
Manual

PMATE

Lifeboat Associates
1651 Third Avenue
New York, N.Y. 10028
Tel: (212) 860-0300
TWX: 710-581-2524 (LBSOFT NYK)
Telex: 640693 (LBSOFT NYK)

PMATE rev 3.2

User Manual

and

Interface Guide

Written by
Michael Aronson

Aox Incorporated

Copyright© 1982 by Phoenix Software Associates Ltd.

Preface
HOW TO USE THIS MANUAL

Documenting PMATE presents problems. PMATE is useful at many levels, by
persons of vastly differing computer skills. The documentation must then also be
geared to a wide audience. In this uncoventionally organized manual, some ideas
and commands are presented repeatedly in chapter after chapter -- each time, at a
different level. Depending upon your experience and aptitude, you need only read
the appropriate chapters.

Chapter I is an introduction for beginners. It is intended to be a complete
course in the most basic use of PMATE for those with little or no computer
background.

Chapter 11 starts in with basic concepts to lay the foundation for a more
thorough understanding of PMATE. You can certainly start here if you have
experience with other text editors.

Chapter 111 explains some more advanced concepts and commands.

Chapter IV gives the complete command set. You can start here if you really
know what you're doing.

Chapter V provides macro examples. After you are well aquainted with PMATE,
work through these examples. They show how macros can greatly expand PMATE's
built-in capabilities.

Chapter VI provides configuration information. Read this chapter to get PMATE
up and running on your system.

Chapter VII provides further configuration information for those who would like
to interface with PMATE in assembly language.

Appendix A is a summary of PMATE commands -- a useful reference.

Chapter I
INTRODUCTION FOR BEGINNERS

TEXT EDITING, WORD PROCESSING, OUTPUT PROCESSING •••

A 'text editor' is ~ computer program which helps people to create text, and
modify it. Text editors are written by programmers, and programmers write mostly
programs. Therefore, text editors were traditionally geared toward entering and
correcting computer programs. In particular, a line of computer code is always one
line. You might wish to get rid of it, modify it, move it somewhere else, or make a
copy of it, but it is still a line. Writing the English language is different. If you
want to insert a few words in a line, the end of that line needs to wrap around to
the beginning of the next, and the whole paragraph needs rearranging. When
programmers had satisfied their own needs, they attacked this sort of problem with
'word-processing' software and hardware, ranging in complexity from typewriters a
bit smarter than usual, to complete computing systems with CRT's (TV displays}
instead of paper to display the typed material, disks for storing the text, and fast
printers for quick, error-free type out.

Typically, a 'text editor' program was meant for use on a teletype, or some
other type of 'slow' terminal. It would be intolerable to wait while the terminal
prints out all your text every time you make the slightest change in it. So you work
blind. Sections of text are typed out only when you request. To make up for the
inconvenience, powerful text editing commands can usually be constructed that can
totally rearrange all your text with a few keystrokes. These little command
'programs' are dearly loved by computer nuts.

On the other hand, word processing software usually shows you exactly what
your text is looking at any instant by showing it to you on a video display. As you
change the text, the display changes instantly. The penalty you pay to achieve this
desirable situation is that the word processor usually allows you to make only
simple-minded changes in the text.

A 'text output processor' is an attempt to make a 'text editor' compatible with
the real world of pages, paragraphs, underlines, and such. You use your text editor
to enter text, including a bunch of control words. These words might indicate that
it's time to start a new page, indent that margin 20 spaces, or leave 5 blank lines.
Then you run the output of the text editor through your text output processor,
which types it out on your printer, nicely formatted, maybe even with straight right
hand margins! Text output processors give you wonderful control over the form of
your final document, but have the disadvantage that the required input -- the part
created and updated by your text editor -- bears little resemblance to the final
output •

••• AND PMATE

PMATE is an attempt to combine some of the best features of all three.

THE EDITING PROCESS

Text is saved on the disk in the form of 'files'. Each file has a name. In CP/M,
CP/M-86, MS-DOS, or PC-DOS (from now on, your operating system will just be
referred to as 'the DOS'} a name consists of 8 or less characters -- 'JOHN',

1-2 PMATE USER MANUAL AND INTERFACE GUIDE

'CHAPTER1', 'PMATE', '+&',or 'GERTRUDE' are all fine possible names for a file. A
filename can optionally have an 'extension'. This is up to 3 characters following a
'.' at the end of the name. So 'BOOK.ONE' and 'BOOK.TWO' are different files,
possibly representing two different chapters in a book. Certain extensions (such as
'ASM','COM', and 'HEX') have meanings to the DOS system programs.

PMATE can be used to create a new file, or to modify (change, add to, look at,
or otherwise work on) an old one. Let's start by creating a new one. With DOS in
control (there should be an 'A>' or a 'B>' on the console), type the command:

PMATE FILE

where 'FILE' is the name of the file you wish to create (which may even be 'FILE').
After a few seconds, PMATE is loaded into memory, and the screen becomes alive.
Look up at the top line. There are a few words and numbers telling you something
about what is going on with the editing process. This is called the 'status line'.

Right below the status line is the 'command line'. Below that, a row of dots
separates that command and status area from the 'text area'. Notice the 'cursor' in
the text area. It is probably blinking, or reversed video; and notice the 'cursor' on
the command line -- just an underline (). These cursors show where things will
happen -- where the action is. Now strike a few keys on the keyboard. The
corresponding letters should appear in the command line. This is because you are in
'COMMAND MODE'. The keys you strike form a command, which then can affect
the text area. Strike a few more keys, and also watch what happens when you hit
the carriage return key. Now hit the 'delete' or 'rubout' key. This will wipe out
the last character in the command line. You can delete the whole command at once
with a 'control-C'. That is the character produced by holding down the 'control'
key, and striking a 'C'. Control characters will be indicated from now on by an '©'
(a control-C will be written '©C').

Now clear the whole command area with a '©C'. Strike a '©N '• You have just
moved into 'INSERT MODE', and this is indicated where the command line used to
be. Now enter some normal letters. You are creating text! Enjoy it for a little
while. Then try hitting '©X' -- this will return you to COMMAND MODE. Now go
back to INSERT MODE. Try the delete key. It will delete the character you just
entered. It's just like typing on a typewriter, but you can correct your mistakes.

'©C',©N', and '©X' are called 'Instant Commands'. When you hit these keys, a
character doesn't get entered in the text, or onto the screen, but rather, something
different happens. Instant commands can usually be used in either COMMAND or
INSERT MODE. The most important instant commands are those that move the
cursor around in the text area. They are '©Y', '©B', '©G', and '©H'. Try them.
Note that these four keys are located in a group on the keyboard, and that they are
arranged the right way -- that is, the bottom one, '©B', moves the cursor down, the
top '©Y', moves it up, '©G' moves it left, and '<QH' moves it right.

Use the instant commands to move the cursor around, and then try typing in
some more characters. Now you are 'editing' text, as opposed to just entering it.
Learn the action of the 'delete key', it always deletes the character just before the
cursor. Try the '©D' instant command -- it deletes the character at the cursor.
'©K' will kill the whole line, starting at the cursor. Lines are separated by the CR
character. Type a carriage return, and you will start a new line. Move the cursor
to a CR (the last character on any row) and try deleting jt. See how the two lines

INTRODUCTION FOR BEGINNERS 1-3

on either side get run together?.

If you haven't already done so, type in more lines than there is room for on the
display. Watch how the display scrolls. Move the cursor back a few lines, and the
display will scroll back the other way. PMATE will display as much text as possible
on both sides of the cursor. This is called 'vertical scrolling'.

Now type a line that is too long for the screen - just keep typing without
hitting a CR. As soon as the cursor is about to move off the screen, the whole
display 'shifts' over. This is called 'horizontal scrolling'. The display continues to
shift as necessary, as your line gets longer and longer -- up to a maximum of 250
characters. Move on to the next line, and the display will return to normal.

Try out the tab key (or '©I' if your keyboard doesn't have one). Tab stops are
initially placed every 8 spaces, but later you will learn to place them arbitrarily. If
your keyboard isn't capable of generating lower case, use the '/' key as a 'shift'.
When you type '/', nothing will happen, but the next key you type will be shifted in
case. (To actually enter a '/', just type it twice.) Try the '©F©S' instant command
a few times. It changes the 'default case' from upper to lower, and then back
again. The '/' key (like 'shift') will alter the case from the default for just one
character.

As you enter text, and it appears in the text area, it is being entered into the
'current edit buffer'. This edit buffer is just a section of computer memory. The
text area of the display is acting like a 'window' which allows you to see a small
section of this buffer. The section you do see is the section where the action is
about to occur -- the place where the cursor points.

Now go back to COMMAND MODE ('©X' -- remember?). Any characters you
type now are entered into the 'command buffer'. The command area of the display
just shows the final part of this buffer. Make sure the command area is clear (use a
'©C' if necessary). Now find the 'escape' key (it might be marked 'ESC'). Strike it
a few times. It echoes on the screen as a '$'. From now on, '$', when written as
part of a command, will mean the 'escape key'. Commands are executed by typing
an escape twice. Try this simple command:

D$$

This command deletes the character at the cursor, just like the '©D' instant
command. (Incidentally, don't forget to use the instant commands in COMMAND
MODE also -- especially the cursor motion controls.) 'K$$' will kill the whole line.
Now try '!GARBAGE$$' • The 'I' is the insert command, and what ever follows it
until an escape is reached, will be inserted into the text.

Sooner or later, you are bound to give PMATE a command it doesn't like. It
will complain bitterly by displaying an error message, and appearing quite dead. The
only way to wake it is by typing either a 'space' or a CR. In big letters:

WHEN YOU HAVE MADE AN ERROR, AN ERROR
MESSAGE WILL APPEAR WHICH WILL REFUSE TO GO

AWAY UNLESS YOU STRIKE CR OR SPACE BAR

After a command is executed, it is still displayed in the command area. If you
now type an escape again, the command will be repeated. (Try this after an 'I'

1-4 PMATE USER MANUAL AND INTERFACE GUIDE

command and see how fast you can fill up space). If you don't want to repeat the
command, but just to enter a new one, ignore it. When you start to enter the new
command, the old one will just disappear.

One very important command is 'F$$'. This takes you into 'FORMAT MODE', and
if you are already there, it takes you back again. In FORMAT MODE, you don't have
to worry about where a line ends, PMATE takes care of that for you. Try it. After
giving the 'F' command, enter insert mode. Now start typing words, but don't enter
any CR's. Notice how the text automatically wraps around to the next line, rather
than going off the screen. Words are not truncated or divided, but are left intact.
When you reach the end of the paragraph, and you insist that the next word begins
on a new line, then enter a CR. Write a few paragraphs. Move the cursor to the
middle of one of them, and insert some more words. Watch how the whole
paragraph is rearranged as those words are entered. It is important not to use a CR
except when the next word must begin a new line. Otherwise, words will not be
able to wrap around properly when changes are later made.

Now that you have some reasonable text in your edit buffer, why not write it
to the disk?. Use the command 'XE$$'. That ends the editing pass. 'XH$$' will
then get you back to the DOS with a new file on the disk. Soon, you will want to
modify that file. Again, give the command

PMATE FILE

where 'FILE' is the name of the file you had just created. Quickly, PMATE is back
in control, and you see your old text again. Now add to it, rearrange it, chop it up,
or whatever you please. If you don't like what you did, type 'XK$$'. This just
cancels any changes, and leaves 'FILE' as it used to be. Otherwise, type 'XE$$' and
'FILE' is updated on the disk to include all your modifications. (It is also possible to
leave 'FILE' intact, and write the new version under a different name.) Don't
forget that the only way to get back to the DOS is with an 'XH$$' command ('H' for
'Home').

THE BUFFERS

Chapter II
BASIC IDEAS

PMATE operates on text stored in the computer's memory. Text can be placed
. in any of 11 'edit buffers'. Text is stored as a continuous stream of characters. If

a character is inserted in the text, all following characters have to be moved up to
make room for the new one. Similarly, if a character is to be deleted, all following
characters must be moved down to fill in the space. 'Lines' are separated by the
carriage return character (CR).

THE DISPLAY

PMATE utilizes a video display to always show a portion of the text in the
current edit buffer. As the text stream in memory is modified, the display
immediately reflects this change. Just imagine your text sits behind a large wall,
and your screen is an opening through which you can see part of it.

THE CURSOR

It's nice to be able to see part of your text stream, but obviously not enough.
You need to be able to modify it. The 'cursor' indicates on the screen exactly
where this modification is to take place. The character to which the cursor points
is clearly displayed, usually as blinking, underlined, or inverse video. The cursor is
only useful if it can be moved around. This can easily be done just by striking the
appropriate key on your keyboard. As the cursor moves through the text, the
portion of the text displayed on the screen changes in such a way that text on
either side of the cursor is always visible. The screen always shows where the
action is. In this way, text scrolls up or down as you move the cursor up or down
(vertical scrolling). Furthermore, if a line is too long to fit on the screen, the
whole text display is shifted over to prevent the cursor from moving off the right
end of the screen (horizontal scrolling). Lines can be up to 250 characters in
length.

MODES OF OPERATION

There are several ways to enter or modify text. 'OVERTYPE MODE' or 'INSERT
MODE' provide the simplest method. Just type!! The characters you type are
immediately entered into the text where the cursor is (and of course, appear on the
screen). In 'INSERT MODE' any characters at or beyond the cursor are moved up to
make room for the new ones. If you make a mistake, 'rubout' or 'delete' will cure
it (and banish it from the screen). In 'OVERTYPE MODE', the character you type
replaces the one already beneath the cursor. However, neither carriage returns,
nor tabs will be overwritten. OVERTYPE or IN SERT modes are indicated on the
bottom line of the display, below the row of dots.

Several keystrokes (usually control codes) are not entered into the text, but
serve some other function. These are called 'Instant Commands'. The keystrokes
that move the cursor are instant commands. Other keystrokes can delete the
character at the cursor, delete a whole line, or shift from upper to lower case. This
sort of text editing is great for entering text, and making minor changes in it.

2-2 PMATE USER MANUAL AND INTERFACE GUIDE

For 'serious' text editing, PMATE executes 'command strings'. For instance, you
might command PMATE: •Find the third occurence of 'George' and change him to
'Harry', then from that point, delete all characters until you find an 'F', then insert
the numbers from 240 to 1000 in base 5, one per line, and finally tell me how much
(3*46/(5+(3*7))) is". Of course, you wouldn't use exactly that language, but such a
command string could readily be constructed. PMATE executes such commands
when in 'COMMAND MODE'. The 'command line' is the last line of the display.
When there is no mode message in the command line to inidicate OVERTYPE or
INSERT modes, PMATE is in command mode. An underline cursor indicates where
the next keystroke is to be entered.

In COMMAND MODE, your keystrokes don't immediately affect the text, but
rather are entered into the command buffer, and appear on the command line. A
single command is usually one or two characters, but commands can be strung
together to form command strings. As soon as the command is executed, the display
shows the updated edit buffer, centered on the cursor. While in COMMAND MODE,
PMATE also recognizes instant commands. These keystrokes are not entered into
the command buffer, but are executed immediately, affecting the text and display.
Included among the instant commands are ones to shift modes -- enter COMMAND
MODE, enter OVERTYPE MODE, or enter INSERT MODE.

LINE FORMATTING

A 'line' is just a string of characters which ends with a carriage return. When
you enter a CR character, the cursor moves down to the beginning of the next line.
PMATE also has an automatic line formatting facility, for entering and editing
textual material. When operating in this mode, text will automatically 'wrap
around' as you enter it after filling out a specified line length. Words will not be
broken up, however -- the complete word will be moved down to the next line.
This line formatting is preserved, even as portions of the text are edited. When
operating in this mode, text is normally entered without any carriage returns. Any
carriage return will always indicate the end of a line. They must be used only at
the end of a paragraph, or whenever the following characters must appear on the
next line.

INSTANT COMMANDS

In any mode, instant commands are keystrokes which are not entered into the
command or text, but rather have some other immediate effect. The instant
commands and a description of their action follows. A '©' is used to indicate a
control code, so '©A' indicates the character resulting from holding down the
control key and striking 'A'. This choice of control characters for the instant
commands was made either for mnemonic value, or for convenience of location. For
instance, the four commands which move the cursor one position are located in the
center of the keyboard. These instant commands will be used all the time. It is
important that they should be easily accessible. If you are at all unhappy with this
assignment, it is an easy matter to change it (see the Interface Guide). In
particular, if your keyboard has a cursor pad, or other single stroke control keys,
these may be used for the more important instant commands.

BASIC IDEAS 2-3

Mode Switching:

The following instant commands set the mode of the editor to INSERT,
OVERTYPE, or COMMAND.

©X Go into COMMAND MODE.

<9N Go into INSERT MODE.

©V Go into OVERTYPE MODE.

Cursor Motion:

The cursor motion instant commands allow the cursor to be easily moved
throughout the text buffer. As the cursor is moved, the display updates in order to
keep the display centered on the cursor. The cursor is never allowed to move
outside of the text buffer.

©A

©G

©H

©B

©Y

©U

©J

©P

©()

Scrolling:

Move the cursor up to the beginning of the text buffer. If it is already
at the beginning, move it to the end. So hitting this key once gets you
to the beginning, twice gets you to the end.

Move the cursor to the left.

Move the cursor to the right.

Move the cursor down one line.

Move the cursor up one line.

. Move the cursor up six lines.

Move the cursor down six lines.

Move the cursor to the beginning of the following word. Words are
separated by any combination of spaces, tabs, and carriage returns.

Move the cursor to the beginning of the current word. if it is already
there, move the cursor to the beginning of the preceding word.

Move the cursor to the beginning of the current line. Note that ©M is
a carriage return.

These commands move the displayed text on the screen, while the cursor
remains .on the same character.

©F©G Scroll the display left one column.

Scroll the display right one column.

2-4 PMATE USER MANUAL AND INTERFACE GUIDE

©f©Y Scroll the display up one line.

©f©B Scroll the display down one line.

Deletion:

The deletion instant commands allow characters to be removed from the text.
The rest of the text buffer is moved down to fill in the space formerly occupied by
the deleted characters.

©D

©K

©W

©Q

rubout

Delete the character at the cursor.

Delete the rest of the line, starting at the cursor.

Delete the next word, starting at the cursor.

Delete the word preceding the cursor.

Delete the character just entered. When in command mode, this
deletes the character just entered into the command. When in insert
mode, this deletes the character just before the cursor (©D deletes the
character at the cursor). This is usually the character just entered into
the text.

Moving text:

These commands provide an easy method of copying or moving sections of text.

©T Tag the current location. This marks one end of the text to be moved.

©E Move the section of text between the tagged location and the present
location of the cursor to a special buffer. The text is deleted from the
current text buffer.

©l Insert the contents of the special buffer at the cursor location.

In other words, to move a block of text, go to the beginning of the block, type '©T',
go to the end, type '©E'. Move the cursor to the desired destination, and type '©Z '.
In order to copy a section of text without deleting it from its original location, it is
only necessary to type '©Z' immediately after the '©E'. Subsequent '©Z 's will then
produce copies of the text elsewhere.

Automatic indent:

When entering text in Insert or Overtype modes, a carriage return normally
brings the cursor back to column O. However, it .is possible to indent this margin.
This facility works best in overtype mode, and is very useful when writing code in
structured languages, when writing outlines, or when dealing with columns of data~

©F©I Set the auto-indent level to the current column.

©f©P

©fq,)()

BASIC IDEAS 2-5

Increment the auto-indent level by four columns, and move the cursor
there.

Decrement the auto-indent level by four columns, and move the cursor
there.

Miscellaneous:

©S

©

©C

©L

©T

4.)f©T

©f ©F

©f©S

©F©C

©R

Repeat the next keystroke four times. If multiple ©S's are struck, the
repeat count is muliplied by four with each ©S. For example, '©S(!;)S©Sa'
is equivalent to striking 'a' 64 times. Alternatively, if ©S is followed by
a number, the next non-numeric keystroke is repeated that number of
times. '©S12©D' will delete 12 characters.

Edit command string. If an error is made in entering a long command
string, the command string itself can be edited. When © is typed, the
old command buffer becomes the text buffer, and can be edited just like
text. Striking © again restores the old text, and the new updated
command string is returned to the command area, ready for execution.

Abort. Clears the command area. If ©C is typed while a command
string is being executed, execution will be aborted at the earliest
opportunity.

Insert a line. Inserts a new line into the text, and leaves the cursor at
the beginning of the new line.

Tag. Tag current cursor position -- more on this later.

Exchange the tag and cursor. This allows you to see both ends of the
block you have defined -- the block remains the same. This is also very
useful for moving back and forth between two different sections of
text.

Redraw and reformat display. This is usually only necessary if your
screen is disturbed by a 'foreign influence'.

Shift default case. Case will toggle between upper and lower.

Change the case of the character at the cursor, and advance the cursor
one position.

Restore last deleted item at cursor position.

CURSOR MOTION

-The. cursor control 'diamond' (consisting of ©Y,©H,©G, and ©B) behaves
differently, depending upon the PMATE configuration. In one possible mode, @Y and
©B always leave the cursor at the beginning of a line. This is particularly useful for
editing line-oriented text, such as programs.

2-6 PMATE USER MANUAL AND INTERFACE GUIDE

In another mode, ©Y will move the cursor immediately above its current
position, leaving it in the same column if possible. Since the cursor must always
stay on text, it is not possible to leave the cursor to the right of the carriage return
ending the line, or in the middle of a tab. The cursor is then positioned on the last
possible position to the left of the desired column.

Finally, PMATE does have the capability of being able to leave the cursor in this
'free space' at the right of a line ending, or in the middle of a tab. When
configured in this manner, the cursor can move anywhere on the screen (except
below the very last line of text). When you attempt to enter text in 'free space',
PMATE fills in the appropriate number of spaces, so that text appears to be entered
right where you expect -- at the cursor.

COMMANDS

A single command consists of one, two, or three characters which are entered
into the command buffer -- just type and watch them appear there. The command
is then executed by striking the 'escape' key twice. Escapes appear on the screen
as dollar signs '$'. In the rest of this manual, '$' will indicate an escape. Control
characters appear in the command line as a carat (') followed by the associated
upper case character (in particular, carriage return appears as "M) An example of
a command is the character 'D', which will delete the character at the cursor.
Suppose the edit buffer contained

This is an example of some text which needs
correcting. The cursor on the scrreen is
indicated by the underline. -

Then just type in the command
D$$

(remember that '$' is an escape, and the two escapes are necessary to execute the
command 'D') This is what will be left on the screen:

NUMERIC ARGUMENTS

This is an example of some text which needs
correcting. The cursor on the screen is
indicated by the underline.

Many commands can take 'numeric arguments'. That is just a number that
precedes the command that gives additional information to PMATE. For example,
while '0$$' deletes one character from the text, '30$$' deletes the next 3
characters. Numeric arguments can take integer values from -32768 to + 32767.
They can be complex expressions, but this will be explained in greater detail later.
If an argument is missing, it is usually taken to be 1. There are exceptions, but
these will be explicitly mentioned. Typing just a minus sign '-' before a command is
usually equivalent to -1.

BASIC IDEAS 2-7

COMMAND STRINGS

PMATE derives much of its real power from being able to string together a
number of commands to form a command string. Commands can be typed in
together to form command strings. 1M1 is the command to move the cursor a

. number of character positions. 1M$$ 1 will move the cursor over one character. The
command string 1DSMD$$ 1 will delete one character, then move over 5 and delete
that character. As the command string is entered, it appears on the bottom of the
screen, and it is not until two consecutive escapes have been entered that any
change takes place in the text. At this time, the whole command string is
executed. Single escapes can be freely inserted between commands without causing
execution. So 1DSMD$$ 1, 'DSM$0$$' and 'D$5M$D$$' all have the same effect.

