Symposium on
Operating System
Principles

October 1-4, 1967 Gatlinburg, Tennessee

AN TMPLEMENTATION OF A MULTIPROCESSING COMPUTER SYSTEM

William B. Ackerman

William W. Plummer

Department of Electrical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

:Asébciation for Computing Machihery 211 East 43 Street = New York, N.Y. ‘10017



AN IMPLEMENTATION OF A MULTIPROCESSING COMPUTER SYSTEM

William B, Ackerman and William W, Plummer

Department of Electrical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

This work was supported by the Joint Services Electronics Program (Contract FR28-043-J6-00495)

1. Overall Structure and Objectives of the System

A PDP-1 computer was donated (by the Digital
Equipment Corporation) to the Electrical Engin-
eering Department of the Massachusetts Institute
of Technology in late 1961, In May, 1963 the
first time-sharing system was operational.

Since 1963 this PDP-1 has undergone sub-
stantial modifications (c.f. Appendix). Present-
ly the machine has twelve thousand words (18-bit)
of five microsecond memory arranged in pages of
four thousand words. One of these pages is
reserved for the system code and is protected
from user references.

This paper describes a recent multiproces-
sing system which has been implemented on the
PDP-1. The principle design criteria of the
system are:

1) that it be modular in the sense that the
supervisor may be constructed of independent
and asynchronous processes;

2) that I/0 functions may be controlled directly
by user mode processes; and,

3) that it contain an effective scheme for
allocating system resources to computations
and providing protection for these resources.

The system is composed of several parts which
are:

1) the executive routine which accomplishes
process scheduling and implements certain
meta~instructions;

executive

EXECUTIVE
ROUTINE

(scheduling,
process
control)

SCHEDULING
LOGIC

(hardware)

/

mode = | mode

traps,

restore
(unbreak instr.)

2) scheduling hardware that is used by the
executive routine. (This is a realization of
Corbato's multi-level queue scheduling
algorithm, See Reference 3).

3) the supervisor which implements I/0 buffer-
ing, general purpose routines to be called by
users, the file system, and computation
control, i.e., scheduling of computations and
allocation of resources; and,

4) the user computations, which may include an
' assembler, a text editor, and a combined
monitor and debugging routine.

Schematically, the system appears as shown
in Figure 1. Transitions from user processes to the
executive routine are caused by traps and inter-
rupts., To resume a user process, the executive
routine executes an unbreak instruction, which
will be discussed more completely in a later
section,

At this point we draw a distinction between
traps and interrupts. A trap is an event that
occurs in synchronism with the machine. Generally
traps are caused by illegal instructions and
special instructions which request service by the
executive routine. The system meta-instructions,
including the process control primitives, are
implemented as traps., Interrupts are events
which are asynchronous with respect to the com-
puter. Interrupts notify the executive routine of
I/0 device completion.

user

supervisor

interrupts

Figure 1 Overall Schematic of the System



2. Multiprocessing Primitives

A process is a virtual processor, the state
of which is determined by its live registers. A
process will be created when an existing process
executes a fork meta-instruction. Fork has the
effect of dividing the "flow of control” into
two paths - the original process, and the process
created by the fork meta-instruction. Because
any process may execute a fork, a large number of
parallel processes may be established. A
process may delete itself by executing a quit
meta-instruction,

Quite often it is required that a particular
process not be started until some number of
other processes quit. This control is achieved
by the join meta-instruction., Join takes an
argument which is the number of processes to be
joined. For all but the last process to execute
it, the join behaves like a guit meta~-instruction.
For the last process, it behaves like a '"no
operation" instruction.

Because several processes may share common
data, it was necessary to provide the lock and
unlock meta-instructions. These are used to
prevent one process from using data which has
been only partially updated by some other process,

Situations arise in which a large number of
processes may wish to execute a certain block of
code but only a fixed number are allowed to.

To handle this situation, the enter queue and
release queue meta-instructions are used. When
a process .attempts to enter the block but is not
able to, it executes an enter queue to suspend
itself. The release queue meta-instruction
indicates to the executive routine that the
waiting process may proceed., Enter queue and
release queue way be used as generalized lock
and unlock instructions.

