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1 Introduction

Several problems for vision research were proposed for a DARPA Workshop
on Parallel Architectures for Image Understanding. This document describes
the design and implementation of solutions to these problems on the Con-
nection Machine!. We describe the Connection Machine and its features
which permit fast parallel solutions to these problems. Then, we describe
each problem and present its solution. In each case, we provide an estimate
of the running times for the sample problems on the current version of the

Connection Machine.

1.1 The Connection Machine

The Connection Machine [Hillis85] is a powerful fine-grained parallel machine
having between 16K and 64K processors, operating under a single instruction
stream broadcast to all processors (figure 1). It is a Single Instruction Mul-
tiple Data (SIMD) machine, because all processors execute the same control
stream. Each of the processors is a simple 1-bit processor, currently with 4K
bits of memory. There are two modes of communication among the proces-
sors: first, the processors are connected by a mesh of wires into a 128 x 512
grid network (the NEWS network, so-called because the connections are in
the four cardinal directions), allowing rapid direct communication between
neighboring processors, and, second, the router, which allows messages to be
sent from any processor to any other processor in the machine. The proces-
sors in the Connection Machine can be envisioned as being the vertices of a
16-dimensional hypercube (in fact, it is a 12-dimensional hypercube; at each
vertex of the hypercube resides a chip containing 16 processors). Figure 2
shows a 4-dimensional hypercube; each processor is connected by 4 wires
to other processors. Each processor in the Connection Machine is identified
by a unique integer in the range 0...65535, its hypercube address, impos-
ing a linear order on the processors. This address identifies the processor
for message-passing by the router. Messages pass along the edges of the
hypercube from source processors to destination processors. An operation
where messages are transmitted among the processors using the router will

be termed a send operation. In addition to local operations in the processors,

tConnection Machine is a trademark of Thinking Machines Corporation.
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Figure 1: Block Diagram of the Connection Machine

the Connection Machine can return to the host machine the result of various
operations on a field in all processors; it can return the global maximum,
minimum, sum, logical AND, logical OR of the field.

To manipulate data structures with more than 64K elements, the Connec-
tion Machine provides virtual processors. A single physical processor operates
as a set of multiple virtual processors by serializing operations in time, and
dividing the memory of each processor accordingly. This is otherwise in-
visible to the user. The number of virtual processors assigned to a physical
processor is denoted by the virtual processor ratio (VP ratio), which is always
> 1. When the VP ratio is strictly greater than 1, the Connection Machine
is necessarily slowed down by that factor, in most operations.

1.2 Powerful Primitive Operations

Many of the problems investigated here must be solved by a combination
of communication modes on the Connection Machine. The design of these
algorithms takes advantage of the underlying architecture of the machine in
novel ways. There are several common, elementary operations used in this

discussion of parallel algorithms. Sorting, for example, of all 8-bit pixel values



Figure 2: 4-dimensional Hypercube

in a 512 x 512 image (VP of 4:1) takes approximately 30 ms. A 256 x 256
image (VP 1:1) can be sorted in approximately 10 ms. This operation is

primitive, and is useful, because of its power and speed.

1.2.1 Scanning

The scan operation is a primitive, global operation that uses the hypercube
connections underlying the router to distribute values among the proces-
sors of the Connection Machine. scan takes a binary associative opera-
tor @, with identity O, an ordered set [ag,a1,...,a,-1] and returns the set
[@0, (a0 @ a1),...,(a0® a1 ® ... D a,—1)]. The scan operations implement the
abstract operation known as parallel prefiz [Blelloch86|. Binary associative
operations include min, max, and plus. A maz-scan operation stores, in the
destination field of the n** processor, the maximum value of the source field of
all processors 0...n — 1. This is very rapid (< 1 ms) and can be very useful.
Other operations, such as plus-scan have been implemented. The enumerate
operation assigns a unique non-negative integer to all selected processors, in
the order of their cube-addresses, using plus-scan on processors with initial
value unity. The copy-scan operation takes a value at the first processor and

distributes it to the following processors.
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Figure 3: Examples of Plus-Scan and Maz-Scan.

scan operations also work in the NEWS addressing scheme, termed it
grid-scans. These allow one to take the sum, find the maximum, copy, or
number values along rows or columns of the NEWS grid quickly. The scan
operations take segment bits that divide the processor ordering into segments.
The beginning of each segment is marked by a processor whose segment bit
is set; when the scan operation encounters a segment bit which is set, it
restarts the scan process. Time for scan operations are, for example, 200 ps
for enumerate, and 350 us for plus-scan on an 8-bit field. Figure 3 shows the

results of plus-scan and maz-scan operating on some example data.

