
LOGICO~I 2+2

SYSTEM REl=ERENCE

IANUJlL

, LOGICON INC.

1075 CAMINO DEL RIO, SOUTH

SAN DIEGO, CALIFORNIA

15 December 1970

Section

I

II

III

TABLE OF CONTENTS

PREFACE

INTRODUCTION.

SYSTEM DESCRIPTION.
Functional Organization
Equipment Organization

Core Memory
Progran1mable Processors (CP and AP) ..
Virtual Address Translator (VAT) ..
Drum Processor (DP) ..
Peripheral Processor ..

PROCESSOR ORGANIZATION
Registers

A = Accumulator Register
U = Upper Accumulator Register.
E = Exponent Register
X =Index Register
P = Program Counter Register.
B =Base of Stack Register
T = Top of Stack Register
L =·Limit of Stack Space Register ..
S =Status Register

Representation of Information
Machine Word
Alphanumeric Data
One Word Binary Integers .
Three Word Binary Integers
Three Word Binary Floating Point Numbers
Four Word Binary Floating Point Numbers.

Processor Features
Stack
Skips and the Delayed Skip (DSK)
Inst ruction
Processor Mode
Status Register
Traps, System Calls, and Interrupts.
Clock

i

Page

1 -1

2-1
2-1
2-3
2-3
2-5
2-6
2-8
2-10

3-1
3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-3
3-3
3-4
3-4
3-4
3-5
3-5
3-5

3-6
3-7
3-8
3-11
3-18

Section

IV

TABLE OF CONTENTS {Continued)

Stall Alarm
Programmer Panel {Prototype).
HALT Condition
Power Up/Down

Dedicated Memory Locations ..
Instruction Formats .
Addressing.

General
Symbols
General Addressing Conventions.

INSTRUCTION REPERTOIRE ..
Loads and Stores .

LDX
LDXEA
LDXI.
STX.
XXM.
LDU .
LDUI.
STU ..
LDA ...
LDAEA
LDAI.
STA ..
XAM.
LDE ..
LDEI.
STE.
LDM.
STM .
PUSHM
POPM.
PUSHN.
MSKM ..

Input Output ..
LDAC ..
LDMAP
LLDB ..

ii

Page

3-19
3-19
3-23
3-24
3-25
3-26
3-27
3-27
3-27
3-30

4-1
4-1
4-1
4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-4
4-5
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-8
4-8
4-8
4-8
4-9

Section

TABLE OF CONTENTS (Continued)

SIM SET.
DOUT.
DIN.
IOC ..
SIL .
RIL.
SRTRN ..
IRTRN.
HLT ...

Character Instructions
LDC ..
STC ..
CPRS
GFC ..
GFCT.
GCI ..
GCIT.
IFC ..
IFCT.
!CI ..
!CIT ..

Privileged Instructions .
LDAOM
STAOM ..
TSLOM ..
LDAOMF
LDASM
STASM ..
LDXSM ..
LDASMF
MRGM ..
POPN
LDB ..
STB ..
LDSP.
LDBTL
STSP ..
STZ
LSABM

iii

Page

4-9
4-9
4-9
4-10
4-10
4-11
4-11
4-12
4-12
4-13
4-13
4-13
4-13
4-14
4-14
4-15
4-15
4-16
4-16
4-16
4-17
4-17
4-18
4-18
4-18
4-18
4-19
4-19
4-19
4-19
4-19
4-20
4-20
4-21
4-21
4-21
4-21
4-22
4-22

Section

TABLE OF CONTENTS (Continued)

SSABM
MOVE
CLX ..

.CLU ..
CLA.
CLE ..
LDF.
STF ...
LDD ..
LINK ..
DLINK ..

Inter-Register Instructions
RCPY
RNEG
RXCH
XSA ..
RDS ..

Fixed-Point Arithmetic.
ADX ...
ADXI ..
AD XIS
SBX ...
RSBX.
MPX.
ADU ..
ADDI.
SBU
ADA ..
ADA!.
SBA
RSBA.
MPA.
DVUA
DVA
RDVA
R.ADD.
RSUB.
ADDM
SUBM
MINC ...

iv

4-22
4-23
4-23
4-23
4-23
4-23
4-23
4-24
4-24
4-24
4-25
4-25
4-25
4-25
4-25
4-26
4-26
4-26
4-26
4-26
4-27
4-27
4-27
4-27
4-27
4-27
4-28
4-28
4-28
4-28
4-28
4-28
4-29
4-29
4-29
4-29
4-30
4-30
4-30
4-30

Section -

TABLE OF CONTENTS (Continued)

MDEC
TAD.
NTAD. ..
TSB.
RTSB.
TMP
TMPF
TDV
TDVF
ADAS
SBAS.
RSBAS.
MPAS
DVAS.
RDVAS.
ADUS. ..
SBUA.
DVUAS.
ADXS.
SBXS.
RSBXS.
MPXS ..
TADS
NTADS
TSBS ..
RTSBS.
TMPS ..
TMPFS ..
TDVS ...
TDVFS
TNEG .

. .

Floating Point Arithmetic
FAD
NFAD
FSB ...
RFSB.
FMP.
FDV ..
RFDV
FADS ..

v

r

.....

4-31
4-31
4-32
4-32
4-32
4-32
4-33
4-33
4-33
4-33
4-33
4-34
4-34
4-34
4-35
4-35
4-35
4-35
4-36
4-36
4-36
4-36
4-37
4-37
4-37
4-38
4-38
4-38
4-39
4-39
4-40
4-40
4-40
4-40
4-40
4-41
4-41
4-41
4-41
4-41

Section

TAB LE OF CONT ENT S (Continued)

NFADS ..
FSBS ...
RFSBS.
FMPS ..
FDVS ...
RFDVS ..
FIX
FLOAT.
NORM ..
FNEG ..

Logical Instructions .
ANX ..
ANU ..
ANUI.
ANUA
ANA ...
ANA!.
ORA ...
ORA!.
XRA ..
XRAI.
RAND.
SETBA ..
CLRBA.
CMPBA
SET BM
CLRBM
CMPBM.
ANAS.
ORAS ...
XRAS.
ANXS.

Shift Instructions .
LLX/LRX.
ALU/ARU ..
LLU/LRU ..
RLU/RRU ..
ALA/ARA ..
LLA/LRA ...

vi

4-42
4-42
4-42
4-43
4-43
4-43
4-43
4-44
4-44
4-44
4-44
4-45
4-45
4-45
4-4;
4-45
4-45
4-46
4-46
4-46
4-46
4-46
4-47
4-47
4-48
4-48
4-48
4-49
4-49
4-50
4-50
4-50
4-51
4-51
4-51
4-51
4-52
4-52
4-52

Section

TABLE OF CONTENTS (Continued)

RLA/RRA
LLUAE/LRUAE ..
ALUA/ARUA
LLUA/LRUA.
RLUA/RRUA.
LLO

Compares and Tests.
SKXEI
SKXNI
SKAE.
SKAN ...
SKAEI
SKANI
ACX.
ACU ..
ACA.
ACE ..
FCP ..
FCPS.
LCX.
LCU ..
LCA.
LCE ..
MSK.
SKZA.
SKOA.
SKZM
SKOM
SKNOF.
SKNCO ..
TSL ..
DSK ..

Jumps .
JMP ..
JZE.
JNZ.
JPL.
JMI.
XJP.

vii

Page

4-52
4-53
4-53
4-53
4-54
4-54
4-54
4-54
4-55
4-55
4-55
4-55

..... 4-56
4-56
4-56
4-57
4-57
4-57
4-58
4-58
4-58
4-59
4-59
4-59
4-60
4-60
4-61
4-61
4-62
4-62
4-62
4-62
4-63
4-63
4-63
4-63
4-63
4-64
4-64

Section

v

.APP.A

TABLE OF CONTENTS (Continued)

UJP ..
AJP ..
EJP ...
TJP.
IJXN
DJXN.
IJMP.

Subroutine and System Linkage ..
JSPX ..
JSPM
CALL.
RTRN.
SCALL ..
IJSPX ...
IJSPM ..
ICALL.

INPUT /OUTPUT
General ...

Peripheral Processor (PP)
Interrupts Generated by PP ..
Drum Processor

BOOTSTRAP FORMATS

viii

Page

4-64
4-65
4-65
4-65
4-66
4-66
4-66
4-66
4-66
4-67
4-67
4-67
4-68
4-69
4-69
4-69

5-1
5-1
5-2
5-10
5-10

A-1

Figure

1- 1

2-1

2-2

2-3

3-1

3-2

5-1

5-2

5-3

5-4

5-5

5-6

Table

LIST OF ILLUSTRATIONS

Typical LOGICON 2+2 Installation

LOGICON 2+2 System, Functional Block Diagram

LOGICON 2+2 Hardware Organization and
Information Flow ..

VAT Operation

Status Register Contents .

Programmer Panel Layout ..

Normal Communications BCB Format ..

Normal Tape BCB Format ..

Normal Disk BCB Format ..

PP Generated Interrupt Formats

Current State Cell (CSC) Format.

Drum Control Block (DCB) Format ..

LIST OF TABLES

Page

1-1

2-2

2-4

2-7

3-9

3-20

5-6

5-7

5-8

5-11

5-12

5-13

Page

3-1 Interrupt Entry Locations (in System Address Space). 3-14

3-2 Trap Entry Locations (in System Address Space). . . . 3-15

3-3 System Call Entry Locations
(in System Address Space) 3 -16

3-4 Dedicated Memory Locations. . 3-26

3-5

4-1

4-2

4-3

4-4

Instruction Formats

Address Modifiers for Basic Instruction Formats

Conditions for all Skip/ Jump Instructions ..

Definitions of Boolean Opeirations .

Simulated Systems Calls

lX

3-28

4-2

4-31

4-44

4-68

Preface

This reference manual defines the LOGICON 2+2 System hardware
configuration, the characteristics of the major components, the
organization and instruction repertoire of the processors, and the
characteristics of the software interface with the 1/0 subsystem
and peripheral devices.

As we expect to improve this manual in future revisions, all readers
are earnestly requested to send corrections and comments to:

LOGICON 2+2 System Documentation
LOGICON, Inc., San Diego, Calif.

I ...

Introduction

Figure 1-1. Typical LOGICON 2+2 Installation

The 2+2 System is LOGICON' s answer to the demand for a medium­
sized, modular, highly responsive, inter-active shared-•access system.
The 2+2 exemplifies the versatility required for today's computing
tasks. With its 215-instruction repertoire, micro-programmed hard­
ware, "virtual memory" capability, antl flexible peripheral interface
it provides a tremendous capacity and excellent response for a multi­
tude of applications.

With the wide range of system hardware and software, the 2+2 user can
operate with a minimum of system components to serve his present
needs, yet easily expand to meet future system requirements.

The LOGICON 2+2 (Figure 1-1) offers the user a new, more efficient
approach to time- sharing.

1-1

I I ...

System
Description

The LOGICON 2+2 is a multiprocessor system, the heart of which con­
sists basically of two processors organized as computers and two proc­
essors organized as peripheral controllerso The following paragraphs
discuss this system both in terms of its functional and its equipment
organizationo

EUNQ].'IO _ _NAL ORGANIZATION

A functional block diagram of the LOGICON 2+2 System is given in Fig­
urt> 2-1. In this figure, solid lines represent information lines - dotted
lines are control lines. The various blocks have the following general
functions~

• The Application Processor (AP) is a microprogrammed
cornputer that executes all user programs. It communicates
with both AP and CP memory, and with the CP via
interrupt lines.

• The Control Processor (CP) is a microprogrammed com­
puter that pe rfonns syste:m scheduling and I /O cont ro]
functions. It communicates with AP and CP memory, with
the AP via interrupt lines, and with all storage and com­
munication devices.

• Memory accesses by the AP to its own memory are made
through a mapping and protection unit called the Virtual
Address Translator (VAT), which is controlled by the AP.

• AP memory may also be accessed by the swapping storage
system, the file storage system, the backup storage system,
and the CF. AP memory contains the active. portion of the
program currently being run for a user, some resident
system code, and possibly parts of other users prograrr1s
waiting to be swapped out or run.

2-1

,-
1

I
I
I
I
I
L APPLICATION

PROCESSOR

, SWAPPING ~-1 STORAGE

I
FILE -+ STORAGE

I
I

. BACKUP --+ STORAGE
I
I
I
I

INTERRUPT LINES

COMMUNICATION
LINES

COMMU-
NICATIONS 1/0

CP
MEMORY

CONTROL
PROCESSOR

Figure 2-1. · LOGICON 2+2 System, Functional Block Diagram

• CP memory is accessed by the CP, AP, and the Communi­
cation I/O subsystem. It holds the bulk of the Monitor pro­
gram and all communications I/O buffers.

• The swapping storage subsystem is mechanized by a drum
and a Drum Processor (DP)o It is capable of swapping
programs and data in or out of AP memory at a rate of
1 million 16-bit words per second, under control of the CP.
It has storage capacity for 1 to 8 million words.

• The file storage subsystem consists of from 1 to 8 disk
drives, each capable of storing 14 million words, controlled
by a Peripheral Processor (PP) which executes commands
given it by the CP. Data is exchanged with AP memory at
a rate of approximately 156, 000 words per second. Aver­
age access time is 45 milliseconds.

2-2

• The backup storage systern consists of from 1 to 8 magnetic
tape units, controlled by the PP which executes commands
given it by the CP. Data is exchanged with AP memory at
a rate of approximately l~), 000 words per secondo

• The communication I/O subsystem handles low and high
speed lines, full and half duplex, synchronous and asyn­
chronouso It is controlled by the PP which executes com­
mands given it by the CP. Data is exchanged with CP
memory in a byte mode, at rates from 10 to 1200 bytes
per second depending on line speed. Note that all system
I /0 is communications oriented.

EQUIPMENT ORGANIZATION

The organization of LOGICON 2+2 Sys:tern hardware to accomplish these
functions is shown in Figure 2-2. This is the same as Figure 2-1,
except that the Swapping Storage subsystem is shown to consist of a
Drum Processor (DP) and a drum; and the File Storage, Backup Stor­
age, and Communications I/O subsystems are shown to be all imple­
mented with a single Peripheral Processor (PP) connected to the
appropriate deviceso

The characteristics of each of the devices are described in more detail
in the following paragraphs.

Core Memory

There are two core memories in the :system, CP and AP memory,
named after the programmable proce:ssor that executes instructions
from each. Each memory has a basic 900 nanosecond cycle time, and
stores data in words of 16 bits plus parity.

CP Memory. CP memory can have sizes of from 8K to 32K words in
4K increments. It is accessed by the PP (port priority 1), AP (port
priority 2), and by the CP (port priority 3). Read accesses to CP
memory may result in a parity error, resulting in action as follows:

• AP access: Other memory parity error trap in AP.

• CP access: Own memory parity error trap in CP.

• PP access: Error interrupt to CP.

AP Memory. AP memory can have s:izes of 32K or 48K four-way inter·­
leaved, or 65K with eight-way interleaving. Interleaving refers to

2-3

.J•

CPMEMORY

16bit
900 nsec
Bk to 32k words

Schedular
1/0 Control
Communication Buffer

r--­
' I

TAPE DRIVES
backup storage
1 to 8 units"' parallel
7 or 9 tracks
556 or 800 bpi
37.5 tps

file storage

r-­

'

1 to 8 units in parallel
28 to 224 million t~ytes
312 kbytes/sec
46 msec aver age

Figure 2-2.

2

AP MEMORY
16blt
900 nsec
32k to 66k words
4-way interleaving

User Processes
System Call Processors

\
SPLIT /
POR! _,,

memory mapptnt
execute read, write protection
"dirty" page indicator

Executes User Processes

• M1cro~ogramed
• 5 x 10 in1truct1on1/sec

--,
I
I

.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.'.·.•.•.•.•.•.•,•,•,•,•,•,•,•,,•:·

LOW-SPEED
1/0 COMMUNICATIONS LINES

EIA RS232 C Interface
bit-oriented asynchronous
16 to 128 CRT and TTY terminals
110, 134.7, 150,or JOO bps

HIGH-SPEED
1/0 COMMUNICATIONS LINES

EIA RS232C Interface
byte-oriented synchronous
4 to 16 batctl terminals
2, 2.4, 4.8, or 9.8 k

--- INTERPROCESSOR
CONTROL LINE FOR

INTERRUPT AND
ACKNOWLEDGE

FUNCTIONS

*LOWER NUMBERS
HAVE HIGHER MEMORY

ACCESS PRIORITY

LOGICON 2+2 Hardware Organization and
Information Flow

2-4

assigning addresses in such a way that consecutive locations are in
separate banks of memory, so that accesses can be overlapped. Inter­
leaving is important in AP memory, because the swapping storage sub­
system makes accesses to consecutive locations at a rate of 1 million
words per second, and must be able to overlap accesses in order to
"catch up" after interference with other devices has occurredo

AP memory is accessed by the PP {port priority 1), DP (port priority
2), CF (port priority 3), and AP via the VAT (port priority 4). Read
accesses to AP memory through ports 1 through 3 can result in parity
errors, processed as follows:

• PP access: Error interrupt in CF.

• DP access: Error interrupt in CF.

• CF access: Other memory parity error trap in CF.

Accesses through the VAT are more complex, in that both parity and
protection violations may occur. Separate software trap entrances are
provided in the AP for own memory parity error, read protection viola­
tion, write protect violation, execute protect violation, and indirect
address protect violation. The VAT protection mechanism is discussed
in more detail later in this section.

Programmable Processors (CF and AP)

The CF and AP are programmable processors with nearly identical
instruction repertoires, determined by rnicrocode in a read-only con­
trol memory. They are high speed, general purpose, binary computers
with single address instructions, each capable of communicating with
two separate 900 nanosecond memories of up to 32K words (64K words
with a VAT).

The design features include:

• A microprogrammed read-only control memory for flexible
and economical internal logic.

• Highly modular integrated circuit construction with etched
circuit back planes.

• Programmable memory protection and mapping via the VAT.

2-5

• Byte and byte string manipulation instructions for efficient
handling of character information.

• Hardware floating point and multiple precision instructions
for "number-crunching" applications.

• Hardware stack for efficient processing of recursive rou­
tines, multilevel interrupts, and nested system calls.

• Bit, Byte, word, and triple word addressing capability, all
fully indexed.

• Real time clock, providing both a "time-of-day" and a
countdown clock.

• Stall alarm for detection of program loops.

• Power fail-safe features in hardware and firmware.

The organization of these processors in terms of registers,. stack
operation, instruction repertoire, and I/O structure is covered in
detail in Section III.

Virtual Address Translator (VAT)

The VAT is a program-controlled memory mapping and protection unit
that can be inserted on any processor-to-memory access path. In the
LOGICON 2+2 System it is used on the AP to AP-memory connection
path.

The VAT considers memory to be organized in 512-word pages. It pro­
vides memory mapping, access control, and changed data detection for
each of 64 pages in system mode virtual memory and each of 64 pages
in user mode virtual memory. The two separate mapping and protec­
tion sections are called the System Map and User Map, respectively.
When the AP is in system mode, all AP accesses to AP memory are
made via the System Map. When in user mode, all accesses are made
through the User Map (except for certain privileged instructions). The
operation of the VAT is shown in Figure 2-3.

The VAT contains 128 registers, 64 for the system map and 64 for the
user map. Each register contains the follqwing data:

• A 7-bit physical memory page number

2-6

VAT (1Z8 Registere)

System Map
(64

Registers J

Uaer Map
(64

Resisters)

Proceasor Mode
o=Syatem 1= User

D
Virtual Address

(15 bi.ts)

Virtual Page !\ddress in Pc1.12e

(6 bi.ts) (9 bits l

VAT Reeiste:-,---J

Address (7 bits) __ _

VAT Register Co1"1tents

(11 bits)

D R W E Phyeical Page Address in Pa~e
(7 bits) (9 bits)

l

[Phyo\cal Core

Memory Address
(16 bits)

Read, Write, and Execute
Protection bits for this pa!/-e
(1 =Access not allowed)

.Dirty bit (l =Successful write access
ha• occurred in this page)

Figure 2-3. VAT Operation

• Read, write, and execute protection bits

• A "dirty" bit, or 11data changed" flag.

The contents of the 128 registers may be set by software control, and
the dirty bits may be interrogated by software. (See the Load Map,
LDMAP, and Locate Leading Dirty Bit, LLDB, instructions.)

When an AP memory access is initiated from the AP, the VAT in con­
junction with AP firmware performs the following functions:

• Selects the proper map depending on processor n~ode
(system or user)

• Selects one of 64 registers in the proper map, as addressed
by the high order 6 bits of the 15-bit virtual address from
the processor.

2-7

• Checks protection bits in the selected register as follows:

"".'-Read access: if read protect bit is on, generate a read
violation trap.

--Write access: if write protect bit is on, generate a write
violation trap.

--Execute access: if execute protect bit is on, generate an
execute protection trap.

--Indirect address access: if both execute and read protect
are on, generate an indirect address protection trap.
This allows indirect addresses to be accessed in either
read only or execute only pages.

• If no protection violation occurs, take the 7-bit physical page
number from the selected VAT register, together with the
nine least significant bits of the original virtual address,
and initiate the appropriate memory access to the word
addressed by the resulting 16-bit ·quantity.

• If a parity error occurs, generate an own memory parity
error trap.

• Return the data read to the processor (read references only).

• Set the dirty bit for the page accessed (write reference only).

Memory references made through the VAT have a cycle time of approx­
imately 1 microsecond, as opposed to the normal memory cycle time
of 900 nanoseconds~

Drum Processor (DP)

The Drum Processor controls data exchanges between the AP memory
(core) of the 2+2 System and the swapping memory (high data-rate
drum).

Data Transfer Characteristics. All data transfers handled by the DP
are 512-word pages.. Associated with each page there is also an
address word, ·a code word, and an integrity word, which assure data
integrity and access control.

2-8

The characteristics and capabilities of the drum procesqor have been
balanced to enhance overall system perfor:mancee The DP operates
with a family of fixed-head drums with capacities ranging from l /2
to 16 million 8-bit bytes. Average access time is 17 ms or 35 ms,
depending on drum sizeo

Data transfer is carried out at sustained rates of up to 2 million bytes
per second with burst mode transfers up to 4 million bytes per second.
The controller features control word look-ahead to combine a contiguous
sector transfer capability with list-driven command word chaining.

Control Characteristics. The DP connmunicates directly with the
Control Processor (CP) by means of interrupts. This direct communi­
cation is initiated by the CP to cause the DP to examine its Cur rent
State Cell (CSC) f/J in core ·memory .for a state change command.

The DP will send an interrupt to the CP when the DP has:

1. an interrupt condition encountered during data transfer.

2o an interrupt condition encountered during control word
access.

Once initiated, via CP generated interrupt, the DP will examine the
information contained in two predefined core locations in AP memory
designated CSC0 and CSC 1. Using this information, the DP then
interprets its required mode of operation. When the RUN mode is
designated, the CSCI serves as a pointer to the core location of the
initial Data Control Block (DCB) f/J-3. The DCB contains data transfer
control information for a single data page. Thereafter, each DCB
links with its successor by contiguous locations in a DCB list or by a
special link pointer to a non-contiguous core location. The cycle con­
tinues until a Last DCB condition, or an interrupt condition capable of
terrninating the operation, is encountered.

The DP will always send an interrupt to the processor when it terminates
ope ration. It may send interrupts at other times as defined by the DCB
commands.

2-9

Peripheral Processor

The Peripheral Processor (PP) is a microprogrammed processor that
controls disk:, tape, and communication I/O functions, as specified by
commands in CP memory. The three functions are effectively
independent and can best be described separately.

Disk Control. ·The disk controller controls from 1 to 8 moving-head
disk drives. The specifications for each disk drive are as follows:

Number of heads

N umber of cylinders
(positions per head)

Number of tracks

Sectors/track

Total sectors

Seek time

Rotation Period

Bit rate during transfer

Word transfer rate

20

2 00 (plus 3 spares)

20 x 200 = 4000

7

7 x 4000 = 28000

10 ms track to track,
45 ms average
7 5 ms maximum.

