
United States Patent (19)
US0055.17631A

Patent Number: 11 5,517,631
Machado et al. (45) Date of Patent: May 14, 1996

54 MINIATURE DISK DRIVE HAVING FOREIGN PATENT DOCUMENTS
EMBEDDED SECTOR SERVO WITH SPLT

0126610 11/1984 European Pat. Off..
DATA FELDS AND AUTOMATIC 0300264 A3 1/1989 European Pat. Off..
ON-THE-FLY DATA BLOCK SEQUENCING 0402912 A3 12/1990 European Pat. Off..

0471314 A1 2/1992 European Pat. Off..
75 Inventors: Michael G. Machado, Boulder, Colo.;

Clifford M. Gold, Fremont, Calif.; OTHER PUBLICATIONS
Bruce R. Peterson; Daniel E. 3- Worden, "Design Considerations For Dual Density Diskett
Barnard, both of San Jose, Calif.; Controller', Computer Design, vol. 17, No. 6, Jun. 1978, pp.
James H. Do, Milpitas, Calif. 103-10.

A. - 1 a 'Fault Tolerant Index Detection Pattern For Hard Disk

(73) Assignee: Quantum Corporation, Milpitas, Calif. File.ini, Diibii. 26 No. 12 May 1987,
5350-535.

21 Appl. No.: 86,824 Scientific Micro Systems, Data Sheet, OMTI 5000 Data
22 Filed: Jul. 7, 1993 Controller Chips, 1985, four pages.

Cirrus Logic Data Sheet CL-SH350 Integrated Synchronous
Related U.S. Application Data SCSI Controller, Nov. 1989.

National Semiconductor Data Sheet DP8491 Hard Disk
60) Division of Ser. No. 710,861, Jun. 4, 1991, abandoned, Data Path Electronics Circuit, Sep. 5, 1991.

which is a continuation-in-part of Ser. No. 650,791, Feb. 1, Silicon Systems Data Sheet SSI 32C452 Storage Controller
1991, Pat. No. 5,241,546. Jul 1990.

(51 Int. Cl." ... G06F 3/32 Primary Examiner–Reba I. Elmore
52 U.S. Cl. 395/438: 395/310; 395/404; Attorney, Agent, or Firm-David B. Harrison

360/77.08; 360/77.02
58) Field of Search 364/200 MS,900 MS; 7 ABSTRACT

395/g333M5, 425MS, 404, 438; 360/77.02, A programmable data sequencer transfers fixed length data
77.08, 51 blocks between variable length storage segments of a mag

netic storage disk and a buffer memory within a data storage
56 References Cited device. The data sequencer includes a stack memory for

U.S. PATENT DOCUMENTS holding user byte count values read from a header field
preceding each data sector having variable length split

3,299,411 1/1967 Capozzi et al....................... 340/725 storage segments. Each byte count value indicates respective
3,771,136 11/1973 Heneghan et al......... a a sea 340/72.5 length of a following variable length storage segment, so
2. i.3. St. tal.". 3,2. that the storage capacity of each segment is dynamically

s s Oce - - - - a a- as

4,375,069 2/1983 Halvorsen et al. 360/49 determined by the data sequencer in real time by popping the
4669,004 Sf987 Moon et all 360/77 user byte count value from the stack into a storage segment
481.24 3,989 Dujari et al . . 360/49 length counter and by counting down the count value within
4,819,153 4/1989 Graham et al. ... 364/200 the segment length counter.
4924,427 5/1990 Savage et al. 364/900
5,261,058 11/1993 Squires et al. 395/275 13 Claims, 6 Drawing Sheets

HDAPCB R DATA
PRECOMPED WR DATA

C RDXRDY PULSE
DET

MTOR FAST, MOTOR SLOW,
COMMUTATION

CMTRUP, MTRON, COMUTE)
MOTOR
DRIVER

HDAPCB 7
6'5 10

SPNDLE
MDTOR

BURST A, BURS, B. BURST C

182

U.S. Patent May 14, 1996 Sheet 1 of 6 5,517,631

42
46 42A 38 42B 38 42C 44 38

| | | | | | | | | | | | | ||
44 46 46 46 46

f
40 FIG. -2

5,517,631 Sheet 2 of 6 May 14, 1996 U.S. Patent

EIG 00

0-27

U.S. Patent May 14, 1996 Sheet 3 of 6 5,517,631

o

5,517,631 Sheet 5 of 6 May 14, 1996 U.S. Patent

TO FIG-6B

5,517,631 Sheet 6 of 6 May 14, 1996 U.S. Patent

|NOS [IT

d?d | S 10

§ EE?: ,

ÅldWEN%), Hi-HlI3

FROM FIG-6A

5,517,631
1.

MINATURE DISK DRIVE HAVING
EMBEDDED SECTOR SERVO WITH SPLIT

DATA FELDS AND AUTOMATIC
ON-THE-FLY DATA BLOCK SEQUENCING

REFERENCE TO RELATED APPLICATION

The present application is a division of U.S. patent
application Ser. No. 07/710,861, filed on Jun. 4, 1991, now
abandoned, which is a continuation-in-part of U.S. patent
application Ser. No. 07/650,791, filed on Feb. 1, 1991, now
U.S. Pat. No. 5,241,546.

REFERENCE TO MICROFICHEAPPENDIX

Reference is made to a microfiche appendix accompany
ing the parent patent application, U.S. patent application Ser.
No. 07/710,861, filed on Jun. 4, 1991, now abandoned,
containing microcontroller routine program listings and
detailed schematic circuit diagrams of elements of a disk
drive and data sequencer embodying principles of the
present invention.

FIELD OF THE INVENTION

The present invention relates to a data sequencer for high
capacity, high performance fixed disk drive data storage
subsystems. More particularly, the present invention relates
to a data sequencer for a fixed disk drive supporting an
embedded sector servo arrangement wherein the servo sec
tors split up the data fields and wherein the sequencer
provides automatic data block sequencing with dual function
opcodes for reading and writing data blocks in real time
without substantial intervention of a supervisory microcon
troller.

BACKGROUND OF THE INVENTION

Disk drives, particularly fixed disk drives, are valued on
the basis of several factors including size (i.e. sometimes
referred to as "form factor'), data storage capacity, random
access times between data fields located in disparate con
centric data tracks of the storage disk (i.e. sometimes
referred to as "access time' or "average access time'), cost
per byte stored, and useful life (i.e. sometimes rated as
"mean time between failures').
When data tracks are arranged as concentric circles on a

circular storage surface, outer tracks or circles are longer and
therefore have more useful magnetic storage domains than
inner tracks. Also, when storage disks are rotated at a
constant angular velocity, the data transducer head "flies' at
a faster and somewhat higher altitude above outer storage
tracks where relative head to disk velocity is greater, than
inner tracks.

One known way to increase data storage capacity is to
divide the data storage surface into radial Zones of tracks,
and to optimize data transfer rate to the smallest track
(innermost track) within each particular zone. This approach
is sometimes called "zoned data recording'. The number of
data sectors or fields within each track typically may vary
from Zone to Zone. In order to switch from Zone to Zone, it
is necessary for the disk drive to adapt itself in real time to
the number of data sectors and to the new data rate.

Other known ways to increase data storage capacity
include varying disk rotation in function of radial position of
the data transducer head while maintaining data transfer rate
Substantially constant, as is the case with optical disk
technology, and, varying data transfer rate with each track in

10

15

20

25

30

35

40

45

50

55

60

65

2
function of the radial position of the head, while maintaining
disk rotation constant, as is the typical case with fixed disk,
"flying head' technology.

Issues confronting the designer of a disk drive include
head positioning, and data block transfer. Head positioning
is typically carried out by a head positioner servo mecha
nism and involves "track seeking operations' for moving the
data transducer head from a departure track to a destination
track throughout the radial extent of the storage area of the
disk; and, "track following operations' for causing the data
transducer head to follow precisely a particular data track
during data block reading/writing operations. In order to
provide precise head positioning, during both seeking and
following, some servo information must be provided to the
head positioner servo. This information may be contained on
a special data surface written exclusively with servo infor
mation, (called a "dedicated servo surface'), or it may be
externally supplied as by an optical encoder coupled to the
head positioner arm, or it may be supplied from servo
information interspersed or "embedded" among the data
fields within each data track. One other approach worth
mentioning is provided by the open loop stepper motor head
positioner servo wherein positional stability of the head at
each selected data track location is provided by electromag
netic detents of the stepper motor.
When servo information is embedded on a data surface

having Zoned data recording, complications arise in reliably
providing robust servo head position information. There
must be sufficient embedded information to provide stability
to the servo loop and to provide position feedback during
high speed portions of track seeking operations, so that
velocity or position profiles may be adjusted, based on
present head velocity or position at the time of the sample.
If the servo information is recorded at the same data rate, and
in positional relationship with the data blocks, as has been
conventionally employed, the servo architecture is complex
in the sense of having to switch data rate and servo position,
as Zones are crossed over. One example of data Zones with
switched servo sector locations is provided by the disclosure
of Ottesen U.S. Pat. No. 4,016,603, for example. If the servo
information is regularly spaced radially across the data
storage surface and splits at least some of the data fields into
segments, complications arise in reading each split data field
as a single data block without error. Also, the disk rotational
velocity must be monitored and carefully maintained at a
predetermined constant angular velocity.

Data fields are conventionally managed by a data
sequencer. One example of a data sequencer is to be found
in commonly assigned U.S. Pat. No. 4,819, 153, the disclo
sure thereof being incorporated herein by reference. The
data sequencer may include an encoder/decoder for trans
forming non-return-to-zero (NRZ) data into a coded data
format, such as a three to two 1.7 run-length-limited (RLL)
code in order to achieve compression of data relative to flux
transition density on the data surface. (17 RLL coding is
based on three cede bits or groups for two unencoded data
bits, but results in a four to three overal data compaction
rate and therefore permits more data to be recorded on the
disk per the number of flux transitions that may be contained
within the magnetic storage domains.)
A data sequencer conventionally performs the task of

decoding data sector overhead information in order to locate
a desired storage location, and to obtain information relating
to the correctness or validity of data read back from the
storage location. Typically implemented as a state machine,
a data sequencer conventionally monitors incoming data
flow to locate a data identification (ID) preamble field, a data

5,517,631
3

ID address mark, a sector ID field, the data field itself, and
usually some small number of error correction syndrome
bytes appended to the end of the data field. The sequencer
causes appropriate action to be taken when each of the fields
is located. For example, if a data block from the data field
of a particular track and sector is being sought, the sequencer
compares incoming sector ID field information with the
sought-after sector information stored in a register. When a
positive comparison occurs, the sequencer causes the bytes
read from the data field via a data transducer head and a read
channel to be sent into a block buffer memory, and the error
correction syndrome remainder bytes to be checked. If there
are no detected errors in the data bytes as determined by
analyzing the error correction code (ECC) remainder bytes,
the block is then sent from the buffer memory to the host
computer via a suitable interface, such as Small Computer
System Interface (SCSI).

In the disk drive described in a commonly assigned U.S.
Pat. No. 4,669,004, each sector was handled individually in
response to specific input from the supervisory microcon
troller. The disclosure of this patentis incorporated herein by
reference. As a particular sector was read, the microcontrol
ler would inform the sequencer whether or not to read the
next data sector. This microcontroller intervention occurred
for every sector.

In a later design, of which the disclosure found in com
monly assigned U.S. Pat. No. 5,005,089, is incorporated
herein by reference, a programmable sector counter was
preset by the microcontroller to a desired sector count, and
the sequencer then processed sectors sequentially until the
count in the sector counter was reached. The disk drive
examples found in the referenced '004 and 153 patents did
not include the complication of zoned data recording and
split data fields, and the '089 patent did not include embed
ded servo sectors. Positioner stability in the '089 disk drive
example was provided by an optical encoder coupled
between a rotary head positioner and the drive base, as was
the case of the disk drive example described in the refer
enced 153 patent.

Heretofore, while split data recording schemes have been
proposed in the prior art, recent proposals have typically
tasked the data microcontroller with the responsibility for
managing each split data field layout in real time, leading to
a tremendous level of bus traffic between the microcontroller
and the data sequencer during data read and write opera
tions, and precluding the microcontroller from performing
other very useful tasks, such as those related to head position
servo supervision, error correction, command and status
exchanges with the host computer over the interface bus
structure, to cite a few examples. These prior approaches
have therefore required a separate data transfer micropro
cessor, meaning that at least two microprocessors were
required to implement an overall disk drive architecture.

SUMMARY OF THE INVENTION WITH
OBJECTS

A general object of the present invention is to provide a
data sequencer for a data storage device which overcomes
limitations and drawbacks of the prior art.
A more specific object of the present invention is to

provide a data sequencer for a disk drive employing zoned
data recording having data fields split into segments by
intervening embedded servo sectors and wherein the data
sequencer provides for automatic sequencing of data blocks
during writing data to, and reading data from, the split data

10

15

20

25

30

35

40

45

50

55

60

65

4
fields, in a manner which overcomes limitations and draw
backs of the prior art approaches.

Another specific object of the present invention is to
provide a unique identification field for each data sector
which supports directly automatic data sequencing through
each split data field without direct microprocessor interven
tOI.

