process
will be placed when it is ready to make use of the central processor. If
the running process is dismissed for quantum overflow, it will be placed
in the specified 'ready' queue immediately. If it is dismissed for taking
some action resulting in a 'blocked' condition, it will be transferred
from the 'blocked' queue to the specified 'ready' queue when the activa­
tion condition specified in the SQE is satisfied. As an example, if a
process using the first scheduling table above were dismissed for term­
inal input, it would go into the 'blocked' queue until an input message
was ready at which time it would be placed in 1 ready' queue 3.

4-4

After a process in a 'ready' queue has been turned on, the general rule
is that it is allowed to run for not less than a 1 short quentum' and not
more than a 'long quantum'. {In the table the quantum lengths are ex­
pressed in terms of drum revolutions - approximately 1 7. 4 ms each.)

If the process to follow the running process comes from a higher priority
'ready' queue than the running process, the running process gets a
'short quantum'. If the next process: comes from the same queue as
the running process, the running process gets a 'requested quantum'.
Otherwise the running process gets a 'long quantum'.

Exceptions to this general rule occur when queues 1, 3, 4, or 5 are
involved. If the next process comes from queue 1 and the running pro­
cess comes from any other queue, the running process may not get a.
full 1 short quantum 1 • In this case the running process is placed back
in the 'ready' queue from which it was scheduled.

If the running process and the next process both come from 'ready'
queues 3, 4, or 5, a 'variable quantum' is allocated to the running pro­
cess. The 'variable quantum' will not be shorter than a 'short quantum'
nor longer than a 'long quantum', and will be varied in such a manner
that the longest possible quantum is granted consistent with servicing
all entries in these queues within the times specified for the queues.
If the Monitor cannot service all the processes in these queues within
the specified times, it will simply service them as fast as it can,
granting a 'short quantum' to each process. As a trivial example of
the use of variable quanta, consider the case of a running process that
came from queue 3 and only one 'ready' process, also in queue 3.

If the running process has a 'requested quantum' of 2 and the next pro­
cess has a 'requested quantum' of 3., the running process will get a

2
quantum of 12 revolutions (

2
+

3
x .30 revolutions) or a long quantum,

whichever is less.

The last column of the scheduling table designates the row to be used
if the running process is dismissed for quantum overflow.

4.'4 EXAMPLE

As an aid to understanding the scheduler, let us follow a process from
the time it is dismissed until it is all.owed to run again. Assume that
the process uses the second scheduling table shown in the example and
that it is dismissed waiting for input from a file. At the time of

4-5

dismissal a Monitor routine selects the scheduling table designated by
a field in the Process Context Block. The 'queue number' and the
'requested quantum' are copied from the scheduling table into the SQE
(Scheduler Queue Entry). The anticipated size of the working set of
memory pages and the activation condition are placed in the SQE and
it is linked onto the 'blocked' queue. Part of the swapper is then called
to schedule the writing of the process 1 s memory to the drum, and the
next procei;;s is turned on.

While other processes are running, ·the SQE's in the 'blocked' queue
are checked periodically to determine whether the activation condition
has been satisfied for any of them. When the activation condition for
the process under consideration is satisfied (i. e. , when an input is
complete), the SQE is removed from the 'blocked' queue and placed ;in
the appropriate 'ready' queue - queue 8. To lessen the overhead in;
the AP, most of this work is done by a CF routine.

As other processes ahead of it in the 'ready' queues are run and dis­
missed, the process we are considering finally gets to the point where
it is the second process behind the running process. At this time a
request is issued to read its PCB and UCB into core. Barring the use
of queues l and 2 by processes that become 'ready' before this process
is run, reading the PCB and UCB constitutes a commitment to run
this process. After the PCB and UCB have been read in, a list of
pages in the working set is constructed and placed in the 'swapper's
unordered read request list'. When all of these read requests have
been honored, a map is constructed for the process reflecting the cur­
rent locations of the pages in the working set. This work will be done
by a CF routine.

Once each drum revolution, the time used by the running process dur­
ing its current quantum is checked to determine wh-ether quantum over­
flow has occurred. This check is made using the 'short quantum',· the
'long quantum', or the 'variable quantum' as appropriate. If the running
process has overflowed its time quantum and the next process is in
core and ready to run, the running process will be dismissed. If the
next process has not been read in and it can be read in without using
any of the memory used by the running process, the running process is
allowed to run for another revolution. If reading of the next process is
being blocked for lack of memory, the running process is dismissed.

When the process we are considering is in core with its map constructed
and the preceding process has been dismissed, our process can become
the running process. The process's map is loaded into the hardware

4-6

map, the hardware registers are set from the values stored in the PCB,
and control of the AP is transferred to the process. It is allowed to
run Until its time quantum OVerflOWS Or Until it reaches a 'blocked I
condition. At this point the cycle begins again.

In order to prevent a user from getting more than his share of the
processor, by running multiple processes, whenever a process is acti­
vated for a user all other ready processes for that user will be moved
to the end of the queue.

The scheduler's goal in serv1c1ng 'ready' queues 3-5 is to service each
process in these queues within the ti:me specified for each queue.
Actually, referring to these queues as three separate queues is some­
what inaccurate. Up until the time the SQE is placed in a 'ready' queue,
the queue number is a convenient way of keeping track of the response
time requirement for the process. When processes with ready queue
numbers 3, 4, or 5 specified in the SQE become ready, they are merged
into a single list according to the time each process should receive
service.

The processes are serviced in order from this merged list, each
receiving a variable length time quantum. A variable quantum has
meaning only if the running process and the highest priority 1 ready'
process both come from queues 3-5. If the highest priority 'ready'
process is in queue 1 or 2, the running process will usually get a
'short quantum' or less. If the highest priority ready process is in
queue 6 or below, the running process will get a 'long quantum' or a
'requested quantum'. The variable quantum will be computed in such
a way that each process gets as much tirne as possible within the ser­
vice time constraints on all processes.

NOTE: The operations of inserting entries into the
merged queue and removing them from the queue occur
relatively infrequently (i.e. , at the rate of servicing
of processes). This service rate will generally not
exceed 1 process per 2 drum revolutions and will
usually be lower than that. It: should also be noted
that this processing is done by a CF routine, not
an AP routine.

4-7

4. 5 SYSTEM CALLS

Four system calls will be provided for changing scheduling parameters.
These are:

RSTC

SSTC

Read Scheduling Table Contents

This call reads the contents of the specified scheduling
table into the specified area in the process's memory.

Set Scheduling Table Contents

This call checks the consistency of parameters in a
table in the process's memory, and if valid, inserts
the values in .the specified scheduling table.

RR TV - Read Response Time Values

SRTV

This call reads the values of Tl, T2, and T3 into the
U, A, and X registers.

Set Response Time Values

This call sets the values of Tl, T2, and T3 from the
U, A, and X registers.

All of these calls are highly privileged and will be limited to use by
ope rational personnel.

4-8

5. 1 SWAPPING CONTROL

v ...
Process Swapping and
Memory Control

The function of the swapping control routines is to control the flow of
information between core and the drum. Some of the objectives of these
routines are as follows:

1. Efficient use should be rr1ade of the AP. Periods in which
there are processes ready to run but none are in core and
ready to be turned on are to be kept to a rninimurn. When
possible, swapping should be overlapped with processing.

2. It should be possible to run processes of varying sizes up
to and including all the core space available for pr occ s s
execution. Overlapped processing and swapping must
automatically occur with small processes and must be par­
tially or totally suspended with large processes.

3. It should be possible to respond rapidly (by human response
standards) to a high priority process that becomes ready
while another process is running. This implies that the
processor must not be committed too far in advance.

It should be apparent that the processing objectives are competing and
cannot all be satisfied at once. Hence, the swapping routines must
attempt to achieve some "reasonable" balance between them. To the
greatest extent possible, this balance should be alterable by changing
system parameters.

The routines that make up the swapper can be separated into the follow­
ing three broad categories.

1. Routines that must be synchronized with process execution.
These routines:

a. save the status of the dismissed process.

5-1

b. restore the status of the next process to run.

c. set the hardware map for the next process.

d. turn on the next process.

These routines are executed "in line" by the AP.

2. Routines that can be run in parallel and essentially asyn­
chronously with process execution. These routines:

a. return to the system the memory used by the process
just dismissed.

b. request the reading of the UCB, PCB and working set
pages for the next few processes to run.

3. Routines that must be synchronized with drum revolutions.
These routines:

a. schedule drum reads and writes. Scheduling for the
entire n + 1st revolution is done during the nth revo­
lution.

b. clean up after each drum revolution. Cleanup for the
n - 1st revolution is completed during the nth revolu­
tion and before scheduling of the n + 1st :revolution.
Cleanup consists primarily of checking for error free
completion of all reads and writes.

c. update system tables reflecting the current con ten ts of
the main memory - primarily the PICT and other
related tables.

These routines are described in detail in Section VII under
Drum I/O.

5. 1. 1 Routines Synchronized with Process Execution

These are routines that must be executed "in line" by the AP in order
to dismiss one process and turn on the next to run.

The action to be taken in dismissing a process is essentially the same
whether or not the process is currently executing a system call: all
that is required is to save the live registers, the location counter and
the status register.

5-2

5. 1. 2 Asynchronous Routines

These routines are concerned with requesting pages that belong to pro­
cesses that are to be run in the near future and returning pages for
processes that have run recently but are not scheduled to run again
soon. They are executed in the CP in parallel with AP processing.
Execution of these routines must be coordinated with process execu­
tion but that coordination is sufficiently loose that the routines will be
described as being asynchronous with process execution. Obviously
pages for processes to run in the near future must be read before the
process can run and pages for processes that have run must be returned
or eventually the system will run out: of core.

5. 1. 2. 1 Returning Memory. When a process is dismissed for any
reason the pages used by that process must be returned to the system.
The action taken by the Monitor will depend on the status of the page
being returned.

1. In all cases the use count in the applicable PICS entry is
decremented. This ren:oves the dismissed processes as
a reason for holding the page in core. If the use count does
not go to zero, the page 1must be held in core for some
other reason and no further action is taken. If the use
count goes to zero, there is no longer any reason to hold
the page in core.

2. If the page does not have to be held in core, the page's
DIRTY bit determines the status of the page and the action
to be taken next. If the DIR TY bit is reset, the page has
not been written into since it was last read from the drum
and there is no reason to write it back. In this case the
page is attached to the Clean Page List from which the core
block can be reassigned if it is needed for some other func­
tion. Until the block is reassigned, the PICT will retain
the identity of the page it contains. If the DIR TY bit is set,
the page has been written into since it was last read from
the drum. Hence, the drum copy is out of date and must be
updated by writing the core copy into it. In this case the
page is attached to the Dirty Page List from which it will
eventually be scheduled for writing to the drum. The iden­
tity of the page is retained in the PICT; this is absolutely
essential to prevent loss of information. If the page is
requested again before .the write has occurred the core

5-3

copy of the page must be supplied. This in contrast to the
case involving the Clean Page List. In that case, the iden­
tity of the page is retained only to improve efficiency.

5. 1. 2. 2 Requesting Pages from the Drum. When a process is to run
soon, its UCB, PCB, and all the pages in its working set (WS) must be
read into core. The drum addr.esses of the UCB and PCB are retained
in system tables; the identity and drum addresses of the WS pages are
contained in the UCB and PCB. This implies that readirig in the pages
of a process is a two step operation, first the control blocks and then
the WS pages.

After the UCB and PCB for a given process have been read in, the pages
making up the working set are determined as follows. The WS bits in
the PCB are checked for ones. Each one means that the corresponding
relabeling register (RR) points to a page in the working set. The 8-bit
RR contents are used as an index into the PMT. The entry thus selected
contains the drum address of the given page. A read request is then
issued for that page.

A read request is made by placing an entry in the Swapper's Unordered
Read Request List (SURRL). In addition to the drum address, each
entry contains information that identifies the requested page as a con­
trol block or WS page and marks the fir st page pertaining to a new pro­
cess. This information is needed by the drum scheduler.

After all the pages of the WS have been read in, a map is constructed
for the process. This is the map that is loaded into the VAT when the
process is turned on.

The number of processes that the system will try to read ahead is
governed by the sizes of the working sets and a system parameter. No
more advanced reading will occur if the memory is full or if the limit
on the number of processes to be read in advance has been reached.

5. 2 MEMORY CONTROL

The total LOGiCON 2+2 System memory is divided among three types
of devices: core, drum, and disk. The way in which the monitor uti­
lizes these devices, moves pages of data around among them, and keeps
track of where everything is, is discussed in this section.

5-4

5. 2. 1 Disk Storage

A disk storage page is either available or part of some file. Available
pages are kept track of in a page availability table. Pages of files not
currently open are kept track of in a hierarchical file structure,
discussed under "file system. " When a file is open its pages are kept
track of by the Open File Index Table, discussed later in this section.

5. 2. 2 Drum Storage

A drum storage page must contain one of the following:

1. Nothing (page is available).

2. Private memory (mem.ory private to one user), which
includes his UCB and PCB's.

3. A page of an open file (a file page may also be part of one
or more user's private niemory as a result of an attach
action).

Note that drum pages that contain private memory that is currently
core resident may be outdated: if an executing process writes into a
core page, then the corresponding drum page is outdated and must not
be used again until the core page is copied into it.

A drum page may also be in an empty but unavailable state, waiting for
a scheduled I/O operation. This state lasts less than two drum revo­
lutions.

5. 2. 3 Core Storage

A core storage page may contain one of the following:

1. Nothing (page available).

2. Monitor program or data.

3. Page of an open file.

4. Private user program or data.

5. Nothing, awaiting a scheduled read.

Note that in order to get into core, a file page must be read into some
user's private memory. The way in which core and drum pages are
managed is discussed in the following pages.

5- Si

5. 2. 4 Memory Control Tables

A diagram of the Monitor's principal memory control tables is given
in figure 5 - 1 .

FIFTEEN BIT
ADDRESS RELABELING

REGISTERS

SOFTWARE MAPPING

9BITS

HARDWARE MAPPING
VIRTUAL ADDRESS

TRANSLATOR

IFOR
EACH

PROCESSI

ADDRESS
WITHIN
CORE PAGE

FILE
CONTROL

POINTER TO PMT
INT!t.V

PRIVATE
MEMORY
TABLE

(FOR
EACH
USERI

OPEN
FILE

INDEX
TABLE

_T_A_B_L_E_ LOCATE OPEN FILE----­
..._ __,.INDEX TABLE FOR

....,._.,___. EACH OPEN FILE

CORE
PAGE (FOR

POINTER EACH

CORE USERI
MEMORY

ROOT
DIRECTORY

!FOR
SYSTEMI

POINTER TO PRIVATE
PAGE FOR THIS USER
OR ATTACHED FILE PAGE

FILE PAGE POINTER
If PAGE ON DRUM

POINTER TO DIRECTORY
AT NEXT LEVEL IN
HIERARCHICAL FILE SYSTEM

Figure 5-1. Memory Control System

The following discussion relates to figure 5-1.

1. All non-empty disk pages belong to files. They are located
through a hierarchical file directory system that locates
the file index block for each file, and a list of pointers in
the file index blocks that locate individual file pages. The
System Root Directory is at the head of the hierarchical
directory structure for the entire system. It is normally
drum resident.

5-6

2. Each user may have up to 32 open files. The user's File
Control Table is drum resident and contains pointers to the
Open File Index Table (OFIT) for each open file. The OFIT
is drum resident and contains pointers, for each page in the
file, to drum and/or disk locations of that page. In general,
pages not yet accessed will be on the disk but not the drum;
pages created since the file was opened will be on the drum
but not the disk; and pages that have been accessed will be
on both. When the file is closed all pages are written back
to the disk.

NOTE: One Open File Index Table may be pointed
to by more than one user's File Control Table
(i.e., files may be shared between users, and
when they are, the same OFIT is used by both).

3. All non-empty drum pages are either user private mernory,
pointed to by that user's Private Memory Table; or pages
of open files, pointed to by a File Control Table (one per
user) or Open File Index Table (one per open file); or both.

4. A user selects pages of his PMT by placing pointers in a
set of relabeling registers. There is one set of relabeling
registers for each process in the user's fork structure.
The relabeling register pointers not only select m.emory
for a process out of PMT; they assign it locations in the
virtual address space of the process.

The ith relabeling register (0 sis 63 10) points (via PMT)
to the drum page that occupies locations 512 i to 512 i + 511
in virtual ad dr e s s space .

5. In order to discuss the way in which drum pages are brought
into core and accessed by a program, it is convenient to
consider the sequence of events that transpires when an
instruction within a process being executed references a
core location not currently in the working set of the
process:

a. The 15-bit virtual address in the instruction is presented
to the Virtual Address Translator (VAT) during the
normal course of instruction execution. The VAT
hardware determines that this address references a
protected page, and causes a protection violation
interrupt.

5 .. 7

The monitor interrupt routine determines that the refer­
ence was to a page not in core, adds the desired page
to the processes working set, and dismisses the
process.

b. When the process is next scheduled to run, the swapper
will find that the working set bit for the subject page is
set; will read the relabeling register for that page, the
PMT entry pointed to by the relabeling register, and
will cause the drum page pointed to by the PMT entry
to be read into an available core page.

When the read is complete, the hardware. map (VAT)
is set so that the page number (high order 6 bits) of'.
the virtual address will be mapped into the core page
selected.

c. When the process is activated, the instruction that
caused the previous dismissal is re-executed, and
this time successfully accesses the newly added page
of memory. The process continues execution, with
the whole dismissal-activation cycle totally invisible
except for the elapsed time. New pages may be
acquired in this manner simply by referencing them.

The acquisition of memory for a user (loading PMT), selection of an
address space for a process (loading relabeling registers), and selec­
tion of a working set or swapping set from the address space (setting
working set bits) are controlled to a large extent by System Calls, dis­
cussed in Section X.

5-8

6. 1 RESOURCE ACCOUNTING

VI ...

Resource
Aeco1ntln9

There are two purposes for the accounting function:

1. Determination of the amount of resources a user is utilizing
for purposes of billing his account.

2. Determination of system utilization and performance
parameters, for purposes of design optimization and
parameter adjustment.

With respect to user resource accounting, the Monitor will explicitly
measure the following parameters for each user currently logged into
the system:

1. Connect time (total elapsed time from login to logout).

2. Central processor time used (summation of all tini.e slices
granted to processes on behalf of this user).

3. Core memory pages x time used (page- seconds of memory
used), computed by counting pages in the user working set
at the start of each time slice~ multiplying by the length of
the time slice, and sum:ming over all time slices.

4. Page- seconds of drum storage used.

5. Number of process activations, and dismissals for various
I/O functions.

When a user logs out, the Executive process for that user must obtain
this running accounting data and add it into the previously accumulated
data in the accounting data file.

6-1

It may subsequently be accessed by Executive Functions for billing
purposes.

For performance monitoring, the Monitor will record frequency of
usage and elapsed time for all system calls. This data is for operations
personnel only.

6-2

7. I GENERAL

VII . ..

P~yclca 1 Input I
01tput Control

Physical I/O includes communication with interactive terminals, batch
terminals, drum, disk, and tape, as well as any peripherals that may
be added to the system at a later date. Communication with interactive
and batch terminals is controlled by system calls (these devices com­
municate directly with user processes). Communication with drum,
disk, and tape is controlled by the swapping and file control portions of
the Monitor (these devices are invisible to user processes, and inter­
act with user processes only via the file and swapping systems).

7. 2 DRUM I/O CONTROL

Drum I/ 0 Contror consists of a set of CF routines that schedule drum
operations, cleanup internal tables when the operations are complete
and update certain Monitor tables to reflect the current contents of core
memory. It must be organized so as to minimize the time during which
no process may be in execution: i.e. , the dead time between time slices
caused by the fact that the next process to run is not in core.

Most of the following discussion is built around the swapping and disk
transfer part of drum I/ 0, The drum, I/O system must also allow the
drum to be initialized (i.e., to have a. bootstrap and permanently re si­
dent system code written on it). This type of activity will not occur
during normal system operation, and hence will not interact with the
swapping mechanism. This requires the capability of writing a specific
core page onto a specific drum page and marking that drum page as
·unavailable. This' capability is provided by a system call, available
only to system programmers.

7-1

7. 2. 1 Drum Scheduler

The Drum Scheduler schedules reads and writes for one revolution of
the drum. It is synchronized with the drum and runs as a background
task in the C P. It is entered once per drum revolution and when
entered it schedules all reads and writes for the next revolution.

7.2.1. l Drum Scheduler Data Base. The inputs, outputs and internal
tables used by the drum scheduler are described in this section. The
inputs are as follows:

I. The Swapper's Unordered Read Request List (SURRL).
This is a list of UCB's, PCB's and working set pages for
processes that are to be run soon. Read requests are
placed in this list of the swapper in the order in which they
are encountered. The term 'unordered' refers to the fact
that the read requests are not ordered by drum sector
address. Entries in the SURRL are marked such that it is
possible to distinguish between working set pages and UCB/
PCB pages. It is also possible to tell when the next page
belongs to a different process than the current page.

