

NeXT Developer’s Library

NeXTstep

Draw upon the library of software contained in NeXTstep to develop your
applications. Integral to this development environment are the Application Kit and
Display PostScript.

Concepts

A presentation of the principles that define NeXTstep, including user interface
design, object-oriented programming, event handling, and other fundamentals.

Reference, Volumes 1 and 2
Detailed, comprehensive descriptions of the NeXTstep Application Kit software.

Soimd, Music, and Signal Processinév

Let your application listen, talk, and sing by using the Sound Kit and the Music Kit.
Behind these capabilities is the DSP56001 digital signal processor. Independent
of sound and music, scientific applications can take advantage of the speed of
the DSP.

Concepts

An examination of the design of the sound and music software, including chapters
on the use of the DSP for other, nonaudio uses.

Reference

Detailed, comprehensive descriptions of each piece of the sound, music, and DSP
software.

NeXT Development Tools

A description of the tools used in developing a NeXT application, including the
Edit application, the compiler and debugger, and some performance tools.

NeXT Operating System Software

A description of NeXT’s operating system, Mach. In addition, other low-level
software is discussed.

Writing Loadable Kernel Servers

How to write loadable kernel servers, such as device drivers and network protocols.

NeXT Technical Summaries

Brief summaries of reference information related to NeXTstep, sound, music, and
Mach, plus a glossary and indexes.

Supplemental Documentation

Information about PostScript, RTF, and other file formats useful to application
developers.

Sound, Music, and Signal Processing:
Reference

We at NeXT Computer have tried to make the information contained in this manual as accurate and reliable as possible.
Nevertheless, NeXT disclaims any warranty of any kind, whether express or implied, as to any matter whatsoever relating to this
manual, including without limitation the merchantability or fitness for any particular purpose. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to notify the purchaser. In no
event shall NeXT be liable for any indirect, special, incidental, or consequential damages arising out of purchase or use of this
manual or the information contained herein.

Copyright ©1990 by NeXT Computer, Inc. All Rights Reserved.
[2911.00]

The NeXT logo and NeXTstep are registered trademarks of NeXT Computer, Inc., in the U.S. and other countries. NeXT, Music
Kit, and Sound Kit are trademarks of NeXT Computer, Inc. UNIX is a registered trademark of AT&T. All other trademarks
mentioned belong to their respective owners.

Notice to U.S. Government End Users:
Restricted Rights Legends
For civilian agencies: This software is licensed only with “Restricted Rights” and use, reproduction, or disclosure is subject
to restrictions set forth in subparagraph (a) through (d) of the Commercial Computer Software—Restricted Rights clause at
52.227-19 of the Federal Acquisition Regulations.

Unpublished—rights reserved under the copyright laws of the United States and other countries.

For units of the Department of Defense: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

NeXT Computer, Inc., 900 Chesapeake Drive, Redwood City, CA 94063.

Manual written by Doug Fulton

Edited by Caroline Rose, Roy West, Helen Casabona, Kathy Walrath, and Gary Miller
Book design by Eddie Lee

Mlustrations by Jeff Yaksick and Don Donoughe

Production by Adrienne Wong, Jennifer Yu, and Katherine Arthurs

Publications management by Cathy Novak

Reorder Product #N6007B

Contents

1-1

2-1
25
2-47

3-1

3-28
3-47
3-77

4-1
4-3
4-4

4-7
4-11
4-13

A-1
A-3
A-4

A-5
A-7

B-1
B-3
B-6
B-12

C-1

C-4
C-5

Introduction
Chapter 1: Header Files

Chapter 2: Class Specifications
Sound Kit Classes
Music Kit Classes

Chapter 3: C Functions
Music Kit Functions

Sound Functions

Sound/DSP Driver Functions
Array Processing Functions

Chapter 4: ScoreFile Language Reference
Program Structure

Header Statements

Body Statements

Header or Body Statements

Predeclared Variables, Constants, and Special Symbols
Operators

Appendix A: Summary of ScoreFile Language Syntax
Program Structure

Header Statements

Body Statements

Header or Body Statements

Constants, Predeclared Variables, and Special Symbols
Operators

Appendix B: Music Tables
Pitches and Frequencies

Music Kit Parameters
WaveTable Database

Appendix C: Details of the DSP
Memory Map

DSP D-15 Connector Pinouts
DSP56001 Instruction Set Summary

Index

Introduction

3 Conventions
3 Syntax Notation
4 Notes and Warnings

Intro-1

Intro-2

Introduction

This manual provides detailed descriptions of the Objective-C language classes, C
functions, data formats, and other programming elements that make up the sound, music,
and DSP software.

A version of this manual is stored on-line in the NeXT" Digital Library (which is described

in the user’s manual NeXT Applications). The Digital Library also contains Release Notes,
which provide last-minute information about the latest release of the software.

Conventions

Syntax Notation
Where this manual shows the syntax of a function, command, or other programming
element, the use of bold, italic, square brackets, and ellipsis has special significance, as

described here.

Bold denotes words or characters that are to be taken literally (typed as they appear). [talic
denotes words that represent something else or can be varied. For example, the syntax

print expression
means that you follow the word print with an expression.
Square brackets [] mean that the enclosed syntax is optional, except when they’re bold [],
in which case they’re to be taken literally. The exceptions are few and will be clear from
the context. For example,

pointer [filename]
means that you type a pointer with or without a file name after it, but

[receiver message]

means that you specify a receiver and a message enclosed in square brackets.

Intro-3

Ellipsis (...) indicates that the previous syntax element may be repeated. For example:

Syntax Allows

pointer ... One or more pointers

pointer [, pointer] ... One or more pointers separated by commas

pointer [filename ...] A pointer optionally followed by one or more file names
pointer [, filename] ... A pointer optionally followed by a comma and one or more

file names separated by commas

Notes and Warnings

Note: Paragraphs like this contain incidental information that may be of interest to curious
readers but can safely be skipped.

Warning: Paragraphs like this are extremely important to read.

Intro-4

Chapter 1
Header Files

All header files can be viewed on-line. They are located in /usr/include and its
subdirectories. Each of the kits and the common classes have subdirectories—appkit,
soundkit, musickit, and objc. Other subdirectories of interest include streams, sound,
dpsclient, dsp, sys, and servers.

Header Files 1-1

1-2

Chapter 2
Class Specifications

2-5
2-7
2-25
2-31

2-47

2-49

2-67

2-75

2-81

2-87

2-93

2-101
2-119
2-123
2-131
2-139
2-159
2-169
2-177
2-183
2-187
2-191
2-207
2-211
2-221
2-225
2-229
2-241
2-245
2-251
2-257
2-265
2-269
2-279
2-285
2-287
2-289
2-295
2-297
2-299

Sound Kit Classes
Sound

SoundMeter
SoundView

Music Kit Classes
Conductor
Envelope
FilePerformer
FileWriter
Instrument
Midi

Note
NoteFilter
NoteReceiver
NoteSender
Orchestra

Part

Partials
PartPerformer
PartRecorder
PatchTemplate
Performer
Samples

Score
ScorefilePerformer
ScorefileWriter
ScorePerformer
ScoreRecorder
SynthData
SynthInstrument
SynthPatch
TuningSystem
UnitGenerator
WaveTable
Add2UG
Allpass1UG
AsympUG
ConstantUG
DelayUG
DswitchtUG

2-1

2-2

2-301
2-303
2-305
2-307
2-309
2-311
2-313
2-317
2-321
2-323
2-325
2-327
2-329
2-331
2-333

DswitchUG
InterpUG
Mulladd2UG
Mul2UG
OnepoleUG
OnezeroUG
OscgafUG, OscgafiUG
OscgUG

OutlaUG, Out1bUG
Out2sumUG
ScaleUG
Sclladd2UG
Scl2add2UG
SnoiseUG
UnoiseUG

Chapter 2
Class Specifications

This chapter provides protocol information about the classes defined in the Sound Kit" and
Music Kit" . Each class is contained in a separate section wherein the class’ instance
variables and methods are listed and described. Familiarity with the concepts introduced
in Volume 1 is assumed. A detailed explanation on how to read a class description is given
in Chapter 2 of the NeXTstep® Reference manual.

Class Specifications 2-3

Sound Kit Classes

The class specifications for the Sound Kit describe three classes:
Sound
SoundMeter

SoundView

The Sound class inherits from Object. SoundMeter and ScundView inherit from the
Application Kit’s View class.

Sound Kit Classes 2-5

Sound

INHERITS FROM Object
DECLARED IN soundkit.h
CLASS DESCRIPTION

Sound objects represent and manage sounds. Designed primarily to provide recording,
playback, and editing of sampled sounds, a single Sound object can accommodate a
number of different sound formats, including nested or multiple sounds and DSP sound
synthesis program code.

The sound encapsulated in a Sound object can be recorded from CODEC microphone
input, read from a soundfile or from the application’s Mach-O sound segment, retrieved
from the pasteboard, or created algorithmically. Whatever the source of sound,
playback is usually transparent. Conversion to the format and sampling rate expected
by the playback hardware is performed automatically for most Sounds; the Sound
formats and sampling rates are listed below.

Both playback and recording are performed by background threads, allowing your
application to proceed in parallel. Usually, an application expects a playback or
recording to be immediate. The latency between sending a play: or record: message
and the start of the playback or recording, while within the tolerance demanded by most
applications, can be further decreased by first reserving the sound facilities that you
wish to use. This is done by calling the SNDReserve() C function (described in
Chapter 3, “C Functions”).

The Sound class provides an application-wide name table called the named Sound list
that lets you identify and locate sounds by a unique string name.

A Sound object can have a delegate, to which messages are sent when the object begins
or ends playback or recording. The following messages are sent to the Sound delegate:

Message Motivation

willPlay: Sent just before the Sound begins playing

didPlay: Sent when the Sound finishes playing

willRecord: Sent before recording

didRecord: Sent after recording

hadError: Sent if the playback or recording generates an error

The argument for a delegate method is, of course, the Sound object that caused it to be
sent.

A number of editing methods are provided, such as insertSample:at:, and

deleteSamplesAt:count:. As the names imply, the editing methods only apply to
Sound objects that contain sampled sound data (as opposed to DSP program code). The

Sound Kit Classes: Sound 2-7

isEditable method is provided as a test to determine whether the object contains
editable data. Only if isEditable returns YES should an editing method be sent to the
object.

To minimize data movement (and thus save time), an edited Sound may become
fragmented; in other words, its sound data might become discontiguous in memory.
While playback of a fragmented Sound object is transparent, it does incur some
additional overhead. If you perform a number of edits—particularly near the beginning
of the sound data—you may want to return the Sound to its natural, contiguous state by
sending it the compactSamples message before you play it. However, a large Sound
may take a long time to compact, so a judicious and well-timed use of
compactSamples is advised. A fragmented Sound is ascertained by invoking the
needsToCompact method; a return value of YES indicates that the receiver is
fragmented. Note that a fragmented Sound is automatically compacted before it’s
copied to the pasteboard (through the writeToPasteboard method). Also, when you
write a Sound to a soundfile, the data in the file is compact regardless of the state of the
object.

A Sound object contains a SNDSoundStruct, the structure that describes and contains
sound data and that’s used as the soundfile format and the pasteboard sound type. The
Sound object’s soundStruct instance variable is a pointer to the object’s
SNDSoundStruct. Most of the methods defined in the Sound class are implemented so
that you needn’t be aware of this level of detail. However, if you wish to directly
manipulate the sound data in a Sound object, you need to be familiar with the
SNDSoundStruct architecture. This is described in Volume 1, Chapter 2 and outlined
in the description of the SNDAlloc() function in Chapter 3, “C Functions.”

The formats and sampling rates supported by the Sound object are the same as those
defined for the SNDSoundStruct. The formats are represented as constants and fall into
three groups: sampled data, DSP program code, and other formats. The sampled data
formats describe the amplitude quantization of the sound data:

Sampled Data Formats Quantization

SND_FORMAT_MULAW_S 8-bit mu-law
SND_FORMAT_MULAW_SQUELCH 8-bit mu-law with run-length
encoding of silence

SND_FORMAT_LINEAR_S8 8-bit linear
SND_FORMAT_LINEAR_16 16-bit linear
SND_FORMAT_LINEAR_24 24-bit linear
SND_FORMAT_LINEAR_32 32-bit linear
SND_FORMAT_FLOAT 32-bit floating point
SND_FORMAT_DOUBLE 64-bit floating point
SND_FORMAT_DSP_DATA_8 8-bit fixed point
SND_FORMAT_DSP_DATA_16 16-bit fixed point
SND_FORMAT_DSP_DATA_24 24-bit fixed point
SND_FORMAT_DSP_DATA_32 32-bit fixed point

2-8 Chapter 2: Class Specifications

Sound data for a DSP program consists of commands and data that can be sent to the
DSP for sound synthesis. The C function SNDReadDSPfile() is provided to read a
DSP program from a file into a sound structure.

DSP Program Formats Meaning
SND_FORMAT_DSP_CORE The core image for a DSP program

There are four other formats:

Other Formats Meaning

SND_FORMAT_DISPLAY Used to represent reduced data for display
SND_FORMAT_INDIRECT Fragmented sampled data
SND_FORMAT NESTED Multiple sound structures

SND_FORMAT_UNSPECIFIED Unknown format

The SND_FORMAT_DISPLAY format is used primarily by SoundView objects. You
can’t play display data.

The data in both fragmented and nested sounds contain any number of sub-structures.
In a fragmented sound, the datal.ocation field of the SNDSoundStruct points to a
contiguous block of ordered addresses (the address list is terminated by NULL) each
of which points to a SNDSoundStruct that contains one of the sound fragments. The
data in a nested sound contains any number of (possibly fragmented) sounds. Each
sound has its own SNDSoundStruct; the sound format, sampling rate, and number of
channels can vary from one sound to the next. When you play a nested sound, the
sounds are played back in order.

NeXT reserves the integer constants 0 through 255 to represent sound formats. You can
provide your own formats represented by positive integers greater than 255. For
example, you can create a format to identify data reduced models of a sound, or to store
graphic information used to display reduced sound data. Personalized formats are
particularly useful in a nested sound, wherein you can store original sound data using
one of the Sound Kit formats along with your own versions of the data. Non-Sound Kit
formats, as well as the SND_FORMAT_UNSPECIFIED format, are ignored during
playback.

A Sound’s data format is returned by the dataFormat method. Note that for a
fragmented sound, the format of the actual data is returned (all the fragments have the
same format, sampling rate, and number of channels). In other words, dataFormat
never returns SND_FORMAT _INDIRECT.

The recording and playback hardware support three sampling rates, represented by the
following floating point constants:

Constant Sampling Rate (Hz)
SND_RATE_CODEC 8012.821 (CODEC input)
SND_RATE_LOW 22050.0 (low sampling rate output)
SND_RATE_HIGH 44100.0 (high sampling rate output)

Sound Kit Classes: Sound 2-9

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in Sound SNDSoundStruct *soundStruct;
nt soundStructSize;
int priority;

id delegate;
int status;
char *name;

soundStruct The object’s sound data structure.

soundStructSize The length of soundStruct in bytes.

priority The object’s recording and playback priority.

delegate The target of notification messages.

status What the object is currently doing.

name The object’s name.

METHOD TYPES

Creating and freeing a Sound object
— free
+ new
+ newFromMachO:
+ newFromPasteboard
+ newFromSoundfile:

Finding and naming the object + addName:fromMachO:
+ addName:fromSoundfile:
+ addName:sound:
+ findSoundFor:
+ removeSoundForName:

Reading and writing sound data — readSoundfile:
— writeSoundfile:
— writeToPasteboard
Modifying the object — convertToFormat:samplingRate:channelCount:

— setDataSize:dataFormat:samplingRate:
channelCount:infoSize:

— setDelegate:

— setName:

2-10 Chapter 2: Class Specifications

Querying the object

Recording and playing the object

Editing the sound data

Archiving the object

Accessing the delegate

Accessing the sound hardware

— channelCount

— compatibleWith:
— data

— dataFormat

— dataSize

— delegate

— info

— infoSize

— isEditable

— isEmpty

— name

— needsCompacting
— sampleCount

— samplesProcessed
— samplingRate

— soundStruct

— soundStructSize
— status

— pause
— pause:
— play

— play:
—record
—record:
—resume
— resume:
— stop

— stop:

— compactSamples

— copySamples:at:count:

— copySound:
— deleteSamples

— deleteSamplesAt:count:

— insertSamples:at:

— finishUnarchiving
—read:
— write:

— tellDelegate:

+ getVolume::
+ setVolume::
+ isMuted
+ setMute:

Sound Kit Classes: Sound

2-11

CLASS METHODS

addName:fromMachO:

+ addName:(char *)name fromMachO:(char *)sectionName

Creates a Sound object from section sectionName in the application’s Mach-O sound
segment, assigns the name rame to the object, and adds it to the named Sound list. The
sound data is copied into the new Sound. If name is already in use, or if the section
isn’t found or its data can’t be copied, the Sound isn’t created and nil is returned.
Otherwise, the new Sound is returned.

addName:fromSoundfile:

+ addName:(char *)name fromSoundfile:(char *)filename

Creates a Sound object from the soundfile filename, assigns the name name to the
object, and adds it to the named Sound list. If name is already in use, or if filename isn’t
found or can’t be read, the Sound isn’t created and nil is returned. Otherwise, the new
Sound is returned.

addName:sound:

+ addName:(char *)name sound:aSound

Assigns the name name to the Sound aSound and adds it to the named Sound list.
Returns aSound, or nil if name is already in use.

findSoundFor:

+ findSoundFor:(char *)aName

Finds and returns the named Sound object. First the named Sound list is searched; if
the sound isn’t found, then the method looks for aName.snd in the application’s
Mach-O sound segment. Finally, aName.snd is searched for in the following
directories (in order):

» ~/Library/Sounds
» /LocalLibrary/Sounds
e /NextLibrary/Sounds

where ~ represents the user’s home directory. If the Sound eludes the search, nil is
returned.

getVolume::
+ getVolume:(float *)/eft :(float *)right

Returns, by reference, the stereo output levels as floating-point numbers between 0.0
and 1.0.

2-12 Chapter 2: Class Specifications

isMuted
+ (BOOL)isMuted

Returns YES if the sound output level is currently muted.

new

+ new

Creates and returns an empty, unnamed Sound object.

newFromMachO:
+ newFromMachO:(char *)sectionName

Creates and returns an unnamed Sound object from section sectionName in the
application’s Mach-O sound segment. The sound data is copied into the new Sound. If
the section isn’t found or its data can’t be copied, the Sound isn’t created and nil is
returned.

newkFromPasteboard

+ newFromPasteboard

Creates and returns an unnamed Sound object from the sound found on the pasteboard
(the pasteboard can have only one sound entry at a time). The sound data is copied into
the new Sound. If the Pasteboard doesn’t currently contain a sound entry, the Sound
isn’t created and nil is returned.

newFromSoundfile:
+ newFromSoundfile:(char *)filename
Creates and returns an unnamed Sound object from the soundfile filename. The file

name must be a complete UNIX path name that includes the “.snd” extension. If the
file isn’t be found or can’t be read, the Sound isn’t created and nil is returned.

removeSoundForName:
+ removeSoundForName:(char *)name

Removes the named Sound from the named Sound list. If the Sound isn’t found, returns
nil; otherwise returns the Sound.

setMute:
+ setMute:(BOOL)aFlag

Mutes and unmutes the sound output level as aFlag is YES or NO, respectively.

Sound Kit Classes: Sound 2-13

2-14

Chapter 2:

setVolume::
+ setVolume:(float)/eft :(float)right

Sets the stereo output levels. These affect the volume of the stereo signals sent to the
built-in speaker and headphone jacks. left and right must be floating-point numbers
between 0.0 (minimum) and 1.0 (maximum).

INSTANCE METHODS

channelCount

— (int)channelCount

Returns the number of channels in the receiver.

compactSamples
— (int)compactSamples

The receiver’s sound is compacted into a contiguous block of data, undoing the
fragmentation that can occur during editing. If the receiver’s data isn’t fragmented (its
format isn’t SND_FORMAT _INDIRECT), then this method does nothing.
Compacting a large sound can take a long time; keep in mind that when you copy a
Sound to the pasteboard, the object is automatically compacted before it’s copied.
Also, the soundfile representation of a Sound contains contiguous data so there’s no
need to compact a Sound before writing it to a soundfile simply to ensure that the file
representation will be compact. An error code is returned.

compatibleWith:
— (BOOL)compatibleWith:aSound

Returns YES if the format, sampling rate, and channel count of aSound’s sound data is
the same as that of receiver’s sound data. If one (or both) of the Sounds doesn’t contain
a sound (its soundStruct is nil) then the objects are declared compatible and YES is
returned. Also, if one (or both) of the Sounds is fragmented (and so its format is
SND_FORMAT_INDIRECT), then this method retrieves and compares the formats of
the actual sound data.

convertToFormat:samplingRate:channelCount:

— (int)convertToFormat:(int)aFormat
samplingRate:(double)aRate
channelCount:(int)aChannelCount

Convert the receiver’s sound to the given format, sampling rate, and number of
channels. An error code is returned.

Class Specifications

copySamples:at:count:

— (int)copySamples:aSound
at:(int)startSample
count:(int)sampleCount

Replaces the receiver’s sound data with a copy of a portion of aSound’s data. The
copied portion starts at aSound’s startSample’th sample (zero-based) and extends over
sampleCount samples. The receiver must be editable and the two Sounds must be
compatible. If the specified portion of aSound is fragmented, the receiver will be
fragmented. An error code is returned.

copySound:
— (int)copySound:aSound

Replaces the receiver’s sound data with a copy of aSound’s data. The receiver needn’t
be editable, nor must the two Sounds be compatible. An error code is returned.

data

— (unsigned char *)data

Returns a pointer to the receiver’s sound data. You can use the pointer to examine,
create, and modify the data. To intelligently manipulate the data, you need to be aware
of its size, format, sampling rate, and the number of channels that it contains (a query
method for each of these attributes is provided by the Sound class). The size of the data,
in particular, must be respected; it’s set when the receiver is created or given a new
sound (through readSoundfile:, for example) and can’t be changed directly. To resize
the data, you should invoke one of the editing methods such as insertSamples:at: or
deleteSamplesAt:count:. To start with a new, unfragmented sound with a determinate
length, invoke the setDataSize:dataFormat:samplingRate:channelCount:infoSize:
method. Manipulation of sound data that contains a DSP program
(SND_FORMAT_DSP_CORE and SND_FORMAT_MK_DSP_CORE formats) isn’t
recommended. Keep in mind that the sound data in a fragmented sound is a pointer to
a NULL terminated list of pointers to SNDSoundStructs, one for each fragment. To
examine or manipulate the samples in a fragmented sound, you must understand the
SNDSoundStruct structure (documented under the SNDAlloc() C function in Chapter
3, “C Functions”).

dataFormat

— (int)dataFormat
Returns the format of the receiver’s sound data. If the data is fragmented, the format

of the samples is returned (in other words, SND_FORMAT_INDIRECT is never
returned by this method).

Sound Kit Classes: Sound — 2-15

2-16

dataSize
— (int)dataSize
Return the size (in bytes) of the receiver’s sound data. If you modify the data (through
the pointer returned by the data method) you must be careful not to exceed its length.

If the sound is fragmented, the value returned by this method is the size of the receiver’s
soundStruct and doesn’t include the actual data itself.

delegate

— delegate

Returns the receiver’s delegate.
deleteSamples

— (int)deleteSamples

Deletes all the samples in the receiver’s sound data. The receiver must be editable. An
error code is returned.

deleteSamplesAt:count:
— (int)deleteSamplesAt:(int)startSample count:(int)sampleCount
Deletes a range of samples from the receiver: sampleCount samples are deleted starting

with the startSample’th sample (zero-based). The receiver must be editable and may
become fragmented. An error code is returned.

finishUnarchiving

— finishUnarchiving

You never invoke this method. It’s invoked automatically by the read: method to tie up
loose ends after unarchiving the receiver.

free

— free

Frees the receiver and deallocates its sound data. The receiver is removed from the
named Sound list and its name made eligible for reuse.

info

— (char *)info

Returns a pointer to the receiver’s info string.

Chapter 2: Class Specifications

infoSize

— (int)infoSize

Returns the size (in bytes) of the receiver’s info string.

insertSamples:at:

— (int)insertSamples:aSound at:(int)startSample

Pastes the sound data in aSound into the receiver, starting at the receivers
startSample’th sample (zero-based). The receiver doesn’t lose any of its original sound
data—the samples greater than or equal to startSample are moved to accommodate the
inserted sound data. The receiver must be editable and the two Sounds must be
compatible (as determined by isCompatible:). If the method is successful, the receiver
is fragmented. An error code is returned.

isEditable
— (BOOL)isEditable

Returns YES if the receiver’s format indicates that it can be edited, otherwise returns
NO. In general, an editable Sound contains sampled data; all Sound Kit-defined
formats are editable except SND_FORMAT_DSP_CORE,
SND_FORMAT_MK_DSP_CORE, and SND_FORMAT_ UNSPECIFIED.

isEmpty
— (BOOL)isEmpty
Returns YES if the receiver doesn’t contain any sound data, otherwise returns NO.

This always returns NO if the receiver isn’t editable (as determined by sending it the
isEditable message).

name

— (const char *)name

Returns the receiver’s name.

needsCompacting
— (BOOL)needsCompacting

Returns YES if the receiver’s data is fragmented (its format is
SND_FORMAT_INDIRECT). Otherwise returns NO.

Sound Kit Classes: Sound — 2-17

pause

— (int)pause

Pauses the receiver during recording or playback.

pause:
— pause:sender
Action method that pauses the receiver during recording or playback.
play
— (int)play
Initiates playback of the sound. The method returns immediately while the playback
continues asynchronously in the background. The playback ends when the receiver

receives the stop message, or when its data is exhausted.

When playback starts, willPlay: is sent to the receiver’s delegate; when it stops,
didPlay: is sent. Returns the receiver.