3. Motivation for the System

One of the principal functions of a time-
sharing supervisor is the processing of requests
for various types of services from programs
running under the system., Timing and protection
considerations demand that a large number of
operations, such as input-output, access to
mass memory, and allocation of resources, be
serviced by a supervisory program which is pro-
tected from the programs requesting the service.
The supervisor handles buffering of I/0 devices,
to keep them busy even when the program request-
ing the I/O operation is no longer in core, and
protects each user's programs from tampering by
other users,

Since several user programs can request the
same supervisor function at the same time, (or
nearly the same time, if there is only one CPU),
there must be some mechanism to prevent conflicts.
Where there is only one CPU, and the service
takes a very short time, the service routine
could run in executive mode, or in user mode in
which the scheduler has guaranteed that its
quantum will not end. In this way a second
request cannot possibly occur until the first one
has been serviced, If the supervisory function
will take a long time, (for example, if it
involves 1/0 operations), it is necessary to let
other programs run before completing the function,
during which time other programs can request the
same function. A'simple example of this is I/0
device interpretation and/or buffering. If the
device is not ready, the service routine must
set some sort of flag indicating that this
particular process has been suspended, and then
go to the scheduler to run another process., When
an interrupt indicates that the supervisory
function is able to continue, the interrupt handl-
ing routine transfers back to the service routine,

The transfer to the process scheduler and
return from the interrupt handler are simply a
request to suspend the supervisor process until
the I/0 device completes, but it requires direct
connections between the program service routine
and the scheduling part of the executive, These
connections become more complex as the manner in
which the service routine uses the 1/0 device
becomes more complex.

= = = — 7 TExecurivelRouTing T T 7
| Process i Interrupt |

Scheduler r—-

]
: {

Handler |

USER

PROGRAM ’
Set
indicators

must wait

Request | Compute

OK

1 USER

PROGRAM
-

Retumn

Reset >

indicators Compute

Figure 2

Primitive 10 Request Handler



This I/0 supervisory routine is reentrant in
a primitive way. Several different requests for
the same function can be in progress at one time,
but only if they are waiting in the process
scheduler part of the routine. This method of
processing requests for action by the supervisor
requires that all supervisory routines either
complete in a very short time or wait for some
external event to restart the service routine,
The routine to process such a wait must be con-
nected to the process scheduler, and the data
pertinent to the wait must be private to each
waiting process,

These problems may be avoided by making the
routine run, in user mode, under the scheduler,
The entire routine must be reentrant, and uses
a supervisor call to the scheduler to request a
wait for I/0 device completion. This requires
that the time~sharing system have three levels.
The highest level is the executive routine, which
runs in executive (non-interruptible) mode and
handles process scheduling. The second level is
the supervisor, which runs in user mode and
processes requests from user programs for various
services. The third level consists of the user
programs themselves, Both the supervisor and the
user programs are scheduled by the executive rou-
tineo

When a request from a user program to the
supervisor involves operation of an I/0 device,
the I/0 instruction is done in the supervisor, in

user mode. When the device completes, the
supervisor must be informed of that fact fn
order to operate the device again and/or return
to the user. For this purpose, initiation of any
I/0 operation causes a function started trap
to the executive routine. The scheduler suspends
the process that caused the trap and runs some
other process. When the device completes, a

- Executive
routine

Supervisor

— e

User User

function completed interrupt occurs, and the
scheduler placaes the waiting process back on the
queue of processes to be run., In this way the
request for a wait until an I/0 device completes
is always associated with the initiation of an

1/0 operation, and vice-versa. (Some I/O opera-
tions complete immediately. In this case there is
no trap or interrupt, and the program continues

in user mode,)

Where the supervisory function involves 1/0
buffering, it is frequently necessary to return to
the calling program immediately even though the
actual device is still busy. This requires the
use of the process control meta-instructions

fork and quit. An example of an I/0O buffering

program will be treated in detail later,

Processes running in user mode (in the
supervisor or in actual user programs) can also
request a wait for an event that occurs in another
process, rather than in an I/0 device., The meta-
instruction enter queue requests such a wait, and

release queue, executed later by another process,

restarts the waiting process,

All of the executive service functions, such
as fork, quit, and enter queue, are available to
user programs as well as the supervisor, and the
facilities for writing user mode service routines
are also available, so that user computations can
define service functions for inferior computations.

