

$13.95

MUL Tl-ACCESS COMPUTING:
Modern Research and
Requirements
Edited by Paul H. Rosenthal &
Russell K. Mish, both of System
Development Corporation

No longer the luxury of the more elite
computer facilities, multi-access com­
puting has become widely prevalent,
and its applications and advantages
are growing.

This comprehensive volume em­
braces the latest application require­
ments as well as some of the most
important research now shaping multi­
access capabilities for the future. It is
an indispensable tool for all users and
potential users of interactive systems.

Deve loped from the proceedings of
a " by invitation only" symposium
sponsored by the Office of Naval Re­
search and System Development Cor­
porat ion, the book gives readers a
first-hand view of the work of leading
ADP users and developers. More than
a survey, it can also serve as a prac­
tical guide for formulating individual
application requirements and forecast­
ing the future availability of data pro­
cessing capabilities.

Part I covers scientific analysis
computation , process control systems,
administrative data processing sys­
tems analysis, and other applications.

Part II outlines the work of three
outstanding applications laboratories:
SDC's ARPA network resources, auto­
mated programming , associative
processors, and graphic reporting .
The RAND Corporation's interactive
graphic console, microprogramming
fac ility, and other activities. The Stan­
ford Research lnstitute's Artificial In­
telligence Robot and Large File Man­
agement Program activities.

(continued on back flap)

(continued from front flap)

Part II I puts the reader right in the
midst of crucial projects under way at
Bell Labs, MIT, The Mitre Corporation,
California Institute of Technology, the
USAF, and other key institutions.

Part IV concludes this excellent
volume with a d iscussion of policy
considerations for the future.

Paul H. Rosenthal was selected
to plan and organize the symposium
based on his broad data processing ,
administrative, and education experi­
ence. He is a system consultant with
System Development Corporation.
Consultant and co-editor Russell K.
Mish is a proposa l specialist at Sys­
tem Development Corporation.

MUl Tl-ACCESS COMPUTING

MULTI-ACCESS COMPUTING
Modern Research and Requirements

Edited by

PAUL H. ROSENTHAL

and

RUSSELL K. MISH

System Development Corporation
Santa Monica, California

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

Library of Congress Cataloging in Publication Data

Main entry under title:

Multi-access computing: modern research and require­
ments.

Selected papers of a conference jointly sponsored
by System Development Corporation and the Office of
Naval Research.

1. Time-sharing computer systems-Congresses.
2. Real-time data processing-Congresses. I. Rosenthal,
Paul H., ed. II. Mish, Russell K., ed. Ill. System
Development Corporation. IV. United States. Office of
Naval Research.
QA76.53.M84 001.6'44'04 74-4067
ISBN 0-8104-5964-7

Hayden Book Company, Inc.
50 Essex Street, Rochelle Park, New Jersey 07662

Copyright© 1974, SYSTEM DEVELOPMENT CORPORATION. All rights re­
served. No part of this book may be reprinted, or reproduced, or utilized in
any form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any infor­
mation storage and retrieval system, without permission in writing from the
copyright holder and the publisher, except for material prepared under the
sponsorship of the United States government.

Printed in the United States of America

The research reported by these Proceedings was sponsored by the Office
of Naval Research under Contract No. N00014-71-C-0293, Contract Authority
Identification No. NR-049-318/2-8-71 (437). Reproduction in whole or in part
is permitted for any purpose of the United States government.

1 2 3 4 5 6 7 8 9 PRINTING

74 75 76 77 78 79 80 81 82 YEAR

Foreword

On behalf of the Office of Naval Research (ONR), I
want to thank System Development Corporation for
the time and effort spent in organizing and planning
the conference, for their willingness to listen to
our ideas on how it should be conducted, and for
their ability to reach a reasonable compromise. As
for the audience, I would like to thank them for their
stamina in sitting through three days of intensive
preparations and discussions that probably should
have been extended to four days to allow sufficient
time for the papers and discussions.

Several times during the conference I have been asked
why ONR sponsors meetings of this type. Many see
ONR's mission simply as support of research projects.
It really is not to anyone's advantage to just sponsor
research and then let it lie buried in a technical
journal, yet all too frequently that is what happens.
Therefore, although most of our funds are used to
sponsor research, we also try to act as a catalyst for
the implementation of research into government and/or
industrial operations. Symposiums such as this help
disseminate the research and allow feedback from the
potential user to the scientist.

ONR attempts to sponsor symposiums on topics that
have not had extensive exposure. When SDC presented
the concept of a symposium to discuss current and
future research activities in multi-access computing,
we thought it was a good topic. Dr. Thompson com­
ments in his overview that there is a great lack of
congruity in the papers presented. That is the very
reason why a meeting such as this is so valuable. If
everyone understood the role and importance of each
others work, and the research activity was already
integrated, there would be no need for these types of
symposia.

*This foreword is derived from the closing remarks to
the symposium delivered by Mr. Goldstein.

There is also a void in the government research
establishments of today that we are attempting to
rectify with meetings of this type. There is no DOD
agency that I know of whose job it is to take the results
of research, initiate pilot development, and then, if
successful, to sponsor introduction into DOD opera~
tions. The solution to the implementation problem
today is to have the help of everyone concerned. For
example, the designers advertise their work at these
meetings, and the potential users, at the same time,
look to them for solutions to their identified problems.
Often a company will see the utility of the research and
decide to contribute to its further development. In
this fashion, numerous ONR projects have resulted in
government equipments and commercial products.
Sometimes when research is applied by this indirect
method, the Navy does not get credit for the original
sponsorship, nevertheless our society does benefit
and research money is considered well spent.

Gordon D. Goldstein
Information System Program

Office of Naval Research

Preface

Distributed data processing systems - bringing the
computer system interface into the field or remote
facility - represent the most sophisticated form of
information systems. Once associated with very
large, very expensive real-time systems, the distrib­
uted data system is now practical for modest invest­
ment and operating costs. This book presents the
proceedings of a conference dedicated to advancing the
state-of-the-art in multi-access computing systems -
one of the two basic approaches being used to imple­
ment distributed information systems (the other basic
approach is decentralized computing using minicom­
puter networks). The conference was planned to bring
together in a reasonably sized working group (total
attendance was planned at 100 invitees) leading com­
puter scientists, key government EDP users, and key
university researchers to maximize communication.
Response to the conference was extremely favorable,
and the interest in making widely available at least the
formal portions of the conference has led to the pub­
lication of this book.

This collection seeks to present the requirements to
be imposed on multi-access computing: timesharing,
real-time, and remote batch, and includes current
research. The purpose is to improve the communica­
tion between the researcher and the user. The focus
is primarily on military type applications but most of
the material is equally useful for industrial purposes.
Several papers specifically address consumer and
commercial applications.

By design, divergent views and ideas are included.
Two commentary articles, for example, discuss
divergent views on several other papers. Requirement
papers range from detailed specifications to problem
presentations. Research reports range from detailed
results of specific tasks to surveys of available and
planned equipment. We hope the reader will gain

from this range in the same way that the variety
stimulated interchange between the participants.

To best present the views of the various participants,
we have attempted to transcribe each paper as it was
given, and edit only to the extent necessary to assure
continuity of thought.

In a heterogeneous collection of this type it is difficult
to adequately express our appreciation to the many
people who contributed. We would like to express our
sincere appreciation to the contributing authors who
have been kind enough to permit the inclusion of their
speeches. And, of course, our greatest debt is to
Mr. Marvin Denicoff and Mr. Gordon Goldstein of the
Office of Naval Research whose advice, encourage­
ment, and support made the conference and these
proceedings possible.

Acknowle~gments

The editors wish to acknowledge the work of the following
individuals whose assistance contributed materially to
this book:

Mr. Gordon D. Goldstein of the Office of Naval Research
who co-hosted the symposium at which the accompanying
papers were presented.

Mr. James Copes of System Development Corporation
who performed the myriad administrative tasks neces­
sary to hold a symposium of this type.

Mr. Ronald L. Citrenbaum and Mr. Lawrence H. Guthrie
of System Development Corporation who edited numerous
papers and assisted in assembling the initial draft of this
document.

Contents

1. Multi-Access Computing in the 70s

Paul H. Rosenthal . 1

Part I Computation Requirements 3

2. Large Scale Computers vs. Real-Time Systems
C. E. Bergman . 4

3. Command/Control Requirements for Future Navy Systems

Michael A. Lamendola . . 8

4. Command/Control Requirements for Future Air Force Systems

Barry W. Boehm . 17

5. Scientific Analysis Computational Requirements
Ralph H. Pennington ..

6. Process Control System Requirements
Peter Swerling

7. Data Processing Analysis Requirements
Lt. Commander Thomas Kneppell

8. Requirements for an Interactive Modeling and

Simulation System
Philip J. Kiviat .

Part II Research Laboratory Reports ...

9. R&D at System Development Corporation
Clark Weissman

10. R&D at The RAND Corporation
R. H. Anderson

11. R&D at Stanford Research Institute
Marshall Pease

31

43

49

53

62

63

81

90

Part Ill Research Project Reports ..

12. Interactive Information Systems
Joseph M. Wier ..

13. Multics: The First Seven Years
F. J. Corbato, C. T. Clingen, J. H. Saltzer .

14. Design of the Venus Operating System
B. H. Liskov .

. 105

......... 110

........... 116

. 140

15. Interactive Computer-Controlled Information Television

(TICCIT)

John Volk.

16. Video Graphics Performance Evaluation -
Before and After Implementation

Thomas E. Bell ..

17. Performance Capabilities of Hardware Systems
Cay Weitzman .

. 158

..168

18. Toward Natural Man-Machine Dialogue

M. I. Bernstein 178

19. REL: A System Designed for the Dynamic Environment
Bozena Henisz Dostert

20. A Computer-Directed Training System
John B. Goodenough .

21. Integrative Analysis in Biology
Wilfrid J. Dixon ...

........ 185

..196

..205

Part IV Policy Considerations and Commentary. 210

22. The Need for a Science of Information
Fred Thompson 211

23. The Trend Toward One-Language Computers

Gordon H. Sy ms 219

MUl Tl-ACCESS COMPUTING

1. Multi-Access Computing in the 70s
Paul H. Rosenthal

System Development Corporation

Santa Monica, California

As a confirmed optimist, I forecast that the 70s will be the
decade of "successful systems. " Successful systems may be
defined by the following set of criteria presented in a recent AMA
publication. *

Relevance - meeting the actual needs of the organization.

Timeliness - meeting the natural cycle times of the total
business system.

Economy - meeting basic tangible cost/value criteria and
not performing a luxury function.

Flexibility - meeting growth and on-demand requirements.

Accuracy - maintaining correct data bases and performing
auditable processing.

A large proportion of the military and commercial systems
involving computer-related data processing will require reimple­
mentation during the 70s to meet these "success" criteria. Lower
cost computer hardware will make this technically possible, often
by bringing the system into the office, where the user interfaces
with the environment. This requires distributed data processing,
an area that is expected to reach 50 percent of total EDP activities
by the late 70s. Distributed data processing is being implemented

*Burton J. Cohen, Cost-Effective Information Systems, American
Management Association, New York, 1971, pp. 13-16.

1

2 Multi-Access Computing

through two technologies: (a) multi-access computing (remote use
of a central processing facility)- the topic of this volume, and
(b) decentralized computing - through extensive utilization of
minicomputing methods.

Multi-access computing generally involves the use of remote
batch methods (RJE), interactive processing (time sharing), and
real-time computing (process control). These methods are often
the only way of meeting the successful system criteria. For
example:

Remote Batch Methods - Normally used for large processing
jobs. When the data originate at multiple locations, but a
centralized data base is required, only this method is: relevant
- meets user needs; timely - uses an up-to-date data base;
and accurate - allows controls at the data origination point.

Interactive Processing - Normally used for small to medium
processing jobs. When utilization is not steady at each
individual site, or some requirement of the processing exceeds
the capabilities of the minisystem, the method is: economic -
spreads computing over all sites; and flexible - more users
and applications can be handled on a more flexible schedule.

Real-Time Computing - Normally used for process control
of systems involving multiple functions and sites. The man/
machine/process systems currently so popular can normally
only be performed using multi-access methods.

Multi-access computing is, therefore, a generic term for the
communication based systems required for the operational, scien­
tific, and administrative applications of the 70s. It is a large
segment of the total EDP developments now being considered and
planned. Therefore, what are the requirements imposed on the
design, software, and hardware for such systems? And, what
research is being performed that may meet these requirements?
This volume, hopefully, answers these questions.

PART I. COMPUTATION REQUIREMENTS

The papers in this section are oriented toward the requirements
for operational and support applications - trying to provide systems
and technology to meet user demands first and scientists' interests
second. That the first section compl'ises projected requirements
indicates the recognition of the importance of relevance - not only
to the needs of today, but to the anticipated needs of the decade
ahead. The problem is not to solve yesterday's problems with
today's tools, but to anticipate needs sufficiently to produce data
processing systems for tomorrow's then current problems with then
available tools.

It is often pointed out that to understand the problem is to be
halfway to the solution. Much of the problem is in identifying the
user, his need, and his deadline. For the last two decades when
these problems finally were defined, there was no practical method
of solving them. The multi-access hardware and software now
becoming available have changed this situation. Now, a great deal
of what was impractical in the 60s will be practical in the 70s. It
behooves us, therefore, to note carefully the users' views reflected
in this section. Perhaps the 70s can become the era in which EDP
actually meets user needs - i. e. , the era of successful distributed
computing systems.

The seven papers in this section reflect a cross-section of
application requirements. Dr. Bergman presents weapon systems;
Mr. Lamendola and Dr. Boehm present command and control
systems; Dr. Pennington presents scientific processing; Mr.
Swerling presents process control; Mr. Knepell outlines the major
problem facing administrative users, and Mr. Kiviat closes with a
discussion of system simulation requirements. The viewpoints
cover most of the requirements imposed on multi-access computing
and, except for a discussion of data base problems, all major
problem areas are well covered.

3

2. large Scale Computers vs. Real-Time Systems
C. E. Bergman

Naval Electronics Center

San Diego, California

Over the past twenty years, real-time systems have evolved
largely from total use of analog components, with their inherent
problems of stability and low precision, to the current, nearly
universal use of digital techniques. Most of these digital systems
utilize a centralized, large-scale, digital computer as the funda­
mental building block. The theoretical advantages of the digital
computer are self-evident. Less obvious, however, is that costs
associated with obtaining these advantages are rapidly becoming so
great that the rationale for continued use of the large-scale com­
puter in many real-time applications is becoming questionable.

Cost, in this context, means much more than the fixed cost
associated with the procurement of the hardware and software
packages of a given system. It refers to the price of generating
functional programs from assemblers and compilers, a task often
requiring a cadre of programmers and ADP software specialists,
and the more subtle, but real, cost incurred because of the enor­
mous complexity of the resultant system. This latter figure contains
the cost which results from the loss of control over the total design
by the system engineer (who usually doesn't comprehend the vagaries
of software) and the subsequent reliance on programmers (who gen­
erally don't understand the technical details of the system) in order
to make the system work. The result is an uneconomical and poorly
engineered system designed to do a relatively straight-forward job.

A possible solution to this problem may exist from the analog
days when system functions were implemented in hardware. Until
recently, system implementation using digital components in this
fashion was not feasible because of the high cost of digital logic and
memory. Today, however, the cost of LSI batch processing is such
that a flip-flop or a bit of memory can be obtained for approximately
1\Z' and thus it is practical to consider utilizing hard-wired functional
processors in lieu of a general-purpose machine with complex
software algorithms.

4

Large Scale Computers vs Real-Time Systems 5

Also important here is that current technology permits
redefining the meaning of the term "digital computer. " The general­
purpose machine usually is considered a device with a single arith­
metic unit which has time-shared interactions, based upon a
complicated "interrupt" procedure, with I/O, control, and memory.
This has led to the usual concept of "the computer, " a concept no
longer inviolate.

A LOOK AT THE ISSUES

The major issue associated with reorientation in the system
concepts described above is flexibility. Clearly, there are numerous
instances in which the flexibility afforded by software to effect major
changes in the system operation justify the expenses. For many
situations, however, this apparent flexibility is illusory. This is
particularly true when the large-scale processor approaches time
and/or memory limits in its operations. Under these circumstances,
program changes are not easily accomplished for fear of violating
these limits or causing a chain reaction as a result of program
module interactions. In many cases, flexibility is not even required;
e. g. , control of external hardware, coordinate conversions, pre­
processing of sensor signals, etc. For such situations, it seems
sensible to consider alternative approaches to their implementation.

With the foregoing in mind, a number of possibilities for the
design of real-time systems can be suggested. The conventional
general-purpose machine, although commonly employed, is perhaps
the least optimum solution, for the reasons stated. Multiprogram­
ming and multiprocessing techniques being touted for use with such
machines often tend to make the problem more complex and expen­
sive. A variation on the general-purpose computer theme is the
use of a set of distributed minicomputers. This approach offers
many advantages including that the system is easier to design, test,
maintain, and reconfigure. It also makes the system engineer the
key individual in the system development.

If the traditional bond to the large-scale computer is broken
by employing minicomputers as the controlling elements of "sub­
systems" of the real-time system, then there clearly is no funda­
mental reason for stopping at that point. In fact, current technology
for the fabrication and design of digital logic from bipolar and MOS
devices makes it exceedingly attractive to consider system imple­
mentation in terms of Direct Functional Mechanization (DFM). DFM
defines a philosophy of system design, development, installation,
checkout, and maintenance which is geared to today's technology
and whose measure of performance can be stated in terms of the
costs associated with each of these five factors. It is a philosophy
based upon a sound understanding of system performance require­
ments and subsequent mechanization of the system by the use of
functional modules constructed from components fabricated by the
use of modern technological processes. With DFM as an additional

6 Multi-Access Computing

option available to the system designer, we have effectively removed
the constraint of having only one tool, "the computer," to use in our
system developments.

With the possibility of using DFM as a design tool, the process
of system definition can now be stated in the following set of steps:

1. Examine desired system performance.

2. Examine necessary system functions.

3. Examine available tools (G. P., minicomputers, DFM,
etc.)

4. Make tradeoffs.

(a) cost/performance

(b) hardware/ software/firmware

(c) digital/ semidigital/linear

(d) centralized/ decentralized

(e) custom design/off-the-shelf

(f) dedicated/shared

5. Define system configuration.

In examples of the application of the DFM concept to several
real-time processing systems being developed at NELC, the results
to date conclusively suggest the potential value of this approach to
design. If many of the other key issues such as off-the-shelf avail­
ability, keeping pace with technology, logistics, efficiency, size,
weight, power, reliability, maintainability, availability, cost, man­
power, training, and programming requirements are considered,
it is obvious that many tradeoffs exist that need to be considered
in choosing between the large-scale computer, minicomputers, or
DFM for system implementation. The studies at NELC suggest
that improvements of at least an order-of-magnitude might exist
for most of these factors through the choice of DFM rather than
the general-purpose machine. Even if the improvement is derated
to 2:1, the DFM approach clearly merits consideration.

CONCLUSION

The DFM approach to systems design presents a number of
weighty questions concerning the validity of continuing the conven­
tional approach to the mechanization of real-time systems. By

Large Scale Computers vs Real-Time Systems 7

utilizing DFM, the systems engineer can play a more extensive
role in the total development, software complexity is drastically
reduced and often largely eliminated, multiple simultaneous
operations are possible as a result of architecture which avoids
the restrictive single arithmetic unit of the general-purpose com­
puter, and timing constraints and complicating system interactions
are greatly alleviated.

3. Comman~/Control Requirements
for Future Navy Systems

Michael A. Lamendola
Naval Electronics Laboratory Center

San Diego, California

There is no universally accepted definition of command and
control. Generally, command and control is thought of as the pro­
cessing of information culminating in an operational decision and as
being computer oriented. There is processing and the information,
after it is processed, is presented to a human being who, based upon
the information presented, makes a decision to take an action or to
take no action at all. Thus, the primary command and control require­
ment is reliability-reliability of the data that are gathered or the
reliability of the processing and a high confidence value in the result.
Unfortunately, today, command and control systems in many quarters
are not viewed as being particularly reliable. In fact, the reliability
of command and control systems seems to be going down, a solution
that could have some grave consequences. This paper will examine
how the predicament evolved and then will examine potential solu­
tions to current and future command and control system problems.

HARDWARE TRENDS

The trend in the past has been to rely on advances in hardware
technology to solve problems. This presentation will look at how
computers have evolved from a perspective slightly different from
that normally used. The first-generation computer structure had
a single set of registers which were used to perform both the arith­
metic operations and the input/ output operations. Either one or the
other was done, but not both simultaneously. Systems designed for
first-generation computers had such things as an input translation
phase to get the program into the machine. After calculations were
performed, it was necessary to go through an output translation
phase to get the program out onto a printer. This was done to
maximize use of the machine.

8

Command and Control for Navy Systems 9

Second-generation computer systems made life easier. The
main difference between first- and second-generation machines
was a second set of registers that were used for input/output
operations. Input/output and arithmetic operations now could be
performed simultaneously. It took about two years for system
software to catch up and actually start using this feature and then
only in a limited fashion. Even today it is not used nearly as much
as one would expect. It is still customary to write something out
on disk or tape and check to see if it went out all right before con­
tinuing with processing.

With the advent of the third-generation machine, there were
still arithmetic registers, and separate input/output registers,
but now there was also a new set of registers called base-address
registers. These permitted keeping track of more than one program
that was residing within the main, or primary, memory simultane­
ously. In other words, multiprogramming was now possible.
Because multiprogramming could be done efficiently without having
to perform a lot of address calculations, machines now could be
time-shared effectively. Although time-sharing was possible on
second-generation machines also, it wasn't nice, it wasn't clean,
and it wasn't efficient.

The reader will notice that, in terms of hardware advances,
the machine organization and the system implications of that machine
organization have been emphasized rather than the development from
vacuum tubes to transistors to integrated circuits. The organization
was the key and held the system impact. It seems fair to say that

· during development, design objectives were primarily to keep the
machines general purpose, to make them usable across as broad a
range of tasks as possible, and, with a major thrust in design, to
make more efficient use of the machine itself. Computers are
very expensive and the aim has been to keep that processor busy
as much of the time as possible. In the first-generation system
organization, it was obviously very inefficient to be able to do only
one thing at a time, either calculations or input/ output. In second­
generation niachines, the inefficiencies were not quite so obvious.
Hardware monitoring devices had to be attached to determine what
was going on internally. They showed a processor busy by itself
about 40 percent of the time and not used about 60 percent of the
time. The input/output units were busy by themselves about
50 percent of the time and the two of them performed simultaneously
about 10 percent of the time. Someone soon concluded that it was
much more efficient to have two or more programs in memory so
that if one was performing input/ output the other could make use
of the processor. The thrust was machine efficiency.

Is this good or bad, or is it some of each? These design
objectives evolved in the commercial world. The Navy has been
the recipient of this thrust and these design objectives. From the
perspective of command and control, the general-purpose computer
seems by definition almost mismatched to any given task. It would

10 Multi-Access Computing

be extremely rare for a single task to precisely match the resources
of a general-purpose computer. Tasks will be either too large or
too small. If the computer resources are too large for the task,
the result, in addition to the question of cost effectiveness, is that
functions tend to be added to the system that ought not to be added.
This is a management problem, not a technical problem, but it
does happen. When computer resources are too small for the task
to be performed, the situation is more serious. Something has to
give and it will not be the computer. It was no accident that for
years programs fit conveniently into 32, 000 words of memory.
The task in one way or another must be degraded. If the task is
concerned with response times, then the response times are going
to slow down. If process capabilities are involved, then less will
be processed than is desired.

SOFTWARE TRENDS

In this computer-task relation, the computer remains very
rigid and inflexible. What is not fixed and what is used to fit the
task to the machine is the software. The philosophy said the task
was to be fitted to the machine. It now seems more appropriate
for the machine to fit the task. This current task-computer relation
places a tremendous reliance on software. In view of this reliance,
one would expect that if he reviewed the development of software
tools - those advances in the software state-of-the-art designed to
aid the programmer in the design and implementation of the command
and control system - he would see a parallel in the software area
correspondingly roughly to the advances in hardware technology.
Unfortunately, this isn't true. In fact there is a great deal of
justification for the very harsh statement that there have been
essentially no advances in software development in the past dozen
years.

Most advances in software have occurred in operating system
areas. In addition to the assembly language and machine language,
programmers in 1960 programmed in high-order languages such as
FORTRAN II and COBOL. They divided their programs into sub­
programs or modules called subroutines. These were fed into the
operating system and processed. The loader in the 1960 operating
system performed a library search and linkage and it had the
intelligence to make a comparison so that if the programmer wanted
to substitute his own particular SIN routine, for example, the
operating system would recognize this fact and not go out and retrieve
the system SIN routine from the library. The programs were
structured in relocatable form to give some flexibility to the system
and there were tools such as trace routines, trap routines, and dump
routines which could be called upon either automatically or deliber­
ately by the programmer under a variety of conditions depending
upon the system he was working under. When a system was being
constructed, these were the fundamental tools a dozen years ago.

Command and Control for Navy Systems 11

Today, programmers still use high-level languages.
FORTRAN and COBOL are still very popular, although in the
command and control world JOVIAL and CMS-2 are used. Using
subroutine structures hasn't changed. And there are still operating
systems that operate in a somewhat job shop environment, setting
up the programs, searching things out, and linking them. The
programs still tend to relocatability and there are debugging aids
such as trace, trap, and dump.

Now, this is obviously oversimplified. There are very
worthwhile specializing routines that exist here and there. Auto­
mated flowchart packages, for example, facilitate documentation,
which is always a horrendous job. A number of specialized
languages for various disciplines have been developed, and there
are specialized applications programs such as computer-aided
design for circuit and logic design. However, such simplifications
are not that far off and there has not been much progress in the
software area.

What does this mean? The unit of measure in the develop­
ment of a command and control system is the labor hour, the
programmer's time. Little has been done to make that labor
hour effective. MIT has done a great deal of work in man­
machine interaction, and it has broken new ground in this area.
So have a number of others. In systems development at NELC,
online interactive programming techniques are used wherever
possible. However, the basic structure of the software that is
produced has not changed. Consequently, the problems with it
have not changed.

IMPACT OF TRENDS

This then is the computational environment. In command
and control, system functions are increasing in complexity. The
number of system functions of a given system has been increasing
over the years. The requirements to integrate discrete systems
have been increasing. More and more, these systems are required
to talk to one another. We require the use of general-purpose
computers that are a mismatch to the task, and we employ essen­
tially the same software tools that were developed in 1960. If the
way the system is developed is held constant, and if over a period
of time system complexity increases, the result is a decrease in
the reliability of an individual system. Since the labor hour is
still one hour long and since many more functions now have to be
incorporated into a given system, the time to develop this system
has been increasing over the past years and consequently the cost
increases. Therefore, it is not too surprising to meet more and
more individuals in positions to determine whether or not to initiate
systems who are very reluctant to embark on yet another computer­
oriented command and control system.

12 Multi-Access Computing

SYSTEM INTERFACING

One problem area that requires help is intersystem communi­
cations, the capability to use data produced by someone else. This
is a current problem, but it is also a future systems problem. It
is a problem that develops as an after-the:..fact situation. System A
has been developed and is doing whatever it is supposed to do. When
System B is developed, if the designers are aware that they are
going to have to use, as inputs, outputs. from System A, then they
will design their system to accept this output. This may be diffi-
cult but it is frequently done. However, what really creates a
problem is when System B has already been developed and has no
knowledge of System A's existence. Subsequently, a requirement is
levied upon one or both of these systems either to share data or to
have one of the systems use as input the output from the other system.
Although this is possible, one discrete system usually cannot accept
and assimilate another system's data because the computer programs
for the individual ADP systems manipulate their individual data
elements in different ways. They use different formats or they are
on different types of computers. Consequently, overcoming the
problems may require the construction of extensive individually
tailored interfaces for each of the systems.

As more and more systems have communication equipment
associated with them, so that they tie into a communications network
and are thus interconnected by data lines, this requirement to share
data or exchange data is growing by leaps and bounds. Once again,
the programmer must get the pieces to fit and at present he doesn't
have very good tools to accomplish this. He needs a mechanism
for describing the data very precisely. Files of data contain not
only data but also control information, such as record lengths and
pointers. A control item has significance according to its location
in a file or record. This significance is defined by the conventions
of the operating system or the users' program which controls the
data. The receiving programmer must be able to distinguish control
information from data items. He must be able to interpret the
logical relationships of the data from the information that he receives.
All of this information must be presented to him so that he can make
the appropriate translation into his system in order to be able to
use it.

Normally this information is not contained within the data
file itself. It is contained within the documentation of the program
of the generating programmer. It may be implicit in his program
structure, or it may be described in detail and in depth in very
formal documentation. In any event, it is usually inconvenient to
obtain this information and once obtained it is difficult to use and
requires a lot of work. A tool is needed which does not require a
lot of work, one which allows the programmer to describe his data
fully and explicitly and provides for passing the description easily

Command and Control for Navy Systems 13

to anyone else who wishes to use the data. The description ought
to be formal and it ought to be standardized.

DATA BASE TRANSFORMATION

Given that a formal and standardized system interfacing is
available, one may then consider another tool. This would be a
program which translates data from one form and format to another.
It might be called a generalized data base transformer. This tool
would process the data base of one computer system and produce
the data base suitable in structure and format for another system.
It would be driven by descriptions of both the source data base and
the target data base. It would reform at data items; it would
replace control information with the pointers, indices, record
counts, and so forth, that would be required to access that data in
the new environment. Now it isn't certain that this is, in fact,
possible. There has been a great deal of work done on the data
description language, particularly by the Data Base Task Group of
the CODASYL Committee. However, the problem area that is being
addressed is not one that is expected to disappear. It certainly
would seem a very worthwhile area of investigation, since it is of
deep programming concern and can have a negative impact on the
system structure. This function could be relegated to the operating
system, as a service similar to many other services that the operat­
ing system performs. It would simply be initiated as needed by
the programmer. That, of course, would be ideal.

CONVERSION

Another long-term problem area is that of changing machines
- the transferability or portability of software programs from one
computer system to another. This long has been the subject of
investigation and thought and it continues to be a very worthwhile
area of investigation. One argument that has been proposed for
the existence of high-order languages, in addition to shortening
the time required for a programmer to produce a program, is
that there is a high degree of machine independence within a high­
order language. Consequently, one can move from machine to
machine with relative ease. In practice this doesn't seem to be
the case. Languages, or rather implementations of languages by
different manufacturers, tend to be nonstandard by whatever stand­
ards have been defined. Manufacturers tend to embellish languages
to take advantage of certain features of their own machines. Con­
sequently, one encounters limits on program size; limits on the
number of programmer-assigned names; limits on total number of
source statements, total number of characters and statement
identifications, and so forth. These will vary from machine to
machine. Programs tend to be dependent on the particular operating

14 Multi-Access Computing

systems from which they were developed for library functions,
error recovery procedures, overlay structures, and file manage­
ment, and there are no standards for these program-to-operating
system interfaces.

One encounters explicit types of dependencies. However,
there are implicit tendencies that occur also and these are just as
horrendous to overcome as explicit dependencies. In a recent
conversion effort for a large program more than 95 percent of the
program was written in a high-order language. Less than 5 percent
was written in machine language, and that portion was very care­
fully isolated, very well documented, and even identified in terms
of the high-order-language statement that would be used if the
removal of the machine-language statements were desired. They
were in machine language for efficiency at very critical points
where the designer felt that they could not tolerate the slightest
inefficiencies that might be produced by high-order-language com­
pilation. On the surface this seemed like a beautifully done job,
ideal for transferring from one machine to another. However, the
price associated with moving that program from one machine to
another ran into many hundreds of thousands of dollars. The cost
was about $600, 000 for both machine time and labor on a project
whose total cost was about $4, 000, 000, from requirements analysis
through implementation. The fault lay in the implicit dependencies
contained in the program. The programmer knew the machine for
which the program was originally constructed. He knew its organi­
zation, its structure, how it behaved, how many bits made up each
character, and how many characters were in a given word. He
knew exactly where he would be if he skipped five words or fifteen
words. This sort of logic was threaded all through this very large
problem. It was not done intentionally and it certainly was not
done to make it more difficult to move from one machine to another.
It just happened. The result required a major effort to change
from one machine to another.

A popular approach for solving program transferability has
been to address it from the point of view of compiler construction.
Compilers are used in such a way that the same source program
can produce code for a variety of different target machines. Another
approach has been to attempt to structure very rigorous standards
for a given language and attempt to enforce these standards.
However, neither approach solves the problem of the implicit
dependencies.

A recent report of work being done in Japan mentioned an
attempt to develop a machine-independent software system. The
intent was to develop an intermediate high-level language and a
compiler which would translate a variety of source languages into
this intermediate language. This concept was first proposed in the
literature around 1956-1958 in the United States and it was called
UNCOL, or Universal Computer Oriented Language. This country

Command and Control for Navy Systems 15

did not proceed very far with UNCOL, but apparently in Japan at
least one computer manufacturer actually completed a compiler
that takes this intermediate language, which was standardized
across Japanese manufacturers, and translates it into machine
language for his machine. This compiler implementation ran very
slowly or comparatively slowly when compared to other compiler
techniques. Because of the value Japanese manufacturers were
placing on fast compiler time, the machine independent approach
seemed to be given very little emphasis. This seems unfortunate,
for within the command and control environment, programs can
have exceedingly long lives, lives that can bridge computers from
one machine to another.

REUSABLE SOFTWARE

The problem of transferability of software programs across
systems leads to the question of reusable software. Reusable here
means the ability to take a deck of cards representing an existing
program in a given source language and to insert the deck into
another program or into another deck of cards and use it directly
without concern about the language of the program or the original
target machine. Ideally, one would like to be able to make use of
any software or any functions previously programmed. However,
as indicated earlier, this is extremely difficult to do. Software is
presently very sensitive to environment; that is, the machine charac­
teristics, the operating system, the data, the computer language,
or the compiler technique. If any one of these is changed, the
software becomes inoperable or severely degraded and the pro­
grammer must get in and make changes to make it work. Ideally,
it's preferable not to worry about these things. In designing and
implementing a command and control system, it would be ideal to
identify all of the functions encompassed in that system, ending up
with an elaborate library of proven software functions, plus the
tools that draw from this library and incorporate the functions into
the development. This would allow the designer to avoid reinventing
the wheel for each function. He could concentrate on developing
only those functions specific or unique to this application.

To make this idea workable, the fundamental structure of
software itself must be questioned. It is necessary to question
how things get put together, how they get linked, how they get
identified, what constitutes a module, and what determines the
interfaces between the modules. Maybe this simply describes a
super-library capability; but, perhaps, it could more appropriately
be described as a new computer language, a much more powerful
language than anything known today. It does seem appropriate, in
terms of the objective to be achieved, to question why things are
done the way they are, to attempt to determine if there might not
be better ways of doing them. ·Certainly, some very fundamental

16 Multi-Access Computing

breakthroughs will be required to achieve this end. It also seems
that a sort of limit has been approached if these breakthroughs are
not found. Consider where software or the whole computer science
field would be if a given function was programmed, developed, or
devised only once, and all efforts were expended simply by adding
new functions.

TESTING

Part of the concept of reusable software is that each function
has been proved in operation and therefore is one part of the system
that need not be tested further. The goal should be contracts which
dictate that software will be delivered error-free even for those
who are issuing the contract. Most of the current literature indi­
cates this is not possible; the typical large software program has
so many paths going through it that at best one can achieve only a
certain confidence level and, having achieved that, must be satisfied
with that result and must not insist on error-free performance.
That undoubtedly is true if one limits himself to doing things as
they are presently being done. If one removes that restriction,
then the question might validly be posed, Why can't one have error­
free software? Certainly, to the ONR community, there should be
no constraints to say that the way things are done must continue
without change.

SUMMARY

To summarize, the primary requirement for command and
control systems is reliability. In the past, the tendency has been
to rely on advances in general-purpose computer technology to
increase reliability. However, the complexity of the systems has
increased at so fast a rate that system reliability has decreased
rather than increased. Advances in software technology have been
minimal in command and control over the past dozen years and the
needs identified call for a fundamental reexamination of the basic
design and implementation processes.

4. Comman~/Control Requirements
for Future Air Force Systems

Barry W. Boehm
The RAND Corporation

This paper begins by summarizing some of the currently
disclosable results of a recent Air Force study on what should be
done in information processing to meet major Air Force command
and control requirements in the 1980s. It concludes with a few
items that the author hopes people will consider to make computing
more of a science.

AIR FORCE INFORMATION PROCESSING

Air Force information processing is a very big and complex
business. Current Air Force software projects cost almost a
billion dollars a year. Some Air Force computing operations are
primarily online management information systems, such as the
huge Advanced Logistics System being developed now. Interactive
graphics goes on a good deal within the Air Force intelligence
operations, as in the current TIPI program. The laboratories -
weapons, flight dynamics, materials, etc. - run huge calculations,
performed on large computers. Air Force space operations have
very high bandwidth sensors pumping data into computers.

Individually, these represent major challenges to any kind of
computer design, development and maintenance job that one wants
to do. Air Force command and control has even more difficult
problems because it tries to do all four of these things together.

UNIQUE FACETS OF COMMAND AND CONTROL
INFORMATION PROCESSING

Air Force command and control to some extent is an online
management information system; to some extent it involves inter­
active graphic manipulations; to some extent it involves large
calculations for doing route planning or operational plan optimization

17

18 Multi-Access Computing

and the like; and to some extent it involves very high bandwidth
sensor data processing for warning information. Doing all of these
things together creates a huge challenge for the integrated design
of a computer-based system.

However, several other systems outside of military command
and control do this too. The air traffic control system and the
NASA Apollo system also try to integrate all of these things and
are very complex. However, command and control in the Air Force,
Navy, or Army is even more difficult than this because of three
additional considerations.

One consideration is the unpredictable environment. For
example, successive commanders have widely varying personal
styles to which the system must adapt: just consider the command
styles of Commanders-in-Chief Eisenhower, Kennedy, Johnson,
and Nixon. The official one reports to makes a big difference in how
data are organized, how much of it one reports up the line, and the
like. Another example is the unpredictability of one's own status
of forces: the individual can't predict, for instance, when he might
be told all Beechcrafts will be replaced with B-52s. This makes it
very difficult to organize in advance how to process the information,
and creates some of the problems that Dr. Bergman presents in
his paper. Sometimes, if the environment is fairly predictable,
functional flexibility can be traded for speed, many things can be
put in hardware, and the system comes out way ahead. In cases
where speed can not be traded for functional flexibility, it's not so
easy to do that.