Another specific object of the present invention is to
provide an improved data sequencer for a disk drive which
autonomously sequences through split data fields without
requiring constant intervention by a microcontroller element
to decode the particular format of each split data field,
thereby freeing the microcontroller to perform other useful
tasks.
A further specific object of the present invention is to

provide a data sequencer which includes a count stack for
holding counts representing lengths of split data fields.
One more specific object of the present invention is to

provide a data sequencer which can read and assemble data
blocks from split data fields read from the disk, and write
split data fields to the disk without any reprogramming of the
sequencer between data block read and write operations.

Yet another specific object of the present invention is to
provide a plurality of control fields within a writeable
control word for a control state of a data sequencer such that
two independent control functions may be performed within
the state: either two primary control functions, or a primary
and a secondary control function.
A still further specific object of the present invention, a

data sequencer is provided which includes a test for zero
logic tree which employs fewer gates than heretofore for
testing an ECC syndrome remainder value.
One more specific object of the present invention is to

provide a data storage disk of a disk drive with a unique split
field data and embedded servo sector pattern following a
predetermined zoned data track arrangement.
One facet of the present invention is found in a data

storage pattern for a disk drive including a storage disk
rotating at Substantially constant angular velocity and having
at least one storage surface defining a multiplicity of con
centric data tracks, and a data transducer head positionable
at each of the tracks by a head positioning mechanism
operating within a digital servo loop. The data storage
pattern comprises a series of circumferentially spaced apart,
radially extending servo sectors, each servo sector being
prerecorded with flux transition patterns defining a servo
address mark, a servo sector identification number and servo
centerline information, the transition patterns defining the
sector identification number and the servo centerline infor
mation being resolvable by the disk drive into digital num
bers representing head position relative to a said concentric
track containing the particular sector. The data tracks are
grouped into a plurality of concentric track zones, each zone
having a data transfer rate related to radial offset of said Zone
from a center of rotation of the disk. Each track within a
Zone is soft-formatted into a predetermined number of data
sectors of predetermined user data block storage length. At
least some of said sectors are interrupted by at least one of
the servo sectors and thereby divided into data segments.
Each data sector has a data sector identification field includ
ing a plurality of user byte count values indicating the user
data storage capacity of each segment of the sector. The
count values may therefore be read by a data sequencer the
disk drive on-the-fly in order to read a user data block from,
and to write a user data block to, the segments.

In one aspect of this facet of the invention, each segment
of a data sector includes a preamble field including an

5,517,631
5

address mark, and each said data sector which is divided into
plural segments by at least one servo sector includes a data
sector identification field as a preamble of a first segment,
and a subsequent segment includes a data preamble includ
ing a data segment address mark. The data segment address
mark is preferably different than the address mark contained
within the data sector identification field.

In another aspect of this facet of the invention, the
preamble field includes a predetermined sync pattern for
enabling a phase locked loop within a data separator of said
disk drive to resolve the data transfer rate of the Zone of the
track containing the particular field, the address mark, an
identification field including said count values, a sector and
head identifier field for enabling the data sequencer to
resolve the particular sector location among the multiple
data sectors, and an error detection field for enabling an error
correction circuit of the data sequencer to verify correctness
of the values contained within the preamble field.

In a further aspect of this facet of the invention, the data
transfer rate for the information set forth in the servo sectors
is maintained at a fixed rate throughout the radial extent of
said storage surface. Also, a predetermined one of the servo
sectors preferably contains a prerecorded index pattern
indicating a once per revolution index marker for the disk.

In one facet of the invention a programmable data
sequencer state machine is provided for a disk drive com
prising at least one storage disk rotating at substantially
constant angular velocity and having at least one storage
Surface defining a multiplicity of concentric data tracks. The
disk drive includes a data transducer head positionable at
each of the tracks by a head positioning mechanism oper
ating within a digital servo loop including a programmed
digital microcontroller. The programmable data sequencer
comprises a writeable control store including a random
access memory area directly addressable by the programmed
digital microcontroller for writing sequences of control
patterns, there being most preferably a single sequence
written for controlling states of the programmable data
sequencer during both data read and data write operations to
and from the disk surface and a buffer memory. The control
patterns preferably include an opcode field control pattern,
a count select field control pattern, a control field control
pattern, a jump field control pattern, a count field control
pattern, and a data field control pattern. The data sequencer
thus includes an opcode decoder for decoding values com
prising an opcode of a said sequence, a jump field decoder
for decoding values comprising at least one of a count select
field control pattern and a jump field control pattern, a
control field decoder for decoding the control field control
pattern, a counter responsive to the count field control
pattern, and a data decoder responsive to the data field
control pattern.
As one aspect of this facet of the invention, the data

storage disk defines a series of circumferentially spaced
apart, radially extending servo sectors, each servo sector
being prerecorded with flux transition patterns defining a
servo address mark, a servo sector identification number and
servo centerline information, the transition patterns defining
the sector identification number and the servo centerline
information being resolvable by the disk drive into digital
numbers representing head position relative to a particular
concentric track containing the sector. The tracks are
grouped into a plurality of concentric track zones, each zone
having a data transfer rate related to radial offset of said zone
from a center of rotation of the disk. Each said track within
a Zone is soft-formatted into a predetermined number of data
Sectors of predetermined user data block storage length. At

10

15

20

25

30

35

40

45

50

55

60

65

6
least some of the data sectors are interrupted by at least one
of the servo sectors and are thereby divided into data
segments. Each data sector has a data sector identification
field including a plurality of user byte count values indicat
ing the user data storage capacity of the particular segment
thereof, whereby the count values may be read and pro
cessed by the data sequencer on-the-fly in order to assemble
a user data block from the segments during a data read
operation, and to disassemble a user data block into the
Segments during a data write operation. In this aspect, the
programmable data sequencer state machine further com
prises a count Stack for storing the user byte count values,
and a loadable sector segment counter for receiving sequen
tially from the count stack each one of the user byte count
values for decoding on-the-fly the length of each said
segment.
As a further aspect of this facet of the invention the

programmable data sequencer state machine comprises a
loadable sector counter directly loadable by the programmed
microcontroller. The sector counter is responsive to a data
clock for counting a preset number of data bytes comprising
a data sector. A loadable loop counter is directly loadable by
the programmed microcontroller and responds to the data
clock for counting a present number of data byte clock
periods corresponding to a loop established within
sequences of the control patterns. A control field decoder is
provided for decoding the control field control pattern and
generating the data clock for clocking the sector counter and
the loop counter.
As another facet of the present invention, a programmable

data sequencer is provided for controlling transfer of fixed
length data blocks between variable length storage locations
of a storage medium and a buffer memory within a data
storage device. The data sequencer includes

a writeable control store including a random access
memory directly addressable by a programmed digital
microcontroller of the data storage device for writing
sequences of control patterns, there being dual function
control patterns such that a single sequence of control
patterns may be written for controlling states of the pro
grammable data sequencer during both data read operations
and data write operations to and from the storage medium
and the buffer memory,

a control pattern decoder for decoding the control patterns
into functional values for controlling operations within the
data sequencer, and

a stack memory for holding user byte count values
indicating respective lengths of said variable length storage
locations so that the storage capacity of each said storage
location is determined by the data sequencer automatically
as a user byte count value associated with a particular
variable length storage location is provided at the stack
memory.

As a further facet of the present invention, a method is
provided for controlling transfer of fixed length data blocks
between variable length storage locations of a storage
medium such as a rotating disk and a buffer memory of a
data storage device such as a disk drive. In this facet of the
invention, the method comprises the steps of:

writing sequences of control patterns from a programmed
digital microcontroller of the device directly to a writeable
control store of a data sequencer of the device,

decoding the control patterns into functional values for
controlling operations within the data sequencer,

transferring user byte count values indicating respective
lengths of segments of the variable length storage locations

5,517,631
7

from a data header of one of the storage locations directly
into a byte count values stack of the data sequencer as the
data header is read by a data transducer of the device,

automatically transferring each user byte count value to a
byte counter of the data sequencer so that the storage
capacity of each said segment is determined by the
sequencer automatically by the value held in the byte
COunter.

As another facet of the present invention, a method is
provided for controlling transfer of data blocks between
storage locations of a storage medium and a buffer memory
of a data storage device. In this facet, the method comprises
the steps of:

writing sequences of control patterns from a programmed
digital microcontroller of the device directly to a writeable
control store of a data sequencer of the device, there being
dual function control patterns such that a single sequence of
control patterns may be written for controlling states of the
programmable data sequencer during both data read opera
tions and data write operations to and from the storage
medium and the buffer memory, and

decoding the control patterns into functional values for
controlling operations within the data sequencer during both
data read operations and data write operations without
intervention by the programmed digital microcontroller.

These and other objects, advantages, aspects, facets and
features of the present invention will be more fully under
stood and appreciated by those skilled in the art upon
consideration of the following detailed description of a
preferred embodiment, presented in conjunction with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

In the Drawings:
FIG. 1 is a plan view of a disk data storage surface

including data track zones and radially/circumferentially
aligned embedded servo sectors in accordance with the
principles of the present invention.

FIG. 2 is a graph of a portion of a data track showing a
data field being split into segments by recurrent servo
sectors. ID and data headers for the data segments include
fault tolerant address marks in accordance with principles of
the present invention. While the FIG. 2 graph is a rectilinear
depiction, within disk drives, the tracks are typically con
centric, and a truer representation would show the FIG. 2
segment as an arc segment of a circular track pattern.

FIG. 3 is a more detailed view of the FIG. 2 data track
portion.

FIG. 4 is an exploded isometric view of a submicro
Winchester fixed disk drive head and disk assembly, incor
porating principles of the present invention.

FIG. 5 is a detailed block diagram of an electrical control
system for controlling operation of the FIG. 4 head and disk
assembly and incorporating principles of the present inven
tion.

FIGS. 6A and 6B are a detailed block diagram of a data
sequencer element of the FIG. 5 control system, with FIG.
6A providing the left panel, and FIG. 6B the right panel, of
the block diagram.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

Issues confronting a designer of a high capacity disk drive
including an embedded sector servo are perhaps best under
stood by considering the FIG. 1 plan view of a disk data

10

15

20

25

30

35

40

45

50

55

60

65

8
storage surface. A rotating storage disk 10, which may be 2.5
inches in diameter, or 1.8 inches in diameter, or larger or
smaller, is formed of suitable substrate material such as
metal or glass and is coated with e.g., a magnetic storage
medium such as a thin film medium vacuum sputter depos
ited onto the substrate. The disk 10 defines a central opening
12 to enable a rotating hub securely to clamp the disk to a
disk spindle. Between an inner landing zone area 14 and an
outer peripheral Zone 16, a data storage area of a multiplicity
of concentric data tracks is defined. The tracks are arranged
into e.g. eight data Zones, 18, 20, 22, 24, 26, 28, 30 and 32,
extending from a radially outermost zone 18 to a radially
innermost Zone 32. A system information zone 34 lies
radially outwardly just beyond the outer Zone 18, and a
diagnostics and guard Zone 36 lies just inside of the inner
landing Zone area 14. Since the number of magnetic storage
domains varies directly in function of disk radius, the tracks
of the outermost zone 18 will contain considerably more
user data than can be contained in the tracks located at the
innermost Zone 32.

Outermost Zone 18 includes e.g. 110 concentric data
tracks, each having 58 data sectors, with a storage density of
43,334 bits per inch (BPI) (32,500 flux changes per inch
encoded in 17 run length limited code). The raw data rate
is 18.13 megabits per second, with a raw code rate of 27.20
Megahertz (MHz). Zone 20 includes e.g. 109 concentric data
tracks, each having 56 data sectors per track, with a storage
density of 44,269 bits per inch (32,202 flux changes per inch
(FCI), a raw data rate of 17.45 megabits per second (MBPS)
and a raw code rate of 26.18 MHz. Zone 22 includes e.g. 109
concentric data tracks, each having 52 data sectors per track,
a storage density of 42,382 MBPS (31,787 FCI), a raw data
rate of 15.69 MBPS and a raw code rate of 23.53 MHz. Zone
24 includes e.g. 109 data tracks, each having 52 sectors per
track, with a storage density of 45,334 MBPS (34,008 FCI)
and a raw data rate of 15.69 MBPS and a raw code rate of
23.53 MHz. Zone 26 includes e.g. 109 concentric data
tracks, each having 47 data sectors per track, a storage
density of 45,900 BPI (34,425 FCI), a raw data rate of 14.77
MBPS and a raw code rate of 22.15 MHz. Zone 28 includes
e.g. 108 concentric data tracks, each having 44 data sectors,
a storage density of 47,008 BPI (35,256FCI), a raw data rate
of 14.00 MBPS and a raw code rate of 21.00 MHz. Zone 30
includes e.g. 108 concentric data tracks each having 41 data
sectors, a storage density of 47,294 BPI (35,471 FCI), a raw
data rate of 12.98 MBPS and a raw code rate of 19.43 MHz.
Innermost data Zone 32 includes e.g. 108 concentric data
tracks each having 39 sectors per track, a storage density of
48,371 BPI (36,278 FCI), a raw data rate of 12.09 MBPS
and a raw code rate of 18.13 MHz. The outer system zone
34 includes e.g. 14 concentric data tracks following e.g. the
Zone 32 format, and the inner diagnostics zone 36 includes
1 track also following the Zone 32 format. A guard band 37
of four tracks lies immediately inside of the diagnostics zone
36. A landing zone LZ lies immediately inside of the guard
band and diagnostics zone 36. The landing Zone LZ is
provided to implement a contact start-stop head flying
arrangement for the disk drive.