The structure of the system, with respect to
the service functions provided, is shown below,

Services Provided

process control and scheduling

meta-instructions:

enter queue (wait for programmed event)

release queue (provide programmed event)

fork

quit

execute |0 function and wait for external
device completion

— — e — | —— — —— — ———— — — — oo— . s st

user mode services provided by the system:

file access
interpreted and/or buffered 10

resource allocation

any service function programmed by user

Figure 3  System Services



4, Hierarchy of Computations

A computation is a block of virtual memory
in which processes may run. A computation is al~-
so the basic unit of protection, since every
process rumning in a computation is bound to that
computation. Processes may execute instructions
affecting I/0 devices, mass memory and other
computations only if the capability list, or C-
list, of that computation permits.

The supervisory computation and user compu-
tation(s) may create inferior computations.
Thus, each computation (except the supervisor)
has an immediate superior, another computation,
to which protection violations by processes in
the first computation are reported. The immediate
superior owns the computation, and has an
appropriate entry in its capability list, All of
the computations in the system thus form a tree
structure of ownership and superiority, with the
supervisor at the top.

EXECUTIVE
Executive MODE
routine ')
Supervisor
USER
MODE
5
3
3|
! b3
USER USER =
o
o
£

Figure 4 The Hierarchy of Computations

5. Protection and Capability Lists

Protection is implemented (in addition to the
usual hardware detection of privileged instruction
violations, etc.) by a capability list ("C-list')
assoclated with each computation., The C-list of a
computation indicates which of certain system
functions and resources are available to processes
running in that computation., The types of
capabilities are:

inferior computation
suspended process
I/0 device

file

directory

programmed queue
entry

The invoke meta-instruction, executed by any
process in a computation causes a capability to
be invoked. The action taken depends on the
capability and parameters supplied by the process,

The computation hierarchy is built out of
inferior computation capabilities, An inferior
computation capability in the C-list of computa-
tion X indicates that the computation specified
in the capability, say Y, is inferior to X. X
exercises complete control over all aspects of Y,
and is protected by both hardware and software in
the executive routine and supervisor from the
effects of any malfunction by processes in Y.
Processes running ' in computation X may grant
and revoke (with meta-instructions bearing the
same names) capabilities in Y's C-list. Any
processing fault (illegal instruction, attempt to
tamper with the protection mechanism, etc.) by
processes in computation Y start a process in
computation X, beginning at the fault entry

address, reporting the malfunction,

Computations may define service subroutines
to be called by other computations by creating
an enter capability and granting it to the other
computations. The capability specifies the com-
putation to be entered and the starting address.
When a process invokes an enter capability, that
process is suspended (by the executive routine)
and a new process is started in the computation
being entered. A suspended process ecapability
is created in the C-list of the entered computa-
tion and the service routine (in the entered
computation), may, by invoking this capability,
examine and modify the registers of the calling
process and do whatever is necessary to process
the request, finally executing a proceed meta-
instruction to resume processing by the calling

process. The calling process may transmit a
capability from the C-list of its own computation
to the service routine, This is useful for
certain types of service routines, particularly
those involving I/0 operations, A service routine
of this type may be reentrant and hence may be
simultaneously servicing requests from several



processes, although the process locking techniques
to be discussed later may be used to limit the
number of processes permitted in certain sectioms
of the routine at any one time., The ability to
have reentrant service routines is especially use-
ful for coding routines that take a long time,
such as a routine to take input from a typewriter
and put it in a file,

Most of the usual supervisor functions, such
as I/0 buffering and file management, will be
called by enter meta-instructions.