An error code is returned.
play:
— play:sender

Action method that plays the receiver. Other than the argument and the return type, this
is the same as the play method.

read:
— read:(NXTypedStream *)stream

Reads archived sound data from stream into the receiver. Returns the receiver.

readSoundfile:

— (int)readSoundfile:(char *)filename
Replaces the receiver’s sound with that in the soundfile filename. The file name is a

complete UNIX path name that must include the “.snd” extension. An error code is
returned.

2-18 Chapter 2: Class Specifications

record

— (int)record

Initiate recording of a sound into the receiver. To record from the CODEC microphone,
the receiver’s format, sampling rate, and channel count must be
SND_FORMAT_MULAW_8, SND_RATE_CODEC, and 1, respectively. If this
information isn’t set (if the receiver is a newly created object, for example), it defaults
to accommodate a CODEC recording. If the receiver’s format is
SND_FORMAT_DSP_DATA_16, the recording is from the DSP.

The method returns immediately while the recording continues asynchronously in the
background. The recording stops when the receiver receives the stop message or when

the maximum recording time limit has elapsed (precisely ten minutes).

When the recording begins, willRecord: is sent to the receiver’s delegate; when the
recording stops, didRecord: is sent. Returns the receiver.

An error code is returned.

record:

—record:sender

Action method that initiates a recording. Other than the argument and return type, this
is the same as the record method.

resume

— (int)resume

Resumes the paused receiver’s activity.

resume:

— resume:sender

Action method that resumes the paused receiver.

sampleCount

— (int)sampleCount

Returns the number of sample frames, or channel count-independent samples, in the
receiver.

Sound Kit Classes: Sound — 2-19

2-20

samplesProcessed
— (int)samplesProcessed

If the receiver is currently playing or recording, this returns the number of sample
frames that have been played or recorded so far. Otherwise, the number of sample
frames in the receiver is returned.

samplingRate
— (double)samplingRate

Returns the receiver’s sampling rate.

setDataSize:dataFormat:samplingRate:channelCount:infoSize:

— (int)setDataSize:(int)newDataSize
dataFormat:(int)newDataFormat
samplingRate:(double)newSamplingRate
channelCount:(int)newChannelCount
infoSize:(int)newlnfoSize

Allocates new, unfragmented sound data for the receiver, as described by the
arguments. The receiver’s previous data is freed. This method is useful for setting a
determinate data length prior to a recording or for creating a scratch pad for algorithmic
sound creation. An error code is returned.

setDelegate:
— setDelegate:anObject

Sets the receiver’s delegate to anObject. The delegate may implement the following

methods:
« willPlay:
o didPlay:

« willRecord:

e didRecord:

* hadError:

Returns the receiver.
setName:

— setName:(const char *)theName

Sets the receiver’s name to theName. If theName is already being used, then the
receiver’s name isn’t set and nil is returned; otherwise returns the receiver.

Chapter 2: Class Specifications

soundStruct
— (SNDSoundStruct *)soundStruct

Returns a pointer to the receiver’s sound structure (its soundStruct variable). Use of
the pointer requires a knowledge of the SNDSoundStruct architecture.

soundStructSize

— (int)soundStructSize

Returns the size (in bytes) of the receiver’s sound structure (its soundStruct variable).
Use of this value requires a knowledge of the SNDSoundStruct architecture.

status

— (int)status
Return the receiver’s current status, one of the following integer constants:

+ SK_STATUS_STOPPED

+ SK_STATUS_RECORDING

+ SK_STATUS_PLAYING

+ SK_STATUS_INITIALIZED

+ SK_STATUS_RECORDING_PAUSED

» SK_STATUS_PLAYING_PAUSED

» SK_STATUS_RECORDING_PENDING
* SK_STATUS_PLAYING_PENDING

* SK_STATUS_FREED

stop
— (int)stop
Terminates the receiver’s playback or recording. If the receiver was recording, the
didRecord: message is sent to the delegate; if playing, didPlay: is sent. Returns the
receiver.
An error code is returned.

stop:

— stop:sender

Action method that stops the receiver’s playback or recording. Other than the argument
and the return type, this is the same as the stop method.

Sound Kit Classes: Sound — 2-21

tellDelegate:
— tellDelegate:(SEL)theMessage

Sends theMessage to the receiver’s delegate (only sent if the delegate implements
theMessage). You never invoke this method directly; it’s invoked automatically as the
result of activities such as recording and playing. However, you can use it in designing
a subclass of Sound.
Returns the receiver.

write:

— write:(NXTypedStream *)stream

Archives the receiver by writing its data to stream, which must be open for writing.
Returns the receiver.

writeSoundfile:

— (int)writeSoundfile:(char *)filename

Writes the receiver’s sound to the soundfile filename. The file name is a complete
UNIX path name that should include a “.snd” extension. An error code is returned.

writeToPasteboard
— (int)writeToPasteboard
Puts a copy of the receiver’s sound on the pasteboard. If the receiver is fragmented, it’s

compacted before the copy is created. An error code is returned.

METHODS IMPLEMENTED BY THE DELEGATE
didPlay:
— didPlay:sender

Sent to the delegate when the Sound stops playing.

didRecord:

— didRecord:sender

Sent to the delegate when the Sound stops recording.

Chapter 2: Class Specifications

hadError:

— hadError:sender

Sent to the delegate if an error occurs during recording or playback.
willPlay:

— willPlay:sender

Sent to the delegate when the Sound begins to play.

willRecord:

— willRecord:sender

Sent to the delegate when the Sound begins to record.

Sound Kit Classes: Sound — 2-23

2-24

SoundMeter
INHERITS FROM

DECLARED IN

CLASS DESCRIPTION

soundkit.h

View : Responder : Object

A SoundMeter object, when associated with a Sound object, displays the level of sound

recording and playback.

Objects of this class, when attached to a sampled sound, can display the average output
level and peak hold in a bar-graph-style display.

INSTANCE VARIABLES
Inherited from Object
Inherited from Responder

Inherited from View

Declared in SoundMeter

sound
currentSample

currentValue

Class
id

NXRect
NXRect

id

id

id

struct __vFlags

id

nt

float

float

float

float

float

float

float

float

struct {
unsigned int
unsigned int

}

The object’s Sound.

The Sound sample currently being displayed.

isa;
nextResponder;

frame;
bounds;
superview;
subviews;
window;
vFlags;

sound;
currentSample;
current Value;
currentPeak;
minValue;

max Value;
holdTime;
backgroundGray;
foregroundGray;
peakGray;

running:1;
bezeled:1;
smFlags;

The value of the current sample.

Sound Kit Classes: SoundMeter

2-25

2-26

currentPeak
minValue

max Value
holdTime
backgroundGray
foregroundGray
peakGray
smFlags.running

smFlags.bezeled

METHOD TYPES
Creating and freeing a

Modifying the object

Querying the object

Operating the object

Drawing the object

Chapter 2: Class Specifications

The current value of the peak bubble.
The minimum sample value so far.
The maximum sample value so far.
The hold duration of the peak bubble.
The background color.

The foreground (average bar) color.
The peak bubble color.

Is the object currently running?

Is the frame bezeled?

+ newFrame:

— setBezeled:

— setFloatValue:
— setHoldTime:
— setSound:

— backgroundGray

— floatValue

— foregroundGray

— holdTime
—isBezeled

— isRunning

— max Value

— minValue

— peakGray

— peakValue

— setBackgroundGray:
— setForegroundGray:
— setPeakGray:

— sound

— run:
— stop:

— drawCurrentValue
— drawSelf::

Archiving and unarchiving the object
—read:
— write:

CLASS METHODS

newKFrame:

+ newFrame:(const NXRect *)frameRect

Creates and returns a new, initialized SoundMeter object.

INSTANCE METHODS

backgroundGray
— (float)backgroundGray
Returns the receiver’s background color. The default is black.
drawCurrentValue
— drawCurrentValue
Draws the receiver’s running bar and peak bubble. You never invoke this method
directly; it’s invoked by drawSelf::, setFloatValue, and by the animation code while

the receiver is running. You can override this method in a subclass to change the look
of the running bar and peak bubble.

drawSelf::
— drawSelf:(const NXRect *)rects :(int)rectCount

Draws all the components of the receiver (frame, running bar, and peak bubble). You

never invoke this method directly; however, you can override it in a subclass to change
the way the receiver is displayed.

floatValue
— (float)floatValue

Returns the current running value.

foregroundGray
— (float)foregroundGray

Returns the receiver’s foreground (average bar) color. The default is white.

Sound Kit Classes: SoundMeter — 2-27

holdTime
— (float)holdTime

Returns the receiver’s peak value hold time in seconds.

isBezeled
— (BOOL)isBezeled

Returns YES if the receiver has a bezel.
isRunning
— (BOOL)isRunning

Returns YES if the receiver is currently running.

maxValue

— (floatymaxValue
Returns the maximum running value so far. You can invoke this method after you stop

this receiver to retrieve the overall maximum value for the previous performance. The
maximum value is cleared when you restart the receiver.

minValue

— (float)minValue
Returns the minimum running value so far. You can invoke this method after you stop

this receiver to retrieve the overall minimum value for the previous performance. The
minimum value is cleared when you restart the receiver.

peakGray
— (float)peak Gray

Returns the receiver’s peak bubble color. The default is dark gray.

peakValue
— (float)peak Value

Returns the current peak value.

read:
—read:(NXTypedStream *)aStream

Unarchives the receiver by reading it from aStream.

2-28 Chapter 2: Class Specifications

run:

— run:sender
Starts the receiver running. The receiver’s Sound must either be playing or recording

in order for any meter activity to occur. Note that this method only affects the state of
the receiver—it doesn’t trigger any activity in the Sound.

setBackgroundGray:
— setBackgroundGray:(float)aValue

Sets the receiver’s background color.

setBezeled:
— setBezeled:(BOOL)aFlag

If aFlag is YES, a bezelled frame is drawn around the receiver. If aFlag is NO and the
receiver has a frame, the frame is removed.

setFloatValue:
— setFloatValue:(float)aValue
Sets the current running value to aValue. If aValue is greater than the current peak
value, or if the peak hold time has elapsed, then the peak value is set to aValue as well.
If autoDisplay is on, the view is updated. You never invoke this method directly; it’s

invoked automatically when the receiver is running. However, you can reimplement
this method in a subclass of SoundMeter.

setForegroundGray:
— setForegroundGray:(float)aValue

Sets the receiver’s foreground (average bar) color.

setHoldTime:
— setHold Time:(float)seconds

Sets the receiver’s peak value hold time in seconds. This is the amount of time the peak
bubble holds its value before decaying to the current average.

setPeakGray:
— setPeakGray:(float)aValue

Sets the receiver’s peak bubble color.

Sound Kit Classes: SoundMeter — 2-29

2-30

setSound:

— setSound:aSound

Sets the receiver’s Sound object. aSound must contain sampled data
([aSound isEditable] must return TRUE).

sound
— sound
Returns the Sound object that the receiver is metering.
stop:
— stop:sender
Stops the receiver’s metering activity and sets its display to a default (zero signal) state.

Note that this method only affects the state of the receiver—it doesn’t trigger any
activity in the Sound.

write:
— write:(NXTypedStream *)aStream

Archives the receiver by writing it to aStream.

Chapter 2: Class Specifications

SoundView

INHERITS FROM View : Responder : Object
DECLARED IN soundkit.h
CLASS DESCRIPTION

A SoundView object creates a view in which it displays a Sound object’s sound data.
A hairline cursor is provided for use in pointing and selecting. Only sampled sounds
can be displayed in a SoundView.

Sounds are displayed on a two-dimensional graph. The amplitudes of individual
samples are measured vertically and plotted against time, which proceeds left to right
along the horizontal axis. A SoundView is always scaled vertically so that the full
amplitude matches the height of the view with 0.0 amplitude in the center.

For most complete sounds, the length of the sound data in samples is greater than the
horizontal length of the view in display units. The SoundView employs a reduction
factor to determine the ratio of samples to display units and plots the minimum and
maximum amplitude values of the samples within that ratio. For example, a reduction
factor of 10.0 means that the minimum and maximum values among the first ten
samples are plotted in the first display unit, the minimum and maximum values of the
next ten samples are displayed in the second display unit and so on.

Lines are drawn between the chosen values to yield a more continuous shape. Two
drawing modes are provided:

+ In SK_DISPLAY_WAVE mode, the drawing is rendered in an oscilloscopic
fashion.

« In SK_DISPLAY_MINMAX mode, two lines are drawn, one to connect the
maximum values, and one to connect the minimum values.

As you zoom in (as the reduction factor decreases), the two drawing modes become
indistinguishable.

A mechanism is provided for selecting an area of the view. You can set the selected
area through the method setSelection:size: or the user can make the selection by
dragging the mouse. The playback, recording, and editing methods provided by
SoundView operate on the selection.

When a SoundView’s sound data changes (due to editing or recording), the manner in
which the SoundView is redisplayed depends on its autoscale flag. With autoscaling
disabled, the SoundView’s frame grows or shrinks (horizontally) to the new sound data
while the reduction factor is unchanged. If autoscaling is enabled, the reduction factor
is automatically recomputed to maintain a constant frame size. By default, autoscaling
is disabled; this is to accommodate the use of a SoundView object as the document of

Sound Kit Classes: SoundView — 2-31

a Scrolling View, allowing the ScrollingView to pan along the data displayed in the
SoundView. As such, maintaining a constant reduction factor (or level of detail) across
a change is more useful than maintaining a constant SoundView frame size. Note,
however, that changing the reduction factor when autoscaling is disabled is useful for
zooming in and out.

In order to provide greater efficiency, a SoundView creates its own Sound object, stored
in its reduction instance variable, that contains only the samples from its sound
instance variable that are actually displayed. Methods to set and retrieve the reduction
are provided; however, you should only invoke these methods if you’re creating an
advanced application or if you're designing a subclass of SoundView.

SoundView implements the Application Kit’s delegate paradigm, allowing messages to
be sent to a delegate object when actions, such as playing, editing, or selecting a portion
of the SoundView, are performed.

Chapter 2: Class Specifications

INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from Responder id nextResponder;
Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct __vFlags vFlags;
Declared in SoundView id sound;
id reduction;
id delegate;
NXRect selectionRect;
int displayMode;
float backgroundGray;
float foregroundGray;
float reductionFactor;
struct {
unsigned int disabled:1;
unsigned int continuous:1;
unsigned int calcDrawlInfo:1;
unsigned int selectionDirty:1;
unsigned int autoscale:1;
unsigned int bezeled:1;
} svFlags;
sound The object’s Sound.
reduction The data reduced version of the object’s Sound.

delegate
selectionRect

displayMode

backgroundGray
foregroundGray
reductionFactor
svFlags.disabled

svFlags.continuous

svFlags.calcDrawlnfo
svFlags.selectionDirty

svFlags.autoscale

svFlags.bezeled

METHOD TYPES

Creating and freeing a SoundView

Modifying the object

The object’s delegate.
The object’s current selection.

Display mode; SK_DISPLAY MINMAX by
default.

Background color; NX_WHITE by default.
Foreground color; NX_BLACK by default.
The ratio of sound samples to display units.
Does the object (not) respond to mouse events?

Does the object respond to mouse dragged
events?

Does drawing info need to be recalculated?
Has the object changed (but not been played)?

Does it rescale the display when the sound data
changes?

Does the object have a bezeled border?

— free
+ newFrame:

— scaleToFit

— setBackgroundGray:
— setBezeled:

— setContinuous:

— setDelegate:

— setDisplayMode:

— setEnabled:

— setForegroundGray:
— setReduction:

— setSound:

— sizeToFit

Sound Kit Classes: SoundView — 2-33

Querying the object — backgroundGray
— delegate
— displayMode
— foregroundGray
— getSelection:size:
—isAutoScale
— isBezeled
— isContinuous
— isEnabled
— reduction
— reductionFactor
— sound

Selecting and editing the sound data
— copy:
—cut:
— delete:
— mouseDown:
— paste:
— selectAll:
— setSelection:size:

Modifying the display coordinates — setAutoscale:
— setReductionFactor:

Drawing the object — calcDrawInfo
— drawSelf::
— hideCursor
— showCursor
— sizeTo::

Responding to events — acceptsFirstResponder
— becomeFirstResponder
— resignFirstResponder

Performing the sound data — play:
—record:
— soundBeingProcessed
— stop:

Archiving the object —read:
— write:

Accessing the delegate — didPlay:
— didRecord:
— hadError:
— tellDelegate:
— willPlay:
— willRecord:

2-34 Chapter 2: Class Specifications

CLASS METHODS
newFrame:
+ newFrame:(const NXRect *)aRect
Creates and returns a SoundView with the frame aRect. The new SoundView doesn’t

contain any sound data.

INSTANCE METHODS
acceptsFirstResponder
— (BOOL)acceptsFirstResponder
If the receiver is enabled, this returns YES, allowing the view to become the first

responder. This method is automatically invoked by objects defined by the Application
Kit; you should never need to invoke it directly.

backgroundGray

— (float)backgroundGray

Returns the receiver’s background gray value (NX_WHITE by default).
becomeFirstResponder

— becomeFirstResponder

Promotes the receiver to first responder allowing user actions to be directed to the
receiver. Returns the receiver.

calcDrawlnfo
— calcDrawlnfo
Calculates the receiver’s internal drawing information. This method is automatically
invoked when needed—when the receiver’s sound data changes, for example. A

subclass should invoke this method from any method that changes the receiver. The
return value is ignored.

copy:
— copy:sender

Copies the current selection to the pasteboard. Returns the receiver.

Sound Kit Classes: SoundView 2-35

2-36

cut:

— cut:sender

Deletes the current selection from the receiver, copies it to the pasteboard, and sends
the soundChanged: message to the delegate. The insertion point is positioned to
where the selection used to start. The sound data becomes fragmented. Returns the
receiver.

delegate
— delegate

Returns the receiver’s delegate object.

delete:

— delete:sender

Deletes the current selection from the receiver’s Sound and sends the soundChanged:
message to the delegate. The deletion isn’t placed on the pasteboard. The sound data
becomes fragmented. Returns the receiver.

didPlay:
— didPlay:sender

Used to redirect delegate messages from the receiver’s Sound object; you never invoke
* this method directly.

didRecord:

— didRecord:sender

Used to redirect delegate messages from the receiver’s Sound object; you never invoke
this method directly.

displayMode
— (int)displayMode
Returns the receiver’s display mode, one of SK_DISPLAY_WAVE (oscilloscopic

display) or SK_DISPLAY_MINMAX (minimum maximum display; this is the
default).

Chapter 2: Class Specifications

drawSelf::
— drawSelf:(const NXRect *)rects :(int)rectCount

Displays the receiver’s sound data. The selection is highlighted and the cursor is drawn
(if it isn’t currently hidden).

The SoundView class implements this method as a subclass responsibility inherited

from View. You never send the drawSelf:: message directly to a SoundView object.
Instead, use one of the display methods defined in the View class.

foregroundGray
— (float)foregroundGray

Returns the receiver’s foreground gray value (NX_BLACK by default).

free

— free

Frees the receiver but not its Sound object nor its delegate. The willFree: message is
sent to the delegate.

getSelection:size:
— getSelection:(int *)firstSample size:(int *)sampleCount
Returns the selection by reference. The index of the selection’s first sample (counting

from 0) is returned in firstSample. The size of the selection in samples is returned in
sampleCount. The method itself returns the receiver.

hadError:

— hadError:sender

Used to redirect delegate messages from the receiver’s Sound object; you never invoke
this method directly.

hideCursor

— hideCursor

Hides the receiver’s cursor. This is usually handled automatically. Returns the receiver.

isAutoScale
— (BOOL)isAutoScale

Returns YES if the receiver is in autoscaling mode, otherwise returns NO.

Sound Kit Classes: SoundView 2-37

2-38

isBezeled
— (BOOL)isBezeled

Returns YES if the display features a bezeled border, otherwise returns NO (the
default).

isContinuous
— (BOOL)isContinuous

Returns YES if the receiver responds to mouse dragged events (as set through
setContinuous:). The default is NO.

isEnabled
— (BOOL)isEnabled

Returns YES if the receiver is enabled, otherwise returns NO. The mouse has no effect
in a disabled SoundView. By default, a SoundView is enabled.

mouseDown:

— mouseDown:(NXEvent *)theEvent

Allows a selection to be defined by clicking and dragging the mouse. This method
takes control until a mouse-up occurs. While dragging, the selected region is
highlighted. On mouse up, the delegate is sent the selectionChanged: message. If
isContinuous is YES, selectionChanged: messages are also sent while the mouse is
being dragged. Returns the receiver.

paste:

— paste:sender

Replaces the current selection with a copy of the sound data currently on the
pasteboard. If there is no selection the pasteboard data is inserted at the cursor position.
The pasteboard data must be compatible with the receiver’s data, as determined by the
Sound method compatibleWith:. If the paste is successful, the soundChanged:
message is sent to the delegate. The receiver’s sound data becomes fragmented.
Returns the receiver.

play:

— play:sender

Play the current selection by invoking Sound’s play: method. If there is no selection,
the receiver’s entire Sound is played. The willPlay: message is sent to the delegate
before the selection is played; didPlay: is sent when the selection is done playing.
Returns the receiver.

Chapter 2: Class Specifications

read:

—read:(void *)stream

Unarchives the receiver by reading it from stream.

record:

—record:sender

Replaces the receiver’s current selection with newly recorded material. If there is no
selection, the recording is injected at the insertion point. The willRecord: message is
sent to the delegate before the recording is started; didRecord: is sent after the
recording has completed. Currently, the recorded data is always taken from the
CODEC microphone input. Returns the receiver.

reduction

—reduction

Returns the receiver’s display reduction Sound object. Provided for display
optimization, the object returned by this method shouldn’t be treated like a “normal”
Sound—for example, it can’t be played. The receiver owns the reduction object and
may free it at any time.

reductionFactor
— (float)reductionFactor
Returns the receiver’s reduction factor, computed as
reductionFactor = sampleCount / displayUnits
resignFirstResponder
—resignFirstResponder

Resigns the position of first responder. Returns the receiver.

scaleToFit
— scaleToFit

Recomputes the receiver’s reduction factor to fit the sound data (horizontally) within
the current frame. Invoked automatically when the receiver’s data changes and the
receiver is in autoscale mode. If the receiver isn’t in autoscale mode, sizeToFit is
invoked when the data changes. You never invoke this method directly; a subclass can
reimplement this method to provide specialized behavior.

Sound Kit Classes: SoundView 2-39

selectAll:
— selectAll:sender

Creates a selection over the receiver’s entire Sound. Returns the receiver.

setAutoscale:
— setAutoscale:(BOOL)aFlag

Sets the receiver’s automatic scaling mode, used to determine how the receiver is
redisplayed when its data changes. With autoscaling enabled (aFlag is YES), the
receiver’s reduction factor is recomputed so the sound data fits within the view frame.
If it’s disabled (aFlag is NO), the frame is resized and the reduction factor is
unchanged. If the receiver is in a ScrollingView, autoScaling should be disabled
(autoscaling is disabled by default). Returns the receiver.

setBackgroundGray:
— setBackgroundGray:(float)aGray

Sets the receiver’s background gray value to aGray; the default is NX_WHITE.
Returns the receiver.

setBezeled:
— setBezeled:(BOOL)aFlag

If aFlag is YES, the display is given a bezeled border. By default, the border of a
SoundView display isn’t bezeled. If autodisplaying is enabled, the Sound is
automatically redisplayed. Returns the receiver.

setContinuous:
— setContinuous:(BOOL)aFlag
Sets the state of continuous action messages. If aFlag is YES, selectionChanged:

messages are sent to the delegate as the mouse is being dragged. If NO, the message is
sent only on mouse up. The default is NO. Returns the receiver.

setDelegate:
— setDelegate:anObject

Sets the receiver’s delegate to anObject. The delegate is sent messages when the user
changes or acts on the selection. Returns the receiver.

2-40 Chapter 2: Class Specifications

setDisplayMode:
— setDisplayMode:(int)aMode

Sets the receiver’s display mode, either SK_DISPLAY_WAVE or
SK_DISPLAY_MINMAX (the default). If autodisplaying is enabled, the Sound is
automatically redisplayed.

setEnabled:
— setEnabled:(BOOL)aFlag

Enables or disables the receiver as aFlag is YES or NO. The mouse has no effect in a
disabled SoundView. By default, a SoundView is enabled. Returns the receiver.

setForegroundGray:
— setForegroundGray:(float)aGray

Sets the receiver’s foreground gray value to aGray. The default is NX_BLACK.
Returns the receiver.

setReduction:

— setReduction:aDisplayReduction

Sets the receiver’s display reduction Sound object to aDisplayReduction. An advanced
application can set the display reduction directly to optimize or eliminate the
recalculation of the display; this may be useful, for example, for repeated editing of
extremely large sounds. The number of samples in the reduction must be exactly
1/reductionFactor times the number of samples of the current sound. The receiver owns
the reduction and may free it at any time. Use of this method is optional; if the display
reduction isn’t set through this method, it’s calculated automatically.

If the size of aDisplayReduction (in samples) isn’t correct, nil is returned; otherwise
returns the receiver.

Sound Kit Classes: SoundView — 2-41

242

setReductionFactor:

— setReductionFactor:(float)reductionFactor

If the receiver is in autoscale mode, this does nothing and immediately returns the
receiver. (Keep in mind that in autoscaling mode, the reduction factor is automatically
recomputed when the sound data changes—see scaleToFit:.) With autoscaling
disabled, reductionFactor is used to recompute the size of the receiver’s frame (in
display units) according to the formula

displayUnits = sampleCount / reductionFactor
Increasing the reduction factor zooms out, decreasing zooms in on the data.