FIG. 1 also depicts a series of radially extending, regular
servo sectors 38. In this particular example, there are pref
erably 52 radial servo sectors 38 (shown diagrammatically
as several narrow spokes in FIG. 1) equally spaced around
the circumference of the disk 10. With disk rotation main
tained at 16.667 milliseconds per revolution (3600 RPM),
each servo sector takes up about 24.125 microseconds of the
rotational interval. Other drive overhead includes the FIG. 3
data sector ID and data fields. While the number of data

5,517,631
9

sectors per track varies from Zone to Zone, it is apparent from
inspection of FIG. 1 that the number of embedded servo
sectors per track remains constant. In the present example
the servo sectors 38 extend radially and are circumferen
tially equally spaced apart throughout the extent of the
storage surface of the disk 10 so that the data transducer
head 114 samples the embedded servo sectors 38 while
reading any of the concentric tracks 10 defined on the data
storage surface.
Each data sector is of a predetermined fixed storage

capacity or length (e.g. 512 bytes of user data per data
sector); and, the density and data rates vary from data Zone
to data Zone. Accordingly, it is intuitively apparent that the
servo sectors 38 interrupt and split up at least some of the
data sectors or fields, and this is in fact the case in the present
example. The servo sectors 38 are preferably recorded at a
single data cell rate and with phase coherency from track to
track with a conventional servo writing apparatus at the
factory. A laser servo writer and head arm fixture suitable for
use with the servo writer are described in commonly
assigned U.S. Pat. No. 4,920,442, the disclosure of which is
hereby incorporated herein by reference. A presently pre
ferred servo sector pattern is described in copending U.S.
patent applications Ser. Nos. 071569,065 filed on Aug. 17,
1990, entitled "Edge Servo For Disk Drive Head Positioner,
now U.S. Pat. No. 5,170,299 and 07/710,172, filed Jun. 4,
1991 and entitled "Servo Data Recovery Circuit for Disk
Drive Having Digital Embedded Sector Servo' abandoned
in lieu of U.S. continuation application Ser. No. 08/180,096,
filed on Jan. 11, 1994, and now U.S. Pat. No. 5,420,730, the
respective disclosures of which are hereby incorporated by
reference. A very robust digital head position servo loop
servo is realized, as described in the referenced U.S. Pat. No.
4,669,004 as further improved by the disclosures of the
patent applications noted directly above.
As shown in FIG. 2, a data track 40 includes a data block

42 for storage of a predetermined amount of user data, such
as 512 or 1024 bytes of user data, recorded serially by 1.7
RLL code bits in data field areas of the depicted track
segment. The data block 42-1 is interrupted by several servo
sectors 38 which contain embedded servo information pro
viding head position information to the disk drive via e.g. a
thin film or metal-in-gap (MIG) data transducer head 114
(FIG. 4) which is positionable by a rotary voice coil actuator
108 radially with respect to the data surface in order to read
the data and servo information contained in the track 10, for
example, as well as some or all of the other data tracks on
the particular surface. The data block 42 includes an ID
header 44 at the beginning of the data block and a data
header 46 immediately preceding each data field segment
including the segment 42A following the ID header 44, and
the segments 42B and 42C following interruption by servo
sectors 38. The data header 46 is written at the same time
that data is written to the segments 42, and a write splice
therefore exists just before each data header 46.
As shown in greater detail in FIG. 3, the ID header 44

typically may include an ID preamble 50, an ID-type address
mark52, an ID field 54 containing three or four count bytes,
a sector number byte, a head number byte, and a Reed
Solomon error detection code. The data header 46 contains
a data preamble field 56 and a data address mark 58. The
data header is immediately followed by a user data field 60
for storing the predetermined number of user data bytes,
such as 512 bytes, for example. The user data field segment
60 is followed by an ECC field containing e.g. 12 ECC
syndrome remainder bytes. A pad field 62 follows the ECC
field and separates a first data sector or block 42-0 from a

10

5

20

25

30

35

40

45

50

55

60

65

10
second data block 42-1, for example. Also, an ID/data
header pad field 63 separates the ID header 44 from the data
header 46 and contains the write splice.
The first data block 42-0 is shown in FIG.3 as being

uninterrupted throughout its circumferential extent. How
ever, the block 42-1 is interrupted by a servo sector 38 and
includes two data segments 42d and 42e, for example. Each
split data segment, such as the segments 60-1 and 60-2
shown in the second sector 42-1 of FIG. 3, is preceded by a
data header 46 including a data preamble field 56, and a data
address mark 58. Immediately following the last data field
segment 60-2 is the error correction field 62 containing the
ECC remainder bytes.

In accordance with principles of the present invention, the
count bytes, e.g. C1, C2 and C3, within the ID data field 54
are used to control automatic data block sequencing opera
tions of a data sequencer 152 (FIG. 6). These count bytes
enable the sequencer to determine automatically, and with
out microcontroller intervention, the layout of the particular.
data sector 42 to be sequenced. In other words, the count
bytes C1, C2 and C3 provide the respective byte lengths of
each data segment 60 as interrupted by the fixed location
servo sectors 38. In the FIG. 3 example the first data sector
42-0 is not split up into more than one data segment.
Accordingly, count bytes C3, C2 and C1 are respectively 0,
0 and 7F (Hex, 127 decimal, the count bytes being divided
by 4 to save register room in the sequencer 152). This pattern
means that the first data segment 42F contains all of the data
bytes, and there are no second (C2) or third (C3) segments.
A split data field example is encountered in data sector

42-1. Therein, the count bytes C3, C2 and C1 are respec
tively 0, 70, 01. This pattern of count bytes indicates that the
first data segment 42D (C) contains eight user bytes, and
the second data segment 42E contains 504 bytes, and that
there is no third segment in this particular example.
The count bytes are arranged in reverse order, so that they

may be pushed onto abyte count stack 234 (FIG. 6) provided
within the sequencer 152, as explained in greater detail
hereinafter. The last count C1 for the first segment 42D, will
be the first one popped off the stack 234 and loaded into a
byte counter 236 of the sequencer 152 as the first segment
of the particular data sector 42 is being read from or written
to in real time. When the next segment is reached, the next
count C2 for the second segment 42E is then popped off of
the stack 234 and into the byte counter 236, and when the
third segment is reached, the third count (C3) will be popped
off of the stack 234 and loaded into the byte counter 236.
This activity does not take place for byte count values of
Zero.

In this manner, the data sequencer 152 is able to reas
semble automatically the data sectors 42 into unbroken
continuous byte sequences which in the case of data reads
from the disk are sent into a data block buffer preparatory to
being transferred to the host. For incoming data blocks when
data is being written to a storage surface of the disk 10, the
sequencer 152 uses the count bytes in order to know how
many bytes to sequence to the disk surface for each data
Sector data segment.
As already noted, each data sector 42 includes within the

ID field 54 several error detection bytes which are used to
verify the integrity of the information read back from the
particular data ID field. These error detection code bytes
(EDC) are preferably Reed Solomon syndrome remainder
bytes which are coded from a code compatible with the error
detection syndrome remainder bytes contained in the ECC
fields 62. The EDC bytes as well as the ECC bytes are

5,517,631
11

checked in real time by an ECC circuit within the sequencer.
A presently preferred EDC/ECC circuit is described in a
commonly assigned, copending parent U.S. patent applica
tion, Ser. No. 07/650,791, filed on Feb. 1, 1991, the disclo
sure of which is hereby incorporated by reference.
Turning now to FIG. 4, a head and disk assembly 101 of

an exemplary fixed disk drive data storage subsystem 100 is
depicted in an approximate real size plan view. The data
storage disk 10 may have any suitable diameter. While two
and one half inches is presently preferred, larger disk
diameters, such as three and one half inches, five and one
quarter inches, eight inches or larger, or smaller disk diam
eters, such as 1.8 inch, or smaller, are also clearly within the
contemplation of the present invention. The data storage
disk 10 is mounted upon a rotating spindle assembly 102
which is rotated by an in-spindle brushless DC spindle
motor 104 relative to a frame or base 106. Most preferably,
motorbearings formed as a part of the spindle motor 104 are
used to rotate the spindle assembly 102 relative to the base
106; and, the spindle motor itself is mounted to the base
casting 106, as is conventional in miniature head and disk
assemblies.

A motor driver circuit 107 (FIG. 5) is provided to com
mutate e.g. the three-phase windings of the brushless motor
104. Hall sensors, not shown, may be provided in order to
determine the position of the rotary permanent magnet
element relative to the fixed windings and poles of the motor
104 and provide feedback control information to the motor
driver circuit 107 in conventional fashion.

A plurality of e.g. thin film or MIG data transducer heads
114a and 114b are respectively associated with opposite
major data storage surfaces of the at least one data storage
disk 10. The data transducer heads 114 are preferably,
although not necessarily, mounted to in-line aligned load
beams 117 which in turn are attached to vertically aligned
arms of an arm assembly 112 of a mass balanced rotary
voice coil actuator 108. The heads 114a and 114b operate
conventionally in a contact-start-stop relationship with
respect to the data surface, and they "fly' above the surface
during operations upon an air bearing as is conventional
with Winchester fixed disk technology, for example. During
the assembly process, the heads 114 may be loaded onto the
data storage disk in accordance with the teachings of com
monly assigned U.S. patent application Ser. No. 07/610,306,
now U.S. Pat. No. 5,027,241, the disclosure of which is
incorporated herein by reference.
A head position actuator mechanism, most preferably a

mass-balanced rotary voice coil actuator 108, includes a
permanent magnet voice coil motor having an upper flux
return plate 109 and a lower flux return plate securing e.g.
a pair of highly magnetic flat permanent magnets 110 of
opposite magnetic polarity formed of a suitable material,
such as a rare earth element such as nyodmium. A flat,
wedge-shaped moving coil 111 defining an inner space a
mass counterbalance and being integrally formed with or
otherwise mounted to a rotary actuator 112 moves in a
magnetic gap formed between the upper flux return plate
109 and the permanent magnets 110. The rotary actuator 112
is journalled about bearings mounted to a post 113 secured
to and extending upwardly from a floor wall of the base 106.
To provide additional rigidity, the actuator post may also be
secured to a top cover by a removable screw, should
additional rigidity be needed or desired. A conventional
elastomeric crash stop limits radial displacement of the
rotary actuator 112.
As noted, the rotary actuator 112 includes a bearing

assembly mounted to the base 106 via the actuator post 113

10

5

20

25

30

35

40

45

50

55

60

65

12
so that the rotary actuator 112 is free to rotate relative to the
disk 10 over an arcuate radial locus of limited rotational
displacement. Current passing through the coil 111 in one
direction results in application of a rotary reaction force of
the rotary actuator 112 in one direction, while current flow
in reverse direction results in a rotary force being imparted
to the rotary actuator 112 in an opposite direction. The rotary
actuator 112 thus moves a ganged, substantially in-line head
arm assembly across the surfaces of the disks within the
drive. The head arm assembly includes a separate in-line
load beam 117 for each data transducer head 114. In the
present single storage disk example given in FIG. 4, the
rotary actuator 112 Supports e.g. two oppositely aligned data
transducer heads 114, so that both surfaces of the disk 10 are
used for storage and retrieval. If two or more spaced apart
disks are included within the disk drive 100, at least one data
head 114 is provided for each surface and is commonly
positioned with the other heads 114 by movement of the
rotary actuator assembly 112.
An electromagnetic shipping latch engaging a protrusion

formed e.g. on the rear end of the coil molding 111 locks the
head arm assembly to place the heads at the inner landing
zone defined on the data surface. During a power-down
sequence, power generated from kinetic energy in the
spindle motor is directed into the coil 111 to move the head
arm assembly to the landing Zone, and is also directed into
the latch to cause it to engage the actuator when the landing
zone has been reached. Further details of a presently pre
ferred electromagnetic shipping latch are set forth in com
monly assigned, copending U.S. patent application Ser. No.
07/696,629 filed on May 7, 1991, and entitled “Bistable
Magnetic/Electromagnetic Latch for Disk File Actuator',
now U.S. Pat. No. 5,170,299, the disclosure of which is
hereby incorporated by reference.

Magnetic flux transitions comprising both user data and
servo sector data 38, are written by or read by the head 114
during data write or read operations. The data read by the
head 114 is passed through a preamplifier circuit 120 (FIG.
5) which also provides head selection and write driving
functions during data write operations. A conventionally
available integrated circuit, such as the SSI 32R4610 four
channel thin film head read/write device made by Silicon
Systems, Inc., Tustin, Calif., or equivalent, is presently
preferred for implementation of the circuit 120. The circuit
120 enables four separate heads 114 to be individually
selected, and the circuit 120 is preferably mounted within a
space defined within the head and disk assembly 101 upon
a Mylar circuit substrate 122 which carries conduction traces
leading to connections at an external printed circuit board
carrying the other circuit elements of the disk drive 100. The
circuit 120 is placed as close to the heads 114 as possible in
order to reduce connection lead length, and to improve
signal to noise ratios for each of the heads 114.