A file capabilityv is a special case of an
enter. It was designed to be a separate capabil-
ity only to economize on the amount of informa-
tion that needs to be specified in the capability.
The file processor is a service routine in the
supervisor,

A directory capability is also a special

case of an enter. A directory is a file contain-
ing associations of symbolic names and capabili-
ties of any type. A directory is a convenient way
of storing a large number of capabilities, of
transmitting many capabilities from one computa-
tion to another, and of storing a list of named
files, (A file capability alone does not have

a name associated with it.)

A programmed queue capability actually has
very little to do with protection and is put in

C-lists only for convenience. It is discussed in
the section on process control.

The three basic functions of any time-shar-
ing supervisor are to schedule the execution of
several programs, to protect programs from adverse
effects of malfunctions in other programs, and
to provide service routines for the programs.

The PDP-1 time-sharing system makes all three of
these facilities available to user programs.
Hence, it is possible for a user program to simu-
late a complete time-sharing system, using enter
to simulate all invokes and meta-instructions.
Although this is not contemplated, enter is an
extremely useful tool for extending the power of
the other capabilities. For example, to make an
assembler take its source text from something
other than its input file, an enter capability

may be substituted for the file capability expect-
ed by the assembler. Every attempt by the
assembler to read from its input file will instead
transfer control to a service routine.

6. Input-Output

A process may invoke (initiate) an I/0
function, If this happens, the process will be
suspended until the I/0 function completes. At
a given time there may be several processes oper-
ating different I/0 functions, as well as ones
which are simply computing. Two processes
attempting to operate the same I/0 function is
handled as an error condition.

It is useful to compare the effect of a
completion interrupt in this system with effect

in the more conventional 'sequence break" or
"program interrupt" organizations. When an
interrupt occurs in a sequence break system, it
causes the computational level program to stop,
and an I/0 service routine to start. This routine
is responsible for determining which device
completed, restarting it, and returning to the
main program. In the PDP-1 multiprocessing

system an interrupt from a given function simply
restarts the process which invoked that function.

The real time clock is an I/0 device avail-
able to user mode programs. This permits the
computation scheduler to be run as a user mode
process which does the drum operations necessary
switch computations and resets the clock., The
setting of alarm times for all user processes is
handled by another supervisory routine which
keeps a queue of alarm times and updates the
actual alarm time when required.

7. Reentrant Programming and Process Control

In order to properly write reentrant programs,
it is usually necessary to have a larger amount of
private data than is provided by the live regis-
ters alone. An index register was constructed
principally to make reentrant programming practi-
cal. By having each process's index register
point to its own block of working storage,
several processes may execute the same instruc-
tions and use the same constants while referencing
different areas of working storage.

A fundamental operation is the locking out of
other processes, preventing more than one (or
some other number) of processes from executing
a certain block of instructions at one time. At
the beginning and end of the block of code there
are instruction sequences to effect the lockout,
A simple example of this is a program to modify
a file or some other data object, in which the
result is not usable until the operation is
complete,

In the general case, the block of code is
preceded by a lock meta-instruction and followed
by an unlock meta-instruction, the instructions
each having the address of the lock indicator for
the specified block of instructions. Lock could
be a hardware instruction or a meta instruction
serviced by the executive routine, A process
executing the lock instruction is permitted to
proceed only if the lock indicator is off, and,
if so, the lock indicator is turned on. The test
and set operations must be performed together
without the possibility of intervention by another
process or processor, The unlock instruction
would clear the lock indicator.

In the present system, only one processor
exists so only one process will execute the lock
at one time. Assuming the block of locked in-
structions will not produce a trap (due to
illegal instruction, etc.), it was sufficient to
realize lock as a machine instruction which
inhibits interrupts, which would cause a
different process to be started. Unlock enables



interrupts after a lock. A lock timer produces
an error condition if a process tries to remain
locked for more than sixty-four memory cycles.