Another consideration is that the environment is hostile.
NASA can count on the moon staying the moon and doing only what
Nature does to try to outwit man. On the other hand, command
and control systems have to consider that inputs may be spoofs;
they have to worry much more about data security and people trying
to penetrate the system to take advantage of it.

Finally, the stakes are not dollars as they are in commercial
systems; they are not individual hazards as they are, primarily,
in the Apollo mission; they are national survival. This means
considerably more weight must be put on such things as software
certification. If software says that the rising moon is a massive
missile raid, the country may be in a lot of hot water.

The worst part is that all of these considerations interact with
each other. An unpredictable environment requires a quick-change
software capability. However, data have shown that quick-change
software patching traditionally introduces many errors in the soft­
ware; so, somehow or other, software must be organized not only
to change it quickly but also to certify that the change is correct.

IMPLICATIONS FOR INFORMATION PROCESSING R&D

If one tries to infer from these considerations what is most
needed in information processing R&D, the response may be

Command and Control for Air Force Systems 19

surprising. It is not voice recognition, nor image processing, nor
large screen displays. Some fairly mundane things are required;
for instance, getting the computer to help more in doing require­
ments analysis, in providing paradigms for developing and main­
taining the system design, in exercising the system so there are
no big mismatches between theoretical command and control per­
formance and actual command and control performance, as often
seems to crop up in things like the Pueblo incident, the Liberty
incident, the EC-121 incident, and the like. Right now, the usual
command and control system exercise is a very tedious, very
manual kind of operation, which may take more than a year to
prepare for, run, and analyze.

Another extremely critical R&D area involves software and
system certification. Once again, the country is being bet on a
correctly working software, and, typically, many bugs are found
in the command and control software, as there are in everything
else. This isn't intrinsic just to Air Force operations - on Apollo 14,
fourteen software problems were found in a ten-day mission. It's
just very difficult for technology to certify the correctness of soft­
ware, but very important to do that.

Data security is another important R&D area. Many people
are counting on having a data security box which allows multiple
access to a common data base by all sorts of users on airbase
loading docks, the commander's console, and practically everywhere
else. The assumption is that nobody will be able to poke into
unauthorized data, but the technology for guaranteeing that just
isn't around.

INSTITUTIONAL PROBLEMS

In addition to technical problems in R&D support of command
and control requirements, there are a number of institutional
problems - like procurement policies - which never seem to track
the pace of technology very well. Another problem is coupling the
R&D that goes on in the Air Force with the operations. In some
sense, this symposium is a symptom of this. For every man here
who has to operate something in the Navy, there are about ten people
in R&D organizations. This makes it very difficult to give the R&D
community a good picture of what those operators really face in terms
of day-to-day problems. It makes it very difficult for R&D people to
convey to the operational people an appreciation of what advanced
technology can give them.

A Critical Problem: Lack of Usage Data

Another major problem is that there is almost no data base on
how computer systems are used within the Air Force (or elsewhere,
for that matter). This lack creates several kinds of problems.
For one thing, because what's going on is not known, R&D decisions

20 Multi-Access Computing

are made based on sample sizes of two or one or, fairly often,
zero. Software is built without really knowing for what it's being
built and it turns out to be unresponsive. Things are scheduled
with little idea of the typical distribution of effort and one generally
falls behind schedtile and compromises to make up for it. As
Dr. Bergman points out in Chapter 2, one often ends with inappro­
priate hardware assignments and very often tends to get a hardware
view of the world.

The Compiler Development Learning Curve

Figure 4-1 illustrates the compiler development learning
curve. It shows some relevant data on developing three successive
FORTRAN compilers!. It shows that Effort 1 took 72 man-months;
before checking the remaining data, the reader should try to guess
what Efforts 2 and 3 took with each successive FORTRAN compiler.
This answer is not, as one man who was supporting R&D in meta­
compilers claimed, that each new development of a compiler on a
new machine takes about the same amount of time as the original
job. Figure 4-1 indicates the opposite - that there can be a learning
curve. There isn't always, necessarily, but there are things that
can be done about it. This isn't to say that R&D in metacompilers
should not be supported, but it is to say that many R&D decisions
are being based on intuition that may not parallel the facts.

How Do Compilers Spend Their Time?

Figure 4-2 relates to unresponsive software; it contains some
data taken by Knuth2 in a study at stanford on the distribution of
complexity of FORTRAN statements. From the lefthand side of
Fig. 4-2 the reader should try to guess what percentage of 100
typical FORTRAN statements were of the simple form A=B, how
many had two operands on the right-hand side, etc. This should
be of particular importance to a compiler designer because it would
tell him how to optimize his compiler - whether it should do simple
things well or whether it should do complex things well. The data
in Fig. 4-2 show that 68 percent of these 250, 000 statements were
of the simple form A=B. When Knuth saw this and some similar
distributions on the dimensionality of arrays, the length and nesting
of DO loops, here was his reaction:

"The author once found ... great significance in the
fact that a certain complicated method was able to
translate the statement

C(I*N+J): =((A+X)*y)+2. 768((L-M)*(-K))/Z

into only 19 machine instructions compared to the
21 instructions obtained by a previously published

Command and Control for Air Force Systems

EFFORT#1: 72 MAN-MONTHS

EFFORT #2: 36 MAN-MONTHS

EFFORT #3: 14 MAN-MONTHS

Fig. 4-1. Compiler Development Learning Curve
(McClure: FORTRAN Compilers,
Successive Machines)

method. . . The fact that arithmetic expressions
usually have an average length of only two operands,
in practice, would have been a great shock to the
author at that time:"

21

Thus, evidence indicates that batch compilers generally do
very simple things and one should really be optimizing batch com­
pilers to do simple things. This could be similarly the case with
compilers and interpreters for online systems; however, nobody
has collected the data for those, so it isn't known for sure, and
people will continue to design compilers with nothing but fallible
intuition as a guide.

Software Development Planning

Figure 4-3 relates to the problem of unrealistic schedules.
Generally, a software effort is begun with a system analysis and,
at some point, it is determined what the hardware and the software
are supposed to do. From there, a schedule for software develop­
ment is made up to interface with schedules for radars, training,
operational procedures, and everything else. It would be very nice
at that time to know what fraction of the effort is going to go into
analysis and design, what fraction into coding and auditing, what
fraction into program integration and testing. Figure 4-3 shows
the actual results from some fairly big command and control and

22 Multi-Access Computing

COMPLEXITY %

0 (A= B) 68

(A= B EBC) 24

2 (A= B Ell C Ell D) 4

3

>3 3

Fig. 4- 2. Complexity of FORTRAN Statements (Knuth
Study: 440 Lockheed Programs;
250, 000 Statements)

space-type projects3. And, as the reader can see, coding and
auditing (auditing is basically desk-checking) doesn't take a lot of
the total effort. The bottom line is Fred Brooks' s estimate for
OS/3604: 33 percent analysis and design; 17 percent coding and
auditing; 50 percent testing. Often, people use the analysis and
coding part of the program to make up the whole schedule. As a
result, the schedule is written when they are near the end of their
established schedule and suddenly there is still 50 percent of the
job left to do. This causes some horrible compromises or it
causes things to go out in the field inappropriately tested.

Hardware/Software Tradeoffs

Figure 4-4 complements what Dr. Bergman mentions about
Parkinson's Law. As the drive increases toward complete use of
the speed and memory capacities of hardware, what happens to
software costs? Do they stay relatively constant or do they start
increasing slightly? As Fig. 4-4 shows, thEf! escalate asymp­
totically as 100 percent hardware utilization is approached. This
should be very important to how the initial sizing of hardware is
done. Typically, however, what people do is size tne job, add about
15 percent for growth or uncertainty, buy the hardware, and then
set software personnel to work. That means that they are about at
the 8~ percent utilization point on the curve andthat means almost
doubling relative programming costs. Further analysis indicates
that hardware should be overbought by 50 to 100 percent to minimize

Command and Control for Air Force Systems

ANALYSIS CODING CHECKOUT

AND AND AND

DESIGN AUDITING TEST

SAGE 39% 14% 47%

NTDS 30 20 50

GEMINI 36 17 47

SATURN V 32 24 44

OS/360 33 17 50

Fig. 4-3. Computer Program Development Breakdown

RELATIVE
PROGR.t\MMING

COST
INSTRUCTION

3

2

% UTILIZATION OF SPEED
AND MEMORY CAPACITY

Fig. 4-4. On-Board Computing: Software Costs

23

total hardware-software costs - if the Parkinsonian tendency to fill
up the added capacity with marginally useful tasks6 can be avoided.

Computer/User Tradeoffs

Figures 4-5, 4-6, and 4-7 concern overconcentration on
machine aspects. Some time ago an experiment was done to see
how certain kinds of response characteristics in a time-sharing
system affected the way people solved problems. In particular,
the "lock-out" period was varied. Suppose the individual is solving
a problem at a console. He thinks of something he wants to do. He

24 Multi-Access Computing

USER SUBMITS REQUEST
TO COMPUTER

COMPLETED REQUEST
RETURNED TO USER I USER ALLOWED TO

SUBMIT NEXT REQUEST

I USER SUBMITS
NEXT REQUEST

I I I TIME

--~----~--'-----y-----J
TURNAROUND TIME,

RESPONSE TIME
LOCKOUT
PERIOD

"THINK TIME"

Fig. 4-5. Sequence of Events for Submitting a
Trial Solution

SOLUTION
QUALITY

' ' ' ' ? ' .,,,,,,,.-'
/

/

LOCKOUT DURATION

Fig. 4-6. Problem Solving Efficiency (Theoretical)

puts some instructions in and he hits the equivalent of the "go" but­
ton. The machine grinds around for a while, and, in a certain
amount of time called the "turnaround time" returns the completed
request to the user. At that time, the machine might tell him, "I'm

Command and Control for Air Force Systems

90

80
SOLUTION
QUALITY

70

60

50

4 SUBJECTS/GROUP (BALANCED)
120 MIN SESSION JOSS SYSTEM

PROBLEM

• GEOMETRIC
• LOGICAL
• NUMERICAL

0 5 8

LOCKOUT DURATION (MIN)

Fig. 4-7. Problem Solving Efficiency (Actual)

25

going to be busy with other things for five minutes, therefore you're
effectively locked out for this time," or it might give him immediate
access to the machine for his next request. The resulting delay, if any,
is called "lockout time. " The time between receiving his request and
submitting the next one is typically called "think time." Figure 4-5
illustrates the relationships· between the various time periods.

For an infinite lockout time, very poor performance would
be expected, but it's not completely clear that if one went to a zero
lockout time and gave the user immediate access to the computer,
he would necessarily do better (Fig. 4-6). As a matter of fact,
before this experiment was done, there was a hypothesis by Gold7
at MIT which indicated that immediate access to the computer
might get people to concentrate on the tactics of problem-solving
rather than the strategy, and that, by imposing a lockout period, a
floor might be put under the user's think time and make him think
more. And, as a matter of fact, that's what happened in this
example. This was a problem in a geographic area servicing
problem; 20 graduate students were asked to locate three hospitals
on a grid map of a city in such a way as to minimize the response
time to emergencies in that city. And, as the reader can see,
locking them out for five minutes produced better performance
than giving them immediate access to the computerB.

One implication of this is that concentrating on just the hard­
ware aspects of computing systems will not necessarily provide
the optimal solution for people's performance. And there are a
lot of tradeoffs being made nowadays - large blocking of computer
input and output, memory residence limitations, restricted
debugging options - that increase machine efficiency but get in the

26 Multi-Access Computing

user's way of solving problems. These tradeoffs should be looked
at very carefully. Once again, though, hardly anybody collects
relevant data.

A FUNDAMENTAL PROBLEM: CONFLICTING WORLD VIEWS

Figure 4-8 illustrates the points made by Jim Burrows that
some features can look good to system designers and not so good
to users. During the past few years, I have had alternately the
roles of a graphic system developer, viewer of demonstrations (a
role which is often the key to continued R&D funding), interactor
with production users like command and control people, and research
user of graphic systems. Through an informal survey, I found that
system developers are not necessarily sensitive to the things that
users are sensitive to; Fig. 4-8 lists some graphic system character­
istics and associated sensitivities.

Are displays properly centered and balanced? This is some­
thing that the system developer generally worries a lot about. It
looks good when someone comes in for a demonstration. A produc­
tion user or research user doesn't care much whether the display
is centered or not. Similarly, if scrolling is jerky rather than
smooth, the system developer worries about that; the demonstration
viewer is impressed if it's smooth; the users don't really care that

SOME
GRAPHIC SYSTEM SYSTEM DEMO. PRODUCTION RESEARCH

SENSITIVITIES DEVELOPERS VIEWERS USERS USERS

ARE DISPLAYS PROPERLY
HIGH HIGH LOW-MED LOW CENTERED AND BALANCED?

IS SCROLLING SMOOTH RATHER HIGH HIGH LOW-MED LOW THAN JERKY?

DOES PROGRAM HAVE
LOW-MED HIGH HIGH MED-HIGH "HELP" PAGES?

IS THERE MORE THAN ONE WAY MED LOW HIGH HIGH TO DO THE SAME THING?

WILL THE SYSTEM BE LOW-MED LOW HIGH HIGH
OPERATIONAL TOMORROW?

ARE PROCEOURES CONSTANT FROM LOW-MED LOW HIGH MED-HIGH WEEK TO WEEK?

CAN A NEW USER-OPTION BE
MED-HIGH LOW MED HIGH ADDED BY NEXT WEEK?

DOES PROGRAM INVOLVE HIGH MED LOW LOW-MED
SOPHISTICATED ALGORITHMS?

DOES PROGRAM MEASURE USER LOW-MED LOW LOW LOW
CHARACTERISTICS?

Fig. 4-8. Graphic System Characteristics and
Associated Developer/User Sensitivities

Command and Control for Air Force Systems 27

much. Does the program have "help" pages - does it tell him what
to do if he makes a mistake? Or does it try to compensate for the
mistake? The system developer doesn't need that kind of thing, so
he doesn't care much about it. It looks good to a demonstration
viewer because he generally doesn't know that much about the sys­
tem, and it's very useful for production users. Some research
users get used to the system and learn to compensate and it's not
quite that important.

Is there more than one way to do the same thing? Again, this
is something the system developer occasionally finds useful. The
demonstration viewer is there only one time and he doesn't really
appreciate that kind of thing, but in the production or research
user business, it's often very helpful to have alternative ways of
specifying the same thing. Sometimes one piece of hardware may
be down or he may be using his other hand for something else.

Similarly for these questions: Will the system be operational
tomorrow? Are procedures constant from week to week? Can a
new user option be added by next week? The system developer
isn't that concerned about most of these, particularly if the develop­
ment job is considered a research project. The demonstration
viewer isn't going to be there tomorrow or next week, so he has
very low sensitivity to this. But the research and production users
are very sensitive to these aspects.

Does the program involve sophisticated algorithms? Does it have
to get deep into graph theory or list processing to do the job? The sys­
tem developer often has a high sensitivity to this. If he can structure
the problem so that it does, that's so many more papers that he can
prepare for conferences and journals. He can also be more impres­
sive when he talks to the demonstration viewer and that makes the
demonstration viewer more impressed by the system. The users
really don't care that much. If the job can be done by brute force at a
little bit more cost in efficiency but maybe a little bit more in under­
standability and program maintainability, they will prefer it that way.

Last and worst of all is the question - does the program
measure user characteristics? For some reason or other, most
system developers that I've seen aren't really concerned that much
about what the distribution of response times are, what the dis­
tribution of errors are when people use the systems, or how these
things vary with the kind of users - military, researcher, or
graduate student. And, unfortunately, the demonstration viewers
and the users really don't care that much either.

IS COMPUTER SCIENCE CURRENTLY A SCIENCE?

The phenomenon of nobody really being that concerned with
measuring what's going on prevents computer science from
approaching a true science. My definition of computer science
paraphrases a letter to Science magazine written by Newell, Perlis,

28 Multi-Access Computing

and Simon9: Computer science is the application of scientific method
to phenomena involving computers.

Now, what is scientific method? Scientific method first
involves the systematic collection of observations. To build a new
interactive system requires making a fairly systematic approach
to potential users, potential developers, and potential maintainers
of the system; finding out what characteristics of the new system
are likely to be most important and less important for each group
concerned, and gathering as much data as possible on relevant
similar systems. Next, some hypotheses would be constructed
saying the following additional tools or additional techniques would
help in providing this set of system characteristics. Then, critical
experiments would be designed and performed. A system would be
built and tried out on people to see whether its usage characteristics
really did verify the hypotheses. Thus, the resulting data would be
analyzed and iterated around, possibly generating new hypotheses
from this further systematic collection of observations.

However, in computer science R&D, there is usually a very
nonsystematic collecting of observations. The "early Knuths"
observed that they had a great deal of complexity in their own
computing programs, and therefore built compilers that were
usually optimized around compiling complex expressions. Those
are the kind of hypotheses that are constructed. There is almost
no design and performance of critical experiments to validate those
hypotheses. Too often the next iteration consists of the developer
saying, "I just heard about the following list-processing technique
or garbage- collection technique and I'm sure that will make my
next compiler more efficient, or my next online system more effi­
cient, " and he proceeds to the next R&D project with little more
than that as a basis.

The university disciplines that this pattern matches are not
what are generally considered as science, like physics, or biology.
What it seems closest to is basket weaving. A basket weaver has a
very difficult job. He must plan his basket very carefully and he
puts a lot of loving care into it; he builds it, studies it from various
angles, discusses it with other basket weavers, and then goes off to
build another basket. Very rarely though does he go out and sample
users to find out whether they are interested in baskets with handles
or with several compartments rather than one compartment, and
the like. And, unless something changes considerably in computing,
it will remain a kind of computer basket weaving.

What Can Be Done to Make Computing a Science?

The scientific method here provides a good paradigm for
judging research proposals and research products to see whether,
indeed, they are based on a systematic collection of observations,
whether they have a careful experimental design, followed by the
collection and analysis of data to see whether it actually verifies

Command and Control for Air Force Systems

the hypotheses put forward. I would hope that in years to come,
as we do try to make computing a science, that more R&D will
be done this way.

29

30 Multi-Access Computing

REFERENCES

1. McClure, R. M., "Projection Vs. Performance in Software
Production, "in Naur, P. and Randell, B. (Ed.), Software
Engineering, NATO Conference Report, January 1969.

2. Knuth, D. E. , "An Empirical Study of Computer Programs, "
Stanford Computer Science Department, Report CS-186,
1971.

3. Manus, S. D. , "SDC Recommendations for Spaceborne
Software Management," Proceedings, First Spaceborne
Computer Software Workshop, 1966, pp. 345-360.

4. Personal Communication from Professor F. P. Brooks,
University of North Carolina, 1970.

5. Williman, A. 0. and C. O'Donnell, "Through the Central
'Multiprocessor' Avionics Enters the Computer Era,"
Astronautics & Aeronautics, July 1970.

6. Boehm, B. W. , "Some Information Processing Implications
of Air Force Space Missions in the 1970s, " Astronautics &
Aeronautics, January 1971, pp. 42-50.

7. Gold, M. M. , "Methodology for Evaluating Time-Shared
Computer Usage," Ph.D. Dissertation, Massachusetts
Institute of Technology, 1967.

8. Boehm, B. W., M. J. Seven, and R. A. Watson, "Interactive
Problem-Solving - An Experimental study of 'Lockout' Effects,"
Proceedings, Spring Joint Computer Conference, Vol. 38,
1971, pp. 205-210.

9. Newell, A. , A. J. Perlis, and H. A. Simon, "Computer
Science," Science, Vol. 157, September 1967, pp. 1373-1374.

5. Scientific Analysis

Computational Requirements

Ralph H. Pennington
System Development Corporation

Santa Monica, California

The areas involved in scientific analysis are so broad that I
don't really know how to make a thorough survey of them. I thought
I would start by describing how a particular kind of scientific pro­
gram typically gets done on a computer and try to extrapolate from
that both to requirements for computer capacity for some classes
of scientific calculations and to requirements for support to the
programmer in putting together such computations.

For at least a large class of scientific calculations, the
starting point is some set of differential equations or partial
differential equations that supposedly describe the physical laws
that govern some system behavior. To find the solution to a prob­
lem, the steps are to make whatever simplifying assumptions one
can - to get those laws expressed in as simple a form as possible
- and then to replace the partial derivatives by difference equations.

One example of the above is a calculation in one-dimensional
hydrodynamics. The problem is a medium which is uniform in all
directions but one (Fig. 5-1). Typically, a shockwave or some
motion is occurring in that direction (X) so that a point along the
line of motion will tend to move under the influence of some force.
A shockwave may cause this point to move to the right and then
back to the left. To find out about that motion, the point for dis­
cussion must be identified and then the motion computed as a
function of time. To do the computation involves keeping track of
the velocity with which that point moves, the pressure that is caus­
ing it to move, the internal energy in the little region about the
point, and either the density or the specific volume of the material
around that point. Of the basic equations of physics that are
involved the first one is simply Newton's Law: F =ma. The first
differential equation in Fig. 5-1 states this law backwards, ma= F.
The force is the change of pressure with respect to distance,
derivative of P with respect to x; the mass is essentially the density

31

32 Multi-Access Computing

EQUATION OF MOTION (F =ma)

au aP
po at= - ax

CONSERVATION OF ENERGY

CONSERVATION OF MATTER

EQUATION OF STATE

av au
po-=­at ax

p = p (p, E)

X =COORDINATE OF POINT

U =VELOCITY OF POINT(= dx)
dt

P =PRESSURE

E = INTERNAL ENERGY

V=SPECIFICVOLUME (=_!_)
p

p =DENSITY

Fig. 5-1. Example One-Dimensional Hydrodynamics

in this coordinate system; and the acceleration is the change in
velocity with respect to time. The equation that describes the con­
servation of energy and one that describes the conservation of matter
are also used. Then, typically in physical systems, some other
equation describes the relation of the pressure in the medium to the
density and the energy in that medium. The simplest form that most
individuals learned in college physics is Charles's Law or Boyle's
Law or something like that. For the more elaborate systems,
physicists in laboratories seek the equations of state for particular
materials under particular conditions and determine empirical
formulas to represent them.

Solving this set of differential equations requires turning them
into difference equations; this is done by splitting the material into
regions or zones and considering the properties inside any particu­
lar zone to be constant (or at least have a preselected variation
about some average value). In Fig. 5-2, small arrows mark the
boundaries of the zones. If the zones are numbered from left to
right - one, two, three, and so forth - zone J is being discussed
here. One of the first problems in making a difference equation
out of this is where the values of pressure, velocity, etc., should
be considered to apply. I've shown in this case that pressure is

Scientific Analysis

ZONING

~t~
BOUNDARYJ-1 ZONEJ BOUNDARYJ

U(J-1) P(J) UIJI
X(J-1) ZM(J) X(J)

EQUATION OF MOTION: au au
po at = - a;;-
6U 6P

6t po6x

uN EW - uOLD - p J+1 - p J 6t
po6x

(Pn _ pn I
un+Y, = un-Y, - J+1 J (6tn+1 + 6tn)

J J ZMJ+ 1 + ZMJ

Fig. 5-2. One Dimensional Hydrodynamics Typical
Difference Equations

33

representing a value at the center of a zone and have also shown
the mass (representing the density) to be carried at the center of
the zone. The coordinates X(J) and X(J-1) are the coordinates of
the boundary of the Jth zone, and the values of velocity U(J) and
U(J-1) are measured at the boundary of the zone rather than the
center of the zone. This suggests, right away, the first problem
in getting from the differential equation to the difference equation.
That is, there are a number of options on how to make the selec­
tion of points at which the values of pressure, velocity, etc., are
assumed to apply.

The equation of motion in Fig. 5-2 is converted from a
differential equation to a difference equation in a series of steps.
In the first step, the derivative symbols are replaced by 6.'s and
the Po is moved to the other side of the equation. Each of the 6.' s
supposedly represents the difference of value between two points.
Now in the 6.U/6.t, the 6. stands for change of U in time, so it is
some value of U at a new time minus a value of U at an old time.
The 6.P stands for a change in pressure for some 6.x, so that it is
the Pat some zone minus the P at some other zone. I have elected
to use P(J+l) - P(J). Typically in the figure, the subscripts repre­
sent the X position of zone boundaries and superscripts represent
time. The difference equation finally takes a form that says the
U(J) at some new time n+l/2 is equal to U(J) at time n-1/2, minus
some terms that involve 6.t's at various times. This is the form

34 Multi-Access Computing

in which the equation is typically used in actual computations. It
seems somewhat odd to write the difference equation in this form.
Why wasn't U employed at time n+l and U at time n, rather than
U at time n+l/2 and U at time n-1/2? The answer is that the
method won't work done that way. If this appears to be a black
art, that's what it is. This sort of situation has always been
rather embarrassing to applied mathematicians. In constructing
a difference equation to represent a differential equation, there
are two basic problems to worry about. One is stability. That
difference equation has to be such that as one steps through time
using that equation the solution doesn't wander off from the solution
for the differential equation. The other problem is one of con­
vergence. If the ei.t is made smaller and smaller and the problem
is rerun, answers should get closer and closer to the differential
equation.

There are nice mathematical theorems about convergence
and stability, but when it comes down to writing differencing
schemes that will be stable and will converge, I am afraid that
the mathematical theorems haven't been much help. The physicists
have discovered the successful forms for differencing schemes by
trial and error (I think they call it "physical intuition").

The process reviewed here for one simple equation in
Fig. 5-2 has been repeated countless times for countless versions
of physical problems. No neat, simple system has emerged that
works in all cases. What may be a convergent scheme in one set
of circumstances will tend to be a divergent in another set of
circumstances. Schemes known to be unconditionally convergent
turn out to be very poor computationally (i.e., require inordinate
amounts of computer time or give poor accuracy). Experimenta­
tion with differencing schemes will be a continuing area for com­
puter application, one where interactive capabilities can be of
great assistance.

Now, the next consideration is the amount of computation
required to solve the equations once a suitable difference scheme
is found. That difference equation in Fig. 5-2 tells what must be
done to get U at the next time, given the value at the preceding
time. One pressure must be subtracted from another, which is
one mathematical operation. Two ti.' s must be added, which is
another one. Next, there is the addition of two zone masses, a
multiplication and a division, and then another subtraction. So a
half a dozen mathematical operations are required to do that one
step for that one equation.

What does a full calculation of that type mean in terms of
computer requirements? In the total set of equations in Fig. 5-1
were five variables in the system that would have to be updated
from one time step to the next. There was position, velocity,
pressure, energy, and density (see Fig. 5-3). What has been
labeled Vin Fig. 5-3 is really the reciprocal of the density,
usually called specific volume. Typically, the number of zones

Scientific Analysis

NR. VARIABLES= 5(X, U, P, E, V)

NR. ZONES = 1000

OPERATIONS/ZONE/TIME STEP"' 30

NR. TIME STEPS"' 1000

TOTAL STORAGE 5000 WORDS

TOTAL OPERATIONS 30 MILLION

Fig. 5-3. Computer Requirements One-Dimensional
Hydrodynamics

35

required to track a shockwave through a medium is on the order
of a thousand. The equation for moving one variable in one zone
from one time step to the next requires half a dozen operations.
So one may assume that 30 or so operations will be necessary to
get all five variables at one zone point updated from one point in
time to the next. The number of time steps required to step from
the initial time to the end of the time of interest is determined by
a few hidden rules. For example, in this kind of problem there is
a so-called Courant condition that says the time step has to be
small enough that the sound waves cannot travel more than one
zone in one time step. This means that it will require at least
1000 time steps for a wave to get all the way across the thousand
zones. So this might be a problem of interest; five variables,
1000 zones, 30 operations per zone per time step, 1000 time
steps. A problem of this size takes a reasonably nominal amount
of storage - 5000 words - to store these five variables for each of
the thousand zones. There are 1000 zones - 30 operations per
time step - or 30, 000 operations and there are 1000 time steps,
so 30 million operations are needed to get through the problem.
Again, not a terribly large number for the faster machines avail­
able today. A machine such as the CDC 6600, for example, prob­
ably does two or three million instructions per second. Any
computer program includes a number of things besides arithmetic
operations (for example, fetches from and stores to memory,
program branching, etc.) so that the two or three million instruc­
tions per second might correspond to perhaps one million arith­
metic operations per second. Thus on a machine of the 6600 class
approximately 30 seconds or so are required for this type of
problem.

Now, what happens if one more space dimension is added to
the hydrodynamics problem and the same sort of computation is
done? The extrapolation is made as simple as possible. If there
are two dimensions, the problem variables will obviously have to
include both an X and a Y instead of just an X. A velocity is
needed in the X and Y directions instead of just in an X direction,
so at least seven problem variables exist instead of five in the

36 Multi-Access Computing

two dimensional case. There will be 1000 zones in the X dil'.ection
and 1000 zones in the Y direction, giving a total of a million zones.

The following is a simple estimate of the number of opera­
tions involved. If the same sorts of difference equations could be
used as in the one-dimensional case, then whatever is done in X
direction is also done in the Y direction, so there will be twice as
many to do at each point. The same number of steps will be done.

Figure 5-4 summarizes the situation for the two dimensional
case, given the above assumptions. Seven million words of storage
and 60 billion arithmetic operations now are needed, or about
16 hours on a machine that could do a million operations per second.
This is a little far from reality. Typically, two-dimensional prob­
lems use more like 100 zones in each direction, rather than 1000.
Such problems are indeed run for practical purposes these days.
Even with 100 zones in each direction, they usually require several
tens of hours on a 6000 class machine, because the actual differ­
ence equations tend to be much more complex than the ones demon­
strated above and to require many more operations per time step.

It appears that a two-dimensional hydrodynamics problem
pretty well saturates the largest of the machines generally avail­
able today. Yet, from the standpoint of the physics, this type of
problem is only the threshold of all sorts of classes of computations
one would like to do. For example, back in the one-dimensional
case - if the internal energy gets high enough in some zones,
radiation appears. One has to worry about the redistribution of
energy by radiation diffusion or, if the temperature gets even
higher, one has to worry about radiation transport. When equa­
tions for radiation transport are put into the one-dimensional
hydrodynamics problem, it essentially becomes as big as a two­
dimensional problem with hydrodynamics only.

Ten years ago, when the fastest machine was the IBM 7094
Model 2, a one-dimensional hydrodynamics was just the biggest
problem anyone did. Now the current generation of machines,
the CDC 6600 and that class, have made two-dimensional hydro­
dynamic problems standard. Such problems are done in production
form. The next set of machines now coming along, the IBM 195
and the CDC 7600, are not powerful enough to allow one to take the
next step - to do three-dimensional hydrodynamics problems, for
example. That step has a multiplying factor both in storage and
in arithmetic operations similar to the step from one-dimension to
two. A mere factor of five in computer speed isn't enough.

There are a number of interesting two-dimensional hydro­
dynamics problems that can't be done in a practical way on current
computer equipment; for example, two-dimensional hydrodynamics
involving radiation transport or two-dimensional hydrodynamics
with chemical kinetics. There are many classes of physical prob­
lems of this sort which can't yet be attacked simply because of
machine size although the methods of computer solution are known
and understood.

Scientific Analysis

ONE DIMENSION TWO DIMENSIONS

NR. VARIABLES 5 7

NR. ZONES 1000 106

OPS/ZONE/TIME STEP 30 60

NR. TIME STEPS 1000 1000

TOTAL STORAGE 5000 WORDS 7 MILLION WORDS

TOTAL OPERATIONS 30 MILLION 60 Bl LLION

(30 SECONDS ON (-16 HOU RS ON

1 MOPS MACHINE) 1 MOPS MACHINE)

Fig. 5-4. Computer Requirements Extension
to Two Dimensions

37

There is a question of how big a computation is worth trying
to do on a particular problem. For example, following a missile
flight can be done at different levels of detail with different compu­
tational requirements as indicated in Fig. 5-5. The missile can
be considered as a point mass and Newton's Laws applied and that
equation integrated with some very small number of operations,
perhaps 104 or so. To be more elaborate, a six-degrees-of­
freedom calculation can be performed. This kind of thing is done
on the more detailed trajectory calculations these days where
drag effects in the atmosphere can be considered. One may even
put in such things as variations of gravity with position, variation
of atmosphere with position, and rotating earth (if an earth reentry
calculation is being done). Such calculations typically may require
on the order of 107 total operations. Here again, on the machine
that can do close to a million operations per second that turns out
to be not much of a problem. One could conceive of trying to do
such a problem in three-dimensional hydrodynamics. To do even
one position in space in three-dimensional. hydrodynamics would
require on the order of 1012 operations. To track an entire
trajectory would require a few orders of magnitude added on the
top. The problem has gone from one that is easily tractable on a
current machine to one for which another generation or two of
computers will be needed to even hope to begin. Is it worth even
considering such calculations? Why should one be interested?
Certainly a six-degree-to-the-freedom calculation, so far as the
trajectory behavior is concerned, gives one essentially everything
he wants to know.

38 Multi-Access Computing

THREE DEGREE OF FREEDOM

SIX DEGREE OF FREEDOM

THREE DIMENSIONAL

HYDRODYNAMICS

104 OPERATIONS

107 OPERATIONS

1012 OPERATIONS

Fig. 5-5. Spectrum of Computation Sizes Example:
Missile Flight

There are several reasons for wanting to do calculations of
the larger classes that are beyond the sizes that can currently be
done.

One reason is that for any detailed data about what's going
on the calculation is probably cheaper than any experiment. A
two-dimensional hydrodynamics calculation might take 16 hours
or so on a very fast machine. That might cost $1000 an hour or
so to run and that's $16, 000 for one pseudoexperiment on that
machine. For that price, there are very few real life experiments
that allow taking detailed measurements about hydrodynamic flow
in a system environment.

Another reason is that calculations do provide more data
than an experiment. To do some experiment to find flow patterns
about missiles or to do a detonation and try to find the way that
the explosive expands, the instrumentation problem is extremely
difficult and only a very few points can be instrumented and usually
not enough points to form a complete picture of what is going on.
One of the main things a computation may do is give enough
understanding of what the data points really mean by providing

• CHEAPER THAN EXPERIMENTS

• PROVIDE MORE DATA THAN

EXPERIMENTS

• NEEDED TO INTERPRET EXPERIMENTS

• NEEDED WHERE EXPERIMENTS

INFEASIBLE

Fig. 5-6. Reasons for Large-Scale Computations

Scientific Analysis 39

computational data points throughout the regions where experimental
points weren't obtained.

The third point is that one needs rather elaborate computa­
tions in many cases to interpret experiments correctly. I guess
my favorite whipping boy in this area is air chemistry. Typically,
in setting up an experiment one uses some sort of evacuation
chamber, lets the right elements into the chamber, and tries to
determine by observation the rate at which the reaction he is
interested in occurs in that chamber. He does this by trying to
design the experiment very carefully, so that the only reaction
that takes place is the one that he is interested in. The literature
over the past many years is full of instances where somebody
came out with a cross-section for recombination of o2 or some­
thing like this and three years later someone repeated the experi­
ment and said, "No, the cross-section is wrong by two orders of
magnitude because the 02 reaction was dominated by an 04 reac­
tion." To interpret an experiment of that type correctly, one
needs to have a mathematical representation which does not assume
out of existence all of the effects except the one the experimenter
is looking for, but instead allows all of the presumed second-order
effects to be represented and computed so that he can get a real
feel for whether they are affecting the experiment. There are
cases, of course, where experiments are absolutely infeasible.
One that plagued the nuclear people for some time back, when it
was appropriate to be testing, was to get detailed measurements
very early inside of a fireball where the environment is almost
impossible for any instrumentation. Such situations may be forced
to rely on computer data. Then the problem is to have the com­
putation realistic enough so that one can use subsidiary experiments
and an elaborate computation to allow one to tie the specific physical
behavior to very indirect experimental observations.

Some of the applications areas where there would be definite
value in doing some of the very large-scale computations are:

• MISSILE FLIGHT SNAPSHOTS

• RE-ENTRY WAKE PHYSICS

• CONVENTIONAL DETONATION

HYDRODYNAMICS

• INSTRUMENTATION PHYSICS

• PHASED ARRAY RADAR RADIATION

FIELDS

• UNDERWATER SIGNAL PROPAGATION

Fig. 5-7. Application Areas Needing Large-Scale
Computations

40 Multi-Access Computing

I think that in each of these areas there is some experimental
data, there is a general conceptual understanding of what goes on
in the area, but there is little in the way of detailed modeling that
allows one to really understand, in intimate detail, what is happen­
ing physically. The applications areas listed are ones in which
there were fairly definite disciplines for doing calculations before
the advent of computers. Many techniques for doing the large­
scale hydrodynamics and radiation transport calculations did grow
up with the nuclear community because computers came along
about the same time the problem came along. There are many,
many areas where classical methods of hydrodynamics or of
electromagnetic series are used because the disciplines grew up
before the age of computers. A set of techniques which were as
good as one could get in that environment also grew up. Computers
are only now beginning to be applied in those areas. I think there
will be a gradual awakening to the fact that careful numerical
solutions can frequently eliminate the need for the gross simplify­
ing assumptions so often required to obtain classical solutions.
So I think the next decade will continue to see a recognition of
the need for work on very-large-scale computations in a widening
arena of applications areas.

I have mostly considered the requirements for very, very
large computations. However, I began with a sample of a rather
small computation and even at that level there undoubtedly will be
continuing requirements for further repetitions of such computa­
tions with different environments, with different materials, with
different equations to state, and so forth. Throughout the spectrum
there are a certain number of requirements associated with the
use of computers in the area of interactive use for general com­
putational purposes. Some of these requirements are shown in
Fig. 5-8.

I think most have found it very nice to be able to develop
small code modules on a time-share system and do an initial
experimentation on such a system. I think that over the past
several years, most have found that the next step is always a
terrible one. When one gets a few pieces of code put together on
a time-share system, understands how they work, and wants to
build his big system, he usually is stuck with the problem that he
can't even extract the code from the system, get it punched out on
a deck, take it over to a big machine, and put it in without several
administrative steps in between. Ideally, one would like to debug
his small code modules online, put together a sufficient library
management system, and edit these small code modules into a
much larger package of code. At that point, he probably stops
caring very much about whether he can operate interactively or
not. He is willing to submit the problem to be run on the batch
basis to a large machine and wait for his outputs.