2. The Dirty Page List (DPL). This is a set of n (n currently
equals 32) sublists of dirty pages that should be written on
the drum. Each sublist corresponds to one sector on the
drum.

3. The Clean Page List (CPL). This is a list of clean core
pages that may be overwritten if necessary. If these pages
contain any information, the identity of that information is
retained in the PICT until they are overwritten.

4. The Released Drum Page Table {RDPT). This table con­
tains one bit for each page on the drum. A one in any bit
position means that the corresponding page on the drum
should be filled with zeros and its identification word set
to indicate that the page now belongs to the system and not
to any particular user. Once this has been done, the bit
in the RDPT is set to zero and the page is marked as free
in the Drum Page Bit Table.

5. The Disk's Unordered Read Request List (DURRL). This
is a list of pages that are to be copied from the drum to the
disk. This list contains only the next n pages to be copied.

7-2

The Drum Scheduler uses the following internal tables:

1. Swappers Ordered Read Request List (SORRL). This is a
list of read requests ordered in accordance with the physi­
cal layout of the swapping device. In the case of the drum,
the SORRL contains 32. entries, one for each drum sector.
Each entry will be null or will contain the drum address of
a page to be read. At any given time the SORRL will con­
tain addresses of a UCB and a PCB or addresses of working
set pages; it will not contain both.

The UCB and PCB for the nth process must be in core before
the read requests for the working set can be issued, hence
the read requests for the UCB and PCB for the nth process
cannot exist simultaneously with read requests for the
working set for the nth process. Main memory must be
allocated for the working set for the nth process before any
can be allocated for the UCB and PCB for the n+1st process.

This allocation is done at the latest possible time, namely
at the time reads are being scheduled for the next drum
revolution. To avoid the possibility of the UCB and PCB
of the n+ 1st process tying up memor.y needed by the working
set of the nth process, all read requests for the working set
will be taken from the SORRL before the UCB and PCB read
requests are serviced.

2. Disk's Ordered Read Request List (DORRL). This is a
short list of read requests taken from the DURRL and
ordered according to dru1n sector address.

3. Scheduled Write List (SWL). This is a list of drum write.s
that have been scheduled but for which cleanup has not
been performed. The actual writing :µiay or may not have
been completed, but until the cleanup is done the write is
considered to be 'in progress'. This list will be used as
a push down stack. Each time a write is scheduled, an
entry containing the drum address and the core address is
pushed into the stack. W11en a core page is needed for a
read, an entry is popped out of the stack.

At any given time, the SWL contains entries for at most 2
drum revolutions. During the cleanup cycle for the nth
revolution, any entries remaining in the SWL for that revo­
lution represent clea·n pages. The entries are re1noved

7-3

from the SWL and corresponding entries are made in the
Clean Page List (CPL).

The output of the Drum Scheduler is a list of Drum Control Blocks
(DCB's). When completed, the list of DCB's for the n+1st revolution
is linked to the end of the DCB list for the nth revolution, thus provid­
ing the drum with a constant source of work. If it should turn out that
there is nothing to do during a drum revolution, the DCB list for that
revolution will contain at least one NO-OP with an interrupt to mark
the end of the drum revolution.

7. 2. 1. 2 Drum Scheduler Operation. The Drum Scheduler is entered
once per drum revolution and schedules all reads and writes. that are
to be performed during the next revolution. At the time the drum
scheduler is entered to schedule the n+1st revolution, cleanup for the
n-1 st revolution is complete and the nth revolution is in progress. All
entries in the Scheduled Write List (SWL) pertaining to the n-1 st revo­
lution have been removed.

Requests for service come from five sources:

1. Swapper's Unordered Read Request List (SURRL).

2. Disk's Unordered Read Request List (DURRL).

3. Dirty Page List (DPL).

4. Released Drum Page Table (RDPT).

5. Intra-line editor's read request list.

For convenience, entries in the SURRL and DURRL are ordered accord­
ing to the drum sector they refer to and are placed in the SORRL
(Swapper 1 s Ordered Read Request List) and DORRL (Disk's Ordered
I~ead Request List) respectively. The maximum number of entries in
the DORRL is small (e.g., 3 or 4) and is an alterable parameter. The
rnaximum number of entries in the SORRL is the number of sectors on
the drum (currently 32). Furthern1ore, the entries in the SORRL at
any given time all pertain to the same process. As an entry is trans­
ferred from a URRL to the corresponding ORRL the PICT (Pages In
Core Table) is checked to see if the referenced page i,s already in core.
If it is the page is marked as in use (by incrementing the use count in
the PICS Table) and the entry is not placed in the ORRL.

The basic strategy employed is to attempt to prepare one DCB for each
drum sector in the order that the sectors will pass under the read/write
heads. For each sector the dru:m scheduler checks the RDPT, SORRL,

7-4

DORRL, and DPL, in that order looking for a request pertaining to
that sector. The RDPT is checked to see if there is a drum page to be
released in this sector. If there is one., a DCB is constructed that will
write the system ID into the Drum Identification Word and write zeros
into the data words of the drum page. This does not require a core
block.

If there :is a read request (an entry in the SORRL or DORRL) the drum
scheduler also checks to see if there is an available core block to read
the page into. If there is a read request and an available core block, a
DCB will be constructed for the read. If either of these conditions does
not hold, the DPL is checked for a dirty page to be written in the sector.
If there is one, a DCB is constructed for the write and an entry is pushed
into the SWL (Scheduled Write List). If none of the inputs yields work
that can be done in a given sector, no DCB will be constructed for that
sector. This operation continues until all sectors of the drum have been
scheduled.

The SWL (Scheduled Write List) is utilized by the Drum Scheduler to
reduce the number of core blocks that are tied up waiting for the drum
to revolve. The basic notion is that once a page has been successfully
written from a core block to the drurn, that block can be reassigned to
another page being read from the drum... Use of the Clean Page List as
a tool in managing this reassignment proved unsatisfactory. A page
cannot be entered in the CPL until the write has successfully completed.
This occurs because many different entities take pages from the CPL.
This implies that a page written during the n-1 st revolution will not get
into the CPL until the nth revolution and at the very earliest will be
reassigned to a page being read during the n+1st revolution. The pur­
pose of the SWL is to .make the page available for reassignment as soon
as possible. It functions as follows:

1. When a write is scheduled, an entry is pushed into the SWL.
This indicates that as of some future time this core block
will be available for reassignment.

2. When a read is scheduled for a later drum sector (the sec­
tors are scheduled in order), the SWL is checked to see if
there is a core block available for reassignment (i.e., any
entry in the SWL). If there is, that block is assigned to the
read. This means that both a write and a read are now
scheduled using the same core block. At this point the read
is definitely a future event. The write may be a future,
current or past event depending on how long the entry has
been in the SWL.

7-5

3. The SWL itself does not guarantee that the write completes
successfully before the read is begun. This function is
handled within the DCB list. All write DC B's will have the
"stop and interrupt on error" code set. This effectively
guards against reading into the core block before the old
contents have been successfully written to the drum. If a
write error should occur, one or more revolutions will be
lost in overcoming the problem. It is anticipated that write
errors will be an extremely rare occurrence.

4. Entries will stay in the SWL for at most two revolutions.
During the drum cycle cleanup for any given revolution,
any SWL entries pertaining to that revolution represent
clean pages assignable to any function and are transfe rrecl
to the CPL. This is the motivation for implementing the
list as a push down stack. It retains the oldest entries in
the list when one must be ren1oved thereby improving the
probability that a "clean page" will result. Stated another
way, it reduces the number of core blocks tied up waiting
for the drum to revolve.

Entries in the PICT (Pages In Core Table) are altered by the Drurn
Scheduler to reflect the current state of core memory. Fields that
may be modified are:

1. Drum address.

2. Read-in-progress (RIP) bit.

3. Wr itc-in-progre s s (WIP) bit.

4. Use count.

5. Dirty (DTY) bit.

6. Link.

The changes these fields may undergo are described below:

1. When a dirty page is scheduled for writing to the drum,
the DTY bit is reset and the WIP bit is set. The page is
removed from the Dirty Page List.

2. When a page specified in a read request (SURRL or DURRL
entry) is found in core, the use count is incremented. If
the page was in the Clean Page List, Dirty Page List, or
Scheduled Write List it is removed from the list.

7-6

3. · When a read is scheduled into a clean page, the new drum
address is placed in the PICT entry, the RIP bit is set and
the Use Count is set to one. The Link is changed to reflect
the new drum address.

4. When a read is scheduled into a page that also has a sched­
uled write, the new drum. address is placed in the PICT
entry, the RIP bit is set and the Use Count is set to one.
The WIP bit is left set. The Link is changed to reflect the
new drum address.

7. 2. 2 Drum Cycle Cleanup

Drum Cycle Cleanup routines per for:m two main functions. They ~erify
that reads and writes have been completed successfully and update the
PICT to reflect the new state of core. The cleanup for the n-lst revo­
lution is completed early in the nth revolution.

The DCB's are processed one at a tirne in the order that the reads or
writes were performed. Each DCB i.s processed as follows:

1. The status field in the DCB is checked to see that the opera­
tion completed correctly. Write errors will always cause
an interrupt which will activate a retry mechanism, hence
the cleanup routines will not see write errors. Read
errors will be seen and will ultimately result in a retry.

2. When a read or a write completes successfully the core
block address in the DCB is used as a pointer into the
PICS and the RIP or WIP bit is re set.

3. When a drum page is successfully zeroed and returned to
the system, the corresponding bit in the Drum Allocation
Bit Table is set to reflect page's available status.

After all the DCB's have been processed, the SWL (Scheduled Write
List) is checked to see if any entries pertain to the revolution being
cleaned up. Those that do are removed from the SWL and correspond­
ing entries are made in the Clean Page List.

7-7

7. 3 DISK I/O CONTROL

It will quickly become evident to the reader that disk IIO has not yet
been designed as thoroughly as drum I/O. The following general fea­
tures are required:

1. It must handle from 1 to 8 2314 type disk drives (20 tracks/
cylinder, 200 cylinders/drive, 6 or 7 sectors/track). The
determination of whether 6 or 7 sectors will be written on
a track requires a little experimentation with switching
times, head alignment, etc. Seven sectors may be somf'­
what marginal.

2. It must use a "page available" table to tell where function­
ing empty pages are. Pages may be non-available because
of a bad track or because data is written in them.

3. It must use a page assignment algorithm that distributes
the pages of a file in an efficient manner. Note that when
files are opened or closed, many pages of a single file n1a y
be scheduled for transfer to or fron1 the drum at once'.

4. It n1ust synchronize its operations with the drum, noting
that disk to drum or drum to disk transfers are often criti­
cal in system response time. A variable number of cor('
pages will be made available for buffer storage during
these transfers.

5. It must allow for read/write requests of specified disk
pages to/from specified core pages, for disk initialization,
file system backup, and file system recovery. This type
of operation will not occur concurrently with normal systen1
time - sharing operation. Such transfers will be controlled
by system calls available only to systen1 programmers.

6. It n1ust order read/write requests to take advantage of the
overlapped seek capability of different drives as well as
the seek time and sector access latency characteristics of
individual drives.

7. It must utilize the page identifier /integrity word features
of the drum and disk controllers to provide maxinrnm sys­
tem reliability. This will certainly involve at least single
re-read attempts on bad read operations.

7-8

7. 4 MAGNETIC TAPE I/O CONTROL

Magnetic tape is used only for file backup and recovery, and for trans­
fer of large amounts of data/progratns to/from other systen1s. The
magnetic tape I/O system need provide only a relatively conventional
magnetic tape handler controlled by system calls, available only to
system programmers. The file system will use this handler for its
backup and recovery operations.

For intersystem communication, special routines will usually have to
be written to handle the specific tape formats involved. The user will
have to request system programmers to write this routine.

7. 5 BATCH AND INTERACTIVE TERMINAL I/O CONTROL

Input/output with batch and interactive terminals is controlled by sys­
tem calls. The Monitor does not use these devices for its own internal
operations, except for messages to the computer operator. These will
be handled through the system call rnechanism also.

The system calls controlling terminal IIO are discussed in Section X.

7. 6 TERMINAL I/O SIMULATION

A terminal input/output simulation capability is provided, via system
calls, to assist in debugging processes that communicate with termi­
nals, and to allow multiple· subsyst:er.ns to act as a single subsystem.
This capability is also discussed in Section X.

7-9

VII I ...

Fl I e System

8. l GENERAL

The basic LOGICON 2+2 file system provides a hierarchical structure
of named random access files, with .access controls by user, user
account, and type of access, and with up to 2800 pages (1. 4 million
words) per file.

Formatted files are not provided by the Monitor: file contents are
addressable by fil.e name and page number within the file. Formatted
file capability will be supplied within the User Process.

The Monitor does include capabilities for a file backup and recovery
system, by allowing a system process to dump changed files or all
files on magnetic tape at operator-·selected intervals, and restoring
files from magnetic tape at operator request. Whenever a file is
opened for writing, the date is recorded in the file index block, so that
it is always possible to tell when the file was last (potentially) written
into.

A user may create, modify or delete files only through the use of the
file system. At the level of the file :system, a file is formatless. All
formatting is done by higher-level modules or by user- supplied pro­
grams, if desired. As far as a particular user is concerned, a file
has one name, and that name is symbolic. The user may reference an
element in the file by specifying the :symbolic file name in an open
file operation, and the linear index of the element within the file in a
subsequent file access operation.

A directory is a. special file that is maintained by the file system, and
which contains a list of branches. To a user, a branch appears to be
a file and is accessed in terms. of its symbolic name, which is the
user's file name. A branch name need be unique only within the direc­
tory in which it occurs. In reality, ceach branch is a pointer to a file
(which may itself be a directory) which is stored in secondary storage.

8-1

Each branch contains a description of the way in which it may be used
and of the way in which it is being used. This description includes
information such as the actual physical address of the file, the time
this file was created or last modified, and access control inforn1ation
for the branch (see below). Some of this information is unavailable to
the user.

8. 2 HIERARCHY OF THE FILE STRUCTURE

The hierarchical file structure is discussed here. For case of under­
standing, the file structure may be thought of as a tree of files, some
of which are directories. That is, with one exception, each file (e.g.,
each directory) finds itself directly pointed to by exactly one branch ,in
exactly one directory. The exception is the root directory, or root,: at
the root of the tree. Although it is not explicitly pointed to from any
directory, the root is implicitly pointed to by a fictitious branch which
is known to the file system.

A file directly pointed to in some directory is immediately inferior to
that directory (and the directory is immediately superior to the file).
A file which is immediately inferior to a directory which is itself
im.mediately inferior to a second directory is inferior to the second
directory (and similarly the second directory is superior to the file).
The root has level zero, and files immediately inferior to it have level
one. By extension, inferiority (or superiority) is defined for any num­
ber of levels of separation via a chain of immediately inferior (superior)
files.

In a tree hierarchy of this kind, it seems desirable that a user be able
to work in one or a few directories, rather than having to move about
continually. It is thus natural for the hierarchy to be so arranged that
users with similar interests can share common files and yet have private
files when dE'sired. At any one time, a user is considered to be operating
in some one directory, called his working directory. He may access a
file effectively pointed to by an entry in his working directory simply
by specifying the entry name. More than one user may have the same
working directory at one time.

An example of a simple tree hierarchy is shown in figure 8-1. Non­
terminal nodes, which are shown as circles, indicate files that are
directories, while the lines downward from each such node indicate the
entries (i.e., branches) in the directory corresponding to that node.
The terminal nodes, which are shown as squares, indicate files other
than directories. Letters indicate entry names, while numbers are

8-2

used for descriptive purposes only, to identify directories in the figure.
For example, the letter "J" is the entry name of various entries in
different directories in the figure, while the number "0'' refers to the
root.

0

Figure 8-1. An Exarnple of a Hierarchy

An entry name is meaningful only with respect to the directory in which
it occurs, and may or may not be unique outside of that directory. For
various reasons, it is desirable to have a symbolic name which docs
uniquely define an entry in the hierarchy as a whole. Such a name is
obtained relative to the root, and is called the tree name. It consists
of the chain of entry names required to reach the entry via a chain of
branches from the root. For example, the tree name of the directory
corresponding to the node marked 1 in Figure 8-1 is A:B:C, where a
colon is used to separate entry names. (The two files with entry names
D and E shown in this directory have tree names A:B:C:D and A:B:C:E,
respectively.) In most cases, the user will not need to know the tree
name of an entry.

Unless specifically stated otherwise, the tree name of a file is defined
relative to the root. However, a file may also be named uniquely rela­
tive to an arbitrary directory, as follows. If a file X is inferior to a
directory Y, the tree name of X relative to Y is the chain of entry names
required to reach X from Y. If Xis superior to Y, the tree name of X
relative to Y consists of a chain.of asterisks, one for each level of

8-3

immediate superiority. (Note that, since only the tree structure is
being considered, each file other than the root has exactly one in1nwdi­

ately superior file.) If the file is neither inferior nor superior to the
directory, first find the directory Z with the maximum. level which is
superior to both X and Y. Then the tree name of X relative to Y con­
sists of the tree name of Z relative to X (a chain of asterisks) followed
by the tree narne of Y relative to Z (a chain of entry names). For the
example of Figure 8-1, consider the two directories marked 1 and 2.
The tree name of 1 relative to 2 is :~:~:B:C, while the tree name of 2
relative to 1 is : ~:~: ~:~: F. An initial colon is used to indicate a name
which is relative to the working directory.

In general, any file may be specified by a path name (which may in fact
be a tree name, or an entry name) relative to the current working
directory. A file n1ay also be specified by a path name relative to the
root. In the former case, the path name begins with a colon, in the
latter case it does not.

A user n1ay change the currently open directory by an open file_ system
call, specifying the path name of the desired directory either relative
to the currently open directory of the root directory.

8. 3 ACCESS CONTROL

An initial log-in procedure is utilized in order to establish the identity
of the user for accounting purposes.

The log-in procedure involves entering at least an account number and
user name. One of the directories immediately subordinate to the root
directory will be the account number directory. If a user during sign-on,
correctly enters an account number listed in this directory, then the
user name directory for that account (immediately subordinate to the
account number directory) will be opened, and checked for the user
name. If the user correctly enters a user name listed in this directory,
then the main file directory for that user name (immediately subordi­
nate to the user name directory) will be opened. Thus when a user
completes login, his main file directory is already open. This tech­
nique results in users who do not wish to utilize the hierarchical struc­
ture of the file system having to do no extra work as a result of its
presence.

NOTE 1: When desired, one or more subaccount levels
can be inserted in the hierarchy between the account
number directory and the user name directory.

8-4

NOTE 2: By providing proper access controls, it is very
easy to provide system public (listed in account directory)
and account public (listed in user name file) files in this
structure.

Each branch in each directory includes a list of users who may access
it, and the type of access (read, write, execute) permitted. Due to the
hierarchical structure of the access control mechanism, it does no
good to permit a user access to a branch out of a directory, if he had
no access to the directory in the first place.

8. 4 BACKUP AND RECOVERY

The file backup and recovery system provides the following capabilities
under operator control:

1. Changed File Dump. All :files changed since the last back­
up dump are dumped on magnetic tape.

2. Total File Dump. The entire file system is dumped on
magnetic tape.

3. Recovery of Entire File System. All files are recovered
by reading a total file dump and all change dumps taken
since.

4. Specified File Dump. The specified file is dumped on mag­
netic tape.

5. Specified File Restore. The specified file is restored from
magnetic tape.

Note that these things may not be done while a user has any of the con­
cerned files open.

8. 5 SYSTEM CALLS

The file system is manipulated by a user through the use of system
calls, describedin Section X.

8-5

IX ...
Crash
Recowerv

9. 1 GENERAL

The Monitor will provide total or partial recovery capability from the
following types of system crash situations:

1. Power down/Power up. Power down will be sensed by
hardware and responded to by saving all registers in core
storage and shutting down input-output in an orderly manner.

On power up, the Monitor will automatically recover, losing
no more than a character or two at each terminal, one line
at the printer, and one ca.rd at the card reader. Appropri­
ate messages to use.rs and the operator will alert them to
the situation to allow total recovery.

2. Non-Recoverable Read Error. On a non-recoverable read
error from core or disk or drum, the system will notify
the affected user (if only one) and continue. If many users
are affected (shared code), all of them and the operator will
be notified. If the Monitor is affected, the operator will be
notified and the system shut down in an orderly fashion.

3. Malfunctioning Hardware. The Monitor will atternpt to
maintain system operation, working around the malfunc­
tioning device, and notifying affected users and the
operator.

4. Malfunctioning Monitor. If the Monitor detects that it is
malfunctioning, via internal consistency checks, watchdog
timer _interrupt, etc., it will shut the ·system down and
notify the op er a tor.

9-1

9. 2 RESTART PROVISIONS

On restart, the Monitor will:

1. Check for good monitor load.

2. Check hardware operation.

3. Check the user and process structure for consistency.

4. Check the file system for consistency.

If all this is OK, the Monitor will try to resume operation. Otherwise,
it notifies the operator of the problem and shuts clown again.

9. 3 PERFORMANCE MONITORING

The Monitor will tabulate all detected hardware and software malfunc­
tions and inconsi stenc ie s, whether or not recovery was successful.