Turning now to the system block diagram provided in
FIG. 5, the generally vertical dashed line represents a printed
circuit board 115 which carries all of the electronic circuit
elements shown in FIG. 5 other than the preamplifier 120,
and marks the demarcation between the head and disk
assembly 101 and the circuit board 115. As shown in FIG.
5 analog flux transitions from a selected head 114 are
amplified by a preamplifier within the circuit 120 and are
then passed on to a circuit 124 including a pulse detector
126. Gain of the pulse detector circuit 126 is controlled by
an AGC control circuit 128 also contained within the circuit
124. The pulse detector circuit 126 decodes the analog flux
transitions into shaped digital edges or pulses representative
of raw encoded data. The circuit 124 also includes a pre

5,517,631
13

compensation circuit 130 for precompensating data to be
written to the disk 10 during data writing operations, and a
peak detector 132 for detecting peak amplitudes of servo
bursts contained within the servo sectors 38 during track
settling operations at the end of track seeking operations,
and during track following operations.
The circuit 124 also includes a phase locked loop

(PLL)134 for locking onto incoming data at a data rate
predetermined for the particular data Zone, as previously
explained. A data frequency synthesizer 136 is provided for
selectively generating the particular data transfer rate appli
cable within a track Zone and supplies the synthesized
frequency to the PLL 134. The circuit 124 is preferably
contained within a single low power VLSI package, such as
a type DP8491 made by National Semiconductor Corpora
tion, or equivalent. The circuit 124, as is true with the entire
system 100, preferably operates upon a single +5 volt power
Supply.
The data stream leaving the circuit 124 enters another

circuit 140. The circuit 140 is also a single low power VLSI
package operating on a +5 V power supply, and it includes
a servo data decoder circuit 142. The circuit 140 also
includes a pulse width modulator 144 for sending strings of
controlled duty cycle pulses generated from values supplied
from the microcontroller 162 through a low pass filter 146
to control a servo driver circuit 148. The servo driver circuit
148 generates and applies drive currents to the coil 111 of the
rotary actuator 108. Essentially, a digital servo is realized, as
described in the referenced commonly assigned U.S. Pat.
No. 4,669,004, as improved by the improvements described
in the referenced copending U.S. patent applications Ser.
Nos. 07/569,065 filed on Aug. 17, 1990, entitled “Edge
Servo For Disk Drive Head Positioner, now U.S. Pat. No.
5,170,299 and U.S. patent application Ser. No. 07/710,172
filed on Jun. 4, 1991, abandoned, continued by U.S. patent
application Ser. No. 08/180,096, filed on Jan. 11, 1994, and
now U.S. Pat. No. 5,420,730 and entitled "Servo Data
Recovery Circuit for Disk Drive Having Digital Embedded
Sector Servo'.
The servo data decoder circuit 142 preferably includes a

synchronizer for synchronizing incoming raw data to an
internal clock, a first slave state machine for detecting servo
sync and a unique pattern within a servo address mark field,
and a second slave state machine for decoding data bits
included within the servo address mark field, an index bit
field, and a Gray coded data field indicating the particular
surface and track number. The servo data decoder circuit 142
also includes a sector timer which generates and puts out
expected servo sector times within the circuit 140 based
upon detection of each servo address mark, and a delay timer
for timing delay periods associated with centerline burst
fields included within each servo sector, and for putting out
delay gates, the gates being used to control operation of the
peak detector 132. Functional operations within the servo
decoder circuit 142 are managed and supervised by a servo
master state machine which controls and monitors opera
tions of the two slave state machines and determines detec
tion of the servo address mark, an index mark, and collects
the bits comprising the Gray coded track identification
number. This number is passed onto the microcontroller 162
which decodes it and determines head position during track
seeking and settling operations of the drive.
The circuit 140 also includes an encoder/decoder 150

which decodes incoming data from e.g. 1,7 RLL code to
NRZ format, and encodes data from the host in NRZ format
into e.g. 17 RLL code. The encoder/decoder 150 is sub
stantially as described in a commonly assigned U.S. Pat. No.

10

15

20

25

30

35

40

45

50

55

60

65

14
4,675,652, the disclosure of which is hereby incorporated by
reference. Following the encoder/decoder 150 is a data
sequencer 152. The data sequencer is described hereinafter
in greater detail in conjunction with FIGS. 6A and 6B. It
basically functions to sequence data to and from the storage
disk 10.
A buffer controller 154 controls operation of a buffer

memory 166. While otherwise conventional, the buffer
controller 154 includes a microcontroller buffer access cir
cuit enabling the microcontroller 162 to write bytes to, and
read bytes from, specified addresses in the buffer memory
166 in accordance with values supplied over the bus 160. An
address control generates and applies addresses to the buffer
memory 166 over a buffer address bus 172. A master control
state machine generates the necessary clocks for clocking
data blocks into and out of the buffer memory 166 and
supplies those clocks to the address control. A bus multi
plexer within the buffer controller 154 selects between data
from a sequencer first-in, first-out buffer (FIFO) 196 (FIG.
6B) and the microcontroller buffer access circuit.
The circuit 140 further includes a motor control circuit

156 which monitors disk rotational speed. The motor driver
circuit 107 may provide a once-per-revolution index signal
which may be compared against an internal timer, or the
time between index marks provided by the servo control
circuit 142 may be counted. Speed up (MTRUP) or slow
down (MTRDN) signals are sent by the motor control circuit
156 to the motor driver 107. Finally, the circuit 140 includes
a microprocessor interface 158 which connects directly to an
internal control bus structure 160 over which control data
and control address values are sent to and from a pro
grammed digital microcontroller 162.
An internal data bus structure 164 connects the buffer

controller 154 to a buffer memory 166 and also to an
interface circuit 168. The interface circuit 168 includes bus
drivers and other circuitry, such as a data FIFO buffer for
buffering data flow from an external bus 170 and the buffer
memory 166. The circuit 168 may also include a state
machine for decoding bus level commands. Internal regis
ters may be provided for receiving commands from the
microcontroller 162.
The interface circuit 168, while conventional, is prefer

ably configured to conform to the American National Stan
dards Institute (ANSI) standard X3T9.2/82-2 Revision 17B
at conformance level 2 for the small computer standard
interface (SCSI), for example. It is controlled by a SCSI
interface service routine executed by the microcontroller
162. The interface 168 includes hardware for controlling all
critical timing operations on the SCSI interface bus. Decod
ing of commands, time-outs, and other non-critical timing
operations are performed by the SCSI service routine. The
interface circuit 168 also includes on-board drivers for at
least a single ended SCSI bus 170.
The interface circuit 168 includes an interface control

block which connects to the bus 160 and enables the
interface circuit 168 to appear to the microcontroller 162 as
an array of directly addressable registers. By writing to these
registers, the microcontroller 162 may arbitrate for the SCSI
bus 170, select another device on the bus 170 and initiate
data transfers. By reading these registers, the microcontrol
ler 162 may determine the status of the interface circuit 168
and of the data transfer including error detection.
The buffer control 154 generates addresses for the buffer

memory 166 and puts them out over an address bus 172. The
microcontroller 162 puts out addresses over an address bus
174 to the microcontroller interface circuit 158. The micro

5,517,631
15

controller 162 directly addresses a program memory 178
over an address bus 176, and the circuit 158 latches and
presents other ones of the address lines to the program
memory 178 over an address bus 180.

Preferably although not necessarily, the programmed
microcontroller 162 is a single monolithic microcontroller
such as the NEC 78322, or equivalent, operating in a
two-phase time divided arrangement per servo sector
wherein a first time interval upon the arrival of each servo
sector is devoted to servo control operations for head
positioning, with a second and following time interval
devoted to other tasks, including error correction operations,
for example. An overview of this form of disk drive archi
tecture is provided in the referenced U.S. Pat. No. 4,669,004.
A hierarchical system for managing the tasks performed by
the microcontroller 162 during the second and following
time interval is disclosed in the referenced U.S. Pat. No.
5,005,089.
An analog to digital converter 182 within the microcon

troller 162 enables peak values detected by the peak detector
132 to be digitized and processed most preferably in accor
dance with a method described in the referenced co-pending
U.S. patent application Ser. No. 07/569,065, reference to
which is made for further particulars.

Further structural and functional details of the presently
preferred disk drive architecture are found in a commonly
assigned, copending U.S. patent application Ser. No. 07/710,
177, filed on Jun. 4, 1991, and entitled "Miniature Fixed
Disk Drive' now U.S. Pat. No. 5,255,136 the disclosure of
which is hereby incorporated herein by reference.

Turning now to FIGS. 6A and 6B, architectural details of
the data sequencer152 are given in greater structural detail.
The data sequencer 152 includes an on-the-fly error correc
tion circuit 190 as described in the referenced U.S. patent
application Ser. No. 07/650,791. In this regard, it should be
noted that the sequencer 152 actually tests the syndrome
remainder values supplied from the circuit 190 to see if the
values are Zero. Each of three data interleaves is tested
separately, and the results are latched for each interleave (if
non-zero). This approach reduces to one-third the number of
gates otherwise required to implement the sequencer's ECC
test for zero logic tree.
The data sequencer 152 also includes a data field address

mark detector 192 which receives incoming data directly
from the circuit 124. The address mark detector 192 looks
for a sequence of high frequency flux transitions, and when
such is detected, the PLL 134 is then locked onto the
sequence and the recovered digital run length encoded data
is checked for the presence of the address mark sequence. In
this regard, the address mark detector 192 monitors the data
stream in order to detect a unique bit sequence which is not
consistent with the 17 encoding rules and which is prede
termined to represent an address mark. The address mark
detector 102 is described in greater detail in a commonly
assigned, copending U.S. patent application Ser. No. 07/710,
065 filed Jun. 4, 1991 and entitled "Fault Tolerant RLL Data
Sector Address Mark Decoder', now U.S. Pat. No. 5,231,
545, the disclosure thereof being expressly incorporated by
reference herein. The address mark detector 102 generates
the byte clock signal BYTCLKA from the raw data stream
as well as an address mark found (AMFOUND) control
signal whenever a bit sequence representing an address mark
is found in the raw data stream. The byte clock signal
BYTCLKA is defined as the data in clock DIN divided by
twelve and synchronized with detection of the address mark
by the address mark detector 102.

10

5

20

25

30

35

40

45

50

55

60

65

16
The 1,7 run length limited encoder/decoder 150 encodes

and decodes serial data into and from a 1.7 run length limited
(RLL) code, and the serializer/deserializer (SERDES) 194
contained within the circuit 150 but separately shown for
clarity in FIG. 6, bundles and unbundles data bytes into and
from serial 2 bit-by-2 bit format. A FIFO byte register 196
enables data bytes to be asynchronously transferred between
the sequencer 152 and the external cache buffer memory
array 166 which is clocked by an external crystal clock
standard (as opposed to the BYTCLKA which is synchro
nized with the raw data stream read back from the disk).
A multiplexer 198 regulates bidirectional data flow

through the serializer/deserializer 194 and encoder/decoder
150 so that ECC syndrome bytes generated by the ECC
generator 190 may be appended to data blocks flowing to the
storage surface of the disk 10, and so that data values present
on a writeable control store (WCS) bus 200 may also be sent
to the disk for storage.

Reference data sector (i.e. physical sector and transducer.
head) identification bytes read from data ID fields are passed
through a comparison multiplexer 202 to a comparison
circuit 204. The comparison circuit 204 compares actual
data sector identification bytes received from the SERDES
194 with the reference identification bytes held in a sector
counter 206. If a correspondence exists, the desired sector
location has been reached, and a Compare=0 control signal
is put out by the comparison circuit 204 to a jump control
multiplexer circuit 208.
The data sequencer 152 is most preferably implemented

as a programmable state machine. Accordingly, a writeable
control store (WCS) 210 is provided for containing code
words which define progressively the various states of the
sequencer 152. The WCS 210 stores sequencer control
words which control all of the operational states of the
sequencer 152. The WCS 210 may be loaded with informa
tion directly written by the microcontroller 162 with data
supplied via a microcontroller data register 211 at WCS
locations controlled by addresses decoded by a microcon
troller address decoder 212.
The WCS 210 accepts control words which are e.g. 28bits

long. Each command line comprises a number of fields. One
field is a 5-bit OPCODE field 250, a 2-bit count select field
252, a 3-bit primary control field 254, a 5-bit secondary
control field 256, a 5-bit count field 258, and an 8-bit data
field 260. Two of the fields, namely the secondary control
field 256 and the bit count field 258 are dual purpose. During
a count type command, as selected by a 00 value in the count
select field 252, the field 256 contains the secondary control,
and the field 258 contains a count specified in the command
word. During a jump type command, selected by 01, 10 or
11 values in the count select field, the field 256 contains a
jump control, and the field 258 contains a jump address. For
both types of command words, the opcode, primary control
and data fields 250, 254 and 260 are identical.

During one half of the BYTCLKA clock cycle, a multi
plexer 214 enables direct access by the microcontroller 162
to the control store 210. During the other half of the
BYTCLKA cycle, addresses from a sequence controller 216
are used to address the control store memory area 218. The
sequence controller 216 includes a sequence control decoder
block 220 which enables the controller 216 to jump to a
plurality of predetermined states, a sequence address mul
tiplexer 222 which selects between various possible
addresses, a last address register 224 for holding the last
sequencer address for application to the control store 210 via
the multiplexer 214, and a writeable control store address+1

5,517,631
17

incrementer 226 which selectively feeds back the next
address from the one held in the register 224 to the sequence
address multiplexer 222.
The sequence controller 216 is directly controlled by the

jump control multiplexer 208 which generates a jump con
trol signal when the value of the count select field 252
indicates a jump type control word. The jump control signal
is generated from a plurality of logical inputs to the jump
control multiplexer 206 as indicated in FIG. 6A. The 28 bit
wide writeable control store (WCS) data bus 200 directly
communicates with the writeable control store 210 and
enables the values held therein to circulate throughout the
sequencer 152 along the paths shown in FIGS. 6A and 6B.