STRING ARGUMENTS

When certain commands are used in a command string, they require a single
escape to separate them from the following command. While numeric arguments
often precede commands, some commands are followed by 'string arguments'. These
arguments are just a string of characters which you might insert into the text,
search for, or perform some other operation. For example 'I' is the command that
inserts the string argument following it into the text buffer. Suppose the text
buffer contained:

PMATE is a very easy to use and helpful
text editing program.

Typing the command 'lnot $$' might help you express your true feelings, leaving
the display ·reading:

PMATE is not a very easy to use and helpful
text editing program.

If we wish to enter an insert command 'I' as part of a command string, we are
faced with the problem of how to indicate to PMATE that the string argument is
finished with, and the next command is being entered. We do this by using one
escape to separate the string argument from the following command. If we wish to
now change 'a very easy' to 'an easy', we want to move the cursor one position,
insert an 'n' there, and then delete the next five characters. We try 'Mln5D$$',
but are dismayed to find we are left with:

PMATE is not anSD very easy to use and helpful
text editing program.

While '-2M7D' will repair the damage, we should have commanded 'M ln$5D$$' in the
first place.

REEXECUTING COMMANDS

What happens to the command string after it has been executed? Simple -- it's
still there, all ready to be used again. It still sits in the command area of the
display, followed by the two escapes which caused it to be executed. If you now
type another escape this command will be repeated. If a rubout is typed, the

2-8 PMATE USER MANUAL AND INTERFACE GUIDE

second escape will be deleted, and the old command string can be modified or
extended. If any other command character is entered, the old command string will
disappear, and this new character becomes the first in a new command string.

The ability to easily repeat commands can be extremely useful. Here is one of
many situations where this facility is commonly used. 'S' is the search command.
'Shello$$' will search through the text starting at the cursor, and leave the cursor
pointing just after the first 'hello' that it finds. The text display shows you
immediately if this is the occurence of 'hello' which you were interested in. If not,
just strike the escape key again, and PMATE will find the next one. Continue until
you have located the section you want.

ERROR MESSAGES

Some commands and conditions will produce error messages. These messages
are usually self-explanatory. If 'Shello$$' command is executed, and 'hello' cannot
be found, then a message saying 'STRING NOT FOUND' will appear where the text
used to be. PMATE terminates execution of the command string as soon as a
command produces an error. The cursor in the command display area will point to
the command just after the offending one.

AT THIS TIME, THE ERROR MESSAGE WILL REFUSE TO GO AWAY UNTIL YOU
STRIKE EITHER •cR• OR THE SPACE BAR.

After typing one of these keys, the command still sits in the command area as if it
had finished executing. It can now be reexecuted, modified, or ignored.

BASIC COMMANDS

PMATE has enough commands to keep you busy for a long time mastering them
all. However, there are a few basic ones which you will use over, and over. They
are all that are really necessary to satisy most text editing needs. A complete
description of all commands follows later. 'n' indicates a numeric argument.

nD Delete n characters starting at the cursor. If n is missing, it is
assumed to be 1.

nK Kill n lines starting at the cursor. If n is missing, it is assumed to be 1.

s

c

Insert the string which follows. The string ends with an escape.
'!garbage$$' inserts 'garbage' just in front of the cursor.

Search for the string which follows 'S'. The string ends with an escape.
The search starts at the cursor. 'Sgarbage$$' causes PMATE to look
through the text for 'garbage' and leave the cursor pointing just after
the next occurence • If the string is not found, an error message is
produced. (Remember, don't forget to hit carriage return after an
errorll)

Change the first occurence of the first string following to the next
string following. 'Cgarbage$junk$$' will search for 'garbage' and if it is
found, change it to 'junk'. If 'garbage' is not found, an error message

BASIC IDEAS 2-9

is given. Remember that search for garbage begins at the cursor.

--The following commands are very useful for moving blocks of text around:

nBC Copy n lines of text into a special buffer. If n is missing, it is assumed
to be 1. · ·

nBM Move n lines of text into a special buffer. If n is missing, it is assumed
to be 1~

BG Insert contents of special buffer into text just before cursor.

'BM' is like 'BC' except that the lines that are copied into the special buffer are
then deleted from the text buffer. To move 5 lines of text, position the cursor at
the beginning of the lines to be moved (using the cursor control instant commands) •.
Then type the command 1SBM$$1 • The 5 lines will disappear from the text. Then
move the cursor to the place you wish the lines to be, and type 1BG$$1 • This
restores the lines. The special buffer still contains those 5 lines.

TAGS

If you want to move a large block of text around, it may not be obvious how
many lines are in this block to move. There is an alternative to counting lines.
First set the cursor to the beginning of the section of interest. Use a 1©T 1 instant
command to 'tag' that location. Now move the cursor to the end of the block. The
special symbol '#' will cause the next command to act on this whole block. So '#BC'
will copy the block, and '#K' will delete it. The block can be defined with the
tagged position at the beginning, and the cursor at the end, or vica-versa. '©F©T'
can be used to exchange the tag and the cursor, allowing you to easily examine the
boundaries of the block which you have set up. This procedure does not affect the
definition of the block, since the tagged position can _be at the beginning or end.

The '#' can be used in front· of any command which takes a numeric argument to
indicate the number of lines or characters to act upon (such as 1D' or 1K1}.

Furthermore, even if the command normally acts upon a fixed number of lines (such
as the 'B' commands), by tagging a position, parts of a line can be moved.

THE GARBAGE STACK

. When PMATE deletes text, it dumps it on a 'garbage stack'. A certain amount
of' space is reserved for this stack, and any remaining memory space not used by
text is also used for piling up garbage. If you accidentally delete a line, it is then
easy to recover with a '©R', which 'pops' the last item off the stack, and puts it
back in the text. If you have just typed '©K©K©K©K', all the damage can be
recovered by typing 1©R©R©R©R 1• It is the most recently deleted item which is
available first, and the items long ago lost which may have gone permanently out to
pasture -- if there was not enough memory space left to hold all the deleted items.

The garbage stack also provides a very easy method of moving a bit. of text
around. For instance, to move a line of text, put the cursor at the beginning of
that line and type 1©K 1• Then move the cursor to the required destination, and type
'©R'. Use '©W', and it is very easy to move a word or two around in a sentence.

2-10 PMATE USER MANUAL AND INTERFACE GUIDE

PMATE AND THE OPERATING SYSTEM

PMATE lives on the disk as the command file, PMATE.COM, and is called by
typing:

PM ATE

After a few seconds, PMATE will come on the screen, in Command Mode. You can
now enter and edit text. If you wish to save your work on the disk, you need to
define an 'output file': ·

XFfile Create and open 'file' for output (assuming a file by this name doesn't.
already exist).

Then when your done, use one of these:

XE End edit. pass by writing entire text buffer to output file, and closing it.

XK End edit pass without writing anything on the disk.

Both of these commands wipe out what's in your text buffer. The first saves it on
the disk, but watch out for 'XK'! After these commands, you are still in PMATE.
When your all done editing, use

XH Go 'Home' to the DOS (disk operating system). To prevent you from
inadvertently exiting without writing desirable text to the disk, this
command will give an error message if there are files open. You must
take care of them with an 'XK' or 'XE' first.

PMATE can be used to modify an already existing file. Now you will need an 'input'
file. Again use:

XFfile Edit 'file' (this time, assume 'file' already exists). 'file' is opened for
input, and the text is read in.

You may now modify the text, and again finish up with an 'XE' or an 'XK'. An 'XK'
will leave the original file intact -- none of your changes will appear in it. An 'XE',
however, will effectively update the input file to include the changes you have
made. A copy of the input file before modification is retained under the same
filename with the extension '.BAK' (any old backup of the same file is deleted).

If you call PMATE from the DOS by typing

PMATE file

'file' is opened as the input or output file just as if you used an 'XF' command.

BASIC IDEAS 2-11

GO TO IT

At this point, you know enough to utilize PMATE very effectively. Use the
above commands, the instant commands (particularly the cursor motion keys), and
Insert Mode and you'll quickly find yourself confidently entering and modifying
programs or other text.· It is important to get experience with these commands
before attempting to learn the complete command set. Remember about
reexecution of commands, and don't forget to try building some command strings.

Chapter 111
MORE CONCEPTS

SIGNED NUMERIC ARGUMENTS

. Up until now, we have assumed that all numeric arguments are positive
integers. They can in· fact be much more complex expressions. For now, we will
just extend them to include negative numbers. What would '-3D' do, for instance?
Rather than start at the cursor, and delete characters forward from there,
commands with a negative argument work backwards through the text. '-3D' will
delete the three characters just preceding the cursor {leaving the cursor pointing at
the same character it used to be). Similarly, '-2K' will delete 2 lines preceding the
cursor. 1-S' will search backwards through the text, from the cursor, until it finds
the string which follows the 'S'.

LINE ORIENTED COMMANDS

. A number of commands, such as 1K1, are 'Line-Oriented'. They all behave
similarly to 'L', the command to move the cursor a specified number of lines. What
happens when 'L' has a numeric argument that is less than or equal to O? The easiest
way to see is by trying it, but here is an example. Suppose the text buffer
contains:

This is line a
This is line b
Guess which line this is?
This is Tine d

The command 1L1, or '1L' would leave the cursor:

This is line a
This is line b
Guess which line this is?
This is lined

The command 'OL' would have left the cursor:

This is line a
This is line b
Guess which line this is?
This is line d

The command '-2L' would have left the cursor:

This is line a
This is line b
Guess which line this is?
This is line d

Other line-oriented commands with numeric argument 'n' affect the text
between the cursor, and the place the cursor would be placed if an 'nL' were
executed. So the command '-K' or '-1K' would have left:

3-2 PMATE USER MANUAL AND INTERFACE GUIDE

This is line a
which line this is?
This is line d

TEXT FORMATIING

Editing textual material presents very different problems than editing programs.
Suppose you want to use PMATE to write a user's manual for a text editor program
you have written. You write the following paragraph:

Editing textual material presents very different problems
than editing programs. You write the following paragraph:

Soon you decide that this doesn't make sense. A sentence is missing. You need to
be able to add this sentence, and still keep the right number of words on a line. As
you add words between 'programs.' and 'You', first 'paragraph', and then 'following',
and so on need to wrap around to the next line. PMATE automatically takes care of
this line formatting when in 'FORMAT MODE'.

To enter FORMAT MODE, use the command 'F'. Repeating the command 'F' will
restore PMATE to normal. In FORMAT MODE, lines end not only on a carriage
return, but also on the last possible 'space' which would keep the line from
exceeding the allowed length. Words are never broken up. So the rule is to enter
t~xt without any carriage returns. PMATE will take care of the line length for you.
Always use a carriage return at the end of a paragraph, or any other place where it
is necessary to always begin a new line. Remember -- if you put a CR at the end
of a line because it looks like you are about to run off the screen, and then later
you delete a few words from that line, the carriage return is still there, now stuck
in the middle of the line. Moral -- let PMATE divide your lines.

PMATE always keeps the screen up to date and properly formatted. You may
actually find this annoying while entering text in the middle of a paragraph -- for
as you type, the margination can change with most every keystroke, producing a
display which jumps around quite a bit. If this bothers you, a control-L instant
command will insert a CR, effectively stabilizing things by putting you at the end of
a paragraph. As soon as you are finished with the addition, type control-D to
delete that excess CR.

You can have fun by changing the maximum number of characters allowed in a
line. Use the 'F' command with a numeric argument. '30F' enters FORMAT MODE

. and sets the maximum line length to 30. Initially, the maximum line length is set to
the number of characters in a line of the display. One reason you may wish to
change it is to accomodate a printer.

It is very useful to be able to indent sections of text. One approach might be
to precede each line with one or more tab characters. The problem with this is that
the tab character is now fixed between two specific words. As words are deleted
or inserted, these words slide around to different locations on the screen, playing
havoc with your margins. For this reason, when in FORMAT MODE, PMATE is able to
interpret the tab as a margin indent character. If an indent has been set to the
same column as the tab stop, preceding an indented section with a tab will cause
each succeeding line to indent to the same point, until a CR character is reached.

MORE CONCEPTS 3-3.

An indent can be set using a 'YI' command. For example, '8YI' sets an indent at
column 8, the first tab stop. So the tab (to column 8) following 'nYI' below causes
the rest of the paragraph to be indented. This feature is used throughout this
manual

nYI Set an indent at column 'n'. Any tab to column 'n' will cause the
remainder of the paragraph to be indented, until a carriage return is
reached.

When operating in this manner, be sure not to use a tab to indent the first word
beginning a paragraph, for it will indent the whole paragraph -- type in the five
spaces instead.

For some applications, you may wish to change the left and right margins for
only a particular section of text. For instance, you may wish to move the left
margin over 40 spaces to accomodate a picture. PMATE allows margin and tab
information to be entered in a special non-printing control line. This control line
begins with a ©F (F for Format), and ends in a CR. The complete set of possible
entries is given later, but for example:

©FL20;R60

will change the left margin to 20 and the right to 60 from that point in the text
onwards. These margins will be reflected in the text display. You might find it
hard to enter that ©F in text, as this is defined as an instant command. See the
section below on how to enter an arbitrary control character into the text. After
altering a format line, a '©F' instant command tells PMATE to recompute its
formatting, and bring everything up to date.

When in FORMAT MODE, it is very important to be able to easily see which lines
end in carriage returns. In this mode, the carriage return character is actually
displayed on the screen. The actual 'character' displayed depends upon the
implementation, with '<' being a typical choice.

One final thought: FORMAT MODE can be very useful when writing programs
too. If the language you are using supports a start and stop comment command, so
that comments don't automatically end with a line (as does the PSA Macro
Assembler, the language 'C', PASCAL and others), using PMATE in FORMAT MODE
allows your programs to read like a book, with extensive, easily modified,
comments. Of course, program lines must all be terminated with CR's, but
comments can wrap around as much as desired.

UPPER AND LOWER CASE

If your keyboard is upper case only, it is still possible to generate upper and
lower case characters. One character is chosen to be the 'case shift' character
(usually a'/', but you can change this with a 'Q' command). When that character is
typed, it is ignored. The next character to be entered is shifted in case. If it is
necessary to enter the shift character itself, just type it twice. The whole
keyboard can be toggled back and forth between upper and lower case by the
'©F©S' (shift) instant command. After striking '©F©S' once, all following characters
will be entered as lower case, unless they are shifted up by the shift character.
'©F©S' again returns things so that characters are entered as upper case unless

3-4 PMATE USER MANUAL AND INTERFACE GUIDE

shifted. Some keyboards have both upper and lower case, but lower case can only
be, obtained by using the shift key. '©F©S' can also be used to make this keyboard
look like a normal typewriter. On some keyboards, the shift-lock key also shifts the
numeric keys {like a typewriter). This can be extremely inconvenient if it is
necessary to enter upp~r case only programs. In this case too, '©F©S' can be used
instead of shift-lock to shift only the alphabetic keys.

CONTROL CHARACTERS

Since control characters are used as instant commands, it might seem difficult
to actually enter a control character into the text. You can do this using a 'control
shift' character. This character is usually •" ', but it too can be changed using a 'Q'
command. When you strike this shift character, nothing happens. The next
character to be entered is shifted to the equivalent control character. So to enter
a control-F, strike first•" ',and then 'F'.

INPUT FILES, OUTPUT FILES, AND AUTOMATIC DISK BUFFERING

PMATE {as well as most any other text editor) needs the answer to two
questions before it can do any editing. 'Where do I find the stuff to edit ??', and
'Where should I put it when I'm done ? ? ' These questions are answered when you
first invoke the editor.

PMATE GARBAGIN GARBAGOU

is the console command to start editing the file GARBAGIN. It is opened as the
'input file'. Changes and additions are made, and the result is left in the file
GARBAGOU -- the 'output file'.

Normally, PMATE operates with 'automatic disk buffering' in effect (referred to
as 'auto-buffer mode'). This means that you can edit a file larger than available
memory without having to explicitly read text in and write it out. PMATE reads
text in from the input file as needed, and writes it out to the output file when done.
It is also possible to use PMATE in a 'manual' mode, providing you with exact control
of which sections of text are in memory, and which sections are on the disk.
'Manual mode' is discussed in further detail below -- even if you always use PMATE
in auto-buffering mode, read that section to obtain a better understanding of what
actions PMATE is automatically performing for you. 'XE', used to complete the edit,
finishes tranferring the edited text from the input file to the output file.

XE does not return you to the console command processor -- you are still in
PMATE. You may return with an 'XH' command, or open some new input and output
files using the 'XF' command. Just follow 'XF' with the same filenames you would
follow PMATE with in the original command line, then hit two escapes.
'XFGARBAGIN GARBAGOU$$' will open the same files as above.

Often, an editing operation is performed to update a file. When you are done,
you really want the new output file to have the same name the old input one did.
One possibility would be to delete the old input file when you are done, and then
rename the output file to the same name the old input one had. PMATE will do this
for you automatically if you only specify one filename in the command line {or in an
'XF' command). This file is opened as the input file, and an output file is opened

MORE CONCEPTS 3-5

with the same name, but with extension 1$$$1• 'XE' will then output everything to
the output file as usual. The old input file will be renamed to have the extension
'BAK' (a backup -- any old backup is deleted), and the output file will then be
renamed to the original input. For example:

. PMATE JUNK.ASM

will open 'JUNK.ASM' as the input file, and 'JUNK.$$$' as the output file. 'XE' will
then rename 'JUNK.ASM' to 'JUNK.BAK', and then rename 'JUNK.$$$' to
'JUNK.ASM'.

In the PMATE command line, or in an XF command, either the input file or the
output file can be preceded by a drive specifier ('A:', 'B:', 'C:', etc.) to indicate
which disk to find the file on. If there is no specifier, the currently logged-on disk
is always referred to.

If the logged-in disk is 'A', 'PMATE B:GARBAGIN GARBAGOU' will look for
input file 'GARBAGIN' on disk 'B', and output file 'GARBAGOU' on disk 'A'.

MANUAL MODE

In 'manual mode', the input file can be broken into 'pages' -- managable pieces
which we can read one or two at a time from the input file, and write a few at a
time to the output file. Don't worry for now about how big a page is. Just worry
about how to turn them. 'XA' is the command to read in the next page, appending
it to the text buffer. 'XA' can even take a numeric argument -- the number of
pages to read in. '5XA' will append 5 pages. 'nXW' is the command that writes out
'n' pages from the beginning of the text to the output file. It is also possible to
edit 'backwards' through the file. '-XA' brings back text already written to the
output file by the 'XW' command. '-XW' writes out text from the end of the
current buffer, effectively putting it back on the end of the input file (actually, in
order to preserve the input file, it is written to a temporary file called
'PMATE.TMP'. 'nXR' is a very useful command. It is equivalent to 'nXAnXR'. '2XR'
will 'replace' 2 pages in the text buffer by writing two pages from the beginning of
the buffer to the output file, and then reading in two more from the input file. The
'all done' command, 'XE' first writes the text buffer to the output file, then reads in
the rest of the input file, and writes it to the output file.

The size of a page is a fixed number of lines. This number can be set to 'n' by
the 'nQP' coinmand. '75QP' will set the page size to 75 lines, so that the command
'3XA' will append 225 lines, and 'XW' will write 75 lines. Pages can be ended
prematurely by a form feed character (©L). If the page size is set to 0 ('OQP'),
form feeds are the only method of separating pages.

As you are entering text, if you find 'memory space exhausted', do an XW to
write out some of the text at the beginning of the buffer. XA will bring in more
text from the disk. If you need to start a new pass, 'XJ' writes all text out to the
output file, and then reopens that for input, and you are ready to start editing at
the beginning of the file.

3-6 PMATE USER MANUAL AND INTERFACE GUIDE

GLOBAL COMMANDS

Some commands only operate on text which is presently in memory. A version
of these commands which begins with 'U' may also be present. These. 'global'
commands will read and write to the disk as necessary, proceeding through the
entire file. For example 'A' and 'Z' move the cursor to the beginning and end,
respectively, of text in memory; 'UA' and 'U Z' move to the beginning and end of
the entire file. Note that if you are editing near the end of a long file, 'XJ' is often
a better choice than 'UA' for getting back to the beginning ('XJ' needs only write
the remainder of the edit file to disk, and then reopen it from the beginning, while
'UA' must scroll back through the entire file).

The search command 'S' is a 'local search', proceeding only through the text
currently in memory. 'US' will carry the search through the entire file. Using 'S'
rather then 'US' protects you from inadvertantly searching the entire file for.
something you expect to find right nearby. Similarly, the 'C' command performs a
local replace operation, while 'UC' is used globally.

DIRECTORY MAINTENANCE

PMATE allows you to perform disk directory lists and file deletes. One of many
occasions this comes in handy is if you get a "disk full" message upon trying to
write a file to disk. You can then list your directory, delete unwanted files, and
again attempt to write the file you are now working on out to disk.

The command to list the entire current file directory is XL. The directory is
actually entered in the text buffer, at the cursor location. This can be very useful,
because now it is possible to edit this information just like any other text, and scroll
through large listings. It can also be very inconvenient, because the directory may
appear right in the middle of your working text. In this case, it can always be
deleted. An alternative is to edit in another buffer (see below), or to use the '© '
instant command to edit the command string (then do the XL -- one further '©-,
and the directory listing becomes the latest command, easily killed with a 1©C 1). -

Partial directory listings can be obtained by following 'XL' with a file name. .As
in the DOS 'DIR' command, the file name can have ?'sand *'s.

1XLJUNK 1 will insert 'JUNK' at the cursor if file 'JUNK' exists, otherwise it will do
nothing. ·

'XL*.COM' will insert the names of all files with extension 'COM' at the cursor.

Files can be deleted with the 'XX' command. 'XXfile' deletes 'file' from the
disk. The file name cannot contain the ambiguous characters '? 1 or '*'. DO NOT
DELETE THE CURRENTLY DEFINED INPUT OR OUTPUT FILES.

It is possible to switch the currently logged in disk drive. This is done with the
XS command. 'XSA' selects drive 'A', and 'XSC' selects drive 'C'.

MORE CONCEPTS 3-7

ITERATION

It is often very useful to be able to repeat a command or a command string a
whole lot of times. The iteration brackets (. [. and •] I) allow us to easily do that.
This command string

S[lgood morning!
$)

produces this text display:

good morning!
good morning!
good morning!
good morning!
good morning!

'3[K]' will produce the same result as '3K'. Beware! What will 3[1hello] do?

Iteration brackets can be 'nested'. Make sure you have the same number of left
and right iteration brackets. The command

100[40[1*$)1
$]

will fill up your text buffer with 100 lines of 40 stars each.

If there is no numeric argument in front of the iteration brackets, the operation
will be repeated forever (that is, about 65,000 times) or until some sort of error
occurs. ' [I*$]' will fill up all available memory with stars, and then complain that
it has no more memory left. 1 [K]' will start killing off lines, and continue until it
has none left to kill. 1 [Cgoodbad]' will change all occurences of 'good' (after the
cursor) to 'bad'.

OTHER BUFFERS

PMATE actually has 11 different buffers into which text can be entered (as well
as two buffers for command strings). These buffers are not of fixed size, any of
them can expand to grab most of the remaining available space. If you delete text
from one buffer, this space is now available to any of the others.

Usually, you will be editing in the 'T' buffer. ('T' stands for 'text'). The text
buffer is the only buffer to have an associated edit file, and thus to support
automatic disk buffering. The 10 other buffers are labeled 0-9. Actually, you
already know about the 'O' buffer - all the special buffer commands, like 'BC' and
'BG' copy to or from buffer o. Those commands could have also been written 'BOC'
and 'BOG' (for instance, 'B3C' will copy to buffer 3). To start editing a buffer
other than the 'T' buffer, type 'BnE' (buffer n edit), where n is 10'-'9' or 'T'. 'B3E'
gets you to buffer 3, and then 'BTE' gets you back again. The buffers other than
the· 'T' buffer are useful mainly for temporary work space, for storing blocks of text
that need moving around, and for storing whole command strings, or 'macros'.