If autodisplaying is enabled, the Sound is automatically redisplayed. Returns the
receiver.

setSelection:size:

— setSelection:(int)firstSample size:(int)sampleCount

Sets the selection to be sampleCount samples wide, starting with sample firstSample
(samples are counted from 0). Returns the receiver.

setSound:

— setSound:aSound

Sets the receiver’s Sound object to aSound. If autoscaling is enabled, the drawing
coordinate system is adjusted so aSound’s data fits within the current frame.
Otherwise, the frame is resized to accommodate the length of the data. If
autodisplaying is enabled, the receiver is automatically redisplayed. Returns the
receiver.

showCursor

— showCursor

Displays the receiver’s cursor. This is usually handled automatically. Returns the
receiver.

sizeTo::
— sizeTo:(NXCoord)width :(NXCoord)height

Sets the width and height of the receiver’s frame. If autodisplaying is enabled, the
receiver is automatically redisplayed. Returns the receiver.

Chapter 2: Class Specifications

sizeTokFit

— sizeToFit

Resizes the receiver’s frame (horizontally) to maintain a constant reduction factor. This
method is invoked automatically when the receiver’s data changes and the receiver isn’t
in autoscale mode. If the receiver is in autoscale mode, scaleToFit is invoked when the
data changes. You never invoke this method directly; a subclass can reimplement this
method to provide specialized behavior.

sound

— sound

Returns a pointer to the receiver’s Sound object.

soundBeingProcessed

— soundBeingProcessed

Returns the id of the Sound object that’s currently being played or recorded into. Note
that the actual Sound object that’s being performed isn’t necessarily the receiver’s
sound (the object returned by the sound method); for efficiency, SoundView creates a
private performance Sound object. While this is generally an implementation detail,
this method is supplied in case the SoundView’s delegate needs to know exactly which
object will be/was performed.

stop:

— stop:sender

Stops the receiver’s current recording or playback. Returns the receiver.

tellDelegate:
— tellDelegate:(SEL)theMessage

Sends theMessage to the receiver’s delegate with the receiver as the argument. If the

delegate doesn’t respond to the message, then it isn’t sent. You normally never invoke
this method; it’s invoked automatically when an action, such as playing or editing, is

performed. However, you can invoke it in the design of a Sound View subclass. Returns
the receiver.

willPlay:

— willPlay:sender

Used to redirect delegate messages from the receiver’s Sound object; you never invoke
this method directly.

Sound Kit Classes: SoundView — 2-43

244

willRecord:

— willRecord:sender

Used to redirect delegate messages from the receiver’s Sound object; you never invoke
this method directly.

write:

— write:(void *)stream

Archives the receiver by writing it to stream.

METHODS IMPLEMENTED BY THE DELEGATE
didPlay:
— didPlay:sender

Sent to the delegate just after the SoundView is played.

didRecord:

— didRecord:sender

Sent to the delegate just after the SoundView is recorded into.

hadError:

— hadError:sender

Sent to the delegate if an error is encountered during recording or playback of the
SoundView’s data.

selectionChanged:
— selectionChanged:sender

Sent to the delegate whenever the SoundView’s selection changes.

soundDidChange:

— soundDidChange:sender

Sent to the delegate whenever the SoundView’s sound data changes.

Chapter 2: Class Specifications

willFree:
— willFree:sender

Sent to the delegate when the SoundView is freed.
willPlay:
— willPlay:sender

Sent to the delegate just before the SoundView is played.

willRecord:

— willRecord:sender

Sent to the delegate just before the SoundView is recorded into.

Sound Kit Classes: SoundView 2-45

2-46

Music Kit Classes

The class specifications for the Music Kit describe the following classes:

Conductor
Envelope
FilePerformer
FileWriter
Instrument
Midi

Note
NoteFilter
NoteReceiver
NoteSender
Orchestra

Part

Partials
PartPerformer
PartRecorder
PatchTemplate
Performer
Samples

Score
ScorefilePerformer
ScorefileWriter
ScorePerformer
ScoreRecorder
SynthData
Synthlnstrument
SynthPatch
TuningSystem
UnitGenerator
WaveTable
Add2UG
Allpass1UG
AsympUG
ConstantUG
DelayUG
DswitchtUG
DswitchUG
InterpUG
Mulladd2UG
Mul2UG
OnepoleUG
OnezeroUG
OscgafUG
OscgafiUG
OscgUG
OutlaUG

Music Kit Classes — 2-47

Out1bUG
Out2sumUG
ScaleUG
Scl1add2UG
Scl2add2UG
SiioiseUG

UnoiseUG

2-48 Chapter 2: Class Specifications

Conductor

INHERITS FROM Object
DECLARED IN musickit.h
CLASS DESCRIPTION

The Conductor class defines the mechanism that controls the timing of a Music Kit
performance. A Conductor’s most important tasks are to schedule the sending of Notes
by Performers (and Midi), and to control the timing of Envelope objects during DSP
synthesis. Even in the absence of Performers and Envelopes, you may want to use a
Conductor to take advantage of the convenient scheduling mechanism that it provides.

The Message Request Queue

Each instance of Conductor contains a message request queue, a list of messages that
are to be sent to particular objects at specific times. To enqueue a message request with
a Conductor, you invoke the sel:to:atTime:argCount: or
sel:to:withDelay:argCount: method. Once you have made a message request through
one of these methods, you can’t rescind the action; if you need more control over
message requests—for example, if you need to be able to reschedule or remove a
request—you should use the following C functions:

« MKNewMsgRequest() creates and returns a new message request structure.

* MKScheduleMsgRequest() places a previously created message request in a
Conductor’s message request queue.

« MKRepositionMsgRequest() repositions a message request within a Conductor’s
queue.

* MKCancelMsgRequest() removes a message request.

« MKRescheduleMsgRequest() is a convenience function that cancels a request
and then creates a new one.

For more information on these functions, see Chapter 3, “C Functions.”

The Conductor class provides two special message request queues, one that contains
messages that are sent at the beginning of a performance and another for messages that
are sent after a performance ends. The class methods
beforePerformanceSel:to:argCount: and afterPerformanceSel:to:argCount:
enqueue message requests in the before- and after-performance queues, respectively.

Music Kit Classes: Conductor — 2-49

2-50

Controlling a Performance

A Music Kit performance starts when the Conductor class receives the
startPerformance message. At that time, the Conductor class sends the messages in
its before-performance queue and then the Conductor instances start processing their
individual message request queues. As a message is sent, the request that prompted the
message is removed from its queue. The performance ends when the Conductor class
receives finishPerformance, at which time the after-performance messages are sent.
Any message requests that remain in the individual Conductors’ message request
queues are removed. Note, however, that the before-performance queue isn’t cleared.
If you invoke beforePerformanceSel:to:argCount: during a performance, the
message request will survive a subsequent finishPerformance and will affect the next
performance.

By default, if all the Conductors’ queues become empty at the same time (not including
the before- and after-performance queues), finishPerformance is invoked
automatically. This is convenient if you’re performing a Part or Score and you want the
performance to end when all the Notes have been played. However, for many
applications, such as those that create and perform Notes in response to a user’s actions,
universally empty queues isn’t necessarily an indication that the performance is over.
To allow a performance to continue even if all the queues are empty, send
setFinishWhenEmpty:NO to the Conductor class.

The rate at which a Conductor object processes its message request queue can be set
through either of two methods:

» setTempo: sets the rate as beats per minute.
» setBeatSize: sets the size of an individual beat, in seconds.

You can change a Conductor’s tempo anytime, even during a performance. If your
application requires multiple simultaneous tempi, you need to create more than one
Conductor, one for each tempo. A Conductor’s tempo is initialized to 60.0 beats per
minute.

Every Conductor instance has a notion of the current time measured in beats; this
notion is updated by the Conductor class only when a message from one of the request
queues is sent. If your application sends a message (or calls a C function) in response
to an asynchronous event, it must first update the Conductors’ notions of time by
sending lockPerformance to the Conductor class. For example, if your application
sends a Note directly to an Instrument, you should send lockPerformance immediately
before the Note is sent. Every invocation of lockPerformance should be balanced by
an invocation of unlockPerformance.

Conductors and Performers

Conductors and Performers have a special relationship: Every Performer object is
controlled by an instance of Conductor, as set through Performer’s setConductor:
method. While a Performer can be controlled by only one Conductor, a single
Conductor can control any number of Performers. As a Performer acquires successive

Chapter 2: Class Specifications

Notes, it enqueues, with its associated Conductor, requests for the Notes to be sent to
its connected Instruments. This enqueuing is performed automatically through a
mechanism defined by the Performer class. As a convenience, the Music Kit
automatically creates an instance of Conductor called the defaultConductor; if you
don’t set a Performer’s Conductor directly, it’s controlled by the defaultConductor. You
can retrieve the defaultConductor (in order to set its tempo or to enqueue message
requests, for example) by sending the defaultConductor message to the Conductor
class.

Conductors and Envelopes

The Music Kit also creates an instance of Conductor called the clockConductor, which
you can retrieve through the clockConductor class method. The clockConductor has
an unchangeable tempo of 60.0 beats per minute and it can’t be paused (at least not by
itself; you can pause the clockConductor as you pause the entire performance through
the pausePerformance class method). While the clockConductor can be used to
control Performers, its most important task is to control the timing of Envelope objects
during DSP synthesis. Envelope breakpoints are fed to the DSP through messages that
are enqueued automatically with the clockConductor.

The clockConductor’s queue is treated like any other queue: You can enqueue message
requests with the clockConductor just as you would with any other Conductor. This
also means that the clockConductor’s queue contributes to a determination of whether
all the queues are empty.

Fine-tuning a Performance

The responsiveness of a performance to the user’s actions depends on whether the
Conductor class is clocked or unclocked, and upon the value of the performance’s delta
time. By default, the Conductor class is clocked. This means that the messages in the
message request queues are sent at the times indicated by their time stamps. When the
Conductor class is clocked, a running Application object must be present.

If you don’t need interactive control over a performance, you may find it beneficial to
set it to unclocked by sending setClocked:NO to the Conductor class. In an unclocked
performance, messages in the message request queues are sent one after another as
quickly as possible, leaving it to some other device—the DSP or a MIDI synthesizer—
to handle the timing of the actual realization.

Setting the delta time further refines the responsiveness of a performance. Delta time
is set through the MKSetDeltaT() C function; the argument defines an imposed time
lag, in seconds, between the Conductor’s notion of time and that of the DSP and MIDI
device drivers. It acts as a timing cushion that can help to maintain rhythmic integrity
by granting your application a sort of computational head start: As you set the delta
time to larger values, your application has more time to process Notes before they are
realized. However, this computational advantage is obtained at the expense of
degraded responsiveness. Choosing the proper delta time value depends on how
responsive your application needs to be. For example, if you are driving DSP synthesis

Music Kit Classes: Conductor — 2-51

from MIDI input, a delta time of as much as 10 milliseconds (0.01 seconds) is generally
acceptable. If you are adjusting Note parameters by moving a Slider with the mouse,
a delta time of 100 milliseconds or more can be tolerated. Finding the right delta time
for your application is largely a matter of experimentation.

To enhance the efficiency of a performance, you can run it in its own thrcad. This is
done by sending useSeparateThread:YES to the Conductor class. Running a
performance in its own thread separates it from the main event queue, thus allowing
music to play with greater independence from your application’s other computations.
However, this means that the synchronization between music and graphics (for
example) will be loosened.

In addition, you can set the Mach-scheduling priority of the performance thread
(whether or not it’s separate) through the setThreadPriority: method. Performance
priority values are between 0.0 and 1.0, where 0.0 is unheightened (the default) and 1.0
is the maximum priority for a user process. Normally, Mach priorities degrade over
time; you can subvert this degradation by giving ownership of your application to root
and setting the application’s protection to include the set user ID bit. In a Terminal
window, you would type the following:

su root
chown root yourAppHere
chmod u + s yourAppHere

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in Conductor double time;
double nextMsgTime;
double beatSize;
double timeOffset;
BOOL isPaused;
id delegate;

time Current time in beats.

nextMsgTime Time, in seconds, when the object is scheduled to
send its next message.

beatSize The duration of a single beat, in seconds.

timeOffset Performance time offset, in seconds.

isPaused YES if this object is currently paused.

delegate The object’s delegate.

2-52 Chapter 2: Class Specifications

METHOD TYPES

Allocating and initializing a Conductor instance

Copying and freeing the object

Acquiring extant Conductors

Setting up a performance

Controlling a performance

Modifying a Conductor

Querying a Conductor

+ alloc
+ allocFromZone:
—1init

— copy
— copyFromZone:

+ clockConductor
+ currentConductor
+ defaultConductor

+ setClocked:

+ useSeparateThread:

+ setThreadPriority:

+ setFinishWhenEmpty:
+ isClocked '
+ performanceThread

+ finishWhenEmpty

+ startPerformance

+ pausePerformance
+ resumePerformance
+ finishPerformance
+ lockPerformance

+ lockPerformanceNoBlock
+ unlockPerformance
+ inPerformance

+ isEmpty

+ isPaused

+ time

— setBeatSize:

— setTempo:

— setTimeOffset:
— pause

— pauseFor:

— resume

— setDelegate:

— beatSize

— tempo

— timeOffset

— isPaused

— delegate

— isCurrentConductor
— predictTime:

— time

Music Kit Classes: Conductor

2-53

2-54

Enqueueing message requests — sel:to:atTime:argCount:
— sel:to:withDelay:argCount:
— emptyQueue
+ afterPerformanceSel:to:argCount:
+ beforePerformanceSel:to:argCount:

Archiving — finishUnarchiving:
- read
— write
CLASS METHODS

afterPerformanceSel:to:argCount:

+ (MKMsgStruct *)afterPerformanceSel:(SEL)aSelector
to:f0Object
argCount:(int)argCount,...

Enqueues a request for aSelector to be sent to toObject immediately after the current or
next performance ends. argCount specifies the number of four-byte arguments to
aSelector followed by the arguments themselves separated by commas (two arguments,
maximum). The messages are sent in the order that the requests are enqueued. Returns
a pointer to a message request structure that can be passed to a C function such as
MKCancelMsgRequest().

See also: + beforePerformanceSel:to:argCount:, — sel:to:atTime:argCount:,
— sel:to:withDelay:argCount:, MKNewMsgRequest()

alloc

+ alloc

Returns a new, initialized Conductor allocated in the default zone. If a performance is
in progress, does nothing and returns nil.

See also: + allocFromZone:, — init

allocFromZone:

— allocFromZone:(NXZone *)zone

Returns a new, initialized Conductor allocated in zone. If a performance is in progress,
does nothing and returns nil.

See also: + alloc, — init

Chapter 2: Class Specifications

beforePerformanceSel:to:argCount:

+ (MKMsgStruct *)beforePerformanceSel:(SEL)aSelector
to:toObject
argCount:(int)argCount,...

Enqueues a request for aSelector to be sent to toObject at the beginning of the next
performance. argCount specifies the number of four-byte arguments to aSelector
followed by the arguments themselves separated by commas (two arguments,
maximum). The messages are sent in the order that the requests are enqueued. Returns
a pointer to a message request structure that can be passed to a C function such as
MKCancelMsgRequest().

See also: + afterPerformanceSel:to:argCount:, — sel:to:atTime:argCount:,
— sel:to:withDelay:argCount:, MKNewMsgRequest()

clockConductor

+ clockConductor

Returns the clockConductor, the ever-present instance of Conductor that has an
immutable tempo of 60.0 beats per minute. You can’t free this object.

currentConductor

+ currentConductor

Returns the Conductor instance that’s currently sending a message, or nil if no message
is being sent.

defaultConductor
+ defaultConductor

Returns the defaultConductor, the ever-present instance of Conductor that, by default,
is used to enqueue Note-sending messages generated by Performer objects. You can’t
free this object.

finishPerformance
+ finishPerformance
Ends the performance; the after-performance messages are sent and all other enqueued
messages are removed (except from the before-performance queue). If
finishWhenEmpty is YES, this message is automatically sent when all message
queues are exhausted. Returns nil.

See also: + startPerformance, + pausePerformance, + resumePerformance

Music Kit Classes: Conductor — 2-55

2-56

finishWhenEmpty

+ (BOOL)finishWhenEmpty

Returns YES if the performance will automatically finish when all Conductors’
message queues are empty, otherwise returns NO.

See also: + setFinishWhenEmpty:, + finishPerformance

inPerformance

+ (BOOL)inPerformance

Returns YES if a performance is currently taking place (even if it’s paused), otherwise
returns NO.

See also: + startPerformance

isClocked

+ (BOOL)isClocked

Returns YES if the performance is clocked, NO if it isn’t. In a clocked performance
(the default), messages from the message request queues are sent at the times indicated
by their timestamps. In an unclocked performance, the messages are sent one after
another as quickly as possible.

See also: + setClocked:, MKSetDeltaT()

isEmpty

+ (BOOL)isEmpty

Returns YES if a performance is in progress and all the Conductor instances’ message
request queues are empty, otherwise returns NO.

See also: + setFinishWhenEmpty:

isPaused

+ (BOOL)isPaused
Returns YES if the performance is paused, otherwise returns NO.

See also: + pause, + resume, — pause, — resume

Chapter 2: Class Specifications

lockPerformance
+ lockPerformance

Waits for the availability of, and then acquires, the Music Kit performance lock. This
updates all Conductors’ notions of the current time. Returns self.

In a separate-threaded performance, you should lock the Music Kit before sending a
message (or group of messages) to a Music Kit object. In a performance that isn’t
separate-threaded, you only need to lock the performance if the message that you're
sending depends on the Conductors’ notions of time being current. After you've
successfully locked the performance and have sent the desired messages, you must
invoke unlockPerformance. Note that acquisitions of the Music Kit lock can be
nested; if you send lockPerformance twice, you must send unlockPerformance twice
to release the lock.

See also: + unlockPerformance, + lockPerformanceNoBlock
lockPerformanceNoBlock
+ lockPerformanceNoBlock
This is the same as lockPerformance, except it doesn’t wait for the Music Kit lock to
become available. Returns nil if the lock is thereby unsuccessful, otherwise returns
self.
See also: + lockPerformance, + unlockPerformance
pausePerformance
+ pausePerformance
Pauses the performance; all Conductor instances suspend their message-sending
activity until the Conductor class receives the resumePerformance message. You
can’t pause an unclocked performance; returns nil in this case, otherwise returns self.
This message is ignored if a performance isn’t in progress or if it’s already paused.
See also: + resumePerformance, + isPaused, — pause, — resume
performanceThread

+ (cthread_t) performanceThread

Returns the separate thread in which the performance is running. If a performance isn’t
in progress, or if it isn’t in a separate thread, returns NO_CTHREAD.

See also: + useSeparateThread:

Music Kit Classes: Conductor — 2-57

2-58

resumePerformance

+ resumePerformance

Resumes a performance, allowing it to continue from where it was paused. You can’t
pause, and so can’t resume, an unclocked performance; returns nil in this case.
Otherwise returns self, although the method does nothing if a performance isn’t in
progress or if it isn’t currently paused.

See also: + pausePerformance, + isPaused, — pause, — resume

setClocked:

+ setClocked:(BOOL)yesOrNo

If a performance is in progress, this does nothing and returns nil. Otherwise, it sets a
performance to be clocked or unclocked as yesOrNo is YES or NO and returns self.

In a clocked performance (the default), messages from the message request queues are
sent at the times indicated by their timestamps. In an unclocked performance, the
messages are sent one after another as quickly as possible. Note, however, that if the
performance is unclocked and isn’t in a separate thread, a subsequent
startPerformance message won’t return until the performance is over, thus disabling
the user interface for the duration of the performance.

See also: + isClocked, MKSetDeltaT()

setFinishWhenEmpty:

+ setFinishWhenEmpty:(BOOL)yesOrNo

If yesOrNo is YES, the performance is ended when all the Conductors’ message request
queues are empty. If NO, the performance continues until the finishPerformance
message is sent to the Conductor class. By default, a performance finishes when the
queues are empty.

See also: + finishWhenEmpty, + finishPerformance

setThreadPriority:

+ setThreadPriority:(float)priority

Sets the Mach scheduling priority of the performance thread for all subsequent
performances. The priority change takes effect when the startPerformance method is
invoked; it reverts to its original level between performances. The value of priority is
limited to fall between 0.0 and 1.0, where 0.0 is normal priority and 1.0 is the
maximum.

See also: + useSeparateThread:

Chapter 2: Class Specifications

startPerformance

+ startPerformance

Starts a performance; the messages in the before-performance queue are sent and then
all Conductor instances begin processing their individual queues. If the performance
is clocked, isn’t in a separate thread, and a running Application object isn’t present, this
does nothing and returns nil. In all other cases, self is returned. Note, however, that if
the performance is unclocked, the method doesn’t return until the performance is over.
If a performance is in progress, it isn’t interrupted.

You can delay the begin time of individual Conductors through the setTimeOffset:
instance method.

See also: + finishWhenEmpty, + finishPerformance, — setTimeOffset:

time
+ (double)time

Returns the current performance time, in seconds. This doesn’t include time that the
performance has been paused, nor does it include the performance’s delta time. If a
performance isn’t in progress, MK_NODVAL is returned (use MKIsNoDVal() to
check for this value). Performance time is normally updated only when a Conductor
sends a message; however, you can force time to be updated by sending
lockPerformance to the Conductor class.

See also: + lockPerformance, MKIsNoDVal()

unlockPerformance
+ unlockPerformance
Releases the Music Kit’s performance lock; as a convenience, this also sends
flushTimedMessages to the Orchestra class, causing any buffered synthesis
commands to be flushed to the DSP. Note that the Music Kit locks can be nested; if you
send lockPerformance twice, you must send unlockPerformance twice before the

lock is released.

See also: + lockPerformance, + lockPerformanceNoBlock

Music Kit Classes: Conductor — 2-59

useSeparateThread:
+ useSeparateThread:(BOOL)yesOrNo
If yesOrNo is YES, all subsequent performances will be run in a separate thread,
allowing more independence between the performance and the rest of your application.
If NO, the performance is run in the same thread that invokes startPerformance; this
is the default. Does nothing and returns nil if a performance is in progress, otherwise
returns self.
Keep in mind that when you run your performance in a separate thread, you must
bracket all messages to Music Kit objects (sent from your application) with

lockPerformance and unlockPerformance.

See also: + performanceThread

INSTANCE METHODS
beatSize
— (double)beatSize
Returns the size of the Conductor’s beat in seconds. The default is 1.0.
See also: — setBeatSize:, — setTempo:, — tempo
copy
— copy
Returns a new Conductor created through [[Conductor alloc] init].

See also: + alloc, + allocFromZone:, — init

copyFromZone:

— copyFromZone:(NXZone *)zone
Returns a new Conductor created through [[Conductor allocFromZone:zone] init].

See also: + alloc, + allocFromZone:, — init

2-60 Chapter 2: Class Specifications

delegate
— delegate

Returns the Conductor’s delegate object, as set through the setDelegate: method. A
Conductor’s delegate is alerted when the Conductor is paused and resumed.

See also: — setDelegate:

emptyQueue
— emptyQueue

Removes all message requests from the Conductor’s message request queue. Returns
self.

finishUnarchiving
— finishUnarchiving

You never invoke this method directly; to read an archived Conductor, call the
NXReadObject() C function. This method is invoked by NXReadObject() which
returns the value returned by this method, as follows: If the unarchived Conductor was
the clockConductor (when it was archived), this method frees the unarchived object and
returns the current clockConductor. If a performance is in progress, the unarchived
object is freed and the defaultConductor is returned. If a performance isn’t in progress
and the unarchived object was the defaultConductor, the current defaultConductor
takes the new object’s tempo and time offset, the unarchived object is freed, and the
defaultConductor is returned. Otherwise, the unarchival is successful and nil is
returned.

init
— init

Initializes a new Conductor object by setting its tempo to 60.0 beats per minute.
Returns self.

See also: + alloc, — copy

isCurrentConductor
— (BOOL)isCurrentConductor

Returns YES if the Conductor is currently sending a message from its message request
queue, otherwise returns NO.

Music Kit Classes: Conductor 2-61

2-62

isPaused

— (BOOL)isPaused
Returns YES if the receiver is paused, otherwise returns NO.

See also: — pause, — pauseFor:, — resume

pause

— pause

Pauses the performance of the Conductor and sends conductorDidPause: to its
delegate. Pausing a Conductor causes the object to stop sending messages in its
message request queue (message requests can still be enqueued). The suspension is
restricted to the present performance. You invoke resume to unpause a Conductor.

You can’t pause the clockConductor through this method; returns nil in this case (and
the delegate message isn’t sent). Otherwise returns the receiver. Note that you can

pause a Conductor object before a performance begins.

See also: — pauseFor:, — resume, — setTimeOffset:, + pausePerformance

pauseFor:

— pauseFor:(double)seconds

Pauses the performance of the Conductor, sends conductorDidPause: to its delegate,
and schedules a request for resume to be sent to the receiver in seconds seconds. If the
receiver is currently paused through a previous invocation of this method, the current
resume request supercedes the previous one. The effect is restricted to the present
performance.

You can’t pause the clockConductor through this method; returns nil in this case (and
the delegate message isn’t sent). Otherwise returns the receiver. Note that you can
invoke this method before a performance begins; the resume message is enqueued to
be sent seconds seconds after the performance starts.

See also: — pause, — resume, — setTimeOffset:, + pausePerformance

predictTime:

— (double)predictTime:(double)beatTime

Returns the time, in seconds, when beat beatTime should occur given the Conductor’s
tempo. If beatTime is less than the Conductor’s current time, 0.0 is returned.

See also: — time

Chapter 2: Class Specifications

read:
—read:(NXTypedStream *)stream

You never invoke this method directly; to read an archived Conductor, call the
NXReadObject() C function.

See also: — finishUnarchiving

resume

— resume

Resumes the Conductor’s performance, sends conductorDidResume: to its delegate,
and returns self. If the receiver isn’t currently paused, this has no effect.

A resumed Conductor’s notion of time is frozen while it’s paused. For example, if the
Conductor was paused 1 beat before it was scheduled to send its next message, the
message is sent 1 beat after the Conductor is resumed.

See also: — pause, — pauseFor:

sel:to:atTime:argCount:

— sel:(SEL)aSelector
to:roObject
atTime:(double)beats
argCount:(int)argCount,...