Specifically, an opcode bus 228 leads to an opcode
decoder 230 which decodes each five bit opcode from the
opcode field 250 into a plurality of logical conditions on the
control lines shown coming out of the opcode decoder 230.
For example, a PUSH SEL line extends from the opcode
decoder to a push multiplexer 232 which enables e.g. data
field count bytes C3, C2 and C1 to be pushed directly onto
the top of a four byte register stack 234. A top of stack (TOS)
bus and a next of stack (NOS) bus connect the stack 234 to
a byte sequence counter 236 via a multiplexer 238 which
also has the ability to load the sequence counter 236 with “1”
values.

The byte sequence counter 236 maintains a present state
byte count (remaining bytes within the present state of the
sequencer 152). When the presently loaded byte count
increments to zero, the end of a particular sequencer state is
reached, and the sequence counter 236 puts out a SCNT=0
value to the sequence control decoder 220 so that a next
sequencer state may then be invoked.
A control decoder 238 receives primary control values

from the primary control field 254 and secondary control
values from the secondary control field 256 (during a count
type command word as controlled by the count select values
from the field 252). The control decoder 238 decodes these
values into specific logical control values which are put out
over the control lines shown coming out of the decoder 238
in FIG. 6B, including the write gate signal WRGATE and an
initialize ECC signal IECC which directly control the ECC
syndrome generator 190, for example. Push and pop signals
for controlling the stack 234 are also put out from the control
decoder 238. The control decoder 238 also puts out write
gate and read gate controls. Write gate is used to control data
writing to disk operations, whereas read gate is used to lock
up the PLL 134 to data during read back operations from the
disk.

A loop counter 240 is preset with a number of loops to be
made during a particular data block transfer transaction
(each loop nominally represents the states required to trans
fer a data block), and generates a LOOPCNT=0 control
value when the count reaches zero. This control value
signifying that the required number of data blocks has been
transferred is also provided to the jump control multiplexer
208. An index timeout counter 242 keeps track of the
beginning of each track by generating an index timeout
value INXCNT=0 which is used to control the sequence
controller 216. A once per revolution raw index signal stored
in the first one of the servo sectors 38 is detected by the servo
control circuit 142 and used to clock the index timeout
counter 242. Other inputs to the sequence controller 216 are
the jump value from the jump control multiplexer 208, the
address mark found value AMFOUND from the address
mark detector 192, and the byte sequence counter SCNT=0
value from the sequence counter 236.

O

15

20

25

30

35

40

45

50

55

60

65

18
The WCS 210 also includes a number of path-dedicated

registers which lead via paths depicted in FIG. 6 to other
elements within the sequencer 152. The following descrip
tion Sets forth a register address, a register name, and a
description of the register:

ADR NAME Description

AO WCSOP WCS Opcode and Count/Jump Select
Register

This register allows the microcontroller 162 to write to
and read from the five bit opcode field 250 portion of
the register (bits 2-6) leading to the opcode bus 228,
and to write to and read from a countjump select field
252 (bits 0 and 1).
WCSCTL WCS Control Register
This register enables the microcontroller 162 to write
to and read from the primary control field 254 (bits
5-7) and the secondary control/jump control field 256
of the entry in the WCS 210 which is currently pointed
at by the microcontroller WCS pointer register 212
(WCSADD).
WCSJUMP WCS Jump Address/Count Register
This register enables the microcontroller 162 to write
to and read from the jump address field 256 and count
field 258 (bits 0-5) of the entry in the WCS 210 which
is currently pointed at by the microcontroller WCS
pointer register 212 (WCSADD).
WCSDATA WCS Window-Data Register 211
This register enables the microcontroller 162 to write
to and read from the data field of the entry in the WCS
210 which is currently pointed at by the micro
controller's WCS pointer register 212. In addition,
writing to this register also causes the sequencer 152 to
place this WCS entry (as determined by previous
writes to the other three WCS window registers and by
the write to this register) into the WCS at the address
specified by a register WCSADD, discussed below.
While this update may be performed while the
sequencer 152 is operating, modifying the WCS entry
the sequencer is presently executing may lead to un
predictable results.
WCSADD

Al

A2

A3

A4 Microcontroller WCS Pointer Register
212

Bits 0-4 of this register point to the address in the WCS
210 which will be modified by the next write by the
microcontroller 162 to the WCS window-data register
211 (WCSDATA). Writing to this pointer register will
cause the sequencer 152 to load the four WCS window
registers with the current contents of the entry in the
WCS pointed at by this register. That entry may then
be updated by modifying the corresponding values in
the WCS window registers.
SEQADD Sequencer WCS Pointer Register
This read-only register enables the microcontroller 162
to read the address of the last WCS entry executed by
the sequencer 152. Only bits 0-4 are active.
TOPSTACK Top of Stack Register of Stack 234
When this register is written by the microcontroller
162, the written value will be loaded directly into the
top of stack (TOS) of the sequencer stack 234. Writing
to this register does not push the value onto the stack
234. Thus, writing a value to this register twice would
only affect the top of stack, and not the next of the
stack. To program the next of stack (NOS) position, a
short sequencer program that performs a push function
must be written into the WCS and then executed by the
sequencer 152.
SECTNUM Sector Number Register
The sector number register enables the microcontroller
162 to load a count value into the sector counter 206,
e.g. for use as a source for comparison of ID field
bytes, depending upon the sequencer program. This re
gister allows the microcontroller 162 to determine the
starting sector of a block transfer without rewriting the
writeable control store 210. This register may be incre
mented by a sequencer program for multiple sector
transfers.
LOOPCNT Loop Count Register
Bit positions 0-6 of this register enable the micro

A5

AT

19
-continued

5,517,631

ADR NAME Description

AA

AB

controller 162 to set the value of the loop counter 240.
Modification of the loop counter 240 naturally should
occur only when the sequencer 152 is halted or is in a
loop count Inodify sequence. In order to start a loop
count modify request, the loop count modify request bit
flag of the Sequencer Misc Command Register
SEQMISC. Bit 7 of the loop count register is a
"modify granted" read-only flag bit. Writing to this bit
has no consequence. After the request bit is set, the
modify granted bit is monitored. Once the request bit is
set, the sequencer 152 will not modify the loop counter
240 until the microcontroller 62 clears the request bit
by writing to the SEQMISC register at the request bit
position. Thus, so long as the modify granted bit is set,
the microcontroller 162 is free to modify the loop
counter value without fear of a hardware conflict. The
microcontroller 62 must release the "modify granted”
state within one data sector time, or the sequencer 152
will lose the count for the second sector, as only one
increment is saved.
WUSINXCNT Write Unsafe Delay & Index Timeout

Count Reg.
The write unsafe delay (bits 4-7) specifies the amount
of time after write-gate is asserted that the write unsafe
signal will be ignored. This delay is to allow the write
pre-amp to detect the effect of the write data pulses.
The delay is measured in byte steps. The index timeout
count (bits 0-3) specifies the maximum number of index
pulses that may occur while the sequencer 152 is trying
to complete its program. If the indicated number of
indexes occurs, the sequencer will stop and set the
index timeout flag in the sequencer error status register
SEQSTAT. Such an occurrence generally indicates
that the desired data ID header was not found.
RGHIGCNT: PLL High Gain Time Register.
This register controls behavior of the interface between
the sequencer 152 and the read channel during reading
of data from the disk 10. When commanded into a high
gain mode, the PLL 134 within the read channel circuit
124 acquires lockup to incoming data more rapidly.
This feature enables shorter ID preamble fields and
therefore increases the storage capacity for user data.
To set the PLL to a high gain mode, the sequencer 152
pulses a PLLLOW line low (thereby instructing high
gain) for a defined amount of time in steps of 8 code
clocks (2/3 byte times). This defined time is set into bits
0-3 of this RGHIGCNT register. When RDGATE is
de-asserted (at the end of a data readback operation)
the PLL 134 must lock back up to the reference clock.
PLLLOW is again set to high gain mode at this time
also.
The read channel circuit 124 must reacquire AGC gain
after each servo sector 38, as the particular data
zone may not be recorded at the same bit transfer rate
as the servo sector 38. While a delay to reacquire
AGC gain and then find the two byte high frequency
pattern before asserting RDGATE could be built into
the data format, the extra delay has been avoided by
provision of a post-servo read gate force (PWRGF)
feature. If this feature is enabled by setting bit 2 of the
SEQCONF register, discussed below, RDGATE is
forced on at a particular time interval after the servo
sector ends (to allow time for the AGC to settle. The
delay specified by the PWRGF wait time is measured
in steps of 8 code clocks (2/3 byte times). After the
PWRGF delay, set into bit positions 4–7 of this
RGHIGCNT register, the search for the data address
mark pattern proceeds normally, as if two bytes of high
frequency preamble pattern had been found.
SEQCMD Sequencer Command Register
This write-only register is written to by the micro
controller 162 to control the sequencer 152.
Bit 0: When set, bit 0 starts the sequencer. When
cleared, bit 0 stops the sequencer.
Bit 1 sets the direction of data flow. When set, data
flows from the buffer memory 166 to the disk 10,
during a disk data write operation. When cleared, data
flows from the disk 10 to the buffer memory 166,

10

15

20

25

30

35

40

45

50

55

60

65

20
-continued

ADR NAME Description

AD

during a data readback operation.
Bit 2: When set, bit 2 inhibits the sequencer from en
abling the buffer memory interface. No bytes will be
transferred irrespective of how the writeable control
store (WCS) is programmed.
Bits 3-7 are currently reserved for future commands.
SEQSTAT Sequencer Status Register
This read-only register is read by the microcontroller
162 in order to obtain current status of the sequencer
152.
Bit 0: Set whenever the sequencer 152 is running.
Bit 1 Indicates direction of sequencer data flow.
Bit 2: Status of current command bit: No Buff'
Bit 3: Indicates the syndrome latch of the ECC circuit
190 is closed, and contains the syndrome of the last
ero.

Bit 4: Indicates present status of the "trigger in” pin.
Bit 5: Indicates status of the sequencer internal flag bit.
Bit 6: Asserted when the sequencer loop counter 240 is
presently zero.
Bit 7: Asserted if the sequencer clock is currently off.
SEQINT Sequencer Interrupt Control/Status

Register
The bits of this register monitor events in the sequencer
152 and in the buffer controller 154. Each bit is set
whenever the signal it monitors is set. The bit will
remain set, even if the original signal is cleared, until
cleared by the microcontroller 162. Clearing a bit
position is accomplished by writing a "1" to the corre
sponding location in this register. These events may be
used to cause an interrupt to the microcontroller 162
over the sequencer interrupt line. Which events will
cause interrupts is determined by programming the
sequencer interrupt mask register SEQMASK. The bits
of this register are as follows:
Bit 0: Set when the sequencer halts.
Bit 1: Set when the ECC syndrome latch is closed. This
normally occurs when the sector just read has a non
zero syndrome (the data is incorrect). The ECC
syndrome latch will now contain the syndrome of the
sector with the error and will hold this information
until the microcontroller 162 opens the syndrome latch.
This enables the sequencer 152 to continue to process
incoming sectors not having any errors.
Bit 2: Set when the sequencer control field commands a
microcontroller interrupt.
Bit 3: Set when a diagnostic signal selected by a
diagnostic muxout function select register is asserted.
Bit 4: Set when the sequencer flag bit is set. This bit
should not be confused with the flag bit of the
sequencer status register SEQSTAT.
Bit 5: This bit monitors the host transfer counter within
the memory controller 154 and is set whenever the
count is exhausted. Thus, this bit is set at the end of
each block transferred to the host via the interface.
Bit 6: This bit monitors completion of the host channel
of the memory controller 154. This bit is set when the
host transfer counter is exhausted and the host loop
count Zero signal is asserted. This signal is asserted
whenever the buffer 166 is configured for AT interface
or when the IFCTLN signal is asserted when the
buffer is configured for SCSI interface.
Bit 7: Not currently used.
SEQMASK Sequencer Interrupt Mask Register
Setting a bit in this register enables the corresponding
event bit in the interrupt status register to cause a
sequencer interrupt by asserting the sequencer
interrupt pin leading to the microcontroller 162.
Bit 0: Not busy
Bit 1: ECC Syndrome Latch closed.
Bit 2: Sequencer Interrupt.
Bit 3: Sequencer Trigger.
Bit 4: Sequencer Flag.
Bit 5: Host Block done.
Bit 6: Host Done.
Bit 7: Not used.
SEQMISC Sequencer Miscellaneous Command