Where the block of code in which only one
process is permitted is more than sixty-four
memory cycles in length, or where the desired
synchronization is more complex than just re-
stricting something to one process, the instruc-
tions enter queue and release queue are provided.
The enter queue meta-instruction suspends the
process executing it. Any other processes are
permitted to continue, so a process may remain
suspended for any length of time without dis-
rupting the rest of the system,

To restrict the number of processes enter-
ing a (possibly very long) block of code, a count
and test routine is placed at the beginning of the
program. Only the first process is permitted to
go through., (This count and test routine must
be executed in one instruction or else be locked.
Enter queue is effectively a single instruction,)
All later processes will execute the enter queue
and be suspended. During the entire period that
the block of instructions is being executed by
the one process that was permitted to enter it,
other processes elsewhere in the system are
permitted to run, Only processes that attempt to
enter the same routine are suspended. When the
process exits from the block of instructions, it
clears the flag indicating that a process is in
the block and executes a release queue addressing
the same queue, If no processes were suspended
in the queue, the release queue does nothing.

If any processes were suspended, the first one
that entered the queue is removed from the queue
and restarted in locked mode. Between the time
that the flag is cleared and the release queue

is executed, the computer should be locked. This,
along with the fact that the restarted process

is locked insures that the restarted process will
find the flag off and will be permitted to erter
the restricted block of code. Since the first
process to execute the enter queue is the first
to be released, processes are queued in an
equitable way.

Enter queue and release gqueue
may be used for programming more sophisticated
process control operations, For example, where
a limited number of storage areas are available
for a reentrant routine, it is necessary to
restrict the number of processes entering the
routine to that number, and to point each proces-
s's index register at its storage area.

In some cases, a simpler type of process
control may be accomplished by using quit to stop
a process and fork to recreate it. That would
not work in the above case if the processes
entering the routine have private data in their
live registers because these data are lost at a
quit (and, until a process has been through the
queue, it cannot allocate any memory in which
to store its registers). Live registers are
preserved in a queue. This simpler method of
starting and stopping processes may be applied to

I1/0 buffering routines.

The example shown in Figure 7 is typical of
the supervisory procedure for some I/0 devices.
This is a routine to buffer typewriter output,
which accepts calls from user computations and
places the information in a buffer, returning to
the calling program immediately unless the buffer
becomes full, in which case it fails to return
until the buffer is nearly empty. To properly
understand this example, it must be remembered
that a process which executes an I/0 function is
suspended until the function completes.

enter queve

1
I
|
g
0
S

-1

—-=d

Figure 5 Programmed Lockout



r—"

mark it busy

Figure 6 Allocation of Storage Areas

I lock |

get character
- from buffer,
move pointers

—_ —1 unlock |-— —

L

()

store character
in buffer, move |—
pointers

1

—-leockj— ——leock l—- - —

-
|
[
[
I
I
—

fork

Flag 1— buffer empty
Flag 2—buffer full

Figure 7 Sample IO Buffering Routine




8. Modes, Traps, and Interrupts

When the time-sharing system is running the
computer is in one of two modes, user mode or
executive mode. The executive routine runs in
executive mode, and all other routines, includ-
ing the supervisor, run in user mode. When the
computer is in user mode, any I/0 device comple-
tion, process quantum end, illegal instruction,
or execution of a meta-instruction or invoke
causes an interrupt or trap. The computer
switches to executive mode, automatically stores
all live registers, and resumes operation at a
location in the executive routine peculiar to
the reason for the interrupt or trap, The
executive routine can return to user mode and
restore all live registers to their state prior
to the trap or interrupt by execution of the
unbreak instruction, This instruction is
privileged, that is, legal only in executive mode.
To facilitate switching from one process to
another, the executive routine can specify the
locations in core memory in which the live
registers are stored by loading an address in the
process pointer register., The unbreak instruc-
tion loads the computer's live registers from
consecutive locations beginning with the location
addressed by the process pointer, While the
computer runs in user mode, the process pointer
remains unchanged. (The instruction to load the
process pointer is privileged.) When a trap or
interrupt occurs, the computer's registers
are stored in the locations from which they were
loaded, as directed by the process pointer., To
switch pracesses, the executive routine simply
loads the process pointer with the address of the
stored registers of the new process and executes
an unbreak instruction.