1.2.2 Distance Doubling

Another important primitive operation is distance doubling [Lim86), which
can be used to compute the effect of any binary, associative operation, as
in scan, on processors linked in a list or ring. For example, using maz,
doubling can propagate the extremum of a field in all processors in the ring
in O(log N) steps, where N is the number of processors in the ring. Each
step involves two send operations. Typically, the value to be maximized is the
cube-address (a unique integer identifier) of the processor. At termination,
each processor in the ring knows the label of the maximum processor in
the ring, hereafter termed the principal processor. This serves to label all
connected processors uniquely and to nominate a particular processor (the
prinéipal) as the representative for the entire set of connected processors.
Figure 4 shows the propagation of values in a ring of eight processors. Each
processor initially, at step 0, has an address of the next processor in the ring,

h

and a value which is to be maximized. At the termination of the /'" step, a

processor knows the addresses of processors 2° + 1 away and the maximum of



Processor

Step| O 1 2 3 4 5 6 7
LT[0 L3 [0 [65) |46 |67 |60
4 1 5 2 11 12 19 3
BRI IR
4 5 5 11 12 19 19 19
R IEGEIEIEEICRIRICEIEE
19 19 12 19 19 19 19 19
L |00 (L) [ [6.3) |49 |69 |66 |77

19 19 19 19 19 19 19 19

Figure 4: Distance Doubling: Each box contains (left,right address) above,

and value below.

all values within 2°~! processors away. In the example, the maximum value

has been propagated to all 8 processors in log 8 = 3 steps.

1.3 Rules of the Game

In analyzing the problems described here, output operations have sometimes
been included, but input operations have been neglected. The justification for
this is that a vision system using a parallel processor such as the Connection
Machine should maintain its data structures as long as possible in the parallel
computer. Transfers to and from a serial host should be avoided as often as
possible.

Several of the problem specifications state that the input is in the form
of real numbers. In particular, the benchmarks on Geometric Constructions
and Triangle Visibility use real-valued coordinates. The benchmark on edge
detection can be understood to require real numbers for the entries in the
“Laplacian” operator. The Connection Machine, however, has bit-serial pro-
cessors and hence has no fixed word length. It is extremely easy then to
compute with indefinite length integers; our implementation of convolution
uses this feature, so we do not use real numbers in smoothing the image for
edge detection. The only other problems in which real numbers are not used
are the Voronoi Diagram and Euclidean Minimum Spanning Tree (EMST)

example; in the first, the data are assumed rounded to integer values so that
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the mesh connections in the Connection can be used for brush-fire propaga-
tion, and the EMST depends on the Voronoi Diagram. All other examples
assume real arithmetic when necessary.

The parallel computing environment at the MIT AI Lab consists of a
Connection Machine [Hillis85] with 16K processors, with a Symbolics 3650
Lisp Machine as host. Connection Machine programs utilize Lisp syntax, in a
language called *Lisp [Lasser86]. Statements in *Lisp programs are compiled
and manipulated in the same fashion as Lisp statements, contributing signif-
icantly to the ease of programming the Connection Machine. The experience
at MIT in using the Connection Machine software environment has been that
programming the Connection Machine is a relatively easy progression from
using Lisp, and that users can, within a week, begin programming complex
programs on the Connection Machine. The improvements in execution time
from implementation to estimated times reflect expected improvements in
micro-code for certain operations on the Connection Machine, as well as re-
coding of the algorithms in a low-level language (PARIS). A compiler for
*Lisp is being constructed, which will eliminate the necessity of re-coding in

PARIS, while generating code which uses the Connection Machine efficiently.



2 Benchmark Problems

2.1 Edge detection

In this task, assume that the input is an 8-bit digital image of size 512 x 512

pixels.

1. Convolve the image with an 11 x 11 sampled “Laplacian” operator [Har-
alick84]. (Results within 5 pixels of the image border can be ignored.)

2. Detect zero-crossings of the output of the operation, i.e. pixels at which
the output is positive but which have neighbors where the output is

negative.

3. Such pixels lie on the borders of regions where the Laplacian is positive.
Output sequences of the coordinates of these pixels that lie along the
borders. (On border following see [Rosenfeld82], Section 11.2.2.)

The size of this image requires 4 virtual processors per physical processor.

Each pixel is mapped into a virtual processor.

2.1.1 Convolution with Laplacian

The 11x11 sample “Laplacian” actually corresponds to filtering with a Gaus-
sian where o is 1.4,( [Haralick84], but see [Grimson85|, where it is argued
that a much larger mask should be used for reliable results). But, for a mask
diameter of 11 pixels, the binomial approximation to the Gaussian, followed

by a discrete Laplacian, requires only 3 ms.

2.1.2 Detecting Zero-Crossings

This takes negligible time (0.05 ms). Each processor need only examine the

sign bits of neighboring processors.

2.1.3 Border Following

To analyze this task, we consider two parameters, N, the number of curves in
the image, and Maz, the number of pixels on the longest curve. Each pixel
in the Connection Machine can link up with the neighbor pixels in the curve,

by examining its 8-neighbors in the grid, in negligible time (0.2 ms). Each
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pixel on the curve must next be labeled with a unique identifier for the curve.
Doubling permits the pixels on the curve to select a label, the address of the
principal processor, for the curve, and to propagate that label throughout the
curve in O(log Maz) steps.

