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Foreword 

On behalf of the Office of Naval Research (ONR), I 
want to thank System Development Corporation for 
the time and effort spent in organizing and planning 
the conference, for their willingness to listen to 
our ideas on how it should be conducted, and for 
their ability to reach a reasonable compromise. As 
for the audience, I would like to thank them for their 
stamina in sitting through three days of intensive 
preparations and discussions that probably should 
have been extended to four days to allow sufficient 
time for the papers and discussions. 

Several times during the conference I have been asked 
why ONR sponsors meetings of this type. Many see 
ONR's mission simply as support of research projects. 
It really is not to anyone's advantage to just sponsor 
research and then let it lie buried in a technical 
journal, yet all too frequently that is what happens. 
Therefore, although most of our funds are used to 
sponsor research, we also try to act as a catalyst for 
the implementation of research into government and/or 
industrial operations. Symposiums such as this help 
disseminate the research and allow feedback from the 
potential user to the scientist. 

ONR attempts to sponsor symposiums on topics that 
have not had extensive exposure. When SDC presented 
the concept of a symposium to discuss current and 
future research activities in multi-access computing, 
we thought it was a good topic. Dr. Thompson com­
ments in his overview that there is a great lack of 
congruity in the papers presented. That is the very 
reason why a meeting such as this is so valuable. If 
everyone understood the role and importance of each 
others work, and the research activity was already 
integrated, there would be no need for these types of 
symposia. 

*This foreword is derived from the closing remarks to 
the symposium delivered by Mr. Goldstein. 



There is also a void in the government research 
establishments of today that we are attempting to 
rectify with meetings of this type. There is no DOD 
agency that I know of whose job it is to take the results 
of research, initiate pilot development, and then, if 
successful, to sponsor introduction into DOD opera~ 
tions. The solution to the implementation problem 
today is to have the help of everyone concerned. For 
example, the designers advertise their work at these 
meetings, and the potential users, at the same time, 
look to them for solutions to their identified problems. 
Often a company will see the utility of the research and 
decide to contribute to its further development. In 
this fashion, numerous ONR projects have resulted in 
government equipments and commercial products. 
Sometimes when research is applied by this indirect 
method, the Navy does not get credit for the original 
sponsorship, nevertheless our society does benefit 
and research money is considered well spent. 

Gordon D. Goldstein 
Information System Program 

Office of Naval Research 



Preface 

Distributed data processing systems - bringing the 
computer system interface into the field or remote 
facility - represent the most sophisticated form of 
information systems. Once associated with very 
large, very expensive real-time systems, the distrib­
uted data system is now practical for modest invest­
ment and operating costs. This book presents the 
proceedings of a conference dedicated to advancing the 
state-of-the-art in multi-access computing systems -
one of the two basic approaches being used to imple­
ment distributed information systems (the other basic 
approach is decentralized computing using minicom­
puter networks). The conference was planned to bring 
together in a reasonably sized working group (total 
attendance was planned at 100 invitees) leading com­
puter scientists, key government EDP users, and key 
university researchers to maximize communication. 
Response to the conference was extremely favorable, 
and the interest in making widely available at least the 
formal portions of the conference has led to the pub­
lication of this book. 

This collection seeks to present the requirements to 
be imposed on multi-access computing: timesharing, 
real-time, and remote batch, and includes current 
research. The purpose is to improve the communica­
tion between the researcher and the user. The focus 
is primarily on military type applications but most of 
the material is equally useful for industrial purposes. 
Several papers specifically address consumer and 
commercial applications. 

By design, divergent views and ideas are included. 
Two commentary articles, for example, discuss 
divergent views on several other papers. Requirement 
papers range from detailed specifications to problem 
presentations. Research reports range from detailed 
results of specific tasks to surveys of available and 
planned equipment. We hope the reader will gain 



from this range in the same way that the variety 
stimulated interchange between the participants. 

To best present the views of the various participants, 
we have attempted to transcribe each paper as it was 
given, and edit only to the extent necessary to assure 
continuity of thought. 

In a heterogeneous collection of this type it is difficult 
to adequately express our appreciation to the many 
people who contributed. We would like to express our 
sincere appreciation to the contributing authors who 
have been kind enough to permit the inclusion of their 
speeches. And, of course, our greatest debt is to 
Mr. Marvin Denicoff and Mr. Gordon Goldstein of the 
Office of Naval Research whose advice, encourage­
ment, and support made the conference and these 
proceedings possible. 
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1. Multi-Access Computing in the 70s 
Paul H. Rosenthal 

System Development Corporation 

Santa Monica, California 

As a confirmed optimist, I forecast that the 70s will be the 
decade of "successful systems. " Successful systems may be 
defined by the following set of criteria presented in a recent AMA 
publication. * 

Relevance - meeting the actual needs of the organization. 

Timeliness - meeting the natural cycle times of the total 
business system. 

Economy - meeting basic tangible cost/value criteria and 
not performing a luxury function. 

Flexibility - meeting growth and on-demand requirements. 

Accuracy - maintaining correct data bases and performing 
auditable processing. 

A large proportion of the military and commercial systems 
involving computer-related data processing will require reimple­
mentation during the 70s to meet these "success" criteria. Lower 
cost computer hardware will make this technically possible, often 
by bringing the system into the office, where the user interfaces 
with the environment. This requires distributed data processing, 
an area that is expected to reach 50 percent of total EDP activities 
by the late 70s. Distributed data processing is being implemented 

*Burton J. Cohen, Cost-Effective Information Systems, American 
Management Association, New York, 1971, pp. 13-16. 

1 



2 Multi-Access Computing 

through two technologies: (a) multi-access computing (remote use 
of a central processing facility)- the topic of this volume, and 
(b) decentralized computing - through extensive utilization of 
minicomputing methods. 

Multi-access computing generally involves the use of remote 
batch methods (RJE), interactive processing (time sharing), and 
real-time computing (process control). These methods are often 
the only way of meeting the successful system criteria. For 
example: 

Remote Batch Methods - Normally used for large processing 
jobs. When the data originate at multiple locations, but a 
centralized data base is required, only this method is: relevant 
- meets user needs; timely - uses an up-to-date data base; 
and accurate - allows controls at the data origination point. 

Interactive Processing - Normally used for small to medium 
processing jobs. When utilization is not steady at each 
individual site, or some requirement of the processing exceeds 
the capabilities of the minisystem, the method is: economic -
spreads computing over all sites; and flexible - more users 
and applications can be handled on a more flexible schedule. 

Real-Time Computing - Normally used for process control 
of systems involving multiple functions and sites. The man/ 
machine/process systems currently so popular can normally 
only be performed using multi-access methods. 

Multi-access computing is, therefore, a generic term for the 
communication based systems required for the operational, scien­
tific, and administrative applications of the 70s. It is a large 
segment of the total EDP developments now being considered and 
planned. Therefore, what are the requirements imposed on the 
design, software, and hardware for such systems? And, what 
research is being performed that may meet these requirements? 
This volume, hopefully, answers these questions. 



PART I. COMPUTATION REQUIREMENTS 

The papers in this section are oriented toward the requirements 
for operational and support applications - trying to provide systems 
and technology to meet user demands first and scientists' interests 
second. That the first section compl'ises projected requirements 
indicates the recognition of the importance of relevance - not only 
to the needs of today, but to the anticipated needs of the decade 
ahead. The problem is not to solve yesterday's problems with 
today's tools, but to anticipate needs sufficiently to produce data 
processing systems for tomorrow's then current problems with then 
available tools. 

It is often pointed out that to understand the problem is to be 
halfway to the solution. Much of the problem is in identifying the 
user, his need, and his deadline. For the last two decades when 
these problems finally were defined, there was no practical method 
of solving them. The multi-access hardware and software now 
becoming available have changed this situation. Now, a great deal 
of what was impractical in the 60s will be practical in the 70s. It 
behooves us, therefore, to note carefully the users' views reflected 
in this section. Perhaps the 70s can become the era in which EDP 
actually meets user needs - i. e. , the era of successful distributed 
computing systems. 

The seven papers in this section reflect a cross-section of 
application requirements. Dr. Bergman presents weapon systems; 
Mr. Lamendola and Dr. Boehm present command and control 
systems; Dr. Pennington presents scientific processing; Mr. 
Swerling presents process control; Mr. Knepell outlines the major 
problem facing administrative users, and Mr. Kiviat closes with a 
discussion of system simulation requirements. The viewpoints 
cover most of the requirements imposed on multi-access computing 
and, except for a discussion of data base problems, all major 
problem areas are well covered. 

3 



2. large Scale Computers vs. Real-Time Systems 
C. E. Bergman 

Naval Electronics Center 

San Diego, California 

Over the past twenty years, real-time systems have evolved 
largely from total use of analog components, with their inherent 
problems of stability and low precision, to the current, nearly 
universal use of digital techniques. Most of these digital systems 
utilize a centralized, large-scale, digital computer as the funda­
mental building block. The theoretical advantages of the digital 
computer are self-evident. Less obvious, however, is that costs 
associated with obtaining these advantages are rapidly becoming so 
great that the rationale for continued use of the large-scale com­
puter in many real-time applications is becoming questionable. 

Cost, in this context, means much more than the fixed cost 
associated with the procurement of the hardware and software 
packages of a given system. It refers to the price of generating 
functional programs from assemblers and compilers, a task often 
requiring a cadre of programmers and ADP software specialists, 
and the more subtle, but real, cost incurred because of the enor­
mous complexity of the resultant system. This latter figure contains 
the cost which results from the loss of control over the total design 
by the system engineer (who usually doesn't comprehend the vagaries 
of software) and the subsequent reliance on programmers (who gen­
erally don't understand the technical details of the system) in order 
to make the system work. The result is an uneconomical and poorly 
engineered system designed to do a relatively straight-forward job. 

A possible solution to this problem may exist from the analog 
days when system functions were implemented in hardware. Until 
recently, system implementation using digital components in this 
fashion was not feasible because of the high cost of digital logic and 
memory. Today, however, the cost of LSI batch processing is such 
that a flip-flop or a bit of memory can be obtained for approximately 
1\Z' and thus it is practical to consider utilizing hard-wired functional 
processors in lieu of a general-purpose machine with complex 
software algorithms. 

4 
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Also important here is that current technology permits 
redefining the meaning of the term "digital computer. " The general­
purpose machine usually is considered a device with a single arith­
metic unit which has time-shared interactions, based upon a 
complicated "interrupt" procedure, with I/O, control, and memory. 
This has led to the usual concept of "the computer, " a concept no 
longer inviolate. 

A LOOK AT THE ISSUES 

The major issue associated with reorientation in the system 
concepts described above is flexibility. Clearly, there are numerous 
instances in which the flexibility afforded by software to effect major 
changes in the system operation justify the expenses. For many 
situations, however, this apparent flexibility is illusory. This is 
particularly true when the large-scale processor approaches time 
and/or memory limits in its operations. Under these circumstances, 
program changes are not easily accomplished for fear of violating 
these limits or causing a chain reaction as a result of program 
module interactions. In many cases, flexibility is not even required; 
e. g. , control of external hardware, coordinate conversions, pre­
processing of sensor signals, etc. For such situations, it seems 
sensible to consider alternative approaches to their implementation. 

With the foregoing in mind, a number of possibilities for the 
design of real-time systems can be suggested. The conventional 
general-purpose machine, although commonly employed, is perhaps 
the least optimum solution, for the reasons stated. Multiprogram­
ming and multiprocessing techniques being touted for use with such 
machines often tend to make the problem more complex and expen­
sive. A variation on the general-purpose computer theme is the 
use of a set of distributed minicomputers. This approach offers 
many advantages including that the system is easier to design, test, 
maintain, and reconfigure. It also makes the system engineer the 
key individual in the system development. 

If the traditional bond to the large-scale computer is broken 
by employing minicomputers as the controlling elements of "sub­
systems" of the real-time system, then there clearly is no funda­
mental reason for stopping at that point. In fact, current technology 
for the fabrication and design of digital logic from bipolar and MOS 
devices makes it exceedingly attractive to consider system imple­
mentation in terms of Direct Functional Mechanization (DFM). DFM 
defines a philosophy of system design, development, installation, 
checkout, and maintenance which is geared to today's technology 
and whose measure of performance can be stated in terms of the 
costs associated with each of these five factors. It is a philosophy 
based upon a sound understanding of system performance require­
ments and subsequent mechanization of the system by the use of 
functional modules constructed from components fabricated by the 
use of modern technological processes. With DFM as an additional 
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option available to the system designer, we have effectively removed 
the constraint of having only one tool, "the computer," to use in our 
system developments. 

With the possibility of using DFM as a design tool, the process 
of system definition can now be stated in the following set of steps: 

1. Examine desired system performance. 

2. Examine necessary system functions. 

3. Examine available tools (G. P., minicomputers, DFM, 
etc.) 

4. Make tradeoffs. 

(a) cost/performance 

(b) hardware/ software/firmware 

(c) digital/ semidigital/linear 

(d) centralized/ decentralized 

(e) custom design/off-the-shelf 

(f) dedicated/shared 

5. Define system configuration. 

In examples of the application of the DFM concept to several 
real-time processing systems being developed at NELC, the results 
to date conclusively suggest the potential value of this approach to 
design. If many of the other key issues such as off-the-shelf avail­
ability, keeping pace with technology, logistics, efficiency, size, 
weight, power, reliability, maintainability, availability, cost, man­
power, training, and programming requirements are considered, 
it is obvious that many tradeoffs exist that need to be considered 
in choosing between the large-scale computer, minicomputers, or 
DFM for system implementation. The studies at NELC suggest 
that improvements of at least an order-of-magnitude might exist 
for most of these factors through the choice of DFM rather than 
the general-purpose machine. Even if the improvement is derated 
to 2:1, the DFM approach clearly merits consideration. 

CONCLUSION 

The DFM approach to systems design presents a number of 
weighty questions concerning the validity of continuing the conven­
tional approach to the mechanization of real-time systems. By 
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utilizing DFM, the systems engineer can play a more extensive 
role in the total development, software complexity is drastically 
reduced and often largely eliminated, multiple simultaneous 
operations are possible as a result of architecture which avoids 
the restrictive single arithmetic unit of the general-purpose com­
puter, and timing constraints and complicating system interactions 
are greatly alleviated. 



3. Comman~/Control Requirements 
for Future Navy Systems 

Michael A. Lamendola 
Naval Electronics Laboratory Center 

San Diego, California 

There is no universally accepted definition of command and 
control. Generally, command and control is thought of as the pro­
cessing of information culminating in an operational decision and as 
being computer oriented. There is processing and the information, 
after it is processed, is presented to a human being who, based upon 
the information presented, makes a decision to take an action or to 
take no action at all. Thus, the primary command and control require­
ment is reliability-reliability of the data that are gathered or the 
reliability of the processing and a high confidence value in the result. 
Unfortunately, today, command and control systems in many quarters 
are not viewed as being particularly reliable. In fact, the reliability 
of command and control systems seems to be going down, a solution 
that could have some grave consequences. This paper will examine 
how the predicament evolved and then will examine potential solu­
tions to current and future command and control system problems. 

HARDWARE TRENDS 

The trend in the past has been to rely on advances in hardware 
technology to solve problems. This presentation will look at how 
computers have evolved from a perspective slightly different from 
that normally used. The first-generation computer structure had 
a single set of registers which were used to perform both the arith­
metic operations and the input/ output operations. Either one or the 
other was done, but not both simultaneously. Systems designed for 
first-generation computers had such things as an input translation 
phase to get the program into the machine. After calculations were 
performed, it was necessary to go through an output translation 
phase to get the program out onto a printer. This was done to 
maximize use of the machine. 

8 
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Second-generation computer systems made life easier. The 
main difference between first- and second-generation machines 
was a second set of registers that were used for input/output 
operations. Input/output and arithmetic operations now could be 
performed simultaneously. It took about two years for system 
software to catch up and actually start using this feature and then 
only in a limited fashion. Even today it is not used nearly as much 
as one would expect. It is still customary to write something out 
on disk or tape and check to see if it went out all right before con­
tinuing with processing. 

With the advent of the third-generation machine, there were 
still arithmetic registers, and separate input/output registers, 
but now there was also a new set of registers called base-address 
registers. These permitted keeping track of more than one program 
that was residing within the main, or primary, memory simultane­
ously. In other words, multiprogramming was now possible. 
Because multiprogramming could be done efficiently without having 
to perform a lot of address calculations, machines now could be 
time-shared effectively. Although time-sharing was possible on 
second-generation machines also, it wasn't nice, it wasn't clean, 
and it wasn't efficient. 

The reader will notice that, in terms of hardware advances, 
the machine organization and the system implications of that machine 
organization have been emphasized rather than the development from 
vacuum tubes to transistors to integrated circuits. The organization 
was the key and held the system impact. It seems fair to say that 

· during development, design objectives were primarily to keep the 
machines general purpose, to make them usable across as broad a 
range of tasks as possible, and, with a major thrust in design, to 
make more efficient use of the machine itself. Computers are 
very expensive and the aim has been to keep that processor busy 
as much of the time as possible. In the first-generation system 
organization, it was obviously very inefficient to be able to do only 
one thing at a time, either calculations or input/ output. In second­
generation niachines, the inefficiencies were not quite so obvious. 
Hardware monitoring devices had to be attached to determine what 
was going on internally. They showed a processor busy by itself 
about 40 percent of the time and not used about 60 percent of the 
time. The input/output units were busy by themselves about 
50 percent of the time and the two of them performed simultaneously 
about 10 percent of the time. Someone soon concluded that it was 
much more efficient to have two or more programs in memory so 
that if one was performing input/ output the other could make use 
of the processor. The thrust was machine efficiency. 

Is this good or bad, or is it some of each? These design 
objectives evolved in the commercial world. The Navy has been 
the recipient of this thrust and these design objectives. From the 
perspective of command and control, the general-purpose computer 
seems by definition almost mismatched to any given task. It would 
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be extremely rare for a single task to precisely match the resources 
of a general-purpose computer. Tasks will be either too large or 
too small. If the computer resources are too large for the task, 
the result, in addition to the question of cost effectiveness, is that 
functions tend to be added to the system that ought not to be added. 
This is a management problem, not a technical problem, but it 
does happen. When computer resources are too small for the task 
to be performed, the situation is more serious. Something has to 
give and it will not be the computer. It was no accident that for 
years programs fit conveniently into 32, 000 words of memory. 
The task in one way or another must be degraded. If the task is 
concerned with response times, then the response times are going 
to slow down. If process capabilities are involved, then less will 
be processed than is desired. 

SOFTWARE TRENDS 

In this computer-task relation, the computer remains very 
rigid and inflexible. What is not fixed and what is used to fit the 
task to the machine is the software. The philosophy said the task 
was to be fitted to the machine. It now seems more appropriate 
for the machine to fit the task. This current task-computer relation 
places a tremendous reliance on software. In view of this reliance, 
one would expect that if he reviewed the development of software 
tools - those advances in the software state-of-the-art designed to 
aid the programmer in the design and implementation of the command 
and control system - he would see a parallel in the software area 
correspondingly roughly to the advances in hardware technology. 
Unfortunately, this isn't true. In fact there is a great deal of 
justification for the very harsh statement that there have been 
essentially no advances in software development in the past dozen 
years. 

Most advances in software have occurred in operating system 
areas. In addition to the assembly language and machine language, 
programmers in 1960 programmed in high-order languages such as 
FORTRAN II and COBOL. They divided their programs into sub­
programs or modules called subroutines. These were fed into the 
operating system and processed. The loader in the 1960 operating 
system performed a library search and linkage and it had the 
intelligence to make a comparison so that if the programmer wanted 
to substitute his own particular SIN routine, for example, the 
operating system would recognize this fact and not go out and retrieve 
the system SIN routine from the library. The programs were 
structured in relocatable form to give some flexibility to the system 
and there were tools such as trace routines, trap routines, and dump 
routines which could be called upon either automatically or deliber­
ately by the programmer under a variety of conditions depending 
upon the system he was working under. When a system was being 
constructed, these were the fundamental tools a dozen years ago. 



Command and Control for Navy Systems 11 

Today, programmers still use high-level languages. 
FORTRAN and COBOL are still very popular, although in the 
command and control world JOVIAL and CMS-2 are used. Using 
subroutine structures hasn't changed. And there are still operating 
systems that operate in a somewhat job shop environment, setting 
up the programs, searching things out, and linking them. The 
programs still tend to relocatability and there are debugging aids 
such as trace, trap, and dump. 

Now, this is obviously oversimplified. There are very 
worthwhile specializing routines that exist here and there. Auto­
mated flowchart packages, for example, facilitate documentation, 
which is always a horrendous job. A number of specialized 
languages for various disciplines have been developed, and there 
are specialized applications programs such as computer-aided 
design for circuit and logic design. However, such simplifications 
are not that far off and there has not been much progress in the 
software area. 

What does this mean? The unit of measure in the develop­
ment of a command and control system is the labor hour, the 
programmer's time. Little has been done to make that labor 
hour effective. MIT has done a great deal of work in man­
machine interaction, and it has broken new ground in this area. 
So have a number of others. In systems development at NELC, 
online interactive programming techniques are used wherever 
possible. However, the basic structure of the software that is 
produced has not changed. Consequently, the problems with it 
have not changed. 

IMPACT OF TRENDS 

This then is the computational environment. In command 
and control, system functions are increasing in complexity. The 
number of system functions of a given system has been increasing 
over the years. The requirements to integrate discrete systems 
have been increasing. More and more, these systems are required 
to talk to one another. We require the use of general-purpose 
computers that are a mismatch to the task, and we employ essen­
tially the same software tools that were developed in 1960. If the 
way the system is developed is held constant, and if over a period 
of time system complexity increases, the result is a decrease in 
the reliability of an individual system. Since the labor hour is 
still one hour long and since many more functions now have to be 
incorporated into a given system, the time to develop this system 
has been increasing over the past years and consequently the cost 
increases. Therefore, it is not too surprising to meet more and 
more individuals in positions to determine whether or not to initiate 
systems who are very reluctant to embark on yet another computer­
oriented command and control system. 
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SYSTEM INTERFACING 

One problem area that requires help is intersystem communi­
cations, the capability to use data produced by someone else. This 
is a current problem, but it is also a future systems problem. It 
is a problem that develops as an after-the:..fact situation. System A 
has been developed and is doing whatever it is supposed to do. When 
System B is developed, if the designers are aware that they are 
going to have to use, as inputs, outputs. from System A, then they 
will design their system to accept this output. This may be diffi-
cult but it is frequently done. However, what really creates a 
problem is when System B has already been developed and has no 
knowledge of System A's existence. Subsequently, a requirement is 
levied upon one or both of these systems either to share data or to 
have one of the systems use as input the output from the other system. 
Although this is possible, one discrete system usually cannot accept 
and assimilate another system's data because the computer programs 
for the individual ADP systems manipulate their individual data 
elements in different ways. They use different formats or they are 
on different types of computers. Consequently, overcoming the 
problems may require the construction of extensive individually 
tailored interfaces for each of the systems. 

As more and more systems have communication equipment 
associated with them, so that they tie into a communications network 
and are thus interconnected by data lines, this requirement to share 
data or exchange data is growing by leaps and bounds. Once again, 
the programmer must get the pieces to fit and at present he doesn't 
have very good tools to accomplish this. He needs a mechanism 
for describing the data very precisely. Files of data contain not 
only data but also control information, such as record lengths and 
pointers. A control item has significance according to its location 
in a file or record. This significance is defined by the conventions 
of the operating system or the users' program which controls the 
data. The receiving programmer must be able to distinguish control 
information from data items. He must be able to interpret the 
logical relationships of the data from the information that he receives. 
All of this information must be presented to him so that he can make 
the appropriate translation into his system in order to be able to 
use it. 

Normally this information is not contained within the data 
file itself. It is contained within the documentation of the program 
of the generating programmer. It may be implicit in his program 
structure, or it may be described in detail and in depth in very 
formal documentation. In any event, it is usually inconvenient to 
obtain this information and once obtained it is difficult to use and 
requires a lot of work. A tool is needed which does not require a 
lot of work, one which allows the programmer to describe his data 
fully and explicitly and provides for passing the description easily 
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to anyone else who wishes to use the data. The description ought 
to be formal and it ought to be standardized. 

DATA BASE TRANSFORMATION 

Given that a formal and standardized system interfacing is 
available, one may then consider another tool. This would be a 
program which translates data from one form and format to another. 
It might be called a generalized data base transformer. This tool 
would process the data base of one computer system and produce 
the data base suitable in structure and format for another system. 
It would be driven by descriptions of both the source data base and 
the target data base. It would reform at data items; it would 
replace control information with the pointers, indices, record 
counts, and so forth, that would be required to access that data in 
the new environment. Now it isn't certain that this is, in fact, 
possible. There has been a great deal of work done on the data 
description language, particularly by the Data Base Task Group of 
the CODASYL Committee. However, the problem area that is being 
addressed is not one that is expected to disappear. It certainly 
would seem a very worthwhile area of investigation, since it is of 
deep programming concern and can have a negative impact on the 
system structure. This function could be relegated to the operating 
system, as a service similar to many other services that the operat­
ing system performs. It would simply be initiated as needed by 
the programmer. That, of course, would be ideal. 

CONVERSION 

Another long-term problem area is that of changing machines 
- the transferability or portability of software programs from one 
computer system to another. This long has been the subject of 
investigation and thought and it continues to be a very worthwhile 
area of investigation. One argument that has been proposed for 
the existence of high-order languages, in addition to shortening 
the time required for a programmer to produce a program, is 
that there is a high degree of machine independence within a high­
order language. Consequently, one can move from machine to 
machine with relative ease. In practice this doesn't seem to be 
the case. Languages, or rather implementations of languages by 
different manufacturers, tend to be nonstandard by whatever stand­
ards have been defined. Manufacturers tend to embellish languages 
to take advantage of certain features of their own machines. Con­
sequently, one encounters limits on program size; limits on the 
number of programmer-assigned names; limits on total number of 
source statements, total number of characters and statement 
identifications, and so forth. These will vary from machine to 
machine. Programs tend to be dependent on the particular operating 
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systems from which they were developed for library functions, 
error recovery procedures, overlay structures, and file manage­
ment, and there are no standards for these program-to-operating 
system interfaces. 

One encounters explicit types of dependencies. However, 
there are implicit tendencies that occur also and these are just as 
horrendous to overcome as explicit dependencies. In a recent 
conversion effort for a large program more than 95 percent of the 
program was written in a high-order language. Less than 5 percent 
was written in machine language, and that portion was very care­
fully isolated, very well documented, and even identified in terms 
of the high-order-language statement that would be used if the 
removal of the machine-language statements were desired. They 
were in machine language for efficiency at very critical points 
where the designer felt that they could not tolerate the slightest 
inefficiencies that might be produced by high-order-language com­
pilation. On the surface this seemed like a beautifully done job, 
ideal for transferring from one machine to another. However, the 
price associated with moving that program from one machine to 
another ran into many hundreds of thousands of dollars. The cost 
was about $600, 000 for both machine time and labor on a project 
whose total cost was about $4, 000, 000, from requirements analysis 
through implementation. The fault lay in the implicit dependencies 
contained in the program. The programmer knew the machine for 
which the program was originally constructed. He knew its organi­
zation, its structure, how it behaved, how many bits made up each 
character, and how many characters were in a given word. He 
knew exactly where he would be if he skipped five words or fifteen 
words. This sort of logic was threaded all through this very large 
problem. It was not done intentionally and it certainly was not 
done to make it more difficult to move from one machine to another. 
It just happened. The result required a major effort to change 
from one machine to another. 

A popular approach for solving program transferability has 
been to address it from the point of view of compiler construction. 
Compilers are used in such a way that the same source program 
can produce code for a variety of different target machines. Another 
approach has been to attempt to structure very rigorous standards 
for a given language and attempt to enforce these standards. 
However, neither approach solves the problem of the implicit 
dependencies. 

A recent report of work being done in Japan mentioned an 
attempt to develop a machine-independent software system. The 
intent was to develop an intermediate high-level language and a 
compiler which would translate a variety of source languages into 
this intermediate language. This concept was first proposed in the 
literature around 1956-1958 in the United States and it was called 
UNCOL, or Universal Computer Oriented Language. This country 
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did not proceed very far with UNCOL, but apparently in Japan at 
least one computer manufacturer actually completed a compiler 
that takes this intermediate language, which was standardized 
across Japanese manufacturers, and translates it into machine 
language for his machine. This compiler implementation ran very 
slowly or comparatively slowly when compared to other compiler 
techniques. Because of the value Japanese manufacturers were 
placing on fast compiler time, the machine independent approach 
seemed to be given very little emphasis. This seems unfortunate, 
for within the command and control environment, programs can 
have exceedingly long lives, lives that can bridge computers from 
one machine to another. 

REUSABLE SOFTWARE 

The problem of transferability of software programs across 
systems leads to the question of reusable software. Reusable here 
means the ability to take a deck of cards representing an existing 
program in a given source language and to insert the deck into 
another program or into another deck of cards and use it directly 
without concern about the language of the program or the original 
target machine. Ideally, one would like to be able to make use of 
any software or any functions previously programmed. However, 
as indicated earlier, this is extremely difficult to do. Software is 
presently very sensitive to environment; that is, the machine charac­
teristics, the operating system, the data, the computer language, 
or the compiler technique. If any one of these is changed, the 
software becomes inoperable or severely degraded and the pro­
grammer must get in and make changes to make it work. Ideally, 
it's preferable not to worry about these things. In designing and 
implementing a command and control system, it would be ideal to 
identify all of the functions encompassed in that system, ending up 
with an elaborate library of proven software functions, plus the 
tools that draw from this library and incorporate the functions into 
the development. This would allow the designer to avoid reinventing 
the wheel for each function. He could concentrate on developing 
only those functions specific or unique to this application. 

To make this idea workable, the fundamental structure of 
software itself must be questioned. It is necessary to question 
how things get put together, how they get linked, how they get 
identified, what constitutes a module, and what determines the 
interfaces between the modules. Maybe this simply describes a 
super-library capability; but, perhaps, it could more appropriately 
be described as a new computer language, a much more powerful 
language than anything known today. It does seem appropriate, in 
terms of the objective to be achieved, to question why things are 
done the way they are, to attempt to determine if there might not 
be better ways of doing them. ·Certainly, some very fundamental 
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breakthroughs will be required to achieve this end. It also seems 
that a sort of limit has been approached if these breakthroughs are 
not found. Consider where software or the whole computer science 
field would be if a given function was programmed, developed, or 
devised only once, and all efforts were expended simply by adding 
new functions. 

TESTING 

Part of the concept of reusable software is that each function 
has been proved in operation and therefore is one part of the system 
that need not be tested further. The goal should be contracts which 
dictate that software will be delivered error-free even for those 
who are issuing the contract. Most of the current literature indi­
cates this is not possible; the typical large software program has 
so many paths going through it that at best one can achieve only a 
certain confidence level and, having achieved that, must be satisfied 
with that result and must not insist on error-free performance. 
That undoubtedly is true if one limits himself to doing things as 
they are presently being done. If one removes that restriction, 
then the question might validly be posed, Why can't one have error­
free software? Certainly, to the ONR community, there should be 
no constraints to say that the way things are done must continue 
without change. 

SUMMARY 

To summarize, the primary requirement for command and 
control systems is reliability. In the past, the tendency has been 
to rely on advances in general-purpose computer technology to 
increase reliability. However, the complexity of the systems has 
increased at so fast a rate that system reliability has decreased 
rather than increased. Advances in software technology have been 
minimal in command and control over the past dozen years and the 
needs identified call for a fundamental reexamination of the basic 
design and implementation processes. 



4. Comman~/Control Requirements 
for Future Air Force Systems 

Barry W. Boehm 
The RAND Corporation 

This paper begins by summarizing some of the currently 
disclosable results of a recent Air Force study on what should be 
done in information processing to meet major Air Force command 
and control requirements in the 1980s. It concludes with a few 
items that the author hopes people will consider to make computing 
more of a science. 

AIR FORCE INFORMATION PROCESSING 

Air Force information processing is a very big and complex 
business. Current Air Force software projects cost almost a 
billion dollars a year. Some Air Force computing operations are 
primarily online management information systems, such as the 
huge Advanced Logistics System being developed now. Interactive 
graphics goes on a good deal within the Air Force intelligence 
operations, as in the current TIPI program. The laboratories -
weapons, flight dynamics, materials, etc. - run huge calculations, 
performed on large computers. Air Force space operations have 
very high bandwidth sensors pumping data into computers. 

Individually, these represent major challenges to any kind of 
computer design, development and maintenance job that one wants 
to do. Air Force command and control has even more difficult 
problems because it tries to do all four of these things together. 

UNIQUE FACETS OF COMMAND AND CONTROL 
INFORMATION PROCESSING 

Air Force command and control to some extent is an online 
management information system; to some extent it involves inter­
active graphic manipulations; to some extent it involves large 
calculations for doing route planning or operational plan optimization 
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and the like; and to some extent it involves very high bandwidth 
sensor data processing for warning information. Doing all of these 
things together creates a huge challenge for the integrated design 
of a computer-based system. 

However, several other systems outside of military command 
and control do this too. The air traffic control system and the 
NASA Apollo system also try to integrate all of these things and 
are very complex. However, command and control in the Air Force, 
Navy, or Army is even more difficult than this because of three 
additional considerations. 

One consideration is the unpredictable environment. For 
example, successive commanders have widely varying personal 
styles to which the system must adapt: just consider the command 
styles of Commanders-in-Chief Eisenhower, Kennedy, Johnson, 
and Nixon. The official one reports to makes a big difference in how 
data are organized, how much of it one reports up the line, and the 
like. Another example is the unpredictability of one's own status 
of forces: the individual can't predict, for instance, when he might 
be told all Beechcrafts will be replaced with B-52s. This makes it 
very difficult to organize in advance how to process the information, 
and creates some of the problems that Dr. Bergman presents in 
his paper. Sometimes, if the environment is fairly predictable, 
functional flexibility can be traded for speed, many things can be 
put in hardware, and the system comes out way ahead. In cases 
where speed can not be traded for functional flexibility, it's not so 
easy to do that. 

Another consideration is that the environment is hostile. 
NASA can count on the moon staying the moon and doing only what 
Nature does to try to outwit man. On the other hand, command 
and control systems have to consider that inputs may be spoofs; 
they have to worry much more about data security and people trying 
to penetrate the system to take advantage of it. 

Finally, the stakes are not dollars as they are in commercial 
systems; they are not individual hazards as they are, primarily, 
in the Apollo mission; they are national survival. This means 
considerably more weight must be put on such things as software 
certification. If software says that the rising moon is a massive 
missile raid, the country may be in a lot of hot water. 

The worst part is that all of these considerations interact with 
each other. An unpredictable environment requires a quick-change 
software capability. However, data have shown that quick-change 
software patching traditionally introduces many errors in the soft­
ware; so, somehow or other, software must be organized not only 
to change it quickly but also to certify that the change is correct. 

IMPLICATIONS FOR INFORMATION PROCESSING R&D 

If one tries to infer from these considerations what is most 
needed in information processing R&D, the response may be 
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surprising. It is not voice recognition, nor image processing, nor 
large screen displays. Some fairly mundane things are required; 
for instance, getting the computer to help more in doing require­
ments analysis, in providing paradigms for developing and main­
taining the system design, in exercising the system so there are 
no big mismatches between theoretical command and control per­
formance and actual command and control performance, as often 
seems to crop up in things like the Pueblo incident, the Liberty 
incident, the EC-121 incident, and the like. Right now, the usual 
command and control system exercise is a very tedious, very 
manual kind of operation, which may take more than a year to 
prepare for, run, and analyze. 

Another extremely critical R&D area involves software and 
system certification. Once again, the country is being bet on a 
correctly working software, and, typically, many bugs are found 
in the command and control software, as there are in everything 
else. This isn't intrinsic just to Air Force operations - on Apollo 14, 
fourteen software problems were found in a ten-day mission. It's 
just very difficult for technology to certify the correctness of soft­
ware, but very important to do that. 

Data security is another important R&D area. Many people 
are counting on having a data security box which allows multiple 
access to a common data base by all sorts of users on airbase 
loading docks, the commander's console, and practically everywhere 
else. The assumption is that nobody will be able to poke into 
unauthorized data, but the technology for guaranteeing that just 
isn't around. 

INSTITUTIONAL PROBLEMS 

In addition to technical problems in R&D support of command 
and control requirements, there are a number of institutional 
problems - like procurement policies - which never seem to track 
the pace of technology very well. Another problem is coupling the 
R&D that goes on in the Air Force with the operations. In some 
sense, this symposium is a symptom of this. For every man here 
who has to operate something in the Navy, there are about ten people 
in R&D organizations. This makes it very difficult to give the R&D 
community a good picture of what those operators really face in terms 
of day-to-day problems. It makes it very difficult for R&D people to 
convey to the operational people an appreciation of what advanced 
technology can give them. 

A Critical Problem: Lack of Usage Data 

Another major problem is that there is almost no data base on 
how computer systems are used within the Air Force (or elsewhere, 
for that matter). This lack creates several kinds of problems. 
For one thing, because what's going on is not known, R&D decisions 
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are made based on sample sizes of two or one or, fairly often, 
zero. Software is built without really knowing for what it's being 
built and it turns out to be unresponsive. Things are scheduled 
with little idea of the typical distribution of effort and one generally 
falls behind schedtile and compromises to make up for it. As 
Dr. Bergman points out in Chapter 2, one often ends with inappro­
priate hardware assignments and very often tends to get a hardware 
view of the world. 

The Compiler Development Learning Curve 

Figure 4-1 illustrates the compiler development learning 
curve. It shows some relevant data on developing three successive 
FORTRAN compilers!. It shows that Effort 1 took 72 man-months; 
before checking the remaining data, the reader should try to guess 
what Efforts 2 and 3 took with each successive FORTRAN compiler. 
This answer is not, as one man who was supporting R&D in meta­
compilers claimed, that each new development of a compiler on a 
new machine takes about the same amount of time as the original 
job. Figure 4-1 indicates the opposite - that there can be a learning 
curve. There isn't always, necessarily, but there are things that 
can be done about it. This isn't to say that R&D in metacompilers 
should not be supported, but it is to say that many R&D decisions 
are being based on intuition that may not parallel the facts. 

How Do Compilers Spend Their Time? 

Figure 4-2 relates to unresponsive software; it contains some 
data taken by Knuth2 in a study at stanford on the distribution of 
complexity of FORTRAN statements. From the lefthand side of 
Fig. 4-2 the reader should try to guess what percentage of 100 
typical FORTRAN statements were of the simple form A=B, how 
many had two operands on the right-hand side, etc. This should 
be of particular importance to a compiler designer because it would 
tell him how to optimize his compiler - whether it should do simple 
things well or whether it should do complex things well. The data 
in Fig. 4-2 show that 68 percent of these 250, 000 statements were 
of the simple form A=B. When Knuth saw this and some similar 
distributions on the dimensionality of arrays, the length and nesting 
of DO loops, here was his reaction: 

"The author once found ... great significance in the 
fact that a certain complicated method was able to 
translate the statement 

C(I*N+J): =((A+X)*y)+2. 768((L-M)*(-K))/Z 

into only 19 machine instructions compared to the 
21 instructions obtained by a previously published 
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EFFORT#1: 72 MAN-MONTHS 

EFFORT #2: 36 MAN-MONTHS 

EFFORT #3: 14 MAN-MONTHS 

Fig. 4-1. Compiler Development Learning Curve 
(McClure: FORTRAN Compilers, 
Successive Machines) 

method. . . The fact that arithmetic expressions 
usually have an average length of only two operands, 
in practice, would have been a great shock to the 
author at that time:" 
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Thus, evidence indicates that batch compilers generally do 
very simple things and one should really be optimizing batch com­
pilers to do simple things. This could be similarly the case with 
compilers and interpreters for online systems; however, nobody 
has collected the data for those, so it isn't known for sure, and 
people will continue to design compilers with nothing but fallible 
intuition as a guide. 

Software Development Planning 

Figure 4-3 relates to the problem of unrealistic schedules. 
Generally, a software effort is begun with a system analysis and, 
at some point, it is determined what the hardware and the software 
are supposed to do. From there, a schedule for software develop­
ment is made up to interface with schedules for radars, training, 
operational procedures, and everything else. It would be very nice 
at that time to know what fraction of the effort is going to go into 
analysis and design, what fraction into coding and auditing, what 
fraction into program integration and testing. Figure 4-3 shows 
the actual results from some fairly big command and control and 
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COMPLEXITY % 

0 (A= B) 68 

(A= B EBC) 24 

2 (A= B Ell C Ell D) 4 

3 

>3 3 

Fig. 4- 2. Complexity of FORTRAN Statements (Knuth 
Study: 440 Lockheed Programs; 
250, 000 Statements) 

space-type projects3. And, as the reader can see, coding and 
auditing (auditing is basically desk-checking) doesn't take a lot of 
the total effort. The bottom line is Fred Brooks' s estimate for 
OS/3604: 33 percent analysis and design; 17 percent coding and 
auditing; 50 percent testing. Often, people use the analysis and 
coding part of the program to make up the whole schedule. As a 
result, the schedule is written when they are near the end of their 
established schedule and suddenly there is still 50 percent of the 
job left to do. This causes some horrible compromises or it 
causes things to go out in the field inappropriately tested. 

Hardware/Software Tradeoffs 

Figure 4-4 complements what Dr. Bergman mentions about 
Parkinson's Law. As the drive increases toward complete use of 
the speed and memory capacities of hardware, what happens to 
software costs? Do they stay relatively constant or do they start 
increasing slightly? As Fig. 4-4 shows, thEf! escalate asymp­
totically as 100 percent hardware utilization is approached. This 
should be very important to how the initial sizing of hardware is 
done. Typically, however, what people do is size tne job, add about 
15 percent for growth or uncertainty, buy the hardware, and then 
set software personnel to work. That means that they are about at 
the 8~ percent utilization point on the curve andthat means almost 
doubling relative programming costs. Further analysis indicates 
that hardware should be overbought by 50 to 100 percent to minimize 
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SAGE 39% 14% 47% 

NTDS 30 20 50 

GEMINI 36 17 47 

SATURN V 32 24 44 

OS/360 33 17 50 

Fig. 4-3. Computer Program Development Breakdown 
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Fig. 4-4. On-Board Computing: Software Costs 
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total hardware-software costs - if the Parkinsonian tendency to fill 
up the added capacity with marginally useful tasks6 can be avoided. 

Computer/User Tradeoffs 

Figures 4-5, 4-6, and 4-7 concern overconcentration on 
machine aspects. Some time ago an experiment was done to see 
how certain kinds of response characteristics in a time-sharing 
system affected the way people solved problems. In particular, 
the "lock-out" period was varied. Suppose the individual is solving 
a problem at a console. He thinks of something he wants to do. He 
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Fig. 4-5. Sequence of Events for Submitting a 
Trial Solution 
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Fig. 4-6. Problem Solving Efficiency (Theoretical) 

puts some instructions in and he hits the equivalent of the "go" but­
ton. The machine grinds around for a while, and, in a certain 
amount of time called the "turnaround time" returns the completed 
request to the user. At that time, the machine might tell him, "I'm 
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Fig. 4-7. Problem Solving Efficiency (Actual) 
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going to be busy with other things for five minutes, therefore you're 
effectively locked out for this time," or it might give him immediate 
access to the machine for his next request. The resulting delay, if any, 
is called "lockout time. " The time between receiving his request and 
submitting the next one is typically called "think time." Figure 4-5 
illustrates the relationships· between the various time periods. 