25 ms

2. 5 MHZ

156. 25 KHZ

The PP uses the same address verification, code word and integrity
word checks as the DP to insure data protection and data validity.

Up to eight simultaneous seeks, or seven seeks and one simultaneous
data transfer may be made. The software interface provides data and
command chaining, with a single read or write command causing the
transfer of precisely one page of data. Interrupts are sent to the CP
when an error condition occurs, or when an interrupt is requested on
command completion. Waiting interrupts are linked in a FIFO queue
in CP memory.

Tape Control~ The tape controller controls from one to eight magnetic
tape drives, in any mixture of seven and nine track varieties. Stand­
ard IBM compatible tape drives are used, with a nominal tape speed of
37. 5 ips, for a word transfer rate of 15 KHZ at 800 bits per inch. One
data transfer at a time may be performed.

2-10

The software interface provides data and con1mand chaining, with
scatter/gather within a single record if desired. Interrupts are sent
to the CP when an error condition occurs or when an interrupt is
requested on command completion. Waiting interrupts are linked
in a FIFO queue in CP memory.

Communication Control. The communications input/output system
controls up to 128 asynchronous and 16 synchronous lines. Asyn­
chronous lines may be added in groups of 16; synchronous lines in
.groups of four.

Asynchronous lines are compatible with Bell 103A data sets at rates of
110, 134. 7, 150, and 300 BAUD. Synchronous lines are compatible
with 202 series data sets at rates of 2000, 2400, 4800, and 9600 BAUD.

The software interface with the CP provides both character and buffer
mode, full and half duplex, with data chaining in buffer mode,. Waiting
interrupts are linked in a first-in first-out (FIFO) queue for servicing
in the proper order by the CP.

2-11

I I I ...

Processor
Organization

This section describes the basic organization of the Application Proc­
essor (AP) and the Control Processor (CP) in the LOGICON 2+2 Sys­
tem. Both processors are essentially identical in their physical char­
acteristics and the information given in this section applies equally to
understanding the internal organization of either the AP or the CP as
hardware items.

REGISTERS

The programmable registers in the processors are described in th<'
following paragraphs. All registers contain 16 bits, although th,,
quantities stored in some registers may normally utilize fewer bits.

A = Accumulator Register

The primary accumulator in the machi'Lne. Arithmetic, logicaJ and
shift operations are performed directly on this register. It may be
linked with U to form a 32-bit accumulator UA. It may be linked with
U and E to form a 48-bit accumulator UAE.

U = Upper Accumulator Register

Some arithmetic, logical, and shift operations are performed directly
on this register. In other cases, it is linked with the A register to
form a 32-bit accumulator UA or with A and E to form a 48-bit accu­
mulator UAE.

~ = Exponent Register

Contains the exponent in floating point operations. The exponent i_s ex­
pressed as a 2' s complement number. This re gis te r can be load Ni

from memory or other registers. It has very limited arithmetic and
logical capabilities. It can be linked with the U and A registers to
form a 48-bit accumulator UAE.

3-1

X = Index Register

Indexing may be performed on 15-bit word addresses, 16-bit byte ad­
dresses, or 16-bit 2 1 s complement displacements. Arithmetic opera­
tions on this register do not affect the overflow or carryout status
indicators.

P = Program Counter Register

This register generally contains the address of the next instruction to
be executed. In forming relative addresses in basic instructions it
contains the address of the current instruction. The register is 16
bits long but the add res se s it contains are all 15- bit quantities.

B = Base of Stack Register

This register ·contains the 15-bit address of the base of the stack as
seen by the main program or subroutine currently running. Attempts
to "pop'' the stack beyond this address will result in a stack underflow
trap. If the high order bit is set, erroneous results may result from
tests on B.

T = Top of Sta.ck Register

This re gis te r contains the 15 - bit address of the next word to be pushed
into the stack. This address should not be less than the address con­
tained in B nor greater than that contained in L as the result of a stack
operation. Checks are made before the stack operation. Note that
checks are made only in the appropriate direction (i.e. , check for
overflow on a "push," and underflow on a "pop").

L ::: Limit of Stack S_E_ace Register

This register contains the 15-bit address of the first word beyond the
stack (i.e., the address of the first word the stack is not allowed to
occupy). An attempt to "push" the stack beyond this address results in
a stack overflow trap.

S = Status Register

Bits in this register describe the current status of the machine. Bit
positions within the word are defined in this section under the discus­
sion of Status Register.

REPRESENTATION OF INFORMATION

The binary system of notation is used throughout the LOGICON 2+2
System.

3-2

In the "fixed-point arithmetic" case of addition, subtraction, and com­
parison, operands and results are considered as binary numbers in 2's
complement form. Subtraction, for example, is carried out internally
by adding the 2 1 s complement of the subtrahend.

The assumed location of the binary point has significance only for mul­
tiplication and division. For integer arithmetic, the binary point may
be assumed to the right of the least-significant bit position (i.e., to
the right of bit position 15); and for fractional arithmetic, the position
of the binary point may be assumed to the left of the most-significant
position (i.e., between bit positions 0 and 1).

Floating point numbers are stored with the mantissa in absolute value
and sign, and the exponent stored in two's complement.

The processor is fundamentally organized to deal with 16-bit grouping
of information. Special features are also included for ease of manipu­
lating bits, bytes, and multiple words as groups. These bit groupings
are used by the hardware and software to represent a variety of forms
of information.

Machine Word

The machine word consists of 16 bits. The numbering of bit position,
character positions, words, etc. increases in the direction of conven­
tional reading from the most-to-least significant.

Data transfers between processor and memory are bit, byte, and word
oriented as illustrated below.

0 I 2 3 4 5 6 7 8 ~ 0 11 12 13 14 15 Bits

0 1 Bytes

Word

Alpha~~meric Data

Alphanumeric data are represented by 8-bit bytes. One machine word
contains two bytes or characters. The character set used for most
purposes is standard ASCII.

3 .. 3

One Word Binary Integers

For the "algebraic" group of instructions, results are regarded as
signed binary numbers, the leftmost bit being used as a sign bit (a 0
being plus and l minus). When the sign is positive all the bits repre­
sent the absolute value of the number; and when the sign is negative,
they represent the 2 1 s complement of the absolute value of the number.
Overflow occurs when the magnitude of a number does not fit within a
given word or register. That is, if the carryout of the sign position
does not agree with the resultant sign (bit position), overflow has oc­
curred. There are no conditions for underflow. A signed integer
ranges from _zl5 through zlS - 1.

For the "logical" group of instructions, results are regarde1 as un­
signed, positive binary numbers in the range of 0 through z 1 - 1.

Three Word Binary Integers

The three word integers are sign magnitude, the left most bit of the
first word is sign followed by 47 bits of magnitude. The range of three
extended integers is from -(247 - 1) through 24 7 -1 = 140, 737' 488,
355, 327. Overflow occurs when the magnitude of a number does not
fit within the 47 bits~

Three Word Binary Floating-Point Numbers

The instruction set contains instructions for binary floating-point
arithmetic with numbers of two-word precision. The lower word rep­
resents the integral exponent E in 2' s complement form, and the upper
two words (32 bits) represent the fractional mantissa Min sign magni­
tude form. The notation for a floating-point number N is:

E
N = M x 2

The three word format is shown below. S represents the sign bit.

Register u A E
Word 1

1510
2

151~11
3

Bit I~ I 1 151

1- M .. 1. E
__ ,

. -9863
Any number with an absolute value m the range of 10 through
109863 can be represented to more than nine significant decimal digits.

3-4

For normalized floating-point numbers, the binary point is placed at
the left of the most significant bit of the mantissa. Numbers are nor­
malized by shifting the mantissa (and adjusting the exponent) until no
leading zeros are present in the mantissa.

1:Eo z.E~_i,!1!~!!1~C.~_u:_~cY! the lowest.possible exponent (-32768) together
with a zero mantissa has been defined as the machine representation of
the number zero.

Four Word Binary Floating Point Numbers

These numbers are similar to the three word floating point with the
exception of one more word of precision. This permits a number with
an absolute value in the range of io-9863 through 109863 to be repre­
sented to more than 14 significant decimal digits. Arithmetic in this
format is performed by software subroutines.

PROCESSOR FEATURES

Stack

The 2+2 processor includes three hardware registers that define a
stack, or last-in first-out (LIFO) list structure. The registers are B
(base of stack), T (top of stack) and L (limit of stack). The core stor­
age locations making up the stack are (B) to (L-1) inclusive, and (T) is
the address of the next word to be pushed into the stack.

Many 2+2 processor instructions push data into the stack (by storing
data at the location in T and incrementing T) or pop data out of the
stack (by decrementing T and reading data from the resulting location
in T).

A subroutine call saves the current base of stack (B) value as well as
(P), and re sets B to the new value of T. This pre sen ts the subroutine
with an empty stack insofar as any pushing or popping of entries is
concerned. A subroutine return can then use this new value of B to
restore the stack to the state it had at :subroutine entry, even if T had
not been restored to its initial setting.

System call, system return, trap entry, interrupt entry and interrupt
return also use the stack mechanism, but reset B, T, and L to a spe­
cial system stack while the system can, trap, or interrupt is being
processed. When the processor is in user mode, the system stack is
defined by a BASE location stored in memory location 4 of the system

3-5

address space, and a LIMIT location stored in location 5 of the system
address space.

Skips and the Delayed Skip (DSK) Instruction

Many instructions allow conditional skips. All skips are skips of in­
structions rather than of words. Since instructions may be either one
or two words long, skips are generated by reading up the next instruc­
tion and decoding it to determine whether it is a one-word instruction
or the first word of a two-word instruction, then incrementing (P) by
one or two.

CAUTION

Do not skip data words! If a data word is
skipped, and it happens to have the format of a
two-word instruction, then the word following.
it will also be skipped. If that is a one-word
instruction, it will be skipped; if it is a two­
word instruction, its first word will be skipped
and the machine will try to execute its address.

If reading up an instruction to be skipped results in an execute viola­
tion or a parity error, the corresponding trap processor is entered at
its second word, as shown:

.!_Eap Condition

Execute Violation

Execute Violation During Skip

Parity Error

Parity Error During Skip

Transfers Control to:

(000328)

(000328)+1

(000348)

(000348)+1

The Delayed Skip (DSK) instruction is used to force a skip, under pro­
gram control. It is particularly useful for generating normal and ex­
ception returns from subroutines and system calls because it produces
a true instruction skip, whereas incrementing the return address
would produce a word skip. A DSK causes the instruction following the
next instruction to be skipped; that is, the DSK does not affect the exe­
cution of the instruction immediately following it, but the instruction
that would normally follow that one is skipped unconditionally. A DSK

3-6

can be used before any legal machine instruction except HLT, SCA LL,
CPRS or another DSK; if one is used preceding any of these instruc­
tions, it is ignored.

When a DSK is used before a conditional. skip instruction - e.g. , ACA,
FCPS, MINC, SKXEI, etc. - the next instruction is skipped uncondi­
tionally, and if the skip condition was satisfied the one after that is
also skipped. Thus, a DSK preceding a conditional skip instruction
forces one extra skip. (This is the reason DSK is ignored before a
CPRS instruction; the CPRS by itself can skip two instructions, and
there is no provision in the processor for a skip of three instructions.)

When a DSK precedes an instruction that causes a transfer of control -
e.g., JMP, JSPM, CALL, RTRN, SRTRN, etc. - the skip occurs
after the jump, and the instruction jumped to is the one skipped. When
a DSK precedes a conditional jump -- e.g. , JZE, XJP, T JP, etc. - the
instruction skipped is either the one jumped to or else the one immedi­
ately following the jump instruction, depending on whether or not the
jump condition is satisfied.

Traps and interrupts are essentially transparent to DSKs, even in
those cases (e.g., floating point overflow and underflow) where the
trap processor itself uses a DSK ahead of its SRTRN to skip over the
instruction that caused the trap. If that instruction was preceded by a
DSK, then the return will skip two instructions.

Processor Mode

The processor has two modes of operation, a System mode, used in
Monitor programs, and a User mode, used by all programs running
under control of the Monitor. The current mode of operation of the
processor is indicated in bit 9 of the Status register (0 for system
mode, 1 for user mode). The difference between modes and the ways
of switching between modes are described in this section.

In System mode, all instructions including privileged instructions may
be executed. On memory accesses made through the VAT, the system
map is used. In User mode, an attem1pt to execute a privileged in­
struction will result in a privileged instruction execution trap. Mem­
ory references made through the VAT use the user map.

A system call (SCALL) instruction executed in User mode results in a
transition to System mode. Furtherrnore, the user stack is "sealed
off" and the stack registers are reset to use a system stack, defined

3 ·- 7

by locations stored in cells 4 (BASE) and 5 (LIMIT). Further system
calls while in system mode continue to use the same system stack. As
each system call is completed and control returned via a system re­
turn instruction, control eventually reverts to the original user mode
code. At this point the processor status reverts to user mode, the
system stack is abandoned, and use of the user stack resumed in the
configuration it had at the time of the original system call.

An interrupt or trap occurring while in user mode similarly causes a
transition to system mode, and to the system stack. The interrupt re­
turn or system return reverts to user mode and the user stack. Note
that trap processing routines exit via the system return (SRTRN)
instruction.

Status Register_

The status register contains several items of information about the
current state of the processor. Its format is as shown in Figure 3-1.

Fixed Point Carryout. This bit contains the carry or borrow from the
high order (sign) bit position of the last fixed point add or subtract in­
struction affecting (A) or (U) executed, or zero if it has since been re­
set by a SKNCO (skip if no carry out) instruction.

Fixed Point Overflow. This bit contains a one if an arithmetic over­
flow has occurred since the last SKNOF (skip if no overflow)
instruction. An overflow has occurred if the correct arithmetic result
of an operation cannot be expressed in the register that the answer
should go into. Note that overflow is not reset by arithmetic opera­
tions; it can only be set. Carryout may be either set or reset by
arithmetic instructions.

Certain instructions are classified as being for primarily logical or
address operations and do not effect overflow or carryout. The de­
scription of each individual instruction has this information. The gen­
eral rules are as follows:

• Fixed point add and subtract operations on A and U, except
for the interregister instructions RADD and RSUB, may
affect carryout and overflow.

• Add and subtract to memory (ADDM, SUBM) may affect
carryout and overflow, but MINC and MDEC do not.

3-8

-------. ·----c~ Current active interrupt
level

(17
8

= no interrupt)

___,_ Floating point underflow trap
enable bit (1 = enabled)

--1- Floating point overflow trap
enable bit (1 = enabled)

..___ ___________ Mode bit (1 = user mode)

~-----------1- Previous mode bit

'---------------·--11- Instruction count field
(0 = not counting)

'-------------------Delayed-skip bit (1 = skip
next instruction)

..__ _________________ Fixed point overflow bit

~-----------------------Fixed point carryout bit

Figure 3 -1. Status Register Contents

• Fixed point division may set overflow.

• Fixed point multiply (MFA AND MPAS, but not MPX) sets
overflow if the results will not fit in one register (this is
an exception to the general definition of overflow).

• Arithmetic left shifts may set overflow.

Delayed-Skip Bit. When this bit is set on completion of an instruction,
the instruction that would have normally been executed next is skipped,
and the following instruction executed. This feature is used, for ex­
ample, to give skip returns to system call instructions. Refer to de­
scription of "Skips and the DSK Instruction".

3-9

Instruction Count Field. The processor may be placed in a "trap after
executing n instructions" mode for 0 :5 n :5 30. This field of the sta­
tus register contains a number one greater than the count of instruc­
tions remaining before the trap. A count of zero means no trap is
pending. This feature will be used primarily for debugging operations.

The count may be started by a system routine, by inserting a non-zero
count in the saved status register location in the system stack, and
then executing a system return instruction. This returns control to
the calling routine with the instruction count set in the status register.
The calling routine may execute exactly the indicated number of in­
structions, and then an instruction count trap will occur.

The following special comments apply to the implementation of the
count mechanism:

• A system call counts as one instruction, independent of the
number of instruction executions it may invoke.

• Interrupt routines are not counted.

• Many trap conditions repeat the instruction on which the
trap occurred, following execution of the trap processor.
The instruction on which the trap occurred will be counted
both on the aborted execution and the final execution. Trap
processors must be written to correct for this condition.

• If a user program is swapped out while the count is in
process, the count will be saved and resumed when that
user is swapped in again. This feature is a property of the
time sharing monitor and not of the processor hardware.

Mode and Previous Mode. Processor mode (0 = system, 1 = user) is
stored in the status register. The previous mode _bit is the state of the
mode bit prior to the last system call, trap, or interrupt (i.e., in the
routine that originally called the current system routine: not in a low­
er level routine that was called and returned control to the current
routine).

Floating Point Trap Enable. Floating point overflow and underflow
traps may be enabled and disabled by setting these bits. Note that they
can be changed only by system code. When enabled, a floating point
overflow (underflow) results in the corresponding trap.

3-10

A floating point overflow occurs when the result of a floating point op­
eration is too large to be normalized (i.e. ,

IR I > (1 - 2-31) x 2327 67 ~ . 708 x l 0 9864) .

A floating point underflow occurs when the result of a floating point op­
eration is too small to be normalized 1[i. e. ,

I I 1 2 -32769 ~ 3i:·3 10-9864) R < x -- . _, x .

Current Interrupt Level. The current interrupt level is kept in the
status register. It varies from 0 (highest priority) to 15 (lowest pri­
ority), with several states being effectively unused because of special
hardware features. The state 15 is used to indicate "no active
interrupt. "

Traps, Sys tern Calls and Interrupts

Traps, system calls, and interrupts are very similar, the main dif­
ferences between them being their causes. Traps are caused by the
detection of internal error conditions, system calls are caused by the
execution of SCA LL instructions, and most interrupts are caused by
external events which set bits in the external interrupt register. The
exception is system stack overflow. This is an internal error, and as
such ought to cause a trap, but to avoid conflicts it is made to cause an
interrupt instead.

All system calls and most traps are always enabled, but two traps -
floating point overflow and floating point underflow - can be enabled or
disabled selectively by bits in the status register. When set to one,
bit number 10 ofthe status register enables the floating point overflow
trap, and bit number 11 enables the floating point underflow trap.
Whether or not these traps are enabled, a floating point overflow al­
ways sets (U, A, E) to a very large floating point number (in octal:
077777, 000000, 077777), and a floating point underflow always sets it
to a floating zero (in octal: 000000, 000000, 100000).

Most interrupts can be enabled or disabled selectively by using the
SIM, SIL and RIL instructions. The SIL (Set Interrupt Lockout) in­
struction disables all interrupts except system stack overflow. The
RIL (Reset Interrupt Lockout) instruction enables all interrupts al­
lowed by the current interrupt mask. The interrupt mask is controlled

3-11

by the SIM (Set Interrupt Mask) instruction. At the beginning of each
instruction, (before (P) is incremented) the interrupt mask is "anded"
with the external interrupt register, and a check is made to see if
there are any enabled interrupts, waiting to be honored, of higher pri­
ority than the current level as defined in the status register bits 12-15.
The sys tern stack overflow interrupt is, again, the exception. Since it is
caused by an internal error rather than an external event it never ap­
pears in the external interrupt register, and therefore it cannot be
disabled.

All traps and system calls, and all interrupts except the power-down
interrupt, are processed as follows:

1. The VAT is set to system mode. This causes all subse­
quent memory references to use the system address space,
regardless of the mode bit in the status register.

2. If the current status register mode bit indicates user
mode, a transition to the system stack is made as follows:

a. The contents of cells 00004 and 00005 are read out as
the system stack BASE and LIMIT pointers, respec­
tively.

b. (B) is stored at the address given by (BASE), (T) is
stored at (BASE)+l, and (L) is stored at (BASE)+2.

c. B is set to (BASE), T is set to (BASE)+3, and Lis set
to (LIMIT).

This procedure establishes a new system stack, which will
be used for all traps, system calls and interrupts as long
as the machine remains in system mode.

3. Registers are saved in the system stack as follows:
The current status register (S) is stored at (T), (X) is
stored at (T)+l, (U) is stored at (T)+2, (A) is stored at
(T)+3, (E) is stored at (T)+4~ If a trap or interrupt is be­
ing processed, (P) is stored at (T)+5; if a system call is
being processed, (P)+l is stored at (T)+5. Thus a trap or
interrupt is set to return to the instruction where it oc­
curred, and a system call is set to return to the next
instruction. (B) is stored at (T)+6.

3-12

4. B and T are both set to (T)+ 7.

5. If an interrupt is being processed,

a. Its priority level is saved as the current interrupt lev­
el.

b. The current interrupt is acknowledged, thereby reset­
ting the external interrupt line.

c. The current interrupt level is stored in the low-order
four bits (bits 12 - 15) of the status register, thereby
disabling that level and all lower levels of interrupts.

6. The mode bit in the status register (bit number 9) is copied
into the previous mode bit (bit number 8).

7. The status register is cleared except for the previous
mode bit and the current interrupt level field (bits 12
through 15).

8. If a memory-related trap is being processed, X is set to
the address where the error or violation occurred. In the
AP, read write, execute and indirect reference violations,
own-memory parity errors and indirect reference level
overflows all produce mapped addresses in "specified
map" form (i.e., the sign bit of (X) indicates which map
was in use), but other-n1e1nory parity errors produce un­
mapped addresses. In the CP, all such traps produce un­
mapped addresses.

9. The appropriate dedicated cell is read and its contents
are loaded into P. If a trap is being processed that
resulted from an execute violation or own-men1ory
parity error occurring during a skip, (P) is incremented
by one.

10. If (T) > (L), (L) is incremented by 14 and a system stack
overflow interrupt is generated; otherwise, normal execu­
tion resumes beginning at (P).

The dedicated transfer cell addresses for the various types of inter­
rupts, traps and system calls are shown in Tables 3-1, 3-2, and 3-3.

3-13

Interrupt
Level

0

1

2

3

4

5

6

7

8

9

10

11

12

TABLE 3-1. INTERRUPT ENTRY LOCATIONS
(IN SYSTEM ADDRESS SPACE)

Octal Location
of Entry Address Function

10 Power down interrupt entry

11 System stack overflow interrupt entry

12 Stall alarm interrupt entry (CP),
Unused (AP)

13 Drum interrupt entry (CP), Unused (AP)

14 Disk interrupt entry (CP), Unused.(AP)

15 Communications interrupt entry (CP),
Unused (AP)

16 Magnetic tape interrupt entry (CP),
Unused (AP)

17 Unused

20 Unused

21 Unused

22 Interprocessor interrupt #I entry

23 Interprocessor interrupt #2 entry

24 Countdown clocJ.{ interrupt entry

It is particularly important to note that the trap, system call and in­
terrupt processor does not behave like a typical stack instruction
(e.g., PUSHM) with respect to stack overflows. If a stack overflow
occurs the words are pushed in anyway, then (L) is incremented by 14
and a system stack overflow interrupt is generated, which itself push­
es in 7 more wordsQ Accordingly, when the system stack LIMIT
pointer (cell 00005) is initialized it must be set to an address at least
14 words less than the last word actually available in the system
stack's storage space~

This is why a system stack overflow must generate an interrupt in­
stead of a trape If it did generate a trap, the software routine that
processes it might get interrupted before it has had time to extend the

3-14

TABLE 3-2. TRAP ENTRY LOCATIONS
(IN SYSTEM ADDRESS
SPACE)

-------------~----------------~--------------~

Trap

Read protection
violation

Write protection
violation

Execute protection
violation

Indirect address pr.o­
tection violation (Both
Read and Execute
protected)

Own-memory parity
error

Other-memory parity
error

Ille gal instruction

Privileged instruction
in user mode

Indirect reference
level overflow (more
than 8 levels)

Stack overflow during
user mode

Stack underflow during
user mode

Floating point overflow

Octal Location
of Entry Address

00030

00031

00032

00033

00034

00035

00036

00037

00040

00041

00042

00043

3-15

-
Notes

(X) = address. AP
only.