3-8 PMATE USERMANUAL AND INTERFACE GUIDE

MACROS

A macro is like a subroutine. If you have written a command string that
performs a function you will u~e a number of times, you can put that command
string in buffer 'n'. Any time you wish, you may execute it with. the c:ommand
'.n'. There are severar possible methods to put this command st ring into a buffer.

· The most straight-forward is just to start editing in this buffer using the 'BnE'·
command, and then to go into Insert Mode and enter the command right into the
buffer. (What would happen if you tried to enter a command string, complete with
escapes, into the buffer by using an 'I' command?)

Just as subroutines can be nested, macros can in turn call other macros. Just
as it is often necessary to pass arguments to a subroutine, macros too can require
passed string arguments. You may find you wish to use some macros over and over
again. These can easily be incorporated as a permanent part of PMATE. These
'permanent macros' are executed by the command '.x' where 'x' is any character
except for the digits 0-9. ('.1' will execute buffer 1, not a permanent macro.)
You will learn later how to pass arguments to macros and how to create your own
permanent macros.

ERROR TRACEBACK

Sometimes, errors will occur while executing a macro. The usual error message
will appear in the text area of the screen. Down in the command area, the macro
string which caused the error will be displayed, with the cursor pointing to the
command character just past the offending one. The status line up top tells which
buffer (or which permanent macro) was being executed at the time of the error.
Now you have a choice of either hitting a CR or the space bar. A carriage return
behaves as usual -- you're all ready to enter the next string. Striking the space bar
'pops a level'. It allows you to view the command string which 'called' the
troublesome macro. As long as this command string is itself a macro, you may
continue hitting the space bar, and popping levels. Once this command string is just
the original one entered into the command buffer, the space bar and CR keys have
the same effect. If a macro is called from several places in a command string, this
error traceback allows you to find out exactly where the trouble occured.

AUXILLIARY FILE 1/0

At any time, PMATE allows you to output sections of your current edit buffer to
the disk, or to read disk files into this buffer. This can occur while input and
outpput files are defined, and will not upset them. 'Xlfile' will input all of 'file',
and place it just before the cursor. 'nXlfile' will read in 'n' pages from 'file'. More
pages can subsequently be read in by 'nXI' (if no file nam~ is specified, input
continues from the last named auxilliary input file).

'nXOfile' outputs the next 'n' lines of text (after the cursor) to 'file'. If there
is no numeric argument 'n', the entire edit file is output.

The many uses of these commands include merging sections of files (even if
larger than available memory), loading macros into buffers to be executed, and
using the disk for scratch storage as you might the special buffers.

MORE CONCEPTS 3-9

THE CLONING OF PMATE

You probably have noticed ~hat PMATE has a number.of 'parameters' which can
easily be changed (usually with an appropriate 'Q' command). Oil rare ocassions
(usually), your favorite.parameters will differ from mine. If you like a page size of

· 100 lines, you can give the command '100QP' every time you begin editing, or you
can create yourself a customized verion of PMATE. Here's how:

First execute- PMATE with no input or output files. Now make any desired changes
(use the appropriate commands, create some permanent macros, or even -­
carefully please -- get in there with your system monitor, and really start hacking
away). Now give the command 'XDfile' ('D' for Duplicate) -- where 'file' is the
name of your new customized version of PMATE (the .COM extension is added
automatically). Name it PMATE1 or PMATE2 or anything you like (please -- only.
nice names). Use 'XH' to return to the DOS, and then verify the new version. If
you are happy with it, you can erase the original PMATE.COM, and rename your new
one to that -- or keep several versions around for different purposes.

GET SOME HARD COPY

PMATE has a facility to output text to a printer. The command 'XT' will output
the entire current edit file to the listing device. If there is a numeric argument,
'nXT' will print 'n' lines of text, starting at the cursor. Use this feature in order to
print out just the changes you have made to your long files. When you are feeling
ambitious, you can write macros to output text in almost any format you would
want. For instance, you might have page numbers, titles, and even an index added
to the text output.

Chapter IV
COMPLETE COMMAND SET

NUMERIC ARGUMENTS AND VARIABLES

. Numeric argument~ are integers. Usually they are signed numbers between
. -32,768 and 32,767. Sometimes they are considered as unsigned numbers from 0 to
65,535. However, numeric arguments can be more than just decimal numbers. They
can be complex expressions consisting of numbers, variables, arithmetic and logical
operations, and parenthesis. Operations are performed from left to right. Any
operator precedence must be determined by parenthesis. So 5+3*2 has the value
16 and 5+(3*2) has the value 11. There can be up to 15 levels of parenthesis in
an expression.

Numbers in command strings are usually interpreted as decimal numbers (base
10). However, the base, or 'current input radix' can be changed (see the 'Q' .
commands). So '10D$$' usually deletes 10 characters, but if the input radix is 8
(octal), it will delete only 8 characters.

There are very few times when a radix other than decimal is useful, but if the
radix is greater than 10, several rules must be observed. For instance, in hex,
PMATE must know if 'D' is the hex digit 'D' or if it is the command to delete a
character. The rule followed is that any number must begin with a digit from 0-9;
then each succeeding character is interpreted as a digit if that is at all possible.
For example, if the input radix is hex 'DDK' is interpreted to mean to delete two
characters and then kill a line. 'ODDK' however, would kill 221 lines (the value of
'DD' in hex). If it is necessary to terminate a hex number, an escape can be used.
'OD$DK' will delete 13 characters and then kill a line. '2$D' will delete two
characters, while 2D will be interpreted as 45 (decimal).

Numeric arguments can be displayed on the status line. Typing just a numeric
argument, followed by two escapes will display the value of that argument in the
current output radix (decimal by default) after the words 'ARC='. In this way,
the editor can be used to do integer arithmetic. By making the output radix
different than the input radix, number conversions (such as hex to decimal) can be
performed.

Arithmetic operations. The following are valid arithmetic operations within a
numeric argument.

+

•
I

Addition.
Subtraction or negation. -(3+4) is a valid expression.
Multiplication •
Division. Integer division, leaving just the quotient. The remainder of
the last division performed is available as '@R' (see the '@' numeric
arguments below).

Logical operations. Logical operations leave the value -1 if true, and 0 if false.
The following are valid logical operations within a numeric argument. In the
expression '3=5', '3' will be referred to as the first operand, and '5' will be referred
to as the second operand.

=
<
>

Equal -- true if the first and second operand are equal.
Less than -- true if the first operand is less than the second.
Greater than -- true if the first operand is greater than the second.

4-2 PMATE USER MANUAL AND INTERFACE GUIDE

& And -- true if both operands are true.
I Or -- true if either operand is true.

3<2
3<2'
2<3
2<31(5=2)
2<3&(5=2)
5+3=(1+7)
5+3=(1+7)'

Logical complement

Examples:
has the value O.
has the value -1
has the value -1
has the value -1
has the value 0
has the value -1
has the value 0

Variables and the Number Stack. There are ten numeric variables (labeled 0-9)
available for use. These variables can be set using the 'V' command (see below).
They can be used as part of a numeric argument using an '@' argument. In addition,
there is a Number Stack available. Any numeric argument can be 'pushed' on this
stack (see ',' below), and 'popped off' later (see '@S'). The stack will hold up to 20
entries during the execution of a command, but is cleared upon completion.

Some of the variables used internally in the editor are also available for use in
numeric arguments. The complete list of '@' arguments follows.

@i
@A
@B

@C

@D

@E
@Ffile$
@G

@Hstrng$

@I

@J

@K
@L

@M
@O

The value of variable 'i', where 'i' is a digit from 0-9.
The numeric argument preceding the last macro call.
The current edit buffer -- 0 if buffer T, 1 if buffer 0, 2 if buffer 1, •••
10 if buffer 9, and 11 when editing the command line (buffer C).
The current character number. This is the number of characters from
the beginning of the text buffer to the character at the cursor. when
the cursor is at the beginning of the buffer, this has the value O.
Returns the number of lines (set by QL) scrolled by the multiple-line
movement instant commands ©U and ©J.
The value of the error flag.
Returns -1 if 'file' exists on the current directory, 0 if it doesn't.
The length of the string argument just referenced (by an 'l','S', or 'C'
command).
Compares 'strng' to the characters at the cursor in the current t~xt
buffer. Returns 0 if they match, otherwise 1 or -1, depending upon
which is 'greater'. Wildcards (as in 'S' command) are acceptable in the
command string.
The number of pages read in from the input file. Pages are counted
only if they are delimited by form feeds. Pages written backward to or
read from the temporary file PMATE.TMP are not counted here.
The number of lines on the screen available for text display (does not
include the 3 status and command lines at the top of the screen).
The ASCII value of the key struck after an 'A' command.
The current line number. if the cursor is within the first line, this is o.
This is the line number of text in memory if auto-buffering is off (or
when not in buffer T), and the line number in the entire edit file when
auto-buffering is on.
The amount (in bytes) of working memory space remaining.
Number of pages written to the output file. Pages are counted only if
they are delimited by form feeds. The page number is decremented for
each page read back in again either by the automatic disk buffering

COMPLETE COMMAND SET 4-3

action, or by a 1-XA1 • Thus @O gives the page number of the line at the
top of memory ('A' command), so the current page can be quickly
computed.

@P The absolute memory address to which the cursor is pointing.
@Q The column of the previous tab stop.
@R The remainder of the last division performed.
@S The value of the top of the number stack. The number stack is popped.
@T The ASCII value of the character pointed to by the cursor.
@U Indicates whether auto-buffering is in effect. Returns -1 if it is, and 0

if not.
@V The current mode -- 0 for Command, 1 for Insert, 2 for Overtype.
@W The current right hand margin.
@X The current column that the cursor is in.
@Y The current left hand margin.

· @Z The column of the next tab stop.
@@ The value of the byte in memory pointed to by variable 9.
@/ The current auto-indent level.
"x The ASCII value of the character x, where x is any character.

Block operations. Commands which take a numeric argument to indicate the
number of characters or lines can also be used to act upon a defined 'block'.

T

Tag the current cursor position as beginning of block. (Equivalent to
'©T' instant command.)
Move the cursor to the tagged position, and use the difference between
the old cursor and the tagged position as the numeric argument.

If you wish to type out a large block of text, move the cursor to the beginning
of the block, use 'T$$' or '©T' to tag that position, then move the cursor to the end
of the block and print out your text with '#XT'. '#' is also very useful with delete
commands, and with buff er commands.

A tagged block must reside entirely in memory. If a tagged position must be
scrolled to the disk, attempting to access this block with a '#' command prefix will
produce the error message •BLOCK TOO LARGE•.

VARIABLE AND NUMBER STACK COMMANDS

nVi Set variable i (i is a digit from 0-9) to the value of numeric argument
n. So '@C+3V2' sets variable 2 to 3 more than the current character
position.

nVAi Add the value of numeric argument n to variable i. If n is missing it
has the default value of 1, so variable i is incremented. '3VA5' adds 3
to variable 5.

n, Push numeric argument n on the number stack

THE ERROR FLAG

Certain commands can produce 'non-fatal' error conditions. For example, if
the cursor is already at the end of the text buffer, an 'M' command cannot move the
cursor any further. The command string execution will not be interrupted to give

4-4 PMATE USERMANUAL AND INTERFACE GUIDE

an error message. However, it is possible to determine that an error condition
existed by looking at the 'error flag'. This error flag is set to -1 to indicate an
error condition following certain commands (these commands will be specified
later). In addition, it is possible to suppress some 'fatal errors', such as would
occur if a string cannot be found during a search command. If these error messages

. are suppressed, the error flag will indicate whether an error has occurred.

@E Gets the value of the error flag. The error flag is reset before
executing a command string, and every time it is tested by '@E'. It is
also reset when beginning an iteration.

E Set the error suppress flag. This flag is reset before executing a
command string, and by every command which might test it.

MODE AND FORMAT COMMANDS

nN Change modes. If n=O, remain in COMMAND MODE. If n=2, go into
OVERTYPE MODE. For any other 'n', or 'n' missing, go into INSERT
MODE. This is similar to the instant commands '©N' or '©V', except
that when '©X' returns to command mode, execution of the original
command can continue.

PMATE has an automatic 'word-wrap' feature, active when in 'FORMAT MODE'.
A line will then end on the last complete word which fits within the allowed line
length. A carriage return is entered only to indicate that the next word must begin
on a new line (end of paragraph).

nF Enter FORMAT MODE. The line length is set to 'n'

F Toggle in and out of FORMAT MODE. Go into FORMAT MODE if you' re
not there already, and leave it if you are.

CURSOR MOTION COMMANDS

The following commands move the cursor. While the cursor can also be moved
using instant commands, the construction of powerful command strings requires
cursor motion command characters.

+/-nM

+/-nl

Move the cursor n characters. If n is positive, the cursor is moved
forward. If n is negative, the cursor is moved backward. If n is 0, no
action is taken.

Move the cursor n lines. Consider the following example:

line a
line b
line c
lined
line e

Suppose the cursor is on the 'e' in 'line c'. '1L' or 'L' will move the
cursor to the beginning of line d. '2L' will move it to the beginning of

+/-nP

· +/-nW

A
z

COMPLETE COMMAND SET 4-5

line e. 'OL' moves to the beginning of the current line, line c. '-L' or
'-1L' move the cursor to the beginning of line b, while '-2L' moves it to
line a.

Move the .cursor n paragraphs. When not in FORMAT MODE, this
behaves just like 'L'. When in FORMAT MODE, it seeks only the CR
which forces the next word to begin on a new line.

Move the cursor n words. Words are separated by any combination of
any number of spaces, tabs, and carriage returns. OW moves to the
beginning of the current word. If n is negative, the cursor is moved to
the beginning of the nth preceding word. If n is positive, the cursor is
moved to the beginning of the nth following word.

If in the execution of an 'M','L','P', or 'W' command, the cursor would
be moved past the end of the edit buffer, it is placed at the end, and
the error flag is set. Similarly, if the cursor would be moved before the
beginning of the edit buffer, it is placed at the beginning, and the error
flag is set. The value of the error flag is obtainable by the numeric
argument @E. It is -1 (true) when set, 0 (false) when clear.

Move the cursor to the beginning of the current text buffer.
Move the cursor to the end of the current text buffer.

DELETION COMMANDS

+/-nD

+/-nK

Delete n characters starting at the cursor. If n is positive, characters
are deleted beginning with the one pointed to by the cursor, and
proceeding towards the end of the current text buffer. If n is 0, no
action takes place. If n is negative, the first character to be deleted is
the one just before the cursor. Characters are then deleted proceeding
towards the beginning of the text.

Kill n lines starting at the cursor. 'Lines' are defined as in the 'L'
command. So 'K' deletes all characters starting at the cursor, up to
and including the CR at the end of the line. '2K' will delete this and
the next line too. 'OK' deletes characters starting just before the
cursor and proceeding back through the text until, but not including,
the CR at the end of the preceding line. '-1K' deletes this much, and
the line before also. 'OKK', for example, will delete the line which
contains the cursor, no matter where within the line the cursor is.

INSERTION COMMANDS

nl

Insert the string which follows into the text immediately before the
cursor. 'lstring$' would insert 'string'.

If 'I' has a numeric argument, the character represented by that ASCII
value is inserted into the text. If the input radix is decimal, '651' will
insert 'A'. Using this command, any character at all can be inserted

4-6 PMATE USER MANUAL AND INTERFACE GUIDE

into the text.

n\ Insert the ASCII string representing the value of argument n in the
current output radix. The string is inserted immediately before the
cursor. If variable 0 has the value 23, '@0\ I $@0+3\' will insert '23 26'
into the text.

R Replace the text immediately following the cursor with the string which
follows. No text is moved around. The new characters just overwrite
what used to be there. If the cursor is near the end of the text buffer,
and there are not enough characters to replace, an error message is
given, and the substitution is not performed.

nR When 'R' has a numeric argument, the character represented by that
ASCII value replaces the character already at the cursor position.

STRING SEARCH COMMANDS

+nS Search forward, starting at the cursor, tor' an occurence of the string
which follows. If n is present, search only through the next n lines
(defined as in the 'L' command). If n is missing, continue the search
until the end of the edit buffer is reached. The cursor is left positioned
just after the located string.

-nS Search backward, starting just before the cursor, for an occurence of
the string which follows. If n is present, search only through the
preceding n lines (defined as in the 'L' command). If n is missing (i.e.
'-Sstring') continue the search back to the beginning of the edit buffer.
The cursor is left positioned on the first character of the located string.

If the string is not found, normally an error message is given. However, in some
instances it is important to be able to continue execution of a command string after
all occurences of the string have been found. No error message will be given, and
command execution will continue, if the •Error Message Suppress Flag• is set. This
flag is set by the 'E' command, and is reset upon the completion of every search. If
this flag is set, and an error does occur, the •Error Flag" will be set. The value of
the error flag is given by '@E'. It is -1 (true) when set, 0 (false) when clear.

Upper case ch&racters in the search string will match only upper case characters in
the text. Lower case characters will match either upper or lower case in text. (To
match only lower case, see ©L wildcard below).

The following 'wildcards' can be used in the search string to match any of several
specified characters.

©N Match anything but the character following. 'SMA©NTE$' will find
'MALE' or 'MADE' but not 'MATE'.

©E Match any character. 'MA©EE' will match 'MALE', 'MADE', and 'MATE'.
©L Take next character literally. This allows an actual wildcard character

to be searched for. 'SMA©L©EE' matches neither 'MALE' nor 'MADE',
but only 'MA©EE'.

©S Matches either a space or a tab.
©W Matches any word terminator (any character other than a letter or a

COMPLETE COMMAND SET 4-7

number).

STRING CHANGE COMMANDS .

. nC Search forward or backward for the string which follows as in 'nS'
(wildcards are allowed). Change the located string to the second
following string. 'Cstring1 $string2$' locates the first occurence of
'string1' and replaces it by 'string2'. If the string cannot be located,
errors are treated as for 'S'. In particular, error messages can be
suppressed.

GLOBAL COMMANDS

Some commands which only act on the text currently in memory have 'global'
counterparts, which, if necessary, will read in more text from the disk, and page
through the entire edit file.

UA Move the cursor to the beginning of the current edit file.

UZ Move the cursor to the end of the current edit file.

nUS Search forward, starting at the cursor, for an occurence of the string
which follows. If n is present, search only through the next n lines
(defined as in the 'L' command). If n is missing, continue the search
until the end of the edit file is reached. The cursor is left positioned
just after the located string.

nUC Search forward or backward for the string which follows as in 'nUS'
(wildcards are allowed). Change the located string to the second

. following string.

SETIING TAB STOPS

By default, tab stops are set every 8 spaces, but this assignment can easily be
modified. A maximum of 15 tab stops can be defined.

YK Kill all tab stops. A tab is now equivalent to a space.

nYS Set a tab stop at column 'n'.

nYD Delete the tab stop at column 'n' (if there is one).

nYE Kill all old tab stops, and set new ones at every 'n'th column. '8YE'
restores the conventional settings.;

nYI Set the default indent to column 'n'. If 'n' is 0, no indent is used. See
the next section for use of indent~.

For example, 'YK10YS30YS' would set up tab stops at columns 10 and 30. This
setting might be useful for assembly language programming with labels in the first

4-8 PMATE USER MANUAL AND INTERFACE GUIDE

column, then instructions, and then comments. You could then save a version of
PMATE permanently containing these tab settings (see 'XD' command).

The following commands make it easy to change tab settings without altering the
current position of the text.

nYF For. the next 'n' lines, beginning at the cursor, replace all tabs with the
appropriate number of spaces.

nYR For the next 'n' lines, beginning at the cursor, replace blocks of spaces
by tabs wherever possible.

IN-LINE TEXT FORMATIING

When in FORMAT MODE, it is possible to set tab stops and left and right margins
in non-printing control lines embedded directly in the text. This is necessary when
these parameters must change within the text. Even if not, it is still useful to put
this format information on the first line of the text file so you do not need to
remember which margins and tab stops you used the last time you edited this file.
PMATE will recognize up to 30 embedded formats in memory at one time.

These control lines must begin with a '©F' and end in a carriage return. Any
such line is not printed by the XT command so that any unprintable language can be
entered here. Certain letters are recognized as 'commands', and must often be
followed by a number. These commands can be strung together when separated by
a semicolon.

Ln Set the left margin to column 'n'.

Rn Set the right margin to column 'n'.

K Kill all tab stops.

Sn Set a tab stop at column 'n'.

Dn Delete the tab stop at column 'n'.

En Kill old tab stops, and set new ones at every 'n'th column.

In Set an indent to column 'n'. If 'n' is also a tab stop, tabbing to this
column will cause all subsequent text to indent to this column until a
CR is reached. For instance, the '©FIB' line at the beginning of this
document causes the tab after the 'In' to indent this entire paragraph

The line:

©FL5;R50;E10

sets the left margin to column 5, the right to column 50, and sets a tab stop at
every 10th column.

Any margin or tab stop information not specified in the format line reverts to
the default. That is 0 for the left margin; the right margin default is set by the 'F'

COMPLETE COMMAND SET 4-9

command; and the tab stop defaults by the 'Y' commands.

FLOW CONTROL COMMANDS

Conditional branching and iteration within commands make possible the
construction of command strings equivalent to small text editing programs.

Iteration is accomplished as follows:

n[••• m]

••• ' represents any command string. This command string will be executed n
times. If n is missing, it will be iterated 64K times. If n is 0, the command string
in brackets will be skipped over. If n is -1, the command string will be executed
once. Thus, if iteration brackets are preceded by a logical expression, the enclosed
command string will be executed once if the expression is true, and skipped over if
the expression is false. m is an optional numeric argument. If it is present,
iteration of the loop will end prematurely if m becomes non-zero (true). If m is
missing, its value is that of the error flag. That is, the iteration of the loop will be
terminated if the error flag has been set.

'S[D]' has the same effect as 'SD'.
'SVO [D-VAO@O=O]' also has the same effect as 'SD'. 'SVO' initializes variable O.

Within the iteration brackets, -VAO decrements variable O. the iteration will
continue until the final numeric argument is true, when variable 0 is O.

' [Chello$goodbye$] ' changes all occu rences of 'hello' to 'goodbye'.
'[Chello$goodbye]' changes the first occurence of 'hello' to 'goodbye]'

(remember, all string arguments must be terminated by an escape).

Iterations can be nested to a maximum depth of 1S.

I [•••]

I[•••][•••]

Execute the expression in brackets if logical expression 'I' is true. Skip
past matching bracket if it is false.

Execute instructions within first set of brackets if logical expression 'I'
is true; otherwise execute instructions within second set.

Further control of these iteration. and if-then loops is offered by the 'next' and
'break' commands which are only meaningful within matching iteration brackets.

n" Next -- if 'n' · is non-zero (true) or missing, proceed to the next
iteration

n Break -- if 'n' is non-zero (true) or missing, exit immediately from the
enclosing iteration brackets.

As with other command characters, either upper or lower case brackets ({ } or [])
can be used for iteration. However, the above 'break' and 'next' commands do
distinguish case. They skip right past '}' to the next '] '. Typically, put if-then­
else constructions in upper case ({ }) so that any 'break' or 'next' command within
will exit the desired iteration loop (not just the''if' clause).

4-10 PMATE USER MANUAL AND INTERFACE GUIDE

NOTE: Be careful, PMATE can easily be fooled by iteration brackets within
strings. Make sure the next ']' PMATE finds is intended to be an iteration bracket,
and not part of a search or insert string.

Conditional and unconditional branching within a command string is permitted.
The proper point to branch to is designated by a label. A label is any character,
preceded by a':'. ':A' and':#' are examples of valid labels. The branch command
is:

nJ If n is missing or non-zero (true), transfer control to the command
immediately following the referenced label. If n is 0, proceed with
normal command execution. '@M>100JL$10K:L' will kill 10 lines if
there aren't more than 100 bytes of memory left. 'JL$1000K:L' does
nothing.

Be sure never to jump in or out of an iteration loop. this will lead to
very erratic results.

Finally, it is possible to exit at any point from an entire macro.

n% Exit macro -- if 'n' is non-zero (true) or missing, exit from macro.