For an infinite lockout time, very poor performance would 
be expected, but it's not completely clear that if one went to a zero 
lockout time and gave the user immediate access to the computer, 
he would necessarily do better (Fig. 4-6). As a matter of fact, 
before this experiment was done, there was a hypothesis by Gold7 
at MIT which indicated that immediate access to the computer 
might get people to concentrate on the tactics of problem-solving 
rather than the strategy, and that, by imposing a lockout period, a 
floor might be put under the user's think time and make him think 
more. And, as a matter of fact, that's what happened in this 
example. This was a problem in a geographic area servicing 
problem; 20 graduate students were asked to locate three hospitals 
on a grid map of a city in such a way as to minimize the response 
time to emergencies in that city. And, as the reader can see, 
locking them out for five minutes produced better performance 
than giving them immediate access to the computerB. 

One implication of this is that concentrating on just the hard­
ware aspects of computing systems will not necessarily provide 
the optimal solution for people's performance. And there are a 
lot of tradeoffs being made nowadays - large blocking of computer 
input and output, memory residence limitations, restricted 
debugging options - that increase machine efficiency but get in the 
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user's way of solving problems. These tradeoffs should be looked 
at very carefully. Once again, though, hardly anybody collects 
relevant data. 

A FUNDAMENTAL PROBLEM: CONFLICTING WORLD VIEWS 

Figure 4-8 illustrates the points made by Jim Burrows that 
some features can look good to system designers and not so good 
to users. During the past few years, I have had alternately the 
roles of a graphic system developer, viewer of demonstrations (a 
role which is often the key to continued R&D funding), interactor 
with production users like command and control people, and research 
user of graphic systems. Through an informal survey, I found that 
system developers are not necessarily sensitive to the things that 
users are sensitive to; Fig. 4-8 lists some graphic system character­
istics and associated sensitivities. 

Are displays properly centered and balanced? This is some­
thing that the system developer generally worries a lot about. It 
looks good when someone comes in for a demonstration. A produc­
tion user or research user doesn't care much whether the display 
is centered or not. Similarly, if scrolling is jerky rather than 
smooth, the system developer worries about that; the demonstration 
viewer is impressed if it's smooth; the users don't really care that 

SOME 
GRAPHIC SYSTEM SYSTEM DEMO. PRODUCTION RESEARCH 

SENSITIVITIES DEVELOPERS VIEWERS USERS USERS 

ARE DISPLAYS PROPERLY 
HIGH HIGH LOW-MED LOW CENTERED AND BALANCED? 

IS SCROLLING SMOOTH RATHER HIGH HIGH LOW-MED LOW THAN JERKY? 

DOES PROGRAM HAVE 
LOW-MED HIGH HIGH MED-HIGH "HELP" PAGES? 

IS THERE MORE THAN ONE WAY MED LOW HIGH HIGH TO DO THE SAME THING? 

WILL THE SYSTEM BE LOW-MED LOW HIGH HIGH 
OPERATIONAL TOMORROW? 

ARE PROCEOURES CONSTANT FROM LOW-MED LOW HIGH MED-HIGH WEEK TO WEEK? 

CAN A NEW USER-OPTION BE 
MED-HIGH LOW MED HIGH ADDED BY NEXT WEEK? 

DOES PROGRAM INVOLVE HIGH MED LOW LOW-MED 
SOPHISTICATED ALGORITHMS? 

DOES PROGRAM MEASURE USER LOW-MED LOW LOW LOW 
CHARACTERISTICS? 

Fig. 4-8. Graphic System Characteristics and 
Associated Developer/User Sensitivities 
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much. Does the program have "help" pages - does it tell him what 
to do if he makes a mistake? Or does it try to compensate for the 
mistake? The system developer doesn't need that kind of thing, so 
he doesn't care much about it. It looks good to a demonstration 
viewer because he generally doesn't know that much about the sys­
tem, and it's very useful for production users. Some research 
users get used to the system and learn to compensate and it's not 
quite that important. 

Is there more than one way to do the same thing? Again, this 
is something the system developer occasionally finds useful. The 
demonstration viewer is there only one time and he doesn't really 
appreciate that kind of thing, but in the production or research 
user business, it's often very helpful to have alternative ways of 
specifying the same thing. Sometimes one piece of hardware may 
be down or he may be using his other hand for something else. 

Similarly for these questions: Will the system be operational 
tomorrow? Are procedures constant from week to week? Can a 
new user option be added by next week? The system developer 
isn't that concerned about most of these, particularly if the develop­
ment job is considered a research project. The demonstration 
viewer isn't going to be there tomorrow or next week, so he has 
very low sensitivity to this. But the research and production users 
are very sensitive to these aspects. 

Does the program involve sophisticated algorithms? Does it have 
to get deep into graph theory or list processing to do the job? The sys­
tem developer often has a high sensitivity to this. If he can structure 
the problem so that it does, that's so many more papers that he can 
prepare for conferences and journals. He can also be more impres­
sive when he talks to the demonstration viewer and that makes the 
demonstration viewer more impressed by the system. The users 
really don't care that much. If the job can be done by brute force at a 
little bit more cost in efficiency but maybe a little bit more in under­
standability and program maintainability, they will prefer it that way. 

Last and worst of all is the question - does the program 
measure user characteristics? For some reason or other, most 
system developers that I've seen aren't really concerned that much 
about what the distribution of response times are, what the dis­
tribution of errors are when people use the systems, or how these 
things vary with the kind of users - military, researcher, or 
graduate student. And, unfortunately, the demonstration viewers 
and the users really don't care that much either. 

IS COMPUTER SCIENCE CURRENTLY A SCIENCE? 

The phenomenon of nobody really being that concerned with 
measuring what's going on prevents computer science from 
approaching a true science. My definition of computer science 
paraphrases a letter to Science magazine written by Newell, Perlis, 
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and Simon9: Computer science is the application of scientific method 
to phenomena involving computers. 

Now, what is scientific method? Scientific method first 
involves the systematic collection of observations. To build a new 
interactive system requires making a fairly systematic approach 
to potential users, potential developers, and potential maintainers 
of the system; finding out what characteristics of the new system 
are likely to be most important and less important for each group 
concerned, and gathering as much data as possible on relevant 
similar systems. Next, some hypotheses would be constructed 
saying the following additional tools or additional techniques would 
help in providing this set of system characteristics. Then, critical 
experiments would be designed and performed. A system would be 
built and tried out on people to see whether its usage characteristics 
really did verify the hypotheses. Thus, the resulting data would be 
analyzed and iterated around, possibly generating new hypotheses 
from this further systematic collection of observations. 

However, in computer science R&D, there is usually a very 
nonsystematic collecting of observations. The "early Knuths" 
observed that they had a great deal of complexity in their own 
computing programs, and therefore built compilers that were 
usually optimized around compiling complex expressions. Those 
are the kind of hypotheses that are constructed. There is almost 
no design and performance of critical experiments to validate those 
hypotheses. Too often the next iteration consists of the developer 
saying, "I just heard about the following list-processing technique 
or garbage- collection technique and I'm sure that will make my 
next compiler more efficient, or my next online system more effi­
cient, " and he proceeds to the next R&D project with little more 
than that as a basis. 

The university disciplines that this pattern matches are not 
what are generally considered as science, like physics, or biology. 
What it seems closest to is basket weaving. A basket weaver has a 
very difficult job. He must plan his basket very carefully and he 
puts a lot of loving care into it; he builds it, studies it from various 
angles, discusses it with other basket weavers, and then goes off to 
build another basket. Very rarely though does he go out and sample 
users to find out whether they are interested in baskets with handles 
or with several compartments rather than one compartment, and 
the like. And, unless something changes considerably in computing, 
it will remain a kind of computer basket weaving. 

What Can Be Done to Make Computing a Science? 

The scientific method here provides a good paradigm for 
judging research proposals and research products to see whether, 
indeed, they are based on a systematic collection of observations, 
whether they have a careful experimental design, followed by the 
collection and analysis of data to see whether it actually verifies 
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the hypotheses put forward. I would hope that in years to come, 
as we do try to make computing a science, that more R&D will 
be done this way. 

29 
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5. Scientific Analysis 

Computational Requirements 
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Santa Monica, California 

The areas involved in scientific analysis are so broad that I 
don't really know how to make a thorough survey of them. I thought 
I would start by describing how a particular kind of scientific pro­
gram typically gets done on a computer and try to extrapolate from 
that both to requirements for computer capacity for some classes 
of scientific calculations and to requirements for support to the 
programmer in putting together such computations. 

For at least a large class of scientific calculations, the 
starting point is some set of differential equations or partial 
differential equations that supposedly describe the physical laws 
that govern some system behavior. To find the solution to a prob­
lem, the steps are to make whatever simplifying assumptions one 
can - to get those laws expressed in as simple a form as possible 
- and then to replace the partial derivatives by difference equations. 

One example of the above is a calculation in one-dimensional 
hydrodynamics. The problem is a medium which is uniform in all 
directions but one (Fig. 5-1). Typically, a shockwave or some 
motion is occurring in that direction (X) so that a point along the 
line of motion will tend to move under the influence of some force. 
A shockwave may cause this point to move to the right and then 
back to the left. To find out about that motion, the point for dis­
cussion must be identified and then the motion computed as a 
function of time. To do the computation involves keeping track of 
the velocity with which that point moves, the pressure that is caus­
ing it to move, the internal energy in the little region about the 
point, and either the density or the specific volume of the material 
around that point. Of the basic equations of physics that are 
involved the first one is simply Newton's Law: F =ma. The first 
differential equation in Fig. 5-1 states this law backwards, ma= F. 
The force is the change of pressure with respect to distance, 
derivative of P with respect to x; the mass is essentially the density 
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EQUATION OF MOTION (F =ma) 

au aP 
po at= - ax 

CONSERVATION OF ENERGY 

CONSERVATION OF MATTER 

EQUATION OF STATE 

av au 
po-=­at ax 

p = p (p, E) 

X =COORDINATE OF POINT 

U =VELOCITY OF POINT(= dx) 
dt 

P =PRESSURE 

E = INTERNAL ENERGY 

V=SPECIFICVOLUME (=_!_) 
p 

p =DENSITY 

Fig. 5-1. Example One-Dimensional Hydrodynamics 

in this coordinate system; and the acceleration is the change in 
velocity with respect to time. The equation that describes the con­
servation of energy and one that describes the conservation of matter 
are also used. Then, typically in physical systems, some other 
equation describes the relation of the pressure in the medium to the 
density and the energy in that medium. The simplest form that most 
individuals learned in college physics is Charles's Law or Boyle's 
Law or something like that. For the more elaborate systems, 
physicists in laboratories seek the equations of state for particular 
materials under particular conditions and determine empirical 
formulas to represent them. 

Solving this set of differential equations requires turning them 
into difference equations; this is done by splitting the material into 
regions or zones and considering the properties inside any particu­
lar zone to be constant (or at least have a preselected variation 
about some average value). In Fig. 5-2, small arrows mark the 
boundaries of the zones. If the zones are numbered from left to 
right - one, two, three, and so forth - zone J is being discussed 
here. One of the first problems in making a difference equation 
out of this is where the values of pressure, velocity, etc., should 
be considered to apply. I've shown in this case that pressure is 
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ZONING 

~t~ 
BOUNDARYJ-1 ZONEJ BOUNDARYJ 

U(J-1) P(J) UIJI 
X(J-1) ZM(J) X(J) 

EQUATION OF MOTION: au au 
po at = - a;;-
6U 6P 

6t po6x 

uN EW - uOLD - p J+1 - p J 6t 
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(Pn _ pn I 
un+Y, = un-Y, - J+1 J (6tn+1 + 6tn) 

J J ZMJ+ 1 + ZMJ 

Fig. 5-2. One Dimensional Hydrodynamics Typical 
Difference Equations 
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representing a value at the center of a zone and have also shown 
the mass (representing the density) to be carried at the center of 
the zone. The coordinates X(J) and X(J-1) are the coordinates of 
the boundary of the Jth zone, and the values of velocity U(J) and 
U(J-1) are measured at the boundary of the zone rather than the 
center of the zone. This suggests, right away, the first problem 
in getting from the differential equation to the difference equation. 
That is, there are a number of options on how to make the selec­
tion of points at which the values of pressure, velocity, etc., are 
assumed to apply. 

The equation of motion in Fig. 5-2 is converted from a 
differential equation to a difference equation in a series of steps. 
In the first step, the derivative symbols are replaced by 6.'s and 
the Po is moved to the other side of the equation. Each of the 6.' s 
supposedly represents the difference of value between two points. 
Now in the 6.U/6.t, the 6. stands for change of U in time, so it is 
some value of U at a new time minus a value of U at an old time. 
The 6.P stands for a change in pressure for some 6.x, so that it is 
the Pat some zone minus the P at some other zone. I have elected 
to use P(J+l) - P(J). Typically in the figure, the subscripts repre­
sent the X position of zone boundaries and superscripts represent 
time. The difference equation finally takes a form that says the 
U(J) at some new time n+l/2 is equal to U(J) at time n-1/2, minus 
some terms that involve 6.t's at various times. This is the form 
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in which the equation is typically used in actual computations. It 
seems somewhat odd to write the difference equation in this form. 
Why wasn't U employed at time n+l and U at time n, rather than 
U at time n+l/2 and U at time n-1/2? The answer is that the 
method won't work done that way. If this appears to be a black 
art, that's what it is. This sort of situation has always been 
rather embarrassing to applied mathematicians. In constructing 
a difference equation to represent a differential equation, there 
are two basic problems to worry about. One is stability. That 
difference equation has to be such that as one steps through time 
using that equation the solution doesn't wander off from the solution 
for the differential equation. The other problem is one of con­
vergence. If the ei.t is made smaller and smaller and the problem 
is rerun, answers should get closer and closer to the differential 
equation. 

There are nice mathematical theorems about convergence 
and stability, but when it comes down to writing differencing 
schemes that will be stable and will converge, I am afraid that 
the mathematical theorems haven't been much help. The physicists 
have discovered the successful forms for differencing schemes by 
trial and error (I think they call it "physical intuition"). 

The process reviewed here for one simple equation in 
Fig. 5-2 has been repeated countless times for countless versions 
of physical problems. No neat, simple system has emerged that 
works in all cases. What may be a convergent scheme in one set 
of circumstances will tend to be a divergent in another set of 
circumstances. Schemes known to be unconditionally convergent 
turn out to be very poor computationally (i.e., require inordinate 
amounts of computer time or give poor accuracy). Experimenta­
tion with differencing schemes will be a continuing area for com­
puter application, one where interactive capabilities can be of 
great assistance. 

Now, the next consideration is the amount of computation 
required to solve the equations once a suitable difference scheme 
is found. That difference equation in Fig. 5-2 tells what must be 
done to get U at the next time, given the value at the preceding 
time. One pressure must be subtracted from another, which is 
one mathematical operation. Two ti.' s must be added, which is 
another one. Next, there is the addition of two zone masses, a 
multiplication and a division, and then another subtraction. So a 
half a dozen mathematical operations are required to do that one 
step for that one equation. 

What does a full calculation of that type mean in terms of 
computer requirements? In the total set of equations in Fig. 5-1 
were five variables in the system that would have to be updated 
from one time step to the next. There was position, velocity, 
pressure, energy, and density (see Fig. 5-3). What has been 
labeled Vin Fig. 5-3 is really the reciprocal of the density, 
usually called specific volume. Typically, the number of zones 
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NR. VARIABLES= 5(X, U, P, E, V) 

NR. ZONES = 1000 

OPERATIONS/ZONE/TIME STEP"' 30 

NR. TIME STEPS"' 1000 

TOTAL STORAGE 5000 WORDS 

TOTAL OPERATIONS 30 MILLION 

Fig. 5-3. Computer Requirements One-Dimensional 
Hydrodynamics 
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required to track a shockwave through a medium is on the order 
of a thousand. The equation for moving one variable in one zone 
from one time step to the next requires half a dozen operations. 
So one may assume that 30 or so operations will be necessary to 
get all five variables at one zone point updated from one point in 
time to the next. The number of time steps required to step from 
the initial time to the end of the time of interest is determined by 
a few hidden rules. For example, in this kind of problem there is 
a so-called Courant condition that says the time step has to be 
small enough that the sound waves cannot travel more than one 
zone in one time step. This means that it will require at least 
1000 time steps for a wave to get all the way across the thousand 
zones. So this might be a problem of interest; five variables, 
1000 zones, 30 operations per zone per time step, 1000 time 
steps. A problem of this size takes a reasonably nominal amount 
of storage - 5000 words - to store these five variables for each of 
the thousand zones. There are 1000 zones - 30 operations per 
time step - or 30, 000 operations and there are 1000 time steps, 
so 30 million operations are needed to get through the problem. 
Again, not a terribly large number for the faster machines avail­
able today. A machine such as the CDC 6600, for example, prob­
ably does two or three million instructions per second. Any 
computer program includes a number of things besides arithmetic 
operations (for example, fetches from and stores to memory, 
program branching, etc. ) so that the two or three million instruc­
tions per second might correspond to perhaps one million arith­
metic operations per second. Thus on a machine of the 6600 class 
approximately 30 seconds or so are required for this type of 
problem. 

Now, what happens if one more space dimension is added to 
the hydrodynamics problem and the same sort of computation is 
done? The extrapolation is made as simple as possible. If there 
are two dimensions, the problem variables will obviously have to 
include both an X and a Y instead of just an X. A velocity is 
needed in the X and Y directions instead of just in an X direction, 
so at least seven problem variables exist instead of five in the 
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two dimensional case. There will be 1000 zones in the X dil'.ection 
and 1000 zones in the Y direction, giving a total of a million zones. 

The following is a simple estimate of the number of opera­
tions involved. If the same sorts of difference equations could be 
used as in the one-dimensional case, then whatever is done in X 
direction is also done in the Y direction, so there will be twice as 
many to do at each point. The same number of steps will be done. 

Figure 5-4 summarizes the situation for the two dimensional 
case, given the above assumptions. Seven million words of storage 
and 60 billion arithmetic operations now are needed, or about 
16 hours on a machine that could do a million operations per second. 
This is a little far from reality. Typically, two-dimensional prob­
lems use more like 100 zones in each direction, rather than 1000. 
Such problems are indeed run for practical purposes these days. 
Even with 100 zones in each direction, they usually require several 
tens of hours on a 6000 class machine, because the actual differ­
ence equations tend to be much more complex than the ones demon­
strated above and to require many more operations per time step. 

It appears that a two-dimensional hydrodynamics problem 
pretty well saturates the largest of the machines generally avail­
able today. Yet, from the standpoint of the physics, this type of 
problem is only the threshold of all sorts of classes of computations 
one would like to do. For example, back in the one-dimensional 
case - if the internal energy gets high enough in some zones, 
radiation appears. One has to worry about the redistribution of 
energy by radiation diffusion or, if the temperature gets even 
higher, one has to worry about radiation transport. When equa­
tions for radiation transport are put into the one-dimensional 
hydrodynamics problem, it essentially becomes as big as a two­
dimensional problem with hydrodynamics only. 

Ten years ago, when the fastest machine was the IBM 7094 
Model 2, a one-dimensional hydrodynamics was just the biggest 
problem anyone did. Now the current generation of machines, 
the CDC 6600 and that class, have made two-dimensional hydro­
dynamic problems standard. Such problems are done in production 
form. The next set of machines now coming along, the IBM 195 
and the CDC 7600, are not powerful enough to allow one to take the 
next step - to do three-dimensional hydrodynamics problems, for 
example. That step has a multiplying factor both in storage and 
in arithmetic operations similar to the step from one-dimension to 
two. A mere factor of five in computer speed isn't enough. 

There are a number of interesting two-dimensional hydro­
dynamics problems that can't be done in a practical way on current 
computer equipment; for example, two-dimensional hydrodynamics 
involving radiation transport or two-dimensional hydrodynamics 
with chemical kinetics. There are many classes of physical prob­
lems of this sort which can't yet be attacked simply because of 
machine size although the methods of computer solution are known 
and understood. 
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ONE DIMENSION TWO DIMENSIONS 

NR. VARIABLES 5 7 

NR. ZONES 1000 106 

OPS/ZONE/TIME STEP 30 60 

NR. TIME STEPS 1000 1000 

TOTAL STORAGE 5000 WORDS 7 MILLION WORDS 

TOTAL OPERATIONS 30 MILLION 60 Bl LLION 

(30 SECONDS ON (-16 HOU RS ON 

1 MOPS MACHINE) 1 MOPS MACHINE) 

Fig. 5-4. Computer Requirements Extension 
to Two Dimensions 
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There is a question of how big a computation is worth trying 
to do on a particular problem. For example, following a missile 
flight can be done at different levels of detail with different compu­
tational requirements as indicated in Fig. 5-5. The missile can 
be considered as a point mass and Newton's Laws applied and that 
equation integrated with some very small number of operations, 
perhaps 104 or so. To be more elaborate, a six-degrees-of­
freedom calculation can be performed. This kind of thing is done 
on the more detailed trajectory calculations these days where 
drag effects in the atmosphere can be considered. One may even 
put in such things as variations of gravity with position, variation 
of atmosphere with position, and rotating earth (if an earth reentry 
calculation is being done). Such calculations typically may require 
on the order of 107 total operations. Here again, on the machine 
that can do close to a million operations per second that turns out 
to be not much of a problem. One could conceive of trying to do 
such a problem in three-dimensional hydrodynamics. To do even 
one position in space in three-dimensional. hydrodynamics would 
require on the order of 1012 operations. To track an entire 
trajectory would require a few orders of magnitude added on the 
top. The problem has gone from one that is easily tractable on a 
current machine to one for which another generation or two of 
computers will be needed to even hope to begin. Is it worth even 
considering such calculations? Why should one be interested? 
Certainly a six-degree-to-the-freedom calculation, so far as the 
trajectory behavior is concerned, gives one essentially everything 
he wants to know. 
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THREE DEGREE OF FREEDOM 

SIX DEGREE OF FREEDOM 

THREE DIMENSIONAL 

HYDRODYNAMICS 

104 OPERATIONS 

107 OPERATIONS 

1012 OPERATIONS 

Fig. 5-5. Spectrum of Computation Sizes Example: 
Missile Flight 

There are several reasons for wanting to do calculations of 
the larger classes that are beyond the sizes that can currently be 
done. 

One reason is that for any detailed data about what's going 
on the calculation is probably cheaper than any experiment. A 
two-dimensional hydrodynamics calculation might take 16 hours 
or so on a very fast machine. That might cost $1000 an hour or 
so to run and that's $16, 000 for one pseudoexperiment on that 
machine. For that price, there are very few real life experiments 
that allow taking detailed measurements about hydrodynamic flow 
in a system environment. 

Another reason is that calculations do provide more data 
than an experiment. To do some experiment to find flow patterns 
about missiles or to do a detonation and try to find the way that 
the explosive expands, the instrumentation problem is extremely 
difficult and only a very few points can be instrumented and usually 
not enough points to form a complete picture of what is going on. 
One of the main things a computation may do is give enough 
understanding of what the data points really mean by providing 

• CHEAPER THAN EXPERIMENTS 

• PROVIDE MORE DATA THAN 

EXPERIMENTS 

• NEEDED TO INTERPRET EXPERIMENTS 

• NEEDED WHERE EXPERIMENTS 

INFEASIBLE 

Fig. 5-6. Reasons for Large-Scale Computations 
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computational data points throughout the regions where experimental 
points weren't obtained. 

The third point is that one needs rather elaborate computa­
tions in many cases to interpret experiments correctly. I guess 
my favorite whipping boy in this area is air chemistry. Typically, 
in setting up an experiment one uses some sort of evacuation 
chamber, lets the right elements into the chamber, and tries to 
determine by observation the rate at which the reaction he is 
interested in occurs in that chamber. He does this by trying to 
design the experiment very carefully, so that the only reaction 
that takes place is the one that he is interested in. The literature 
over the past many years is full of instances where somebody 
came out with a cross-section for recombination of o2 or some­
thing like this and three years later someone repeated the experi­
ment and said, "No, the cross-section is wrong by two orders of 
magnitude because the 02 reaction was dominated by an 04 reac­
tion." To interpret an experiment of that type correctly, one 
needs to have a mathematical representation which does not assume 
out of existence all of the effects except the one the experimenter 
is looking for, but instead allows all of the presumed second-order 
effects to be represented and computed so that he can get a real 
feel for whether they are affecting the experiment. There are 
cases, of course, where experiments are absolutely infeasible. 
One that plagued the nuclear people for some time back, when it 
was appropriate to be testing, was to get detailed measurements 
very early inside of a fireball where the environment is almost 
impossible for any instrumentation. Such situations may be forced 
to rely on computer data. Then the problem is to have the com­
putation realistic enough so that one can use subsidiary experiments 
and an elaborate computation to allow one to tie the specific physical 
behavior to very indirect experimental observations. 

Some of the applications areas where there would be definite 
value in doing some of the very large-scale computations are: 

• MISSILE FLIGHT SNAPSHOTS 

• RE-ENTRY WAKE PHYSICS 

• CONVENTIONAL DETONATION 

HYDRODYNAMICS 

• INSTRUMENTATION PHYSICS 

• PHASED ARRAY RADAR RADIATION 

FIELDS 

• UNDERWATER SIGNAL PROPAGATION 

Fig. 5-7. Application Areas Needing Large-Scale 
Computations 
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I think that in each of these areas there is some experimental 
data, there is a general conceptual understanding of what goes on 
in the area, but there is little in the way of detailed modeling that 
allows one to really understand, in intimate detail, what is happen­
ing physically. The applications areas listed are ones in which 
there were fairly definite disciplines for doing calculations before 
the advent of computers. Many techniques for doing the large­
scale hydrodynamics and radiation transport calculations did grow 
up with the nuclear community because computers came along 
about the same time the problem came along. There are many, 
many areas where classical methods of hydrodynamics or of 
electromagnetic series are used because the disciplines grew up 
before the age of computers. A set of techniques which were as 
good as one could get in that environment also grew up. Computers 
are only now beginning to be applied in those areas. I think there 
will be a gradual awakening to the fact that careful numerical 
solutions can frequently eliminate the need for the gross simplify­
ing assumptions so often required to obtain classical solutions. 
So I think the next decade will continue to see a recognition of 
the need for work on very-large-scale computations in a widening 
arena of applications areas. 

I have mostly considered the requirements for very, very 
large computations. However, I began with a sample of a rather 
small computation and even at that level there undoubtedly will be 
continuing requirements for further repetitions of such computa­
tions with different environments, with different materials, with 
different equations to state, and so forth. Throughout the spectrum 
there are a certain number of requirements associated with the 
use of computers in the area of interactive use for general com­
putational purposes. Some of these requirements are shown in 
Fig. 5-8. 

I think most have found it very nice to be able to develop 
small code modules on a time-share system and do an initial 
experimentation on such a system. I think that over the past 
several years, most have found that the next step is always a 
terrible one. When one gets a few pieces of code put together on 
a time-share system, understands how they work, and wants to 
build his big system, he usually is stuck with the problem that he 
can't even extract the code from the system, get it punched out on 
a deck, take it over to a big machine, and put it in without several 
administrative steps in between. Ideally, one would like to debug 
his small code modules online, put together a sufficient library 
management system, and edit these small code modules into a 
much larger package of code. At that point, he probably stops 
caring very much about whether he can operate interactively or 
not. He is willing to submit the problem to be run on the batch 
basis to a large machine and wait for his outputs. 

The problems of handling outputs can become quite difficult. 
One thing that kept two-dimensional hydrodynamics codes from 
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working for a number of years was that it was impossible to look 
at the data and debug the code. If one tried to print out the values 
- pressure, energy, density, and so forth - for every zone on a 
100 x 100 grid, and then sat there looking at those numbers and 
trying to figure out what happened during the machine run, he just 
couldn't quite make it. The full debugging of such programs 
waited until there were enough plot routines that, at every step in 
the program where he wanted to, one could look at two-dimensional 
contour plots of the pressure and energy and density and things 
like that. The plots ended being the chief debugging aids. The 
two-dimensional contour plots took about as much machine time 
as the computation itself, but the time turned out to be well spent 
from the standpoint of getting codes debugged and useful results 
generated. 

Once one has performed some significant number of large­
scale computations, an adequate storage and retrieval system for 
the results, preferably in graphical display form, can reduce the 
need for additional large-scale computations. At any one time, 
an individual usually is interested only in a few pieces of informa­
tion that result from some large-scale calculation. However, at 
a later date he or others may be interested in other results from 
the same calculation. A suitable library of stored results and 
convenient retrieval methods provide such data without the require­
ment for rerun. 

I have discussed large-scale computations at length and, in 
the process, have perhaps slighted the interactive use of com­
puters for smaller scale scientific work. While the interactive 
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solution of small problems is an important area, I have tried to 
emphasize where I believe the priorities should be. 



6. Process Control 

System Requirements 

Peter Swerling 
Technology Service Corporation 

Santa Monica, California 

The focus of this chapter is somewhat different from that 
of many of the others, nevertheless it is no less significant in 
terms of applications of multi-access interactive computing tech­
nology for the 1970s. Certainly, the kinds of applications pre­
sented here do not take a hind seat insofar as the requirements 
placed on computer technology in this period are concerned. 

Basically, the subject matter of this chapter differs in that 
it discusses interactive systems involving machine-machine 
interactions. In other words, the users are not necessarily human 
beings, but other machines or, perhaps, even elements or sub­
elements of machines. For example, the users may be a multi­
plicity of sensing devices such as radars, or they may be missiles 
which are being guided under control of a computer, or they may 
be subelements of individual sensors. It's also possible for the 
users to be thought of as functions, rather than as specific hard­
ware items - for example, different sensor functions such as 
search, track, guidance of an interceptor, or discrimination. 

Now, despite this somewhat different focus, it will be 
apparent from the examples that the systems presented are 
definitely full-fledged, multi-access, interactive systems. They 
preserve all of the essential features of such systems. The users, 
here considered in the sense just mentioned, compete for computer 
time. In fact, a major problem in the use of such systems, which 
is already recognized today, is the allocation, or management, of 
computer resources. They preserve the feature of interactivity. 
For example, the computer may process information input from a 
large multiplicity of sensors or sensor elements and also control 
the subsequent user activity. In addition, there is often the 
necessity to respond to unpredictable stimuli or at least not wholly 
predictable stimuli. 

An example of the specific applications now becoming 
increasingly important is the ballistic missile defense battle 
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management problem. A very closely related problem is that of 
the ground-to-air or sea-to-air defenses against attacking forces 
which are not ballistic missiles but which are perhaps aircraft or 
shorter-range missiles. These systems, as they are currently 
developing, embody a multiplicity of sensors, mostly radars in 
this case; a multiplicity of weapons to be committed against the 
attacking force; and one or more· computers of different levels, 
perhaps ranging from very specialized hard-wired computers to 
big general-purpose computers. The computers process the 
information from the sensors and, in turn, control not only the 
commitment of weapons to the attack force and the guidance of 
those weapons but also what the sensors do from moment to 
moment·- that is, where the radars should be pointing their beams, 
what type of wave forms they should be transmitting, and so forth. 

Incidentally, the above is not meant to convey a Strangelovian 
picture of the national fate being controlled by machines talking to 
other machines. Obviously, the human being would intervene at 
least in the decision of whether the battle was going to start, but 
the events are taking place at a sufficiently rapid rate that most of 
the functions mentioned have to be automated and conducted under 
the control of a computer or a set of computers. 

The same type of machine-machine interactive and multiple 
access system may have nonmilitary applications. The control of 
traffic lights in a city is one example. The sensors or "users," 
as far as the input sensing elements would be concerned, might 
be elements which sense the traffic flow over given streets. The 
computer would process these and decide according to some 
decision algorithm how to control the traffic lights. 

Another application, which will be emphasized later, is the 
satellite communications problem; that is, the use of satellites as 
communications relays, especially with regard to the so-called 
multi-access problem. That problem, of course, is squarely 
within the domain of the classical c3, or command-control­
communications problems in the military, but also has applications 
to nonmilitary government and commercial systems. 

A number of these cases or specific examples may involve 
multi-access systems in which the access actually can be time­
sequenced in a programmable manner so that they would involve 
what might be called time-programmable multi-access rather than 
random-time multi-access. On the other hand, when the system 
has to respond and allocate computer resources in a manner which 
is not completely predictable, it is a true random-time multi-access 
kind of case. 

So far, some of the systems applications have been described. 
Another major point is that there is another level of multi-access, 
interactive systems which actually involve techniques applicable 
to the operation of just a single sensor. I think one of the great 
technological developments in the next 10 or 15 years, in the 
improvement of performance of individual sensors, will involve 
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the application of this kind of technology. As the reader will see, 
it is really regarding an individual sensor as a multi-access 
system of users. 

Radar is an example. In the last 15 or so years, one of the 
big technical breakthroughs in the design of radar systems was 
the electronically scanned antenna. Electronically scanned aritenna 
structures consist not of a typical dish but of an array of elements, 
each one of which is, at least potentially, separately excited or 
controlled. Up to thj.s point, the array-of-elements structure in 
typical radars has been used to provide inertialess scanning; that 
is, very rapid switching of the radar beam from one point to 
another in space. But actually this represents only a partial use 
of the potentialities of that device. The full potentialities of that 
device will not be used until one implements a radar in which 
every single element in the array is regarded as a separate chan­
nel for incoming information with a separate receiver behind it 
and every single element is regarded as something which can be 
separately excited and whose activity can be separately controlled. 
Assuming the implementation problems can be solved, very great 
performance improvements can be achieved, at least in principle. 
These improvements can be achieved by going to what I like to 
call the "fully cybernetic radar"; that is, a radar which is an 
array structure of elements in which each element is regarded as 
a separate receiving channel for signals and each element is 
regarded as having an activity which can be separately controlled. 

In this kind of case, there is an individual sensor in which 
every antenna element is a user so to speak, every individual 
antenna element separately puts signals into a computer and is 
separately controlled by a computer. The number of elements 
typically used in large radars ranges from hundreds up to thou­
sands, so, in this case, there is a system under the control of a 
computer in which there are thousands of users. Even worse, 
the rate at which such users have to be programmed and controlled 
is very, very rapid. In other words, one may be talking about 
different excitations of the elements in periods of the order of 
microseconds and so these are not only very, very many users, 
but there must be very, very rapid control. In addition to the 
antenna elements, other aspects of the radar can also be regarded 
as degrees of freedom and, hence, as users of the multi-access 
system; for example, the specific waveforms which are trans­
mitted. Generally, radars increasingly use not one individual 
transmitted waveform but so-called suites or collections of wave­
forms. These also have to be adaptively controlled in response 
to the specific environment in which the radar is operating at the 
moment, so those degrees of freedom would multiply the degrees 
of freedom involved in the individual antenna elements. In addi­
tion, sometimes it's desired to process the information in very 
many ways simultaneously. As many as a hundred or a thousand 
different simultaneous ways of processing information can be 
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easily a practical case. The simplest example of this would be in 
forming multiple beams simultaneously. Multiple beams formed 
simultaneously in a sensor on the receive end of the surveillance 
link amount essentially to a large number of different simultaneous 
ways of processing input data. 

Another very important point in conjunction with systems of 
this type is the adaptivity involved. What is envisioned is the con­
trol of the system adaptively - the sensing of the environment and 
the illumination of different antenna elements or the transmission 
of different waveforms adapted to the sensed environment at any 
given instant. In the next decade or so, I expect this to be a big 
technological breakthrough in the performance of sensors. To 
give some numbers which I think are reasonable, a 20-30 DB 
improvement can be expected in the sensitivity of such radars 
operating in cluttered environments, difficult environments in 
which radars are now being demanded to operate. There is also 
an interaction with certain equipment implementation problems in 
that sometimes one of the main problems in achieving the theoreti­
cally attainable performance is simply the difficulty of maintaining 
the proper tolerances; for example, the actual element excitations 
are never exactly as desired. 

The system described above is capable of maintaining toler­
ances because it has a virtual closed-loop control of every degree 
of freedom in the set. Whether these degrees of freedom repre­
sent antenna elements or waveforms or what have you, this 
closed-loop control is an approach to maintaining tolerances that 
could not otherwise be achieved. 

Now, I shall return in somewhat more detail to the question 
of satellite communication relays, since this provides another 
very good example of cases of this type. The multi-access and 
interactive aspects of satellite communications systems actually 
exist on two levels. One level might be called the systems level: 
obviously the servicing of a large number of ground users that 
have access to an individual satellite communication relay is a 
classic kind of multi-access problem. In fact, the term multi­
access is also used in the satellite communications community, 
and it specifically means the ability to service ground terminals 
which, in general, may have a large spectrum of different sizes, 
radiated powers, and required data rates. It's very well known 
within the field that it is one of the main problems, if not the main 
problem, in the implementation of satellite communication relays 
when the relay is intended to service a user population of this kind. 
This is especially true, for example, in military tactical com­
munications satellites, perhaps in future air traffic control satel­
lites, and so forth. 

The techniques which until now have been explored to deal 
with the multi-access problem in this context can be described as 
very primitive compared with what we may expect in the future. 
Many of the technologies which may be applied in the future to 
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improve the system multi-access may involve the particular 
element multi-access level just described - the application of 
some of these sophisticated techniques to the antenna and associ­
ated processing and computing devices carried aboard the satel­
lite. As a matter of fact, I think that communication satellite 
relays in the future will evolve toward what might be called the 
great-switchboard-in-the-sky. One key to the application of such 
a concept is that coverage requirements do not really limit the 
size of the satellite antenna nor its gain. Up to the present time, 
it usually is thought that, for example, if a communication system 
may exist anywhere on the surface of the earth, the satellite beam 
has to cover the whole earth to cover all of the intended users. 
This is by no means necessary and would represent an unnecessary 
limitation on the size of the satellite antennas and their gain. In 
fact, it recently has become recognized that people are beginning 
to develop satellite communications relays which have very much 
narrower and higher gain beams than those which will cover the 
whole earth. Coverage problems can be solved either by imple­
menting multiple simultaneous beams or by implementing beam 
steering and switching algorithms; these latter techniques happen 
to fit in quite well with certain other techniques which have been 
proposed for the multi-access problem for different reasons, 
specifically time-division multiple access. 

The actual implementation of these techniques would have a 
variety of effects on the effectiveness of a satellite communication 
relay. The simplest is that it allows for bigger satellite antennas 
and hence a system with either larger capacity or ability to service 
smaller ground users. However, it also provides an entire addi­
tional dimension, or two (angular) dimensions to the multi-access 
problem. Hitherto, systems of this type have regarded the attack 
on the multi-access problem to consist mainly of modulation tech­
niques; that is, either frequency division or time division or 
orthogonal codes or something of this sort. The thing contemplated 
here is to add the spatial directivity dimension to multi-access and 
this can, in what I regard as practical implementation, easily add 
another multiplicity of a hundred or a thousand additional channels. 

Another effect is that the antenna techniques in which each 
individual element is regarded as a separate user of a multi­
access computer system enables the use of certain techniques 
such as side-lobe signal cancellation which, in the context just 
mentioned, involves improved channel isolation for the spatial 
directivity channels. In the military context, this would translate 
directly. into improved tolerance to jamming, for example, reduc­
tion ofvulnerability to jamming. 

So these are some of the kinds of improvements in both 
surveillance systems and communications systems which I would 
expect to become possible by application of this concept of an 
individual sensor consisting of a computer-controlled collection 
of many different users. If one looks at each degree of freedom 
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of such a system as a user, he can easily get into thousands or 
tens of thousands of users. The saving grace, of course, is that 
the types of things which users are expected to do may be quite a 
bit more restricted than in some of the other multi-access sys­
tems which have been presented. 

There are some problems or challenges in the actual imple­
mentation of such systems. If they are to be implemented for 
sensors with very large numbers of elements - in the thousands -
very great requirements will be imposed on computer size and 
speed. Again, the bandwidth of these systems as well as the 
numbers of degrees of freedom must be very large. In addition 
to that, very great challenges are going to be imposed in the 
development of what might be called the decision and control 
algorithms involved. Algorithms here refer to the basic rules by 
which the decisions are reached as to what the different users will 
be doing at the next moment. There is a very strong relation 
between the problems of computer speed and size and capacity and 
the problem of developing the proper decision and control algo­
rithms. There are cases in which the limitation on computer 
capacity imposes the basic problem on algorithm development. 
In other words, the development of the algorithms is primarily 
concerned with the problems raised by computer capacity which 
is limited in relation to the thing that you are trying to achieve. 
There are other cases in which actually there's very ample com­
puter capacity. As the jargon goes, the computer resources are 
ample, but some other kind of resource is limited, such as radiated 
power; in that situation, the algorithm problem is the development 
of the proper methods for using the ample computer capacity in 
such a way as to optimize the use of some other resource which is 
limited. 

In conclusion, the type of problems described here should 
be regarded as actual typical examples of multi-access interactive 
computing systems and I predict that the next few decades will 
bring about some of the most important improvements in both 
sensor and communications systems, based on applications of 
adaptive, interactive, multi-access computers in the contexts 
described. 
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Lt. Commander Thomas Knepel! 
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The state of modern interactive data processing often 
reminds me of one industrial engineer who defined the systems 
approach in the following four easy steps: (1) cut to shape; 
(2) hammer to fit; (3) file to smooth, and (4) draw blueprint. 

As a representative user of both business and command­
and-control data processing, there is a temptation to challenge 
the industry for hardware and software improvements. However, 
the main constraint to achieving the potentials of data processing 
is that the system capabilities which exist today are not being 
used. 

I do acknowledge the need for improvements in hardware, 
software, and standards, but for the most part that need exists 
because the economics of data processing must be improved and 
not because design capabilities are lacking. For example, 
today's data communication systems are effective, but it fa not 
yet cost-effective to establish communication networks for all the 
data which may be appropriate to process. Good time-sharing 
systems have finally arrived, but effective usage is limited by 
high cost. Interactive programming can greatly improve program 
development and maintenance, for those who can afford the price. 
When will it become economically feasible to have 20 billion 
characters of online storage for just the basic data needed for an 
integrated management system? In software, there are now data 
base management systems, capable operating systems, problem­
oriented languages, and more and more software developments, 
but the operating overhead costs dearly. 

This is not to deny that standards and technological advances 
are needed in hardware and software, but the emphasis and thrust 
of such developments should be to reduce the cost of today's capa­
bilities, at least until we learn how to use the capabilities which 
exist now. Others have used the example of Detroit to describe 
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new computer systems. The analogy is the car with 300 horsepower 
capable of doing 120 miles per hour, although the roads and the 
laws preclude driving that fast. High-powered systems are used 
to keep track of ships at sea, planes on decks, or spare parts in 
supply bins, just as was done with older card-walloping systems, 
and sometimes with the same programs. Now, with interactive 
systems, the ability exists to make the same mistakes faster. 
The real challenge in data processing is to provide a management 
or a command and control system, rather than an information 
system, and this challenge reveals the deficiencies of systems 
analysis. 

As a symptom of the state of the art, I am constantly dis­
appointed that our people cannot evaluate system capacity for 
multiprogramming computers prior to installation. Simulation 
packages are available and are being used, but try asking analysts 
to compare alternative systems with significant differences, where 
design tradeoffs result in radically different optimization. One 
finds that simulation criteria have bias toward some specific sys­
tem design. If the study of multiprogramming system capacity is 
an elusive science for the field-level analyst, consider the task of 
analyzing multiprocessors, or arrays of processors, or different 
levels of memory hierarchy. Here we are with powerful system 
capabilities, but we don't know how much we need. And after the 
system is installed, we don't make use of the capabilities we 
bought. 

If we may leave the subject of systems design, let us look 
at the plight of the systems analysts during the design of computer 
applications which, after all, is the work for which the system 
was bought. At one time, the stumbling block for a successful 
system was the implementation stage-programming, integration, 
and testing. Those problems still exist, but tools of the trade 
have been improved. Compilers are better, programming stand­
ards can ensure program modularity, data base management 
systems can handle one of the most common causes of system 
failure, and automated flowcharts and decision-table coding are 
available. Computer assistance is appropriate for the stages 
before implementation, those stages of analysis and design. 