9-2

x ...

System Calls

1 o. 1 GENERAL

The system calls are effectively a set of macros that allow a user
process to communicate with the Monitor program. The system calls
divide naturally into the following groups:

1. I/ 0 Commands.

2. File Commands.

3. Process Control Commands.

Each of these groups and the specific system calls within the group are
discussed in the following paragraphs.

In general, when a System Call is executed by user code, the stack
registers contents are saved, the stack registers reset to a system
stack (in the PCB of the calling process), the processor registers are
saved in the system stack, and a transfer made indirectly through the
dedicated system call entry location. This technique of saving regis­
ters in a stack allows system calls to be interrupted and to call each
other.

System calls are coded so that all parameters are passed through regis­
ters rather than following the call instruction in core or some other
technique. When there are too ma:ny parameters to pass through
registers, they are stored at some other location and an address
pointer is passed through the registers.

The subset of the system calls that a user may use is defined by two
sets of capabilities bits. One set defines those system calls that the
users' EXECUTIVE PROCESS has access to, and may pass on to sub­
sidiary processes. The second set defines the system calls that the
user may access from his own programs. When a process is created,
its parent may pass on any subset of its own capabilities bits. When a

10-1

process executes the Set Maximum Capabilities (SMC), its capabilities
will be set to the EXECUTIVE capability set (if the calling process is
the EXEC), or the user set (if the calling process is not the EXEC).

10. 2 INPUT/OUTPUT SYSTEM CALLS

Input/Output System Calls divide into several groups for purposes of
discussion.

1. Interactive Terminal and Batch Terminal I/0.

2. Magnetic Tape I/0.

3. Disk I/O.

4. Drum I/O.

Table 10-1 is a complete list of I/O System Calls. The "numbers"
given in the table provide an index to detailed descriptions in Appendix A.

The control routines for magnetic tape, disk, and drum are very simple
and require no discussion beyond the system call description itself.
The:-- Interactive Terminal I/O system. requires discussion of echoing,
intraline editing, terminal linking, simulated I/0, and attaching term­

inals to processes.

10.2. l Echoing

The terminal input system will collect characters from all connected
terminal devices and hold ther11 until they are requested by some process,
or until buffer overflow occurs. In addition, it automatically performs
certain operations on the input characters stream:

1. ESCAPE codes (ASCII code 33) are detected, removed
from. the input character stream, and passed directly to
the appropriate user process as an interrupt. A second
escape code with no intervening characters will result in
a different interrupt. (Refer to System Calls SEESC and
writeup on Interrupt system.)

2. PANIC ABORT codes are detected, removed from the input
stream, and passed back to the users Executive process
as interrupts.

10-2

Mnemonic

MTC
TCI
TCO
ISD
OSD
RNIC
ADV
RDV
TDV
ECH
CDB
RDBZ
SOT
RDT
SDT
STCI
STCO
SEE SC
SIESC
DOBE
SLEM
LLEM
BEL
GSEL
GEL
RLS
SLS
EDL

TABLE 10-1. I/O SYSTEM CALLS

Name

Magnetic Tape Control
Terminal Character Input
Terminal Character Output
Input From Specified Device
Output To SpeC:ified Device
Read Next Input Character
Attach Device
Release Device
Test Device Status
Set Echo Conditions
Clear Device Buffer
Read Device Buffer Size
Set Output Translation
Read Device Type
Set Device Type
Simulate Terminal Character Input
Simulate Terminal Character -Output
Set Escape
Simulate Escape
Dismiss Until Output Buffer Empty
Set Line Editing Mode
Leave Line Editing Mode
Build Edited Line
Get Status of Edited Line
Get Edited Line
Read Link Status
Set Link Status
Enable or Disable Links

Number
(Ref. Appendix A)

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
92
93
94
95
96
98
99

100

3. The rema1n1ng characters are translated by means of an
ECHO TABLE to determine:

a. What character or characters (note carriage-return/
line feed) should be printed on the terminal as an echo
(full duplex mode), and

b. Whether or not the character is a break character
(i.e., whether the uscer process should be activated.

10-3

Depending on the function being iwr formed, different echoing mode 8

and different break characters arc required (sec systcrn call ECII,
Appendix A).

10.2.2 Intraline Editing

The inclusion of intraline editing capabilities in MONITOR software
results in extremely fast and powerful editing capabilities within a
single line. It also allows process execution during building of the
next edited line. These are five system calls associated with the
intraline editing capability -

SLEM - Set line Editing Mode

LLEM - Leave Line Editing Mode

BEL - Start Building of Edited Line

GEL - Get Edited Linc

GSEL - Get Status of Edited Line

The entire intraline editing system is discussed m Appendix A.

10.2.3 Terminal Linking

Linking of terminals allows the input characters stream from one tcrn1-
inal to feed n10re than one process (and have to be echoed on the control­
ling terminals for those processes), or for the output character stream
from a process to feed more than one terminal.

The primary motivation for wanting to link terminals is to enable a sys­
tems programmer or customer service engineer to help a customer at
a remote location who is having difficulty. To accomplish this, the sys­
tem programmer needs to be able to see what is being typed in at the
custon1er's terminal, what is being printed on the customer's terminal,
and also has to be able to send messages to the customer and enter data
and commands as though he were the customer.

A secondary motivation for linking terminals is to enable several ''stu­
dents'' to observe at a remote terminal what an "instructor" is doing on
his terminal. This could be useful in familiarizing new users with the
system.

A third motivation for linking terminals is to simulate a heavy user
load on the system when there are only a few terminals attached. By

10-4

setting things up properly, this can be accomplished by replicating the
input from one terminal and n1aking it appear as though it is coming
from several terminals.

Three kinds of links are provided in the terminal tables. They are:
I) input link, 2) advise link, and 3) output link. They behave as
follows:

1. Input link. An input link causes the input to be replicated
on the terminal specified in the link. The link is a termi­
nal number. Whenever the link is not null, each character
corning from the terminal and being packed into the input
buffer will also be packed into the input buffer specified in
the link. If the linked teletype also has a link which is not
null, the character will be packed into the third input buffer
as well. Several terminals can be linked together in a
chain or in a circle in this fashion. Echoes will be gener­
ated for each terminal separately in accordance with the
conditions that hold at that particular time for that particu­
lar terminal.

2. Advise link. This is similar to input linking but differs in
that the character coming from the terminal is not packed
into the input buffer for the terminal sending the character.
It is only packed into input buffer of the terminal specified
in the link. Advise links will point in only one direction and
will link only two terminals together.

3. Output link. An output link behaves in a manner analogous
to an input link but it deals with characters being packed
into the output buffer. Each character packed into the out­
put buffer for the given terminal will al so be packed into
th~ output buffer of all other terminals in the chain or circle
defined by the output linke1.

10.2.4 Attaching Terminals

Any user logged into the system is automatically attached to precisely
one controlling terminal - the one he logged in on. He may in addition
attach other terminals that are not otherwise in use, and thereby allow
his processes to communicate with them. The system calls allow a
user to determine if a given terminal is already attached, if not to
attach it, while it is attached to comnrnnicate with it, and later to
detach it.

10-5

10. 2. 5 Terminal I/ 0 Simulation

The terminal 1/0 simulation system allows one process to supply sim­
ulated terminal input to another process, and to intercept the terminal
output of that other process, for purposes of debugging and testing, as
well as combining multiple subsystem programs into a single effective
"user" subsystem.

The simulated input/,output capability is implemented by bringing a sim­
ulated I/O page (SI/OP) into the system working set, having one process
place input characters in the page and remove output characters from
the page, and cause the process being tested to get its input from the
page and place its output in the page.

There are two bits in the Process Context Block of a process that deter­
mine whether input/ output will function normally or via the simulated
I/Opage:

1. Simulate Input (SI) bit - if this bit is set then terminal
input system calls called by the process will get input
from the SI/OP page.

2. Intercept Output (IO) Bit - if this bit is set then terminal
output system calls called by the process will pack output
characters into the SI/OP.

The SI/OP page is acquired the first time a process is created with the
IO or SI bit set. One of the mask bits supplied to CSP specifies prop­
agate SI and IO bits. The bits are ·initially set by CSP from the PST.
Also any SYCL that sets the state of a subsidiary process can set or
clear the bits.

A set of system calls analogous to the Terminal I/ 0 calls are imple­
mented to put characters in the SI/OP and get characters out o'f the
SI/OP. These calls are for use by the controlling process: the con­
trolled process uses normal Terminal I/0 calls.

Activation of a process waiting for simulated input is handled by setting
a bit in the first word of the SI/OP (one for each process) indicating
that the process is waiting for input. Whenever a new break character
is added to the input buffer the waiting bits are checked and the proper
process is activated.

10. 3 FILE SYSTEM CALLS

The file system calls allow a user to create and destroy directories and
files in a hierarchical system, and to store and access information
within the files so created. The file system is discussed in Section VIII.
An understanding of the system calls pertaining to files requires the
following additional defitions:

10-6

1. Opening a file - when a file is opened, its closed file index
table is retrieved from the disk, expanded into an open file
index table (with pointers to both drum and disk copies of
individual file pages), and wI!itten on the drum. A pointer
to the open file index tablle is placed in the user's file con­
trol table.

Subsequent accesses to a page of the file require two page
references (and hence two time slices), one to get the open
file index table and one to get the file page.

2. Activating a file - when a fil~ is activated, its OFIT is
added to the working set of the user, so that subsequent file
page accesses require only one drum or disk access (and
hence only one time slice).

3. Attaching a page - when a page of a file is attached to a
process, the file page becomes part of the address space
of that process. Any changes made to that portion of the
address space of the process are actually changing file
contents. Similarly, any changes made to the file page by
another process will be "seen" by the process that has the
page attached. This is also the procedure for sharing code.

4. Getting and Putting file pages - when a GET action is per­
formed a ~ of a file page is brought into the address
space of a process. Any changes made to that portion of
the address space have no effect whatsoever on the file page.

Also, any changes made to the file page by other processes,
after the copy was made for the GET, have no effect on the
copy. When and if the process wishes to change the file, it
may perform a PUT operation, which takes· a copy of a core
page and stores it in the file.

5. Deferred I/0 - all file attach, get, and put operations are
handled as deferred I/ 0 -· the calling process will not be
dismissed for I/O until it tries to access a page into which
an attach or get has been initiated. Thus a process may
issue a number of gets and attaches without dismissal.

·When a core page is slated to receive a file page or a copy
of a file page, its access protection bits are set so that it
cannot be accessed at all until the file page actually arrives.
Any process attempting to access the page in the interim
will be dismissed and blocked waiting for I/O.

10-·7

i
I

I
!
!
!
!

Table 10-2 is a complete list of File System Calls. The "numbers"
given in the table provide an index to detailed descriptions in Appendix A.

TABLE 10-2. FILE SYSTEM CALLS

Number
Mnemonic Name (Ref. Appendix A)

CRFIL Create File or Directory 102
OPFIL Open File 103
RFILN Read File Name 104
CF ILA Change File Access Protection 105
RF ILA Read File Access Bits 106
PF ILA Propagate File Access Bits 107
DFIL Delete File 108
DC FIL Delete Contents of File 109
CLFIL Close File 110
CA FIL Close All Files 111
A PF IL Attach Page of File 112
DPFIL Detach Page of File 113
AC FIL Activate File 114
DEF IL Deactivate File 115

l GPFIL Get Page of File 116
PPFIL Put Page of File 117

10. 4- PROCESS CONTROL SYSTEM CALLS

The Process Control System Calls (Table 10-3) divide naturally into
the following groups:

1. Process nlanipulation (creation, activation, destruction, etc.)

2. Memory acquisition, m.apping, and working set selection

3. Miscellaneous

10. 4. 1 Processes and Process Manipulation System Calls

The basic, executing program unit in the system is called a process.
A process is a related sequence of instruction executions executed by a
user machine processor. A user machine processor consists of the
physical processor operating in user mode and a system environment
defined by the contents of several tables in the user and process context_
blocks (UCB and PCB). These tables delineate the augmented instruc-

10-8

..,

tion set, accessible memory, and fraction of the physical processor to
be allocated to this user machine processor. The state of these tables
is dynamically variable as a result of instructions executed by other
processes or changes in the running status of the system.

In addition to the system environment information, the context blocks
also contain part of the state vector of the process, the remainder of
which consists of all the memory allocated to the user machine
processor. Every instruction executed for the process causes a change
in the state of the process and whenever the process ceases to execute,
that is whenever the physical processor is allocated to some other
process, its last state is stored away in the state vector. The processor
state information is stored away in the context blocks, and the process's
memory is stored away on the drmn or in unused core. Whenever the
physical processor is reassigned to the process, the state vector is
used to restore the process to the state it had when the physical pro­
cessor was last assigned to it.

A user may have up to eight (8) active processes, one of which is always
the Executive Process. They are related through a mechanism called
the Fork Structure. This mechanisrr.L permits controlled relationships
in a parental hierarchy among processes of the same user. Their
relationships are upper, parallel, or subsidiary depending on the order
of creation and the creating process.

EXAMPLE:

Process 1 creates process 2, 4, and 5

Process 2 creates process 3

Process 5 creates process 6 and 7

The relationship in the fork structure is:

·-· >

4

.--- 7

The dotted line indicates parallel processes.

10-9

TABLE 10-3. PROCESS CONTROL SYSTEM CALLS

Mneni.onic

CUEP
CSP
RSPS
SSPS
PCSP
APSP
DSP
DASP
DOP
DCP

SMC
REDC
MPND
DIST
TSPS
TASPS
DESP
DEOP
DE ASP
CPA
AMEM
RMEM
RRRC
SRRC
RMA
CMAB
RWS
sws
AWS
SWSL
RSTC
SSTC
RRTV
SRTV
SNPA
SNPD

Name

Create User Executive Process
Create Subsidiary Process
Read Status of Subsidiary Process
Set Status of Subsidiary Process
Pre-Create Subsidiary Process
Activate Pre-created Process
Deactivate Subsidiary Process
Deactivate All Subsidiary Process
Deactivate Own Process
Deactivate Current Process Until

Subsiding Process Causes Panic
Set Maximum Capabilities
Reduce Capabilities
Make Process Non-Dismissable
Dismiss for Specified Time
Test Subsidiary Process Status
Test All Subsidiary Process Status
De stray Subsidiary Process
De stray Own Process
Destroy All Subsidiary Processes
Cause Panic Abort
Acquire New Memory
Release Memory
Read Relabeling Register Contents
Set Relabeling Register Contents
Rcad Maximum Access Bits
Copy Maximum Access Bits
Read Working Set
Set Wo1~king Set
Alter Working Set
Set Working Set Limit
Read Scheduling Table Contents
Set Scheduling Table Contents
Rea·cl Response Tini.e Values
Set Response Time Values
Set Num.ber of Processes Ahead
Set Number of Pages for Disk

10-10

Number
(Ref. Appendix A)

1
2
3

4
5
6
7
8
9

10
11
12
1 3

14
1 5

16
17
18
19
20
25
26
27
28
29
30
31
32
33
34
38
39
40
41
42
43

TABLE 10-3. PROCESS CONTROL SYSTEM CALLS (Continued)

Number
Mnemonic Name (Ref. Appendix A)

CREV Create Event 45
NOTE Notify If Event Occurs 46
DELN Delete Notify Request 47
CAUSE Cause Event 48
UNCAUS U ncau s e Event 49
RIS Read Interrupt Status 50
SIS Set Interrupt Status 51
INT Cause Interrupt 52
CLAI Clear Active Interrupt 53
CL.RA! Clear and Return frorn Active

Interrupt 54
DELV Delete Event 55

The status of a process is described by the terms, active and inactive.

Active - The process has been activated from an external source and is
under Monitor control. There are two substates of the active condition.

1. Running or ready to run - a process is in this status when
it is core resident and executing instructions independently,
or ready to be swapped in and run.

2. Blocked - a process is blocked when it is waiting for a file
or terminal I/ 0 action.

Inactive - a process is inactive while it is deactivated awaiting activa­
tion. It is generally resident on the drum and is invoked only by another
process or by an active user.

The process control tables hold all information required to describe and
control the process. There are thre:e (3) major tables of description.

1. The process status table (PST) - resides in the creating
process. It holds status and control information for a
subsidiary process.

10-1.1

2. The user context block (UCB) - resides in memory when­
ever any process in the fork structure is running. There
is one UCB per user. There are up to eight (8) processes
described in this block.

3. The process context block (PCB) - resides in memory only
when the process that it describes is running. There is
one PCB for each active process.

Whether or not the physical processor will be assigned or reassigned
to a given process depends on the status of that process. If the status
is "active,'' then the processor will be allocated to the process at son1e
future time (if no action is taken that causes the status to change) inde­
pendent of any action in the outside world or in some other process. If
tht' status is ''inactive," then some action outside of the process is re­
quired to return the process to the active status so that it may receive
the services of the processor.

The process system calls are concerned with setting up the system
environment of a process, defining and determining its state vector
and manipulating its status. Create Subsidiary Process (CSP) creates
a subsidiary process. Creating a process consists of creating a system
environment and initial state vector for the process. Its initial status
can be set either to active or inactive. Process Bis called subsidiary
to process A if B was created by A. A, furthermore, is called the con­
trolling process of B. The subsidiary I controlling relationship among
processes is kept track of by means of pointer chairis in the context
blocks linking processes into a fork structure.

A controlling process keeps track of its subsidiary processes by means
of Process Status Tables (PST) in its own memory space. The PST
contains space for storing the central registers and pointers to storage
areas for information defining the system environment for a subsidiary
process. When a process is created (CSP) the PST provides the infor­
mation for setting the initial state of the process. Thereafter Set Status
of Subsidiary Process (SSPS) can be used to change the state of an
already existing process. SSPS also points to the PST for the process
and gets its information for the new state from the PST. The informa­
tion in the PST can be updated to give the present state of the subsidiary
process by executing Read Subsidiary Process State (RSPS) which reads
the present state vector and system environment information into the PST.

Deactivate Subsidiary Process (DSP) sets the status of a subsidiary
process to inactive. The process to be deactivated is identified by its
PET index in UCB. Deactivate All Subsidiary Processes (DASP)

10-12

deactivates all subsidiary processes. Deactivate Own Process (DOP)
causes the process executing it to be deactivated. Deactivate All Pro­
cesses (DA P) points to an entire fork structure and deactivates all the
processes within it except the highest level controlling process. This
system call is highly privileged and will exist in the user machine pro­
cessor only for highly privileged processes such as the operator's EXEC.

When a process is created by CSP, the system environment given to the
new process cannot exceed that of the creating process. This means
that whatever instructions or mernory were inaccessible to the old
process are inaccessible to the new process. In some cases, however,
it would be desirable for a process to act as the controlling process
for a process with greater capability. For example, a user might
wish to run a system accounting program in order to determine his
accounting to date. This program would have to have access to the sys­
tem accounting information, but we do not want the user program call­
ing the accounting program to have a.cc es s to the accounting information
for obvious reasons. This feature can be imple·mented by means of the
precreated process. This allows a highly privileged process to create
a process but not cause it to be linked into the fork structure.

At some later time, another less privileged process can activate the
precreated process by supplying the PET index in UCB of the precre­
ated process, causing it to be linked into the fork structure at that
point. The system keeps track of the creating process for each pre­
created process and allows that process to read or manipulate the pre­
created process's state. Pre Create Subsidiary Process (PCSP) is just
like CSP for precreated processes, but it doesn't link the process
into the fork structure. Activate Pre Created Subsidiary Process
(APSC) activates the precreated process whose number is supplied
to this system call.

Unlike matter and energy, processes can be both created and destroyed.
When a process is destroyed, all ref1erences to it in the system are
deleted as is all control storage such as its process context block.
After a process. has been destroyed it can be recreated if its state has
previously been read into a PST and saved, and none of its memory has
been released. Note that if a process is destroyed without first being
deactivated and having its state read it cannot, in general, be restarted
in the same state that it had just prior to being destroyed. Destroy
Subsidiary Process (DESP) points to a PST and destroys the correspond­
ing subsidiary process. Destroy Own Process (DEOP) destroys the
process executing it. Destroy All Subsidiary Processes (DEASP)
destroys all subsidiary processes. Destroy All Pro'cesses (DEAF)

10--13

destroys all the processes in a fork structure except the highest level
controlling process and is highly privileged.

When a process is destroyed, its private memory (other than unshared
ephemeral memory) is not released since other processes can ac cc s s
it. But since it was a link in the fork structure, its subsidiar'y pro­
cesses can no longer be kept track of. Consequently, when a process
is destroyed all subsidiary processes are also destroyed, as are their
subsidiary processes, etc.

There are two other process system calls: Dismiss Process (DISP)
causes a process to relinquish its physical processor. If that process
remains active, it will automatically get the processor back again at
some later time. Make Process Non Dismissable (MPND) is highly
privileged and makes the process executing it non-dismissable or dis­
rnissable. A process that is non-dismissable cannot be dismissed for
any reason until it is again made dismissable. This is necessary in
some processes that may directly fiddle with system tables when dis-
1ni s sal of them would cause a disaster.