If you are a structured programming fanatic, you may find the 'J' command as
useless as the 'GO TO'. All the control structure you will ever need can be found in
the iteration brackets. You've got the 'IF-ELSE-THEN', and the 'DO-UNTIL'. Have
fun!!

BUFFER COMMANDS

The editor actually contains 11 buffers into which text can be entered. The
buffer which is initially used is called the 'T' (for 'text') buffer. The other buffers
are labelled 0-9. Independent text can be contained in each of these buffers. Text
can also be transferred from one to the other. The buffer which is currently being
edited is displayed in the status line. The instant command '© ' causes the
command buffer to become the current edit buffer, and 'C' is displayedin the status
line.

All buffer areas, including the command buffer, expand and contract
dynamically. Any buffer grabs as much memory as it needs, until the total available
memory is used up.

In the followrng buffer commands, 'b' refers to a buffer number, either 0-9, or
'T'. In all cases, b can be left out, and buffer 0 will be referenced. Some
commands have a numeric argument, 'n', which refers to the number of lines to be
moved or copied. 'n' can be positive or negative, and the effected lines are
determined as in the 'L' and 'K' commands.

BbK Kill buffer b. All the text in buffer b is deleted, and any space it took
up is reclaimed.

BbE

nBbC·

nBbD

nBbM

nBbN

BbG

COMPLETE COMMAND SET 4-11.

Buffer b becomes the current edit buffer. Buffer 'T' is the initial edit
buffer. When the edit buffer is changed, the cursor location of the old
edit buffer is preserved. When the old edit buffer is reinstated, the
cursor is re~tored.

n lines from the edit buffer are copied to buffer b. The old contents of
buffer b are destroyed. The cursor in buffer b is placed at the end of
the entered lines. The copied lines in the edit buffer are preserved,
and the cursor is placed after them.

n lines from the edit buffer are inserted into buffer b (just before the
cursor). The copied lines in the edit buffer are preserved, and the
cursor is placed after them.

n lines from the edit buffer are moved to buffer b. The old contents of
buffer b are destroyed. The cursor in buffer b is placed at the end of
the entered lines. The copied lines in the edit buffer are deleted.

n lines from the edit buffer are inserted into buffer b (just before the
cursor). The copied lines in the edit buffer are deleted.

Get the contents of buffer b. This is inserted just before the cursor.
The contents of buffer b are not effected.

One common application of these buffer commands is to move or copy blocks of
text. For example, 'BM' would move one line of text to buffer 0, after deleting
any old text there. 'BN' could then be repetitively executed (keep hitting escape),
each time moving the next line of text to the end of buffer O. A whole block of
text can in this manner be assembled in buffer O. This is just an alternative to
counting lines and typing '15BM$$'. The cursor in the edit buffer can then be
moved somewhere else, and 'BC' will get back that block of text to this new
position.

When operating in auto-buffer mode, you will not usually see a 'MEMORY SPACE
EXHAUSTED' error message. However buffers other than 'T' can take up the
available memory, as they are not disk-buffered. Thus, 'BM' and 'BC' commands
may not have enough room to execute. If very large blocks of text need to be
moved, 'XO' and 'XI' commands can move them through a temporary file.

EXECUTING MACROS

The contents of any buffer can be executed as if it were a command •

• b Execute buffer b. Note: there is no default option, b must be present.

An executed buffer can in turn execute another buffer. This can be done to a
level of 15 deep. There are two methods that can be used to easily insert a
command string into a buffer for execution as a macro. The most straight-forward
is to change the edit buffer to the one which is to hold the command string. Then
the command can easily be entered and edited in insert mode. In command mode, it

4-12 PMATE USER MANUAL AND INTERFACE GUIDE

is difficult to enter an escape into the text area. Then change the edit buffer back
to the original. An alternative method is to just type the command string, as if it
were to be executed now. When it is done, the instant command '© ' is used to edit
the command string. 'BbM' can then be used to move the macro to buffer b where
it can be executed by t~e command '.b'.

1% Return early from macro if 'I' is true (non-zero) or missing. This is
like a subroutine 'RET' statement. It makes it easy to return wt)en a
specified condition is met.

STRING ARGUMENTS

Commands such as 'l','S', and 'C' take string arguments. String arguments
usually follow the command directly, but there are methods to get the arguments
from other places. The character that signals to the editor that this is not an
ordinary string argument is a '©A'. One place that string arguments can be taken
from is the contents of a buffer.

©A@b Get string argument from buffer b.

For example, suppose buffer 2 contains 'trash'. then 'S©A@2$' will search through
the text for 'trash'. 'l©A@O$' is equivalent to 'BG'.

When a buffer is executed as a macro, it is possible for the macro command to
get string arguments from the command string which called it.

©Aa get string argument from calling command. 'a' is a letter from A-Z.
'A' refers to the first passed argument, 'B' the second, etc.

This should be clearer after an example. Suppose buffer 1 contains:

IDear Mr. $1©AA$1,
You, Mr. $1©M$1 have the opportunity to be the first on your block in

beautiful $1©AB$1 to own your own copy of an exciting new editor. Imagine what
you and Mrs. $1©M$1 can do with it. The rest of $1©AB$1 will be so jealous.
Blahhh, blahhh, blahhh$

then the command '.1 Jones$Cambridge$$' would enter the following in into the text:

Dear Mr. Jones,
You, Mr. Jones have the opportunity to be the first on your block in beautiful

Cambridge to own your own copy of an exciting new editor. Imagine what you and
Mrs. Jones can do with it. The rest of Cambridge will be so jealous. Blahhh,
blahhh, blahhh

Unfortunately, that is not all this command will do. After '.1' is executed, the
editor will come back and execute the command 'J '. When it goes off to execute
buffer 1, PMATE has no idea how many string arguments will be required, and so it
doesn't know where in the command string to return to execute the next command.
It is necessary for buffer 1 to tell it where. The number of passed string arguments
must be set in the macro by the 'QA' command (see 'Q' commands).

COMPLETE COMMAND SET 4-13

If buffer 1 contains '1QAl©M$' , the command '.1' would have the same
effect as the command 'I'. Similarly, if buffer 1 contained '2QAC©M$©AB$', '.1'
would have the same effect as 'C'.

When macros are nested several levels deep, the string arguments can also be
nested.

COMMAND STRING FORMATIING

Since command strings are in fact text editing programs, facilities have been
added for formatting these command strings for easy reading and modification.
Spaces, tabs, and carriage returns are all ignored as commands.

Space
Tab
CR

:A

Spaces, tabs, and carriage returns (as commands) are all ignored. Thus
they can be placed between commands to enhance readability.

A semicolon indicates that what follows is a comment. All characters
through the next CR are ignored.

A command string can then be written to look like a well commented
program. For example, here's a short command string that will change
all upper case alphabetic characters to lower case, leaving everything
else alone.

A
[
@T<"A JA

@Tl" VO

D @01
-M

M

;START AT BEGINNING OF EDIT BUFFER
;BEGIN ITERATION
;IF THE CURRENT TEXT CHARACTER IS NOT AN
;ALPHABETIC CHARACTER (IF IT'S ASCII VALUE
;IS LESS THAN THAT OF 'A'), JUMP TO LABEL 'A'

;CHANGE CHARACTER TO UPPER CASE BY 'OR'ING
;IT WITH ASCII VALUE OF SPACE (20H).
;SAVE RESULT IN VARIABLE O.
;DELETE OLD CHARACTER AND INSERT SHIFTED ONE.
;MOVE BACK TO SAME CHAR

;MOVE CURSOR TO NEXT CHARACTER, SETIING ERROR
;R.AC IF IT IS AT THE END
;CONTINUE WITH NEXT CHARACTER, UNLESS ERROR
;FLAG HAD BEEN SET

Of course, the whole command could also have been written as:
A[@T<" AJA@TI" VOD@Ol-M:AM]

And here's a much better way to do the same thing:
A[@T<" A[M][@Tl" R]@T=O]

4-14 PMATE USER MANUAL AND INTERFACE GUIDE

PERMAN ENT MACROS

You will find that you will write some macros that you will wish to use over and
over again. These can be made permanent. Permanent macros are given .a label
that can be any character other than a digit.

.a Execute permanent macro 'a', where 'a' is any character other than
0-9.

To add or remove a permanent macro, it is necessary to edit the 'permanent
macro area'. This area can be copied to or from the text buffer by the 'QMC' and
the 'QMC' commands (see 'Q' commands). This area must begin and end w,ith a
'©X'. The '©X' is also used to separate different macros within the area.
Immediately following each '©X' is the character which labels the macro, followed
by the macro itself. Here is a macro area containing macros '#' and 'C':

©X# lyou have just executed macro#$
©XC 2QAEC©AA$©AB$
©X

Executing the command '.#' will then insert 'you have just executed macro #'
into the text. The command '.C' will behave just like 'C', except it will not
generate an error message if the string is not found. You can think of this
permanent macro facility as an ability to add your own commands to PMATE's
command set. A new version of PMATE can now be generated incorporating these
new commands (see the 'XO' command). You may also define your own 'Instant
Command' by configuring PMATE to execute a given permanent macro for a defined
keystroke (see CONFIGURATION GUIDE chapter).

It is possible to define a macro which PMATE executes initially every time it is
entered. The first macro in the permanent macro area will be executed as part of
PMATE's initialization procedure if it is preceded by a ©I (tab), rather than the
usual ©Xx (where x is the name of the macro). This macro can even end in 'XH',
generating a program that acts on a file and returns, never displaying anything on
the screen. If ©S, rather than ©I precedes the first macro, this macro will still be
executed initially, but the files specified in the command line following 'PMATE' will
not be opened. The command line can then be referenced as a string argument by
using '©A:'. For instance, 'l©A:$$' will insert the command line into the text
buffer. The command line must be fetched immediately if it is needed, as it is no
longer available after any file activity has taken place. This capability allows you
to create a customized version of PMATE, which can process commands given
directly form the CCP.

BREAKPOINTS

To aid in debugging complex commands and macros, PMATE includes a
'breakpoint' and 'trace' facility.

? Cease executing the command. PMATE is now in TRACE MODE. The
cursor in the command area points to the next command to be
executed. The current value of the numeric argument is displayed in
the status line. Instant commands are active, and you can go into, and
out of INSERT MODE. If you strike the escape key, command execution

COMPLETE COMMAND SET 4-15.

will resume as normal, until the next '?' command. However, if you
strike any other key that is not an instant command, PMATE will
execute just the next command, and remain in TRACE MODE.

If you cannot figu~e out why your macro isn't behaving, insert several ? 's into
. the macro at strategic locations, and use them to examine what has happened after
partial execution of the command.

KEYBOARD INPUT

G Get a key from the keyboard as follows. Pause during the execution
of the command and update the display. The string argument following
'G' is displayed as a prompt in the command display area. Instant
commands are active. Execution of the command is continued as soon .
as any character (other than an instant command) is entered from the
keyboard. The ASCII value of this key is available by using '@K' in a
numeric argument.

OG Display the string argument following 'G' as a prompt in the command
display area, and then proceed with command execution, without
waiting for keyboard input.

This command gives PMATE 1/0 POWER. PMATE can stop in the middle of an
editing operation, and ask you how to proceed from there. Macros can be written
to expand upon the power of the 'G' command -- accepting either character strings
(putting them in an available text buffer}, or numbers (putting them in variables).

MISCELLANEOUS COMMANDS

nQA . Set the number of passed string arguments to 'n'.
description.

See macro

QB Ring bell. This is useful for indicating to the operator that a long
command string has finished executing. It is also useful for playing
annoying rhythms.

nQC Set the control shift character to the character represented by the
ASCII value 'n'. This shift character will itself be ignored when input,
but will enter the next character as a control character. This is useful
if you wish to enter a character into the text which would otherwise be
interpreted as an instant command.

nQD Delay for a time proportional to 'n'. This can be used in conjunction
with 'L' and 'QR' to implement variable speed scrolling. It can also be
used to arrange impressive demonstrations, whereby PMATE appears to
have a mind of its own, displaying various messages.

nQE Set type-out mode to 'n'. (See 'XT' .)

nQF Set the 'form feed' character to that represented by the ASCII value
'n'. This is the character that separates pages on the disk files.

4-16 PMATE USER MANUAL AND INTERFACE GUIDE

nQG Turn off garbage stacking if n=O. If 'n' is non-zero, or missing, turn on
garbage stacking.

nQH Insert 'n' spaces at the cursor. This is useful for operations such as
centering. Since all spaces are inserted at once, this operation is much
faster than ·,n [t $] '.

nQI Set the input radix to numeric argument 'n'. If 'n' is missing, the radix
is set to decimal. Remember, if the old input radix is octal, '10QI' will
not set it to decimal, but rather, since the 10 is interpreted in the old
radix, the input radix would remain octal.

nQJ Shift the text display up 'n' lines (or down if 'n' is negative), leaving
the cursor on the same character it was on. This command will only

. shift the display as far as possible without removing the cursor from its
allowed screen positions.

nQK Set backup mode for files. If 'n' is 0, don't create a .BAK file from the
old input file. If 'n' is non-zero or missing, create them.

nQL Set number of lines for instant commands ©U and ©J to scroll.

QMG Get the contents of the permanent macro area, and insert it into the
current text buffer just before the cursor.

QMC Copy the entire current text buffer to the permanent macro area. The
previous contents of the macro area are lost! I If you wish to save
them, be sure to do a 'QMG' first, then add to or modify the text before
copying it back.

nQNstrng$
Direct console 1/0, similar to the 'G' command. Output 'strng' directly
to the console. If 'n' is missing or non-zero, wait until a key is struck.
The ASCII value of this key is then available by using '@K' in a numeric
argument. Unlike 'G' input, this is direct console input, without any
preprocessing or instant command translation.

nQO Set the output radix to 'n'. If 'n' is missing, the radix is set to decimal.

nQP Set page size to 'n'. This is the number of lines appended or written as
one page by the disk input and output routines. If n is 0, pages are
delimited by form feed characters, instead of being a fixed number of
lines.

nQQ Shift the text display left 'n' columns (or right if 'n' is negative),
leaving the cursor on the same character it was on. This command will
only shift the display as far as possible without removing the cursor
from its allowed screen positions.

nQR Redraw screen. The argument '@K' will now contain the value of any
key struck, or 0 if none. Use this for creating interactive command
strings where PMATE goes on doing something and showing you the
results until you tell it to do something else.

nQS

_nQT

nQU

nQV

nQX

nQY

nQZ

nQI

nQ-

Q#

nQ/

COMPLETE COMMAND SET 4-17.

Set the upper case/lower case shift character to the character
represented by the ASCII value 'n'. This shift character will itself be
ignored when input,. but will shift the case of the next character
entered. This is useful if you are using an upper case only· keyboard.

Type the character represented by the ASCII value 'n' on the listing
device.

·Set PMATE to automatic disk buffering mode if 'n' is non-zero or
missing. If 'n' is 0, automatic disk buffering is disabled.

Enable tab-fill unless 'n' is O. When a character is inserted past the
end of an existing line, PMATE will fill in as many tabs and spaces as
needed to fill out the line {see QY). However, if tab-fill is not
enabled, only spaces will be used.

Set screen cursor to column 'n' on the same line it is now on.
Depending on the state of the 'free-space' flag {see QY), the cursor
may or may not be able to move past the last character in a line if the
required column is off the end of the text.

Set the 'free-space' flag if 'n' is 0 to allow the screen cursor to move
into free space, past the end of a line. When a character is inserted at
such a cursor position, the necessary amount of spaces {or tabs -- see
QV) is inserted into text to extend the line out to where the cursor
appears. If 'n' is non-zero, reset the flag, so that the cursor is
restricted to remain on actual text.

Don't allow cursor to move past column 'n'. Use this when you wish to
restrict the width of entered text -- usually to provide clean output on
a limited width printer. When the cursor reaches the restricted column,
it is inhibited from advancing, and the bell rings as a warning. If 'n' is
missing, the default width of 250 columns is restored.

Set byte in memory whose address is held in variable 9 to 'n'. This
command allows PMATE to alter any byte in memory {and of course,.
crash the system). In conjunction with '@@', a monitor could be
constructed in macros. Other macros might change 1/0 driver
parameters. However, for altering text, just move the cursor there and
use nR.

Sets flag to indicate whether numbers are displayed as signed or
positive only. If 'n' is 0, display as positive only, otherwise display as
signed number. This effects the argument display {ARG) in the status
line, as well as numbers inserted in the text by the '\' command. If
you type the command '@m$$' in order to discover how much memory
remains, and you see 'ARG=-30536' in the display {which will happen if
more than 32K of memory remains), you may wish to enter 'Oq-' to get
a more meaningful display.

Exchange the tag and cursor.

Set the auto-indent level to 'n'. After a CR is entered in overtype or
insert mode, PMATE will advance the cursor to column 'n'. The free-

4-18

nQm.

PMATE USER MANUAL AND INTERFACE GUIDE

space flag should be set (see QY) to use this feature, as spaces (or
tabs) are not actually inserted until a character is typed (so that blank
lines do not contain unnecessary spaces). If 'n' is missing, 'QI' will
increment the auto-indent level by 1 column, and '-QI' will decrement
it 1 column.

Set user variable 'm' to value 'n'. m is a digit from 0 to 9. These 10
user variables are available for use by user written 1/0 drivers. For
instance, you may wish to use one of these to control whether hard
copy output goes to a TIY console, or to a line printer. Or, you may
wish to be able to easily go between black on white, or white on black
video.

INPUT, OUTPUT, AND DIRECTORY MAINTENANCE COMMANDS

All input and output commands begin with an 'X'. This should help prevent
accidental 1/0, which could cause great upheaval.

Disk 1/0. PMATE provides automatic, bidirectional disk buffering facilities. When
in 'auto-buffer mode', files as large as 512 Kilobytes can be edited without having
to explicitly transfer pages between memory and the disk. Automatic disk buffering
is useful if you are editing a file larger than available memory. When in automatic
disk buffering mode, the commands L,M,P, and W, and the associated cursor motion
instant commands will not stop at the end of memory, but rather will scroll through
the disk, reading in more text as needed, and writing out text from the other end.
Auto-buffering is only in effect when editing an open file in buffert T.

If you are not using PMATE in auto-buffer mode, then it is necessary to break
files which are too large for memory into 'pages'. Pages are divided by a user
definable character (usually a form feed), or can be defined to be a fixed number of
lines (see the 'QP' command).

nXA

-nXA

nXW

-nXW

nXR

.-nXR

nXY

Append 'n' pages from the input file to the current edit buffer.

Bring 'n' pages already written out to the output file back into the
current edit buffer.

Write 'n' pages from the beginning of the current edit buffer to the
output file, deleting them from the buffer.

Write 'n' pages from the end of the current edit buffer back to the
input file (actually to a file called PMATE.TMP).

Replace 'n' pages, appending 'n' pages from the input file, and writing
'n' pages to the output file.

Replace 'n' pages, bring back 'n' pages from the output file, and writing
'n' pages back to the input file.

Yank 'n' pages from the input file. Each page overwrites the old one,
without writing it to the output file. BE CAREFUL -- this command is
only useful for reviewing an existing file, and except in special
circumstances, the file should be 'XK'ed when done.

XFfile1

COMPLETE COMMAND SET 4-19

If 'file' already exists, open it as the input file, and open 'file.$$$1 as
the output file (in this case, if 'file.$$$' already exists, it will be
deleted). If 'file' does not exist, create it and make it the output file
(this is the. way to create a new file). 'file' can be preceded by a drive
specifier ('A:', 1B: 1, 1C: 1, or 'D:')

XFfile1 file2

XE

XEfile

XJ

XJfile

xc

XK

XH

XDfile

nXlfile

nXI

Open 1file1 1 as input and 1file2 1 as output. 1file1 1 should already exist
on the disk (if not, it is opened as the output file), and 'file2' should not
(if it does, an error message is given). Both 'file1' and 'file2' may be
preceded by drive specifiers. ·

End of editing pass. Write the current text buffer to the output file.
Read in the remainder of the input file and write it to the output file.
Close the input and output files and clear the text buffer. If the
output file is the same as the input (with a $$$ extension), rename the
input file to 'file.BAK', deleting any old backup, and rename the output
file to have the same name as the old input file.

End of editing pass, as above -- but output file is renamed to 'file', and
the original input file is left undisturbed.

Start a new editing pass. Equivalent to an XE and then an XF of the
original file name. Useful for editing a page already written out with
XW or XR. Even on files which fit entirely in memory, don't go too long
without an XJ. This ensures that your editing work will be saved on the
disk in case of power failure, or catastrophic error.

Equivalent to 'XEfile', followed by reopening the new file.

Close input and output files as they are. Neither the contents of the
text buffer, nor the rest of the input file is written to the output file.
Even if the output file is a temporary one (with extension 1$$$1) no file
renaming takes place.

If in buffer T, delete the output file and clear the text buffer. If in
any other buffer, just clear that buffer without affecting the input and
output files.

Reboot the operating system, and return to its CCP (Console Command
Processor). This is the usual way to exit from the editor.

Duplicate PM ATE. Write it as it now exists to 'file.COM'. This output
file can later be renamed PMATE.COM

Auxilliary input. Read the first 'n' pages of 'file' into current edit
buffer at cursor location, even if another file is 'open' as the input file.
If 'n' is missing, read in the entire file. If the entire file is not read in,
the remainder can be read in later:

Input the next 'n' pages from the input file last defined by the 'Xlfile'
command. If 'n' is missing,·input the entire remainder of the file.

4-20

nXOfile

PMATE USER MANUAL AND INTERFACE GUIDE

Create 'file' and write 'n' lines of text, beginning at the cursor, out to
it. If n is missing, write out the entire current edit buffer •

. Directory Maintenance.

XSd

Xlfile

XX file

Other.

Change the currently logged in disk to 'd' ('A', 'B', etc.} For instance,
XSB logs in drive 'B'. PMATE will not respond to this command while
input and output files are defined. This command also resets the disk
system, and should be used when the current diskette is changed. (If
you are on drive B and change the diskette, type 'XSB$$' .}

Like system 'DIR' command. list all files which match 'file' (* and ?
may be included in the file specification). If 'file' is missing, the entire·
directory is listed. The directory listing is inserted in the text buffer,
at the cursor. This allows the directory to be printed, and otherwise
manipulated like text. However, if desired text is already in the text
buffer, it may be necessary to delete the directory text. Alternatively,
change the current text buffer before giving the XL command.

Delete 'file' from the disk. Ambiguous file names (containing * and ?)
are not permitted.

XM Call the system monitor. You can return without losing any text by
either executing a RET instruction, or jumping to location 103H.

nXT Type n lines, starting at the cursor, on the listing device. If n is
missing, type out the entire current edit file. There are 3 type-out

. modes (set by the 'QE' command). Mode 1 (the default mode) is
intended for printing programs or text on a regular printer. Tabs are
expanded to spaces. Format lines are not printed, but affect the
margins and tab stop settings. Other control characters are sent
through to the printer. Mode 0 prints text almost exactly like it is
displayed. Format lines are printed, escapes type out as 1$1, and other
control characters are printed as an up-arrow followed by an upper
case letter. This mode is useful for printing macros and for draft
output. Mode 2 is intended for use with intelligent printers which do
their own formatting. Carriage returns are only sent at the end of a
paragraph, tabs are not expanded to spaces, and all control sequences
are passed on to the printer. NOTE: Even in auto-buffer mode, nXT
will only type lines currently resident in memory. However, 'TnL#XT'
can be used to type out 'n' lines, reading them from the disk as
necessary. In addition, 'XT', without an argument, types out the entire
edit file.

Chapter V
MACRO EXAMPLES AND IDEAS

SOME DETAILED EXAMPLES

This chapter contains examples of macros, provided for use or study. These
macros are not intended to be polished final products, but are illustrative, and are
meant to provide you with a foundation on which to build, as well as stimulate your
imagination.