Register

21
-continued

5,517,631

ADR

AF

AF

NAME Description

Setting a bit in this register (by writing a "1") provides
various miscellaneous commands to the sequencer 152.
Bit 0: Forces the sequencer to halt. This will force a
sequencer interrupt, if enabled.
Bit 1: Forces sequencer into the set state.
Bit 2: Forces sequencer into the clear state.
Bit 3: Shuts down the sequencer section of the circuit
140 to reduce power consumption.
Bit 4: Enables the Sequencer section of the circuit 140.
Bit 5: Sets loop count modify request bit and starts a
loop count modify sequence. See discussion above
under Loop Count Register.
Bit 6: Clears loop count modify request bit.
Bit 7: Forces the ECC syndrome latch open, or into its
normally transparent state.
SEQERROR Sequencer Error Status Register
This register is used to monitor various error status
signals in the sequencer 152. It is usually accessed by
the microcontroller 162 after a halt to determine why
the sequencer has halted. The bit positions have the
following meanings:
Bit 0: Set when the data address mark in the data field
contains a special data pattern indicating that ECC
corrected data has been rewritten, for example.
Bit 1. Set when the index timeout counter 242 exceeds
the maximum number of indexes allowed for operation.
This bit is cleared by any write to the sequencer
command register SEQCMD.
Bit 2: Set when the sequencer timed-out while search
ing for a data address mark. The timeout limit is set by
the byte count field in the writeable control store
(WCS). This bit is cleared by any write to the
sequencer command register SEQCMD.
Bit 3: Set when the compare latch 204 is not equal to
zero. The compare latch 204 is used to correctly
identify data ID fields. This bit is cleared when a
control word CALLL is written in the WCS.
Bit 4: This bit is set to indicate that the last sector read
had a syndrome error. Syndrome detection is done on
an interleave basis. The bit is usually cleared at the
start of a data sector by a control word CALLL
written in the WCS. The bit is set if during the last
byte of each interleave, that interleave's syndrome re
mainder is not equal to zero. The ECC circuit 90 is
instructed to check the syndrome by the sequencer
when it executes the WDS, CRCS or ECCS opcode. If
latch syndrome enable is set in the sequencer config
uration register (Bit 4 of address WR-AF), the
syndrome latch is closed and the offending syndrome
remainder is saved when the sequencer executes a
JSYN opcode. If the latch syndrome enable bit is not
set, or the syndrome latch is already closed, the
sequencer 152 is ordinarily programmed to halt.
Bit 5: This bit is set when the sequencer was halted
because of an external or servo declared write fault.
This bit is cleared by any write to the sequencer
command register SEQCMD.
Bit 6: This bit is set if the FIFO 196 is in an over-ran
or under-ran condition when the buffer controller 54
accesses the FIFO. This bit is cleared by any write to
the sequencer command register SEQCMD.
Bit 7: This bit is set if there was a FIFO overrun or
underrun when the sequencer 152 accesses the FIFO
196. This bit is also cleared by any write to the
sequencer command register SEQCMD.
SEQCONF Sequencer Configuration Register
The bit positions of this register control the operating
configuration of the sequencer 152 and are written by
the microcontroller 162 during execution of initializa
tion program routines.
Bit 0: Not used.
Bit 1: When set, this bit causes the sequencer to com
pute and write a 2 byte error detection code within the
data ID field during data formatting which is sufficient
for disk drives not employing split data fields. When
cleared, this bit causes the sequencer to compute and

10

5

20

25

30

35

40

45

50

55

60

22
-continued

ADR NAME Description

write the 3 byte error detection code as contemplated
in the FIG. 3 split data field format.
Bit 2: When set, the sequencer will force RDGATE
true after each servo sector 38 has passed by. The
assertion of RDGATE will be delayed by the wait
time PWRGF contained in the RGHIGCNT register.
Bit 3: When set, this bit establishes fault tolerance with
in the address mark detector 192 as described in the
referenced copending U.S. Pat. application Ser. No.
07.1710,861, now abandoned. When cleared, the address
mark detector 192 will not tolerate c.g. bit shift errors.
Bit 4: When set, the sequencer 152 will use the
syndrome latch within the ECC circuit 190 and will not
halt when a non-zero syndrome remainder is detected,
thereby enabling on-the-fly error correction in
accordance with the techniques described in copending
U.S. Pat. application Ser. No. 07/650,791 filed on
February 1, 1991, now U.S. Pat. No. 5,241,546.
Bit 5: When set, this bit disables multiplexing between
the read rate clock for reads and the reference clock
for writes. When cleared, the read reference clock is
used for both data reads and writes.
Bit 6: Not used.
Bit 7: Not used

The following registers contain non-zero syndrome
remainder bytes which are latched by the syndrome latch of
the ECC circuit 190. In addition, two cross check bytes are
also latched. The cross-check bytes enable the microcon
troller 162 to determine the impact of a proposed correction
before the correction is actually made to the data block
containing the detected error burst or bursts before correc
tion is made.

BO

B

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC
B)
BE
BF

ECC Latched Syndrome Remainder Interleave 0,
Byte 0

ECC Latched Syndrome Remainder Interleave 0,
Byte 1

ECC Latched Syndrome Remainder Interleave 0,
Byte 2

ECC Latched Syndrome Remainder Interleave 0,
Byte 3

ECC Latched Syndrome Remainder Interleave 1,
Byte 0

ECC Latched Syndrome Remainder interleave ,
Byte 1

ECC Latched Syndrome Remainder Interleave 1,
Byte 2

ECC Latched Syndrome Remainder Interleave 1,
Byte 3

ECC Latched Syndrome Remainder Interleave 2,
Byte 0

ECC Latched Syndrome Remainder Interleave 2,
Byte 1

ECC Latched Syndrome Remainder Interleave 2,
Byte 2

ECC Latched Syndrome Remainder Interleave 2,
Byte 3

ECC Latched Cross Check Byte 0
ECC Latched Cross Check Byte 1
BSTATE Bytes Per State Register (for test purposes only)
LSECT Latched Sector Number Register
This register contains the contents of the sector number
register when the ECC syndrome latch was closed. In
other words, this register contains the sector number of
the particular data block determined by a non-zero
syndrome remainder presently held in the ECC
syndrome latch to contain an error. This identification
enables the microcontroller 162 to locate the particular
data block in the buffer memory 166 and to carry out an
error correction on-the-fly.

23
5,517,631

The following registers are associated with the buffer
controller 154 and shed light upon its structure and function.

80
81

82
83

84

85

86

87

88
89

HARLO Host Address Register, Low Byte
HARHI Host Address Register, High Byte
These two registers contain the address of the next byte
in the buffer memory 166 to be transferred to the host
computer via the interface 168. The topmost bit of the
high byte register is not used, and is read as a zero.
DARLO Disk Address Register, Low Byte
DARH Disk Address Register, High Byte
These two registers point to the location in the buffer
memory 166 of the next byte to be transferred to the disk
via the sequencer 162 and the read channel 124. The top
most bit of the high byte register is not used and is read
2S a 2CO

MARLO Microcontroller Address Register, Low
Byte

MARH Microcontroller Address Register, High
Byte

These two registers contain an address indicating the next
byte that the microcontroller data register will access.
The topmost bit of the high byte is not used and is read as
a “k".
RLOAD Reload Register
The host address registers HARLO and HARHI and the
data address registers DARLO and DARHI will be
loaded with the address contained in this register when a
roll-over occurs. This register follows the same conven
tion as the rollover register (discussed below) in that
only bits 6 through 1 are used, all lower bits are treated
as zero, and the contents of this register correspond to
the high byte of the reload address.
ROLL Roll-Over Register
The roll-over register specifies an address which
represents the top of a virtual ring buffer defined within
the buffer memory 166. The roll-over address comprises
bits 6 through 1 of this register, and the 9 lower bits are
set to "1". Thus, the roll-over register appears to be the
high byte of the roll-over address, but the least significant
bit of this byte must be set to "1". When either the disk
address registers DAR or the host address registers HAR
reach the value contained in the roll-over register, and
the roll-over feature is enabled for the host or data
channel, as appropriate, the corresponding address
register is loaded with the contents of the reload register.
Bits 7 and 0 of the roll-over register are not used.
HXCLO Host Transfer Counter, Low Byte
HXCHI Host Transfer Counter, High Byte
These two registers together comprise a loadable counter
containing the number of bytes to be transferred per
block. Loading a value of "1" will cause two bytes to be
transferred. After reaching zero, this counter will auto
matically reload to the value initially loaded. When this
happens, the transfer will be halted if the loop count zero
signal is asserted. This host transfer counter is typically
preloaded with a value of 511, denoting transfer of 512
byte blocks, and is preloaded when the auto-write signal
is asserted. The auto-write signal only preloads this
counter and does not affect the reload value.
AUTOWR Auto-Write Preload Register
This register contains the value to preload into the host
address registers in event of an auto-write. This register
only uses bits 6 through 1, but it is adjusted to correspond
with the high byte of the host address register HARHI.
Because of this, bits 0 and 7 of HARHI are always pre
loaded to zero. This restricts preload boundaries to 512
byte boundaries in the buffer memory 166. For example,
loading this register with 34H causes the first byte of a
block to be loaded into the buffer memory after an auto
write to be placed at 3400H, the next byte at 3401H, etc.
MDRO Microcontroller Data Register
When the microcontroller 162 writes to this register, the
byte written will be transferred to the buffer memory
166 at the address specified by the microcontroller
address register. Accessing this register, either reading or
writing, or either byte position of the microcontroller
address registers will cause the buffer controller 154 to
prefetch the buffer memory byte at the location identified
by the microcontroller address register and store the
fetched value in this register. Accessing the Inicro

10

15

20

25

30

35

40

45

50

55

60

65

BF

EO

24
-continued

controller data register will not automatically increment
the microcontroller address register. This register is used
to fetch and replace an erroneous byte as a consequence
of the ECC operation carried out by the microcontroller
162 and the circuit 190, for example.
MDR Microcontroller Data Register with

Automatic Increment
Writing this register will deposit the byte so written in
the buffer memory 166 at the address specified by the
microcontroller address register. Accessing this register,
whether reading or writing, or either byte of the micro
controller register will automatically cause the buffer
controller 154 to prefetch the byte from the buffer
memory 166 specified by the address contained in the
microcontroller address register. Also, accessing this
register will cause the microcontroller address register
automatically to increment to the next byte address.
BCTL Buffer Controller Control Register
This register contains control bits for controlling opera
tion of the buffer controller 154. The bits are:
Bit 0: Enables the data path between the buffer memory
166 and the disk 10.
Bit 1: Enables the data path between the buffer memory
66 and the host via the interface 168.

Bit 2: Indicates the direction of data flowing from the
hostbuffer channel. When set, indicates that data is flow
ing from the host into the buffer 166.
Bit 3: When set enables rollover (and configures a virtual
ring buffer in the buffer memory 166)
Bits 4-7: Not used.
BCFG Buffer Controller Configuration Register.
This register enables the microcontroller program to con
figure the memory buffer controller 154.
Bit 0: Enables the auto-write feature.
Bit 1: When asserted, specifies an IBM AT TM type inter
face configuration at the interface 168.
Bit 2: When asserted, enables the buffer memory 166.
There are several other registers contained within the
circuit 140, and they are now briefly discussed.
MAP Microcontroller Memory Address Map

Register
Bits 0-2: Controls the mapping of the microcontroller
address space C000H-DFFFH into address space for the
program memory 178. These three bits control the most
significant three bits of the mapped address. Thus, writing
"010" to these bits will map the microcontroller address
COOOH-DFFFH into the address range 4000H-5FFFH.
Bit 3: Writing a "1" to this bit position will cause a soft
power on reset sequence to occur within the circuit 140.
The power on reset condition will remain until a "0" is
written to this bit position.
Bits 4-5: This two-bit field is used to reset the hardware
counters that divide down the clocks for the micro
controller 62 and the interface circuit 68. The reset is
caused by writing an "01" pattern to this field. These
time base counters will remain reset until the field is
rewritten with a different pattern. Of course, writing an
"01" pattern to this field will stop clocking at the micro
controller 162 and it will not be able to rewrite this field.
Bit 6: The microcontroller write strobe MWRN is
normally narrowed to make data on the microcontroller
bus 160 stable over both edges of the internal write
strobe. When this bit is set, this narrowing is bypassed
and the full MWRN strobe is used.
CRR Clock Rate Register
In order for the disk drive 100 to employ a single quartz
crystal time standard, the circuit 140 generates a clock to
operate the microcontroller 162 and another clock to run
the interface circuit 168. This register controls the divider
constant between the crystal frequency and the output
clocks. The UPSEL field (bits 4-5) controls the micro
controller clock rate (16, 8, 4, 1 MHz), and the IFPSEL
field (bits 0-1) controls the present interface clock rate as
8, 6, 4, 0 MHz. To support power down options, an
IFNSEL field (bits 2-3) has been included to control
interface clocking rate after an auto-write as 8, 16, 4 or
0 MHz. This arrangement allows the interface circuit 168
to power down to a slow speed and still respond at the
required rate to a write command over e.g. a bus such as
the AT bus. Bit 6, when set, enables switching the inter

FO

-continued

face clock rate to the rate determined by IFNSEL when
an autowrite occurs.
MUXSELOUT Test Pin MUXOUT Function Select
This register controls the function of a diagnostic pin
MUXOUT of the circuit 140. The pin can be configured
as an input, enabling the sequencer 152 to monitor an
external signal. The pin can be configured as an output,
enabling external hardware to monitor internal signals
within the circuit 40. The functions are:
Bit 0: Trigger input to the sequencer.
Bits 1–3 Not currently used.
Bit 4: The pin puts out the index signal. This signal is
asserted when detected within the index servo sector and
is deasserted at the beginning of the next servo sector.
Bit 5: The pinputs out a true level during the time of
each servo sector 38.
Bit 6: The pinputs out the trigger signal from the
sequencer 152.
Bit 7: The pin puts out the commute input signal divided
by 12 from the spindle motor control circuit 107.
MTRCONF Spindle Motor Configuration Register
This register controls configuration of the spindle motor
control circuit 156.
Bit O: This bit must be set in order for the motor index
timer to run. The counter will be held reset if this bit is
cleared.
Bit 1: This bit enables the divide by 12 prescaler that
scales the commute signal before it is compared against
the index period counter 242. When this bit is set, the
commute pin is divided by 12.
Bit 2: When this bit is set, the tachometer signal
(COMUTE if Div 12" at 0, or COMUTE/12 if
"Div 12' = 1) is OR'd with the SRVINT signal pin.
When this bit is clear, the pin is initially under the
control of the servo control circuit 142.
Bits 3-4: This field controls the width of the fixed period
of pump-down that the motor control puts out once per
revolution of the disk 0, as 32, 64, 128 or 256 clock
periods.
Bit 5: Writing a "1" to this bit position puts the index
period counter 242 into a test mode.
Bit 6: When this bit is set, the index period counter 242
runs off of the crystal clock at e.g. 32 MHz. Otherwise, it
runs off of the Fxtaf16 or 2 MHz.
Bit 7: This read only bit position puts out the state of the
index period comparator
MTRCNTLO Spindle Motor Count, Low Byte
MTRCNTH Spindle Motor Count, High Byte
This two byte register contains bits 0-15 of the spindle
lOO COut

5,517,631

10

15.