9. The Process Queue

There is an eight level process priority
queue containing all processes which are in
core and runable at a given time, The process
scheduling algorithm is to run the first process
at the highest occupied queue level. When its
quantum terminates, (assuming that it has not
already terminated processing for some other
reason) it is placed at the end of the queue at
the next lower level, or the same level if it is
already at the lowest level. The first process
on the highest occupied level is then run.
When a level becomes empty, the process scheduler
runs processes at the next lower level. In the
absence of I/0 operations, all processes will
eventually descend to the lowest level., A
process which is restarted because of I/0
completion is placed on a level determined by the
device,

The hardware scheduling logic includes
registers indicating the priority level of the
running process and the highest priority level
of processes which are not running. These
registers are loaded by the executive routine
and determine the operation of the process
quantum clock.

A process quantum varies from 1 1/4 ms. for
the highest level to 40 ms. for the lowest level,
and is always a multiple of 1 1/4 ms.,, the sub-
quantum time. At the end of each subquantum, the
hardvare checks the number of subquanta remaining
in the quantum, the level of the current process,
and the level of the highest process remaining in
the queue. If a process of higher priority has
appeared in the queue and the quantum of the
current process has not ended, a preempt interrupt
occurs, and the process scheduler replaces the
interrupted process at the head of its queue level,
to run for the remainder of its quantum at a
later time, and the higher priority process is
run, If the quantum of the current process ends
and there is another process of equal or higher
priority, a round robin interrupt occurs, and
the- process scheculer places the stopped process
at the end of the queue at the next lower level,
If the quantum ends and there is no process of
equal or higher priority, the same process would
run next anyway, so the hardware automatically
demotes it to a lower level, and no interrupt
occurs,

When a process executes an I/0 instruction
and the device does not complete immediately,
the I/0 function started trap occurs. The
executive routine suspends the process by remov-
ing it from the queue, and runs the process of
highest priority. When the device completes, an
I1/0 function comgléted interrupt occurs, and the
process is replaced on the queue. It is not run
immediately, but if its priority is sufficiently
high, it will cause a preempt interrupt and will
run next (within 1 1/4 ms,),

An enter or similar instruction requiring
service by a user mode computation causes a trap
to the executive routine. The executive routine
creates a process in the computation being
entered and schedules it to be run. The original
process is suspended by being removed from the
queue,

An illegal instruction is treated like an
enter, and a new process is started in the im-
mediate superior to the computation in which the
instruction was executed, starting at the fault
entry address, The supervisor has no superior,
and an illegal instruction trap from the super-
visor is considered a system failure.

Certain supervisory functions are processed
directly by the executive routine, These include
fork, quit, enter queue, and release queue, which
require the non-interruptibility of the executive
routine in order to function properly. When a
fork trap occurs, the executive routine allocates
a block of memory for the stored registers of the
new process and executes a special instruction
which switches to user mode and automatically
copies the stored live registers of the old
process into the new one., The routine to
service the quit trap returns the block of
memory used by the process to the list of free
process blocks and runs some other process. Enter
queue places the process at the end of the



programmed queue and removes it from the main
process queue, Release queue removes the first
process in the programmed queue and places it at
the head of the process scheduler queue, so that
it will be run next,

10. Appendix

Summary of Major Modifications to the PDP-1

A, Additional Instructions

Several new instructions were added to the
PDP-1 for operating the index register, initiating
I/0 functions, and for doing arithmetic operations
between the active registers. Operation codes
were provided for the meta-instructions.

B. I(O Function Bus

An I/0 function bus capable of controlling
sixty-four independent peripheral devices was
added to replace the standard PDP-1 I/0 system.
The invoke instruction causes a few control words
to be sent to the specified. device causing it to
be activated. The bus control contains a priority
circuit to select the highest priority device if
more than one completes at the same time,

C. Addressing Modes

When the index register was installed, sev-
eral instructions were added to control the
addressing modes which determine what combination
of index and defer addressing is used in effective
address calculations.