The problems of handling outputs can become quite difficult.
One thing that kept two-dimensional hydrodynamics codes from

Scientific Analysis

• DEVELOPMENT AND DEBUG OF SMALL CODE

MODULES

• SCAN AND EDIT OF SOURCE CODE LIBRARIES

• MERGE OF CODE MODULES AND SUBMITTAL FOR

BATCH RUN

• SCAN AND ANALYSIS OF BATCH RUN OUTPUTS

• GRACEFUL GROWTH OF PROGRAMS

Fig. 5-8. Interactive Requirements for Scientific
Use of Computers

41

working for a number of years was that it was impossible to look
at the data and debug the code. If one tried to print out the values
- pressure, energy, density, and so forth - for every zone on a
100 x 100 grid, and then sat there looking at those numbers and
trying to figure out what happened during the machine run, he just
couldn't quite make it. The full debugging of such programs
waited until there were enough plot routines that, at every step in
the program where he wanted to, one could look at two-dimensional
contour plots of the pressure and energy and density and things
like that. The plots ended being the chief debugging aids. The
two-dimensional contour plots took about as much machine time
as the computation itself, but the time turned out to be well spent
from the standpoint of getting codes debugged and useful results
generated.

Once one has performed some significant number of large­
scale computations, an adequate storage and retrieval system for
the results, preferably in graphical display form, can reduce the
need for additional large-scale computations. At any one time,
an individual usually is interested only in a few pieces of informa­
tion that result from some large-scale calculation. However, at
a later date he or others may be interested in other results from
the same calculation. A suitable library of stored results and
convenient retrieval methods provide such data without the require­
ment for rerun.

I have discussed large-scale computations at length and, in
the process, have perhaps slighted the interactive use of com­
puters for smaller scale scientific work. While the interactive

42 Multi-Access Computing

solution of small problems is an important area, I have tried to
emphasize where I believe the priorities should be.

6. Process Control

System Requirements

Peter Swerling
Technology Service Corporation

Santa Monica, California

The focus of this chapter is somewhat different from that
of many of the others, nevertheless it is no less significant in
terms of applications of multi-access interactive computing tech­
nology for the 1970s. Certainly, the kinds of applications pre­
sented here do not take a hind seat insofar as the requirements
placed on computer technology in this period are concerned.

Basically, the subject matter of this chapter differs in that
it discusses interactive systems involving machine-machine
interactions. In other words, the users are not necessarily human
beings, but other machines or, perhaps, even elements or sub­
elements of machines. For example, the users may be a multi­
plicity of sensing devices such as radars, or they may be missiles
which are being guided under control of a computer, or they may
be subelements of individual sensors. It's also possible for the
users to be thought of as functions, rather than as specific hard­
ware items - for example, different sensor functions such as
search, track, guidance of an interceptor, or discrimination.

Now, despite this somewhat different focus, it will be
apparent from the examples that the systems presented are
definitely full-fledged, multi-access, interactive systems. They
preserve all of the essential features of such systems. The users,
here considered in the sense just mentioned, compete for computer
time. In fact, a major problem in the use of such systems, which
is already recognized today, is the allocation, or management, of
computer resources. They preserve the feature of interactivity.
For example, the computer may process information input from a
large multiplicity of sensors or sensor elements and also control
the subsequent user activity. In addition, there is often the
necessity to respond to unpredictable stimuli or at least not wholly
predictable stimuli.

An example of the specific applications now becoming
increasingly important is the ballistic missile defense battle

43

44 Multi-Access Computing

management problem. A very closely related problem is that of
the ground-to-air or sea-to-air defenses against attacking forces
which are not ballistic missiles but which are perhaps aircraft or
shorter-range missiles. These systems, as they are currently
developing, embody a multiplicity of sensors, mostly radars in
this case; a multiplicity of weapons to be committed against the
attacking force; and one or more· computers of different levels,
perhaps ranging from very specialized hard-wired computers to
big general-purpose computers. The computers process the
information from the sensors and, in turn, control not only the
commitment of weapons to the attack force and the guidance of
those weapons but also what the sensors do from moment to
moment·- that is, where the radars should be pointing their beams,
what type of wave forms they should be transmitting, and so forth.

Incidentally, the above is not meant to convey a Strangelovian
picture of the national fate being controlled by machines talking to
other machines. Obviously, the human being would intervene at
least in the decision of whether the battle was going to start, but
the events are taking place at a sufficiently rapid rate that most of
the functions mentioned have to be automated and conducted under
the control of a computer or a set of computers.

The same type of machine-machine interactive and multiple
access system may have nonmilitary applications. The control of
traffic lights in a city is one example. The sensors or "users,"
as far as the input sensing elements would be concerned, might
be elements which sense the traffic flow over given streets. The
computer would process these and decide according to some
decision algorithm how to control the traffic lights.

Another application, which will be emphasized later, is the
satellite communications problem; that is, the use of satellites as
communications relays, especially with regard to the so-called
multi-access problem. That problem, of course, is squarely
within the domain of the classical c3, or command-control­
communications problems in the military, but also has applications
to nonmilitary government and commercial systems.

A number of these cases or specific examples may involve
multi-access systems in which the access actually can be time­
sequenced in a programmable manner so that they would involve
what might be called time-programmable multi-access rather than
random-time multi-access. On the other hand, when the system
has to respond and allocate computer resources in a manner which
is not completely predictable, it is a true random-time multi-access
kind of case.

So far, some of the systems applications have been described.
Another major point is that there is another level of multi-access,
interactive systems which actually involve techniques applicable
to the operation of just a single sensor. I think one of the great
technological developments in the next 10 or 15 years, in the
improvement of performance of individual sensors, will involve

Process Control System Requirements 45

the application of this kind of technology. As the reader will see,
it is really regarding an individual sensor as a multi-access
system of users.

Radar is an example. In the last 15 or so years, one of the
big technical breakthroughs in the design of radar systems was
the electronically scanned antenna. Electronically scanned aritenna
structures consist not of a typical dish but of an array of elements,
each one of which is, at least potentially, separately excited or
controlled. Up to thj.s point, the array-of-elements structure in
typical radars has been used to provide inertialess scanning; that
is, very rapid switching of the radar beam from one point to
another in space. But actually this represents only a partial use
of the potentialities of that device. The full potentialities of that
device will not be used until one implements a radar in which
every single element in the array is regarded as a separate chan­
nel for incoming information with a separate receiver behind it
and every single element is regarded as something which can be
separately excited and whose activity can be separately controlled.
Assuming the implementation problems can be solved, very great
performance improvements can be achieved, at least in principle.
These improvements can be achieved by going to what I like to
call the "fully cybernetic radar"; that is, a radar which is an
array structure of elements in which each element is regarded as
a separate receiving channel for signals and each element is
regarded as having an activity which can be separately controlled.

In this kind of case, there is an individual sensor in which
every antenna element is a user so to speak, every individual
antenna element separately puts signals into a computer and is
separately controlled by a computer. The number of elements
typically used in large radars ranges from hundreds up to thou­
sands, so, in this case, there is a system under the control of a
computer in which there are thousands of users. Even worse,
the rate at which such users have to be programmed and controlled
is very, very rapid. In other words, one may be talking about
different excitations of the elements in periods of the order of
microseconds and so these are not only very, very many users,
but there must be very, very rapid control. In addition to the
antenna elements, other aspects of the radar can also be regarded
as degrees of freedom and, hence, as users of the multi-access
system; for example, the specific waveforms which are trans­
mitted. Generally, radars increasingly use not one individual
transmitted waveform but so-called suites or collections of wave­
forms. These also have to be adaptively controlled in response
to the specific environment in which the radar is operating at the
moment, so those degrees of freedom would multiply the degrees
of freedom involved in the individual antenna elements. In addi­
tion, sometimes it's desired to process the information in very
many ways simultaneously. As many as a hundred or a thousand
different simultaneous ways of processing information can be

46 Multi-Access Computing

easily a practical case. The simplest example of this would be in
forming multiple beams simultaneously. Multiple beams formed
simultaneously in a sensor on the receive end of the surveillance
link amount essentially to a large number of different simultaneous
ways of processing input data.

Another very important point in conjunction with systems of
this type is the adaptivity involved. What is envisioned is the con­
trol of the system adaptively - the sensing of the environment and
the illumination of different antenna elements or the transmission
of different waveforms adapted to the sensed environment at any
given instant. In the next decade or so, I expect this to be a big
technological breakthrough in the performance of sensors. To
give some numbers which I think are reasonable, a 20-30 DB
improvement can be expected in the sensitivity of such radars
operating in cluttered environments, difficult environments in
which radars are now being demanded to operate. There is also
an interaction with certain equipment implementation problems in
that sometimes one of the main problems in achieving the theoreti­
cally attainable performance is simply the difficulty of maintaining
the proper tolerances; for example, the actual element excitations
are never exactly as desired.

The system described above is capable of maintaining toler­
ances because it has a virtual closed-loop control of every degree
of freedom in the set. Whether these degrees of freedom repre­
sent antenna elements or waveforms or what have you, this
closed-loop control is an approach to maintaining tolerances that
could not otherwise be achieved.

Now, I shall return in somewhat more detail to the question
of satellite communication relays, since this provides another
very good example of cases of this type. The multi-access and
interactive aspects of satellite communications systems actually
exist on two levels. One level might be called the systems level:
obviously the servicing of a large number of ground users that
have access to an individual satellite communication relay is a
classic kind of multi-access problem. In fact, the term multi­
access is also used in the satellite communications community,
and it specifically means the ability to service ground terminals
which, in general, may have a large spectrum of different sizes,
radiated powers, and required data rates. It's very well known
within the field that it is one of the main problems, if not the main
problem, in the implementation of satellite communication relays
when the relay is intended to service a user population of this kind.
This is especially true, for example, in military tactical com­
munications satellites, perhaps in future air traffic control satel­
lites, and so forth.

The techniques which until now have been explored to deal
with the multi-access problem in this context can be described as
very primitive compared with what we may expect in the future.
Many of the technologies which may be applied in the future to

Process Control System Requirements 47

improve the system multi-access may involve the particular
element multi-access level just described - the application of
some of these sophisticated techniques to the antenna and associ­
ated processing and computing devices carried aboard the satel­
lite. As a matter of fact, I think that communication satellite
relays in the future will evolve toward what might be called the
great-switchboard-in-the-sky. One key to the application of such
a concept is that coverage requirements do not really limit the
size of the satellite antenna nor its gain. Up to the present time,
it usually is thought that, for example, if a communication system
may exist anywhere on the surface of the earth, the satellite beam
has to cover the whole earth to cover all of the intended users.
This is by no means necessary and would represent an unnecessary
limitation on the size of the satellite antennas and their gain. In
fact, it recently has become recognized that people are beginning
to develop satellite communications relays which have very much
narrower and higher gain beams than those which will cover the
whole earth. Coverage problems can be solved either by imple­
menting multiple simultaneous beams or by implementing beam
steering and switching algorithms; these latter techniques happen
to fit in quite well with certain other techniques which have been
proposed for the multi-access problem for different reasons,
specifically time-division multiple access.

The actual implementation of these techniques would have a
variety of effects on the effectiveness of a satellite communication
relay. The simplest is that it allows for bigger satellite antennas
and hence a system with either larger capacity or ability to service
smaller ground users. However, it also provides an entire addi­
tional dimension, or two (angular) dimensions to the multi-access
problem. Hitherto, systems of this type have regarded the attack
on the multi-access problem to consist mainly of modulation tech­
niques; that is, either frequency division or time division or
orthogonal codes or something of this sort. The thing contemplated
here is to add the spatial directivity dimension to multi-access and
this can, in what I regard as practical implementation, easily add
another multiplicity of a hundred or a thousand additional channels.

Another effect is that the antenna techniques in which each
individual element is regarded as a separate user of a multi­
access computer system enables the use of certain techniques
such as side-lobe signal cancellation which, in the context just
mentioned, involves improved channel isolation for the spatial
directivity channels. In the military context, this would translate
directly. into improved tolerance to jamming, for example, reduc­
tion ofvulnerability to jamming.

So these are some of the kinds of improvements in both
surveillance systems and communications systems which I would
expect to become possible by application of this concept of an
individual sensor consisting of a computer-controlled collection
of many different users. If one looks at each degree of freedom

48 Multi-Access Computing

of such a system as a user, he can easily get into thousands or
tens of thousands of users. The saving grace, of course, is that
the types of things which users are expected to do may be quite a
bit more restricted than in some of the other multi-access sys­
tems which have been presented.

There are some problems or challenges in the actual imple­
mentation of such systems. If they are to be implemented for
sensors with very large numbers of elements - in the thousands -
very great requirements will be imposed on computer size and
speed. Again, the bandwidth of these systems as well as the
numbers of degrees of freedom must be very large. In addition
to that, very great challenges are going to be imposed in the
development of what might be called the decision and control
algorithms involved. Algorithms here refer to the basic rules by
which the decisions are reached as to what the different users will
be doing at the next moment. There is a very strong relation
between the problems of computer speed and size and capacity and
the problem of developing the proper decision and control algo­
rithms. There are cases in which the limitation on computer
capacity imposes the basic problem on algorithm development.
In other words, the development of the algorithms is primarily
concerned with the problems raised by computer capacity which
is limited in relation to the thing that you are trying to achieve.
There are other cases in which actually there's very ample com­
puter capacity. As the jargon goes, the computer resources are
ample, but some other kind of resource is limited, such as radiated
power; in that situation, the algorithm problem is the development
of the proper methods for using the ample computer capacity in
such a way as to optimize the use of some other resource which is
limited.

In conclusion, the type of problems described here should
be regarded as actual typical examples of multi-access interactive
computing systems and I predict that the next few decades will
bring about some of the most important improvements in both
sensor and communications systems, based on applications of
adaptive, interactive, multi-access computers in the contexts
described.

7. Data Processing

Analysis Requirements

Lt. Commander Thomas Knepel!
Alameda Naval Air Station

Alameda, California

The state of modern interactive data processing often
reminds me of one industrial engineer who defined the systems
approach in the following four easy steps: (1) cut to shape;
(2) hammer to fit; (3) file to smooth, and (4) draw blueprint.

As a representative user of both business and command­
and-control data processing, there is a temptation to challenge
the industry for hardware and software improvements. However,
the main constraint to achieving the potentials of data processing
is that the system capabilities which exist today are not being
used.

I do acknowledge the need for improvements in hardware,
software, and standards, but for the most part that need exists
because the economics of data processing must be improved and
not because design capabilities are lacking. For example,
today's data communication systems are effective, but it fa not
yet cost-effective to establish communication networks for all the
data which may be appropriate to process. Good time-sharing
systems have finally arrived, but effective usage is limited by
high cost. Interactive programming can greatly improve program
development and maintenance, for those who can afford the price.
When will it become economically feasible to have 20 billion
characters of online storage for just the basic data needed for an
integrated management system? In software, there are now data
base management systems, capable operating systems, problem­
oriented languages, and more and more software developments,
but the operating overhead costs dearly.

This is not to deny that standards and technological advances
are needed in hardware and software, but the emphasis and thrust
of such developments should be to reduce the cost of today's capa­
bilities, at least until we learn how to use the capabilities which
exist now. Others have used the example of Detroit to describe

49

50 Multi-Access Computing

new computer systems. The analogy is the car with 300 horsepower
capable of doing 120 miles per hour, although the roads and the
laws preclude driving that fast. High-powered systems are used
to keep track of ships at sea, planes on decks, or spare parts in
supply bins, just as was done with older card-walloping systems,
and sometimes with the same programs. Now, with interactive
systems, the ability exists to make the same mistakes faster.
The real challenge in data processing is to provide a management
or a command and control system, rather than an information
system, and this challenge reveals the deficiencies of systems
analysis.

As a symptom of the state of the art, I am constantly dis­
appointed that our people cannot evaluate system capacity for
multiprogramming computers prior to installation. Simulation
packages are available and are being used, but try asking analysts
to compare alternative systems with significant differences, where
design tradeoffs result in radically different optimization. One
finds that simulation criteria have bias toward some specific sys­
tem design. If the study of multiprogramming system capacity is
an elusive science for the field-level analyst, consider the task of
analyzing multiprocessors, or arrays of processors, or different
levels of memory hierarchy. Here we are with powerful system
capabilities, but we don't know how much we need. And after the
system is installed, we don't make use of the capabilities we
bought.

If we may leave the subject of systems design, let us look
at the plight of the systems analysts during the design of computer
applications which, after all, is the work for which the system
was bought. At one time, the stumbling block for a successful
system was the implementation stage-programming, integration,
and testing. Those problems still exist, but tools of the trade
have been improved. Compilers are better, programming stand­
ards can ensure program modularity, data base management
systems can handle one of the most common causes of system
failure, and automated flowcharts and decision-table coding are
available. Computer assistance is appropriate for the stages
before implementation, those stages of analysis and design.

In today's environment, a good system application exists if
the customer can be provided with accurate and timely status of
things. If system designers are clever, managers can even be
given status on a selective basis for "management by exception."
Today, a successful system application exists if operations can
be scheduled on a day-to-day basis, like reconnaissance missions
or preventive maintenance. And a very successful, but rare,
application exists if the system can be used to feed status criteria
into the scheduling system. These are all worthwhile accomplish­
ments. But it is within our technical capabilities and, in fact, we
have been promising those who invest in our systems that we will
do more. Besides scheduling and updating status, we can and

Data Processing Analysis 51

should provide greater assistance for the planning and evaluation
function of management and command. The difficulties, however,
are the great number of variables and criteria inherent in planning
and evaluation. The solution has been to simplify the problem
with assumptions and functions which are sophisticated rules of
thumb. In this solution, we do no more than imitate the manager's
mental short-cuts without the benefit of his beautiful sense of
intuition.

Promising a total, integrated system implies that planning
and evaluation applications will be based upon intelligence from
the collected data of all variables. The constraint for achieving
this promise is the systems analyst who is trying to assimilate,
integrate, and use this data within the limits of the machine.
This analyst needs better tools than he has today.

The final deficiency of systems analysis which I want to
discuss is the lack of criteria for evaluating applications. We do
not have the tools to determine the worth of the information the
system may provide. Unless funds become unlimited, we will
always have to choose among alternative applications for systems.
By what criteria of worth will we make that choice? Even more
basic, what is the worth of information which determines the
choice of investment for a computer system rather than for another
ship or aircraft? Determining the value of computer applications
should be one of the basic roles of the systems analyst. But we
have not gone beyond that stage of relating the value of our systems
to the number of clerks that can be replaced or the response time
in milliseconds.

If these are the problems of systems analysis for data
processing, what are the requirements to alleviate the deficiencies?
Certainly, mechanical assistance is an attainable goal for relating
user requirements to system design. This assistance should run
the gamut from analyzing data elements through system network
analysis of timing and data base structures to specifying hardware,
and application programs. We also need to improve the body of
knowledge of management systems. To start with, basic laws of
decision theory, management processes, and their utility must be
formulated and applied. Then the common characteristics of sys­
tem applications must be described so that they can be worked
with theoretically rather than instruction by instruction or bit
manipulation. Finally, the functions of data processing systems
must be related to the basic laws describing computer applications.
If we understood applications as well as we do automata theory
and information science, then computer systems analysis would
be a science rather than an art.

To summarize, the biggest challenge for data processing in
general is to draw the blueprint first. Today, the systems analyst
cannot specify the system we need, he cannot comprehend all the
complexities of the applications for which the system is needed,
and he cannot even determine if it is worth the attempt to implement

52 Multi-Access Computing

those applications. The cause for these deficiencies is that we
just do not understand the nature of the beast called management
information or command and control systems. The potential for
using today's technology is mind boggling, but, so far, the only
mind to be boggled is the system analyst's.

8. Requirements for an Interactive
Modeling and Simulation System

Philip J. Kiviat*
Department of the Air Force

This chapter will deal with requirements at a very general
level. Its basic premise is that within our present context, inter­
est, per se, is not in being a programmer, but in being a modeler.
There is a difference. Those who have done complex modeling
jobs, like modeling industrial or computer systems, realize that
programming is not the problem - modeling is. We want to build a
system that will help us to be better modelers, partly because we
realize that modeling is the crux of the problem, but also because
once we decide to use a terminal as our basic vehicle, we know
good programming can't be done at a terminal. With the pressure
of a terminal I can write five lines of code that are probably pretty
good, but I doubt that I can write 100 lines of pretty good code.
The pressure is not just economic. It is also social pressure,
because unless it is my personal terminal, there is somebody
breathing down my neck who wants to get on it.

Once I say I am not interested in programming but in model
building, criteria that people generally use to judge programming
tools are inappropriate, at least as concerns efficiency. I don't
care if a compiler is fast, I don't care how much core it takes -
I am interested in something else. I am interested in what
Douglas Engelhart** has called "augmented problem solving."
I want to somehow help a man articulate his ideas; my basic out­
put is going to be an understanding of the structure and behavior
of a system, not its operating statistics. I do want a model that
I can run, that can tell me whether rule A is better than rule B.
But I am interested in understanding, not data.

Now, that implies modeling a system in its very early design
stages, not after it exists. Because after it exists, there is a

*Now Technical Director, Federal Computer Performance
Evaluation and Simulation Center, Washington, D. C.

**Stanford Research Institute, Augmentation Research Center

53

54 Multi-Access Computing

• MODELING RATHER THAN PROGRAMMING
ORIENTED

CANNOT DO "PROGRAMMING" AT TERMINAL
EFFICIENCY CRITERIA NOT APPROPRIATE

• BASIC OUTPUT IS UNDERSTANDING OF
STRUCTURE AND BEHAVIOR OF SYSTEM,
NOT OPERATING STATISTICS

Fig. 8-1. Basic Premises

different kind of simulation job to do. We are then interested in
prediction and in estimation. Here I am interested in finding out
whether basic ideas of how a system works are really any good.
Professor Corbato implied that he couldn't simulate MULTICS at
the very beginning because he knew nothing about it. Well, I con­
tend that if he knew nothing about it, he couldn't design it. But he
did; ergo, he knew something about it.

Everyone has at least one idea about how a system of interest
works. Some ideas are right, some are wrong. We can generally
formulate a model. It may. be a very rough model. The data por­
tion of the model may be represented by a few curves that have
inflections at different points, that are skewed in different ways.
There can be different ideas about priorities in organizations. If
we test ideas early, we can generally save money that is orders
of magnitude more important than money saved by fine tuning later
on. That is why an interactive modeling and simulation system is
a good idea; it allows experimentation precisely when there is no
time to study a system. The reader should think about most of
the projects he has been involved with. If he is in the Air Force,
Army, or Navy, he should think about the last large system that
was implemented and how much time was really spent designing
it, thinking about alternative structures. In one very large Air
Force effort, almost the first thing that was done was low-level
coding; design was the product of coding and integration. Design
is the generation, evaluation, and selection of alternatives, not
detailed specifications.

Now, since we are considering requirements, what is needed
to do such design? Some kind of translator or interpreter or com­
piler is required. It can be a meta-assembler, a compiler, or an
interpretive system - some way of writing programs. A second
requirement is a run-time library that does a lot of work for the
user, data generation, for example. These elements are found in
every programming language today. A third element is not - and
that is a comprehensive run-time monitor that helps in interacting
with a system, helps in debugging it, integrating it, and validating
it. We can almost say that the benefit of an interactive modeling

Interactive Modeling and Simulation System

• TRANSLATOR-: INTERPRETER -
COMPILER

• RUN-TIME LIBRARY

• RUN-TIME MONITOR AND
INTERPRETER

Fig. 8-2. System Components

55

system is proportional to the effort spent on the run-time monitor.
There is only one effort that I know that is taking a practical look
at an interactive modeling system, and that has just begun. It
happens to be something within the Sloan School of Management at
MIT, the SIMPL interactive modeling system.

Modular programming is one requirement for the system we
are designing. For years, there has been talk about modular
programming. First, there were subroutines and then integrated
data bases. But we still don't have modularity. Still, the word
modular, as Professor Dykstra points out, has meaning when
modules are constructed in certain very clear, very precise ways.
They have to be hierarchical; they have to be completely sepa­
rable, because one thing we can't do when we sit down at a termi­
nal is to remember everything that is in a program - which may
have been written by somebody else. We want a modeling concept
that is called "process-oriented. " Devised by the Simula group
in Norway, it has been adopted by several other programming
systems and I have extended it in a design for a new simulation
language which I call "Simscript II Extended. " It is a broader
way of looking at real-time processes than is evidenced in

• MODULES HIERARCHICAL AND SEPARABLE

SIMULA PROCESS
SIMSCRIPT II EXTENDED PROCESS

• GLOBAL DATA BASE ORIENTED

LATITUDE IN DATA STRUCTURES

• LIBRARY CATALOGABLE AND CALLABLE

• COMPOSED OF EXTREMELY HIGH-LEVEL
LOGICAL STATEMENTS (CONDITIONAL)
AND TIME-DEPENDENT COMMANDS

FREEDOM FROM LABELS AND
UNCONDITIONAL TRANSFERS

Fig. 8-3. Model Structure

56 Multi-Access Computing

programming systems such as regular Simscript or FORTRAN.
It is a better way of modularizing programming; system descrip­
tions can be stored in parts so that a change in one part does not
affect anything else. That is, I think, a prime requirement of an
interactive modeling system.

Another requirement for this system is that it have a global
data base with great latitude in data structure. A major problem
with modeling is that most people have to fit their system model
to the ideas of FORTRAN, where everything has nice clean edges.
It's either a square or a cube. But the world doesn't have clean
edges. The world is hierarchical; it's a tree structure, a ring,
a who-knows-what. We want to be able to take an idea of a model
and very quickly try it out, not spend half our time figuring out
how to program it. So we have to have great flexibility and the
trend is certainly in that direction. It has to be a global data base
because that's how the world operates - many modules all simul­
taneously accessing the same data. If we really want to talk about
pluggable kinds of programs where we can test out ideas very
easily, we have to have a library where we can catalogue modules
and put them together in a very simple way. Much more simply
than most operating systems allow today.

The language itself has to be extremely high-level - I don't
consider FORTRAN, for instance, to be a high-level modeling
language. It has to be high-level in its logical power - both con.­
ditional and unconditional statements - and in its operating com­
mands. We must be able to say we want a process to take place
whenever or wherever "the following occurs" or on the sunrise
of the third Tuesday after the second rising of the full moon. We
should be able to say it that way, if that's the way it's expressed
in the real system.

Model verification is another well-discussed topic. It is
called program debugging, it is called validation. It is called
many things as there are many aspects to it. Generally, we define
model verification as proof that what we have done agrees with
what we thought we had done and model validation as proof that a
model is, in fact, a representation of some reality. We have,
first, internal consistency and, second, external consistency.
A system can do a lot to assist in these tasks.

First, if the models are right the first time (and the system
helps insure this), we don't have too much of a problem. starting
off on the right foot disposes of many problems. So, as much as I
would like to get away from programming languages, I can't
because I don't know how to design a universal modeling language.
Therefore I have to have something that will protect me from my
own programming mistakes. I insist that this language have full
storage and logic protection to whatever specification I choose.
There must be nothing that I can do in a program that is illegal and
get away with it; simple things like a subscript out of bounds, data
out of range, or an illogical condition happening somewhere must

Interactive Modeling and Simulation System 57

be prohibited. We must both design languages that minimize
sources of error and produce systems that detect those errors we
do make.

We must have a powerful interrupt capability that allows us
to interact with the model. Let the model specification say that
every time it happens that a certain condition exists the program
stops and control is passed to the terminal. At that point, I may
want to take heuristic actions. I may want to abort an experiment.
I may want to take actions at any time under any conditions.

Modeling is a human task, not a machine task. We are
simply asking our system to help us interact with a running model
on a conversational basis. The best way I can think of to do this is
to tell the programming system, "Whenever this happens, tell me
about it, " and I will decide what to do next.

We must have conditional as well as unconditional ways of
tracing because if we want to understand a system we have to have
a way to trace data flows on both change and time dependent bases.
We can trace on an assignment, or on a change of value that is of
interest, or on the occurrence of an event - "Notify me whenever

DEBUGGING
VALIDATION

• FULL STORAGE AND LOGIC PROTECTION TO
SPECIFICATION

• INTERRUPTS FOR INTERACTION ON CONDITIONS

• FULL DATA STRUCTURE AND FLOW TRACE

CONDITIONAL AND UNCONDITIONAL OF
VALUE AND CHANGE OF VALUE ON
OCCURRENCE

• AUTOMATIC STATISTICAL REPORTING

SYSTEM DYNAMICS
SYSTEM PERFORMANCE

• DIRECT AND INDIRECT STATEMENTS (JOSS-LIKE)

DISPLAY STATUS AND STRUCTURE
EXECUTE ANY ROUTINE
MODIFY ANY VALUE OR STRUCTURE

Fig. 8-4. Model Verification

58 Multi-Access Computing

a plane crashes, " would be a statement in a model of some military
process. "Notify me whenever you run out of stock" and I will see
if my logistics algorithm is correct in a specified monitor com­
mand in a logistics model.

We don't want to tell the system what statistics we want to
look at. It should automatically accumulate, keep track of, and
report when we ask all the statistics (like means and variances
and histograms) that analysts need. Let the programming system
figure out what and how for itself. It's a simple enough job that if
we can figure it out, the system can figure it out too. If it doesn't
have that capability, it must be programmed.

Last, having been at RAND, exposed to JOSS and deeply
impressed, I think that both direct and indirect statements are
important. Anything that can be said in a program should be able
to be said directly from a console and occur. One can describe
the structure of a model, show the status of something or other,
execute any statement that will change the model in any way,
modify anything, add something to a list, take something out of a
matrix, add a row, and change an element. This direct and
indirect mode of operation can be extremely powerful in dealing
with computational problems and is even more so in dealing in a
modeling context. In modeling, we are constantly changing our
minds. We begin defining what a model looks like and as we get
more and more into the model we realize we know less and less.
We are always changing our models. We would like to do it coop­
eratively and interactively. If we have to reprogram (go back to
the beginning and start over again), we might as well be batch
processing. We want to change things in real-time; that is, in
simulated real-time, to see how the model behaves. Remember,
I am not particularly interested in collecting operating statistics
so I don't want to go back to the very beginning and start again
where I left off. I want to change the model then and there and
continue. Let's assume a queue has been building up and I find
I have a logical error that caused it. I would like to change the
program and let it continue running. If the queue starts to
decrease, I have learned something. What its value happens to
be at the end of the run is irrelevant; I know that my logic is now
correct.

Benefits of interactive modeling are real and important. I
claim that the elapsed time of model construction by doing inter­
active modeling as opposed to conventional batch methods will be
in the order of 30 to 1. Only a need for credibility keeps me from
claiming 100 to 1, for I believe that with a well designed system
we can collapse the time it takes to model systems and study them
by perhaps as great a ratio as 100 to 1. I personally encountered a
ratio of 30 to 1 when dealing with a system put together using Sim­
script II on a timesharing system. We had instantaneous turna­
round, and could interact with running models, but we couldn't
change logic without recompilation. Yet we were.doing in a day

Interactive Modeling and Simulation System 59

what had formerly taken about a month. Thus I feel that with a
truly interactive system, this ratio will be even larger. That is
important because most of our dollars pay for people, not for
computer time. If we cut down on the man hours, we are ahead.
A few more dollars in computer time costs far less than the money
that a man spends just jingling his coins in his pocket waiting for
his job to come back from the computer center. Opportunity costs
for good analysts are also large.

Models are of better quality when done in an interactive way
because the analyst has continuity of thought and a heightened inter­
est in what he is doing. He can actually see things happening. We
found (not unexpectedly) that people were more excited about what
they were doing when they didn't have to stop, wait, and start up
again. They did more tasks, they did things better, and they
experimented more. They had greater insight into a model - its
structure and its dynamics, because they were able to play with
it. Being able to incrementally construct a model gives a better
feeling for what happens when a new part is added. When a model
is put together in one piece in the beginning there is little insight
into marginal effects. Being able to experiment continuously
increases insight. That is what we want.

Better facilities also mean fewer debugging and verification
problems. We are now in the loop. Every possible error

• REDUCTION IN ELAPSED TIME OF MODEL
CONSTRUCTION ON THE ORDER OF 320:1

• BETTER "QUALITY" MODELS

CONTINUITY OF THOUGHT
HEIGHTENED INTEREST
ABILITY TO EXPERIMENT

• MORE INSIGHT INTO MODEL STRUCTURE AND
DYNAMICS

INCREMENTAL CONSTRUCTION
CONTINUAL EXPERIMENTATION

• FEWER DEBUGGING AND VERIFICATION
PROBLEMS

BETTER FACILITIES
HUMAN INTERVENTION
IMMEDIATE RESPONSE TO NEW TESTS AND

NEEDS

• REDUCED COST OF EXPERIMENTATION AND
ANALYSIS

HUMAN INTERVENTION
CONTINUING STATISTICAL ANALYSIS

Fig. 8-5. Benefits of Interactive Modeling

60 Multi-Access Computing

condition needn't be programmed. Once in the loop, problems can
be found a lot faster and a lot easier. And we can respond imme­
diately to problem situations. We don't have to worry about sub­
mitting a number of jobs to beat the system. One benefit doing
this will be overall reduced costs of experimentation and analysis.
Although the programs we construct will run slower and perhaps
take much more core than programs run in a batch system, getting
in the loop and being able to do adaptive experimental design will
reduce overall experimentation costs and increase the scope of
experimentation.

What does it cost to do interactive modeling? It is clear
that we have to pay some overhead for timesharing. We have to
give the man a terminal. We have to pay connect time, and we
have to pay communications costs. For a single terminal we'll
pay no less than $200 a month, maybe $1000 a month. If we try
to use the system for production work, that is, running simulation
experiments to find out exactly how a system will perform down
to the last whisker, we have a low-performance system - it isn't
designed for that. That's a cost. It will probably cost quite a bit
to write an interpreter, monitor, and run time library. What is
quite a bit? It could be done in four to six man years with two good
people. (I am from the school that says three's a crowd.) If we
start using a good existing simulation language as a base, it can be
done in less time. Perhaps two to four man years. We also have
the problem that programs we produce will not be transferable to
other computers and other systems. In some environments this is
very important, so I express it as a cost.

It has not been demonstrated quantitatively that interactive
modeling is the solution to anybody's problem. Those of us who
have experimented in the area feel strongly that we see real bene­
fits. It's hard to construct experiments to demonstrate this. I
am 100 percent sympathetic with pleas that we have more meas­
urements to support our contentions but the experiments you have

• TIME-SHARING OVERHEAD

TERMINAL
CONNECT-TIME
COMMUNICATIONS

• LOW PERFORMANCE PRODUCTION SYSTEM

• HIGH COST INTERPRETER - MONITOR -
LIBRARY

• NON-TRANSFERABLE PROGRAMS

Fig. 8-6. Interactive Modeling Costs

Interactive Modeling and Simulation System 61

to perform to find out whether interactive modeling is better than
noninteractive modeling are just horrendous. I don't know of any­
one who is attacking this problem today. However, I do feel cer­
tain that a system such as I have described has great benefits and
I am quite as sure that it will be the way we will do our modeling
in the future.

PART II. RESEARCH lABORATORY REPORTS

The theme of the three papers in this section is "An Overview
of Current and Planned Research and Development Activities plus
Some Historical Perspective." This might be paraphrased as
"Where is the state of the art?" I have one important point about
"state of the art" and this is that the reader be sure he knows
which state of the art is being addressed. I have identified at least
four. There is the production state of the art, which means it's a
catalogue system; it is something that can be bought and essentially
the user can install himself. Next, there is the development state
of the art, which says that we have all the components and now all
we need is some system engineering and integration - somewhat·
high priced, of course - and we have a system. Then, there is
the applied research state of the art, which in general means it
works in the laboratory but will it work out in the field? And
finally, there is the research state of the art, which says we think
we know in principle how to do it. So I caution the reader to be
careful about which state of the art is being addressed.

There are several types of research organizations perform­
ing research in EDP applications technology; they include com­
puter manufacturers, university computing centers, and private
development and systems organizations specializing in the infor­
mation sciences area. Information from the first two types of
organizations appear routinely in the professional journals;
however, much of the work done by private research organiza­
tions does not seem to get the distribution needed for wide
exploitation. The three organizations reporting in this section
are among the largest in the field and represent a cross-section
of the field. Hopefully, their description of current and planned
activities will start a wider distribution of their products.

System Development Corporation is the oldest of the
computer-oriented systems and software organizations. Systems
Control, Inc. is a relatively new systems organization specializ­
ing in the fields of control and automation. stanford Research
Institute, no longer associated with the university, is a major non­
profit firm specializing in surveys and industry planning. Hope­
fully, the reports from these three firms will be representative
of the total field of application-oriented EDP research and
development.

62

9. R & 0 at System Development Corporation
Clark Weissman

System Development Corporation

Santa Monica, California

The selection of current R&D activities at SDC is organized
in this paper by a taxonomy based on processing type. The activi­
ties have been placed into five basic categories: data collection,
data transmission, data processing, data storage and retrieval,
and data presentation.

DATA COLLECTION

A variety of activities exist at SDC in data collection, par­
ticularly in man-machine input/output, including English language
data management work - the use of natural English as a query and
maintenance language, and the extensions of that work into voice
research and hand-printed graphics.

This paper discusses three particular areas in data collec­
tion. The first is handwritten signature verification, which is
representative of the whole general problem of sensor signature
recognition. Here the sensor happens to be a human being, and
the problem domain we are attacking is that of human verification;
that is, a password security approach.

A second class of data collection problem is that of enhanc­
ing blurred images from satellite-borne telescopes. This problem
is particularly relevant now, as deep space probes become a large
part of the space program.

The third type is the use of "smarts" at the terminal level.
This provides the ability to perform many data collection functions
away from the central computer.

Signature Verification

The principal objective of SDC's work in signature verifica­
tion is to develop a method for identifying individual human beings.

63

64 Multi-Access Computing

Considerable attention has been given to the use of voice prints,
body odors, and fingerprints, probably all good methods of identi­
fication, but impractical and expensive. SDC's approach is based
on the assumption that a human being's signature is unique and
can be used inexpensively as a unique identifier. The operational
concept we have in mind is that the dynamics of the signature can
be extracted and matched against data on a private data base.
This approach avoids the problem of a large data base, since the
data base is distributed in machine readable form on the cards.
SDC is in the process of taking signature samples, using a device
that can recognize hundreds of characters. With this device we
are also exploring the processing strategies for extracting the
unique signature parameters. We are investigating the use of low
cost X-Y tablets, such as resistive sheets, and the tradeoffs of
logic versus verification. That is, the more processing one does
the greater is the degree of reliability of recognition; but, of
course, more logic is required. Our intent is to get logic cost
down so that such devices will be competitive with the kind of veri­
fication techniques now in use.