10.-1.2 Memory and Memory System Calls

A hardware memory mapping systcn1 on the physical machine provides
facilities for flexible memory protection and sharing. The time-sharing
systerr1 has been designed to take full advantage of these facilities and
allow protected sharing of memory among processes and users. A
user can, furthermore, protect parts of the memory within a particular
process fron1 destruction by either external processes or the process
itself. Besides being flexible, the memory system is efficient in min­
imizing duplication of storage and unnecessary swapping. This section
is concerned with the structure of memory in the user machine and the
system calls for manipulating parts of that structure.,

There are three levels of virtual processor memory: the working set,
the address space, and swapping storage (PMT). These are, respec­
tively, subsets of each other; that is, the working set is a subset
of the address space and the address space allows access to a subset
of swapping storage. The address space of a virtual processor is
determined by the contents of its relabeling registers (RR). A
relabeling register for a given address is selected by the high-order
six bits of the address. For example, location 127318 references
the page given by relabeling register 128. The RR's are 8 bits wide
and contain indices into the PMT. Each RR corresponds to a 512
word page of virtual memory and the PMT entry pointed to by that RR

10-14

gives the location in swapping storage of the actual page. The RR' s in
the virtual machine are treated just like hardware mapping registers
in the real machine, in fact when a process is running, the hardware
map is made to correspond to the RR.

Thus, when a process is given control of the processor, the actual
locations in core of the memory block given by the PMT entries indi­
cated by the RR are loaded into the hardware map. Thus, for exam­
ple, suppose relabeling register 0 of a process contains 5. Then when
the process references locations 000 through 7778 it will reference the
core image of the swapping storage page pointed to by PMT entry 5.

PMT stands for private memory table. The actual physical quantities
in the PMT are drum addresses giving the locations of the blocks when
they are not in physical core. When the blocks are in core, a system
maintained table gives their current core locations so that the hardware
map can be set up. The working set is just a set of active relabeling
registers. There is a set of working set bits, one for each relabeling
register, indicating which RR are in the current working set. When a
process is scheduled 'to run, only its working set is brought into core.

Three types of private swapping storage (PMT) entries can be acquired
by a user: permanent, ephemeral, and attached file pages. The only
difference between these is that pe:rrrtanent memory must be explicitly
removed from the PMT in order to be released, while ephemeral mem­
ory is released automatically when. it is no longer in the address space
of any process in the fork structure. When a process is created, part
of the information supplied as its system environment specifies a max­
imum number of pages of each type of memory that this process is
allowed to acquire .. An attempt to acquil'e memory beyond these limits
causes a memory pan.ic.

Memory protection is handled by two types of memory protection bits:
current access bits (CAB) and maximum access bits (MAB). There is
one set of CAB for every relabeling register and one set of MAB for
every PMT entry. Whenever a process acquires memory the MAB are
set to the maximum access available and whenever it sets a relabeling
register it specifies the CAB. When a process is created its MAB and
CAB can be set by its controlling process. The MAB and CAB can also
be set by the process system calls that change the processes system
environment. Furthermore, a controlling process can copy the MAB
from a subsidiary process to its own by executing CMAB (Copy Max
Access Bits). Note that whenever a process modifies the protection
bits of another process it cannot give away more access capability than

10-15

it already has. Also the CAB cannot specify greater access than the
MAB of the PMT l'ntry they corrc spond to.

The following systern calls manipulate the relabeling registers, PMT,
working set, and protection bits, making it possible to acquire, access,
release, and protect memory:

• AMEM (acquire memory) assigns a new PMT entry to the
process of the type specified as in input parameter (perrna­
nent or ephemeral) and returns the PMT index of the new
memory. If the new memory thus acquired is ephemeral
it must also be placed into a relabeling register immediately
so AMEM requires a relabeling register number and CAB
when acquiring ephemeral memory.

• RMEM (release memory) removes an entry from the PMT
and clears all relaqeling registers of all processes refer­
encing this PMT entry. Write access to a page is required
in order to release it.

• RRRC (Read Relabeling Register Contents) returns the CAB
and PMT index from the specified relabeling register.
There are two ways to set a relabeling register.

• SRRC (Set Relabeling Register Contents) sets the specified
relabeling register to the given PMT index and CAB. The
PMT index specified to SRRC must be no.n-empty.

Another way to set a relabeling register while simultaneously acquir­
ing new memory is to reference an address corresponding to an empty
relabeling register. This will cause a new PMT entry to be assigned;
the relabeling register will 'be set to the value of that index and the C,AB
and MAB will be set to RWE. The type of memory thus acquired is
either ephemeral or permanent depending on whether or not the process
is an ephemeral memory process. A relabeling register set in this way
is automatically put into the working set. The page acquired will con­
tain all zeroes. The MAB for a PMT entry can be read by executing
RMA (Read Max Access).

The working set of a process is specified by a bit mask with one bit for
each relabeling register. If the corresponding bit for a· page is set,
that page is in the working set. The working set system calls read or
manipulate this bit mask:

• AWS (Alter Working Set) sets or clears the specified bit in
the WS mask.

10-16

• SWS (Set Working Set) specifies the entire working set by
supplying the entire mask. SWS returns the new size of
the working set and the current limit. If execution of SWS
or AWS causes the lin1it to be exceeded a memory panic is
generated.

• RSW (Read Working Set) reads the entire bit mask into the
calling processes memo:ry and also returns the working set
size and limit.

• SWSL (Set Working Set Limit) is a highly privileged system
call that sets the working set limit for the user. issuing the
call. Normally, only the EXEC will be allowed to execute
SWSL. Attaching and detaching file pages also results in
PMT entry changes.

10.4.3 Events and Interrupts

The event and interrupt system allows interprocess communication,
both within a single fork structure and be.tween users.

I 0. 4. 3. I Software Interrupt System.:. Software interrupts are con­
trolled via 2 sets of 32 bits in the UCB. They consist of an enable bit
and an active bit for each software interrupt level. Interrupts are
enabled or disabled by SIS. They are triggered by certain pre- set
conditions (see below) or by INT.

When an interrupt is triggered the active bit for that interrupt is set.
Whenever the swapper brings in a process it checks the enable bit of
the highest level interrupt whose active bits is on. If that enable bit
is on, the swapper clears it and causes the interrupt to qccur by stor­
ing the registers from the PCB in the 6 cells pointed to by the entry to
the interrupt routine. which is pointed to by the interrupt address cell
corresponding to that interrupt level. The swapper then starts execu­
tion at the entry+! of the interrupt routine.

The 32 interrupt address entries are in locations 2 through 33 of the
processes address space. The following 9 interrupts are reserved for
the ·given functions. Levels 0-6 are used for interrupts yet undefined
which may be assigned a higher priority.

10-17

LEVEL

7

8

9

10

11

12

13

14

15

INTERRUPT CAUSE

Memory panic in same process.

Command abort (first "escape" from terminal).

Subsystem abort (second 11 escape 11 from terminal).

Illegal ins tru c ti on panic in same process.

Stack over flow.

Stack under flow.

Floating point overflow.

Floating point underflow.

Panic in subsidiary process, or Panic Abort from
controlling terminal.

These interrupts can also be triggered by the INT instruction.

Return from an interrupt routine can be done by a CLAI followed (at any
time) by an indirect jump through the cell that saved the L-registcr. If
return is done this way, the process must explicitly restore its own
registers before returning. An alternate way to return is the CI_,RAI
system call which clears the active interrupt, reloads the registers
and returns. Clearing the active interrupt is done by clearing the active
bit and setting the enable bit for that interrupt.

Sun1mary of active and enabled bits:

ACTIVE

0

0

1

ENABLED

0

0

1

MEANING

Interrupt not enabled.

Interrupt triggered and active (running).

Interrupt enabled and not trigger ed.

Interrupt triggered and not active.

A panic is the general result of an illegal action in a process. It may
also be caused by a process deactivating itself. When any panic condi­
tion occurs, the process will be deactivated and the pannic interrupt
will be taken in the parent process (if that interrupt is armed). If the
parent process was in a deactivated state at the time the panic occurred,
it will be activated and placed in a rather high priority queue. If the
parent process does not have the "panic interrupt" armed, deactivate it

10-18

and try its parent, etc. , until a process is found that can process the
interrupt.

After the parent process receives the panic interrupt it should update
the Process Status Table (PST) to deter:mine what happened. If the
parent has more than one subsidiary processes, it may have to update
all the PST' s in order to determine which one caused the panic interrupt.

10. 4. 3. 2 Event Structure. A convenient inter-user event notification
system is provided by the event structure and related systen1 calls.
The ·event structure uses the file system: all events defined in the sys­
tem are catalogued in an Event Directory; each entry in this directory
points to a Notify Directory, which is a list of users who wish to be
notified when that event occurs.

A user may create or define an event (CREV), ask to be notified if a
previously created event occurs (NOTE), delete a notification request
(DELN), cause a previously created event to occur (CAUSE), turn off
a caused event (UNCAUS), or delete an event definition (DELE). Note
that an event may stay "on" for some period of time (CAUSE to UNCAUS).
A user with a notify request overlapping any of this "on" time will be
notified. The notification is given by an interrupt. The interrupt num­
ber associated with a notify request is given in the NOTE system call.
Obviously the process must enable the appropriate interrupt or it will
never see the notify.

I 0.4.4 Miscellaneous Calls

The miscellaneous calls include schedule control, swapper control,
read clock and date, and read accounting data. These are all relatively
s elf-explanatory.

10-19

A·-1

Appendix A• • •

System Ca I I
Decor I pt Ions

SYSTEM CALL DESCRIPTION

MNEMONIC: CUEP NUMBER: 1
NAME: Create User Executive Process

PRIVILEGE LEVEL

Ill Listener

CAPABILITIES BITS:

0 Exec OSubsystem 0 User OOther (Specify)

Number: 44 Meaning: Enable system call

TIMING:

INPUT:

X: address of user directory entry

U: terminal number
A:
E:
Other:

OUTPUT: none
X:

U:

A:

E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible .kl Skip on no exception

Description: user directory data is bad.

D Exception causes panic condition

DISMISSAL CONDITIONS: Insufficient memory in core for creation of new UCB
and PCB

FUNCTION:

Creates a new user on the system from the data in the user directory
and assigns the specified terminal as that users controlling terminal.
A new UCB is created as well as a PCB for the new exec.

A-2

SYSTEM CALL DE:SCRIPTION

MNEMONIC: CSP NUMBE:R: 2

NAME: Create Subsidiary Process

PRIVILEGE LEVEL

0 l.istener

CAPABILITIES BITS:

OExec 0Subsystem ml User OOther (Specify)

Number: 0
1

Meaning: Allow s:ystem call to be executed
Allow s:etting scheduler table number

TIMING:

INPUT:

X: Address of PST
U:
A: Bit mask
E:
Other:

OUTPUT:

X: Exception condition code on exception return
U:
A: PET index of new process
E:
Other:

E>c'cePTION CONDITION ACTION

0 No exception possible 31 Skip on no exce11>tion

Description: Bad input data

0 Exception causes panic condition

DISMISSAL CONDITIONS: No memory availabl1e for new PCB

FUNCTION:

Creates a subsidiary process by c:reating a new PCB and a new
PET entry in the UCB. The conteJ'.lts of the PCB are set from
the PST.

A-3

(B)

PST (T)

(L)
i-----

_ _,

_(_Sl

(Xl

(U)

(A)

(E)

(P)

EMC l PMC

CLP

RLP

IMP

STATUS

WSP

SCTBL

EMC = ephemeral memory count
FMC = permanent memory count

STATUS

INPUT TO CSP

=3

2

1

0

- 1
-2

::;>

=>

~

~

=>
=>

Blocked waiting
for file I/O.

Blocked waiting for
terminal I/ O.

Running or ready
to run.

Deactivated, waiting
for external event.

Deactivated by pa rent.
Deactivated by mem.
panic (interrupt not
armed).

- 3 => Deactivated by inst.
panic (interrupt not
armed).

-4 => Deactivated by ESCAPE
(interrupt not armed).

- 5 => Deactivated by panic
in subsidiary process
(interrupt not armed).

-6 =>.Destruction in process.

CLP = capability list pointer. 0 => same as for current process.
RLP = relabeling reg. pointer. 0 => same as for current process.
IMP = interrupt mask pointer. 0 => same as for current process.
WSP = working set pointer. 0 ~ make WS 0 initially.
SCTBL = scheduler table number~ 0 => same as for current process.

The bit mask supplied to CSP decodes as follows:

bit 0' 0 :;:> propagate esc. assignment.
1 , 1 => relabeling has partial format.

2' 0 => propagate simulated I/O assignment.

3 ' 1 => make process ephemeral memory.

CSP will set the status of the process to l, 0, or -1 only.

Open file access.

A-4

The relabeling formats are:

COMPLETE:

RLO RLl

RL2 RL3

RL4 RL5

32 words

RL56 RL57

RL58 RL59

RL60 RL61

RL62 RL63

PARTIAL:

RJ[;M

REG. NO. CONTENTS

" II

" "
II II

Up to 65 words
II II

II II

.. 1

REM ;/; 0 ::;'> set remainder of relabeling from current fork (all

not set by first part of table). I:f REM = 0, rest of relabeling is

set to O.

A-S

SYSTEM CALL DESCRIPTION

MNEMONIC: RSPS NUMBER: 3
NAME: Read Status of Subsidiary Process

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT:

OExec OSubsystem IXJ User

none

Meaning:

X: Address of PST (See CSP for PST format)
U: PET index of subsidiary process
A: Flag
E:
Other:

OUTPUT:

X:
U:

A:

E:

Other: Updated PST

EXCEPTION CONDITION ACTION

0 No exception possible D Skip on no exception

D Other (Specify)

kl Exception causes panic condition

Description: Illegal instruction panic on bad PET index

DISMISSAL CONDITIONS:

Dismissal will occur if the PCB of the subsidiary process is not in core.

FUNCTION:

Reads the state of the subsidiary process into the given PST. If (A)

:f 0 on input, the relabeling (if read) is read into the partial format;
that is the contents of the relabeling register specified in the upper
byte of the table is read into the lower byte. In all cases where the
PST contains a pointer, if that pointer is zero the corresponding part
o·f the process state will not be read.

A-6

SYSTEM CALL DElSCRIPTION

MINEMONIC: SSPS NUMBER: 4
NAME: Set Status of Subsidiary Process

PRIVILEGE LEVEL

0 Listener OExec OSubsystem Ga User OOther (Specify)

CAPABILITIES BITS: none

Number: 1 Meaning: Allow setting schedules table number.

TIMING:

INPUT:

X: PST address
U: PET index of subsidiary process
A: Bit mask (see CSP for description)
E:
Other:

OUTPUT:

X: Exception condition code on exception return
U:
A:
e:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible Ga Skip on no exce111tion

Description: PET index on bad data in PST

DISMISSAL CONDITIONS:

PCB of subsidiary process not in core.

FUNCTION:

0 Exception causes panic condition

Sets the contents of the PCB from the PST. The status of the subsidiary
process had not previously created and CSP was executed with the given PST.

A
.... ,
- '

SYSTEM CALL DESCRIPTION

MNEMONIC: PCSP NUMBER: 5
NAME: Pre-Create Subsidiary Process

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

D Exec OSubsystem Ga User OOther (Specify)

Number: 4 Meaning: Enable system call
5 Allow setting scheduler table number

TIMING:

INPUT:

X: Address of PST
U:
A:
E:

Bit mask (see CSP for Description)

Other:

OUTPUT:

X:

U: PET index
A:
E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible Q Skip on no exception

Description: Bad input data.

DISMISSAL CONDITIONS:

0 Exception causes panic condition

Dismissal if memory unavailable

FUNCTION:
Same as CSP but does not link process into fork structure or schedule it.

A-8

SYSTEM CALL DESCRIPTION

MNEMONIC: APSP NUMBE:R: 6
NAME: Activate J;>recreated j>rocess

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT:

X:

U: PET index
A:
E:
Other:

OUTPUT: none
X:
U:

A:

E:
Other:

OExec

6

EXCEPTION CONDITION ACTION

D No exception possible

Description:

OSubsystem 12 User OOther (Specify)

Meaning: Enable system call

0 Skip on no excet>tion Iii Exception causes panic condition

Illegal instruction panic on bad PET index

DISMISSAL CONDITIONS:

none

FUNCTION:

Links the specified pre-created process into the fork structure and sets
its status to active.

A-9

SYSTEM CALL DESCRIPTION

MNEMONIC: DSP NUMBER: 7

NAME: Deactivate Subsidiary Process

PRIVILEGE LEVEL

0 Listener 0 Exec OSubsystem Ga User

CAPABILITIES BITS: none

Number: Meaning:

TIMING:

INPUT:

X:
U:

A: PET index of process to be deactivated
E:
Other:

OUTPUT:

X:

U:
A:

E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible 0 Skip on no exception

0 Other (Specify)

IX! Exception causes panic condition

Description: Illegal instruction panic on bad PET index.

DISMISSAL CONDITIONS: None

FUNCTION:

Deactivates the specified subsidiary process by removing it from the
scheduler's active queue and setting its status word to inactive. The
process will remain inactive until it receives an interrupt or its status
is changed by its controlling process.

A-10

SYSTEM CALL DESCRIPTION

MNEMONIC: DSAP NUMBl:R: 8

NAME: Deactivate All Subsidiary Processes

PRIVILEGE LEVEL

0 listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT: none
X:
U:
A:
E:
Other:

OUTPUT: none

X:
U:
A:
E:
Other:

OExec

none

EXCEPTION CONDITION ACTION

~ No exception possible

Description:

OSubsystem El User

Meaning:

D Skip on no exception

DISMISSAL CONDITIONS: none

FUNCTION:

OOther (Specify)

D Exception causes panic condition

Deactivates all subsidiary processes by removing them from the
scheduler's active queue and setting their status words to inactive.
Each deactivated process will remairt inactive until it receives an
interrupt or its status is changed by jLts controlling process.

A-11

/ -

SYSTEM CALL DESCRIPTION

MNEMONIC: DOP NUMBER: 9
NAME: Deactivate Own :process

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT: none
X:
U:
A:
E:
Other:

OUTPUT: none
X:

U:

A:

E:
Other:

D Exec

none

EXCEPTION CONDITION ACTION

~No exception possible

Description:

DISMISSAL CONDITIONS: none

FUNCTION:

OSubsystem Kl User

Meaning:

D Skip on no exception

OOther (Specify)

D Exception causes panic condition

Deactivates the process that executes the call by removing it from the
schedulers active queue and setting its status word to inactive. The
process will remain inactive until it receives an interrupt or its status
is changed by its controlling process.

A-12

SYSTEM CALL OEl>CRIPTION

MNEMONIC: DCP NUMBER: 10

NAME: Deactivate Current Process Until Subsidiary Process Causes Panic

PRIVILEGE LEVEL

0 Listener OExec

CAPABILITIES BITS: none

0Subiystem

Number: Meaning:

TIMING:

INPUT: none
X:
U:
A:
E:
Other:

OUTPUT: none
X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

ml User OOther (Specify)

0 No exception possible D Skip on no exceittion Iii Exception causes panic condition

Description: Illegal instr. panic if process is non- dismissable.

DISMISSAL CONDITIONS: none

FUNCTION:

Arms the "panic in subsidiary processn interrupt and deactivates the
current process without triggering the rrpanic in subsidiary process
interrupt in its parent process.

A-13

SYSTEM CALL DESCRIPTION

MNEMONIC: SMC NUMBER: 11
NAME: Set Maximum Capabilities

PRIVILEGE LEVEL

0 listener

CAPABILITIES BITS:

Number: 41

TIMING:

INPUT: none
X:
U:

A:
E:
Other:

OUTPUT: none
X:
U:

A:

E:
Other:

0 Exec

EXCEPTION CONDITION ACTION

fi1 No exception possible

Description:

DISMISSAL CONDITIONS:

none

FUNCTION:

OSubsystem e!'.J User OOther (Specify)

Meaning: Enable system call

0 Skip on no exception 0 Exception causes panic condition

Set the capabilities bits in the PCB from the User Directory.
If this is the EXEC process, set from the EXEC capabilities bits.
If this is any other process, set from the user capabilities bits.

A-14

SYSTEM CALL DElSCRIPTION

MNEMONIC: REDC NUMBE.R: 12""

NAME: Reduce Capabilities

PFllVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

OExec OSubsystem Iii User 0 Other (Specify)

Number: -4ll Meaning: Enable System Call

TIMING:

INPUT:

X: Capabilities Table Address
U:
A:
E:
Other:

OUTPUT: . .,, , A9.lle
X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

£1 No exception possible

Description:

DISMISSAL CONDITIONS:
None

FUNCTION:

0 Skip on no exce1>tion D Exception causes panic condition

ANll)) the table pointed to in the call with the current capabilities access bits.

A-15

SYSTEM CALL DESCRIPTION

MNEMONIC: MPND NUMBER: 13

NAME: Make Process Non-dimissable

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

~Exec OSubsystem 0 User eother (Specify) System Programmers
and system calls

Number: 3 Meaning: Enable the system call

TIMING:

INPUT:

X:
U:

A: Flag
E:
Other:

OUTPUT:

X:

U:
A:

E:
Other:

EXCEPTION CONDITION ACTION

Ga No exception possible

Description:

DISMISSAL CONDITIONS: none

FUNCTION:

0 Skip on no exception 0 Exception causes panic condition

Set the non-desmissable status of the process according to the flag in A.