(X) = addresso AP
only.

(X) = address. AP
only. Transfer is to
(00032)+1 if detected
during skip.

(X) =·address. AP
only.

(X) = addresso
Transfer is to
(00034)+1 if detected
during skip.

(X) = other-memory
address (unmapped).

(X) = address of next
level.

(U, A, E) = 077777,
000000, 077777.

I
I

Trap

TABLE 3-2. TRAP ENTRY LOCATIONS
(IN SYSTEM ADDRESS
SPACE) (Cont)

Octal Location
of Entry Address Notes

Floating point under - 00044 (U, A, E) = 000000,
flow 000000, 100000.

Instruction counter 00045
countdown

-

TABLE 3--3. SYSTEM CALL ENTRY LOCATIONS
(IN SYSTEM ADDRESS SPACE)

System Call Number
Octal Location t---·

Processor Decimal Octal of Entry Address

CP 0 0 00050
1 1 00051
.

23 27 00077

AP 0 0 00050
1 1 00051
.

255 377 00447

NOTE: System call numbers 24-255 are trapped as illegal
instructions in the CP.

stack. This would result in another stack overflow and another, nest­
ed, trap. By making system stack overflow a very high priority inter­
rupt, all other interrupts can be locked out while it is being processed.

However, there is one interrupt, power down, that must be of higher
priority even than system stack overflow if it is to be processed in
time. Since it must be able to interrupt the system stack overflow

3-16

processor, it cannot use the stack; accordingly, a power down inter­
rupt is processed differently than any other interrupt, as follows:

10 The map is set to system mode.

2. The contents of cell 00010, the dedicated address pointer
for external interrupt line number 0, are read out.

3. (P) is stored at the address given by (10).

4. The current status register is stored at (10)+1.

5. The mode bit in the status register (bit number 9) is copied
into the previous mode bit (bit number 8).

6. The status register is cleared except for the previous
mode bit. By setting the active interrupt level to zero,
this disables all interrupts.

7. P is set to (10)+2.

8. Normal execution resumes beginning at (P).

NOTE

The only registers saved by a power down in­
terrupt are (P) and status. It is up to the in­
terrupt routine to save (X), (U), (A), (E), (B),
(T) and (L).

Except for floating point overflow and floating point underflow, all er­
ror conditions that result in traps (or interrupts, in the case of system
stack overflows) are detected before any changes sufficient to prevent
restarting the instruction are made to either registers or memory
cellso Thus, in most cases where the cause of the trap is something
that can be fixed, the trap processor can fix it and then restart the in­
struction. When this is done, the fact that a trap occurred is es sen­
tially invisible to the instruction.

Processing of trap conditions and system cells is terminated by a
SRTRN (system return) instruction. Processing of interrupts is

3-17

terminated by an IRTRN (interrupt return) instruction. These instruc­
tions operate in very nearly the same way:

Clock

• The T register is restored to the value it had at entry to
the trap, system call, or interrupt processing routine:
(B)-7-T.

• All processor registers are restored from the stack:

((T))-S
((T)+l)-X (on SRTRN, only if XS bit set)
((T)+2)-U (on SRTRN, only if US bit set)
((T)+3)-A (on SRTRN, only if AS bit set]
((T)+4)-E (on SRTRN, only if ES bit set]
((T)-t-5)-P
((T)+6)-B

• Check for stack underflow:

If (B) > (T), generate stack underflow trap

• Restore B, T, L to user mode stack if a transition to user
mode was made: If the mode bit in the status register is
now 1, then

((T)-3)-B
((T)-1)-L
((T)-2)-T.

• In IRTRN, enable all interrupt levels allowed by the cur­
rent interrupt mask, up to but not including the interrupt
level being returned to.

The processor has a one millisecond real-time clock, used to furnish
both a time-of-day clock and a countdown clock for interval timing.
The time-of-day clock is a double precision (32 bit) quantity stored in
memory locations 00001 (most significant) and 00002 (least significant)
in system mode address space. It is incremented once every milli­
second. Thus, cell two counts in a cyclic pattern, repeating every
65, 538 milliseconds, and cell one counts with a least significant bit of
65. 538 seconds. The time-of-day clock may be set by software to any
desired starting value.

3-18

A countdown clock, stored in cell 00003 of system mode address
space, is decremented once every millisecondo When it reaches zero,
an interrupt is set (priority level 12) to software. If not reset by soft­
ware, it will supply an interrupt every 65. 538 milliseconds (counting
from 177777

8
to 0).

Stall Alarm

The processor may be equipped with a stall alarm feature. This de­
vice furnishes an interrupt (priority 2) approximately one second after
the last reset signal it receives from softwareo Thus, if not reset for
a period of more than one second, it furnishes an interrupt that may be
used to detect inadvertent program loops.

I

In the LOGICON 2+2 System, the CP is equipped with a stall alarm -
the AP is not. The stall alarm is reset by executing a DOUT instruc­
tion with X = 03 6000.

Programmer Panel (Prototype)

The prototype LOGICON 2+2 System u:ses two modified DSC model 4153
programmer's control panels as its programmer paneL After deter­
mination of requirements through use, these panels will be replaced
with a single integrated system control paneL The physical layout of
each of the panels is as shown in Figure 3-2.

One panel is connected to the Applications Processor (AP), and one to
the Control Processor (CF). The lights and controls have the follow­
ing functions:

• .POWER: (CP only) Controls system power on/off.

• DISPLAY: Controls the display in LOCATION and DATA
lights, and the interpretation of DATA switches, when the
processor is halted.

• MODE: Determines the processor's response to an activa­
tion of the START switch.

3-19

I I LIGHTS
POWER

':.':'.:('.:}~=
STATUS

I MA~ REG
11 LIGHTI

DISPLAY

IHALTI MC IL~~l L:!ol LOCATION

STE•"()"" STEP AUN R~T 1/C
16 LIGHTS

MODE DATA

18 DATA SWITCHES DD
CLEAR START

Figure 3-2. Programmer Panel Layout

• STATUS LIGHTS: Display processor status when in halt.
Light meanings are {left to right):

USER NOT SS SS READ
HALT MODE PARITY USED OF UF VIOL

ystem stack overflow
ystem stack underflow

System
Crash
Conditions
(Refe HALT
CONDITION)

(Lem write ystem read violation or parity error -
t v1olahon

WRITE
VIOL

• LOCATION Lights: Display a 16-bitnumberthattells, in
conjunction with the DISPLAY switch, what is being dis­
played in DATA Lights. Used during halt only.

• DATA Lights: Display a 16-bit number, as selected by the
DISPLAY switch and an internal address register (which is
displayed in LOCATION Lights). Used during halt only.

3-20

• DATA switches: A bank of 16 switches used to enter data
into DAT A Lights and thence into internal re gis te rs if de -
sired. Also sampled by software via the load A from con­
sole (LDAC) instruction. Off or 0 in center position, or on
1 in momentary down or latching up positions.

• CLEAR: Causes the register driving DATA Lights to be
cleared, used in data entry during halt mode only.

• START: Causes an action determined by the MODE switch.
Used during halt only.

• HALT: Generates an interrupt to the processor that caus­
es it to enter the halt mode.

• MC: Sends a master clear to the I/O system, clears all
internal registers (P, A, :E, U, X, B, T, L, and
STATUS).

• PT LOAD: Bootstrap load from paper tape, setting P to an
address specified on tape. PARITY light" activated if a
checksum occurs. (CP only.) The format of a paper tape
for Bootstrap load is shown in Appendix A.

• MT LOAD: Magnetic tape bootstrap, into page ¢ of system
memory, setting P to contents of cell¢. PARITY light ac­
tivated if checksum error occurs. The format of a mag­
netic tape record for Bootstrap load is shown in Appendix
A.

The data displayed in the LOCATION and DATA light registers is con­
trolled by the DISPLAY switch as follows:

• MAP, display addressed map cell. (AP only)

• MEMS, display addressed cell in own memory using sys -
tern map. (Mapped in AP, unmapped in CP)

• MEMU, display addressed cell in own memory using user
map. (Mapped in AP, unmapped in CP)

• OMEN, display addressed cell in other memory.

3-21

• MEM, display addressed cell in own memory using map
corresponding to processor mode. (Mapped in AP, un­
mapped in CP)

• LOC, display LOCATION register used in memory and
map display.

• REG, display register selected by DATA switches:

BIT REGISTER

0 p

1 x
2 u
3 A

4 E

5 B

6 T

7 L

8 STATUS

9 INTERRUPT MASK

Entry of data is controlled by the DATA and CLEAR switches. The
displayed data is in DATA Lights, and the address of the data is in
LOCATION Lights. In all display modes except REGISTER, the DA TA
and CLEAR switches may be used to modify the displayed data: The
DA TA switches are logically "ored" bit by bit into the DATA light regis­
ter. All bit positions not held on by activated DATA switches may be
cleared by the CLEAR switch.

An activation of the START switch when the MODE switch is in inspect
and change (I/C) has the following effect on display:

• MAP or memory display:

DATA Lights - addressed cell, increment address, dis­
play new address and contents

• LOC display

DAT A Lights - LOCATION Lights

3-22

• REG display

If LOCATION Lights contain single l: complement LOCATION Lights.
In the resulting mode, the DATA and CLEAR switches can modify the
DATA Light register.

If LOCATION Lights contain single 0: DATA Lights
cated by LOCATION Lights); 0 - LOC:A TION Lights

(Register indi-

An activation of the START switch in other MODE switch settings op­
erates as follows:

• RUN: START causes the processor to enter the run mode,
executing instructions starting at the locationin P. Exe­
cution will continue until a HLT instruction is executed,
the HALT switch is activated, or a system crash condition
occurs.

• STEP: START causes the processor to execute the in­
struction at P, advance P to next instruction, and halt.

• I/C (Inspect and change): START causes display or change
of the memory cell, map entry, or register selected via
the DISPLAY switch.

• RPT STEP: causes the step mode to be repeated once per
clock interrupt (1 millisecond) as long as ST ART is
depressed.

• RPT I/C: causes the I/C mode to be repeated at clock in­
terrupt rate as long as START is depressed, or until a
memory parity error is detected.

HALT Condition

The panel is operable only when the processor is in a HALT condition.
When halted, the processor may be started by two methods:

• Place the MODE switch in RUN, and activate the START
switchQ The processor will execute instructions beginning
at the address in P.

3-23

• An interprocessor interrupt at level 11 will cause the
processor to start executing instructions beginning at the
address in cell ¢ of the current modes' address space.

When running, the processor can be halted by one of the following
means:

• Depressing the HALT switch on the panel,

• Executing a HLT instruction,

• Encountering a System Crash condition.

In the case of a SYSTEM CRASH condition, the processor does not im­
mediately enter the h~lt condition: it lights a panel light indicating the
condition, and hangs up in a short firmware loop. This allows firm­
ware analysis via the microprogram panel. To cause the processor to
enter the HALT condition from this state, activate the HALT switch.

The SYSTEM CRASH conditions are:

1. System Stack underflow.

2. System Stack overflow occurring on entry from user mode
(when the system stack should be empty).

3. System Read Violation or parity error in dedicated location
or in the system stack.

4. System Write Violation in a dedicated location or in the
system stack.

Power Up/Down

The LOGICON 2+2 System is designed to respond automatically to and
recover from power transients. The mechanism for accomplishing
this involves hardware, firmware, and software. The sequence of op­
erations implemented in hardware-firmware for power up and power
down is as follows:

Power Up. The processor starts in a master cleared state, and
checks to see if power came on as a result of a processor power
switch activation. If so, it is assumed that this is a "cold start"; the
processor enters the HALT state, awaiting operator intervention (nor -
mally a bootstrap load). If not, it is assumed that this is a recovery

3-24

from a transient power failure; the processor transfers control to the
software instruction at the location contained in memory cell 0 (power
up entry location).

The mechanism for determining whether power came on as a result of
a start switch activation is logically as shown in Figure 3-3 0

...

----O-FF_/_O_N_,;--~1e1aiJ Switch .
......_ _____ _

"Power on by start
switch activation 1

'

signal

Power Line Processor Power Input

Figure 3-3. Processor Power Switch

Power Down. When power to the processor falls outside certain lim­
its, an interrupt (priority level 0) is furnished to software at least five
milliseconds before power goes outside safe operating limits 0 Thus
software has five milliseconds to shut down in an orderly manner and
save the state of the machine in core rnemory.

Data in memory is protected during power transients so that a full re -
covery may be made by properly-functioning software.

When power passes another threshold, instruction execution is termi­
nated until power up. The power-up sequence has been previously de­
scribed. It is possible for a power--down interrupt to occur, but for
power to not actually go down. A software time-out routine can detect
this condition. In this event, software must simulate the power-up re­
covery sequence.

DEDICATED MEMORY LOCATIONS

Certain memory locations in system rnode address space are dedicated
to special functions by hardware/firmware.. These are summarized in
Table 3 -4.

3-25

TABLE 3-4. DEDICATED MEMORY LOCATIONS

OCTAL
LOCATION

0

1

2

3

4

5

6

7

10-24

25

26, 27

26

27

30-45

46, 47

50-77

100-447

FUNCTION

Power up/Interprocessor Start entry

M. S. W. of clock

L. S. W. of clock

Countdown clock

System stack BASE pointer

System stack LIMIT pointer

Unused

Unused

Interrupt entry locations~:~

Unused

Drum Processor CSC (AP only)

Unused (CP)

CP/PP interlock cell (CP only)

Trap entry locations~:~*

Unused

System call 0-23 entry locations

System call 24-255 entry locations (AP)

'~In the LOG.ICON 2+2 System configuration, the interrupt entry lo­
cations are as signed as shown in Table 3-1.

':~~:~Trap entry locations are defined in Table 3-2.

INSTRUCTION FORMATS

Machine instructions are of 10 different format types. In addition,
some of these formats may be subdivided into one or more sub­
formats. Functionally, the formats are divided as follows:

1. Basic instructions.

2. Miscellaneous instructions.

3-26

3. System Calls.

4. Multi-register and register bit instructions.

5. Memory bit instructions.

6. Two-word general instructions.

7. Register operation instructions.

8. Single register shift instructions.

9. Multiple register shift instructions.

1 O. Immediate data instructions.

The specific formats (1 thru 10) are shown in Table 3-5, Instruction
Formats. The symbols appearing in the Effective Address column of
Table 3-5 are discussed in the following paragraphs under Addressing.

ADDRESSING

General

There are several modes of addressing used in the 2+2 processors.
The procedure for calculating the effective address of an instruction is
a function both of the instruction format and of the setting of several
bits within the instruction.

Symbols

The following symbols are used in defining the addressing modes:

Y The effective address of an instruction: a 15-bit number if
it is a word address, or a 16-bit number if it is a byte
address.

D The signed (two's complement if negative) 8-bit displace­
ment field in a basic (format 1) instruction9 Its value is in
the range -128 :S D :S 127.

P The program location regi:ster. P contains the 15-bit ad­
dress of the first word of the instruction for which the ad­
dress is being calculated.

X The index register. Generally effectively a 15-bit quanti­
ty, although the high order bit is used in certain cases.

3-27

l>l
I
N
00

NUMBER

1A

18

1C

1D

2A

•
3

4A

48

5

6A

INSTRUCTION TYPE

BASIC:

lw.1EDIATE FORM
OF BASIC

TWO-WORD FORM Of
BASIC, WITHOUT B:

lWO-WORD FORM OF
BASIC, WITH B:

MllCELLANEOUS:

MISCELLANEOUS:

SYSTEM CALL:

MUL Tl-REGISTER:

REGISTER BIT:

MEMORY BIT:

NORMAL TWO-WORD:

TABLE 3-5. INSTRUCTION FORMATS

FORMAT EFFECTIVE ADDRESS COMMENTS

,~ 1<25~1 I• lxl Pl I I I
x x

The value of Y depends on the settings
D Y• x I: 1£ ~~- of the I, X, and P designators.

~ i If '!" If~ u g g g~ Q Q

,~ 1<~110 0
I I I , I I 0 0 0 0 1 1 1 1
10000100 when: X 0 0 1 1 0 0 1 1

p 0 1 0 1 0 1 Ul 1

I
I I I I I

I DATA P+1

I c:, C<25~1l1!xl1 o 0
1

0 o 0
1

0 o , I I I
Y • (tP + 11)1 (+XI

I I I

I •I
I

I ADDRESS

I 1
I I

o 0

1

ol OP

1

C<2s:>1 I olxl ol 1 0 0 1
Y • (w + 1t +9) I l+X)

I I

I• I I I I ADDRESS

I 1 1

1 0 0 I 1 0 0 I 1 I MODI I

I I
OP Not ApplK:able J

I 1

I I

, o 0
1

11 ~ I I I 1 1 0 0 OP ~

11 1

100
1

101
I

ol
I I

I CALL NO. ,........... 256 Calls allowed in AP
24 Calls allowed in CP

I I I I Io lx~uslA~esJ I 1 100101 , I OP Not Applicable Registers selected by XS, US, AS, ES.

I 1
I I I

1 I
I

IN I

I

I N is a bit number indexing flag:
1 0 0 1 0 1 OP BITNO. Not Applicable

if N = 1, Xis added to bit number.

I I

1 lxl el I
INI ~IT NO. I I 1 1 0 0 1 OP

if N = 0: Y = IP+ 11 (+el I (+XJ Bit no. is given absolutely in instruction

I• I
I I I I

I ADDRESS () [X +Bit=] if N = 1: Y = (P + 11(+eJ I +In pmrtof -
1
-
6

- Bit no. is given by 4 low-order bits of
X +Bit

I I

o!Blxl MOO I I

I I 1 1 0 1 OP
Y = (tP + 11 l+Bl)

1
(+XI

I I

I •I ADDRESS I

\.>.)

I
N

'°

I

TABLE 3-5. INSTRUCTION FORMATS (Cont)

NUMBER INSTRUCTION TYPE FORMAT EFFECTIVE ADDRESS COMMENTS

I 1
I

o!Blxlo !MODI I 1 0 1 OP 68 lWO-WORO, DIRECT
Y =IP+ 11 (+Bl [+XI Note that a 16-bit byte

BYTE ADDRESS: I I I

I
Address results

I BYTE ADDRESS
i

l.
I

o i
1

o!Blxl1IMODI
I

I
T Note that a 16-bit byte

I 1 lWO-WORD, INDIRECT
, OP

Y = ((P + 1) [+Bl) [+)(]
I Address results. Only

6C
1

one level of indirect addres-BYTE ADDRESS

!xi I I

WORD ADDRESS I I sing is possible

I I

o l BI x lxs!US!ASIEsl I , , 1 0 1 OP Registers selected by XS, US, AS, ES
60 MULTIPLE LOAD Y= (t1>+11[+8J)

1
[+X] in that order are loaded from/stored

AND STORE:

I• I I I I

I in consecutive addresses
ADDRESS

I 1

I

ojB Ix! MOD I I

I
! Note that a 16-bit result is obtained:

6E .. SPECIFIED MAP":
1 0 1 OP I if the most significant bit is 0,

H I I I I ADDRESS

I ____J________J_ _____

6F .. OTHER MEMORY": I' 1 1 o 1 o l e fx F Tr.tool oP l j

I · 1

~DDRESS
1

1 I

Y = (P + 1) [+Bl [+XI

1fi=O: Y=(P+11[+Bj i+Xi

. I . .\ -
if I= 1: Y = \IP+ 11 l+fllj [+XI

6G I lWO-WORD I 11
1

1 O 1 1 0 0 I MOD I ~p 11 Not Applicable I
IMMEDIATE: I I I I I I I

I DATA l

7A OPERATE (EXC. RNEGJ: I 1
1

1 0 1
1

1 O 1 lsouRCE I DEST. I OP txJ Not Applicable :

.l

I I I I I rx1 T 78 RNEG: I 1 . 1 0 1 1 0 1 SOURCE 1 1 1DEST. Not Applicable I

l
8 ONE-REGISTER SHIFT: I 1 I 1 0 1 I 1 1 0 I x I o~ I CO~NT I Not Applicable i

;

9 MULTIPLE REGISTER SHIFT: j 1 1 0 1

1

1 1 1 IX I OP I COUNT I Not Applicable i

10 IMMEDIATE I 1
1

1 1 I , OP I 1

DATA

1 I Not Applicable ~

use the system map; if it is 1,
use the user map.

Note that a 16-bit result is obtained.
AP .-nory can go to 65K, and 1s
addlWSed directly from the CP by
the9ll instructions. Only one level of
indirect addressing is possible.

I
I

J
!

i

I
I

I
I
I

I

l i

B The base of stack register. Always a 15-bit quantity.

(L)

(L)
I

[+x]

(+B]

The 16-bit contents of the memory location with address
L, mapped if made by the AP.

The result of running down an indirect address chain: the
quantity Lis interpreted as a 16-bit number. If the most
significant bit is 0, then the remaining 15-bits constitute
(L)I. Otherwise the remaining 15 bits are used as a
memory address to get a new 16-bit value for L, and the
process is repeated. If more than eight memory refer­
ences are made without reaching the end of the indirect
reference chain (a number with a most significant bit of
0), then an indirect address trap is generated.

Add the value in the X register if and only if the X desig­
nator in the instruction is set (=1). Indexing is usually
done after any indirect address references are
completed.

Add the value in the B register if and only if the B desig­
nator in the instruction is set (= 1). The contents of B are
always added before starting an indirect reference chain.
Note that the indirect address bit is tested before adding
B, so that the indirect address bit is never affected by B.

General Addressing Conventions

Basic Instructions. I, X, and P bits determine the use of the dis­
placement field in addressing as follows:

• Indirect Bit (I). If equal to 1, addressed word is start of
an indirect address chain.

• Index Bit (X). If equal to 1, X is added to effective ad­
dress (after completing indirect reference).

• Relative to P Bit (P). If equal to 1, displacement D is
added to program counter P. If equal to 0, displacement D
is added to B (exception: I = 0, X = 1, P = 0 results in
displacement being added to X).

3-30

Two-Word Instructions. In general, the contents of the second word of
the instruction are conditionally added to B (if B bit is set), an indi rcct
address chain is traced, and X is conditionally added (if X bit is set).

y = ((P + 1) (+B])I (+X]

3-31

GENERAL

IV ...

Instruction
Repertoire

In describing each instruction, five i1tems may appear underlined
preceding the instruction summarya The items are:

Mnemonic Name OpCode ~MociU Format

LOADS AND STORES

LDX Load X 00 lA, B, C, D

(y) - x

Load the contents of memory into the X register.
Modifiers: P, X, E, B, *, =
Refer to Table 4-l for the allowable address modifiers (and legal com­
binations) for basic instructions under formats lA, B, C, D.

lA formats. In general, these are used most frequently to load and
store variables where the "address" is within the range of the displace­
ment field, D. That is,

-128 s address ~ 127

is within the range of the current instruction.

lB formats. These are used, generally, to ace es s constants. It is the
closest thing to a literal in the 2+2 assembler. Literal pools, them­
selves, do not exist.

IC formats. This is the extended or two-word form of the basic instruc­
tion and is used to access address outside the range of the displacement

field.

4-1

TABLE 4-1. ADDRESS MODIFlERS FOR BASIC
INS.TRUCTION FORMATS lA, B, C, D

where, ··.