20

25

30

35

40

The following table sets forth a description of the various
signal lines shown entering and leaving the integrated circuit 45
140 in FIG. 5:

NAME TYPE DESCRIPTION

WRGATN

WRNSF In

RAWAT IN
126.

S(3:1) Out S(3:1) control lines for peak detector 132.
AGCHLD Out AGC hold current gain level control for

Out Write gate out to pulse detector 126 and
preamp 120.
Write unsafe condition flag.

MUXOUT Bi-Dir Multiplexed test signal
PLL LOW Out Low Gain command for PLL 34
RDGATE Out Read Gate to PLL 134
RRC IN Read reference clock from PLL 134
RDDATA N Synchronized read in data from PLL 134
WRDATA OUT RZ write data to pre-comp circuit in pulse

detector 126
REFCLK IN Input from VCO of synthesizer 136 which

is used during data writes to disk.
EARLY OUT Early precomp code to pre-comp circuit

in pulse detector 126.
LATE OUT Late precomp code to pre-comp circuit in

pulse detector 126.

AGC circuit 128.

Disk raw data read in from pulse detector

50

55

60

65

NAME

DISPD

BSTRDY

WCOFST

WCM1

WCM32

PORN
MAD (15:13
MBUS7:0
MRON
MWRN
MALE
SEQINT

SRVINT

LA5:13

LA7:0

ROMCSN
NFCS
MTRUP

MTRDN

COMUTE
INFCTL

REQN

Ackn

BDT 7:0

BAD 14:0)

The following table sets forth count type commands
which may be included in the primary control field 254 and
secondary control field 256 and which are executed by the

TYPE

Out

Out

Out

Out

Out

Out

Out

Out
Out
Out

Out

In

In

Out

Bi-Dir

Out

Out
Out
Out

Out

Out

Out

sequencer 152:

00 000 NOP
O0 001 CWR
00 OO CWRE
00 011 CALLL

OO 100 SUP
OO 101 SOU
OO 10 ISD

OO 11 SWG
0 000 ECC
0 00 CCS
01 010 CTS
O1 011 POP

26
-continued

DESCRIPTION

Discharge servo peak detectors in peak
detector circuit 132.
Burst Ready-starts analog to digital con
version process at aid i82.
Control from synthesizer control to cause
synthesizer 136 to increase its frequency.
DAC output for PWM 144 data value "1"
weighting value.
DAC output for PWM 144 data value
"32" weighting value.
Power-on reset signal.
Address bits 15, 14 and 13 for bus 174
Data bits 0-7 of bus 160.
Read strobe for bus 160.
Write strobe for bus 160.
Bus 160 address latch enable.
Interrupt from sequencer 152 to micro
controller 62.
Interrupt from servo circuit 142 to micro
controller 162.
Latched address output bits 15, 14 and 13
to ROM 156 over bus 180.
Latched address output bits 7-0 to ROM
156 over bus 18O
Chip select for ROM 178.
Interface circuit 168 chip select.
Spindle motor accelerate up command
from notor controller 156 to driver 107.
Motor decelerate down command from
motor controller 156 to driver 107.
Commutation signal from driver 107.
Interface control from interface circuit
168 (loop count Zero, or autowrite)
Request for data bytes from interface
circuit 168.
Acknowledge receipt of bytes from inter
face circuit 168.
Buffer memory data bus 164 to buffer
memory 166.
Buffer address bus 172 from memory
controller 154 to buffer memory 166.
Buffer memory chip select control line.
Buffer memory 166 output enable line.
Buffer memory 166 write enable line.
32 MHz crystal Oscillator input.
32 MHz crystal oscillator output from
internal clock within circuit 140.
Clock signal to microcontroller 162
(16 MHz nominal).
Clock signal to interface circuit 168
(16 MHz or 8 MHz nominal).

COUNT TYPE COMMANDS

No operation
Clear write gate, read gate
Clear write gate, read gate, ECC
Clear write gate, read gate, initializes
ECC to some known value, clears
syndrome and compare latches.
Set microcontroller interrupt bit
Set output to "1"
Increments sector number, decrements
loop counter.
Turns on write gate.
Sets ECCCRC to Initial state.
Clears Compare and syndrome flip-flops
Loads "O" into top of stack of stack 234
POP stack 234, filling top of stack with
'0".

O1
10
O
O
10
10
10
10
10
1.

100
101
110

111
000
OO
010
O11
00
101
10
11

000

27
-continued

COUNT TYPE COMMANDS

PUSH Value in buffer pushed onto stack 234.
RINX Restart Index Timeout counter 242
EAB Enable abort, operation may abort by

microcontroller command or buffer error.
DAB Disable abort
SRG Set read gate
SERS Clears Write Date Out.
CERS Normal Write Data Out.
COU Clear output to "0".
SFLG Set flag
CFLG Clear Flag
CRG Clear read gate
FILF Prefill of buffer FIFO 196 is enabled.
FLSF Any remaining data in FIFO is flushed.

5,517,631

10

5

The following table sets forth jump-type commands as
indicated when a value other than "00” is present in the
count select field 252. These commands are placed in the
jump control field 256 and executed by the sequencer 152:

:
s

XXXX
XXXX

OOO1
000
001

01.00

O10

O110

011

1000
100

1010
1011
1100
101
1X

001
OO

011

100
101
10

11

Jump if true
Jump if false
JMP

JTOS
JNOS
JLC

JSYN

JSC

JSCT

JSCA

JFLG
JA

JCMP
WDG
JNP
JNX
Reserved

JUMP-TYPE COMMANDS

Jump Always, jump may be to next
instruction for NOOP, or inverter for
jump never.
Jump if Top of stack = 0
Jump if Next of stack = 0
Jump if Loop count = 0 (operation
complete)
Jump if ECC Syndrome flip-flop is
clear
Jump if both ECC Syndrome and
Compare flip-flops are clear.
Jump if (syndrome = 0 and
compare = 0 and top of stack <>0)
Jump if (syndrome = 0 and com
pare = 0 and special data address
mark = 0).
Jump if Flag = 0
Jump if special address mark bit is
clear.
Jump if compare flip-flop = 0.
Jump if Servo (wedge) = 1
Jump on rising edge of input.
Jump on rising edge of index.

These commands are placed in the primary control
field 254 and the count select field 252 is set to
jump ("00").
NOP
CWR
CWRE

CALLL

SUP
SOU
SDL

SWG

Clear write gate, read gate, AME.
Clear write gate, read gate, and
initializes ECC to some known value.
Clear write gate, read gate, AME,
sets ECC to some known value,
clears syndrome and compare latches.
Set microcontroller interrupt bit.
Set output to 1.
Increments Sector number, Decre
ments Loop counter.
Turns on write gate.

20

25

30

35

40

45

50

55

As an aspect of the present invention the sequencer 152
may be programmed such that it need not be reprogrammed
between read and write, thereby considerably speeding up 60
its overall operational data block throughput. Accordingly,
the following opcodes apply when the write gate is set,
meaning that a write of one or more data blocks will be made
to the data surface. Write gate set during a data ID header 42
indicates that a data format operation is being performed. 65

These opcodes are used when the sequencer 152 is causing

28
data to be written to the disk 10.

10
11

12

4

16

17

18

19

20

21

22

23

24
25
26
27

28

29

30
3.

AMIST

AMDST

AMIIT

AMDIT

AMIS

AMDS

AMI

AMD

WD

WDE

WDC
WDEC

WDS

BD

BDE

BTS

BTSE

BDX

BDEX

BTSX

BTSEX

TSD
TSDE
SEC
SECE

ECC

CRC

ECCS
CRCS

OPCODES-WRITE GATE SET

AMEID Search, Timeout; Write ID field address
mark, set to two byte CRC mode.
AME Data Search, Timeout, Write data field
address mark, set to 3 byte EDC mode.
AME ID Immediate, Timeout; Write ID field
address mark, set to CRC mode.
AME Data Immediate, timeout, Write Data field
address mark, set to ECC mode.
AMEID Search, Write ID field address mark, set
to CRC mode.
AME Data Search; Write Data Field address
mark, set to ECC mode.
AME D Immediate; Write ID field address mark,
set to CRC mode.
AME Data Immediate, Write data field address
mark, set to ECC mode.
WCS Data, Data from the writeable control store
is written to disk, data is not included within
ECCICRC.
WCS Data with ECCICRC; Data from WCS is
written to disk, data is included with ECC/CRC.
WCS Data with compare; Same as WD.
WCS Data with compare and ECCCRC. Same as
WDE
WCS Data, 1 count if read; Same as WCS data
(force 1 count if write gate = 0).
WCS Data with Syndrome Check; Same as WCS
data.
Buffer Data; Data from buffer 154 is written to
disk, not included in ECCCRC. Does not
generate FIFO request for last byte.
Buffer Data with ECCCRC. Data from buffer is
written to disk. Does not generate FIFO request
for last byte.
Buffer to Top of Stack; Data from buffer 154 is
written to top of stack 234 and to disk. Does not
generate FIFO request for last byte.
Buffer to Top of Stack with ECCICRC; Data
from buffer 154 is written to top of stack 234.
Data is included within ECCCRC. Does not
generate FIFO request for last byte.
Buffer data with extra byte; Data from the buffer
54 is written to disk. Not included within ECC
CRC. Generates a FIFO request for the last byte.
Buffer data with ECC/CRC with extra byte; data
from the buffer 54 is written to disk. Data is
included within ECCCRC. Generates a FIFO
request from the last byte.
Buffer to Top of Stack with Extra Byte; Data from
the buffer 154 is written to top of stack 234 and to
disk. Generates a FIFO request from the last byte.
Buffer to Top of Stack with ECC/CRC and Extra
Byte, Data from the buffer is written to the top of
the stack 234 and to the disk. The data is included
within ECC/CRC. A FIFO request is generated
for the last byte.
Top of Stack Data; Not used.
Top of Stack Data with ECCICRC; Not used.
Sector, data from Sector written to disk.
Sector with ECCCRC; data from sector written
to disk and includes ECCCRC.
ECC; "O's shifted into the syndrome shift register,
ECC written to disk; only used for data.
CRC or Cross Check. "O's shifted into syndrome.
CRC written to disk if ID, crosscheck written to
disk.
ECC with syndrome check; Same as ECC.
CRC or Cross Check with syndrome check. Same
as CRC.

The following opcodes are executed by the sequencer 152
when the write gate is cleared, i.e. during data readback from
the disk. While the same opcodes are used, they have
different functions during readback from disk than during
write to disk.

29
5,517,631

OPCODES-WRITE GATE CLEARED

O

O

11

12

4.

6

17

18
9

20

21

22

23

24.

25

26

27

28
29

30

3.

AMIST

AMDST

AMIT

AMDIT

AMIS

AMDS

AMI

AMD

WD

WDE

WDC

WDEC

WDS

BD

BDE

BTS
BTSE

BDX

BDEX

BTSX

BTSEX

TSD

TSDE

SEC

SECE

ECC
CRC

ECCS

CRCS

AME ID Search, Timeout, look for ID field AM
in search mode, use bps counter for timeout.
AME Data Search, Timeout, look for data field
AM in search mode, use bps counter for timeout.
AME ID Immediate, Timeout, look for ID field
AM in immediate mode, use bps counter for time
Ot.
AME Data Immediate, Timeout, look for data
field AM in immediate mode; use bps counter for
timeout.
AME i) Search; look for ID field AM in
search Inode, no timeout.
AME Data Search, look for data field AM in
search mode, no timeout.
AME ID Immediate; look for ID field AM in
immediate mode, no timeout.
AME Data Immediate; look for data field AM in
immediate mode, no timeout.
WCS Data NOP, data in the WCS data field 260
is put into SERDES 194 so it may be pushed onto
stack.
WCS Data with ECCCRC; Data from disk 10
used in ECCCRC calculation.
WCS Data with Compare; Data from WCS is
compared with read data, no ECCICRC.
WCS Data with Compare and ECCICRC; disk
data is compared with WCS data and used in
ECCCRC.
WCS Data 1 count if read; Same as WCS Data but
forces count to .
WCS data with Syndrome Check; looks at the
syndrome, normally one byte state after the ECC
State.
Buffer data; Data from disk is sent to the buffer
memory 166, not included in ECCICRC.
Buffer Data with ECCICRC; data from disk is
written to the buffer, included within ECCfCRC.
Buffer Data to Top of Stack; not used.
Buffer Data to Top of Stack with ECC/CRC; not
used.
Buffer Data to Top of Stack with extra byte; same
as BD.
Buffer Data with ECC/CRC with extra byte;
same as BDE.
Buffer Data to Top of Stack with Extra Byte, not
used.
Buffer Data to Top Of Stack with ECC/CRC and
Extra Byte, not used.
Top of Stack Data, Disk Read data pushed onto
stack 234.
Top of Stack with ECC/CRC; disk read data
pushed on stack, included within ECC/CRC.
Sector; data from sector register compared with
data read from disk,
Sector with ECC/CRC; data from sector register
compared with data read from disk, included
within ECCCRC.
ECC, ECC read from disk.
CRC or Cross Check, CRC read from disk if ID
field, Cross check read from disk if Data field.
ECC with syndrome check; ECC read from disk,
check the syndrome, normally this is the last two
bytes of ECC.
CRC or Cross Check, CRC read from disk, check
the syndrome, normally this is the last two bytes of
CRC.