Correcting Blurred Images

The second problem, that of correcting blurred images, is
part of a larger task for NASA at Marshall Space Flight Center.
The major problem is posed by the many poor images and photo­
graphs being recorded. The objective is to discover better tech­
niques for correcting imperfections introduced in the experimental
image by the optical devices, particularly where the imperfections,
such as jitter in the platform and defocusing, are not known.
Device characteristics are described by three-dimensional point­
spread functions. The application of two-dimensional Fourier
series in the frequency domain tends to reverse the convolution
effects in the spatial domain and simultaneously restores the
high-frequency data.

Smart Terminals

The third data collection area is that of collecting data at a
terminal. The objective of this work is to shift uneconomical
tasks from the central processor to the terminal. We believe
that today's technology makes it quite possible to integrate a
variety of peripherals and minicomputers into a high-performance
and surprisingly low-cost intelligent terminal. The operational
concept is that of a remote-job station - with data verification,
data compression via stored formats, and local buffering - using
a multiprogrammed device to overlap the operational character­
istics of many of the peripheral devices. It is a flexible device,
since these peripheral devices are very easily interconnected.
The terminal can adapt to the conventions of the given installation,

R&D at SDC 65

which helps to minimize communication costs. An operational
prototype consisting of a minicomputer, CRT, line printer, disk
and two tape cassettes has been assembled and is being used for
experimentation.

DATA TRANSMISSION

There are a number of activities at SDC in data transmission.
A few are presented here. SDC has been involved for many years
in programmable controllers and data concentrators. The tech­
nology was demonstrated in the 1960s and will be quite cost effective
for the 1970s.

Another growth area for the 1970s is that of networks of
distributed computer resources. SDC has been involved in this
since our early (1960) experiments interconnecting the Q-32 time­
sharing system with Stanford Research Institute and, later, Lincoln
Labs. That work continues with our participation as a node in the
ARP A network, in network protocol development, and in network
experiments in hardware and data sharing.

Programmable Controllers

The kinds of tasks being assigned to programmable con­
trollers are: (1) line discipline and interface protocols; (2) termi­
nal interface and control - that is, managing the actual physical
hardware devices; (3) data concentration via multiplexed low­
speed lines and exception transmission of data from preformatted
messages; (4) complex data routing and message or line switching;
(5) data validation and error handling; and (6) management report­
ing of device status, message disposition, line conditions, and
general system loading.

SDC is involved in development of the Morgantown People
Mover, by which the department of transportation is exploring a
futuristic technique for moving people on a trainlike "horizontal
elevator." A PDP-11 is being used as a programmable controller
and communication device that keeps track of the routing of trains
to prevent accidents and to keep status information on train loca­
tion and position for routing and dispatch purposes. A person
walking into the station can punch a couple of buttons to indicate
where he wants to go, and a small car quickly arrives to take him
there.

The ADEPT Time-Sharing System is another example
using a programmable controller to handle all the real-time
and low-speed terminal communications. A Honeywell DDP-
516 computer is employed as a replacement for the IBM 270X
series and also serves the real-time needs of our graphics and
ARPA Network interfaces. It does many more jobs than were
originally intended, thereby satisfying one objective of the
installation.

66 Multi-Access Computing

SDC has instrumented a critical diamond freeway interchange
in Los Angeles, one of the main downtown intersections, to study
traffic flow and eventually develop techniques for improving the
flow of city traffic. A Varian 620 is used for transmission pro­
cessing and control.

In our Air Force Satellite Control Facility, SDC is involved
in an application of Digital Scientific's META4, a small machine
with microprogrammable logic. It is employed in a firmware
approach to "reusable" software, a topic presented later in more
detail.

Finally, SDC has a contract with the Los Angeles sheriff's
department to automate its communication system to reduce the
significant time delays between an alarm made by a citizen and
police action, e.g., the routing of a police car.

These are just a few of SDC's new minicomputer program­
mable controller applications. Each is a comprehensive R&D
program, from a few thousand to more than a million dollars in
scope. The applications are intricate, and none would be practical
at this time without the use of programmable devices.

ARP A Network

SDC is active in the development and operation of the ARPA
Network, which has been in use for the past two years. The latest
ARPA Network configuration is shown in Fig. 9-1. The ovals are
Host computers; the solid lines indicate which of the Host computers
are now on the network; the squares are the interface message
processors (IMPs), the ARPA Network subsystem; and the dotted
lines are the candidate systems, to be joining the Network shortly.
The ARPA Net must be viewed as a hierarchy of communication
protocols. When the question is asked, "Is it running?", the
answer is a qualified, "Yes, depending on what level in the hier­
archy you are asking about." Much of the research activity with
the ARPA Net is directed toward elevating the hierarchy.

One process-level experiment in which SDC is participating
has as an objective the establishment of a network resource center
for tablet graphics, so that every node in the net could have the
same tablet-graphics capabilities. The initial experiment is to
study the different character recognition algorithms that exist in
the ARP A community and to start looking at these from a cost­
effecti veness point of view. Some of them are of better quality
than others and usually run longer, while others are less expen­
sive in runtime and small enough to possibly fit in a minicomputer.
Today, there are no criteria for quality of recognition. This
then, is a secondary objective that may lead to building an inven­
tory of recognition algorithms. The technical approach of the
experiment is first to develop a tablet graphic protocol, and then
to share SDC' s tablet graphics software remotely from some of
the Host sites. We are currently working with the MIT Dynamic

,,..-
(CDC7600)
'- - ..< NCAR GWC

~-, r-, r--....j TIP 1--- -------1TIP1--------,

I L_.J L-~ I
c~;:;2',~I ~ ~r,::;:~;v···;:~ I
~'~'...-~I ~ ~~~ I

SRI ·~c:.. CrLLT • UrH
1 I 316 IMP

Ll~P.J

Fig. 9-1. ARPA Net, August 1971

MITRE r ,
I TIP I
L ..J

IETAC r ,
I TIP I
L .J

INBS r ., ..--
f TIP~{ PDP-11 \
L_.J , _ _.....,

~

g
~

~
(')

m
-:i

68 Multi-Access Computing

Modeling Computer Group (DMCG). The DMCG RAND-tablet
graphic data will be transmitted over the Network to SDC using
the data-block protocol. Automatically, the SDC character­
recognition routines will process the data and return the identi­
fied character, size, and position codes. The present status of
the experiment is that the tablet protocol has been specified,
implemented, and closed-loop tested, and a universal dictionary
has been developed. We are now beginning the live tests with
DMCG.

DATA PROCESSING

Data processing will be discussed here in the context of
major areas; time-sharing, automated programming, and machine
architecture.

In discussing automated programming from artificial­
intelligence approaches to programming, SDC is working on
automated, not automatic programming; the difference between
them depends on whether the human or the machine is in control.
In automated programming, the programmer is in control and
uses the computer as an aid or assistant. In automatic program­
ming, a computer program does the programming, i.e., the code
synthesis - and the programmer's intellect augments the computer
to help it out of any crisis situations. The computer is determin­
ing how the program should be linked together, based upon inter­
nally developed strategies and past learning experiences. SDC is
excited about the potential of automatic programming and feels
that it is the direction the industry may eventually take. However,
its payoff is in the distant future. As a pragmatic organization,
SDC is interested in what can be done today and in the near future.
Automated programming says that there are many things we know
how to do to improve programming that we have not yet done; we
have not yet put together the low-cost, quality systems we know
how to build. SDC is looking at ways in which that can and has
been done, based upon complete software production systems.

In the area of machine architecture, LSI circuitry makes it
possible to put computers together for special purposes. SDC is
beginning to explore how that should be done in areas that are
relevant to problems in improving data processing.

SDC is also active in resource-allocation modeling, particu­
larly in the distribution of resources among nodes in nets. We
have built a number of proprietary tools for doing network analyti­
cal studies. One of them is called Designet. We are applying
these tools in a study for ARP A of communications and computing
tradeoffs. The question being addressed is: With lower-cost
communications, such as ARP A Net, and lower-cost computing,
such as minicomputers, is it better to share large centralized
machines or network small machines (perhaps network larger
machines, as well)? This gets into the complex cost relationships

R&D at SDC 69

among distributed and centralized computing and communications.
The ARPA study called CACTOS (for Computation and Communi­
cations Trade-Off Studies) is attempting to define and model these
relationships.

SDC Time-Sharing

SDC began its pioneering work in time-sharing with the
ADEPT Q-32 time-sharing system approximately 10 years ago.
ADEPT, of course, is still operating, in a form called the ADEPT
Research & Development system, which we are using at SDC for
R&D. A version of ADEPT is still performing satisfactorily in
the intelligence community, and the Naval Electronics Laboratory
Center (NELC) recently received a copy of it. SDC uses TS/DMS,
a commercial version of ADEPT, in its service bureau operations.

SDC is currently developing the Interactive Common Operat­
ing System (ICOS), which is a merge of TS/DMS and ADEPT into
a single system. We intend to run !COS as a research facility for
10 to 12 hours a day. We are also giving serious thought to tying
these machines into a local net at SDC through the ARP A IMP,
which can support multiple Hosts. We also have another machine,
a Raytheon 704, dedicated to our voice research work; it too will
be tied into this local net.

Automated Programming and the "Software Factory"

SOC' s main goal in automated programming is to lower
programming costs. Two major aspects of our work are formal
techniques for compiler implementation, and microprogramming
for software transferability.

Although the "software factory" does not exist today, some
parts of it do exist at SDC. It is called the "language factory."
The industry does not yet have a software factory, primarily
because "software" is such a diverse commodity that there is a
major difficulty in describing the "factory" clearly enough to con­
vince companies to make the capital investment to build one. The
industry needs formal models of its products - be they compilers,
operating systems, data management systems, utilities, or what­
ever. When these models, or formalisms, appear the structure
and economic form of the software factory can be defined. Current
work on these formalisms is being based on graph structures and
directed graphs. I'd like to explain briefly our formalisms for
compilers, since we have, we believe, advanced the state of the
art in compilers.

SDC formalism, which we believe has advanced the state of
the art, is expressed as a model of a compiler as shown in
Fig. 9-2.

On the basis of this model, we have developed the Compiler
Writing and Implementation Compiler (CWIC), consisting of

70 Multi-Access Computing

SOURCE LANGUAGE TREE STRUCTURE OBJECT LANGUAGE

SUPPORT PACKAGE FOR M

MACHINE M

SCHEMATIC OPERATION OF A COMPILER

SYNTAX
LANGUAGE

MOL-M LANGUAGE

MACHINE M

GENERATOR
LANGUAGE

CWIC PRODUCTION LANGUAGES FOR CODING A COMPILER

Fig. 9-2. Model of Language Compilation

three languages and their compilers. The SYNTAX language is
used by the designer to express the problems of syntax recognition
and translation into internal tree-structure form. A powerful
graph-manipulation language called GENERATOR expresses the
processes of code generation. Finally, a machine-oriented lan­
guage, called MOL, expresses the machine environment inter­
faces. MOL is higher-order assembly language with the syntax
of a compiler but the semantics of an assembler. MOL is one of
the new class of languages called system programming languages,
such as PL/360, BLISS, PASCAL, etc. Based on our compiler
model and the CWIC family of languages, we can build language
software to specifications quite inexpensively. In fact, we often
build throwaway languages :µid compilers for special applications

R&D at SDC

in a matter of a few days. We are building some substantial
languages, as well.

71

Figure 9-3 shows how we manufacture compilers in our
"language factory." First, we assume at the beginning that some
supporting routines and a dictionary exist. (If you are running a
factory, the last thing you made will be part of the library, and
the new support package can be subset from the library.) Next,
we write syntax equations - the description of the language we
want to compile - and pass them through the SYNTAX compiler.
The output is a set of machine-code - in effect, a new syntax
dictionary that obeys the specified syntax rules and augments the
existing dictionary. Next, we add new MOL routines. rNe oper­
ate on the IBM 360, hence the MOL-360.) This permits us to
extend the basic machine model. Certain compilers need special
features which are normally available in the original support
package, so we extend the support package. Last, the GENER­
ATOR statements go through a two-pass process. The first pass
produces tree-structure representations, and the second pass
translates these tree structures into machine-code routines and
the dictionary necessary to complete the compiler. Incremental

CWIC OBJECT OBJECT
SOURCE PROGRAMS COMPILER COMPILER COMPIL:ER DICT

SUPPORT + SUPPORT
PACKAGE DICT
ROUTINES

---- ----
SYNTAXO-+ -+ ---- ---SYNTAX SYNTAX

CODE -+ COMPILER -+ ROUTINES + SYNTAX

MACHINE DICT

CODE
MOL - 360 ~ ----
COMPILER -+ ----MOL- 360

+ MOL- 360
ROUTINES DICT

GENERATORO GENERATOR MACHINE

CODE + COMPILER CODE
PASS 1

++
EU

·~ GENERATOR ---
GENERATOR -+ ROUTINES + GENERATOR

COMPILER -+ MACHINE DICT
PASS II

CODE

Fig. 9-3. Schematic Operation of the CWIC System

72 Multi-Access Computing

compilation is possible because any part of this process can be
repeated at any time; new routines can be added and old routines
removed, One man, or at most a few men, can write an entire
compiler.

As an example, Fig. 9-4 shows a simple expression­
evaluation interpreter that we designed online in about an hour.
For the arithmetic expression of X + Y x Z, where X = 5, Y = 12,
Z :: 5, the tree structure produced by the syntax equation is shown
to the right. Below that we have the GENERATOR code to per­
form the interpretation. It compiles a sequence of program calls
to an existing library of routines to perform the arithmetic opera­
tions and the interface with the operating system. On this one
sheet is a complete interpreter. We are now producing contract
software with CWIC and extending our tools to generate code of
increasingly high quality.

One of our people has written a book on optimization algo­
rithms that will be published next year. It is a review of the state
of the art and includes original work in the area of global optimiza­
tion. Our system ~xploits (among others) a concept called "hoist­
ing, " whereby common expressions are hoisted out of deeply nested
loops. Our techniques work on both the data-flow and control-flow
graphs of a program and rewrite the program to improve the code.
The GENERATOR language allows immediate implementation of
these optimization algorithms.

A version of CWIC system was used to build a compiler for
SPL (the space programming language), a cross-compiler system
for generating code for airborne and satellite computers. We are
finishing an optimized FORTRAN IV compiler using this technique.
It happens to be a three-pass structure; passes one and three are
conventional, while pass two is an optimization pass. We built it
to test our techniques against the IBM FORTRAN compiler, the
best optimizing FORTRAN compiler now available. It is now
running, and testing is in progress. The total effort involved
about one man-year to bUild the compiler.

The software factory may not be here in all software fields,
but it is here in language-oriented software. We are now begin­
ning to understand the formalisms in operating systems and data
management systems; hopefully, we can make similar advances
in those areas.

Software Transfer by Microprogramming

Microprogramming is another programming area in which
we conducted an interesting study. SDC operates a satellite con­
trol facility for SAMSO that involves a very large telemetry net
and many computers. Some of the equipment is almost 10 years
old. Something like a million instructions in the system are in
daily use. The intent of the study was to update the net. The
development objective was to take one part of the net, a dozen or

X=5;Y= 12;Z1 =5;

V:=X+Y*Z1;

.END

.SYNTAX

R&D at SDC

PROGRAM= $(ST 1 DECLARATION) '.END':
DECLARATION= ID'=' NUM ';' :EOU!2 DECL [*1];
ST= ID':=' EXP';' :STORE!2 COMPILE [*1];
EXP= TERM$('+' TERM :ADD!2);
TERM= FACTOR$('*' FACTOR :MPY!2);
FACTOR= ID I'(' EXP')' I NUM;
LET: 'A'/ 'B'/ 'C'/ 'D'/ 'E'/ 'F'/ 'G'/ 'H'/ 'I'/ 'J'/ 'K'/ 'L'/ 'M'/

'N'/ 'O'/ 'P'/ '0'/ 'R'/ 'S'/ 'T'/ 'U'/ 'V'/ 'W'/ 'X'/ 'Y'/ 'Z';
DGT: '0'/ '1'/ '2'/ '3'/ '4'/ '5'/ '6'/ '7'/ '8'/ '9';
ALPHNUM: LET I DGT;
ID .. LET $ALPHNUM;
NUM .. DGT $DGT MAKENUMBER [] ;
.FINISH
.STOP SETUP PROGRAM

v

.GENERATOR
DECL(EOU[X, Y]) DEF:(X) := Y

-------1•• 65

COMPILE(STORE [X,Y]) DEF:(X) := EVAL(Y); PRINT(DEF:(X))
EVAL(IDP(X)) DEF:(X)

(NUMBER(X)) X
(#V1 [EVAL(X), EVAL(Y)]) #U1

#V =ADD, MPV
#U = X + Y, X * Y

.FINISH

.STOP SETUP PROGRAM

Fig. 9-4. Simple Interpreter Complete Formal
Specification and Code

73

Z1

74 Multi-Access Computing

so CDC 160A computers, and improve the system's performance
by replacing them without horrendous reprogramming costs. The
approach was microprogrammed emulation of the CDC 160A.
Constraints dictated off-the-shelf interfacings, no major engineer­
ing, emulating the system as is, no great leaps forward. SDC
handled the management and design; the actual production of the
firmware was subcontracted to the machine manufacturer accord­
ing to our specifications.

We selected a META4 from Digital Scientific. The equipment
has been delivered and is currently being tested. We have enough
information to report that there were no major problems except
in some very minor, easily repaired, repertoire errors, and some
difficulties in timing, since the MET A4 is considerably faster than
the 160A. These were all overcome. In order to determine
whether the emulation was correct and more efficient, we traced
a few instructions. The data show improvement by a factor of four
in instruction execution. The 160A did not have a multiply instruc­
tion; one was added in firmware, and multiplication performance
immediately improved by a factor of about 46 over the previous
software multiply.

Machine Architecture: Associative Processing

SDC is currently involved in several associative processing
(AP) projects. Associative processors have a variety of unique
and attractive characteristics. Because each memory cell can
be viewed as a single CPU, they offer the power of parallel com­
putation, which lends itself very nicely to real-time problems.
Because each cell is also an associative memory, storage can be
compressed, since common items in a complex tree structure
need not be stored redundantly. Fast associative searching
results in lower memory and search-time overhead. There is a
higher failure tolerance with these systems, since they are not
dependent on storage location; memory can have holes in it due
to failure without degrading the system. Report by exception is
one of the associative operations on these machines. Since it is
an associative memory, one can set threshold tests on various
limits and have the success cases announce themselves. Of
course, AP machines can also perform serial computation, so
they can do conventional programming and computing. Two
application areas we are involved in are tactical data management
and ballistic missile defense.

AP FOR REAL-TIME MANAGEMENT

An AP data management study is just getting underway for
Rome Air Development Center (RADC) in conjunction with the
Electronic Systems Division (ESD) of the Air Force. The appli­
cation is to Tactical Air Command and Control (TACC) data

R&D at SDC 75

management. The study objectives are to classify and quantify
improvements in data management using associative processors,
to determine the impact AP machine architecture has on conven­
tional concepts, to look for the critical design factors in such a
system, and to look at the basic data structures for such a data
management system. The study approach involves three factors:
(1) use of an actual TACC scenario as a data management system
benchmark of the functions we need to perform; (2) use of an SDC­
designed "paper" AP machine for performance simulation of
machine factors; and (3) use of the predicate calculus and set­
theoretic data structures.

SDC has been working for a number of years in system
architecture and machine modeling. We have developed, on paper,
an SDC version of an AP machine. We will use it, and extensions
of it, as models for testing software construction, comparing
coding sequences, and looking at speed tests using computer
simulation.

SDC has also developed an English data management system,
CONVERSE, which maps English into a formal predicate-calculus
intermediate language for retrieval from what is essentially an
associative data structure of factual information. The system will
be used as a model to see how AP satisfies the internal structure
needs of CONVERSE. We expect it to replace much of the list­
structure overhead of data management systems on conventional
machines.

AP FOR BALLISTIC MISSILE DEFENSE: PEPE

SDC recently completed an initial version of PEPE (Parallel
Element Processing Ensemble) for ballistic missile defense. The
program objectives are to solve the ICBM threat, which over­
whelms even the biggest of conventional machines. There are just
too many ICBMs that are too fast. The intent is to demonstrate
the feasibility of the PEPE concept to solve the problem. The
solution involves handling the acquisition, tracking, guidance and
control, and battle-management functions of ballistic missile
defense. The technical approach is to allocate one CPU (PEPE
element) per target track, and to manage all the elements as an
ensemble. That ensemble is connected to a host computer, a
conventional sequential processor, which sets up the computations
for the PEPE. In SAGE, SDC wrapped "correlation boxes" around
unknown tracks to identify friend or foe; those correlation tests
can now be made in two associative searches. The interesting
aspect of the PEPE is that the elements are driven in parallel so
the software is invariant with ensemble size. It has been suggested
that PEPE could be an approach to gigantic data base management
systems, where one CPU is assigned to each key and the data base
is searched, not unlike head-per-track disc devices. But that is
for the future.

76 Multi-Access Computing

The current status of this project is that a 15-element PEPE
has been built and attached to a 360/65. A pre-specified "zero­
order" test was successfully run. The demonstration included
working software and a collection of production tools including a
parallel FORTRAN, a parallel assembly language, and a number
of special-purpose languages. Analytical and simulation studies
of large problem applications are currently in process. (That is,
analysis is already going on for the next generation of PEPE.)

Figure 9-5 shows the serial host connection to PEPE. The
host is currently a 360/65, but it could be a 6500 or a 360/195
supercomputer. Hanging onto the channel interface are the two
parts of the PEPE: the Correlation Control Unit and the Arith­
metic Control Unit. The correlation units perform the associ­
ative operations of the correlation boxes; e.g.; "all tracks that
are between certain altitudes identify yourselves." Conventional
processing is performed by tne arithmetic units. A PEPE element
consists of 8 words of 40 bits (or one 320-bit word) of associative
memory; 512 32-bit words of conventional memory, and a collec­
tion of arithmetic tag registers for doing the arithmetic operations.
In this particular PEPE design, arithmetic activities are done out­
side of the memory, so there is actually an internal transfer to
the registers. Newer designs of PEPE elements may obviate these
transfers, since memory logic and computation logic will be core
resident in memory.

Figure 9-6 gives a gross cost/performance tradeoff. The
number of targets appears on the bottom axis and million instruc­
tion executions per second {MIPS) on the vertical axis. Data show
that the limit of a 6500 computer for this task is about 14 MIPS.
This would yield a 70-target capacity for a single machine. To
increase the track capacity to 230 would require approximately
47 MIPS, which would require three 7600s. If you offload all of
the tracking problems to a 230-element PEPE, attached to one
7600, at $9K/element, plus the $8 million cost of the 7600, the
PEPE solution costs about $10 million as compared to $27 million
for three 7600s - quite a cost-effective tradeoff. This cost­
improvement factor of 2. 7 is a conservative estimate, since the
multiprocessor 7600 configuration is nonlinear in cost/performance
and may need a fourth CPU to control the other three.

DATA STORAGE AND RETRIEVAL

Over the years, SDC has developed a variety of storage and
retrieval systems. A-32 LUCID led to TDMS, which led to CDMS
{a commercial version of TDMS), which led to SACCS/DMS, an
advanced TDMS version that successfully attacked the real-time­
updated prol>lems. We have a number of other DMS products.
DS/1 and DS/2 are "mini" versions of TS/DMS. They have the
language flavor of TDMS but work on small machines {a Model 30)
using serial files. SDC developed another package called Orbit

I

r

R&D at SDC

SERIAL HOST
COMPUTER

PRESENT: 360/65

FUTURE: 7600, 360/195, OR
OTHER SUPERCOMPUTER

PRESENT: CHANNELINTERFACE

FUTURE: CORE OR CHANNEL INTERFACE

CORRELATION ARITHMETIC
CONTROL CONTROL

UNIT UNIT

ASSOCIATIVE OPERATIONS

CORRELATION UNITS MEMORIES ARITHMETIC UNITS PEPE
ELEMENTS

8 WOROS X 40 BITS 512WORDS CPU+TAGREGISTERS INEACH
X 32 BITS ELEMENT

EQUIVALENT MIPS
(MILLIONS OF
INSTRUCTIONS
PER SECOND)

Fig. 9-5. PEPE Hardware

14

STAND-ALONE
CONVENTIONAL
COMPUTER LOAD

70 230
NUMBER OF TARGETS-SAFEGUARD SCENARIO

$27M

Fig. 9-6. PEPE/Host vs. Host - Only Performance
Trade-Off

77

78 Multi-Access Computing

(Online Retrieval of Bibliographic Text} that is currently providing
users of the National Library of Medicine with nationwide time­
shared access to medical records. Further developments currently
underway include the DS/3, an extension of DS/2 that handles
indexed files, and three activities which will be described more
fully: MEDLARS II and SEAWATCH, two larger-scale data manage­
ment systems; and a research study into network data sharing.

MEDLARS II

MEDLARS II is being built for the National Library of
Medicine to allow the online input, editing, storage, and retrieval
of medical bibliographic citations. These are large files with mil­
lions of citations. MEDLARS II will also build reports for users.
The objectives are to provide high throughput and large capacity
service, thereby yielding a better balance between the people who
do the cataloging and the people who do the indexing, and allowing
remote interactive file search for a national user community.
The activity has just begun, and is building on our ORBIT experi­
ence. MEDLARS II will be implemented on the 360/155. It is
coded in PL/l and Basic Assembly Language (BAL} in modular
form for future expansion.

SEAWATCH

SEAWATCH is an ocean surveillance intelligence data man­
agement system that will support both batch and interactive
operations on numerous massive files. Our development approach
builds on the TDMS and SACCS/ DMS experience. SEAWATCH is
being implemented in JOVIAL on the CDC 6400 under the Scope 3. 3
operating system. Structurally, there are seven subsystems and
38 functions that service 84 static, dynamic, historical, and work­
ing files. Both serial and inverted tape and disc files are involved.
It is a comprehensive system. The specifications and the design
are complete. Software for the initial operating capability (IOC}
is in production, and IOC testing is scheduled for the spring of
1972.

DATA SHARING IN COMPUTER NETWORKS

A study now in progress for ARP A concerns the integration
of dissimilar data management systems in digital networks -
today's systems and those of the future. One approach to this
problem is to leapfrog today's problems by designing tomorrow's
common system. The overwhelming problem is not data manage­
ment but the corpus of the data bases that are being built and are
already in existence. Conversion is prohibitively expensive today,
and the cost will increase as data management systems become
more widely used. SDC' s assumption, then, is that today's

~

I

... ~

R&D at SDC

dissimilar data base systems are going to be around tomorrow,
and that we must find ways to share them. The ARPA network
and other similar networks allow access to host systems, but

79

their data management systems are essentially unavailable because
there are not convenient ways to interrogate them. The user
certainly does not want to learn 20 or more different data manage­
ment languages (DML). SDC's approach is to explore English and
the predicate calculus intermediate language (IL) of CONVERSE
as a possible common network data-sharing language. We also
intend to employ compiler-compiler techniques to build an IL-to­
DML translator for each host data management system. We are
technically able to build these translators at low cost; we are now
exploring whether the predicate calculus is rich enough to express
the queries.

DATA PRESENTATION

The data presentation topic covered will discuss ARPA­
funded work in data management graphics completed last year.
The intent was to provide graphical capability to the nonprogram­
mer user who manipulates data - the form, the format, and the
content of the display. Also, the data presentation system was
to be a front end to an existing data management system. SDC's
approach uses an ARDS storage-tube terminal, a low-cost graphics
device. To keep interaction simple, the man-machine dialogue is
totally by selection and prompting. Also, the computer automati­
cally scales all axes of all graphs. The data management system
independence is achieved by use of an "ancestor file" - a subset
file extracted from the larger DMS data base.

This system is complete and operational. Figures 9-7 and
9-8 indicate its graphics capability. The left side of Fig. 9-7 is
a scatter plot; the right is an interval plot. Users can specify
data to be plotted. Figure 9-8 shows age vs salary, in two other
forms: a regression curve and a histogram. These are typical
of things done "ad lib" at the console.

80

c
>-a:
<(
_J

~

PRINT

PLOT

SAVE

RESTORE

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

Multi-Access Computing

HULL

•• • • • •

0 -"-""'--'-'"""'--'--'"-.......... .._ ...

HULL

2 2 3

5 11 8 7 2 3

10 15 20 25 30 35 40 45 50 55 60 10 15 20 25 30 35 40 45 50 55 60

AGE (X) AGE (X)

BUILD GRID AXIS PRINT BUILD AXIS

NEW-DATA- READOUT PLOT NEW-DATA- SCATTER READ-
BASE BASE OUT

HISTOGRAM BACK-UP TITLE SAVE HISTOGRAM BACK·UP TITLE

REGRESS RESTORE REGRESS

Fig. 9-7. Scatter Plot of Salary Versus Age+ Interval
Plot of Salary Versus Age

c
>-a:
<(
_J
<(
IJ)

PRINT

PLOT

SAVE

RESTORE

5000 HULL
4500

4000

3500

3000

2500

2000

1500

1000

••
\'\•• IS ·-•· .

500

0 .__.._ __.__. _
10 15 20 25 30 35 40.45 50 55 60

AGE (X)

20
AGE

18

16

14 100%

12

10

8

6

4

2

OL-1-...L.U:LL.U..l.L.l.L.&........_......,
10 15 20 25 30 35 40 45 50 55 60

AGE (X)

BUILD GRID AXIS PRINT NEW-DATA- HISTOGRAM

NEW-DATA- SCATTER READOUT BASE

BASE PLOT SAVE AXIS-SCALE TITLE

HISTOGRAM BACKUP TITLE BUILD RESTORE

REGRESS

Fig. 9-8. 3rd Order Regression Fit of Salary Versus
Age + Histogram of Age

10. R & 0 at The Ran~ Corporation*
R. H. Anderson

USC Information Sciences Institute

This chapter will discuss some of the ARPA-sponsored
research at Rand involving multi-access computing. I hope to
present this research program in such a way that the underlying
philosophy we have about multi-access computing becomes clear
and to show the underlying unity behind several different research
programs.

A discussion of technological advances in information science
isn't sufficient. There are too many examples within research
laboratories of advanced technology which is not being made avail­
able to the military. I am therefore including here some thoughts
on the transfer of technology from R&D laboratories to operational
users within the military and also on the organizational structure
necessary within the military to take advantage of and fully utilize
the types of technology presented in this text.

MULTI-ACCESS COMPUTING RESEARCH AT RAND

Research at Rand involving multi-access computing is based
on the following underlying philosophies:

1. Software packages for online systems, which are
attractive and useful to people other than programmers,
should be developed.

*Any views expressed in this paper are those of the author. They
should not be interpreted as reflecting the views of the Rand
Corporation or the official opinion or policy of any of its govern­
mental or private research sponsors.

81

82 Multi-Access Computing

2. The consoles at which interaction takes place should be
personal terminals - usable within a person's office, his
best working environment.

3. This personal terminal should be a generalized terminal;
from this terminal, the user should have access to all
online systems in which he is interested and he should
be able to communicate using whatever input and output
devices are most appropriate for this purpose.

Specific examples of Rand's research in multi-access com­
puting are presented in the following paragraphs.

The Rand Video Graphic System

The system which best exemplifies our approach to online
computing is the Rand Video Graphic System. This consists of up
to 32 interactive graphic consoles with each console permitting a
full range of interaction from static displays to dynamic interaction
with full graphic capability. From this console, a user may com­
municate with one of several computers and one of several services
which might be resident in each computer. Furthermore, the cost
of each individual terminal is sufficiently low that a user may treat
his terminal as personal property. The terminal's design also
permits a wide range of input devices ranging from keyboards to
light pens and tablets. Figure 10-1 shows a console of the Video
Graphic System. It is based on an 873-line standard television
monitor for graphic output. This monitor can display up to 52 lines
of text, each line containing 74 characters. This same monitor
will also display continuous or dashed lines in three intensity levels.
Continuous-tone pictures from a TV camera can be superimposed
on a monitor along with computer-generated text and drawings.
Since the display is refreshed at a constant 30 frames per second,
the display is flicker-free regardless of the amount of information
displayed upon it. Figure 10-2 shows the configuration of the
Video Graphic System. An IBM 1800 computer is used as a mes­
sage switching system to allow any terminal to connect dynamically
to any computer at Rand. Through the 1800, a terminal may also
connect to the ARPA Network of computers, thereby giving the
user at one console access not only to the computing facilities at
Rand but to those of any computer system on that Network.

PRIM

A second multiprogramming project at Rand is called PRIM
(for Programming Research Instrument). The object of this
project is to provide a powerful microprogrammed facility which
is available to many users within a multiprogrammed system.
There are several important unique features about this project.

R&D at Rand 83

Fig . 10-1. Video Graphic System Console

A microprogrammable CPU with writable control store is connected
through a large-capacity, multiported memory to a conventional
computer - in this case, a PDP-10. Figure 10-3 shows the con­
figuration of these machines. There are paths of direct communi­
cation between the microprogrammable CPU and the monitor CPU.
Multiprogramming is accomplished by the PDP-10 acting as a
monitor, and it is responsible for scheduling access to the services
of the microprogrammed CPU. Task switching is similar to the
switching which occurs among users of a conventional timesharing
or multitasking system. Switching takes place at " natural" break­
points (i.e., waiting for terminal input) and at "forced" breakpoints
according to an algorithm designed to maintain desirable response
characteristics. The monitor engine handles all terminal and net­
work access to the facility and handles primary and secondary
storage management and all compilation, program editing and
debugging services for the service. The microcode store for the
microprogrammed CPU is swappable from the shared core and can
be swapped with completely new control code in about 2. 5 milli­
seconds ; to swap between two different users who are using com­
mon control code in the microprogrammed facility, the swap time
is about 0. 5 millisecond. The control store for the micropro­
grammed CPU contains 5000 words: 4000 words of control memory,
and 1000 words of registers (status, flip/ flops, and relocation
constants.

84 Multi-Access Computing

r------,
I

I -; IBM 1800 ARPA
VIDEO 10 IMAGE NETWORK

I DISPLAY I~ DISTRIBUTION I,'

I~ SYSTEM •
,~ • PDP - 10 • m
In
I~ RAND 360/65 18 MULTIPLEXOR
' •

INPUT 1m • •••• • DEVICES •

(SUCH AS KEYBOARD.I
FROM MULTIPLE

~A-~_D T~L..§..TL _ _J
CONSOLES

Fig. 10-2. Video Graphic Hardware Configuration

1/0

\
MONITOR SHARED TASK
ENGINE CORE ENGINE

I

FIL
E7 ~ Jill

DIRECT CONTROL
~ .,.

SUPERVISOR REQUESTS

.....

Fig. 10-3. PRIM Configuration

R&D at Rand 85

Software

Flexibility can be obtained in hardware through micro­
programming, as described above. We are also trying to
obtain a maximum degree of flexibility in our software systems.
As mentioned ear lier, one philosophical underpinning of our
research is the desire to put computing power in the hands of non­
programmers. The traditional reason for the importance of having
a programmer at the interactive terminal is the stupidity of con­
ventional computing systems. These systems must be instructed
very precisely in a very exact language - and that is the process of
programming. At Rand, we are trying to apply some of the tech­
niques of computer science known as "artificial intelligence" to
make our interactive systems seem more intelligent to the user.
For example, an intelligent terminal might be instructed by
example or by analogy rather than by requiring explicit instruc­
tions. Two software research projects attacking this problem are
CASAP (for Computer Assisted Specification of Algorithmic Pro­
cesses) and The Adaptive Communicator Project.

CASAP

CASAP attempts to simplify the task of directing a computer
by providing the user with a form of specification as close as pos­
sible to that used between two intelligent humans. As such,
CASAP is concerned with problems of understanding directions in
a certain context; submerging details and filling them in; assimi­
lating new concepts; requesting further information in ambiguous
or undefined situations; and integrating previous process specifi­
cations and adapting them to a new task or environment. Crucial
to this project is the problem of representing information within a
computer in such a way that relevance of information can be deter­
mined and so that general concepts can be used in specific instances
which demand some modification and adaptation.

The Adaptive Communicator

The Adaptive Communicator project attempts to construct a
flexible man-machine interface, not by detailed programming, but
rather by having the user give examples of correct interface behav­
ior and for the interface system to automatically construct from
those examples rules of behavior which will govern its interpreta­
tion of actions in the future. The basic approach of this project is
to store all behavioral information acquired from the user in the
form of pattern-replacement rules which can easily be added,
deleted, and modified within a set of such rules. This underlying
organization allows a flexibility in the interface which is not possi­
ble if that interface is coded within FORTRAN or some other tradi­
tional programming language. A prototype system based upon these
ideas has been constructed in LISP and is currently undergoing tests.

86 Multi-Access Computing

Computer Security

In any discussion of multi-access computing systems for use
in military environments, the question of system security soon
arises. Invariably, there is sensitive information within the sys­
tem whose distribution should be limited. Ideally, SECRET infor­
mation should be able to reside in a system to which uncleared
persons have terminal access, with sufficient hardware and soft­
ware controls to guarantee correct access to all users and infor­
mation files.

The traditional approach to the security problem has been
physical security - having physical control over all terminals and
I/O devices for a system in which classified information resides.
However, it is becoming increasingly difficult to permit equal
clearance of all users accessing a system at the same time, and
to insure physical control of all facilities accessing that system.

A solution to this problem involves the deeper question of
the possibility of operating system certification. Rand is currently
engaged in a major study of system certification, concentrating on
three important aspects of the certification process:

1. Assuring that the design of an operating system (and of
the hardware features it relies on) is sound,

2. Assuring that the implementation of that design is
accurate - that the design has not been compromised
either by coding errors or by deliberate attempts to
subvert the design,

3. Assuring that the system currently in operation is in
fact exactly the system which was designed and imple­
mented - that it has not been modified in any unauthorized
way.

These are very difficult problems. We hope that the results
from our study of them will allow multi-access computing in many
areas where it is now difficult or impossible for reasons of security.

ARPA Computer Network

Another area of multiprogramming research at Rand involves
work on interfacing our computing facilities to the ARPA Network
of computers. We have constructed the interface through our Video
Graphic System in such a way that any of our 25 Video Graphic
terminals has complete access to not only the computers at Rand
but, in addition, to th.e full facilities of the ARPA Computer Net­
work. We are currently experimenting with passing graphical
information over this network and have been communicating with
the University of California at Santa Barbara in an experiment to

R&D at Rand 87

use one of their interactive computing systems, the Culler-Fried
system, with a graphical interface {including tablet input) on a
video terminal at Rand. This experiment has been quite success­
ful and the interaction is as natural as if we were using one of our
own computers to do the computation.