Then, the total number of curves can be computed in 350 us, by selecting
the principal processors, and enumerating them using a scan operation. The
scan operation can return the number of curves (N).

At this point, the curves have been linked, labeled uniquely, and counted.
The structure constructed so far is sufficient to support most operations on
curves for image understanding, so we can consider all processing after this
to be for output only. To output the pixels from the Connection Machine,
the points on the curves should be numbered in order to create a stream of
connected points. The curve-labeling step, using doubling, can be augmented
to record the distance from the principal processor, as well as its label, during
label propagation, at only a slight increase in message length. We can find
the length of the longest curve, Maz, by one global-max operation (200us).

A simple method suggested by Guy Blelloch lets us assign to each point
on an edge an index, so that the points can be ordered in a stream for output
from the Connection Machine. Each edge sends its length to the processor
whose address is the index of the edge. Then, a plus-scan on the set of
processors representing these edge lengths generates the starting location, in
the stream, of the first point in each edge. This value is sent to the first point
(the principal point) in the edge, which broadcasts it to the points in the edge,
using doubling. Each point constructs an index for itself from its location in
the edge and the stream location of the first point. Ordering the pixels by
this method takes O(log Maz)ms, for doubling, two routing operations and
a scan.

The ordered pixels then send their (x,y) values to the address given by the
rank; this takes one send operation, with no collisions. The (x,y) coordinates
of the pixels on the curve will be in sequential order in the processors with
cube address 0 and on.



The total for Border Following is:

Propagate label and enumerate points 4 log Maz ms
Enumerate curves 350us
Rank pixels 2(log Maxz) + 3ms
Send 1 ms

For typical values in a 512 X 512 image

Mazxz = 512 logMaz =9
N = 256 logN =8
Propagate label and enumerate points 36ms
Enumerate curves 350us
Order pixels 21ms
Send 1ms

The first two sub-tasks are necessary to construct curves out of individual
pixels. The last two are necessary for output. Considering the first two,
Border Following requires 36ms. The remaining time, to prepare for output,
is 22ms. In total, approximately 58ms is need to perform Border Following.

The first two steps, Convolution and Detecting Zero Crossings, add neg-

ligible time to this process, so approximately 60ms will suffice.

Edge Detection

Sub-task Implemented | Estimated
Convolution 3ms 2ms
Find Zero-Crossings 0.5ms 0.5ms
Propagate label 36ms 36ms
Enumerate curves 350us 350us
Rank and send pixels 91ms 22ms
Total - without Output 40ms 39ms
Total - with Output 131ms 61ms

Note: The times quoted here are based on a configuration of a 64K Con-

nection Machine, using a Virtual Processor ratio of 4:1.
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2.2 Connected component labeling

1. Here the input is a 1-bit digital image of size 512 x 512 pixels. The
output is a 512 x 512 array of nonnegative integers in which

2. pixels that were 0’s in the input image have value 0

3. pixels that were 1’s in the input image have positive values; two such
pixels have the same value if and only if they belong to the same con-
nected component of 1’s in the input image (On connected component
labeling see [Rosenfeld82|, Section 11.3.1.)

A fast practical algorithm for labeling connected components in 2-D im-
age arrays using the Connection Machine has been developed by Willie Lim
[Lim86]. The algorithm has a time complexity of O(log N) where N is the
number of pixels. The central idea in the algorithm is that propagating the
largest or smallest number stored in a linked list of processors to all proces-
sors in the list takes O(log L) time, where L is the length of the list, using
doubling.

In the algorithm (see [Lim86] for more details), the label of a connected
(4-connected) component is the largest processor address (i.e. processor id)
of the processors in the set. The 2-D array of processors in the Connection
Machine are numbered from left to right, top to bottom fashion. The al-
gorithm first looks for boundary processors, i.e., processors which are either
on the array boundary or have at least one neighbor (8-connected) with a
different pixel value. These processors are linked together to form matching
pairs of boundaries separating pairs of regions. For example if region A is
completely surrounded by region B, then at the border between A and B
there are two matching boundaries—one on the A side and the other on the
B side of the border. The label of each boundary is found in O(log N) time.
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Since a region can have more than one boundary (e.g. when it surrounds
one or more region), the largest boundary label has to be found. This is
done by building a tree of boundaries such that each boundary that is not
the outermost boundary of a region is connected to a boundary (in the same
region) to its East. If there is more than one boundary to its East, it is
connected to the one with the largest boundary label. Setting up this con-
nectivity takes O(log N) time. The tree of boundaries is used for joining up
the boundaries of the region into one long boundary. In another O(log N)
step, the largest boundary label, which is also the largest processor id in the
set, is propagated to all the boundary processors in the region. This label
which is also the region label is propagated to all the processors in the region
in another O(log N) step. Thus the whole algorithm takes 16 log Nms on the
Connection Machine. The complexity of this step is measured in terms of the
longest boundary in the image. If N is of the order of 512512, then log N is
18, so the estimated time for this operation is 300ms (worst case). When the
longest boundary is approximately 512 pixels long, the time is 150ms. Note
that these estimates are based on existing hardware.