In today's environment, a good system application exists if 
the customer can be provided with accurate and timely status of 
things. If system designers are clever, managers can even be 
given status on a selective basis for "management by exception." 
Today, a successful system application exists if operations can 
be scheduled on a day-to-day basis, like reconnaissance missions 
or preventive maintenance. And a very successful, but rare, 
application exists if the system can be used to feed status criteria 
into the scheduling system. These are all worthwhile accomplish­
ments. But it is within our technical capabilities and, in fact, we 
have been promising those who invest in our systems that we will 
do more. Besides scheduling and updating status, we can and 
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should provide greater assistance for the planning and evaluation 
function of management and command. The difficulties, however, 
are the great number of variables and criteria inherent in planning 
and evaluation. The solution has been to simplify the problem 
with assumptions and functions which are sophisticated rules of 
thumb. In this solution, we do no more than imitate the manager's 
mental short-cuts without the benefit of his beautiful sense of 
intuition. 

Promising a total, integrated system implies that planning 
and evaluation applications will be based upon intelligence from 
the collected data of all variables. The constraint for achieving 
this promise is the systems analyst who is trying to assimilate, 
integrate, and use this data within the limits of the machine. 
This analyst needs better tools than he has today. 

The final deficiency of systems analysis which I want to 
discuss is the lack of criteria for evaluating applications. We do 
not have the tools to determine the worth of the information the 
system may provide. Unless funds become unlimited, we will 
always have to choose among alternative applications for systems. 
By what criteria of worth will we make that choice? Even more 
basic, what is the worth of information which determines the 
choice of investment for a computer system rather than for another 
ship or aircraft? Determining the value of computer applications 
should be one of the basic roles of the systems analyst. But we 
have not gone beyond that stage of relating the value of our systems 
to the number of clerks that can be replaced or the response time 
in milliseconds. 

If these are the problems of systems analysis for data 
processing, what are the requirements to alleviate the deficiencies? 
Certainly, mechanical assistance is an attainable goal for relating 
user requirements to system design. This assistance should run 
the gamut from analyzing data elements through system network 
analysis of timing and data base structures to specifying hardware, 
and application programs. We also need to improve the body of 
knowledge of management systems. To start with, basic laws of 
decision theory, management processes, and their utility must be 
formulated and applied. Then the common characteristics of sys­
tem applications must be described so that they can be worked 
with theoretically rather than instruction by instruction or bit 
manipulation. Finally, the functions of data processing systems 
must be related to the basic laws describing computer applications. 
If we understood applications as well as we do automata theory 
and information science, then computer systems analysis would 
be a science rather than an art. 

To summarize, the biggest challenge for data processing in 
general is to draw the blueprint first. Today, the systems analyst 
cannot specify the system we need, he cannot comprehend all the 
complexities of the applications for which the system is needed, 
and he cannot even determine if it is worth the attempt to implement 
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those applications. The cause for these deficiencies is that we 
just do not understand the nature of the beast called management 
information or command and control systems. The potential for 
using today's technology is mind boggling, but, so far, the only 
mind to be boggled is the system analyst's. 



8. Requirements for an Interactive 
Modeling and Simulation System 

Philip J. Kiviat* 
Department of the Air Force 

This chapter will deal with requirements at a very general 
level. Its basic premise is that within our present context, inter­
est, per se, is not in being a programmer, but in being a modeler. 
There is a difference. Those who have done complex modeling 
jobs, like modeling industrial or computer systems, realize that 
programming is not the problem - modeling is. We want to build a 
system that will help us to be better modelers, partly because we 
realize that modeling is the crux of the problem, but also because 
once we decide to use a terminal as our basic vehicle, we know 
good programming can't be done at a terminal. With the pressure 
of a terminal I can write five lines of code that are probably pretty 
good, but I doubt that I can write 100 lines of pretty good code. 
The pressure is not just economic. It is also social pressure, 
because unless it is my personal terminal, there is somebody 
breathing down my neck who wants to get on it. 

Once I say I am not interested in programming but in model 
building, criteria that people generally use to judge programming 
tools are inappropriate, at least as concerns efficiency. I don't 
care if a compiler is fast, I don't care how much core it takes -
I am interested in something else. I am interested in what 
Douglas Engelhart** has called "augmented problem solving." 
I want to somehow help a man articulate his ideas; my basic out­
put is going to be an understanding of the structure and behavior 
of a system, not its operating statistics. I do want a model that 
I can run, that can tell me whether rule A is better than rule B. 
But I am interested in understanding, not data. 

Now, that implies modeling a system in its very early design 
stages, not after it exists. Because after it exists, there is a 

*Now Technical Director, Federal Computer Performance 
Evaluation and Simulation Center, Washington, D. C. 

**Stanford Research Institute, Augmentation Research Center 

53 



54 Multi-Access Computing 

• MODELING RATHER THAN PROGRAMMING 
ORIENTED 

CANNOT DO "PROGRAMMING" AT TERMINAL 
EFFICIENCY CRITERIA NOT APPROPRIATE 

• BASIC OUTPUT IS UNDERSTANDING OF 
STRUCTURE AND BEHAVIOR OF SYSTEM, 
NOT OPERATING STATISTICS 

Fig. 8-1. Basic Premises 

different kind of simulation job to do. We are then interested in 
prediction and in estimation. Here I am interested in finding out 
whether basic ideas of how a system works are really any good. 
Professor Corbato implied that he couldn't simulate MULTICS at 
the very beginning because he knew nothing about it. Well, I con­
tend that if he knew nothing about it, he couldn't design it. But he 
did; ergo, he knew something about it. 

Everyone has at least one idea about how a system of interest 
works. Some ideas are right, some are wrong. We can generally 
formulate a model. It may. be a very rough model. The data por­
tion of the model may be represented by a few curves that have 
inflections at different points, that are skewed in different ways. 
There can be different ideas about priorities in organizations. If 
we test ideas early, we can generally save money that is orders 
of magnitude more important than money saved by fine tuning later 
on. That is why an interactive modeling and simulation system is 
a good idea; it allows experimentation precisely when there is no 
time to study a system. The reader should think about most of 
the projects he has been involved with. If he is in the Air Force, 
Army, or Navy, he should think about the last large system that 
was implemented and how much time was really spent designing 
it, thinking about alternative structures. In one very large Air 
Force effort, almost the first thing that was done was low-level 
coding; design was the product of coding and integration. Design 
is the generation, evaluation, and selection of alternatives, not 
detailed specifications. 

Now, since we are considering requirements, what is needed 
to do such design? Some kind of translator or interpreter or com­
piler is required. It can be a meta-assembler, a compiler, or an 
interpretive system - some way of writing programs. A second 
requirement is a run-time library that does a lot of work for the 
user, data generation, for example. These elements are found in 
every programming language today. A third element is not - and 
that is a comprehensive run-time monitor that helps in interacting 
with a system, helps in debugging it, integrating it, and validating 
it. We can almost say that the benefit of an interactive modeling 
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system is proportional to the effort spent on the run-time monitor. 
There is only one effort that I know that is taking a practical look 
at an interactive modeling system, and that has just begun. It 
happens to be something within the Sloan School of Management at 
MIT, the SIMPL interactive modeling system. 

Modular programming is one requirement for the system we 
are designing. For years, there has been talk about modular 
programming. First, there were subroutines and then integrated 
data bases. But we still don't have modularity. Still, the word 
modular, as Professor Dykstra points out, has meaning when 
modules are constructed in certain very clear, very precise ways. 
They have to be hierarchical; they have to be completely sepa­
rable, because one thing we can't do when we sit down at a termi­
nal is to remember everything that is in a program - which may 
have been written by somebody else. We want a modeling concept 
that is called "process-oriented. " Devised by the Simula group 
in Norway, it has been adopted by several other programming 
systems and I have extended it in a design for a new simulation 
language which I call "Simscript II Extended. " It is a broader 
way of looking at real-time processes than is evidenced in 

• MODULES HIERARCHICAL AND SEPARABLE 

SIMULA PROCESS 
SIMSCRIPT II EXTENDED PROCESS 

• GLOBAL DATA BASE ORIENTED 

LATITUDE IN DATA STRUCTURES 

• LIBRARY CATALOGABLE AND CALLABLE 

• COMPOSED OF EXTREMELY HIGH-LEVEL 
LOGICAL STATEMENTS (CONDITIONAL) 
AND TIME-DEPENDENT COMMANDS 

FREEDOM FROM LABELS AND 
UNCONDITIONAL TRANSFERS 

Fig. 8-3. Model Structure 



56 Multi-Access Computing 

programming systems such as regular Simscript or FORTRAN. 
It is a better way of modularizing programming; system descrip­
tions can be stored in parts so that a change in one part does not 
affect anything else. That is, I think, a prime requirement of an 
interactive modeling system. 

Another requirement for this system is that it have a global 
data base with great latitude in data structure. A major problem 
with modeling is that most people have to fit their system model 
to the ideas of FORTRAN, where everything has nice clean edges. 
It's either a square or a cube. But the world doesn't have clean 
edges. The world is hierarchical; it's a tree structure, a ring, 
a who-knows-what. We want to be able to take an idea of a model 
and very quickly try it out, not spend half our time figuring out 
how to program it. So we have to have great flexibility and the 
trend is certainly in that direction. It has to be a global data base 
because that's how the world operates - many modules all simul­
taneously accessing the same data. If we really want to talk about 
pluggable kinds of programs where we can test out ideas very 
easily, we have to have a library where we can catalogue modules 
and put them together in a very simple way. Much more simply 
than most operating systems allow today. 

The language itself has to be extremely high-level - I don't 
consider FORTRAN, for instance, to be a high-level modeling 
language. It has to be high-level in its logical power - both con.­
ditional and unconditional statements - and in its operating com­
mands. We must be able to say we want a process to take place 
whenever or wherever "the following occurs" or on the sunrise 
of the third Tuesday after the second rising of the full moon. We 
should be able to say it that way, if that's the way it's expressed 
in the real system. 

Model verification is another well-discussed topic. It is 
called program debugging, it is called validation. It is called 
many things as there are many aspects to it. Generally, we define 
model verification as proof that what we have done agrees with 
what we thought we had done and model validation as proof that a 
model is, in fact, a representation of some reality. We have, 
first, internal consistency and, second, external consistency. 
A system can do a lot to assist in these tasks. 

First, if the models are right the first time (and the system 
helps insure this), we don't have too much of a problem. starting 
off on the right foot disposes of many problems. So, as much as I 
would like to get away from programming languages, I can't 
because I don't know how to design a universal modeling language. 
Therefore I have to have something that will protect me from my 
own programming mistakes. I insist that this language have full 
storage and logic protection to whatever specification I choose. 
There must be nothing that I can do in a program that is illegal and 
get away with it; simple things like a subscript out of bounds, data 
out of range, or an illogical condition happening somewhere must 
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be prohibited. We must both design languages that minimize 
sources of error and produce systems that detect those errors we 
do make. 

We must have a powerful interrupt capability that allows us 
to interact with the model. Let the model specification say that 
every time it happens that a certain condition exists the program 
stops and control is passed to the terminal. At that point, I may 
want to take heuristic actions. I may want to abort an experiment. 
I may want to take actions at any time under any conditions. 

Modeling is a human task, not a machine task. We are 
simply asking our system to help us interact with a running model 
on a conversational basis. The best way I can think of to do this is 
to tell the programming system, "Whenever this happens, tell me 
about it, " and I will decide what to do next. 

We must have conditional as well as unconditional ways of 
tracing because if we want to understand a system we have to have 
a way to trace data flows on both change and time dependent bases. 
We can trace on an assignment, or on a change of value that is of 
interest, or on the occurrence of an event - "Notify me whenever 
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VALIDATION 

• FULL STORAGE AND LOGIC PROTECTION TO 
SPECIFICATION 

• INTERRUPTS FOR INTERACTION ON CONDITIONS 

• FULL DATA STRUCTURE AND FLOW TRACE 

CONDITIONAL AND UNCONDITIONAL OF 
VALUE AND CHANGE OF VALUE ON 
OCCURRENCE 

• AUTOMATIC STATISTICAL REPORTING 

SYSTEM DYNAMICS 
SYSTEM PERFORMANCE 

• DIRECT AND INDIRECT STATEMENTS (JOSS-LIKE) 

DISPLAY STATUS AND STRUCTURE 
EXECUTE ANY ROUTINE 
MODIFY ANY VALUE OR STRUCTURE 

Fig. 8-4. Model Verification 
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a plane crashes, " would be a statement in a model of some military 
process. "Notify me whenever you run out of stock" and I will see 
if my logistics algorithm is correct in a specified monitor com­
mand in a logistics model. 

We don't want to tell the system what statistics we want to 
look at. It should automatically accumulate, keep track of, and 
report when we ask all the statistics (like means and variances 
and histograms) that analysts need. Let the programming system 
figure out what and how for itself. It's a simple enough job that if 
we can figure it out, the system can figure it out too. If it doesn't 
have that capability, it must be programmed. 

Last, having been at RAND, exposed to JOSS and deeply 
impressed, I think that both direct and indirect statements are 
important. Anything that can be said in a program should be able 
to be said directly from a console and occur. One can describe 
the structure of a model, show the status of something or other, 
execute any statement that will change the model in any way, 
modify anything, add something to a list, take something out of a 
matrix, add a row, and change an element. This direct and 
indirect mode of operation can be extremely powerful in dealing 
with computational problems and is even more so in dealing in a 
modeling context. In modeling, we are constantly changing our 
minds. We begin defining what a model looks like and as we get 
more and more into the model we realize we know less and less. 
We are always changing our models. We would like to do it coop­
eratively and interactively. If we have to reprogram (go back to 
the beginning and start over again), we might as well be batch 
processing. We want to change things in real-time; that is, in 
simulated real-time, to see how the model behaves. Remember, 
I am not particularly interested in collecting operating statistics 
so I don't want to go back to the very beginning and start again 
where I left off. I want to change the model then and there and 
continue. Let's assume a queue has been building up and I find 
I have a logical error that caused it. I would like to change the 
program and let it continue running. If the queue starts to 
decrease, I have learned something. What its value happens to 
be at the end of the run is irrelevant; I know that my logic is now 
correct. 

Benefits of interactive modeling are real and important. I 
claim that the elapsed time of model construction by doing inter­
active modeling as opposed to conventional batch methods will be 
in the order of 30 to 1. Only a need for credibility keeps me from 
claiming 100 to 1, for I believe that with a well designed system 
we can collapse the time it takes to model systems and study them 
by perhaps as great a ratio as 100 to 1. I personally encountered a 
ratio of 30 to 1 when dealing with a system put together using Sim­
script II on a timesharing system. We had instantaneous turna­
round, and could interact with running models, but we couldn't 
change logic without recompilation. Yet we were.doing in a day 
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what had formerly taken about a month. Thus I feel that with a 
truly interactive system, this ratio will be even larger. That is 
important because most of our dollars pay for people, not for 
computer time. If we cut down on the man hours, we are ahead. 
A few more dollars in computer time costs far less than the money 
that a man spends just jingling his coins in his pocket waiting for 
his job to come back from the computer center. Opportunity costs 
for good analysts are also large. 

Models are of better quality when done in an interactive way 
because the analyst has continuity of thought and a heightened inter­
est in what he is doing. He can actually see things happening. We 
found (not unexpectedly) that people were more excited about what 
they were doing when they didn't have to stop, wait, and start up 
again. They did more tasks, they did things better, and they 
experimented more. They had greater insight into a model - its 
structure and its dynamics, because they were able to play with 
it. Being able to incrementally construct a model gives a better 
feeling for what happens when a new part is added. When a model 
is put together in one piece in the beginning there is little insight 
into marginal effects. Being able to experiment continuously 
increases insight. That is what we want. 

Better facilities also mean fewer debugging and verification 
problems. We are now in the loop. Every possible error 
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condition needn't be programmed. Once in the loop, problems can 
be found a lot faster and a lot easier. And we can respond imme­
diately to problem situations. We don't have to worry about sub­
mitting a number of jobs to beat the system. One benefit doing 
this will be overall reduced costs of experimentation and analysis. 
Although the programs we construct will run slower and perhaps 
take much more core than programs run in a batch system, getting 
in the loop and being able to do adaptive experimental design will 
reduce overall experimentation costs and increase the scope of 
experimentation. 

What does it cost to do interactive modeling? It is clear 
that we have to pay some overhead for timesharing. We have to 
give the man a terminal. We have to pay connect time, and we 
have to pay communications costs. For a single terminal we'll 
pay no less than $200 a month, maybe $1000 a month. If we try 
to use the system for production work, that is, running simulation 
experiments to find out exactly how a system will perform down 
to the last whisker, we have a low-performance system - it isn't 
designed for that. That's a cost. It will probably cost quite a bit 
to write an interpreter, monitor, and run time library. What is 
quite a bit? It could be done in four to six man years with two good 
people. (I am from the school that says three's a crowd.) If we 
start using a good existing simulation language as a base, it can be 
done in less time. Perhaps two to four man years. We also have 
the problem that programs we produce will not be transferable to 
other computers and other systems. In some environments this is 
very important, so I express it as a cost. 

It has not been demonstrated quantitatively that interactive 
modeling is the solution to anybody's problem. Those of us who 
have experimented in the area feel strongly that we see real bene­
fits. It's hard to construct experiments to demonstrate this. I 
am 100 percent sympathetic with pleas that we have more meas­
urements to support our contentions but the experiments you have 

• TIME-SHARING OVERHEAD 

TERMINAL 
CONNECT-TIME 
COMMUNICATIONS 

• LOW PERFORMANCE PRODUCTION SYSTEM 

• HIGH COST INTERPRETER - MONITOR -
LIBRARY 

• NON-TRANSFERABLE PROGRAMS 

Fig. 8-6. Interactive Modeling Costs 



Interactive Modeling and Simulation System 61 

to perform to find out whether interactive modeling is better than 
noninteractive modeling are just horrendous. I don't know of any­
one who is attacking this problem today. However, I do feel cer­
tain that a system such as I have described has great benefits and 
I am quite as sure that it will be the way we will do our modeling 
in the future. 



PART II. RESEARCH lABORATORY REPORTS 

The theme of the three papers in this section is "An Overview 
of Current and Planned Research and Development Activities plus 
Some Historical Perspective." This might be paraphrased as 
"Where is the state of the art?" I have one important point about 
"state of the art" and this is that the reader be sure he knows 
which state of the art is being addressed. I have identified at least 
four. There is the production state of the art, which means it's a 
catalogue system; it is something that can be bought and essentially 
the user can install himself. Next, there is the development state 
of the art, which says that we have all the components and now all 
we need is some system engineering and integration - somewhat· 
high priced, of course - and we have a system. Then, there is 
the applied research state of the art, which in general means it 
works in the laboratory but will it work out in the field? And 
finally, there is the research state of the art, which says we think 
we know in principle how to do it. So I caution the reader to be 
careful about which state of the art is being addressed. 

There are several types of research organizations perform­
ing research in EDP applications technology; they include com­
puter manufacturers, university computing centers, and private 
development and systems organizations specializing in the infor­
mation sciences area. Information from the first two types of 
organizations appear routinely in the professional journals; 
however, much of the work done by private research organiza­
tions does not seem to get the distribution needed for wide 
exploitation. The three organizations reporting in this section 
are among the largest in the field and represent a cross-section 
of the field. Hopefully, their description of current and planned 
activities will start a wider distribution of their products. 

System Development Corporation is the oldest of the 
computer-oriented systems and software organizations. Systems 
Control, Inc. is a relatively new systems organization specializ­
ing in the fields of control and automation. stanford Research 
Institute, no longer associated with the university, is a major non­
profit firm specializing in surveys and industry planning. Hope­
fully, the reports from these three firms will be representative 
of the total field of application-oriented EDP research and 
development. 
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Clark Weissman 

System Development Corporation 

Santa Monica, California 

The selection of current R&D activities at SDC is organized 
in this paper by a taxonomy based on processing type. The activi­
ties have been placed into five basic categories: data collection, 
data transmission, data processing, data storage and retrieval, 
and data presentation. 

DATA COLLECTION 

A variety of activities exist at SDC in data collection, par­
ticularly in man-machine input/output, including English language 
data management work - the use of natural English as a query and 
maintenance language, and the extensions of that work into voice 
research and hand-printed graphics. 

This paper discusses three particular areas in data collec­
tion. The first is handwritten signature verification, which is 
representative of the whole general problem of sensor signature 
recognition. Here the sensor happens to be a human being, and 
the problem domain we are attacking is that of human verification; 
that is, a password security approach. 

A second class of data collection problem is that of enhanc­
ing blurred images from satellite-borne telescopes. This problem 
is particularly relevant now, as deep space probes become a large 
part of the space program. 

The third type is the use of "smarts" at the terminal level. 
This provides the ability to perform many data collection functions 
away from the central computer. 

Signature Verification 

The principal objective of SDC's work in signature verifica­
tion is to develop a method for identifying individual human beings. 
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Considerable attention has been given to the use of voice prints, 
body odors, and fingerprints, probably all good methods of identi­
fication, but impractical and expensive. SDC's approach is based 
on the assumption that a human being's signature is unique and 
can be used inexpensively as a unique identifier. The operational 
concept we have in mind is that the dynamics of the signature can 
be extracted and matched against data on a private data base. 
This approach avoids the problem of a large data base, since the 
data base is distributed in machine readable form on the cards. 
SDC is in the process of taking signature samples, using a device 
that can recognize hundreds of characters. With this device we 
are also exploring the processing strategies for extracting the 
unique signature parameters. We are investigating the use of low 
cost X-Y tablets, such as resistive sheets, and the tradeoffs of 
logic versus verification. That is, the more processing one does 
the greater is the degree of reliability of recognition; but, of 
course, more logic is required. Our intent is to get logic cost 
down so that such devices will be competitive with the kind of veri­
fication techniques now in use. 

Correcting Blurred Images 

The second problem, that of correcting blurred images, is 
part of a larger task for NASA at Marshall Space Flight Center. 
The major problem is posed by the many poor images and photo­
graphs being recorded. The objective is to discover better tech­
niques for correcting imperfections introduced in the experimental 
image by the optical devices, particularly where the imperfections, 
such as jitter in the platform and defocusing, are not known. 
Device characteristics are described by three-dimensional point­
spread functions. The application of two-dimensional Fourier 
series in the frequency domain tends to reverse the convolution 
effects in the spatial domain and simultaneously restores the 
high-frequency data. 

Smart Terminals 

The third data collection area is that of collecting data at a 
terminal. The objective of this work is to shift uneconomical 
tasks from the central processor to the terminal. We believe 
that today's technology makes it quite possible to integrate a 
variety of peripherals and minicomputers into a high-performance 
and surprisingly low-cost intelligent terminal. The operational 
concept is that of a remote-job station - with data verification, 
data compression via stored formats, and local buffering - using 
a multiprogrammed device to overlap the operational character­
istics of many of the peripheral devices. It is a flexible device, 
since these peripheral devices are very easily interconnected. 
The terminal can adapt to the conventions of the given installation, 
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which helps to minimize communication costs. An operational 
prototype consisting of a minicomputer, CRT, line printer, disk 
and two tape cassettes has been assembled and is being used for 
experimentation. 

DATA TRANSMISSION 

There are a number of activities at SDC in data transmission. 
A few are presented here. SDC has been involved for many years 
in programmable controllers and data concentrators. The tech­
nology was demonstrated in the 1960s and will be quite cost effective 
for the 1970s. 

Another growth area for the 1970s is that of networks of 
distributed computer resources. SDC has been involved in this 
since our early (1960) experiments interconnecting the Q-32 time­
sharing system with Stanford Research Institute and, later, Lincoln 
Labs. That work continues with our participation as a node in the 
ARP A network, in network protocol development, and in network 
experiments in hardware and data sharing. 

Programmable Controllers 

The kinds of tasks being assigned to programmable con­
trollers are: (1) line discipline and interface protocols; (2) termi­
nal interface and control - that is, managing the actual physical 
hardware devices; (3) data concentration via multiplexed low­
speed lines and exception transmission of data from preformatted 
messages; (4) complex data routing and message or line switching; 
(5) data validation and error handling; and (6) management report­
ing of device status, message disposition, line conditions, and 
general system loading. 

SDC is involved in development of the Morgantown People 
Mover, by which the department of transportation is exploring a 
futuristic technique for moving people on a trainlike "horizontal 
elevator." A PDP-11 is being used as a programmable controller 
and communication device that keeps track of the routing of trains 
to prevent accidents and to keep status information on train loca­
tion and position for routing and dispatch purposes. A person 
walking into the station can punch a couple of buttons to indicate 
where he wants to go, and a small car quickly arrives to take him 
there. 

The ADEPT Time-Sharing System is another example 
using a programmable controller to handle all the real-time 
and low-speed terminal communications. A Honeywell DDP-
516 computer is employed as a replacement for the IBM 270X 
series and also serves the real-time needs of our graphics and 
ARPA Network interfaces. It does many more jobs than were 
originally intended, thereby satisfying one objective of the 
installation. 
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SDC has instrumented a critical diamond freeway interchange 
in Los Angeles, one of the main downtown intersections, to study 
traffic flow and eventually develop techniques for improving the 
flow of city traffic. A Varian 620 is used for transmission pro­
cessing and control. 

In our Air Force Satellite Control Facility, SDC is involved 
in an application of Digital Scientific's META4, a small machine 
with microprogrammable logic. It is employed in a firmware 
approach to "reusable" software, a topic presented later in more 
detail. 

Finally, SDC has a contract with the Los Angeles sheriff's 
department to automate its communication system to reduce the 
significant time delays between an alarm made by a citizen and 
police action, e.g., the routing of a police car. 

These are just a few of SDC's new minicomputer program­
mable controller applications. Each is a comprehensive R&D 
program, from a few thousand to more than a million dollars in 
scope. The applications are intricate, and none would be practical 
at this time without the use of programmable devices. 

ARP A Network 

SDC is active in the development and operation of the ARPA 
Network, which has been in use for the past two years. The latest 
ARPA Network configuration is shown in Fig. 9-1. The ovals are 
Host computers; the solid lines indicate which of the Host computers 
are now on the network; the squares are the interface message 
processors (IMPs), the ARPA Network subsystem; and the dotted 
lines are the candidate systems, to be joining the Network shortly. 
The ARPA Net must be viewed as a hierarchy of communication 
protocols. When the question is asked, "Is it running?", the 
answer is a qualified, "Yes, depending on what level in the hier­
archy you are asking about." Much of the research activity with 
the ARPA Net is directed toward elevating the hierarchy. 

One process-level experiment in which SDC is participating 
has as an objective the establishment of a network resource center 
for tablet graphics, so that every node in the net could have the 
same tablet-graphics capabilities. The initial experiment is to 
study the different character recognition algorithms that exist in 
the ARP A community and to start looking at these from a cost­
effecti veness point of view. Some of them are of better quality 
than others and usually run longer, while others are less expen­
sive in runtime and small enough to possibly fit in a minicomputer. 
Today, there are no criteria for quality of recognition. This 
then, is a secondary objective that may lead to building an inven­
tory of recognition algorithms. The technical approach of the 
experiment is first to develop a tablet graphic protocol, and then 
to share SDC' s tablet graphics software remotely from some of 
the Host sites. We are currently working with the MIT Dynamic 
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Modeling Computer Group (DMCG). The DMCG RAND-tablet 
graphic data will be transmitted over the Network to SDC using 
the data-block protocol. Automatically, the SDC character­
recognition routines will process the data and return the identi­
fied character, size, and position codes. The present status of 
the experiment is that the tablet protocol has been specified, 
implemented, and closed-loop tested, and a universal dictionary 
has been developed. We are now beginning the live tests with 
DMCG. 

DATA PROCESSING 

Data processing will be discussed here in the context of 
major areas; time-sharing, automated programming, and machine 
architecture. 

In discussing automated programming from artificial­
intelligence approaches to programming, SDC is working on 
automated, not automatic programming; the difference between 
them depends on whether the human or the machine is in control. 
In automated programming, the programmer is in control and 
uses the computer as an aid or assistant. In automatic program­
ming, a computer program does the programming, i.e., the code 
synthesis - and the programmer's intellect augments the computer 
to help it out of any crisis situations. The computer is determin­
ing how the program should be linked together, based upon inter­
nally developed strategies and past learning experiences. SDC is 
excited about the potential of automatic programming and feels 
that it is the direction the industry may eventually take. However, 
its payoff is in the distant future. As a pragmatic organization, 
SDC is interested in what can be done today and in the near future. 
Automated programming says that there are many things we know 
how to do to improve programming that we have not yet done; we 
have not yet put together the low-cost, quality systems we know 
how to build. SDC is looking at ways in which that can and has 
been done, based upon complete software production systems. 

In the area of machine architecture, LSI circuitry makes it 
possible to put computers together for special purposes. SDC is 
beginning to explore how that should be done in areas that are 
relevant to problems in improving data processing. 

SDC is also active in resource-allocation modeling, particu­
larly in the distribution of resources among nodes in nets. We 
have built a number of proprietary tools for doing network analyti­
cal studies. One of them is called Designet. We are applying 
these tools in a study for ARP A of communications and computing 
tradeoffs. The question being addressed is: With lower-cost 
communications, such as ARP A Net, and lower-cost computing, 
such as minicomputers, is it better to share large centralized 
machines or network small machines (perhaps network larger 
machines, as well)? This gets into the complex cost relationships 
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among distributed and centralized computing and communications. 
The ARPA study called CACTOS (for Computation and Communi­
cations Trade-Off Studies) is attempting to define and model these 
relationships. 

SDC Time-Sharing 

SDC began its pioneering work in time-sharing with the 
ADEPT Q-32 time-sharing system approximately 10 years ago. 
ADEPT, of course, is still operating, in a form called the ADEPT 
Research & Development system, which we are using at SDC for 
R&D. A version of ADEPT is still performing satisfactorily in 
the intelligence community, and the Naval Electronics Laboratory 
Center (NELC) recently received a copy of it. SDC uses TS/DMS, 
a commercial version of ADEPT, in its service bureau operations. 

SDC is currently developing the Interactive Common Operat­
ing System (ICOS), which is a merge of TS/DMS and ADEPT into 
a single system. We intend to run !COS as a research facility for 
10 to 12 hours a day. We are also giving serious thought to tying 
these machines into a local net at SDC through the ARP A IMP, 
which can support multiple Hosts. We also have another machine, 
a Raytheon 704, dedicated to our voice research work; it too will 
be tied into this local net. 

Automated Programming and the "Software Factory" 

SOC' s main goal in automated programming is to lower 
programming costs. Two major aspects of our work are formal 
techniques for compiler implementation, and microprogramming 
for software transferability. 

Although the "software factory" does not exist today, some 
parts of it do exist at SDC. It is called the "language factory." 
The industry does not yet have a software factory, primarily 
because "software" is such a diverse commodity that there is a 
major difficulty in describing the "factory" clearly enough to con­
vince companies to make the capital investment to build one. The 
industry needs formal models of its products - be they compilers, 
operating systems, data management systems, utilities, or what­
ever. When these models, or formalisms, appear the structure 
and economic form of the software factory can be defined. Current 
work on these formalisms is being based on graph structures and 
directed graphs. I'd like to explain briefly our formalisms for 
compilers, since we have, we believe, advanced the state of the 
art in compilers. 

SDC formalism, which we believe has advanced the state of 
the art, is expressed as a model of a compiler as shown in 
Fig. 9-2. 

On the basis of this model, we have developed the Compiler 
Writing and Implementation Compiler (CWIC), consisting of 
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Fig. 9-2. Model of Language Compilation 

three languages and their compilers. The SYNTAX language is 
used by the designer to express the problems of syntax recognition 
and translation into internal tree-structure form. A powerful 
graph-manipulation language called GENERATOR expresses the 
processes of code generation. Finally, a machine-oriented lan­
guage, called MOL, expresses the machine environment inter­
faces. MOL is higher-order assembly language with the syntax 
of a compiler but the semantics of an assembler. MOL is one of 
the new class of languages called system programming languages, 
such as PL/360, BLISS, PASCAL, etc. Based on our compiler 
model and the CWIC family of languages, we can build language 
software to specifications quite inexpensively. In fact, we often 
build throwaway languages :µid compilers for special applications 
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in a matter of a few days. We are building some substantial 
languages, as well. 
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Figure 9-3 shows how we manufacture compilers in our 
"language factory." First, we assume at the beginning that some 
supporting routines and a dictionary exist. (If you are running a 
factory, the last thing you made will be part of the library, and 
the new support package can be subset from the library. ) Next, 
we write syntax equations - the description of the language we 
want to compile - and pass them through the SYNTAX compiler. 
The output is a set of machine-code - in effect, a new syntax 
dictionary that obeys the specified syntax rules and augments the 
existing dictionary. Next, we add new MOL routines. rNe oper­
ate on the IBM 360, hence the MOL-360.) This permits us to 
extend the basic machine model. Certain compilers need special 
features which are normally available in the original support 
package, so we extend the support package. Last, the GENER­
ATOR statements go through a two-pass process. The first pass 
produces tree-structure representations, and the second pass 
translates these tree structures into machine-code routines and 
the dictionary necessary to complete the compiler. Incremental 

CWIC OBJECT OBJECT 
SOURCE PROGRAMS COMPILER COMPILER COMPIL:ER DICT 

SUPPORT + SUPPORT 
PACKAGE DICT 
ROUTINES 

---- ----
SYNTAXO-+ -+ ---- ---SYNTAX SYNTAX 

CODE -+ COMPILER -+ ROUTINES + SYNTAX 

MACHINE DICT 

CODE 
MOL - 360 ~ ----
COMPILER -+ ----MOL- 360 

+ MOL- 360 
ROUTINES DICT 

GENERATORO ...... GENERATOR MACHINE 

CODE + COMPILER CODE 
PASS 1 

++ 
EU 

·~ GENERATOR ---
GENERATOR -+ ROUTINES + GENERATOR 

COMPILER -+ MACHINE DICT 
PASS II 

CODE 

Fig. 9-3. Schematic Operation of the CWIC System 
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compilation is possible because any part of this process can be 
repeated at any time; new routines can be added and old routines 
removed, One man, or at most a few men, can write an entire 
compiler. 

As an example, Fig. 9-4 shows a simple expression­
evaluation interpreter that we designed online in about an hour. 
For the arithmetic expression of X + Y x Z, where X = 5, Y = 12, 
Z :: 5, the tree structure produced by the syntax equation is shown 
to the right. Below that we have the GENERATOR code to per­
form the interpretation. It compiles a sequence of program calls 
to an existing library of routines to perform the arithmetic opera­
tions and the interface with the operating system. On this one 
sheet is a complete interpreter. We are now producing contract 
software with CWIC and extending our tools to generate code of 
increasingly high quality. 

One of our people has written a book on optimization algo­
rithms that will be published next year. It is a review of the state 
of the art and includes original work in the area of global optimiza­
tion. Our system ~xploits (among others) a concept called "hoist­
ing, " whereby common expressions are hoisted out of deeply nested 
loops. Our techniques work on both the data-flow and control-flow 
graphs of a program and rewrite the program to improve the code. 
The GENERATOR language allows immediate implementation of 
these optimization algorithms. 

A version of CWIC system was used to build a compiler for 
SPL (the space programming language), a cross-compiler system 
for generating code for airborne and satellite computers. We are 
finishing an optimized FORTRAN IV compiler using this technique. 
It happens to be a three-pass structure; passes one and three are 
conventional, while pass two is an optimization pass. We built it 
to test our techniques against the IBM FORTRAN compiler, the 
best optimizing FORTRAN compiler now available. It is now 
running, and testing is in progress. The total effort involved 
about one man-year to bUild the compiler. 

The software factory may not be here in all software fields, 
but it is here in language-oriented software. We are now begin­
ning to understand the formalisms in operating systems and data 
management systems; hopefully, we can make similar advances 
in those areas. 

Software Transfer by Microprogramming 

Microprogramming is another programming area in which 
we conducted an interesting study. SDC operates a satellite con­
trol facility for SAMSO that involves a very large telemetry net 
and many computers. Some of the equipment is almost 10 years 
old. Something like a million instructions in the system are in 
daily use. The intent of the study was to update the net. The 
development objective was to take one part of the net, a dozen or 



X=5;Y= 12;Z1 =5; 

V:=X+Y*Z1; 

.END 

.SYNTAX 
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PROGRAM= $(ST 1 DECLARATION) '.END': 
DECLARATION= ID'=' NUM ';' :EOU!2 DECL [*1]; 
ST= ID':=' EXP';' :STORE!2 COMPILE [*1]; 
EXP= TERM$('+' TERM :ADD!2); 
TERM= FACTOR$('*' FACTOR :MPY!2); 
FACTOR= ID I'(' EXP')' I NUM; 
LET: 'A'/ 'B'/ 'C'/ 'D'/ 'E'/ 'F'/ 'G'/ 'H'/ 'I'/ 'J'/ 'K'/ 'L'/ 'M'/ 

'N'/ 'O'/ 'P'/ '0'/ 'R'/ 'S'/ 'T'/ 'U'/ 'V'/ 'W'/ 'X'/ 'Y'/ 'Z'; 
DGT: '0'/ '1'/ '2'/ '3'/ '4'/ '5'/ '6'/ '7'/ '8'/ '9'; 
ALPHNUM: LET I DGT; 
ID .. LET $ALPHNUM; 
NUM .. DGT $DGT MAKENUMBER [ ] ; 
.FINISH 
.STOP SETUP PROGRAM 

v 

.GENERATOR 
DECL(EOU[X, Y]) .... DEF:(X) := Y 

-------1•• 65 

COMPILE(STORE [X,Y]) .... DEF:(X) := EVAL(Y); PRINT(DEF:(X)) 
EVAL(IDP(X)) .... DEF:(X) 

(NUMBER(X)) .... X 
(#V1 [EVAL(X), EVAL(Y)]) .... #U1 

#V =ADD, MPV 
#U = X + Y, X * Y 

.FINISH 

.STOP SETUP PROGRAM 

Fig. 9-4. Simple Interpreter Complete Formal 
Specification and Code 
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so CDC 160A computers, and improve the system's performance 
by replacing them without horrendous reprogramming costs. The 
approach was microprogrammed emulation of the CDC 160A. 
Constraints dictated off-the-shelf interfacings, no major engineer­
ing, emulating the system as is, no great leaps forward. SDC 
handled the management and design; the actual production of the 
firmware was subcontracted to the machine manufacturer accord­
ing to our specifications. 

We selected a META4 from Digital Scientific. The equipment 
has been delivered and is currently being tested. We have enough 
information to report that there were no major problems except 
in some very minor, easily repaired, repertoire errors, and some 
difficulties in timing, since the MET A4 is considerably faster than 
the 160A. These were all overcome. In order to determine 
whether the emulation was correct and more efficient, we traced 
a few instructions. The data show improvement by a factor of four 
in instruction execution. The 160A did not have a multiply instruc­
tion; one was added in firmware, and multiplication performance 
immediately improved by a factor of about 46 over the previous 
software multiply. 

Machine Architecture: Associative Processing 

SDC is currently involved in several associative processing 
(AP) projects. Associative processors have a variety of unique 
and attractive characteristics. Because each memory cell can 
be viewed as a single CPU, they offer the power of parallel com­
putation, which lends itself very nicely to real-time problems. 
Because each cell is also an associative memory, storage can be 
compressed, since common items in a complex tree structure 
need not be stored redundantly. Fast associative searching 
results in lower memory and search-time overhead. There is a 
higher failure tolerance with these systems, since they are not 
dependent on storage location; memory can have holes in it due 
to failure without degrading the system. Report by exception is 
one of the associative operations on these machines. Since it is 
an associative memory, one can set threshold tests on various 
limits and have the success cases announce themselves. Of 
course, AP machines can also perform serial computation, so 
they can do conventional programming and computing. Two 
application areas we are involved in are tactical data management 
and ballistic missile defense. 

AP FOR REAL-TIME MANAGEMENT 

An AP data management study is just getting underway for 
Rome Air Development Center (RADC) in conjunction with the 
Electronic Systems Division (ESD) of the Air Force. The appli­
cation is to Tactical Air Command and Control (TACC) data 
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management. The study objectives are to classify and quantify 
improvements in data management using associative processors, 
to determine the impact AP machine architecture has on conven­
tional concepts, to look for the critical design factors in such a 
system, and to look at the basic data structures for such a data 
management system. The study approach involves three factors: 
(1) use of an actual TACC scenario as a data management system 
benchmark of the functions we need to perform; (2) use of an SDC­
designed "paper" AP machine for performance simulation of 
machine factors; and (3) use of the predicate calculus and set­
theoretic data structures. 

SDC has been working for a number of years in system 
architecture and machine modeling. We have developed, on paper, 
an SDC version of an AP machine. We will use it, and extensions 
of it, as models for testing software construction, comparing 
coding sequences, and looking at speed tests using computer 
simulation. 

SDC has also developed an English data management system, 
CONVERSE, which maps English into a formal predicate-calculus 
intermediate language for retrieval from what is essentially an 
associative data structure of factual information. The system will 
be used as a model to see how AP satisfies the internal structure 
needs of CONVERSE. We expect it to replace much of the list­
structure overhead of data management systems on conventional 
machines. 

AP FOR BALLISTIC MISSILE DEFENSE: PEPE 

SDC recently completed an initial version of PEPE (Parallel 
Element Processing Ensemble) for ballistic missile defense. The 
program objectives are to solve the ICBM threat, which over­
whelms even the biggest of conventional machines. There are just 
too many ICBMs that are too fast. The intent is to demonstrate 
the feasibility of the PEPE concept to solve the problem. The 
solution involves handling the acquisition, tracking, guidance and 
control, and battle-management functions of ballistic missile 
defense. The technical approach is to allocate one CPU (PEPE 
element) per target track, and to manage all the elements as an 
ensemble. That ensemble is connected to a host computer, a 
conventional sequential processor, which sets up the computations 
for the PEPE. In SAGE, SDC wrapped "correlation boxes" around 
unknown tracks to identify friend or foe; those correlation tests 
can now be made in two associative searches. The interesting 
aspect of the PEPE is that the elements are driven in parallel so 
the software is invariant with ensemble size. It has been suggested 
that PEPE could be an approach to gigantic data base management 
systems, where one CPU is assigned to each key and the data base 
is searched, not unlike head-per-track disc devices. But that is 
for the future. 
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The current status of this project is that a 15-element PEPE 
has been built and attached to a 360/65. A pre-specified "zero­
order" test was successfully run. The demonstration included 
working software and a collection of production tools including a 
parallel FORTRAN, a parallel assembly language, and a number 
of special-purpose languages. Analytical and simulation studies 
of large problem applications are currently in process. (That is, 
analysis is already going on for the next generation of PEPE. ) 

Figure 9-5 shows the serial host connection to PEPE. The 
host is currently a 360/65, but it could be a 6500 or a 360/195 
supercomputer. Hanging onto the channel interface are the two 
parts of the PEPE: the Correlation Control Unit and the Arith­
metic Control Unit. The correlation units perform the associ­
ative operations of the correlation boxes; e.g.; "all tracks that 
are between certain altitudes identify yourselves." Conventional 
processing is performed by tne arithmetic units. A PEPE element 
consists of 8 words of 40 bits (or one 320-bit word) of associative 
memory; 512 32-bit words of conventional memory, and a collec­
tion of arithmetic tag registers for doing the arithmetic operations. 
In this particular PEPE design, arithmetic activities are done out­
side of the memory, so there is actually an internal transfer to 
the registers. Newer designs of PEPE elements may obviate these 
transfers, since memory logic and computation logic will be core 
resident in memory. 

Figure 9-6 gives a gross cost/performance tradeoff. The 
number of targets appears on the bottom axis and million instruc­
tion executions per second {MIPS) on the vertical axis. Data show 
that the limit of a 6500 computer for this task is about 14 MIPS. 
This would yield a 70-target capacity for a single machine. To 
increase the track capacity to 230 would require approximately 
47 MIPS, which would require three 7600s. If you offload all of 
the tracking problems to a 230-element PEPE, attached to one 
7600, at $9K/element, plus the $8 million cost of the 7600, the 
PEPE solution costs about $10 million as compared to $27 million 
for three 7600s - quite a cost-effective tradeoff. This cost­
improvement factor of 2. 7 is a conservative estimate, since the 
multiprocessor 7600 configuration is nonlinear in cost/performance 
and may need a fourth CPU to control the other three. 