Summary

To summarize this brief survey of multiprogramming research
efforts at Rand, we are fully committed to the concept of personal­
ized, generalized terminals which have access to a wide variety of
computing services, and we are working on software techniques to
make these services available to nonprogrammers in such a way
that the terminal seems like an intelligent servant which can be
instructed in a rational manner. We feel this emphasis is most
important in systems for military operational use. By attacking
the problem of system certification, we hope to allow multi-access
computing to exist in many environments in which it is not now
possible.

Up to this point, I have concentrated on new technology being
developed by our research program. But technology really isn't
the problem. The problem is transferring this technology out of
R&D labs and into the hands of operational military users. In
addition, once information systems have been disseminated to the
military there must be appropriate management structures in the
Armed Forces to insure the proper integrated use of this
technology.

MANAGEMENT OF INFORMATION SCIENCES
WITHIN THE MILITARY

With the increasing emphasis on command and control sys­
tems and more sophisticated data collection through various
sensors, information systems are having an increasing impact on
the way the military performs its role. To help assess how these
information systems should be treated within the military organi­
zational structure, I propose to use as a model an area where
measures are more clearly defined - namely profit-oriented
industry. There, the ultimate measure of how effectively informa­
tion systems are being used is the profitability of the corporation.
First National City Bank in New York has a "computer-smart"
group vice president; Eastern Air Lines has a vice president for
computer sciences. We believe that by 1980 most major corpora­
tions will have a vice president for information sciences, and
major decisions will be based upon use of information systems.
Note that for a vice presidential post to be filled by computer
people, it is necessary that the chief executive officer of these
corporations have an understanding of the importance of informa­
tion science.

88 Multi-Access Computing

Prior to the creation of these high-level posts, computer
expertise existed within autonomous centers within the corporate
structure. In most cases, costs soared, there was a lack of
central control over computing within the entire corporation, and
many opportunities for the profitable employment of information
systems were lost because no one at a sufficiently high level within
the organization had the charter to perform these functions. Over
time, responsibility for corporatewide use of information sciences
has escalated to top level management.

If industry is right in this trend, the military should pay
attention. The benefits of having "computer-smart" persons at a
high level are interesting and profound. Within the military organi­
zational structure, a high-level information specialist could pro­
vide both global and local guidance to contractors and research labs
for computer-related development projects. Also, lower level
decisionmakers would have someone with whom to communicate at
higher levels without jargon-related barriers.

In cooperation with the Air Force Scientific Advisory Board,
members of Rand's Information Sciences Department have proposed
an Assistant Chief of Staff for Information Sciences for the Air
Force. I am not aware of any final action to date on this proposal,
but it might serve as a model of what other services should con­
sider in this regard. We believe such a post is justified within
military services based on the amount of money expended on infor­
mation sciences within the various services and on the importance
of that technology to the performance of all missions within the
services.

TRANSFERABILITY

In conjunction with the problem of effective management
control of information science, there is the problem of trans­
ferring technology from research labs into operating agencies.
For research ideas to become usable in the field, they need
development, production engineering, and production, not unlike
the steps a commercial product must go through before it can be
manufactured. Most R&D labs are not equipped to carry research
through this development chain. The burden should also not be put
on operationally oriented users. The military is a prime supporter
of research and development. It deserves the first crack at tech­
nology which it has underwritten, but it is currently not getting it
- mainly due to the lack of an adequate transfer mechanism.
Much transfer currently comes from private industry. It picks up
some research and development and develops it on its own, but in
the process that development becomes industry-oriented rather
than military-oriented. The process of transferring research into
this field should be controlled to a greater extent by the military,
Currently, however, this charter does not seem to explicitly belong
to any particular agency. I propose that as a step toward the

R&D at Rand 89

solution of this problem the charter of agencies funding research
be broadened to allow the funding of development of that research
and its transfer into operational use. Much of this transfer proc­
ess could be done by direct subsidy to industry, but it takes wisdom
on the part of this agency to know what developmental work industry
will do on its own (and therefore need not be subsidized by the mili­
tary) and what, out of the various research ideas existing within
the lab, are the ideas that should be pursued and are candidates for
development and eventual use. Again, having the correct manage­
ment structure would create a high-level center of expertise of
information sciences which could be a source of wisdom in these
areas.

CONCLUSION

In summary, we have some interesting research ideas - a
Video Graphic System permitting up to 32 users to have sophisti­
cated graphical interaction with a system; we have a micropro­
grammable machine available to different online users; we have
software techniques under development for making computer sys­
tems smarter and easier to talk to; and we are tackling the problem
of the certification of hardware/ software systems for multiuser
access.

We know of application areas within the military for these
systems and ideas, and we are actively pursuing the transfer of
these ideas into operational use, but we neither have the facilities
for carrying these ideas through the entire developmental process,
nor are we often given the charter to do this. Until the military
realize how fundamental to their mission the proper treatment of
information systems is, and until they develop an integrated
approach toward research, development, and use of these systems,
there will remain a wide gap- between the facilities we develop at
places like Rand and the facilities which are available to the
operational users who most need them.

11. R & D at
Stanford Researc~ Institute

Marshall Pease
Stanford Research Institute

Menlo Park, California

This chapter will review the work at Stanford Research
Institute in information systems, covering first artificial intelli­
gence and then discussing in more detail the research currently
in process on Large File Management Systems.

With the program of the Augmentation Research Center,
described elsewhere, we have a spectrum of research. The
Artificial Intelligence Center is concerned with making a machine
solve problems with a high degree of autonomy. At the other end
of the spectrum, the Augmentation Research Center is concerned
with providing the tools whereby humans, either singly or in
groups, can better solve their problems. In between, the Large
File Management program has as its general objective to make a
creative synthesis of man and machine so that together they can
solve problems.

ARTIFICIAL INTELLIGENCE CENTER

Stanford Research Institute has conducted research in artifi­
cial intelligence for about ten years. The program was started
by Dr. Charles Rosen and is currently under the direction of
Dr. Bertram Raphael. The basic goal of the program is to study
problem solving and perception and to discover ways in which
these capabilities can be automated.

Robot Research

The most visible part of the artificial intelligence program
concerns a robot, in the form of a mobile vehicle that carries a
television camera. The objective of the work with the robot is,
first, to understand what elements are involved in problem solving
and perception for a robot; second, to determine how these can be

90

R&D at Stanford Research Institute 91

implemented in the robot's environment; and, third, to determine
how to realize the necessary algorithms as a set of effective
machine programs. The robot is intended to deal with problems
that, in human terms at least, are very simple. Specifically, it
is given a task such as that of pushing a particular box into a
corner of the room. Its strategy is to investigate the nature of
its environment through a television camera and to analyze this
picture into a model of its environment. Having completed this
analysis, it proceeds to develop a strategy for achieving the goal
and then seeks to execute that strategy. In the course of this exe­
cution it may discover something it has not recognized before; for
example, that another box is in the way. When this happens, it
seeks to incorporate this new information into its internal model
of the environment and to revise its strategy for accomplishing its
goal. It then returns to the execution mode. It is quite success­
ful in performing such tasks in this environment, although admit­
tedly it uses a great deal of computational power and much memory.
One of the principal research tasks is to discover how to reduce
the computational and memory requirements so as to permit the
undertaking of more complicated tasks.

One area of research on the robot has been to improve its
perception of the environment. How should it process the com­
plex, ambiguous television picture that it picks up so as to produce
a valid model of its environment? One possibility currently under
investigation is the addition of other dimensions to the perception
process. For example, this might include the use of color or of
means for a direct measurement of distance.

Another research area has been concerned with improving
the effectiveness of the problem-solving algorithms. One way of
doing this is to set up the system so that it learns by experience.
After it has, for example, solved the problem of pushing a box into
the corner, we would like to have it remember how it accomplished
the solution so that in the future it will not have to solve the prob­
lem from scratch again. The obvious way is simply to store what
it did. However, this so specializes the solution and becomes so
highly dependent upon the particular details in which the task is
undertaken, that the solution is almost worthless. The approach
being pursued instead is to store a generalized form of the solution
expressed in terms of various general parameters rather than
specific locations. The key information is how the problem was
broken down into subgoals. A large part of the strategic analysis
undertaken on any problem is the development of a sequence of
subgoals. For example, to push the box to the corner, the robot
must place itself in position to push the box. The attainment of
that position becomes a subgoal. It is possible to analyze a par­
ticular strategy in terms that are quite generally parameterized
and to develop and store the list of subgoals and results. Some­
what unexpectedly, this approach is not much more difficult to
realize than solving the problem in its specific forms as it exists

92 Mult~-Access Computing

at the moment. This approach does lead to the possibility of
developing a repertoire of generalized strategies. Hence, the
robot is enabled to learn by experience.

Speech Understanding

Another area of research that is just getting started in the
Artificial Intelligence Center concerns speech understanding. The
goal of this new program (funded by ARPA) is to allow a person to
talk directly to a computer. This may be considered a problem in
artificial intelligence, since, when someone speaks in a fairly free
form of English, the selection of the appropriate interpretation
from the set of syntactically possible meanings is a very complex
problem-solving task of the type often found in artificial intelligence
work.

This work relates rather closely to the continuing activity on
various QI A (question/answering) languages for use with inferential
file systems. This activity is deeply concerned with the repre­
sentation and analysis of natural and nearly natural language.

Problem Solving Methodology

Another major area of activity is research on automatic
programming and theorem proving. This is very much at the heart
of much artifical intelligence work. It is the basic approach used
for problem solving in the robot. Given the problem of pushing the
box into a corner, the system sets up a "theorem" that the box is
in the corner. Finding that this cannot be proved, since it is, in
fact, false, the system considers what the state of the system
would have to be for the theorem to be provable. It considers the
transformations that would lead to such a state. It considers a
new theorem that one of these states does exist. If this theorem
is provable, then the system has a strategy for achieving the
desired goal. If not, it considers again what conditions would
lead to the realization of one of these states. It continues to work
backward this way until it has finally reached a provable theorem.
From this state it can then work forward to develop a specific
strategy that will lead to the desired goal if its understanding of
the environment is sufficiently complete. The various states that
make the successive theorems provable constitute the series of
subgoals leading to the desired goal. This may seem like an
indirect way of handling the problem, but is an effective procedure
- and, most important, a general one - that can, in fact, be imple­
mented on existing computers.

Applications Studies

The final area of activity that I will mention is an effort to
develop a program for applying artificial intelligence capability

R&D at Stanford Research Institute 93

within industrial environments. There are, of course, highly
automated activities within industry handling repetitive jobs. The
problem that we see here is that such machines function only in a
very tightly controlled environment. It should be possible to use
artificial intelligence procedures to expand the capabilities of
these machines so that they become goal-seeking within a much
more variable environment. One aspect of the problem is the
need to add sensing capability that will allow the system to per­
ceive the environment as it exists, together with the capability of
analyzing the perceptual data into an effective model of the exist­
ent environment.

LARGE FILE MANAGEMENT RESEARCH SYSTEMS

My own area of primary interest, Large File Information
Systems, is a program started about ten months ago under ONR
sponsorship. It is a long-range task aimed at the problem of
providing computer support for management decisions. The goal
is to discover principles, and means for their implementation,
that will enable a system to provide interactive assistance to the
manager in his decision-making role.

The thought that motivates the program is that good mana­
gerial decisions require a very subtle integration of large and
variant data files. The relevant data bases may be so large and
complex, contain so many different types of data, and have
inherently such great complexity of interrelations as to pose a
considerable challenge to present-day computer power. The
questions being asked may be subtle, involving considerable
inference on the specific data elements. The design of the sys­
tem that will handle such a large and complex data base and that
will be responsive to the needs of a manager probably represents
one of the most difficult challenges facing the system designer at
this time.

There are, of course, many systems in existence that are
intended to aid the manager. However, I do not think many would
disagree that very few of the existing management information
systems have lived up to their initial promises or achieved the
degree of effectiveness that should be possible. Few, if any, are
used by managers in their day-to-day decision making.

Bottom-Up Approach

It is evident that many existing systems have had their origin
in the fact that there were certain operations in an organization
that could profitably be automated. The first goal of the system,
therefore, was to automate, for example, the accounting system,
or payroll, or inventory control. Managerial information, in the
form of routine reports, is then, typically, built on top of this to
the extent that it is implemented at all. This does not deny that

94 Multi-Access Computing

the automation of routine operations is valuable, but such automation
has very little to do with managerial processes. The key to all
truly managerial action is precisely that it is not routine. The
manager, when he is functioning as a manager, is always dealing
with the exceptional situation. By definition this is nonroutine.
The manager delegates routine to the subordinate and confines his
attention to the unexpected and unusual.

Top-Down Approach

So far, I have outlined the evolutionary procedure that is
sometimes called "bottom-up" design. The alternative approach
has been called the "top-down" approach. In this approach, an
analyst studies the organization and tries to determine what infor­
mation the manager needs. He then seeks to build a system to
supply that information on demand. The difficulty with this
approach is two-fold. First, it takes a substantial period of time
to build the system (probably two years is minimal). This means
that when the system finally becomes operational it is responsive
to needs seen a substantial period of time before, but which may
very well no longer be applicable. Of course, the perception of
needs may have also been wrong to begin with! Second, the sys­
tem depends upon predicting the requirements of the manager.
It is characteristic of the managerial situation that the environ­
ment in which the manager functions and the problems with which
he deals change very drastically and rapidly. Further, these
changes are essentially unpredictable. The manager himself
doesn't know what changes will occur. If he did, he could set up
the procedures in advance and delegate the decision process to a
subordinate. It would no longer be a managerial concern. He
might continue to be concerned with how well a problem was being
handled, but he would not be directly concerned with the problem
itself.

In other words, as soon as a problem becomes predictable
and the method of handling it can be specified, the manager, func­
tioning as a manager, moves his attention to a higher level and
becomes concerned with a more global view of the operation. This
higher-level consideration remains his concern precisely because,
at that level, there are unpredictable factors. So I take it as
inherent in the managerial situation that the manager cannot pre­
dict what problems he is going to be dealing with or what informa­
tion he will need to deal adequately with them. He responds to
very subtle effects within the organization and within the world in
which the organization is acting. Furthermore, his responses
are to a large extent influenced by his own internal state of being,
in that they depend upon his experience and his awareness of
where there has been previous difficulty and success. So the
manager is himself in a learning process and therefore adds a
further unpredictable factor to the situation. Since the success

R&D at Stanford Research Institute 95

of the top-down method of approach depends to a large extent on
the ability to predict future needs and use, it is inherently limited
as to what it can achieve.

Principle-Oriented Approach

As a result of these considerations it occurred to us that it
was necessary to find something in between these two general
methods of approach. The approach we have found we sometimes
call "principle-oriented." We argue that the system should be
based on principles that are derived from top-down considerations.
However, the actual implementation should include adaptation and
evolution in such a way that it will come at least reasonably close
to tracking the use of the system in the immediate environment.
We can say, then, that the system will exist at any moment in a
way that expresses a bottom-up kind of responsiveness.

One of the first principles we see, therefore, is that the
system should have the ability to adapt. Adaptation is an old
word that has been applied in many areas of computer design and
use. In a sense, any time a one-time memory assignment is
done, there is adaptation. Any time the system includes a "paging"
procedure or "virtual memory" structure, there is adaptation. I
am using the word here in a more global context. Examples of
what I mean include consideration of what procedures should be
available in the system, what kind of searches of the data base
should be available, and what procedures should be available for
processing and outputting the result of such searches. The
answers to these questions may change with time as managerial
attention shifts. If the system is capable of tracking these
changes, it will be adaptive at a level that involves the whole
state of the system and the nature of its response to a given
interrogation.

The adaptation referred to here is that in which the system
causes a change in its own configuration. This change may occur
in any level from the specific implementation of a particular file
structure to the choice of which files are maintained and where.
It may include a change in the data structure type used in a file.
The result will be to change quite drastically the procedures with
which the system can respond to an interrogation. What we seek,
then, is a set of concepts and principles that provide a general
guide to information-processing systems design for supporting
truly managerial functions.

This line of thought led to the general schema shown in
Fig. 11-1. At the top level is the box labeled Purpose, which is
the motivation for the system. At the next level is the Nonadapta­
tive Properties of the system. These include those aspects of the
system that provide the frame within which adaptation occurs. Most
obviously, the hardware is nonadaptative. It may be evolutionary
in the sense that it can be changed from the outside, and it probably

96 Multi-Access Computing

3. OPERATING
CONFIGURATION

5. ORIGINATION
(TO THE WORLD)

8. RECONFIGURATION
(COORDINATES HISTORY
WITH CURRENT REQUIRE·
MENTS TO GENERATE
PLAN AND INITIATE
RECONFIGURATION)

1. PURPOSE

6. MONITOR
(EVALUATION OF
HISTORY OF USE)

9. REPORTING

(TO SYSTEM
MANAGER)

10. EVOLUTION

(BY SYSTEM
MANAGER)

2. NONADAPTATIVE
PROPERTIES

4. RECEPTION
(FROM THE WORLD)

7. PRIORITY SELECTION

(FROM HISTORY, PLUS
INFORMATION REGARDING
FUTURE USE)

SA·1031-1

Fig. 11-1. Schema for an Adaptative and
Evolutionary Management
Support System

R&D at Stanford Research Institute 97

will be as time progresses. But at any given instant the hardware
will be given. However, much more than the hardware is not
subject to adaptation. We must, for example, have either a
fixed format in the basic data file or at least some fixed rules for
interpreting whatever is there. At some level the interpretation
of data files must be nonadaptative. Another area is the interro­
gation language. It must either be nonadaptative or depend upon
some metalanguage that is nonadaptative. In general, almost
every function of the system must, at some level, have a non­
adaptative base of operations.

In the next box is what we call the Operating Configuration,
which describes the actual state of the system at a given time. It
seems a valid inference that we would like to decouple, as far as
we can, the operating configuration from the nonadaptative prop­
erties. The further apart these are, the greater the range of
adaptation that is possible and the greater the opportunity for
tracking changes in the environment of use. On the other hand,
the further apart these two are, the harder it is likely to be to
keep the system in a stable functioning state. This is really the
crux of the problem: how to separate adaptativity from the non­
adaptative base so as to achieve the greatest possible range of
adaptative response without having the system become unstable
or nonresponsive.

At the next level is the box labeled Reception, the means by
which the system will receive from the outer world. It will include
means for inputting and updating data and inputting any commands,
interrogations, or any other communications from the outside
world. The corresponding box on the other side is labeled Origi­
nation. This includes means of processing data in response to an
interrogation and developing the reply to an interrogation. It will
include the actual process of communicating to the outside world.
This function will also include the issuance of any routine reports
that are independent of any actual command. It may also include
monitoring the data to provide automatic warning when the data
suggest that something deserves the attention of the manager.
Origination may function in response to either a reception or an
internally generated command.

So far we have not introduced any adaptation. The next two
levels are concerned with this aspect. The first of these levels
has the single box labeled Monitor. This has the function of keep­
ing track of what the system is doing, including both its use of
the various resources within the operating configuration and the
resources it could have used if they had existed. To put it anthro­
pormorphically, it will keep track of where the system is hurting
and where it feels comfortable. This record will provide the
system with evidence as to what its environment of use has been.
To the extent that adaptation is based on extrapolation of past use,
this record will be the major source of the decision as to what
adaptation should be executed.

98 Multi-Access Computing

In some cases, the system may have additional information
as to probable future use given either incidentally during inputted
interrogations or as specific predictions from the user. Such
information will be received through Reception. Priority Selection
will integrate the information derived from the Monitor with this
additional directly inputted information. To establish a goal for
adaptation, it will establish what the configuration of the system
should be on the basis of the existing information available to the
system.

The determination of the target configuration for adaptation
will still not be sufficient. This target must be integrated with the
ongoing operations of the system. It must also be modified accord­
ing to the cost of executing the desired adaptation and the value
that is expected to accrue from it. These processes will be per­
formed in the box labeled Reconfiguration, which will serve as
the executive for the actual adaptation process itself.

The need for the evolutionary process will remain. By
this is meant the changes introduced by command from an exter­
nal source, which we call the system manager. Evolution must
come into play when the scope of the system is to be enlarged or
when new facilities are to be added. It may also come into play
because of a sudden drastic shift in the external environment; for
example, the occurrence of an international crisis. This might
dictate a sudden shift in the environment of use, which could be
anticipated by the system manager but which would not be recog­
nized quickly enough by the adaptative procedure. In such a cir­
cumstance, the system manager might be required to intervene,
to cause a change in the operating configuration by direct com­
mand. More frequently the system manager will be concerned
with tuning up and expanding and improving the adaptation process
itself. He will seek to improve the prediction algorithm, and
perhaps the priority selection algorithms, to improve the adapta­
tion process. The ideal use of the evolutionary capability, as we
see it, would be analogous to a higher level adaptation rather than
a substitute for adaptation.

Given the general scheme, the next step is to expand it to
something that will begin to describe a possible system. This has
led to the functional block diagram shown in Fig. 11-2.

Figure 11-2 is laid out to more or less correspond to the
schema of Fig. 11-1. The correspondence is not exact but does
follow through fairly well. (Also, there are possible variations
in this functional block.) My intent is to show that the system
concept is feasible and to indicate the main problem in which
research is needed.

Corresponding to the nonadaptative properties is the non­
adaptative file system. Its primary contents will be the raw data
in updated form. Although some adaptation may be possible within
these data files, this must be done with great care. In an adapta­
tive system, the user does not know the exact current state of the

R&D at Stanford Research Institute

OPERATING FILE SYSTEM

HOLDS:
UTILITY FILES

FILE MAINTENANCE
PROGRAMS

FILE STATUS LIST
ACTIVE SUBPROGRAMS

J_

ORIGINATION SYSTEM

FUNCTIONS:
CONSTRUCT PROGRAM TO

RESPOND TO QUERY
OR FOR OTHER NEED

EXECUTE PROGRAM
OUTPUT RESULTS

NONADAPTATIVE
FILE SYSTEM

HOLDS:
DATA FILES
LIBRARY OF

SUBPROGRAMS
LIST OF POTENTIAL

UTILITY FILES

RECEPTION SYSTEM

FUNCTIONS:
RECEIVE DATA AND

DATA UPDATE
VERIFY DATA
VERIFY USER
INTER PR ET USER'S

QUERY OR
COMMAND

99

j+-INPUT

1---------------i•~ OUTPUT

MONITOR SYSTEM

FUNCTIONS:
MONITOR OPERATION

•

AND USE
MAINTAIN INDICES

THAT WILL GUIDE
ADAPTATION

•
RECONFIGURATION SYSTEM

FUNCTIONS:

PRIORITY SELECTION SYSTEM

FUNCTIONS:
INTEGRATE PRIORITY

LIST WITH CURRENT
OPERATIONS

CONSTRUCT RECON­
FIGURATION PLAN

COMMAND EXECUTION
OF PLAN WHEN
APPROPRIATE

EVALUATE HISTORICAL
INDICES

INTEGRATE WITH TREND
AND AVAILABILITY
INFORMATION

MAINTAIN UPDATED
PRIORITY LIST FOR
RECONFIGURATION

I I
REPORTING SYSTEM

MAINTAIN SUMMARY
RECORDS OF USE AND OF
ADAPTATIONS EXECUTED

REPEAT RECORDS AS
REQUl.RED TO SYSTEM
MANAGER

OUTPUT

1--------!'• TO SYSTEM
MANAGER

Fig. 11-2. Proposed Management Support System

100 Multi-Access Computing

system, yet he must be able, as a last resort, to refer his
questions back to the raw data without ambiguity. Further, the
main data files are presumed to be very large, perhaps being con­
tained on many tapes. A change requiring the reprocessing of the
data files will therefore be very expensive and should be under­
taken only to accrue a substantial benefit. Generally, data files
should not be subject to adaptation.

Corresponding to the Operating Configuration is the Operat­
ing File system. The main content of this box is termed the
utility Files. These files will be derived from the main data
files and will, it is hoped, be sufficient to handle most of the
interrogations of the system. We visualize the utilities files as
being sufficiently small to be held within the system, at least on
the disc memory. Our intention is that most of the processing
done by the system will be through the utility files, with the data
files being referred to only in a default situation where the utility
files are insufficient. For this purpose, the utility file system
will contain various compilations and samplings, and whatever
else seems to be appropriate to the expected environment of use.
The immediate area of adaptation will then be on the questions of
what utility files are to be maintained and how often they are to be
brought up to date. In addition, there may be adaptation of the
actual structures of some utility files. There are file structures,
some of which we have studied, whose structures can be manipu­
lated adaptatively without excessive difficulty.

The Reception system will receive new data, update of old
data, and validate data. Data validation is an exceedingly impor­
tant problem in any practical system. The degree to which
incorrect data are screened out of the system will have a great
deal to do with the manager's acceptance of the system. To
anticipate, this is one identified area of research we feel to be
necessary.

The Reception system will also verify the user's right of
access. This will involve security and privacy considerations.
This function is important, even though we do not consider it
intrinsic to the research purposes of the program.

The Reception system will also interpret the user's interro­
gation. This will involve more than simply providing an interro­
gation language. Since the operating configuration is separated
from the user, he will not know exactly what utility files are
available or how current they are. He must, therefore, be able
to enter his interrogation in a way that is independent of the
operating configuration and that does not specify the precise pro­
cedure to be used in response. This, then, imposes quite different
restraints on the interrogation language from those that are usually
involved in the interface between computer and user.

The block labeled Origination system will have the task of
responding to interrogations or, as appropriate, to an internally
perceived need (if an automatic warning capability is included).

R&D at Stanford Research Institute 101

Because the configuration that the system is in at the moment will
not be visible to the user, the Origination system must be able to
accept the interrogation and translate it into a program that will
function effectively with the existing utility files. For example, a
particular interrogation may be easily handled by using certain
utility files. These files, however, may not be fully up to date.
Beyond their date it may be necessary to use a default procedure
having recourse to the primary data files. The Origination system
must determine a strategy appropriate to the existing state of the
system and respond accordingly.

Coming to the Monitor system and the adaptation processes,
we expect to keep track primarily of the use of the utility files
and, perhaps, of the various subprograms. As we now visualize
the functioning of the Origination system in response to an interro­
gation, it will construct a strategy or a program that will be
responsive to the interrogation. This program will be checked
against the existing utility files to determine that it is operable.
If it is, Originations will execute it and pass to the Monitor system
the information that these utility files have, indeed, been used.
If the program is not executable because the required utility files
are lacking or not sufficiently up to date, this information will be
passed to the Monitor system, and the Origination system will
then construct a second-best program. This process will con­
tinue until a program is found that will run, in the worst case, by
default to the data files themselves. The Monitor system will
then receive information about which files were used and also
about which files were sought but not found usable.

The record of use and unavailability-for-use will be passed
from the Monitor system to the Priority system, where it will be
combined with any other information about probable future use.
It will also be coordinated with the cost functions that determine
the costs of making various changes to the utility Files. The
Priority Selection system will compile a priority list of changes.
This, in turn, will be passed to the Reconfiguration system that
integrates the priority list with current operations and constructs
a reconfiguration plan. The Reconfiguration system will also
command the execution of this plan when it is appropriate in terms
of the current usage of the system.

Finally, the Reporting system will output the information to
the system manager for use in guiding system evolution. This
system will obtain its information primarily from the Monitor,
Priority Selection, and Reconfiguration systems.

The above gives some idea of the SRI system concept. Con­
siderable elaboration of the concept is available in the First
Technical Report on our contract, which is available to those who
are interested. The main purpose of this analysis, however, has
been to identify the areas of research that are urgently needed for
this type of system. In general, we have identified seven such
areas.

102 Multi-Access Computing

RESEARCH AREAS

The first area of research identified is the adaptative process
itself. Much analysis has been done on the general concept, but we
do need to obtain direct experience of such a process in order to
determine what really will make it go. Therefore, one of the pri­
mary areas of research will be to set up a data base in which we
can play adaptative games on an effective and realistic level. The
data base chosen is being drawn from the Navy 3M system (Mainte­
nance and Material Management). The 3M system receives a
report of every maintenance operation performed in the Navy, as
well as collateral inputs; it is, therefore, a huge data base. We
are acquiring a small subset of it for use in our system, which
may be extended as time goes on. The scenarios we intend to con­
struct on it initially are concerned with setting up and monitoring
operational standards.

The second main area of research will be in data file struc­
tures themselves. Much work has gone into file structures for a
large number of systems, and considerable experience has been
gained with them. However, a significant difference of emphasis
is imposed by our particular use of these files. In general, a file
structure usually is chosen to facilitate some particular uses.
Here, however, the primary use of the data files will be to con­
struct the utility files. Since this can be done when the system is
not otherwise occupied, the efficiency of this operation will not be
of major importance. The primary concern is to ensure that no
information is lost. We shall also need to be sure we can input
data revisions with relative convenience and with the least interrup­
tion of system operation. In our data files, the efficiency of use
must take a much lower priory than the efficiency of adding to or
modifying the resident information. This will put quite a different
condition on file structure than is normally the case. Hence,
research is needed to determine the implications of this shift in
emphasis.

The third area of research will be the actual generation of
the response in the Origination system. How is the response to be
generated from the input interrogation and current knowledge of the
system? This is vital, because we want the system itself to be
essentially transparent to the user. The user, particularly if he is
a high-level manager, is not going to worry about just which utility
files are up and which are unavailable. The system itself must
make this connection and put the appropriate pieces together. A
related question in this area of research has to do with the capabili­
ties of the query language being used. To illustrate, consider the
use of what may be called indefinite qualifiers. This includes
words like much or many or generally, or for example, the state­
ment: A is usually followed by B. What does this usually mean in
this context? Such words are not normally part of the programming
language; yet they seem to be inherent in the thought processes to

R&D at Stanford Research Institute 103

which we are trying to respond. Probably the most critical period
in the managerial decision process is when the manager is trying
to pin down exactly what it is that he should be concerned with. He
is, perhaps, groping towards some possibility that he only dimly
senses. At such times, he can describe his notions only in inten­
tionally vague terms. I am not convinced of the importance of a
true natural language capability, but I strongly suspect the system
we hope to achieve here will have to reflect modes of thought that
are possible with a natural language.

The fourth area of research concerns the utility files. What
should be their structures? Are they to be adaptative in themselves
and, if so, how? There are possibilities for self-adaptative file
structures, some of which we have begun to study. What are the
implications of these various possibilities? How should we choose
between different possible structures for the utility files? Another
question involved here is that implied in the statement that any
utility file is in some sense a compressed version of the data file.
It is compressed because it is much smaller and also entails con­
siderable information loss. Different kinds of compression entail
different kinds of information loss. There is a need to understand
the tradeoffs involved and to explicate the principles upon which
the necessary decisions should be made.

The fifth area of research concerns interactive processes for
hypothesis generation and test. This is really at the heart of
modeling problems. It is also at the heart of making a truly
creative synthesis of the man and the system in terms of model
building. The extent to which the system can accept vaguely
worded, probing types of hypotheses will largely determine the
subtlety of the interaction obtainable. The system that has subtle
response capabilities in this area will permit the user to feel his
way into his problems. It will generate the kind of mutual creativ­
ity we would like to achieve.

The sixth area of research is data verification and validation.
Data validation is seen as having three aspects. The first concerns
the collection of the data and its input into the system. This aspect
is outside the system itself and, although it is a key operational
area, it is not an area of immediate concern to us. The second
aspect is validation on entry. This concerns the question of whether
the data are properly formatted and whether the values are reason­
able or otherwise not obviously wrong. At its most immediate
level, this aspect involves checking for format, for self-consistency,
and against various predetermined tests for possibility or plausibil­
ity. At a higher level, the plausibility tests themselves can be
adjusted adaptatively as experience is acquired. This leads to
some interesting questions of strategy and of the measures of value
and cost that should be used.

The third aspect of data validation concerns the possibility of
cross-checking data already within the system to determine whether
they are consistent with a possible or probable model.of the world.

104 Multi-Access Computing

This aspect is very closely related to the problem of hyPothesis
generation and test; the difference, perhaps, is that here we are
talking about hypotheses that are internally generated and that are
confined to a much smaller range of possibilities.

The seventh and final area of research identified is output
generation. It is recognized that the ability of the manager to per­
ceive relationships among data is highly dependent on the precise
way the data are presented to him. The presentation of the out­
putted information is very important to making the system an
integral part of the decision-making process. Consequently, great
care must be taken in how we exploit the capability of various
kinds and modes of data presentation. I do not refer to the specific
hardware that should or should not be used, but to the manner in
which that hardware is used, including, for example, whether the
data are presented as graphs, tables, movies, or what. Research
is needed to identify the appropriate means to use under different
conditions.

SUMMARY

This completes the survey of our work on large file manage­
ment systems. We are at the beginning of what we hope will be a
continuing research effort. Therefore, the work so far has been
mainly concerned with determining the directions to take. At
some future point, I hope to report specific results on the several
problems delineated here.

PART Ill. RESEARCH PROJECT REPORTS

The ten chapters in this section are representative of the
research, development, and survey projects currently under way
in the multi-access area. They cover a broad area of applications,
including potential consumer, industry, and government users.
The chapters have been divided into three general categories of
software, hardware, and man/machine systems. The separation
is, however, quite arbitrary and most papers cover material in
all three areas.

SYSTEMS SOFTWARE

This category includes three papers whose primary emphasis
is on data management systems and operating systems.

Dr. Wier presents Bell Labs' experience in developing data
management and retrieval systems and discusses some of the data­
based applications they have in operation. Dr. Corbato presents
the history of the Multics System at Project MAC of MIT. Dr.
Liskov then discusses the microprogramming and software involved
in the Venus Operating System.

PROCESSING SYSTEMS

This category contains three papers whose emphasis is com­
puter or terminal hardware.

Mr. Volk presents an interactive system utilizing cable TV
that is being tested for such applications as computer aided instruc­
tion. Dr. Bell discusses performance evaluation before and after
implementation, using a graphics terminal as an illustration. Mr.
Weitzman then presents the results of a recent survey and forecast
of computer hardware performance and capabilities.

MAN/MACIIlNE INTERACTION

This category contains four papers whose emphasis is on man/
machine dialogue or machine augmentation of human capabilities.

Mr. Bernstein discusses three projects leading toward a more
natural man/machine dialogue; a natural English data retrieval
system, a speech understanding system, and a data tablet graphic
and hard printing input system. Dr. Dostert presents the Rapidly
Extensible Language (REL) System being developed at Cal Tech.
It offers the ability to dynamically tailor an interactive language
through definition of terms and interrelationships. Dr. Goodenough
discusses a computer-directed training system that is oriented
toward on-the-job training. Dr. Dixon then closes the section with
a paper on some of the analysis systems being developed and used
in the health sciences area at UCLA's Health Services Computing
Facility.

105

106 Multi-Access Computing

OTHER CURRENT RESEARCH PROJECTS

The ten papers included in this section are only a small
cross-section of the research being performed today under govern­
ment sponsorship and do not encompass the wide varieties of
multi-access computing research currently under study.

To obtain a broader cross-section of current research
endeavors, one need only observe some of the specific activities
being funded by the Information Processing Branch of ARPA, the
Advanced Research Projects Agency of the Department of Defense.
A detailed accounting of the individual research projects would fill
volumes. Thus, only an indication of some of the key projects at
each of 22 ARPA funded labs is provided on the following pages.

1. University of California, Berkeley

New computer architectures-studies based on a highly
modular structure employing a number of CPU's memory
modules, discs, etc.

2. Bolt, Beranek and Newman, Inc.

Natural Communication with Computers - Application of
a semantic network memory; development of an exten­
sive augmented, transition net grammar of English for
data retrieval; further development of LISP for PDP-10;
and development of the TENEX time sharing operative
system for PDP-10.

HARDWARE DESIGNS FOR ARPA NETWORK IMPS

3. Harvard University

The ARPA Network - Hardware interfaces between PDP-10
and IMP; software contributions to network protocol.

Computer Graphics - Introduction of remote computation
facilities in aid of graphics.

4. Washington University, Computer Systems Laboratory

Molecular Graphics - Using a computer system to
manipulate and display models of molecular graphs.

Macromodular Systems - Establishment of a pilot inven­
tory of electronic computer units.

5. Stanford Research Institute, Augmentation Research
Center (ARC)

I

I

Part III

Network Information Center - Will provide online
network information services for the ARPA network.

107

Dialogue Support System - Provides means for accumu­
lating, retrieving, and studying the communications
generated with ARC.

6. University of Utah

Waveform Processing - Use of computers to process
signals (both pictures and sound).

Graphics - Development of economical graphic communi­
cation systems useful in human tasks.

Computing Structures - Real-time experimentation with
novel computing systems and components.

7. Stanford University, Heuristic Dendral Project

Artificial Intelligence - Focused on understanding the
processes of scientific inference in physical chemistry.

8. MIT, Lincoln Laboratory

Graphics - Development of graphic man-machine com­
munication techniques.

9. Network Analysis Corporation

Network - Analysis and design of the ARP A network;
studies of properties of large computation-communication
networks.

10. Case Western Reserve University, Project LOGOS

Security - Creation of a design tool to produce systems
that are certifiable as being secure.

11. University of California, Santa Barbara

Networks - Online software systems developments for
the ARPA network.

Speech - Research effort into techniques for voice input.

12. Applied Data Research, Inc.

Research in machine-independent software programming.

108 Multi-Access Computing

13. UCLA

Networks - Specific areas under investigation include
network software, network measurements, and computer
systems modeling and analysis.

14. Dartmouth College

Time-shared Computing Systems - Projects include
continuing development of the Dartmouth Time Sharing
System; graphics display devices, and applications in
library automation and radiology treatment.

15. MIT, Project MAC

See Chapter 13 for a complete report on MULTICS.

16. Computer Corporation of America

Investigations of data handling in computer networks.

17. University of Illinois

ILLIAC TV - Total hardware and software systems
development.

18. MIT, Artificial Intelligence Group

Robotics - Development of high-level hand-eye system
for economic planning decisions. An associated project
is to develop an English semantics program appropriate
to robotic environment.

PLANNER Language - New programming language
important in solving problems.

Mathlab - Continued development of a facility for auto­
mated algebraic manipulation.

19. Carnegie - Mellon University

Artificial Intelligence - Variety of studies in program­
ming languages, automated theorem proving, semantic
networks, chess and protocol analysis.

Hardware - Studies on the design of register transfer
modules for digital systems designs.

20. stanford Research Institute, AI Group and Computer
Science Group.

Part III 109

Artificial Intelligence - Various studies in goal seeking
and problem solving methodologies in robotry, speech
understanding, and in industrial applications.

Large File Management Research- A study program
seeking to understand how informational systems can
be made responsive to the needs of high level managers.

21. RAND

Climate Dynamics - Focused on the problem of climate
determination and control.