Places, in the Conductor’s message request queue, a request for aSelector to be sent to
toObject at time beats beats from the beginning of the receiver’s performance. To
ensure that the Conductor’s notion of time is up to date, you should send
lockPerformance before invoking this method. argCount specifies the number of
four-byte arguments to aSelector followed by the arguments themselves, separated by
commas (two arguments, maximum).

See also: — sel:to:withDelay:argCount:

Music Kit Classes: Conductor — 2-63

sel:to:withDelay:argCount:

— sel:(SEL)aSelector
to:toObject
withDelay:(double)beats
argCount:(int)argCount....

Places, in the receiver’s message request queue, a request for aSelector to be sent to
toObject at time beats beats from the receiver’s notion of the current time. To ensure
that the receiver’s notion of time is up to date, you should send lockPerformance
before invoking this method. argCount specifies the number of four-byte arguments to
aSelector followed by the arguments themselves, separated by commas (two
arguments, maximum).

See also: — sel:to:atTime:argCount:

setBeatSize:
— (double)setBeatSize:(double)newBeatSize
Sets the Conductor’s tempo by changing the size of a beat to newBeatSize, measured in
seconds. The default beat size is 1.0 (one second). Attempts to set the tempo of the
clockConductor are ignored. Returns the previous beat size.
See also: —beatSize, — setTempo:, — tempo

setDelegate:
— setDelegate:delegate
Sets the Conductor’s delegate object to delegate and returns self. The delegate is sent
conductorDidPause: and conductorDidResume: as the Conductor is paused and
resumed, respectively.
See also: — delegate, — pause, — pauseFor:, — resume:

setTempo:

— (double)setTempo:(double)newTempo

Sets the Conductor’s tempo to newTempo, measured in beats per minute. Attempts to
set the tempo of the clockConductor are ignored. Returns the Conductor’s old tempo.

See also: — tempo, — setBeatSize:, — beatSize

2-64 Chapter 2: Class Specifications

setTimeOffset:
— (double)set TimeOffset:(double)newTimeOffset

Sets the Conductor’s performance time offset to newTimeOffset seconds. Keep in mind
that since the offset is measured in seconds, it’s not affected by the Conductor’s tempo.
Attempts to set the offset of the clockConductor are ignored. Returns the old time
offset.
See also: — timeOffset, — pause, — pauseFor:
tempo
— (double)tempo
Returns the Conductor’s tempo in beats per minute.
See also: — setTempo:, — setBeatSize:, — beatSize
time
— (double)time
Returns the number of beats that the Conductor has spent in active performance. This
excludes time that it or the entire performance has been paused and also excludes the
Conductor’s performance time offset.
See also: — predictTime:
timeOffset
— (double)timeOffset
Returns the Conductor’s performance time offset in seconds.
See also: — setTimeOffset:, — pause, — pauseFor:
write:
— write:(NXTypedStream *)stream
You never invoke this method directly; to archive a Conductor, call the
NXWriteObject() C function. An archived Conductor remembers its tempo and time

offset when its unarchived.

See also: —read:, — finishUnarchiving

Music Kit Classes: Conductor 2-65

METHODS IMPLEMENTED BY THE DELEGATE

conductorDidPause:
— conductorDidPause:conductor

Sent to the delegate when conductor is paused through a pause or pauseFor: message.
Pausing an entire performance (through pausePerformance) doesn’t cause this
message to be sent.

conductorDidResume:

— conductorDidResume:conductor

Sent to the delegate when conductor is resumed through a resume message; keep in
mind that pauseFor: automatically schedules a resume message. You should also note
that when this message isn’t sent when a Conductor exhausts its time offset and so
begins its performance.

2-66 Chapter 2: Class Specifications

Envelope

INHERITS FROM Object
DECLARED IN musickit.h
CLASS DESCRIPTION

An Envelope object represents a two-dimensional (Cartesian) coordinate system in
which you can order a series of breakpoints, each of which is located as a pair of x and
y values. An Envelope is defined (primarily) by two arrays: One contains a series of
increasing x values, the other contains the corresponding y values.

Envelopes are most often used to control musical attributes during DSP synthesis. This
is achieved by associating an Envelope with an AsympUG UnitGenerator (through
methods defined by the AsympUG class). The AsympUG produces a continuous signal
that follows the shape defined by connecting the Envelope’s successive breakpoints
with asymptotic curves.

In addition to an Envelope’s x and y arrays, you can also provide an array of smoothing
values. Smoothing is used by an AsympUG to define the slope of the segment into a
particular breakpoint (the smoothing value of the first breakpoint is ignored).
Smoothing values must be positive and are usually no greater than 1.0. A smoothing
of 1.0, the default, provides the gentlest slope possible: The full amount of time
between breakpoints is used to travel from one y value to the next. As you decrease the
smoothing for a breakpoint, the y value is attained in less time; a smoothing of 0.0
causes the AsympUG to generate the breakpoint’s y value instantaneously and
constantly until the next breakpoint.

While you must always supply an array of y values when defining an Envelope, the
same isn’t true for x and smoothing. Rather than provide an x array, you can specify a
sampling period that’s used as an x increment: The x value of the first breakpoint is 0.0,
and successive x values are integer multiples of the sampling period value. Similarly,
you can supply a constant smoothing value rather than provide a smoothing array. In
the presence of both an x array and a sampling period, or both a smoothing array and a
default smoothing, the array takes precedence.

Envelopes are described as having three parts: attack, sustain, and release. You can set
the sustain portion of an Envelope by designating one of its breakpoints as the
stickpoint. Everything up to the stickpoint is the Envelope’s attack; everything after the
stickpoint is its release. When the stickpoint is reached during DSP synthesis, its y
value is sustained until a noteOff arrives to signal the release.

An Envelope object can be set as the value of a Note’s parameter through Note’s
setPar:toEnvelope: method. Parameters that accept Envelope objects are usually
associated with other, constant-valued parameters that interpret the Envelope by scaling
and offsetting the Envelope’s x and y values. For example, the MK_ampEnv
parameter takes an Envelope as its value; MK_amp0 and MK_ampl1 are

Music Kit Classes: Envelope — 2-67

constant-valued parameters that scale and offset the y values in MK_ampEnv
according to the formula

(scale* y) + offset
where scale is calculated as MK_ampl — MK_ampi{ and offset is simpiy the vaiue of
MK_amp0. In other words, MK_amp0 defines the interpreted value when y is 0.0 and
MK _ampl is the interpreted value when y is 1.0. Similarly, the MK_ampAtt and
MK_ampRel parameters are scalers on the x values in the attack and in the release
portion of the Envelope, respectively (you can’t offset x values).

While Envelope objects are most useful in DSP synthesis, they can also be used to
return a discrete value of y for a given x, as provided in the method lookupYForX:. If
the x value doesn’t correspond precisely to a breakpoint in the Envelope, the method
does a linear interpolation between the immediately surrounding breakpoints. When
used for discrete-value lookup, an Envelope’s smoothing values and stickpoint are

ignored.

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in Envelope double defaultSmoothing;
double samplingPeriod;
double *xArray;
double *yArray;
double *smoothingArray;
int stickPoint;
int pointCount;

defaultSmoothing Smoothing for all breakpoints (used in the
absence of the smoothing array).

samplingPeriod Constant x-increment (used in the absence of the
X array).

xArray Array of x values.

yArray Arrays of y values

smoothing Array Array of smoothing values.

stickPoint The object’s stickpoint.

pointCount Number of breakpoints in the object.

2-68 Chapter 2: Class Specifications

METHOD TYPES

Copying, initializing, and freeing an Envelope
— copy
— copyFromZone:
— init
— free

Defining and retrieving breakpoints

— setPointCount:xArray:orSamplingPeriod:
yArray:smoothingArray:
orDefaultSmoothing:

— setPointCount:xArray:yArray:

— getNth:x:y:smoothing:

— pointCount

— xXArray

— samplingPeriod

— yArray

— smoothingArray

— defaultSmoothing

Attack, sustain, and release — setStickPoint:

— stickPoint

— attackDur

— releaseDur
Interpolating y values — lookupYForX:
Writing the Envelope — writeScorefileStream:
Archiving the Envelope — write:

—read:

INSTANCE METHODS

attackDur
— (double)attackDur
Returns the duration of the attack portion of the Envelope. This the difference between
the x value of the first breakpoint and the x value of the stickpoint. If the Envelope
doesn’t have a stickpoint (or if the stickpoint is out of bounds), the duration of the entire

Envelope is returned.

See also: — setStickPoint:, releaseDur

Music Kit Classes: Envelope — 2-69

Ccopy
— Copy

Creates and returns a new Envelope object as a copy of the receiving Envelope.
See aiso: — copyFromZone:
copyFromZcne:
— copyFromZone:(NXZone *)zone
Same as copy, but the new Envelope is allocated in zone.
See also: — copy
defaultSmoothing
— (double)defaultSmoothing

Returns the Envelope’s default smoothing value, or MK_NODVAL if there’s a
smoothing array (use MKIsNoDVal() to check MK_NODVAL).

See also: — setPointCount:..., — smoothingArray

free

— free

Frees the Envelope and its contents and removes its name (if any) from the Music Kit
name table.

getNth:x:y:smoothing:

— (MKEnvStatus)getNth:(int)n
x:(double *)xPtr
y:(double *)yPtr
smoothing:(double *)smoothingPtr

Returns, by reference, the x, y, and smoothing values for the n’th breakpoint in the
Envelope counting from breakpoint 0. The method’s return value is a constant that
describes the position of the »n’th breakpoint:

Position Constant

last point in the Envelope MK_lastPoint
stickpoint MK _stickPoint
point out of bounds MK _noMorePoints
any other point MK _noEnvError

2-70 Chapter 2: Class Specifications

If the Envelope’s y array is NULL, or its x array is NULL and its sampling period is
0.0, MK_noMorePoints is returned.

See also: — setPointCount:..., — pointCount, — xArray, — yArray,
— smoothingArray

init
— init
Initializes the Envelope by setting its default smoothing to 1.0, its sampling period to
1.0, and its stickpoint to MAXINT. You never invoke this method directly. A subclass

implementation should send [super init] before performing its own initialization.
Returns self.

lookupYForX:
— (double)lookup YForX:(double)xVal
Returns the y value that corresponds to xVal. If xVal doesn’t fall precisely on one of the
Envelope’s breakpoints, the return value is computed as a linear interpolation between
the y values of the nearest breakpoints on either side of xVal. If xVal is out of bounds,
this returns the first or last y value, depending on which boundary was exceeded. If the

Envelope’s y array is NULL, this returns MK_NODVAL (use MKIsNoDVal() to check
MK_NODVAL).

pointCount
— (int)pointCount

Returns the number of breakpoints in the Envelope.

See also: — setPointCount:...

read:
—read:(NXTypedStrr.am *)stream

You never invoke this method directly; to read an archived Envelope, call the
NXReadObject() C function.

See also: — write:

Music Kit Classes: Envelope — 2-71

releaseDur
— (double)releaseDur

Returns the duration of the release portion of the Envelope. This is the difference
between the x value of the stickpoint and the x value of the final breakpoint. Returns
0.0 1f the Envelope doesn’t have a stickpoint, or if the stickpoint is out of bounds.

See also: — setStickPoint:, releaseDur

samplingPeriod
— (double)samplingPeriod

Returns the sampling period, or MK_NODVAL if there’s an X array (use
MKIsNoDVal() to check MK_NODVAL).

See also: — setPointCount:..., — xArray

setPointCount:xArray:orSamplingPeriod:yArray:smoothingArray:
orDefaultSmoothing:

— setPointCount:(int)count
xArray:(double *)xPtr
orSamplingPeriod:(double)period
yArray:(double *)yPtr
smoothingArray:(double *)smoothingPtr
orDefaultSmoothing:(double)smoothing

Fills the Envelope with data by copying the first count values from xPtr, yPtr, and
smoothingPtr. If xPtr is NULL, the Envelope’s sampling period is set to period
(otherwise period is ignored). Similarly, smoothing is used as the Envelope’s default
smoothing in the absence of smoothingPtr. If yPtr is NULL, the Envelope’s y array is
unchanged. Returns self.

See also: — setPointCount:xArray:yArray:, — pointCount, — xArray, — yArray,
— smoothingArray, — samplingPeriod, — defaultSmoothing

2-72 Chapter 2: Class Specifications

setPointCount:xArray:yArray:

— setPointCount:(int)count

xArray:(double *)xPtr

yArray:(double *)yPtr
This is a cover for the more complete setPointCount:xArray:orSamplingPeriod:...
method. The Envelope’s smoothing specification is unchanged (smoothing is
initialized to a constant 1.0). If xPtr or yPtr is NULL, the Envelope’s x or y array is
unchanged, respectively. Returns self.

See also: — setPointCount:xArray:orSamplingPeriod:..., — pointCount, — xArray,
— yArray

setStickPoint:
— setStickPoint:(int)index

Sets the Envelope’s stickpoint to the index’th breakpoint, counting from 0. Returns
self, or nil if index is out of bounds.

See also: — stickPoint
smoothingArray
— (double *)smoothingArray
Returns a pointer to the Envelope’s smoothing array, or NULL if none.

See also: — setPointCount:..., — defaultSmoothing

stickPoint
— (int)stickPoint
Returns the index of the stickpoint, or MAXINT if none.
See also: — setStickPoint:

writeScorefileStream:
— writeScorefileStream:(NXStream *)aStream
Writes the Envelope to the stream aStream in scorefile format. The stream must already
be open. The Envelope’s breakpoints are written, in order, as (x, y, smoothing) with the
stickpoint followed by a vertical bar. For example, a simple three-breakpoint Envelope
describing an arch might look like this (the second breakpoint is the stickpoint):

(0.0, 0.0, 0.0) (0.3, 1.0, 0.05) | (0.5, 0.0, 0.2)

Returns nil if the Envelope’s y array is NULL. Otherwise returns self.

Music Kit Classes: Envelope 2-73

XArray
— (double *)xArray

Returns a pointer to the Envelope’s x array, or NULL if none.
See aiso: — setPointCount:..., — samplingPeriod
YArray
— (double *)yArray
Returns a pointer to the Envelope’s y array, or NULL if none.

See also: — setPointCount:...

write:

— write:(NXTypedStream *)stream

You never invoke this method directly; to archive an Envelope, call the
NXWriteObject() C function.

See also: —read

2-74 Chapter 2: Class Specifications

FilePerformer
INHERITS FROM Performer : Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A FilePerformer is an abstract class that provides methods for performing time-ordered
music data from a file or a stream. The Music Kit includes a single subclass,
ScorefilePerformer, that reads and performs data from a scorefile.

You establish a FilePerformer object’s source of data through one of two methods (but
never both):

» The setFile: method associates a FilePerformer with a file name. The object opens
and closes the file for you as a performance begins and ends. The file name is
remembered between performances.

» The setStream: method associates a FilePerformer with an NXStream. Opening
and closing the stream is the responsibility of your application. The
FilePerformer’s stream pointer is set to NULL after each performance so you must
send another setStream: message to replay the stream.

You can restrict the data that the FilePerformer will perform through the
setFirstTimeTag: and setLastTimeTag: methods. As a FilePerformer fashions Notes
from its source, it only performs those Notes that have time tags within the given range.

The FilePerformer class declares nextNote and performNote:, both of which are
invoked automatically during a performance, as subclass responsibilities:

» A subclass implementation of nextNote reads data from the stream instance
variable and from it creates either a Note object or a time tag for the following Note
(regardless of how the source of data was declared—whether through setFile: or
setStream:—the stream variable is guaranteed to be open for reading while a
performance is in progress). It returns the Note that it creates, or, in the case of a
time tag, it sets the instance variable fileTime to this value and returns nil (the
fileTime variable supercedes the nextPerform variable inherited from
Performer—FilePerformers never set nextPerform directly). When stream has
been wrung dry, nextNote should set fileTime to MK_ENDOFTIME; this will
cause the FilePerformer to be deactivated.

¢ You implement performNote: to perform the Note that’s passed as its argument
(this method supercedes the perform method declared as a subclass responsibility
by Performer—a subclass of FilePerformer needn’t implement perform).
Typically, this means passing the Note as the argument to sendNote:, sent to the
FilePerformer’s NoteSenders (creation of a FilePerformer’s NoteSenders is left to
the subclass).

Music Kit Classes: FilePerformer — 2-75

INSTANCE VARIABLES
Inherited from Object

Inherited from Performer

Declared in FilePerformer

filename
fileTime
stream
firstTimeTag

lastTimeTag

METHOD TYPES

Class isa;

id conductor;
MKPerformerStatus status;

int performCount;
double timeShift;
double duration;
double time;

double nextPerform;
id noteSenders;
id delegate;
char *filename;
double fileTime;
NXStream *stream;
double firstTimeTag;
double lastTimeTag;

The object’s file name, if set

The current time in the file, in beats
The object’s NXStream pointer

The FilePerformer’s least time tag value

The FilePerformer’s greatest time tag value

Copying and Initializing a FilePerformer

Defining a subclass

Accessing the object’s data

2-76 Chapter 2: Class Specifications

— copyFromZone:
— init

+ fileExtensions
— activateSelf

— initializeFile
— nextNote

— performNote:
— deactivateSelf
— finishFile

— setFile:

— setStream:
— file

— stream

Restricting the object’s data — setFirstTimeTag:
— setLastTimeTag:
— firstTimeTag
— lastTimeTag

Archiving the object - read:
— write:

CLASS METHODS

fileExtensions

+ (char **)fileExtensions

You can implement this method in a subclass to return a NULL-terminated array of file
name extensions that your subclass recognizes. When a FilePerformer is activated,
these extensions are appended, one-by-one, to the given file name (as set through
setFile:) until a match is found. The unadorned file name taken literally as the
argument to setFile: is always searched for first. Files set through setStream: are
exempt from all this mucking around: The file name appendix is manipulated only if
the file is set through setFile:.

INSTANCE METHODS
activateSelf
— activateSelf
Prepares the FilePerformer for a performance by doing the following:

1. If the object’s data source was set through setFile:, the file is located (see
fileExtensions) and the stream instance variable is opened to the file.

2. The initializeFile message is sent to self.

3. nextNote is invoked until it returns a Note with a time tag equal to or greater than
the FilePerformer’s first time tag value.

If stream can’t be opened, if initializeFile returns nil, or if an appropriate Note isn’t

found, the FilePerformer is deactivated. You never invoke this method; it’s invoked
automatically by the activate method inherited from Performer.

Music Kit Classes: FilePerformer — 2-77

2-78

copyFromZone

— copyFromZone:(NXZone *)zone

Creates and returns a FilePerformer as a copy of the receiving FilePerformer. The new
object copies the receiver’s NoteSenders and file name, its stream variable is set to
NULL, and it’s inactive.

deactivateSelf

— deactivateSelf

Deactivates the FilePerformer by invoking finishFile and setting stream to NULL.
You never invoke this method; it’s invoked automatically when the FilePerformer
receives the deactivate message.

file
— (char *)file
Returns the FilePerformer’s file name, as set through setFile:.
finishFile
— finishFile
You never invoke this method; it’s invoked automatically by deactivateSelf. A
subclass can implement this method for post-performance operations. You shouldn’t

close the stream pointer as part of this method. The default implementation does
nothing. The return value is ignored.

firstTimeTag
— (double)firstTimeTag

Returns the least time tag value that the FilePerformer considers for performance, as set
through setFirstTimeTag:.

init
— init

Initializes a recently allocated FilePerformer. A subclass implementation should send
[super init] before performing its own initialization. Returns self.

initializeFile

— initializeFile

Invoked automatically by activateSelf, a subclass can implement this method to
perform file initialization; the file is guaranteed to be open and accessible through the

Chapter 2: Class Specifications

stream instance variable. If nil is returned, the FilePerformer is deactivated. The
default implementation does nothing and returns self.

lastTimeTag
— (double)lastTimeTag

Returns the greatest time tag value that the FilePerformer considers for performance,
as set through setLastTimeTag:.

nextNote

— nextNote

This is a subclass responsibility that’s expected to read data from the stream instance
variable and from it fashion a Note object or a time tag value, as explained in detail in
the class description, above. You never invoke this method; it’s invoked automatically
by the perform method.

perform

— perform

You never invoke this method, nor should you reimplement it in a subclass. It defines
a FilePerformer’s general performance instructions, as required by the Performer class.
To wit: It invokes nextNote until that method returns nil and passes each Note returned
by nextNote as the argument in a performNote: message sent to self.

performNote:

— performNote:aNote

This is a subclass responsibility that’s expected to perform its argument, aNote, as
explained in detail in the class description, above. You never invoke this method; it’s
invoked automatically by the perform method. The return value is ignored.

read:
—read:(NXTypedStream *)stream

You never invoke this method directly; to read an archived FilePerformer, call the
NXReadObject() C function.

setFile:

— setFile:(char *)aName
Associates the FilePerformer with the file named aName. The file is opened when the

FilePerformer is activated and closed when it’s deactivated. While it’s open, the file can
be read through the stream instance variable. If the FilePerformer is active, this does

Music Kit Classes: FilePerformer — 2-79

2-80

nothing and returns nil, otherwise returns self. Invoking this method invalidates a
previous invocation of setStream:. A FilePerformer remembers its file name between
performances (unlike its amnesia with regard to its stream).

— setFirstTimeTag:(double)aTimeTag

Sets the smallest time tag considered for performance to aTimeTag and returns self. If
the FilePerformer is active, does nothing and returns nil.

setLastTimeTag:
— setLastTimeTag:(double)aTimeTag

Sets the largest time tag considered for performance to aTimeTag and returns self. If
the FilePerformer is active, does nothing and returns nil.

setStream:

— setStream:(NXStream *)aStream

Sets the FilePerformer’s stream pointer (the stream instance variable) to aStream,
which must already be open for reading. If the FilePerformer is active, this does
nothing and returns nil, otherwise returns self. Invoking this method invalidates a
previous invocation of setFile:. Keep in mind that the stream variable is set to NULL
after each performance; to perform the same stream twice, you must resend setStream:
before each performance.

stream

— (NXStream *)stream

Returns the FilePerformer’s stream pointer. If you set the FilePerformer’s file through
setStream:, the value returned here is the value passed as the argument to that method.
If you set the file through setFile:, this method returns a stream pointer to the file only
if the FilePerformer is active.

write:
— write:(NXTypedStream *)stream

You never invoke this method directly; to archive a FilePerformer, you call the
NXWriteRootObject() C function. :

Chapter 2: Class Specifications

FileWriter

INHERITS FROM Instrument : Object
DECLARED IN musickit.h
CLASS DESCRIPTION

A FileWriter is an Instrument that realizes Notes by writing them to a file on the disk.

An abstract class, FileWriter implements methods that locate, open, and close files; it’s
left to the FileWriter subclass to define the format in which the Notes are written. This
task is met in the subclass’ implementation of realizeNote:fromNoteFileWriter:. The
Music Kit’s only FileWriter subclass, ScorefileWriter, writes Notes in scorefile format.

You identify a FileWriter’s file either by the file’s name or as an open NXStream. If the
file is identified by name (through the setFile: method) the FileWriter object opens and
closes the file for you: The file is opened for writing when the object first receives the
realizeNote:fromNoteReceiver: message and closed after the performance. A
FileWriter remembers its file’s name between performances, but the file is overwritten
each time it’s opened.

The setStream: method sets the FileWriter’s file to an NXStream. Opening and
closing the stream is the responsibility of the application. A FileWriter forgets the
designated stream between performances; if you want to write to the same stream on
successive performances, you must send setStream: before each.

INSTANCE VARIABLES

Inherited from Object Class isa;

Inherited from Instrument id noteFileWriters;

Declared in FileWriter MKTimeUnit timeUnit;
char *filename;
NXStream *stream;
double timeShift;

timeUnit Either MK _second or MK _beat; used to compute
a Note’s time tag and duration.

filename The object’s file name.

stream The object’s stream pointer.

timeShift Optional time tag value offset.

Music Kit Classes: FileWriter — 2-81

METHOD TYPES

Copying and initializing a FileWriter
— copyFromZone:
— init

Defining a subclass + fileExtension

Accessing the file — setFile:
— file
— setStream:
— stream

Initializing and finishing the file — initializeFile
— firstNote:
— afterPerformance
— finishFile

Interpreting time — setTimeShift:
— timeShift
— setTimeUnit:
— timeUnit

Archiving the object —read:
— write:

CLASS METHODS

fileExtension
+ (char *)fileExtension

Returns the file name extension that’s used by the class. The value returned by this
method is automatically appended to the names of the files that are written by a
FileWriter (even if the name already contains an extension). The default
implementation returns NULL. A subclass may override this method to return its own
extension (the return value shouldn’t include the initial “.”).

INSTANCE METHODS

afterPerformance
— afterPerformance

You never invoke this method; it’s invoked automatically just after a performance. It

closes the FileWriter’s stream variable (if the FileWriter opened it itself in the
firstNote: method) and sets it to NULL.

2-82 Chapter 2: Class Sp‘eciﬁcations

copyFromZone:

— copyFromZone:(NXZone)zone

Creates and returns a copy of the FileWriter. The new object’s file is undefined.

file
— (char *)file

Returns the FileWriter’s file name, as set through setFile:.

finishFile
— finishFile

This can be overridden by a subclass to perform post-performance activities. However,
the implementation shouldn’t close the FileWriter’s NXStream pointer. You never send
the finishFile message directly to a FileWriter; it’s invoked automatically after each
performance. The return value is ignored.

firstNote:
— firstNote:aNote

You never invoke this method; it’s invoked automatically just before the FileWriter
writes its first Note. It opens the FileWriter’s file (if set through setFile:) and then
sends initializeFile to self.

init
— init
Initializes the FileWriter.

initializeFile
— initializeFile
You never invoke this method directly; it’s invoked automatically (from within the
firstNote: method) when the FileWriter receives its first Note. A subclass can override
this method to perform file initialization, such as writing a header. When this method

is invoked, the file is guaranteed to be open for writing and can be accessed through the
stream instance variable. The return value is ignored.

read:
—read:(NXTypedStream *)stream

You never invoke this method directly; to read an archived FileWriter, call the
NXReadObject() C function.