* = Indirect Addressing x = Indexing
p = Relative to P counter B = Relative to B register
E = Extended address format (2 word form)

and,

• All other combinations of modifiers are illegal

• The modifiers may be specified in any order

• "A" may not be a literal but is the address of the word to be
loaded

~---·

Format Example
Address Modifier

Restrictions
Code Codes

I x p

lA LDA A P+D 0 0 1 D = A-P; -128:;:; D :;:; 127

lA LDA* A (P+D) 1 0 1 D = A-P; -128:::; D:;:; 127

lA LDA A,X D+X or 0 1 0 if -128:::; A:;:; 127

P+D+X 0 1 1 if A< -128 or A> 127

IA LDA A,XP P+DtX 0 1 1 D = A-P; -128:::; D:;:; 127

lA LDA* A,X (P+D)+X 1 1 1 D = A-P; -128:;:; D:;:; 127

lA LDA A,B B+D 0 0 0 D = A-P; -128:SD:S 127

lA LDA* A,B (B+D) 1 0 0 D = A-P; - I28 :::; D :::; 127

lA LDA* A,BX (B+D)+X l I 0 D = A-P; -I28 :s D:::; 127

lB LDA =A P+l

lC LDA A,E (P+I)

lC LDA* A,E ((P+l))

lC LDA A,EX (P+I) +X

lC LDA* A,XE ((P+l))+X

lD LDA A,BE B + (P + 1)

ID LDA>:C A,EB (B + (P + I))

lD LDA A,BXE B + (P + I) + X

ID LDA* A,EXB (B + (P + 1)) + X

4-2

lD format. The -format is used to force address translation relative
to the base of stack or B register. This is needed only if the displace­
ment added to the contents of Bis not in the -128 to +127 range, or if

both B and X are to be added to the displacement.

LDXEA Load X with Effective Address 04(0)

Y-X

Load the effective address of memory into the X register.

Modifiers: B, X, *
LDXI Load X, Immediate 00 10

----·

LIT9 -x

6A

The 9-bit literal contained in bit positions 7-15 of the instruction is
loaded into the X register. The sign of the literal is extended through

Xo-6·

Modifiers: None.

STX Store X 01 IA, C, D

(X) -Y

Store the contents of the X register in memory location y.

Modifiers: P, X, .. B, E, *
_X_X_M_-.-_E_x_c_h_a_n ____ g_e..,...X_a_n_d_M_e_m_o_r y __ , 0 5 (0) ____ 6A_

(y)--X; (X)-y

The contents of the X register and memory location y are exchanged.

Modifiers: B, X, ~:c

LDU Load U 02 lA, B, C, D

(y) _ ... u

Load the contents of memory into the U register.

Modifiers : P , X , E , B, >:c, =

4-3

LDUI LoadU, Immediate
·~~~~~-----~~~~~~~~~~~-

01 10

LIT9-U

The 9-bi t literal contained in bit positioning 7-15 of the instruction is
loaded into the U register. The sign of the literal is extended through

Uo-6·

Modifiers: None.

STU Store U 03 lA, C, D

(U)-y

Store the contents of the U register in memory location y.

Modifiers: P, X, B, E, *
LDA Load A 04 lA, B, C, D

(y)-A

Load the contents of memory into the A register.

Modifiers: P, X, E» B, *, =

LDAEA Load A with Effective Address 04(2)

y-A

6A

Load the effective address of memory into the A register.

Modifiers: B, X, *
LDAI. Load A, Immediate 02 10

LIT9-A

The 9-bit literal contained in bit positions 7-15 of the instruction is
loaded into the A register. The sign of the literal is extended through

Ao-6·

Modifiers: None.

4-4

STA Store A 05 lA, C, D

(A)- y

Store the contents of the A register in memory location y.

Modifiers : P, X , B , E , ,:<

XAM Exchange A and Memory 05(22)
~~~~~~~---"---~~~~~~~---~· 

6A 

(y) -A; (A) -y 

The contents of the A register and memory location y are exchangedo 

Modifiers: B, X, ,!< 

LDE Load E 06 lA, B, C, D 

(y)- E 

Load the contents of memory into the E register. 

Modifiers: P, X, B, E, *, = 

LDEI Load E, Immediate 03 10 

LIT9-E 

The 9-bit literal contained ih bit positions 7-15 of the instruction is 
loaded into the E register. The sign of the literal is extended through 

Eo-6· 

Modifiers: None. 

STE Store E 07 lA, C, D 

(E)- y 

Store the contents of the E register in memory location y. 

Modifier s : P, X, B , E , ,:< 

4-5 



LDM Load Multiple 01 J 41 6D 
·~~~~~~~~-

( y, ... , y +n, 0 $ n $ 3) - X, U, A, and Io r E 

The selected registers, X, U, A, and/or E, are loaded from the con­
tents of memory locations y, y+l, ... , y+n, where n is determined by 
the number of registers selected. The variable field of the instruction 
has three subfields: the selected registers, the memory address, and 
modifiers, if any. For example: 

LDM EU, A, X 

The contents of A + X is loaded into the U register, and A + X + 1 is 
loaded into the E register. Registers are always loaded in the order 
X, U, A, and/or E, no matter how the order is specified in the 
symbolic instruction. 

Modifiers: B, X, * 

STM Store Multiple 02, 42 6D 

(X, U, A, and/or E)-y, ..• , y+n, 0$ n $ 3 

The contents of the X, U, A, and/or E registers are stored in memory 
locations y, y+l, ... , y+n, where n is determined by the number of 
registers selected. 

The variable field for this instruction contains three subfields: the 
selected registers, the memory address, and modifiers; if any. For 
example: 

STM AX,A,B 

The contents of the X and A registers are stored in memory locations 
B+A and B+A+l, respectively. Registers are always stored in the 
order X, U, A, and/or E, ho matter how the order is specified in the 
symbolic instruction. 

Modifiers: B, X, * 
PUSHM Push Multiple 0 4A 

(X, U, A, and/orE)-(T), .•. , (T) +n;O$n$3 

(T) + n + 1 - T 

4-6 



The contents of the selected registers, X, U, A, and/or E are stored 
in consecutive locations defined by the contents of the top of stack 
pointe.r, T. T is then incremented by n + l so that the pointer is set 
to the next available word in the stack. Registers are pushed into 
the stack in the order X, U, A, and/or E, no matter how the order 
is specified in the symbolic instruction. 

Stack overflow trap if (T) > (L). 

Modifiers: None. 

POPM Pop Multiple l 4A 

((T) - 1), ... , ((T) - n - 1)-•E, A, U, and/or X; 
0 ~ n ~ 3; (T) - n - 1-T 

The selected registers, E, A, U, and I or X are loaded from the 
memory location specified by the top of stack pointer, T. 

T is then decremented by n + 1 to reflect the next available word in the 
stack. Registers are popped from the stack into registers in the 
order E, A, U, and/or X, regardless of the order specified in the 
symbolic instruction. 

Stack underflow trap if (T) < (B). 

Modifiers: None. 

_P_U_S_H_N ___ P_u_s_h_N_u_11 __ 0_6 ..... (_0.._) __ 6_A_, G 

(T) + (y) - T 

The contents of the top of stack pointer, T, is incremented by the con­
tents of the memory location y. There are two forms to the instruction: 

6A format - Normal two word form 

PUSHN A 

The contents of A are added to the T register. 

Modifiers: B, X, * 
6G format - Immediate or literal form 

PUSHN =A 

The address or value A is added to the T register. 

Modifiers: None. 

Stack overflow trap if (T) > (L). Stack underflow trap if (T), (B). 

Modifiers: None. 

4-7 



''Specified map" instructions will be set to select the user map, which 
is the map in which the address is valid. 

MSKA.1 Mask Mode Bit 56(0) Z 

The t;omplement of the previous mode bit in the status register is 
logic 3.lly "anded" with bit 0 of the X register, and the result left in 
bit 0 of the X register. That is, if the previous mode bit is 1, bit 0 
of the X register is cleared. This is useful for passing addresses 
back from a system call to a calling routine: if the calling routine is 
system code, then bit 0 (map select bit) is left alone. If the calling 
routine is user code, then bit 0 (which is no longer map select in user 
code) is cleared. 

INPUT OUTPUT 

LDAC Load A from Console Switches 57 2 

The i6 data switches on the programmer's console are interrogated 
and their state placed in the A register. 

_LDMAP Load Map 60 Z 

A nu1nber of consecutive map entries are set from consecutive core 
locations: the starting map page number is in A (00-77, system map 
page~; 00 to 77; 100-177, user map pages 00 to 77), the starting core 
locati.on is in X, and the number of map cells to be loaded is in U. 
The format of the core locations to be transferred to the map is as 
follo,vs:. 

Not Used--~ 

§ 6 7 8 

Execute Protect 

Write Protect 

--- Read Protect 

IS 

Physical Page Number 
000 - 177 8 

....__Dirty Bit (Normally Set to 0) 

4-8 



LLDB Locate Leading Dirty Bit 70 2 

The map entries are inspected, beginning at the page number in X, for 
a "dirty" bit that is set. If one is found, the next instruction will be 
skipped and X will contain the page nurnber of the page containing the 
dirty bit. If none is found, the next instruction will be executed with 
no skip. The format of the X register when a dirty bit is found is as 
follows: 

15 

~~~~~~~,irtu~ 
0 9 10

Not Used

SIM SET Interrupt Mask 75 6A, 6G

0 -· System Map
l -· User Map

Page Number

00 - 77 8

The operand is logically ANDed with a constant of 137777B (all 1 's
except for the sys tern stack overflow interrupt mask bit) and placed
in the software interrupt mask registe:r. The firmware interrupt
mask register is then loaded from the software mask down to, but
not including, the bit number specified in bits 12-15 of the current
status register. The system stack overflow interrupt is generated
by firmware rather than by an external signal, so it is always en­
abled regardless of the contents of the mask registers.

DOUT Direct Output 75 2

The contents of the X register a re placed on the I I 0 address lines.
The contents of the A register are pl.aced on the I/O data lines, and
an I/O cycle is initiated. See descriptions of the I/O system for the
address codes used to access the various I/ 0 devices.

DIN Direct Input 74 2

The contents of the X register are placed on the I/ 0 address lines.
The I/O data lines are sampled after an appropriate delay and the data
sampled is placed in the A register. See descriptions of the I/O sys­
tem for the address codes used to access the various I/O devices.

4-9

IOC Input/ Output Control 71 2

This instruction is used in the Disk, Tape, and Communications I/0
subsystems. A channel code is given in X and a function code in A, to
control input or output to a tape unit, disk drive or communications
channel. The register formats are:

X Register (Channel Code)

0 6 7 8 15

[j- I 11 f I . ·--..... T-""--......._ ____ .,___c_h_a_n_n_e_1_N_umber (o to n-1 if there

Not Used are n channels implemented):
0 Communications

Input
1 Communications

Output
Z Tape
3 Disk

A Register (Function Code)

· 0 to 357 Communication Channels
8

0 to 7. Disk Drives
0 to 7 Tape Drives

0 15

~-I --L-No-t U-sed -------.

SIL Set Interrupt Lockout 72(0) 2

(Start communications
character mode input)

The firmware interrupt mask is set to zero, locking out all interrupts
except system stack overflow. The software mask is unchanged.

4-10

I_3:IL Release Interrupt Lockout 73(0) 2

The firmware interrupt mask is loaded from the software mask down
to, but not including, the bit number specified in bits 12-15 of the
current status register.

SR TRN System Return 2 4A

This instruction is used to return fron1 system calls. It resets the
status, program location counter, and stack pointers to the states
they had when the sys tern call was entered. It also restores any of
the registers X, U, A, and E that are not used for passing parameters.
If a return to user mode occurs, then the stack pointers are shifted
back to the user stack. Symbolically,

(B)- 7 - T

((T)) - s
((T)+l) - x if X flagged in instruction

((T)+2) - u if U flagged in instruction

((T)+3) - A if A flagged in instruction

((T)+4) - E if E flagged in instruction

((T) +5) - p

((T) +6) - B

If (B)>(T), stack underflow trap

If mode is now user (after S is restored), then:

((T)-3) - B

((T)-1) - L

((T)- 2) - T

The instruction count mechanism may be activated by setting ((B)- 7)
properly before executing SR TRN.

4-11

IR TRN Interrupt Return 64 2

Return from an interrupt routine, restoring registers to the state they
had when the interrupt became active:

(B)-7 - T

((T)) - S

((T)+l) - x

((T)+Z) - u
((T)+3) - A

((T)+4) - E

((T)+S) - p

((T)+6) - B

If (B)> (T), stack underflow trap

If mode is now user (after Sis restored), then:

((T)-3) - B

((T)-1) - L

((T)-2) - T

The firmware interrupt mask is loaded from the software interrupt
mask down to but not including the bit number specified in bits 12-15
of the restored status register. This enables all interrupts of higher
priodty (lower number) than the one to which the return is made.

HLT Halt 77 2

The processor enters the halt mode, lights the HALT status light on
the control panel, and stops executing instructions. The programmers
control panel is enabled while the processor is in the halt mode.

4-12

CHARACTER INSTRUCTIONS

LDC Load Character 64(0) 6B, C

Load the contents of byte location YB in.to bit positions 8-15 of the A
:register. Bit positions 0-7 of A are set to zero.

Modifiers: B, X,):c

STC Store Character 64(1) 6B, C

Store bit positions 8-15 of the A register into byte location yB. The A
register is unchanged.

Modifiers: B, X,):<

CPRS Compare Strings 052 2

Two byte strings in memory are compared. The byte addresses of the
first character of each string must initially be contained in the X and
A registers. The number of characters to be compared must be con­
tained in the U register.

A simple ASCII comparison is performed, character by character.
Hence, "G" is ,.,., ' 'F", and "5" is > "4".

If the string designated in the A register> string in the X register, the
next sequential instruction is executed.

If the string designated in the A register - string in the X register, the
next sequential instruction is skipped, and execution continues with the
following instruction.

If the string designated in the A register< string in the X register, the
next two sequential instructions are skipped, and execution continues
with the following instruction.

If an equal compare is made, the contents of the X and A registers
point one character beyond the last character compared. If an unequal
compare is made, the contents of the :X and A registers point to the
characters found to be unequal.

4-13

The CPRS instruction is interruptable and may be restarted.

Modifiers: None.

GFC Get First Character 65(0) 6A

Memory location y contains a byte address used to access a string.
The mstruction lo.ads the contents of the specified byte address into
bit positions 8-15 of the A register. Bit positions 0-7 of the A regis­
ter are set to zero.

The byte address referred to above is interpreted as a string pointet.
A string is thought of as being defined by two string pointers: a left
pointer (LP), and a right pointer (RP). For purposes of utilizing the
character instructions, these pointers are thought of as occurring in
pairs, left and right, respectively. The pointers are described in
more detail in the subsequent discussion of the GFCT instruction. The
reader is referred to this section for further explanation.

The GFC instruction simply loads one byte of a string into the A regis­
ter. No modification of the string pointers occurs. Therefore,
repeated execution of a GFC instruction results in repeatedly loading
the same byte.

Modifiers : B , X, *
GFC'::~ Get First Character with Test 65(1) 6A

String is tested for null; If not null, ((y)B)-A8 _ 15; O-Ao-7

Assume that the memory word pair BA and BA + 1 are memory loca­
tions containing byte addresses for two string pointers - the left pointer
and right pointer, respectively,

Both ~:he left and right pointers (LP and RP) are 16 bit byte addresses.
The left pointer indicates the first byte of the string. The right pointer
i~ set at the last byte of the string plus one.

4-14

The length of a designated string is always defined as RP-LP. A
string is defined as null if LP ::: RP. That is, if the left pointer has
caught up with or passed beyond the right pointer. All "get" and
"insert'' character instructions access and modify strings via the left
and right string pointers.

The instruction GFCT executes in the :following manner. First the
string pointers indicated at memory locations y and y + 1 are tested
for a null string. If the left pointer is greater than or equal to the
right pointer (LP ::: RP), the string is null, and execution continues
with the next sequential instruction. The contents of the A register
are unchanged.

If the string is not null, the contents of the byte address specified in
memory location y are loaded into bit positions 8-15 of the A register"
Bit positions 0-7 of A are set to zero. The next sequential instruction
is skipped and execution continues with the following instruction.

Modifiers: B, X, ':<

GCI Get Character and Increment 65(2) 6A

Memory location y contains a byte address used to access a string.
The instruction loads the contents of the specified byte address into bit
positions 8-15 of the A register. Bit positions 0-7 of A are set to
zero, and the byte address is incremented by one.

Modifiers: B, X, ~:<

GCIT Get Character and Increment with Test 65(3) 6A

String is tested for null; If not null, ((y)B)-A 8 _ 15 ; O-A 0 _7 ;

(y) + l -y

The string pointers indicated at memory locations y and y + 1 are
tested for a null string. If the left pointer is greater than or equal to
the right pointer (LP?: RP), the string is null and execution resumes
at the next sequential instruction. The contents of A are unchanged,
and the left pointer is not incremented.

If the string is not null, the contents of the byte address specified in
memory location y are loaded into bit positions 8-15 of the A register.

4-15

Bit position 0-7 of A are set to zero, and the byte address left pointer
is incremented by one. The next sequential instruction is skipped, and
execution resumes with the following instruction.

Modifiers: B, X, *
IFC Insert First Character 65(4) 6A

The contents of bit positions 8-15 of the A register replace the contents
of the byte address referred to by the contents of memory iocation y of
the instruction.

The byte in the A register is placed in the byte address defined by the
left pointer of the string. This instruction may develop a null string
since no test concerning the right pointer is made.

Modifie:rs: B, X, *
IFCT Insert First Character with Test 65(5) 6A

String is tested for null; If not null, (A8-15)-(y)B

The 3tring pointers indicated at memory location y and y + 1 are tested
for a null string. If the left pointer is greater than or equal to the
.right pointer (LP:::RP), the string is null and execution resumes at the
next sequential instruction. The byte specified by the left pointer is
unchanged.

If the string is not null, the contents of bit positions 8-15 of the A
register replace the contents of the byte address referred to by the con­
tents of memory location y of the instruction. The next sequential
instruction is skipped and execution resumes with the following
instruction.

Modifiers: B, X, *
IC! Insert Character and lncre·ment 65(6) 6A

(A8-1s)-(y)B; (y) + 1-y

The contents of bit positions 8-15 of the A register replace the contents
of the byte address ref erred to by the contents of memory location y of
the instruction. The byte address (left pointer) is incremented by one.

4-16

This instruction may develop a null string since no test concerning the
right pointer is made.