D. Memory System

The original memory was replaced by 3 four
thousand word modules similar to the ones used on
the PDP-6 and PDP-10 machines. A core rename (CR)
register was added to the CPU so that the modules
could be used as pages in the time-sharing system.

Each memory may be accessed independently
through any of four "ports,” The highest priority
port on each module is used for the drum (512K),
the next highest for the data channel (which in
turn has eight ports), and the two lowest for
CPU's (although only one CPU is currently imple~
mented) .

E. Mode Structure

When the machine was rebuilt (summer, ]966),
three distinct hardware modes were implemented:
user mode, executive mode, and debug mode. The
user and executive mode have been discussed in the
body of the paper., Debug mode is superior to
executive mode and, while the machine is im this
state, all instructions are legal and bad oper-
ation codes will stop the machine,

A change to the next higher mode (user to
executive or executive to debug) happens when a
trap or interrupt (in the first case) occurs,
Interrupts remain pending while the computer is in
executive mode. A mode change or '"break" is
accompanied by the storing of all active registers

at the location in the executive memory specified
by the process pointer (PP) register. When debug
mode is entered, the executive state word is
deposited in fixed locations., At the end of the
break, the index register is left pointing to the
newly deposited state word,

In order to descend to the next lower mode,
the unbreak instruction was implemented. Unbreak
is a many-cycle instruction which does just the
opposite of a break -- it completely restores the
state of the CPU for a process in the next lower
mode., ;

F, Scheduling Hardware

Two registers, the current priority (CP) and
the queue priority (QP), were added. The QP con-
tains the priority of the highest priority process
in the queue, while CP contains the priority of
the process ehich is actually running, The number
in CP controls the number of subquanta allotted to
the running process. If QP is less than CP, there
is a process of higher priority waiting to be rum,
and a preempt interrupt will occur at the end of
the current subquantum (i.e,, within 1 1/4 milli-
seconds), Otherwise, one of two actions will be
taken after the end of the specified number of
subquanta: if CP is less than QP, CP will be decre-
mented, the number of allotted subquanta will be
reset accordingly, and the process will continue
running; if CP is equal to QP, a round robin
interrupt will occur,

11, Acknowledgements

The authors wish to thank Professor J. B.
Dennis, who did most of the hardware design and
specification of the software for the PDP-1
system, His assistance was invaluable in prepar-
ingthis paper. Leo Rotenberg, one of Professor
Dennis's graduate students, also contributed to
the initial design of the system,

John MacKenzie, Ralph Butler, and John
Connolly are thanked for their many hours of
documentation, wiring, and debugging of the hard-
ware,



12,

1,

2.

3.

4,

References
———

Dennis, J. B., Van Horn, Earl C,, "Pro-
gramming Semantics for Multiprogrammed
Computations”, Comm, of the ACM, vol. 9,
no., 3, March, 1966.

Dennis, J. B., "A Multiuser Computation
Facility for Education and Research", Comm,
of the ACM, vol. 7, no. 9, Sept., 1964.

Corbato, F. J,, et. al.,, "An Experimental
Time-sharing System', AFIPS Conf, Proc. 21,
Spartan Books, Baltimore, p. 335 ff.

Dijkstra, E., W., Cooperating Sequential
Processes, Dept. of Math., Technological
University, P.O. Box 513, Eindhoven, The
Netherlands.

The following are unpublished internal memoranda:

1.

2,

3.

4,

Rotenberg, Leo J., "An Implementation of an
Almost Segmented Time-sharing System",

Dennis, J. B., Input/Output in the PDP-1-X,
no. PDP-33, March 10, 1966.

Dennis, J. B., Rotenberg, Leo J., PDP-1-X
Index Register, no. PDP-34, April 27, 1966,

Modes, Registers, New Instructions and Traps
and Interrupts in the PDP-1-X, no. PDP-38,
June 7, 1966.



	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