Music Kit Classes: FileWriter 2-83

setFile:
— setFile:(char *)aName

Associates the FileWriter with the file aName. The file is opened when the first Note
is realized (written to the file) and closed at the end of the performance. If the
FileWriter is already in a performance, this does nothing and returns nil; otherwise it
returns self.

setStream:
— setStream:(NXStream *)aStream

Sets the FileWriter’s file as the stream aStream. You must open and close the stream
yourself. If the FileWriter is already in a performance, this does nothing and returns
nil; otherwise it returns self.

setTimeShift:
— setTimeShift:(double)timeShift

Sets the FileWriter’s performance time offset, in seconds, to timeShift. The offset,
which can be negative, is added to the time tag value of each Note that’s written by the
FileWriter.

setTimeUnit:
— setTimeUnit:(MKTimeUnit)aTimeUnit

Sets the unit in which the FileWriter measures time, thus affecting the time tag and
duration values of the Notes it writes. The argument can be MK _second for
measurement in seconds, or MK _beat for beats. The default is MK _second.

stream
— (NXStream *)stream

Returns the FileWriter’s stream pointer, or NULL if it isn’t set. The pointer is set to
NULL after each performance.

timeShift
— (double)timeShift

Returns the FileWriter’s performance time offset, in seconds, as set through
setTimeShift:. The default is 0.0.

Chapter 2: Class Specifications

timeUnit
— (MKTimeUnit)timeUnit

Returns the unit in which the FileWriter measures time, either MK_second or
MK _beat. The default is MK_second.

write:
— write:(NXTypedStream *)stream

You never invoke this method directly; to archive a FileWriter, call the

NXWriteRootObject() C function. A FileWriter archives its filename, timeUnit, and
timeShift instance variables (as well as the instance variables defined in Instrument).

Music Kit Classes: FileWriter — 2-85

2-86

Instrument

INHERITS FROM Object
DECLARED IN musickit.hu
CLASS DESCRIPTION

Instrument is an abstract class that defines the general mechanism for receiving and
realizing Notes during a Music Kit performance. An Instrument receives Notes
through its NoteReceivers, auxiliary objects that are typically connected to a
Performer’s NoteSenders. The manner in which an Instrument realizes Notes is defined
in its implementation of realizeNote:fromNoteReceiver:. This method is
automatically invoked by an Instrument’s NoteReceivers, when such objects receive
receiveNote: messages.

An Instrument is considered to be in performance from the time that one of its
NoteReceivers invokes the realizeNote:fromNoteReceiver: method until the
Conductor class receives the finishPerformance message. There are two implications
regarding an Instrument’s involvement in a performance:

e An Instrument’s firstNote: and afterPerformance methods are invoked as the
Instrument begins and finishes its performance, respectively. These methods can
be implemented in a subclass to provide specialized initialization and
post-performance cleanup.

* Some Instrument methods can’t be invoked during a performance. For example,
you can’t add or remove NoteReceivers while the Instrument is performing.

Creating and adding NoteReceivers to an Instrument object is generally the obligation
of the Instrument subclass; most subclasses dispose of this duty in their init methods.

However, instances of some subclasses are born with no NoteReceivers—they expect
these objects to be added by your application. You should visit the class description of
the Instrument subclass that you’re using to determine just what sort of varmint you’re
dealing with.

The Music Kit defines a number of Instrument subclasses. Notable among these are:
SynthInstrument, which synthesizes Notes on the DSP; PartRecorder adds Notes to a
designated Part; ScorefileWriter writes them to a scorefile; and NoteFilter, an abstract
class that acts as a Note conduit, altering the Notes that it receives before passing them
on to other Instruments. In addition, the Midi class can be used as an Instrument to
realize Notes on an external MIDI synthesizer.

Music Kit Classes: Instrument — 2-87

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in Instrument id noteReceivers;

noteReceivers The object’s List of NoteReceivers.
METHOD TYPES

Creating and freeing an Instrument — copy
— copyFromZone:
— init
— free

Manipulating NoteReceivers — addNoteReceiver:
— noteReceiver
— noteReceivers
— isNoteReceiverPresent:
— removeNoteReceiver:
—removeNoteReceivers
— freeNoteReceivers

Performing — firstNote:

— afterPerformance

— inPerformance
Realizing Notes — realizeNote:fromNoteReceiver:
Archiving — write:

—read:

INSTANCE METHODS

addNoteReceiver:
— addNoteReceiver:aNoteReceiver
Adds aNoteReceiver to the Instrument, first removing it from its current Instrument, if
any. If the receiving Instrument is in performance, this does nothing and returns nil,

otherwise returns aNoteReceiver.

See also: — removeNoteReceiver:, — noteReceivers, — isNoteReceiverPresent:

2-88 Chapter 2: Class Specifications

afterPerformance

— afterPerformance

You never invoke this method; it’s automatically invoked when the performance is
finished. A subclass can implement this method to do post-performance cleanup. The
default implementation does nothing; the return value is ignored.

See also: — firstNote:, — inPerformance

Copy
— Copy

Creates and returns a new Instrument as a copy of the receiving Instrument. The new
object has its own NoteReceiver collection that contains copies of the Instrument’s
NoteReceivers. The new NoteReceivers’ connections (see the NoteReceiver class) are
copied from the NoteReceivers in the receiving Instrument.

See also: — copyFromZone:

copyFromZone:
— copyFromZone:(NXZone *)zone

This is the same as copy, but the new object is allocated from zone.
See also: — copy

firstNote:
— firstNote:aNote
You never invoke this method; it’s invoked just before the Instrument realizes its first
Note. A subclass can implement this method to perform pre-realization initialization.
The argument is the Note that the Instrument is about to realize; it’s provided as a
convenience and can be ignored in a subclass implementation. The Instrument is
considered to be in performance after this method returns. The return value is ignored.
See also: — afterPerformance, — inPerformance

free

— free

Frees the Instrument and its NoteReceivers. If the Instrument is in performance, this
does nothing and returns self, otherwise returns nil.

See also: — freeNoteReceivers

Music Kit Classes: Instrument 2-89

®

2-90

freeNoteReceivers
— freeNoteReceivers

Disconnects, removes, and frees the Instrument’s NoteReceivers. No checking is done
to determine if the Instrument is in performance. Returns self.

See also: — removeNoteReceivers:

inPerformance
— (BOOL)inPerformance
Returns YES if the Instrument is in performance. Otherwise returns NO. An
Instrument is considered to be in performance from the time that one of its
NoteReceivers invokes realizNote:fromNoteReceiver:, until the time that the

Conductor class receives finishPerformance.

See also: — firstNote:, — afterPerformance

Initializes an Instrument that was created through allocFromZone:. Returns self.
isNoteReceiverPresent:
— (BOOL)isNoteReceiverPresent:aNoteReceiver

Returns YES if aNoteReceiver is in the Instrument’s NoteReceiver List. Otherwise
returns NO.

See also: — noteReceiver, — noteReceivers

noteReceiver
— noteReceiver
Returns the first NoteReceiver in the Instrument’s NoteReceiver List. This is useful if
you want to send a Note directly to an Instrument, but you don’t care which
NoteReceiver does the receiving:

[[anInstrument noteReceiver] receiveNote:aNote]

See also: — addNoteReceiver, — noteReceivers, — isNoteReceiverPresent

Chapter 2: Class Specifications

noteReceivers

— noteReceivers

Creates and returns a List that contains the Instrument’s NoteReceivers. It’s the
sender’s responsibility to free the List.

See also: — addNoteReceiver, — noteReceiver, — isNoteReceiverPresent

read:
—read:(NXTypedStream *)stream

You never invoke this method directly; to read an archived Note, call the
NXReadObject() C function.

See also: — write:

realizeNote:fromNoteReceiver:

—realizeNote:aNote fromNoteReceiver:aNoteReceiver

You implement this method in a subclass to define the manner in which the subclass
realizes Notes. aNote is the Note that’s to be realized; aNoteReceiver is the
NoteReceiver that received it. The default implementation does nothing; the return
value is ignored.

You never invoke this method from your application; it should only be invoked by the
Instrument’s NoteReceivers as they are sent receiveNote: messages. Keep in mind that
you can send receiveNote: directly to a NoteReceiver.

removeNoteReceiver:

—removeNoteReceiver:aNoteReceiver

Removes aNoteReceiver from the Instrument’s NoteReceiver List, but neither
disconnects the NoteReceiver from its connected NoteSenders nor frees the
NoteReceiver. If the Instrument is in performance, this does nothing and returns nil;
otherwise returns aNoteReceiver.

See also: — removeNoteReceivers, — addNoteReceiver, — noteReceivers,
— isNoteReceiverPresent

Music Kit Classes: Instrument — 2-91

removeNoteReceivers

—removeNoteReceivers

Removes all the Instrument’s NoteReceivers but neither disconnects nor frees them.
Returns self.

See also: — removeNoteReceiver, — addNoteReceiver, — noteReceivers,
— isNoteReceiverPresent

write:
— write:(NXTypedStream *)stream
You never invoke this method directly; to archive an Instrument, call the
NXWriteRootObject() C function. The Instrument’s NoteReceivers are archived
through NXWriteObject().

See also: —read:

2-92 Chapter 2: Class Specifications

Midi

INHERITS FROM Object
DECLARED IN musickit.h
CLASS DESCRIPTION

A Midi object provides a simple interface to the MIDI device driver. The Midi class
also provides a mechanism that automatically converts MIDI messages into Note
objects and vice versa, allowing you to incorporate MIDI data into a Music Kit
application with a minimum of effort. A Midi object is specified as it corresponds
uniquely to a serial port; since there are only two serial ports, there can be but two
distinct Midi objects within your application.

The Midi class emulates Performer and Instrument in that it’s instances contain
NoteSenders and NoteReceivers: As a Midi object receives messages from the MIDI
driver, it fashions Note objects and issues these Notes into a performance through its
NoteSenders. Analogously, a Midi object receives Notes through its NoteReceivers,
turns them into MIDI messages, and sends the messages to the MIDI driver.

A Midi object automatically creates 17 NoteSenders. The first (NoteSender 0)
corresponds to the channel used for MIDI System and Channel Mode Messages. The
other 16 (NoteSenders 1 through 16) correspond to the 16 MIDI Voice Channels. The
NoteSender through which a Midi object issues a particular Note corresponds to the
channel on which it was received. Alternatively, you can tell a Midi object to issue all
Notes through NoteSender 0 by sending it the setMergeInput:YES message. In this
case, each Note is given a MK_midiChan parameter that indicates the original channel.

NoteReceiver 0 is the analog of NoteSender 0 in merge-input mode: When it receives
a Note on NoteReceiver 0, a Midi object reads the Note’s MK_midiChan parameter and
realizes the Note on that channel. The other 16 NoteReceivers correspond to the 16
MIDI Voice Channels.

Before a Midi object can receive or send MIDI messages, it must be opened and started:
open establishes communication between the object and the MIDI driver, run starts the
driver’s clock ticking. Balancing these two methods are stop, which stops the driver’s
clock, and close, which breaks communication between the object and the MIDI driver.
These methods change the state of the Midi object:

MK _devOpen. The Midi object is open but not running.

» MK_devRunning. The object is open and running.

e MK _devStopped. The object has been running but is now stopped.
e MK _devClosed. The object is closed.

As you start, pause, resume, and stop a performance, you should similarly control your
Midi objects, as described by the following table:

Music Kit Classes: Midi 2-93

2-94

To the Conductor class To your Midi objects

startPerformance run
pausePerformance stop
resumePerformance run
finishPerformance close

The MIDI driver has its own clock that’s more reliable than the Conductor’s clock. To
take advantage of this, the Conductor’s clock is synched to the driver’s clocked—this
is particularly beneficial when you’re recording MIDI. However, if you're receiving
MIDI data and processing it in real time, it’s better to decouple the Conductor from the
MIDI driver by sending setUseInputTimeStamps:NO to the Midi object.

As a Midi object initiates an outgoing MIDI message it gives the message a timestamp
that indicates when the message should be sent into the real world by the MIDI driver.
By sending setOutputTimed:NO to a Midi object, you can specify that the driver is to
ignore the timestamps and send all messages as soon as it receives them. This improves
real-time response, but at the expense of possible rhythmic unsteadiness.

MIDI to Note conversion

When a Midi object receives a MIDI message, it creates a Note object of a particular
note type and with particular parameters according to the following rules:

+ If the message is a MIDI Note On with a Key Velocity greater than 0, a noteOn is
created and given key number (MK_keyNum) and velocity (MK_velocity)
parameters that correspond to the message’s Key Number and Key Velocity values.
The note tag is reckoned from the message’s Channel Number and Key Number.

* A MIDI Note Off, or a Note On with 0 Key Velocity prompts a noteOff. If the Note
Off contains a Release Key Velocity value greater than 0, the noteOff’s
MK _relVelocity parameter will reflect this. The note tag is as with a noteOn.

* A MIDI Channel Voice message other than Note On and Note Off prompts a
noteUpdate that contains one of MK_keyPressure, MK _afterTouch,
MK _controlChange, MK_pitchBend, or MK _programChange, depending on the
MIDI message. If it contains MK_controlChange, the Note will also contain a
MK _controlVal parameter. If MK_keyPressure, the Note is given a note tag.

» Notes created from any other message, such as Channel Mode and System
messages, are mutes. Its parameters are described below.

The parameters in a mute are devised as follows:

+ MIDI Channel Mode messages dissolve into two parameters: MK_basicChan and
MK_chanMode. The former records the Basic Channel while the latter takes one
of the following values: MK_resetControllers, MK _localControlModeOn,

MK localControlModeOff, MK allNotesOff, MK_omniModeOff,
MK_omniModeOn, MK_monoMode, and MK_polyMode.

Chapter 2: Class Specifications

» Parameters that correspond to MIDI System Common messages are
MK _timeCodeQ (MIDI time code, quarter frame), MK_songPosition,
MK_songSelect, and MK _tuneRequest.

» A MIDI System Real Time message heralds a MK_sysRealTime parameter; it’s
possible values are MK _sysClock, MK _sysStart, MK _sysContinue, MK _sysStop,
MK _sysActiveSensing, and MK _sysReset.

» The parameter MK _sysExclusive corresponds to a MIDI system exclusive

message. Its value is a C string, with each MIDI byte encoded as a pair of
hexadecimal digits delimited by a comma.

Note to MIDI conversion

+ If two successive noteOns have the same note tag and the same MK_keyNum
value, an intervening Note Off message is generated and sent.

« If two successive noteOns have the same note tag but different MK_keyNum
values, the second Note On message is immediately followed by a Note Off with

the Key Number of the first Note On (in other words, the first Note On is silenced).

e IfanoteOn has no MK_keyNum parameter, a value is generated from the MK _freq
parameter, if any, otherwise a default value of 64 is used.

* A noteDur is split into noteOn/noteOff pair and the separate Notes are processed.

* A noteOn or noteOff without a note tag, a noteOff with an inactive note tag, or an
MK _keyPressure noteUpdate with an inactive or missing note tag is ignored.

* A noteOff with no MK_rel Velocity parameter prompts a Note On with O Velocity.

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in Midi id noteSenders;
id noteReceivers;
MKDeviceStatus deviceStatus;
char *midiDev;
BOOL uselnputTimeStamps;
BOOL outputlsTimed;
double localDeltaT;

noteSenders The object’s collection of NoteSenders.

noteReceivers The object’s collection of NoteReceivers

deviceStatus The object’s status.

Music Kit Classes: Midi 2-95

midiDev Midi device port name.

uselnputTimeStamps YES if Conductor is updated by the driver.

outputlsTimed YES if the driver’s clock is used for output.

localDeltaT Offset added to MIDI output time stamps.
METHOD TYPES

Creating and freeing a Midi object — free
+ new
+ newOnDevice:

Querying the object — channelNoteReceiver:
— channelNoteSender:
— conductor
— deviceStatus
—localDeltaT
— noteReceiver
— noteReceivers
— noteSender
— noteSenders
— outputlsTimed
— uselnputTimeStamps

Modifying the object — acceptSys:
— ignoreSys:
— setLocalDeltaT:
— setMergelnput:
— setOutputTimed:
— setUseInputTimeStamps:

Opening and running the object — abort
—close
— open
— openlnputOnly
— openOutputOnly
—run
— stop

CLASS METHODS

alloc
allocFromZone:

You never invoke these methods; Midi overrides them to generate errors.

2-96 Chapter 2: Class Specifications

new

+ new

If a Midi object for the device “midil” (the default MIDI device name) doesn’t already
exist, this creates such an object. Otherwise, returns the existing object.

newOnDevice:
+ newOnDevice:(char *)devName
If a Midi object for the device devName doesn’t already exist, this creates such an

object. Otherwise, returns the existing object. The argument must be either “midi0” or
“midil”.

INSTANCE METHODS

abort

— abort

Immediately stops and closes the Midi object, sets its status to MK_devClosed, and
releases the device port. A more graceful approach is.to invoke stop and close.

acceptSys:
— acceptSys:(MKMidiParVal)param
Instructs the Midi object to accept incoming MIDI messages that set the parameter

MK _sysRealTime to the value specified in param, which must be one of MK_sysStop,
MK _sysStart, MK _sysContinue, MK_sysClock, or MK _sysActiveSensing.

channelNoteReceiver:
— channelNoteReceiver:(unsigned)n

Returns the NoteReceiver for MIDI channel 7, as explained in the class description.

channelNoteSender:
— channelNoteSender:(unsigned)n

Returns the NoteSender for MIDI channel 7, as explained in the class description.
close
— close

Waits for the Midi object’s output queue to empty and then closes the Midi object, sets
its status to MK_devClosed, and releases the device port. Returns self.

Music Kit Classes: Midi 2-97

conductor
— conductor

Always returns the clockConductor.

deviceStatus
— (MKDeviceStatus)deviceStatus

Returns the Midi object’s device status, as listed in the class description.

free

— free

Closes and frees the Midi object and frees its NoteSenders and NoteReceivers.
ignoreSys:

— ignoreSys:(MKMidiParVal)param

Instructs the Midi object to ignore messages that set the MK _sysRealTime parameter
to param. The list of values that are ignored by default is given in acceptSys:.

init
You never invoke this method; Midi overrides it to generate an error.

localDeltaT
— (double)localDeltaT
Returns the Midi object’s local delta time, in seconds, as set through setLocalDeltaT:.
The local delta time is added to the global delta time, as set through MKSetDeltaT(),

and the sum is added into each MIDI driver timestamp. This has no effect if the Midi
object isn’t timed. The default is 0.0.

noteReceiver

— noteReceiver

Returns the Midi object’s first NoteReceiver (NoteReceiver 0).

noteReceivers

— noteReceivers

Returns a List containing the Midi object’s NoteReceivers.

2-98 Chapter 2: Class Specifications

noteSender

— noteSender
Returns the Midi object’s first NoteSender (NoteSender 0).
noteSenders
— noteSenders
Returns a List containing the Midi object’s NoteSenders.
open
— open
Opens the Midi object for two-way communication with the MIDI driver. The object’s

status is set to MK_devOpen. If the object is open in only one direction, close is first
invoked. Returns self, or nil if the object can’t be opened.

openInputOnly
— openlnputOnly

Opens the Midi object for input from the MIDI driver. If the Midi object is open in both
directions or for output only, close is first invoked. Returns self, or nil if the object can’t
be opened.

openOutputOnly
— openOutputOnly
Opens the Midi object for output to the MIDI driver. If the object is open in both

directions or for input only, close is first invoked. Returns self, or nil if the object can’t
be opened.

outputlsTimed
— (BOOL)outputIsTimed

Returns YES if the messages sent by the Midi object to the MIDI driver are given
timestamps, otherwise returns NO. The default is YES.

run

—run

Opens the Midi object (if necessary), starts its clock, and sets the Midi object’s status
to MK_devRunning. Returns self, or nil if it’s closed and can’t be opened.

Music Kit Classes: Midi 2-99

setLocalDeltaT:
— setLocalDeltaT:(double)seconds

Sets the Midi object’s local delta time, in seconds, to seconds; the default is 0.0. The
local delta time is added to the global delta time, as set through MKSetDeltaT(), and
the sum is added into each timestamp before it’s passed to the MIDI driver. This has
no effect if the Midi object isn’t timed. Returns self.

setMergelnput:
— setMergelnput:(BOOL)yesOrNo

If yesOrNo is YES, each Note fashioned by the Midi object from a MIDI message is
given an MK_midiChan parameter with a value set to the channel on which the Note
was received. All Notes are then sent to the Midi object’s NoteSender 0. By default,
the input isn’t merged.

setOutputTimed:
— setOutputTimed:(BOOL)yesOrNo

Establishes whether MIDI messages are sent to the MIDI driver with or without
timestamp values, as yesOrNo is YES or NO. If the Midi object is timed, messages are
stamped with the Conductor’s notion of the current time plus the global and local delta
times. If it’s untimed, the timestamps are always 0, indicating to the MIDI driver that
the messages should be sent immediately. The default is timed.

setUselnputTimeStamps:
— setUseInputTimeStamps:(BOOL)yesOrNo

If yesOrNo is YES the Conductor’s clock is synched to the MIDI driver’s clock as the

Midi object receives MIDI messages. If the Midi object isn’t closed, this does nothing
and returns nil; otherwise returns self. The two clocks are synched by default.

stop
— stop

Stops the Midi object’s clock and sets it’s status to MK_devStopped. Returns self.

uselnputTimeStamps
— (BOOL)useInputTimeStamps

Returns YES or NO as the Conductor’s clock and the MIDI driver’s clock are
synchronized, as set through setUselnputTimeStamps:. The default is YES.

2-100 Chapter 2: Class Specifications

Note

INHERITS FROM Object
DECLARED IN musickit.h
CLASS DESCRIPTION

Note objects are containers of musical information. The amount and type of
information that a Note can hold is practically unlimited; however, you should keep in
mind that Notes haven’t the ability to act on this information, but merely to store it. It’s
left to other objects to read and process the information in a Note. Most of the other
Music Kit classes are designed around Note objects, treating them as common
currency. For example, Part objects store Notes, Performers acquire them and pass
them to Instruments, Instruments read the contents of Notes and apply the information
therein to particular styles of realization, and so on.

The information that comprises a Note defines the attributes of a particular musical
event. Typically, an object that uses Notes plucks from them just those bits of
information in which it’s interested. Thus you can create Notes that are meaningful in
more than one application. For example, a Note object that’s realized as synthesis on
the DSP would contain many particles of information that are used to drive the
synthesis machinery; however, this doesn’t mean that the Note can’t also contain
graphical information, such as how the Note would be rendered when drawn on the
screen. The objects that provide the DSP synthesis realization (SynthPatch objects, as
defined by the Music Kit) are designed to read just those bits of information that have
to do with synthesis, and ignore anything else the Note contains. Likewise, a notation
application would read the attributes that tell it how to render the Note graphically, and
ignore all else. Of course, some information, such as the pitch and duration of the Note,
would most likely be read and applied in both applications.

Most of the methods defined by the Note class are designed to let you set and retrieve
information in the form of parameters. A parameter consists of a tag, a name, a value,
and a data type:

» A parameter tag is a unique integer used to catalog the parameter within the Note;
the Music Kit defines a number of parameter tags such as MK _freq (for frequency)
and MK_amp (for amplitude).

¢ The parameter’s name is used primarily to identify the parameter in a scorefile. The
names of the Music Kit parameters are the same as the tag constants, but without
the “MK_” prefix. You can also use a parameter’s name to retrieve its tag by
passing the name to Note’s parName: class method. (As explained in its
descriptions below, it’s through this method that you create your own parameter
tags.)

Music Kit Classes: Note 2-101

e A parameter’s value can be a double, int, string (char *), or an object (id). The
method you invoke to set a parameter value depends on the type of the value. To
set a double value, for example, you would invoke the setPar:toDouble: method.
Analogous methods exist for the other types. You can retrieve the value of a
double-, int-, or string-valued parameter as any of these three types, regardless of
the actual type of the value. For example, you can set the frequency of a Note as a
double, thus:

[aNote setPar:MK freq toDouble:440.0]
and then retrieve it as an int:

int freq = [aNote parAsInt:MK freq]
The type conversion is done automatically.

» Object-valued parameters are treated differently from the other value types. The
only Music Kit objects that are designed to be used as parameter values are
Envelopes and WaveTables (and the WaveTable descendants Partials and Samples).
Special methods are provided for setting and retrieving these objects. Other
objects, most specifically objects of your own classes, are set through the
setPar:toObject: method. While an instance of any class may be set as a
parameter’s value through this method, you should note well that only those objects
that respond to the writeASCIIStream: and read ASCIIstream: messages can be
written to and read from a scorefile. None of the Music Kit classes implement these
methods and so their instances can’t be written to a scorefile as parameter values
(Envelopes and WaveTables are written and read through a different mechanism).

+ The parameter’s data type is set when the parameter’s value is set; thus the data type
is either a double, int, string, Envelope, WaveTable, or (other) object. These are
represented by constants, as given in the description of parType:, the method that
retrieves a parameter’s data type.

A parameter is said to be present within a Note once its value has been set. You can
determine whether a parameter is present in one of four ways:

« The easiest way is to invoke the boolean method isParPresent:, passing the

parameter tag as the argument. An equivalent C function, MKIsNoteParPresent()
is also provided for greater efficiency.