DATA STORAGE AND RETRIEVAL 

Over the years, SDC has developed a variety of storage and 
retrieval systems. A-32 LUCID led to TDMS, which led to CDMS 
{a commercial version of TDMS), which led to SACCS/DMS, an 
advanced TDMS version that successfully attacked the real-time­
updated prol>lems. We have a number of other DMS products. 
DS/1 and DS/2 are "mini" versions of TS/DMS. They have the 
language flavor of TDMS but work on small machines {a Model 30) 
using serial files. SDC developed another package called Orbit 

I 

r 



R&D at SDC 

SERIAL HOST 
COMPUTER 

PRESENT: 360/65 
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(Online Retrieval of Bibliographic Text} that is currently providing 
users of the National Library of Medicine with nationwide time­
shared access to medical records. Further developments currently 
underway include the DS/3, an extension of DS/2 that handles 
indexed files, and three activities which will be described more 
fully: MEDLARS II and SEAWATCH, two larger-scale data manage­
ment systems; and a research study into network data sharing. 

MEDLARS II 

MEDLARS II is being built for the National Library of 
Medicine to allow the online input, editing, storage, and retrieval 
of medical bibliographic citations. These are large files with mil­
lions of citations. MEDLARS II will also build reports for users. 
The objectives are to provide high throughput and large capacity 
service, thereby yielding a better balance between the people who 
do the cataloging and the people who do the indexing, and allowing 
remote interactive file search for a national user community. 
The activity has just begun, and is building on our ORBIT experi­
ence. MEDLARS II will be implemented on the 360/155. It is 
coded in PL/l and Basic Assembly Language (BAL} in modular 
form for future expansion. 

SEAWATCH 

SEAWATCH is an ocean surveillance intelligence data man­
agement system that will support both batch and interactive 
operations on numerous massive files. Our development approach 
builds on the TDMS and SACCS/ DMS experience. SEAWATCH is 
being implemented in JOVIAL on the CDC 6400 under the Scope 3. 3 
operating system. Structurally, there are seven subsystems and 
38 functions that service 84 static, dynamic, historical, and work­
ing files. Both serial and inverted tape and disc files are involved. 
It is a comprehensive system. The specifications and the design 
are complete. Software for the initial operating capability (IOC} 
is in production, and IOC testing is scheduled for the spring of 
1972. 

DATA SHARING IN COMPUTER NETWORKS 

A study now in progress for ARP A concerns the integration 
of dissimilar data management systems in digital networks -
today's systems and those of the future. One approach to this 
problem is to leapfrog today's problems by designing tomorrow's 
common system. The overwhelming problem is not data manage­
ment but the corpus of the data bases that are being built and are 
already in existence. Conversion is prohibitively expensive today, 
and the cost will increase as data management systems become 
more widely used. SDC' s assumption, then, is that today's 
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dissimilar data base systems are going to be around tomorrow, 
and that we must find ways to share them. The ARPA network 
and other similar networks allow access to host systems, but 
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their data management systems are essentially unavailable because 
there are not convenient ways to interrogate them. The user 
certainly does not want to learn 20 or more different data manage­
ment languages (DML). SDC's approach is to explore English and 
the predicate calculus intermediate language (IL) of CONVERSE 
as a possible common network data-sharing language. We also 
intend to employ compiler-compiler techniques to build an IL-to­
DML translator for each host data management system. We are 
technically able to build these translators at low cost; we are now 
exploring whether the predicate calculus is rich enough to express 
the queries. 

DATA PRESENTATION 

The data presentation topic covered will discuss ARPA­
funded work in data management graphics completed last year. 
The intent was to provide graphical capability to the nonprogram­
mer user who manipulates data - the form, the format, and the 
content of the display. Also, the data presentation system was 
to be a front end to an existing data management system. SDC's 
approach uses an ARDS storage-tube terminal, a low-cost graphics 
device. To keep interaction simple, the man-machine dialogue is 
totally by selection and prompting. Also, the computer automati­
cally scales all axes of all graphs. The data management system 
independence is achieved by use of an "ancestor file" - a subset 
file extracted from the larger DMS data base. 

This system is complete and operational. Figures 9-7 and 
9-8 indicate its graphics capability. The left side of Fig. 9-7 is 
a scatter plot; the right is an interval plot. Users can specify 
data to be plotted. Figure 9-8 shows age vs salary, in two other 
forms: a regression curve and a histogram. These are typical 
of things done "ad lib" at the console. 
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R. H. Anderson 

USC Information Sciences Institute 

This chapter will discuss some of the ARPA-sponsored 
research at Rand involving multi-access computing. I hope to 
present this research program in such a way that the underlying 
philosophy we have about multi-access computing becomes clear 
and to show the underlying unity behind several different research 
programs. 

A discussion of technological advances in information science 
isn't sufficient. There are too many examples within research 
laboratories of advanced technology which is not being made avail­
able to the military. I am therefore including here some thoughts 
on the transfer of technology from R&D laboratories to operational 
users within the military and also on the organizational structure 
necessary within the military to take advantage of and fully utilize 
the types of technology presented in this text. 

MULTI-ACCESS COMPUTING RESEARCH AT RAND 

Research at Rand involving multi-access computing is based 
on the following underlying philosophies: 

1. Software packages for online systems, which are 
attractive and useful to people other than programmers, 
should be developed. 

*Any views expressed in this paper are those of the author. They 
should not be interpreted as reflecting the views of the Rand 
Corporation or the official opinion or policy of any of its govern­
mental or private research sponsors. 
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2. The consoles at which interaction takes place should be 
personal terminals - usable within a person's office, his 
best working environment. 

3. This personal terminal should be a generalized terminal; 
from this terminal, the user should have access to all 
online systems in which he is interested and he should 
be able to communicate using whatever input and output 
devices are most appropriate for this purpose. 

Specific examples of Rand's research in multi-access com­
puting are presented in the following paragraphs. 

The Rand Video Graphic System 

The system which best exemplifies our approach to online 
computing is the Rand Video Graphic System. This consists of up 
to 32 interactive graphic consoles with each console permitting a 
full range of interaction from static displays to dynamic interaction 
with full graphic capability. From this console, a user may com­
municate with one of several computers and one of several services 
which might be resident in each computer. Furthermore, the cost 
of each individual terminal is sufficiently low that a user may treat 
his terminal as personal property. The terminal's design also 
permits a wide range of input devices ranging from keyboards to 
light pens and tablets. Figure 10-1 shows a console of the Video 
Graphic System. It is based on an 873-line standard television 
monitor for graphic output. This monitor can display up to 52 lines 
of text, each line containing 74 characters. This same monitor 
will also display continuous or dashed lines in three intensity levels. 
Continuous-tone pictures from a TV camera can be superimposed 
on a monitor along with computer-generated text and drawings. 
Since the display is refreshed at a constant 30 frames per second, 
the display is flicker-free regardless of the amount of information 
displayed upon it. Figure 10-2 shows the configuration of the 
Video Graphic System. An IBM 1800 computer is used as a mes­
sage switching system to allow any terminal to connect dynamically 
to any computer at Rand. Through the 1800, a terminal may also 
connect to the ARPA Network of computers, thereby giving the 
user at one console access not only to the computing facilities at 
Rand but to those of any computer system on that Network. 

PRIM 

A second multiprogramming project at Rand is called PRIM 
(for Programming Research Instrument). The object of this 
project is to provide a powerful microprogrammed facility which 
is available to many users within a multiprogrammed system. 
There are several important unique features about this project. 



R&D at Rand 83 

Fig . 10-1. Video Graphic System Console 

A microprogrammable CPU with writable control store is connected 
through a large-capacity, multiported memory to a conventional 
computer - in this case, a PDP-10. Figure 10-3 shows the con­
figuration of these machines. There are paths of direct communi­
cation between the microprogrammable CPU and the monitor CPU. 
Multiprogramming is accomplished by the PDP-10 acting as a 
monitor, and it is responsible for scheduling access to the services 
of the microprogrammed CPU. Task switching is similar to the 
switching which occurs among users of a conventional timesharing 
or multitasking system. Switching takes place at " natural" break­
points (i.e., waiting for terminal input) and at "forced" breakpoints 
according to an algorithm designed to maintain desirable response 
characteristics. The monitor engine handles all terminal and net­
work access to the facility and handles primary and secondary 
storage management and all compilation, program editing and 
debugging services for the service. The microcode store for the 
microprogrammed CPU is swappable from the shared core and can 
be swapped with completely new control code in about 2. 5 milli­
seconds ; to swap between two different users who are using com­
mon control code in the microprogrammed facility, the swap time 
is about 0. 5 millisecond. The control store for the micropro­
grammed CPU contains 5000 words: 4000 words of control memory, 
and 1000 words of registers (status, flip/ flops, and relocation 
constants. 
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Software 

Flexibility can be obtained in hardware through micro­
programming, as described above. We are also trying to 
obtain a maximum degree of flexibility in our software systems. 
As mentioned ear lier, one philosophical underpinning of our 
research is the desire to put computing power in the hands of non­
programmers. The traditional reason for the importance of having 
a programmer at the interactive terminal is the stupidity of con­
ventional computing systems. These systems must be instructed 
very precisely in a very exact language - and that is the process of 
programming. At Rand, we are trying to apply some of the tech­
niques of computer science known as "artificial intelligence" to 
make our interactive systems seem more intelligent to the user. 
For example, an intelligent terminal might be instructed by 
example or by analogy rather than by requiring explicit instruc­
tions. Two software research projects attacking this problem are 
CASAP (for Computer Assisted Specification of Algorithmic Pro­
cesses) and The Adaptive Communicator Project. 

CASAP 

CASAP attempts to simplify the task of directing a computer 
by providing the user with a form of specification as close as pos­
sible to that used between two intelligent humans. As such, 
CASAP is concerned with problems of understanding directions in 
a certain context; submerging details and filling them in; assimi­
lating new concepts; requesting further information in ambiguous 
or undefined situations; and integrating previous process specifi­
cations and adapting them to a new task or environment. Crucial 
to this project is the problem of representing information within a 
computer in such a way that relevance of information can be deter­
mined and so that general concepts can be used in specific instances 
which demand some modification and adaptation. 

The Adaptive Communicator 

The Adaptive Communicator project attempts to construct a 
flexible man-machine interface, not by detailed programming, but 
rather by having the user give examples of correct interface behav­
ior and for the interface system to automatically construct from 
those examples rules of behavior which will govern its interpreta­
tion of actions in the future. The basic approach of this project is 
to store all behavioral information acquired from the user in the 
form of pattern-replacement rules which can easily be added, 
deleted, and modified within a set of such rules. This underlying 
organization allows a flexibility in the interface which is not possi­
ble if that interface is coded within FORTRAN or some other tradi­
tional programming language. A prototype system based upon these 
ideas has been constructed in LISP and is currently undergoing tests. 
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Computer Security 

In any discussion of multi-access computing systems for use 
in military environments, the question of system security soon 
arises. Invariably, there is sensitive information within the sys­
tem whose distribution should be limited. Ideally, SECRET infor­
mation should be able to reside in a system to which uncleared 
persons have terminal access, with sufficient hardware and soft­
ware controls to guarantee correct access to all users and infor­
mation files. 

The traditional approach to the security problem has been 
physical security - having physical control over all terminals and 
I/O devices for a system in which classified information resides. 
However, it is becoming increasingly difficult to permit equal 
clearance of all users accessing a system at the same time, and 
to insure physical control of all facilities accessing that system. 

A solution to this problem involves the deeper question of 
the possibility of operating system certification. Rand is currently 
engaged in a major study of system certification, concentrating on 
three important aspects of the certification process: 

1. Assuring that the design of an operating system (and of 
the hardware features it relies on) is sound, 

2. Assuring that the implementation of that design is 
accurate - that the design has not been compromised 
either by coding errors or by deliberate attempts to 
subvert the design, 

3. Assuring that the system currently in operation is in 
fact exactly the system which was designed and imple­
mented - that it has not been modified in any unauthorized 
way. 

These are very difficult problems. We hope that the results 
from our study of them will allow multi-access computing in many 
areas where it is now difficult or impossible for reasons of security. 

ARPA Computer Network 

Another area of multiprogramming research at Rand involves 
work on interfacing our computing facilities to the ARPA Network 
of computers. We have constructed the interface through our Video 
Graphic System in such a way that any of our 25 Video Graphic 
terminals has complete access to not only the computers at Rand 
but, in addition, to th.e full facilities of the ARPA Computer Net­
work. We are currently experimenting with passing graphical 
information over this network and have been communicating with 
the University of California at Santa Barbara in an experiment to 
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use one of their interactive computing systems, the Culler-Fried 
system, with a graphical interface {including tablet input) on a 
video terminal at Rand. This experiment has been quite success­
ful and the interaction is as natural as if we were using one of our 
own computers to do the computation. 

Summary 

To summarize this brief survey of multiprogramming research 
efforts at Rand, we are fully committed to the concept of personal­
ized, generalized terminals which have access to a wide variety of 
computing services, and we are working on software techniques to 
make these services available to nonprogrammers in such a way 
that the terminal seems like an intelligent servant which can be 
instructed in a rational manner. We feel this emphasis is most 
important in systems for military operational use. By attacking 
the problem of system certification, we hope to allow multi-access 
computing to exist in many environments in which it is not now 
possible. 

Up to this point, I have concentrated on new technology being 
developed by our research program. But technology really isn't 
the problem. The problem is transferring this technology out of 
R&D labs and into the hands of operational military users. In 
addition, once information systems have been disseminated to the 
military there must be appropriate management structures in the 
Armed Forces to insure the proper integrated use of this 
technology. 

MANAGEMENT OF INFORMATION SCIENCES 
WITHIN THE MILITARY 

With the increasing emphasis on command and control sys­
tems and more sophisticated data collection through various 
sensors, information systems are having an increasing impact on 
the way the military performs its role. To help assess how these 
information systems should be treated within the military organi­
zational structure, I propose to use as a model an area where 
measures are more clearly defined - namely profit-oriented 
industry. There, the ultimate measure of how effectively informa­
tion systems are being used is the profitability of the corporation. 
First National City Bank in New York has a "computer-smart" 
group vice president; Eastern Air Lines has a vice president for 
computer sciences. We believe that by 1980 most major corpora­
tions will have a vice president for information sciences, and 
major decisions will be based upon use of information systems. 
Note that for a vice presidential post to be filled by computer 
people, it is necessary that the chief executive officer of these 
corporations have an understanding of the importance of informa­
tion science. 
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Prior to the creation of these high-level posts, computer 
expertise existed within autonomous centers within the corporate 
structure. In most cases, costs soared, there was a lack of 
central control over computing within the entire corporation, and 
many opportunities for the profitable employment of information 
systems were lost because no one at a sufficiently high level within 
the organization had the charter to perform these functions. Over 
time, responsibility for corporatewide use of information sciences 
has escalated to top level management. 

If industry is right in this trend, the military should pay 
attention. The benefits of having "computer-smart" persons at a 
high level are interesting and profound. Within the military organi­
zational structure, a high-level information specialist could pro­
vide both global and local guidance to contractors and research labs 
for computer-related development projects. Also, lower level 
decisionmakers would have someone with whom to communicate at 
higher levels without jargon-related barriers. 

In cooperation with the Air Force Scientific Advisory Board, 
members of Rand's Information Sciences Department have proposed 
an Assistant Chief of Staff for Information Sciences for the Air 
Force. I am not aware of any final action to date on this proposal, 
but it might serve as a model of what other services should con­
sider in this regard. We believe such a post is justified within 
military services based on the amount of money expended on infor­
mation sciences within the various services and on the importance 
of that technology to the performance of all missions within the 
services. 

TRANSFERABILITY 

In conjunction with the problem of effective management 
control of information science, there is the problem of trans­
ferring technology from research labs into operating agencies. 
For research ideas to become usable in the field, they need 
development, production engineering, and production, not unlike 
the steps a commercial product must go through before it can be 
manufactured. Most R&D labs are not equipped to carry research 
through this development chain. The burden should also not be put 
on operationally oriented users. The military is a prime supporter 
of research and development. It deserves the first crack at tech­
nology which it has underwritten, but it is currently not getting it 
- mainly due to the lack of an adequate transfer mechanism. 
Much transfer currently comes from private industry. It picks up 
some research and development and develops it on its own, but in 
the process that development becomes industry-oriented rather 
than military-oriented. The process of transferring research into 
this field should be controlled to a greater extent by the military, 
Currently, however, this charter does not seem to explicitly belong 
to any particular agency. I propose that as a step toward the 
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solution of this problem the charter of agencies funding research 
be broadened to allow the funding of development of that research 
and its transfer into operational use. Much of this transfer proc­
ess could be done by direct subsidy to industry, but it takes wisdom 
on the part of this agency to know what developmental work industry 
will do on its own (and therefore need not be subsidized by the mili­
tary) and what, out of the various research ideas existing within 
the lab, are the ideas that should be pursued and are candidates for 
development and eventual use. Again, having the correct manage­
ment structure would create a high-level center of expertise of 
information sciences which could be a source of wisdom in these 
areas. 

CONCLUSION 

In summary, we have some interesting research ideas - a 
Video Graphic System permitting up to 32 users to have sophisti­
cated graphical interaction with a system; we have a micropro­
grammable machine available to different online users; we have 
software techniques under development for making computer sys­
tems smarter and easier to talk to; and we are tackling the problem 
of the certification of hardware/ software systems for multiuser 
access. 

We know of application areas within the military for these 
systems and ideas, and we are actively pursuing the transfer of 
these ideas into operational use, but we neither have the facilities 
for carrying these ideas through the entire developmental process, 
nor are we often given the charter to do this. Until the military 
realize how fundamental to their mission the proper treatment of 
information systems is, and until they develop an integrated 
approach toward research, development, and use of these systems, 
there will remain a wide gap- between the facilities we develop at 
places like Rand and the facilities which are available to the 
operational users who most need them. 
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This chapter will review the work at Stanford Research 
Institute in information systems, covering first artificial intelli­
gence and then discussing in more detail the research currently 
in process on Large File Management Systems. 

With the program of the Augmentation Research Center, 
described elsewhere, we have a spectrum of research. The 
Artificial Intelligence Center is concerned with making a machine 
solve problems with a high degree of autonomy. At the other end 
of the spectrum, the Augmentation Research Center is concerned 
with providing the tools whereby humans, either singly or in 
groups, can better solve their problems. In between, the Large 
File Management program has as its general objective to make a 
creative synthesis of man and machine so that together they can 
solve problems. 

ARTIFICIAL INTELLIGENCE CENTER 

Stanford Research Institute has conducted research in artifi­
cial intelligence for about ten years. The program was started 
by Dr. Charles Rosen and is currently under the direction of 
Dr. Bertram Raphael. The basic goal of the program is to study 
problem solving and perception and to discover ways in which 
these capabilities can be automated. 

Robot Research 

The most visible part of the artificial intelligence program 
concerns a robot, in the form of a mobile vehicle that carries a 
television camera. The objective of the work with the robot is, 
first, to understand what elements are involved in problem solving 
and perception for a robot; second, to determine how these can be 
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implemented in the robot's environment; and, third, to determine 
how to realize the necessary algorithms as a set of effective 
machine programs. The robot is intended to deal with problems 
that, in human terms at least, are very simple. Specifically, it 
is given a task such as that of pushing a particular box into a 
corner of the room. Its strategy is to investigate the nature of 
its environment through a television camera and to analyze this 
picture into a model of its environment. Having completed this 
analysis, it proceeds to develop a strategy for achieving the goal 
and then seeks to execute that strategy. In the course of this exe­
cution it may discover something it has not recognized before; for 
example, that another box is in the way. When this happens, it 
seeks to incorporate this new information into its internal model 
of the environment and to revise its strategy for accomplishing its 
goal. It then returns to the execution mode. It is quite success­
ful in performing such tasks in this environment, although admit­
tedly it uses a great deal of computational power and much memory. 
One of the principal research tasks is to discover how to reduce 
the computational and memory requirements so as to permit the 
undertaking of more complicated tasks. 

One area of research on the robot has been to improve its 
perception of the environment. How should it process the com­
plex, ambiguous television picture that it picks up so as to produce 
a valid model of its environment? One possibility currently under 
investigation is the addition of other dimensions to the perception 
process. For example, this might include the use of color or of 
means for a direct measurement of distance. 

Another research area has been concerned with improving 
the effectiveness of the problem-solving algorithms. One way of 
doing this is to set up the system so that it learns by experience. 
After it has, for example, solved the problem of pushing a box into 
the corner, we would like to have it remember how it accomplished 
the solution so that in the future it will not have to solve the prob­
lem from scratch again. The obvious way is simply to store what 
it did. However, this so specializes the solution and becomes so 
highly dependent upon the particular details in which the task is 
undertaken, that the solution is almost worthless. The approach 
being pursued instead is to store a generalized form of the solution 
expressed in terms of various general parameters rather than 
specific locations. The key information is how the problem was 
broken down into subgoals. A large part of the strategic analysis 
undertaken on any problem is the development of a sequence of 
subgoals. For example, to push the box to the corner, the robot 
must place itself in position to push the box. The attainment of 
that position becomes a subgoal. It is possible to analyze a par­
ticular strategy in terms that are quite generally parameterized 
and to develop and store the list of subgoals and results. Some­
what unexpectedly, this approach is not much more difficult to 
realize than solving the problem in its specific forms as it exists 
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at the moment. This approach does lead to the possibility of 
developing a repertoire of generalized strategies. Hence, the 
robot is enabled to learn by experience. 

Speech Understanding 

Another area of research that is just getting started in the 
Artificial Intelligence Center concerns speech understanding. The 
goal of this new program (funded by ARPA) is to allow a person to 
talk directly to a computer. This may be considered a problem in 
artificial intelligence, since, when someone speaks in a fairly free 
form of English, the selection of the appropriate interpretation 
from the set of syntactically possible meanings is a very complex 
problem-solving task of the type often found in artificial intelligence 
work. 

This work relates rather closely to the continuing activity on 
various QI A (question/answering) languages for use with inferential 
file systems. This activity is deeply concerned with the repre­
sentation and analysis of natural and nearly natural language. 

Problem Solving Methodology 

Another major area of activity is research on automatic 
programming and theorem proving. This is very much at the heart 
of much artifical intelligence work. It is the basic approach used 
for problem solving in the robot. Given the problem of pushing the 
box into a corner, the system sets up a "theorem" that the box is 
in the corner. Finding that this cannot be proved, since it is, in 
fact, false, the system considers what the state of the system 
would have to be for the theorem to be provable. It considers the 
transformations that would lead to such a state. It considers a 
new theorem that one of these states does exist. If this theorem 
is provable, then the system has a strategy for achieving the 
desired goal. If not, it considers again what conditions would 
lead to the realization of one of these states. It continues to work 
backward this way until it has finally reached a provable theorem. 
From this state it can then work forward to develop a specific 
strategy that will lead to the desired goal if its understanding of 
the environment is sufficiently complete. The various states that 
make the successive theorems provable constitute the series of 
subgoals leading to the desired goal. This may seem like an 
indirect way of handling the problem, but is an effective procedure 
- and, most important, a general one - that can, in fact, be imple­
mented on existing computers. 

Applications Studies 

The final area of activity that I will mention is an effort to 
develop a program for applying artificial intelligence capability 
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within industrial environments. There are, of course, highly 
automated activities within industry handling repetitive jobs. The 
problem that we see here is that such machines function only in a 
very tightly controlled environment. It should be possible to use 
artificial intelligence procedures to expand the capabilities of 
these machines so that they become goal-seeking within a much 
more variable environment. One aspect of the problem is the 
need to add sensing capability that will allow the system to per­
ceive the environment as it exists, together with the capability of 
analyzing the perceptual data into an effective model of the exist­
ent environment. 

LARGE FILE MANAGEMENT RESEARCH SYSTEMS 

My own area of primary interest, Large File Information 
Systems, is a program started about ten months ago under ONR 
sponsorship. It is a long-range task aimed at the problem of 
providing computer support for management decisions. The goal 
is to discover principles, and means for their implementation, 
that will enable a system to provide interactive assistance to the 
manager in his decision-making role. 

The thought that motivates the program is that good mana­
gerial decisions require a very subtle integration of large and 
variant data files. The relevant data bases may be so large and 
complex, contain so many different types of data, and have 
inherently such great complexity of interrelations as to pose a 
considerable challenge to present-day computer power. The 
questions being asked may be subtle, involving considerable 
inference on the specific data elements. The design of the sys­
tem that will handle such a large and complex data base and that 
will be responsive to the needs of a manager probably represents 
one of the most difficult challenges facing the system designer at 
this time. 

There are, of course, many systems in existence that are 
intended to aid the manager. However, I do not think many would 
disagree that very few of the existing management information 
systems have lived up to their initial promises or achieved the 
degree of effectiveness that should be possible. Few, if any, are 
used by managers in their day-to-day decision making. 

Bottom-Up Approach 

It is evident that many existing systems have had their origin 
in the fact that there were certain operations in an organization 
that could profitably be automated. The first goal of the system, 
therefore, was to automate, for example, the accounting system, 
or payroll, or inventory control. Managerial information, in the 
form of routine reports, is then, typically, built on top of this to 
the extent that it is implemented at all. This does not deny that 
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the automation of routine operations is valuable, but such automation 
has very little to do with managerial processes. The key to all 
truly managerial action is precisely that it is not routine. The 
manager, when he is functioning as a manager, is always dealing 
with the exceptional situation. By definition this is nonroutine. 
The manager delegates routine to the subordinate and confines his 
attention to the unexpected and unusual. 

Top-Down Approach 

So far, I have outlined the evolutionary procedure that is 
sometimes called "bottom-up" design. The alternative approach 
has been called the "top-down" approach. In this approach, an 
analyst studies the organization and tries to determine what infor­
mation the manager needs. He then seeks to build a system to 
supply that information on demand. The difficulty with this 
approach is two-fold. First, it takes a substantial period of time 
to build the system (probably two years is minimal). This means 
that when the system finally becomes operational it is responsive 
to needs seen a substantial period of time before, but which may 
very well no longer be applicable. Of course, the perception of 
needs may have also been wrong to begin with! Second, the sys­
tem depends upon predicting the requirements of the manager. 
It is characteristic of the managerial situation that the environ­
ment in which the manager functions and the problems with which 
he deals change very drastically and rapidly. Further, these 
changes are essentially unpredictable. The manager himself 
doesn't know what changes will occur. If he did, he could set up 
the procedures in advance and delegate the decision process to a 
subordinate. It would no longer be a managerial concern. He 
might continue to be concerned with how well a problem was being 
handled, but he would not be directly concerned with the problem 
itself. 

In other words, as soon as a problem becomes predictable 
and the method of handling it can be specified, the manager, func­
tioning as a manager, moves his attention to a higher level and 
becomes concerned with a more global view of the operation. This 
higher-level consideration remains his concern precisely because, 
at that level, there are unpredictable factors. So I take it as 
inherent in the managerial situation that the manager cannot pre­
dict what problems he is going to be dealing with or what informa­
tion he will need to deal adequately with them. He responds to 
very subtle effects within the organization and within the world in 
which the organization is acting. Furthermore, his responses 
are to a large extent influenced by his own internal state of being, 
in that they depend upon his experience and his awareness of 
where there has been previous difficulty and success. So the 
manager is himself in a learning process and therefore adds a 
further unpredictable factor to the situation. Since the success 
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of the top-down method of approach depends to a large extent on 
the ability to predict future needs and use, it is inherently limited 
as to what it can achieve. 

Principle-Oriented Approach 

As a result of these considerations it occurred to us that it 
was necessary to find something in between these two general 
methods of approach. The approach we have found we sometimes 
call "principle-oriented." We argue that the system should be 
based on principles that are derived from top-down considerations. 
However, the actual implementation should include adaptation and 
evolution in such a way that it will come at least reasonably close 
to tracking the use of the system in the immediate environment. 
We can say, then, that the system will exist at any moment in a 
way that expresses a bottom-up kind of responsiveness. 

One of the first principles we see, therefore, is that the 
system should have the ability to adapt. Adaptation is an old 
word that has been applied in many areas of computer design and 
use. In a sense, any time a one-time memory assignment is 
done, there is adaptation. Any time the system includes a "paging" 
procedure or "virtual memory" structure, there is adaptation. I 
am using the word here in a more global context. Examples of 
what I mean include consideration of what procedures should be 
available in the system, what kind of searches of the data base 
should be available, and what procedures should be available for 
processing and outputting the result of such searches. The 
answers to these questions may change with time as managerial 
attention shifts. If the system is capable of tracking these 
changes, it will be adaptive at a level that involves the whole 
state of the system and the nature of its response to a given 
interrogation. 

The adaptation referred to here is that in which the system 
causes a change in its own configuration. This change may occur 
in any level from the specific implementation of a particular file 
structure to the choice of which files are maintained and where. 
It may include a change in the data structure type used in a file. 
The result will be to change quite drastically the procedures with 
which the system can respond to an interrogation. What we seek, 
then, is a set of concepts and principles that provide a general 
guide to information-processing systems design for supporting 
truly managerial functions. 

This line of thought led to the general schema shown in 
Fig. 11-1. At the top level is the box labeled Purpose, which is 
the motivation for the system. At the next level is the Nonadapta­
tive Properties of the system. These include those aspects of the 
system that provide the frame within which adaptation occurs. Most 
obviously, the hardware is nonadaptative. It may be evolutionary 
in the sense that it can be changed from the outside, and it probably 
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will be as time progresses. But at any given instant the hardware 
will be given. However, much more than the hardware is not 
subject to adaptation. We must, for example, have either a 
fixed format in the basic data file or at least some fixed rules for 
interpreting whatever is there. At some level the interpretation 
of data files must be nonadaptative. Another area is the interro­
gation language. It must either be nonadaptative or depend upon 
some metalanguage that is nonadaptative. In general, almost 
every function of the system must, at some level, have a non­
adaptative base of operations. 

In the next box is what we call the Operating Configuration, 
which describes the actual state of the system at a given time. It 
seems a valid inference that we would like to decouple, as far as 
we can, the operating configuration from the nonadaptative prop­
erties. The further apart these are, the greater the range of 
adaptation that is possible and the greater the opportunity for 
tracking changes in the environment of use. On the other hand, 
the further apart these two are, the harder it is likely to be to 
keep the system in a stable functioning state. This is really the 
crux of the problem: how to separate adaptativity from the non­
adaptative base so as to achieve the greatest possible range of 
adaptative response without having the system become unstable 
or nonresponsive. 

At the next level is the box labeled Reception, the means by 
which the system will receive from the outer world. It will include 
means for inputting and updating data and inputting any commands, 
interrogations, or any other communications from the outside 
world. The corresponding box on the other side is labeled Origi­
nation. This includes means of processing data in response to an 
interrogation and developing the reply to an interrogation. It will 
include the actual process of communicating to the outside world. 
This function will also include the issuance of any routine reports 
that are independent of any actual command. It may also include 
monitoring the data to provide automatic warning when the data 
suggest that something deserves the attention of the manager. 
Origination may function in response to either a reception or an 
internally generated command. 

So far we have not introduced any adaptation. The next two 
levels are concerned with this aspect. The first of these levels 
has the single box labeled Monitor. This has the function of keep­
ing track of what the system is doing, including both its use of 
the various resources within the operating configuration and the 
resources it could have used if they had existed. To put it anthro­
pormorphically, it will keep track of where the system is hurting 
and where it feels comfortable. This record will provide the 
system with evidence as to what its environment of use has been. 
To the extent that adaptation is based on extrapolation of past use, 
this record will be the major source of the decision as to what 
adaptation should be executed. 
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In some cases, the system may have additional information 
as to probable future use given either incidentally during inputted 
interrogations or as specific predictions from the user. Such 
information will be received through Reception. Priority Selection 
will integrate the information derived from the Monitor with this 
additional directly inputted information. To establish a goal for 
adaptation, it will establish what the configuration of the system 
should be on the basis of the existing information available to the 
system. 

The determination of the target configuration for adaptation 
will still not be sufficient. This target must be integrated with the 
ongoing operations of the system. It must also be modified accord­
ing to the cost of executing the desired adaptation and the value 
that is expected to accrue from it. These processes will be per­
formed in the box labeled Reconfiguration, which will serve as 
the executive for the actual adaptation process itself. 

The need for the evolutionary process will remain. By 
this is meant the changes introduced by command from an exter­
nal source, which we call the system manager. Evolution must 
come into play when the scope of the system is to be enlarged or 
when new facilities are to be added. It may also come into play 
because of a sudden drastic shift in the external environment; for 
example, the occurrence of an international crisis. This might 
dictate a sudden shift in the environment of use, which could be 
anticipated by the system manager but which would not be recog­
nized quickly enough by the adaptative procedure. In such a cir­
cumstance, the system manager might be required to intervene, 
to cause a change in the operating configuration by direct com­
mand. More frequently the system manager will be concerned 
with tuning up and expanding and improving the adaptation process 
itself. He will seek to improve the prediction algorithm, and 
perhaps the priority selection algorithms, to improve the adapta­
tion process. The ideal use of the evolutionary capability, as we 
see it, would be analogous to a higher level adaptation rather than 
a substitute for adaptation. 

Given the general scheme, the next step is to expand it to 
something that will begin to describe a possible system. This has 
led to the functional block diagram shown in Fig. 11-2. 

Figure 11-2 is laid out to more or less correspond to the 
schema of Fig. 11-1. The correspondence is not exact but does 
follow through fairly well. (Also, there are possible variations 
in this functional block. ) My intent is to show that the system 
concept is feasible and to indicate the main problem in which 
research is needed. 

Corresponding to the nonadaptative properties is the non­
adaptative file system. Its primary contents will be the raw data 
in updated form. Although some adaptation may be possible within 
these data files, this must be done with great care. In an adapta­
tive system, the user does not know the exact current state of the 
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system, yet he must be able, as a last resort, to refer his 
questions back to the raw data without ambiguity. Further, the 
main data files are presumed to be very large, perhaps being con­
tained on many tapes. A change requiring the reprocessing of the 
data files will therefore be very expensive and should be under­
taken only to accrue a substantial benefit. Generally, data files 
should not be subject to adaptation. 

Corresponding to the Operating Configuration is the Operat­
ing File system. The main content of this box is termed the 
utility Files. These files will be derived from the main data 
files and will, it is hoped, be sufficient to handle most of the 
interrogations of the system. We visualize the utilities files as 
being sufficiently small to be held within the system, at least on 
the disc memory. Our intention is that most of the processing 
done by the system will be through the utility files, with the data 
files being referred to only in a default situation where the utility 
files are insufficient. For this purpose, the utility file system 
will contain various compilations and samplings, and whatever 
else seems to be appropriate to the expected environment of use. 
The immediate area of adaptation will then be on the questions of 
what utility files are to be maintained and how often they are to be 
brought up to date. In addition, there may be adaptation of the 
actual structures of some utility files. There are file structures, 
some of which we have studied, whose structures can be manipu­
lated adaptatively without excessive difficulty. 

The Reception system will receive new data, update of old 
data, and validate data. Data validation is an exceedingly impor­
tant problem in any practical system. The degree to which 
incorrect data are screened out of the system will have a great 
deal to do with the manager's acceptance of the system. To 
anticipate, this is one identified area of research we feel to be 
necessary. 

The Reception system will also verify the user's right of 
access. This will involve security and privacy considerations. 
This function is important, even though we do not consider it 
intrinsic to the research purposes of the program. 

The Reception system will also interpret the user's interro­
gation. This will involve more than simply providing an interro­
gation language. Since the operating configuration is separated 
from the user, he will not know exactly what utility files are 
available or how current they are. He must, therefore, be able 
to enter his interrogation in a way that is independent of the 
operating configuration and that does not specify the precise pro­
cedure to be used in response. This, then, imposes quite different 
restraints on the interrogation language from those that are usually 
involved in the interface between computer and user. 

The block labeled Origination system will have the task of 
responding to interrogations or, as appropriate, to an internally 
perceived need (if an automatic warning capability is included). 
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Because the configuration that the system is in at the moment will 
not be visible to the user, the Origination system must be able to 
accept the interrogation and translate it into a program that will 
function effectively with the existing utility files. For example, a 
particular interrogation may be easily handled by using certain 
utility files. These files, however, may not be fully up to date. 
Beyond their date it may be necessary to use a default procedure 
having recourse to the primary data files. The Origination system 
must determine a strategy appropriate to the existing state of the 
system and respond accordingly. 

Coming to the Monitor system and the adaptation processes, 
we expect to keep track primarily of the use of the utility files 
and, perhaps, of the various subprograms. As we now visualize 
the functioning of the Origination system in response to an interro­
gation, it will construct a strategy or a program that will be 
responsive to the interrogation. This program will be checked 
against the existing utility files to determine that it is operable. 
If it is, Originations will execute it and pass to the Monitor system 
the information that these utility files have, indeed, been used. 
If the program is not executable because the required utility files 
are lacking or not sufficiently up to date, this information will be 
passed to the Monitor system, and the Origination system will 
then construct a second-best program. This process will con­
tinue until a program is found that will run, in the worst case, by 
default to the data files themselves. The Monitor system will 
then receive information about which files were used and also 
about which files were sought but not found usable. 

The record of use and unavailability-for-use will be passed 
from the Monitor system to the Priority system, where it will be 
combined with any other information about probable future use. 
It will also be coordinated with the cost functions that determine 
the costs of making various changes to the utility Files. The 
Priority Selection system will compile a priority list of changes. 
This, in turn, will be passed to the Reconfiguration system that 
integrates the priority list with current operations and constructs 
a reconfiguration plan. The Reconfiguration system will also 
command the execution of this plan when it is appropriate in terms 
of the current usage of the system. 

Finally, the Reporting system will output the information to 
the system manager for use in guiding system evolution. This 
system will obtain its information primarily from the Monitor, 
Priority Selection, and Reconfiguration systems. 

The above gives some idea of the SRI system concept. Con­
siderable elaboration of the concept is available in the First 
Technical Report on our contract, which is available to those who 
are interested. The main purpose of this analysis, however, has 
been to identify the areas of research that are urgently needed for 
this type of system. In general, we have identified seven such 
areas. 
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RESEARCH AREAS 

The first area of research identified is the adaptative process 
itself. Much analysis has been done on the general concept, but we 
do need to obtain direct experience of such a process in order to 
determine what really will make it go. Therefore, one of the pri­
mary areas of research will be to set up a data base in which we 
can play adaptative games on an effective and realistic level. The 
data base chosen is being drawn from the Navy 3M system (Mainte­
nance and Material Management). The 3M system receives a 
report of every maintenance operation performed in the Navy, as 
well as collateral inputs; it is, therefore, a huge data base. We 
are acquiring a small subset of it for use in our system, which 
may be extended as time goes on. The scenarios we intend to con­
struct on it initially are concerned with setting up and monitoring 
operational standards. 

The second main area of research will be in data file struc­
tures themselves. Much work has gone into file structures for a 
large number of systems, and considerable experience has been 
gained with them. However, a significant difference of emphasis 
is imposed by our particular use of these files. In general, a file 
structure usually is chosen to facilitate some particular uses. 
Here, however, the primary use of the data files will be to con­
struct the utility files. Since this can be done when the system is 
not otherwise occupied, the efficiency of this operation will not be 
of major importance. The primary concern is to ensure that no 
information is lost. We shall also need to be sure we can input 
data revisions with relative convenience and with the least interrup­
tion of system operation. In our data files, the efficiency of use 
must take a much lower priory than the efficiency of adding to or 
modifying the resident information. This will put quite a different 
condition on file structure than is normally the case. Hence, 
research is needed to determine the implications of this shift in 
emphasis. 

The third area of research will be the actual generation of 
the response in the Origination system. How is the response to be 
generated from the input interrogation and current knowledge of the 
system? This is vital, because we want the system itself to be 
essentially transparent to the user. The user, particularly if he is 
a high-level manager, is not going to worry about just which utility 
files are up and which are unavailable. The system itself must 
make this connection and put the appropriate pieces together. A 
related question in this area of research has to do with the capabili­
ties of the query language being used. To illustrate, consider the 
use of what may be called indefinite qualifiers. This includes 
words like much or many or generally, or for example, the state­
ment: A is usually followed by B. What does this usually mean in 
this context? Such words are not normally part of the programming 
language; yet they seem to be inherent in the thought processes to 
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which we are trying to respond. Probably the most critical period 
in the managerial decision process is when the manager is trying 
to pin down exactly what it is that he should be concerned with. He 
is, perhaps, groping towards some possibility that he only dimly 
senses. At such times, he can describe his notions only in inten­
tionally vague terms. I am not convinced of the importance of a 
true natural language capability, but I strongly suspect the system 
we hope to achieve here will have to reflect modes of thought that 
are possible with a natural language. 

The fourth area of research concerns the utility files. What 
should be their structures? Are they to be adaptative in themselves 
and, if so, how? There are possibilities for self-adaptative file 
structures, some of which we have begun to study. What are the 
implications of these various possibilities? How should we choose 
between different possible structures for the utility files? Another 
question involved here is that implied in the statement that any 
utility file is in some sense a compressed version of the data file. 
It is compressed because it is much smaller and also entails con­
siderable information loss. Different kinds of compression entail 
different kinds of information loss. There is a need to understand 
the tradeoffs involved and to explicate the principles upon which 
the necessary decisions should be made. 

The fifth area of research concerns interactive processes for 
hypothesis generation and test. This is really at the heart of 
modeling problems. It is also at the heart of making a truly 
creative synthesis of the man and the system in terms of model 
building. The extent to which the system can accept vaguely 
worded, probing types of hypotheses will largely determine the 
subtlety of the interaction obtainable. The system that has subtle 
response capabilities in this area will permit the user to feel his 
way into his problems. It will generate the kind of mutual creativ­
ity we would like to achieve. 

The sixth area of research is data verification and validation. 
Data validation is seen as having three aspects. The first concerns 
the collection of the data and its input into the system. This aspect 
is outside the system itself and, although it is a key operational 
area, it is not an area of immediate concern to us. The second 
aspect is validation on entry. This concerns the question of whether 
the data are properly formatted and whether the values are reason­
able or otherwise not obviously wrong. At its most immediate 
level, this aspect involves checking for format, for self-consistency, 
and against various predetermined tests for possibility or plausibil­
ity. At a higher level, the plausibility tests themselves can be 
adjusted adaptatively as experience is acquired. This leads to 
some interesting questions of strategy and of the measures of value 
and cost that should be used. 

The third aspect of data validation concerns the possibility of 
cross-checking data already within the system to determine whether 
they are consistent with a possible or probable model.of the world. 
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This aspect is very closely related to the problem of hyPothesis 
generation and test; the difference, perhaps, is that here we are 
talking about hypotheses that are internally generated and that are 
confined to a much smaller range of possibilities. 

The seventh and final area of research identified is output 
generation. It is recognized that the ability of the manager to per­
ceive relationships among data is highly dependent on the precise 
way the data are presented to him. The presentation of the out­
putted information is very important to making the system an 
integral part of the decision-making process. Consequently, great 
care must be taken in how we exploit the capability of various 
kinds and modes of data presentation. I do not refer to the specific 
hardware that should or should not be used, but to the manner in 
which that hardware is used, including, for example, whether the 
data are presented as graphs, tables, movies, or what. Research 
is needed to identify the appropriate means to use under different 
conditions. 

SUMMARY 

This completes the survey of our work on large file manage­
ment systems. We are at the beginning of what we hope will be a 
continuing research effort. Therefore, the work so far has been 
mainly concerned with determining the directions to take. At 
some future point, I hope to report specific results on the several 
problems delineated here. 



PART Ill. RESEARCH PROJECT REPORTS 

The ten chapters in this section are representative of the 
research, development, and survey projects currently under way 
in the multi-access area. They cover a broad area of applications, 
including potential consumer, industry, and government users. 
The chapters have been divided into three general categories of 
software, hardware, and man/machine systems. The separation 
is, however, quite arbitrary and most papers cover material in 
all three areas. 