The best way to understand how and why these macros work is to enter them,
· try them, and then run them in trace mode. You should read up on trace mode and

breakpoints in chapter 4, but here's a summary. Put a question mark (?) at the
beginning of the macro, or at the place where you cease to understand what's going
on. At this point, the macro will 'single step', show you the results of its latest
operation, and wait for you to strike a key to continue.

This section contains some relatively simple macros, explained in greater detail
than later ones. Here's the first. Programmers often 'comment out' sections of
code. This is a way of deleting them from the program, but preserving the code just
in case. In many languages, this can be accomplished just by putting a semicolon at
the beginning of each line. You could go into insert mode, enter ';', then move the
cursor down, enter ';', move the cursor, and on and on. This isn't bad for a few
lines, but for more, try the command '1;$L$$'. This will insert the semicolon and
move the cursor all at once. Keep striking escapes, and the command will be
repeated, until you have reached your last line. Finally, try '20[1;$L]$$'. This
command will repeat the above sequence 20 times, commenting out 20 lines at a
time. Any time you need to perform a repetitive sequence, think macro.

Now that you can quickly create comments, the reverse problem might come to
mind. Have you ever needed to delete all the comments from a file? If you've
ever done that by hand, you will appreciate this macro which does it for you
automatically. Use it on programs, or on PMATE macros themselves -- generating a
version that will better fit in available memory (of course, always keep a copy of
the original). This macro assumes that comments begin with a semicolon, and it
deletes the comment starting at the semicolon, as well as any preceding tabs.

[S;$ -M -S©N©I$ M K I
$]

The left bracket starts a loop -- all comments will be deleted. Next, find a
comment by searching for ';'. Now we need to find all tabs preceding the
semicolon. Since the 'S' command left the cursor on the character just past the
semicolon, we must. move back one (-M) before looking for tabs. The next 'S'
searches backwards until it finds anything other than a tab (the ©N©I matches
anything except a control-I, which is a tab). The cursor will be left on that first
character found which isn't a tab. Then after 'M ', the cursor points to the entire
comment which needs deleteing. 'K' deletes the entire comment, as well as the
carriage return at the end of the line. The carriage return is then restored by the
'I', and the right bracket loops back to the start, looking for the next comment.
The macro will terminate when the first 'S' command is unable to find any more
comments, and so will produce an error message~

5-2 PMATE USER MANUAL AND INTERFACE GUIDE

Escape characters in text present problems for macro strings which need to
operate on them. For instance, if you wish to insert an escape into text, '1$$$' will
clearly not work, but '271' will. However, you may feel search or change is
hopeless. Well, here's a routine to change all escapes in text to dollar signs (in case
you ever need to write a chapter like this one).

[@T=27[36R] [M]@T=O]

'['starts iteration, for we wish to do the entire text buffer. '@T=27' tests the
character under the cursor to see if it's an escape (ASCII code 27). If it is, the
expression in the first set of brackets, '36R' is executed. This just replaces the
escape with a dollar sign (ASCII code 36). This could have also been expressed
'R$$', but it wouldn't be obvious to the reader that the first 1$1 is a dollar sign, and
the second 1$1 is an escape.
Anyway, if the the character at the cursor is not an escape, the expression in the.
second set of brackets is executed -- just move the cursor on to the next
character. '@T=O' tests to see if the cursor has reached the end of the text buffer
(always a null). If so, the iteration ends; if not, go back and check the next
character.

The command [Cblah$blew$] will change all occurences of 'blah' in the text
buffer to 'blew'. An often requested editing feature is a 'conditional change'
(A.K.A 'interactive search and replace'). This command would not change all
occurences of 'blah', but would stop at each one and ask you whether or not you
would like a replacement to be made. Put this command string in buffer 1, and type
'.1 blah$blew$$'.

2QA
[

S©AA$
GType escape to replace$
@K=27 [-C©M$©AB]

The first line sets the number of string arguments required from the calling
command (in this case, 'blah' is the first, and 'blew' is the second). The next line
searches for the first argument (blah). The 'G' command then gives a prompt,
displays the text buffer with the cursor pointing past the next 'blah', and waits for
you to respond. If you respond with an escape, '@K=27' is true, and the expression
in brackets will be executed. This will change 'blah' to 'blew' (the 1-C' is necessary
because the cursor has already been moved past 'blah'). If any key other than an
escape is hit,. the expression in brackets is ignored. The last line iterates back to
the first ' [' -- keep looking for the blahs. The process will continue until the last
blah, or until you hit control-C. Rememberi control-C will halt any runaway macro.

TEXT OUTPUT PROCESSING

PMATE does not internally perform many print functions often associated with
word processors. PMATE can be used with a separate output processor, or macros
can be written to do the job. Here are a few ideas to get you started.

MACRO EXAMPLES AND IDEAS 5-3

This macro will center a line. Start with the cursor anywhere on the line to be
centered.

L-M
@W-@X/2VO

OL
@OQH
L

;move to end of current line
;get one half the distance from right margin
;to current cursor position
;save it in variable O.
;back to beginning of line
;insert number of spaces computed above
;move on to next line

A macro to move the line flush with the right margin is also easy -- just get rid
of the 1/2 1 after the '@W-@X'.

Try this next example. Whichever character you leave the cursor on will be
replicated, leaving the rest of the line flush with the right margin. Use it, for
example, on a table of contents. Start with

Chapter 1.pg 1
Chapter 2.pg 24
Chapter 3.pg 30

Put the cursor on each decimal point in turn, execute the macro three times, and
you are left with

Chapter 1 • •• ••• pg 1
Chapter. 2 •• • pg 24
Chapter 3 ••• •••••••••••• pg 30

@XVO
L-M
@W-@XV1
@OQX
@TV2
@1QH
@OQX
@1 [@2R]

;save the current column in variable 0
;find end of line
;amount of space needing fill to variable 1
;back to original cursor position
;save the character there in V2
;fill out line with spaces
;back to original cursor position again
;now overtype the spaces
;with the original character

The last three lines could have been replaced with '@1 [@21] '. However, replaces
require much less overhead than inserts, so that the suggested method will execute
faster.

Now we can start to tackle page headings and numbering. Here is one simple­
minded approach. Suppose buffer 1 contains a one line heading which you would
like printed at the top of every page •. Suppose further you have put a 1#1 in that
line at the place where you wish a page number to be inserted. Buffer 1 might
contain:

Chapter 2 EXCITING DOCUMENT! page#

5-4 PMATE USER MANUAL AND INTERFACE GUIDE

Enter into variable 0 the first page number: '5VO$$' would be appropriate here if
chapter 2 started on page 5. Then the following macro will print out your file,
using the above header, and printing page numbers: '

[
B2K
B2E
B1G
A
S#$-D
@0\
VAO

XT
10QT
BTE
60XT
4[10QT)
@T=O)

;start iteration -- will type till end of buffer
;empty buff er 2
;edit buffer 2
;get prototype page header from buffer 1
;find its beginning
;find '#' and delete it
;insert page number there instead
;increment page number -- ready for next
page
;type header
;send a line-feed to skip line after header
;back to text buffer
;type next 60 lines of document
;send 4 line-feeds to complete a 66 line page.
;keep typing until the text buffer is finished

There are lots of ways to expand upon this. For documents larger than
available memory, have the macro read in successive pages. Define a print format
line, starting with a unique character (maybe '©P', or whatever pleases you). The
print macro will not type this line, but use its information for further formatting.
The print format can include output functions like double space, center (see macro
above), etc. Header information no longer needs to to be put in a buffer
beforehand, but can be moved there from the print format line as the macro
proceeds.

FORMS AND MATH

The 'G' command gets a character from the keyboard. Often, you may need a
whole string. The next macro gets a string from the keyboard, echoes what has
been typed up in the command/prompt line, and saves that string in buffer 9. The
string ends on a carriage return. In order to correct mistakes on entry, 'rubout'
will delete the last character entered.

B9K
[
G©A@9$

@K=13
B9E
@K=127[-D) [@Kl)

BTE
1

;delete old contents of buff er 9
;start iteration
;get a character, displaying contents
;of buffer 9 on command line
;if character is a CR, break (all done)
;now go into buffer 9
;if character is a rubout
;delete previously entered character
;otherwise, insert new character
;back to text buffer

One typical application of the above is in creating an interactive macro to fill
out forms. For instance, a preexisting invoice 'skeleton' might be read in. The
operator could then use the full capabilities of PMATE to fill in the blanks, or an

MACRO EXAMPLES AND IDEAS 5-5

'invoice macro' could set the cursor into each field, and prompt for information.
The entry would be accumulated in buffer 9, as above, and inserted in the text when
all done. The invoice macro could check for illegal entries, and prevent the user
from totally destroying the invoice form. Furthermore, the operator need not know
how to use PMATE.

Along with forms often goes the desire to add up some numbers. Some word
processors supply 'Math Packs' of varying sophistication. Here's a macro to get you
started in that direction. It adds the number pointed to by the cursor (the cursor
can point anywhere within) to a number stored in buffer 9.

[M (@T>"9) I (@T<"O)]
OV1
B9E
z
[

BTE
-M
(@T>"9) ! (@T<"O)
[M OVO] [

@T-"OVO]
B9E
-M
@E
@T+@0+@1VO

@0>"9[1V1 @0-10 R

] [OV1 @OR)

-M
1
BTE

;Move cursor until end of number is found
;initialize carry
;number to add to is in buffer 9
;move to end of that number
;iterate one digit at a time
;starting with least signf icant
;back to first number
;get next most significant digit
;not a digit?
;no, don't move past it
;O to VO is number to be added
;a digit -- gets its numeric value to VO.
;now go to buffer 9
;get next most significant digit
;done if out of digits
;add digit from text, and carry to it
;result to VO
;if greater than 9, set carry to 1, subtract 10
;and store result in text
;not greater than 9, set carry to 0
;and store in text
;R has moved cursor, so move back
;on to next digit

The number of digits stored in buffer 9 controls the precision of the result. For
example, if you start with '000000000', numbers up to 999,999,999 can be
accumulated. Automate by using further macros to call this one: add up rows,
columns, or whatever your format requires. The result can be moved back into the
main text buffer. How about subtraction, multiplication, or division?

MORE FUN WITH PRINTERS

This simple macro lets you type directly on your printer, using the keyboard, as
if it were a typewriter.

[
GDIRECT TYPE$
@K=13[13QT 10QT] [@KQT]
]

5-6 PMATE USER MANUAL AND INTERFACE GUIDE

The third line implements an auto-linefeed. If it finds a carriage return, it sends a
line feed also -- any other character is sent 'as is'.

Here's a macro which prints an alphabetized directory listing. It should suggest
many other applications:

B1K
B1E
XL$
A
[
BC

[
@H©A@0$<0 [BC] [L]

@T=O]
A
S©A@O$
-1XT
-K
A@T=O]

BTE

;clear buffer 1 to hold directory list
;go into buffer 1
;get a directory listing
;go to beginning of di rectory
;begin overall loop
;copy first file name to buffer 0 -- will try to
;find file names earlier alphabetically.
;this loop finds earliest file name
;compare next file name to earliest already
;found -- if this one is earlier, copy it to
;buffer 0, otherwise, advance to next
;iterate until end of directory list
;back to top of directory list
;match the earliest entry stored in buffer 0
;type it out
;and then delete it
;back to beginning -- continue unless
;list is now empty
;back to text buffer when all done

CURSOR MOTION

Presented here, without comment, are the macros used by PMATE to implement
the 'mixed' cursor motion instant commands. If you wish to customize cursor
motion to your own taste, this should give you a place to start.

up:
@V=2 [@X,-L@SQX] [-MOL]

down:
@V=2 [@X,L@SQX] [L]

left:
@V=2[@X>o[@X-1QX]] [-M]

right:
@V=2[@X+1QX] [M]

GETIING STARTED

Chapter VI
CONFIGURATION GUIDE

To initially configure PMATE for your system, it is necessary to run the program
CONPMATE. The file CONFIG.CNF must also be present on the default drive.
CONPMATE will then sign on, and present you with a menu of terminal choices. If
your terminal is present, strike the appropriate key. If your terminal (or a
compatible one) is not listed, you will need to enter your terminal parameters into
CONFIG.CNF as described below. CONPMATE will then think for about 15-30
seconds, creating a version of PMATE in memory, and then PMATE should sign on. It
is now necessary to save this version on disk. Type

XDPMATE$$

(if you haven't already read through the rest of the User's Manual, '$' represents
the ESCAPE key). This duplicates the current version of PMATE -- giving it the
name PMATE.COM. If PMATE.COM already exists on this disk, you could use PMATE1
(XDPMATE1$$) and rename it later.

GENERATING YOUR OWN CONFIGURATION FILE

If your terminal is not included in the CONFIG menu, you will need to generate
your own. Even if your terminal is included, you will probably later wish to modify
parameters in CON FIG.CNF to tailor the interaction more to your tastes.

CONFIG.CNF contains a series of questions and answers (in ASCII). If you
have a running version of PMATE, use it to create a custom configuration file. (If
PMATE is not yet running, use your current text editor). Configuration questions
require either a yes/no answer, a letter, or a series of numbers. All answers follow
three stars (***). Numbers may be in decimal or hex. Hex numbers are identified
by ending in 'H'. If more than one number is required, separate them by spaces.

Your custom version of CONFIG.CNF may be given a different name, as long as
it has extension CNF. When running CONPMATE, if no filename is specified
following the command, CONFIG.CNF is used for configuration, otherwise, the
specified file is used. For example, in order to configure a version of PMATE,
obtaining information from the file MYCONFIG.CNF, type:

CONPMATE MYCONFIG

THE TERMINAL MENU

Which terminal are you usingJ
CONFIG.CNF begins with the terminal menu which is displayed by CONPMATE.

If your terminal is included, enter its letter here. If you enter a 'Z' here,
CONPMATE will use the configuration parameters which you enter below. If this
entry is left blank, CONPMATE will print the TERMINAL MENU on the console, and
wait for keyboard input to tell it which terminal to use.

It is possible to add more entries to this menu, or to change the parameters
associated with any terminal. The very last section of CONFIG.CNF is labeled

6-2 PMATE USER MANUAL AND INTERFACE GUIDE

TERMINAL DATA. Each line in this section consists of the terminal letter, followed
by the answer to the next 28 questions (from 'are you using a memory mapped
display', through 'cursor blink count'). All answers are separated by commas.

CONFIGURING A VIDEO TERMINAL

Are you using a memory mapped displayl
Answer no.

Number of lines
Enter the number of lines on the terminal display (usually 24)

Characters per line
Enter the number of characters on each line of the terminal display (usually 80)

Now you need to enter the codes required by your terminal to perform certain
display functions. For each function, enter a sequence of from 1 to 9 bytes
(remember, hex codes require an 'H' -- decimal is assumed). In the next line,
following 'Delay ***', enter any delay your terminal requires after performing the
specified operation. This delay is given in milliseconds and assumes a 4MHZ
machine. If your computer runs at a different speed, it is necessary to scale the
delays accordingly. For instance, if a 20 msec delay is required, enter 10 to get the
proper delay for your 2MHZ processor.

Clear screen code
Enter the sequence which clears the screen.

Clear to end of line code
If your terminal has this feature, enter the sequence which clears from the

current cursor location to the end of the line. If your terminal does not have this
feature, leave blank.

Line insert and delete can be used to support much faster scrolling of display
text. If your terminal supports these features, fill in both:

Code to insert line
Enter codes to insert a line at the current cursor position (which is guaranteed to

always be at the beginning of a line).

Code to delete line
Enter codes to delete the line the cursor is on (again, the cursor is guaranteed to

be at a line beginning).

There are many methods in use of sending cursor addressing information to
video terminals. Most all can be included in the following generalization.
1) send a bunch of codes
2) send either the x or the y coordinate
3) send a bunch more codes
4) send the coordinate not al ready sent
5) send a final bunch of codes.

CONFIGURATION GUIDE 6-3.

Cursor addressing lead in
Enter the preliminary sequence. (This will always be present.)

Is Y coordinate given first?
Enter yes if line information is sent before column information, otherwise enter

no.

Is cursor position information in ASCI 11
Actual cursor coordinates can be sent as one byte (binary), or as an ASCII

sequence, 'spelling out' the coordinate in decimal. Answer 'yes' for the latter.

X offset
Enter a number which is added to the desired column before it is shipped to the

terminal. If a byte of 0 gets the left-most column, just enter an offset of O.

Y offset
Enter the number which gets to the top-most line.

Enter any codes between X and Y
Enter the sequence described in 3) above. Often, this is blank.

Enter any terminating sequence
Enter the sequence described in 5) above. This too is often blank.

Delay
Enter any delay needed after the entire cursor addressing sequence.

Is it necessary to suppress sending a character to bottom right position of
screenl

In many terminals, any time a character is written to the last column of the last
row, the entire display will scroll up one line. Note that some terminals (such as
the Lear Siegler ADM-3A) contain a switch to enable or disable this feature. But if
your terminal persists in such behavior, enter 'yes'. PM ATE will then refrain from
entering any characters in this corner. Alternatively, decreasing the line size
(usually from 80 to 79) will also prevent any characters from being written in the
last column, and will keep all displayed lines the same length.

CONFIGURING A MEMORY MAPPED DISPLAY

Are you using a memory mapped displayl
Answer yes.

Now skip past the TERMINAL CONFIGURATION section to the MEMORY
MAPPED CONFIGURATION section, and answer:

Number of lines
Number of text lines on the screen.

Characters per line
Number of characters on each text line.

6-4 PMATE USER MANUAL AND INTERFACE GUIDE

Location of video memory
Fill in the initial RAM address of the video memory. Remember, add an 'H' to a

hex address. For 8086/8088 machines, fill in the segment of the video memory,
assuming it begins at offset o.

Spacing between lines
The address difference between the beginning of adjacent lines. This is usually

just the number of characters on each line -- but makers of 80 character video
boards often space lines by 128 characters in memory. (This makes for easier
cursor calculations, but uses more addressing space).

Next, assembly language routines to perform certain simple functions are
required. Since CONPMATE does not have an assembler built in, these routines must
be hand assembled, and the resulting bytes entered. (Or, use the alternative·
configuration procedure given in the next chapter - modify IOPATCH.ASM, and use
an assembler.) Each of the following routines can be up to 21 bytes in length.
These routines must preserve all registers except reg A.

Registers used for the equivalent 8086 function are given in parenthesis. The
extra segment register (ES) will always be pointing to the video ram segment. All
registers except BP should be preserved.

Routine to store reg A (Al) in memory pointed to by DE (ES:DI -- and
increment DI)

This is usually just:
STAX D 12H
RET C9H

and for the 8086:
STOSB AAH
RET C3H

If the byte to be displayed needs any processing (such as setting the high order bit),
this is the place to do it.

Routine to display cursor at memory pointed to by HL (ES:BX)
This routine displays a cursor at the specified position. If this requires

destroying the character in the video memory at that position, then this character
must be saved for later retrieval by the clear-cursor routine below. (Location
014EH may be used for this purpose, provided the maximum size of the cursor
display routine is cut to 20 bytes). In many displays, setting the high order bit of a
byte in video memory reverses the video at that point. This makes an effective
cursor, and the cursor set routine is:

for 8086:

MOV A,M
ORI 80H
MOV M,A
RET

OR ES: BYTE PTR [BX],80H
RET

7EH
F6H 80H
77H
C9H

26H 80H OFH 80H
C3H

CONFIGURATION GUIDE 6-S

Routine to clear cursor from memory pointed to by HL (ES:BX)
This routine must clear the cursor set above, restoring the video memory to its

original state. To clear the cursor of the example above:

for 8086:

MOY A,M
ANI 7FH
MOY M,A
RET

AND ES: BYTE PTR [BX],7FH
RET

7EH
E6H 7FH
77H
C9H

26H 80H 27H 7FH
C3H

Some memory mapped display systems, such as that employed by the I BM
Personal Computer, alternate 1 character byte with 1 attribute byte. This sort of
display (for an 8086 system) can be handled as follows:

Routine to display cursor (here it is assumed that an attribute of 70H is used to
indicate the cursor position) :

MOY BP,BX
SHL BP,1
MOY ES: BYTE PTR 1 [BP],70H
RET

8BH EBH
D1H ESH
26H C6H 46H 01 H 70H
C3H

Routine to clear cursor (here it is assumed that an attribute of 7H is used for all
non-cursor positions):

MOY BP,BX
SHL BP,1
MOY ES: BYTE PTR 1 [BP],7H
RET

Routine to display char:

MOY BP,DI
SHL BP,1
MOY ES: [BP],AL
INC DI
RET

Cursor blink count

8BH EBH
D1H ESH
26H C6H 46H 01 H 07H
C3H

8BH EFH
D1H ESH
26H 88H 46H OOH
47H
C3H

Enter a number which determines the cursor blink count. While waiting for
keyboard input, PMATE delays an amount proportional to this number, and then sends
alternately a set cursor sequence, then a clear. cursor sequence. This will turn an
inverse video cursor into a blinking cursor. If you do not wish your cursor to blink,
or the hardware blinks the cursor already, enter a O. Otherwise, enter a number to
suit your taste. Here's a starting point -- 30 works well on a 4mhz processor

6-6 PMATE USER MANUAL AND INTERFACE GUIDE

(equivalent to 15 at 2mhz).

MORE CONFIGURATION INFO

The questions in the MISCELLANEOUS section deal mostly with PMATE display
interaction parameters. Using serial terminals, even at 19,200 baud, presents the
problem that the display cannot always keep up with your keystrokes. If you scroll
one screenful, it can take two seconds (at 9600 baud) to redraw the screen• PMATE
is not 'dead' during this time, but will halt redraw, and respond to further
commands. PMATE can be customized to respond in different ways in this situation.
Try various combinations of answers until you find the 'feel' that's best for you.

How many lines from the center of screen can cursor wander?
Since the display screen can only hold a small portion of the entire text file being

edited, it is necessary to 'scroll' the display as the cursor moves off of it.
Typically, the display scrolls to prevent the cursor from moving down past the
bottom line, or up past the top. However, it is often better to keep one or two
lines above or below the cursor at all times, so you can better see the context you
are working in.

The number entered indicates how far from the center line of the text display the
cursor will be allowed to move before a scroll occurs. If this number is 0, the
cursor will remain on the middle line of the display -- cursor motion up ot down will
cause a screen scroll. Using 0 (or a small number) keeps maximum context,
requires the most screen scrolling, and is therefore not recommended for serial
displays which do not support insert and delete line. For these terminals, or if your
preference runs in that direction, use 1/2 the size of the display area, less 1 or 2
lines of 'context' on each side. For example, on a 24 line screen, 21 lines are
dedicated to text display. Entering 10 (don't use anything bigger!!) will produce a
display which scrolls only at either limit; 8 leaves 2 lines on top or bottom before
scrolling; and 1 will restrict the cursor to the 3 center lines.

How many lines do you wish redrawn in foreground?
This determines the number of lines which will be redrawn on the screen before

the next keystroke is responded to. In other words, this many lines are kept up to
date at all times, the rest will be redrawn when PMATE has the time. The smaller
this number, the faster PMATE's overall response is, but the less you can see what
effect each of your keystrokes has had.

Should display proceed from top to bottom (or from cursor outward)
PMATE screen redraws can proceed in one of two ways. The traditional method

is to start at the top, and work down. Alternatively, PMATE can start drawing on
the line the cursor is on, and work outward, alternately displaying lines on either
side. This also means that if the cursor is down on the bottom line, the display
proceeds from bottom up, and if the cursor is at the top, the display proceeds in the
usual top-down manner. This method has the advantage of first showing you text
where you are most interested in it -- near the cursor. When used with a cursor
constrained to the center few lines of text (see 'cursor wander' question above),
some people find the inside-out redraws annoying. Answer 'yes' to get a top-down

CONFIGURATION GUIDE 6-7

display, and 'no' to get a display proceeding from the cursor outwards. 'Yes' is
recommended for memory mapped displays, as the inside-out display takes slightly
longer (on video terminals, the serial interface limits the display speed, so this
makes no difference).