2-102 Chapter 2: Class Specifications

At a lower lever, you can invoke the par Vector: method to retrieve one of a Note’s
“parameter bit vectors,” integers that the Note uses internally to indicate which
parameters are present. You query a parameter bit vector by masking it with the
parameter’s tag:

/* A Note may have more then one bit vector to accommodate all
* its parameters.
*/

int parVector = [aNote parVector: (MK amp/32)];

/* If MK amp is present, the predicate will be true. */
if (parVector & (1 << (MK amp % 32)))

If you plan on retrieving the value of the parameter after you’'ve checked for the
parameter’s presence, then it’s generally more efficient to go ahead and retrieve the
value and then determine if the parameter is actually set by comparing its value to
the appropriate parameter-not-set value, as given below:

Retrieval type No-set value

int MAXINT

double MK_NODVAL (but see below)
Char * nn

id nil

Unfortunately, you can’t use MK_NODVAL in a simple comparison
predicate. To check for this return value, you must call the in-line function
MKIsNoDVal(); the function returns 0 if its argument is MK_NODVAL and
nonzero if not:

/* Retrieve the value of the amplitude parameter. */
double amp = [aNote parAsDouble:MK amp];

/* Test for the parameter’s existence. */
if (!MKIsNoDVal (amp))
/* do something with the parameter */

If you’re looking for and processing a large number of parameters in one block,
then you should make calls to the MKNextParameter() C function, which returns
the values of a Note’s extant parameters only. See the function’s description in
Chapter 2 for more details.

Music Kit Classes: Note 2-103

A Note has two special timing attributes: A Note’s time tag corresponds, conceptually,
to the time during a performance that the Note is performed. Time tags are set through
the setTimeTag: method. The other timing attribute is the Note’s duration, a value that
indicates how long the Note will endure once it has been struck. It’s set through
setDur:. A single Note can have only one time tag and one duration. Keep in mind,
however, that not all Notes need a time tag and a duration. For example, if you rcalize
a Note by sending it directly to an Instrument, then the Note’s time tag—indeed,
whether it even has a time tag—is of no consequence; the Note’s performance time is
determined by when the Instrument receives it (although see the ScorefileWriter,
ScoreRecorder, and PartRecorder class descriptions for alternatives to this edict).
Similarly, a Note that merely initiates an event, relying on a subsequent Note to halt the
festivities (as described in the discussion of note types, below) doesn’t need and
actually mustn’t be given a duration value.

During a performance, time tag and duration values are measured in time units called
beats. The size of a beat is determined by the tempo of the Note’s Conductor. However,
you never set a Note’s Conductor directly; instead, it’s identified as the Conductor of
the Performer (or Midi) that last performed the Note. Therefore, to determine its
Conductor, a Note must know its most recent Performer. To this end, the Note is
informed, whenever it’s performed, of the Performer that’s performing it; this
informing is done automatically by the Performer itself. If a Note hasn’t been
performed by a Performer—if you’ve sent it directly to an Instrument, for example—
then its Conductor is the defaultConductor, which has a default (but not immutable)
tempo of 60.0 beats per minute. Keep in mind that if you send a Note directly to an
Instrument, then the Note’s time tag is (usually) ignored, as described above, but its
duration may be considered and employed by the Instrument.

A Note has a note type that casts it into one of five roles:

* A noteDur represents an entire musical note (a note with a duration).

* A noteOn establishes the beginning of a note.

* A noteOff establishes the end of a note.

* A noteUpdate represents the middle of a note (it updates a sounding note).
¢ A mute makes no sound.

Only noteDurs may have duration values; the very act of setting a Note’s duration
changes it to a noteDur.

You match the two Notes in a noteOn/noteOff pair by giving them the same note tag
value; a note tag is an integer that identifies two or more Notes as part of the same
musical event or phrase. In addition to coining noteOn/noteOff pairs, note tags are used
to associate a noteUpdate with a noteDur or noteOn that’s in the process of being
performed. The C function MKNoteTag() is provided to generate note tag values that
are guaranteed to be unique across your entire application—you should never create a
new note tag except through this function.

2-104 Chapter 2: Class Specifications

Instead of or in addition to being actively realized, a Note object can be stored. In a
running application, Notes are stored within Part objects through the addToPart:
method. A Note can be added to only one Part at a time; adding it to a Part
automatically removes it from its previous Part. Within a Part object, Notes are sorted
according to their time tag values.

For long-term storage, Notes can be written to a scorefile. There are two “safe” ways
to write a scorefile: You can add a Note-filled Part to a Score and then write the Score
to a scorefile, or you can send Notes during a performance to a ScorefileWriter
Instrument. The former of these two methods is generally easier and more flexible
since it’s done statically and allows random access to the Notes within a Part. The latter
allows Note objects to be reused since the file is written dynamically; it also lets you
record interactive performances.

You can also write individual Notes in scorefile format to an open stream by sending
writeScorefileStream: to the Notes. This can be convenient while debugging, but keep
in mind that the method is designed primarily for use by Score and ScorefileWriter
objects; if you write Notes directly to a stream that’s open to a file, the file isn’t
guaranteed to be recognized by methods that read scorefiles, such as Score’s

readScorefile:.
INSTANCE VARIABLES
Inherited from Object Class isa;
Declared in Note MKNoteType noteType;
int noteTag;
id performer;
id part;
double timeTag;
noteType The Note’s note type.
noteTag The Note’s note tag.
performer The Performer that most recently performed this
Note.
part The Part that this Note is a member of.
timeTag The Note’s time tag.

Music Kit Classes: Note 2-105

METHOD TYPES

Creating and freeing a Note — copy
- copyFromZone:
— init

it M4l T AT .
iflitvwiuiriimCiag.

— split::
— free

Storing the object — addToPart:
— part
— removeFromPart
— writeScorefileStream:
—read:
— write:

Querying the object — compare:
— conductor
— performer

Modifying parameters — setPar:toDouble:
— setPar:tolnt:
— setPar:toString:
— setPar:toEnvelope:
— setPar:toWaveTable:
— setPar:toObject:
— copyParsFrom:
— removePar:

Querying parameters — parAsDouble:
— parAsInt:
— parAsString:
— parAsStringNoCopy:
— parAsEnvelope:
— parAsWaveTable:
— parAsObject:
— freq
— keyNum
— isParPresent:
— parType:
+ parName:
— parVector:
— par VectorCount

Time tag and duration — setTimeTag:
— setDur:
— timeTag
—dur

2-106 Chapter 2: Class Specifications

Note type and note tag — setNoteType:
— setNoteTag:
—noteType
—noteTag

CLASS METHODS

parName:

+ (int)parName:(char *)aName

Returns the integer that identifies the parameter named aName. If the named parameter
doesn’t have an identifier, one is created and thereafter associated with the parameter.

See also: — setPar:toDouble: (etc.), — isParPresent:

INSTANCE METHODS

addToPart:
— addToPart:aPart

Removes the Note from the Part that it’s currently a member of and adds it to aPart.
Returns the Note’s old Part, if any.

This method is equivalent to Part’s addNote: method.

See also: —part, — removeFromPart

Music Kit Classes: Note 2-107

compare:

— (int)compare:aNote

Returns a value that indicates which of the receiving Note and the argument Note would
appear first if the two Notes were sorted into the same Part:

* -1 indicates that the receiving Note is first.
* 1 means that the argument, aNote, is first.
* Ois returned if the receiving Note and aNote are the same object.

Keep in mind that the two Notes needn’t actually be members of the same Part, nor
must they be members of Parts at all. Naturally, the comparison is judged first on the
relative values of the two Notes’ time tags; changing one or both of the Notes’ time tags
invalidates the result of a previous invocation of this method.

conductor

— conductor

Returns the Conductor of the Performer that most recently performed the Note. If the
Note hasn’t been performed (by a Performer), then this returns the defaultConductor.
A Note’s Conductor is used primarily by Instrument objects that split noteDurs into
noteOn/noteOff pairs; performance of the noteOff is scheduled with the Conductor
that’s returned by this method.

See also: — performer

Ccopy
— Copy

Creates and returns a new Note object as a copy of the receiving Note. The receiving
Note’s parameters, time tag, duration, note type, and note tag are copied into the new
Note. Object-valued parameters are shared by the two Notes. The new Note isn’t a
member of a Part, regardless of the membership of the original Note. However, the new
Note’s Performer is that of the original Note, even though the new Note hasn’t actually
been performed. This imposture is necessary so that an Instrument can copy the Notes
that it receives (prior to altering them, for example) without sacrificing access to the
appropriate Conductor (more specifically, to the Conductor’s tempo), which is retrieved
through the Note’s Performer.

See also: — copyParsFrom:, — copyFromZone:, — split::

2-108 Chapter 2: Class Specifications

copyParsFrom:
— copyParsFrom:aNote

Copies aNote’s parameters into the receiving Note. Object-valued parameters are
shared by the two Notes. Returns self.

See also: — copy, — copyFromZone:, — split::
copyFromZone:
— copyFromZone:(NXZone *)aZone
The same as copy, but the new Note is allocated in aZone.
See also: — copy, — copyParsFrom:, — split::
dur
— (double)dur

Returns the Note’s duration, or MK_NODVAL if it isn’t set (use the function
MKIsNoDVal() to check for MK_NODVAL).

See also: — setDur:
free
— free

Removes the Note from its Part and then frees the Note (the Note’s object-valued
parameters aren’t freed).

freq
— (double)freq

This method returns the Note’s frequency, measured in Hertz (or cycles-per-second). If

the frequency parameter MK _freq is present, its value is returned; otherwise, the
frequency is converted from the key number value given by the MK_keyNum
parameter. In the absence of both MK_freq and MK_keyNum, MK_NODVAL is
returned (use the function MKIsNoDVal() to check for MK_NODVAL). The

correspondence between key numbers and frequencies is given in Appendix A, “Music

Tables.”
Frequency and key number are the only two parameters whose values are retrieved
through specialized methods. All other parameter values should be retrieved through

one of the parAsType: methods.

See also: — keyNum, — setPar:toDouble:

Music Kit Classes: Note 2-109

init

— init
Initializes a Note by setting its note type to MK_mute. Returns self.
See aiso: — initWiihTimeTag:
initWithTimeTag:
— init:(double)aTimeTag

The same as init, but also sets the Note’s time tag to alimeTlag.

See also: — init

isParPresent:
— (BOOL)isParPresent:(int)parameterTag

Returns YES if the parameter identified by parameterTag is present in the Note (in
other words, if its value has been set), and NO if it isn’t.

See also: — parVector:, MKIsNoteParPresent(), MKNextParameter(),
+ parName:, — parType:, — setPar:toDouble: (etc), — parAsDouble: (etc)

keyNum
— (int)keyNum

This method returns the key number of the Note. Key numbers are integers that
enumerate discrete pitches; they’re provided primarily to accommodate MIDI. If the
MK_keyNum parameter is present, its value is returned; otherwise, the key number that
corresponds to the value of the MK _freq parameter, if present, is returned. In the
absence of both MK_keyNum and MK _freq, MAXINT is returned. The
correspondence between key numbers and frequencies is given in Appendix A, “Music
Tables.”

Frequency and key number are the only two parameters whose values are retrieved
through specialized methods. All other parameter values should be retrieved through

one of the parAsType: methods.

See also: — freq, — setPar:tolnt:

2-110 Chapter 2: Class Specifications

noteTag
— (int)noteTag

Return the Note’s note tag, or MAXINT if it isn’t set.

See also: — setNoteTag:, MKNoteTag()

noteType
— (MKNoteType)noteType

Returns the Note’s note type, one of MK _noteDur, MK_noteOn, MK_noteOff,

MK _noteUpdate, or MK_mute. The note type describes the character of the Note,
whether it represents an entire musical note (or event), the beginning, middle, or end of
a note, or no note (no sound). A newly created Note is a mute. A Note’s note type can
be set through setNoteType:, although setDur: and setNoteTag: may also change it as
a side effect.

See also: — setNoteType:, — setDur:, — setNoteTag:

parAsDouble:
— (double)parAsDouble:(int)parameterTag

Returns a double value converted from the value of the parameter identified by
parameterlag. If the parameter isn’t present or if its value is an object, returns
MK_NODVAL (use the function MKIsNoDVal() to check for MK_NODVAL). You
should use the freq method if you want to retrieve the frequency of the Note.

See also: MKGetNoteParAsDouble(), — setPar:toDouble: (etc), — parType:,
— isParPresent:

parAsEnvelope:
— parAsEnvelope:(int)parameterlag

Returns the Envelope value of parameterTag. If the parameter isn’t present, or if its
value isn’t an Envelope, returns nil.

See also: MKGetNoteParAsEnvelope(), — setPar:toDouble: (etc), — parType:,
— isParPresent:

Music Kit Classes: Note 2-111

parAsint:
— (int)parAslInt:(int)parameterTag

Returns an int value converted from the value of the parameter identified by
parameterTag. If the parameter isn’t present, or if its value is an object, returns
MAXINT.

See also: MKGetNoteParAsInt(), — setPar:toDouble: (etc), — parType:,
— isParPresent:

parAsObject:
— parAsObject:(int)parameterTag

Returns the object value of the parameter identified by parameterlag. If the parameter
isn’t present, or if its value isn’t an object, returns nil. This method can be used to
return Envelope and WaveTable objects in addition to non-Music Kit objects.

See also: MKGetNoteParAsObject(), — setPar:toDouble: (etc), — parType:,
— isParPresent:

parAsString:
— (char *)parAsString:(int)parameterlag

Returns a string converted from a copy of the value of the parameter identified by
parameterTag. If the parameter isn’t present, or if its value is an object, returns an
empty string.

See also: MKGetNoteParAsString(), — setPar:toDouble: (etc), — parType:,
— isParPresent:

parAsStringNoCopy:
— (char *)parAsStringNoCopy:(int)parameterTag

Returns a string converted from the value of the parameter identified by parameterTag.
If the parameter was set as a string, then this returns a pointer to the actual string itself;
you should neither delete nor alter the value returned by this method. If the parameter
isn’t present, or if its value is an object, returns an empty string.

See also: MKGetNoteParAsStringNoCopy(), — setPar:toDouble: (etc),
— parType:, — isParPresent:

2-112 Chapter 2: Class Specifications

parAsWaveTable:
— parAsWaveTable:(int)parameterTag

Returns the WaveTable value of the parameter identified by parameterTag. If the
parameter isn’t present, or if it’s value isn’t a WaveTable, returns nil.

parType:
— (MKDataType)parType:(int)parameterTag

Returns the data type of the value of the parameter identified by parameterTag. The
data type is set when the parameter’s value is set; the specific data type of the value, one
of the MKDataType constants listed below, depends on which method you used to set
it:

Method Data type
setPar:tolnt: MK _int
setPar:toDouble MK_double
setPar:toString: MK _string
setPar:toWaveTable: ~ MK_waveTable
setPar:toEnvelope: MK _envelope
setPar:toObject: MK _object

If the parameter’s value hasn’t been set, MK_noType is returned.

See also: MKGetNoteParAsWaveTable(), — setPar:toDouble: (etc), — parType:,
— isParPresent:

parVector:

— (unsigned)par Vector:(unsigned)index

Returns an integer bit vector that indicates the presence of the index’th set of
parameters. Each bit vector represents 32 parameters. For example, if index is 1, the
bits in the returned value indicate the presence of parameters O through 31, where 1
means the parameter is present and O means that it’s absent. An index of 2 returns a
vector that represents parameters 32 through 63, and so on. To query for the presence
of a particular parameter, use the following predicate formula:

[aNote parVector: (parameterTag/32)] & (l<<(parameterTag$32))
In this formula, parameterTag identifies the parameter that you're interested in. Keep
in mind that the parameter bit vectors only indicate the presence of a parameter, not its

value.

See also: — parVectorCount, — isParPresent:

Music Kit Classes: Note 2-113

parVectorCount
— (int)par VectorCount

Returns the number of parameter bit vectors that the Note is using to accommodate all
its parameters identifiers. Normally you only need to know this if you're iterating over
the parameter vectors.
See also: — parVector

part
— part

Returns the Part that contains the Note, or nil if none. By default, a Note isn’t contained
in a Part.

See also: — addToPart:, — removeFromPart

performer

— performer

Returns the Performer that most recently performed the Note. This is provided,
primarily, as part of the implementation of the conductor method.

See also: — conductor

read:
—read:(NXTypedStream *)stream

You never invoke this method directly; to read an archived Note, call the
NXReadObject() C function.

See also: — write:

removeFromPart

— removeFromPart
Removes the Note from its Part. Returns the Part, or nil if none.

See also: —addToPart:, — part

2-114 Chapter 2: Class Specifications

removePar:

— removePar:(int)parameterlag

Removes the parameter identified by parameterTag from the Note; in other words, this
sets the parameter’s value to indicate that the parameter isn’t set. If the parameter was
present, then the Note is returned; if not, nil is returned.

See also: + parName:, — isParPresent:, — setPar:toDouble: (etc)

setDur:
— (double)setDur:(double)value

Sets the Note’s duration to value beats and sets its note type to MK_noteDur. If value
is negative the duration isn’t set, the note type isn’t changed, and MK_NODVAL is
returned (use the function MKIsNoDVal() to check for MK_NODVAL); otherwise
returns value.

See also: — dur, — conductor

setNoteTag:
— setNoteTag:(int)newTag

Sets the Note’s note tag to newTag; if the note type is MK_mute, it’s changed to
MK _noteUpdate. Returns self.

Note tags are used to associate different Notes with each other, thus creating an
identifiable (by the note tag value) “Note stream.” For example, you create a
noteOn/noteOff pair by giving the two Notes identical note tag values. Also, you can
associate any number of noteUpdates with a single noteDur, or with a noteOn/noteOff
pair, through similarly matching note tags. While note tag values are arbitrary, they
should be unique across an entire application; to ensure this, you should never create
noteTag values but through the MKNoteTag() C function.

See also: — noteTag, MKNoteTag()

Music Kit Classes: Note 2-115

setNoteType:
— setNoteType:(MKNoteType)newNoteType

Sets the Note’s note type to newNoteType, one of:

e MK_noteDur; represents an entire musical note.
e MK _noteOn; represents the beginning of a note.
« MK _noteOff; represents the end of a note.

+ MK _noteUpdate; represents the middle of a note.
* MK_mute; makes no sound.

Returns self, or nil if newNoteType isn’t a valid note type.

You should keep in mind that the setDur: method automatically sets a Note’s note type
to MK_noteDur; setNoteTag: changes mutes into noteUpdates.

See also: — noteType, — setNoteTag:, — setDur:
setPar:toDouble:
— setPar:(int)parameterTag toDouble:(double)aDouble

Sets the value of the parameter identified by parameterTag to aDouble, and sets its data
type to MK_double. Returns self.

See also: + parName:, — parType:, — isParPresent:, — parAsDouble:
setPar:toEnvelope:
— setPar:(int)parameterTag toEnvelope:anEnvelope

Sets the value of the parameter identified by parameterTag to anEnvelope, and sets its
data type to MK_envelope. Returns self.

See also: + parName:, — parType:, — isParPresent:, — parAsEnvelope:

setPar:tolnt:

— setPar:(int)parameterTag tolnt:(int)anlnteger

Sets the value of the parameter identified by parameterlag to anlnteger, and sets its
data type to MK_int. Returns self.

See also: + parName:, — parType:, — isParPresent:, — par AsInteger:

2-116 Chapter 2: Class Specifications

setPar:toObject:
— setPar:(int)parameterTag toObject:anObject

Sets the value of the parameter identified by parameterTag to anObject, and sets its data
type to MK_object. Returns self.

While you can use this method to set the value of a parameter to any object, it’s
designed, principally, to allow you to use an instance of one of your own classes as a
parameter value. If you want the object to be written to and read from a scorefile, it
must respond to the messages writeASCIIStream: and read ASCIIStream:. While
response to these messages isn’t a prerequisite for an object to be used as the argument
to this method, if you try to write a Note that contains a parameter that doesn’t respond
to writeASCIIStream:, an error is generated.

If you’re setting the value as an Envelope or WaveTable object, you should use the
setPar:toEnvelope: or setPar:toWaveTable: method, respectively.

See also: + parName:, — parType:, — isParPresent:, — parAsObject:
setPar:toString:
— setPar:(int)parameterTag toString:(char *)aString

Sets the value of the parameter identified by parameterTag to aString, and sets its data
type to MK_string. Returns self.

See also: + parName:, — parType:, — isParPresent:, — par AsString:
setPar:toWaveTable:
— setPar:(int)parameterTag toWaveTable:aWaveTable

Sets the value of the parameter identified by parameterTag to aWaveTable, and sets its
data type to MK_waveTable. Returns self.

See also: + parName:, — parType:, — isParPresent:, — parAsWaveTable:

setTimeTag:
— (double)setTimeTag:(double)newTimeTag

Sets the Note’s time tag to newTimeTag or 0.0, whichever is greater (a time tag can’t be
negative). The old time tag value is returned; a return value of MK_ENDOFTIME
indicates that the time tag hadn’t been set. Time tags are used to sort the Notes within
a Part; if you change the time tag of a Note that’s been added to a Part, the Note is
automatically resorted.

See also: — timeTag, — addToPart:, —sort (Part)

Music Kit Classes: Note 2-117

split::
— split:(id *)aNoteOn :(id *)aNoteOff

This method splits a noteDur into a noteOn/noteOff pair, as described below. The new
Notes are returned by reference in the arguments. The noteDur itself is left unchanged.
If the receiving Note isn’t a noteDur, this does nothing and returns nil, otherwise it
returns self.

The receiving Note’s MK_rel Velocity parameter, if present, is copied into the noteOff.
All other parameters are copied into (or, in the case of object-valued parameters,
referenced by) the noteOn. The noteOn takes the receiving Note’s time tag value; the
noteOff’s time tag is that of the Note plus its duration. If the receiving Note has a note
tag, it’s copied into the noteOn and noteOff; otherwise a new note tag is generated for
them. The new Notes are added to the receiving Note’s Part, if any.

Keep in mind that while this method replicates the noteDur within the noteOn/noteOff
pair, it doesn’t replace the former with the latter. To do this, you must free the noteDur
yourself.

timeTag
— (double)timeTag

Returns the Note’s time tag. If the time tag isn’t set, MK_ENDOFTIME is returned.
Time tag values are used to sort the Notes within a Part.

See also: — setTimeTag:
writeScorefileStream:
— writeScorefileStream:(NXStream *)aStream
Writes the Note, in scorefile format, to the stream aStream. The stream must be open

for writing. You rarely invoke this method yourself; it’s invoked from the scorefile
writing methods defined by Score and ScorefileWriter. Returns self.

write:
— write:(NXTypedStream *)stream
You never invoke this method directly; to archive a Note, call the
NXWriteRootObject() C function. The Note’s parameters, note type, note tag, and
time tag are archived directly. Its Performer and Part are archived through
NXWriteObjectReference().

See also: —read:

2-118 Chapter 2: Class Specifications

NoteFilter

INHERITS FROM Instrument : Object
DECLARED IN musickit.h
CLASS DESCRIPTION

NoteFilter is an abstract class that combines the Note-receiving protocol it inherits from
Instrument with the Note-sending protocol defined by the Performer class. You
interpose a series of NoteFilter objects between a Performer and an Instrument to create
a Note processing pipeline.

Having created a set of NoteSenders and NoteReceivers, a NoteFilter object receives
Notes through its NoteReceivers, modifies them, and then sends them to its
NoteSenders. Each subclass provides a unique system for modifying Notes in its
implementation of realizeNote:fromNoteReceiver:, a subclass responsibility
inherited from Instrument and passed on to the NoteFilter subclasses. When designing
a NoteFilter subclass, you should keep in mind that the responsibility of sending Notes
to the NoteSenders falls to the subclass itself. A NoteFilter subclass implementation of
realizeNote:fromNoteReceiver: should include an invocation of NoteSender’s
sendNote: method (or one of its sister methods; see the NoteSender class description).

INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from Instrument id noteReceivers;
Declared in NoteFilter id noteSenders;
noteSenders Collection of NoteSenders.

METHOD TYPES

Creating and freeing a NoteFilter - copy
- copyFromZone:
— free
—init

Modifying the object — addNoteSender:
— freeNoteSenders
— removeNoteSender:
— removeNoteSenders

Music Kit Classes: NoteFilter 2-119

2-120

Querying the object — isNoteSenderPresent:
— noteSender
— noteSenders
Archiving the object —read:
— write:

INSTANCE METHODS

addNoteSender:
— addNoteSender:aNoteSender
Removes aNoteSender from its present owner (if any) and adds it to the receiving

NoteFilter. If the NoteFilter is in performance, or if aNoteSender is already owned by
the NoteFilter, this does nothing and returns nil; otherwise returns aNoteSender.

Copy

— Copy

Creates and returns a NoteFilter as a copy of the receiving NoteFilter. The new object
contains copies of the receiving NoteFilter’s NoteSenders and NoteReceivers.

copyFromZone:

— copyFromZone:(NXZone *)zone

Same as copy, but uses the specified zone.

free

— free

Frees the NoteFilter and its NoteSenders and NoteReceivers.

freeNoteSenders
— freeNoteSenders

Removes and frees the NoteFilter’s NoteSenders. Returns self.

init

— init

Initializes a new NoteFilter. A subclass implementation should first send [super init].

Chapter 2: Class Specifications

isNoteSenderPresent:
— (BOOL)isNoteSenderPresent:aNoteSender

Returns YES if aNoteSender is one of the NoteFilter’s NoteSenders. Otherwise returns
NO.

noteSender
— noteSender
Returns the NoteFilter’s first NoteSender. This method should only by invoked if the

NoteFilter contains only one NoteSender or if you don’t care which NoteSender you
get.

noteSenders

— noteSenders

Creates and returns a List of the NoteFilter’s NoteSenders. It’s the sender’s
responsibility to free the List.

removeNoteSender:

—removeNoteSender:aNoteSender

Removes aNoteSender from the NoteFilter. If the NoteFilter is in a performance, this
does nothing and returns nil; otherwise it returns the argument.

removeNoteSenders

—removeNoteSenders

Removes all the NoteFilter’s NoteSenders and returns self.