Networks - Development of programs to utilize remote
resources.

Adaptative Communication - Attempt to make the man­
machine interface more flexible and man-oriented.

Computer Program Organization - Study to provide the
interpreter of problem oriented languages with judgment
and problem solving power.

Computer applications to the military - Enable the mili­
tary to more effectively utilize computer research.

22. System Development Corporation

Computation-Communication Tradeoff Studies -Design to
investigate a possible mismatch between DoD computation
and communication requirements in the 1975 to 1980 era.

Natural Languages -The CONVERSE system is con­
cerned with constructing and querying online data bases
in natural English.

Graphic 1/0 - Development of interactive computer
graphics capabilities.

Voice I/O - Development of man-machine interaction
systems using continuous speech.

Networks - ARPA network protocol research effort and
application of graph theory to compiler organization.

Security - Provide practical security controls in multi­
access systems.

Information on any of these projects can be obtained by writ­
ing directly to the research lab of interest.

12. Interactive Information Systems
Joseph M. Wier

Bell Telephone Laboratories

Holmdel, New Jersey

We've been in what I call the information management business
for seven years. We began by undertaking a number o(studies of
the switching requirements of the Bell System. In each case, the
studies involved a relatively large mass of descriptive data charac­
terizing the switching plant and its environment. Typically, it
seemed continually necessary to return to the basic information for
different or more precise results.

Programming a new look at the data base using standard batch
processing techniques was tried at first. Later, precomputed sum­
maries were attempted which hopefully would answer the more
important questions. The tailored. program approach was adequate
for straightforward questions with no time pressure. The precom­
puted summaries worked for questions lending themselves to pre­
planned computations, but the data produced was an unmanageable
four foot pile of computer printout.

Both efforts strongly suggested the desirability of more
immediate and flexible data access. Thus, the results have been
a sequence of information systems, each built on knowledge gained
from previous systems and tied to some application or applications.
The early systems were "hard-wired" information retrieval- only
systems. Later ones included both data retrieval and data entry,
extensive administration capability and vastly improved levels of
speed, modularity of design and portability.

In evolving, the systems began to assume a form dictated by
their applications. The following characteristics are perhaps
worth noting:

1. The data bases were hierarchically oriented.

2. The systems were built on time-shared computer operat­
ing systems.

110

Interactive Information Systems

3. Most of the systems were used by large numbers of
people distributed over large geographical areas.

4. Most of the users or potential users were not
programmers.

5. Many of the users were possessed of a low level of
technical training.

111

Because broad system access was necessary, commercial
time-sharing services were used. To meet the needs of a broad
class of users, the basic complexities of the systems are hidden
behind a simple facade and responsibility for keeping the user out
of trouble and the system protected is vested in the information
system. These requirements resulted in demands placed on the
time-sharing systems that could not always be conveniently met,
including requirements for:

1. Relatively large core storage (> 128K bytes).

2. Large random access secondary storage (tens of millions
of bytes).

3. Programmer control of file access.

4. A time-sharing accounting system allowing extensive
user interaction but individual charging.

5. Extensive program and file sharing capabilities with
programmer control of these interactions.

6. A computational capability large enough to support many
users with rapid response.

The systems have all evolved toward a specific modular
form. The current system is split into roughly four packages.

1. An administrative package for taking care of the endless
details associated with collecting, changing and monitor­
ing data base performance.

2. A "front end" language package allowing the user to
specify his own user and job oriented language and to
implement it without appreciable delay. It also serves
to parse the resulting language and to supply suitable
information at a standard internal interface to serve
other system packages.

112 Multi-Access Computing

3. A processor package for composing internal calls on a
data management system to store, change, and retrieve
from the data base and for returning information to the
user, if required.

4. A data management system for organizing, adding to,
retrieving from and administering hierarchically organ­
ized data bases.

These packages will not be discussed in any detail, but the
latter three are characterized by the applications leading to them.

The languages were generated by a compiler-compiler,
which prepares tables describing the language in syntactic and
semantic context from a modified BNF description. These tables
are used by a run-time system for executing user-machine conver­
sation. The system generally uses a keyword-oriented, phrase
structured grammar. It is readily understood, but no attempt is
made to make it totally free, even in appearance, because normal
English is too ambiguous. We thus sacrificed appearance for
accuracy. After years of use by non-programmers, we are not
sorry. However, as our users tend to need rather straightforward
results, most of the processing is simple in concept, although
requiring a good deal of computation. It is possible to produce
processors independent of the organization, size and content of the
data bases used. Because of the interactive nature of queries,
additions and changes made to the data, it was desirable to limit
the complexity of executed requests so that the user maintains a
running intuitive understanding of the process he is controlling.
By so doing, the user feels that he is part of the process and
actually contributes materially by recognizing significant results
and choosing useful directions for later interaction.

The data management system separates the description of the
structure of the data base from the storage of the data. It manages
the allocation, storage, and retrieval of information and directs
data base computations. To service numerous users out of the same
data base, it allows for concurrent actions by many users. The
system is designed to work in an interactive environment where
change is frequent. The hierarchical structure of our data bases
is mirrored in the method of managing the data. In some cases
the hierarchical bias will make the system less useful for other
forms of data, but the sacrifice will not show in our applications.

To further circumscribe the types of systems we have built,
let us look at some simple requests which show the character of
an interaction. The following are representative of the system
although the data bases implied are fictional.

PRINT EMPLOYEE NAME, SOCIAL
SECURITY NO.: IN NY COMPANIES:
WHEN AGE = 63: GO:

Interactive Information Systems

TOT AL SALARIES: IN COLORADO:
WHEN TOWN WORKED = DENVER AND
CLASSIFICATION= SALESMAN: GO:

113

All of the usual synonyming, order interchanging, multiple
syntaxing, diagnostics, and aids go along with the system. In addi­
tion, virtual data base elements can be added by defining new
elements as functions of those stored in the data base. An example
is:

LET PERF RATIO= SALARY/AVG SALARY

The new element, PERF RA TIO, can be used as though it
were in the data base. It will merely be computed as needed from
items already contained in the data base, in this instance SALARY
and AVG SALARY.

It is characteristic of the applications we have serviced that
the users are spread over the Bell System. This situation shapes
the form of our interactions as these users largely employ tele­
typewriting terminals made by the Teletype Corporation. Thus,
the systems we design anticipate this environment and so no special
or sophisticated terminals are serviced. This rules out all light­
pen cathode-ray-tube operations and limits graphical output to very
simple teletypewriter types. Similarly, higher speed terminals
are also not serviced and so any transactions involving higher
printing speeds are also ruled out. This further simplifies the
individual transaction.

Some of the things we have learned are probably typical only
of our applications. Most of them we feel to be rather more general
than that as they follow from the behavior of people rather than
from the specific requirements of the jobs we have carried out.

The first and probably most important observation concerns
the system user. He is both our worst enemy and our greatest
ally. He is our worst enemy because he, by indirection or con­
scious effort, tends to poor memory, sloppy work habits, careless
reading of manuals, and incomplete knowledge of the information
stored. He thus will misuse and misunderstand any system that is
not carefully protected from such treatment. On the other hand,
he has some capabilities not found in even the most ingenious of
computer systems. He has better knowledge of his job and situation
than is available from any other source; he is an extremely talented
pattern recognizer, who can detect significance or regularities
with astonishing ease; and only he will have the capability to act
and to judge on any action. In such roles, he is an indispensible
ally and allows the combined user and information system to do
things which would not be possible for either alone.

To service him, it is necessary to remember that he has the
usual human failings and to design the system to accommodate these.
Furthermore, since it is better he be an ally than an enemy, it is

114 Multi-Access Computing

wise to help him in his efforts and to ignore his lapses. Thus,
our system comes equipped with many peripheral aids such as
diagnostics, which are not critical of the user, teaching aids,
catalogs, initializing processes and system trapping of abnor­
malities. In general, the system should be helpful under all con­
ditions of adversity. It should anticipate the many unusual
difficulties the user can precipitate and help him out of them.

A second important lesson is that the user is the standard
to which the system is tuned. If it fails, the system is at fault,
not the user. To ignore this principle is to be ignored by the user
at best and to be sabotaged by him at worst.

A third thing we have learned is that the system should not
bore the user. Thus, the system must produce reasonable
response time and should do something for him that he needs
done. Not only does poor service annoy the user; it also handi­
caps him in solving his particular problem. The considerable
lapses in time between interactions can take his mind off the job
he is doing and can lower his efficiency in using the data he gets
from the system. The user and information system work together
to deal with the problem on the user's mind. Prompt response
holds off boredom and demands less of the user's somewhat fallible
memory. It also tempts the user to apply his talents in pattern
recognition and decision making more frequently and that, in itself,
often speeds the information system along the path it must follow.

In each of the first three points, it cannot be overempha­
sized that the user is not the fool that computer people some­
times paint him. He happens to be good at some things needed
to solve the problems at hand. Fortunately, the user's weak­
nesses are the information system's strengths. Thus, they work
well together.

A fourth lesson thrust upon us is that good systems can be
designed only in the presence of the potential users and applica­
tions. By using the system in numerous applications and assidu­
ously watching its performance, it gradually can be adapted to
the needs of the application and the user. Ingenious ivory tower
solutions frequently do not work or they solve problems that don't
exist.

A fifth principle is that things should be kept simple for the
user. The more complex the system, the more likely it is that it
won't get used or will be misunderstood or misused. Thus, it
should be easy to sign on to the system; it should be easy to learn
to use it; it should not change rapidly or without adequate warning;
it should provide results which are easily absorbed in one "mind­
ful"; that is, the results should fit intuitively into the user's picture
of things; it should present data in a form easily absorbed by the
user; it should use his responses to help it get results, which
implies that it should use simple user-oriented instructions; it
should enable the user to make simple checks or experiments in
a way natural to him.

Interactive Information Systems

Sixth, the system should do something for the user,
something he wants or potentially needs done. To achieve this
end, it is necessary to listen to the users, to look for their
criticisms, to study their uses, and to keep a journal file to
watch it in operation. Most important, it is necessary to look
for signs of disenchantment, most notable by a reduction in use.

115

Finally, the total problem will not be solved quickly. The
systems won't fit all potential applications functionally; it will be
too costly in some cases; the terminals won't be available in
others; the state of the art won't allow an adequate solution in
many instances; and finally, users may not be ready for it. Thus
one conclusion may be that abandonment is in order in some
applications.

We have attempted to apply these observations to the design
of our existing system. It has achieved relatively wide acceptance.
It is not at the state we would like to see it. It is somewhat more
complex to use than we would like. It costs too much to store
information. The access costs are too high for many systems.
We still occasionally find users who get into difficulties. We are
not entirely happy with the user terminal situation. However, it
does operate. It does service nonprogramming users. It does
aid a user to understand complex data bases. It can handle enough
information to meet many important applications. Further, it can
service enough users so that the data base serves as a real coordi­
nation point for the situation mirrored there.

13. Multics:
The First Seven Years*

F. J. Corbato
Massachusetts Institute of Technology

Cambridge, Massachusetts

C. T. Clingen
Honeywell

J. H. Saltzer
Massachusetts Institute of Technology

Cambridge, Massachusetts

In 1964, following implementation of the Compatible Time­
sharing System (CTSS)l, 2, serious planning began on development
of a new computer system specifically organized as a prototype of
a computer utility. The plans and aspirations for this system,
called Multics (Multiplexed Information and Computing Service)
were described in a set of six papers presented at the 1965 Fall
Joint Computer Conference3, 8. The development of the system
was undertaken as a cooperative effort involving Bell Telephone
Laboratories (from 1965 to 1969), the computer department of
the General Electric Company,** and Project MAC of MIT.

Implicit in the 1965 papers was the expectation that there
should be a later examination of the development effort. From
the present vantage point, however, it is clear that a definitive
examination cannot be presented in a single chapter. As a result,
the present chapter discusses only some of the many possible
topics. First we review the goals, history, and current status of
the Multics project. This review is followed by a brief descrip­
tion of the appearance of the Multics system to its various classes
of users. Finally, several topics are given which represent some
of the research insights which have come out of the development
activities.

This organization has been chosen in order to emphasize
those aspects of software systems having the goals of a computer
utility which we feel to be of special interest. We do not attempt

*This paper is a reprint of the paper entitled "Multics: The First
Seven Years" by F. J. Corbato, J. H. Saltzer, and C. T. Clingen
presented at the 1972 Spring Joint Computer Conference.

**Subsequently acquired by Honeywell Information Systems, Inc.

116

Multics: The First Seven Years

detailed discussion of the organization of Multics; that is the
purpose of specialized technical books and papers.*

GOALS

117

The goals of the computer utility, although stated at length in
the 1965 papers, deserve a brief review. By a computer utility it
was meant that one had a community computer facility with:

1. Convenient remote terminal access as the normal mode
of system usage;

2. A view of continuous operation analogous to that of the
electric power and telephone companies;

3. A wide range of capacity to allow growth or contraction
without either system or user reorganization;

4. An internal file system so reliable that users trust their
only copy of programs and data to be stored in it;

5. Sufficient control of access to allow selective sharing
of information;

6. The ability to structure hierarchically both the logical
storage of information and the administration of the
system;

7. The capability of serving large and small users without
inefficiency to either;

8. The ability to support different programming environ­
ments and human interfaces within a single system;

9. The flexibility and generality of system organization
required for evolution through successive waves of
technological improvements and the inevitable growth
of user expectations.

In an absolute sense the above goals are extremely difficult
to achieve. Nevertheless, it is our belief that Multics, as it now
exists, has made substantial progress towards achieving each of
the nine goals. **Most important, none of these goals had to be
compromised in any important way.

*For example, the essential mechanisms for much of the Multics
system are given in books by Organick9 and WatsonlO.

**To the best of our knowledge, the only other attempt to compre­
hensively attack all of these goals simultaneously is the TSS/360
project at IBMll, 12, 13.

118 Multi-Access Computing

IITSTORY OF THE DEVEWPMENT

As previously mentioned, the Multics project got underway
in Fall 1964. The computer equipment to be used was a modified
General Electric 635, which was later named the 645. The most
significant changes made were in the processor addressing and
access control logic, where paging and segmentation were intro­
duced. A completely new Generalized Input/Output Controller
was designed and implemented to accommodate the varied needs
of devices such as disks, tapes, and teletypewriters without pre­
senting an excessive interrupt burden to the processors. To
handle the expected paging traffic, a four-million word (36-bit}
high-performance drum system with hardware queueing was
developed. The design specifications for these items were com­
pleted by Fall 1965, and the equipment became available for soft­
ware development in early 1967.

Software preparation underwent several phases. The first
was the development and blocking out of major ideas, followed by
the writing of detailed program module specifications. The result­
ing 3000 typewritten pages formed the Multics System Programmers'
Manual and served as the starting point for all programming.
Furthermore, the software designers were expected to implement
their own designs. As a general policy PL/1 was used as the sys­
tem programming language wherever ifossible to maximize lucidity
and maintainability of the systeml4, 1 . This policy also increased
the effectiveness of system programmers by allowing each one to
keep more of the system within his grasp.

The second major phase of software development, well
underway by early 1967, was that of module implementation and
unit checkout followed by merging into larger aggregates for
integrated testing. Until then, most software and hardware diffi­
culties had been anticipated on the basis of previous experience.
But what gradually became apparent as the module integration
continued was that there were gross discrepancies between actual
and expected performance of the various logical execution paths
throughout the software. The result was that an unanticipated
phase of design iterations was necessary. These design iterations
did not mean that major portions of the system were scrapped
without being used. On the contrary, until their replacements
could be implemented, often months later, they were crucially
necessary to allow the testing and evaluation of the other portions
of the system. The cause of the required redesigns was rarely
"bad coding" since most of the system programmers were well
above average ability. Moreover, the redesigns did not mean
that the goals of the project were compromised. Rather, three
recurrent phenomena were observed: (1) typically, specifications
representing less important features were found to be introducing
much of the complexity; (2) the initial choice of modularity and
interfacing between modules was sometimes awkward, and (3) it

Multics: The First Seven Years 119

was rediscovered that the most important property of algorithms
is simplicity rather than special mechanisms for unusual cases. *

The reason for bringing out in detail the above design itera­
tion experience is that frequently the planning of large software
projects still does not properly take the need for continuing itera­
tion into account. And yet we believe that design iterations are a
required activity on any large scale system which attempts to
break new conceptual ground such that individual programmers
cannot comprehend the entire system in detail. For when new
ground is broken, it is usually impossible to deduce the conse­
quent system behavior except by experimental operation. Simu­
lation is not particularly effective when the system concepts and
user behavior are new. Unfortunately one does not underi:;tand
the system well enough to simplify it correctly and thereby obtain
a manageable model which requires less effort to implement than
the system itself. Instead one must develop a different view:

1. The initial program version of a module should be
viewed only as the first complete specification of the
module and should be subject to design review before
being debugged or checked out.

2. Module design and implementation should be based
upon an assumption of periodic evaluation, redesign,
and evolution. In retrospect, the design iteration effect
was apparent even in the development of the earlier
Compatible Time-Sharing System (CTSS) when a second
file system with many functional improvements turned
out to have poor performance when initially installed.
A hasty design iteration succeeded in rectifying the
matter but the episode at the time was viewed as an
anomaly perhaps due to inadequate technical review of
individual programming efforts.

CURRENT STATUS

In spite of the unexpected design iteration phase, the Multics
system became sufficiently effective by late 1968 to allow system
programmers to use the system while still developing it. By
October, 1969, the system was made available for general use on

*"In anything at all, perfection is finally attained not when there
is no longer anything to add, but when there is no longer anything
to take away . " Antoine de Saint-Exupery, Wind, Sand and
Stars.

Quoted with permission of Harcourt Brace Jovanovich, Inc.

120 Multi-Access Computing

a "cost-recovery" charging basis similar to that used for other
major computation facilities at MIT. Multics is now the most
widely used time-sharing system at MIT, supporting a user com­
munity of some 500 registered subscribers. The system is cur­
rently operated for users 22 hours a day, seven days a week. For
at least eight hours each day the system operates with two pro­
cessors and three memory modules containing a total of 384k (k =
1024} 36-bit words. This configuration currently is rated at a
capacity of about 55 fairly demanding users such that most trivial
requests obtain response in one to five seconds. (Future design
iterations are expected to increase the capacity rating.) Several
times a day during the off-peak usage hours the system is dynami­
cally reconfigured into two systems: a reduced capacity service
system and an independent development system. The development
system is used for testing those hardware and software changes
which cannot be done under normal service operation.

The reliability of the round-the-clock system operation
described above has been a matter of great concern, for in any
online real time system the impact of mishaps is usually far
more severe than in batch processing systems. In an online sys­
tem, especially important considerations are:

1. the time required before the system is usable again
following a mishap,

2. the extra precautions required for restoring possibly
lost files, and

3. the psychological stress of breaking the interactive
dialogue with users who were counting on system
availability.

Because of the importance of these considerations, careful
logs are kept of all Multics "crashes" (i.e., system service dis­
ruption for all active users) at MIT in order that analysis can
reveal their causes. These analyses indicate currently an aver­
age of between one and two crashes per 24 hour day. These
crashes have no single cause. Some are due to hardware failures,
others to operator error and still others to software bugs intro­
duced during the course of development. At the two other sites
where Multics is operated, but where active system development
does not take place, there have been almost no system failures
traced to software.

Currently the Multics system, including compilers, com­
mands, and subroutine libraries, consists of about 1500 modules,
averaging roughly 200 lines of PL/1 apiece. These compile to
produce some one million words of procedure code. Another
measure of the system is the size of the resident supervisor,
which is about 30k words of procedure and, for a 55 user load,
about 35k words of data and buffer areas.

Multics: The First Seven Years 121

Because the system is so large, the most powerful maintenance
tool available was chosen - the system itself. With all of the sys­
tem modules stored online, it is easy to manipulate the many com­
ponents of different versions of the system. Thus, it has been
possible to maintain steadily for the last year or so a pace of
installing five or ten new or modified system modules a day.
Some three-quarters of these changes can be installed while the
system is in operation. The remainder, pertaining to the central
supervisor, are installed in batches once or twice a week. This
online maintenance capability has proven indispensable to the rapid
development and maintenance of Multics since it permits constant
upgrading of the user interface without interrupting the service.
We are just beginning to see instances of user-written applica-
tions which require this same capability so that the application
users need not be interrupted while the software they are using is
being modified.

The software effort which has been spent on Multics is diffi­
cult to estimate. Approximately 150 man-years were applied
directly to design and system programming during the "development­
only" period of Fig. 13-1. Since then we estimate that another 50
man-years have been devoted to improving and extending the sys­
tem. But the actual cost of a single successful system is mis­
leading, for if one starts afresh to build a similar system, one
must compensate for the nonzero probability of failure.

Development Development
System Only +Use Use Only

CTSS 1960 - 1963 1963 - 1965 1965-
present

Multics 1964 - 1969 1969 - present

Fig. 13-1. A Comparison of System Development
and Use Periods of CTSS and Multics*

*The Multics development period is not significantly longer than
that for CTSS despite the development of about 10 times as much
code for Multics as for CTSS and a geographically distributed
staff. Although reasons for this similarity in time span include
the use of a higher-level programming language and a somewhat
larger staff, the use of CTSS as a development tool for Multics
was of pivotal importance.

122 Multi-Access Computing

HOW MULTICS APPEARS TO ITS USERS

Having reviewed the background of the project, we may now
ask who the users of the Multics system are and what the facilities
Multics provides mean to these users. Before answering, it is
worth describing the generic user as "viewed" by Multics. Although
from the system's point of view all users have the same general
characteristics and interface with it uniformly, no single human
interface represents the Multics machine. That machine is deter­
mined by each user's initial procedure coupled with those functions
accessible to him. Thus, the potential exists to present each
Multics user with a unique external interface.

However, Multics does provide a native internal program
environment consisting of a stack-oriented, pure-procedure collec­
tion of PL/1 procedures imbedded in a segmented virtual memory
containing all procedures and data stored online. The extent to
which some, all, or none of this internal environment is visible
to the various users is an administrative choice.

The implications of these two views - both the external
interface and the internal programming environment - are dis­
cussed in terms of the following categories of users:

1. System programmers and user application programmers
responsible for writing system and user software.

2. Administrative personnel responsible for the manage­
ment of system resources and privileges.

3. The ultimate users of applications systems.

4. Operations and hardware maintenance personnel respon­
sible, respectively, for running the machine room and
maintaining the hardware.

Multics as Viewed by System and Subsystem Programmers

The machine presented to both the Multics system program­
mer and the application system programmer is the one with which
we have the most experience; it is the raw material from which one
constructs other environments. It is worth reemphasizing that the
only differentiation between Multics system programmers and user
programmers is embodied in the access control mechanism which
determines what online information can be referenced; therefore,
what are apparently two groups of users can be discussed as one.

Major interfaces presented to programmers on the Multics
system can be classified as the program preparation and docu­
mentation facilities and the program execution and debugging
environment. They will be touched upon briefly, in the order
used for program preparation.

Multics: The First Seven Years 123

Program Preparation and Documentation

The facilities for program preparation on Multics are typical
of those found on other time-sharing systems, with some shifts in
emphasis. For example, programmers consider the file system
sufficiently invulnerable to physical loss that is is used casually
and routinely to save all information. Thus, the punched card has
vanished from the work routine of Multics programmers and
access to one's programs and the ability to work on them are pro­
vided by the closest terminal.

As another example, the full ASCII character set is employed
in preparing programs, data, and documentation, thereby elimi­
nating the need for multiple text editors, several varieties of text
formatting and comparison programs, and multiple facilities for
printing information both online and offline. This generalization
of user interfaces facilitates the learning and subsequent use of
the system by reducing the number of conventions which must be
mastered.

Finally, because the PL/1 compiler is a large set of pro­
grams, considerable attention was given to shielding the user
from the size of the compiler and to aiding him in mastering the
complexities of the language. As in many other time-sharing
systems, the compiler is invoked by issuing a simple command
line from a terminal exactly as for the less ambitious commands.
No knowledge is required of the user regarding the various phases
of compilation, temporary files required, and optional capabilities
for the specialist: explanatory "sermons" diagnosing syntactic
errors are delivered to the terminal to effect a self-teaching
session during each compilation. To the programmer, the PL/1
compiler is just another command.

Program Execution Environment

Another set of interfaces is embodied in the implementation
environment seen by PL/1 programmers. This environment con­
sists of a directly addressable virtual memory containing the
entire hierarchy of online information, a dynamic linking facility
which searches this hierarchy to bind procedure references, a
device-independent input/output16 system,* and program debugging
and metering facilities. These facilities enjoy a symbiotic rela­
tionship with the PL/1 procedure environment used both to imple­
ment them and to implement user facilities co-existing with them.
Of major significance is that the natural internal environment pro­
vided and required by the system is exactly that environment

*The Michigan Terminal System1 7 has a similar device-independent
input/output system.

124 Multi-Access Computing

expected by PL/1 procedures. For example, PL/1 pointer
variables, call and return statements, conditions, and static and
automatic storage all correspond directly to mechanisms provided
in the internal environment. Consequently, the system supports
PL/1 code as a matter of course.

The main effect of the combination of these features is to
permit the implementer to spend his time concentrating on the
logic of his problem; for the most part he is freed from the usual
mechanical problems of storage management and overlays, input/
output device quirks, and machine-dependent features.

Some Implementation Experience

The Multics team began to be much more productive once
the Multics system became useful for software development. A
few cases are worth citing to illustrate the effectiveness of the
implementation environment. A good example is the current PL/1
compiler, which is the third one to be implemented for the project,
and which consists of some 250 procedures and about 125k words
of object code. Four people implemented this compiler in two
years, from start to first general use. The first version of the
Multics program debugging system, composed of more than
3000 lines of source code, was usable after one person spent
some six months of nights and weekends "bootlegging" its imple­
mentation. As a last example, a facility consisting of 50 proce­
dures with a total of nearly 4000 PL/1 statements permitting
execution of Honeywell 635 programs under Multics became oper­
ational after one person spent eight months learning about the
GCOS operating system for the 635, PL/1, and Multics, and then
implemented the environment. In each example, the implementa­
tion was accomplished from remote terminals using PL/1.

Multics users have discovered that it is possible to get their
programs running very quickly in this environment. They fre­
quently prepare "rough drafts" of programs, execute them, and
then improve their over-all design and operating strategy using
the results of experience obtained during actual operation. As an
example, again drawn from the implementation of Multics, the
early designs and implementations of the programs supporting the
virtual memory18 made overoptimistic use of variable-sized stor­
age allocation techniques. The result was a functionally correct
but inadequately performing set of programs. Nevertheless, these
modules were used as the foundation for subsequent work for many
months. When they were finally replaced with modules using
simplified fixed-size storage techniques, performance improve­
ments of more than an order of magnitude were realized. This
technique emphasizes two points: first, it is frequently possible
to provide a practical, usable facility containing temporary ver­
sions of programs; second, often the insight required to signifi­
cantly improve the behavior of a program comes only after it is

Multics: The First Seven Years 125

studied in operation. As implied in the earlier discussion of
design iteration, our experience has been that structural and
strategic changes rather than "polishing" (or recoding in assembly
language) produce the most significant performance improvements.

In general, we have noticed a significant "amplifier" or
"leverage" effect with the use of an effective online environment
as a system programming facility. Major implementation projects
on the Multics system seldom involve more than a few program­
mers, thereby easing the management and communications prob­
lems usually entailed by complex system implementations. As
would be expected, the amplification effect is most apparent with
the best project personnel.

Administration of Multics Facilities and Resources

The problem of managing the capabilities of a computer
utility with geographically dispersed subscribers leads to a require­
ment of decentralized administration. At the apex of an adminis­
trative pyramid resides a system administrator with the ability to
register new users, confer resource quotas, and generate periodic
bills for services rendered. The system administrator deals with
user groups called projects. Each group can in turn designate a
project administrator who is delegated the authority to manage a
budget of system resources on behalf of the project. The project
administrator is then free to deal directly with project members
without further intervention from the system administrator, thereby
greatly reducing the bottlenecks inherent in a completely central­
ized administrative structure.

Environment Shaping

In addition to having immediate control of such resources
as secondary storage, port access, and rate of processor usage,
the project administrator is also able to define or shape the
environment seen by the members of his project when they log
into the system. He does this by defining those procedures that
can be accessed by members of his project and by specifying the
initial procedure executed by each member of his project when he
logs in. This environment-shaping facility has led to the notion
of a private project subsystem on Multics. It combines the
administrative and programming facilities of Multics so that a
project administrator and a few project implementers can build,
maintain, and evolve environments entirely on their own. Thus,
some subsystems bear no internal resemblance to the standard
Multics procedure environment.

For example, the Dartmouth BASic19 compiler executes in
a closed subsystem implemented by an MIT student group for use
by undergraduates. The compiler, its object code, and all support
routines execute in a simulation of the native environment provided

126 Multi-Access Computing

at Dartmouth. The users of this subsystem need little, if any,
knowledge of Multics and are able to behave as if logged into the
Dartmouth system proper. Other examples of controlled environ­
ment subsystems include one to permit many programs which
normally run under the GCOS operating system to also run unmodi­
fied in Multics. Finally, an APL20 subsystem allows the user to
behave for the most part as if he were logged into an APL machine.
The significance of these subsystems is that their implementers
did not need to interact with the system administrator or to modify
already existing Multics capabilities. The administrative facilities
permit each such subsystem to be offered by its supporters as a
private service with its own group of users, each effectively having
its own private computer system.

Other Multics Users

Finally, we observe that the roles of the application user,
the system operators, and the hardware maintainers as seen by
the system are simply those of ordinary Multics users with spe­
cialized access to the online procedures and data. The effect of
this uniformity of treatment is to reduce greatly the maintenance
burden of the system control software. One example, of great
practical importance, has been the ease with which system per­
formance measurement tools have been prepared for use by the
operating staff.

INSIGHTS

So far, we have discussed the status and appearance of the
Multics system. A further question is what has been learned in
the construction o{ Multics which is useful to other systems
designers. Having a bright idea which clearly solves a problem
is not sufficient cause to claim a contribution if the idea is to be
part of a complex system. In order to establish the real feasi­
bility of an idea, all of its implications and consequences must be
fci.lowed out. Much of the work on Multics since 1965 has involved
following out implications and consequences of the many ideas then
proposed for the prototype computer utility. That following out is
an essential part of proof of ideas is attested by the difficulties
which have been encountered in other engineering efforts such as
the development of nuclear fusion power plants and the electric
automobile. Not all proposals work out; for example, extended
attempts to engineer an atomic-powered airplane suggest
infeasibility.

Perhaps Multics' most significant single contribution to the
state of the art of computer system construction is the demonstra­
tion of a large set of fully implemented ideas in a working system.
Further, most of these ideas have been integrated without strain­
ing the overall design; most additional proposals would not topple

Multics: The First Seven Years 127

the structure. Ideas such as virtual memory access to online
storage, parallel process organization, routine but controlled
information sharing, dynamic linking of procedures, and high­
level language implementation have proved remarkably compatible
and complementary.

To illustrate some of the areas of progress in understanding
of system organization and construction which have been achieved
in Multics, we consider here the following five topics:

1. Modular division of responsibility

2. Dynamic reconfiguration

3. Automatically managed multilevel memory

4. Protection of programs and data

5. System programming language

Modular Division of Responsibility

Early in the design of Multics, a decision had to be made
whether or not to treat the segmented virtual memory as a sepa­
rately usable "feature," independent of a traditionally organized
read/write type file system. The alternative, to use the seg­
mented virtual memory as the file system itself, providing the
illusion of direct "in-core" access to all online storage, was
certainly the less conservative approach. (See Fig. 13-2.) The
second approach, which was the one chosen, led to a strong test
of the ability of a computing system to support an apparent one­
level memory for an arbitrarily large information base. It is
interesting that the resulting almost total decoupling between
physical storage allocation and data movement on the one hand
and directory structure, naming, and file organization on the
other led to a remarkably simple and functionally modular struc­
ture for that part of the system. 18 (See Fig. 13-3.)

Another high degree of functional modularity was achieved
in scheduling, multiprogramming, and processor management.
Because harnessing of multiple processors was an objective from
the beginning, a careful and methodical approach to multiplexing
processors, handling interrupts, and providing interprocess
synchronizing primitives was developed. The resulting design,
known as the Multics traffic controller, absorbed into a single,
simple module a set of responsibilities often diffused among a
scheduling algorithm, the input/output controlling system, the
online file management system, and special purpose interuser
communication mechanism mechanisms. 21

Finally, with processor management and online storage
management uncoupled into well-isolated modules, the Multics

128 Multi-Access Computing

ADDRESS MAP
FOR USER 1

VIRTUAL
PROCESSOR 1--
FOR USER 1

ADDRESS MAP

...-----, FOR USER 2

VIRTUAL
PROCESSOR ~­
FOR USER 2

ROOT
DIRECTORY

SYSTEM
LIBRARY

DIRECTORY

SUPERVISOR
SEGMENT

PROJECT
DIRECTORY

USER 1
DIRECTORY

SEGMENT
A

VIRTUAL MEMORY STORAGE SYSTEM

Fig. 13-2. Virtual File System Approach

USER 2
DIRECTORY

SEGMENT
B

input/output system was left with the similarly isolatable function
of managing streams of data flowing from and to source and sink
type devices.16 Thus, this section of the system concentrates
only on switching of the streams, allocation of data buffering
areas, and device control strategies.

Each division of labor described above represents an interest­
ing result primarily because it is so difficult to discover appro­
priate divisions of complex systems.* Establishing that a certain
proposed division results in simplicity, creates an uncluttered
interface, and does not interfere with performance, is generally
cause for a minor celebration.

Dynamic Reconfiguration

If the computer utility is ever to become as much a reality
as the electric power utility or the telephone communication
service, its continued operation must not be dependent upon any
single physical component, since individual components will
eventually require maintenance. This observation leads an elec­
tric power utility to provide procedures whereby an idle generator
may be dynamically added to the utility's generating capacity,

*see Dijkstra22 for a further discussion of this point.