Flag: < 0 = make process non-dismiss able
~0 = make process dismissable

A-16

SYSTEM CALL DESCRIPTION

MNEMONIC: DIST NUMBER: 14
NAME: Dismiss for specified time

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT:

X:
U:

DExec

none

A: Time in nsec.
E:
Other:

OUTPUT:

X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

Ga No exception possible

Description:

DISMISSAL CONDITIONS:

unconditional

FUNCTION:

0Subsystem li1 User

Meaning:

D Skip on no excei•tion

D Other (Specify)

D Exception causes panic condition

Dismisses process as if time quantum had run out. Process will be
placed back in ready queue when the given dismissal time is exceeded.
Note that the given time is a lower bound on the actual dismissal time.

A--17

SYSTEM CALL DESCRIPTION

MNEMONIC: TSPS NUMBER: 15
NAME: Test Subsidiary Process Status

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

OExec

none

OSubsystem fi1 User

Number: Meaning:

TIMING:

INPUT:

X:

U: PET index
A:
E:
Other:

OUTPUT:

X:
U:

A: Process status word
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible i1 Skip on no exception

OOther (Specify)

D Exception causes panic condition

Description: If specified process is non-existent or is not subsidiary
to this one.

DISMISSAL CONDITIONS: none

FUNCTION:

Reads process status word (see CSP) into A.

A-18

SYSTEM CALL DESCRIPTION

MNEMONIC: TASPS NUMBER: 16
NAME: Test All Subsidiary Processes Status

PRIVILEGE LEVEL

DUstener 0 Exec

CAPABILITIES BITS: none

Number:

TIMING:

INPUT:

OSubsystem

Meaning:

X: Pointer to 7-word table
U:
A:
E:
Other:

OUTPUT:

X:
U:

"1 User

A: Mask specifying subsidiary processes
E:
Other:

EXCEPTION CONDITION ACTION

IX1 No exception possible

Description:

DISMISSAL CONDITIONS:

FUNCTION:

0 Skip on no exces:1tion

OOther (Specify)

D Exception causes panic condition

For every subsidiary process, this call reads the status word into the
table and sets a bit in A. For subsidiary process with PET index equal
to n, the status word will be stored in word n of the table and bit n
of the A register will be set. All 01ther bits in A will be cleared.

A·-19

SYSTEM CALL DESCRIPTION

MNEMONIC: DESP NUMBER: 17
NAME: D:e·stroy Subsidiary Process

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT:

X:

OExec OSubsystem

none

Meaning:

U: PET index of subsidiary process
A:
E:
Other:

OUTPUT: none
X:

U:
A:
E:
Other:

6a User

EXCEPTION CONDITION ACTION

D No exception possible 0 Skip on no exception

D Other (Specify)

lil Exception causes panic condition

Description: Illegal instruction panic if PET index is illegal.

DISMISSAL CONDITIONS: none

FUNCTION:

This call destroys the specified process by releasing its PCB and removing
it from the fork structure. It may be used either to destroy a normal
subsidiary process or to destroy a precreated process linked into the fork
structure immediately below the calling process. It may also be used
by the creating process to destroy a precreated process. Whenever a
process is destroyed, all of its subsidiary processes are also destroyed.

A-20

SYSTEM CALL DESCRIPTION

MNEMONIC: DEOP NUMBER: 18
NAME: Destroy Own Process

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number: 7

TIMING:

INPUT: none

X:
U:
A:
E:
Other:

OUTPUT: none

X:
U:
A:
E:
Other:

OExec

EXCEPTION CONDITION ACTION

Kl No exception possible

Description:

DISMISSAL CONDITIONS: none

FUNCTION:

OSubsystem Kl User OOther (Specify)

Meaning: Enable~ system call

D Skip on no exce1~tion D Exception causes panic condition

Destroys the process making the call along with all of its subsidiary
processes. This triggers a panic in the parent process. When the
·Exec destroys itself (after user logout), all memory is released, files
are closed, attached I/ 0 devices a.re detached, etc.

A-Zl

SYSTEM CALL DESCRIPTION

MNEMONIC: DEASP NUMBER: 19
NAME: Destroy All Subsidiary Processes

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT.l!'lone

X:
U:
A:
E:
Other:

OUTPUT: none

X:
U:
A:
E:
Other:

0 Exec

none

EXCEPTION CONDITION ACTION

Kl No exception possible

Description:

DISMISSAL CONDITIONS:

FUNCTION:

OSubsystem "1 User

Meaning:

0 Skip on no exception

OOther (Specify)

D Exception causes panic condition

Destroys all subsidiary processes. If no subsidiary process exist,

this call is a NO-OP.

A-22

MNEMONIC: CPA
NAME: Cause Panic Abort

PRIVILEGE LEVEL

D listener

CAPABILITIES BITS:

Number: 2

TIMING:

INPUT:

X:
U:

OExec

A: User number
E:
Other:

OUTPUT: None
X:
U:
A:
E:
Other:

EX.CEPTION CONDITION ACTION

SYSTEM CALL DESCRIPTION

NUMBER: 20 ·

0Subsystem 0 User G!Other (Specify) Priv. Erec

Meaning: Enable system call

0 No exception possible IE Skip on no exces»tion D Exception causes panic condition

Description: No skip if user number invalid

DISMISSAL CONDITIONS: None

FUNCTION: Causes a "panic abort" interrupt to be taken in the EXEC process
of the designated usero (This will occur only if the interrupt is armed;
the EXEC is expected to run with this interrupt armed all the time). This
call will have the same effect as striking the "panic abort" key on the des ig­
nated user's terminal. It can be used at any time including some times
when the "panic abort" key might not bE~ recognized, such as when the user
is in a binary input mode.

A-23

SYSTEM CALL DESCRIPTION

MNEMONIC: AMEM NUMBER: 25
NAME: Acquire New Memory

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number: 9

TIMING:

INPUT:

D Exec OSubsystem &l User

Meaning: Enable system call

0 Other (Specify)

X: Relabeling Register Number (if request is for ephemoral memory)
U: Memory Type Flag in bit 15
A: Current Access (if request is for ephemoral memory)
E:
Other:

OUTPUT:

X:
U: PMT index of new memory page
A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible 0 Skip on no exception :B Exception causes panic condition

Description: Illegal instruction if input parameters are bad. Memory
panic of amount of memory allowed is exceeded.

DISMISSAL CONDITIONS: No physical memory available

FUNCTION:

Acquires a new page of memory. If the register is for ephemeral
memory, the given relabeling register is loaded with the new
PMT index. Otherwise, the PMT index is only returned· in A.

Memory type flag:
0 -+

1 ...
Permanent memory
Ephemeral memory

A-24

MNEMONIC: RMEM

NAME: Release Memory

PFUVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

OExec

SYSTEM CALL DE:SCRIPTION

NUMBER: 26

OSubsystem :Dl.Jser OOther (Specify)

Number: 10 Meaning: Enable system call

TIMING:

INPUT:

X:
U: PMT index of page to be released
A:
E:
Other:

OUTPUT: none

X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible D Skip on no excei?tion if) Exception causes panic condition

Description: Illegal instruction if PMT index is invalid or if write
access is not allowed to the given page.

DISMISSAL CONDITIONS: none

FUNCTION:
1. Removes the designated entry from the PMT.
2. Releases the drum page designated by the PMT entry.
3. Removes all references to the PMT entry from the Relabeling

Registers of all process belonging to the user.
4. Sets the maximum access allowed to this PMT entry to zero

(no access) for all process belonging to the user.

A-25

SYSTEM CALL DESCRIPTION

MNEMONIC: RRRC NUMBER:

NAME: Read Relabeling Register Contents

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT:

OExec OSubsystem

none

Meaning:

x: Relabeling Register Number

U:
A:
E:
Other:

OUTPUT:

X:
U: Contents of Relabeling Register
A: Current Access Bits
E:
Other:

EXCEPTION CONDITION ACTION

Kl User

27

0 Other (Specify)

D No exception possible D Skip on no exception Kl Exception causes panic condition

Description: Illegal instruction if Relabeling Register number
is invalid.

DISMISSAL CONDITIONS: none

FUNCTION:

Reads the contents (a PMT index) of the specified U. Bits 13-15
of the U register specify Read, Write, and Execute access respectively.
A "l" in any of these positions indicates that the corresponding access is
allowed.

A-26

SYSTEM CALL DE:SCRIPTION

MNEMONIC: SRRC NUMBE:R: 28
NAME: Set Relabeling Register Contents;

PFUVILEGE LEVEL

D Listener

CAPABI LITllES BITS:

OExec OSubsystem ~User OOther (Specify)

Number: 11 Meaning: Enable System Call

TIMING:

INPUT:

X: Relabeling Register Number New Relabeling Register Contents (a PMT index)
U:

A: New "current access" bits
E:
Other:

OUTPUT :none
X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible 0 Skip on no exC91>tion Ml Exception causes panic condition

Description: Illegal instruction if Relabeling Register number invalid,
Relabeling '.Register contents point to null PMT entry, or
current access exceeds maximum access.

DISMISSAL CONDITIONS: none

FUNCTION:

Loads the PMT index specified in U into the Relabeling Register
specified in X. Sets the current access bits to the values specified
in bits 13-15 of A and resets the working set bit. Bits 13-15 of A specify
Read, Write, and Execute access respectively. A "l" in any of these
position~ indicates that the corresponding access is allowed.

A-27

SYSTEM CALL DESCRIPTION

MNEMONIC: RMA NUMBER: 29
NAME: Read Maximum Access bits

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

D Exec

none

0Subsystem Cl User

Number: Meaning:

TIMING:

INPUT:

X:

U: PMT index
A:
E:
Other:

OUTPUT:

X:

U:

A: Maximum Access Bits
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible kl Skip on no exception

D Other (Specify)

Kl Exception causes panic condition

Description: Illegal instruction if PMT index is invalid. No skip
if PMT entry is null.

none
DISMISSAL CONDITIONS:

FUNCTION:

Reads the "Maximum Access" bits into bits 13-15 of A. These
bits specify Read, Write, and Execute access respectively.
A 11111 in any of these positions indicates that the corresponding
access in allowed. The maximum access bits specify the maximum
access that the requesting process will be granted to the designated
page.

A-28

SYSTEM CALL DE:SCRIPTION

MNEMONIC: CMAB NUMBE:R: 30
NAME: Copy Maximum Access Bits

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT:

X:

D Exec OSubsystem

none

Meaning:

U: PET index of sbsidiary process
A:
E:
Other:

OUTPUT: none
X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

'1 User OOther (Specify)

D N'°exception possible D Skip on no excei:>tion il Exception causes panic condition

Description: Illegal instruction if PET index is invalid

DISMISSAL CONDITIONS: PCB of the subsidiary process is not in core.

FUNCTION:

Logically OR' s the maximum access bits of the designated
subsidiary process into the maximum access bits of the requesting
process.

A--29

SYSTEM CALL DESCRIPTION

MNEMONIC: RWS NUMBER: 31
NAME: Read "\\brking Set

PRIVILEGE LEVEL

D Listener OExec OSubsystem LS User

CAPABILITIES BITS: none

Number: Meaning:

TIMING:

INPUT:

X: Pointer to 4-word table
U:
A:
E:
Other:

OUTPUT:

X:

U: Working set size limit
A: Size of current working set
E:

Other: Working set bits in given table.

EXCEPTION CONDITION ACTION

~No exception possible

Description:

DISMISSAL CONDITIONS:
none

FUNCTION:

0 Skip on no exception

OOther (Specify)

0 Exception causes panic condition

Reads the working set bits for all pages in the process's virtual
address space into the specified table. A 11111 in any position
in the table indicates that the corresponding page is in the
working set.

A-30

MNEMONIC: sws
NAME: Set Working Set

PHIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

OExec

SYSTEM CALL DE:SCRIPTION

NUMBE:R: 32

OSubsystem GJ User D Other (Specify)

Number: 12 Meaning: Enable System Call

TIMING:

INPUT:

X: Pointer to a 4-word table of working set bits
U:
A:
E:
Other:

OUTPUT:

X:
U: Working set size limit
A: Size of new working set
E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible 0 Skip on no exces,tion lia Exception causes panic condition

Description: Memory panic if the working set size limit is exceeded.
Illegal instruction if a page to be put into the working set
has an empty Relabeling Register.

DISMISSAL CONDITIONS:

New pages in the working set are not in core.

FUNCTION:

Sets the working set bits for all pages in the process's virtual address
space from a 4-word table in core. A "l" in any position in the table
indicates that the corresponding page is to be in the new working set.

A-31

SYSTEM CALL DESCRIPTION

MNEMONIC: AWS NUMBER: 33

NAME: Alter Working Set

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT:

D Exec

12

OSubsystem iJ User 0 Other (Specify)

Meaning: Enable system call

X: Relabeling Register Number
U:

A: Remove /Insert flag in bit 15
E:
Other:

OUTPUT: none
X:
U:

A:

E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible D Skip on no exception iJ Exception causes panic condition

Description: Illegal instruction if Relabeling Register number is
invalid or if a page with an empty Relabeling Register is
to be put into the working set. Memory panic if working set
size limit is exceeded.

DISMISSAL CONDITIONS:

FUNCTION:

Page added to the working set is not in core.

Sets or clears the working set bit for the given page of the
process's virtual address space.

Remove/Insert flag~
0 -+ Remove the page from the working set
0 ... Insert the page in the working set

A-32

SYSTEM CALL DESCRIPTION

MNEMONIC: SWSL . NUMBEIFt: 34
NAME: Set Working Set Limit

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Kl Exec OSubsystem 0 User OOther (Specify)

Number: 13 Meaning: Enable System Call

TIMING:

INPUT:

X:
U: New Working Set Size Limit
A:
E:
Other:

OUTPUT: none
X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception po·ssible D Skip on no exces>tion l5:a Exception causes panic condition

Description: Illegal instruction if the new limit exceeds the largest
possible limit.

DISMISSAL CONDITIONS: none

FUNCTION:

Sets the working set limit to the specified value. The working set
limit is the maximum number of pages that the user may have in his
war king set at any one time; this includes both pages of the process's
virtual address space and pages in the system's virtual address space
that are being used for the requesting process.

A-33

SYSTEM CALL DESCRIPTION

MNEMONIC: RSTC NUMBER: 38
NAME: Read Scheduling Table Contents

!PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

D Exec OSubsystem 0 User i10ther (Specify) System Managers E XE 1

Number: 42 Meaning: Enable System Call

TIMING:

!INPUT:

X: Pointer to table in care
U:
A: Scheduling Table Number
E:
Other:

OUTPUT:

X:
U:
A:

E:
Other:

EXCEPTION CONDITION ACTION

kl No exception possible

Description:

DISMISSAL CONDITIONS: none

FUNCTION:

D Skip on no exception D Exception causes panic condition

Read the contents of the specified scheduling table into the designated
table in core. First word read in will specify the number of entries in
the table.

A-34

SYSTEM CALL DESCFllPTION

MNEMONIC: SSTC NUMBER: 39
NAMIE: Set Scheduling Table Contents

PRIVILEGE LEVEL

D listener

CAPABILITIES BITS:

OExec OSubsystem Cl User OOther (Specify) System Manager's EXEC

Number: 42 Meaning: Enable the system call

TIMING:

INPUT:

X: Pointer to table in core
U:
A: Sheduling table number
E:
Other:

OUTPUT:

X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible &l Skip on no exception D Exception causes panic condition

Description: Values out of allowable range. Table not changed.

DISMISSAL CONDITIONS: none

FUNCTION:

Set the contents of the specified scheduling table from the table in core.
The first word of the core table specifies the number of entries to set.

A-35

SYSTEM CALL DESCRIPTION

MNEMONIC: RRTV NUMBER: 40
NAME: Read Response Time Values

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

0 Exec OSubsystem 0 User :fiOther (Specify) System Managers EXEC

Number: 42 Meaning: Enable the System Call

TIMING:

llNPUT:

X: Tl - response time associated with queue 3
U: T2 II II II II II 4
A: T3 11 II II II II 5
E:
Other:

OUTPUT:

X:
U:

A:

E:
Other:

EXCEPTION CONDITION ACTION

Kl No exception possible

Description:

DISMISSAL CONDITIONS: none

FUNCTION:

0 Skip on no exception 0 Exception causes panic condition

Read the response time values (expressed as the number of drum
revolutions) associated with ready queues 3, 4, and 5.

A-36

SYSTEM CALL DESCFUPTION

MNEMONIC: SRTV NUMBER: 41
NAME: Set Response Time Values

PRIV~LEGE LEVEL

D Listener

CAPABILITIES BITS:

OExec DSubsystem Cl User Im Other (Specify) System Manager's EXEC

Number: 42 ·Meaning: Enable the system call

TIMING:

INPU"f:

X: T 1 - response time associated with queue 3
U: T 2 II II " II 11 4
A: T3 II II II II II 5
E:
Other:

OUTPUT:

X:
U:
A:
E:
Other:

EXCElf>TION CONDITION ACTION

0 No exception possible 6'1 Skip on no exceptio1n

Description: Values out of allowable range.

DISMISSAL CONDITIONS: none

FUNCTION:

D Exception causes panic condition

No change made.

Set the response time values (expres:sed as the number of drum revolutions)
associated with ready queues 3, 4j! and 5. ·

A-37

SYSTEM CALL DESCRIPTION

MNEMONIC: SNPA NUMBER: 42
NAME: Set Number of Processes Ahead

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

OExec OSubsystem 0 User i]Other (Specify) System Manager's EXEC

Number: 42 Meaning: Enable System Call

TIMING:

INPUT:

X:
U:
A: New value of parameter requested
E:
Other:

OUTPUT:

X:
U:
A: New value actually set
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible :11 Skip on no exception D Exception causes panic condition

Description: Couldn't set parameter to the requested value.

DISMISSAL CONDITIONS: none

FUNCTION:

Set the system parameter that determines the maximum number of
processes that the swapper will try to read into core.

A-38

SYSTEM CALL DESCR:IPTION

MNEMONiC: SNPD NUMBER: 43
NAME: Set Number of Pages for Disk

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

DExec OSubsystem 0 User 190ther (Specify) System Manager's EXEC

Number: 42 Meaning: Enable system call

TIMING:

INPUT:

X:
U:
A: New value of parameter requested
E:
Other:

OUTPUT:

X:
U:
A: New value actually set
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible m Skip on no exceptiOl'11 0 Exception causes panic condition

Description: Couldn't set parameter to the requested value.

DISMISSAL CONDITIONS: none

FUNCTION: Set the system parameter that de1tertnines the maximum number
of core pages that will be used to buffer information being transferred
from the drum to the disk.

A-39

MNEMONIC: CREV

NAME: Create Event

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

D Exec

SYSTEM CALL DESCRIPTION

NUMBER: 45

OSubsystem ml User OOther (Specify)

Number: 51 Meaning: Enable System Call

TIMING:

INPUT:

X: Pointer to access information data
U:
A: Address of string pointer pair giving event name
E:
Other:

OUTPUT:

X:
U:

A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible [!Skip on no exception 0 Exception causes panic condition

Description: Exception if event name already used or if event file full.

DISMISSAL CONDITIONS: Event directory and proper event list page not in core.

FUNCTION:

Create event with specified name. Uses file directory scheme, adds new
event branch to event directory, pointing to empty notify directory for event.
If no access stated, then anyone may cause (write access) or be notified
(read access) of event.

A-40

SYSTEM CALL DESCRIPTION

MNEMONIC: Nate NUMBIER: 46
NAME: Notify If Event Occurs

PRIVILEGE LEVEL

0 listener

CAPABILITIES BITS:

Number: 52

TIMING:

INPUT:

X:

OExec

U: Interrupt Number

0Subsystem ~User OOther (Specify)

Meaning: Enable Sy stem Call

A: Address of string pointer pair giving event name
E:
Other:

OUTPUT:

X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible 31 Skip on no eXC4!ption 0 Exception causes panic condition

Description: Exception if no such event or if interrupt is reserved or too big.

DISMISSAL CONDITIONS: Event directory and proper event list page not in core.

FUNCTION:

Place notify request in notify list for specified event. If event is on,
give interrupt immediately, or else give interrupt when event is caused
(each time it is caused).

A-4:1

SYSTEM CALL DESCRIPTION

MNEMONIC: DELN NUMBER: 47

NAME: Delete Notify Request

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

0 Exec OSubsystem ~User D Other (Specify)

Number: 52 Meaning: Enable Sys tern Call

TIMING:

INPUT:

X:
U:
A: Address of string pointer pair giving event name.
E:
Other:

OUTPUT:

X:
U:

A:

E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible CXSkip on no exception D Exception causes panic condition

Description: No notify request in for specified event for this user.

DISMISSAL CONDITIONS: Event directory and proper event page list not in core.

FUNCTION:

Delete notify request.