Modifiers: B, X, ~:<

ICIT Insert Character and Increment, with Test 65(7) 6A
~~~~~~~~~~~~~~-

String is tested for null; i{not null, (As-is)-(y)B; (y) + 1- y 

The string pointers indicated at memory locations y and y + 1 are 
tested for a null stringo If the left pointer is greater than or equal to 
the right pointer (LP~ RP), the string is null and execution continues 
with the next sequential instruction. The byte specified by the left 
pointer is unchanged, and the left pointer is not incremented. 

If the string is not null, the contents of bit positions 8-15 of the A 
register replace the contents of the byte address referred to by the con­
tents of memory location y of the instruction. The byte address (left 
pointer) is incremented by one. The next sequential instruction is 
skipped and execution continues with the following instruction. 

Modifiers: B, X, ~:c 

PRIVILEGED INSTRUCTIONS 

The machine operates in either system mode or user mode. The sys­
tem mode is the basic operating mode of the computer. In this mode, 
all legal operations are permissible.. It is assumed that there is a 
resident monitor that controls and supports the operation of all other 
programs. 

The user mode is the normal problem-solving mode of the computer. 
In this mode, certain privileged instructions are prohibited. Privi­
leged instructions are those relating to input/output and to changes in 
the basic control state of the computer. Any attempt by a program to 
execute a privileged instruction while the computer is in the user mode 
results in a trap that returns control to the resident monitor. This 
unconditionally aborts execution of the instruction and may result in 
aborting the job or programo 

A user pr.ogram cannot directly change the computer mode from user 
to system. However, the user prograrn can gain direct access to cer­
tain privileged program operations by means of the System Call 
instructions o The operations available through System Calls are 
established by the resident monitor. 

4-17 



LDAOM Load A from Other Memory 74(0) 6F 

Th,e addressed cell in "other memory" is loaded into the A register. -
If executed in the AP, the addressed cell in CP memory will be ob­
tained. If executed in the CP, the (unmapped) addressed cell in AP 
m-emory will be obtained. No protection violation is possible in either 
caf:ie. One level of indirect addressing through own, not other, mem­
ory is allowed. 

STAOM Store A in Other Memory 74(2) 6F 

Thd contents of the A register are stored in the addressed cell in 
"other memory." If executed in the AP, the contents of A are stored 
in CP memory. If executed in the CP, the contents of A are stored in 
AP memory (unmapped).. No protection violation is possible. One1 
level of indirect .addressing through~, not other, memory is 

1 

allowed. 

TS~L..iOM Test and Set Lock in Other Memory 74(3) 6F 

The contents of the addressed cell in other memory are set to O; if the 
prEvious contents of bit 15 of the addressed cell in other memory were 
1, skip. Otherwise take a normal return. This instruction is used to 
interlock critical areas of code between processors. Note that the 
address is unmapped and that no protection violation is possible. One 
level of indirect ad~ressing through own, not other, memory is 
allowed. 

LDAOMF Load A From Other Memory With Force 74(1) 6F 

The addressed cell in other memory (as in LDAOM) is loaded into the 
A register. No parity trap is permitted. The contents of the memory 
status register at the completion of the memory reference are loaded 
into the U register with the foi:mat 

0 8 15 

Not Used. ( =O) 

1 = Parity Error 
Not Used (=0) 

I = Parity Error 

One level of indirect addressing through own, not other, memory is 
allowed. 

4-18 



LDASM Load A through Specified Map _73(_2) 6E 

The addressed cell is loaded into th<:~ A register, using bit 0 of the 
final address as a "map select" bit. Bit #0=0 means use system map, 
bit #0=1 means use user map. (AP only) 

STASM Store A through Specified Map 73(2) 6E 

The contents of the A register are stored in the addressed cell, using 
the specified map as in LDASM. (AP only) 

LDXSM Load X through Specified Map 73(3) 6E 

The addressed cell is loaded into the X reg~ster using the specified 
map as in LDASM. Then the "specified map" bit is logically "ored" 
with hit 0 of the X register. This instruction is used for referencing 
addresses: the address obtained will have a "specified map" bit ap­
pended that specifies the map used to read the address 0 Thus the 
address will be interpreted through the map through which it was 
addressed. (AP only) 

LDASMF Load A through Specified Map with Force 73( 1) 6E 

The contents of the addressed cell in AP memory are loaded into the 
A register using the specified map as in LDASM. No parity or protec­
tion traps are allowed. The contents of the memory status register 
after memory reference are loaded into the U register with the format 

0 

Not Used ( =0) 

8 9 

--t Not Used (cO) 

Read Protect Bit From VAT 

1 - Parity Error 

Execute Protect Bit From VAT 

= Parity Error 

MRGM Merge Mode Bits 55(0) 2 

The "previous mode" bit of the computer's status register is logi­
cally "ored" with bit 0 of the X register, and the result left in bit 0 of 
the X register. This is useful for passing parameter addresses 
from one system call to another: if the parameter address came 
from user code, then the high order bit (map select bit in 

4-19 



POPN Pop Null 06( 1) 6A, G 

(T) - (y) -T 

The contents of the top of stack pointer, T, is decremented by the con­
tents of memory location y. There are two forms to the instruction: 

6A format - Normal two word form 

POPN A 

The contents of A are subtracted from the T register. 

Modifiers: B, X, >:< 

6G format - Immediate or literal form 

POPN =A 

The address or value A is subtracted from the T register. 

Mocifiers·: None. 

Stack overflow trap if (T) 
Stack underflow trap if (T) 

(L). 
(B). 

LDB Load B 07 6A, G 

(y) -B 

The contents of memory are loaded into the base of stack pointer B. 
The re are two forms to the instruction: 

6A format - Normal two word form 

LDB A 

The contents of A are loaded into the B register. 

4-20 



Modifiers: B, X, ~:c 

6G format - Immediate or literal form 

LDB =A 

The address or value A is loaded into the B register. 

Modifiers: None. 

STB Store B 10(0) 6A 

(B)- y 

Store the contents of the B register in memory location y. 

Modifiers: B, X, · * 

_L_D_S_P ___ L_o_a_d_S_t_a_ck_P_o_1_· n_t_e_r_s __ l_l~(.Q_}_ __ 6A 

(y, y+l, y+2)-B, T, L 

Load the contents of memory locations y, y + 1, and y + 2 into the 
stack pointers B, T, and L, respectively. 

Stack overflow trap if (T) > (L) 
Stack underflow trap if (T) < (B) 

Modifiers: B, X, * 
LDBTL. Load B, T, and L - 11 ( 1) 6A 

This instruction is the same as LDSP ·except that no stack overflow or 
underflow checks are made. 

STSP Store Stack Pointers 10ill. __ 6A_ 

(B, T, L) - y, y + 1, y + 2 

Store the contents of the B, T, and L registers in memory locations y, 
y + 1 , and y + 2. 

Modifiers: B, X, >:C 

4-21 



STZ Store Zeros 12(n) 6A 

0-y, ... , y + n - l; l :Sn :s 8 

Words of zeros are placed in memory locations y, ... , y + n - 1. 

The variable field for this instruction contains three subfields: the 
number n (absolute expression), the beginning memory address, and 
modifiers, if any. 

Modifiers: B, X, * 
LSABM Load Sign of A from Bit in Memory l 5 

(A 1- is) unchanged 

where i is a designated bit number. 

The sign position of the A register is loaded from the bit position of 
memory location y, designated by the bit number in the va~iable field 
of the instruction. 

The variable field of the instruction has three subfields: the bit number 
{absolute expression), the memory address, and modifiers, if any. 

The rules for modifiers X, and N are the same as those defined for the 
SETBM instruction. 

Modifiers: X, B, N, * 
SSA BM Store Sign of A in Bit in Memory 2 5 

where i is a designated bit number. 

The sign position of the A register is stored in the bit position of mem­
ory location y, designated by the bit number in the variable field of the 
instruction. 

4-22 



The variable field of the instruction contains three subfields: the bit 
number (absolute expression), the memory address, and modifiers, 
if any. 

The rules for modifiers X, and N are the same as those defined for the 
SETBM instruction. 

Modifiers: X, B, N,. * 
MOVE Move Word String 003 2 

Move (U) words from (X) to (A) 

N. words, specified in the U register, are moved from a source mem­
ory location, specified in the X register, to a destination memory 
location, specified in the A register. The instruction may be inter­
rupted and restarted without affecting its execution. 

Modifiers: Noneo 

CLX Clear X 00 10 

This instruction is the same as LDXI 0 

CLU Clear U 01 10 

This instruction is the same as LDUI 0 

CLA Clear A 02 10 

This instruction is the same as LDAI 0 

CLE Clear E 03 10 

This instruction is the same as LDEI 0 

LDF Load Floating Point Registers 41(3) 60 

This instruction is the same as LDM UAE. 

4-23 



ST? Store Floating Point Registers 42(3) 

This instruction is the same as STM UAE. 

LDD Load Double 41(3) 6D 

This instruction is the same as LDM UA. 

LINK Link Item Item Into FIFO List 67(0) 6A 

The LINK and DLINK instructions address a first in, first out (FIFO) 
queue with the following structure: 

Addressed Cell 
3 

0 3778 

Data 3773 

0 3778 

Data 

0 

The addressed cell contains start and end pointers for the elements of 
the queue. The cell following the addressed cell is queue entry number 
O. There are a maximum of 3778 entries in the queue (0 to 376

8
). A 

pointer of 3778 is used to mean "no pointer!'. Thus if the queue is 
empty, the addressed cell will contain 3778 in each byte. The example 
shows a queue of two entries, number 3 and number I. 

The LINK instruction operates as follows: 

The contents of the X regi~ter, 0:::: (X) :::: 376
8

, are the e~try n~mber to 
be added to the queueo This entry must not already be lmked rnto the 
queue, (i.e., must have a forward pointer of 377. and must not be 
pointed to by the queue end pointer). If this test iails then a no skip 
return is given. Otherwise a new queue entry is added to the end, with 
the data given in the low order 8 bits of A. 

4-24 



DLINK Remove Item from FIFO List 67(1) 6A 

The number of the first item in the queue is placed in X, the data is 
plac~d in the lower byte of A, the iterrL is removed from the queue, and 
a skip return is given. If there are no items in the queue a no skip re­
turn is given. 

!NTER-REGISTER INSTRUCTIONS 

RCPY Register Copy 0 7A 

(S) - D 

where Smay be X, U, A, E, B, T, L, or 1 
and D may be X, U, A, E, B, T, or L. 

The contents of the source register S are loaded into the destination 
register D. For example, 

RCPY lE 

places the constant 1 in the E register. 

Modifiers: None. 

RNEG Register Negate 7B 

(S) - D 

where Smay be X, U, A, E, B, T, L, or 1 
and D may only be X, U, A, or E. 

The contents of the source register S are negated and the result is 
loaded into the destination register D. When the source and destination 
registers are the same the argument need only be specified once. Hence, 

RNEG UU 

is equivalent to RNEG U 

Modifiers: None. 

RXCH Register Exchange 

(S) - D; (D) -+ S 

where Smay be X, U, A, or E 
and D may be X, U, A, or E. 

005-012 2 

The contents of the specified registers are exchanged. 

4-25 



For example, 

RXCH AE 

exchanges the contents of the A and E registers. 

Modifiers: None. 

XS_A __ ~Ex ___ te_:n._d __ S_i~g_n __ o_f_A __ ~_O_l_4 ____ 2_ 

(A0 ) - U 

The sign of A, bit position 0, is extended through the U register. This 
instruction is very useful in preparing a single word argument for a 
double word instruction - as in a fixed point divide, etc. 

Modifiers: None. 

RDS Read Status 015 2 

(Status) - A 

where (Status) = machine status. 

The contents of the (Status) register are placed into the A register. 
Bit positions and functions are described in Table 4-2, Status Word 
Contents. 

Modifiers: None. 

FIXED-POINT ARITHMETIC 

ADX Add to X 12 IA, B, C, D 

(X) + (y) - X 

The contents of memory location y are added to the contents of the X 
register. 

Modifiers: P, X, E, B, *, = 

ADXI Add to X, Immediate 04 10 
--------~-----------

(X) + LITO - X 

The 9-bit literal contained in bit positions 7-15 of the instruction (with 
sign extended) is added to the contents of the X register. 

Modifiers: None. 

4-26 



ADXIS Add to X, Immediate and Skip 05 10 

Skip if X = O; if not set (X) + LIT9 - X 

If X is zero, the next sequential instruction is skipped and the following 
instruction is executed. If X is not zero, the literal in bit positions 
7-15 is added to the X register as in the ADXI instruction. 

Modifiers: Noneo 

SBX Subtract from X 16 IA, .B, C, D 

(X) - (y) - X 

The contents of memory location y are subtracted from the contents of 
the X register. 

Modifiers: P, X, E, B, *, = 

RSBX Reverse Subtract X 15( 1) 6A, G 

(y) - (X) - X 

The contents of the X register are subtracted from the memory location y. 

Modifiers: P, X, E, B, >:(, = 

MPX Multiply X 

(X) >:( (y) - X 

13(0) 6A, G 

The contents of the X register and memory location y are multiplied. 
The result is placed in the X register. 

Modifiers: B, X, >:<, = 

ADU ADD to U 14(0) 6A, G 

(U) + {y) - U 

The contents of memory location y are added to the contents of the U 
register. Overflow (OF) may be set. Carryout (CO) is set or reset. 

Modifiers: B, X, *, = 

ADU! Add to U, Immediate 06 10 

(U) + LIT9 - U 

The 9-bit literal contained in bit positions 7-15 of the instruction (with 
sign extended) is added to the U register. Overflow (OF) may be set. 
Carryout (CO) is set or reset. 

Modifiers: None. 
4-27 



SBU __ S_u_b_tr_a_.c_t_fr_o_m_. _U __ l_4-..:(:.-l-'-) __ 6_A-='-G 

(U) - (y) - U 

The contents of memory location Y are subtracted from the U register. 
Overflow (OF) may be set. Carryout (CO) is set or reset. 

Modifiers: B, X, *, = 

ADA Add to A 10 IA, B, C, D 

(A) + (y) - A 

The contents of memory location y are added to the A register. Over­
flow {OF) may be set. Carryout (CO) is set or reset. 

Mod~.fiers: P, X, E, B, *, = 

ADAI __ A_d_d_tc_) __ A __ , _I_m_m_ed_ia_t_e ___ O_? __ l_O_ 

{A) + LIT9 - A 

The 9-bit literal contained in bit positions 7-15 of the instruction (with 
sign extended) is added to the A register. Overflow {OF) may be set. 
Carryout (CO) is set or reset. 

Modifiers: None. 

SBA Subtract from A 14 IA, B, C, D 

(A) - (y) - A 

The ,;ontents of memory location y are subtracted from the A register. 
Overflow {OF) may be set. Carryout (CO) is set or reset. 

Modifiers: P, X, E, B, *, = 

RSBJ~~--R-· _e_v_e_r_s_e __ S_u_b_tr_a_c_t __ A _____ l4 ___ (2~).__ __ 6_A ___ ,_G_ 

(y) - (.A) - A 

The contents of the A register are subtracted from memory location y. 
The r·esult is placed in the A register. Overflow (OF) may be set. 
Carryout {CO) is set or reset. 

Modifiers: B, X, *• = 

MPA~_M __ u_lt_i_pl._y_A _____ I_3~(1~) ____ 6A __ ,_G_ 

(A) * (y) ..... U, A 

The contents of the A register and memory location y are multiplied. 
The two word product is placed in the extended accumulator U, A. If 

4-28 



the product does not fit in one register, overflow (OF) is set. That is, 
if either (A

0
) = 0 and (U) = 0, or if (A

0
) = 1, and (U) = 177777. 

Modifiers: B, X, >:~, = 

DVUA Divide U and A 

(U, A) I (y) - A; Remainder - U 

The contents of the extended accumulator U, A are divided by the con­
tents of memory location y. The quotient is placed in the A register. 
The remainder is placed in the U register. Overflow (OF) may be set. 

Modifiers: B, X, >:~, = 

DVA Divide A 16( 1) 6A, G 

(A) I ( y) - A; Remainder - U 

The contents of the A register. are divided by the contents of m.emory 
location y. The quotient is placed in the A register. The remainder 
is placed in the U register. Overflow (OF) may be set. 

Modifiers: B, X, :-:c, = 

RDVA Reverse Divide A 16(3) GA, G 

( y) I (A) - A; Remainder - 1J 

The contents of memory location y are divided by the contents of the A 
register. The quotient is placed in the A register. The remainder is 
placed in the U register. Overflow (OF) may be set. 

Modifiers: B, X, :>!<, = 

RADD Register Add 1 7A 

(D) + (S) ...... D 

where Smay be X, U, A, E, B, T, L, or 1 
and D may be X, U, A, E, B, T, or L. 

The contents of the source register S are added to the contents of the 
destination register D. If the source and destination registers are the 
same, the argument need only be specified once. Hence, 

RADO XX 

is equivalent to RADD X 

Modifiers: None. 

4 .. 29 



RSU B ___ R_e_g_is __ t_e_r_S_u_b_t_r_a_c_t __ 2 ___ 7 A_ 

(D) - (S) - D 

where S = X, U, A, E, B, T, L, or 1 

and D = X, U, A, E, B, T, or L. 

The contents of the source register S are subtracted from the contents 
of the destination register D. If the source and destination registers 
are the same, the argument need only be specified once. Hence, 

RSUB TT 

is equivalent to RSUB T 

Modifiers: None. 

ADDM Add to Memory 

(y) + (A) - y 

17(0) 6A 

The ::ontents of the A register are added to the contents of memory 
location y. Overflow rri.ay be set. Carryout is set or reset. The con­
tents of A are :not changed. 

Modifiers: B, X, * 
SUBM Subtract from Memory 17( 1) 6A 

(y) - (A) ~ y 

The Gontents of the A register are subtracted from the contents of 
memory location y. Overflow may be set. Carryout is set or reset. 
The contents of A are not changed. 

Modifiers: B, X, * 
M.INC ___ M_e_m_o __ r~y'--I_n_c_r_e_m_e_n~t,'--S_k_i~p __ Z_O_(~S_C_._) __ 6_A 

( y) + I - y; Skip on Condition 

The contents of memory location y are incremente.d by one. The con­
tents of memory location y. are compared to zero. If the specified con­
dition is met, the next sequential instruction is skipped and the follow­
ing instruction is executed. 

The variable field of the instruction may have three subfields. They 
are: The skip condition, the address, and modifiers, if any. For 
ex~mple, 

MING GE, A 

4-30 



The contents of A are increased by one. If the result is "greater than 
or equal to" (GE) zero, the next sequential instruction is skipped. 

Refer to Table 4-2 for the mnemonics and meaning for all skip condition 
instructions. 

TABLE 4-2. CONDITIONS FOR ALL SKIP/JUMP INSTRUCTIONS 

Condition Meaning 
Skip/ Jump Condition 

bits 7, 8, 9 of instruction 
--~~~~~-+-~~~~·~~~~~~~·~-~~·~--~~~~~~-~~~~~--~--

N 
GT 
EQ 
GE 
LT 
NE 
LE 
u 

MDEC 

Never Skip (Jump) 
Greater than 
Equal 
Greater than or Equal to 
Less than 
Not Equal 
Less than or Equal to 
Unconditional Skip (Jump) 

Memory Decrement, Skip Z 1 (SC) 

(y) - 1 - y; Skip on Condition 

6A 

000 
001 
010 
011 
100 
101 
110 
111 

The contents of memory location y are decremented by one. If the 
specified condition is met, the next sequential instruction is skipped 
and the following instruction executed. 

The variable field of instruction may have three subfields. They are: 
the skip condition, the address, and modifiers, if any. For example, 

MDEC EQ, A 

The contents of A are decremented by one. If the result is zero, the 
next sequential instruction is skipped. 

Modifiers: B, X, * 
TAD Triple Add 26(0) 6A 

(U,A,E) + (y, y + 1, y + 2) - U,A,E 

The contents of the memory locations y, y + 1, and y + 2 are added to 
the contents of U, A, E. If the sign magnitude add results in an over­
flow, the results are right shifted one and the overflow bit is set. 

Modifiers: B, X, * 

4-31 



NTAD Negate Tr ~l_e_A_d_d __ 2_6--'(_3~) __ 6A_ 

-(U,A, E) - (y, y +l, y + 2) -u,A, E 

The contents of U,A, E and (y, y + 1, y + 2) are negated. After ne­
gated both the results are added and placed in U, A, E. If overflow 
occurs, the results are right shifted ·one and the overflow bit is set. 

Mod Lfiers: B, X, * 
TSB Triple Subtract 26( 1) 6A 

·~~~~~~~~ 

(U,A, E) - (y, y +l, y + 2) - U,A,E 

The contents of the memory locations (y, y + 1, y + 2) are subtracted 
frorrt the contents of U,A, E. If overflow occurs, the results are right 
shifted one and the overflow bit is set. 

Mod;fiers: B, X, * 

RTS-8 Reverse Triple Subtract 26(2) 6A 

Y, y + 1, y + 2) - (U,A, E) - U,A, E 

The :ontents of U,A, E are subtracted from (y, y + 1, y + 2) and the 
results placed in U, A, E. If an overflow occurs, the results are right 
shifted one and the overflow bit is set. 

Modifiers: B, X, ~:~ 

TMF Triple Multiply 24( 1) 6A 

(U,A,E) * (y, y + l, y + 2) - U,A,E 

This is a 3 word (sign magnitude) integer multiply. If an overflow occurs, 
the overflow bit will be set. 

Modifiers: B, X, ):< 

TMPF Triple Multiply Fractional 24(3) 6A 

(U,A,E) (y, y + 1, y + 2) - U,A,E 

This instruction was implemented for use within a 4 word floating point 
multiply routine. This instruction ignores both input signs and uses the 
sign bit of the result to return an extra bit of significance. For example: 

010 0 * 010---0 - 010 0 
110 0 * 01cr--o = 010 0 
110----0 * 110---0 = 010 0 
01111 ... l * 01111 ... 1 = 1111 

This instruction does not affect overflow or carryout bits. 

4-32 



TDV Triple Divide 25( 1) 6A 

(U,A, E) / (y, y +l, y + 2) - U,A, E 

This is a 3 word (sign magnitude) integer divide. If any number is 
divided by zero, overflow will occur a.nd the overflow bit will be set. 

Modifiers: B, X, * 
TDVF Triple Divide Fractional 25(3) 6A 

( U, A, E) I ( y, y + 1 , y + 2) -· U, A, E 

This instruction was implemented for use within a 4 word floating 
point divide routine. This instruction ignores both input signs and us es 
the sign bit of the result to return the most significant bit of the results. 
For example: 

OlCT-o/OlCT-o -· lCT-o 
110 0/010-U - 10-U 
110--0/110-U -· 10-U 
0111 ... l/Olu---1) = 1111 ... 1 
OlUU/01111 ... 1 = 01000 .. . 

This instruction does not affect overflow or carryout bits. 

ADAS Add to A, Stack 020 2 

((T) - 1) +(A) - A; (T) - 1-T 

The most current item in the stack (pointed to by the top-of- stack 
pointer T) is added to the contents of the A register. The entry is 
popped from the stack when the contents of the T register are decre­
mented by 1. 

Overflow may be set. Carryout is set or reset. Stack underflow trap 
occurs if ( T) < ( B). 

Modifiers: None. 

SBAS Subtract from A, Stack 021 2 

(A) - ( ( T) - 1) - A; ( T) - l ~... T 

The most current item in the stack (pointed to by the top-of- stack 
pointer T) is subtracted from the contents of the A register. The entry 
is popped from the stack when the contents of the T register are decre­
mented by· one. 

4-33 



Overflow may be set. Carryout is set. Carryout is set or rest. Stack 
underflow trap occurs if ( T) < ( B). 

Modifiers: None. 

RS BAS Reverse Subtract from A, Stack 022 2 

((T) - 1) - (A) - A; (T) - 1 - T 

The contents of the A register are subtracted from the most current 
item in stack (pointed to by the top-of-stack pointer T). The result is 
placed in the A register. The entry is popped from the stack when the 
contents of the T register are decremented by one. 

Overflow may be set. Carryout is set or reset. Stack underflow 
occurs if ( T) ~ ( B). 

Modifiers: None 

MPAS Multiply A, Stack 023 2 

(A)* ((T) - I)...,. U, A; (T) - 1 ... T 

The most current item in the stack is multiplied by the contents of the A 
register. The double word product is placed into the extended accumulator 
U, A. The entry is popped from the stack when the contents of the T 
register are decremented by one. 

Stack underflow trap occurs if (T) < (B). Overflow is set if either {Ao) = 0 
and (U) -# O, or, if (Ao) = 1 and (U) ;'I! 1 77777. That is, if the product does 
not fit into one register. 

Modi:ier: None. 

DVAS Divide A, Stack 024 2 

{A)/({T)-1) - A; (T) - ..... T; Remainder - U 

The contents of the A register are divided by the most current item in the 
stack. The quotient is placed in the A register, and the remainder is 
placed in the U register. The entry in the stack is popped when the 
contents of the T register are decremented by one. 

Overflow may be set. Stack underflow trap occurs if (T) < (B). 

Modifiers: None .. 

4 .. 34 



RDVAS Reverse Divide A, Stack 025 2 

((T) -1)/(A) - A; (T) - 1 - T; Remainder - U 

The most current item in the stack is divided by the contents of the A 
register. The quotient is placed in the A register, and the remainder 
is placed in the U register. The entry in the stack is popped when the 
contents of the T register are decrernented by one. 

Overflow may be set. Stack underflow trap occurs if (T) < (B). 

Modifiers: None. 

ADUS Add to U, Stack 25(0) ;~ 

((T) - 1) + (U) - A; (T) - 1 - T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is added to the contents of the U register. The entry is 
popped from the stack when the contents of the T register are decre­
mented by 1. 

Overflow may be set. Carryout is set or reset. Stack underflow trap 
occurs if ( T) < ( B ). 

Modifiers: None. 

SBUA Subtract from A, Stack 2 

(U) - ((T) - 1) - U; (T) - 1 - T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is subtracted from the contents of the U register. The entry 
is popped from the stack when the contents of the T register are decre­
mented by one. 

Overflow may be set. Carryout is set. Carryout is set or reset. Stack 
underflow trap occurs if ( T) < ( B). 

_D_V_U_A_S __ D_i v_i_d_e_U_A_,_S_ta_c_k ___ 2_7 ____ ( OJ_ __ 2 

(U,A) I ((T) - 1) - A Remainder - U (T) - 1 - T 

The contents of the U, A registers are divided by the most current item 
in the stack. The quotient is placed in the A register, and the remainder 



is placed in the U register. The entry in the stack is popped when the 
contc.mts of the T register are decremented by one. 

Overflow may be set. Stack underflow trap occurs if ( T) < (B). 

Modifiers: None. 

ADXS Add to X, Stack 020 2 

(( T) - 1 + (X) - X; ( T) - 1 ... T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is added to the contents of the X register. The entry is 
popped from the stack when the contents of the T register are decre­
mented by 1. 

Overflow may be set. Carryout is set or reset. Stack underflow trap 
occurs if (T) < (B). 

Modifiers: None. 

SBX~i Subtract from X, Stack 
~__.__~~~~~~~~-

021 2 

(X) - ((T) - 1 - A; (T) - 1 - T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is subtracted from the contents of the X register. The entry 
is popped from the stack when the contents of the T register are decre­
mented by one. 

Overflow may be set. Carryout is set. Carryout is set or reset. Stack 
underflow trap occurs if (T) < (B). 

Modifiers: None. 

RS BXS Reverse Subtract from X, Stack 022 2 

((T) - 1) - (X) - X; (T) - 1 - T 

The .;ontents of the X register are subtracted from the most current 
item in stack (pointed to by the top-of-stack pointer T). The result is 
placed in the X register. The entry is popped from the stack when the 
c ontc:nts of the T register are decremented by one. 

Overflow may be set. Carryout is set or reset. Stack underflow occurs 
if(Ti<(B). 

Modifiers: None. 

(X)*((T) - 1) -X; (T) - 1 - T 

4-36 



The most current item in the stack is multiplied by the contents of the 
X register. The product is placed into the X register. The entry is 
popped from the stack when the contents of the T register are decre­
mented by one. 

Stack underflow trap occurs if ( T) < ( B). 

Modifier: None. 

TADS Triple Add Stack 33(0) 2 

(U,A, E) + ((T) - 3, (T) - 2, (T) ·· 1) - U,A, E; (T) - 3 - T 

The three most current words in the stack {pointed to by the top of 
stack pointer T) are added to the three-word accumulator U,A, E. The 
value is automatically popped from the stack when the T register is 
decremented by three. If the sign magnitude add results in an overflow, 
the results are right shifted one and the overflow bit is set. 

An overflow or underflow trap may occur. Stack underflow trap occurs 
if initially ( T) - 3 < { B). 

Modifiers: None. 

NT ADS Negative Triple Add Stack 3~(3) 2 

-(U,A,E) - {(T - 3, (T) - 2, (T) - 1) - U,A,E; (T) - 3 - T 

U, A, E and its 3 most current words in the stack are negated, then 
added toge"ther and results placed in U, A, E. The value is automatically 
popped from the stack when the T register is decremented by thre.e. 

If overflow occurs, the results are right shifted one and the overflow 
bit is set. 

Modifiers: None. 

TSBS Triple Subtract, Stack 33( 1) 2 

(U,A,E) - ((T) - 3, (T) - 2, (T)- 1 - U,A,E; (T) - 3 -T 

The three most current words in the stack {pointed to by the top-of- stack 
pointer T) is subtracted from the three-word accumulator U, A, E. The 
value is automatically popped from the stack when the T register is 
decremented by three. If overflow occurs, the results are right shifted 
one and the overflow bit is set. 

An overflow or underflow trap may occuro Stack underflow trap occurs 
if initially ( T) - 3 < ( B ). 

Modifiers: None. 



RTSBS Reverse Triple Subtract, Stack 33(2) 2 

( ( T) - 3, ( T) - 2, ( T) - 1) - ( U, A, E) - U, A, E; ( T) - 3 - T 