SYSTEMS SOFTWARE 

This category includes three papers whose primary emphasis 
is on data management systems and operating systems. 

Dr. Wier presents Bell Labs' experience in developing data 
management and retrieval systems and discusses some of the data­
based applications they have in operation. Dr. Corbato presents 
the history of the Multics System at Project MAC of MIT. Dr. 
Liskov then discusses the microprogramming and software involved 
in the Venus Operating System. 

PROCESSING SYSTEMS 

This category contains three papers whose emphasis is com­
puter or terminal hardware. 

Mr. Volk presents an interactive system utilizing cable TV 
that is being tested for such applications as computer aided instruc­
tion. Dr. Bell discusses performance evaluation before and after 
implementation, using a graphics terminal as an illustration. Mr. 
Weitzman then presents the results of a recent survey and forecast 
of computer hardware performance and capabilities. 

MAN/MACIIlNE INTERACTION 

This category contains four papers whose emphasis is on man/ 
machine dialogue or machine augmentation of human capabilities. 

Mr. Bernstein discusses three projects leading toward a more 
natural man/machine dialogue; a natural English data retrieval 
system, a speech understanding system, and a data tablet graphic 
and hard printing input system. Dr. Dostert presents the Rapidly 
Extensible Language (REL) System being developed at Cal Tech. 
It offers the ability to dynamically tailor an interactive language 
through definition of terms and interrelationships. Dr. Goodenough 
discusses a computer-directed training system that is oriented 
toward on-the-job training. Dr. Dixon then closes the section with 
a paper on some of the analysis systems being developed and used 
in the health sciences area at UCLA's Health Services Computing 
Facility. 
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OTHER CURRENT RESEARCH PROJECTS 

The ten papers included in this section are only a small 
cross-section of the research being performed today under govern­
ment sponsorship and do not encompass the wide varieties of 
multi-access computing research currently under study. 

To obtain a broader cross-section of current research 
endeavors, one need only observe some of the specific activities 
being funded by the Information Processing Branch of ARPA, the 
Advanced Research Projects Agency of the Department of Defense. 
A detailed accounting of the individual research projects would fill 
volumes. Thus, only an indication of some of the key projects at 
each of 22 ARPA funded labs is provided on the following pages. 

1. University of California, Berkeley 

New computer architectures-studies based on a highly 
modular structure employing a number of CPU's memory 
modules, discs, etc. 

2. Bolt, Beranek and Newman, Inc. 

Natural Communication with Computers - Application of 
a semantic network memory; development of an exten­
sive augmented, transition net grammar of English for 
data retrieval; further development of LISP for PDP-10; 
and development of the TENEX time sharing operative 
system for PDP-10. 

HARDWARE DESIGNS FOR ARPA NETWORK IMPS 

3. Harvard University 

The ARPA Network - Hardware interfaces between PDP-10 
and IMP; software contributions to network protocol. 

Computer Graphics - Introduction of remote computation 
facilities in aid of graphics. 

4. Washington University, Computer Systems Laboratory 

Molecular Graphics - Using a computer system to 
manipulate and display models of molecular graphs. 

Macromodular Systems - Establishment of a pilot inven­
tory of electronic computer units. 

5. Stanford Research Institute, Augmentation Research 
Center (ARC) 

I 

I 
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Network Information Center - Will provide online 
network information services for the ARPA network. 
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Dialogue Support System - Provides means for accumu­
lating, retrieving, and studying the communications 
generated with ARC. 

6. University of Utah 

Waveform Processing - Use of computers to process 
signals (both pictures and sound). 

Graphics - Development of economical graphic communi­
cation systems useful in human tasks. 

Computing Structures - Real-time experimentation with 
novel computing systems and components. 

7. Stanford University, Heuristic Dendral Project 

Artificial Intelligence - Focused on understanding the 
processes of scientific inference in physical chemistry. 

8. MIT, Lincoln Laboratory 

Graphics - Development of graphic man-machine com­
munication techniques. 

9. Network Analysis Corporation 

Network - Analysis and design of the ARP A network; 
studies of properties of large computation-communication 
networks. 

10. Case Western Reserve University, Project LOGOS 

Security - Creation of a design tool to produce systems 
that are certifiable as being secure. 

11. University of California, Santa Barbara 

Networks - Online software systems developments for 
the ARPA network. 

Speech - Research effort into techniques for voice input. 

12. Applied Data Research, Inc. 

Research in machine-independent software programming. 
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13. UCLA 

Networks - Specific areas under investigation include 
network software, network measurements, and computer 
systems modeling and analysis. 

14. Dartmouth College 

Time-shared Computing Systems - Projects include 
continuing development of the Dartmouth Time Sharing 
System; graphics display devices, and applications in 
library automation and radiology treatment. 

15. MIT, Project MAC 

See Chapter 13 for a complete report on MULTICS. 

16. Computer Corporation of America 

Investigations of data handling in computer networks. 

17. University of Illinois 

ILLIAC TV - Total hardware and software systems 
development. 

18. MIT, Artificial Intelligence Group 

Robotics - Development of high-level hand-eye system 
for economic planning decisions. An associated project 
is to develop an English semantics program appropriate 
to robotic environment. 

PLANNER Language - New programming language 
important in solving problems. 

Mathlab - Continued development of a facility for auto­
mated algebraic manipulation. 

19. Carnegie - Mellon University 

Artificial Intelligence - Variety of studies in program­
ming languages, automated theorem proving, semantic 
networks, chess and protocol analysis. 

Hardware - Studies on the design of register transfer 
modules for digital systems designs. 

20. stanford Research Institute, AI Group and Computer 
Science Group. 
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Artificial Intelligence - Various studies in goal seeking 
and problem solving methodologies in robotry, speech 
understanding, and in industrial applications. 

Large File Management Research- A study program 
seeking to understand how informational systems can 
be made responsive to the needs of high level managers. 

21. RAND 

Climate Dynamics - Focused on the problem of climate 
determination and control. 

Networks - Development of programs to utilize remote 
resources. 

Adaptative Communication - Attempt to make the man­
machine interface more flexible and man-oriented. 

Computer Program Organization - Study to provide the 
interpreter of problem oriented languages with judgment 
and problem solving power. 

Computer applications to the military - Enable the mili­
tary to more effectively utilize computer research. 

22. System Development Corporation 

Computation-Communication Tradeoff Studies -Design to 
investigate a possible mismatch between DoD computation 
and communication requirements in the 1975 to 1980 era. 

Natural Languages -The CONVERSE system is con­
cerned with constructing and querying online data bases 
in natural English. 

Graphic 1/0 - Development of interactive computer 
graphics capabilities. 

Voice I/O - Development of man-machine interaction 
systems using continuous speech. 

Networks - ARPA network protocol research effort and 
application of graph theory to compiler organization. 

Security - Provide practical security controls in multi­
access systems. 

Information on any of these projects can be obtained by writ­
ing directly to the research lab of interest. 



12. Interactive Information Systems 
Joseph M. Wier 

Bell Telephone Laboratories 

Holmdel, New Jersey 

We've been in what I call the information management business 
for seven years. We began by undertaking a number o( studies of 
the switching requirements of the Bell System. In each case, the 
studies involved a relatively large mass of descriptive data charac­
terizing the switching plant and its environment. Typically, it 
seemed continually necessary to return to the basic information for 
different or more precise results. 

Programming a new look at the data base using standard batch 
processing techniques was tried at first. Later, precomputed sum­
maries were attempted which hopefully would answer the more 
important questions. The tailored. program approach was adequate 
for straightforward questions with no time pressure. The precom­
puted summaries worked for questions lending themselves to pre­
planned computations, but the data produced was an unmanageable 
four foot pile of computer printout. 

Both efforts strongly suggested the desirability of more 
immediate and flexible data access. Thus, the results have been 
a sequence of information systems, each built on knowledge gained 
from previous systems and tied to some application or applications. 
The early systems were "hard-wired" information retrieval- only 
systems. Later ones included both data retrieval and data entry, 
extensive administration capability and vastly improved levels of 
speed, modularity of design and portability. 

In evolving, the systems began to assume a form dictated by 
their applications. The following characteristics are perhaps 
worth noting: 

1. The data bases were hierarchically oriented. 

2. The systems were built on time-shared computer operat­
ing systems. 
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3. Most of the systems were used by large numbers of 
people distributed over large geographical areas. 

4. Most of the users or potential users were not 
programmers. 

5. Many of the users were possessed of a low level of 
technical training. 
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Because broad system access was necessary, commercial 
time-sharing services were used. To meet the needs of a broad 
class of users, the basic complexities of the systems are hidden 
behind a simple facade and responsibility for keeping the user out 
of trouble and the system protected is vested in the information 
system. These requirements resulted in demands placed on the 
time-sharing systems that could not always be conveniently met, 
including requirements for: 

1. Relatively large core storage ( > 128K bytes). 

2. Large random access secondary storage (tens of millions 
of bytes). 

3. Programmer control of file access. 

4. A time-sharing accounting system allowing extensive 
user interaction but individual charging. 

5. Extensive program and file sharing capabilities with 
programmer control of these interactions. 

6. A computational capability large enough to support many 
users with rapid response. 

The systems have all evolved toward a specific modular 
form. The current system is split into roughly four packages. 

1. An administrative package for taking care of the endless 
details associated with collecting, changing and monitor­
ing data base performance. 

2. A "front end" language package allowing the user to 
specify his own user and job oriented language and to 
implement it without appreciable delay. It also serves 
to parse the resulting language and to supply suitable 
information at a standard internal interface to serve 
other system packages. 
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3. A processor package for composing internal calls on a 
data management system to store, change, and retrieve 
from the data base and for returning information to the 
user, if required. 

4. A data management system for organizing, adding to, 
retrieving from and administering hierarchically organ­
ized data bases. 

These packages will not be discussed in any detail, but the 
latter three are characterized by the applications leading to them. 

The languages were generated by a compiler-compiler, 
which prepares tables describing the language in syntactic and 
semantic context from a modified BNF description. These tables 
are used by a run-time system for executing user-machine conver­
sation. The system generally uses a keyword-oriented, phrase 
structured grammar. It is readily understood, but no attempt is 
made to make it totally free, even in appearance, because normal 
English is too ambiguous. We thus sacrificed appearance for 
accuracy. After years of use by non-programmers, we are not 
sorry. However, as our users tend to need rather straightforward 
results, most of the processing is simple in concept, although 
requiring a good deal of computation. It is possible to produce 
processors independent of the organization, size and content of the 
data bases used. Because of the interactive nature of queries, 
additions and changes made to the data, it was desirable to limit 
the complexity of executed requests so that the user maintains a 
running intuitive understanding of the process he is controlling. 
By so doing, the user feels that he is part of the process and 
actually contributes materially by recognizing significant results 
and choosing useful directions for later interaction. 

The data management system separates the description of the 
structure of the data base from the storage of the data. It manages 
the allocation, storage, and retrieval of information and directs 
data base computations. To service numerous users out of the same 
data base, it allows for concurrent actions by many users. The 
system is designed to work in an interactive environment where 
change is frequent. The hierarchical structure of our data bases 
is mirrored in the method of managing the data. In some cases 
the hierarchical bias will make the system less useful for other 
forms of data, but the sacrifice will not show in our applications. 

To further circumscribe the types of systems we have built, 
let us look at some simple requests which show the character of 
an interaction. The following are representative of the system 
although the data bases implied are fictional. 

PRINT EMPLOYEE NAME, SOCIAL 
SECURITY NO.: IN NY COMPANIES: 
WHEN AGE = 63: GO: 
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TOT AL SALARIES: IN COLORADO: 
WHEN TOWN WORKED = DENVER AND 
CLASSIFICATION= SALESMAN: GO: 
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All of the usual synonyming, order interchanging, multiple 
syntaxing, diagnostics, and aids go along with the system. In addi­
tion, virtual data base elements can be added by defining new 
elements as functions of those stored in the data base. An example 
is: 

LET PERF RATIO= SALARY/AVG SALARY 

The new element, PERF RA TIO, can be used as though it 
were in the data base. It will merely be computed as needed from 
items already contained in the data base, in this instance SALARY 
and AVG SALARY. 

It is characteristic of the applications we have serviced that 
the users are spread over the Bell System. This situation shapes 
the form of our interactions as these users largely employ tele­
typewriting terminals made by the Teletype Corporation. Thus, 
the systems we design anticipate this environment and so no special 
or sophisticated terminals are serviced. This rules out all light­
pen cathode-ray-tube operations and limits graphical output to very 
simple teletypewriter types. Similarly, higher speed terminals 
are also not serviced and so any transactions involving higher 
printing speeds are also ruled out. This further simplifies the 
individual transaction. 

Some of the things we have learned are probably typical only 
of our applications. Most of them we feel to be rather more general 
than that as they follow from the behavior of people rather than 
from the specific requirements of the jobs we have carried out. 

The first and probably most important observation concerns 
the system user. He is both our worst enemy and our greatest 
ally. He is our worst enemy because he, by indirection or con­
scious effort, tends to poor memory, sloppy work habits, careless 
reading of manuals, and incomplete knowledge of the information 
stored. He thus will misuse and misunderstand any system that is 
not carefully protected from such treatment. On the other hand, 
he has some capabilities not found in even the most ingenious of 
computer systems. He has better knowledge of his job and situation 
than is available from any other source; he is an extremely talented 
pattern recognizer, who can detect significance or regularities 
with astonishing ease; and only he will have the capability to act 
and to judge on any action. In such roles, he is an indispensible 
ally and allows the combined user and information system to do 
things which would not be possible for either alone. 

To service him, it is necessary to remember that he has the 
usual human failings and to design the system to accommodate these. 
Furthermore, since it is better he be an ally than an enemy, it is 
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wise to help him in his efforts and to ignore his lapses. Thus, 
our system comes equipped with many peripheral aids such as 
diagnostics, which are not critical of the user, teaching aids, 
catalogs, initializing processes and system trapping of abnor­
malities. In general, the system should be helpful under all con­
ditions of adversity. It should anticipate the many unusual 
difficulties the user can precipitate and help him out of them. 

A second important lesson is that the user is the standard 
to which the system is tuned. If it fails, the system is at fault, 
not the user. To ignore this principle is to be ignored by the user 
at best and to be sabotaged by him at worst. 

A third thing we have learned is that the system should not 
bore the user. Thus, the system must produce reasonable 
response time and should do something for him that he needs 
done. Not only does poor service annoy the user; it also handi­
caps him in solving his particular problem. The considerable 
lapses in time between interactions can take his mind off the job 
he is doing and can lower his efficiency in using the data he gets 
from the system. The user and information system work together 
to deal with the problem on the user's mind. Prompt response 
holds off boredom and demands less of the user's somewhat fallible 
memory. It also tempts the user to apply his talents in pattern 
recognition and decision making more frequently and that, in itself, 
often speeds the information system along the path it must follow. 

In each of the first three points, it cannot be overempha­
sized that the user is not the fool that computer people some­
times paint him. He happens to be good at some things needed 
to solve the problems at hand. Fortunately, the user's weak­
nesses are the information system's strengths. Thus, they work 
well together. 

A fourth lesson thrust upon us is that good systems can be 
designed only in the presence of the potential users and applica­
tions. By using the system in numerous applications and assidu­
ously watching its performance, it gradually can be adapted to 
the needs of the application and the user. Ingenious ivory tower 
solutions frequently do not work or they solve problems that don't 
exist. 

A fifth principle is that things should be kept simple for the 
user. The more complex the system, the more likely it is that it 
won't get used or will be misunderstood or misused. Thus, it 
should be easy to sign on to the system; it should be easy to learn 
to use it; it should not change rapidly or without adequate warning; 
it should provide results which are easily absorbed in one "mind­
ful"; that is, the results should fit intuitively into the user's picture 
of things; it should present data in a form easily absorbed by the 
user; it should use his responses to help it get results, which 
implies that it should use simple user-oriented instructions; it 
should enable the user to make simple checks or experiments in 
a way natural to him. 
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Sixth, the system should do something for the user, 
something he wants or potentially needs done. To achieve this 
end, it is necessary to listen to the users, to look for their 
criticisms, to study their uses, and to keep a journal file to 
watch it in operation. Most important, it is necessary to look 
for signs of disenchantment, most notable by a reduction in use. 
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Finally, the total problem will not be solved quickly. The 
systems won't fit all potential applications functionally; it will be 
too costly in some cases; the terminals won't be available in 
others; the state of the art won't allow an adequate solution in 
many instances; and finally, users may not be ready for it. Thus 
one conclusion may be that abandonment is in order in some 
applications. 

We have attempted to apply these observations to the design 
of our existing system. It has achieved relatively wide acceptance. 
It is not at the state we would like to see it. It is somewhat more 
complex to use than we would like. It costs too much to store 
information. The access costs are too high for many systems. 
We still occasionally find users who get into difficulties. We are 
not entirely happy with the user terminal situation. However, it 
does operate. It does service nonprogramming users. It does 
aid a user to understand complex data bases. It can handle enough 
information to meet many important applications. Further, it can 
service enough users so that the data base serves as a real coordi­
nation point for the situation mirrored there. 
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In 1964, following implementation of the Compatible Time­
sharing System (CTSS)l, 2, serious planning began on development 
of a new computer system specifically organized as a prototype of 
a computer utility. The plans and aspirations for this system, 
called Multics (Multiplexed Information and Computing Service) 
were described in a set of six papers presented at the 1965 Fall 
Joint Computer Conference3, 8. The development of the system 
was undertaken as a cooperative effort involving Bell Telephone 
Laboratories (from 1965 to 1969), the computer department of 
the General Electric Company,** and Project MAC of MIT. 

Implicit in the 1965 papers was the expectation that there 
should be a later examination of the development effort. From 
the present vantage point, however, it is clear that a definitive 
examination cannot be presented in a single chapter. As a result, 
the present chapter discusses only some of the many possible 
topics. First we review the goals, history, and current status of 
the Multics project. This review is followed by a brief descrip­
tion of the appearance of the Multics system to its various classes 
of users. Finally, several topics are given which represent some 
of the research insights which have come out of the development 
activities. 

This organization has been chosen in order to emphasize 
those aspects of software systems having the goals of a computer 
utility which we feel to be of special interest. We do not attempt 

*This paper is a reprint of the paper entitled "Multics: The First 
Seven Years" by F. J. Corbato, J. H. Saltzer, and C. T. Clingen 
presented at the 1972 Spring Joint Computer Conference. 

**Subsequently acquired by Honeywell Information Systems, Inc. 
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detailed discussion of the organization of Multics; that is the 
purpose of specialized technical books and papers.* 

GOALS 

117 

The goals of the computer utility, although stated at length in 
the 1965 papers, deserve a brief review. By a computer utility it 
was meant that one had a community computer facility with: 

1. Convenient remote terminal access as the normal mode 
of system usage; 

2. A view of continuous operation analogous to that of the 
electric power and telephone companies; 

3. A wide range of capacity to allow growth or contraction 
without either system or user reorganization; 

4. An internal file system so reliable that users trust their 
only copy of programs and data to be stored in it; 

5. Sufficient control of access to allow selective sharing 
of information; 

6. The ability to structure hierarchically both the logical 
storage of information and the administration of the 
system; 

7. The capability of serving large and small users without 
inefficiency to either; 

8. The ability to support different programming environ­
ments and human interfaces within a single system; 

9. The flexibility and generality of system organization 
required for evolution through successive waves of 
technological improvements and the inevitable growth 
of user expectations. 

In an absolute sense the above goals are extremely difficult 
to achieve. Nevertheless, it is our belief that Multics, as it now 
exists, has made substantial progress towards achieving each of 
the nine goals. **Most important, none of these goals had to be 
compromised in any important way. 

*For example, the essential mechanisms for much of the Multics 
system are given in books by Organick9 and WatsonlO. 

**To the best of our knowledge, the only other attempt to compre­
hensively attack all of these goals simultaneously is the TSS/360 
project at IBMll, 12, 13. 
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IITSTORY OF THE DEVEWPMENT 

As previously mentioned, the Multics project got underway 
in Fall 1964. The computer equipment to be used was a modified 
General Electric 635, which was later named the 645. The most 
significant changes made were in the processor addressing and 
access control logic, where paging and segmentation were intro­
duced. A completely new Generalized Input/Output Controller 
was designed and implemented to accommodate the varied needs 
of devices such as disks, tapes, and teletypewriters without pre­
senting an excessive interrupt burden to the processors. To 
handle the expected paging traffic, a four-million word (36-bit} 
high-performance drum system with hardware queueing was 
developed. The design specifications for these items were com­
pleted by Fall 1965, and the equipment became available for soft­
ware development in early 1967. 

Software preparation underwent several phases. The first 
was the development and blocking out of major ideas, followed by 
the writing of detailed program module specifications. The result­
ing 3000 typewritten pages formed the Multics System Programmers' 
Manual and served as the starting point for all programming. 
Furthermore, the software designers were expected to implement 
their own designs. As a general policy PL/1 was used as the sys­
tem programming language wherever ifossible to maximize lucidity 
and maintainability of the systeml4, 1 . This policy also increased 
the effectiveness of system programmers by allowing each one to 
keep more of the system within his grasp. 

The second major phase of software development, well 
underway by early 1967, was that of module implementation and 
unit checkout followed by merging into larger aggregates for 
integrated testing. Until then, most software and hardware diffi­
culties had been anticipated on the basis of previous experience. 
But what gradually became apparent as the module integration 
continued was that there were gross discrepancies between actual 
and expected performance of the various logical execution paths 
throughout the software. The result was that an unanticipated 
phase of design iterations was necessary. These design iterations 
did not mean that major portions of the system were scrapped 
without being used. On the contrary, until their replacements 
could be implemented, often months later, they were crucially 
necessary to allow the testing and evaluation of the other portions 
of the system. The cause of the required redesigns was rarely 
"bad coding" since most of the system programmers were well 
above average ability. Moreover, the redesigns did not mean 
that the goals of the project were compromised. Rather, three 
recurrent phenomena were observed: (1) typically, specifications 
representing less important features were found to be introducing 
much of the complexity; (2) the initial choice of modularity and 
interfacing between modules was sometimes awkward, and (3) it 



Multics: The First Seven Years 119 

was rediscovered that the most important property of algorithms 
is simplicity rather than special mechanisms for unusual cases. * 

The reason for bringing out in detail the above design itera­
tion experience is that frequently the planning of large software 
projects still does not properly take the need for continuing itera­
tion into account. And yet we believe that design iterations are a 
required activity on any large scale system which attempts to 
break new conceptual ground such that individual programmers 
cannot comprehend the entire system in detail. For when new 
ground is broken, it is usually impossible to deduce the conse­
quent system behavior except by experimental operation. Simu­
lation is not particularly effective when the system concepts and 
user behavior are new. Unfortunately one does not underi:;tand 
the system well enough to simplify it correctly and thereby obtain 
a manageable model which requires less effort to implement than 
the system itself. Instead one must develop a different view: 

1. The initial program version of a module should be 
viewed only as the first complete specification of the 
module and should be subject to design review before 
being debugged or checked out. 

2. Module design and implementation should be based 
upon an assumption of periodic evaluation, redesign, 
and evolution. In retrospect, the design iteration effect 
was apparent even in the development of the earlier 
Compatible Time-Sharing System (CTSS) when a second 
file system with many functional improvements turned 
out to have poor performance when initially installed. 
A hasty design iteration succeeded in rectifying the 
matter but the episode at the time was viewed as an 
anomaly perhaps due to inadequate technical review of 
individual programming efforts. 

CURRENT STATUS 

In spite of the unexpected design iteration phase, the Multics 
system became sufficiently effective by late 1968 to allow system 
programmers to use the system while still developing it. By 
October, 1969, the system was made available for general use on 

*"In anything at all, perfection is finally attained not when there 
is no longer anything to add, but when there is no longer anything 
to take away . " Antoine de Saint-Exupery, Wind, Sand and 
Stars. 

Quoted with permission of Harcourt Brace Jovanovich, Inc. 
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a "cost-recovery" charging basis similar to that used for other 
major computation facilities at MIT. Multics is now the most 
widely used time-sharing system at MIT, supporting a user com­
munity of some 500 registered subscribers. The system is cur­
rently operated for users 22 hours a day, seven days a week. For 
at least eight hours each day the system operates with two pro­
cessors and three memory modules containing a total of 384k (k = 
1024} 36-bit words. This configuration currently is rated at a 
capacity of about 55 fairly demanding users such that most trivial 
requests obtain response in one to five seconds. (Future design 
iterations are expected to increase the capacity rating.) Several 
times a day during the off-peak usage hours the system is dynami­
cally reconfigured into two systems: a reduced capacity service 
system and an independent development system. The development 
system is used for testing those hardware and software changes 
which cannot be done under normal service operation. 

The reliability of the round-the-clock system operation 
described above has been a matter of great concern, for in any 
online real time system the impact of mishaps is usually far 
more severe than in batch processing systems. In an online sys­
tem, especially important considerations are: 

1. the time required before the system is usable again 
following a mishap, 

2. the extra precautions required for restoring possibly 
lost files, and 

3. the psychological stress of breaking the interactive 
dialogue with users who were counting on system 
availability. 

Because of the importance of these considerations, careful 
logs are kept of all Multics "crashes" (i.e., system service dis­
ruption for all active users) at MIT in order that analysis can 
reveal their causes. These analyses indicate currently an aver­
age of between one and two crashes per 24 hour day. These 
crashes have no single cause. Some are due to hardware failures, 
others to operator error and still others to software bugs intro­
duced during the course of development. At the two other sites 
where Multics is operated, but where active system development 
does not take place, there have been almost no system failures 
traced to software. 

Currently the Multics system, including compilers, com­
mands, and subroutine libraries, consists of about 1500 modules, 
averaging roughly 200 lines of PL/1 apiece. These compile to 
produce some one million words of procedure code. Another 
measure of the system is the size of the resident supervisor, 
which is about 30k words of procedure and, for a 55 user load, 
about 35k words of data and buffer areas. 
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Because the system is so large, the most powerful maintenance 
tool available was chosen - the system itself. With all of the sys­
tem modules stored online, it is easy to manipulate the many com­
ponents of different versions of the system. Thus, it has been 
possible to maintain steadily for the last year or so a pace of 
installing five or ten new or modified system modules a day. 
Some three-quarters of these changes can be installed while the 
system is in operation. The remainder, pertaining to the central 
supervisor, are installed in batches once or twice a week. This 
online maintenance capability has proven indispensable to the rapid 
development and maintenance of Multics since it permits constant 
upgrading of the user interface without interrupting the service. 
We are just beginning to see instances of user-written applica-
tions which require this same capability so that the application 
users need not be interrupted while the software they are using is 
being modified. 

The software effort which has been spent on Multics is diffi­
cult to estimate. Approximately 150 man-years were applied 
directly to design and system programming during the "development­
only" period of Fig. 13-1. Since then we estimate that another 50 
man-years have been devoted to improving and extending the sys­
tem. But the actual cost of a single successful system is mis­
leading, for if one starts afresh to build a similar system, one 
must compensate for the nonzero probability of failure. 

Development Development 
System Only +Use Use Only 

CTSS 1960 - 1963 1963 - 1965 1965-
present 

Multics 1964 - 1969 1969 - present 

Fig. 13-1. A Comparison of System Development 
and Use Periods of CTSS and Multics* 

*The Multics development period is not significantly longer than 
that for CTSS despite the development of about 10 times as much 
code for Multics as for CTSS and a geographically distributed 
staff. Although reasons for this similarity in time span include 
the use of a higher-level programming language and a somewhat 
larger staff, the use of CTSS as a development tool for Multics 
was of pivotal importance. 
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HOW MULTICS APPEARS TO ITS USERS 

Having reviewed the background of the project, we may now 
ask who the users of the Multics system are and what the facilities 
Multics provides mean to these users. Before answering, it is 
worth describing the generic user as "viewed" by Multics. Although 
from the system's point of view all users have the same general 
characteristics and interface with it uniformly, no single human 
interface represents the Multics machine. That machine is deter­
mined by each user's initial procedure coupled with those functions 
accessible to him. Thus, the potential exists to present each 
Multics user with a unique external interface. 

However, Multics does provide a native internal program 
environment consisting of a stack-oriented, pure-procedure collec­
tion of PL/1 procedures imbedded in a segmented virtual memory 
containing all procedures and data stored online. The extent to 
which some, all, or none of this internal environment is visible 
to the various users is an administrative choice. 

The implications of these two views - both the external 
interface and the internal programming environment - are dis­
cussed in terms of the following categories of users: 

1. System programmers and user application programmers 
responsible for writing system and user software. 

2. Administrative personnel responsible for the manage­
ment of system resources and privileges. 

3. The ultimate users of applications systems. 

4. Operations and hardware maintenance personnel respon­
sible, respectively, for running the machine room and 
maintaining the hardware. 

Multics as Viewed by System and Subsystem Programmers 

The machine presented to both the Multics system program­
mer and the application system programmer is the one with which 
we have the most experience; it is the raw material from which one 
constructs other environments. It is worth reemphasizing that the 
only differentiation between Multics system programmers and user 
programmers is embodied in the access control mechanism which 
determines what online information can be referenced; therefore, 
what are apparently two groups of users can be discussed as one. 

Major interfaces presented to programmers on the Multics 
system can be classified as the program preparation and docu­
mentation facilities and the program execution and debugging 
environment. They will be touched upon briefly, in the order 
used for program preparation. 
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Program Preparation and Documentation 

The facilities for program preparation on Multics are typical 
of those found on other time-sharing systems, with some shifts in 
emphasis. For example, programmers consider the file system 
sufficiently invulnerable to physical loss that is is used casually 
and routinely to save all information. Thus, the punched card has 
vanished from the work routine of Multics programmers and 
access to one's programs and the ability to work on them are pro­
vided by the closest terminal. 

As another example, the full ASCII character set is employed 
in preparing programs, data, and documentation, thereby elimi­
nating the need for multiple text editors, several varieties of text 
formatting and comparison programs, and multiple facilities for 
printing information both online and offline. This generalization 
of user interfaces facilitates the learning and subsequent use of 
the system by reducing the number of conventions which must be 
mastered. 

Finally, because the PL/1 compiler is a large set of pro­
grams, considerable attention was given to shielding the user 
from the size of the compiler and to aiding him in mastering the 
complexities of the language. As in many other time-sharing 
systems, the compiler is invoked by issuing a simple command 
line from a terminal exactly as for the less ambitious commands. 
No knowledge is required of the user regarding the various phases 
of compilation, temporary files required, and optional capabilities 
for the specialist: explanatory "sermons" diagnosing syntactic 
errors are delivered to the terminal to effect a self-teaching 
session during each compilation. To the programmer, the PL/1 
compiler is just another command. 

Program Execution Environment 

Another set of interfaces is embodied in the implementation 
environment seen by PL/1 programmers. This environment con­
sists of a directly addressable virtual memory containing the 
entire hierarchy of online information, a dynamic linking facility 
which searches this hierarchy to bind procedure references, a 
device-independent input/output16 system,* and program debugging 
and metering facilities. These facilities enjoy a symbiotic rela­
tionship with the PL/1 procedure environment used both to imple­
ment them and to implement user facilities co-existing with them. 
Of major significance is that the natural internal environment pro­
vided and required by the system is exactly that environment 

*The Michigan Terminal System1 7 has a similar device-independent 
input/output system. 
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expected by PL/1 procedures. For example, PL/1 pointer 
variables, call and return statements, conditions, and static and 
automatic storage all correspond directly to mechanisms provided 
in the internal environment. Consequently, the system supports 
PL/1 code as a matter of course. 

The main effect of the combination of these features is to 
permit the implementer to spend his time concentrating on the 
logic of his problem; for the most part he is freed from the usual 
mechanical problems of storage management and overlays, input/ 
output device quirks, and machine-dependent features. 

Some Implementation Experience 

The Multics team began to be much more productive once 
the Multics system became useful for software development. A 
few cases are worth citing to illustrate the effectiveness of the 
implementation environment. A good example is the current PL/1 
compiler, which is the third one to be implemented for the project, 
and which consists of some 250 procedures and about 125k words 
of object code. Four people implemented this compiler in two 
years, from start to first general use. The first version of the 
Multics program debugging system, composed of more than 
3000 lines of source code, was usable after one person spent 
some six months of nights and weekends "bootlegging" its imple­
mentation. As a last example, a facility consisting of 50 proce­
dures with a total of nearly 4000 PL/1 statements permitting 
execution of Honeywell 635 programs under Multics became oper­
ational after one person spent eight months learning about the 
GCOS operating system for the 635, PL/1, and Multics, and then 
implemented the environment. In each example, the implementa­
tion was accomplished from remote terminals using PL/1. 

Multics users have discovered that it is possible to get their 
programs running very quickly in this environment. They fre­
quently prepare "rough drafts" of programs, execute them, and 
then improve their over-all design and operating strategy using 
the results of experience obtained during actual operation. As an 
example, again drawn from the implementation of Multics, the 
early designs and implementations of the programs supporting the 
virtual memory18 made overoptimistic use of variable-sized stor­
age allocation techniques. The result was a functionally correct 
but inadequately performing set of programs. Nevertheless, these 
modules were used as the foundation for subsequent work for many 
months. When they were finally replaced with modules using 
simplified fixed-size storage techniques, performance improve­
ments of more than an order of magnitude were realized. This 
technique emphasizes two points: first, it is frequently possible 
to provide a practical, usable facility containing temporary ver­
sions of programs; second, often the insight required to signifi­
cantly improve the behavior of a program comes only after it is 
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studied in operation. As implied in the earlier discussion of 
design iteration, our experience has been that structural and 
strategic changes rather than "polishing" (or recoding in assembly 
language) produce the most significant performance improvements. 

In general, we have noticed a significant "amplifier" or 
"leverage" effect with the use of an effective online environment 
as a system programming facility. Major implementation projects 
on the Multics system seldom involve more than a few program­
mers, thereby easing the management and communications prob­
lems usually entailed by complex system implementations. As 
would be expected, the amplification effect is most apparent with 
the best project personnel. 

Administration of Multics Facilities and Resources 

The problem of managing the capabilities of a computer 
utility with geographically dispersed subscribers leads to a require­
ment of decentralized administration. At the apex of an adminis­
trative pyramid resides a system administrator with the ability to 
register new users, confer resource quotas, and generate periodic 
bills for services rendered. The system administrator deals with 
user groups called projects. Each group can in turn designate a 
project administrator who is delegated the authority to manage a 
budget of system resources on behalf of the project. The project 
administrator is then free to deal directly with project members 
without further intervention from the system administrator, thereby 
greatly reducing the bottlenecks inherent in a completely central­
ized administrative structure. 

Environment Shaping 

In addition to having immediate control of such resources 
as secondary storage, port access, and rate of processor usage, 
the project administrator is also able to define or shape the 
environment seen by the members of his project when they log 
into the system. He does this by defining those procedures that 
can be accessed by members of his project and by specifying the 
initial procedure executed by each member of his project when he 
logs in. This environment-shaping facility has led to the notion 
of a private project subsystem on Multics. It combines the 
administrative and programming facilities of Multics so that a 
project administrator and a few project implementers can build, 
maintain, and evolve environments entirely on their own. Thus, 
some subsystems bear no internal resemblance to the standard 
Multics procedure environment. 

For example, the Dartmouth BASic19 compiler executes in 
a closed subsystem implemented by an MIT student group for use 
by undergraduates. The compiler, its object code, and all support 
routines execute in a simulation of the native environment provided 
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at Dartmouth. The users of this subsystem need little, if any, 
knowledge of Multics and are able to behave as if logged into the 
Dartmouth system proper. Other examples of controlled environ­
ment subsystems include one to permit many programs which 
normally run under the GCOS operating system to also run unmodi­
fied in Multics. Finally, an APL20 subsystem allows the user to 
behave for the most part as if he were logged into an APL machine. 
The significance of these subsystems is that their implementers 
did not need to interact with the system administrator or to modify 
already existing Multics capabilities. The administrative facilities 
permit each such subsystem to be offered by its supporters as a 
private service with its own group of users, each effectively having 
its own private computer system. 

Other Multics Users 

Finally, we observe that the roles of the application user, 
the system operators, and the hardware maintainers as seen by 
the system are simply those of ordinary Multics users with spe­
cialized access to the online procedures and data. The effect of 
this uniformity of treatment is to reduce greatly the maintenance 
burden of the system control software. One example, of great 
practical importance, has been the ease with which system per­
formance measurement tools have been prepared for use by the 
operating staff. 

INSIGHTS 

So far, we have discussed the status and appearance of the 
Multics system. A further question is what has been learned in 
the construction o{ Multics which is useful to other systems 
designers. Having a bright idea which clearly solves a problem 
is not sufficient cause to claim a contribution if the idea is to be 
part of a complex system. In order to establish the real feasi­
bility of an idea, all of its implications and consequences must be 
fci.lowed out. Much of the work on Multics since 1965 has involved 
following out implications and consequences of the many ideas then 
proposed for the prototype computer utility. That following out is 
an essential part of proof of ideas is attested by the difficulties 
which have been encountered in other engineering efforts such as 
the development of nuclear fusion power plants and the electric 
automobile. Not all proposals work out; for example, extended 
attempts to engineer an atomic-powered airplane suggest 
infeasibility. 

Perhaps Multics' most significant single contribution to the 
state of the art of computer system construction is the demonstra­
tion of a large set of fully implemented ideas in a working system. 
Further, most of these ideas have been integrated without strain­
ing the overall design; most additional proposals would not topple 
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the structure. Ideas such as virtual memory access to online 
storage, parallel process organization, routine but controlled 
information sharing, dynamic linking of procedures, and high­
level language implementation have proved remarkably compatible 
and complementary. 

To illustrate some of the areas of progress in understanding 
of system organization and construction which have been achieved 
in Multics, we consider here the following five topics: 

1. Modular division of responsibility 

2. Dynamic reconfiguration 

3. Automatically managed multilevel memory 

4. Protection of programs and data 

5. System programming language 

Modular Division of Responsibility 

Early in the design of Multics, a decision had to be made 
whether or not to treat the segmented virtual memory as a sepa­
rately usable "feature," independent of a traditionally organized 
read/write type file system. The alternative, to use the seg­
mented virtual memory as the file system itself, providing the 
illusion of direct "in-core" access to all online storage, was 
certainly the less conservative approach. (See Fig. 13-2.) The 
second approach, which was the one chosen, led to a strong test 
of the ability of a computing system to support an apparent one­
level memory for an arbitrarily large information base. It is 
interesting that the resulting almost total decoupling between 
physical storage allocation and data movement on the one hand 
and directory structure, naming, and file organization on the 
other led to a remarkably simple and functionally modular struc­
ture for that part of the system. 18 (See Fig. 13-3.) 

Another high degree of functional modularity was achieved 
in scheduling, multiprogramming, and processor management. 
Because harnessing of multiple processors was an objective from 
the beginning, a careful and methodical approach to multiplexing 
processors, handling interrupts, and providing interprocess 
synchronizing primitives was developed. The resulting design, 
known as the Multics traffic controller, absorbed into a single, 
simple module a set of responsibilities often diffused among a 
scheduling algorithm, the input/output controlling system, the 
online file management system, and special purpose interuser 
communication mechanism mechanisms. 21 

Finally, with processor management and online storage 
management uncoupled into well-isolated modules, the Multics 
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input/output system was left with the similarly isolatable function 
of managing streams of data flowing from and to source and sink 
type devices.16 Thus, this section of the system concentrates 
only on switching of the streams, allocation of data buffering 
areas, and device control strategies. 

Each division of labor described above represents an interest­
ing result primarily because it is so difficult to discover appro­
priate divisions of complex systems.* Establishing that a certain 
proposed division results in simplicity, creates an uncluttered 
interface, and does not interfere with performance, is generally 
cause for a minor celebration. 

Dynamic Reconfiguration 

If the computer utility is ever to become as much a reality 
as the electric power utility or the telephone communication 
service, its continued operation must not be dependent upon any 
single physical component, since individual components will 
eventually require maintenance. This observation leads an elec­
tric power utility to provide procedures whereby an idle generator 
may be dynamically added to the utility's generating capacity, 

*see Dijkstra22 for a further discussion of this point. 
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.,, 

while another is removed for maintenance, all without any disrup­
tion of service to customers. A similar scenario has long been 
proposed for multiprocessor, multimemory computer systems, in 
which one would dynamically switch processors and memory boxes 
in and out of the operating configuration as needed. Unfortunately, 
though there have been demonstrated a few "special purpose" 
designs,* it has not been apparent how to provide for such opera­
tions in a general purpose system. A recent thesis24 proposed a 
general model for the dynamic binding and unbinding of computation 
and memory structures to and from ongoing computations. Using 
this model as a basis, the thesis also proposed a specific imple­
mentation for a typical multiprocessor, multimemory computing 
system. One of the results of this work was the addition to the 
operating Multics system of the capability of dynamically adding 
and removing central processors and memory modules as in Fig. 
13-4. The usefulness of the idea may be gauged by observing that 
at MIT five to ten such reconfigurations are performed in a typical 

*An outstanding example is the American Airlines SABRE 
system. 23 
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24-hour operating day. Most of the reconfigurations are used to 
provide a secondary system for Multics development. 

Automatically Managed Multilevel Memory 

By now it has become accepted lore in computer systems that 
the use of automatic management algorithms for memory systems 
constructed of several levels with different access times can pro­
vide a significant reduction of user programming effort. Examples 
of such automatic management strategies include the buffer mem­
ories of the IBM system 370 models 155, 165, and 19525 and the 
demand paging virtual memories of Multics, IBM's CP-6726 and the 
Michigan Terminal System.17 Unfortunately, behind the mask of 
acceptance hides a worrisome lack of knowledge about how to engi­
neer a multilevel memory system with appropriate strategy 
algorithms which are matched to the load and hardware character­
istics. One of the goals of the Multics project has been to instrument 
and experiment with the multilevel memory system of Multics, in 
order to learn better how to predict in advance the performance of 
proposed new automatically managed multilevel memory systems. 
Several specific aspects of this goal have been explored: 

A strategy to treat core memory, drum, and disk as a 
three-level system has been proposed, including a "least­
recently-used" algorithm for moving information from 
drum to disk, Such an algorithm has been used for some 
time to determine which pages should be removed from 
core memory. 27 The dynamics of interaction among two 
such algorithms operating at different levels are weakly 
understood, and some experimental work should provide 
much insight, The proposed strategy will be implemented, 
and then compared with the simpler present strategy which 
never moves things from drum to disk, but instead makes 
educated "guesses" as to which device is most appropriate 
for the permanent residence of a given page. If the auto­
matic algorithm is at least as good as the older, static one, 
it would represent an improvement in overall design by 
itself, since it would automatically track changes in user 
behavior, while the static algorithm requires attention to 
the validity of its guesses. 

A scheme to permit experimentation with predictive paging 
algorithms was devised. The scheme provides for each 
process a list of pages to be preloaded whenever the process 
is run and a second list to be immediately purged whenever 
the process stops. The upliating of these lists is controlled 
by a decision table exercised every time the process stops 
running. Since every page of the Multics virtual memory is 
potentially shared, the decision table represents a set of 
heuristics designed to separate out those which are probably 
not being shared at the moment. 
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A series of measurements was made to establish the 
effectiveness of a small hardware associative memory used 
to hold recently accessed page descriptors. These meas­
urements established a profile of hit ratio (probability of 
finding a page descriptor in the associative memory) versus 
associative memory size which should be useful to the 
designers of virtual memory systems. 28 

A set of models, both analytic and simulation, was con­
structed to try to understand program behavior in a virtual 
memory. So far, two results have been obtained. One is 
the finding that a single program characteristic (the mean 
execution time before encountering a "missing" page in the 
virtual memory as a function of memory size) suffices to 
provide a quite accurate prediction of paging and idle over­
heads. The second is direct calculation of the distribution 
of response times under multiprogramming. Having avail­
able the entire response time distribution, rather than just 
averages, permits estimation of the variance and 90-percentile 
points of the distribution, which may be more meaningful 
than just the average. A doctoral thesis is in progress on 
this topic. 