A-42

MNEMONIC: CAUSE

NAME:

PRIVILEGE LEVEL

D listener

CAPABILITIES BITS:

Number: 5 3

TIMING:

INPUT:

X:
U:

SYSTEM CALL OE:SCRIPTION

NUMB 1ER: 48

OExec DSubsystem ~User 0 Other (Specify)

Meaning: Enable System Call

A: Address of string pointer pair giving event na.me
E:
Other:

OUTPUT:

X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTiON

0 No exception possible lKJ Skip on no exccitption

Description: No such event

0 Exception causes panic condition

DISMISSAL CONDITIONS: Event directory and proper event page list not in core.

FUNCTION:

Turn on specified event. Notify all users currently in list. Also notify all
users added to list until event is uncaused.

A-43

MNEMONIC: UNCAUS

NAME: Uncause Event

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

OExec

SYSTEM CALL DESCRIPTION

NUMBER: 49

OSubsystem ag User 0 Other (Specify)

Number: 5 3 Meaning: Enable System Call

TIMING:

INPUT:

X:

U:
A: Address of string pointer pair giving event name
E:
Other:

OUTPUT:

X:
U:

A:

E ..
Other:

EXCEPTION CONDITION ACTION

0 No exception possible IXSkip on no exception

Description: N,o such event is on

0 Exception causes panic condition

DISMISSAL CONDITIONS: Event directory and proper event list page not in core

FUNCTION:

Turn off specified event.

A-44

SYSTEM CALL DESCRIPTION

MNEMONIC: RIS NUMBER: 50
NAME: Read Interrupt status

PRIVILEGE LEVEL

0 Listener OExec OSubsystem il User

CAPABILITIES BITS:

Number:

none
Meaning:

TIMING:

INPUT: none
X:
U:
A:
E:
Other:

OUTPUT:

X:

U: Enabled interrupt mask
A:
E:
Other:

EXCEPTION CONDITION ACTION

~No exception possible

Description:

DISMISSAL CONDITIONS:

FUNCTION:

D Skip on no exception

none

0 Other (Specify)

0 Exception causes panic condition

Reads the current enabled/disabled status of the interrupts into the U
and A :registers (interrupts 0-15 corre:spond to U0-15, interrupts 16-31
correspond to A0-15). A ''l" in any bit position indicates that the corresponding
interrupt is enabled;<~a "0" indicates that it is disabled.

A-45

MNEMONIC: SIS

NAME: Set Interrupt Status

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

D Exec

SYSTEM CALL DESCRIPTION

NUMBER: 51

OSubsystem "1 User 0 Other (Specify)

Number: 14 Meaning: Enable System Call

TIMING:

INPUT:

X:

~3 Enabled Interrupt Mask

E:
Other:

OUTPUT:

X:

U:
A:

E:
Other:

EXCEPTION CONDITION ACTION

:&l No exception possible

Description:

D Skip on no exception

DISMISSAL CONDITIONS: none

FUNCTION:

D Exception causes panic condition

Sets the current enabled/disabled status of the interrupts from the mask
in the U and A registers (interrupts 0-15 correspond to U0-15, interrupts
16-31 correspond to A0-15). A 11111 in any bit position indicates that
it is to be disabled.

A-46

SYSTEM CALL DESCRIPTION

MNEMONIC: INT NUMBER: 52
NAME: Cause Interrupt

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

DExec DSubsystem

Number: Meaning:

TfiMING:

INPUT:

X:
U:
A:
E:
Other:

OUTPUT:

X:

Process designator
Interrupt number

U: Number of interrupts triggered
A:
E:
Other:

il User

EXCEPTION CONDITION ACTION

0 No exception possible rm Skip on no exception

OOther ($pecify)

m Exception causes panic condition

Description: Illegal instruction if input parameters invalid. No skip
if the interrupt could not be taken by some process.

DISMISSAL CONDITIONS: none

FUNCTION:

Causes the specified interrupt to occur in the specified process(es)
if they have that interrupt inabled.

Process Designator: This word determines the process(es) in which the interrupt
will be triggered. A scan is made of the fork structure looking for process that
have the specified interrupt enabled. The scan is conducted according to the rules
specified in bits 0 -4 of this word.

(Continued)

A-47

Bit 0 = 1- Scan all processes. This overrides all but bit 5, which remains operative
Bit I = 0 - Scan only the process whose PET index is contained in bit 13- 15 of the

word. This overrides bits 2-4.
Bit 1 = 1 -Trigger the interrupt in only the first N processes found by the scan

that have the interrupt armed. The count is supplied in bits 13-15
of the word. Bits 2-5 are operative.

Bit 2 = 1- Scan ancestor processes beginning with the process that created
the process issuing the call.

Bit 3 = 1- Scan subsidiary processes (i.e. processes created by the calling
process) beginning with the first process created.

Bit 4 = 1- Scan parallel processes (i.e. precess created by the same process
beginning with the first process created.

Bit 5 = l - Do not trigger the armed interrupt(s) but return the skip/no skip
indication and the count as if the interrupt(s) had been trigge;red.

Bits 13- 15 = Count or PET index as specified above.

A-48

SYSTEM CALL DESCRIPTION

MNEMONIC: CLAI NUMBER: 53
NAME: Clear Active· Interrupt

Pf~IVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT: none
X:
U:
A:
E:
Other:

OUTPUT: none
X:
U:
A:

. E:

Other:

OExec

none

EXCEPTION CONDITION ACTION

OSubsystem "1 User

Meaning:

OOther (Specify)

D No exception possible D Skip on no exception m Exception causes panic condition

Description: Illegal instruction if no interrupt is currently active in the
requesting process.

DISMISSAL CONDITIONS: none

FUNCTION:
Sets the state of the currently active interrupt to enabled and inactive
(at the time the interrupt became active the state was set to disabled and
active).

A-49

SYSTEM CALL DESCRIPTION

MNEMONIC: CLRAI NUMBER: 54

NAME: Clear and Return from Active Interrupt

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT:

OExec OSubsystem ~User

Meaning:

X: Pointer to location of saved registers
U:
A: Skip flag
E:
Other:

OUTPUT: none
X:
U:
A:

E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible D Skip on no exception

OOther (Specify)

:(] Exception causes panic condition

Description: Illegal instruction if no interrupt is currently active in the
requesting process.

DISMISSAL CONDITIONS:
none.

FUNCTION:
Sets the state of the currently active interrupt to enabled and inactive
(at the time the interrupt became active the state was set to disabled and
active). Restores the registers (P, S, X, U, A and E) from the location
given in X thereby returning the process to the state that existed when the
interrupt occured.

Skip Flag: 0 ~do not skip 1st instruction after return.
1 9 skip 1st instruction after return.

A-50

MNEMONIC: DEL V

NAME: Delete Event

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT:

D Exec

SYSTEM CALL DESCRIPTION

NUMBER: 55

OSubsystem ag User

Meaning:

X: Pointer to access information
U:

OOther (Specify)

A: Address of string pointer pair giving event name
E:
Other:

OUTPUT:

X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible j!g Skip on no exception 0 Exception causes panic condition

Description: Exception if access not allowed or no such event

DISMISSAL CONDITIONS: Event directory not in core.

FUNCTION: Delete specified event.

A-51

SYSTEM CALL DESCRIPTION

MNEMONIC: MTC NUMBER: 57

NAME: Magnetic Tape Control

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Kl Exec C8 Subsystem 0 User 0 Other (Specify)

Number: 54 Meaning: Enable Sys tern Call

TIMING:

INPUT:

X:

U:
A:
E:
Other:

Not Yet Defined
OUTPUT:

X:

U:
A:

E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible r;J Skip on no exception

Description: Magnetic tape unit not attached

DISMISSAL CONDITIONS: Not defined

FUNCTION:

0 Exceptior• causes panic condition

This call will essentially be a magnetic tape handler providing such
functions as read, write, rewind, space over files, records, etc.
Will be defined after magnetic tape controller hardware functions are
defined.

A-52

SYSTEM CALL DESCRIPTION

MNEMONIC: TC! NUMBIER: 58

NAME: Terminal Character Input

PRIVILEGE LEVEL

0 listener

CAPABILITIES BITS:

D Exec OSubsystem 181 User OOther (Specify)

Number: 29 Meaning: Enable System Call

TOM ING:

INPUT: None
X:
U:
A:
E:
Other:

OUTPUT:

X:
U:
A: Character from controlling terminal
E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible D Skip on no exception 15() Exception causes panic condition

Description: Ille gal instruction if a BEL system call is in progress.

DISMISSAL CONDITIONS: Terminal input buffer empty, or an echo is to be generated
a.s the character is read in and the output buffer is full.

FUNCTION: Reads the next character from. the controlling terminal input buffer
into bits 8-15 of the A register and clears bits 0-7. The character is removed
:from the input buffer and the echo modE~ is set to generate the echo when a
character is packed into the input buffe:r rather than when a character is read
out of the buffer into some process.

A-53

SYSTEM CALL DESCRIPTION

MNEMONIC: TCO NUMBER: . 59
NAME: Terminal Character Output

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

D Exec OSubsystem £g) User D Other (Specify)

Number: 30 Meaning: Enable System Call

TIMING:

INPUT:

X:
U:
A: Character in bits 8-15
E:
Other:

OUTPUT: None
X:

U:
A:

E:
Other:

EXCEPTION CONDITION ACTION

al No exception possible

Description:

0 Skip on no exception 0 Exception causes panic condition

DISMISSAL CONDITIONS: Terminal Output buffer is full.

FUNCTION: Packs the character in A into the controlling terminal output
buffer from which it will be transmitted to the terminal.

A-54

SYSTEM CALL DESCRIPTION

MNEMONIC: ISD NUMBE:R: 60
NAME: Input From Specified Device

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

OExec 0 Subsystem. QSl User OOther (Specify)

Number: 31 Meaning: Enable System Call

TIMING:

INPUT:

X:
U: Device number
A:
E:
Other:

OUTPUT:

X:

U:
A: Character from specified device
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible D Skip on no exception ag Exception causes panic condition

Description: Illegal instruction if the specified device is not attached

DISMISSAL CONDITIONS: Device input :'buffer is empty, or an echo is to be generated
as the character is read in and the output buffer is full.

FUNCTION: Reads the next character frorr1 the input buffer of the specified
device into bits 8-15 of the A register and clears bits 0-7. The character
is removed from the input buffer and the echo mode is set to generate the
echo when a character is packed into the input buffer rather than when a
character is read out of the buffer into some process.

A-55

SYSTEM CALL DESCRIPTION

MNEMONIC: OSD NUMBER: 61

NAME: Output to Specified Device

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

0 Exec OSubsystem ml User 0 Other (Specify)

Number: 32 Meaning: Enable System Call

TIMING:

INPUT:

X:
U: Device Number
A: Character in bits 8-15
E:
Other:

OUTPUT: None
X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible 0 Skip on no exception ag Exception causes panic condition

Description: Illegal instruction if the specified device is not attached.

DISMISSAL CONDITIONS: Device output buffer is full.

FUNCTION: Packs the character in A into the output buffer of the specified
device from which it will be transmitted to the device.

A-56

SYSTEM CALL DE:SCRIPTION

MNEMONIC: RNIC NUMBl:R: 62
NAME: Read Next Input Character

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number: 29

THMING: 31

INPUT:

X:

OExec

U: Device number
A:
E:
Other:

OUTPUT:

X:
U:

OSubsystem II User OOther (Specify)

Meaning: Enable: Systems Call if device number
specifies the controlling terminal.
Enable the system call if the device number
specified any other device.

A: Character from specified device
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible IXI Skip on no exception ex Exception causes panic condition

Description: Illegal instruction if device is not attached. No skip if the
input buffer is empty.

DISMISSAL CONDITIONS: None

FUNCTION: If the input buffer of the specified device is not empty, read the
next character into bits 8-15 of the A register and clear bits 0-7. The
character is not removed from the input buffer.

If the input buffer is empty, do not change the contents of the A register
and take the no - skip return.

A-57

MNEMONIC: ADV

NAME: Attach Device

PRIVILEGE LEVEL

0 listener

CAPABILITIES BITS:

TIMING:

INPUT:

X:

Number: 38
39

OExec

u: Device Number
A:
E:
Other:

OUTPUT: None
X:

U:

A:
E:
Other:

EXCEPTION CONDITION ACTION

SYSTEM CALL DESCRIPTION

NUMBER: 63

OSubsystem muser 0 Other (Specify)

Meaning: Allow attaching of any device.
Allow attaching of interactive terminals only.

0 No exception possible IX! Skip on no exception CX Exception causes panic condition

Description: Illegal instruction if the device number is invalid. No skip
if the device is already attached to another user.

DISMISSAL CONDITIONS: None

FUNCTION: Attaches the specified device to this user.

A-58

MNEMONIC: RDV

NAME: Release Device·

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number: 40

TIMING:

INPUT:

X:

0 Exec

U: Device Number
A:
E:
Other:

OUTPUT: None
X:
U:

A:

E:
Other:

EXCEPTION CONDITION ACTION

SYSTEM CALL DESCRIPTION

NUMBE:R: 64

0Subsystem l!SJ User 0 Other (Specify)

Meaning: Enable System Call

0 No exception possible D Skip on no exce11>tion 13 Exception causes panic condition

Description: Illegal instruction if the device is not attached to this user.

DISMISSAL CONDITIONS: None

FUNCTION: Detaches the specified device :from this user and makes it available
for other users.

MNEMONIC: TDV

NAME: Test Device Status

PRIVILEGE LEVEL

0 Listener

CAP A Bl LITIES. BITS:

Number: 46

TIMING:

INPUT:

X:

0 Exec

u: Device Number
A:
E:
Other:

OUTPUT: None

X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible

SYSTEM CALL DESCRIPTION

NUMBER: 65

OSubsystem Im User OOther (Specify)

Meaning: Enable System Call

D Skip on no exception QI Exception causes panic condition

Description: Illegal instruction if device number is invalid.

DISMISSAL CONDITIONS: None

FUNCTION: Skips if the specified device is free (i.e., not attached to
any user).

A-60

SYSTEM CALL DESCRIPTION

MNEMONIC: ECH NUMBER: 66
NAME: Set Echo Conditions

PRIVILEGE LEVEL

0 listener

CAPABILITIES BITS:

0 Exec OSubsystem IE User 0 Other (Specify)

Number: 37 Meaning: Enable Sy stem Call

TIMING:

INPUT:

X: Echo and Translation
U: Terminal Number
A: Break and Deferred Echo
E:
Other:

OUTPUT: NONE
X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible 0 Skip on no exo!ption IE Exception causes panic condition

Description: Illegal instruction if input parameters invalid or BEL call
is in progress.

DISMISSAL CONDITIONS: NONE

FUNCTION: Sets four input conditions for the specified terminal. The conditions,
the fields that specify them, and the values that can be set are as follows:

ECHO - Bits 0-7 of the X Register
0 · - Normal text entry echoes
1 - No echo

TRANSLATION - Bits 8 -15 of the X Register
0 - Device code to ASCII
1 - No translation

A-61

Function: (continued)

BREAK CHARACTERS - Bits 0-7 of the A Register
0 - All characters
1 - EOT character only
2 - All control characters (1-3 7

8
in the ASCII set)

3 - All except alphanumerics

DEFERRED ECHO CHARACTERS - Bits 8-15 of the A Register
0 - All characters
1 - None
2 - All control characters
3 - All except alphanumerics

NOTES:

1. If the translation designator is set to 11 l11, the other three
designators must also be set to "l ".

2. Break characters are those that cause a process to run if it is
waiting for input from the terminal.

3. Deferred echo characters cause the deferred echo mode to begin with
the next character. If the deferred echo mode is not set, each character
is echoed as it is received and packed into the input buffer. If the deferred
echo mode is set, the character is not echoed until it is unpacked from the
input buffer and read into some process.

A-62

MNEMONIC: CDB

NAME: Clear Device Buffer

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

OExec

SYSTEM CALL DESCRIPTION

NUMBER: 67

OSubsystem mJ User OOther (Specify)

Number: 40 Meaning: Enable System Call

TIMING:

INPUT:

X:
U: Device number
A: Buffer designators
E:
Other:

OUTPUT: . None

X:
U:

A:

E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible 0 Skip on no exce1ption ag Exception causes panic condition

Description: Illegal instruction if the device is not attached to this user.

DISMISSAL CONDITIONS: None

FUNCTION: Clears the specified buffers, resetting their states to empty. Sets the
echo mode to generate an echo when a character is packed into the input buffer
rather than when a character is read out of the buffer into some process (if the
input buffer is specified). When an input buffer is cleared, all characters are
removed from it whether or not the corresponding echo has been generated and
placed in the output buffer. Thus some echoes could be transmitted to the
device even though the corresponding characters will never be seen by any

·process as input from the device. When an output buffer is cleared, both pro­
gram. generated characters and input echoes that have already been packed into
the output buffer are removed.
Buffer designators: Bit 0 - Output buffer

Bit 1 - Input buffe~
Bit 2 - BEL new line buffer (terminates BEL)

A-63

/

SYSTEM CALL DESCRIPTION

MNEMONIC: RDBZ NUMBER: 68
NAME: Read Device Buffer Size

PRIVILEGE LEVEL

0 listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT:

X:

0 Exec

None

U: Device number
A:
E:
Other:

OUTPUT:

X:

OSubsystem CJ user

Meaning:

u: Number of characters in output buffer
A: Number of characters in input buffer
E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible D Skip on no exception

0 Other (Specify)

~ Exception causes panic condition

Description: Illegal instruction if the device is not attached to this user.

DISMISSAL CONDITIONS: None

FUNCTION: Reads the number of character remaining in the input and output
buffers.

A-64

SYSTEM CALL DESCRIPTION

MNEMONIC: SOT NUMBER: 69
NAME: Set Output Translation

PH IVI LEGE LEVEL

0 Listener

CAPABILITIES BITS:

OExec OSubsystem !l User OOther (Specify)

Number: 30 Meaning: Enable System Call

TIMING:

INPUT:

X:
U: Device number
A: Translation designator
E: 0 ~ ASCII to Device Code
Other: 1 ~ No Translation

OUTPUT: None
X:
U:

A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible D Skip on no exce•ption at Exception causes panic condition

Description: Iilegal instruction if the specified device is not attached to
to this user or is of the wrong type.

DISMISSAL CONDITIONS: None

FUNCTION: Sets the translation mode that will be in effect for the specified
device (usually a terminal). If no translation is called for, the low order
bits of each 8-bit byte (is device dependent) will be transmitted to the ter­
minal unchanged. If translation is called for, multiple blank characters
will be expanded, line feeds will be insetted after carriage returns if
necessary, idle characters will be inserted where necessary to allow for
mechanical motion of the terminal, etc.

A-65

MNEMONIC: RDT

NAME: Read Device Type

PRIVILEGE LEVEL

D listener 0 Exec

CAPABILITIES BITS: None

SYSTEM CALL DESCRIPTION

NUMBER: 70

DSubsystem !XI User

Number: Meaning:

TIMING:

INPUT:

X:
U: Device Number
A:
E:
Other:

OUTPUT:

X;

U:

A: Device Type
E:
Other:

EXCEPTION CONDITION ACTION

D Other (Specify)

D No exception possible D Skip on no exception Q; Exception causes panic condition

Description: Illegal instruction if the device is not attached to this user.

DISMISSAL CONDITIONS: None

FUNCTION: Reads a device code that specifies the device type. Legal device
codes include:

0 - Model 33 or 35 teletype in full duplex mode
1 - Model 33 or 35 teletype in half duplex mode
2 - Synerdata Beta
3 - IBM 2741 (Correspondence Code Set)
4 - Infoton Vista CRT terminal

A-66

MNEMONIC: SDT

NAME: Set Device Type

PRIVILEGE LEVEL

D l.istener

CAPABILITIES BITS:

OExec

SYSTEM CALL DESCRIPTION

NUMBl:R: 71

0Subiystem CJ user 00ther (Specify)

Number: 47 Meaning: Enable System Call

TIMING:

INPUT:

X:
U:
A:
E:
Other:

Device number
Device type

OUTPUT: None
X:
U:
A:
E:
Other:

E>CCEPTION CONDITION ACTION

D No exception possible D Skip on no exception l:m Exception causes panic condition

Description: Illegal instruction if device not attached to this user.

DISMISSAL CONDITIONS: None

FUNCTION: Declares the specified devicE~ to be of a particular type. Legal
device codes include:

0 .;. Model 33 or 35 teletype in full duplex mode
l - Model 33 or 35 teletype in half duplex mode
2 - Synerdata Beta
3 - IBM 2741 (Correspondence Code Set)
4 - Infoton Vista CRT terminal

A-67

SYSTEM CALL DESCRIPTION

MNEMONIC: STCI NUMBER: 72

NAME: Simulate Terminal Character Input

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

OExec OSubsystem mJ User 0 Other (Specify)

Number: 33 Meaning: Enable System Call

TIMING:

INPUT:

X:
U: PET index of receiving process
A: Character in bits 8-15
E:
Other:

OUTPUT: None

X:
U:
A:

E:
Other:

EXCEPTION CONDITION ACTION

· 0 No exception possible D Skip on no exception Qg Exception causes panic condition

Description: Designated process does not have its simulated input bit set.