The quantity in the three-word accumulator U, A, E is subtracted from 
the three most current words in the stack. The result is placed in 
U, A: E. The item is automatically popped from the stack when the T 
register is decremented by three. If an overflow occurs, the results 
are :"ight shifted one and the overflow bit is set. 

· An overflow or underflow may occur. Stack underflow trap occurs if 
initially ( T) - 3 < ( B). 

Modifiers: None. 

TMFS Triple Multi . .._p_.l y __ ,_S_ta_c k ___ 3_1~( _1 ) ___ 2_ 

(U,A,E) >:< ((T) - 3, (T) - 2, (T) -1) - U,A,E; (T) - 3 - T 

The 3 word (sign magnitude) integer in the accumulator U, A, E, is 
multtplied by the three most current words in the stack. The product 
is pl.1.ced in U, A, E. Three words are automatically popped from the 
stack when the T ·register is decremented by three. If an overflow occurs, 
the cverflow bit will be set. 

A stc~ck overflow or underflow may occur. Stack underflow trap occurs 
if initially ( T) - 3 < ( B). 

Modifiers: None. 

T MF_F_S __ T_r ..... i p_l_e_M_ul_t_i_p_le_F_r_a_c_t_i_o_n_a_l_S_ta_c_k __ 3_1""""(...._3 ..... ) __ 2 

(U,A, E) * ((T) - 3, (T) - 2, (T) - I) - U,A, E; (T) - 3 - T 

The •1uantity ~n the three-word accumulator U, A, E, is multiplied by the 
three most current words in the stack. The product is placed in U, A,E. 
The ~ words are automatically popped from the stack when the T regis­
ter i 3 decremented by three. 

The .nstruction was implemented for use within a 4 word floating point 
mulLply routine. This instruction ignores both input signs and uses 
the sign bit of the result to return an extra bit of significance. 

010 0 * 010 0 = 010 0 
110--0 * 010--0 = 01cr--u 
110 0 * 110 0 = 010 0 
01111 ..• 1 * 01111 ..• 1 = 1111 

This instruction does not affect overflow or carryout bits. 

4-38 



A stock overflow or underflow may occur.. Stack underflow trap occurs 
if initially ( T) - 3 < ( B). 

Modifiers: None. 

TDVS Triple Divide, Stack 32( l) 2 

(U,A, E) / ((T) - 3, (T) - 2, (T) - 1) ..... U,A, E; (T) - 3 ..... T 

The 3 word (sign magnitude) integer ill the accumulator U, A, E, is 
divided by the three most current words in the stack. The quotient is 
placed in U, A, Eo The item is automatically popped from the stack 
when the T register is decremented by three. If any number is divided 
by zero, overflow will occur and the overflow bit will be set. 

A stack overflow or underflow trap m.ay occur. Stack underflow trap 
occurs if initially ( T) - 3 < ( B). 

Modifiers: None. 

TDVFS Triple Divide Fra.ctional, s .. _ta_c_k __ 3_2_( __ 3_..;) ___ 2 

(U,A,E) I ((T) - 3, (T) - 2, (T) - 1) ..... U,A,E; (T) - 3 ..... T 

The quantity in the three-word accu:mulator U, A, E, is divided by the 
three most current words in the stack.. The quotient is placed in 
U, A, E. Three words are automatically popped from the stack when 
the T register is decremented by three. 

This instruction was implemented for use within a 4 word floating point 
divide routineo This instruction ignores both input signs and uses the 
sign bit of the result to return the most significant bit of the results. 
For example: 

010 O/OlUU = lIT----0 
110 0/010 0 = IOU 
llU--0/llUU = lU--0 
01111 •.. 1/010---U = 1111 ... 1 
o 1 o o Io 1111 . . . l = o 1 ooo .. . 

This instruction does not affect overflow or carryout bits. 

A stack overflow or underflow trap ma.y occur. Stack underflow trap 
occurs if initially ( T) - 3 < ( B)~ 

Modifiers: None. 

4-39 



TNEG Triple Negate 53 2 

If [(U) (±) (A) (±) (E)] 0 Then (Uo) - Uo 

This instruction changes the sign bit of the U register if U, A, and E 
are not all equal to zero. If U = 0, A = 0, and E = 0 the instruction is 
a NOP. 

Modifiers: None 

FLOATING POINT ARITHMETIC 

FAD Floating Add 23(0) 6A 

(U, A, E)+(y, y+l, y+2)-U, A, E 

The floating-point quantity contained in memory locations y, y + 1, and 
y + 2, is added to the contents of the three-word floating-point accumu­
lator U, A, and E. The result is normalized. 

A flol.ting-point overflow or underflow trap may occur. 

Modi:iers: B, X, * 
NFAD Negated Floating Add 23(3) 6A 

- (U, A, E) - (y, y + 1, y + 2) - U, A, E 

U, A, E and the floating-point quantity contained in memory locations 
y, y + 1, y + 2, are negated. After negating the two quantities are add 
and the results placed in U, A, E. 

A floating-point overflow or underflow trap may occur. 

Modi:Iers: B, X, * 
FSB Floating Subtract 23( 1) 6A 

(U, A, E) - (y, y + 1, y + 2) - U, A, E 

The floating-point quantity contained in memory locations y, y + 1, 
y + 2, is subtracted from the contents of the three-word accumulator 
U, A .. , E. The result is normalized. 

A floating-point overflow or underflow trap may occur. 

Modifiers: B, X, * 

4-40 



RFSB Reverse Floating Subtract 23(2) 6A 
·---

(y, y + 1, y + 2) - (U, A, E) ·• U, A, E 

The floating-point quantity contained in the 3 word accumulator U, A, 
E, is subtracted from the contents of memory locations y, y + 1, y + 2. 
The result is normalized and placed into the three-word accumulator U, 
A, E. 

A floating-point overflow or underflow trap may occur. 

Modifiers: B, X, * 
FMP Floating Multiply 24(0) 6A 

(U , A, E) * ( y , y + 1 , y + 2) -1.. U , A, E 

The floating-point quantity contained in the three-word accumulator, 
U, A, E, is multiplied by the contents of memory location y, y + 1, 
y + 2. The result is normalized. 

A floating-point overflow or underflow trap may occur. 

Modifiers: B, X, * 
FDV Floating Divide 25( 0) 6A 

(U , A , E) / ( y, y + 1 , y + 2) ~.. U, A, E 

The floating-point quantity contained in the three-word accumulator U, 
A, E, is divided by the contents of the memory locations y, y + 1, 
y + 2. The result is normalized and placed in U, A, E. 

A floating-point overflow or underflow or underflow trap may occur. 

Modifiers: B, X, * 
RFDV Reverse Floating Divide 25(2) 6A 

(y, y + 1, y + 2) / (U, A, E) ..... U, A, E 

The contents of memory locations y, y + 1, y + 2 are divided by the 
floating-point quantity contained in the three-word accumulator U, A, 
E. The result is normalized and placed in U, A, E. 

A floating-point overflow or underflow trap may occur. 

Modifiers: B, X, * 
FADS Floating Add, Stack 30(0) 2 

(U, A, E) + ((T) - 3, (T) - 2, (T) - 1) ~ U, A, E; (T) - 3 - T 

The most current floating-point quantity in the stack (pointed to by the 
top of stack pointer T) is added to the three-word accumulator U, A, E. 

4-41 



The value is automatically popped from the stack when the T register is 
deer emented by threeo 

A floating-point overflow or underflow trap may occur. Stack under -
flow trap occurs if initially (T)-3 < (B). 

Modifiers: None. 

NFADS Negated Floating Add, Stack 30(3) 2 

- (U, A, E) - ((T) - 3, (T) - 2, (T) - 1) - U, A, E; (T) -3 - T 

U, A, E and the 3 most current words in the stack are negated, then 
added together and results placed in U, A, E. The value is auto­
mati,:ally popped from the stack when the T register is dee remented 
by three. 

A floating-point overflow or underflow trap may occur. Stack under­
flow trap occurs if initially (T)-3 < (B). 

Modifiers: None. 

FSBE Floating Subt r_a_c_t_,_S_t_a_c_k __ 3_0_(~1~) __ 2_ 

(U, A, E) -((T) - 3, (T) - 2, (T) - 1) - U, A, E; (T)-3 - T 

The most current floating-point quantity in the stack (pointed to by the 
top-cf-stack pointer T) is subtracted from the three-word accumulator 
U, A, E. The value is automatically popped from the stack when the 
T register is decremented by three. 

A floating-point overflow or underflow tr~p may occur. Stack under­
flow trap occurs if initially (T) - 3 < (B). 

Modifiers: None. 

RFSiiS Reverse Floating Subtract, Stack 30(2) 2 

((T) - 3, (T) - 2, (T) - 1) - (U, A, E) - U, A, E; (T)-3 - T 

The floating-point quantity in the three-word accumulator U, A, E is 
subtracted from the most current floating-point item in the stack. The 
result is placed in U, A, E. The item is automatically popped from the 
stack when the T register is decremented by three. 

A floa.ting-point overflow or underflow may occur. Stack underflow trap 
occurs in initially (T) - 3 < (B ). 

ModLiers: None. 

4-42 



_F_M_P_S __ F_l_o_a_ti_n ....... g _____ M_u_l_t_i p_l __ y_,_S_ta_c_k ___ 3 I ill_ __ 2 

(U, A, E) * ((T) - 3, (T) - 2, (T) - 1) - U, A, E; (T) - 3 - T 

The floating-point quantity in the three ·-word accumulator U, A, E, is 
multiplied by the most current floating point item in the stack. The 
product is placed in U, A, E. The item is automatically popped from 
the stack when the T register is decremented by three. 

A floating-point overflow or underflow :may occur. Stack underflow 
trap occurs if initially (T) - 3 < (B). 

Modifiers: None. 

FDVS Floating Divide, Stack 32(0) 2 

(U, A, E) / ((T) - 3, (T) - 2, (T) - 1) - U, A, E; (T)-3 - T 

The floating-point quantity in the three -·word accumulator U, A, E, is 
divided by the most current floating-point item in the stack. The 
quotient is placed in the U, A, E. The item is automatically popped 
from the stack when the T register is decremented by three. ' 

A floating-point overflow or underflow t:rap may occur~ Stack underflow 
trap occurs if initially (T)-3 < (B). 

Modifiers: None. 

RFDVS Reverse Floating Divide, Stack 3 2(2) 2 

((T) - 3, (T) - 2, (T) - 1) / (U, A, E)-U, A, E; (T) -3 -T 

The most current floating-point item in the stack is divided by the con­
tents of the three -word accumulator U, A, E. The quotient is placed 
in U. A, E. The item is automatically popped from the stack when the 
T register is decremented by three. 

A floating-point overflow or underflow trap may occur. Stack under­
flow trap occurs if initially (T)-3 < (B) .. 

Modifiers: None .. 

FIX Fix a Floating-point Number 041 2 

The floating-point quantity contained in the three-word accumulator U, 
A, E is converted to a fixed-point integE~r and placed in the A register. 

Overflow may be set. 

Modifiers: None. 

4-43 



FLOAT Float an integer 042 2 

The fixed-point integer in the A register is converted to a floating-point 
quantity and placed in the three-word accumulator U, A, E. 

Modifiers: None 

~_O_R_~1 __ F_l_o_a_h_· n _ _.g...._N_o_r_m __ a_l_i_z_e __ 0_4_3_ 2 

The i...1struction normalizes the floating-point quantity contained in the 
three -word accumulator U, A, E. 

Modifiers: None. 

~-~N_E_G __ F_l_o_a_ti_n-=g ____ N_e__..g._a_t __ e __ S_4 __ (._0~) __ 2 

If ((U) @ (A)] ¢ 0 then (U 
0
)-U 

0 

If U and A are not both zero, the sign bit of U will be changed. If U = 0 
and A = 0 the instruction is a NOP. 

LOGICAL INSTRUCTIONS 

In Boolean operations, the operators @, G), and 8 have the defini­
tions shown in Table 4-3. 

TABLE 4 -3 DEFINITIONS OF BOOLEAN OPERATIONS 

Operator Meaning Definition 

® AND; intersection 0 ® 0 = 0 
0 ® 1 = 0 
1 ® 0 = 0 
1 ® 1 = 1 

(±) OR, inclusive, union 0 (f) 0 = 0 
0 © 1 = 1 
1 1) 0 = 1 
1 <±) 1 = 1 

G EXCLUSIVE OR, 0 0 0 = 0 
symmetric difference 0 G 1 = 1 

1 0 0 = 1 
1 0 1 = 0 

4-44 



ANX AND with X 2 7(0) 6A, G 

(X) @ (y) - X 

The contents of memory location y are ANDed with the contents of the 
X register. 

Modifiers: B, X, *, = 

ANU AND with U 27(1) 6A, G 

{U) ® {y) -u 

The contents of memory location y are ANDed with the contents of the 
U register. 

Modifiers: B, X, *, = 

ANUI AND with U, Immediate 10 10 

{U) ® LIT9 - U 

Tl1e 9-bit literal contained in bit position 7-15 of the instruction (with 
sign extended) is ANDed with the con.tents of the U register. 

Modifiers: None. 

ANUA And with U and place results in A 2 7(3) 6A, 6G 

{U) ® (y) - A 

The contents of memory location y are ANDed with the contents of the 
U registers {U is left unchanged) and t.he results are placed in the A 
registers. 

ANA AND with A 20 lA, B, C:, D 

(A) ® {y) - A 

The contents of memory location y are ANDed with the contents of the 
A register. 

Modifiers: P, X, B, E, *, = 

AN.AI AND with A, Immediate 11 10 

(A) ® LIT9 -+A 

The 9-bit literal contained in bit positions 7-15 of the instruction (with 
sign extended) is ANDed with the contents of the A register. 

Modifiers: None. 

4-45 



ORA OR with A 22 

(A) (f) (y) -A 

The contents of memory location y are ORed with the contents of the A 
regis::er. 

Modifiers: P, X, B, E, *, = 

ORAI OR with A, Immediate 12 10 

(A) (t) LIT9 -A 

The 9-bit literal contained in bit positions 7-15 of the instruction (with 
sign extended) is· ORed with the contents of the A register. 

Modifiers: None. 

XRA EXCLUSIVE OR with A 24 lA, B, C, D 
------------

(A) 0 (y) -A 

The contents of memory location y are EXCLUSIVE ORed with the 
c.ontents of the A register. 

Modifiers: P, X, B, E, *, = 

XRAI EXCLUSIVE OR with A, Immediate 13 10 

(A) 8 LIT9-A 

The 9-bit literal contained in bit positions 7-15 of the instruction (with 
sign extended) is EXCLUSIVE ORed with the contents of the A register. 

Modifiers: None. 

RAND Register AND 3 7A 

(S) @ (D) - D 

where Smay be X, U, A, E, B, T, L, or 1 
and D may be X, U, A, E, B, T , or L 

The contents of the source register S are ANDed with the contents of the 
destination register D. For example. 

RAND EX 

the E register is ANDed with the X register. The result is placed in the 
X registers. 

Modifiers: None. 

4-46 



SETBA Set Bit in A 

1-A 
i 

3 4B 

where i is a designated bit number. 

The bit number in the A register, designated in the va.riable field of 
the instruction, is set to a one. The bit number specified must be an 
absolute expression. There are two forms of the instruction. 

SE TBA 3 

sets bit position 3 of the A register to a one; and, 

SETBA 3,N 

where N is a modifier indicates the bit number (in the example, 3), is 
modified by the X register with the result, truncated to four bits, used 
as the effective bit number. 

Modifiers: N 

CLRBA Clear Bit in A 

O-A 
i 

4 4B 

where i is a designated bit number. 

The. bit position in the A register, designated by the bit number in the 
variable field of the instruction, is Bet to zero. The bit number speci­
fied must be an absolute expression. There are two forms of the 
instruction. 

CLR.BA 13 

sets bit position 13 of the A register to zero; and, 

CLRBA 13, N 

where N specifies a modifier indicating the bit number is modified by the 
X register with the result truncated to four bits, used as the effective bit 
number" 

Modifiers: N 

4-47 



CMPBA Complement Bit in A 5 4B -----

-(A.) A. 
1 1 

where i is a designated bit number. 

The bit position in the A register, designated by the bit number in the 
variable field of the instruction, is complemented. The bit number 
specified must be an absolute expression. 

Modifiers: N 

SETB_M ___ S_e_t __ B_it_i_n_M_e_m_o_r_.y..__ __ 3 ___ 5 

1-y. 
1 

where i is a designated bit number. 

The .)it position of memory location y, designated by the bit number in 
the variable field of the instruction, is set to a one. 

The 'Jariable field of the instruction contains three subfields: the bit 
_number (absolute expression), the memory address, and modifiers, if 
any. 

H thE instruction is modified by X and not N, the memory address is 
modified by all 16 bits of the X register. 

If thE instruction is modified by N and not X, the bit number is modified 
by the low order four bits of the X register (modulo 16). 

If the instruction is modified by both X and N, the memory address is 
modified by the high order 12 bits of the X register (bit positions 0-11); 
and the bit number is modified by the low order four bits of the X 
register (bit positions 12-15). If there is carryout after modifying the 
bit number (> 15), the carry is added to the memory address calculation 
for y. 

Modi:iers: X, B, N, * 
CLR B_M ___ C_le_a._r_B_1_· t_1_· n_M_e_m_o_r__.y~_4 

o-y. 
l 

wher·~ i is a designated bit number. 

4-48 

5 



The bit position of memory location Yi, designated by the bit. number in 
the variable field of the instruct.ion, is set to zero. 

The variable field of the instruction contains 3 subfields: the bit num­
ber (absolute expression), the memory address, and modifiers, if any. 

If the instruction is modified by X and not N, the memory address is 
modified by all 16 bits of the x registe-;:-

If the instruction is modified by N and not X, the bit number is modified 
by the low order 4 bits of the X register (modulo 16). 

If the instruction is modified.by both X and N, the memory address is 
modified by the high order 12 bits of the X register (bit positions 0-11); 
and the bit number is modified by the low order four bits of the X 
register (bit positions 12-15). If there is a carryout after modifying 
the bit number (1>15), the carry is added to the memory address 
calculation for y. 

Modifiers: X, B, N, * 
CMPBM Complement Bit in Memory ,----.. __ _ 5 5 

- (y.) - y. 
1 1 

where i is a designated bit number. 

The bit position of memory location y, d<1signated by the bit number in 
the variable field of the instruction, is complemented. 

The variable field of the instruction contains three subfields: the bit 
number (absolute expression), the me:mory address, and modifiers, if 
any. 

The rules for modifiers X, and N are the same as those defined for the 
SETBM instruction. 

Modifiers: X, B, N, * 
ANAS AND with A, Stack 22( 1) 2 

(A) @ ((T) - 1 )-A; (T) - 1 - T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is ANDed with the contents of the A register. The entry is 

4-49 



automatically popped from the stack when the contents of the T register 
are decremented by one. 

Stack underflow trap occurs if (T) < (B). 

Mod:diers: None. 

ORAS_~_O_R~w~. 1_-_t_h_A~,_S_t_a_ck~~2_2_(_2~)~~2 

(A) (£) ((T) - 1) - A; (T) - 1) - T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is ORed with the contents of the A register. The entry is 
automatically popped from the stack when the contents of the T register 
are decremented by one. 

Stack underflow trap occurs if (T) < (B ). 

Mod:diers: None. 

XRAS ___ E_X_C:_l __ ,-=-U_S_IV_E __ O_R_w_i_th_A_,~S_t_a_ck ___ 2_2~(3-l.) __ 2 

(A) 0 ((T)-1)-A; (T) - 1 - T 

The most current item in the stack (pointed to by the top-of-stack 
poin:er T) is EXCLUSIVE ORed with the contents of the A register. 
The entry is automatically popped from the stack when the contents of 
the ~~ register are decremented by one. 

A st.a.ck underflow trap occurs if (T) < (B). 

Mod:Lfiers: None. 

ANXS AND with X, Stack 22(0) 2 

(X) ® ((T) - 1 ) - X; (T) - 1 - T 

The most current item in the stack (pointed to by the top-of-stack 
pointer T) is ANDed with the contents of the X register. The entry 
is automatically popped from the stack when the contents of the T 
register are decremented by one. 

Stack underflow trap occurs if (T) < (B). 

Modifiers: None. 

4-50 



SHIFT INSTRUCTIONS 

A note concerning modification of shift counts by indexing. On all 
shifts, indexing is performed modulo 2 5 (or 26 for double register 
shifts). The sign of the result is bit position 11 (or lO)o That is, the 
5- or 6-bit shift count is added to the contents of the X registero The 
result is treated modulo z5 (or 26). 

LLX/LRX Logical Left/Right Shift x 0 8 

The contents of the X register are shifted left or right C (C = count) 
places, with zeros filling vacated bit positions. Bits shifted past bit 
position 0 (left), or bit position 15 (right) are lost. 

The direction of shift is determined by the count, C, after indexingo If 
count > 0, then left shift. If count < 0 ,, then right shift. 

Modifiers: X 

ALU/ARU 1 8 

The contents of the U register are shifted left or right C (C .-=-~ count) 
places. If the shift is to the left, zeros are filled into vacated bit posi­
tions on the right. If the shift is to right, the contents of bit position 0 
are filled into vacated positions on the left. Bits shifted past bit posi­
tions 0 (left) or bit position 15 (right) are lost. 

The direction of shift is determined by the count, C, after indexing. If 
count > 0, then left shift. If count< 0 ,, then right shift. 

If the sign bit changes during a left shift, overflow is set. 

Modifiers: X 

LLU/LRU Logical Left/Right Shift_ U 2 8 

The contents of the U register are shifted left or right C (C = count) 
places, with zeros filling vacated bit positions. Bits shifted past bit 
position 0 (left), or bit position 15 (right) are lost. 

The direction of shift is determined by the count, C, after indexing. If 
count> 0, then left shift. If count< 0, then right shift. 

Modifiers: X 

4-51 



RLU/RRU Rotate Left/Right U 3 8 

The contents of the U register are circular shifted left or right C 
places. For a rotate left, bits shifted past bit position 0 are placed 
into bit position 15. For a rotate right, bits shifted past bit position 
15 are placed into bit position O. 

No bits are lost. The direction of rotation is determined by the count, 
C, after indexing. If count> 0, then rotate left. If count< 0, then 
rotate right. 

Modifiers: X 

ALA/ARA Arithmetic Left/Right Shift A 4 8 

The contents of the A register are shifted left/ right C places. If the 
shif"':: is to the left, zeros are filled into vacated bit positions on the 
right. If the shift is to the right the contents of bit position 0 are 
filled into vacated positions on the left. Bits shifted past bit position 
0 (left), or bit position 15 (right) are lost. 

The direction of. shift is determined by the count, C, after indexing. If 
court> 0, then left shift. If count< 0, then right shift. 

If the sign bit changes during a left shift, overflow is set. 

Modifiers: X 

LLA/LRA Logical Left/Right Shift A 5 8 

The con tents of the A register are shifted left or right C places, with 
zeros filling vacated bit positions. Bits shifted past bit position 0 (left), 
or bit position 15 (right) are lost. 

The direction of shift is determined by the count, C, after indexing. If 
count >0, then left shift. If count <O, then right shift. 

Mod:lfie rs: X 

RLA/RRA Rotate Left/Right A 6 8 

The contents of the A register are circular-shifted left or right C 
places. For a rotate left, bits shifted past bit position 15 are placed 
into bit position O. 

4-.52 



No bits are losL The direction of rotation is determined by the count, 
C, after indexing. If count>O, then rotate left. If count< 0, then 
rotate right. 

Modifiers: X 

LLUAE/LRUAE 0 9 Logical Left/Right Shift UAE 
~------~~--------~- -~-----------

The contents of the three registers U, A, E are shifted left or right C 
places, with zeros filling vacated bit positions. For a left shift, bits 
shifted past bit position 0 of E are placed into bit position 15 of the A 
register; bits shifted past bit position 0 of A are placed in bit position 
15 of U, bit shifted past bit position 0 of U are lost. For a right shift, 
bits shifted past bit position 15 of E are lost. 

The direction of shift is determined by the count, C, after indexing. 
If count> 0, then left shift. If count< 0, then right shift. 

Modifiers: X 

ALUA/ARUA Arithmetic Left/Shift U, A 
·~~---~--~ 

1 9 

The contents of the double U, A registers are shifted left or right C 
places. If the shift is to the left, bits shifted past bit position 0 of A 
are placed into bit position 15 of the U register; bits shifted past bit 
position 0 of U are lost. If the shift is to the right, bits shifted past 
bit position 15 of U are placed into bit: position 0 of the A register; bits 
shifted past bit position 0 are filled into vacated positions on the left; 
bits shifted past bit position 15 of A are lost. 

The direction of shift is determined by the count, C, after indexing. If 
count> 0, then left shift. If count< 0, then right shift. 

If the sign bit of U changes during a left shift, overflow is set. 

Modifiers: X 

LLUA/LRUA Logical Left/Right Shift U, A 2 9 ·-----

The contents of the double U, A registers are shifted left or right C 
places, with zeros filling vacated bit positions. For a left shift, bits 
shifted past bit position of 0 of A are placed into bit position 15 of the 
U register; bits shifted past bit position 0 of U are lost. For a right 

. shift, bits shifted past bit position 15 of U are placed into bit position 
0 of the A register; bits shifted past bit position of A are lost. 

4-53 



The direction of shift is determined by the count, C, after indexing. If 
count > 0 then left shift. If count< 0, then right shift. 

Modifiers: X 

RLUA/RRUA Rotate Left/Right U, A 3 9 

The contents of the double U, A registers are circular shifted left or 
right C places. For a rotate left; bits shifted past bit position 0 of U 
are placed into bit position 15 of the A register; bits shifted past bit 
position 0 of A are placed into bit position 15 of the U register. For a 
rotate right; bits shifted past bit position 15 of A are placed into bit 
position 0 of the U register; bits shifted past bit position 15 of U are 
placed into bit position 0 of the A register. 

No bits are lost. The direction of rotation is determined by the count, 
C, after indexing. If count >·O, then rotate left. If count< 0, then 
rotate right. 

Modifiers: X 

LLO Locate Leading One 044 2 

The contents of the A register are searched and shifted to locate a 
leading one bit. 

If th.a contents of A are zero, the next sequential instruction is executed. 

If the contents of A are non- zero, A is shifted left until a one bit is 
shifted into bit position zero. Bits are zero filled from the right of A. 
The X register is incremented by the number of shifts that have 
occurred. Bit position 0 of the A register is set to zero. The next 
sequential instruction is skipped and execution continues with the fol­
lowing instruction. 

Modifiers: None. 

COMPARES AND TESTS 

SKXEI Skip if X Equal, Immediate 14 10 

Skip if (X) = LIT 9 

If the 9-bit literal contained in bit position 7-15 of the instruction (with 
sign extended) is equal to the contents of the X ~egister, the next 

4-54 



sequential instruction is skipped. Otherwise, the nt'Xt instruction 1s 

executed. 

Modifiers: None. 

SKXNI Skip if X Not Equal, Immed:_ia_t_e __ l_5 ___ 1_0 

Skip if (X) ;e LIT9 

If the 9-bit literal contained in bit positions 7-14 of the instruction (with 
sign extended) is not equal to the contents of the X register, the next 
sequential instruction is skipped. Otherwise, the next instruction is 
executed. 

Modifiers: None. 

SKAE Skip if A Equal to Memory 26 lA, B, C, D 

Skip if (A) = (y) 

If the contents of the A register are equal to the contents of memory 
location y, the next sequential instruction is skipped. Otherwise, the 
next instruction is executed. 

Modifiers: P, X, B, E, *, = 

SKAN _Skip if A Not Equal to Memory lA, B, C, D ----30 

Skip if (A) ~ (y) 

If the contents of the A register are not equal to the contents of memory 
location y, the next sequential instruction is skipped. Otherwise, the 
next instruction is executed. 

Modifier s : P, X, B, E, *, = 

SKAEI Skip if A Equal, Immediate 16 10 
------

Skip if (A) = LIT9 

If the 9-bit literal contained in bit positions 7-15 of the instruction (with 
sign extended) is ·equal to the contents of the A register, the next 
sequential instruction is skipped. Otherwise, the next instruction is 
executed. 

Modifiers: NoneQ 

4-55 



SK AN I Skip if A Not Equal, Immediate 17 10 

Skip if (A) ¢ LIT9 

If th·e 9-bit literal contained in bit positions 7-15 of the instruction {with 
sign extended) is not equal to the contents of the A register, the next 
sequential instruction is skipped. Otherwise, the next instruction is 
executed. 

ACX Arithmetic Compare X 30(SC) 6A, G 

(X) [AC J (y); Skip on Condition 

The contents of the X register are algebraically compared to the con­
tents of memory location y. If the specified skip condition is met, the 
next sequential instruction is skipped. Otherwise the next instruction 
is executed. 

The variable field of the instruction may have three subfields: the skip 
condition, the address, and modifiers, if any. 

Refer to Table 3-2 for the mnemonics and meaning of all skip condi­
tions. 

Mpd:Lfiers: B, X, *, = 

ACU Arithmetic Compare U 3 l(SC) 6A, G 

{U) [AC] (y); Skip on Condition 

The contents of the U register are algebraically compared to the con­
tents of memory location y. If the specified skip condition is met, the 
next sequential instruction is skipped. Otherwise, the next instruction 
is executed. 

The variable field may have three subfields: the skip condition, the 
address, and modifiers, if any. 

Refer to Table 4-2 for the mnemonics and meaning of all skip conditions. 

Modifiers: B, X, *, = 

4-56 



ACA Arithmetic Compare A 3Z(SC) 6A,G 

(A) [AC] (y); Skip on Condition 

The contents of the A register are algebraically compared to the con­
tents of memory location y. If the specified skip condition is rnet, the 
next sequential instruction is skipped Otherwise, the next instruction 
is executedo 

The variable field may have three subfields: the skip condition, the 
address, and modifiers, if any. 

Refer to Table 4-2 for the mnemonics and meaning of all skip conditionso 

Modifier s: B , X, * , = 

Arithmetic Compare E 33(SC) 
~~~~~~~~~~~~----~~~~~-