Although the immediate effect of each of these investigations 
is to improve the understanding or performance of the current 
version of Multics, the long-range payoff in methodical engineering 
using better understood memory structures is also evident. 

Protection of Programs and Data 

A long-standing objective of the public computer utility has 
been to provide facilities for the protection of executing programs 
from one another, so that users may with confidence place appro­
priate control on the release of their private information. In 
1967, a mechanism was proposed29 and implemented in software 
which generalized the usual supervisor-user protection relation­
ship. This mechanism, named "rings of protection, " provides 
user-written subsystems with the same protection from other 
users that the supervisor has, yet does not require that the 
user-written subsystem be incorporated into the supervisor. 
Recently, this approach was brought under intense review, with 
two results: 

A hardware architecture which implements the mechanism 
was proposed. 30 A chief feature of the proposed architec­
ture is that subroutine calls from one protection ring to 
another use exactly the same mechanisms as do subroutine 
calls among procedures within a protection area. The pro­
posal appears sufficiently promising that it is included in 



Multics: The First Seven Years 133 

the specifications for the next generation of hardware to be 
used for Multics. 

As an experiment in the feasibility of a multilayered super­
visor, several supervisor procedures which required pro­
tection, but not all supervisor privileges, were moved into 
a ring of protection intermediate between the users and the 
main supervisor. The success of this experiment established 
that such layering is a practical way to reduce the quantity 
of supervisor code which must be given all privileges. 

Both of these results are viewed as steps toward first, a 
more complete exploitation and understanding of rings of protec­
tion, and later, a less constrained organization of the type sug­
gested by Evans and LeClerc31 and by Lampson32. But more 
important, rings of protection appear applicable to any computer 
system using a segmented virtual memory. Two doctoral theses 
are underway in this area. 

System Programming Language 

Another technique of system engineering methodology being 
explored within the Multics project is that of higher level pro­
gramming language for system implementation. The initial step 
in this direction (which proved to be a very big step) was the 
choice of the PL/l language for the implementation of Multics. 
By now, Multics offers an extensive case study in the viability of 
this strategy. Not only has the cost of using a higher level lan­
guage been acceptable, but increased maintainability of the soft­
ware has permitted more rapid evolution of the system in response 
to development ideas as well as user needs. Three specific aspects 
of this experience have now been completed: 

The transition from an early PL/1 subset compiler14 to a 
newer compiler which handles almost the entire language 
was completed. This transition was carried out with per­
formance improvement in practically every module con­
verted in spite of the larger language involved. The signifi­
cance of the transition is the demonstration that it is not 
necessary to narrow one's sights to a "simple" subset 
language for system programming. If the language is 
thoroughly understood, even a language as complex as the 
full PL/1 can be effectively used. As a result, the same 
language and compiler provided for users can also be used 
for system implementation, thereby minimizing maintenance, 
confusion, and specialization. 

Notwithstanding the observation just made, the time required 
to implement a full PL/1 compiler is still too great for many 
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situations in which the compiler implementation cannot be 
started far enough in advance of system coding. For this 
reason, considerable interest exists in defining a smaller 
language which is easily compilable, yet retains the features 
most important for system implementation. On the basis of 
the experience of programming Multics in a subset of PL/1, 
such a language was defined but not implemented, since it 
was not needed. 33 

A census of Multics system modules reveals how much of 
the system was actually coded in PL/1, and reasons for use 
of other languages. Roughly, of the 1500 system modules, 
about 250 were written in machine language. Most of the 
machine language modules represent data bases or small 
subroutines which execute a single privileged instruction. 
(No attempt was made to provide either a data base compiler 
or PL/I built-in functions for specialized hardware needs.) 
Significantly, only a half dozen areas (primarily in the 
traffic controller, the central page fault path, and interrupt 
handlers) which were originally written in PL/1 have been 
recoded in machine language for reasons of squeezing out 
the utmost in performance. Several programs, originally 
in machine language, have been recoded in PL/1 to increase 
their maintainability. 

The implications of this work with PL/1 also should be felt 
far beyond the Multics system. Most implementers, when faced 
with the economic uncertainties of a higher-level language, have 
chosen machine language for their central operating systems. 
The experience of PL/1 in Multics when added to the expanding 
collection of experience elsewhere34 should help reduce the 
uncertainty. 

In a research project as large, long, and complex as 
Multics, any paper such as this must necessarily omit many 
equally significant ideas and touch only a few which may happen 
to have wide current interest. The purpose of individual and 
detailed technical papers is to explain these and other ideas more 
fully. The bibliography found in reference35 contains more than 
20 such technical papers. 

Immediate Future Plans 

Multics software is continuing to evolve in response to user 
needs and improved understanding of its organization. In 1972, a 
new haudware base for Multics will be installed by the Information 
Processing Center at MIT for use by the MIT computing community. 
This program compatible hardware base contains small but signifi­
cant architectural extensions to the current hardware. The circuit 
technology used will be that of the Honeywell 6080 computer. The 
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substantial changes include: (1) replacement of the high-performance 
paging drum initially with bulk core and, when available, LSI 
memory, and (2) implementation of rings of protection as part of 
the paging and segmentation hardware. 

Wherever possible the strategy of using off-the-shelf 
standard equipment rather than specially engineered units for 
Multics has been followed. This strategy is intended to simplify 
maintenance. 

CONCLUSIONS 

Many conclusions could possibly be drawn from the experi­
ence of the Multics project. Of these, we consider four to be 
major and worthy of note. First, we feel it is clear that it is 
possible to achieve the goals of a prototype computer utility. The 
current implementation of Multics provides a measure of the 
mechanisms required. Moreover, the specific implementation of 
the system, because it has been written in PL/1, forms a model 
for other system designers to draw upon when constructing similar 
systems. 

Second, the question of whether or not the specific software 
features and mechanisms which were postulated for effective com­
puter utility operation are desirable has now been tested with 
specific user experience. Although the specific mechanisms 
implemented subsequently may be superseded by better ones, it 
is certainly clear that the improvement of the user environment 
which was wanted has been achieved. 

Third, systems of the computer utility class must evolve 
indefinitely since the cost of starting over is usually prohibitive 
and the many-year lead time required may be equally unaccept­
able. The requirement of evolvability places stringent demands 
on design, maintainability, and implementation techniques. 

Fourth and finally, the very act of creating a system which 
solves many of the problems posed in 1965 has opened up many 
new directions of research and development. It would appear 
almost a certainty that increased user aspirations will continue 
to require intensive work in computer system principles and 
techniques. 

In closing, perhaps we should take note that in the seven 
years since Multics was proposed, a great many other systems 
have also been proposed and constructed; many of these have 
developed similar ideas. * In most cases, their designers have 

*Some examples which have not already been mentioned include: 
the TENEX system of Bolt, Beranek and Newman; the VENUS 
system of Mitre Corp.; the MU5 at Manchester University; RC-
4000 of Regnecentralen; 5020 TSS of Hitachi Corp.; DIPS-1 of 
Nippon Telephone; the Japanese National Computer Project; the 
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developed effective implementations which are directed to a 
different interpretation of the goals, or to a smaller set of goals 
than those required for the complete computer utility. This 
diversity is valuable, and probably necessary, to accomplish a 
thorough exploration of many individually complex ideas, and 
thereby to meet a future which holds increasing demand for sys­
tems which embrace the totality of computer utility requirements. 
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Cambridge, Massachusetts 

The Venus operating system is an experimental 
multiprogramming system* designed to support five or six inter­
active users on a small computer. The system was primarily 
intended to support users who are cooperating with one another 
- for example, sharing a data base. It was produced as a product 
of a project performed at MITRE under the sponsorship of the 
Electronic Systems Division (ESD) of the Air Force. 

The primary hypothesis of this project was that software 
complexity can be reduced by using a machine with "correct" 
machine architecture. We had in mind some kind of complex 
system in which the data and processing requirements vary 
dynamically; for example, an online data management system or 
an operating system or any kind of system supporting interactive 
users. We felt that the architecture of current-day computers 
does not support the programming of such systems very well and, 
in fact, that considerable complexity is introduced into the soft­
ware to compensate for the inadequacies of the hardware. 

The first step was to define what we meant by "correct" 
machine architecture, and then to produce a machine with this 
architecture. This was done by microprogramming on an Inter­
data 3 computer. The result was the Venus machine. Then, 
given the Venus machine, the next step was to produce a software 
system. An operating system was selected for the experiment. 

This chapter concentrates on describing the development of 
the system according to certain system design principles. 

One important system design principle was that the system 
be designed as a hierarchy of levels of abstraction. Levels of 

*A fuller description of the system is contained in the paper1 on 
which this chapter is based. 
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abstraction were first introduced by Dijkstra. 2 A level of 
abstraction is defined by the abstraction it supports (for example, 
virtual memories). In addition, a level of abstraction is defined 
by the resources it owns, and there are very strict rules con­
cerning resource access. First, lower levels of abstraction, 
those that are closer to the machine, are not aware of the exist­
ence of higher levels of abstraction and, obviously, are therefore 
not aware of the resources of higher levels. Higher levels are 
aware of the existence of lower levels and may need to obtain 
information contained in the resources of lower levels, but they 
cannot access those resources directly. Instead, they will have 
to appeal to the functions of lower levels to obtain desired infor­
mation. The use of levels of abstraction was applied both to the 
microprogram and to the software; examples of levels will be 
given later. 

The other important design principle was to allow the fea­
tures of the machine architecture to have a direct influence on the 
software design. This principle was selected to enable us to 
evaluate the basic hypothesis of the project; that is, that correct 
machine architecture can reduce the complexity of software. 

THE VENUS MACHINE 

Before describing the software of the Venus operating system, 
I will briefly describe some features of the Venus machine itself. 
It was constructed by microprogramming an Interdata 3 computer, 
which is a very small, slow computer. The basic instruction set 
which the microprogram supports is a relatively ordinary one for 
a small computer; however, it was augmented by certain special 
instructions and also by some special data structures. Two fea­
tures of the Venus machine are especially useful to the software: 
multiprogramming and segments. 

The Venus microprogram supports the multiprogramming of 
16 concurrent. processes. A process is defined to be a procedure 
in execution on a virtual machine. So the microprogram supports 
16 virtual machines, each one consisting of an address space and 
a work area. The address space is primarily made up of seg­
ments; the work area contains information about the state of the 
process; it is permanently located in core memory. 

The microprogram performs the scheduling of the CPU to 
the 16 virtual machines. It does this only as a result of operations 
being performed on semaphores. Semaphores are special types 
of data which were first defined by Dijkstra. 2 Only two operations 
can be performed on semaphores - the P operation and the V oper­
ation. The P operation is performed when a process wishes to 
wait either for a resource to become available or for an event to 
occur. A V operation is performed for the opposite reason - to 
release a resource or to signal that an event has occurred. When­
ever a P or V operation is performed by some process, the 
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microprogram will reexamine the scheduling of the CPU to the 
processes and possibly change the state of some of the processes. 

There is a microprogrammed multiplexed I/O channel on 
the Venus machine, primarily provided to relieve the software of 
any real-time constraints associated with the I/O devices. The 
only significant thing about this channel is that it cooperates with 
the microprogram, as far as the scheduling is concerned, by sig­
naling the end of an I/O transfer by performing a V on a sema­
phore. There are no I/O interrupts at the software level on this 
machine. 

Segments on the Venus machine are named virtual memories 
- as are the segments in Multics. 3 Segments have 15-bit names 
and may contain up to 64 thousand bytes of data. The micropro­
gram performs the mapping of segment addresses into core 
addresses. Segments are divided into 256-byte pages and so is 
core memory; segments are paged on demand between core and 
the disk. 

Segments are physically shared among the users of the 
system, making it very easy for users to share data in segments. 
On the other hand, it is impossible to protect segments without 
the cooperation of the users involved. This is accpetable only 
because the system is experimental and was designed specifically 
to support cooperating users. 

Segments are the primary storage structure available on 
the Venus machine; they are used to hold both data and procedures. 
Since procedures are stored in segments, they will be physically 
shared by the users; and therefore, it is important that they be 
reentrant. The Venus machine provides support for reentrant 
procedures through a reentrant procedure interface consisting of 
call and return instructions which save and restore the state of a 
process and push-down stacks for holding arguments and values 
of procedures. In addition, reentrancy is enhanced by not pro­
viding an easy way of storing into procedures. 

Levels of abstraction supported by the Venus microprogram 
include: 

ABSTRACTION RESOURCES METHOD OF APPEAL 

Segments Core, disk Segment reference, 
ELl instruction 

Virtual devices Devices, device SIO instruction, 
status word table channel commands 

Virtual machines CPU cycles P and V instructions 

The levels support the segments, the virtual devices, and 
the virtual machines. The level of abstraction supporting seg­
ments has as its resources core memory and the paging disk, 
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and entry into the level occurs whenever a segment is referenced 
or an ELl instruction is executed. The ELl instruction was 
defined because of the rule about resources of levels of abstrac­
tion. We knew that the tables owned by this level of abstraction 
contained valuable information which the software would need, 
and the software would not be able to access that information 
directly. So we defined the ELl instruction to permit the software 
to appeal to the level to obtain that information. 

The virtual devices are supported by the microprogrammed 
channel, and the resources of interest are the real devices, and 
also the device status word table which tells about the state of 
each device. Entry into this level happens as a result of an SIO 
(start I/O) instruction together with a sequence of channel com­
mands describing the transfer to take place. 

In virtual machines, the important resource is the CPU 
cycles being distributed among the processes. Entry into this 
level happens only as the result of performance of P and V 
instructions. 

The levels shown previously are given in their order in the 
hierarchy of levels. The lowest level supports virtual machines; 
the next, the virtual devices; and the highest, the segments. The 
virtual device level is higher than the virtual machine level 
because it performs a V on a semaphore to signal the end of 
an I/O transfer. The segment level is higher than the virtual 
device level because it calls upon the virtual device level in 
order to perform the transfer of segment pages between core 
and disk. 

Now, the major features of the machine architecture can 
be examined from the point of view of building a software sys­
tem on the computer. One important thing about the machine 
architecture is that there are 16 processes available. We were 
thinking of supporting five or six users; in fact, we have only 
five interactive devices. Assuming each user has his own 
process, several processes are still left over for system use. 
Now, in an operating system there are many tasks being per­
formed which are logically asynchronous with each other and 
also with the users. For example, a part of the system man­
ages the I/O devices for the system as a whole, and this is 
logically asynchronous with the user, who is concerned only 
with his own devices. Having several processes at our disposal 
meant that logically asynchronous tasks could be made to per­
form in a physically asynchronous manner by assigning them to 
separate processes. This led to clarity and reduced complexity 
in the design. 

Another important feature of the Venus machine is that 
procedures and data can be shared. Therefore, before beginning 
to design the system, we expected it to be composed of reentrant 
procedures running as independent processes and using segments 
to hold shared and private data. 
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An important part of any operating system is the resource 
management. Resource management is necessary on a multiuser 
system to avoid the chaos which would result if the users were to 
compete freely for the resources. Goals of resource management 
are to treat the users fairly and to use the resources efficiently 
for the system as a whole. 

Also, in our system we were anxious to prevent deadlocks 
from occurring on the resources controlled by the system. As an 
example of deadlock, suppose there are two processes: Process 
One, which owns the tape and must have the printer in order to 
continue, and Process Two, which owns the printer and must have 
the tape in order to continue. Process One and Process Two are 
in a deadlock in which neither can continue; in addition, the system 
suffers because neither the tape nor the printer is available. One 
way to resolve this deadlock is to remove either Process One or 
Process Two. This is not always a good idea, however, par­
ticularly in a system such as ours in which users may share 
data. For example, one of the processes involved in a deadlock 
may have been manipulating some common data in such a way that 
the data is inconsistent and only that process can make it consis­
tent again. Removing that process to resolve a deadlock is 
obviously unsatisfactory for the other users of the data. 

Core, the disk, and the CPU cycles are system resources 
which are managed by the microprogram; and therefore, we did 
not need to worry about them in software. We still had to manage 
the 1/0 devices, however, and also the segments. Segments are 
used to hold data and procedures. Procedures are all reentrant; 
and therefore, no management was necessary. A reentrant pro­
cedure can be run from all 16 processes at once without any diffi­
culties arising. We still had to be concerned with the management 
of data segments. 

We distinguished between system-defined data segments and 
user-defined data segments. An example of system-defined data 
segments is provided by the dictionaries, which contain mappings 
between external symbolic names for segments and the internal 
segment names recognized by the microprogram. The dictionaries 
are intended to be shared because we expect the users to share 
segments. Furthermore, when a dictionary is being changed, it 
does not contain consistent data. For example, each dictionary 
contains a count of the number of entries. While an entry is being 
added or deleted, there will be a time at which the count does not 
agree with the actual number of entries. In other words, a need 
exists here for mutual exclusion. Mutual exclusion can be pro­
vided by attaching a semaphore to each dictionary and then per­
forming a P on the semaphore before starting to use the dictionary 
and a V when finished. However, if the P's and V's are not per­
formed correctly - for example, if a P is performed and the 
corresponding Vis not - then the dictionary will become unavail­
able to the system as a whole. 
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Our solution to the management of such system data segments 
is to limit access to only a special group of functions, which per­
form P's and V's correctly (the system-defined dictionary functions 
in the case of dictionaries). But this is the same as treating the 
segments like the resource of a level of abstraction; naturally, 
access to the resource will be limited to the functions which make 
up the level. There are several other groups of system data seg­
ments like the dictionaries, and these segments are all managed 
in this way. 

In general, the management of shared user-defined data seg­
ments is a very difficult problem. For one thing, there are many 
different types of sharing, and it is difficult to say which type is 
best in all circumstances. We decided not to try to control access 
to these segments. Instead, because the P's and V's exist, the 
users have at their disposal a tool which will allow them to define 
an algorithm of their own choosing if they so wish. 

The system's management of teletypes will serve as an 
example of management of I/O devices and also illustrate how the 
work of the system is performed by reentrant procedures distrib­
uted over independent processes. In order to manage devices, it 
is first necessary to solve the problem of how they are going to be 
used. Our solution involves the notion of a "preferred" teletype. 
This is the teletype at which the user sits down and logs in. His 
programs can refer to this teletype symbolically. However, he 
does not own the teletype. He does control it for limited trans­
actions - generally long enough for his program to ask him a 
question and for him to respond with a command. But between 
these transactions, he cannot prevent either the system or other 
users from sending messages to his teletype. 

Once the problem of device use is solved, the next problem 
is somehow to support this use. In our system we support the 
notion of "preferred" teletype by means of three levels of abstrac­
tion, each one of which can be thought of as supporting a virtual 
device with different characteristics. These levels of abstraction 
primarily are made up of shared reentrant procedures running as 
independent processes. 

The lowest level of abstraction is the microprogrammed 
channel. The characteristics of the virtual device at this level 
are very similar to those of the real teletypes, except that data 
may be transferred many bytes at a time. Core buffers are 
required to hold the data being transferred, and the completion 
of I/O is signalled by the performance of a V on a semaphore 
which is also located in core. 

The first level defined in software is made up of teletype 
controllers. There is one teletype controller per teletype; each 
controller runs as an independent process. But there is a single 
reentrant teletype controller procedure. The characteristics of 
the virtual device at this level are the following: The types of 
transfers performed by the "preferred" teletype are defined at 
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this level; most important is the standard interactive transfer in 
which a program writes out a line and then the user responds with 
a command. The I/O buffers holding the data to be transferred 
are now in segments. A very important characteristic is that the 
virtual device may be addressed whether it is busy or not; a 
request for a transfer is put on a queue, and the teletype con­
troller will satisfy the request when the device is available. 
And finally, the teletype controller is informed of the location 
of the semaphore on which it will perform a V when the transfer 
is finished; generally this semaphore will be located in a 
segment. 

One final level completes the notion of "preferred" teletype; 
this level consists of the teletype requester. Again this is a single 
reentrant procedure, but now it runs on the virtual machine of the 
user who is requesting the I/O transfer. The characteristics of 
the virtual device at this level are very similar to those supported 
by the teletype controller; however, there is now a simplified 
interface. The user can describe the transfer to the teletype 
requester by means of a few arguments at the time of the call, 
whereas the teletype controller requires a fairly complicated 
request element describing the transfer. One argument of the 
teletype requester is the symbolic reference to the "preferred" 
teletype. In addition, the teletype requester defines some rules 
about how a user can use the teletypes; in particular, he must 
finish I/O on a given teletype before starting a new transfer on 
the same teletype. 

An example of how a user or system function performs tele­
type I/O on our system will illustrate how control passes among 
the various levels of abstraction. The teletype requester is called 
with arguments describing the transfer to take place. It builds a 
request element, puts it on a queue, and then notifies the teletype 
controller by performing a Von a semaphore. When the teletype 
is available, the teletype controller picks up the request element, 
probably moves some data from a segment buffer to a core buffer, 
and starts the microprogrammed channel by performing an SIO 
instruction. When the I/O transfer is complete, the micropro­
grammed channel performs a V on a core semaphore associated 
with the teletype controller. The teletype controller moves data 
from a core buffer and then notifies the teletype requester that 
the I/0 is complete by performing a Von the semaphore named 
in the request element. The teletype requester then returns to 
the user. 

Actually, it is not necessary for the user or system function 
to wait for the completion of I/O. Different arguments. will cause 
the teletype requester to return as soon as the transfer has been 
initiated. Then when the user is ready to find out the result of 
the transfer, he calls the teletype requester again. This time the 
teletype requester will wait for the completion of the I/O and then 
return to the user. 
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CONCLUSIONS 

Although it is extremely difficult to evaluate a project of 
this sort, qualitatively the results seem good; the design of the 
system is clear and consistent. Quantitatively, it required about 
two man-years to build the microprogram which supports the 
Venus machine. Then, given this machine, it took about six man­
years to build the software part of the system. This includes not 
only the operating system functions like the resource management 
but also a large number of utility functions. For instance, there 
is an assembler, an online interactive symbolic editor, and a 
large complement of debugging aids and instrumentation at the 
software level. Six man-years is a rather brief time to develop 
a system of this complexity. This result appears to support our 
basic hypothesis that the complexity of software can be reduced 
by having a machine with the correct architecture. In addition, it 
seems that we had a fairly good idea of what the correct archi­
tecture should be. Also, the levels of abstraction proved to be 
very valuable because they gave us a clear and precise way of 
thinking about the structure of the system. 
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15. Interactive Computer-Controlled 

Information Television ff ICCIT) 

John Volk 
The MITRE Corporation 

McLean, Virginia 

At MITRE we are now developing a new style of time sharing. 
We call it Time-shared Interactive Computer Controlled Informa­
tion Television. It's new, not so much in technological approach 
but in its intended users. We hope to develop a system that pro­
vides help, education, and entertainment for the masses of urban 
America. We call it TICCIT. 

This program began several years ago as an IR&D project 
to investigate ways in which MITRE's aerospace skills could be 
applied to the problems of education. One outcome of this work 
was a CAI system, much lower in cost than any other system and 
surprisingly powerful. An ambitious program to evaluate two of 
these systems is now under way under NSF sponsorship. During 
the design of our CAI system we soon came across the problem of 
bringing CAI not only to the child in the school but also to the child 
in the home. The solution to this problem turned out to be the 
vehicle for an expanded, more revolutionary effort. 

The contents of a time-sharing system for all ages and classes 
of in:dividuals must be as diversified and interesting as the indi­
viduals themselves. One major effort we are about to begin will 
be an assessment of the wide variety of possible services (Fig. 15-1). 
In about two years, we will actually market-test selected services 
in a real system. 

Our technical approach to time sharing for the masses is 
quite simple (Fig. 15-2). We build a minicomputer system, use a 
cable TV to serve as a communication link to each home (Fig. 15-3). 
A standard home TV set is used as a display. A single channel on 
the CATV system is time-diversion multiplexed to deliver pictures 
to multiple users. First, a picture is sent to one user in a 60th 
of a second, then to another, then to a third and so on. A device 
to catch pictures is installed at each home. This device captures 
the picture in a 60th of a second and then repetitively plays it back 
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so that it appears to home TV sets as a normal television signal. 
A keyboard is also provided at each home to allow the user to 
communicate with the computer. We have built such a system and 
are demonstrating it almost daily in Heston, Virginia (Fig. 15-4). 

In each demonstration home, we have installed a video tape 
recorder and what we call a coupler/decoder (Fig. 15-5). The 
video tape recorder, located on the top of the TV set on the left 
side, operates in a stop frame mode. In other words,. when the 
reels start moving, the tape is stationary but the head of the video 
tape recorder still passes over the tape. This device in this 
mode serves as picture catcher. A touch-tone phone is used as a 
link back to the computer. 

The coupler/decoder (Fig. 15-6) examines TV pictures 
sent on the TICCIT channel and causes the video tape recorder to 
capture selected pictures. The demonstration system has both 
noninteractive arid interactive services. The noninteractive, or 
public, pictures are sent cyclically about 200 to 300 different pic­
tures every five seconds. These pictures include information that 
has both topicality and wide interest, such as weather reports, 
stock market news, game reports, etc. To view these, the 
public-private switch is placed in the public position and the sub­
channel switch is set to the code of the desired information. In 
the interactive mode, the switch is set in the private position. 
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This position captures only pictures generated specifically for 
the home. 

Each picture assembled by the computer contains an address 
(a 16-bit code of white dashes on a black background on a scan 
line immediately preceding the vertical retrace interval of a 
standard TV picture). In the public mode, the coupler/decoder 
looks at each address received and determines if that address 
matches the subchannel code. In the private mode, it examines 
the pictures to determine if the specific home address was set. 
When a correct address is detected, the tape recorder is forced 
to record for a 60th of a second. It thereby captures the following 
picture and then switches automatically back to playback and con­
tinuously displays the captured picture on the home TV. 

In addition to using video tape recorders for the home 
refresh device, we are also investigating the use of other devices 
such as the image storage tubes, cassette video tape recorders 
and video disc recorders (Fig. 11)-7). Using video tape recorders 
was motivated by the possibility that many consumers will pur­
chase cassette video tape recorders in the next few years, purely 
for their entertainment value. The cost of interactive TV then 
would be only the cost of the inexpensive coupler/decoder. The 
cost today of a video tape recorder though is approximately $1000, 
In a few years, the cost should drop to the $400 to $700 range. 
The Japanese are also interested in this and are developing a 
similar system. They are proposing to use a video disc recorder 
to capture pictures. Their estimated cost for this device is about 

• REEL-TO-REEL VTR 

• CASSETTE VTR 

• VIDEO DISC 

• IMAGE STORAGE TUBE 

Fig. 15-7. Video Refresh Devices. 
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$350. RCA is also interested. They propose to use electronic 
storage tubes as frame catchers at a cost of about $100. In 
addition, we are considering near-term alternatives such as all­
digital character memory and character generator located in 
each home rather than a full-scale frame catcher with pictorial 
capability. It appears that a device of this type with only alpha­
numeric capabilities could be mass produced today for approximately 
$20. 

In our demonstration system, the telephone is used as the 
communication link back to the computer (Fig. 15-8). We intend 
to use the same coaxial cable that carries the TV picture to the 
home to also carry keyboard signals back to the computer. One 
way we are considering to facilitate this in the future is to fre­
quency division multiplex the cable. High frequencies (TV chan­
nel 2 and up) are amplified in the forward direction, that is, from 
the computer to the home. Low frequencies, below 50 megacycles, 
are amplified only in the return direction. Cable television equip­
ment manufacturers are today manufacturing the required ampli­
fier and filters to implement this technique and, in fact, CATV 
systems are being designed and built to provide this capability. 

We are now beginning to address the problem of providing 
the necessary computer power to serve large groups of people. 
(Systems serving 30, 000 homes have been proposed. ) One approach 
is a distributive computer network with a hierarchy of data bases 
(Fig. 15-9). Remote computers would serve 1000 to 2000 hOmes, 
with perhaps 10 percent of the terminals active at any one time. 
The central computer would serve clusters of ten or so remote 
computers providing supervisory control and as a central data 
entry point. The remote processors would have data bases con­
taining commonly requested data. Specialized data such as CAI 
course modules would be stored at the central computer. 

The scope of the central computer is not yet clear. How­
ever, we do have a feel for the remote computer configuration 
(Fig. 15-10). The configuration would cost approximately $200, 000 
to $300, 000 today and possibly could drop to $150, 000 by 1975. 
Minicomputers would be used for both the main and the terminal 
processors (2314 type disk files for the main data base). The 
virtual memory isn't really a virtual memory but a pair of fixed­
head disk memories with a special program. The character 
generator, the keyboard signal processor, and the audio message 
generator are devices that MITRE is designing and developing 
today. 

Several points should be made in closing. One is that while 
the system may seem technically naive, those who come out to see 
the system are just overwhelmed. Those in higher management 
positions and in high governmental positions come out and sit in the 
home where we demonstrate the system and occasionally go away 
almost in shock. They had not realized that anything like this 
could even remotely happen in the near future. 
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16. Video Grap~ics Performance Evaluation­
Before and After Implementation 

Thomas E. Bell 
The RAND Corporation 

Santa Monica, California 

Other chapters have emphasized the performance of systems 
in terms of their value to humans. My topic is their performance 
in terms of the interactions of hardware and software. Specifically, 
I shall compare hardware/software performance evaluation before 
system implementation with evaluation after implementation. The 
earlier evaluation must be based on a series of unvalidated assump­
tions, whereas the later evaluation is based on reality - and pro­
vides the opportunity to judge the initial assumptions. 

VIDEO GRAPIDCS SYSTEM 

The particular system under discussion is RAND's Video 
Graphics System (VGS) that Dr. Anderson discussed earlier. The 
user sits at a console with a number of input devices including, at 
least, a control box and a typewriter. Input from these is con­
sidered more important than input from optional input devices 
like The RAND Tablet. 

Figure 16-1 shows the hardware configuration in use at the 
time of our analyses. A central digital-to-analog device is shared 
by all the terminals to reduce costs. The IBM 1800 serves as a 
communications switching and buffering device between the termi­
nals and an array of service machines on which user programs run 
(currently, the 1800 communicates with an IBM 360/65, a PDP-10, 
and the Interface Message Processor of the ARPA network). All 
service machine and terminal I/O from the 1800 goes through a 
Special Purpose Multiplexer. This multiplexer has several 
interesting properties that influence the performance of the VGS. 
Among other things, it degrades the processing capability of the 
1800 by 60 to 70 percent when it operates. 

The software in the 1800 is somewhat unusual; no executive 
is employed. All software consists of one application program 
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designed to process interrupts coming from the service machines, 
the terminals, the special hardware, and from programmed 
interrupts. 

BEFORE IMPLEMENTATION 

During the design phase we were interested in projecting 
performance. About two months before the arrival of the hard­
ware we developed the set of objectives shown in Fig. 16-2 (which 
is titled "potential areas of investigation" to distinguish its state­
ments from the objectives of the system. ) Some of these (e. g. , 
numbers 1 and 2) were quite general, whereas others (e.g., num­
bers 4 and 5) were quite specific. We had one additional objective 
that we weren't clever (or brave) enough to specify in a meaning­
ful, operational way; it involved a desire to learn enough about 
the system to develop some very simple, condensed statements 
about system performance. We had no technique to test ourselves 
when we felt we had learned enough, so this objective is not listed. 

The objectives, combined with the lack of anything to meas­
ure, meant that our performance analysis technique was simula­
tion. The results of our simulations of this forthcoming graphics 
system were analyzed with the use of an existing interactive 
graphics system. Figure 16-3 illustrates some of the output from 
that system when hard copy was requested. Several pictures were 
recorded, and the resulting hard copy frames were cut and pasted 
together to indicate VGS performance over a period of interest. 

The output in Fig. 16-3 was created after much of the soft­
ware was operating on equipment that, by that time, had been 
delivered. 
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WHEN THE DESCRIPTION EFFORT BEGAN, SEVERAL OF THE 
CHARACTERISTICS OF THE VIDEO GRAPHICS SYSTEM (VGS) 
SEEMED WORTHY OF INVESTIGATION BY A MODEL OF THE 
SYSTEM. SOME OF THESE ARE LISTED BELOW. 

1. UNDER WHAT LOAD CONDITIONS WILL THE SYSTEM GIVE 
POOR RESPONSE? (IT MAY BE FEASIBLE TO ALTER THE 
LOAD BY USER EDUCATION AS WELL AS BY CHANGING 
CHARACTERISTICS OF SUCH SOFTWARE SUPPORT AS THE 
INTEGRATED GRAPHICS SYSTEM.) 

2. WILL MESSAGES BE UNDULY DELAYED IN THE VMH SYSTEM 
IN THE 360s? 

3. WILL CHANNEL CYCLE-STEALING SLOW THE 1800 CPU 
ENOUGH THAT INPUT DATA ARE LOST DUE TO DELAYS 
IN PROCESSING? 

4. WILL A PING-PONG SYSTEM DECREASE RESPONSE TIME 
OF THE VGS? 

5. WHAT WILL BE THE EFFECT OF THE 1800 WAITING AT 
INTERRUPT LEVEL FOUR WHILE BUFFERS ARE UNAVAILABLE 
FOR SERVICE MACHINE INPUT? 

6. WHAT WILL BE THE EFFECT ON THE 1800 OF ONE SERVICE 
MACHINE BEING UNRESPONSIVE FOR A SHORT PERIOD? 

7. WHAT PORTION OF SYSTEM CAPACITY DOES A TABLET TAKE? 
(IT MIGHT BE PROFITABLE TO DISABLE A TABLET THAT IS 
TEMPORARILY NOT IN USE, OR TO USE A KEYBOARD 
INSTEAD OF THE TABLET.) 

8. HOW USEFUL WOULD MORE CORE BE IN THE 1800? 
9. HOW USEFUL WOULD ANOTHER 1800 BE? 

Fig. 16-2. Potential Areas of Investigation 

The area enclosed by the box indicates a peculiar sequence 
of subprogram usage because one subprogram (numbered 8 in this 
display) was being invoked twice to perform a function that could 
be done with one invocation. Investigation indicated that, during 
card deck reproduction, an extra card had been inserted into the 
deck; detecting extraneous cards was an unanticipated result of 
the simulation effort. · 

In addition to the unexpected payoffs, we investigated the 
planned questions. One (number 7) inquired about the loading due 
to a single RAND Tablet. Figure 16-4 shows simulation predic­
tions of the loading on the CPU (as a percentage of total capacity) 
required for various numbers of tablets. The diagram indicates 
the amount of activity at each level. Level 2 is a high priority 
interrupt level which performs processing caused by software 
interrupts from other levels. The high priority is used to ensure 
that a sequence of instructions is completed before other activity 
is allowed to intervene. Level 3 activity processes interrupts 
from the image distribution system; level 6 handles interrupts 
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Fig. 16-4. Simulation Predictions of CPU Loading 

from The RAND Tablets, and the Main level causes interrupts in 
level 2 to attempt initiating I/Oto service machines. Total activ­
ity on the system goes to near-saturation when 12 tablets are on 
the system. This result, combined witll results of early test runs 
on the system, motivated us to simulate an alternative in which 
part of the processing of Tablet interrupts is done in hardware. 
Figure 16-5 displays the projected situation. 

This result appears alarming; unloading the CPU seems not to 
have been achieved, More intensive analysis, however, shows that 
the processlng occurring in level 6 has decreased as hoped, and 
the capacity freed is now being used in the Main level and, through 
triggering in the Main level, in level 2. That is, activity that was 
"squeezed out" is once more occurring; additional Tablets could 
therefore be added and cause this additional activity to be deleted. 

Two lessons were learned from this evaluation before imple­
mentation. First, the increased understanding of the system led 
us to decline to give simple statements about the "portion of system 
capacity" taken by a Tablet; the portion required varies with the 
number on the system. Therefore, Question 7 of Fig. 16-2 needed 
rephrasing. Second, we became very reluctant to quote any num­
bers about predicted system performance; important caveats can 
be easily forgotten wb.en relationships are complex. 
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HARDWARE 

Fig. 16-5. Alternative CPU Loading Simulation 

AFTER IMPLEMENTATION 

The Video Graphics System was installed and began providing 
interactive graphics services to users immediately. After it had 
been in operation for several months, we had the opportunity to 
validate our simulation by measuring system performance with a 
hardware monitor. Wires were strung into the 1800 CPU to detect 
the status of various circuits. Each probe consisted of a connector 
feeding signals to an amplifier which transferred the amplified 
signals over the probe wire to a minicomputer based hardware 
monitor. Control over the monitor's functions was exercised 
through an online teletype. With this control we could examine 
the portion of time the 1800 was in each interrupt state under vari­
ous conditions. The initial values from the monitor were validated 
through carefully designed tests using special program traps, an 
oscilloscope, and a signal generator. We found that the values 
from the monitor were accurate, so we could depend on results 
we obtained. Figure 16-6 shows the results from monitoring 
normal, uncontrolled use of the system over various periods at 
different times of the day. No useful information could be derived 
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from these data except that the system was quite variable and not 
highly loaded. 

The problem with our initial runs was that we had no way to 
know how much load the users were causing, so we could not 
obtain any relationship between load and system response. We 
employed an artificial loading device to perform controlled experi­
ments on the system in order to avoid the variability inherent in 
human activities. We had some initial problems with users run­
ning on the system during the time allocated to our controlled tests. 
(Users had no way of knowing for certain whether we. were actually 
running tests and assumed we weren't.) This problem was solved 
by physically disconnecting all terminals not under our direct, 
physical control. The total load on the system then consisted of 
that introduced by the artificial loading box. 

We examined our characterization of the interactions between 
interrupt levels by driving the CPU to saturation with pseudo­
hardcopy characters (which used level 5). As can be observed 
from Fig. 16-7, the sort of activity we predicted is occurring. 
While a test checking for the situation in Fig. 16-4 could be sus­
pect due to the relatively small portion of the system used by 
level 6, the ability of level 5 to "squeeze out" activity in the Main 
level, and thus in level 2, is very dramatic in Fig. 16-7. 

The characterization of the level interactions was thus 
validated, but the absolute levels of activity were not examined 
in this test. We designed a test to give these values for the case 
of total software processing of RAND Tablet interrupts with the 
Tablet's pen up, and then down. Figure 16-8 shows the results, 
with the first column of values being those indicated by the simu­
lation, and the second giving the ones observed on the system. 
The discrepancy was approximately a factor of 2 - often referred 
to as a 100 percent error. Much of this error was explained by 
some changes in software which had not been included in the simu­
lation representation, but we suspected that this explanation was 
inadequate to account for the total amount of error. We went 
back to a very tightly controlled, very simple test to examine the 
cause of the discrepancy. 

We returned to our box producing an artificial load and 
caused the system to process volumes of invalid characters. 
These invalid characters were handled very rapidly by the system 
since only 83 machine instructions were involved. Using the pub­
lished, manufacturer supplied data on the 83 instructions, we 
computed the time that should be required in various cases. 
Figure 16-9 displays the results. The average computed value 
was within a range, but we could not determine the exact time 
because of potential sequencing which was dependent on the time 
to process. The values we suspected were most likely to have 
actually occurred are underlined, and errors (the amount of error 
we would state if the simulation deviated from the computed 
values) are also given. Some undefined effect (possibly an obscure 
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COMPUTED MEASURED "ERROR" 
(µsec) (µsec) (µsec) 

155 . 239 ..................... 317 .................... 33% 

155 . 197 ..................... 273 . . . . . . . . . . . . . . . . . . . . 38% 

155-183 ..................... 220 .................... 41% 

Fig. 16-9. Hard Input (83 Instructions). 

option used in the software) causes the system to require more 
time than expected. (Intensive examination of the hardware showed 
that it was functioning normally.) 

CONCLUSIONS 

Four conclusions arise from this experience: 

1. Detailed simulation analysis can be a very useful tool in 
designing and implementing online systems. Simulation 
can help discover unexpected characteristics of the sys­
tem as well as answer predefined questions. 

2. Simulation of alternatives can lead to improved gross 
characterizations (models) of the system through inten­
sive analysis of differences. 

3. Monitoring normal operations is not so useful as running 
controlled tests for simulation validation. Even if pre­
cise characteristics of loading can be obtained, the 
analyst must still separate out the parts of the simula­
tion causing errors in a very complex situation. 

4. Absolute errors may be incurred in simulations in spite 
of significant efforts to eliminate them. Unexpected 
interactions are likely in advanced online systems and 
will make simulation results inaccurate in, at least, 
absolute value. 



1 l. Pertormance Capaailities 

of Hardware Systems 

Cay Weitzman 
System Development Corporation 

Santa Monica, California 

This chapter aims to provide a survey of present hardware 
performance and capabilities. The information is abstracted from 
several recent hardware evaluations. Such evaluations are under­
taken by SDC on a continuing basis. 

The survey will encompass computer architecture in the real­
time environment, where things stand today in terms of peripherals, 
and some points on reliability and trends. 

Today, the general trend in computers is toward modularity: 
modularity in terms of CPUs, memory, and I/O devices - all 
elements that fit into the computer. The emphasis is on mini­
computers, where modularity is even more prevalent. An example 
of a very typical minicomputer that has these features is the CDC 11 
which comes in various configurations and each configuration can 
be built up or down in just about any way desired. 

In terms of register blocks, read-only-memory, scratchpad, 
cache memory, and virtual memory, particularly the latter one, 
we find it today in the biggest computers and particularly the virtual 
memory used by IBM in its latest 370 series. The associative 
memory is not here except for some specialized machines (STARAN 
and PEPE), but if virtual memory is desectored small enough, it 
will eventually wind up as an associative memory. 

Computer Architecture 

One important feature in computer architecture in the real­
time environment is the interrupt structure. A large number of 
real-time computers today have a multilevel hardware interrupt 
structure. They provide internal/ external interrupt either by 
device source, program, or through buffered I/O. The level 
changes are of particular importance in real-time systems -
command and control systems - where one must change quickly 
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from one interrupt level to another. In a typical medium-scale 
command and control computer, a computer used in a real-time 
environment, this could vary as much as five to 100 or 500 micro­
seconds. This "overhead" has a great impact on the total response 
time of the system. 

Many of the presently available computers have both direct 
memory access and buffered I/O channels and data also can be 
moved to and from memory under program control. Many systems 
have a wide choice of I/O interface, either serial or parallel lines 
that one can input data to the system. Other features are multi­
plex I/0, asynchronous or synchronous lines, analog interfaces, 
such as A/D, D/ A and synchro-to-digital which are also used in 
process control applications. 

A very interesting trend in interfacing various low-speed 
peripherals is the use of USAC II control characters. In other 
words, instead of using separate control lines, the peripherals 
are controlled by control characters which gives one greater 
flexibility in inputting and outputting from the computer. 

Someone has said minicomputer manufacturers are becoming 
more like Detroit every day. There seem to be more and more 
variations on a lesser number of machines. The typical trend in 
the minicomputer area is, of course, lower cost. Everything is 
getting cheaper and cheaper, faster and faster, and many of the 
new systems introduced in the last few years are microprogram­
mable. Interdata was one of the first commercially available 
microprogrammable minicomputers, but there are a whole host of 
them now. 

In general, one can conclude that the cost decreases in all 
the minicomputers today are due to minor amendments to details 
across the line rather than from significant technological 
breakthroughs. 

Going to military machines, the most typical feature of mili­
tary machines is the advanced packaging concept and microminia­
turization. Medium- and large-scale military computers have a 
more advanced architecture, also in terms of building diagnostic 
capability and this of course gives a short mean time to repair. 

The commercial computers today are more sophisticated 
in terms of firmware control, virtual memory, integrated con­
trollers, powerful I/O processors and both LSI and other types of 
memories. Emerging architectures such as associative machines 
or computers based on associative memories, such as PEPE from 
Bell Labs, on pipeline computers such as the ASC from TI (Texas 
Instruments) and STAR from CDC, are machines that although not 
available to the commercial user represent trends that, I think, 
will have very strong impact on future computer design. 