Music Kit Classes: NoteFilter 2-121

2-122

NoteReceiver

INHERITS FROM Object
DECLARED IN musickit.h
CLASS DESCRIPTION

NoteReceiver is an auxiliary class that completes the implementation of Instrument.
Instances of NoteReceiver are owned by Instrument objects to provide the following:

» It’s part of the link between a Performer and an Instrument. NoteReceiver’s
connect: method connects a NoteReceiver to a NoteSender, which is owned by a
Performer in much the same way that a NoteReceiver is owned by an Instrument.
When a NoteReceiver is connected to a NoteSender, their respective owners are
said to be connected. NoteSender defines an equivalent connect: method—it
doesn’t matter which of the two objects is the receiver and which is the argument
when sending a connect: message.

« NoteReceiver’s receiveNote: method defines the mechanism by which an
Instrument obtains Notes. When a NoteReceiver receives the receiveNote:
message, it forwards the argument (a Note object) to its owner by invoking the
Instrument method realizeNote:fromNoteReceiver:. The receiveNote: method
itself is sent when a connected NoteSender receives a sendNote: message from its
owner; you can also send receiveNote: (or one of its five sister methods) directly
to a NoteReceiver from your application. You can toggle a NoteReceiver’s ability
to pass Notes to its owner through the squelch and unsquelch methods; a
NoteReceive won’t send realizeNote:fromNoteReceiver: messages while it’s
squelched.

Unlike NoteSenders, which are generally expected to be created by the Performers that
own them, NoteReceivers can be created either by their owners or by your application.
For example, each SynthInstrument object creates and adds to itself a single
NoteReceiver. ScorefileWriter objects, on the other hand, don’t create any
NoteReceivers; it’s left to your application to create and add them. A NoteReceiver is
created through the new class method and added to an Instrument through the latter’s
addNoteReceiver:.

A NoteReceiver can be owned by only one Instrument at a time; however, it can be
connected to any number of NoteSenders. In addition, two different NoteReceivers can
be connected to the same NoteSender. Thus the connections between Performers and
Instruments can describe an arbitrarily complicated network. To retrieve the
NoteReceivers that are owned by a particular Instrument, you invoke the Instrument’s
noteReceiver or noteReceivers method.

NoteReceivers are also created, owned, and used by Midi objects as part of their
assumption of the role of Instrument.

Music Kit Classes: NoteReceiver 2-123

INSTANCE VARIABLES

Inherited from Object Class isa;
Declared in NoteReceiver id noteSenders;
BOOL isSquelched;
id owner;
noteSenders List of connected NoteSenders.
isSquelched YES if the NoteReceiver is squelched. No by
default.
owner Instrument (or Midi) that owns the NoteReceiver.
METHOD TYPES
Creating a NoteReceiver — copy
— copyFromZone:
— init
— free
The object’s owner — owner
Connecting the object — connect:
— disconnect:
— disconnect
— connections
— connectionCount
— isConnected:
Squelching the object — squelch
— unsquelch
— isSquelched
Receiving Notes — receiveNote:

—receiveNote:atTime:

— receiveNote:withDelay:

— receiveAndFreeNote:

— receive AndFreeNote:atTime:

— receive AndFreeNote:withDelay:

Archiving the object — write:
—read:

2-124 Chapter 2: Class Specifications

INSTANCE METHODS
connect:
— connect:aNoteSender

Connects aNoteSender to the NoteReceiver; if the argument isn’t a NoteSender, the
connection isn’t made. Returns self.

See also: — disconnect:, — isConnected, — connections

connectionCount

— (unsigned int)connectionCount
Returns the number of NoteSenders that are connected to the NoteReceiver.

See also: — connect:, — disconnect:, — isConnected, — connections

connections

— connections

Creates and returns a List of the NoteSenders that are connected to the NoteReceiver.
It’s the sender’s responsibility to free the List.

See also: — connect:, — disconnect:, — isConnected
copy
— copy
Creates and returns an unowned NoteReceiver that’s connected to the same
NoteSenders as the receiver of this message. If the receiving NoteReceiver is

squelched, so, too, shall be the copy.

See also: — copyFromZone:

Music Kit Classes: NoteReceiver 2-125

copyFromZone:

— copyFromZone:(NXZone *)zone
This is the same as copy, but the new object is allocated from zone.

See also: — copy

disconnect

— disconnect

Severs the connections between the NoteReceiver and all the NoteSenders it’s
connected to. Returns self.

See also: — disconnect:, — connect:, — isConnected:, — connections

disconnect:

— disconnect:aNoteSender

Severs the connection between the NoteReceiver and aNoteSender; if the NoteSender
isn’t connected, this does nothing. Returns self.

See also: — disconnect, — connect:, — isConnected:, — connections

free

— free

Severs the connections between the NoteReceiver and all its connected NoteSenders
and then frees the NoteReceiver.

See also: — disconnect
init
— init
Initializes a NoteReceiver that was created through allocFromZone:. Returns self.

isConnected:
— (BOOL)isConnected:aNoteSender

Returns YES if aNoteSender is connected to the NoteReceiver, otherwise returns NO.

See also: — connect, — disconnect, — connections, — connectionCount

2-126 Chapter 2: Class Specifications

isSquelched
— (BOOL)isSquelched

Returns YES if the NoteReceiver is squelched, otherwise returns NO. A squelched
NoteReceiver won'’t invoke its owner’s realizeNote:fromNoteReceiver: method.

See also: — squelch, — unsquelch

owner

— owner

Returns the Instrument (or Midi object) that owns the NoteReceiver.
See also: — addNoteReceiver: (Instrument, Midi)

read:
—read:(NXTypedStream *)stream

Unarchives the NoteReceiver by reading it from stream. You never invoke this method
directly; to read an archived NoteReceiver, call the NXReadObject() C function.

See also: — write:
receiveAndFreeNote:
—receiveAndFreeNote:aNote
Sends the message receiveNote:aNote to self and then frees aNote. Returns self.

See also: — receiveNote:, — receiveAndFreeNote:atTime:,
—receiveAndFreeNote:withDelay:

receiveAndFreeNote:atTime:

—receiveAndFreeNote:aNote atTime:(double)time

Enqueues, with the appropriate Conductor, a request for receiveAndFreeNote:aNote
to be sent to self at time beatsSinceStart, measured in beats from the beginning of the
Conductor’s performance. See receiveNote:atTime: for a description of the
Conductor that’s used. Returns self.

See also: — receiveNote:, — receiveAndFreeNote:,
— receiveAndFreeNote:withDelay:

Music Kit Classes: NoteReceiver 2-127

receiveAndFreeNote:withDelay:
— receiveAndFreeNote:aNote withDelay:(double)delayTime

Enqueues, with the appropriate Conductor, a request for receiveAndFreeNote:aNote
to be sent to self after delayBeats. See receiveNote:atTime: for a description of the
Conductor that’s used. Returns self.

See also: — receiveNote:, — receiveAndFreeNote:, — receiveAndFreeNote:atTime:

receiveNote:

—receiveNote:aNote

Sends the message realizeNote:aNote fromNoteReceiver:self to the NoteReceiver’s
owner. If the NoteReceiver is squelched, the message isn’t sent. This method is
invoked automatically as the NoteReceiver’s connected NoteSenders receive
sendNote: messages; you can also invoke this method directly. Returns self.

See also: — receiveAndFreeNote:, — receiveNote:withDelay:,
— receiveNote:atTime:

receiveNote:atTime:

—receiveNote:aNote atTime:(double)time

Enqueues, with the Conductor object described below, a request for receiveNote:aNote
to be sent to self at time beatsSinceStart, measured in beats from the beginning of the
Conductor’s performance. If beatsSinceStart has already passed, the enqueued
message is sent immediately. Returns self.

The request is enqueued with the object that’s returned by [aNote conductor]. If the
Note was received from a NoteSender, this is the Conductor of the Performer that
originally sent aNote into the performance. If you invoke this method (or any of the
receiveNote: methods that enqueue a message request) directly, or if Midi is the
originator of the Note, then the default Conductor is used.

See also: —receiveNote:, — receiveNote:withDelay:

receiveNote:withDelay:
— receiveNote:aNote withDelay:(double)delayTime

Enqueues, with the appropriate Conductor, a request for receiveNote:aNote to be sent
to self after delayBeats. See receiveNote:atTime: for a description of the Conductor
that’s used. Returns self.

See also: — receiveNote:, — receiveNote:atTime:

2-128 Chapter 2: Class Specifications

squelch
—squelch

Disables the NoteReceiver’s ability to send realizeNote:fromNoteReceiver: messages
to its owner. Returns self.

See also: —isSquelched, — unsquelch

unsquelch

— unsquelch

Enables the NoteReceiver’s ability to send realizeNote:fromNoteReceiver: messages
to its owner, undoing the effect of a previous squelch message. Returns self.

See also: —isSquelched, — squelch
write:
— write:(NXTypedStream *)stream
Archives the NoteReceiver by writing it to stream. The NoteReceiver’s connections
and owner are archived by reference. You never invoke this method directly; to archive

a NoteSender, call the NXWriteRootObject() C function.

See also: — read:

Music Kit Classes: NoteReceiver 2-129

2-130

NoteSender
INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

NoteSender is an auxiliary class that completes the implementation of Performer.
Instances are created and owned by Performer objects, normally when the Performer
itself is initialized. A NoteSender object performs two functions:

« It’s part of the link between a Performer and an Instrument. NoteSender’s connect:
method connects a NoteSender to a NoteReceiver, which is owned by an
Instrument in much the same way that a NoteSender is owned by a Performer.
When a NoteSender is connected to a NoteReceiver, their respective owners are
said to be connected. NoteReceiver defines an equivalent connect: method—it
doesn’t matter which of the two objects is the receiver and which is the argument
when sending a connect: message.

¢ NoteSender’s sendNote: method defines the mechanism by which a Performer
relays a Note to a set of Instruments. When a NoteSender receives a sendNote:
message, it sends receiveNote: to its connected NoteReceivers which, in turn, send
realizeNote:fromNoteReceiver: to their owners (Instrument objects). You can
toggle a NoteSender’s ability to send Notes through the squelch and unsquelch
methods; a NoteSender won’t send receiveNote: messages while it’s squelched.

There’s a fundamental difference between these two tasks in that while you connect
NoteSenders to NoteReceivers from your application, sending Notes is a Performer’s
responsibility: Subclasses of Performer should invoke sendNote: as part of their
implementations of the perform method.

A NoteSender can be owned by only one Performer at a time; however, it can be
connected to any number of NoteReceivers. In addition, two different NoteSenders can
be connected to the same NoteReceiver. Thus the connections between Performers and
Instruments can describe an arbitrarily complicated network. To retrieve the
NoteSenders that are owned by a particular Performer—to connect them to
NoteReceivers, or to squelch and unsquelch them—you invoke the Performer’s
noteSender or noteSenders method.

NoteSenders are also owned and used by NoteFilter and Midi objects. Neither of these

classes inherits from Performer, but they both require the Note-sending mechanism that
NoteSenders provide.

Music Kit Classes: NoteSender 2-131

INSTANCE VARIABLES

Inherited from Object Class isa;
Declared in NoteSender id *noteReceivers;
int connectionCount;

BOOL isSquelched;

id OWnET;
noteReceivers List of connected NoteReceivers.
connectionCount Number of connections.
isSquelched YES if the NoteSender is squelched. NO by

default.
owner Performer (or NoteFilter or Midi) that owns the

NoteSender.

METHOD TYPES
Creating a NoteSender — copy

— copyFromZone:

— init

— free
The object’s owner — owner
Connecting the object — connect:

— disconnect:

— disconnect

— connections

— connectionCount

— isConnected:

Squelching the object — squelch

—unsquelch

— isSquelched
Sending Notes — sendNote:

— sendNote:atTime:

— sendNote:withDelay:

— sendAndFreeNote:

— sendAndFreeNote:atTime:

— sendAndFreeNote:withDelay:

Archiving the object — write:
—read:

2-132 Chapter 2. Class Specifications

INSTANCE METHODS
connect:
— connect:aNoteReceiver

Connects aNoteReceiver to the NoteSender; if the argument isn’t a NoteReceiver, the
connection isn’t made. Returns self.

See also: — disconnect:, — isConnected, — connections

connectienCount

— (unsigned int)connectionCount
Returns the number of NoteReceivers that are connected to the NoteSender.

See also: — connect:, — disconnect:, — isConnected, — connections

connections

— connections

Creates and returns a List of the NoteReceivers that are connected to the NoteSender.
It’s the sender’s responsibility to free the List.

See also: — connect:, — disconnect:, — isConnected
copy
— copy
Creates and returns an unowned NoteSender that’s connected to the same
NoteReceivers as the receiver of this message. If the receiving NoteSender is
squelched, so, too, shall be the copy.
See also: — copyFromZone:
copyFromZone:
— copyFromZone:(NXZone *)zone

This is the same as copy, but the new object is allocated from zone.

See also: — copy

Music Kit Classes: NoteSender 2-133

2-134

disconnect

— disconnect

Severs the connections between the NoteSender and all the NoteReceivers it’s
connected to. Returns self.

See also: — disconnect:, — connect:, — isConnected:, — connections

disconnect:

— disconnect:aNoteReceiver

Severs the connection between the NoteSender and aNoteReceiver; if the NoteReceiver
isn’t connected, does nothing. Returns self.

See also: — disconnect, — connect:, — isConnected:, — connections

free

— free
Severs the connections between the NoteSender and all its connected NoteReceivers,
and then frees the NoteSender. You can’t free a NoteSender that’s in the process of
sending a Note—specifically, an Instrument shouldn’t invoke this method as part of its
realizeNote:fromNoteReceiver: method.
See also: — disconnect

init
— init

Initializes the NoteSender and returns self.

isConnected:
— (BOOL)isConnected:aNoteReceiver

Returns YES if aNoteReceiver is connected to the NoteSender, otherwise returns NO.

See also: — connect, — disconnect, — connections, — connectionCount

isSquelched
— (BOOL)isSquelched

Returns YES if the NoteSender is squelched (its Note-sending ability is disabled),
otherwise returns NO.

See also: — squelch, — unsquelch

Chapter 2: Class Specifications

owner

— owner
Returns the Performer (or NoteFilter or Midi object) that owns the NoteSender.
See also: —addNoteSender: (Performer, NoteFilter, Midi)
read:
—read:(NXTypedStream *)stream

Unarchives the NoteSender by reading it from stream. You never invoke this method
directly; to read an archived NoteSender, call the NXReadObject() C function.

See also: — write:
sendAndFreeNote:
— sendAndFreeNote:aNote
Sends the message sendNote:aNote to self and then frees aNote. Returns self.

See also: — sendNote:, — sendAndFreeNote:atTime:,
— sendAndFreeNote:withDelay:,

sendAndFreeNote:atTime:
— sendAndFreeNote:aNote atTime:(double)beatsSinceStart
Enqueues, with the appropriate Conductor, a request for sendAndFreeNote:aNote to
be sent to self at time beatsSinceStart, measured in beats from the beginning of the
Conductor’s performance. See sendNote:atTime: for a description of the Conductor
that’s used. Returns self.
See also: — sendNote:, — sendAndFreeNote:, — sendAndFreeNote:withDelay:
sendAndFreeNote:withDelay:
— sendAndFreeNote:aNote withDelay:(double)delayBeats
Enqueues, with the appropriate Conductor, a request for sendAndFreeNote:aNote to
be sent to self after delayBeats. See sendNote:atTime: for a description of the

Conductor that’s used. Returns self.

See also: — sendNote:, — sendAndFreeNote:, — sendAndFreeNote:atTime:

Music Kit Classes: NoteSender 2-135

sendNote:
— sendNote:aNote

Sends the message receiveNote:aNote to the NoteReceivers that are connected to the
NoteSender. If the NoteSender is squelched, the messages aren’t sent. Normally, this
method is only invoked by the NoteSender’s owner. Returns self.

See also: — sendAndFreeNote:, — sendNote:withDelay:, — sendNote:atTime:

sendNote:atTime:
— sendNote:aNote atTime:(double)beatsSinceStart

Enqueues, with the Conductor object described below, a request for sendNote:aNote
to be sent to self at time beatsSinceStart, measured in beats from the beginning of the
Conductor’s performance. If beatsSinceStart has already passed, the enqueued
message is sent immediately. Returns self.

The request is enqueued with the object returned by [aNote conductor]. Normally—
if the owner is a Performer—this is the owner’s Conductor. However, if the owner is a
NoteFilter, the request is enqueued with the Conductor of the Performer (or Midi) that
originally sent aNote into the performance (or the defaultConductor if the NoteFilter
itself created the Note).
See also: — sendNote:, — sendNote:withDelay:

sendNote:withDelay:
— sendNote:aNote withDelay:(double)delayBeats
Enqueues, with the appropriate Conductor, a request for sendNote:aNote to be sent to
self after delayBeats. See sendNote:atTime: for a description of the Conductor that’s

used. Returns self.

See also: — sendNote:, — sendNote:atTime:

squelch
— squelch

Disables the NoteSender’s ability to send receiveNote: to its NoteReceivers. Returns
self.

See also: —isSquelched, — unsquelch

2-136 Chapter 2: Class Specifications

unsquelch
— unsquelch

Enables the NoteSender ability to send Notes, undoing the effect of a previous squelch
message. Returns self.

See also: —isSquelched, — squelch

write:
— write:(NXTypedStream *)stream
Archives the NoteSender by writing it to stream. The NoteSender’s connections and
owner are archived by reference. You never invoke this method directly; to archive a

NoteSender, call the NXWriteRootObject() C function.

See also: —read:

Music Kit Classes: NoteSender 2-137

2-138

Orchestra

INHERITS FROM Object
DECLARED IN musickit.h
CLASS DESCRIPTION

The Orchestra class manages DSP resources used in music synthesis. Each instance of
Orchestra represents a single DSP that’s identified by orchIndex, a zero-based integer
index. In the basic NeXT configuration, there’s only one DSP so there’s only one
Orchestra instance.

The methods defined by the Orchestra class let you manage a DSP by allocating
portions of its memory for specific synthesis modules and by setting its processing
characteristics. You can allocate entire SynthPatches or individual UnitGenerator and
SynthData objects through the methods defined here. Keep in mind, however, that
similar methods defined in other classes—specifically, the SynthPatch allocation
methods defined in SynthInstrument, and the UnitGenerator and SynthData allocation
methods defined in SynthPatch—are built upon and designed to usurp those defined by
Orchestra. You need to allocate synthesis objects directly only if you want to assemble
sound-making modules at a low level.

Before you can do anything with an Orchestra—particularly, before you can allocate
synthesis objects—you must create and open it. You create an Orchestra through the
new or newOnDSP: method (you don’t use alloc and init). To open an Orchestra, you
send it the open message. Opening an Orchestra gains access to the DSP that it
represents, allowing you to allocate synthesis objects through methods such as
allocSynthPatch: and allocUnitGenerator:. To start the synthesis running, you send
run to the Orchestra. The stop method halts synthesis and close surrenders control of
the DSP. The state of an Orchestra object with respect to these methods is described as
its device status:

» MK _devOpen. The Orchestra object is open but not running.

» MK _devRunning. The object is open and running.

» MK _devStopped. The object has been running but is now stopped.
MK _devClosed. The object is closed.

Note that these are the same methods and MKDeviceStatus values used to control and
describe the status of a Midi object.

As you start, pause, resume, and stop a performance, you should similarly control your
Orchestra objects, as described by the following table:

Music Kit Classes: Orchestra 2-139

When you send this to Send this to your

the Conductor class Orchestra objects
startPerformance run
pausePerformance stop
resumePerformance run
finishPerformance close

When the Orchestra is running, the allocated UnitGenerators produce a stream of
samples that, by default, are sent to the stereo digital to analog converter (DAC), which
converts the samples into an audio signal. Instead, you can cause the Orchestra to write
the samples to a soundfile by invoking the method setOutputSoundfile: (you must set
the soundfile before sending run to the Orchestra). You can also set the Orchestra to
write a soundfile that contains DSP commands by invoking the
setOutputCommandsFile: method. A DSP commands soundfile is usually much
smaller than the analogous sample data soundfile

Every command that’s sent to the DSP is given a timestamp indicating when the
command should be executed. The manner ir which the DSP regards these timestamps
depends on whether its Orchestra is timed or untimed, as set through the setTimed:
method. In atimed Orchestra, commands are executed at the time indicated by its
timestamp. If the Orchestra is untimed, the DSP ignores the timestamps, executing
commands as soon as it receives them. By default, an Orchestra is timed.

The DSP is a separate real-time processor with its own clock and its own notion of the
current time. Since the DSP can be dedicated to a single task—in this case, generating
sound—its clock is generally more reliable than the main processor, which may be
controlling any number of other tasks. If your application is generating Notes without
user-interaction, then you should set the Music Kit performance to be unclocked,
through the Conductor’s setClocked: method, and the Orchestra to be timed. This
allows the Music Kit to process Notes and send timestamped commands to the DSP as
quickly as possible, relying on the DSP’s clock to synthesize the Notes at the correct
time. However, if your application must respond to user-initiated actions with as little
latency as possible, then the Conductor must be clocked. In this case, you can set the
Orchestra to be untimed. A clocked Conductor and an untimed Orchestra yields the
best possible response time, but at the expense of possible rthythmic irregularity.

If your application responds to user actions but can sustain some latency between an
action and its effect, then you may want to set the Conductor to be clocked and the DSP
to be timed and use the C function MKSetDeltaT() to set your application’s delta time.
Delta time is an imposed latency that allows the Music Kit to run slightly ahead of the
DSP. Any rhythmic irregularities created by the Music Kit’s dependence on the CPU’s
clock are evened out by the utter dependability of the DSP’s clock.

With regard to DSP resources, the Orchestra makes an educated estimate as to how
much of the DSP is needed to synthesize a Note—for various reasons, it can’t know for
sure exactly how much it needs—and will deny allocation requests that exceed this
estimate. Such a denial may result in a smaller number of simultaneously synthesized
voices. You can adjust the Orchestra’s DSP processing estimate, or headroom, by
invoking the setHeadroom: method. This takes an argument between ~1.0 and 1.0; a

2-140 Chapter 2: Class Specifications

negative headroom allows a more liberal estimate of the DSP resources—resulting in
more simultaneous voices—but it runs the risk of causing the DSP to fall out of real
time. Conversely, a positive headroom is more conservative: You have a greater
assurance that the DSP won’t fall out of real time but the number of simultaneous
voices is decreased. The default is a somewhat conservative 0.1. If you’re writing
samples to a soundfile with the DAC disabled, headroom is ignored.

While the speed of the DSP makes real-time synthesis approachable, there’s always a
sound output time delay that’s equal to the size of the buffer used to collect samples
before they’re shovelled to the DAC. To accommodate applications that require the
best possible response time (the time between the initiation of a sound and its actual
broadcast from the DAC), a smaller sample output buffer can be requested by sending
the setFastResponse: YES message to an Orchestra. However, the more frequent
attention demanded by the smaller buffer will detract from synthesis computation and,
again, fewer simultaneous voices may result. You can also improve response time by
using the high sampling rate (44100 samples per second) although this, too, attenuates
the synthesis power of the DSP. By default, the Orchestra’s sampling rate is 22050
samples per second.

To avoid creating duplicate synthesis modules on the DSP, each instance of Orchestra
maintains a shared object table. Objects on the table are SynthPatches, SynthDatas, and
UnitGenerators and are indexed by some other object that represents the shared object.
For example, the OscgafUG UnitGenerator (a family of oscillators) lets you specify its
waveform-generating wave table as a Partials object (you can also set it as a Samples
object; for the purposes of this example we consider only the Partials case). When its
wave table is set through the setTable:length: method, the oscillator allocates a
SynthData object from the Orchestra to represent the DSP memory that will hold the
waveform data computed from the Partials. It also places the SynthData on the shared
object table using the Partials as an index by sending the message

[Orchestra installSharedSynthData:theSynthData for:thePartials];

If another oscillator’s wave table is set as the same Partials object, the already allocated
SynthData can be returned by sending the message

id aSynthData = [Orchestra sharedObjectFor:thePartials];

The method installSharedObject:for: is provided for installing SynthPatches and
UnitGenerators.

Music Kit Classes: Orchestra 2-141

INSTANCE VARIABLES

Inherited from Object Class isa;
Declared in Orchestra double computeTime;
double samplingRate;
id stack;
char *outputSoundfile;
char *outputCommandsFile;
id xZero;
id yZero;
id xSink;
id ySink;
id sineROM,;
id muLawROM;
MKDeviceStatus deviceStatus;
unsigned short orchlndex;
BOOL isTimed;
BOOL useDSP;
BOOL soundOut;
BOOL SSISoundOut;
BOOL isLoopOftChip;
BOOL fastResponse;
double localDeltaT;
short onChipPatchPoints;
computeTime Time in seconds to compute one sample.
samplingRate Sampling rate.
stack List of UnitGenerators in order as they appear in
DSP memory.
outputSoundfile Soundfile name to which output samples are
written.
outputCommandsFile Soundfile name to which DSP commands are
written.
xZero Special x memory patchpoint that always holds 0.
yZero Special y memory patchpoint that always holds 0.
xSink Special x memory patchpoint that’s never read.
ySink Special y memory patchpoint that’s never read.
sineROM Special read-only SynthData that represents the
sine ROM.

2-142 Chapter 2: Class Specifications

muLawROM

deviceStatus
orchlndex
isTimed
useDSP
soundOut
SSISoundOut

isLoopOffChip

fastResponse
localDeltaT

onChipPatchPoints

METHOD TYPES

Creating and freeing an Orchestra

Modifying the object

Special read-only SynthData that represents the
mu-law ROM.

The object’s status.

Index to the DSP that’s managed by this instance.

YES if DSP commands are timed.

YES if running on a DSP.

YES if sound is being sent to the DAC.
YES if sound is being sent to the DSP port.

YES if the orchestra loop is running partially
off-chip.

YES if response latency should be minimized.
Offset in seconds added to output timestamps.

Number of on-chip patchpoints.