Multics: The First Seven Years 129

USER PROGRAMS AND COMMAND/SUBROUTINE LIBRARY

I

GENERAL USER

I ---------t----- -T----
INTERFACE

I ,. .,,
I
I DIRECTORY USER 1/0 DEVICE

ADDRESS SPACE CONTROL AND

I MANAGEMENT BUFFERING

I
I I /

I /
I / -1---T---7---- - ----1 ~-

VIRTUAL
MEMORY/
MUL Tl-PROCESS

I I /
! ..t ti/

DRUM, DISK, CORE

f-+ OEMAND PAGING
CONTROLLER

.,,
PROCESSOR

MULTIPLEXING AND
PROCESS

Fig. 13-3. Virtual Memory Feature Approach

.,,

while another is removed for maintenance, all without any disrup­
tion of service to customers. A similar scenario has long been
proposed for multiprocessor, multimemory computer systems, in
which one would dynamically switch processors and memory boxes
in and out of the operating configuration as needed. Unfortunately,
though there have been demonstrated a few "special purpose"
designs,* it has not been apparent how to provide for such opera­
tions in a general purpose system. A recent thesis24 proposed a
general model for the dynamic binding and unbinding of computation
and memory structures to and from ongoing computations. Using
this model as a basis, the thesis also proposed a specific imple­
mentation for a typical multiprocessor, multimemory computing
system. One of the results of this work was the addition to the
operating Multics system of the capability of dynamically adding
and removing central processors and memory modules as in Fig.
13-4. The usefulness of the idea may be gauged by observing that
at MIT five to ten such reconfigurations are performed in a typical

*An outstanding example is the American Airlines SABRE
system. 23

130 Multi-Access Computing

r------------,
I I
I CENTRAL CENTRAL I
I PROCESSOR PROCESSOR I
I I

r----J L----,
I I
I I
I I
I MEMORY MEMORY MEMORY I
I I
I I
L---------------~~~~~~

r-----1
I I
I CENTRAL I
I PROCESSOR I
I I

1----_J

.-----,
I I
I CENTRAL I
I PROCESSOR I
I I

L---1
I
I
I
I
I
I

I I

I ', MEMORY MEMORY MEMORY

I I
I I

I DEVELOPMENT I
~~~----J L _______ _s~v~~y~~J 
r---------, 
I I 
I OFF-LINE 1, I FOR CENTRAL 

I MAINTENANCE PROCESSOR l 
L ____ _ 

r----
' ,__-1-.-:::;., 

.------1 
I I 
I I I CENTRAL l PROCESSOR : 

I 
L---, 

...=-......3'-~ I 

I 
I 

MEMORY MEMORY MEMORY I 
I 

I I 
I I 
L _ - - - - - - - - - - - - - - - ..:E!.:'~E~~E:!J 

Fig. 13-4. MULTICS Operating System 



Multics: The First Seven Years 131 

24-hour operating day. Most of the reconfigurations are used to 
provide a secondary system for Multics development. 

Automatically Managed Multilevel Memory 

By now it has become accepted lore in computer systems that 
the use of automatic management algorithms for memory systems 
constructed of several levels with different access times can pro­
vide a significant reduction of user programming effort. Examples 
of such automatic management strategies include the buffer mem­
ories of the IBM system 370 models 155, 165, and 19525 and the 
demand paging virtual memories of Multics, IBM's CP-6726 and the 
Michigan Terminal System.17 Unfortunately, behind the mask of 
acceptance hides a worrisome lack of knowledge about how to engi­
neer a multilevel memory system with appropriate strategy 
algorithms which are matched to the load and hardware character­
istics. One of the goals of the Multics project has been to instrument 
and experiment with the multilevel memory system of Multics, in 
order to learn better how to predict in advance the performance of 
proposed new automatically managed multilevel memory systems. 
Several specific aspects of this goal have been explored: 

A strategy to treat core memory, drum, and disk as a 
three-level system has been proposed, including a "least­
recently-used" algorithm for moving information from 
drum to disk, Such an algorithm has been used for some 
time to determine which pages should be removed from 
core memory. 27 The dynamics of interaction among two 
such algorithms operating at different levels are weakly 
understood, and some experimental work should provide 
much insight, The proposed strategy will be implemented, 
and then compared with the simpler present strategy which 
never moves things from drum to disk, but instead makes 
educated "guesses" as to which device is most appropriate 
for the permanent residence of a given page. If the auto­
matic algorithm is at least as good as the older, static one, 
it would represent an improvement in overall design by 
itself, since it would automatically track changes in user 
behavior, while the static algorithm requires attention to 
the validity of its guesses. 

A scheme to permit experimentation with predictive paging 
algorithms was devised. The scheme provides for each 
process a list of pages to be preloaded whenever the process 
is run and a second list to be immediately purged whenever 
the process stops. The upliating of these lists is controlled 
by a decision table exercised every time the process stops 
running. Since every page of the Multics virtual memory is 
potentially shared, the decision table represents a set of 
heuristics designed to separate out those which are probably 
not being shared at the moment. 



132 Multi-Access Computing 

A series of measurements was made to establish the 
effectiveness of a small hardware associative memory used 
to hold recently accessed page descriptors. These meas­
urements established a profile of hit ratio (probability of 
finding a page descriptor in the associative memory) versus 
associative memory size which should be useful to the 
designers of virtual memory systems. 28 

A set of models, both analytic and simulation, was con­
structed to try to understand program behavior in a virtual 
memory. So far, two results have been obtained. One is 
the finding that a single program characteristic (the mean 
execution time before encountering a "missing" page in the 
virtual memory as a function of memory size) suffices to 
provide a quite accurate prediction of paging and idle over­
heads. The second is direct calculation of the distribution 
of response times under multiprogramming. Having avail­
able the entire response time distribution, rather than just 
averages, permits estimation of the variance and 90-percentile 
points of the distribution, which may be more meaningful 
than just the average. A doctoral thesis is in progress on 
this topic. 

Although the immediate effect of each of these investigations 
is to improve the understanding or performance of the current 
version of Multics, the long-range payoff in methodical engineering 
using better understood memory structures is also evident. 

Protection of Programs and Data 

A long-standing objective of the public computer utility has 
been to provide facilities for the protection of executing programs 
from one another, so that users may with confidence place appro­
priate control on the release of their private information. In 
1967, a mechanism was proposed29 and implemented in software 
which generalized the usual supervisor-user protection relation­
ship. This mechanism, named "rings of protection, " provides 
user-written subsystems with the same protection from other 
users that the supervisor has, yet does not require that the 
user-written subsystem be incorporated into the supervisor. 
Recently, this approach was brought under intense review, with 
two results: 

A hardware architecture which implements the mechanism 
was proposed. 30 A chief feature of the proposed architec­
ture is that subroutine calls from one protection ring to 
another use exactly the same mechanisms as do subroutine 
calls among procedures within a protection area. The pro­
posal appears sufficiently promising that it is included in 



Multics: The First Seven Years 133 

the specifications for the next generation of hardware to be 
used for Multics. 

As an experiment in the feasibility of a multilayered super­
visor, several supervisor procedures which required pro­
tection, but not all supervisor privileges, were moved into 
a ring of protection intermediate between the users and the 
main supervisor. The success of this experiment established 
that such layering is a practical way to reduce the quantity 
of supervisor code which must be given all privileges. 

Both of these results are viewed as steps toward first, a 
more complete exploitation and understanding of rings of protec­
tion, and later, a less constrained organization of the type sug­
gested by Evans and LeClerc31 and by Lampson32. But more 
important, rings of protection appear applicable to any computer 
system using a segmented virtual memory. Two doctoral theses 
are underway in this area. 

System Programming Language 

Another technique of system engineering methodology being 
explored within the Multics project is that of higher level pro­
gramming language for system implementation. The initial step 
in this direction (which proved to be a very big step) was the 
choice of the PL/l language for the implementation of Multics. 
By now, Multics offers an extensive case study in the viability of 
this strategy. Not only has the cost of using a higher level lan­
guage been acceptable, but increased maintainability of the soft­
ware has permitted more rapid evolution of the system in response 
to development ideas as well as user needs. Three specific aspects 
of this experience have now been completed: 

The transition from an early PL/1 subset compiler14 to a 
newer compiler which handles almost the entire language 
was completed. This transition was carried out with per­
formance improvement in practically every module con­
verted in spite of the larger language involved. The signifi­
cance of the transition is the demonstration that it is not 
necessary to narrow one's sights to a "simple" subset 
language for system programming. If the language is 
thoroughly understood, even a language as complex as the 
full PL/1 can be effectively used. As a result, the same 
language and compiler provided for users can also be used 
for system implementation, thereby minimizing maintenance, 
confusion, and specialization. 

Notwithstanding the observation just made, the time required 
to implement a full PL/1 compiler is still too great for many 



134 Multi-Access Computing 

situations in which the compiler implementation cannot be 
started far enough in advance of system coding. For this 
reason, considerable interest exists in defining a smaller 
language which is easily compilable, yet retains the features 
most important for system implementation. On the basis of 
the experience of programming Multics in a subset of PL/1, 
such a language was defined but not implemented, since it 
was not needed. 33 

A census of Multics system modules reveals how much of 
the system was actually coded in PL/1, and reasons for use 
of other languages. Roughly, of the 1500 system modules, 
about 250 were written in machine language. Most of the 
machine language modules represent data bases or small 
subroutines which execute a single privileged instruction. 
(No attempt was made to provide either a data base compiler 
or PL/I built-in functions for specialized hardware needs.) 
Significantly, only a half dozen areas (primarily in the 
traffic controller, the central page fault path, and interrupt 
handlers) which were originally written in PL/1 have been 
recoded in machine language for reasons of squeezing out 
the utmost in performance. Several programs, originally 
in machine language, have been recoded in PL/1 to increase 
their maintainability. 

The implications of this work with PL/1 also should be felt 
far beyond the Multics system. Most implementers, when faced 
with the economic uncertainties of a higher-level language, have 
chosen machine language for their central operating systems. 
The experience of PL/1 in Multics when added to the expanding 
collection of experience elsewhere34 should help reduce the 
uncertainty. 

In a research project as large, long, and complex as 
Multics, any paper such as this must necessarily omit many 
equally significant ideas and touch only a few which may happen 
to have wide current interest. The purpose of individual and 
detailed technical papers is to explain these and other ideas more 
fully. The bibliography found in reference35 contains more than 
20 such technical papers. 

Immediate Future Plans 

Multics software is continuing to evolve in response to user 
needs and improved understanding of its organization. In 1972, a 
new haudware base for Multics will be installed by the Information 
Processing Center at MIT for use by the MIT computing community. 
This program compatible hardware base contains small but signifi­
cant architectural extensions to the current hardware. The circuit 
technology used will be that of the Honeywell 6080 computer. The 



Multics: The First Seven Years 135 

substantial changes include: (1) replacement of the high-performance 
paging drum initially with bulk core and, when available, LSI 
memory, and (2) implementation of rings of protection as part of 
the paging and segmentation hardware. 

Wherever possible the strategy of using off-the-shelf 
standard equipment rather than specially engineered units for 
Multics has been followed. This strategy is intended to simplify 
maintenance. 

CONCLUSIONS 

Many conclusions could possibly be drawn from the experi­
ence of the Multics project. Of these, we consider four to be 
major and worthy of note. First, we feel it is clear that it is 
possible to achieve the goals of a prototype computer utility. The 
current implementation of Multics provides a measure of the 
mechanisms required. Moreover, the specific implementation of 
the system, because it has been written in PL/1, forms a model 
for other system designers to draw upon when constructing similar 
systems. 

Second, the question of whether or not the specific software 
features and mechanisms which were postulated for effective com­
puter utility operation are desirable has now been tested with 
specific user experience. Although the specific mechanisms 
implemented subsequently may be superseded by better ones, it 
is certainly clear that the improvement of the user environment 
which was wanted has been achieved. 

Third, systems of the computer utility class must evolve 
indefinitely since the cost of starting over is usually prohibitive 
and the many-year lead time required may be equally unaccept­
able. The requirement of evolvability places stringent demands 
on design, maintainability, and implementation techniques. 

Fourth and finally, the very act of creating a system which 
solves many of the problems posed in 1965 has opened up many 
new directions of research and development. It would appear 
almost a certainty that increased user aspirations will continue 
to require intensive work in computer system principles and 
techniques. 

In closing, perhaps we should take note that in the seven 
years since Multics was proposed, a great many other systems 
have also been proposed and constructed; many of these have 
developed similar ideas. * In most cases, their designers have 

*Some examples which have not already been mentioned include: 
the TENEX system of Bolt, Beranek and Newman; the VENUS 
system of Mitre Corp.; the MU5 at Manchester University; RC-
4000 of Regnecentralen; 5020 TSS of Hitachi Corp.; DIPS-1 of 
Nippon Telephone; the Japanese National Computer Project; the 



136 Multi-Access Computing 

developed effective implementations which are directed to a 
different interpretation of the goals, or to a smaller set of goals 
than those required for the complete computer utility. This 
diversity is valuable, and probably necessary, to accomplish a 
thorough exploration of many individually complex ideas, and 
thereby to meet a future which holds increasing demand for sys­
tems which embrace the totality of computer utility requirements. 

ACKNOWLEDGEMENT 

It is impossible to acknowledge accurately the contributions 
of all the individual~ or even the several organizations which have 
given various forms of support to Multics development over the 
past seven years. As would be expected of any multiorganization 
project spanning several years, there has been a turnover in per­
sonnel. As the individual contributors now number in the hundreds, 
proper recognition cannot be given here. Instead, since the 
development of significant features and designs of Multics has 
occurred in specific areas and disciplines such as input/output, 
virtual memory design, languages, and resource multiplexing, a 
more accurate delineation of achievements should be made in 
specialized papers. So in the end we must defer to the authors of 
individual papers, past and future, to acknowledge the efforts of 
some of the many contributors who have made possible Multics 
evolution. 

PDP-10/50 TSS of Digital Equipment Corp.; the BCC-500 of 
Berkeley Computer Corp.; I. T. S. of MIT Artificial Intelligence 
Laboratory; Exec-8 of Univac; System 3 and 7 and the SPECTRA 
70/46 of RCA; Star-100 of CDC; UTS of Xerox Data Systems; the 
6700 system of Burroughs, and the Dartmouth Time-Sharing 
System. 



Multics: The First Seven Years 137 

REFERENCES 

1. Corbat6, F. J., Daggett, M. M., and Daley, R. C., "An 
Experimental Time-Sharing System", AFIPS Conf. Proc. 
21, Spartan Books, 1962, pp. 335-344. 

2. Crisman, P. A. , ed. , "The Compatible Time-Sharing 
System: A Programmer's Guide", 2nd ed., M. I. T. Press, 
Cambridge, Massachusetts, 1965. 

3. Corbat6, F. J., and Vyssotsky, V. A., "Introduction and 
Overview of the Multics System", AFIPS Conf. Proc. 27 
(1965 FJCC), Spartan Books, Washington, D. C., 1965, 
pp. 185-196. 

4. Glaser, E. L., et al., "System Design of a Computer for 
Time-Sharing Application", AFIPS Conf. Proc. 27 (1965 
FJCC), Spartan Books, Washington, D. C., 1965, pp. 197-
202. 

5. Vyssotsky, V. A., et al., "Structure of the Multics Super­
visor", AFIPS Conf. Proc. 27 (1965 FJCC}, Spartan Books, 
Washington, D. C., 1965, pp. 203-212. 

6. Daley, R. C., and Neumann, P. G., "A General-Purpose 
File System for Secondary Storage", AFIPS Conf. Proc. 27 
(1965 FJCC}, Spartan Books, Washington, D. C., 1965, 
pp. 213-229. 

7. Ossanna, J. F., et al., "Communication and Input/Output 
Switching in a Multiplex Computing System", AFIPS Conf. 
Proc. 27 (1965 FJCC}, Spartan Books, Washington, D. C., 
1965, pp. 231-241. 

8. David, E. E., Jr., and Fano, R. M., "Some Thoughts 
About the Social Implications of Accessible Computing", 
AFIPS Conf. Proc. 27 (1965 FJCC}, Spartan Books, 
Washington, D. C., 1965, pp. 243-247. 

9. Organick, E. I., The Multics System: An Examination of 
its Structure, M. I. T. Press (in press), Cambridge, 
Massachusetts and London, England. 

10. Watson, R. W., Timesharing System Design Concepts, 
McGraw-Hill Book Company, New York, 1970. 

11. Comfort, Webb T., "A Computing System Design for User 
Service", AFIPS Conf. Proc. 27 (1965 FJCC}, Spartan Books, 
Washington, D. C., 1965, pp. 619-626. 



138 Multi-Access Computing 

12. Lett, A. S., and Konigsford, W. L., "TSS/360: A 
Time-Shared Operating System", AFIPS Conf. Proc. 33 
(1968 FJCC), Thompson Books, pp. 15-28. 

13. Schwemm, R. E., "Experience Gained in the Development 
and Use of TSS/360", AFIPS Conf. Proc. 40 (1972 SJCC), 
AFIPS Press. (This volume. ) 

14. Corbato, F. J., "PL/1 as a Tool for System Programming", 
Datamation 15, 6 (May, 1969) pp. 68-76. 

15. Freiburghouse, R. A., "The Multics PL/1 Compiler", 
AFIPS Conf. Proc. 35 (1969 FJCC), AFIPS Press, 1969, 
pp. 187-199. 

16. Feiertag, R. J., and Organick, E. I., "The Multics Input­
Output System", ACM Third Symposium on Operating 
Systems Principles, (October 18-20, 1971), pp. 35-41. 

17. Alexander, M. T., "Organization and Features of the 
Michigan Terminal System", AFIPS Conf. Proc. 40 (1972 
SJCC), AFIPS Press. (This volume.) 

18. Bensoussan, A., Clingen, C. T., and Daley, R. C., "The 
Multics Virtual Memory", ACM Second Symposium on 
Operating System Principles, (October 20-22, 1969} Prince­
ton University, pp. 30-42. 

19. BASIC, Fifth Edition, Kiewit Computation Center, Dart­
mouth College (September, 1970). 

20. APL/360 User's Manual, IBM form number GH20-0683-1 
(March, 1970). 

21. Saltzer, J. H., "Traffic Control in a Multiplexed Computer 
System", ScD. Thesis, M. I. T. Department of Electrical 
Engineering, 1966. Also available as Project MAC technical 
report TR-30. 

22. Dijkstra, E. W. , "The Structure of the 'THE' -Multiprogram­
ming System", Comm. ACM 11, 5 (May, 1968), pp. 341-346. 

23. Parker, R. W., "The Sabre System", Datamation 11, 9, 
September, 1965, pp. 49-52. 

24. Schell, R. R., "Dynamic Reconfiguration in a Modular Com­
puter System", Ph.D. Thesis, M. I. T. Department of Elec­
trical Engineering, 1971. Also available as Project MAC 
technical report TR-86. 



Multics: The First Seven Years 139 

25. Conti, C. J., "Concepts for Buffer Storage", IEEE Computer 
Group News, March, 1969, pp. 9-13. 

26. Meyer, R. A., and Seawright, L. H., "A Virtual Machine 
Time-Sharing System", IBM Systems Journal 9, 3, 1970, 
pp. 199-218. 

27. Corbat6, F. J., "A Paging Experiment with the Multics 
System", In Honor of P. M. Morse, M. I. T. Press, Cam­
bridge, Massachusetts, 1969, pp. 217-228. 

28. Schroeder, M. D., "Performance of the GE-645 Associative 
Memory While Multics is in Operation", ACM Workshop on 
System Performance Evaluation (April, 1971), pp. 227-245. 

29. Graham, R. M. , "Protection in an Information Processing 
Utility", Comm. ACM 11, 5 (May, 1968) pp. 365-369. 

30. Schroeder, M. D., and Saltzer, J. H., "A Hardware Archi­
tecture for Implementing Protection Rings", ACM Third 
Symposium on Operating Systems Principles, (October 18-
20, 1971), pp. 42-54. 

31. Evans, D. C., and LeClerc, J. Y., "Address Mapping and 
the Control of Access in an Interactive Computer", AFIPS 
Conf. Proc. 30, (1967 SJCC), Thompson Books, 1967, pp. 
23-30. 

32. Lampson, Butler W., "An Overview of the CAL Time­
Sharing System", Computer Center, University of California, 
Berkeley (September 5, 1969). 

33, Clark, D. D., Graham, R. M., Saltzer, J. H., and 
Schroeder, M. D., "Classroom Information and Computing 
Service", M. I. T. Project MAC Technical Report TR-80, 
(January 11, 1971). 

34. Sammet, Jean E., "Brief Survey of Languages Used for 
Systems Implementation", SIG PLAN Notices 6, 9, October, 
1971, pp. 1-19. 

35. The Multiplexed Information and Computing Service: Pro­
grammers' Manual, M.1. T. Project MAC, Rev. 10, 1972. 
(Available from the M. I. T. Information Processing Center.) 



14. Design of tne 

Venus Operating System 

B. H. Liskov 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

The Venus operating system is an experimental 
multiprogramming system* designed to support five or six inter­
active users on a small computer. The system was primarily 
intended to support users who are cooperating with one another 
- for example, sharing a data base. It was produced as a product 
of a project performed at MITRE under the sponsorship of the 
Electronic Systems Division (ESD) of the Air Force. 

The primary hypothesis of this project was that software 
complexity can be reduced by using a machine with "correct" 
machine architecture. We had in mind some kind of complex 
system in which the data and processing requirements vary 
dynamically; for example, an online data management system or 
an operating system or any kind of system supporting interactive 
users. We felt that the architecture of current-day computers 
does not support the programming of such systems very well and, 
in fact, that considerable complexity is introduced into the soft­
ware to compensate for the inadequacies of the hardware. 

The first step was to define what we meant by "correct" 
machine architecture, and then to produce a machine with this 
architecture. This was done by microprogramming on an Inter­
data 3 computer. The result was the Venus machine. Then, 
given the Venus machine, the next step was to produce a software 
system. An operating system was selected for the experiment. 

This chapter concentrates on describing the development of 
the system according to certain system design principles. 

One important system design principle was that the system 
be designed as a hierarchy of levels of abstraction. Levels of 

*A fuller description of the system is contained in the paper1 on 
which this chapter is based. 

140 



Venus Operating System 141 

abstraction were first introduced by Dijkstra. 2 A level of 
abstraction is defined by the abstraction it supports (for example, 
virtual memories). In addition, a level of abstraction is defined 
by the resources it owns, and there are very strict rules con­
cerning resource access. First, lower levels of abstraction, 
those that are closer to the machine, are not aware of the exist­
ence of higher levels of abstraction and, obviously, are therefore 
not aware of the resources of higher levels. Higher levels are 
aware of the existence of lower levels and may need to obtain 
information contained in the resources of lower levels, but they 
cannot access those resources directly. Instead, they will have 
to appeal to the functions of lower levels to obtain desired infor­
mation. The use of levels of abstraction was applied both to the 
microprogram and to the software; examples of levels will be 
given later. 

The other important design principle was to allow the fea­
tures of the machine architecture to have a direct influence on the 
software design. This principle was selected to enable us to 
evaluate the basic hypothesis of the project; that is, that correct 
machine architecture can reduce the complexity of software. 

THE VENUS MACHINE 

Before describing the software of the Venus operating system, 
I will briefly describe some features of the Venus machine itself. 
It was constructed by microprogramming an Interdata 3 computer, 
which is a very small, slow computer. The basic instruction set 
which the microprogram supports is a relatively ordinary one for 
a small computer; however, it was augmented by certain special 
instructions and also by some special data structures. Two fea­
tures of the Venus machine are especially useful to the software: 
multiprogramming and segments. 

The Venus microprogram supports the multiprogramming of 
16 concurrent. processes. A process is defined to be a procedure 
in execution on a virtual machine. So the microprogram supports 
16 virtual machines, each one consisting of an address space and 
a work area. The address space is primarily made up of seg­
ments; the work area contains information about the state of the 
process; it is permanently located in core memory. 

The microprogram performs the scheduling of the CPU to 
the 16 virtual machines. It does this only as a result of operations 
being performed on semaphores. Semaphores are special types 
of data which were first defined by Dijkstra. 2 Only two operations 
can be performed on semaphores - the P operation and the V oper­
ation. The P operation is performed when a process wishes to 
wait either for a resource to become available or for an event to 
occur. A V operation is performed for the opposite reason - to 
release a resource or to signal that an event has occurred. When­
ever a P or V operation is performed by some process, the 



142 Multi-Access Computing 

microprogram will reexamine the scheduling of the CPU to the 
processes and possibly change the state of some of the processes. 

There is a microprogrammed multiplexed I/O channel on 
the Venus machine, primarily provided to relieve the software of 
any real-time constraints associated with the I/O devices. The 
only significant thing about this channel is that it cooperates with 
the microprogram, as far as the scheduling is concerned, by sig­
naling the end of an I/O transfer by performing a V on a sema­
phore. There are no I/O interrupts at the software level on this 
machine. 

Segments on the Venus machine are named virtual memories 
- as are the segments in Multics. 3 Segments have 15-bit names 
and may contain up to 64 thousand bytes of data. The micropro­
gram performs the mapping of segment addresses into core 
addresses. Segments are divided into 256-byte pages and so is 
core memory; segments are paged on demand between core and 
the disk. 

Segments are physically shared among the users of the 
system, making it very easy for users to share data in segments. 
On the other hand, it is impossible to protect segments without 
the cooperation of the users involved. This is accpetable only 
because the system is experimental and was designed specifically 
to support cooperating users. 

Segments are the primary storage structure available on 
the Venus machine; they are used to hold both data and procedures. 
Since procedures are stored in segments, they will be physically 
shared by the users; and therefore, it is important that they be 
reentrant. The Venus machine provides support for reentrant 
procedures through a reentrant procedure interface consisting of 
call and return instructions which save and restore the state of a 
process and push-down stacks for holding arguments and values 
of procedures. In addition, reentrancy is enhanced by not pro­
viding an easy way of storing into procedures. 

Levels of abstraction supported by the Venus microprogram 
include: 

ABSTRACTION RESOURCES METHOD OF APPEAL 

Segments Core, disk Segment reference, 
ELl instruction 

Virtual devices Devices, device SIO instruction, 
status word table channel commands 

Virtual machines CPU cycles P and V instructions 

The levels support the segments, the virtual devices, and 
the virtual machines. The level of abstraction supporting seg­
ments has as its resources core memory and the paging disk, 



Venus Operating System 143 

and entry into the level occurs whenever a segment is referenced 
or an ELl instruction is executed. The ELl instruction was 
defined because of the rule about resources of levels of abstrac­
tion. We knew that the tables owned by this level of abstraction 
contained valuable information which the software would need, 
and the software would not be able to access that information 
directly. So we defined the ELl instruction to permit the software 
to appeal to the level to obtain that information. 

The virtual devices are supported by the microprogrammed 
channel, and the resources of interest are the real devices, and 
also the device status word table which tells about the state of 
each device. Entry into this level happens as a result of an SIO 
(start I/O) instruction together with a sequence of channel com­
mands describing the transfer to take place. 

In virtual machines, the important resource is the CPU 
cycles being distributed among the processes. Entry into this 
level happens only as the result of performance of P and V 
instructions. 

The levels shown previously are given in their order in the 
hierarchy of levels. The lowest level supports virtual machines; 
the next, the virtual devices; and the highest, the segments. The 
virtual device level is higher than the virtual machine level 
because it performs a V on a semaphore to signal the end of 
an I/O transfer. The segment level is higher than the virtual 
device level because it calls upon the virtual device level in 
order to perform the transfer of segment pages between core 
and disk. 

Now, the major features of the machine architecture can 
be examined from the point of view of building a software sys­
tem on the computer. One important thing about the machine 
architecture is that there are 16 processes available. We were 
thinking of supporting five or six users; in fact, we have only 
five interactive devices. Assuming each user has his own 
process, several processes are still left over for system use. 
Now, in an operating system there are many tasks being per­
formed which are logically asynchronous with each other and 
also with the users. For example, a part of the system man­
ages the I/O devices for the system as a whole, and this is 
logically asynchronous with the user, who is concerned only 
with his own devices. Having several processes at our disposal 
meant that logically asynchronous tasks could be made to per­
form in a physically asynchronous manner by assigning them to 
separate processes. This led to clarity and reduced complexity 
in the design. 

Another important feature of the Venus machine is that 
procedures and data can be shared. Therefore, before beginning 
to design the system, we expected it to be composed of reentrant 
procedures running as independent processes and using segments 
to hold shared and private data. 



144 Multi-Access Computing 

An important part of any operating system is the resource 
management. Resource management is necessary on a multiuser 
system to avoid the chaos which would result if the users were to 
compete freely for the resources. Goals of resource management 
are to treat the users fairly and to use the resources efficiently 
for the system as a whole. 

Also, in our system we were anxious to prevent deadlocks 
from occurring on the resources controlled by the system. As an 
example of deadlock, suppose there are two processes: Process 
One, which owns the tape and must have the printer in order to 
continue, and Process Two, which owns the printer and must have 
the tape in order to continue. Process One and Process Two are 
in a deadlock in which neither can continue; in addition, the system 
suffers because neither the tape nor the printer is available. One 
way to resolve this deadlock is to remove either Process One or 
Process Two. This is not always a good idea, however, par­
ticularly in a system such as ours in which users may share 
data. For example, one of the processes involved in a deadlock 
may have been manipulating some common data in such a way that 
the data is inconsistent and only that process can make it consis­
tent again. Removing that process to resolve a deadlock is 
obviously unsatisfactory for the other users of the data. 

Core, the disk, and the CPU cycles are system resources 
which are managed by the microprogram; and therefore, we did 
not need to worry about them in software. We still had to manage 
the 1/0 devices, however, and also the segments. Segments are 
used to hold data and procedures. Procedures are all reentrant; 
and therefore, no management was necessary. A reentrant pro­
cedure can be run from all 16 processes at once without any diffi­
culties arising. We still had to be concerned with the management 
of data segments. 

We distinguished between system-defined data segments and 
user-defined data segments. An example of system-defined data 
segments is provided by the dictionaries, which contain mappings 
between external symbolic names for segments and the internal 
segment names recognized by the microprogram. The dictionaries 
are intended to be shared because we expect the users to share 
segments. Furthermore, when a dictionary is being changed, it 
does not contain consistent data. For example, each dictionary 
contains a count of the number of entries. While an entry is being 
added or deleted, there will be a time at which the count does not 
agree with the actual number of entries. In other words, a need 
exists here for mutual exclusion. Mutual exclusion can be pro­
vided by attaching a semaphore to each dictionary and then per­
forming a P on the semaphore before starting to use the dictionary 
and a V when finished. However, if the P's and V's are not per­
formed correctly - for example, if a P is performed and the 
corresponding Vis not - then the dictionary will become unavail­
able to the system as a whole. 



Venus Operating System 145 

Our solution to the management of such system data segments 
is to limit access to only a special group of functions, which per­
form P's and V's correctly (the system-defined dictionary functions 
in the case of dictionaries). But this is the same as treating the 
segments like the resource of a level of abstraction; naturally, 
access to the resource will be limited to the functions which make 
up the level. There are several other groups of system data seg­
ments like the dictionaries, and these segments are all managed 
in this way. 

In general, the management of shared user-defined data seg­
ments is a very difficult problem. For one thing, there are many 
different types of sharing, and it is difficult to say which type is 
best in all circumstances. We decided not to try to control access 
to these segments. Instead, because the P's and V's exist, the 
users have at their disposal a tool which will allow them to define 
an algorithm of their own choosing if they so wish. 

The system's management of teletypes will serve as an 
example of management of I/O devices and also illustrate how the 
work of the system is performed by reentrant procedures distrib­
uted over independent processes. In order to manage devices, it 
is first necessary to solve the problem of how they are going to be 
used. Our solution involves the notion of a "preferred" teletype. 
This is the teletype at which the user sits down and logs in. His 
programs can refer to this teletype symbolically. However, he 
does not own the teletype. He does control it for limited trans­
actions - generally long enough for his program to ask him a 
question and for him to respond with a command. But between 
these transactions, he cannot prevent either the system or other 
users from sending messages to his teletype. 

Once the problem of device use is solved, the next problem 
is somehow to support this use. In our system we support the 
notion of "preferred" teletype by means of three levels of abstrac­
tion, each one of which can be thought of as supporting a virtual 
device with different characteristics. These levels of abstraction 
primarily are made up of shared reentrant procedures running as 
independent processes. 

The lowest level of abstraction is the microprogrammed 
channel. The characteristics of the virtual device at this level 
are very similar to those of the real teletypes, except that data 
may be transferred many bytes at a time. Core buffers are 
required to hold the data being transferred, and the completion 
of I/O is signalled by the performance of a V on a semaphore 
which is also located in core. 

The first level defined in software is made up of teletype 
controllers. There is one teletype controller per teletype; each 
controller runs as an independent process. But there is a single 
reentrant teletype controller procedure. The characteristics of 
the virtual device at this level are the following: The types of 
transfers performed by the "preferred" teletype are defined at 



146 Multi-Access Computing 

this level; most important is the standard interactive transfer in 
which a program writes out a line and then the user responds with 
a command. The I/O buffers holding the data to be transferred 
are now in segments. A very important characteristic is that the 
virtual device may be addressed whether it is busy or not; a 
request for a transfer is put on a queue, and the teletype con­
troller will satisfy the request when the device is available. 
And finally, the teletype controller is informed of the location 
of the semaphore on which it will perform a V when the transfer 
is finished; generally this semaphore will be located in a 
segment. 

One final level completes the notion of "preferred" teletype; 
this level consists of the teletype requester. Again this is a single 
reentrant procedure, but now it runs on the virtual machine of the 
user who is requesting the I/O transfer. The characteristics of 
the virtual device at this level are very similar to those supported 
by the teletype controller; however, there is now a simplified 
interface. The user can describe the transfer to the teletype 
requester by means of a few arguments at the time of the call, 
whereas the teletype controller requires a fairly complicated 
request element describing the transfer. One argument of the 
teletype requester is the symbolic reference to the "preferred" 
teletype. In addition, the teletype requester defines some rules 
about how a user can use the teletypes; in particular, he must 
finish I/O on a given teletype before starting a new transfer on 
the same teletype. 

An example of how a user or system function performs tele­
type I/O on our system will illustrate how control passes among 
the various levels of abstraction. The teletype requester is called 
with arguments describing the transfer to take place. It builds a 
request element, puts it on a queue, and then notifies the teletype 
controller by performing a Von a semaphore. When the teletype 
is available, the teletype controller picks up the request element, 
probably moves some data from a segment buffer to a core buffer, 
and starts the microprogrammed channel by performing an SIO 
instruction. When the I/O transfer is complete, the micropro­
grammed channel performs a V on a core semaphore associated 
with the teletype controller. The teletype controller moves data 
from a core buffer and then notifies the teletype requester that 
the I/0 is complete by performing a Von the semaphore named 
in the request element. The teletype requester then returns to 
the user. 

Actually, it is not necessary for the user or system function 
to wait for the completion of I/O. Different arguments. will cause 
the teletype requester to return as soon as the transfer has been 
initiated. Then when the user is ready to find out the result of 
the transfer, he calls the teletype requester again. This time the 
teletype requester will wait for the completion of the I/O and then 
return to the user. 



Venus Operating System 147 

CONCLUSIONS 

Although it is extremely difficult to evaluate a project of 
this sort, qualitatively the results seem good; the design of the 
system is clear and consistent. Quantitatively, it required about 
two man-years to build the microprogram which supports the 
Venus machine. Then, given this machine, it took about six man­
years to build the software part of the system. This includes not 
only the operating system functions like the resource management 
but also a large number of utility functions. For instance, there 
is an assembler, an online interactive symbolic editor, and a 
large complement of debugging aids and instrumentation at the 
software level. Six man-years is a rather brief time to develop 
a system of this complexity. This result appears to support our 
basic hypothesis that the complexity of software can be reduced 
by having a machine with the correct architecture. In addition, it 
seems that we had a fairly good idea of what the correct archi­
tecture should be. Also, the levels of abstraction proved to be 
very valuable because they gave us a clear and precise way of 
thinking about the structure of the system. 

REFERENCES 

1. B. H. Liskov, "The Design of the Venus Operating System," 
to be published in Communications of the ACM, March 1972. 

2. E. W. Dijkstra, "The Structure of the 'THE' - Multipro­
gramming System," Communications of the ACM, 11, 5, 
May 1968, 341-346. 

3. F. J. Corbato and V. A. Vyssotsky, "Introduction and Over­
view of the Multics System, " Proceedings AFIPS 1965 Fall 
J.oint Computer Conference, 27, Part 1, Spartan Books, 
New York, 185-196. 



15. Interactive Computer-Controlled 

Information Television ff ICCIT) 

John Volk 
The MITRE Corporation 

McLean, Virginia 

At MITRE we are now developing a new style of time sharing. 
We call it Time-shared Interactive Computer Controlled Informa­
tion Television. It's new, not so much in technological approach 
but in its intended users. We hope to develop a system that pro­
vides help, education, and entertainment for the masses of urban 
America. We call it TICCIT. 

This program began several years ago as an IR&D project 
to investigate ways in which MITRE's aerospace skills could be 
applied to the problems of education. One outcome of this work 
was a CAI system, much lower in cost than any other system and 
surprisingly powerful. An ambitious program to evaluate two of 
these systems is now under way under NSF sponsorship. During 
the design of our CAI system we soon came across the problem of 
bringing CAI not only to the child in the school but also to the child 
in the home. The solution to this problem turned out to be the 
vehicle for an expanded, more revolutionary effort. 

The contents of a time-sharing system for all ages and classes 
of in:dividuals must be as diversified and interesting as the indi­
viduals themselves. One major effort we are about to begin will 
be an assessment of the wide variety of possible services (Fig. 15-1). 
In about two years, we will actually market-test selected services 
in a real system. 

Our technical approach to time sharing for the masses is 
quite simple (Fig. 15-2). We build a minicomputer system, use a 
cable TV to serve as a communication link to each home (Fig. 15-3). 
A standard home TV set is used as a display. A single channel on 
the CATV system is time-diversion multiplexed to deliver pictures 
to multiple users. First, a picture is sent to one user in a 60th 
of a second, then to another, then to a third and so on. A device 
to catch pictures is installed at each home. This device captures 
the picture in a 60th of a second and then repetitively plays it back 

148 



RF 
INPUT 

FROM 

Interactive Information Television 

PROBLEM SOLVING 
DESK CALCULATION 
SOCIAL SECURITY 
HIGHER LEVEL MATHEMATICS 

DAILY ROUTINES 
BANKING 
TELE-SHOPPING 

EDUCATION AND INFORMATION 
PROGRAMMED LEARNING 
MUNICIPAL GOV'T REGULATIONS 
CRIME DETECTION - "MUG SHOTS" 
PARTICIPATE IN SCHOOL BD. MEETINGS- CHEER, BOO, QUESTION 
PLATFORM FOR PERSONAL OPINIONS 
GAME-PLAYING FOR SHUT-INS 
SOCIAL SERVICE "YELLOW PAGES" 
PICTUREPHONE "FACE-TO-FACE" COMMUNICATION 
ELECTION-TIME ISSUES AND ANSWERS 
OFFTRACK BETTING 

Fig. 15-1. Potential TICCIT Home Services 

WRITE 
TUNER CONTROL 

(CHANNEL 
ADDRESS 

SELECTOR) 
VIDEO, AMP DECODER 

VIDEO 

149 

COAXIAL 

HIF, DETECTOR,IIJ 

INPUT 
VIDEO 

CABLE 

)_-

[ STANDARD l 
TV RECEIVER 

TELEPHONE 

LINE 

TOUCH 
TONE 

PHONE 

TAPE 
RECORDER 

RF(CHANNEL3)0UTPUT 

COUPLER/DECODER 

Fig. 15-2. Demonstration System Home Terminal 



150 Multi-Access Computing 

SUBSCRIBERS 

CATV •ttttttt Tl CC ET 
COMPUTER TELEVISION --------t- DISPLAY BILLING SYSTEM SYSTEM CHANNEL .. 

.._REFRESH 
H ,T.V.1 

DEVICE 

c:;==u 

TELEPHONE OR 

~TOUCH TONE OR 
~...., ORDINARY TELEPHONE 

TWO-WAY CABLE MULTIPLEX 

Fig. 15-3. TICCET CATV Application 

so that it appears to home TV sets as a normal television signal. 
A keyboard is also provided at each home to allow the user to 
communicate with the computer. We have built such a system and 
are demonstrating it almost daily in Heston, Virginia (Fig. 15-4). 

In each demonstration home, we have installed a video tape 
recorder and what we call a coupler/decoder (Fig. 15-5). The 
video tape recorder, located on the top of the TV set on the left 
side, operates in a stop frame mode. In other words,. when the 
reels start moving, the tape is stationary but the head of the video 
tape recorder still passes over the tape. This device in this 
mode serves as picture catcher. A touch-tone phone is used as a 
link back to the computer. 

The coupler/decoder (Fig. 15-6) examines TV pictures 
sent on the TICCIT channel and causes the video tape recorder to 
capture selected pictures. The demonstration system has both 
noninteractive arid interactive services. The noninteractive, or 
public, pictures are sent cyclically about 200 to 300 different pic­
tures every five seconds. These pictures include information that 
has both topicality and wide interest, such as weather reports, 
stock market news, game reports, etc. To view these, the 
public-private switch is placed in the public position and the sub­
channel switch is set to the code of the desired information. In 
the interactive mode, the switch is set in the private position. 



HOME TERMINAL COMMUNICATIONS 
LINK 

CHESAPEAKE & POTOMAC 
TELEPHONE LINES 

RESTON 

RESTON, VA. 

THE MITRE CORPORATION 

Fig. 15-4. Reston Test Overall System Block Diagram. 

...... 
a 
(1) 
1-j 

l>l 
0 
::r. 
iii 
...... 
::s 
S' 
1-j 

8 
~ ..... 
0 ::s 
I-'.] 
(1) ...... 
(1) 

< ..... 
Ul ..... 
0 ::s 

..... 
C11 ..... 



Fig. 15-5. Interactive Home Terminal. 



Fig. 15-6. Mitre Coupler/ Decoder 

...... g_ 
CD 
'1 
p.l 
(") .... ...... 
< 
CD 

~ 
'1 
s 
~ ...... 
0 ., 
~ 
CD ,_ 
CD 
< ...... 
en ...... 
0 ., 



154 Multi-Access Computing 

This position captures only pictures generated specifically for 
the home. 

Each picture assembled by the computer contains an address 
(a 16-bit code of white dashes on a black background on a scan 
line immediately preceding the vertical retrace interval of a 
standard TV picture). In the public mode, the coupler/decoder 
looks at each address received and determines if that address 
matches the subchannel code. In the private mode, it examines 
the pictures to determine if the specific home address was set. 
When a correct address is detected, the tape recorder is forced 
to record for a 60th of a second. It thereby captures the following 
picture and then switches automatically back to playback and con­
tinuously displays the captured picture on the home TV. 

In addition to using video tape recorders for the home 
refresh device, we are also investigating the use of other devices 
such as the image storage tubes, cassette video tape recorders 
and video disc recorders (Fig. 11)-7). Using video tape recorders 
was motivated by the possibility that many consumers will pur­
chase cassette video tape recorders in the next few years, purely 
for their entertainment value. The cost of interactive TV then 
would be only the cost of the inexpensive coupler/decoder. The 
cost today of a video tape recorder though is approximately $1000, 
In a few years, the cost should drop to the $400 to $700 range. 
The Japanese are also interested in this and are developing a 
similar system. They are proposing to use a video disc recorder 
to capture pictures. Their estimated cost for this device is about 

• REEL-TO-REEL VTR 

• CASSETTE VTR 

• VIDEO DISC 

• IMAGE STORAGE TUBE 

Fig. 15-7. Video Refresh Devices. 



Interactive Information Television 155 

$350. RCA is also interested. They propose to use electronic 
storage tubes as frame catchers at a cost of about $100. In 
addition, we are considering near-term alternatives such as all­
digital character memory and character generator located in 
each home rather than a full-scale frame catcher with pictorial 
capability. It appears that a device of this type with only alpha­
numeric capabilities could be mass produced today for approximately 
$20. 

In our demonstration system, the telephone is used as the 
communication link back to the computer (Fig. 15-8). We intend 
to use the same coaxial cable that carries the TV picture to the 
home to also carry keyboard signals back to the computer. One 
way we are considering to facilitate this in the future is to fre­
quency division multiplex the cable. High frequencies (TV chan­
nel 2 and up) are amplified in the forward direction, that is, from 
the computer to the home. Low frequencies, below 50 megacycles, 
are amplified only in the return direction. Cable television equip­
ment manufacturers are today manufacturing the required ampli­
fier and filters to implement this technique and, in fact, CATV 
systems are being designed and built to provide this capability. 

We are now beginning to address the problem of providing 
the necessary computer power to serve large groups of people. 
(Systems serving 30, 000 homes have been proposed. ) One approach 
is a distributive computer network with a hierarchy of data bases 
(Fig. 15-9). Remote computers would serve 1000 to 2000 hOmes, 
with perhaps 10 percent of the terminals active at any one time. 
The central computer would serve clusters of ten or so remote 
computers providing supervisory control and as a central data 
entry point. The remote processors would have data bases con­
taining commonly requested data. Specialized data such as CAI 
course modules would be stored at the central computer. 

The scope of the central computer is not yet clear. How­
ever, we do have a feel for the remote computer configuration 
(Fig. 15-10). The configuration would cost approximately $200, 000 
to $300, 000 today and possibly could drop to $150, 000 by 1975. 
Minicomputers would be used for both the main and the terminal 
processors (2314 type disk files for the main data base). The 
virtual memory isn't really a virtual memory but a pair of fixed­
head disk memories with a special program. The character 
generator, the keyboard signal processor, and the audio message 
generator are devices that MITRE is designing and developing 
today. 

Several points should be made in closing. One is that while 
the system may seem technically naive, those who come out to see 
the system are just overwhelmed. Those in higher management 
positions and in high governmental positions come out and sit in the 
home where we demonstrate the system and occasionally go away 
almost in shock. They had not realized that anything like this 
could even remotely happen in the near future. 



156 

54-300 MHz .. 
FORWARD 

TO COMPUTER 

Multi-Access Computing 

TWO~ WAY CABLE 
(FREQUENCY DIVISION MULTIPLEXING) 

TO TERMINALS 

REVERSE .. 
5-50 MHz 

.. 

TICCIT REQUIRES: 6 MHz BANDWIDTH IN FORWARD DIRECTION 
.5 MHz BANDWIDTH IN REVERSE DIRECTION 

Fig. 15-8. TICCET Communications Link 

HOME 

Fig. 15-9. TICCET Network/CATV System 



MODEM 

TO CENTRAL 
COMPUTERS 

Interactive Information Television 

MAIN 
PROCESSOR 

PROCESSOR TO PROCESSOR 
COMMUNICATIONS 

DATE 
BASE 

VIRTUAL 
MEMORY 

TELEVISION 
PHOTO CHARACTER 
STORE AND VECTOR 

GENERATOR 

TERMINAL 
PROCESSOR 

KEYBOARD 
SIGNAL 

GENERATOR 

Fig. 15-10. TICCET Remote Computer 

157 

AUDIO 
MESSAGE 

GENERATOR 

TO HOMES 



16. Video Grap~ics Performance Evaluation­
Before and After Implementation 

Thomas E. Bell 
The RAND Corporation 

Santa Monica, California 

Other chapters have emphasized the performance of systems 
in terms of their value to humans. My topic is their performance 
in terms of the interactions of hardware and software. Specifically, 
I shall compare hardware/software performance evaluation before 
system implementation with evaluation after implementation. The 
earlier evaluation must be based on a series of unvalidated assump­
tions, whereas the later evaluation is based on reality - and pro­
vides the opportunity to judge the initial assumptions. 

VIDEO GRAPIDCS SYSTEM 

The particular system under discussion is RAND's Video 
Graphics System (VGS) that Dr. Anderson discussed earlier. The 
user sits at a console with a number of input devices including, at 
least, a control box and a typewriter. Input from these is con­
sidered more important than input from optional input devices 
like The RAND Tablet. 

Figure 16-1 shows the hardware configuration in use at the 
time of our analyses. A central digital-to-analog device is shared 
by all the terminals to reduce costs. The IBM 1800 serves as a 
communications switching and buffering device between the termi­
nals and an array of service machines on which user programs run 
(currently, the 1800 communicates with an IBM 360/65, a PDP-10, 
and the Interface Message Processor of the ARPA network). All 
service machine and terminal I/O from the 1800 goes through a 
Special Purpose Multiplexer. This multiplexer has several 
interesting properties that influence the performance of the VGS. 
Among other things, it degrades the processing capability of the 
1800 by 60 to 70 percent when it operates. 

The software in the 1800 is somewhat unusual; no executive 
is employed. All software consists of one application program 

158 



Video Graphics Performance Evaluation 

r------, 
I .... '--1 
I VIDEO I 
I DISPLAY I 
I I 
I I • • 

IMAGE 
DISTRIBUTION 

SYSTEM 

I I 

I : 
. ......_ ___ .......... 

I INPUT I 
I DEVICES /---,----------' 

~SUCH AS KEYBOARD,: 

L_R~N_E .!_A!!_L..!§_,.T.~ .... ..J 

CONSOLES 

159 

IBM 360/40 

360/50 

360/65 

• • • • 

Fig. 16-1. Video Graphics System Hardware Configuration 

designed to process interrupts coming from the service machines, 
the terminals, the special hardware, and from programmed 
interrupts. 

BEFORE IMPLEMENTATION 

During the design phase we were interested in projecting 
performance. About two months before the arrival of the hard­
ware we developed the set of objectives shown in Fig. 16-2 (which 
is titled "potential areas of investigation" to distinguish its state­
ments from the objectives of the system. ) Some of these (e. g. , 
numbers 1 and 2) were quite general, whereas others (e.g., num­
bers 4 and 5) were quite specific. We had one additional objective 
that we weren't clever (or brave) enough to specify in a meaning­
ful, operational way; it involved a desire to learn enough about 
the system to develop some very simple, condensed statements 
about system performance. We had no technique to test ourselves 
when we felt we had learned enough, so this objective is not listed. 

The objectives, combined with the lack of anything to meas­
ure, meant that our performance analysis technique was simula­
tion. The results of our simulations of this forthcoming graphics 
system were analyzed with the use of an existing interactive 
graphics system. Figure 16-3 illustrates some of the output from 
that system when hard copy was requested. Several pictures were 
recorded, and the resulting hard copy frames were cut and pasted 
together to indicate VGS performance over a period of interest. 

The output in Fig. 16-3 was created after much of the soft­
ware was operating on equipment that, by that time, had been 
delivered. 



160 Multi-Access. Computing 

WHEN THE DESCRIPTION EFFORT BEGAN, SEVERAL OF THE 
CHARACTERISTICS OF THE VIDEO GRAPHICS SYSTEM (VGS) 
SEEMED WORTHY OF INVESTIGATION BY A MODEL OF THE 
SYSTEM. SOME OF THESE ARE LISTED BELOW. 

1. UNDER WHAT LOAD CONDITIONS WILL THE SYSTEM GIVE 
POOR RESPONSE? (IT MAY BE FEASIBLE TO ALTER THE 
LOAD BY USER EDUCATION AS WELL AS BY CHANGING 
CHARACTERISTICS OF SUCH SOFTWARE SUPPORT AS THE 
INTEGRATED GRAPHICS SYSTEM.) 

2. WILL MESSAGES BE UNDULY DELAYED IN THE VMH SYSTEM 
IN THE 360s? 

3. WILL CHANNEL CYCLE-STEALING SLOW THE 1800 CPU 
ENOUGH THAT INPUT DATA ARE LOST DUE TO DELAYS 
IN PROCESSING? 

4. WILL A PING-PONG SYSTEM DECREASE RESPONSE TIME 
OF THE VGS? 

5. WHAT WILL BE THE EFFECT OF THE 1800 WAITING AT 
INTERRUPT LEVEL FOUR WHILE BUFFERS ARE UNAVAILABLE 
FOR SERVICE MACHINE INPUT? 

6. WHAT WILL BE THE EFFECT ON THE 1800 OF ONE SERVICE 
MACHINE BEING UNRESPONSIVE FOR A SHORT PERIOD? 

7. WHAT PORTION OF SYSTEM CAPACITY DOES A TABLET TAKE? 
(IT MIGHT BE PROFITABLE TO DISABLE A TABLET THAT IS 
TEMPORARILY NOT IN USE, OR TO USE A KEYBOARD 
INSTEAD OF THE TABLET.) 

8. HOW USEFUL WOULD MORE CORE BE IN THE 1800? 
9. HOW USEFUL WOULD ANOTHER 1800 BE? 

Fig. 16-2. Potential Areas of Investigation 

The area enclosed by the box indicates a peculiar sequence 
of subprogram usage because one subprogram (numbered 8 in this 
display) was being invoked twice to perform a function that could 
be done with one invocation. Investigation indicated that, during 
card deck reproduction, an extra card had been inserted into the 
deck; detecting extraneous cards was an unanticipated result of 
the simulation effort. · 

In addition to the unexpected payoffs, we investigated the 
planned questions. One (number 7) inquired about the loading due 
to a single RAND Tablet. Figure 16-4 shows simulation predic­
tions of the loading on the CPU (as a percentage of total capacity) 
required for various numbers of tablets. The diagram indicates 
the amount of activity at each level. Level 2 is a high priority 
interrupt level which performs processing caused by software 
interrupts from other levels. The high priority is used to ensure 
that a sequence of instructions is completed before other activity 
is allowed to intervene. Level 3 activity processes interrupts 
from the image distribution system; level 6 handles interrupts 



DISPLAY FROM 1_g;~q TO _1_!?99 

+ + + + + + + 

INTERRUPT + + + + + + + 
LEVEL 

---- TYPE=?<_ NUMBER=-~? 

+ + + + + + + 
CPU 15 3 2 2 1 1 1 

2 49 5 7 70 9 9 8 9 
+ + + + + + + 

PG 16 1 1 
9 6 

SC1 17 1 + + + + + 
4 

+ + 

9 3 

SC2 18 1 + + + + + + + 1 
5 6 

SC3 ~ 19 2 
+ + + + + + + 

c 5 

ADC 
I 

5 L 
+ + 

1 
+ + + + + 

I 

SMIC 
T 

4 I 

Q 
+ + + 2 + + + + 

2 3 
E 
s 4 I 7 7 

+ + + I + + + + 
SRMPX 1 3 

§ § 

DISPLAY FROM 11700 TO 11900 ------ ------
+ + + + + + + + 

+ + + + + 

TYPE=!<_ NUMBER = _1_? 

+ + I + + + + + + 
11 1 2 2 32 

7 5 6 8 6 8 7 8 4 9 8 4 9 8 77 
+ + + + + + + + 

+ + I + + + + + + 

+ 4 + + + + + + + 
6 

+ + l + + + + + + 

+ + 1 + + + + + + 

+ + + + + + + + 

t + + + + + + + + 

·~ 

+ + 

+ 

+ + 
2 

9 8 7 
+ + 

+ + 

+ + 

+ + 

+ + 

+ + 

1 
+ + 

5 ·Tl 
6- ML-CTD 
7. scos 
8 · SPG 
9-SD SM 

+ 

+ 

1 9 8 
+ 

+ 

+ 

+ 

+ 

+ 4 
1 

+ 
4 
~ 

11500 11600 11700 11800 11900 

I STATISTICS I GANTT CHART !VARIABLE GRAPH I I STATISTICS I GANTTCHART lvARIABLEGRAPHl 

Fig. 16-3. Sample Simulated Output Used In Video 
Graphics System Design 

< .... 
~ 
0 

Si 
~ .... 
0 
fll 

~ 
So 
a 
§ 
0 
(!) 

t:zj 
< 
~ 
~ .... 
0 = 

...... 
Cl) 
...... 



162 

80 

I- 60 
z w 
(.) 
a: 
w ... 

40 

2Q 

Multi-Access Computing 

o..__. __ .......... ~_...___... __ ...... __ ~__.--_,_ __ ...__....___._.. 
0 2 3 4 5 6 7 8 9 10 11 12 

NUMBER OF TABLETS 

Fig. 16-4. Simulation Predictions of CPU Loading 

from The RAND Tablets, and the Main level causes interrupts in 
level 2 to attempt initiating I/Oto service machines. Total activ­
ity on the system goes to near-saturation when 12 tablets are on 
the system. This result, combined witll results of early test runs 
on the system, motivated us to simulate an alternative in which 
part of the processing of Tablet interrupts is done in hardware. 
Figure 16-5 displays the projected situation. 

This result appears alarming; unloading the CPU seems not to 
have been achieved, More intensive analysis, however, shows that 
the processlng occurring in level 6 has decreased as hoped, and 
the capacity freed is now being used in the Main level and, through 
triggering in the Main level, in level 2. That is, activity that was 
"squeezed out" is once more occurring; additional Tablets could 
therefore be added and cause this additional activity to be deleted. 

Two lessons were learned from this evaluation before imple­
mentation. First, the increased understanding of the system led 
us to decline to give simple statements about the "portion of system 
capacity" taken by a Tablet; the portion required varies with the 
number on the system. Therefore, Question 7 of Fig. 16-2 needed 
rephrasing. Second, we became very reluctant to quote any num­
bers about predicted system performance; important caveats can 
be easily forgotten wb.en relationships are complex. 



Video Graphics Performance Evaluation 163 

HARDWARE 

Fig. 16-5. Alternative CPU Loading Simulation 

AFTER IMPLEMENTATION 

The Video Graphics System was installed and began providing 
interactive graphics services to users immediately. After it had 
been in operation for several months, we had the opportunity to 
validate our simulation by measuring system performance with a 
hardware monitor. Wires were strung into the 1800 CPU to detect 
the status of various circuits. Each probe consisted of a connector 
feeding signals to an amplifier which transferred the amplified 
signals over the probe wire to a minicomputer based hardware 
monitor. Control over the monitor's functions was exercised 
through an online teletype. With this control we could examine 
the portion of time the 1800 was in each interrupt state under vari­
ous conditions. The initial values from the monitor were validated 
through carefully designed tests using special program traps, an 
oscilloscope, and a signal generator. We found that the values 
from the monitor were accurate, so we could depend on results 
we obtained. Figure 16-6 shows the results from monitoring 
normal, uncontrolled use of the system over various periods at 
different times of the day. No useful information could be derived 



..... 
MONITORED DATA 0) 

II>-

DATE 613 6/3 6/3 6/3 6/3 6/3 6/4 6/4 6/4 6/4 6/4 6/5 6/5 6/5 6/5 6/6 

TIME 11 :57a 2:40p 2:45p 2:50p 2:55p 3:00p 11 :18a 2:24p 4:45p 4:50p 6:00p 8:47a 9:30a 11 :23a 4:00p 3:00p 

MINUTES 30 1 1 1 1 100 30 30 1 1 150 10 1 30 30 5 
REQUESTED* 

*LEVEL 2 4 5 4 4 10 1 10 9 4 3 3 6 2 
~ 

*LEVEL 3 }o 
i::: ...... ..... ..... 

'LEVEL 4 
I 

> 
}o 

("') 

*LEVEL 5 ("') 
l'.1l 
rn 

*LEVEL 6 rn 

*LEVEL 8 0 
g 
s 

*MAIN LEVEL 1 1 2 1 2 5 2 2 1 1 1 >cs 
i::: ..... ..... 

*CPU BUSY 7 7 8 6 10 6 14 8 15 13 6 5 10 5 9 3 ::i 
(lq 

*CHANNEL BUSY 0 0 

FROM 360 

*CHANNEL BUSY 0 0 
T0360 

'REQUESTED ON MONITOR; ACTUAL TIME IS APPROXIMATELY 2 1 /2 TIMES REQUESTED 

MONITORING NORMAL USE (TEST 19) 

Figure 16-6. Monitoring Normal Use 



Video Graphics Performance Evaluation 165 

from these data except that the system was quite variable and not 
highly loaded. 

The problem with our initial runs was that we had no way to 
know how much load the users were causing, so we could not 
obtain any relationship between load and system response. We 
employed an artificial loading device to perform controlled experi­
ments on the system in order to avoid the variability inherent in 
human activities. We had some initial problems with users run­
ning on the system during the time allocated to our controlled tests. 
(Users had no way of knowing for certain whether we. were actually 
running tests and assumed we weren't.) This problem was solved 
by physically disconnecting all terminals not under our direct, 
physical control. The total load on the system then consisted of 
that introduced by the artificial loading box. 

We examined our characterization of the interactions between 
interrupt levels by driving the CPU to saturation with pseudo­
hardcopy characters (which used level 5). As can be observed 
from Fig. 16-7, the sort of activity we predicted is occurring. 
While a test checking for the situation in Fig. 16-4 could be sus­
pect due to the relatively small portion of the system used by 
level 6, the ability of level 5 to "squeeze out" activity in the Main 
level, and thus in level 2, is very dramatic in Fig. 16-7. 

The characterization of the level interactions was thus 
validated, but the absolute levels of activity were not examined 
in this test. We designed a test to give these values for the case 
of total software processing of RAND Tablet interrupts with the 
Tablet's pen up, and then down. Figure 16-8 shows the results, 
with the first column of values being those indicated by the simu­
lation, and the second giving the ones observed on the system. 
The discrepancy was approximately a factor of 2 - often referred 
to as a 100 percent error. Much of this error was explained by 
some changes in software which had not been included in the simu­
lation representation, but we suspected that this explanation was 
inadequate to account for the total amount of error. We went 
back to a very tightly controlled, very simple test to examine the 
cause of the discrepancy. 

We returned to our box producing an artificial load and 
caused the system to process volumes of invalid characters. 
These invalid characters were handled very rapidly by the system 
since only 83 machine instructions were involved. Using the pub­
lished, manufacturer supplied data on the 83 instructions, we 
computed the time that should be required in various cases. 
Figure 16-9 displays the results. The average computed value 
was within a range, but we could not determine the exact time 
because of potential sequencing which was dependent on the time 
to process. The values we suspected were most likely to have 
actually occurred are underlined, and errors (the amount of error 
we would state if the simulation deviated from the computed 
values) are also given. Some undefined effect (possibly an obscure 



166 

1-z 
w 
() 
a: 
~ 

60 

40 

20 

1000 

Multi-Access Computing 

3000 

CHARACTERS/SEC 

4000 

Fig. 16-7. Interaction Between Interrupt Levels 

1 UP 

LEVEL 2 12 27 

LEVEL 6 0 2 

MAIN 2 3 

BUSY 15 32 

1 DOWN 

LEVEL 2 12 2B 

LEVEL 6 2 4 

MAIN 2 3 

BUSY 1B 35 

Fig. 16-8. Software DF 

5000 



Video Graphics Performance Evaluation 167 

COMPUTED MEASURED "ERROR" 
(µsec) (µsec) (µsec) 

155 . 239 ..................... 317 .................... 33% 

155 . 197 ..................... 273 . . . . . . . . . . . . . . . . . . . . 38% 

155-183 ..................... 220 .................... 41% 

Fig. 16-9. Hard Input (83 Instructions). 

option used in the software) causes the system to require more 
time than expected. (Intensive examination of the hardware showed 
that it was functioning normally.) 

CONCLUSIONS 

Four conclusions arise from this experience: 

1. Detailed simulation analysis can be a very useful tool in 
designing and implementing online systems. Simulation 
can help discover unexpected characteristics of the sys­
tem as well as answer predefined questions. 

2. Simulation of alternatives can lead to improved gross 
characterizations (models) of the system through inten­
sive analysis of differences. 

3. Monitoring normal operations is not so useful as running 
controlled tests for simulation validation. Even if pre­
cise characteristics of loading can be obtained, the 
analyst must still separate out the parts of the simula­
tion causing errors in a very complex situation. 

4. Absolute errors may be incurred in simulations in spite 
of significant efforts to eliminate them. Unexpected 
interactions are likely in advanced online systems and 
will make simulation results inaccurate in, at least, 
absolute value. 



1 l. Pertormance Capaailities 

of Hardware Systems 

Cay Weitzman 
System Development Corporation 

Santa Monica, California 

This chapter aims to provide a survey of present hardware 
performance and capabilities. The information is abstracted from 
several recent hardware evaluations. Such evaluations are under­
taken by SDC on a continuing basis. 

The survey will encompass computer architecture in the real­
time environment, where things stand today in terms of peripherals, 
and some points on reliability and trends. 

Today, the general trend in computers is toward modularity: 
modularity in terms of CPUs, memory, and I/O devices - all 
elements that fit into the computer. The emphasis is on mini­
computers, where modularity is even more prevalent. An example 
of a very typical minicomputer that has these features is the CDC 11 
which comes in various configurations and each configuration can 
be built up or down in just about any way desired. 

In terms of register blocks, read-only-memory, scratchpad, 
cache memory, and virtual memory, particularly the latter one, 
we find it today in the biggest computers and particularly the virtual 
memory used by IBM in its latest 370 series. The associative 
memory is not here except for some specialized machines (STARAN 
and PEPE), but if virtual memory is desectored small enough, it 
will eventually wind up as an associative memory. 

Computer Architecture 

One important feature in computer architecture in the real­
time environment is the interrupt structure. A large number of 
real-time computers today have a multilevel hardware interrupt 
structure. They provide internal/ external interrupt either by 
device source, program, or through buffered I/O. The level 
changes are of particular importance in real-time systems -
command and control systems - where one must change quickly 

168 



Capabilities of Hardware Systems 169 

from one interrupt level to another. In a typical medium-scale 
command and control computer, a computer used in a real-time 
environment, this could vary as much as five to 100 or 500 micro­
seconds. This "overhead" has a great impact on the total response 
time of the system. 

Many of the presently available computers have both direct 
memory access and buffered I/O channels and data also can be 
moved to and from memory under program control. Many systems 
have a wide choice of I/O interface, either serial or parallel lines 
that one can input data to the system. Other features are multi­
plex I/0, asynchronous or synchronous lines, analog interfaces, 
such as A/D, D/ A and synchro-to-digital which are also used in 
process control applications. 

A very interesting trend in interfacing various low-speed 
peripherals is the use of USAC II control characters. In other 
words, instead of using separate control lines, the peripherals 
are controlled by control characters which gives one greater 
flexibility in inputting and outputting from the computer. 

Someone has said minicomputer manufacturers are becoming 
more like Detroit every day. There seem to be more and more 
variations on a lesser number of machines. The typical trend in 
the minicomputer area is, of course, lower cost. Everything is 
getting cheaper and cheaper, faster and faster, and many of the 
new systems introduced in the last few years are microprogram­
mable. Interdata was one of the first commercially available 
microprogrammable minicomputers, but there are a whole host of 
them now. 

In general, one can conclude that the cost decreases in all 
the minicomputers today are due to minor amendments to details 
across the line rather than from significant technological 
breakthroughs. 

Going to military machines, the most typical feature of mili­
tary machines is the advanced packaging concept and microminia­
turization. Medium- and large-scale military computers have a 
more advanced architecture, also in terms of building diagnostic 
capability and this of course gives a short mean time to repair. 

The commercial computers today are more sophisticated 
in terms of firmware control, virtual memory, integrated con­
trollers, powerful I/O processors and both LSI and other types of 
memories. Emerging architectures such as associative machines 
or computers based on associative memories, such as PEPE from 
Bell Labs, on pipeline computers such as the ASC from TI (Texas 
Instruments) and STAR from CDC, are machines that although not 
available to the commercial user represent trends that, I think, 
will have very strong impact on future computer design. 

One issue raised by many people is the mini versus the large 
computer. Is the medium-sized computer going to disappear? 
Will there be a lot of minis or a central multiprocessor or a large 
computer? There again I think a trend has really not crystallized 



170 Multi-Access Computing 

yet. Almost every day there is a new medium-sized computer. 
The latest one announced is the Univac 9700. 

I have tried to assemble various computers in terms of 
word size (Fig. 17-1). There are, of course, other ways of order­
ing them - in terms of throughput or number of instructions per 
time unit. Here though, we have word size versus cost. The 
minis today are creeping down toward $1000. Going in the other 
direction, we have the midi, which is not really a small computer, 
although that is debatable. The midi is a large mini. Typical 
midis are the Honeywell DDP-516, the SDS Sigma 3, the IBM 1800, 
and the CDC 1700. The small computer is something like a 360/20 
or 30. The next level is the medium-sized computer. Typical 
medium-sized real-time systems are the PDP-10, the XDS Sigma 5, 
the IBM 360/44, the SEL/86, the Honeywell 632, and the Univac 418. 

A very similar pattern exists in the military field (Fig. 17-2). 
All these are ruggedized minicomputers. There are minis such as 
the Rolm 1601 which is a ruggedized Data General Nova, and others 
such as the DDP-516 which has been designed in a ruggedized ver­
sion and also a miniaturized version (HDC 601). The HDC-601 is 
a small airborne computer, but it has the characteristics of the 
commercial DDP-516. 

At the other end of the spectrum are the large command and 
control computers, the Hughes 440 which is a new system, the 
Litton L-3050, the TACFIRE computer, and the Univac AN/VYK7 
built for the Navy (AEGIS). Marconi in England has built a military 
minicomputer called the 920M Myriad and Hitachi in Japan built 
one which is used as an airborne navigational computer. 

Finally, the very large computers in the multimillion dollar 
range are really not militarized per se. There are militarized 
versions such as the PEPE, the ADC, and the Univac CLC. 

The five year trend is shown in Fig. 17-3. 
Figure 17-4 is a summary of various military computer cate­

gories. It shows the memory, CPU, and 1/0 differences among 
these various groups and it also gives an indication of what type 
and range of peripherals are available to the military computer 
system designer. The microminis have almost no peripherals 
available or even a peripheral interface capability; one must go to 
a fairly large-size computer to get adequate peripherals. And 
even here the peripherals one wants on a system are usually picked 
from a variety of manufacturers and are sometimes not compatible 
so one may have problems with the interface. 

The micromini, I think, is a very interesting design concept, 
based on LSI. We certainly have LSI computers here today and 
there are quite a few of them on the military market - the Control 
Data 469, the Bunker Ramo BR-1018, the Garrett AiResearch Adapt 
series and the Autonetics D200 series. They are probably the fore­
runners for the commercial market, which will use very small, 
compact, ruggedized computers in cars, trains, wherever some 
kind of control is needed. 



ii) 
f-

"" 
w 
N 
Ui 
Cl 
a: 
0 
$ 

256 

64 
60 

48 

36 

32 

241 
18 
16 

12 

8 

I 
$1000 

CA NAKED MINI 
f\l/l\/ /\. 1 ')()() 

$10,000 $100,000 $1,000,000 

COMMERCIAL COMPUTER COSTS (1971 I 

Fig. 17-1. Commercial Computer Costs (1971) 

$10,000,000 

COST 

(") 

.§ 
~ ...... ,__. ...... .... ,..... 
CD 
[/l 

0 ,...., 

~ 
"i 

~ 
Pl 
;jl 

~ 
[/l 

@' 
s 
[/l 

...... 
-.J ...... 



c;:; 
f-
iii 
LU 
N 
u; 
Cl 
a: 
0 
3: 

256 

64 
60 

48 

36 

12 

8 

$10,000 $30,000 $100,000 $1,000,000 $10,000,000 

MILITARY COMPUTER COSTS (1971) 

Fig. 17-2. Military Computer Costs (1971) 

$100,000,000 

.... 
-'1 
1:\:1 

~ :::;: .... 
I 

> 
(') 
(') 
CD 
rn 
rn 
(") 
0 

i .... 
~ 



Capabilities of Hardware Systems 173 

60 

48 

w 
N 
iii 36 
0 H516 c: 32 

~ 2:3 

24 

18 
16 
12 

- 8 

1K 3.5K 10K 100K 1M 10M 

COST 
($1,000= 1K 
$1,000,000 = 1 M) 

Fig. 17-3. The Five Year Trend In Computer Costs 

The trend in new system design will be very much influenced 
by high-speed data links. Today most systems - whether they use 
teletype terminals at 110 bits per second or the IBM counterpart, the 
2741, at 134.5 bits per second or high-speed 2400 to 4800 bps syn­
chronous lines - have a remote I/O capability. We are going for even 
higher data rates and some systems use 9600 bits per second data 
rates or beyond. In spite of this, most computer systems have rela­
tively limited data communication capabilities. They are not designed 
to handle very high data rates but a big change is expected there, par­
ticularly due to new facilities that are going to be available. Such 
facilities include Tl lines with voice channels going up to 1. 5 million 
bits per second and eventually the T2 which will be used for picture­
phone transmission and has a 500-mile range. New data sets such as 
the 303 or the 306 will have about a half-million bits per second data 
transmission capability. 

Today most military systems are locked up with AT&T and 
their long distance transmission lines. I believe firmly that the 
near future availability of higher data rate transmission links such 
as Tl is going to have a very strong impact on architectural change 
in computers in the next few years. 



COMPUTER MILITARY COMPUTER CATEGORIES 

FEATURES OR 
CHARACTERISTICS MICROMINI MINI SMALL 

MEMORY 

CYCLE TIME 1.0 TO 5.0 µSEC 0.9 TO 2.6 µSEC 1.0 TO 3.0 µSEC 
WORD SIZE 12TO 24 BITS 16 TO 18 BITS 16TO 24 BITS 
STORAGE TYPE CORE. PLATED WIRE, MOS/LSI CORE CORE, LSI 
MEMORY SIZE 1k TO 13k WORDS 1 k TO 65k WORDS 2k TO 13k WORDS 

CPU 

NUMBER OF INSTRUCTIONS 30 TO 70 50 TO 100 20 TO 120 
REGISTER NONE OR VERY LIMITED TYPICALLY2 LIMITED 
ADDRESSING MODES TWO OR LESS THREE OR LESS SEVERAL 
OTHER 

110 

OMA 250 TO 400 kH~ 300 kHz TO 1 mHz 300 TO 1 mHz 
OTHER SOME WITH A/D, 

DIA.SID 
CONVERTERS 

PERIPHERALS LIMITED OR NONE LARGE NUMBER, MOSTLY LIMITED 
COMMERCIAL, NON· 
MILSPEC'ED 

PACKAGING 

COOLING CONDUCTION GENERALLY FAN COOLED CONDUCTION 
SIZE 10 TO 450 CU. IN. 0.5 TO 5.0 CU. FT. 0.5 TO 1.0 CU. FT. 
WEIGHT 0.5 TO 10 LBS 40T060 LBS MORE THAN 10 LBS 

RELIABILITY 

MTBF 7,000 TO 25,000 HAS MIL SPEC 1,000 TO 10,000 HRS 2,000 HRS TYPICAL 
SOME MIL SPEC MIL SPEC 

COST; MINIMUM CON· 
FIGURATION (CPU $50,000 - $80,000 $20,000 - $50,000 $40,000 - $150,000 
MEMORY BLOCK. 1/0, 
POWER SUPPL YI 

Fig. 17-4. Summary of Military Computer Categories 

MEDIUM AND LARGE 
IMULTIPROC ESSORSI 

1.0 TO 2.0 µSEC 
32 BITS 
CORE 
UP TO 256k WORDS 

60 TO 180 
LARGE NUMBER 
LARGE NUMBER 
LARGE NUMBER OF MACROS 

500 kHz TO 1.4 mHz 
SERIAL, PARALLEL UNDER CPU 

CONTROL 
LARGE NUMBER OF 1/0 PROCESSORS 

ADEQUATE, SOME COMMERCIAL 

FORCED AIR, LIQUID, CONDUCTION 
6.0 TO 25.0 CU. FT. 
50 TO 700 LBS 

1,000 HAS TYPICAL MIL SPEC 

$120,000 - $300,000 

..... 
-3 
,;.. 

~ ::; .... 
I 

~ 
~ 
fll 
fll 

g 
~ g: 
aq 



Capabilities of Hardware Systems 175 

Peripherals 

As for peripherals, the lack of high-speed computer output 
devices, except for computer-output-microfilm equipment (COM) 
and some other exotic devices like the laster printer (still under 
development) and the more conventional peripherals, such as line 
printers, magnetic tape and card or paper tape punches still domi­
nate the user market. Therefore, I am going to spend a few min­
utes discussing conventional hardware and the changing trends 
in peripherals. 

One very interesting phenomenon is the cassette tape, cur­
rently quite popular. There are more and more different types of 
cassette tape units and most of them seem to be centered around 
the Phillips cassette. This unit hasn't really been around long 
enough to show a record of success in terms of low error rates. 
Some problems exist with these units if one wishes to record very 
large continuous blocks of data. An important feature is read­
after-write to reduce errors. 

Several low cost printers on the market today use either 
matrix or helix type printing. The price is now in the $3000 to 
$5000 range. 

The alphanumeric CRT terminal also has been coming down 
rapidly in price. Just three or five years ago, a $10, 000 inter­
active CRT was common and today it costs $2000 to $3000. 

Only in teletype is there little activity. Few contenders can 
really compete with the $600 to $700 teletype. Most people seem 
to be using them widely. Of the military peripherals, I think the 
most significant activity is in display. There are a large number 
of new types of displays, most of them based on the CRT. These 
displays are designed both in the U. S. and in countries such as 
Italy, France, Germany, and Japan. Many of these are quite 
sophisticated in that they allow a large amount of user interaction, 
displaying PPI display together with synthetic data, some with 
bandwidth compression and color capability. Many of these sys­
tems are also coming down in price. Many of them, as a matter 
of fact, are off-the-shelf devices - they can be ordered and inte­
grated with many types of computers. 

Figure 17-5 indicates where we are in terms of peripherals 
today, based on throughput rate and characters per second. Every­
thing has been brought to a common denominator, characters per 
second, going from 10 characters per second up to 10 million 
characters per second. And, as the reader can see, the Teletype 
is at the far left end of the low-speed devices followed by line 
printers, card readers, and paper tapes. On the top line is COM 
equipment. The really significant message in this chart is the 
large discrepancy in data rates between I/0 peripherals and the 
actual CPU or memory devices; the only ones getting close to the 
disk or drum speed are the computer output microfilm devices and 
the magnetic tape, which really indicates that we need some higher 
speed peripherals than those now available. 



S/F 

~ 

M/F30,00~ ~ 260,000 

~ 
$10,000 $80,000 

CDC 955 

E?> 
O/F $200,000 $1 .5M 

68 
REL 

INPUT 30 

Ill 
CDC (8 OF A) 

IBM 1975 (SOC SEC ADM) 

DATA TYPE CDC 915 COMPUSCAN 370 

(1) OCR EQUIPMENT > 
$10K $84K $2QOK $500K $1,500K 

$20,000 
$400 
TTY ~ DIGITRONICS lNCR IBM 2402 IBM 

ASA ~ IBM 26rf $3.5K $15,000 2420/T 

$50K 

e: 0;; ~~~~~ERFORA~RS J < < MAGNETIC TAPE DRIVERS > 
$0 SK $0.4K ~ $10K (INCR) $10K MEMOREX $63K C 

. $2000 $4000 $20,000 STROMBERG ALCO MP 

CAROLIN ER Go1 LJP~1~~1sR -1soo $40000 ~~bAGRAPH!X k111cfo.~38 ~~~.ooo 
<(1) CARD READERS> , (a) COM SYSTEMS ) 

$4K $15K S40K $215K $125K 

IBM ~~G~~'6'Nf'~¥s IBM 
2311 XDS PAO 3330 

IBM 

2305/1 

CARD ~PUNCHES < DISKS AND DRUMS ) 

$20K $170K $180K 
XDS !BM 

$l:K $40K~ 
$2000 OTTER 3~-101 IBM 1403 