One issue raised by many people is the mini versus the large 
computer. Is the medium-sized computer going to disappear? 
Will there be a lot of minis or a central multiprocessor or a large 
computer? There again I think a trend has really not crystallized 
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yet. Almost every day there is a new medium-sized computer. 
The latest one announced is the Univac 9700. 

I have tried to assemble various computers in terms of 
word size (Fig. 17-1). There are, of course, other ways of order­
ing them - in terms of throughput or number of instructions per 
time unit. Here though, we have word size versus cost. The 
minis today are creeping down toward $1000. Going in the other 
direction, we have the midi, which is not really a small computer, 
although that is debatable. The midi is a large mini. Typical 
midis are the Honeywell DDP-516, the SDS Sigma 3, the IBM 1800, 
and the CDC 1700. The small computer is something like a 360/20 
or 30. The next level is the medium-sized computer. Typical 
medium-sized real-time systems are the PDP-10, the XDS Sigma 5, 
the IBM 360/44, the SEL/86, the Honeywell 632, and the Univac 418. 

A very similar pattern exists in the military field (Fig. 17-2). 
All these are ruggedized minicomputers. There are minis such as 
the Rolm 1601 which is a ruggedized Data General Nova, and others 
such as the DDP-516 which has been designed in a ruggedized ver­
sion and also a miniaturized version (HDC 601). The HDC-601 is 
a small airborne computer, but it has the characteristics of the 
commercial DDP-516. 

At the other end of the spectrum are the large command and 
control computers, the Hughes 440 which is a new system, the 
Litton L-3050, the TACFIRE computer, and the Univac AN/VYK7 
built for the Navy (AEGIS). Marconi in England has built a military 
minicomputer called the 920M Myriad and Hitachi in Japan built 
one which is used as an airborne navigational computer. 

Finally, the very large computers in the multimillion dollar 
range are really not militarized per se. There are militarized 
versions such as the PEPE, the ADC, and the Univac CLC. 

The five year trend is shown in Fig. 17-3. 
Figure 17-4 is a summary of various military computer cate­

gories. It shows the memory, CPU, and 1/0 differences among 
these various groups and it also gives an indication of what type 
and range of peripherals are available to the military computer 
system designer. The microminis have almost no peripherals 
available or even a peripheral interface capability; one must go to 
a fairly large-size computer to get adequate peripherals. And 
even here the peripherals one wants on a system are usually picked 
from a variety of manufacturers and are sometimes not compatible 
so one may have problems with the interface. 

The micromini, I think, is a very interesting design concept, 
based on LSI. We certainly have LSI computers here today and 
there are quite a few of them on the military market - the Control 
Data 469, the Bunker Ramo BR-1018, the Garrett AiResearch Adapt 
series and the Autonetics D200 series. They are probably the fore­
runners for the commercial market, which will use very small, 
compact, ruggedized computers in cars, trains, wherever some 
kind of control is needed. 



ii) 
f-

"" 
w 
N 
Ui 
Cl 
a: 
0 
$ 

256 

64 
60 

48 

36 

32 

241 
18 
16 

12 

8 

I 
$1000 

CA NAKED MINI 
f\l/l\/ /\. 1 ')()() 

$10,000 $100,000 $1,000,000 

COMMERCIAL COMPUTER COSTS (1971 I 

Fig. 17-1. Commercial Computer Costs (1971) 

$10,000,000 

COST 

(") 

.§ 
~ ...... ,__. ...... .... ,..... 
CD 
[/l 

0 ,...., 

~ 
"i 

~ 
Pl 
;jl 

~ 
[/l 

@' 
s 
[/l 

...... 
-.J ...... 



c;:; 
f-
iii 
LU 
N 
u; 
Cl 
a: 
0 
3: 

256 

64 
60 

48 

36 

12 

8 

$10,000 $30,000 $100,000 $1,000,000 $10,000,000 

MILITARY COMPUTER COSTS (1971) 

Fig. 17-2. Military Computer Costs (1971) 

$100,000,000 

.... 
-'1 
1:\:1 

~ :::;: .... 
I 

> 
(') 
(') 
CD 
rn 
rn 
(") 
0 

i .... 
~ 



Capabilities of Hardware Systems 173 

60 

48 

w 
N 
iii 36 
0 H516 c: 32 

~ 2:3 

24 

18 
16 
12 

- 8 

1K 3.5K 10K 100K 1M 10M 

COST 
($1,000= 1K 
$1,000,000 = 1 M) 

Fig. 17-3. The Five Year Trend In Computer Costs 

The trend in new system design will be very much influenced 
by high-speed data links. Today most systems - whether they use 
teletype terminals at 110 bits per second or the IBM counterpart, the 
2741, at 134.5 bits per second or high-speed 2400 to 4800 bps syn­
chronous lines - have a remote I/O capability. We are going for even 
higher data rates and some systems use 9600 bits per second data 
rates or beyond. In spite of this, most computer systems have rela­
tively limited data communication capabilities. They are not designed 
to handle very high data rates but a big change is expected there, par­
ticularly due to new facilities that are going to be available. Such 
facilities include Tl lines with voice channels going up to 1. 5 million 
bits per second and eventually the T2 which will be used for picture­
phone transmission and has a 500-mile range. New data sets such as 
the 303 or the 306 will have about a half-million bits per second data 
transmission capability. 

Today most military systems are locked up with AT&T and 
their long distance transmission lines. I believe firmly that the 
near future availability of higher data rate transmission links such 
as Tl is going to have a very strong impact on architectural change 
in computers in the next few years. 
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Peripherals 

As for peripherals, the lack of high-speed computer output 
devices, except for computer-output-microfilm equipment (COM) 
and some other exotic devices like the laster printer (still under 
development) and the more conventional peripherals, such as line 
printers, magnetic tape and card or paper tape punches still domi­
nate the user market. Therefore, I am going to spend a few min­
utes discussing conventional hardware and the changing trends 
in peripherals. 

One very interesting phenomenon is the cassette tape, cur­
rently quite popular. There are more and more different types of 
cassette tape units and most of them seem to be centered around 
the Phillips cassette. This unit hasn't really been around long 
enough to show a record of success in terms of low error rates. 
Some problems exist with these units if one wishes to record very 
large continuous blocks of data. An important feature is read­
after-write to reduce errors. 

Several low cost printers on the market today use either 
matrix or helix type printing. The price is now in the $3000 to 
$5000 range. 

The alphanumeric CRT terminal also has been coming down 
rapidly in price. Just three or five years ago, a $10, 000 inter­
active CRT was common and today it costs $2000 to $3000. 

Only in teletype is there little activity. Few contenders can 
really compete with the $600 to $700 teletype. Most people seem 
to be using them widely. Of the military peripherals, I think the 
most significant activity is in display. There are a large number 
of new types of displays, most of them based on the CRT. These 
displays are designed both in the U. S. and in countries such as 
Italy, France, Germany, and Japan. Many of these are quite 
sophisticated in that they allow a large amount of user interaction, 
displaying PPI display together with synthetic data, some with 
bandwidth compression and color capability. Many of these sys­
tems are also coming down in price. Many of them, as a matter 
of fact, are off-the-shelf devices - they can be ordered and inte­
grated with many types of computers. 

Figure 17-5 indicates where we are in terms of peripherals 
today, based on throughput rate and characters per second. Every­
thing has been brought to a common denominator, characters per 
second, going from 10 characters per second up to 10 million 
characters per second. And, as the reader can see, the Teletype 
is at the far left end of the low-speed devices followed by line 
printers, card readers, and paper tapes. On the top line is COM 
equipment. The really significant message in this chart is the 
large discrepancy in data rates between I/0 peripherals and the 
actual CPU or memory devices; the only ones getting close to the 
disk or drum speed are the computer output microfilm devices and 
the magnetic tape, which really indicates that we need some higher 
speed peripherals than those now available. 
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In military systems, the applications and levels of reliability 
are closely related. Space or missile computers installed in air­
craft require very high reliability. It would be hard to get up 
there to fix them when they fail. Many of the new commercial 
minis discussed earlier have also been converted to ruggedized or 
militarized systems. A major advantage in using these minis in a 
military application is the savings in the basic software develop­
ment cost. The systems have been around for some time and 
there is a lot of experience with them. 

Self-Test and Repair Machines for Missile and Space Environments 

Several projects are going on right now to develop self-test 
and repair systems. Burroughs is developing a system (still not 
announced officially) called the Model D. There are computers 
which require function monitoring in terms of hardware and error­
correction circuits with hardware monitoring and triggering for 
later action. One example is the STAR, the JPL self-test-and­
repair computer. 

Finally, I would like to examine several trends. I have been 
doing some work with various military computers, such as the 
Litton L-3050 and the Hughes H-4118. Many of these systems can 
be checked out with hand-held card testers. The tester is plugged 
onto the back of the card and the circuit boards can be checked out 
quickly. This is still a quite limited capability. There are only 
X numbers of cards that can be checked out this way. Certain 
kinds of functions don't lend themselves to being checked with this 
tester. This approach is, however, extremely powerful in a field 
environment. 

Many things have been said about LSI. Supposedly, it is the 
solution to most of our problems. Computers can be designed on 
the side, so to speak. Just using LSI technology, one can quickly 
design the function to do whatever desired. I don't believe we are 
there yet. Several computers, like the Control Data Alpha, use 
MSI/LSI. Building these units involves a high cost. The general 
idea is that if something fails the board with the LSI chips, it is 
pulled out and thrown away. That is quite an expensive way to go. 
The more LSI on the board, the higher the cost of the board and 
the more expensive to repair or maintain. 

Although some systems use welded modules, I feel that the 
trend is away from that. You see more flow soldered or dual-in­
line plug-in boards for changing or replacing some of the sub­
components. A very pronounced trend in military computer design 
is toward a short mean time to repair capability. With built-in 
diagnostics, problems are sometimes located more quickly than 
with the hand-held tester. One simply can work through the com­
puter itself. Other protective measures, such as use of fail-safe 
capability, is increasing in both military and commercial com­
puters. All contribute to system reliability. 
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The goal of this work is to provide man-machine communication 
that is as natural as the dialogue between two colleagues. The 
phrase "between two colleagues" is chosen with care, for we do 
not mean to imply that we can make communication between man 
and computer as free and arbitrary as that between two randomly 
chosen individuals, for that problem is not solvable in the short 
run. What we are trying to provide is the framework within which 
the machine may be treated as a colleague by specifying a context 
that properly bounds the domain of discourse. 

Considering that communication implying understanding 
implies intelligence, one is tempted to class this work as a mani­
festation of artificial intelligence. The appropriateness or accu­
racy of such classification is irrelevant, particularly if we are 
able to reach our stated goal. 

Three projects that we collectively call the Natural Input/ 
Output task are attacking three aspects of natural man-machine 
communication in parallel. The English I/O Project is working 
toward a natural English data management system; the Voice I/O 
Project is attempting to solve the speech understanding problem, 
also using data management as a vehicle; and the Graphic I/O 
Project is providing capability to communicate with a computer in 
printed or written natural scientific notation. The necessity of the 
latter is obvious to anyone who has attempted to linearize or 
verbalize a complex mathematical expression. 

ENGLISH I/O 

The CONVERSE Project is developing a natural English data 
management system. Interrogatory, declarative, or imperative 
English sentences are input to the program by keyboard. These 
are parsed, in a fashion similar to that which was at one time 
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taught in grammar school, but with more rigor and depth using the 
principles of transformational grammar and techniques developed 
in computational linguistics. Meaning or the semantic content is 
extracted from the sentence with the combined use of the dictionary, 
fact file, and concept net. The details of the method have been 
documented and are inappropriate here. 

The parsed result is cast into a formal intermediate language 
(IL} that is a variant of the calculus. The IL forms the basis for 
the generation of a procedure that is executed by the data manage­
ment portion of the system, producing the specified result: the 
answer to a question, or modification to the data base content. 
Since there are limitations on both subject matter and grammatical 
freedom, the parsing attempt may result in a request for the user 
to define a term, choose among the alternative meanings of an 
ambiguous sentence or reject the sentence outright. 

Some samples of sentences acceptable to CONVERSE are 
reproduced below. The subject matter in the data base in this set 
of examples is about census information from cities in California 
and New York. 

What is the population of each city? 

Name pop*60 

Alameda 65000 
Concord 36208 
Downey 82505 
Los*Angeles 2479015 
Lynwood 31614 

More? 
y 

Modesto 36585 
Oakland 367548 
San*Diego 573224 
San*Francisco 740316 
Albany 129726 

More? 
y 

Buffalo 532759 
New*York 7781984 
Yonkers 190634 

No more 

{The population of all 135 cities in the data base could be obtained 
with patience. ) 

Is it Yonkers that isn't located in California? 

Yes. 
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Which cities are not located in California? Name 

Albany 
Buffalo 
New*York 
Yonkers 

No more 

{Circumlocution in the first example and negation are properly 
treated.) 

What are the northeastern cities with the most and least 
land area? 

The one thing with the maximum of land*area * 60 for 
northeastern things has the city is Buffalo 

The one thing with the minimum of the land*area*60 
for northeastern things has the city is Yonkers 

This is how ambiguous sentences are treated. 

What's the MFI of NY? 

2 parsing 

2 interpretations 

N SearchRequest 

1 What is the median*family*income*59 for New York? 

2 What is the median*family*income*59 for New*York* 
state? 

Type: Answer N! 

Answer l'. 

The median-family*income*59 for New York is 6091 

Answer 2'. 

The median*family*income*59 for New*York*state 
is not known 

The last is an example of the effect of a declarative sentence 
on the data base content. 
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Present work on the project is directed toward extending the 
scope of acceptable language forms, simplifying the creation and 
update of data bases, and generally imbuing the program with more 
"intelligence. " 

VOICE I/O 

The goal of the Voice I/O Project is to demonstrate the 
feasibility of a speech understanding program. The vehicle for 
the demonstration is a vocal data management system. The choice 
was made with malice aforethought. The foundation provided by 
the English I/O project will materially help in reaching the goal in 
the shortest possible time, between three and five years. 

At present, a laboratory is in place and we have replicated 
the speech recognition program developed at Stanford by Vicens 
and Reddy, the best program to date for recognizing single words 
or phrases. But the goal is to have the system understand con­
tinuous speech. Note that in one case there is recognition and in 
the other there is understanding the distinction that in the latter 
case, there is no need to reproduce with any accuracy the input, 
only that the reaction or response be correct or acceptable. 

We believe that if properly approached the problem is 
tractable and we believe we have a proper approach. The basis 
of that approach is called Predictive Linguistic Constraints 
(PLC). Figure 18-1 is a data flow (as opposed to control flow) 
of the PLC model upon which the implementation of the program 
rests. 

The basic concept is that in any area of bounded behavior, 
such as using a data management system, that the speaker will be 
in a narrow bounded context a very high percentage of the time, 
and that the loss of predictability will occur when the speaker 
changes context. Since the number of contexts to which he may 
change is limited, the transitional case leads back to the well 
bounded predictable case in almost all instances. In the few cases 
when the program gets "lost, " there is a human available, the 
speaker, to bail it out. In essence, it is not much different from 
the way two people interact. 

GRAPHIC I/0 

The primary goal of the Graphic I/O Project from its incep­
tion has been to provide natural communication with the computer 
through hand-drawn, -printed or -written input. As a result, we 
have not only developed software toward this end, but hardware in 
the form of a unique data tablet graphics console that is nearly as 
natural to use as pencils and paper. It incorporates a projection 
CRT, a data tablet, and the necessary optical system to provide 
a single interactive surface. It is partly true that it is done with 
mirrors. 
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Fig. 18-1. Data Flow of PLC Model 

The initial problem that was attacked and solved was the 
creation of a character recognition program that could accept a 
large variety of symbols from a large and diverse set of users. 
We believe that our character recognition program is more than 
adequate for the kinds of usage we envision in the future. Next, 
a program for accepting mathematical notation was implemented. 
The necessity for a companion program that converted the internal 
linearized computer representation of an expression back to its 
displayable two-dimensional form became clearly obvious. Given 
the ability to hand-print mathematic expressions into a computer 
and have them redisplayed in well-spaced textbooklike form is all 
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well and good, but certainly not an end in itself. We, therefore, 
created a computational facility that we call TAM, or The Assist­
ant Mathematician. A few of its facilities are illustrated in 
Figs. 18-2 and 18-3. 

Figure 18-2a shows the definition of the function V(h). The 
two versions represent the input through the recognizer, the lower 
centered version, and the formatted output, up and to the left of 
the first. Figure 18-2b shows the addition of a new definition T(h) 
which is a function of V(h). Figure 18-2c is a request to compute 
the value of T(l50). 

Figure 18-2d is a continuation of the sequence. The user 
has given a value the variable or constant called "R". The pro­
gram reminds him, the user complies in Fig. 18-2e, the program 
again prompts (2f), asking for g and when it is satisfied, supplies 
the value for T(150) in Fig. 18-2g. 

Figure 18-3 shows how iteration over a set of values is 
specified; Fig. 18-3a shows the input; Fig. 18-3b, the result. 

The next logical step for this project is to select an area 
of specific applicability, bound its context much as the other 
two projects have done, and see if that can provide the vessel 
for creating a natural system that contains no surprises for the 
user and within his or its context always does what is expected 
without the need for specifying a great deal of the obvious. 

FUTURE SYSTEMS 

What does the future hold? It is not beyond the realm of the 
possible that before 1980 there will be systems available with 
which one will use the most natural form of input and output with 
the computer that fits the situation. One will speak those things 
normally spoken and draw pictures and write equations for those 
things normally drawn and written. The computer's response 
will be the spoken word, perhaps a song where appropriate, pic­
tures, graphs, and charts, and even the printed word. A great 
deal of work going on in parallel with our own makes it clear 
that it is not a question of whether such systems will be 
achieved, but rather when. 
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Fig. 18-2. Functions 

Fig. 18-3. Iteration Statement 



19. REL: A System Designed 
for the Dynamic Environment 

Bozena Henisz Dostert 
California Institute of Technology 

Pasadena, California 

REL stands for Rapidly Extensible Language System, which 
is being developed at the California Institute of Technology. REL 
is an integrated software system designed to facilitate conversa­
tional interaction with the computer, especially on the part of 
those working with dynamic, highly interrelated data, in situations 
where the data is not only to be accessed but also to be manipu­
lated in various ways by the user to suit his specific needs. In 
such situations, the user must be able to work with his data in a 
natural manner, through a language that is natural to him and best 
suited to his task, a language that allows him to analyze the data 
in a most facile and meaningful way. An essential ingredient of 
such a language is its extensibility, the ability to define and rede­
fine terms so as to find the essential interrelationships in the 
data. 

Most current data management and analysis systems are 
built around the idea of the total management information system. 
In such systems, data are collected from all over a large organi­
zation, stored in a large and all-encompassing data base, and 
made available to higher levels of management through statistical 
analysis routines or report generators. To attain the necessary 
levels of efficiency, the operation of such a system must be cen­
tralized; to remain sufficiently stable to be useful to the manage­
ment, the content and format of the material must be closely regu­
lated and under the control of the information system operation. 

But there are other kinds and uses of data in organizations, 
whether they be a research center, an industrial setup, or a 
military headquarters. Each research team or staff office has 
its own information files which are used constantly as an ongoing 
part of the work. These may be records and results of a current 
series of experiments, or the data and models the team is working 
with in putting together a special study, or working files of raw 
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material relating to ongoing research, or records on alternative 
budgets and planning charts used in the preparation of a new pro­
gram proposal. In all such cases, the research team or staff 
office is directly involved in gathering and maintaining this mate­
rial, in making day to day decisions on its contents, formats and 
file organizations. Such material is not appropriate for the master 
file of the larger or outer organization and it is far too dynamic 
in all its dimensions for standardization. Further, those who 
develop and use such materials would not think of giving up control 
over them, for they are in a real sense the stuff and substance of 
their ongoing work. These are the dynamic, working files that 
constitute the essence of research and staff operations. 

In order to build a system responsive to user needs in such 
dynamic environments, we have been especially attentive to two 
characteristics of the work of individual users or groups who 
analyze different aspects of a body of data much of which may be 
common to several individuals or groups. First, they need to 
deal with their data in an individualized manner, to dissect it in 
new ways, to test even far-fetched hypotheses, to build up their 
terminology in order to deal with the data most efficiently. Second, 
they need to communicate with each other's data, consult, and 
benefit from each other's analyses. 

What, then, should be the characteristics of an information 
system which aims to support the working files, and habits, of 
many staff offices and research teams in dyl)amic environments? 

First, such a system has to have the capacity to handle 
highly interrelated and time-oriented data. It must allow individ­
ual queries and analyses along unanticipated avenues and allow 
for the tracing of complex interrelationships. The very essence 
of research and staff studies lies in the search for new interrela­
tionships, following of clues, and even guesses, tracing of impli­
cations and clarifications of emerging patterns. Thus, a system 
designed for supporting such operations mustfacilitate innovative, 
unprogrammed exploration of the data. 

Second, in such an information system, communication 
between the user and his data must be in a language natural to him 
and tailored to his needs. On the one hand, this requirement calls 
for man/machine languages built on the syntax of natural language. 
On the other hand, the vocabulary and idioms of such languages 
should be those of the working teams or individuals, they should 
reflect the idiosyncratic dialect built around the concepts and 
interrelationships relevant to their work. 

Third, such a system must be able to accept new terms and 
new data as well as new definitions of functions and relationships 
in the process of the ongoing use of the system; and it must incor­
porate these language and data base extensions for immediate use 
and further extensions. The changing, dynamic character is 
essential to the work of the staff, since the modifications in the 
data base and the concomittant modifications of the language reflect 
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the staff's maintenance of the relevance of the data, and so reflect 
how well they are doing their job. 

Fourth, such an information system must provide enormous 
flexibility, which allows for a variety of user language/data pack­
ages, individually tailored to specific needs, and provides a facility 
for the intercommunication of such specialized packages. It must 
allow the addition of new language/ data packages and new algorithms 
and the employment of a wide variety of data structures. 

Fifth, such a system must have good response times. 
The REL system is designed to fulfill all of the above require­

ments. It has already stood the test of users with needs such as 
were discussed above. This experimental REL system was in 
operation in the spring and summer of 1970. We are now develop­
ing a fully operational prototype. This prototype will be a fully 
interactive, multiprogrammed system by which a number of 
researchers can communicate directly with their data and models 
in a conversational way, time-sharing the computer facilities. 
This prototype system should be in operation a year from now on 
an IBM 370/135 in a test environment. We plan for a debugged, 
evaluated and documented system by Fall, 1973. 

In this paper, only some of the outstanding features of the 
system are discussed and illustrated; namely: 

1. its ability to handle interrelated and time-oriented data; 

2. provision for communication with data in natural lan­
guage, tailored to user needs, with emphasis upon 
ordinary English; 

3. the extensional facility, which allows for the modifica­
tion of data through definitions of new terms and rela­
tionships as part of the user's ongoing work with the 
system. 

The third point receives special emphasis, since its discus­
sion and illustration also serve to bring out the other features. 

First, however, the general architecture of the system 
needs a brief presentation. It is more fully discussed in references 
1, 2, 7. 

THE REL SYSTEM DESIGN 

The REL system has three main parts. As Fig. 19-1 shows, 
the three main parts are: 

1. the operating system, which manages the simultaneous 
use of the system from a number of terminals and 
handles all input/output from peripheral storage; 
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2. the language processor, which analyzes the incoming 
query or data and schedules and executes the appropriate 
calculations and processing of the data base; 

3. REL languages and user language/data base packages. 

One of the most distinguishing features in the architecture 
of REL as compared with other relational data systems is that it 
has a single language processor for all languages, and that this 
language processor is tightly coupled with the operating system. 
In most computing language systems, the system can accept and 
process statements of a given language by using a separate com­
piler specific to the particular language. REL, however, has a 
single language processor that can handle a wide variety of high­
level languages. In essence, this language processor is a straight­
forward syntax directed interpreter. It includes built-in facilities 
for handling variables and recursion, and provides for extensions 
by users of the languages. 
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This feature of REL architecture has several major advantages. 
First, it is much easier to implement a new language or extend 
an existing one. Languages can be conveniently tailored to particu­
lar applications and specialized processes can be added to one's 
language as the need arises. 

Second, since this single language processor is closely tied 
to the underlying operating system, it allows efficient scheduling, 
allocation, and access of peripheral storage, which could not be 
achieved otherwise. 

Third, in applications where a number of offices or groups 
have their own "system, " that is a language/data base package, 
the specific architecture of REL facilitates intercommunication 
between such subsystems. 

The technical problems of implementing a natural language 
question-answering system are quite different from those encoun­
tered in programming language compilers. From the system pro­
grammer's point of view the relevant characteristic of most REL 
applications is that they deal with large data bases that must be 
kept in disk memory. The prime problem is efficient access to 
that memory. One solution is to restrict the nature of the ques­
tions that can be asked and optimize disk access methods around 
these restricted queries. This solution is not acceptable in the 
majority of applications to be found in dynamic situations. The 
REL solution, and a principal element of the system, are the 
paging algorithms for the dynamic optimization of access to the 
disk memory in terms of the data requirements of each query. 

The language writer controls both the allocation of data to 
individual pages and the page segmentation of the interpretive 
routines, and he can do this without becoming involved in the 
details of the language processor or the paging mechanism. As a 
result, there is a rational relationship between lexicon and syntax, 
on the one hand, and the allocation and retrieval of pages from 
disk storage, on the other. Scattering of data and routines hap­
hazardly over the peripheral storage, a source of major ineffi­
ciencies in other systems, is avoided. 

One other design feature must be mentioned in connection 
with processing of data with complex interrelationships, to which 
experience with the system in Summer, 1970, pointed. An investi­
gator who has a complex data base is soon led to ask questions 
that call for an extensive amount of computation and data manipu­
lation. Such an investigator is usually well aware that he must 
wait a considerable time for his answer, and since he is aware of 
the amount of computation he has asked for, he is prepared for the 
delay in the response. This use pattern is likely to be quite 
typical, in a system where the user's language can be so easily 
extended, thus providing the means of succinctly expressing com­
plex questions. 

To facilitate this pattern of usage, REL will have the capa­
bility to cast off a query into the "background" as a low priority 
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job in the system and free the terminal for continued conversational 
use in the interim period. Since the REL operating system is a 
multiprogrammed system in which several jobs are resident in 
core memory at the same time, each occupying one of the available 
"slots," the plan is to make one dynamically allocated slot avail­
able for background jobs. Thus, one could say that the system 
would be both an interactive system and a conversationally driven 
batch system. 

Such details of implementation have to be mentioned in view 
of our over-all objectives. 

REL languages are of two types, which we call "base" lan­
guages and "user" languages. A highly specialized "user" language 
can be developed for a particular user, incorporating the syntax 
and basic algorithms natural to his problem area. More commonly, 
however, a user will make use of a general language already avail­
able, tailoring it to his own needs by introducing his own vocabu­
lary and definitions. 

Two such "base" languages have been implemented and 
applied by users. One is REL English and the other the REL 
Animated Film Language. 

REL English, further discussed and illustrated in subsequent 
paragraphs, is a sizable subset of natural English. In the base 
version, the vocabulary is limited to the "little" words such as all, 
and, what, before. Together with the grammar rules for natural 
English, this constitutes a base on which a user can build his own 
special language, and then extend it and modify it according to 
his needs. As he makes use of the inherent definitional capability 
of the system, his language and his data base become tightly inter­
woven, constituting his own language/ data base package. Several 
actual examples from user experience with REL English and the 
construction of a specialized language/ data base package are given 
in Section III. 

How, then, what exactly is meant when we refer to the "rapid 
extensibility" of REL languages? Our notion of extensibility derives 
from 'Our understanding of how a researcher or any person dealing 
with dynamic data goes about his work. As his understanding of 
his material grows, he develops new concepts, finds new patterns 
in his data, interrelates his data in new ways. This evolving con­
ceptualization is mirrored in his use of language. He defines new 
patterns and relationships in terms of old, and adds terms as he 

· needs them. As he moves forward, he makes use of those newly 
defined terms and concepts. In dealing with his data, he needs 
to be able to communicate with the computer in these new terms 
rather than always having to express himself in some rudimentary 
language. Only in this way can be use the computer as a facile 
tool of his analysis. 

The REL definitional capability can best be illustrated through 
the experience of two users who worked with those two entirely 
different languages: REL Animated Film Language and REL English. 
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Mr. John Whitney, the computer artist of international 
reknown, used the REL. AFL language. This language is a highly 
specialized language for conversational interaction with the graphic 
display terminal (IBM 2250) for composition and subsequent ani­
mation of motion picture films. Mr. Whitney used this language 
to make his film called MATRIX, which he presented at the Inter­
national IFIP 71 Congress in Ljubljana, Yugoslavia, last August. 3 

In a typical working session, Whitney could define several 
visual forms, say a cube and a pleasing curve space. The defini­
tion of these forms might be either in terms of an array of simpler 
forms, e.g., line segments arranged to define the planar projec­
tion of the cube, or might involve mathematical expressions, for 
instance in defining space curve. Once defined, these forms 
could then be manipulated by the artist as conceptual units and 
be composed into higher level forms and sequences. For example, 
a series of cubes might move rhythmically along the space curve 
in such a way as to move into and out of symmetric interrelation­
ships. The artist would then proceed by executing and modifying 
his developing composition on the display scope, working with the 
visual images to bring the ultimate composition into artistic bal­
ance. If it had been necessary for him to state these high level 
compositions in terms of the basic shapes of two-dimensional 
lines and mathematical equations, rather than in terms of cubes 
and the space curve, the artist would have been strained beyond 
his ability to conceptualize. 

As far as REL English is concerned, this passage to new, 
high level conceptual forms can be seen in the protocol of Dr. 
Thayer Scudder who made extensive use of the experimental REL 
system. Dr. Scudder, a Caltech anthropologist, and Dr. Elizabeth 
Colson, of the University of California at Berkeley, used the REL 
system to analyze their data concerning the Gwenbe Tonga, a 5 
people living in Zambia. Their data base was of the order of 10 
items. The following illustration is from one of Dr. Scudder's 
sessions with the computer. First he defined the term "sex ratio." 
Later on, he was interested in considering only the older women 
of the Mazulu village, whom he defined as "Mazulu crones. " He 
could then ask: 

"What is the sex ratio of the children of Mazulu crones?" 
"What is the number of male children of Mazulu dames who 

were born before 1920, times 100, divided by the number of 
female children of Mazulu dames who were born before 1920?" 

On the surface, this seems a minor advantage. However, 
in the process of ongoing investigation, the recogniting, testing 
and establishment of new conceptual forms is expected to take 
this step-by-step path. 

These steps, as they build up, evolve into new and more 
revealing conceptual patterns. How a user extends his language 
through definitions during his ongoing conversation with the com­
puter is well illustrated through Scudder's protocol. Definitions 
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can, of course, be deleted and changed, as well as added. The 
concepts defined, as well as the questions that can be asked, may 
involve higher level abstractions and complex interrelationships, 
not just simple identifiers of individual entities or subsets of the 
data, as might seem initially. 

As a user builds up a hierarchy of definitions, computing 
efficiency is likely to be degraded when the higher forms are 
used, especially when they entail complex calculations on the 
data. The investigator should then have recourse to a program­
ming staff who can replace the hierarchy of definitions leading 
to a term by an efficient algorithm expressing internally the com­
plex meaning of the term. 

Thus, REL provides for two kinds of language extension. 
First, it is easy for the investigator himself to define new terms 
and extend and modify his language, i. e. , his lexicon and his 
data, while working with the data. Second, it is easy, at the pro­
gramming staff level, to initiate and extend languages tailored 
to the needs of the users. It is precisely these two capabilities 
that constitute the extensibility provided by REL. 

Finally, the data itself may need frequent extensions. There 
are two sides to this issue: adding small amounts of data, which 
the investigator can add just as easily as he adds definitions. Such 
additions are immediately incorporated into the data. The other 
side is adding large bodies of data, particularly when that data is 
on punch cards in typical field formatted form. Let us consider, 
for example, a data deck whose card format is: 

NAME POPULATION LAND AREA 

France 45540 213 

Using a language based on REL English, an investigator 
could enter from a terminal the following definition: 

def: "France" "45540" "213": 

The population of "France" is "45540" and the land area of 
"France" is "213". 

The quotes indicate that any other similar term may be used 
in place of the ones shown, e. g. , names of countries and other 
numerical data. It is easily noticed that this simple definition 
decodes the card format into a statement whose processing will 
build the facts indicated into the data base. Having submitted 
the card deck to the machine operator, one types: "Alternate 
input: cards. " and the system then processes the data cards, 
whose translation is understood by the language processor in 
terms of the above definition. 
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REL English 

REL English is currently the most prominent language within 
the REL system; it has already been tested extensively in user 
applications and has a variety of applications as a natural means 
of communication with the computer. 

Just as in ordinary English we use different modes of expres­
sion, different styles to suit specific situations, in REL English 
not all constructions of ordinary English are available. For 
instance, colloquial, casual on the one hand, and extremely 
elaborate constructions on the other, are not part of REL English. 
However, we are continually bringing it closer to normal English 
by incorporating new structural features. Currently, REL 
English grammar consists of more than 350 rules which allow a 
variety of constructions to be handled. The grammatical struc­
ture of REL English is discussed in (4, 5, 6); here the presenta­
tion is limited to illustration of the constructions that can be 
handled and samples of actual conversations with the data. 

uses: 
As for the range of constructions handled, REL English 

1. Complex verb structures, including references to 
time; e.g., 

Had John been given the message before his Boston 
friend arrived? 

Did John arrive in New York after July 1, 1970? 

2. Relative clauses; e.g., 

Did some boy see the girl who left London? 

Did John give Mary books which he bought from Tom? 

3. Complex noun phrases; e.g., 

Mary is the daughter of John's wife's brother. 

John sent a letter to his wife's mother. 

4. Qualifiers, which select data and group it; e. g. , 

Which ships left Boston after May 1971? 

How many reports were sent by John last year? 

5. Conjunctions, which join nouns and sentences; 
e.g., 
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Did John live in New York or Boston? 

Mary attended Harvard and her brother enrolled in 
Yale. 

Combinations of such constructions, with some others not 
illustrated here, make it possible to use REL English with ease 
and a feeling of conversation in natural English. 

To quote Dr. Scudder: "A great strength of REL is that 
the investigator can afford, in playing with the data, to search 
out a multiplicity of relationships, whereas in using other tech­
niques he might settle on a single suspected relationship and after 
lengthy statistical analysis be tempted to read too much into 
correlations found. ,,7 

Comments such as Dr. Scudder's make those of us in the 
design and implementation of the REL system and REL English 
feel that we have already had very valuable experience with the 
system and we are confident of the REL promise. 

With the tremendous developments in computing which we 
have witnessed in the past two decades, it is now time that com­
puters should be "humanized" and that many men and women be 
liberated from the distance between men and machines. Computers 
should be easily manipulable tools in the hands of those to whose 
work they could contribute immensely - members of dynamic, 
complex environments. REL is a computer system for these 
types of users. 
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20. A Computer-Oirecte~ Training System 
John B. Goodenough 

Softech, Inc. 

This chapter will discuss one successful Air Force experience 
in using multi-access computers to help people learn to use a com­
puter system effectively. It will then turn to some techniques 
which might be used in future systems. 

Recent Air Force experience has centered on the Phase II 
Base-Level System, which consists of approximately 130 Burroughs 
3500 computers located around the world. These computers calcu­
late payrolls, assist in personnel management, and in general, 
accomplish functions which are common to Air Force bases every­
where. Some of the B3500 programs are interactive, in particular, 
the personnel management system; training personnel at each base 
to use this system effectively requires vast and continuing efforts. 
The training problem multiplies as more base level functions are 
supported by the Base-Level System. 

In anticipation of these training problems, a system called 
the Computer Directed Training System (CDTS) was developed to 
train B3500 users on-the-job in the use of various functional pro­
grams supported by the B3500. (A course was also developed to 
train B3500 computer operators 1. ) Within the last year, initial 
tests of one CDTS course have been completed, and the system 
is scheduled for world-wide implementation in January, 1972. 
Savings from the use of CDTS for this course alone are estimated 
at one million dollars per year, and moreover, the CDTS tech­
nique has achieved enthusiastic user acceptance. 

CDTS is a simple system as computer-aided training systems 
go - it supports only simple training techniques. ·Specifically, 
it presents information or questions to a trainee, the trainee 
makes some kind of response, the system analyzes that response, 
presents either remedial material or new material, and waits 
for the trainee's next response. There's nothing particularly 
new about this style of instruction; it received the name "program­
med instruction" years ago. 
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Certain management functions are also supported by CTDS; 
e.g., it keeps records of each trainee's progress and what kinds 
of errors he is making so that the course can be improved later. 

The most significant aspect of .the system is neither the 
method it uses to train people nor the training management func­
tions that it supports, but that CDTS is available on the job. The 
console on which the trainee receives instruction is the same one 
that he will use to do his work when he finishes the course. CDTS 
is available on request and requires minimal trainee supervision 
even though it is a form of on-the-job training. The trainee's 
supervisor need not spend a lot of time making sure the trainee 
is getting the proper kind of training - the trainee just goes off 
and does it. Moreover, the trainee is on site while he is taking 
the course so that when a work crisis arises or questions arise 
in his area of responsibility, he is right on hand to help out. This 
is one reason why management likes an on-the-job training sys­
tem. Another reason is that the personnel system course takes 
only 30 to 40 hours to complete, compared with three weeks of 
classroom training for the same course, and the computer-trained 
personnel perform as well or better than the classroom trained 
personnel. Finally, everyone in the personnel office can be 
trained to the same level of competence when CDTS is used, 
whereas at most 10 percent of the personnel are normally given 
the full classroom course. 

Trainee acceptance has also been gained, despite a mean 
system response time of 44 seconds (with a large variance as 
well). All 25 of the original test trainees preferred this method 
of instruction to classroom instruction (although I should state 
that initially only 24 out of the 25 preferred the CDTS method; 
when the lone dissenter was asked why he preferred the class­
room method he said he liked getting the per diem payments that 
came along with off-site classroom instruction. When we excluded 
this factor from his judgment, he admitted that he preferred the 
CDTS method). 

From a cost viewpoint, direct costs of running CDTS come 
to about $2. 70 per trainee hour as detailed below, as opposed to 
an estimated $5 per classroom hour. 

Trainee management for CDTS costs cover management 
time required to identify the next person in the base personnel 
office who should receive training and similar functions. Class­
room costs do not include TDY expenses of trainees, which can 
reach a considerable sum. Neither set of costs includes course 
preparation costs, costs for facility overhead or for course 
development. It is reasonable to ignore facility overhead costs, 
because the facility is required whether the training system exists 
or not. Course development costs come to between $70, 000 and 
$100, 000 per course. With respect to the CDTS personnel man­
agement course, course development costs are negligible, because, 
considering the number of trainees who should take the course 
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COMPUTING THE NUMBER OF PERMUTATIONS 

INTRODUCTION THERE ARE ONLY TWENTY-FOUR PERMUTATIONS OF FOUR 
OBJECTS, BUT THERE ARE 120 PERMUTATIONS OF FIVE OBJECTS 
AND 720 PERMUTATIONS OF SIX OBJECTS. IT IS OBVIOUS THAT 
AFTER A CERTAIN POINT THE LISTING OF PERMUTATIONS OF 
OBJECTS BECOMES AN ENORMOUS TASK. 

DEFINITION 

NOTATION 

FORMULA 

THE TOTAL NUMBER OF PERMUTATIONS OF A GROUP OF OBJECTS, 
OR ANY SUBGROUP, IS EQUAL TO 

n! 
(n-r) ! 

WHERE n =THE TOTAL NUMBER OF OBJECTS 
AND r =THE NUMBER OF OBJECTS IN EACH PERMUTATION, 

SUCH THAT O:';'.; r:';'.; n. 

THE TOTAL NUMBER OF PERMUTATIONS OF A GROUP OF OBJECTS, 
OR ANY SUBGROUP, IS DENOTED BY THE SYMBOL 

WHICH IS READ "THE PERMUTATIONS OF A GROUP OF n OBJECTS 
TAKEN r AT A TIME." 

THE FORMULA FOR FINDING THE TOTAL NUMBER OF PERMUTA-
TIONS, THEREFORE, IS 

1°HE PERMUTATIONS' 
OF n OBJECTS TAKEN 
rATA TIME IS 
EQUAL TO ... 

'i~c; ;;-- 1lov1DEDBYTHE' 
OF n ... FACTORIAL OF 

THE QUANTITY 
n MINUS r. 

EXAMPLE ONE AN EXPERIMENTER HAS FIVE VARIABLES WHICH HE WOULD LIKE 
TO TEST IN PAIRS. HE IS ALSO INTERESTED IN THE ORDER OF 
THOSE PAIRS. IF HE WANTS TO RUN ALL THE POSSIBLE TESTS 
ON THESE FIVE VARIABLES TAKEN TWO AT A TIME IN DEFINITE 
ORDERS, HOW MANY TIMES MUST HE RUN THE TEST? 

5! 
(5-2)! 

5! 
3! 

120 

6 
= 20 

Fig. 20-1. An Example of an Information Map. 
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each year (approximately 12, 000, due to the great personnel 
turnover experienced), the savings based on the cost analysis 
in Table 1 will be approximately one million dollars per year, 
exclusive of savings in TDY costs. Savings of this magnitude 
quickly amortize course development costs. 
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A few problems exist. First, the testing phase revealed 
that each base installation has too few consoles to train people 
on the job. The use of consoles for training had not been taken 
into account when the system was initially sized, and so while 
installations reported that they liked the training system, their 
workload was such that no time was available to use the consoles 
for training. The solution, of course, is to provide more con­
soles. The Air Force has estimated that 245 additional consoles 
will be needed for effective use of CDTS world-wide. Of course, 
these consoles need not be used solely for training - during peak 
workloads, they can be used for real work. Moreover, when a 
new system is made operational at a given site, the Air Force 
will import additional temporary consoles to handle the initial 
peak training requirement. The cost of the additional permanent 
and temporary consoles can be recovered easily from savings 
due to the use of the system. (It should be noted that as addi­
tional consoles are justified on a cost effective basis due to train­
ing needs, we come closer to the situation desired by the speakers 
at this meeting; namely, one console per person for his full-time 
use, be it training or work. ) 

A second problem is that the B3500 is heavily loaded. The 
large amounts of text required for the training system and its 
courses stretch online disk storage capacity to its breaking point. 
CDTS cannot be kept online at all times because of limited disk 
capacity, and when training system is in use, access to some 
other systems must be denied. Provision of more disk space is 
economically feasible, however, because of the magnitude of sav­
ings that can be realized from the full use of CDTS. 

These two problems occurred largely because CDTS was 
an afterthought to the over-all system design. In sizing the sys­
tem, CDTS requirements were not a factor. The lesson here is 
obvious - since simple online training systems are technically 
and economically feasible today, at least in the military environ­
ment, their demands should be considered from the start in sys -
tern design and sizing. In fact, one of the main points I wish to 
make today is that training systems should be routinely provided 
(or at least, their provision should be explicitly considered) in 
future military multi-access systems. 

One advantage of CDTS has still not been mentioned - ease 
of update. The procedures for using computer systems such as 
the personnel management system are constantly changing. Train­
ing materials must be revised accordingly. When training materials 
are published in book form, keeping the training manuals in agree­
ment with the actual system is almost impossible. But with training 
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COST/CONSOLE HR. 

DISK STORAGE $0.089 

TERMINAL $1.23 

CPU TIME $1.10 

TRAINEE MANAGEMENT $0.272 

$2.69 

COST/CLASSROOM HR. $5.00 

Fig. 20-2. Costs per Trainee Hour 

handled by CDTS, as the personnel system changes, corresponding 
changes will be made to the lessons. When the changed system is 
released, the changed training course will be released simulta­
neously. Thus all installations - world-wide - will have an up-to­
date set of training materials, and the distribution of the changes 
is handled routinely - as part of its regular maintenance updates. 
If we were limited to printed training media - a book or something 
similar which, offhand, might seem to be a cheaper way of doing 
business - we would lose this simple method of keeping course 
materials up to date. This ease of change is really a tremendous 
benefit. 