Another connected component algorithm by Guy Blelloch utilizes scan
operations along grid-lines. In each phase of his algorithm, the label of a
region, as specified by the processor with maximum cube-address, is propa-
gated left, right, up and down, with a maz-scan operation. The number of
phases of this algorithm depends on the alignment of figures in the image.
Its worst-case behavior originates from an image containing long ellipsoidal
regions, oriented along diagonals. Present implementations require 36ms per
phase, but expected rewrites into micro-code will bring this down to 12ms
per phase. The number of phases is commonly around 12, which means that

it also requires approximately 150ms for a 512 x 512 image.
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Connected Component Labeling

Method Implemented | Estimated
Doubling (length = 512 x 512) — 300ms
Doubling (length = 512) _— 150ms
Scanning (12 phases) 450ms 150ms

Note: The times quoted here are based on a configuration of a 64K Con-

nection Machine, using a Virtual Processor ratio of 4:1.
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2.3 Hough transform

The input is a 1-bit digital image of size 512 x 512. Assume that
the origin (0,0) is at the lower left-hand corner of the image, with
the x-axis along the bottom row. The output is a 180x512 array of
nonnegative integers constructed as follows: For each pixel (x,y)
having value 1 in the input image, and each i, 0 <¢ < 180, add 1
to the output image in position (i,j), where j is the perpendicular
distance (rounded to the nearest integer) from (0,0) to the line
through (x,y) making angle i-degrees with the x-axis (measured
counterclockwise). (This output is a type of Hough transform; if
the input image has many collinear 1’s, they will give rise to a
high-valued peak in the output image. On Hough transforms see
[Rosenfeld82], Section 10.3.3.)

The solution to this problem will involve 180 separate operations, each
of which computes the Hough Transform for a particular angle, 8. For each
angle, broadcast cosf and sinf to each of the processors. Each processor then
computes the scalar product of its (z,y) address in the grid with the normal
vector described by the broadcast pair. This number is bounded above by
512v/2, not 512 as suggested in the problem description. This can, of course,
be remedied by scaling by v/2. Also, we can use a clever trick, suggested by
Mike Drumbheller, to reconfigure the processors - each computes its location
on a linearization of the machine by lines normal to the specified angle. Each
pixel then has a unique address, sequential along the normal lines, in the
machine. Each pixel can send its value to the processor with its number,
in one router cycle (there are no collisions). The pixels then lie, in linear
order in the machine, according to their position on the normal lines. Each
processor at the beginning of one of the normal lines sets a segment bit. Then
a plus-scan using segment bits accumulates the numbers of pixels in each line
for the histogram in the processors with segment bits. One send operation
can collect the values into the histogram. This suffices to construct a column

of the histogram. Each angle requires some computation to
1. compute the scalar product

2. compute an address along scan lines
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One send, followed by a scan, followed by a send completes the process
for a column. Each angle requires about 4 ms (VP 4:1), and only 3ms for
VP 1:1. The entire Hough Transform is computed in approximately 720ms.
This estimate is, of course, based on a 512 x 512 image. For this image size,
the Connection Machine is using a 4:1 VP ratio, resulting in a reduction in
processing speed by a factor of 4 for most operations. For a 256 x 256 image,
the time for the histogram is reduced to 540ms. The procedure describe here
uses unique addresses for the linearization step. There is little penalty for
having up to 16 collisions per destination, so a randomizing strategy can be
used: messages are sent to random locations in a range depending on the
normal distance. The messages, when they arrive, are summed, using the
send with sum operation.

Consider a Hough Transform in which edge fragments form the primitives,
rather than pixels. Each edge point votes for only one orientation; each point
generates an integer identifying its Hough Transform value, using no more
than 17 bits (512 x 180). These values are sorted in 25ms, plus-scanned, and
then sent to the table. The total is no more than 30ms.

Hough Transform

Method Implemented | Estimated
Full 180 steps (512 x 512) — 720ms
Full 180 steps (256 x 256) — 540ms
From edge elements (512 x 512) — 30ms

Note: The times quoted here are based on a configuration of a 64K Con-
nection Machine, using a Virtual Processor ratio of 4:1.
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2.4 Geometrical constructions

The input is a set S of 1000 real coordinate pairs, defining a set of
1000 points in the plane, selected at random, with each coordinate

in the range [0,1000]. Several outputs are required.

1. An ordered list of the pairs that lie on the boundary of the

convex hull of S, in sequence around the boundary.

2. The Voronoi diagram of S, defined by the set of coordinates
of its vertices, the set of pairs of vertices that are joined by
edges, and the set of rays emanating from vertices and not
terminating at another vertex. (On Voronoi diagrams see
[Preparata85], Section 5.5.)