ACE 6A, G

(E) [AC] (y); Skip on Condition

The· contents of the E register are algebraically compared to the con­
tents of memory location y. If the specified skip condition is met, the
next sequential instruction is skipped. Otherwise, the next instruction
is executed.

The variable field may have three subfields: the skip condition, the
address, and modifiers, if any.

Refer to Table 3-2 for the mnemonics and meanings of all skip conditions"

Modifiers: B, X, *, =

FCP Floating Compare 22(SC) 6A

UAE (AC] (y, y + 1, y + 2) Skip on Condition

The normalized floating point number in UAE is algebraically compared
to the normalized floating point number in memory location y, y + 1,
y + 2. If the specified skip condition is met, the next sequential instruc­
tion is skipped. Otherwise, the next instruction is executed.

The variable field may have three subfields: the skip condition, the
address, and modifiers, if any.

Refer to Table 4-2 for the mnem.onics and meaning of all skip conditionso

4-57

Modifiers: B, X, *, =

FCJ>S Floating Compare, Stack 36(SC) 2B

U. A. E [AC] (T) - 3, (T) - 2, (T) -1 Skip on Condition

The normalized floating point number in UAE is algebraically com­
pared to the normalized floating point in the Stack. If the specified
skip condition is met, the next sequential instruction is skipped.
Otherwise, the next instruction is executed.

The variable field may have three subfields: the skip condition, the
add:re·ss, and modifiers, if any.

Refer to Table 4 -2 for the mnemonics and meaning of all skip
conditions.

The value of the T register is unchanged in either case.

Modifiers: B, X, *, =

LCX Logical Compare X 34(SC) 6A, G

{X) [LC] (y); Skip on Condition

The contents of the X register are logically compared to the contents
of memory location y. If the specified skip condition is met, the next
sequential instruction is skipped. Otherwise, the next instruction is
executed. Refer to Table 4-2 for the mnemonics and meaning of all
skip: conditions.

The variable field may have three subfields: the skip condition, the
address, and modifiers, if any.

Modifiers: B, X, *, =

LCU Logical Compare U 35(SG) 6A, G

(U) [LC] (y); Skip on Condition

The contents of the U register are logically compared to the contents
of rnemory location y. If the specified skip condition is met, the next
sequential instruction is skipped. Otherwise, the next instruction is
executed. Refer to Table 4-2 for the m.nemonics and meaning of all
skip conditions.

4-58

The variable field may have th.l,"ee subfields: the skip condition, th<'
address, and modifiers, if any.