Should cursor be displayed before each line is redrawnl
By addressing the terminal's cursor to its final position before each line is

redrawn, you don't lose track of where PMATE's cursor is as the screen redraw
proceeds. As usual, there is a trade-off to be made. Twice as many cursor
addressing sequences now need to be performed. If your terminal requires a
significant delay after each cursor addressing operation, this can slow down a
screen redraw noticably. As usual, take your pick.

Maximum number of instant commands to buffer
PMATE is constantly polling the keyboard to make sure it doesn't miss any

keysrokes while it is performing other tasks -- such as moving text around,
displaying a line, or executing a command. However, this buffering can allow
certain instant commands (such as deletes or cursor motion) to 'run away' when
used with auto-repeat. When you take your finger off the key, things can keep
happening on the screen, as buffered keystrokes are executed. You can limit the
maginitude of this run-away by answering the above question with a small number
(but it should be at least 1) -- but if you quickly strike four control-d's, and only
two characters are deleted, you will know why. As always, compromise.

Number of characters to shift for horizontal scroll
PMATE allows lines up to 250 characters in length. Since displays will rarely

show more than 80 of those, PMATE shifts the entire display over to prevent the
cursor from moving off the right end. Enter the number of characters you wish
shifted at one time. If this is 1, the display will scroll 1 character at a time as you
enter a long line. This is very 'natural', but you'll notice continual screen activity
as the line progresses. If this bothers you, choose a larger number.

Are carriage returns and tabs to be inserted while in overtype mode?
Normally (answer 'no'), in Overtype Mode, carriage returns are only inserted at

the end of text, and tabs are only inserted at the end of a line. At all other times,
these characters just move the cursor -- to the beginning of the next line, or to the
character following the next tab. However, if you answer 'yes', these characters
will be inserted any time they are typed (and the cursor motion keys must be used
for moving the cursor).

Do you wish .BAK files to be generated automatically?
Most text editors do not delete the original input file after a completed edit pass,

but rename it, giving it the extension '.BAK' (any old file by that name is deleted).
PMATE will do that too (just answer 'yes'), but there are those of us who do not like
to clutter our floppies with two copies of most everything. (If you have a hard
disk, you may not be sensitive to this problem.) We answer 'no'. See also the 'QK'
command to change this while editing. ·

6-8 PMATE USER MANUAL AND INTERFACE GUIDE

Reserved size of garbage area
PMATE stacks its garbage (deleted text) in any available memory space -- ready

to be retrieved later if needed. By permanently reserving some space for garbage,
you can be sure you can recover at least a small item or two, and be able to use the
stack for moving text. Enter the number of bytes you wish reserved. It must be at
least 1, and please leave some room to edit text.

Size of permanent macro area
Enter the amount of memory (in bytes) you wish to reserve for permanent

macros. PMATE will not allow you to load permanent macros requiring more space
than you have allocated.

Should disk buffering be automatic.
Answer yes if you wish automatic disk buffering, no if not. This can be later

changed by the 'qu' command.

Start in command mode (0), insert mode (1), or overtype mode (2).
By entering 0, 1, or 2, you may choose the mode in which PMATE initially comes

up. This mode is also entered after ©C abort, and after any errors. By choosing 1
or 2, and adding appropriate permanent macros (with associated instant commands),
it is possible to eliminate command mode for beginning users of PMATE.

CUSTOMIZING THE KEYBOARD

PMATE allows customizing the keystrokes required to perform instant commands
in order to better suit your preferences and available hardware. At first, stick with
the default assignments -- that will make understanding the User Manual, and
learning PMATE, much easier.

CONPMATE will configure a version of PMATE which will assign any keystrokes
you wish to any of a list of commands.

NOTE: Be careful when using terminal function keys to produce instant commands.
If each depression of these keys produces more than one code, and PMATE is busy
doing something else, it may miss one of these. This is not a problem if your
hardware responds to keyboard interrupts. Another solution, for those that don't
mind rewriting 1/0 drivers, is given in the next chapter.

Maximum number of codes entered for instant commands below
An Instant Command can require up to eight codes to execute. This could be a

series of keystrokes, or the multi-code sequence sent out by many terminal's
function keys. Enter here the maximum number of codes entered for any of the
commands below.

Shift character
If your keyboard does not have a 'shift' ·key, enter the ASCII code of a character

which will serve as a case shift. (See the QS command for more details.)

Control shift character
If you are using control codes for instant commands (hard to avoid), a 'control

shift character' is needed if you wish to actually enter these control characters in
text (see the 'QC' command). Enter the ASCII code for that character here (up­
arrow is the usual choice).

CONFIGURATION GUIDE 6-9.

Next follows a list of instant command functions. Enter the ASCII codes of the
required keystroke sequence following each function. Not all functions need be
implemented (just leave it blank if not}. It is possible to assign several different
sets of keystrokes to. the same instant command using the configuration file.
CONPMATE will interpret all lines starting with '***' as subsequent entries for the
instant command listed previously. An example should make this clearer.

Delete character ••• 4

Delete line••• 11
*** 29 49
*** 29 50

Delete word forwards ••• 23
*** 30

Delete word backwards ••• 17

This section of the configuration file would assign '©D' to delete character. Either
a '©K', or the sequence'©]' '1', or the sequence'©]' '2' would delete a line. '©W'
or '©©' would delete a word forward, while '©Q' would delete a word backward. If
you are configuring a terminal with dedicated function keys to perform the instant
commands, it is recommended that you duplicate these functions on the standard
control keys if possible. This will allow anyone familiar with PMATE to use your
configuration immediately, and still give you the simplicity of dedicated keys.
(There are those of us who much prefer to move the cursor with a control code
rather than a dedicated cursor key, as we can easily touch-type these commands -­
why not please everybody?)

The CONFIG file provided implements the standard PMATE instant command set.

The array of cursor motion commands requires further explanation. PMATE rev
1 implemented cursor motion as follows:
left: Move left 1 character. If already at the beginning of a line, move to

the last character of the preceding line.
right: Move right 1 character. If already on the last character of a line,

move to the beginning of the following line.
up: Move to the beginning of the current line. If already at the beginning,

move to the beginning of the preceding line.
down: Move to the beginning of the following line.

This combination of cursor motion can be selected by entering codes next to Move
left, Move right, Move up, and Move down. This set of commands makes it very
easy to get to either end of a line, and is well suited to editing programs. However,
it does not allow you to easily move the cursor down through columnar material.

Another approach to vertical cursor motion is to move the cursor
'geometrically'. If the cursor is at column 5, moving up one line will leave the
cursor on the preceding line, still on column 5. Normally, the cursor will not land
past the carriage return at the end of a line, or in the middle of a tab -- it will only
land on a text character. Thus, as you move up or down the screen, the cursor can
be pushed further and further over to the left. However, by answering Allow

6-10 PMATE USER MANUAL AND INTERFACE GUIDE

cursor to move into 'free space'l with a 'yes', the cursor will be allowed to land
anywhere, and will stay in the same column as you scroll Lip or down through any
document. If you attempt to insert a character while the cursor is 'floating', the
appropriate number of spaces. (and possibly tabs -- see QV command) will be
inserted .so that the cl)aracter actually appears where you expect. Move right
(geometric) and Move left (geometric) always keep the cursor on the same line,
and always move ·by exactly one column at a time. Note that this causes trouble if
the cursor has not been allowed into free space -- whenever the cursor reaches a
tab, it tries to move over 1 column, can't land there, so moves back to the beginning
of the tab, stuck. If you do not allow the cursor into free space, there is no
advantage to the geometric horizontal motion anyway.

A final option mixes the above two approaches. Overtype Mode is well suited
for working on columns, as is a geometric cursor (and carriage return can be used to
move the cursor to the beginning of a line). When working on line-oriented
material, Insert Mode is usually used. By entering codes in the Move up (mixed)
and other (mixed) categories, the line-oriented cursor routines are used while in
Insert Mode, and the geometric routines are used in Overtype Mode.

The move multiple-lines commands also have geometric and mixed variants.
The number of lines moved by any of these commands is set by the 'QL' command.
'Move page up' and 'move page down' commands move up or down exactly 1
screenful, independent of the 'QL' setting. ,

The instant commands to move to the top and bottom of text also come in
several more varieties. It is possible to configure PMATE so that ©A (or other
chosen keystroke) moves the cursor to the beginning and end of the entire file, or
to the beginning and end of the text currently in memory. The former is chosen by
default, but if you like to have better control over exactly what is in memory, and
what is on disk, you may choose the latter (then a UA or UZ command can be given
to get to the beginning or end of the file).

The next section of the configuration file allows you to redefine the codes
which perform certain built in PMATE .functions. If you wish to redefine one of
these, just enter the new code (or codes) following the '***', as for any of the
instant commands. You may want to use backspace (control-H) instead of rubout to
delete the last entered character (but then you must find a new key for cursor
motion). On many terminals, the 'rub' or 'del' code is generated by shift-underline.
If you find this inconvient, just enter a SFH after Rubout and a 7FH after
Underline. This will effectively redefine the underline key so that the unshifted
character is a rubout, and the shifted one is an underline. Escape, tab, and carriage
return can also be redefined, but you will rarely want to. If you wish to redefine
any other keys, you will have to read the next chapter. (Maybe you always mix up
'q' and 'w', and figure its easier to fix your keyboard than to learn to type.)

The end of the keyboard configuration section allows you to define your own
Instant Commands by assigning a keystroke(s) to permanent macros '0'-'9' Thus,
the macro named 'O' in the permanent macro area can be executed every time an
assigned key is pressed. Macros 0-9 were- used here because they cannot be
executed from the command line and· thus serve no other useful purpose (.0$$
executes buffer O, not permanent macro O). .However, additional macros may be
added to the list. For example, the permanent macro 'A' can be invoked every time
you strike control-A by adding the line:

A*** 1

Chapter VII
INTERFACE GUIDE

Note: This chapter or:ily applies to CP/M-80 versions of PMATE.

GENERATING CUSTOM VERSIONS OF PMATE

If you really want to mess with PM ATE, and you know some 8080 assembly
language, then this chapter's for you. A module called IOPATCH.ASM contajns the
tables and code which interface PMATE to your keyboard and display. The
configuration program CONPMATE just modifies the same parameters shown here,
but by working with IOPATCH, you have even more control.

After you've modified IOPATCH to your needs, and assembled (getting a HEX
output file), here's how to include it in PMATE. Use the CP/M dynamic debugger to
load PMATE.COM and IOPATCH.HEX. Just type 'DDT PMATE.COM'. When 'DDT'
responds with its prompt '-', you should enter the command 'I IOPATCH.HEX' , and
then 'R'. 'I' sets up IOPATCH.HEX as an input file, and then 'R' reads it, overlaying
the appropriate portions of PMATE.

There are now two possible ways to save this new version. One is to hit
control-C, and return to CP/M, then use the SAVE command and your new creation
will be preserved. The preferred method is to now use the debugger to run PMATE
('G100' will do it). If it seems to be working okay, use the 'XD' command to create
a duplicate.

OVERVIEW OF MEMORY ORGANIZATION

Like all CP/M command files, PMATE begins at location 100H (see fig. 6-1).
Location 100H just contains a jump to the starting address of PMATE. What follows
is a table of vectors and constants, which you can modify or make use of. Next
comes the main body of object code. Finally, the last part of the code includes the
Instant Command table, and the user initialization routine. This entire portion can
be overlayed by user written or modified software, extending as far as you wish.

At the end of the executable code (and still a part of the PMATE.COM file) is
the permanerit macro area, which you can define to be as large as you wish. Then
the remaining RAM is devoted to text buffers for the editing process.

TABLE OF VECTORS AND POINTERS

There are several sections of PMATE which the user can interface to. They are
all contained in IOPATCH, and are explained below. The first is a table of vectors,
constants, and variables, starting at location 100H. Here's the first part consisting
of vectors and pointers:

7-2 PMATE USER MANUAL AND INTERFACE GUIDE

CPM BIOS

CPM BDOS
CORMX

TEXT BUFFERS

CORBEG
PERMAN ENT MACRO AREA

MACBEG/EDEN D
INSTANT COMMANDS AND USER ROUTINES

UINIT
MAIN BODY OF PMATE

TABLE OF VECTORS AND CONSTANTS
0100

CPM BUFFERS AND POINTERS
0000

Fig 6-1. PMATE memory allocation.

INTERFACE GUIDE 7-3.

The first 3 entries are jumps to PMATE restart locations. ~NIT is the main
initialization entry point. It clears all the text buffers, and opens input/output files
defined in the command line. If. you interrupt PMATE, and then try to restart by

. going to location 100; you may get some strange files being opened because
nonsense has been written into the command line buffer at location 80H - just 'XK'
them.

Jumping to RESET is equivalent to striking a control-C while in PMATE. The
command area is cleared, the text buffer is left unchanged, and PMATE returns in
Command Mode. After an 'XM' command gets you to the system monitor, thi.s is the
place to return.

Pl NIT is the partial initialization address. This is useful if there is an al ready .
existing block of text in memory which you wish to edit. Set CORBEG to the first
character of the block, and put a null (0) at the end of the block. Make sure there
are no nulls anywhere in between. Then enter at Pl NIT, and this block of text
should be in your edit buffer. This can also be useful in recovering from major
catastrophies. For example, if you 'XK' your edit buffer, it appears to be wiped
out, but most of it will usually be sitting in memory - just a few nulls got moved
down to make the buffer look empty. If you can examine memory with your system
monitor, you should be able to find most of it (look following the CORBEG). Then
set CORBEG to point to the beginning of usable text, and jump to PIN IT through
location 106H.

The next two locations are vectors into user written routines. U IN ITL jumps to
a routine which is called from INIT (see UINIT description below) and UEXIT is
called just before returning to CP/M from an 'XH' command (not normally needed,
but provided for your special requirements). Next come 5 vectors to system 1/0
routines. These routines can be user written -- however, they are compatible with
CP/M BIOS routines, and can just vector there. In fact, the addressess of these
routines can be computed at user initialization time (see U IN IT), so that you don't
need to generate a new version of PMATE to run in a CP/M system configured for a
different memory size. The responsibilities of these routines are as follows:

Cl

CSTS

COUT

LO

LSTS

Get a character from the console, and put it in register A. If there is
no character currently available, wait until there is.

Check to see if there is a character presently available from the
console. If there is, return OFFH in register A, otherwise, return o.

Output the character in register C to the console output device. When
configured for a memory mapped display, PMATE calls this routine only
to ring a bell. When configured for a serial terminal, PMATE sends its
display output through here.

Output the character in register C to the listing device. This is the
place that 'XT' typeouts are sent.

Return lister status -- not currently implemented.

The final jump vector at MONTR points to the system monitor. An 'XM'
command gets you there. If you have no system monitor (and you don't want to

7-4 PMATE USER MANUAL AND INTERFACE GUIDE

tack one on at the end of PMATE), just make this a RET.

KEYT AB contains the address of the instant command table, so that you can
modify it if your keyboard has special cursor keys. This is discussed later (as is
ICSIZ). UCOM points· to an optional PMATE command string (ending in 0) which is
executed every time PMATE is preparing to input another command string while in
Command Mode. Use this for your special customizing requirements.

DISPLAY PARAMETERS

Next come some display constants. Most of these can be set by CONPM.ATE and
were explained in the previous chapter -- so make sure you've read that.

TDPSZ:

DPSZ:

CHRLN:
SHFTCT:

SCRLCT:

WANDER:

CONTXT:

NOLSTC:

DOWN:

EVRYLN:

BLNKCT:
IGNRIC:

DB 21

DB 24

DB 80
DB 1

DB 2

DB 4

DB 3

DB 0

DB OFFH

DB 0

DB 25
DB 3

;NUMBER OF LINES IN TEXT SECTION
;OF DISPLAY= DPSZ-3
;TOTAL NUMBER OF LINES IN VIDEO
DISPLAY
;NUMBER OF CHARACTERS IN EACH LINE
;SIZE OF SHIFT WHEN CURSOR MOVES
;OFF RIGHT SIDE OF SCREEN
;MAXIMUM NUMBER OF LINES TO SCROLL
USING
;INSERT AND DELETE LINE CAPABILITIES
;NUMBER OF LINES FROM CENTER CURSOR
;CAN WANDER
;NUMBER OF LINES REDRAWN IN
FOREGROUND
;OFFH IF LAST CHARACTER OF DISPLAY
;MUST BE SUPPRESSED

;IF SET TO OFFH, DISPLAY PROCEEDS FROM
;TOP TO BOTIOM
;IF SET TO OFFH, DISPLAY CURSOR
;BEFORE DRAWING EACH LINE
;CURSOR BLINK COUNT -- 0 FOR NO BLINK
;IGNORE INSTANT COMMANDS IF DEEPER
;THAN THIS IN BUFFER

DPSZ holds the total number of lines on your display. Make sure TDPSZ (the
size of the text area on the display) is exactly three smaller than DPSZ. Of the
remaining constants above, the only one not described in the CONFIGURATION
chapter is SCRLCT. If you are using a serial terminal which supports insert and
delete line, PMATE will use that capability to scroll anywhere up to SCRLCT lines -­
if it is necessary to scroll further, it will simply redraw the entire display.
CONPMATE sets SCRLCT to one-third the total size of the display. Note that the
flags DOWN and NOLSTC must take the. values 0 or -1 (which must be OFFH on many
assemble rs) •

INTERFACE GUIDE 7-5

MEMORY MAPPED DISPLAYS

PMATE uses the same memory area for different parameters, depending upon
whether you have a terminal, or a memory mapped screen. Notice that in IOPATCH,
there is a constant, MEMMAP, which is set to -1 for a memory mapped display, or O

. for a serial display. This controls the conditional assembly of the appropriate code.
This is the module for a memory mapped display:

MMAP:
VRAMO:
LSPAC:
DSPCUR:

CLRCUR:

DSPCHR:

DB OFFH
DW OEOOOH
DW 128

MOY A,M
ORI 80H
MOY M,A
RET
DS16

MOY A,M
ANI 7FH
MOY M,A
RET
DS16

STAX D
RET
DS19

;SET TO OFFH FOR MEMORY MAPPED DISPLAY
;BEGINNING OF VIDEO RAM
;SPACE BETWEEN LINES OF VIDEO RAM
;ROUTINE TO DISPLAY CURSOR AT MEMORY
;POINTED TO BY HL

;21 BYTES TOTAL

;ROUTINE TO CLEAR CURSOR FROM MEMORY
;POINTED TO BY HL

;21 BYTES TOTAL

;ROUTINE TO STORE CHAR IN REG A IN
;VIDEO MEMORY POINTED TO BY DE

;21 BYTES TOT AL

These all correspond to entries in the CONFIG.CNF configuration file, and have
already been explained. DSPCUR, CLRCUR, AND DSPCHR must all be exactly 21
bytes in length (so PMATE knows where to find them) -- so adjust the DS's
accordingly.

VIDEO TERMINALS

For video terminals, set MEMMAP to 0 in IOPATCH, and the following will be
assembled:

MMAP: DB 0 ;O FOR MEMORY MAPPED DISPLAY

;VIDEO CODES - SEQUENCES END IN 0, THEN NEXT BYTE
;IS NUMBER OF MILLISECONDS TO DELAY

VIDCLS: DB 26,0,0,0,0,0,0,0,0 ;SEQUEN.CE OF BYTES TO CLEAR SCREEN
VIDCLL: DB 27,'T',O,O,O,O,O,O,O ;CLEAR TO END OF LINE

7-6

VIDASC:
VIDXY:

VIDOF1:
VIDOF2:

VIDCUL:

VIDCUM:

VIDCUE:

VIDIL:

VIDDL:

PMATE USER MANUAL AND INTERFACE GUIDE

;CURSOR ADDRESSING
DB 0
DB 0

DB 32
DB 32

DB 27, '=' ,O,O,O,O,O,O,O

DB 0,0,0,0,0,0,0,0,0

DB 0,5,0,0,0,0,0,0,0

DB 27, 'E' ,o, 10,0,o,o,o,o

DB 27,'R',0,10,0,0,0,0,0

;ASCII FLAG - -1 FOR ASC 11
;XY FLAG -- 0 FOR Y COORDINATE FIRST
;.,;1 FOR X FIRST
;OFFSET OF FIRST COORDINATE
;OFFSET OF SECOND COORDINATE

;LEAD IN

;MIDDLE

;END

;SEQUENCE TO INSERT LINE -- END IN 0

;SEQUENCE TO DELETE LINE -- END IN 0

All of the above sequences must be exactly 9 bytes long. Each sequence
includes up to 7 characters which are sent to the display, followed by a null,
followed by any delay required after sending this sequence. This delay is in
milliseconds for a 4MHZ CPU. In the example above, a 10msec delay is inserted
after insert and delete line, a 5 msec delay after the entire cursor addressing
sequence, and no delay after clearing the screen or clearing to end of line. The
cursor addressing sequences are exactly as described in the previous chapter.
VIDCUL is the lead-in sequence. VIDCUM is sent between the X and the Y
coordinates, and then VI DCUE is sent. It is possible to insert a delay after each of
these sequences, but one should only be needed at the very end. VI DASC is set to
-1 (OFFH) if the cursor positioning information must be sent out as an ASCII string
(e.g. '2','3'), rather than as one binary byte. If VIDASC is set to 2 or 3 (or any
positive number), exactly 2 or 3 digits will be sent (leading zeros will be added as
required). This is necessary for several terminals which don't use a separator
between x and y, but require a specified number of digits. VIDXY indicates
whether the row or column information is sent out first, and VIDOF1 and 2 hold
offsets. If the offsets are different, make sure VIDOF1 holds the offset of the first
coordinate sent out, be that X or Y.

MORE

DELAY:
ABRT:
ICRFL:

CORBEG:

CORMX:
GBGSZ:

TXTEND:

DB 100
DB 'C'-40H
DB 0

DW EDEN D+MACSZ +1
DWO
DW -1000

DWO

;DELAY TIME FOR QD COMMAND
;ABORT CHARACTER
;OFFH IF CR'S AND TABS ARE TO BE
;INSERTED IN OVERTYPE

;FIRST AVAILABLE CORE LOCATION

;LAST AVAILABLE CORE LOCATION
;NEGATIVE MINIMUM SIZE OF GARBAGE
AREA
;LAST LOCATION AVAILABLE FOR TEXT

MACBEG: DW EDEND

MAC END:

DW EDEND+MACSZ

INTERFACE GUIDE

;REST IS RESERVED FOR GARBAGE
;FIRST AVAILABLE LOCATION
;FOR PERMAN ENT MACROS
;LAST AVAILABLE LOCATION
;FOR PERMANENT MACROS

7-7

. ;THE FOLLOWING VARIABLES CAN BE SET BY THE Q COMMANDS

UV ARO: DWO
UVAR1: DWO
UVAR2: DWO
UVAR3: DW 0
UVAR4: DWO
UVARS: DWO
UVAR6: DWO
UVAR7: DWO
UVAR8: DWO
UVAR9: DWO

SHFCHR: DB 0

CNTCHR: DB 1©1

PAGSZ: DWO
PAGSEP: DB 1L1-40H
SCRLNS: DW 6

BKUFL: DB OFFH
XMAX: DB 250

CRCHR: DB 1<1

GLBLSZ: DWO
GLROOM: DWO

GLINSZ: DW 1000

;USER DEFINABLE VARIABLES

;UPPER OR LOWER CASE SHI FT CHARACTER
-- QS
;CONTROL CHARACTER -- QC
;NUMBER OF LINES IN PAGE -- QP
;PAGE SEPARATOR -- QF
;NUMBER OF LINES TO SCROLL
;IN INSTANT COMMANDS -- QL
;OFFH IF BACKUPS ARE TO BE MADE -- QK
;MAXIMUM ALLOWED X CURSOR POSITION
-- QZ
;DISPLAYED FOR END OF PARAGRAPH

;SIZE OF BLOCK FOR DISK SCROLL WRITES
;ROOM LEFT AFTER GLOBAL DI SK
OPERATIONS
;SIZE OF BLOCK WRITIEN OUT TO MAKE
ROOM FOR INSERT

The 'QD' command delays for a time proportional to the number stored in
'DELAY'. If you wish to make that delay an exact time interval for your hardware,
you may play with this number. The character in 'ABRT' is the abort character
(normally control-C). If you change the a.bort character in the instant command
table, you must also change it here. Set ICRFL to -1 if you wish carriage returns
and tabs to be inserted while in overtype mode, rather than just moving the cursor.