— free
+ free
+ new
+ newOnDSP:

+ flushTimedMessages
— setOnChipMemoryConfigDebug:patchPoints:
— setOffChipMemoryConfigX Arg:yArg:
— setSamplingRate:

+ setSamplingRate:

— sharedObjectFor:

— trace:msg:

Music Kit Classes: Orchestra

2-143

Querying the object + DSPCount
— computeTime
— deviceStatus
— fastResponse
— headroom
— index
— isTimed
— localDeltaT
+ nthOrchestra:
— outputSoundfile
— outputCommandsFile
— simulatorFile
— samplingRate
— peekMemoryResources:
— segmentName:
— soundOut

Adjusting DSP computation and timing
— beginAtomicSection
— endAtomicSection
+ setFastResponse:
— setFastResponse:
+ setHeadroom:
— setHeadroom:
+ setLocalDeltaT:
— setLocalDeltaT:
+ setTimed:
— setTimed:

Setting the output destination — setOutputSoundfile:
— setOutputCommandsFile:
— setSimulatorFile:
— setSoundQut:

Opening and running the DSP — abort
+ abort
— close
+ close
— flushTimedMessages
—open
+ open
—run
+ run
+ stop
— stop

2-144 Chapter 2: Class Specifications

Allocating synthesis objects — allocPatchpoint:
+ allocPatchpoint:
— allocSynthData:length:
+ allocSynthData:length:
— allocSynthPatch:
+ allocSynthPatch:
— allocSynthPatch:patchTemplate:
+ allocSynthPatch:patchTemplate:
— allocUnitGenerator:
+ allocUnitGenerator:
— allocUnitGenerator:after:
— allocUnitGenerator:before:
— allocUnitGenerator:between::
— dealloc:
+ dealloc:
— muLawROM
— segmentSink:
— segmentZero:
— sineEROM

Accessing the shared data table — installSharedObject:for:
— installSharedSynthDataWithSegment:for:
— installSharedSynthDataWithSegment
AndLength:for:
— sharedObjectFor:segment:
— sharedObjectFor:segment:length:

CLASS METHODS
DSPCount
+ (unsigned short)DSPCount

Returns the number of DSPs on your computer.

abort

+ abort
Sends abort to each of the Orchestra instances and sets each to MK _devClosed. If any

of the Orchestras responds to the abort message by returning nil, so, too, does this
method return nil. Otherwise returns the receiver.

allocPatchpoint:
+ allocPatchpoint:(MKOrchMemSegment)segment

Allocates a patchpoint in segment segment. Returns the patchpoint (a SynthData
object), or nil if the object couldn’t be allocated.

Music Kit Classes: Orchestra 2-145

allocSynthData:length:
+ allocSynthData:(MKOrchMemSegment)segment length: (unsigned)size

Allocates a SynthData object. The allocation is on the first Orchestra that can
accommodate size words in segment segment. Returns the SynthData, or nil if the
object couldn’t be allocated.

allocSynthPatch:

+ allocSynthPatch:aSynthPatchClass

This is the same as allocSynthPatch:patchTemplate: but uses the default template.
allocSynthPatch:patchTemplate:

+ allocSynthPatch:aSynthPatchClass patchTemplate:p

Allocates a SynthPatch with a PatchTemplate of p on the first Orchestra with sufficient
resources. Returns the SynthPatch or nil if it couldn’t be allocated.

allocUnitGenerator:

+ allocUnitGenerator:classObj

Allocates a UnitGenerator of class classObj. The object is allocated on the first
Orchestra that can accomodate it. Returns the UnitGenerator, or nil if the object
couldn’t be allocated.

close
+ close
Sends close to each of the Orchestra instances and sets each to MK_devClosed. If any

of the Orchestras responds to the close message by returning nil, so, too, does this
method return nil. Otherwise returns self.

dealloc:

+ dealloc:aSynthResource

Deallocates the argument, which must be a previously allocated SynthPatch,
UnitGenerator, or SynthData, by sending it the dealloc message.

flushTimedMessages
+ flushTimedMessages

Flushes all currently buffered DSP commands by invoking the flushTimedMessages
instance method for each Orchestra.

2-146 Chapter 2: Class Specifications

free
+ free

Frees all the existing Orchestra instances.

new

+ new

If an Orchestra object exists for the default DSP, returns that object. Otherwise, creates
and initializes a new Orchestra for the default DSP.

newOnDSP:
+ newOnDSP:(unsigned short)index

Creates and returns an Orchestra instance for the index’th DSP. If an Orchestra object
already exists for the specified DSP, the existing object is returned. Returns nll if index
is out of bounds or if the index’th DSP isn’t available.

nthOrchestra:
+ nthOrchestra:(unsigned short)index

Returns the Orchestra of the index’th DSP. If index is out of bounds, or if an Orchestra
hasn’t been created for the specified DSP, nil is returned.

open
+ open

Sends open to each of the Orchestra instances and sets each to MK_devOpen. If any
of the Orchestras responds to the open message by returning nil, so, too, does this
method return nil. Otherwise returns self.

run
+ run
Sends run to each of the Orchestra instances and sets each to MK_devRunning. If any

of the Orchestras responds to the run message by returning nil, so, too, does this
method return nil. Otherwise returns self.

setFastResponse:
+ setFastResponse:(BOOL)yesOrNo

Sends setFastResponse:yesOrNo to all existing Orchestra objects and returns self.
This also sets the default used by subsequently created Orchestras.

Music Kit Classes: Orchestra 2-147

2-148

setHeadroom:
+ setHeadroom:(double)headroom

Sets the headroom of all Orchestra instances to sheadroom. Returns self.

setLocalDeltaT:
+ setLocalDeltaT:(double)val

Sets the local delta time for all Orchestras and changes the default, which is otherwise
0.0.

setSamplingRate:
+ setSamplingRate:(double)newSRate

Sets the sampling rate of all Orchestra instances by sending
setSamplingRate:newSRate to all closed Orhestras. This method also changes the
default sampling rate; when a new Orchestra is subsequently created, it also gets set to
newSRate. Returns self.

setTimed:
+ setTimed:(BOOL)areOrchsTimed

Sends setTimed:areOrchsTimed to each Orchestra instance. If areOrchsTimedis YES,
the DSP processes the commands that it receives at the times specified by the
commands’ timestamps. If it’s NO, DSP commands are processed as quickly as
possible. By default, an Orchestra is timed; this method sets the default to
areOrchsTimed.

stop
+ stop
Sends stop to each of the Orchestra instances and sets each to MK_devStopped. If any

of the Orchestras responds to the run message by returning nil, so, too, does this
method return nil. Otherwise returns self.

INSTANCE METHODS

abort
— abort

This is the same as close, except it doesn’t wait for enqueued DSP commands to be
executed. Returns nil if an error occurs, otherwise returns self.

Chapter 2: Class Specifications

allocPatchpoint:
— allocPatchpoint: MKOrchMemSegment)segment

Allocates and returns a SynthData to be used as a patchpoint in the specified segment
(MK_xPatch or MK_yPatch). Returns nil if an illegal segment is requested.

allocSynthData:length:
— allocSynthData:(MKOrchMemSegment)segment length: (unsigned)size
Allocates and returns a new SynthData object with the specified length, or nil if the

Orchestra doesn’t have sufficient resources, if size is 0, or if an illegal segment is
requested. segment should be MK_xData or MK_yData.

allocSynthPatch:

— allocSynthPatch:aSynthPatchClass

Same as allocSynthPatch:patchTemplate: but uses the default template.
allocSynthPatch:patchTemplate:

— allocSynthPatch:aSynthPatchClass patchTemplate:p

Allocates and returns a SynthPatch for PatchTemplate p. The Orchestra first tries to

find an idle SynthPatch; failing that, it creates and returns a new one. If a new one can’t
be built, this method returns nil.

allocUnitGenerator:
— allocUnitGenerator:class

Allocates and returns a UnitGenerator of the specified class, creating a new one if
necessary.

allocUnitGenerator:after:
— allocUnitGenerator:class after:aUnitGeneratorInstance

Allocates and returns a UnitGenerator of the specified class. The newly allocated
object will execute after aUnitGeneratorInstance.

allocUnitGenerator:before:

— allocUnitGenerator:class before:aUnitGeneratorlnstance

Allocates and returns a UnitGenerator of the specified class. The newly allocated
object will execute before aUnitGeneratorInstance.

Music Kit Classes: Orchestra 2-149

2-150

allocUnitGenerator:between::

— allocUnitGenerator:class
between:aUnitGeneratorInstance
canotherUnitGeneratorlnstance

Allocates and returns a UnitGenerator of the specified class. The newly allocated
object will execute after aUnitGeneratorInstance and before anotherUnitGenerator.

beginAtomicSection

— beginAtomicSection

Marks the beginning of a section of DSP commands that are sent as a unit; this method
should be balanced by endAtomicSection. Returns self. You should use this method
when you are sending a block of DSP commands that, if broken up, would leave the
DSP in an inconsistent state. Atomic sections are recursive: If you send
beginAtomicSection twice, you must send endAtomicSection twice.

close
— close

Severs communication with the DSP, allowing other processes to claim it. Before
closing, all enqueued DSP commands are executed. The SynthPatch-allocated
UnitGenerators and SynthInstrument-allocated SynthPatches are freed. All
SynthPatches must be idle and non-SynthPatch-allocated UnitGenerators must be
deallocated before sending this message. Returns nil if an error occurs, otherwise
returns self.

computeTime

— (double)computeTime

Returns the compute time estimate currently used by the Orchestra, in
seconds-per-sample.

dealloc:

— dealloc:aSynthResource

Deallocates aSynthResource by sending it the dealloc message. aSynthResource may
be a UnitGenerator, a SynthData, or a SynthPatch.

Chapter 2: Class Specifications

deviceStatus
— (MKDeviceStatus)deviceStatus

Returns the Orchestra status, one of

+ MK _devClosed

*+ MK_devOpen

* MK_devRunning
+ MK_devStopped

The Orchestra states are explained in the class description, above.

endAtomicSection
— endAtomicSection

Marks the end of a section of DSP commands that are sent as a unit, as begun by
beginAtomicSection. Returns self.

fastResponse
— (BOOL)fastResponse

Returns YES if the Orchestra is using small sound-out buffers to minimize response
latency. Otherwise returns NO.

flushTimedMessages
— flushTimedMessages

Sends buffered DSP commands to the DSP. This is usually done for you by the
Conductor; however, if your application sends messages directly to a SynthPatch or
UnitGenerator without the assistance of a Conductor, you must invoke this method
yourself (after sending the synthesis messages). Returns self.

free

— free

Frees the Orchestra and its UnitGenerators, clears all SynthPatch allocation lists, and
releases the DSP. All SynthPatches must be idle and non-SynthPatch-allocated
UnitGenerators must be deallocated before sending this message. Returns nil if an
error occurs, otherwise returns self. :

headroom

— (double)headroom

Returns the Orchestra’s headroom, as set through the setHeadroom: method.
Headroom should be a value between —.0 and 1.0. The default is 0.1.

Music Kit Classes: Orchestra 2-151

index

— (unsigned short)index

Returns the (zero-based) index of the DSP associated with the Orchestra.

installSharedObject:for:
— installSharedObject:aSynthObj for:aKeyObj

Places aSynthObj on the shared object table and sets its reference count to 1. aKeyObj
is used to index the shared object. Does nothing and returns nil if the aSynthObj is
already present in the table. Also returns nil if the Orchestra isn’t open. Otherwise,
returns self.

This method differs from installShared ObjectWithSegmentAndLength:for: in that
the length and segment are wild cards.

installSharedSynthDataWithSegment:for:
— installSharedSynthDataWithSegment:aSynthDataObj for:aKeyObj

Places aSynthDataObj on the shared object table in the segment specified by
aSynthDataObj and sets its reference count to 1. Does nothing and returns nil if the
aSynthObj is already present in the table. Also returns nil if the Orchestra isn’t open.
Otherwise, returns self.

This method differs from installSharedObjectWithSegmentAndLength:for: in that
the length is a wild card.

installSharedSynthDataWithSegmentAndLength:for:
— installSharedSynthDataWithSegmentAndLength:aSynthDataObj for:aKeyObj
Places aSynthDataObj on the shared object table in the segment of aSynthDataObj with
the specified length and sets its reference count to 1. aKeyObj is used to index the

shared object. Does nothing and returns nil if the aSynthDataObj is already present in
the table. Also returns nil if the Orchestra isn’t open. Otherwise, returns self.

isTimed
— (BOOL)isTimed

Returns YES if the Orchestra is timed, NO if it’s untimed.

localDeltaT
— (double)localDeltaT

Returns the value set through setLoocalDeltaT:.

2-152 Chapter 2: Class Specifications

muLawROM
— muLawROM

Returns a SynthData object representing the MuLawROM. You should never
deallocate this object.

open
— open

Opens the Orchestra’s DSP and sets the Orchestra’s status to MK_devOpen. Returns
nil if the DSP can’t be opened, otherwise returns self.

outputCommandsFile

— (char *)outputCommandsFile

Returns a pointer to the name of the Orchestra’s DSP commands format soundfile, or
NULL if none.

outputSoundfile
— (char *)outputSoundfile

Returns a pointer to the name of the Orchestra’s output soundfile, or NULL if none.

peekMemoryResources:
— (MKOrchMemStruct *)peekMemoryResources:(MKOrchMemStruct *)peek

Returns the available resources in peek, which must be a pointer to a valid
MKOrchMemStuct. The returned value is the available memory for each segment;
however, xData, yData and pSubr compete for the same memory. You should interpret
the returned value with appropriate caution.

run
—run
Starts the clock on the Orchestra’s DSP, thus allowing the processor to begin executing
commands, and sets the Orchestra’s status to MK_devRunning. This opens the DSP if

it isn’t already open. Returns nil if the DSP couldn’t be opened or run, otherwise
returns self.

samplingRate
— (double)samplingRate

Returns the Orchestra’s sampling rate. The default is 22050.0.

Music Kit Classes: Orchestra 2-153

segmentName:
— (char *)segmentName:(int)whichSegment

Returns a pointer to the name of the specified MKOrchMemSegment.

segmentSink:
— segmentSink:(MKOrchMemSegment)segment

Returns a special pre-allocated patchpoint (a SynthData) in the specified segment from
which, by convention, data is never read. It’s commonly used as a place to send the
output of idle UnitGenerators. The patchpoint shouldn’t be deallocated. The argument
must be either MK_xPatch or MK_yPatch.

segmentZero:
— segmentZero:(MKOrchMemSegment)segment

Returns a special pre-allocated patchpoint (a SynthData) in the specified segment that
always holds 0 and to which, by convention, nothing is ever written. The patchpoint
shouldn’t be deallocated. The argument must be either MK _xPatch or MK _yPatch.

setFastResponse:
— setFastResponse:(BOOL)yesOrNo

Sets the size of the sound output buffer; two sizes are possible. If yesOrNo is YES, the
smaller size is used, thereby improving response time but somewhat decreasing the
DSP’s synthesis power. If it’s NO, the larger buffer is used. By default, an Orchestra
uses the larger buffer. Returns self.

setHeadroom:
— setHeadroom:(double)headroom
Sets the Orchestra’s computation headroom, adjusting the tradeoff between processing
power and reliability. The argument should be in the range -.0 to 1.0. As you increase
an Orchestra’s headroom, the risk of falling out of real time decreases, but synthesis
power is also weakened. The default, 0.1, is a conservative estimate and can be

decreased in many cases without heightening the risk of falling out of real time.

The effective sampling period—the amount of time the Orchestra thinks the DSP has
to produce a sample—is based on the formula

(1.0/samplingRate) * (1.0 — headroom).

Returns self.

2-154 Chapter 2: Class Specifications

setLocalDeltaT:
— setLocalDeltaT:(double)val

Sets the offset, in seconds, that’s added to the timestamps of commands sent to the
Orchestra’s DSP. The offset is added to the delta time that’s set with MKSetDeltaT().
This has no effect if the receiver isn’t timed. Returns self.

setOffChipMemoryConfigXArg:yArg:
— setOffChipMemoryConfigX Arg:(float)xPercentage yArg:(float)yPercentage

Reserves percentages of off-chip memory for X and Y memory arguments. The
arguments must be between 0.0 and 1.0. An argument of 0.0 causes the default
percentage to be used for that segment. If xPercentage + yPercentage is greater than
1.0, the settings are ignored and the method returns nil. The Orchestra must be closed
when you invoke this method: Returns nil if it’s open, otherwise returns self.

setOnChipMemoryConfigDebug:patchPoints:
— setOnChipMemoryConfigDebug:(BOOL)debuglt patchPoints:(short)count

Sets configuration of on-chip memory. If debugltis YES, a partition is reserved for the
DSP debugger; count is the number of on-chip patchpoint locations that are reserved.

By default, the debugger isn’t used and 11 patchpoints are reserved. If count is 0, the
default is used. By implication, this also sets the number of UnitGenerator arguments
that can be set in L memory: As more patchpoints are requested, fewer UnitGenerator
arguments are possible. Attempts to set the patchpoint count, such that no room is left
for L arguments, are ignored. Returns self, or nil if the configuration is unsuccessful.

setOutputCommandsFile:
— setOutputCommandskFile:(char *)fileName

Sets the DSP commands format soundfile to which DSP commands are written. The

file can be played as a soundfile using any of the standard soundfile-playback functions,
utilities, or applications. The Orchestra must be closed when you invoke this method:

Returns nil if it’s open, otherwise returns self.

Writing samples to a commands file (through setQutputCommandsFile:), a soundfile

(through setOutputSoundfile:), a simulator file (through setSimulatorFile:), and to
the DAC (through setSoundQOut:) are mutually exclusive operations.

setOutputSoundfile:
— setOutputSoundfile:(char *)fileName

Sets the soundfile to which sound samples are written. The Orchestra must be closed
when you invoke this method: Returns nil if it’s open, otherwise returns self.

Music Kit Classes: Orchestra 2-155

2-156

Writing samples to a commands file (through setOutputCommandsFile:), a soundfile
(through setOutputSoundfile:), a simulator file (through setSimulatorFile:), and to
the DAC (through setSoundQOut:) are mutually exclusive operations.

setSamplingRate:
— setSamplingRate:(double)newSRate

Sets the Orchestra’s sampling rate to newSRate, taken as samples per second. The
Orchestra must be closed when you invoke this method: Returns nil if it’s open,
otherwise returns self.

’ setSimulatorFile:

- setSimulatorFile:(char *)fileName

Sets the name of a file to which simulator output is sent. The file is in a format that can
be passed directly to the Motorola Simulator. The Orchestra must be closed when you
invoke this method: Returns nil if it’s open, otherwise returns self.

Writing samples to a commands file (through setOutputCommandsFile:), a soundfile
(through setOutputSoundfile:), a simulator file (through setSimulatorFile:), and to
the DAC (through setSoundQOut:) are mutually exclusive operations.

setSoundOut:
— setSoundOut:(BOOL)yesOrNo

Sets whether the Orchestra sends its sound signal to the DAC, as yesOrNo is YES or
NO. All Orchestras send to the DAC by default. The Orchestra must be closed when
you invoke this method: Returns nil if it’s open, otherwise returns self.

Writing samples to a commands file (through setQutputCommandsFile:), a soundfile
(through setOutputSoundfile:), a simulator file (through setSimulatorFile:), and to
the DAC (through setSoundQut:) are mutually exclusive operations.

setTimed:
— setTimed:(BOOL)isOrchTimed

If isOrchTimed is YES, the Orchestra’s DSP executes the commands it receives

according to their timestamps. If it’s NO, the DSP ignores the timestamps and
processes the commands immediately. By default, an Orchestra is timed.

sharedObjectFor:
— sharedObjectFor:aKeyObj

Returns, from the Orchestra’s shared object table, the SynthData, UnitGenerator, or
SynthPatch object that’s indexed by aKeyObj. If the object is found, aKeyObj’s

Chapter 2. Class Specifications

reference count is incremented. If it isn’t found, or if the Orchestra isn’t open, returns
nil.

sharedObjectFor:segment:
— sharedObjectFor:aKeyObj segment:(MKOrchMemSegment)whichSegment

Returns, from the Orchestra’s shared data table, the SynthData, UnitGenerator, or
SynthPatch object that’s indexed by aKeyObj. The object must be allocated in the
specifed segment. If the object is found, aKeyObj’s reference count is incremented. If
it isn’t found, or if the Orchestra isn’t open, returns nil.

sharedObjectFor:segment:length:

— sharedObjectFor:aKeyObj
segment:(MKOrchMemSegment)whichSegment
length:(int)/ength

Returns, from the Orchestra’s shared data table, the SynthData, UnitGenerator, or
SynthPatch object that’s indexed by aKeyObj. The object must be allocated in the
specifed segment and have a length of length. If the object is found, aKeyObj’s

reference count is incremented. If it isn’t found, or if the Orchestra isn’t open, returns
nil.

simulatorFile
— (char *)simulatorFile

Returns a pointer to the name of the Orchestra's simulator file, or NULL if none.

sineROM
— sineROM

Returns a SynthData object representing the SineEROM. You should never deallocate
this object.

stop
— stop

Stops the clock on the Orchestra’s DSP, thus halting execution of commands, and sets

the Orchestra’s status to MK_devStopped. This opens the DSP if it isn’t already open.
Returns nil if an error occurs, otherwise returns self.

Music Kit Classes: Orchestra 2-157

trace:msg:
— trace:(int)typeOflnfo msg:(char *)fmiu,...

Used to print debugging information. The arguments to the msg: keyword are like
those to printf(). If the typeOfInfo trace is set, prints to standard error.

2-158 Chapter 2: Class Specifications

Part
INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A Part is a sorted collection of Notes that can be edited and performed. Parts are
typically grouped together in a Score.

A Note can belong to only one Part at a time, and a Part to only one Score. When you
add a Note to a Part, it’s automatically removed from its old Part. Similarly, adding a
Part to a Score removes it from its previous Score.

You can add Notes to a Part either by invoking one of Part’s addNote: methods, or by
“recording” them with a PartRecorder, a type of Instrument that realizes Notes by
adding copies of them to a specified Part. A Part is added to a Score through Part’s
addToScore: method (or the equivalent Score method addPart:).

Within a Part, Notes are ordered by their time tag values, lowest to highest. To move a
Note within a Part, you simply change the Note’s time tag (through Note’s
setTimeTag: method). For efficiency, a Part sorts itself only when its Notes are
retrieved or when a Note is moved within the Part (or removed altogether). In other
words, adding a Note to a Part won’t cause the Part to sort itself; but keep in mind that
since adding a Note to a Part automatically removes it from its current Part, the act will
cause the moved-from Part to sort itself. You can force a Part to sort itself by sending
it a sort message.

A Part can be a source of Notes in a performance through association with a
PartPerformer. During a performance, the PartPerformer reads the Notes in the Part,
performing them in order. While you shouldn’t free a Part or any of its Notes while an
associated PartPerformer is active, you can add Notes to and remove Notes from the
Part at any time without affecting the PartPerformer’s performance.

To each Part you can give an info Note, a sort of header for the Part that can contain any
amount and type of information. Info Notes are typically used to describe a
performance setup; for example, an info Note might contain, as a parameter, the name
of the SynthPatch subclass on which the Notes in the Part are meant to be synthesized.
Keep in mind that a Part’s info Note, like any other Note, must be retrieved and its
parameters applied by some other object (or your application) for it to have an effect.
A few parameters defined by the Music Kit are designed specifically to be used in a
Part’s info Note. These are listed in the description of the setInfo: method, below. The
info Note is stored separately from the Notes in the body of the Part; most of the
Note-accessing methods, such as empty, nth:, and next:, don’t apply to the info Note.
The exceptions—the methods that do affect the info Note—are so noted in their
descriptions below.

Parts are commonly given string name identifiers, through the MKNameObject() C
function. The most important use of a Part’s name is to identify the Part in a scorefile.

Music Kit Classes: Part 2-159

INSTANCE VARIABLES
Inherited from Object Class isa;

Declared in Part id score;
id notes;
id info;
int noteCount;
BOOL isSorted;

score The Score the Part is a member of.
notes The Part’s List of Notes.

info The Part’s info Note.

noteCount Number of Notes in the Part.

isSorted YES if the Part is currently sorted.

METHOD TYPES

Creating and freeing a Part — copy
— copyFromZone:
— init
_—free
— freeSelfOnly

Storing the object — addToScore:
— score
— removeFromScore
—read:
— write:
— awake

Adding Notes — addNote:
— addNoteCopy:
— addNotes:timeShift:
— addNoteCopies:timeShift:
— noteCount
— setInfo:

Removing Notes —removeNote:
— removeNotes:
— empty
— isEmpty
— freeNotes

2-160 Chapter 2: Class Specifications

Retrieving Notes — notes
— notesNoCopy
— atTime:
— atTime:nth:
— atOrAfterTime:
— atOrAfterTime:nth:
— firstTimeTag:lastTimeTag:
—nth:
— next:
— containsNote:
— info
Manipulating and Sorting Notes — combineNotes
— splitNotes
— shiftTime:

— sort
—isSorted

INSTANCE METHODS

addNote:
— addNote:aNote

Moves aNote from its present Part to the receiving Part. Returns aNote’s old Part, or
nil if none.

See also: —addNoteCopy:, — addNotes:timeShift:, — removeNote:

addNoteCopy:
— addNoteCopy:aNote
Adds a copy of aNote to the Part. Returns the new Note.
See also: — addNote:, — addNoteCopies:timeShift:, — removeNote:
addNotes:timeShift:
— addNotes:aNoteList timeShift:(double)shift
Moves each Note in aNoteList from its present Part to the receiving Part, adding shift
to each Note’s time tag in the process. The List argument is typically generated through
Part’s notes or firstTimeTag:lastTimeTag: method. In this way, all or a portion of one

Part can be merged into another. Returns self, or nil if aNoteList is nil.

See also: — addNoteCopies:timeShift:, — shiftTime:

Music Kit Classes: Part 2-161

addNoteCopies:timeShift:
— addNoteCopies:aNoteList timeShift:(double)shift
Copies each Note in aNoteList into the Part, adding shift to each new Note’s time tag
in the process (the Notes in the List are unaffec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>