3. The minimal spanning tree of S, defined by the set of pairs
of points of S that are joined by edges of the tree.

2.4.1 Convex Hull

Each non-terminating ray of the Voronoi Diagram, described later, corre-
sponds to an edge of the convex hull of the set of points. Generating the
ordered set of points on the hull from the Voronoi diagram only requires
traversing the Delaunay triangulation along edges which correspond to these
rays, and takes O(H) steps, where H is the cardinality of the set of rays.
Each step involves following a pointer in the Connection Machine, less than

1ms.
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An alternative method for the convex hull calculation begins from Gra-
ham’s sequential algorithm [Preparata85,p.103], and does not rely on the
underlying grid. Initially, an interior point is determined in 4 extremum
operations on the Connection Machine, finding the x and y extrema of the
points. Each point is assigned an angle by constructing a vector from this
point. Then the points are sorted by angle in 20ms. Let us define a convez
wedge as the region formed by connecting a section of the convex hull to
the interior point. At first, the wedges are triangles formed from neighbor-
ing points and the center point. Graham’s algorithm recursively constructs
convex wedges of size 2¢ by merging wedges of size ¢, initially 2. The outer
curves of these wedges can be merged into new convex wedges in O(log N)
steps [Overmars81]. There are O(log N) merge steps, so the overall computa-
tion requires O(log2 N) router operations. Since N = 1000, log N is 10, and
the whole process requires 100ms, simply for the router operations. Other
computations may bring the entire cost up to 200ms. All computations are
in floating point. This analysis considers worst case.

A simple *Lisp implementation of the Jarvis march algorithm [Preparata85]
was constructed. In each iteration, each point computes its slope from a ref-
erence point, which is on the hull or outside (at first). To compute the slope
needs two subtractions and one division. Each step consists in computing
the slope, finding the global minimum slope, and finding the point with that
slope. A simple implementation takes 5ms per step, which could be reduced
to 3ms, by re-coding in PARIS. Trial examples with random points had an
average number of points on the hull of approximately 23. The total time
required is usually 150ms, which will be reduced 90ms in the PARIS version.
This method requires 3 seconds if all 1000 points were on the hull, but it is

marginally faster in the expected case.
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2.4.2 Voronoi Diagrams

Aggarwal et al. [Aggarwal85] describe a O(log® N) algorithm for computing
Voronoi diagrams in parallel using the CREW (Concurrent Read Exclusive
Write) model. For this particular example, this works out to 1000 steps,
each of which will take at least 1ms. This requires at least 1 second in total.
The algorithm description is sketchy and seems difficult to implement. A
careful analysis might show that this has a high constant multiplier. Since
the Connection Machine has the NEWS network, a set of mesh connections
among the processors, a brush-fire method can be easily implemented on
the Connection Machine. The points have coordinates in the range [0,1000],
so the Connection Machine must use a VP ratio of 16:1 to implement an
integer brush-fire method. One can argue that in many vision applications
the coordinates of the points are restricted to the range of the resolution of
the camera coordinate system, in which case 512 x 512 is a reasonable range.
A VP ratio of 4:1 results from a 512 x 512 grid.

Using the Euclidean metric, and propagating the index of the processor
containing the point, the Voronoi region around a point can be labeled in
D steps, where D is the diameter of the largest Voronoi region. The De-
launay triangulation, the dual of the graph of the Voronoi diagram, can be
constructed by propagating back to the originator the indices of all points
which share a Voronoi edge. This also takes D steps. This can, of course, be
simplified by only performing this back-propagation step from the Voronoi
vertices. Thus, collisions can be minimized. Alternatively, messages from
Voronoi vertices can carry the neighbor information to the original points.
This takes one router cycle, with an average number of collisions of 6. Propa-
gation (with VP ratio 1:1) takes 30ms per step in experiments; with coding in
PARIS, or *Lisp compilation, this can be improved to no more than 10ms per
step. With a VP ratio of 16:1, a propagation step takes 160ms. Propagating
to all Voronoi edges takes 160D ms (at 16:1), where D is the diameter of the
largest Voronoi region. Trial examples with randomly distributed points in
the region had average diameter approximately 12, so this step will take less
than 2 seconds (16:1), which reduces to 500ms for 512 x 512. The additional
work to identify Voronoi vertices and send the information about connections

will take less than 10ms.
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2.4.3 Minimum Spanning Tree

Guy Blelloch (personal communication) has developed an O(2.5log N) algo-
rithm for computing the MST of a graph, where N is the number of vertices
in the graph. Each step in this process requires approximately 6ms. The
Euclidean MST derives from the VD, so only edges in the MST need be
examined. 25 steps (estimated for this size graph) take 150ms. The time
complexity, concretely, is 15log N ms, where N is the number of vertices in

the graph.