DISMISSAL CONDITIONS: Simulated input buffer is full or buffer page is not in core.

FUNCTION: Places the character in the next available position in the simulated
input buffer of the designated process. The process can then input the char­
acter with a TCI, !SD or GEL system call.

A-68

SYSTEM CALL OE:SCRIPTION

MNEMONIC: STCO NUMBIER: 73
NAME: Simulate Terminal Character Output

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

OExec DSubsystem QI User D Other (Specify)

Number: 34 Meaning: Enable System Call

TIMING:

INPUT:

X:
U: PET index
A:
E:
Other:

OUTPUT:

X:
U:
A: Character in Bits 8-15
E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible 0 Skip on no exce,ption ml Exception causes panic condition

Description: Designated process does not have its simulated output bit set.

DISMISSAL CONDITIONS: Simulated output buffer empty

FUNCTION: Removes the next character from the simulated output buffer of the
designated process.

A-69

MNEMONIC: SEESC

NAME: Set Escape

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number: 43

TIMING:

INPUT: None

X:
U:
A:
E:
Other:

OUTPUT: None
X:
U:
A:

E:
Other:

0 Exec

EXCEPTION CONDITION ACTION

DI No exception possible

Description:

DISMISSAL CONDITIONS: None

SYSTEM CALL DESCRIPTION

NUMBER: 74

OSubsystem 8J User Oother (Specify)

Meaning: Enable System Call

D Skip on no exception 0 Exception causes panic condition

FUNCTION: Sets to ESCAPE pointer to this process. A succeeding ESCAPE
will cause the ESCAPE interrupt to be triggered in this process if it is
armed; otherwise a panic will be generated and this process will be deacti­
vated.

A-70

MNEMONIC: SIESC

NAME: Simulate Escape

PRIVILEGE LEVEL

0 Listener

CAPABI LITOES BITS:

Number:

TIMING:

INPUT: None
X:
U:
A:
E:
Other:

OUTPUT: None
X:
U:
A:

E:
Other:

OExec

EXCEPTION CONDITION ACTION

ag No exception possible

Description:

DISMISSAL CONDITIONS: None

SYSTEM CALL OE:SCRIPTION

NUMBIER:. 75

OSubsystem 18;1 User 0 Other (Specify)

Meaning:

D Skip on no exception 0 Exception causes panic condition

FUNCTION: Produces the same result as depressing the ESCAPE key on the
controlling terminal.

A-71

SYSTEM CALL DESCRIPTION

MNEMONIC: DOBE NUMBER: 76
NAME: Dismiss Until Output Buffer Empty

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT: None

X:
U:
A:
E:
Other:

OUTPUT: None
X:
U:
A:

E:
Other:

OExec

EXCEPTION CONDITION ACTION

121 No exception possible

Description:

OSubsystem CS: user

Meaning:

D Skip on no exception

D Other (Specify)

0 Exception causes panic condition

DISMISSAL CONDITIONS: Output buffer of controlling terminal is not empty.

FUNCTION: Dismisses the process until the output buffer of the controlling
terminal is empty. This call should be executed by all processes that
produce terminal output before returning to the EXEC. This allows
printing to complete.

A-72

SYSTEM CALL DESCRIPTION

MNEMONIC: SLEM NUMBER: 92

NAME: Set Line Editing Mode

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

0 Exec 0Subsystem 3J User 0 Other (Specify)

Number: 40 Meaning: Enable System Call

TIMING:

INPUT:

X: Miscellaneous Information
U: Tab Stops
A: Delimiter Set
E:
Other:

OUTPUT: NONE
X:

U:

A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible 0 Skip on no excoption C! Exception causes panic condition

Description: Illegal instruction on bad input data.

DISMISSAL CONDITIONS:

FUNCTION:

This system call activates the intraline editing mode and changes (or initializes)
certain parameters. The first SLEM issued will initialize the line editing apparatus.
Subsequent SLEM's can be issued to change parameters. This call does not cause
any lines to be edited. It will cause a page of memory to be allocated and placed
in the system working set unless it has already been done as the result of a previous
SLEM. If this causes the size of the working set to exceed the limit allowed, a
normal "working set exceeded" interrupt or panic will occur.

A-73

A - Delimiter Set

0 = Carriage return only.

1 = Editor command set (Carriage Return, Line Feed).

More options may be defined if needed.

U - Tab Stops

0 = Don't change the current settings. If there are no
current settings, use the default condition.

-1 = Reset to default settings.

SLEM

>O -- Pointer to a 9-word table of tab stops. Each bit in the
table represents a tab stop in the corresponding character
position in the line.

Default tab stop positions are columns 10, 16, 35, 45, 5 5, and 6 5.

X - Miscellaneous Information

Bit 0: Multiple line deletion control.

0 - Multiple, successive line deletions are not allowed.

1 = Multiple, successive line deletions are allowed. A line
deletion character issued when the new line is empty will
result in a request to delete the previous line being passed
back to the using process by the GSEL system call.

Bits 8-15: Maximum line length in characters. If 0, 256 will be used.

A-74

SYSTEM CALL DESCRIPTION

MNEMONIC: LLEM NUMBER: 93

NAME: Leave Line Editing Mode .

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

0 Exec OSubsystem IE User D Other (Specify)

Number: 40 Meaning: Enable System Call

TIMING:

INPUT:

X:
U:
A: Deactivate or release drum page
E: 0 = Deactivate
Other: 1 = Release

OUTPUT: NONE
X:
U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible D Skip on no exce11>tion OJ' Exception causes panic condition

Description: Illegal instruction on bad input parameter.

DISMISSAL CONDITIONS: NONE

FUNCTION: This system call deactivates or completely remo'ves the line editing
apparatus from the calling user. If the parameter in A is a 0, the line
editing mode is only deactivated. The system page required for buffering
and control information is removed from the working set but the page is still
allocated on the drum. Parameters set by previous SLEM' s will be retained.
If the parameter in A is a 1, the syste1n page required for buffering and control
information is released. Parameters set by previous SLEM's will be lost. It
will usually be better to release the buffer page than to deactivate it. If the
page is deactivated (A = 0), a subsequent SLEM will almost always result in an
extra process activation being required to get the buffer page from the drum.
If the page is released, a subsequent SLEM will allocate a new buffer page.
If there is a free page in core at the ti1ne, an extra process activation will
not be required.

A-75

MNEMONIC: BEL

NAME: Build Edited Line

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

0 Exec

SYSTEM CALL DESCRIPTION

NUMBER: 94

OSubsystem l:J:user OOther (Specify)

Number: 29 Meaning: Enable System Call

TIMING:

INPUT:

X:
U: New Line
A: Old Line
E:
Other:

OUTPUT: NONE

X:
U:

A:

E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible 0 Skip on no exception l2J Exception causes panic condition

Description: Illegal instruction on bad input parameters or line editing
mode not set.

DISMISSAL CONDITIONS: NONE

FUNCTION: Causes the line editing apparatus to begin building an edited line in
the system buffer allocated by a previously executed SLEM call. The building
operation continues in parallel with process execution.

Old Line: New Line:

0 = Current New Line 0 = Null
- 1 = Null -1 = Current New Line
-2 = Current Old Line >O = Pointer to a string pointer pair
>O = Pointer to a string pointer pair

that points to the new line.

A-76

SYSTEM CALL DESCRIPTION

MNEMONIC: GSEL NUMBER: 95
NAME: Get Status Of Edited Line

PRIVILEGE LEVEL

0 listener

CAPABILITIES BITS:

OExec DSubsystem :fg User DOther (Specify)

Number: 29 Meaning: Enable System Call

TIMING:

INPUT:·

X:
U:

' .

A: Dismissal Control Flag
E:
Other:

OUTPUT:

X: Status
U: Length of compressed new line (O if status "/. 4)
A: Last character of new line (0 if status# 4)
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible 3J Skip on no exception ~ Exception causes panic condition

Description: Skip if line is complet1e.

DISMISSAL CONDITIONS: Dismissal control flag = 0 and line not complete.

FUNCTION: Get the status of the edited linie being built by a previous BEL call.
The dismissal control flag provided as input to the call allows the process to
proceed with some computation while the new line is being built or to dismiss
until the new line is complete.

Dismissal Control Flag:

O = Dismiss process until line is complete
1 = Do not dismiss process

Status:
1 = Delete previous line
2 = End of text

3 = Ltne not complete.
4 := Line complete.

5 = No BEL call has been issued.

A-77

MNEMONIC: GEL

NAME: Get Edited Line

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number: 29

TIMING:

INPUT:

X:

D Exec

U: Count Indicator

SYSTEM CALL DESCRIPTION

NUMBER: 96

OSubsystem &a User 0 Other (Specify)

Meaning: Enable System Call

A:
E:

Byte address of the beginning of the buffer

Other:

OUTPUT:

X:
U:
A:

E:
Other: Edited, compressed line in the designated buffer.

EXCEPTION CONDITION ACTION

0 No exception possible 0 Skip on no exception ml Exception causes panic condition

Description: Illegal instruction if no BEL call has been is sued or if count
indicator is illegal.

DISMISSAL CONDITIONS: The input line is not complete.

FUNCTION: Copy the edited, compressed line into the buffer designated in the call.

Count Indicator:

0 = Don't supply a count as part of the line.
1 = Place the byte count of the edited compressed line (not

including the byte count) in the first byte of the buffer.
The line termination character is not placed in the buffer
and is not counted.

A-78

MNEMONIC: RLS

NAME: Read Link Status

PRIVILEGE LEVEL

D listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT: None

X:
U:
A:
E:
Other:

OUTPUT:

t!Exec

X:
U:
A:

E:

Advise Link}
Input Link
Output Link

Other:

EXCEPTION CONDITION ACTION

m No exception possible

Description:

DISMISSAL CONDITIONS: None

SYSTEM CALL DE:SCRIPTION

NUMBER: 98

OSubsystem 0 User OOther (Specify)

Meaning:

{

Bit 6: Accepted
Bit 7: Enabled
Bits 8-15: User number

0 Skip on no exce!ption 0 Exception causes panic condition

FUNCTION: Read the status of the 3 links from the terminal control table. The
fields have the following meanings:

Accepted: Another user• s terJminal is linked to the given user for
advice /input/output.

User number ,,t. 0: Advice /input/output is currently being supplied to the
designated user ..

Enabled: Advice /input/output link will be accepted from another user.

A-79

MNEMONIC: SLS

NAME: Set Link Status

PRIVILEGE LEVEL

D Listener m:exec

CAPABILITIES BITS:

TIMING:

INPUT:

X:
U:
A:
E:
Other:

Number: 55

Advise Link}
Input Link
Output Link

SYSTEM CALL Dl:SCRIPTION

NUMBER: 99

OSubsystem 0 User D Other (Specify)

Meaning: Allow exception of the System Call

{
Bits 6-9: ignored
Bits 8-15: User number

OUTPUT: On exception only
X:
U:
A:

Bit O}
Bit O 1 _. user had already accepted link
Bit 0

E:

Other:

EXCEPTION CONDITION ACTION

D No exception possible ~Skip on no exception 0 Exception causes panic condition

Description: Attempting to establish a link that is not allowed because
of some existing link.

DISMISSAL CONDITIONS: None

FUNCTION: If the user number is zero, break that link. If the user number
is not zero, try to establish the link. If the user executing the call al­
ready has an active input or output link active, the new user will be
placed at the end of the chain. If the designated user already has a link
accepted, an exception condition occurs. Advise links cannot be chained.

If a link is broken in a longer chain, the deleted terminal is chained over
and the rest of the chain continues to function, even if the broken link was
the first in the chain.

A-80

SYSTEM CALL DESCRIPTION

MNEMONIC: EDL NUMBIER: 100

NAME: Enable or Disable Links

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number: 56

TIMING:

INPUT:

X: _r{Bit 13:
U: Bit 14:
A: Bit 15:
E:

Other:

OUTPUT: NONE
X:
U:
A:

E:
Other:

Xl Exec

1 =>
1 =>
1 =>

0Subsystem 0 User OOther (Specify)

Meaning: Enable system call

Enable advise link, 0-+disable advise link.
Enable input link, 0-+ disable input link.
Enable output link, 0-+ dit1aible output link.

EXCEPTION CONDITION ACTION

ag No exception possible

Description:

0 Skip on no exc.tption 0 Exception causes panic condition

DISMISSAL CONDITIONS:

FUNCTION:

Set the link enabled bits as indicated. If a link has been accepted, break
that link. If a link has been accepted and the given user is in the middle
of a chain, relink the chain with the given user removed.

A-81

/-

SYSTEM CALL DESCRIPTION

MNEMONIC: CRFIL NUMBER: 102

NAME: Create File or Directory

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

0 Exec OSubsystem IE User 0 Other (Specify)

Number: 16
45

Meaning: Enable System Call
Enable Directory Creation

TIMING:

INPUT:

X: Address of string pointer pair specifying file name.
U: Pointer to a table of file access information or zero.
A: File type if (U) = 0
E:
Other:

OUTPUT:

X: Error code on exception return
U: FCT index
A:
E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible igj Skip on no exception D Exception causes panic condition

Description: File by this name already exists in the currently open
directory.

DISMISSAL CONDITIONS: Directory not in core or no free core page to use for CFIT.

FUNCTION:

Makes an entry for the specified file in the currently open file directory and
creates a Closed File Index Table for the file or file directory being created.
If (U)=O access is defined as follows:

Private file with Read, Write, and Execute access.
No pas sword required.
Type specified in A.

A-82

Access information block for file creation system call:

Password } string pointer pair for ..._ _________________________ __,. pas sword (if any)

User ! string pointer pair to val id
user of this file other than
the owner if P = 0 ___________ ..__..,.,!

rr

} "

_______________ } 11

0 end of list

P: = 1 ::!> public (anyone with access to this directory may access this file)

R, w, E: Read, Write, Execute protection bits for creating user.

TYPE: 0 => Binary
.::!> Dump

2 => Go
3 => Symbolic
4 => Directory

The password is a character string that will be required whenever the file
is opened. If the access code given to CRFIL is null then any password may
open the file.

The list of valid users is meaningful only if P=O. The specified strings are
the account number concatenated with thE~ user name. The ASCII character 11 ':~ 11

may be substituted for the file owner's account number.

A-83

MNEMONIC: OPFIL

NAME: Open File

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number: 17
23

TtMING: 50

INPUT:

0 Exec

SYSTEM CALL DESCRIPTION

NUMBER: 103

OSubsystem CJ User D Other (Specify)

Meaning: Enable System Call
Enable ACTIVE FILE bit
Enable DRUM FILE bit

X:

U:

A:

Address of string pointer pair specifying file name
Address of string pointer pair specifying password
DRUM, ACTIVE, Read, Write, Execute bits in 11-15

E:
Other:

OUTPUT:

X: Error code on exception return
U: FCT index
A:

E:
Other:

. EXCEPTION CONDITION ACTION

0 No exception possible m:I Skip on no exception D Exception causes panic condition

Description: Unable to open file; reason in X.

DISMISSAL CONDITIONS: File directory (or directories) not in core, open file table
not in core, OFIT not in core if ACTIVE specified, or OFIT not on drum if
ACTIVE not specified.

FUNCTION: Open the file with the access specified by the Read, Write and Execute
bits. If the file opened is a directory, it becomes the users "current directory".
If the file name specifies that a data file is to be opened using some other direc­
tory, the "current directory" is not changed. If (X)=O an "ephemeraltt file will
be created and opened. This file will not be entered in any file directory and
will be destroyed when closed.

A-84

MNEMONIC: RFILN

NAME: Read File Name

PRIVILEGE LEVEL

0 Listener 0 Exec

SYSTEM CALL DESCRIPTION

NUMBER: 104

0Subsystem m User 0 Other (Specify)

CAPABILITIES BITS: None

Number: 48 Meaning: Enable System Call

TIMING:

INPUT:

X: File Sequence Number
U:
A: Address of string pointer pair for file name
E:
Other:

OUTPUT:

X: Error code on exception return
U: Read, Write, Execute access for this user
A:
E:
Other: File name in string

EXCEPTION CONDITION ACTION

0 No exception possible l!I Skip on no exce1~tion 0 Exception causes panic condition

Description: File sequence number 1:oo large or file name too long for string.

DISMISSAL CONDITIONS: File directory not in core

FUNCTION: Uses the file sequence numbers as an index into the "current file
directory11

, reads the file name into thE~ specified string storage area, and
puts the access the user is allowed into U. Read, write, and execute access
an specified by 11 l" bits in bits 13-15 rE,spectively.

A-85

SYSTEM CALL DESCRIPTION

MNEMONIC: CFILA NUMBER: 105

NAME: Change File Access Protection

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number: 26

TIMING:

INPUT:

X:

0 Exec OSubsystem ~User

Meaning: Enable system call

u: Pointer to a table of file access information
A: File Control table Entry Number
E:
Other:

OUTPUT: None
X:
U:

A:

E:
Other:

D Other (Specify)

EXCEPTION CONDITION ACTION

D No exception possible 0 Skip on no exception IN Exception causes panic condition

Description: Illegal instruction if input invalid.

DISMISSAL CONDITIONS: File directory not in core

FUNCTION: Changes the file access protection to that specified in the table. The
table format is the same as that specified in the CRFIL system call.

A-86

SYSTEM CALL DESCRIPTION

MNEMONIC: RFILA NUMBER: 106

NAME: Read File Access Bits

PRIVILEGE LEVEL

D Listener OExec

CAPABILITIES BITS: None

Number:

TtiMING:

INPUT:

X:
U:

OSubsystem

Meaning:

A: File Control Table index
E:
Other:

OUTPUT:

X:
U: Access bits for this process (C
A:

E:
Other:

EXCEPTION CONDITION ACTION

QI User OOther (Specify)

0 No exception possible 0 Skip on no exception t! Exception causes panic condition

Description: Illegal instruction if FCT index invalid

DISMISSAL CONDITIONS:

FUNCTION: Reads bits into the A register t:hat specify the access that this process
has to the designated open file. Bits l~~-15 specify Cloa-e, Read, Write, and
Execute respectively.

A-87

SYSTEM CALL DESCRIPTION

MNEMONIC: PFILA NUMBER: 107

NAME: Propagate File Access Bits

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

0 Exec OSubsystem Cl User OOther (Specify)

Number: 27 Meaning: Enable System Call

TIMING:

INPUT:

X: PET index of subsidiary process
U: Access bits to be propagated (C,R, W,E in bits 12-15)
A: FCT index
E:
Other:

OUTPUT: None
X:
U:

A:

E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible D Skip on no exception Cl Exception causes panic condition

Description: Illegal instruction if input parameters invalid.

DISMISSAL CONDITIONS: None

FUNCTION: Selectively propagates access bits to an open file from this process to
the designated subsidiary process. Access bits to be propagated are specified
by bits 12-15 of the U register; they designate Close, Read, Write, and Execute
access respectively. Bits 12-15 of U are ANDed with the corresponding bits
from this process's PET and the result is placed in the PET of the subsidiary
process.

A-88

MNEMONIC: DFIL

NAME: Delete File

PRIVILEGE LEVEL

D listener

CAPABILITIES BITS:

OExec

SYSTEM CALL DESCRIPTION

NUMBER: 108

0Subsystem 12J:user 0 Other (Specify)

Number: 20 Meaning: Enable System Call

TIMING:

INPUT:

X: Address of string pointer pair specifying file name
U: Address of string pointer pair specifying password
A:
E:
Other:

OUTPUT:

X: error code on exception return
U:

A:
E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible ClSkip on no exception D Exception causes panic condition

Description: File can't be deleted; reason in X.

DISMISSAL CONDITIONS: File directory not in core

FUNCTION: Deletes the· specified file by removing it from the directory and
:releasing all its data and index pages. Write access to the file is required.
If the designated file is a directory it nmst be empty.

A-89

SYSTEM CALL DESCRIPTION

MNEMONIC: DCFIL NUMBER: 109

NAME: Delete Contents of File

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

OExec OSubsystem CJ User OOther (Specify)

Number: 19 Meaning: Enable System Call

TIMING:

INPUT:

X:
U: Address of string pointer pair specifying password
A: FCT index
E:
Other:

OUTPUT:

x: Error code on exception return
U:
A:

E:

Other:

EXCEPTION CONDITION ACTION

D No exception possible CS:Skip on no exception 0 Exception causes panic condition

Description: File contents can't be deleted; reason on X

DISMISSAL CONDITIONS: File index table not in core

FUNCTION: Deletes all data pages for the file, resetting it to the state it had
when first created. Write access to the file is required. This call may not
specify a file directory.

A-90

Ml\IEMONIC: CLFIL

NAME: Close File

PRIVILEGE LEVEL

0 listener

CAPABILITIES BITS:

Number: 18

TIMING:

INPUT:

X:
U:
A: FCT index
E:
Other:

OUTPUT: None
X:
U:

A:

E:
Other:

D Exec

EXCEPTION CONDITION ACTION

D No exception possible

SYSTEM CALL DESCRIPTION

NUMBER: 110

OSubsystem ml User OOther (Specify)

Meaning: Enable System Call

D Skip on no exception QI Exception causes panic condition

Description: Illegal instruction if FCT index invalid.