The CDTS system supports very well the teaching of a 
cookbook approach to problem solving. In the Personnel Manage­
ment System course, a user is trained to process certain kinds 
of transactions using certain techniques available in the personnel 
management system. He is not trained to use a powerful set of 
data base update and query operations per se. To some extent, 
this is an advantage, because if a user has not dealt with a certain 
kind of transaction for some time, he can ask to be taken through 
the lesson module dealing with that sort of transaction again, i.e., 
the system can be used as a review mechanism by an already 
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trained user, even though CDTS is not particularly organized to 
facilitate review. And it is not set up to give a quick answer to 
a specific question about how to accomplish a certain action. 
Some technique other than the "programmed instruction" tech­
nique of CDTS is needed to meet the multiple requirements of 
users effectively, so that the computer can become more than 
just a training aid; it can become a continuing on-the-job perform­
ance aid as well, being continually available to assist the user in 
making effective use of his system. 

One promising technique which overcomes the limitations 
of traditional computer aided training methods is information 
mapping2, 3, Information mapping was originally developed with 
the printed page in mind. One characteristic of information maps 
is the marginal notations which indicate in a general way the 
nature of each box's content. From one page to the next, the 
marginal notations are generally the same. The content in each 
box is grammatically separated from the content of adjacent 
boxes, i.e., there are no pronouns that refer back to a sentence 
in a preceding box. This means that when a person reads a printed 
page in this format, the order in which he reads the material is up 
to him. (Some people, for example, may prefer to read a defini­
tion, then read an example, and then look at the notation. Others 
may prefer to look at examples first, then the definition, and 
finally the notation. ) With information mapped material, the 
reader can jump around quite readily, according to his own per­
sonal style of reading and learning. 

The same information mapped page is suitable for initial 
learning and for review. For example, to review, a user can 
flip from page to page and look just at definitions and notation. 
The material is indexed by the marginal notations, and so is sus­
ceptible to use for different purposes. 

Information structured in this way is particularly suitable 
for use in computer-based training systems. Each of the boxes 
on the printed page is a chunk of information of a particular kind, 
i. e., introductory, definitional, notational, etc. Given material 
organized in this fashion and a description of a user need, the 
computer can reorder the material to suit the particular need. 
For example, if a user requests a review of the material in the 
probability course, the computer system applies a system (or 
user) defined specification of what material is most appropriate 
for review purposes (e.g. , just definitions, notations, and a 
single example), and then presents this material to the user. 
If he wants to reference a specific topic, he can enter a query 
and focus on a map or set of maps containing the information he 
wants. 

So the point of information maps is that the same material 
is suitable for initial training, suitable for reviewing, suitable 
for referencing, and useful for just browsing through a course. 
A single preparation of the material can meet these diverse needs. 
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No computer-based system exists at present which uses 
information maps, although efforts are underway at the University 
of Pittsburgh and at The MITRE Corporation to develop such sys­
tems. A system design has been completed4 using a set of decision 
tables which specifies how to sequence through material in various 
modes, but since these procedures have not been tested, undoubtedly 
some revisions will be necessary. It does seem likely, however, 
that a system which uses information maps will be more than just 
a training aid - it will be a job performance aid as well because 
of its utility for reference and review purposes. 

CDTS and information mapped systems have a common 
characteristic, namely that all material presented to a trainee 
has been prepared in advance by the course author - the systems 
differ primarily in the extent to which the course material may 
be selected and rearranged by the trainee. In contrast, generative 
training systems use artificial intelligence techniques to create 
highly individualized questions and answers for a particular trainee. 
A course author in such a system does not prepare chunks of 
training material in advance, but rather develops a network of 
concepts and information about some topic. The system, using 
general rules, analyzes the network and either responds to ques­
tions by trainees or generates its own sequence of questions. 
Such a system is, potentially, capable of conducting a true dia­
logue between man and machine. Initial experimental results 
are promising5. At present, an experimental system containing 
information needed by ARPA network users is under design. The 
system will respond to queries in a seemingly intelligent fashion. 
For example, if someone asks how to use the Lincoln Laboratory 
computer, the system might reply that there are two computers 
at Lincoln Laboratory available on the network: an IBM 360 and 
the TX2. It would then ask which computer the user was spe­
cifically interested in. In another mode of use, the system 
would test a user's knowledge in a particular area selected by 
the user, and would proceed to fill in gaps revealed by the user's 
answers. 

Of course, one realizes how speculative this sort of system 
is, but some success has been achieved in this direction and this 
is the kind of system that may well be in productive use in 15 or 
20 years. 

The three types of training and performance-aiding systems 
that I have discussed are distinguished in part according to the 
extent to which the computer or the trainee/user is in control of 
the dialogue. In the case of CDTS, the trainee has only very 
limited control over the system. In an information map system, 
the locus of control may vary more widely, although the style of 
the dialogue is still highly restricted. Finally, with generative 
systems, the locus of control may easily switch back and forth 
between user and computer, and the style of dialogue may appear 
quite free and natural. The Computer-Directed Training System, 
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information mapped systems, and generative systems are thus 
examples drawn from a spectrum of training and performance 
aids. 

In conclusion, computer-based training aids can significantly 
help meet the training problems posed by sophisticated or even 
seemingly simple interactive, applications-oriented systems. 
According to Professor Corbato, the real system is the system 
that the user knows about. The only way he is going to get to 
know about the system is if he is provided with suitable training. 
And increasingly, at least in military systems, a computer-based 
training subsystem will be the most economical and effective 
means of providing that training. Unfortunately, neither users 
nor developers have the proper set of expectations about what 
training and performance aids a system should and can supply. 
No checklist for system design includes a training subsystem as 
a design possibility. There are systems where it is not worth­
while to implement computer-based training aids, but the decision 
not to use these techniques should be made consciously rather 
than by default. 

Finally, computer-based training aids should be implemented 
in many systems and only when this is more widely realized and 
more systems have these training subsystems built in will the 
benefits of multi-access computing be fully realizable. 

ACKNOWLEDGMENT 

The work described here is and has been mainly the respon­
sibility of Dr. Sylvia Mayer of AF Electronic Systems Division. 
Dr. Mayer's work over the past years and the many discussions 
we have had concerning the significance of these systems and 
concepts for improving the effectiveness of multi-access systems 
have been invaluable. 

REFERENCES 

1. ----, The development of a computer-directed training 
subsystem and computer operator training material for 
the Air Force Phase II Base Level System, ESD-TR-70-27 
(AD 702 529), November 1969. 

2. Horn, R. E., Nicol, E. H., Roman, R. A., et al. Informa­
tion mapping for computer-based learning and reference, 
ESD-TR-71-165 (AD 729 895), March 1971. 

3. Horn, R. E., Nicol, E. H., and Kleinman, J. C., et al. 
Information mapping for learning and reference, ESD-TR-
69-296 (AD 699 201), August 1969. 



204 Multi-Access Computing 

4. Horn, R. E., Nicol, E. H., Roman, R. A., and Razar, M. E., 
Description of a computer-based learning-reference system 
for use with information-mapped data bases, Project Docu­
ment No. 1, Information Resources, Inc. , Cambridge, Mass. , 
March 1971. 

5. Carbonnell, J. R. and Collins, A. M. , Mixed-initiative 
systems for training and decision-aid applications, ESD-TR-
70-373 (AD 718 977), November 1970. 



21. Integrative Analysis in Biology 
Wilfrid J. Dixon 

UCLA 

Los Angeles, California 

In this chapter, I wish to describe the Health Sciences 
Computing Facility and what it is attempting to do. I believe 
our approach to the pr oblem is different from those described 
in earlier chapters. In some sense, this chapter will discuss 
earlier chapters as well. 

Our facility is located in the Medical Center at UCLA. 
It is supported by the National Institutes of Health to provide 
mathematical, statistical, and computer support for medical 
research. A large part of that activity is the continuing develop­
ment of the BMD programs. Originally, these statistically­
oriented programs operated in a batch environment. They have 
been widely distributed and provide a basis for many types of 
research. A more recent project is the support of research, 
development, and improvement of modeling systems. Major 
emphasis is now being placed on the development of interactive 
programs, some of them using graphical devices. As research 
tools, we have used the IBM 2250 and a variety of alphanumeric 
terminals. Interactive support brings a greatly increased power 
to the researcher. In addition to getting fast turnaround, he can 
interact directly with his analysis, and, with a graphical terminal, 
he has a pictorial output capability at his command. Programs 
are written not only by our own staff programmers but also by 
graduate students and various investigators who use our statistics 
and aid us in developing the computer support which makes these 
most effective. In addition to the systems to facilitate use and the 
package programs to provide the analytic tools, this has led us 
to the development of general purpose programs to aid the user 
in the development of special purpose tools for his needs. A 
retrieval program designed for handling tree-structured files is 
the first set of such programs planned for assisting users in the 
retrieval of data. Another application, which may be of interest 
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to some of the more system-inclined people, is a computer-aided 
instruction system. Using PL/1, we have written a set of macros 
which comprise a very effective means of developing teaching 
programs. Courses developed in this way are now in use for 
teaching the medical and dental students. The instructor merely 
specifies his statements and branching conditions and the macros 
are used to implement his requirements. The resulting systems 
run on an interactive terminal used by the student. 

Effective tutorial and collaborative consulting is an essential 
part of our service to a user community which is predominantly 
inexpert in both computer usage and analytic techniques. Our 
plans for exporting our research and improving our local effective­
ness entail expansion of our consulting capabilities. To this end, 
we are developing the capacity to permit two or more terminals 
to consult online, viewing the same output and responses, and 
commenting as required. This capacity is based on our "Inter­
active Consulting Program" - a set of modules which can be link­
edited with any FORTRAN program to provide this capacity. ICP 
provides the system interfaces which enable the users to estab-
lish communication, view the same input and output, and interject 
comments. The first version became available in January, 1971, 
and we are finding it an effective way of carrying on communica­
tion at places both remote and close at hand. I want to stress 
here that two or more individuals are operating out of the same 
applications program at the same time in a facility. To facilitate 
program development by these users, we have concentrated on 
languages and systems which can be readily used for applications 
in medical research by people with little interest in or experience 
with computers. This has led us to the development of systems, 
special user-interfaces, and many applied programs. The graph­
ical programs developed by our staff and our users have been 
written in either GRAF or PLOT, which are language extensions 
to FORTRAN and PL/1, respectively. These extensions are very 
simple to learn and use, so that anyone who knows either FORTRAN 
or PL/1 can become a graphics programmer in just a few hours. 

The nongraphical interactive FORTRAN programs use a 
special version of the standard FORTRAN input/ output routines. 
Input/output to the terminal is specified just like any other FOR­
TRAN input/output. If desired, special control information may 
be specified in a COMMON block. Although it is usually neces­
sary to re-work the control logic of a batch application program 
in order to take full advantage of the interactive capability, many 
batch programs become fairly satisfactory interactive programs 
when FORTRAN units 5 and 6 (usually the card reader and printer, 
respectively, in batch) are assigned to the terminal. Nongraphical 
interactive PL/1 programs use special input/output subroutines 
which are also quite easy to use. 

All interactive jobs are handled on a time-shared basis, 
executing simultaneously with a full batch stream. This is carried 
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out under the control of our operating system, which we call 
TORTOS (Terminal Oriented Real Time Operating System). The 
system was developed jointly by IBM and members of our staff 
to meet the needs of this installation. TORTOS is based on the 
standard system 360 operating system with the MVT option, and 
consists of a set of added modules activated by a START command. 
Thus, as the additional releases of OS/ 360 become available we 
are able to add these modules to the standard operating system. 
Our operating system and interactive work were originally sup­
ported by an IBM System 360/75; in 1968, the system capacity 
was extended by replacing the central processor with a Model 91. 

The basic structure of TORTOS permits almost total flex­
ibility of use, but without special tools designed for user con­
venience its effective use requires considerable training. Now 
that our system is functioning well, we are turning our attention 
to expediting its use by beginners. The basic approach is being 
made with a terminal monitor. The monitor provides a simpli­
fied command language, with defaults and a prompting facility, 
which makes it possible to use it to solve relatively simple prob­
lems without first learning several different command language 
instructional sequences. It also makes it very easy for the user 
to perform certain very frequently used sequences of operations 
(e.g., compile, load and execute, look at termination codes, 
etc., edit programs, compile, - etc. ). All monitor operations 
bypass the OS/360 job scheduling facilities, resulting in a very 
significant improvement in performance for the user. 

Another significant development is TORTFORT, an inter­
active editor and FORTRAN compiler. With TORTFORT, the 
user may enter a FORTRAN program or specify a source program 
in our file service, and modify it, compiling the program line by 
line and correcting errors as they occur. When his entire pro­
gram has been compiled and no errors found, he can execute it, 
still under the control of TORTFORT. Errors found during exe­
cution are indicated, and the user may return to the compiler or 
editor phase to correct his program. TORTFORT is easy to use 
and provides full facilities for the FORTRAN programmer. It 
is based on the University of Waterloo WATFOR compiler. The 
new version, based on W ATFIV and offering greater convenience 
and efficiency, is near completion. 

The guiding over-all impetus in the facility is that of serv­
ing medical research through mathematics and statistics, provid­
ing support with a computer operating in a time-sharing mode, and 
providing applications software that allows many problems to be 
solved with no changes to the applications program. 

When I came into the biological area from the engineering 
research area, it took me some time to really find out that I was 
in a different culture. I think that that must be taken into account 
when one is thinking of computer systems and the man-machine 
interface. I feel that in some of the other chapters the man which 
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the speaker was interfacing with the computer was a man like 
himself. There are many other kinds of people in the world than 
those represented in this book. Biologists and medical people 
are really quite different. We have found this means we are now 
designing different systems than if we had tried in advance to 
guess what these researchers might need. 

We find an integration of our techniques with our users' 
perspectives in almost any project we bring in. For example, 
the organ transplant problem is one of our important projects at 
present. The problem comes from the medical field, through a 
specialist in the medical area who knows something about the 
basic processes, the surgery, and so on. He comes to our facility 
to a mathematically or statistically inclined individual who then 
thinks about the role of the computer in the problem solution. So 
the interface has a long route to begin with, but, as the problem 
develops, even the most remote individual comes right up to the 
computer and starts interacting with it. This kind of a problem 
needs both new kinds of mathematics and new systems capabilities. 
We developed some new statistical techniques (e.g., one we call 
"Boolean factor analysis") which have been the basis for typing 
the white cells for organ transplant. We also found that the 
demands of this data system and the demands of the computations 
for the Boolean factor analysis really required new systems 
developments, so we have the man-to-man interface in developing 
the computer aspects. 

Biological scientists stressed graphs before those in the 
computer field ever thought it might be a nice thing to do. You 
can see this in the journals of ten or twenty or thirty years ago. 
If one takes off the shelf a journal labeled "biology" and one 
labeled "engineering" or "physics," one will find a wealth of 
graphic material in the biological field - ten to a hundred-fold 
more than in the others. So, in moving into graphics in this 
field, we found the people around us were really already graphics­
minded, much more than those who were based in the computer 
science area. We have a very graphics-minded population with 
which to work, and they push us hard in the graphics area. 

We have been trying for some time to find out why there 
isn't more interest in using color in graphics. In reading the 
literature on color, which exists in art, psychology, and the 
humanities, one will find they long ago suggested that mathe­
maticians and engineers probably had a limited interest in color. 
However, since the engineer and the mathematician do not regu­
larly read the biological journals, they are not impressed with 
the need for color and therefore may not be effective interfaces 
for bringing an additional dimension in the graphics field to the 
biologist or to others who think in color. 

Perhaps some are in the computer field because a high 
school biology teacher tried to make them draw all of those 
graphics. The biology teacher was already involved in graphics 
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and has remained so. The mathematician and engineer are now 
ready to enter the field. Getting these people back together, I 
think, really must be done in the biologist's own environment. 
Perhaps I will be permitted to call that a graphic example of 
how one might well develop tools quite differently if the user 
population, which is really a different population, is steering 
and pushing the process which one is trying to develop. 



PART IV. POLICY CONSIDERATIONS AND COMMENTARY 

The two papers in this section were presented at the banquets 
and at the Commentary Session of the conference. They are quite 
philosophical in approach and, therefore, have been placed 
together. 

Dr. Thompson presents a brief commentary on the character 
of ADP research today as reflected in the conference. He then 
discusses the need for a science of information and closes with 
some thoughts on the impact of computing on our society's organi­
zational structures. 

The last paper is a brief commentary by Dr. Syms on the 
conference. He closes with a discussion of the hyPothesis that 
single-language/single-application computers may be so much 
more efficient than most current practices that we should con­
sider them as the approach of the 70s. 
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22. The Neea for 

a Science of Information 
Fred Thompson 

California Institute of Technology 

Pasadena, California 

I was asked to see if I could find some threads running 
through these chapters and to comment on them. But the one 
thing that stands out is their great heterogeneity and their incon­
gruity. Each author reported from his own vantage point, seeing 
requirements and solutions and things to do from the point of 
view of his own experience in his own area, and these seldom 
matched the views of any other speaker. Many of the words used 
were at very high levels of abstraction, and as they got to that 
level, we could relate because we could also abstract our own 
experience to that level. This was markedly noticeable in the 
enormous number of cliches used. Yet, when we got right down 
to details, there was essentially no transfer value. For example, 
Dr. Bergman's report on "Real-Time Systems Requirements" was 
very convincing yet had no impact upon me at all, although I was 
completely aware of the thesis being spelled out and completely 
agreed with the speaker. It's a thesis favoring modular hard­
ware that I am very familiar with because our own electrical 
engineers preach the same line very convincingly. I have no 
possibility of using such circuits both because of funding prob­
lems and, more important, because of political problems. I 
simply must use the general purpose computer at my installation. 
I would even like to go mini. I could afford a mini. In fact, it 
would be a considerable savings. I could use my grant money 
much more efficiently on minis but, because of the political situa­
tion in our own installation, I use the general purpose computer. 

In a short conversation, I spelled out the capabilities of an 
English language direct-access system to several people at this 
conference, saying, suppose I had a magnetic tape under my arm 
and I could give it to you, could you use it? It turned out I was 
talking to some people who get thousands of bits per second off 
radars and have that as their only problem. So there was an 
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incongruity and we need to examine the implications of that to 
see what it means for the kinds of operations we ourselves do, 
to see what it implies for our community. 

I would like to examine two major reasons for this incon­
gruity and then I would like to comment on its implications and 
on what long-range solutions may exist. 

The first reason is, certainly, a lack of any science of 
information. I should like to divide this notion of a science of 
information into two parts: the science of computers, what you 
might call computer science, and the science of human informa­
tion or human information processing in social organizations. 
In information, we are beginning to have the basic units and basic 
conceptual ingredients of such a science. Certainly the work of 
Godel, Turing, and others in that area has given us a very firm 
hold on the notions of computability. The work of the theoretical 
linguists in the last several years has augmented that hold with 
a knowledge of language and its relation to semantics. On the 
basis of these results, we are beginning to put together a science 
of computing. Indeed, many contributions are being made at the 
present time. However, it certainly has not jelled into a form 
where we can make cogent comment upon the kinds of systems 
we are deyeloping, the kinds of directions we should take. 

To return to decision making and the area of the social inter­
relation of information, the area of management, which was very 
clearly pointed out as a major shortcoming by Commander Knepell, 
we find essentially no coherent body of data or of theory at that 
level at all. At the present time, most social scientists are not 
well enough equipped in mathematics to handle the material. 
Nevertheless, a growing body of social scientists is beginning 
to develop a common theory based again on mathematics - the 
mathematics of statistical decision theory, the mathematics of 
game theory, the mathematics of information theory tied in with 
the theory of automata and recursive function theory. This is 
not a single mathematics yet. But if we examine the various con­
cepts across this rather broad field, we find a beginning of a 
unification of mathematics in that area. So I would like to say 
that the basic beginning of a social science, a quantitative and 
empirical social science is being made. 

That basic beginning as it is now established, however, 
has one very bad flaw: All the mathematics and conceptual 
development underlying so much in this area, statistical decision 
theory on the one hand and artificial intelligence and simulation 
of cognitive processes on the other, seems to depend on a basic 
assumption that the various alternative states of the world can 
be adequately described in a given language. Notice, for example, 
in statistical decision theory, it is assumed that the consequences 
and alternatives existent in a given situation can be prescribed 
beforehand so that, on the basis of subjective probability decision 
rules, one can decide among them. In game theory, one presumes 
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that the strategy space is available, that both players are playing 
the same game and have equal understanding of the problem, 
that what they lack is information about the plays the other is 
making and the problem again is to choose from a predetermined 
set of alternatives. Information theory presumes a sample space 
is given and again it is a matter of choosing among alternatives. 
Certainly, in the artificial intelligence area, it is assumed that 
the language of the computer is adequate to describe the state in 
which the artificial intelligence is to perform. 

This basic notion is a very dominant notion among those 
who are dealing quantitatively with social information. Even 
though this is a small part of the community, it is a growing part 
and a very powerful part. Certainly a dominant notion of all of 
the theoreticians that are working in an area need not necessarily 
reflect the reality about which it is supposedly built. Now I say, 
"need not necessarily" because I do want to take somewhat of an 
objective position in this regard. I believe that it does not at all 
reflect, that it indeed ignores, the very essence of the human 
cognitive process which I would like to characterize in a slightly 
different vein in a minute. In any case, it is certainly open to 
controversy. Indeed, there are very deep results in the litera­
ture, namely, the undecideability results of Godel and Tarski 
and others which, when brought into the balance, weigh heavily 
against the thesis that the states of the universe that are relevant 
to the management process can be formulated in any formal lan­
guage. Thus they can certainly not be simulated on a computer. 
The situation then is simply that if we can formulate a total theory 
of, say, how a human being thinks, in a language that can be pre­
cisely described (and obviously if it can't be done on a computer), 
then the theory must indeed account for that language and must 
be adequate to describe it. Therefore, one falls into all the 
underlying antinomies. Consequently, there are deep reasons 
to believe that the human brain is not a computer and cannot be 
described in any formal language. That would apply also to the 
social processes in which we are involved, which would suggest 
the basic creative processes that underlie the processes of man­
agement most certainly are processes that cannot be simulated 
or initiated on a computer. 

Now, these arguments are presented not to convince, 
but simply to give evidence that there are other, contrary argu­
ments to the underlying thesis that all- of these systems and 
system requirements can be adequately defined, can be put 
down in some precise way. There are alternative views. These 
views are well established in the philosophical literature. They 
have been discussed for eons and, indeed, with some mathe­
matical bases that derive from some of the deepest mathematical 
philosophies of our decade. Consequently, we are in an area 
where there is deep controversy, even about those basic theories 
on which all our quantitative theories of computer science and 
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management science and artificial intelligence are now being 
based. 

One of the most striking things about almost every paper 
presented here was the tacit assumption that the alternative space 
underlying the decisions that are to be made could be stated suc­
cinctly in a clear language whether they are procurement decisions 
among different computing systems, whether they are decisions 
concerning the kinds of systems that should be available to our 
managers, or whether they arise from decision processes in 
military establishment. All of the papers seem to make that 
underlying tacit assumption. And I raise grave doubt whether 
that can be done. In any case, we do not have an over-all theory 
of information and management in the broader sense. I don't 
think there's any serious worker in the field who would claim we 
did and that lack is contributing very heavily to the enormous 
heterogeneity and incongruity of the papers here. 

The second and, I believe, the major reason for the amount 
of incongruity is that our social organizations have now come out 
of kilter, are incommensurable with the kinds of tasks we have 
to do. One may recall that the old farmer was born into a task­
oriented environment. His job was to run that whole farm. He 
had to learn how to weld, to plow, to take care of fields, and 
to take care of animals. He had a great variety of skills to learn, 
all aimed at one single task which would occupy him all the rest 
of his life. In the development of our major systems, particularly 
the very large military systems, the split in the life of the develop­
ment of a system falls along people lines. No one goes through 
the entire cycle of dreaming up the system, developing the sys­
tem, learning all the skills of programming, carrying on through 
to management, growing up with the system, staying with it for 
a lifetime like the old farmer stayed with his farm, ending up as 
a system operator responsible for system operation in his old 
age. It is a way that we may wish to turn to in developing and 
living with the system. 

I was particularly interested in Dr. Corbato'' s description 
of the programmers working in Multics - that many of them are 
growing up liking to live with Multics, building a whole career 
around a single system, being in on the design, continuing the 
development, upgrading the system, and looking forward to being 
in that particular system an entire lifetime. It would be interest­
ing to see if we couldn't do this in the military where we hatch 
our officers in our schools of higher education, train them in 
particular military tasks involving the hardware, go on to develop 
systems for those environments, then go on to being the com­
manding officers in environments that actually use such systems. 
This may give a system a great deal more integrity than the way 
we do it now. Now, in spelling out this alternative, I'm simply 
trying to draw attention to the fact that we're not doing it that way 
and the very fact that the system developers have essentially no 
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experience in the management function again gives rise to myths 
that are believed by those people who produce systems which 
simply have no integrity when they get into the operational 
environment. 

Let me spell out one aspect of that which occurred to me 
from the experience I've had working with the military in my 
past. It is this question of large data bases of up to a million 
items of data. I'm quite aware that most military people now 
consider such a data base to be very small, as 107 and 109 items 
of information is the order of magnitude of information that is 
being talked about. However, every experience that I've had 
and every officer I've talked to who has had direct experience 
with such data bases, confirm that those data bases are pure, 
unadulterated garbage. There are error-filled data bases such 
as, for example, a logistics data base for the Marine Corps 
which is estimated as having 60 percent of its entries incorrect. 
At one time $2 million was spent on a crash project headed by a 
very senior colonel in the Marine Corps to try to upgrade that 
data base so it could be useful. At the end of two years, the 
project was abandoned; it was recognized that there was no hope 
that it could indeed be put into any shape accurate enough for 
any honest use. 

Let me give you another example of the same type. Many 
millions of dollars are spent each year on the Movements Report 
Section at the Chief Naval Operations {CNO). This is a section 
that opens teletypes to all major Navy installations where all 
flag-ranked officers and all major ships must report their posi­
tions within one-half hour of where they are at all times. This is 
a very extensive system, a very high priority system, and it 
presumably keeps the positions of these officers and ships tabu­
lated in the Pentagon for CNO staff usage in a very accurate way. 
OEG did a study some years ago and asked what is the average 
positional error in ships underway {that is, ships at sea) as tabu­
lated in the Movements Report and found that the average error 
was eight-hundred miles. No doubt there have been improvements 
in this system. However, it is clear these systems are grossly 
inadequate. 

We considered the problems of privacy and their effect on 
the individual. On the other hand, these major data bases are 
such that the statistical summaries being taken from them are 
grossly inadequate to estimate the parameters they presumably 
measure. This is well known in the economic sphere, where 
many economists are completely convinced that the Bureau of 
Labor Statistics - such as, for example, the levels of unemploy­
ment - simply do not reflect the facts of life of our economy in 
any way that is adequate for establishing economic policy. The 
simple fact is that data bases of the size being talked about are 
not viable entries. Now there are good information theoretic 
reasons for this to be true, having to do with the rates of change 
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of the underlying conceptual elements that go into these bases. 
Officers and systems analysts who have had direct experience 
with these bases are very aware of these shortcomings. Now 
what we're doing is training very bright young men who are 
coming out of our colleges in the computer science area, to be 
excellent system programmers with broad knowledge of automata 
theory and recursive function theory; to be highly skilled men, 
often able to do fantastic jobs in artificial intelligence; but having 
absolutely no management experience, and no experience with 
operations, no experience in guiding through a large project, no 
experience with large data bases. They then make the completely 
fallacious assumption that we can get accurate information into 
a system that will give the CNO access to the position of every 
ship and every flag-ranked officer in the Navy at all times. They 
talk about unbiased and true situations, when every officer or 
every manager knows that the one thing he wants of his staff is 
good, honest bias, and we can't get that out of our computers. 
Consequently, we are designing systems that, when they get into 
the field, do not meet the requirements of their operating com­
mands, largely because of the kinds of incongruities that cut the 
development of the system at all of its stages, from men experi­
enced in one area to men experienced in another area to men 
experienced in a third area. As a consequence, we are losing 
congruity across the total community that deals with the kinds of 
systems we are talking about. 

What are the implications, both social and scientific of 
these inadequacies, in our understanding of these kinds of sys­
tems? I think we should be hardheaded about this. We shouldn't 
go off crying in a corner. We should face up to what the situation 
is and what we should be doing about it. Certainly the first thing 
we've got to do is to increase the plurality of the kinds of systems 
we are developing, the kinds of effort we are making and the kinds 
of programs we are supporting. This is a pluralistic environment 
in which no sharp decisions should be made at this time. We 
should avoid, at all costs, major development programs that pre­
sumably give some sort of coherency to the kinds of programs and 
kinds of systems we are trying to develop. Rather, when a man 
stands up and shows by his experience that he is able to do some­
thing, we should give him the opportunity to prove himself. We 
should encourage individual efforts across a wide spectrum and 
watch the results of those programs carefully, choose those that 
are highly successful and push on with them. We should see that 
men of various points of view have the opportunity to step forward 
and do their thing and do it well. We've heard a lot about a lot 
of systems here. Some of the people who have been producing 
various sound and able ideas over a long period of time, often 
with very little financial support, are now beginning to be recog­
nized as competent in this area and are being put in charge of 
larger systems and given larger responsibilities. This is a 



A Science of Information 217 

wonderful thing to see. And we have had several people of that 
kind reporting at this conference. 

The second thing we must do is drive, drive, drive for 
early operational implementation of these systems. We simply 
must stop trying to make these huge conceptual systems of great 
complexity. We've got to come right down to trying to get these 
systems into operationally significant and valid places early. 
For that is the only way we are going to learn what the problems 
are. We are going to have to iterate them, just as Dr. Corbato 
maintains. We iterate and iterate and iterate in redesigning and 
reimplementing. But the first thing I think that all of our develop­
ment people and the development offices that support our grants 
should insist upon is aiming at early operations so as to get 
operational experience. 

A third area is certainly that we should take more statistics 
on the operations of these systems. I think that Dr. Boehm was 
absolutely on the right track. We must have adequate statistics 
coming out of the system on its operation in live environments 
and then we must look at those statistics. 

It seems to me these are the three main things that those 
of us working on systems and working with systems should do. 
Now the heavy responsibility in all this is on the research and 
development grant offices. I must say I not only take off my hat 
to them but I get down on my knees and pray for them. They 
have an enormous amount of leverage in this area. Thank good­
ness we've had ONR - which I consider to be one of the best agen­
cies in this regard - that has indeed sponsored a great many and 
a great variety of things all across our country. 

I'm very much worried about the ARPA situation right now. 
They can exercise enormous leverage on the community by apply­
ing poli,tical pressure to get into the ARPA net. This new effort 
of putting a lot too much money, as far as I can see, into this 
speech recognition problem just simply dries up the money for 
pluralistic efforts and aims at a far too narrow and too specific a 
task at this time when we know so very little. I think the R&D 
people have got to keep much more flexible. They've got to keep 
their grants low, and they've got to keep looking at the individual 
research grant. Now in this regard, the large contractors like 
SDC and SRI are going to have large marketing staffs that are going 
to push hard; they're going to try to sell, sell, sell to get the big 
grants. This is fine. That's what they should do in our capitalistic 
economy. This puts enormous pressure and responsibility on our 
grant officers, who must insist upon getting right down to the 
individual research team and evaluating that team on the substan­
tive basis of what that team is doing and must not be hoodwinked 
into making large grants to large organizations who then can spread 
it around among many mediocre and a few good people. 

In the longer range, I think there is hope for a much broader 
and more humanistic theory of information processing. It's one 
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of today's most challenging problems. I think that in the long run 
we will find an increase in our theoretical capability that will 
allow us to be more integrated and selective in the kinds of devel­
opment we go into. But that is a long way off. 

I think that another aspect of the situation is that of lowering 
costs of computer systems. This will be a very great blessing 
because it will allow us a greater pluralistic situation. We can 
afford to do a lot of things when the costs go down. Certainly 
the major limitation for a lot of us is this fact of hardware costs. 
Quite frankly, if I don't raise $35, 000 a year for computing alone, 
I have no computer. I simply have to go out and raise $35, 000. 
Now to get $35, 000 for computer time, I've got to multiply that 
by at least four to convince the funding agencies that I've got a 
big enough project to afford $35, 000 worth of computer. It's a 
fact of life for me. Many of us can't do many of the things we 
want to do because the computer costs are high. So one of the 
blessings we can look to in the future is lower computer costs. 

Finally, I think that a major area that needs some funda­
mental looking into in this country is the revamping of our social 
institutions and social practices to cope with the kinds of prob­
lems we're coming up with. We're coming up with problems 
both in large and complex systems and in systems that are rela­
tively short lived and of unstable time periods. The kinds of 
corporate organizations, the kinds of development organizations 
that we now have - in which we have this stratification of effort 
among people with varying experience who cannot talk to one 
another and a system that goes floating up through this - may be 
the wrong kind of social organization to encourage. To get really 
complex systems into the field and operating properly, it might 
be very much better if we could turn that stratification on its 
side and have people who receive their training in a technology, 
carry that technology into being, apply that technology to social 
problems, and die happy as managers of that technology while 
other developments are coming on to replace them. It may be a 
different kind of social organization and one more amenable to 
the kinds of social problems we have. It is important to recog­
nize that there are alternative social organizations. And this, 
it seems to me, is one of the primary problems of our time, 
because it may very well be that we have outgrown the social 
patterns we now have. 



23. The Trend T award One-Language Computers 

Gordon H. Syms 
Navy Post Graduate School 

Monterey, California 

I agree with Dr. Thompson that the level of the talks was 
usually general and quite vague. I don't want to imply that that 
is a unique criticism of this conference; it is a much more gen­
eral criticism. I would say the same about every conference I 
have attended in the last five years. I ask the question, How 
many here found solutions to his particular problems? This is 
quite a useful criterion for the success of any conference. If 
each person found one technique that helped him with one of his 
problems, or changed the way that he attacked one problem, 
then the conference was a success. If most people found a solu­
tion to one of their problems, then the conference was a great 
success, despite the vague and general nature of the talks. 

We discussed communicating across disciplines; what 
about the communication within our own discipline? What 
have we done to improve communications between computer 
scientists? If we could solve this problem, we would really be 
taking a big step forward. We discussed adequate means of com­
municating ideas within a small group. We certainly have not 
come close to effectively communicating among groups of a hun­
dred, and communicating in groups of four or five thousand, as 
at the Fall Joint Computer Conference, is just about hopeless. 

About 1900, a study group proved that the lecture system 
was a poor means of communicating ideas, and the results of a 
discussion were retained much longer. Yet for some reason the 
lecture system continues to survive. Despite all the times I have 
tried to change my classes by using discussions, seminars or 
problem sessions, I usually return to the lecture system. Cer­
tainly all conferences use the lecture system. The main reason 
for this is that in the lecture system the person who stands on 
the podium looks very good. He has prepared for many hours on 
the subject of his choice; he can brag about his accomplishments; 

219 



220 Multi-Access Computing 

he can demonstrate his superior knowledge; and only rarely is 
anyone in the audience prepared to challenge his facts or 
conclusions. 

I disagree with Dr. Thompson about the discussion he 
singled out as being the least useful because the subject has 
been discussed at conferences for the last ten years. It was 
the one I found the most useful. Dr. Bergman talked about sys­
tems with many processes in parallel as opposed to all processes 
going through one or a few single ports, such as a few general 
purpose computers. He convinced me that, for some applications, 
new technology has made special purpose computers economically 
feasible, despite the improved capacity and reduced costs of 
general purpose computers. The problem that he did not address 
is the design cost of such systems. If that method is to be adopted, 
each special purpose processor must be designed at a relatively 
low cost. If the design cost is small, we don't have to worry 
about flexibility because the hardware can be redesigned and 
modified as cheaply as the software for the general purpose com -
puter. I am very interested in lowering these design costs. 

A concept developed by Bell and Grason for Digital Equip­
ment Corp. is based on what they called Register Transfer 
Modules (RTM) which reduces the design cost. They developed 
a simple technique for determining and specifying the intercon­
nections between the RTM, and thus were able to design a special 
purpose computer easily and efficiently using these modules. 
Their technique involved using a special flowchart, which was 
similar to a FORTRAN flowchart, to specify the interconnection 
of the modules. The flowchart then completely specifies the 
design of the computer hardware. Although there were 20 mod­
ules in total, the basic ones were a simple control module that 
transfers control to the next module, a decision module that 
transfers control to one of two modules on a condition, a general 
purpose arithmetic unit, a bus communication module, and a 
memory module. Using these modules they designed a simple 
computer. In fact, Digital Equipment now markets a small com­
puter called a PDP-16 which they design to specification using 
these modules. They also claim that using these modules they 
can design the equivalent of a PDP-8 in six man-hours. Now 
that's really fast. I think the person must know a lot about the 
modules, a lot about the PDP-8 and be a real expert before he 
can do that; but if we're talking about designing a small computer 
in even one week we're talking about a relatively easy task. 

I was interested when I saw this technique because I thought 
it had several possibilities. I looked at these modules and won­
dered how one could simulate the hardware and try some sample 
implementations. I looked at how to build a FORTRAN machine 
using these modules, and simulated some of the most difficult 
portions that one would encounter in building a FORTRAN machine. 
I also looked at the triangulation problem in airborne interception 
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to determine how big a problem that would be. The simulations 
showed that these problems could be solved quite easily by inter­
connecting register transfer modules as specified by flowcharts. 
I am now convinced that if you can draw a standard flowchart 
specifying a computer program for a problem, I can convert it 
to a register transfer module flowchart that specifies the inter­
connections of these modules. Thus, this technique is much 
simpler than other methods for designing special purpose hard­
ware. Furthermore, it makes feasible the design of such items 
as hardware master executives, or monitors. 

I believe the Navy could use the register transfer module 
design technique in several areas, two of which are special appli­
cations in NTDS (Navy Tactical Data Systems) and in the new 
Advanced Avionics Digital Computer. I have made a proposal 
for further development in this area and so I should have some 
further information in six months to a year. If we could cut the 
design cost substantially, then it becomes feasible to go back to 
designing processes in parallel and we can get rid of these mon­
strous operating systems we are all fighting. 

ONE-LANGUAGE COMPUTER 

I believe there is a trend towards networks of one-language 
computers. There are many one-language computers operating, 
many with terminals. For example, I know of 75 BASIC terminals 
running on a GE 635 and 50 APL terminals running on an IBM 360 
Model 67 and using only about 25 or 30 percent of its resources. 
As soon as one switches to the general purpose multiple-language 
terminals, 30 terminals will completely load the same 360/67. 
So what we need is several one-language computers connected 
together so that any one can be accessed from any terminal, and 
files can be transferred from one to another. As well as the 
common languages like FORTRAN and COBOL, what kind of lan­
guages should be available on these processors? The language 
should be easy to use, it should be powerful and it should run 
efficiently. Let's look at these. 

1. Easy to use 

It should be easy enough to use so that the man off the 
street or the high-level manager will be able to use 
this language. I don't care what he does with that lan­
guage, but he must be able to do something in the same 
language that his system programmers are using. If 
a manager feels comfortable using the language that 
his computer people are using, even if he's only doing 
simple problems, he will spread the use of computers 
throughout his company. I think that APL is one lan­
guage which in fact can do this. It can be used as a 
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desk calculator to do very simple things and yet it is 
powerful enough to do complex calculations, too. That 
brings me to the second point. 

2. Power of the language 

The power of a language is defined here as the ability 
to express complex operations in very simple terms. 
A language that is not powerful enough is not a good 
general purpose language because someone will quickly 
run out of power in that language and switch to one that 
makes his programming easier. This language must 
also serve an intermediate group of people, the once­
in-a-month programmers. If it's not easy to use and 
powerful enough for this type of programmer, he will 
not use it. I think APL in fact does come a long way 
in that respect. This person is different because most 
of his effort is used in learning the language, which 
he doesn't want to do anyway, and little effort used in 
solving a problem; I contrast this to the next type who, 
as a system programmer, spends only a small portion 
of his total time in learning the language. He will learn 
a difficult computer language in order to get the power­
ful language he needs. I have a testimonial from an 
EE person who says he used to do his problems by 
forming a concept, translating it into mathematical 
notation, then into flowcharts, then into a programming 
language. Now he says that, with about six months' 
experience with APL, he skips all intermediate steps 
and formulates his concept directly in APL. He uses 
the power of the computer to help improve his concepts 
where they are weak and verify the results on test 
cases. Afterwards he may have to convert the results 
to mathematic notation or flowcharts in order to show 
someone else. An example of the power of APL is 
found in the calculating of the length of a vector which 
requires only one symbol in APL, compared to several 
statements in other languages. The trouble with all of 
of us is that we grew up with FORTRAN and so we think 
FORTRAN (or COBOL), and it's going to be a long time 
before we really start thinking in parallel or matrix 
code. The worst thing is that if one starts thinking in 
that way he always gets clobbered by the amount of com -
puter time he uses. This brings us to the third point. 

3. Efficiency of implementation 

The operation must be efficient. This brings us around 
to the special-purpose APL machine. We could use 
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conventional designs and I know of two already, but 
that's a lot of work. Perhaps we could use micropro­
gram machines, but I would like to propose another 
alternate, which is using the register transfer mod­
ules I spoke of earlier and interconnecting them. I 
have not attempted this problem but I am certain that 
the technology is at the point where we could build a 
special-purpose machine, and fairly easily. Anyone 
planning to crusade to get this language or equipment 
accepted has a lot of momentum to buck. 

Now I'm not suggesting that APL is the answer to all the 
languages. It has some very major shortcomings. In most imple­
mentations, for example, it limits the size of the workspace 
(memory size of a program). That restriction could be easily 
changed. It also does not have decent I/O particularly with respect 
to disk files, card readers and line printers. Finally, one must 
be able to produce compatible files that can be used on other 
computers using other languages. 

In conclusion, I would like to see somebody become interested 
in developing an APL machine. I'm not currently working in that 
area at all but I have some very strong ideas. Incidentally, the 
developers of the CDC Star have hired some people to look at 
implementing APL on that machine. That should be a powerful 
one. 





Other books of interest ... 

PARALLEL PROCESSOR SYSTEMS, 

Edited by L. C. Hobbs and D. J. Theis, Hobbs Associates, Inc.; 
Joel Trimble, Office of Naval Research; Harold Titus, Naval Postgraduate 
School; Ivar Highberg, Naval Weapons Center. 

Providing a much-needed excl1ange of information, this book 
brings together a collection of papers by active workers from 
system, device, software, and application disciplines. Di­
rected primarily toward those involved in the design and 
utilization of parallel processor systems, it also provides new­
comers to the field with an excellent overview and introduc­
tion to the subject. # 9175, 448 pages, 6 x 9, cloth. 

RJC U F 0 
By David Lefkovitz, Moore School of Electrical Engineering, 
University of Pennsylvania . 

Widely adopted, this well-written, illustrated volume is an 
invaluable aid to the programmer, analyst, and student. It 
provides the programmer or systems analyst with basic prin­
ciples, as well as specific techniques, for the organization of 
files in mass random access computer storage. Design prin­
ciples are given which illustrate broad areas of application 
and cost/performance trade-offs. #5943-4, 232 pages, 6 x 9, 
cloth. 

0 E N VSTEM ANALYSIS AND DESIGN 
By Leo J. Cohen 

A broadly based text that determines the fundamental prop­
erties of operating systems, and develops tools that are ap­
plicable to their formal design and analysis - particularly 
multiprogramming systems. The author orders and organizes 
the materials of a subject for which there has been no accept­
able definition. # 5643-5, 192 pages, 6 x 9, cloth. 
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