Geometric Constructions

Sub-task Implemented | Estimated
Convex Hull (from VD) — 50ms
Convex Hull (Graham scan) — 200ms
Convex Hull (Jarvis march) 150ms 100ms
Voronoi Diagram (1024 x 1024) 4s 2s
Voronoi Diagram (512 x 512) ls 500ms
Minimum Spanning Tree (from VD) — 150ms

Note: The times quoted here are based on a configuration of a 64K Con-
nection Machine. For the two Voronoi Diagram methods, the Virtual Proces-
sor ratios are 16:1 and 4:1, and the data points are quantized to 1024 x 1024
or 512 x 512, Distance calculations are in floating point. For the direct convex
hull (calculations in floating point), and minimum spanning tree problems,
the VP ratio is 1:1.
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2.5 Visibility

The input is a set of 1000 triples of triples of real coordinates,
((r,5,t), (u,v,w), (x,y,x)), defining 1000 opaque triangles in three-
dimensional space, selected at random with each coordinate in
the range [0,1000]. The output is a list of vertices of the triangles
that are visible from (0,0,0).

A triangle shadows all vertices which lie in the triangular cone formed by
the origin and the edges of the triangle, and which are behind the plane con-
taining the triangle. The volume in space defined by this criterion is described
by 4 linear inequalities, from the bounding half-spaces. Each triangle, in a
pre-processing step, generates the four plane equations. A vertex can then
be tested for visibility by evaluating these equations for its (z,y) coordinates.
All vertices test whether they are shadowed by the triangle in parallel. The
time for each triangle is approximately 12ms. Repeating this computation
serially for all 1000 triangles is obviously too expensive.

The following formulation uses multiple copies of the triangles. The
problem can be parallelized by copying the triangles 65 times in the mem-
ory (64K) of the Connection Machine. This divides the machine into 65
subsets of processors. Each triangle processor will handle up to 47 points
(ceiling(3000/65)). Triangles O through 999 occupy processors O through 999
(cube address), and so forth. The descriptions of the triangles must be gen-
erated. A conservative estimate of the time for generating triangles is 50ms,
counting the necessary vector subtractions and cross-products to compute
normal equations for planes. The computed triangle descriptions comprise 4
plane equations,

Aiz+ By+Ciz+ D=0

each of which contains 4 32-bit numbers; the entire description is 512 bits
long. The descriptions of all 1000 triangles can be copy-scanned to replicate
them 65 times, in 15ms, and then sent, in one step, to the correct processors,
in 15ms. Then, points are sent to the sets of triangles against which they are
to be tested. The first 47 points are sent to processors O...46, the next 47
to processors 1000...3046, and so forth.
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Segments bits are inserted at the termination of each set of triangles. In
each testing step, the description of the point at the beginning of each set of
points is copy-scanned across the set of triangles. Scanning a 96 bit (3 x 32)
field takes 3ms. All triangles test the active points in parallel, in 12ms.
Then, the descriptions of the points are sent left, in 3ms. This brings a new
point to the beginning of each section of triangles, ready to be copied to all
the triangles in the next step. Each full step takes 18ms. Since there are 47
steps, the total time required is 850ms.

An alternate formulation uses the grid structure of the Connection Ma-
chine, by mapping a projection plane, anywhere in the visible region, orthogo-
nal to a line of sight from the origin, onto the 256 x 256 grid of the Connection
Machine. More than one vertex of a triangle may fall in a particular pixel,
but, by being careful, this can be made to work. Next, the vertices of the
triangles generate lines in the grid, forming the projection of the edges of the
triangles onto the grid, by a standard vector to raster conversion. Segment
bits are set at these pixels. This step requires no more than 25ms. Finally,
the projected vertices of triangles are distributed across the rows of the grid
by a grid-scan operation using copy, stopping at the pixels containing pro-
jected edges of the triangles. Each time a point encounters an edge, it checks
to see whether the plane represented by the edge covers it. If so, the point
turns off, and is no longer handled. Scan operations continue as long as active
points encounter edges. The total number of iterations is the number of tri-
angles enclosing, but not covering, a point. Simulations performed using the
specified number of triangles with the given range of coordinates, randomly
generated, showed that the maximum number of triangles enclosing but not
covering a point averages around 200. Each scan operation, with a check to
find whether the point is covered, requires no more than 5ms. The total,
approximately 1s, is less than the previous method. In addition, this method
depends on the number of triangles which overlap when projected. Random
input as specified is the worst case for this method; most practical examples

will have maximum coverings of approximately 10 or 20 triangles.

20



e P o - . R - - L ——— —

- Note: Thﬂmthun'mwuamﬁaohux%
lations are ficating peint. '




2.6 Graph matching

The input is a graph G having 100 vertices, each joined by an
edge to 10 other vertices selected at random, and another graph
H having 30 vertices, each joined by an edge to 3 other vertices
selected at random. The output is a list of the occurrences of
(an isomorphic image of) H as a subgraph of G. As a variation
on this task, suppose the vertices (and edges) of G and H have
real-valued labels in some bounded range; then the output is that
occurrence (if any) of H as a subgraph of G for which the sum of
the absolute differences between corresponding pairs of labels is

a minimum.