DISMISSAL CONDITIONS:

all in core.
Open. File Index Table, directory and open file table not

FUl\ICTION: Closes the specified file and updates information about it in a file directory
and the open file table. If the file is ephemeral, it is automatically deleted.

A-91

MNEMONIC: CAFIL

NAME: Close All Files

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

0 Exec

Number: 28

TIMING:

INPUT: None
X:
U:
A:

E:
Other:

OUTPUT: None
X:
U:

A:
E:
Other:

EXCEPTION CONDITION ACTION

00 No exception possible

Description:

SYSTEM CALL DESCRIPTION

NUMBER: 111

OSubsystem IX User 0 Other (Specify)

Meaning: Enable System Call

D Skip on no exception D Exception causes panic condition

DISMISSAL CONDITIONS: Open File Index Tables, directories, and open file table
not all in core.

FUNCTION: Creates the same effect as executing a CLFIL for all open files
except the currently open file directory. If no files are open this call
acts as a NO - OP.

A-92

MNEMONIC: APFIL

NAME: Attach Page of File

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

0 Exec

SYSTEM CALL DESCRIPTION

NUMBER: 112

OSubsystem IX User OOther (Specify)

Meaning: Enable System Call Number: 21
49 Allow drum sector specification

TIMING:

INPUT:

X: File page number
U: Core page number
A: FCT index in bits 11-15; bit 0 = l nneans specific drum sector requested
E: Drum sector requested if Uo = 1
Other:

OUTPUT:

X:
U:

A:

E: Drum sector granted if one was requested
Other:

EXCEPTION CONDITION ACTION

D No exception possible 0 Skip on no exce1ption l2'J Exception causes panic condition

Description: Illegal instruction if input parameters invalid. Memory
panic if core page does not have write access.

DISMISSAL CONDITIONS: OFIT not in core when call issued or file page not in core
when first referenced.

FUNCTION: Attaches the specified file pag1e to the specified core page. Protection
on the core page is set to correspond to the file protection bits. Original
information in the given core page (if ainy) is lost. Write access to the core
page is required. If the designated core page already has a file page attached
to it, that attachment is broken. This is unlike detaching the old file page
first in that all processes that referred to this PMT entry still refer to it
(and consequently now refer to the newly attached page).

A-93

SYSTEM CALL DESCRIPTION

MNEMONIC: DPFIL NUMBER: 113

NAME: Detach Page of File

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number: 22

TIMING:

INPUT:

X:

0 Exec

U: Core page number
A:
E:
Other:

OUTPUT: None

X:

U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible

OSubsystem m User 0 Other (Specify)

Meaning: Enable System Call

D Skip on no exception ~ Exception causes panic condition

Description: Illegal instruction if input parameter invalid.

DISMISSAL CONDITIONS: None

FUNCTION: Detaches the specified page from the process. The PMT entry
previously occupied by the pointer to the attached page is released. All
relabeling registers pointing to the released PMT entry (in all processes)
are set to null.

A-94

MNEMONIC: ACFIL

NAME: Activate File

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number: 23

TIMING:

INPUT:

X:
U:
A: FCT index
E:
Other:

OUTPUT: None
X:
U:

A:

E:
Other:

0 Exec

EXCEPTION CONDITION ACTION

D No exception possible

SYSTEM CALL DESCRIPTION

NUMBER: 114

OSubsystem muser OOther (Specify)

Meaning: Enable System Call

D Skip on no exce1ption l:m Exception causes panic condition

Description: Illegal instruction if input parameter invalid. Memory
panic if working set exceeded.

DISMISSAL CONDITIONS: Open File Index Table not in core.

FUNCTION: Puts the OFIT for the specified file in the system working set for the
calling process. Subsequent access to the file will then normally require only
one dismissal instead of two.

A-95

MNEMONIC: DEFIL

NAME: Deactivate File

PRIVILEGE LEVEL

0 Listener

CAPABILITIES BITS:

Number: 23

TIMING:

INPUT:

X:
U:
A: FCT index
E:
Other:

OUTPUT: None
X:

U:
A:
E:
Other:

0 Exec

EXCEPTION CONDITION ACTION

SYSTEM CALL DESCRIPTION

NUMBER: 115

OSubsystem 13 User DOther (Specify)

Meaning: Enable System Call

0 No exception possible D Skip on no exception Qg Exception causes panic condition

Description: Illegal instruction if input parameter invalid.

DISMISSAL CONDITIONS: None

FUNCTION: Removes the OFIT for the specified file from the system working
set for the calling process. Subsequent access to the file will then normally
require at least two dismissals instead of only one. If the specified file is
already inactive, this call acts as a NO-OP.

A-96

MNEMONIC: GPFIL
NAME: Get Page of File

PHIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number: 24

TIMING:

INPUT:

D Exec

X:
U:
A:

File page number
Core page number
FCT index

E:
Ot'1er:

OUTPUT: None
X:

U:
A:
E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible

SYSTEM CALL DESCRIPTION

NUMBER: 116

0Subsystem l'2; User D Other (Specify)

Meaning: Enable System Call

D Skip on no exces>tion C3 Exception causes panic condition

Description: Illegal instruction if input parameter invalid. Memory panic
core page doesn't have write access.

DISMISSAL CONDITIONS: OFIT not in core when call issued or file page not read into
core page when it is next referenced.

FUNCTION: Reads a copy of the specified file page into the specified core page.
Read access to the file and write access to the core page are required.

A-97

MNEMONIC: PPFIL

NAME: Put Page of File

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number: 25

TIMING:

INPUT:

OExec

X: File Page Number
U: Core Page Number
A: FCT index
E:
Other:

OUTPUT: None

X:
U:
A:

E:
Other:

EXCEPTION CONDITION ACTION

D No exception possible

SYSTEM CALL DESCRIPTION

NUMBER: 117

OSubsystem rxl User 0 Other (Specify)

Meaning: Enable System Call

D Skip on no exception ~Exception causes panic condition

Description: Illegal instruction if input parameter invalid or file is write
protected.

DISMISSAL CONDITIONS: OFIT is not in core when call is issued or clean core page
is not available before page is next referenced.

FUNCTION: Writes a copy of the specified core page into the specified page of
the file. Read access to the core page and write access to the file are required.

A-98

SYSTEM CALL DESCRIPTION

MNEMONIC: RR TC NUMBIER: 125

NAME: Read Real Time Clock

PRIVILEGE LEVEL

D Listener OExec

CAPABILITIES BITS: None

0Subsystem

Number: Meaning:

TIMING:

INPUT: None
X:
U:
A:
E:
Other:

OUTPUT:

X: Date
U: Real time clock value
A:
E:
Other:

II User

EXCEPTION CONDITION ACTION

Gf: No exception possible

Description:

D Skip on no exception

DISMISSAL CONDITIONS: None

OOther (Specify)

D Exception causes panic condition

FUNCTION: Returns the current date and value of the real time clock in the
X, U and A registers. The date is expressed as:

Bits 0-6 = Year--1970
Bits 7-10 =Month
Bits 11-15 = Day

The real time clock expresses the tim.e of day in milliseconds beginning
at midnight. The high order bits of the time of day are in the U register.

A-99

SYSTEM CALL DESCRIPTION

MNEMONIC: SR TC NUMBER: 126

NAME: Set Real Time Clock

PRIVILEGE LEVEL

D Listener

CAPABILITIES BITS:

OExec 0Subsystem D User a!Other (Specify) Operator's Exec

Number: 8 Meaning: Enable System flall

TIMING:

INPUT:

X: Date
U: Real Time Clock Value
A:
E:
Other:

OUTPUT: None

X:
U:
A:

E:
Other:

EXCEPTION CONDITION ACTION

0 No exception possible 13 Skip on no exception D Exception causes panic condition

Description: New value is inconsistent with old value.

DISMISSAL CONDITIONS: None

FUNCTION: Sets the date and real time clock from the X, U and A registers.
The date is expressed as:

Bits 0-6 =Year -- 1970
Bits 7 - 10 = Month
Bits 11-15 =Day

The real time clock expresses the time of day in milliseconds beginning
at midnight. The high order bits of the time of day are in the U register.

A-100

SYSTEM CALL DESCRIPTION

MNEMONIC: RAD NUMBE:R: 127
NAME: Read Accounting Data

PfUVILEGE LEVEL

D Listener

CAPABILITIES BITS:

Number:

TIMING:

INPUT:

[J Exec OSubsystem

Meaning:

X: Address of beginning of table
U:
A: Selection bits
E:
Other:

OUTPUT:

X:
U:
A:
E:
Other: Accounting data placed in table

EXCEPTION CONDITION ACTION

SJ U1er [J Other (Specify)

D No exception possible 0 Skip on no excei~tion 2~:Exception causes panic condition

Description: Illegal instruction if selection bits are invalid.

DISMISSAL CONDITIONS: None

FUNCTION: Copies the selected items of accounting data into consecutive
locations in the specified table. The SE~lection bits are as follows:

0 - Connect time (seconds) --· 1 word
1 - CP time (seconds) - 1 wo:rd
2 - Memory use (page • seconds) - 2 words
3 - Drum use (page . seconds1) - 2 words
4 - Disk reads and writes (count) - 2 words
5 - Characters input from terminal (count) - 2 words
6 - Characters output to terrriinal (count) - 2 words

Accounting is from the time tJb.e user logs on and is for all
processes belonging to the user.

A-101

1. 1 INTRODUCTION

Appendix B • • •

Intraline
Editing

An INTRALINE EDITING capability is provided for most LOGICON 2+2
Terminal input. This capability presents a uniform interface to user
processes or subsystems and another uniform interface to users of
similar terminals. Users of dissimilar terminals (e.g., IBM 2741
versus Teletype) will observe different interface conventions. The
interface described on the following pages is for Teletype-like terminals.

Intraline editing on Teletype-like te:r:minals depends on the use of the
control characters (produced on a teletype by depressing the CONTROL
key in conjunction with an alphabetic key) to specify the manipulation
of text strings, which in general do not contain control characters.
These control characters are written with a superscript c, as AC, Be, e
etc. An example of an editing control character is Kc, which means
"delete the preceding character. " Thus the character string:

THFl'CcE

typed at a terminal would result in an edited string:

THJE:

and in a printout of:

THF+--E

The intraline editing capability is called by a subsystem or a user
process. Certain characteristics of the editing process are deter­
mined by the calling subsystem: only those features determined by
the intraline editing capability itself are described herein.

In general, the calling subsystem will request an edited line from the
intraline editor, which then collects terminal characters through the
next line terminating character, and returns the entire line to the call­
ing subsystem.

B-1

The intraline editing capability will be described in three parts:

• User Interface.

• Subsystem Interface.

• Program Design Approach.

2. 1 USER INTERFACE

2. 1. 1 Definition of a Line

A line of text is a string of characters terminated by an end of line
character. In most languages, carriage return is recognized as the
end of line character and a line of text always ends with a carriage
return. A line may contain no more than 256 characters, including the
end of line character. It is possible to define a maximum line length
of less than 256 characters, if desired.

2. 1. 2 The ''Old Line''

Many of the editing control characters produce interaction between a
"new line,,, or the line being entered, and an "old line. 11 This is useful
when a nun1ber of lines of similar nature are to be produced, or when a
previously entered line requires correction. In general, during the
text entry process, the "old line" is the line just entered, and the' "n('W
line·' is the line currently being typed. Certain sub sy sten1 s have com -
mand s that result in a different definition of "old line. 11

During entry of the first line of text there is no "old line," and certain
control characters are illegal.

2. 1. 3 The Old Linc Character Position

In general the editing process consists of combining characters typed at
the terminal with characters selected from the old line. The control
characters specify how the con1bination is to be effected. In order to
know the effect of an editing action, it is necessary to understand whC're
the ''next character" is in the old line. The following actions affect tlw
position of the next character in the old line:

• When a new line is started, the ''next character" of the old
line is the first character. (Assuming there is an old 1ine)

B-2

• When a character is typed at the terminal, it is appendPcl to
the new line, and next character position in the old line is
advanced.

Example:

Old Line

New Line

NC
i

ABCDEFG

GFE

A "D" is now typed in the new line:

Old Line

New Line

NC
'1f

ABCDEFG

GFED

• Many editing control characters result in either copying or
skipping characters in the old line. In such cases, the nC'xt
character position is advanced over all characters copied
or skipped, to the character following the last one copied
or skipped.

• It is possible, using appropriate control characters, to
"insert" characters in the new line without affectin.g the
next character position in the old line.

• Some control characters cause "backspacing," or deletion
of characters in the new line. The old line next character
position is affected in the following manner in this event:

1. The number of characters in the new line that are to
be deleted, not counting any "in'Serted" characters, is
determined.

2. The old line next character position is backed up this
number of non- skipped characters.

Example:

Old Line

New Line

Next Character
Skipped

,-A-,
ABCGHIEF

ABQDE --
Inserted

B-3

A backspace of 3 characters is pcrfornwd on thl' n<'\\'

line. Tht> situation is then:

Next Character

+
Old Line ABCGHIEF

New Linc• AR

2 . 1 . -t End of T (' x t

Son1etirncs it is necessary to recognize the Pnd of a group of linPs. A
spc>cial control character provides such an end of text signal. It nrnst
be' entered at tht• end of a line. If an end of text character is cntc•rpd
without an l'ncl of line character imn1ecliately preceding it, end of line'
is assumed.

2. 1. 5 Assignment of Control _Character Meanings

There is no way to provide n1Caningful n1ncmonic nan1es to a large
sr·t of control characters to aid thP operator's n1cn1ory. For this rea­
son, a plastic overlay that furnishes mnemonic names to editing control
1..·haract0rs is planned for 2 ~z tern1inals. A possible layout of such an
overlay is shown in Figure B-1.

CDCD©CD CD CDQ CD CDQO 0 ~
@000000000000
e0000000000e

SC SW SF STC UM R ET CON e 000000000CD
Figure B-1. Possible Intraline Editor Overlay

2... 1. 6 Sumn1ary of Intraline Editor Characters

The editing control characters are defined in the following table
(Table B-1) in terms of their mnemonic (CC, CW, etc.) names.

B-4

Mnemonic

DC

DW

DF

DL

cc

TABLE B-1. SUMMARY OF CONTROL CHARACTERS

Symbol
Printed Function

Delete Character:

Deletes preceding character in
new line.

Delete Word:

Deletes preceding word in the
new line. Any trailing blanks,
and all consecutive non-blanks
back to, but not including the
next blank or the beginning of
the new line, are deleted.

Delete Field:

Delete characters in new line
back to previous tab stop or to
beginning of line.

Delete Line:

Error Signal

Bell if no charac­
ters in new line.

Be 11 if no non­
blanks in new
line. All blanks
will be deleted
anyway.

Bell if no char­
acters in new line.

~:~ Deletes any text in new line. If Bell if it cannot
there is no text in new line, and delete previous
using program allows multiple line, and no text
line deletions, passes a "delete is in new line.
previous line" signal back to
currently active subsystem. If
no text in new line and using pro-
gram does not allow multiple
line deletions, take no action.

Copy Character:

Copies next character in old line Bell if no old
and appends to new line; prints line.
character copied. If copied
character is line termination
character, new line is ended.

~:~These are not standard ASCII characters. On some terminals these will
print as - and A respectively.

B-5

TABLE B-1. SUMMARY OF CONTROL CHARACTERS (Continul'd)

Mncn1onic

CM
and a digit

1-9

cw

CF

CL

Syrnbol
Printed Function Error Signal

Copy Multiple Characters:

Copies the indicated number of Bell if no old
characters from the old line and line.
appends them to new line; pr in ts
characters copied. If a line
termination character is copied,
new line 1s f'nded.

Copy Word:

Copies characters from the old
line up to but not including the
fir st blank after the next non­
blank, appends characters copied
to new line and prints them.
This function will not copy the
end of line character unless it is
the first non-blank encountered.
If it is copied, the new line is
ended.

Copy Field:

Bell if no old
line.

Copies characters from old line Bell if no old
and appends them to new line line.
until next tab stop is reached in
new line. Prints characters
copied. If this results m copy-
ing a line tern1ination charac tc r,

the new line is krminatcd.

Copy Line:

Copies rest of old line up to, but Bell if no old
not including the line termination line.
charactc'r, appending characters
to new line. Prints characters

B-6

TABLE B-1. SUMMARY OF CONTROL CHARACTERS (Continued)

Mnemonic

CL
(Cont)

CA

CTC
and a

character

CIC
and a

character

CLN

Symbol
Printed Function

copied. Since ter:mination char -
acter was not copied, new line
entry process continues.

Copy All:

Error Signal

Copies rest of old line and Bell if no old line.
appends to new line; prints char-
acters copied. Since line termi-
nation character in old line is
copied, this always ends the new
line.

Copy to Character:

Copies the old line up to, but not
including the next occurrence of
the character typed after it,
printing the characters copied,
and appending them to the new
line.

Copy Including Character:

Copies and prints the old line up
to and including the character
typed after it, appending charac -
ters to the new line. If a line
terminating character is copied,
terminates the new line.

Copy Line, No Print:

Bell if no old line
or if there are no
more occurrences
of next character
in old line.

Bell if no old line
or if no n1ore
occurrences of
next character in
old line.

Copies the rest of the old line up Bell if no old line.
to, but not including the line
termination character, append-
ing characters to new line. Does
not print.

B-7

TABLE B-1. SUMMARY OF CONTROL CHARACTERS (Continued)

---------,----------- ..-------------------------------------~-----------.

Mnemonic

CAN

Symbol
Pr intP cl Function Error Signal

Copy All, No Print:

Copies the rest of the old line Bell if no old line.
including the line termination
character, appending characters
to new line. Does not pr int.
Ends new line:

t----------+-------·T-----------------------+----------·--·---------

SC

SW

SF

STC

and a
charact('r

CON

O'
:0

(/'
0

()'
()

II'
()

Skip Character:

Skips next character in old line, Bell if no old line.
appends nothing to new lin<>.

Skip Word:

Skip s ch a r act c r s in old line up

to, but not including the first

blank after the next non-blank.

Will not skip the line termination
character unless it is the first

non- blank encountered. Prints
% for cach character skipped.

Skip Field:

Skips characters in old line up

to the next tab stop. Prints %,
for each character skipped.

Skip to Character:

Spaces over characters from old

Line up to, but not including the
next occurrence of the character

typed after it. Types % for each
character so spaced over. Ap­
pends nothing to new line.

Continue Edit:

Considers the new line with
carriage return appended as an

B-8

Be 11 if no old Ii nc.

Bell if no old line.

B{~ 11 if no o 1 d Ii iw

or if no rn o r c

occurrences of
next character ln
old line.

None

TABLE B-1. ~UMMARY OF CONTROL CHARACTERS (Continued)

Mnemonic

CON
(Cont)

INS text
INS

LIT
and a

character

UM
(Mapped

onto
BC)

Symbol
Printed

< >

Function

old line and initiates an intraline
edit with the new old line and an
empty new line. Does not retur·n
a line to the calling subsystem.

Insert:

Error Signal

Appends text to new line. Next None
character position in old line
does not change as INS' s and
characters between INS's are
typed. Fir st INS prints as <,
second as >. Any line termina-
ting action, skip control, or any
copy from previous line action
automatically supplies the second
INS. More than one pair of
INS' s may be used in a single
line.

Literal:

Used before control characters None
to inhibit their usual functions.
LIT followed by any other char;..
acter has the following effect:
The next character position in
the old line is advanced one
space, unless INS is in effect,
and the character following the
LIT is appended to the new line
and printed if it: has a normal
echo (which most control char­
acters do not).

Universal Match:

Appended to new line just as a
normal non-control character
would be; no intraline editing

B-9

None from intra­
line editor. Many
subsystems will

TABLE B-1. SUMMARY OF CONTROL CHARACTERS (Continued)

Mnetnonic

UM
(Cont)

TAB

HET

LF

EQT

Symbol
Printed

Carriage
Return­

Line Feed

Carriage
Rcturn­

Line Feed

Function Error Signal

consequences. Used by EDITOR treat Bc as an
subsystem as a "universal illegal character.
match" character in string com-
parisons. For exan1ple, ABBc
means AB followed by any
character.

Append blanks to new line until
next tab stop is reached. Print
blanks appended (i.e., move
carriage appropriate number of
spaces). Move old line next
character position to the san1e
tab stop selected for new line.

Carriage Return:

Spaces to beginning of next line
on printed output. Carriage
return character is appended to
new line, which is then tcrrni­
natecl.

Line Feed:

Spaces to beginning of next line
on printed output without ending
line. Linc feed character is
appended to new line, and next
character position in old line is
advanced just as for any other
character.

End of Text:

End of text signal. Ends cur­
rent group of lines for whatever
line entry action was in process.

R-10

None

None

None

None

2. 1. 7 Error Response

In general, when a control character results in an error condition, no
effect occurs on either the old or the new line.

For example, C TC X results in no action if there are no more occur­
rences of X in the old line.

2. 1. 8 Tab Stops

Tab stops are set at columns 10, 16, 35, 45, 55, and 65 unless changed
by the calling subsystem.

B-11

LOGICON, INC.