The next 6 words help define PMATE's mem0ry allocation. Normally, the
permanent macro area begins immediately after the end of the editor (defined by
EDEND), and is as large as you want it. Any remaining memory space up to the
BOOS (resident part of CP/M which must remain in RAM) is usually al~ated to
PMATE. You can do this 'by hand' -- just put the address of the last available
memory location in CORMX• Usually, however, this is done by 'U IN IT' (user
initiatization routine) so that all available memory is automatically gobbled up.

7-8 PMATE USER MANUAL AND INTERFACE GUIDE

U IN IT can also initialize TXTEN D. This is the highest address of memory allocated
to text buffers. Any memory between here and CORMX is reserved for the garbage
stack. Fill in the negative of the amount of space you wish reserved for garbage in
GBGSZ. See the 'User Initialization' section for more details.

The ten variables, LJVARO through UVAR9 can be set by a 'Q' command. They
can be used to control your keyboard, CRT, or printer drivers, (or anything else you
wish to control with PMATE commands). For instance, if you had 3 different
printers connected to your system, UVARO might control which printer the next 'XT'
output would go to.

The next 7 bytes just initialize parameters which can be changed with .the 'Q'
commands shown (see COMPLETE COMMAND SET chapter). CRCHR holds the
character which is displayed at the end of a paragraph while in Format Mode.

The next three variables control the operation of auto-disk buffering. GLBLSZ
holds the size of a block that is written out when PMATE needs to make room in
order to bring in more text for disk scrolling. This is set by the UINIT provided to
1/4 of the available text space. GLROOM holds the amount of room which PMATE
attempts to maintain free for buffers other than the Text buffer. This is set by the
UINIT provided to 1/4 of the available text space. GLINSZ holds the size of a
block that is written to disk when PMATE needs to make room to insert additional
characters.

USER INITIALIZATION

The user initialization routine is entered after PMATE is started at its main
initialization point (100H). You should use this routine to initialize any display
hardware (some 'DMA' displays need a byte or two to initialize their mode).

A routine to initialize the 1/0 vectors CON IN, CON ST, CON OUT, and LI ST to
point to the corresponding BIOS routines in CP/M is given below. This routine also
sets CORMX, appropriating all available memory for PMATE. The BIOS jump table is
located by using the jump to the warm-boot vector normally stored beginning at
location OOOOH. CORMX is set using location 0006H, which CP/M sets up to point to
the beginning of the BOOS. The reserved 'garbage stack' area is allocated by using
GBGSZ, and the result is stored in TXTEND. The auto-buffering variables are
initialized as described above.

LHLD 06H
DCX H
SHLD CORMX
XCHG
LHLD GBGSZ

DADD
SHLD TXTEND

LHLD CORBEG

;POINTER TO BEGINNING OF FOOS

;LAST AVAILABLE CORE LOCATION

;NEGATIVE OF SIZE ALLOWED
;FOR GARBAGE AREA

;GET 1/4 (TXTEND-CORBEG) TO Hl
(ROUGHLY -- HIGH BYTE ONLY)

LDA TXTEN D+1
SUB H
RAR
ANAA
RAR
MOV H,A
MVI L,O

INTERFACE GUIDE ·

;DIVIDE BY 2
;CLEAR CARRY
;DIVIDE BY 2 AGAIN

;LEAVE THAT AMOUNT OF ROOM FREE

7-9

SHLD GLROOM
SHLD GLBLSZ ;AND USE SAME AMOUNT FOR SCROLL

BLOCK SIZE

LHLD 01H
LXI D,3
DADD
SHLD CSTS+1
DADD
SHLD Cl+1
DADD
SHLD COUT+1
DADD
SHLD L0+1
RET

THE INSTANT COMMAND TABLE

;POINTER TO WARM BOOT VECTOR

;CONSOLE STATUS VECTOR

;CON SOLE IN VECTOR

;CON SOLE OUT

;LI ST DEVICE

The instant command table allows you to define 1 or more keystrokes which
taken together cause any predefined command string to be executed. The table
provided in IOPATCH implements the default instant commands. UINST, in the table
of vectors and pointers, contains a pointer to this table. ICSI Z contains the
maximum number of codes needed for any command. The first byte in each 'slot'
gives the command number. These start at 128. If a number of less than 128 is
entered, this is treated as an ASCII code, and not a command (this can be used to
implement translations -- such as backspace => del, or ©X => esc}. The following
character(s} in the slot are the keystrokes which together execute the command (or
are translated into the ASCII code} in the first byte. ICSI Z indicates how many
bytes are needed here -- fill in the remainder with O's.

Here is a list of the predefined command codes. Further explanation of their
function is given in the preceding chapter.

128 -- Move to beginning of memory; if there, move to end
129 -- Move to end of memory
130 -- Move cursor left
131 -- Move cursor left one word
132 -- Move cursor right
133 -- Move cursor right one word
134 -- Move up one line
135 -- Move up multiple lines
136 -- Move down one line
137 -- Move down multiple lines
138 -- Delete character
139 -- Kill line

7-10 PMATE USER MANUAL AND INTERFACE GUIDE

140 -- Go to insert mode
141 -- Edit command
142 -- Abort
143 -- Shift case
144 -- Redraw and reformat display
145 -- Tag current cursor position
146 -- Delete word forward
147 -- Delete word backward
148 -- Pop garbage stack
149 -- Go to command mode
150 -- Go to overtype mode
151 -- Insert line
152 -- Move cursor left (geometric)
153 -- Move cursor right (geometric)
154 -- Move cursor up (mixed)
155 -- Move cursor down (mixed)
156 -- Move block
157 -- Get block
158 -- Move cursor up (geometric)
159 -- Move cursor down (geometric)
160 -- Move to top of memory
161 -- Move cursor left (mixed)
162 -- Move cursor right (mixed)
163 -- Move to top of file
164 -- Move to bottom of file
165 -- Move to beginning of file; if there, move to end
166 -- Change case of character at the cursor
167 -- Reverse the two characters preceding the cursor
168 -- Move to end of line
169 -- Move to beginning of line
170 -- Move up one screenful ·
171 -- Move down one screenful
172 -- Move up multiple lines (geometric)
173 -- Move down multiple lines (geometric)
174 -- Move up multiple lines (mixed)
175 -- Move down multiple lines (mixed)
176 -- Toggle between insert and overtype modes
177 -- Delete from cursor back to line beginning
178 -- Set auto-indent to current column
179 -- Exchange tag and cursor
180 -- Increment auto-indent four columns
181 -- Decrement auto-indent four columns
182 -- Scroll up
183 -- Scroll down
184 -- Scroll left
185 -- Scroll right
191 -- Repeat

Command codes 192-255 are used to execute permanent macros. Command
code 160 + ASCII (n) will execute macro n. Thus for example, code 208 will
execute macro 1 .01, and code 225 will execute macro 1 .A'.

Several sets of keystrokes can all enact the same command, and not all
commands need be implemented. Add as many slots as you wish to the table, and

INTERFACE GUIDE 7-11

end the table with a byte of OFFH. If you change the size of a slot, make sure you
change all of them, and ICSI Z.

As discussed in the previous chapter, there could be a problem using terminal
function keys which produce multiple codes for instant commands. If your
computer has an interrupt-driven keyboard, there is no problem. Otherwise, one
solution is to rewrite the console input driver. CSTS must not be initialized by
UINIT to point to the correspoinding BIOS routine. Instead, write a console status
routine which checks the status of the input port, and if there is a character there,
checks to see if a data overrun has taken place (most UART's indicate this in their
status register). If it has, the present data must be read and discarded, and then
the routine must delay enough time to allow the entire mult-code sequence. to be
read in. Finally, clear the input port, and return, indicating no character is ready.

Appendix A
COMMAND SUMMARY

The following instant commands are keystrokes which are not entered into the
command or text buffers, but are executed immediately:

Cursor Motion:
©A

©G
©H
©Y
©B
©U
©J
©()

©P
©f©M

Scrolling:
©f©G
©f©H
©f©Y
19f©B

Delete:

Move to the beginning of the text buffer, and if already
there, move to the end
Move left one character ··"
Move right one character
Move up one line
Move down one line
Move up multiple lines
Move down multiple lines
Move left one word
Move right one word
Move to beginning of line

Scroll left one column
Scroll right one column
Scroll up one line
Scroll down one line

©D Delete the character at the cursor
©K Kill the line beginning at the cursor
©W Delete one word beginning at cursor
©Q Delete one word backwards from cursor

Text movement and recovery:
©T Tag the current cursor location
©E Move block between tag and cursor to special buffer
©Z Get contents of special buffer to cursor location
©R Pop garbage stack, restoring last deleted item

Mode:
©X
©V
©N

Auto- indent:
©f©I
©f©P
©f©()

Other:
©S

©L
©C
©f©T
©f©F
©
©F©S

©f©C

Go to COMMAND MODE
Go to OVERTYPE MODE
Go to INSERT MODE

Set auto- indent to current column
Increment auto-indent four columns
Decrement auto-indent four columns

Repeat next keystroke four .times (or number immediately
following)
Insert line
Abort any operation in progress, resetting to command mode
Exchange tag and cursor
Redraw and reformat display
Edit the command string
Shift default case (useful for non-typewriter style
keyboards)
Change case of character at cursor

A-2 PMATE USER MANUAL AND INTERFACE GUIDE

These characters are not really instant commands, but they do have special
meanings:

ESC The escape key separates commands in command mode. Two
consecutive escapes execute the command.

TAB The tab character in text positions the following character at
the next tab stop.

,,". DELETE/RUBOUT The key marked 'delete' or 'rubout' deletes the last character
entered.

/\ The up-arrow itself is ignored, but it shifts the next
character entered to a control character. Strike it twice to
enter an up-arrow.

Now come the real commands. When in Command Mode, these are entered into
the command buffer and then executed.

The following commands move the cursor:
L forward one line
+nL forward 'n' lines
-nL backward 'n' lines

'n' characters ·
'n' words

· 'n' paragraphs

M,nM,-nM
W,nW,-nW
P,nP,-nP
A
UA

to beginning of text currently resident in memory
to beginning of file

z
uz

to end of text currently resident in memory
to end of file

The following commands delete characters:
D Delete character at cursor
nD Delete 'n' characters, from cursor forward
-nD Delete 'n' characters, from cursor backwards
'K,nK,-nK Delete lines

The following commands insert text into the text buffer:
lstring Insert 'string' immediately after cursor
nl Insert character with ASCll code 'n'
Rstring Overwrite text with 'string'
nR Overwrite character at cursor with ASCII code 'n'
n\ Insert number 'n' into the text

Search and change:
Sstring Search forward for next occurence of 'string',

search to memory.
nSstring Search forward for next occurence of 'string',

search to 'n' lines
-Sstring Search backward for next occurence of 'string',

search to memory
-nSstring Search backward for next occurence of 'string',

search to 'n' lines

confining

confining

confining

confining

USstring Search forward through the entire file for next occurence of
'string'

-USstring Search backward through the entire file for next occurence

COMMAND SUMMARY A-3.

of 'string'.
Change next occurence of 'strng1 1 to 1strng2 1 Cstrng1$strng2

nC,-C,-nC Search for 'strng1' as in equivalent 'S' command, then change
it to 1strng2 1

uc,-uc Search for 'strng1 1 as in equivalent 'US' command, then
change it to 'strng2'

Iteration and control:
IJlabel Jump if 'I' is true to 'label'
I(••] Execute expression in brackets only if 11' is true
I(••] (••] Execute expression in first brackets if 111 is .true, otherwise

n[• •]
(• • I]
I"
I

execute expression in second set of brackets
Iterate expression in brackets 'n' times
Iterate until 11' is true
Proceed to next iteration if 11' is true
Exit enclosing iteration loop if 'I' is true

Some miscellaneous commands:
E Suppress error messages
nF Enter Format Mode, setting line width to 'n'
F Toggle in and out of Format Mode
Gstrng Get key from keyboard, giving user prompt 'strng'
OGstrng Give user prompt 'strng', without waiting for key
N Go into 1 Insert Mode'
T Tag current cursor position
.b Execute macro 'b'
1% Return early from macro if 11' is true
:x Label this position in command with character 1x1

Comment -- ignore all characters until end of line
? Enter trace mode

There are 10 numeric variables and a Number Stack for storing intermediate
results, and some commands to set them:
nVi Set variable 'i' to value 1n1

VAi Increment variable 1 i 1

nVAi Add 'n' to variable 'i'
n, Push 'n' on number stack

The following 'Q' commands perform miscellaneous functions, usually setting
some internal parameter:
nQA
QB
nQC
nQD
nQE
nQF
nQG
nQH
nQI
nQJ
nQK
nQL
QMC

Set the number of passed string arguments in a macro call
Ring the bell
Set control shift character to ASCII 1n1

Delay for a time proportional to 'n'
Set type-out mode to 1n1 •

Set page separator character to ASCII 'n'
Enable garbage stacking unless 1n1 is zero
Insert 'n' spaces at cursor position
Set input radix to 'n'
Scroll display up 'n' lines
Create .BAK files unless ,.n' is 0
Set number of lines for ©U and ©J commands to scroll
Copy to permanent macro area

A-4

QMG
nQNstrng

nQO
nQP
nQR
nQS
nQT
nQU
nQV
nQX
nQY
nQZ
nQI
nQ­
nQ/
Q#
nQm

PMATE USER MANUAL AND INTERFACE GUIDE

Get contents of permanent macro area
Send 'strng' directly to console, if 'n' is non-zero, wait for
key from console, and return as @K
Set output radix to 'n'
Set page size to 'n'
Redraw screen -- return any key struck as @K
Set lower case shift character to ASCII 'n'
Type the character represented by ASCII 'n'.
Set automatic disk buffering unless 'n' is 0
Enable tab-fill unless 'n' is 0
Move screen cursor to column 'n'
Allow cursor motion in 'free space' if n=O
Don't allow cursor to move past column 'n' •.
Store 'n' in memory at location pointed to by variable 9.
Display numbers as positive only if n=O
Set auto-indent to column 'n'.
Exchange tag and cursor.
Set user variable 'm' (0-9) to 'n' -- these 10 user variables
are available to user written 1/0 drivers.

The following 'X' commands generally perform disk 1/0. They begin with an
'X' so that they are hard to execute accidentally, as they cause major upheaval.
XA
nXA
-XA
-nXA
xw
nXW
-xw
-nXW
XR
nXR
-XR

-nXR
XE

XJ
XF
XK
xc
XH
XI file
nXlfile
nXI
XOfile
nXOfile
XM
XDfile

XSd

XT
nXT

Append next page of input file
Append next 'n' pages of input file
Bring back last page written to output file
Bring back last 'n' pages written to output file
Write next page to output file
Write next 'n' pages to output file
Write page back to (temporary) input file
Write 'n' pages back to (temporary) input file
Write one page to output file, read one from input file
Do this 'n' times
Write one page back to (temporary) input file, read one back
from output file
Do this 'n' times
End of editing -- write out all remaining text from buffer
and input file
Do XE, then reopen file
Define new input and output files
Delete output file and scratch edit buffer
Close input and output files as they are.
Return to CPM
Input entire file 'file'
Input 'n' pages of 'file'
Input 'n' pages of last named auxilliary input file
Output entire edit buffer to 'file'.
Output 'n' lines, beginning at cursor, to 'file'.
Go to monitor
Create new version of PMATE, including any new changes, or
permanent macros -- new version called 'file.COM'
Log in disk drive 'd' ('d' is A,B,C, etc.). Also reset disk
system.
Type entire text buffer on printer
Type 'n' lines, beginning at cursor

XL
XLfile
XXfile

COMMAND SUMMARY

List disk directory at cursor
List just those files in directory which match 'file'
Delete 'file' from disk

A-5.

The following 'B' commands act on buffers 0-9, or the text buffer 'T' -buffer O
is assumed, unless the buffer number is placed between the two characters of the
command.
BK
BG
nBC
nBD
nBM
nBN
BE

Tab stop commands:
nYD
nYS
YK
nYE
VF
YR
nYI

Kill the entire contents of the specified buffer
Get the contents of the specified buffer
Copy 'n' lines to the specified buffer
Append 'n' lines to the specified buffer
Move 'n' lines to the specified buffer
Append move 'n' lines to the specified buffer
Edit the specified buffer

Delete tab stop at position 'n'
Set a tab stop at position 'n'
Ki 11 al I tab stops
Set a tab stop every 'n' spaces
Fill tabs with appropriate number of spaces

. Replace spaces with tabs where possible
Set indent at column 'n'

Numeric arguments (which have been referred to as 'n') can in fact be complex
expressions, involving up to 15 levels of parenthesis, and the following operations:
+ Addition

•
I
I
&

<
>
=

Subtraction
Multiplication
Division
Logical or
Logical and
Logical complement
Less than
Greater than
Equal

In addition to numbers, the following expressions can be used with the above
operations to form numeric arguments
•a The ASC 11 value of character 'a'
@i
@A
@B
@C
@D
@E
@Ffile
@G
@Hstrng

@I
@J
@K

The value of numeric variable 'i'
The numeric argument when macro was called
Current edit buffer (0 for T, 1 for buffer 0, etc.)
The character number
The number of lines scrolled by ©U and ©J (set by QL)
The value of the error flag
-1 if 'file' exists on the current directory, 0 if it doesn't
The length of the last referenced string
Compare 'strng' to text at cursor -- return 0 if equal,
otherwise 1 or -1, dependi,ng upon which string is greater.
The current input page
The number of lines in the text display
The ASCII value of the key struck after a 'G' or QR

A-6

@L
@M
@0
@P
@Q
@R
@S
@T
@U
@V
@W
@X
@Y
@Z
@@
@/

PMATE USER MANUAL AND INTERFACE GUIDE

command
The line number
The amount of memory remaining
The current output page
The absolute memory address to which the cursor is pointing
The column of the previous tab stop
The remainder of the last division
Pop the number stack -- get value of top
The ASCII value of the character pointed to by the cursor
-1 if auto-buffering is enabled, 0 otherwise
The current mode
The current right margin
The current column
The current left margin
The column of the next tab stop
The byte pointed to by variable 9
The current auto-indent column
Move cursor to tagged position, and get difference between
tagged position and current position as argument -- can be
used with any character or line oriented command to operate
on a block of text

LIFEBOAT ASSOCIATES SOFTWARE PROBLEM .REPOR.T

Please use this form to report errors or problems in software supplied by
Lifeboat Associates. This form is designed to act as a transmittal sheet.

Software Product Name: Media Format:

Version No.: Serial No.: Invoice No.:

Purchased From:

Date of Purchase: Return Authorization #:
Has the software registration card been returned?

Computer Used: CPU (8080/8085/Z-80):

Disk Capacity: Number of Drives: Memory Size:

Operating System/Version (If not listed above):

Software used with the above product, (e.g. list the BASIC used if you are
reporting a problem with a Payroll program that uses it).

Name of Software Version

Does the software come with sample or test programs?
If so, have you been able to use them successfully?

Please describe the ~roblem you have encountered. Include references to the
manual if appropriate. Try to reduce the problem to a simple test case.
Enclose any appropriate programs (preferably on disk). If you feel that the
problem may be caused by the disk being defective, you may prefer to return the
original disk with this report to achieve the fastest resolution of the
problem. (If so, call for a Return Authorization No. A handling charge may be
incurred. No handling charge will be made if a product or portion thereof is
returned DUE TO DISKETTE MEDIA DEFECTS within 30 days from the date of sale).

Information on product changes, bugs, fixes and current version numbers are
published in Lifelines, our software newsletter.

PROBLEM DESCRIPTION: (Continue on additional pages if necessary)

Name:

Address:

City:

Return to: Lifeboat Associates
1651 Third Avenue
New York, N.Y., 10028

002prob.bn.09.81

State:

Area Phone Num. Ext.

(__)
(__)
Zip Code:

___ (__)
___ (__)

Technical assistance is available
Monday - Friday, from 11:00 a.m.
to 7:00 p.m., Eastern time.
1-(212) 860-0300
TWX: 710-581-2524 Telex: 640693

OBB8 =
0000 ..
5Z39 =

0109

0109 C3395Z
010C C9
010D 00
010£ 00
010F C3ADSZ
OllZ C30000
0115 C30000
0118 C3CDSZ
01 !B 000000
011E C9
011F 00
0120 00
0121 EESZ
0123 oz
0124 00
0125 0000
0127 EDSZ

0129 15
O!ZA 18
01ZB SO
OlZC 01

01ZD OZ

O!ZE OA
OlZF 08
0130 FF

0131 00
0132 00

:************************;
;i MATE I/O PATCH *;
;************************;

REVISED FOR USE WITH APPLE //E
WITH VIDEX ULTRATERM DISPLAY

MARCH Z9, 1983

FURTHER REVISED 01 JAN 84
UTERM REVISION 03 MAR 84
DEFAULT TO 80 X 32 SCREEN 15 HAR 84
FOR CP/M+ ON ALS CP/M CARD ZZ JUL 84
TEST FOR ULTRATERM ZS JUL 84

MACSZ EQU 3000
MEMMAP EQU 0
UINIT EQU 5Z39H

;SIZE OF PERMANENT MACRO AREA
;NON-ZERO IF MEMORY MAPPED

UINITL:
UEXIT:

Cl:
CSTS:
COUT:
LO:
LSTS:
MONTR:

KEYTAB:
ICSIZ:
INITMD:

UCOM:

TDPSZ:
DPSZ:
CHRLN:
SHFTCT:

SCRLCT:

WANDER:
CONTXT:
NOLSTC:

DOWN:
EVRYLN:

ORG 109H

;JUMP VECTORS AND USER VARIABLES
JMP UINIT ;USER INITIIALIZATION
RET ;USER EXIT ROUTINE
NOP
NOP
JMP CONSIN
JMP S-S
JMP s-s
JMP LSTOUT
DB 0,0,0
RET
NOP
NOP
DW KEYTB
DB Z
DB O
DB 0,0
DW USRCOM

;CONSOLE INPUT VECTOR
;CONSOLE STATUS VECTOR
;CONSOLE OUTPUT VECTOR
;LIST VECTOR
;LIST STATUS VECTOR
;MONITOR VECTOR

;POINTER TO INSTANT COM.MAND KEYSTROKE TABLE
;SIZE OF SLOT IN TABLE
;INITIAL MODE -- COMMAND <O>, INSERT Cl>, OVERTYPE <Z>

;POINTER TO USER COMMAND EXECUTED BEFORE INPUT
;OF NEXT COMMAND

;DISPLAY PARAMETERS
DB 21 ;NUMBER OF LINES IN TEXT SECTION OF DISPLAY = DPSZ-3
DB 24 ;TOTAL NUMBER OF LINES IN VIDEO DISPLAY
DB 80 ;NUMBER OF CHARACTERS JN EACH LINE
DB 1 ;SIZE or SHIFT WHEN CURSOR MOVES OFF RIGHT

;SIDE or SCREEN
DB Z ;MAXIMUM NUMBER OF LINES TO SCROLL USING INSERT

;AND DELETE LINE CAPABILITIES
DB 10 ;NUMBER OF LINES FROM CENTER CURSOR CAN WANDER
DB 8 ;NUMBER OF LINES REDRAWN IN FOREGROUND
DB OFFH ;OFFH IF LAST CHARACTER OF DISPLAY MUST BE SUPPRESSED