This task (subgraph isomorphism) is known to be NP-complete. As such,
we can expect the worst-case behavior of any (present) solution to be expo-
nential in the size of the graph G. The graphs in this particular problem are
uniform in degree, so that any vertex in H can match with any vertex in G,
based only on degree. Most heuristics for this problem rely on non-uniformity
of the degrees of vertices in the graphs, and so will fail for this instance of
the problem.

For this particular example, Carl Feynman implemented a program to test
for subgraph isomorphism on random graphs having the specified structure.
His program ran for 17 hours on a Symbolics 3640 Lisp Machine, had found
13,000 solution matchings, and had explored 10~2 of the search space, from
which he conjectured that there were 10'? solutions for this pair of random
graphs having the required characteristics. In the theory of random graphs
[Bollobas1985], threshold functions describe that the probability of finding
a matching given the sizes and degrees of two graphs. For graphs of the
specified sizes and degrees, this theory indicates that there is a matching

with probability one, in other words, there are many candidate matches.

22



We will outline a method to distribute the matching process among the
processors of the Connection Machine. A similar solution for objection recog-
nition is described in [Harris86). The method will be specialized to this par-
ticular size of graph, but is general enough to used for any sizes. A matching
is a mapping u of vertices from H to vertices in G, such that, if two vertices,
h; and hj, in H are connected in H, their images, u(h;) and u(h;) are con-
nected in G. A matching will be represented as a table, indexed by 1...|H|,
containing the indices of vertices in G, or 0, to indicate no match. The size
of a matching is the number of non-zero entries in the table. A successor
of a matching is a new matching, in which one more vertex in H is mapped
into a vertex in G, which also preserves connectivity. We utilize dynamic al-
location of processors to matchings. A partial matching is contained in each
active processor. At each step in the graph matching algorithm, a matching
(processor) acquires the information necessary to determine all legal succes-
sors. It then finds processors to continue with the new matchings; it is then
returned to the pool of free processors.

The descriptions of the graphs can be stored in several ways in the Con-
nection Machine. Since |G| is 100, 7 bits are needed to reference an entry in
G. The adjacency list of each vertex is then 70 bits long, storing explicitly
each reference. Since |G| is 100, the entire graph requires 7000 bits, more
than the current Connection Machine provides. Alternatively, we can use a
distributed representation of G, where the adjacency list of each vertex in
G stored in a different processor as a 100-bit vector. Then, a matching pro-
cessor can get the information by using a send operation, to the processor
with the data. The vertices in G can be stored, with many copies, through-
out the Connection Machine. This means, with 64K processors, that there
will be approximately 655 copies of the graph, one for every 100 matchings.
Each matching processor can access these copies randomly, so that contention
among the processors is minimized. The address of the vertex neighbor list
for vertex G; needed by a matching can be calculated from the address of the
matching processor and a random variable. |H| is 30, necessitating 5 bits to
reference a vertex in H. Each vertex has degree 3, so the complete description
of graph H only requires 30 x 3 x 5 = 450 bits. A matching needs to record
for each vertex in H the matched vertex in G, so it needs 30 X 7 = 210 bits.
Each matching processor contains a description of H as well as the partial

matching it is expanding.
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Figure 5: Match Expansion in Graph Matching

Initially no processors are allocated. We use rendezvous allocation[Hillis85)
to assign processors to matchings. The order in which vertices in H are
matched to G can be pre-computed to maximize the number of vertices in
H adjacent to the next vertex to be expanded. In that way, maximum con-
straint can be applied at each step. Consider a tableau (figure 5, in which
the vertices of G are arranged left-to-right across the top, and the vertices of
H are arranged top-to-bottom on the left. We represent matching vertex h;
with G; by an entry in (row,column)= (¢, j) in the tableau. A partial match-
ing is expanded from the partial matching in the column above it. Search
proceeds in a depth-first, left-to-right fashion. Enough free processors must
remain, at any point, so that all expanding search nodes can complete, i.e.,

either fail, or expand the full search sub-tree to leaf nodes.
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In each phase of matching generation, a matching at level k, 1 < k < |H|,
must expand itself to all legal successor matchings at the next level. Matching
processors may be expanding at many different levels, since resource limita-
tions may delay expansion until some processor fails, and is returned to the
pool. To expand itself, a matching must know, first, the neighbors of hj4,
and, second, the vertices in G to which those neighbors have been matched.
These data allow a matching at level k to prune its expansion, generating only
legal successors. The description of H is stored locally in each processor. To
recover the neighbors of hy,;, each processor steps through the description
of H, until it encounters the k + 1** entry, and then records the contents of
this entry. This takes no longer than 3ms. This step finds the neighbors of
the new vertex in H.