Modifiers: B, X,. *, =

Logical Compare A 36(SC)
~~~~~-=-~~~~---=-~~~~~· 

LCA 6A, G 

. (A) [LC J (y); Skip on Condition 

The contents of the A register are logically compared to the contents of 
memory location y. If the specified skip condition is met, the next 
sequential instruction is skipped. 

Otherwise, the next instruction is executed. Refer to Table 3-2 for the 
mnemonics and meaning of all skip conditions. 

The variable field may have three subfields: the skip condition, the 
address and modifiers, if any. 

Modifiers: B, X, *, = 

LCE Log~cal Compare E 6A, G 

(E) [LC] (y); Skip on Condition 

The contents of the E register are logically compared to the contents 
of memory location y. If the specified skip condition is met, the next 
sequential instruction is skipped. Otherwise, the next instruction is 
executed. Refer to Table 4-2 for the mnemonics and meaning of all 
skip conditions. 

The variable field may have three subfields: the skip condition, the 
address, and modifiers, if any. 

Modifiers: B, X, *, = 

MSK Memory Skip 40(SC) 6A, G 

(y) [AC] 0; Skip on Condition 

The contents of memory location y are algebraically compared to zero. 
If the specified skip conditibn is met, the next sequential instruction is 
skipped. Otherwise; the next instruction is executed. Refer to Table 
4- 2 for the mnemonics and meaning of all skip condition so 

4-59 



The variable field may have three subfields: the skip condition, the 
address, and modifiers, if any. 

Modifier s : B , X, * , = 

SKZA Skip if Zero in A 6 4B 

Skip if (Ai) = 0 

where i is a designated bit number. 

Bit Ai of the A register is tested. If the bit is a zero, the next sequen­
tial instruction is skipped If the bit in A is a one, the next instruction 
is executed. There are two forms to the instruction. 

SKZA 5 

checks bit position 5 of the A register for a zero. If the bit is zero, 
the skip is executed. Otherwise, no skip. And, 

SKZA 5,N 

where N is a modifier indicates the bit number (in the example, 5) is 
modified by the low order 4 bits of the X register (bit positions 12-15 ). 

Modifiers: N 

SKOA Skip if (Ai) = 1 7 4B 

whe~:e i is a designated bit number. 

Bit Ai of the A register is tested. If the bit is a one, the next sequential 
instruction is skipped. If the bit is a zero, the next instruction is 
executed. There are two forms to the instruction. 

SKOA 14 

skips the next sequential instruction if A l4 is a one. And, 

SKOA O,N 

modifies the bit number, 0, by the low order 4 bits of the X register to 
forrn the effective bit number, i. 

Modifiers: N 

4-60 



SKZM Skip if Zero in Memory, Yi 6 5 

Skip if (Yi) = 0 

where i is a designated bit number o 

The bit position of memory lo ca ti on y, designated by the bit number in 
the variable field, is tested. If the bit is zero, the next sequential 
instruction is skipped. If the bit is one, the next instruction is 
executed. 

The variable field of the instruction contains three subfields: the bit 
number (absolute expression), the rnemory address, and modifiers, if 
any .. 

If the instruction is modified by X and not N, the memory address is 
modified by all 16 bits of the X register. 

If the instruction is modified by N and not X, the bit number is modified 
by the low order 4 bits of the X register (modulo 16) .. 

If the instruction is modified by both X and N, the memory address is 
modified by the high order 12 bits of the X register (bit positions 0-11); 
and the bit number is modified by the low order 4 bits of the X register 
(bit positions 12-15) .. If there is any carryout after modifying the bit 
number ( 15), the carry is added to the memory address calculations 
for y. 

Modifiers: X, B, N, * 
SKOM Skip if One in Memory, Yi 7 5 

Skip if (Yi) = 1 

where i is a designated bit number. 

The bit position of memory location y, designated by the bit number in 
the variable field; is tested. If the bit is one, the next sequential 
instruction is skipped. If the bit is zero, the next instruction is 
executed. 

The variable field may contain 3 subfields: the bit number (absolute 
expression), the memory address, and modifiers, if any. 

4-61 



The rules for modifiers X, and N are the same as those defined for the 
SKZM instruction. 

Modifiers: X, B, N, * 
SKNOF Skip if No Overflow 45(0) 2 

Skip if (OF) = O; O- OF 

The overflow indicator is tested. If overflow is not set ((OF) = 0), then 
the ~'lext sequential instruction is skipped. If overflow is set ((OF) = 1), 
then the very next instruction is executed. In both cases, the overflow 
indicator is reset (0 OF) 

Modifiers: None 

SKNCO Skip if No Carryout 46(0) 2 

Skip if (CO) = O; 0 - CO 

The carryout indicator is tested. If carryout is not set ((CO) = 0), then 
the next sequential instruction is skipped. If carryout is set ((CO) = 1), 
then the very next instruction is executed. In both cases, the carryout 
indkator is reset (0 - CO). 

Modifiers: None 

TSL Test and Set Lock 43(0) 6A 

Skip if ( y) 1 5 = 1 0 - y 

Bit position 15 of memory location y is tested. If the bit is a one, the 
next sequential instruction is skipped. If bit position 15 of y is zero, 
the next instruction is executed. In both cases, memory location y is 
set to zero. 

Modifiers: B, X, * 
DSK Delayed Skip 47(0) 2 

After the next instruction has been executed, the instruction logically 
following it will be skipped. 

4-62 



JUMPS 

JMP Jump Unconditionally 11 IA, C, D 

y-P 

The next instruction executed is determined by the effective address 
specified in the variable field of the instruction. 

Modifiers: P, X, B, E, * 
Jump if A Zero 13 1 A·' C , D 

~-~- -~-=-~~--~----~----~--
JZE 

If (A) = 0 then y - P 

If the contents of the A register are zero, control is transferred to the 
instruction specified by the variable Held.. Otherwise, the next instruc­
tion in sequence is executed. 

Modifiers: P, X, B, E, * 
JNZ Jump if A Non Zero 15 1.A, C, D 

If (A) ¢ 0 then y .... P 

If the contents of the A register are non- zero, control is transferred to 
the instruction specified by the variable field. Otherwise, the next 
sequential instruction is executed. 

Modifiers: P, X, B, E, * 
_J_P_L ___ J_u_m__.._p_if_A_P,_l_u_s ___ l_7 __ 1.A, C, D 

If (A) 2: 0 then y - P 

If the contents of the A register are gJ:.·eater than or equal to zero, con­
trol is transferred to the instruction specified by the variable field. 
Otherwise, the next sequential ins true tion is executed. 

Modifiers: P, X, B, E, * 

4-63 



J.M:I~~J_u_IT1 __ p~i_f~A~:M:~i_n_u_s~~2~l~~l_A-"-,_C~,~D 

If (A) < 0 then y - P 

If the contents of the A register are less than zero, control is trans­
ferred to the instruction specified by the variable field. Otherwise, 
the next sequential instruction is executed. 

:M:odifiers: P, X, B, E, * 
XJP X Jump 44(JC) 6A 

If (X) condition met, then y - P 

The contents of the X register are algebraically compared to zero. If 
the specified jump condition is met, control is transferred to the 
inst:ruction specified by the address portion of the variable field. 
Otherwise, the next sequential instruction is executed. 

The variable field of the instruction contains 3 subfields: the jump 
condition, the address, and modifiers, if any. 

Refer to Table 4-2 for the mnemonics and meaning of all jump 
conditions. 

:M:odifier s: B, X, * 
UJP~-U~J_u_m~p---~4_5~(~J_C~)~_6_A~-

If (U) condition is met, then y - P 

The contents of the U register are algebraically compared to zero. If 
the specified jump condition is met, control is transferred to the 
instruction specified by the address portion of the variable field. 
Otherwise, the next sequential instruction is executed. 

The variable field of the instruction contains 3 subfields: the jump con­
dition, the address, and modifiers, if any. 

Refer to Table 4-2 for the mnemonics and meaning of all jump 
conditions. 

:M:odifiers: B, X, * 

4-64 



AJP A Jump 46{JC) 6A 

If (A) condition met, then y -• P 

The contents of the A register are algebraically compared to zero. If 
the specified jump condition is met, control is transferred to the 
instruction specified by the address portion of the variable field. 
Otherwise, the next sequential instruction is executed. 

The variable field of the instruction contains 3 subfields: the ju.mp 
conditions, the address, and modifiers, if any. 

Refer to Table 4-2 for the mnemonics: and meaning of all jump 
conditions. 

Modifiers: B, X, >:< 

EJP E Jump 47(JC) 6A 

If (E) condition met, then y _.,. P 

The contents of the E register are algebraically compared to zero. If 
the specified jump condition is met control is transferred to the instruc­
tion specified by the address portion of the variable field. Otherwise, 
the next sequential instruction is executed. 

The variable field of the instruction contains 3 subfields: the jump 
condition, the address, and modifiers, if any. 

Refer to Table 4-2 for the mnemonics and meaning of all jump 
conditions. 

Modifiers: B, X, >:< 

TJP Triple Jump, UA SO{JC) 6A 

If (U), A, E) condition met, then y - P 

The contents of the triple U, A, E registers are algebraically compared 
to zero. If the specified condition is rnet, control is transferred to the 
instruction specified by the address portion of the variable field. 
Otherwise, the next sequential instruction is executed. 

The variable field of instruction contains 3 subfields: the jump con­
dition, the address, and modifiers, if any. 

4-65 



Refer to Table 4-2 for the mnemonics and meaning of all jump 
conditions. 

Mocifier s: B, X, * 

IJXN Jump if Non Zero, Increment X 25 IA, C, D 

If (X) ;e 0 then y - P; (X) + 1 - X 

If Xis non-zero, control is transferred to the instruction specified by 
the variable field. Otherwise, the contents of the X register are 
incremented by one and the next sequential instruction is executed. 

Modifiers: P, X, B, E, * 
DJXN Jump if Non Zero, Decrement X 27 IA, C, D 

If (X) ;e 0 then y - P; (X) - 1 -+ X 

If X is non-zero, then control is transferred to the instruction speci­
fied by the variable field. Otherwise, the contents of the X register 
are decremented by one and the next sequential instruction is executedo 

Modifiers: P, X, B, E, * 
IJMP Indirect Jump 55(0) 6A 

~~-=-~~~~~~ 

(y) - p 

The address of the next instruction to be executed is determined by the 
effective address specified in the variable field of the instruction. 

Modifiers: B, X, * 
SUBROUTINE AND SYSTEM LINKAGE 

JSPX ___ Jump,_ Store _P_in_X ____ 2_3_ lA, C, D 

(P) + 1 - X; y - P 

The contents of the :P register plus one, are stored in the X register. 
Control is transferred to the instruction specified by the variable fieldo 

Modifiers: P, X, B, E, * 

4-66 



JSPM Jump, Store P in Memory 56(7) 6A 

(P) + 1 - (y); y + 1 - P 

The contents of the P register plus one, are stored in the location 
specified by memory location y. Control is transferred to memory 
location y + 1. 

Modifiers: B, X, * 
CALL Subroutine Call Linkage 63(7) 6A 

(P) + 1 - (T); (B) - (T) + 1; ('T) + 2 - B - T; y - P 

The contents of the P register plus one, is stored in the location 
specified by the top of the stack pointer T. The contents of the base 
of stack B register is. stored in the location specified by the T register 
plus one. The address, specified by the contents of the T register plus 
two, is stored in both the B and T registers. Control is transferred 
to the instruction specified by the variable field. 

In this way, the return location from the subroutine, and the original 
values of the B and T registers are preserved. Various subroutine 
stack pointers are automatically protected from routine to routine. 

A stack overflow trap occurs if (T) ;::= 1(L). 

Modifiers: B, X, >!< 

R_T_. _R_N ___ Su_~T_outine Relu:t.n Linkage 050 2 

(B) - 2 -T; ((T) + 1) -B; (i(T))-P 

The contents of the base of stack B register minus two, is stored in the 
T register. This restores the top of stack T to the value at the time 
of the subroutine CALL. The contents of the value contained in the top 
of stack pointer T plus one, is stored in the B register. This restores 
the value of the· B register to the value at the time of the subroutine 
CALL. 

Control is transferred to the memory location contained in the T 
register. This effectively returns control to the instruction following 
the subroutine CALL with the values of the B and T registers restoredg 

A stack underflow track occurs if (T) < (B). 

4-67 



Modifiers: None. 

SC ALL Sys tern Call 3 

System Calls are those calls concerned with defining, determining, 
and manipulating the system environment of a process. 

There are limited number of System Calls simulated by Tyrnshare. 
These calls are primarily used to: 

• open and close files 

• I/O to and from files, TTY 

• manipulate edited lines 

Most of the calls will have counterparts in the final version of the 
LOGICON 2 + 2 assembler. They are identified in Table 4-4 with 
mnemonics. Some calls are unique to the Tymshare version, and, as 
such, no mnemonics are defined for them. 

The·re are two allowable forms to the System Call instruction. The 
general form is: 

(label) SCA LL (System Call no. ) 

Note that System Call numbers are octal. All existing (simulated) 
calls can be made via this form. Those calls having a unique 
mne:..rnonic may be accessed by the name as: 

(label) (System Call Name) 

For example, the Get Edited Line System Call, GEL, may be written 

(label) SCA LL 204B 

or, (label) GEL 

Table 4-4 shows all of the simulated System Calls, characteristics, and 
any anomalies. For a detailed description of each of the System Calls, 
the user is referred to the LOGICON 2+2 MONITOR SPECIFICATION. 

Modifiers: None. 

4-68 



IJSPX Indirect Jump, Store P in X _5 5 ( 1) 6A 

(P) + 1 - X; (y) - P 

The content's of the P register plus one, is stored in the X register. 
Control is transferred to the address specified by the variable field. 

Modifiers: B, X, ~:c 

IJSPM Indirect Jump, Store P in Memory 55(2) 6A 

(P) + 1 - ((y)); (y) + 1 - P 

The contents of the P register plus one, is stored at the address speci­
fied by memory location y" Control is transferred to the location 
following the address specified by the variable field. 

Modifiers: B, X, * 
I CALL Indirect Subroutine Call L ii~_k_a_g.__e ___ 5 _5 ..._( 3_.) __ 6_A_. 

(P) + 1 ..... (T); (B) - (T) + 1; (T) + 2 - B - T; (y) - P 

The contents of the P register plus one, is stored in the location speci­
fied by the top of the stack pointer T. The contents of the base of 
stack B register is stored in the location specified by the T register 
plus one. The address, specified by the contents of the T register 
plus two, is stored in both the B and T registers. Control is trans­
ferred to the address specified by the variable field. 

In this way, the return location from the subroutine, and the original 
values of the B and T registers are preserved. Various subroutine 
stack pointers are automatically protected from routine to routine. 

A stack overflow trap occurs if (T) ::: (L). 

Modifiers: B, X, * 

4-69 



TABLE 4-4. SIMULATED SYSTEM CALLS 
.----

Name 
Num-

Input Output Function 
her 

1----

Terminal 2008 - ---- (A)8-15 = Input one 
TC! Character character character 

Input from TTY 

Terminal 2018 (A)8-15 = --- -- Output one 
TCO Character character character to 

Output TTY 
...,.__ 

Set Line 2028 Same as - ---- Same as 2 +2 
SLEM Editing 2 + 2 spec spec 

Mode except (A) 
and (U) 
ignored 

.--
l 
i Leave Line 2038 - - - -- --- -- Same as 2 +2 

LLEM Editing spec 
Mode 

GEL 
Get Edited 2048 Same as Same as Same as 2 +2 
Line 2 + 2 spec 2 + 2 spec spec 

!---· 

Build 2058 Same as Same as Same as 2 +2 
BEL Edited 2 + 2 spec 2 + 2 spec spec 

Line 

Get Status 2068 Same as Same as Same as 2 +2 
GSEL of Edited 2 + 2 spec 2 + 2 spec spec 

Line 

Open File 2078 (U, A) = (A) = file no. Open specified -- for Input string {X) = file file for input. 
pointers size Skip return if 

(U) = file O.K. 
type 

--

4-70 



TABLE 4-4. SIMULATED SYSTEM CALLS (Cont) 
----------·--•••••••••• -- •-•-·• -··-----~-M~--- ··---·-·--···-••• -~----

Name 
Num- · 
ber 

Input Output Function 
---·-·---··---+-----··-+---·-· --·-·-----------

Open File 
for Output 

(U, A) = 
string 
pointers. 
(X) = file 
type 

(A) =file no. , Open specified 
file for output. 

. Skip return if 
O.K. 

------------+------+--------· ------·-··--·--------- --·--------------· ·- ·------·--

1/0 char­
acter to or 
from file 

Clos.e File 212 
8 

(U) =file no. (A) = char­
(A) = char - acter if file 
acter if file 
open for 
output 

(U) =file no. 

open for 
input 

Input or Out­
put one char­
acter from or 

to file 

Close specified 
file. 

---····--· ---------····------··-+-------------- ------------------

Simulated 
Drum Call 

(A) = drum 
block num­
ber (max.. 

Reads or 
writes 512 
words from/ 
to the sirnu­
lated drum. 
Skip retutn if 
0. K. Illegal 
instruction 

-·- - -----1 
I 

I 
I 
i 

I 

20010). 

(U) = core 
block num­
ber (un­
mapped and 
always in 
CPU re-

1 gardless of 
from which 
processor 

I the call is 
executed). 

(X) = 0 read 
from drum. 

trap if ; L LSIM 
command not 
executed before 
SCALL 213B. 

I 

i 

I 
I -·-------· --- -- __ 1 ____ _ (X) ~ 0 write 

on drum. -----------~ -----·- -·--- .. ____ J 

4-71 



v I I I 

Input /Output 

GENERAL 

The input/output equipment with which the LOGICON 2+2 processors 
interface is of two types: 1) storage devices, consisting of magneti-c 
tape transports, disk drives, and a high-speed drum, and 2) user 
communication terminals, of both the low-speed (asynchronous) inter­
active and the high-speed (synchronous:) batch processing varietieso 

The tape and disk storage devices serve as storage for program and 
data fileso Both of these devices, as well as the communications ter­
minals, are driven from the Peripheral Processor (PP). The drum is 
used for swapping selected portions of active user program and data 
files into and out of main core memory, and since its role in overall 
user response and system performance is so critical, it is driven by a 
processor dedicated to that end, the Drum Processor {DP)o 

The PP interfaces directly with a tape controller and a disk controller 
which act as interfaces between the processor and storage devices 
themselves. The tape controller acco1nmodates from one to eight tape 
transports, the disk controller between 1 and 8 disk drives. The PP 
interfaces with the communication terrninals by way of either a syn­
chronous com·munications adapter or an asynchronous communications 
adapter. Each synchronous adapter handles a group of four full duplex 
channels; each synchronous adapter handles 16 full duplex channels. 
If the terminals are remotely located, which is usually the case, they 
are additionally separated from the processor by common carrier 
lines and a MODEM at each end of the connection. 

The DP is itself a controller, is hard-wired rather than micropro­
grammed, and interfaces directly. with the drum storage device" 

The input/output transactions and associated control processing of both 
the PP and the DP are supervised and indirectly managed by the Control 

5-1 



Processor (CP). The controlling and controlled processors communi­
cate with each other through specified, shared, core memory locations 
and by a varl.ety of status interrupts generated by the controlled proc­
essors. The relationships of the PP and DP to the CP are essentially 
analogous, as will be shown. 

CF SOFTWARE INTERFACES 

User processes being executed in the Applications Processor (AP) 
which desire to perform an input/output transaction with a user ter­
minal or with the file system are provided with a set of System Calls 
which can be invoked for the device and for the purpose intended; these 
I/O commands are described in detail in the Resident Monitor specifi­
cation. When such a System Call is made, the Monitor software in the 
CF establishes one or more Buffer Control Blocks (BCB) in CP core 
memory and uses the IOC command to set up a Channel Control Call 
(CCC), also in CP core. The Monitor program, of course, responds 
to many such I/O requests and must coordinate both the performance 
and the results of these transactions. Therefore, in a disk transaction, 
for ·axample, the Monitor maintains "bookkeeping" responsibility for 
such things as the availability, assignment and distribution of data 
pages and for the scheduling of read/write requests. 

In a similar manner, the CP Monitor program schedules· drum swapping 
transfers to and from AP core memory, along with performing all nec­
essei.ry bookkeeping and cleanup operations. Drum Control Blocks (DCB) 
and Current State Calls (CSC) are established in AP core for control and 
communication with the DP in a manner analogous to the BCBs and 
CCCs set up for the PP. In this case, however, the initiative for drum 
input/output rests solely with CP software, concurrent with, but not 
originating from the execution of user processes. 

Peripheral Processor (PP) 

The following paragraphs describe the CCC, BCB and interrupt mech­
anisms through which the CP /PP interface is implemented. 

Channel Control Cells (CCCs). The CCCs occupy dedicated locations in 
CP memory: those for the tape channel are in cells 1008 -1078 ; those 
for the disk channels are in cells 110g-117g; those for the communica­
tion channels follow next and are divided into a group of input CCCs fol­
lowed by a group of output CC Cs, each channel having a cell of each 
type. The total number of CCCs is then 8 + 8 + 2 (16m + 4n), where m 
is the number of asynchronous adapters and n the number of synchronous 
adapters in a given system configuration. 

5-2 



The word formats for the tape and disk CCCs are identical: 

0 15 
TAPE 

I ·I Address of 1st Word of BCB* or 
DISK 

Channel Inactive 

1 = Channel Active 

Communications channels have two CCC formats, since communications 
may occur in either the buffer mode or character mode. In the buffer 
mode, input and output CCCs are identical 

0 

I o 

Buffer J 
Mode 

15 

Address of 1st Word of BCB* 

In the character mode, the format: 

0 15 

l~1 --·---~~-<--------=--~ 
Character J 

Mode 

.___ __ Character right justified, no 
start or :3top bits; parity 
included if desired. 

COMM 

COMM 

The above buffer and character mode CC Cs are used to start input or 
output. To halt communications, CP software will set the appropriate 
CCC s to "all zeros o " 

~:<Set initially by CP to denote 1st BCB to process; reset and maintained 
by the PP thereafter to denote BCB currently being processed .. 

5-3 



In addition, when communications with a given communications channel 
are first being established and the terminal type and BAUD rate are in 
the process of being determined, CF software uses the output CCC for 
that channel to convey the setting of parameters to the PP. The set 
parameters CCC format is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

GJi 
Indicates a 
Set Param­
eters Com­
mand 

1 = Connect -
Command 

1 = Disconnect~~~ 
Command 

0 Half Duplex, No 
Immediate Echo 

1 Full Duplex, No 
Immediate Echo 

2 Not used 
3 Full Duplex, 

Immediate Echo 

Set parameters 
in bits 7 - 15 

COMM 

Input Baud Rate 
(Codes same as 
output) 

Output Baud Rate 
0 Inactive 
1 110 
2 134. 7 
3 150 
4 300 
5 Not used 
6 Not used 
7 Not used 

Bits /Character 
0 Inactive 
1 7+1 Stop Bit 
2 7 +2 Stop Bit 
3 8+1 Stop Bit 
4 8+2 Stop Bit 
5 Not used 
6 Not used 
7 15 on input, Inactive on 

output 

Buffer Control Blocks (BCB). Associated with each tape and disk CCC, 
and with each communications CCC specifying buffered input or output, 
is one or more Buffer Control Blocks (BCB). BCBs may be placed 
anywhere in core memory by CF software; successive BCBs may or 
may not be located contiguously. 

5-4 



When BCBs are not contiguous, a special one-word BCB is used to 
point to the next BCB to be processed. This pointer BCB is used for 
tape, disk and communications I/O and has the format 

0 

Pointer_J 
BCB 

15 

Address of 1st Word of Next BCB 

The normal or "working" BCBs for tape, disk and communications are 
generally dissimilar in format, content and number of words per 
block. Figures 5-1, 5-2, and 5-3 give the normal BCB configuration 
for communications, tape and disk, respectively. 

NOTE 

The first three bits in word I of the BCB are 
defined in the same way for a.11 three input I 
output mediums handled by the PP. 

The disk interface utilizes a "Code Word" (CW) and an "Integrity Word" 
(IW). Both of these special-purpose words are associated with each 
S 12-word page, of data transferred to and from main core memory and 
are used in near-identical fashion by the PP (disk) and DP (drum) for 
error detection and validity checking. Briefly, they have the following 
characteristics: 

• Code Word - a software-defined "label" that immediately 
precedes every data page written out; it can be used for 
page identification or linkage or as a file key or check 
word and may be read or written independently from a data 
page. It is used by the 2+2 Monitor as an independent check 
on the access protection system. 

• Integrity Word - stored with every page, it represents a 
computed check-sum over the 1024 8-bit bytes of data; in 
read operations it is compared to an internally-generated 
(PP or DP) check sum; in write operations it may be either 
generated on-line or optionally pre-specified. 

5-5 



Normal 
HCB 

0 l 2 3 

1 

0 

L Byte count* (number of 
bytes still to be received 
or transmitted) 

0 - Next BCB follows this .one. (First word of 
next BCB follows last word of this one in 
core) 

l - This is the last BCB in sequence. 

0 - Do not interrupt unless error occurs 
1 - Give software interrupt when buffer specified 

by this BCB is completed, even if no error 

15 

C. __ _ t I Word2 

B~e address* of next byte 
to receive or transmit (bits 
0~14 are word address; bit 15 
says most significant byte 
(bit 15 = 0) or least significant 
byte (bit 15 = 1 ). 

*The byte count is initially set by the CF to the length of the input or 
output buffer; similarly, the CF sets the byte address -to that of the 
first byte in the input or output buffer. Thereafter, the PP adjusts 
these parameters to reflect its progress in prosecuting the BCB. 

Figure 5.;.1. Normal Communications BCB Format 

5-6 



---·-----"---------~·~-------

0 1 2 3· 4 5 6 
----· 

I Word 1 
---~~--

I 
) 

Same as Word Count (Read, Write, 
for Pass, Continue) 

Comm. 
BCB 

Function 
Code (F'C) 

0 0 0 Pass Forward 
0 0 1 Pass Back 
0 1 0 Read Forward 
0 1 1 Read Back 
1 0 0 Special (as amplified below)----· 
1 0 1 Continue, No Data Transfer 
1 1 0 Write. Forward 
1 1 1 Continut;!, Data Transfer 

6 7 8 9 10 15 

LI I LI_. ]--, __ 
T 

Space Forward Records 0 0 0 0 File or Record Count 
Space Backward Records 0 0 0 1 
Spac~ Forward Files 0 0 1 0 
Space Backward Files 0 0 1 I 
Rewind/Unload· 0 1 0 0 
Rewind 0 1 0 1 
Write Erase Gap 0 1 1 0 
Write File Mark 0 1 1 1 
Set High Density 1 0 0 0 
Set Low Density 1 0 0 l 
Status Request 1 0 1 0 

'----------~re Address of next 

word to transfer 

Word 2 ---
(Read and 
WrHc 
BCB' s only) 

·~--~-----~-

Figure 5-2. Normal Tape BCB Format 

5-7 



-----

0 1 2 3 6 7 15 

ITI I I Cylinder Address ( 1) I Word 1 

L Function Code (FC) 

Same as 
Comm. 
BCB 

0 0 0 0 Initialize Track (Address Sectoring) 
0 0 0 1 Read Sector 
0 0 1 0 Write CW, Zero Data 
0 0 1 1 Read CW; Compare CW 
L 1 0 0 Read Data; Compare CW and IW 
L (L = 1 means BCB is locked)(2) 
L 1 0 1 Read Data and IW; Compare CW and IW 
L 1 1 0 Write Data and CW 
L 1 1 1 Write Data, CW and IW; Compare IW 
1 0 0 0 (Not Used) 
1 0 0 1 Seek 
1 0 1 0 (Not Used) 
1 0 I I Unlock (BCB(2) 

NOTES 

( 1) FC = 1001: This field not used. 

(2) In scheduling disk I/O transfers (e.g., reads/ 
writes of same data involving different disk 
drive s ) , a given B CB can be 111 o c ke d 11 

, i. e. , 
blocked in the BCB processing sequence. When 
unlocked by another BCB (FC = 1011), it will be 
processed in the normal sequence. 

·----------·---·---------------~ 

Figure 5-3 (sheet 1 of 2). Normal Disk BCB Format 

5-8 



------------- .. ---·---------------· 

0 6 7 10 11 15 

FC = 0000 I Track Overflow(l) I (Not Us~ Head No. J 
0 6 7 10 11 15 

FC=OOOl,I I -~~----1 (Not Used) Sector No. Head No. 
0010, 0011~~~~~~~~--'-- . 

FC = LlOO 
Llll 

FC = 1011 

FC = 0001: Sector No. is one read Word 2 

Core Page(Z) I Sector r_-.Jo_ .......... l __ H_e_a_d_N_o_. _ __, 

0 15 

Core ·Address of BCB to Unlock 

0 15 
..-----------------------------. 

0 

Code Word (CW) Word 3 

FC = 0011, LlOO, LlOl: This CW compared to 
one read. 

FC = 0011: After comparison, this CW is replaced 
by CW read. 

FC = 0010, Ll 10, Lll l: CW to be written out. 

15 

Integrity Word (IW) Word 4 

FC =LIO!: IW as read. 
FC = L 111: IW to be written out; after comparison, 

this IW is replaced by IW calculated. 

NOTES 

( 1) During track initialization, the sector word count is given in 
this field. The number of words that fit in a sector varies with 
disk. rotation rate, from 546 to 569. The CP creates the BCD 
with this field containing the sector word count less 546 (0-23). 
After execution, the PP stores the number of words of overflow 
(positive if all words did not fit, negative if room left over). 

(2) The seven most significant bits of memory address; the low­
order nine bits correspond sequentially to each of the 512 words 
in the page to be transferred. 

Figure 5-3 (sheet 2 of 2). Normal Disk BCB Format 

5-9 



Interrupts Generated by PP 

As the PP prosecutes a BCB list, it generates interrupts to the CP as 
requested by an individual BCB and/or when error conditions occur. 
Separate interrupt lists are maintained in CP core memory for the 
tape, disk and communications I/O mediums. Each cell in a list cor­
responds to an I/O channel, and PP firmware mechanizes the equiva­
lent of a LINK instruction to link list entries in FIFO order. Three 
hardware interrupt lines are utilized between the PP and CP for disk, 
communications and tape I/O (CP interrupt bits 4, 5 and 6, respec­
tively). When the CF receives a hardware interrupt on one of these 
lines, it goes to the corresponding software interrupt list and uses a 
DLINK instruction to access the oldest interrupt. 

The tape, disk, and communications interrupts provided by the PP, and 
their respective word formats are shown in Figure 5-4. In the actual 
software interrupt lists, a cell entry will have one or more interrupts 
activated in the upper byte and either 377g or a pointer to the next 
waiting channel interrupt in the low order byte. The meaning and use 
of these is obvious in some cases and in others will become more ap­
parent when the interface between the PP and the tape and disk con­
trollers and the communications adapters is discussed. 

Drum Processor (DP) 

Swapping operations between the drum and main AP core memory are 
initiated by the CP, via an interrupt to the DP; once started, it is 
anticipated that the CP will maintain the drum in the active state at 
virtually all times thereafter. Receipt of the interrupt causes the DP 
to access a two-word Current State Cell (CSC) in AP core. The CSC 
occupies cells 26g and 27g in AP memory. 

The format and content of the CSC are shown in Figure 5-5. It will be 
noticed that the CSC is more comprehensive than are the CCCs used 
by the PP; in addition to the necessary Drum Control Block (DCB) 
pointer, the CP uses the CSC to dictate the current operating state of 
the DP, and the DP, in turn, reflects its own operating status and 
progress in this cell. 

One or more four-word DCBs will be associated with a given CP setting 
of the CSC; each 512-word page of data to be swapped will have a unique 
DCB specifying the address, integrity word and instructional information 

5-10 



TAPE 

DISK 

0 1 2 3 4 5 6 7 8 15 

I I I I I LL -~~t used) I 
End/Beginning of Tape (EQT, BOT) 

High Density LL L
L L- Write Protect Set 

Data Lost (Timing) 
Parity Error 

Tape Off Line 
Improper Command/BCE Loop 

Error 

Word 1 t (Not Used) 
Additional Data in Word 2 

Data Lost, Transfer Timing Error 
Disk Drive Unsafe 

Disk Drive Offline 
Code Word Mismatch 

Integrity Word Mismatch 
AP Parity Error 

CP Parity Error 

'--------~,I Word 2 

l 

Drive Not Ready 
Seek Error De­
tected by Drive 

Write Current Sense 
Failure 

Command Reject (by 
Drive) 

Module Select Error De­
tected by Controller 

Passed Index Twice 
Command Reject (Firmware) 

- Head Select Error (Firmware) 
Seek Error {Firmware) 

(Forced Zero 

0 l 2 3 4 8 15 

~~~I~~ ~I -1 .__ _..,J---..Ll___.l·---..1.l---J.____~=-fN-ot u sect) 

JLJJ
-Special Codes

0 0 0 None
Input Done 0 0 1 Ring Alert

Output Done 0 1 0 Connect
Input Data Lost 0 1 1 (Not Used)

. I

Cannot Transmit I 0 0 BCB Loop Detected
Break Detected 1 0 1 Parity Error

(Steady zero on line) 1 1 0 (Not Used
I

Figure 5-4.

I 1 Disconnect

PP Generated Interrupt Formats

5-11

0 2 3 5 6 7 8 15

l (Not l l Cur rent Drum
Word 0

Used) Sector Location(1)

L Current DP O;eeratin~ State
0 0 - Inactive
0 1 - Run
1 0 - Update
1 I - Halt

L--- Current DP Status
0 0 0 - Current DCB retrieved
0 0 1 - Class 2 fault
0 1 0 - Class 3 fault

0 15

L Pointer to 1st Word of DCB(2) I Word I

(1) Maintained by DP in RUN or UPDATE states

(2) Set initially by CP to denote 1st DCB to process; reset and
maintained by DP in the RUN state to denote last DCB
completed.

Figure 5-5. Current State Cell (CSC) Format

necessary to accomplish the transfer. The DCBs may be placed any­
where in AP core memory by the CP and may be listed sequentially
(up to 128 maximum) o_r linked by pointers one to the next. Figure 5-6
gives the DCB format and content.

As is true for the CSC, the DCB is more extensively utilized as a soft­
ware interface between the CP and CP than are the previously discussed
BCBs relative to the CP /PP interface. There is, rather naturally, a
marked similarity between the read/write function code repertoires and
Code/Integrity Word mechanication of the DP-drum and PP-disk. How­
ever, the most important difference exhibited by the DCB is the multi­
purpose nature of the last word, especially in regard to its specification
of error status used in conjunction with the interrupt enabler, this
compares with the software interrupt list implemented between the CP
and PP for each of the I/O device types handled by the PP.

5-12

0 1 2 3 4 10 11 15

Sector No. J I I I I 0 I Track Address I Word 1

l LL Other error conditions }
Code Word (CW) error

DCB Serviced

Status Flags
(Set by DP; initially set
to zero by CP)

0 2 3 4 5 6 7 8 9 15

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
I I 0

I I I

I 0 I I JOI Core Page No.* Word 2

l__ DCB Linkage

0 0 Last DCB; HALT when done
0 1 Next DCB in sequence
1 0 Next DCB Pointer in Wor.d 4

Interrupt Enable
0 0 interrupt on all error

(C 1 as s 1 , 2 and 3)
0 1 interrupts on all error or

when done
1 0 interrupts only on non-code

word error (Classes 2, 3)

Function Code (FC)
Boatload; autornatic HALT state
Read and compare CW
Read data and CW, compare CW and IW
Read data, CW and IW; compare CW, IW
Write CW
Write data and CW;
Write data and CW; HALT on Class 2 or
3 errors
Write Data, CW and IW; compare IW;
HALT on Class 2 or 3 errors

*The seven most significant bits of memory address; the low order
nine bits correspond sequentially to each of the 512 words in the
page to be transferred.

Figure 5-6 (sheet 1 of 2). Drum Control Block (DCB) Format

5-13

0 15

c Code Word (CW) Word 3

FC = 1 - 3: this CW compared to one read
FC = 3 · after comparison this CW replaced by CW read
FC = 4 - 7: CW to be written out

0 15
Set by CP c FC = 7

Pointer to let Word of next DCB I
FC = 7 L IW to be written out

Set b~ DP
FC = 1, 2

CW read

FC = 3 L IW read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

:~~d l, n I I I IE~rof sfatYsj I I I I I I
.=: Cl ass 1 fault

set= 1 JJJ
~ Other error cond •

......
N

00
00
rd -u

Transfer timing
IW Compare error

Data available late
Parity /write protect error

Memory error (bank 0, 1, 2, 3)! __ _

Class 3
fault

Memory timeout
Improper DCB Command

Invalid drum address
Drum not available

No drum response
Write inhibit set

Late control sequence

Word 4

Figure 5 .. 6 (sheet 2 of 2). Drum Control Block (DCB) Format

5-14

It has already been mentioned that the CP interrupts the DP to initiate
swapping operation. The CP may also interrupt the DP while it is in
the RUN state, in ·which case the DP goes into UPDATE state. The
DP will generate an interrupt to the CF (input interrupt bit 3) when it
has completed processing the last DCB in a given sequence or when an
error condition is encountered for which the associated DCB directed
that an interrupt be enabledo In the former case, the DP will go auto­
matically into the UPDATE state; in the latter case the DP will always
remain in the RUN state for class 1 (CW compare) errors, will always
go into the HALT state for class 3 errors, and will remain in the RUN
state for class 2 errors unless FC = 6 or 7 in DCB (word 2).

5-15

Appendix A ...

B·ootstra p
Formats

PAPER TAPE BOOTSTRAP FORMAT

A formatted paper tape for a bootstrap load consists of one or more data
blocks followed by a start location block:

program
block

~leader

} data block

...,..._. leader

} data block

.....,_leader
} start location block

......... leader

A data block consists of a word count (1-3768 in one frame), an initial
address (two frames), a number of words (two frames per word) to be
loaded at (initial address) to (initial address +count -1), and a check­
sum (two frames) that makes the whole block sum to zero (including the
word count)o Thus, a data block to load 025677 in cell 016254 would be:

001 count
034 address byte 1
254 address byte 2
053 data byte I
277 data byte 2
267 checksum byte I
224 checksum byte 2

(000001 + 025677 + 016254: + 133624 = 000000)

A-1

A start location block consists of a word count of 377 followed by a start
location (two bytes). Thus, a start location block to cause a start at
cell 1000 would be:

3 77 word count (flag)
002 address byte 1
000 address byte 2

MAGNETIC TAPE BOOTSTRAP FORMAT

A magnetic tape record for bootstrap load consists of a 1001 8 word
record (1000 data words plus a checksum that makes the record sum to
zero).

A magnetic tape bootstrap start causes one such record to be loaded :in
locations 00000 to 777 of CP memory, and the CP P register to be set
to the resulting contacts of cell 0.

A-2