DB 0 ;IF SET TO OFFH, DISPLAY PROCEEDS FROM TOP TO BOTTOM
DB O ;JF SET TO OFFH, DISPLAY CURSOR BEFORE DRAWING EACH LINE

0133 00
0134 04

0135 00

BLNKCT: DB 0 ;CURSOR BLINK COUNT -- 0 FOR NO BLINK
IGNRIC: DB 4 ;IGNORE INSTANT COMMANDS IF DEEPER THAN THIS IN BUFFER

MMAP: DB MEMMAP AND OFFH ;-1 FOR MEMORY MAPPED DISPLAY

IF MEMHAP ;FOR MEMHAP DISPLAY

MEMORY-MAPPED ROUTINES NIA -- DELETED HERE

END IF
IF NOT MEMMAP ;FOR SERIAL TERMINAL

;VIDEO CODES - SEQUENCES END IN 0, THEN NEXT BYTE IS NUMBER or
;MILLISECONDS TO DELAY

0136 1BZAOOOOOOVIDCLS: DB Z7,'*' ,0,0,0,0,0,0,0 ;SEQUENCE OF BYTES THAT CLEAR SCREEN
013F 1B54000000VIDCLL: DB 27,'T' ,o,o,o,o,o,o.o ;SEQUENCE or BYTES THAT CLEARS TO END or LINE

;CURSOR ADDRESSING
;ASCII FLAG - -1 FOR ASCII 0148 00

0149 00
014A 20
014B 20

VIDASC: DB 0
VIDXY: DB 0
VIDOF1: DB 32
VlDOF2: DB 32

;XY FLAG -- 0 FOR Y COORDINATE FIRST, -1 FOR X FIRST
;OFFSET OF FIRST COORDINATE
;OFFSET OF SECOND COORDINATE

VIDCUL: ;LEAD IN
014C 1B3DOOOOOO DB Z7,'•' ,0,0,0,0,0,0,0

VIDCUM: ;MIDDLE
0155 0000000000 DB 0,0,0,0,0,0,0,0,0

VIDCUE: ;END
015E 0000000000 DB 0,0,0,0,0,0,0,0,0

VIDIL:
0167 0000000000 DB 0,0,0,0,0,0,0,0,0 ;SEQUENCE or BYTES THAT INSERT LINE

VIDDL:
0170 0000000000 DB 0,0,0,0,0,0,0,0,0 ;SEQUENCE OF BYTES THAT DELETE LINE

END IF

;DELAY TIME FOR OD COMMAND
;ABORT CHARACTER

END IN 0

END IN 0

0179 00
017A 64
017B 03
017C 00

DB 0
DELAY: DB 100
ABRT: DB 'CI -40H
ICRFL: DB 0 ;OFFH IF CR'S AND TABS ARE TO BE INSERTED IN OVERTYPE

Ol?D 955F
017F 0000
0181 18FC
0183 0000

0185 DC53
0187 945F

BASE:

CORBEG: DW EDEND+MACSZ+l
CORMX: DW 0
GBGSZ: DW -1000
TXTEND: D\il 0

MACBEG: D\il EDEND
MACEND: D\il EDEND+MACSZ

;FIRST AVAILABLE CORE LOCATION
;LAST AVAILABLE CORE LOCATION

;NEGATIVE MINIMUM SIZE OF GARBAGE AREA
;LAST LOCATION AVAILABLE FOR TEXT, REST

;IS RESERVED FOR GARBAGE
;FIRST AVAILABLE LOCATION FOR PERMANENT MACROS
;LAST AVAILABLE LOCATION FOR PERMANENT MACROS

0189 0000
018B 0000
018D 0000
018F 0000
0191 0000
0193 0000
0195 0000
0197 0000
0199 0000
019B 0000

019D 00
019E SE
019F 0000
01A1 OC
OlAZ !ZOO
01A4 FF
01A5 FA
01A6 3C

01A7 0000
01A9 0000
OlAB E803

SZ39

5239 ZA0600
523C ZB
S23D 227F01
5240 EB
SZ41 2A8101
5244 19
5245 228301

5248 ZA7D01
SZ4B 3A8401
524E 94
524F 1F
5250 A7
5251 lF
5252 67
5253 ZEOO
5255 ZZA901
5258 ZZA701

UVARO:
UVARl:
UVARZ:
UVAR3:
UVAR4:
UVAR5:
UVAR6:
UVAR7:
UVARB:
UVAR9:

SHFCHR:
CNTCHR:
PAGSZ:
PAGSEP:
SCRLNS:
BKUFL:
XMAX:
CRCHR:

GLBLSZ:
GLROOM:
GLINSZ:

;THE FOLLOWING VARIABLES CAN BE SET BY THE Q COMMANDS

DW 0 ;USER DEFINABLE VARIABLES
DW 0
DW 0
DW 0
DW 0
DW 0
DW 0
DW O
DW 0
DW 0 ;USE TO SEND LST OUTPUT TO PARALLEL OR SERIAL

DB 0 ;UPPER OR LOWER CASE SHIFT CHARACTER
DB I. I ;CONTROL CHARACTER
DW 0 ;NUMBER or LINES IN PAGE
DB 'L'-40H ;PAGE SEPARATOR
DW 18 ;NUMBER or LINES TO SCROLL IN INSTANT COMMANDS
DB OFFH ;OFFH IF BACKUPS ARE TO BE MADE
DB 250 ;MAXIMUM ALLOWED X CURSOR POSITION
DB I< I ;DISPLAYED FOR END OF PARAGRAPH

D\rl 0 ;SIZE OF BLOCK FOR DISK SCROLL WRITES
DW O ;ROOM LEFT AFTER GLOBAL DISK OPERATIONS
DW 1000 ;SIZE OF BLOCK WRITTEN OUT TO MAKE ROOM FOR

;•**********'********************;
;a USER INITIALIZATION •;
;•*******************************;
ORG UINIT

LHLD 06H
DCX H
SHLD CORMX
XCHG
LHLD GBGSZ
DAD D
SHLD TXTEND

;POINTER TO BEGINNING or FDOS

;LAST AVAILABLE CORE LOCATION

;NEGATIVE OF SIZE ALLOWED FOR GARBAGE AREA

INSERT

;GET 1/4
LHLD CORBEG

<TXTEND-CORBEGl TO HL <ROUGHLY -- HIGH BYTE ONLYJ

LDA TXTEND+l
SUB H
RAR
ANA A
RAR
HOV H,A
MVI L,0
SHLD GLROOM
SHLD GLBLSZ

;DIVIDE BY 2
;CLEAR CARRY
;DIVIDE BY 2 AGAIN

;LEAVE THAT AMOUNT or ROOM FREE
;AND USE SAME AMOUNT FOR SCROLL BLOCK SIZE

525B 2A0100
525E 110300
5261 19
5262 221301

·,5265 19
5266 22AES2
5269 19
SZ6A 221601
526D 19
SZ6E ZZD252
5271 115400
5Z74 19
5275 22C852
5278 23
5Z79 23
527A 23
527B ZZE752

527E Z10CC3
5281 CDC552
5284 FE87
5286 CA8E52
5289 3EOA
528B C39AS2
SZBE OE16
5290 CD1501
5293 OE35

\5295 CD1501
/5295 3EOt
529A 32Zt01
S29D 87
529t 17
SZ9F 32AZ01
52AZ C601
SZA4 322901
SZA7 C603
SZA9 3Z2A01
52AC C9

52AD CDOOOO
5280 4F
5281 ES
SZBZ 2161CO
5285 CDC552
SZBB 47
5289 2162CO
S2BC CDC5S2
SZBF BO
52CO E680
SZC2 81

LHLD 01H ;POINTER TO WARM BOOT VECTOR
LXI D,3
DAD D ;CONSOLE STATUS VECTOR
SHLD CSTS+l
DAD D
SHLD CONSIN+l ;CONSOLE IN VECTOR
DAD D
SHLD COUT+l ;CONSOLE OUT
DAD D
SHLD NRMLST+1 ;LST OUT
LXI D,54H
DAD D ;CP/M+ READ APPLE ADDRESS
SHLD APRD+l
INX H
JNX H
INX H
SHLD APWRT+l

CHECK FOR APPLE BO-COLUMN CARD OR UTERM
INITIALIZE ULTRATERM <IF FOUND> FOR 80 COLUMNS, 32 LINES

LXI
CALL
CPI
JZ
MVI
JMP

UTERM: MVI
CALL
MVJ
CALL
MVl

UPD: STA
ORA
RAL
STA
ADI
STA
ADJ
STA
RET

H,OC30CH
AP READ
87H
UTE RM
A,10
UPD
c I 'V'-40H
COUT
c I Is I

COUT
A, 14
WANDER
A

SCRLNS
1
TDPSZ
3
DPSZ

SPECIAL CON: IN ROUTINE

CONSJN: CALL t-s
HOV C,A
PUSH H
LXI H,OC061H
CALL APREAD
MOV B,A
LXl H,OC06ZH
CALL APREAD
ORA B
ANl BOH
ORA C

CHECK ID BYTE

FOR 24-LINE DISPLAY

FOR 32-LINE DISPLAY

CLEAR CARRY
TIMES Z

CP/M CONSIN VECTOR

CHECK OPEN-APPLE KEY

SAVE IT
CHECK CLOSED-APPLE KEY

CLEAR ALL BUT HIGH BIT
COMBINE CHAR AND OPEN-APPLE

SZC3 El
52C4 C9

szcs cs
SZC6 DS
-SZC? CDOOOO
SZCA Dl
SZCB Cl
SZCC C9

SZCD 3A9B01
SZDO B?
SZDl CAOOOO
SZD4 ES
SZDS Zl 90CO
SZD8 CDCSSZ
SZDB E680
SZDD CAD45Z
52EO 79
S2E1 Zl 90CO
SZE4 CS
SZES DS
S2E6 CDOOOO
52E9 Dl
SZEA C1
S2EB El
S2EC C9

POP H
RET

APREAD: PUSH B
PUSH D

APRD: CALL s-s
POP D
POP B
RET

BIOS VECTOR 60H GOES HERE

SPECIAL LST: OUT ROUTINES

NOTE THAT ABSOLUTELY NO TRANSLATION IS PERFORMED

LSTOUT: LDA UVAR9
ORA A

NRHLST: JZ s-s
LP!: PUSH H 4

LXI H,OC09RH
CALL APREAD
ANI 80H
JZ LP!
HOV A,C
LXI H,OC090H
PUSH B
PUSH D

APWRT: CALL S-S
POP D
POP B
POP H
RET

;CHECK FLAG FOR PORT SELECTION
;CONDITION ZERO FLAG
;FLAG • 0, JUMP TO BIOS LST: OUTPUT

;FLAG NON-ZERO, CHECK PARALLEL PORT STATUS

;CHECK BIT 7 ONLY
;NOT READY, LOOP

;READY, GET CHAR FOR OUTPUT
;AND OUTPUT IT

; BJOS VECTOR 63H GOES HERE

;****************'*********'****'********;
;S INITIAL COMMAND l;

;*******'********'*********************'*;
USRCOM: ;INITIALLY EXECUTED USER COMMAND

SZED 00 DB 0

KEYTB:

S2EE 80
SZEF 14
szFo oo

52F1 81
SZFZ 1A
SZF3 00

52F4 82
52FS 08

;*****'**''********************'****'****;
;l INSTANT COMMAND TABLE *;
;**'*************************************;

DB 0+128 ;-- MOVE TO TOP
DB 'T'-40H
DB O

DB 1+128 ;-- MOVE TO BOTTOM
DB 'Z'-40H
DB 0

DB 2+128 ;-- MOVE LEFT
DB 'H' -40H

5ZF6 00 DB 0

52F7 83 DB 3+128 ;-- MOVE LEFT ONE WORD
52F8 13 DB '5'-40H
52F9 00 DB 0

SZFA 84 DB 4+128 ;-- MOVE RIGHT
52FB 15 DB 'U'-40H
5zrc oo DB O

52FD 85 DB 5+128 ;-- MOVE RIGHT ONE WORD
5ZFE 04 DB 'D'-40H
SZFF 00 DB 0

5300 BA DB 10+128 -- DELETE CHARACTER
5301 07 DB 'G'-40H
5302 00 DB 0

5303 8A DB 10+128 -- DELETE CHARACTER
5304 C7 DB 'G'+80H
5305 00 DB 0

5306 BA DB 10+128 -- DELETE CHARACTER
5307 E7 DB 'g'+80H
5308 00 DB 0

5309 8B DB 11+128 -- KILL LINE
530A 19 DB 'Y'-40H
5308 00 DB 0

530C 8B DB 11 +128 -- KILL LINE
1i30D D9 DB 'Y' +80H
JS30E 00 DB O

S30F BB DB 11+128 -- KILL LINE
5310 F9 DB 'y'+80H
5311 00 DB 0

5312 8C DB 12+128 -- GO TO INSERT MODE
5313 10 DB 'P'-40H
5314 00 DB 0

5315 SD DB 13+128 -- EDIT COMMAND
5316 1F DB '_, -40H
5317 00 DB 0

5318 8E DB 14+128 '-- ABORT
5319 03 DB 'C'-40H
531A 00 DB 0

531B 90 DB l6+12B -- REFORMAT
531C 06 DB 'F'-40H
531D 06 DB 'F'-40H

S31E 91 DB l 7+128 -- TAG
531F 11 DB '0'-40H

5320 14 DB 'T'-40H

S3Z1 91 DB 17+1Z8 -- TAG
53ZZ D4 DB 'T'+80H
S3Z3 00 DB 0

53Z4 91 DB 17+1Z8 -- TAG
53ZS F4 DB 't'+BOH
53Z6 00 DB 0

53Z7 92 DB 18+1Z8 -- DELETE WORD FORWARD
53Z8 17 DB 'W' -40H
5329 00 DB 0

S3ZA 93 DB 19+1Z8 -- DELETE WORD BACKWARD
S3ZB 11 DB '0'-40H
S3ZC 17 DB 'W'-40H

53ZD 94 DB 20+1Z8 -- POP GARBAGE STACK
53ZE or DB '0'-40H
53ZF 00 DB O

5330 94 DB Z0+1Z8 -- POP GARBAGE STACK
5331 CF DB '0'+80H
5332 00 DB 0

5333 94 DB Z0+128 -- POP GARBAGE STACK
5334 EF DB 'o'+80H
5335 00 DB 0

5336 95 DB 21+1Z8 -- GO TO COMMAND MODE
\5 3 37 18 DB 'X'-40H
15338 00 DB 0

5339 95 DB Z1+128 -- GO TO COMMAND MODE
533A DB DB 'X'+BOH
533B 00 DB 0

533C 95 DB 21+128 -- GO TO COMMAND MODE
533D F8 DB 'x'+BOH
533£ 00 DB 0

533F 96 DB 2Z+1Z8 -- GO TO OVERTYPE MODE
5340 16 DB 'V'-40H
5341 00 DB O

534Z 91 DB 23+128 -- INSERT LINE
5343 11 DB '0'-40H
5344 oc DB 'L'-40H

5345 9C DB 28+1Z8 -- MOVE BLOCK
5346 11 DB 'Q' -40H
5347 OD DB 'M'-40H

5348 9C DB 28+1.28 -- MOVE BLOCK
5349 8D DB 'M'+40H

534A 00 DB O

534B 9D DB 29+1ZB -- GET BLOCK
534C 1J DB '0'-40H
534D 1A DB 'Z'-40H

534E 9D DB 29+12B -- GET BLOCK
534F DA DB 'Z'+BOH
5350 00 DB 0

5351 9D DB 29+128 -- GET BLOCK
5352 DA DB 'Z'+BOH
5353 00 DB 0

5354 9D DB 29+128 -- GET BLOCK
5355 FA DB 'z'+BOH
5356 00 DB 0

5357 9E DB 30+128 ;-- MOVE UP ONE LINE
5358 OB DB 'K'-40H
5359 00 DB 0

535A 9F H 3-1+128 ;-- MOVE DOWN ONE LINE
535B OA DB I J' -40H
535C 00 DB 0

535D AO DB 32+128 ;-- MOVE TO TOP or MEMORY
535E Cl DB 'A'+80H
535F 00 DB 0

5360 AO DB 32+128 -- MOVE TO TOP or MEMORY
)5 361 El DB 'a'+80H
5362 00 DB 0

5363 A6 DB 38+128 -- CHANGE CASE OF CHAR AT CURSOR
5364 06 DB 'F'-40H
5365 03 DB 'C'-40H

5366 A7 DB 39+12B -- REVERSE LAST TWO CHARS
5367 06 DB 'r'-40H
5368 12 DB 'R'-40H

5369 AB DB 40+12B -- END or LINE
S36A OE DB 'N'-40H
536B 00 DB 0

536C AB DB 40+12B -- END OF LINE
536D 95 DB 'U'+40H
536E 00 DB 0

536F A9 DB 41+12B -- BEGINNING or LINE
5370 88 DB 'H'+40H
5371 00 DB 0

5372 AC DB 44+12B ;-- MOVE UP 20 LINES
5373 88 DB 'K'+40H

5374 00

5375 AD
5376 8A
5377 00

5378 AE
5379 11
537A OB

537B AF
537C 11
537D OA

537E BO
537F F6
5380 00

5381 BO
5382 D6
5383 00

5384 Bl
5385 DC
5386 00

5387 BZ
5388 06
5389 09

538A B3
z38B 06
538C 14

538D 83
538E BD
538F 00

5390 84
5391 06
5392 10

5393 B4
5394 DD
5395 00

5396 BS
5397 06
5398 OF

5399 BS
539A DB
5398 00

539C B6
539D 06

DB O

DB 45+128
DB 'J'+40H
DB 0

DB 46+128
DB '0'-40H
DB 'K'-40H

DB 47+128
DB '0'-40H
DB 'J'-40H

DB 48+128
DB 'v'+80H
DB 0

DB 48+128
DB 'V' +80H
DB 0

DB 49+128
DB '\'+BOH
DB 0

DB SO+ 128
DB 'F' -40H
DB 'l'-40H

DB 51+128
DB 'F'-40H
DB 'T' -40H

DB 51+128
DB '='+80H
DB 0

DB 52+128
DB 'F' -40H
DB 'P'-40H

DB 52+128
DB 'l'+80H
DB 0

DB 53+128
DB 'F'-40H
DB '0'-40H

DB 53+1Z8
DB 'C'+80H
DB O

DB 54+128
DB 'F'-40H

;-- MOVE DOWN 20 LINES

;MOVE CURSOR UP 20 LINES <MIXED>

;MOVE CURSOR DOWN ZO LINES <MIXED>

;TOGGLE INSERT/OVERTYPE

;TOGGLE INSERT/OVERTYPE

;DELETE FROM CURSOR BACK

-- SET AUTOTAB LEVEL TO CURRENT POSITION

-- EXCHANGE TAG AND CURSOR

-- EXCHANGE TAG AND CURSOR

-- INCREMENT AUTOTAB LEVEL

-- INCREMENT AUTOTAB LEVEL

-- DECREMENT AUTOTAB LEVEL

-- DECREMENT AUTOTAB LEVEL

-- SCROLL UP

539E OB DB 'K'-40H

539F B7 DB 55+128 -- SCROLL DOWN
S3AO 06 DB 'F'-40H
53A1 OA DB 'J'-40H

53A2 B8 DB 56+128 -- SCROLL LEFT
53A3 06 DB 'F'-40H
53A4 08 DB 'H'-40H

53A5 B9 DB 57+128 -- SCROLL RIGHT
53A6 06 DB 'F'-40H
53A7 15 DB 'U'-40H

53A8 BF DB 63+128 -- REPEAT
5 3A9 1Z DB 'R'-40H
53AA 00 DB O

53AB Dl DB 3Z+1Z8+ I 1' ;USER COMMAND -- .1
53AC Bl DB '1'+80H
53AD 00 DB 0

53AE DZ DB 3Z+1Z8+'2' ;USER COMMAND -- .2
53AF BZ DB '2'+80H
53BO 00 DB 0

5381 D3 DB 32+128+ I 3' ;USER COMMAND -- .3
53B2 83 DB '3'+80H
53B3 00 DB 0

53B4 D3 DB 32+128+' 3' ;USER COMMAND -- .3
~3B5 FF DB OFFH
53B6 00 DB 0

53B7 D4 DB 32+128+' 4' ;USER COMMAND -- .4
53B8 84 DB '4'+80H
53B9 00 DB 0

53BA D5 DB 32+128+'5' ;USER COMMAND -- .5
53BB BS DB '5'+80H
53BC 00 DB 0

53BD D6 DB 32+128+'6' ;USER COMMAND -- .6
53BE B6 DB '6'+80H
53BF 00 DB 0

53CO D7 DB 32+128+ '7' ;USER COMMAND -- .7
53C1 B7 DB '7'+80H
53C2 00 DB 0

53C3 D8 DB 32+128+ I 8, ;USER COMMAND -- .8
53C4 B8 DB '8'+80H
53CS 00 DB 0

53C6 D9 DB 32+128+'9' ;USER COMMAND -- .9
53C7 89 DB '9'+80H

53C8 00 DB 0

53C9 DO DB 3Z+1Z8+'0' ;USER COMMAND -- .0
53CA BO DB 'O'+BOH
53CB 00 DB 0

53CC CF DB 3Z+1Z8+'/' ;EXECUTE MACRO I ./ 1

53CD AF DB '/'+80H
53CE 00 DB 0

53CF DC DB 3Z+1Z8+'{' ;EXECUTE MACRO I.('

53DO AC DB I , '+80H
53D1 00 DB 0

53D2 DE DB 32+128+ I) I ;EXECUTE MACRO I.)'

53D3 AE DB I
• I +80H

53D4 00 DB 0

53DS El DB 3Z+1Z8+'A' ;EXECUTE MACRO I .A'
53D6 01 DB 'A'-40H
53D7 00 DB 0

53D8 F3 DB 32+128+ 'SI ;EXECUTE MACRO I .S'
53D9 F3 DB 's'+80H
53DA 00 DB 0

S3DB rr DB OFFH ;END or TABLE

;END OF EDITOR
53DC 00 EDEND: DB 0

53DD END

Appendix A
COMMAND SUMMARY

The following instant commands are keystrokes which are not entered into the
command or text buffers, but are executed immediately:

Cursor Motion:
©Al

©6S
©H-D
©¥.t<.
©SX
©~Q"'t
©J.-Q"X
©S-Q."S
@PQl\J)

©F©M
Scrolling:

©F©6S
©F©H'D
©F©¥E.
©F©BX

Delete:

Move to the beginning of the text buffer, and if already
there, move to the end
Move left one character
Move right one character
Move up one line
Move down one line
Move up multiple lines
Move down multiple lines
Move left one word,
Move right one wc>Td
Move to beginning of line

Scroll left one column
Scroll right one column
Scroll up one line
Scroll down one line

©E> G Delete the character at the cursor
©KY Kill the line beginning at the cursor
©W Delete one word beginning at cursor
©{)°al\w Delete one word backwards from cursor

Text movement and recovery:
©l' Q11.-r' Tag the current cursor location
©fr.QI\ ii"\ Move block between tag and cursor to special buffer
©vQl\:Z. Get contents of special buffer to cursor location
©« O Pop garbage stack, restoring last deleted item

Mode:
©X ::r
WL
©Np

Auto-indent:
©F©I
©F©P
©F©Q

Other:
©Sp.,

©lrQ,,.L
©C
©F©T
©F©F
©,,..2.
©F©S

Go to COMMAND MODE
Go to OVERTYPE MODE
Go to INSERT MODE

Set auto-indent to current column
Increment auto-indent four columns
Decrement auto-indent four columns

Repeat next keystroke four times (or number immediately
following)
Insert line
Abort any operation in progress, resetting to command mode
Exchange tag and cursor
Redraw and reformat display
Edit the command string
Shift default case (useful for non-typewriter style
keyboards)
Change case of character at cursor

e..)\et... ... ~ * 'OoA\ a.~~teers

	000
	001
	002
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	BugReport
	Videx_01
	Videx_02
	Videx_03
	Videx_04
	Videx_05
	Videx_06
	Videx_07
	Videx_08
	Videx_09
	Videx_10
	Videx_11
	Videx_A-01