Each expanding matching examines the neighbors of hi;; to determine
the nodes in G to which they have been matched. The neighbors of each
such vertex in G must be retrieved from the distributed representations of G,
using a send operation. The adjacency information in G is stored as 100-bit
vectors. Retrieving this information needs 5ms per vertex, so 15ms total
may be required for the three possible neighbors of h;.;. Now, we must
compute the intersection of these bit vectors, describing all possible nodes in
G adjacent to the matches in G of neighbors of h;,;. This can be done in
time linear in the number of nodes in G, but such bit operations are fast;
the total time for graphs of this size is estimated to be less than 3ms. Then
we exclude from the intersection all nodes already matched in the current
matching, leaving the possible expansions in G. This is another fast, logical
AND NOT operation on the bit vector, taking less than 1ms. The remaining
vertices are the possible expansions in G. All are legal, that is, the nodes in
G to be matched are unmatched, and are adjacent to existing constraining
matches from H. If this set is empty, the matching fails. The entire phase of

computing the possible successors needs no more than 25ms.
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Each matching then has m < 10 possible expansion matches, and can
request m processors from the free pool, in a processor allocation step. The
description of a partial matching at the k** level can be distributed to the
successor nodes during allocation. The matching processor then returns it-
self to the free pool. Some matchings may be prevented from expanding to
allow more advanced matchings to reach completion. A priority mechanism
can be implemented to favor matchings which are nearer completion. The
overhead of allocation and distribution will be no more costly than the en-
tire successor-generation computation, which requires approximately 25ms,
bringing the total to 50ms. It is only slightly more difficult to maintain the
cost of a matching and return the matching with the minimum cost than it is
to generate all possible matchings. In fact, the constraint will reduce search
when standard alpha-beta pruning methods are applied.

A very conservative estimate of the time to expand one level in the search
tree is 50ms. From the initial expansion, 30 steps are required to finish
at least the very first full matching, so 1.5s in total are used to finish the
first full expansion. The total throughput of this problem can be measured
in terms of the number of partial matchings completed in each step. The
critical factor in this problem is to control the number of active matchings.
The process can monitor itself to record the average number of successors
at each level, allowing good control of allocation. The rate of expansion,
the number of legal successors at each level, is, at first, high, then tapers off
as more constraint occurs. If, say, 20 per cent of the processors are actively
expanding, then this method can explore approximately 10K partial matching
expansions for every 50ms. This discussion by no means solves this difficult
problem; there are many thorny issues of control and task allocation yet to

be analyzed completely.

Graph Matching
Method Implemented | Estimated

Per expansion step — 50ms
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2.7 Minimum-cost path

The input is a graph G having 1000 vertices, each joined by an
edge to 100 other vertices selected at random, and where each
edge has a nonnegative real-valued weight in some bounded range.
Given two vertices P,Q of G, the problem is to find a path from

P to Q along which the sum of the weights is minimum.

The graph can be represented as an adjacency list in the Connection
Machine. The algorithm, a Connection Machine implementation of Dijkstra’s
algorithm, is given in [Hillis85]. Each step in computing the shortest path
consists in each vertex sending to each of its neighbors the distance from
the source to itself plus the length of the connecting edge along which the
message is sent. With this number of vertices and edges, there are more edges
(100,000) than the number of processors, so virtual processors will be used,
at the ratio of 2:1. Each step involves a send operation, using the router.
The receiver compares all incoming values and selects the minimum.

Messages are sent only when the distance from the source is less than in-
finity (some initial value for all processors). This reduces the number of con-
flicts at many stages. Initial experiments require 9ms per step and analysis
indicates that 5ms per step is possible to achieve. The number of steps de-
pends on the diameter (the length of the longest path in the graph explored).
The algorithm stops when no processor changes its value as the result of the
messages it has received. For this particular problem, with such high degree
of interconnection, the number of steps will be around 10, resulting in an
overall time to completion of approximately 50ms. The implementation and

experiments were performed by Mike Drumbheller.

Minimum Cost Path
Method Implemented | Estimated
90ms 50ms

Note: The times quoted here are based on a configuration of a 64K Connec-

tion Machine, using a Virtual Processor ratio of 1:1.
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Task Implemented | Estimated
Edge detection
Convolution 3ms 2ms
Find Zero-Crossings 0.5ms 0.5ms
Propagate label 36ms 36ms
Enumerate curves 350us 350us
Rank and send pixels 91ms 22ms
Total - without Output 40ms 39ms
Total - with Output 131ms 61ms
Connected Component Labeling
Doubling method (length = 512 x 512) — 300ms
Doubling method (length = 512) — 150ms
Scan method (12 phases) 450ms 150ms
Hough Transform
Full 180 steps (512 x 512) — 720ms
Full 180 steps (256 x 256) — 540ms
From edge elements (512 x 512) — 30ms
Geometric Constructions
Convex Hull (from VD) —_ 50ms
Convex Hull (Graham scan) — 200ms
Convex Hull (Jarvis march) 150ms 100ms
Voronoi Diagram (1024 x 1024) 4s 2s
Voronoi Diagram (512 x 512) 1s 500ms
Minimum Spanning Tree (from VD) — 150ms
Triangle Visibility
Multiple copies — 850ms
Scanning — 1.0s
Graph Matching
Per expansion step — 50ms
Minimum Cost Path

90ms 50ms

Figure 6: Summary Table
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