10

15

20

25

30

35

40

45

50

55

30
The following command line sequence example illus

trates operation of the drive 100 with split data fields, for
both data block writing and data block reading operations
without reprogramming the WCS 210. The writeable control
store 210 has its random access memory area written with a
sequence such as is exemplified by the following example,
and the jump control multiplexer 208, and the sequence
controller 216 cause each instruction word to be loaded and

executed on a control word by control word basis. Impor
tantly, there is no need to reload the WCS for either a split
data field, or when switching from reading to writing. The
state of the write gate controls whether reading or writing
will be accomplished.

5,517,631
31 32

READ-WRITE WITH SPLIT DATA FIELDS

250 252 254 256 258 260
ADR OP CNT CTRL JPICTRL ADD/CTRL DATA DESCRIPTION

0 AMES WCT CALLL EAB O -- IDAM, abort ena.
1. TSDE WCT NOP CTS 2 Fill count stack
2 SECE WCT NOP NOP O mm. Compare sector
3 WDEC WCT NOP NOP O head compare head
4. CRC WCT NOP NOP O Do EDC, syndrome not ready yet.
5 CRCS WCT NOP NOP Do EDC, set synd address register
6. WDS CT CWRE --JSCT 12 Start Sync immed.
7 WD CT1 NOP -JSC 0 look for next ID
8 WD1R WCT NOP POP 1 PAD PAD-POP stack
9 WD CT1 CWR -JWDG 9 -- Wait for servo sector 38
10 WD CT SWG JWDG 10 SYNC Preload encoder
11 WD WCT NOP NOP 1 SYNC AGC rcovry after servo sector 38
12 WDR WCT SWG DAB 7 SYNC Sync Field (no abort)
13 WD WCT NOP SRG 0. 71H First half of AM (for write)
14 AMDIT WCT NOP FFFL 2 A3H Second half of Am
15 BDE TSCT NOP -JNOS 8 m Actual data
16 CRC WCT NOP NOP l Cross Check
17 ECC WCT NOP NOP 9 ECC
18 ECCS WCT NOP NOP 1. ECC check 1st wio interleaves
19 WDS CT1 SUP -SCA 31 PAD Bad syndrome'? AM? Special AM?
20 WD CT ISDL -LC O PAD Done?
21 WD CT CWR --JMP 31 EDonel

25

Another command line sequence example below illus
trates a disk-data-format operation with split data fields. In
this example the buffer contains the counts, head and sector
numbers to be written to the disk 10 and also a 1-byte

are by way of illustration only and should not be construed
as limiting the scope of the present invention which is more
particularly pointed out by the following claims.
What is claimed is: U.S. patent application Ser. No.

non-zero number if a wait-for-sector is not to be done before ' 07/710,861, now abandoned.
the next ID. The last one of these must be zero. 1. A programmable data sequencer within a disk drive

O WD CT CALLL -NX 0 - Wait for beginning index.
1 WD CT CWR -JWDG --- Wait for servo sector before ID
2 WD CT SWG JWDG 2 SYNC Preload.
3 WD WCT NOP ENAB O SYNC Sync Field (enable abort)
4 WD CT NOP JMP 6 SYNC Jump over write/read recovery.
5 WD WCT NOP NOP O PAD Write to read recovery if no servo sector before ID.
6 WD WCT NOP IECC 8 SYNC Sync field.
7 WD WCT NOP CTS O T1H First byte of AM.
8 AMIS WCT NOP FFFL O E8H ID address mark
9 BTSEX WCT NOP NOP 2 - Fill count stack from buffer and write it. Fetch byte

for next state
10 BDEX WCT NOP NOP 2 - Write Head, Sector, Fetch Extra Byte to mark wait

for servo wedge before ID
11. CRC WCT NOP NOP 2 PAD Write EDCICRC (never check syndrome)
12 WD WCT NCP NOP O PAD Extra pad byte.
13 WD CT1 NOP -JTS 17 PAD Start Sync immed.
14 WD CT1 CWR -WDG 14 - Wait for servo
15 WD CT1 SWR --JWDG 15 PAD Preload, wait for servo sector end.
16 WD WCT NOP POP l PAD AGC recovery field.
17 WD WCT NOP NOP 12 PAD SYNC + AM + PAD counts.
18 WD TSCT NOP -JNS 14 PAD Actual Data field.
19 WD WCT NOP PUSH 12 PAD Write ECC syndrome remainder bytes.
20 WD CT1 ISDL -JTS 5 PAD Go to writelread recovery field, no servo before ID.
21 WD CT CWR -JLC 1. - Done?
22 WD CT1 NOP --JMP 31 - Donel

The microfiche appendix accompanying the parent U.S.
patent application Ser. No. 07/710,861, now abandoned, sets
forth in greater detail electrical circuit schematics for the
sequencer circuit 152 and also control program routines for
execution by the microcontroller 162.
To those skilled in the art, many changes and modifica

tions will be readily apparent from consideration of the
foregoing description of a preferred embodiment without
departure from the spirit of the present invention, the scope
thereof being more particularly pointed out by the following
claims. The descriptions herein and the disclosures hereof

60

65

including a rotating data storage disk defining a multiplicity
of concentric data tracks, at least one of said data tracks
including a sequence of fixed capacity data fields which are
split into fractional field segments by intervening embedded
servo sectors, each one of said data fields being preceded by
a data field identification header including plural user byte
count values, each one of the plurality of user byte count
values indicating a user byte count storage capacity of a
corresponding fractional field segment, the disk drive
further including a data transducer controllably positioned
by a servo head position control loop using information from

5,517,631
33

the embedded servo sectors to pass over said at least one of
said data tracks for reading a data field identification header
and data field segments of each data field, and a buffer
memory means for temporarily storing a fixed length user
data block read from or written to the user data field; the
programmable data sequencer connected to a read channel
including the data transducer and to the buffer memory
means, and comprising:

control means for controlling transfer of a user data block
between the buffer memory means of said disk drive
and the segments of the data field and including a
loadable byte sequence counter means for receiving
and counting a present user byte count value as the data
transducer passes over a corresponding contiguous
segment,

stack memory means for receiving from the read channel
and for holding each user byte count value associated
with the corresponding contiguous segment so that the
storage capacity of user bytes of Said segment is
determined directly by said sequencer from said user
byte count value, and

stack memory control means for pushing each user byte
count value being received from the read channel onto
the stack memory means as the data transducer passes
over the data field identification header, and for pop
ping each user byte count value from the stack memory
means to the loadable byte sequence counter means as
the data transducer approaches the corresponding con
tiguous segment.

2. The programmable data sequencer set forth in claim 1
wherein said control means comprises:

writeable control store means including random access
memory means directly addressable by a programmed
digital microcontroller means of said disk drive for
writing sequences of control patterns, there being dual
function control patterns such that a single sequence of
control patterns may be written for controlling states of
said programmable data sequencer during both data
read operations and data write operations to and from
the rotating data storage disk and the buffer memory
means, and

control pattern decoding means for decoding the control
patterns into functional values for controlling opera
tions within the programmable data sequencer.

3. The programmable data sequencer set forth in claim 2
wherein the control patterns include an opcode field control
pattern, a count select field control pattern, a control field
control pattern, a jump field control pattern, a count field
control pattern, and a data field control pattern,

and wherein the control pattern decoding means includes:
opcode decoding means for decoding values compris

ing an opcode of a control pattern sequence,
jump field decoding means for decoding values com

prising a jump field control pattern of said sequence,
control field decoding means for decoding the control

field control pattern of said sequence,
counting means responsive to said count field control

pattern of said sequence,
data decoding means responsive to said data field

control pattern of said sequence,
the count select field pattern for controlling selection

between a command operational mode and a jump
operational mode for said sequence.

4. The programmable data sequencer set forth in claim 3
wherein at least one control pattern sequence includes a dual
purpose control pattern whose purpose is selected by the
count select field pattern.

10

15

20

25

30

35

40

45

50

55

60

65

34
5. The programmable data sequencer set forth in claim 4

including structure responsive to at least two types of control
sequences, both types including opcode, data and primary
control fields, one type being where a count is required and
including a secondary control word field and a count field,
and another type being where a jump is required and having
a count field of either a one, a top of stack value, and a next
of stack value; a jump field and a jump address field.

6. The programmable data sequencer set forth in claim 5
wherein the jump field occupies a same space in the write
able control store means as occupied by the secondary
control word field, and wherein the jump address field
occupies a same space in the writeable control store means
as occupied by the count field, and wherein the structure
uses the count select field pattern to determine one of the at
least two types of control sequence.

7. The programmable data sequencer set forth in claim 1
wherein said control means comprises:

writeable control store means including random access
memory means directly addressable by a programmed
digital microcontroller means of said disk drive for
writing sequences of control patterns, there being a
single sequence written for controlling states of said
programmable data sequencer during data read and data
write operations to and from the data storage disk and
the buffer memory means,

the control patterns including an opcode field control
pattern, a count select field control pattern, a control
field control pattern, a jump field control pattern, a
count field control pattern, and a data field control
pattern,

opcode decoding means for decoding values comprising
an opcode of a sequence,

jump field decoding means for decoding values compris
ing at least one of a count select field control pattern
and a jump field control pattern,

control field decoding means for decoding the control
field control pattern,

counting means responsive to said count field control
pattern, and

data decoding means responsive to said data field control
pattern.

8. The programmable data sequencer set forth in claim 1
wherein the embedded servo sectors comprise a series of
circumferentially spaced apart, radially extending servo
sectors, each servo sector being prerecorded with flux tran
sition patterns defining a servo address mark, a servo sector
identification number and servo centerline information, the
flux transition patterns defining the servo sector identifica
tion number and the servo centerline information being
converted by the disk drive into digital numbers representing
head position relative to one of said concentric data tracks
containing said servo sector, said concentric data tracks
being grouped into a plurality of concentric track Zones,
each Zone having a user data transfer rate related to radial
offset of said Zone from a center of rotation of the data
storage disk.

9. The programmable data sequencer set forth in claim 1
wherein said disk drive includes a programmed microcon
troller means for controlling said programmable data
sequencer and said buffer memory means and wherein the
control means includes a loadable sector counter means
which is directly loadable by the programmed microcon
troller means of Said disk drive and wherein the sector
counter means is responsive to a data clock means for
counting a preset number of data bytes comprising a data
field.

5,517,631
35

10. The programmable data sequencer set forth in claim 2
wherein the disk drive includes a programmed microcon
troller means for controlling said programmable data
sequencer and said buffer memory means and wherein the
control means includes loadable loop counter means directly
loadable by said programmed microcontroller means and
responsive to a data clock means for counting a present
number of data byte clock periods corresponding to a loop
established within sequences of said control patterns.

11. The programmable data sequencer set forth in claim 2
wherein the disk drive includes a programmed microcon
troller means for controlling said programmable data
sequencer and said buffer memory means and further com
prising loadable sector counter means directly loadable by
said programmed microcontroller means and responsive to a
data clock means for counting a preset number of data bytes
comprising a data field, and loadable loop counter means
directly loadable by said programmed microcontroller
means and responsive to said data clock means for counting
a present number of data byte clock periods corresponding
to a loop established within sequences of said control
patterns, said control field decoding means for decoding the
control field control pattern and generating said data clock
means for clocking said sector counter means and said loop
COllite healS.

12. A disk drive comprising a rotating magnetic recording
disk having a data storage surface defining a multiplicity of
concentric data tracks, at least one track defining a plurality
of fixed-block-length user data block storage locations, the

10

15

20

25

36
fixed-block length user data block storage locations being
divided up into a plurality of irregular byte-length user data
segments, each fixed block length user data block storage
location having a header field including a plurality of count
values, each count value comprising a count of bytes within
a corresponding irregular byte-length user data segment,
means for reading and transferring user bytes within the at
least one track including segments to temporary storage and
the count values within header fields to a count value
memory stack, count value memory stack control circuitry
for pushing the count values onto the count value memory
stack as the count values are transferred from a header field,
and for popping a count value from the count value memory
stack into a segment counter as a corresponding irregular
byte-length user data segment is to be read, the segment
counter being decremented to zero thereby to determine the
irregular byte-length of the user data segment as user bytes
from the user data segment are transfered to temporary
Storage.

13. The disk drive set forth in claim 12 wherein the count
values for segments comprising a fixed-block length user
data block are pushed onto the count value memory stack in
reverse order of occurrence of the segments, so that a count
value for a segment first encountered by the means for
reading and transferring is at a top of stack location within
the count value memory stack and is popped into the
segment counter.