~~~fT0R62JN::!_l!_£C:._ __ ;-:;;;RIN_1:.': 
$120,000 IMB 1800 ,, 135 IBM 370/165

CDC 1700 - 5 IBM 145 !BM 155 CSC 8700 IBM3211 GOULD

<(?) LINE PRINTERS }

IBM $5K $70K $120K

CPU SPEED

{WORD/SEC)

2741 MEMOREX KEYBOARD MOST 3RD GEN COMPUTERS

TTY~TERMINALS

~
$0.5K $5K

$40K $200K
300K

SOOK

1000K

3,000.000

100

I
1K

I
10K 100K

I I
1M

I
THROUGHPUTCCHAR~EC)

Fig. 17-5. Current Peripheral Capabilities Based on Throughput
and Character per Second

10M

I

$1,600K

.....
-:i
(j)

~
I

~
n
CD
f/l
f/l

(")
0
8
'g
.......
::i aq

Capabilities of Hardware Systems 177

In military systems, the applications and levels of reliability
are closely related. Space or missile computers installed in air­
craft require very high reliability. It would be hard to get up
there to fix them when they fail. Many of the new commercial
minis discussed earlier have also been converted to ruggedized or
militarized systems. A major advantage in using these minis in a
military application is the savings in the basic software develop­
ment cost. The systems have been around for some time and
there is a lot of experience with them.

Self-Test and Repair Machines for Missile and Space Environments

Several projects are going on right now to develop self-test
and repair systems. Burroughs is developing a system (still not
announced officially) called the Model D. There are computers
which require function monitoring in terms of hardware and error­
correction circuits with hardware monitoring and triggering for
later action. One example is the STAR, the JPL self-test-and­
repair computer.

Finally, I would like to examine several trends. I have been
doing some work with various military computers, such as the
Litton L-3050 and the Hughes H-4118. Many of these systems can
be checked out with hand-held card testers. The tester is plugged
onto the back of the card and the circuit boards can be checked out
quickly. This is still a quite limited capability. There are only
X numbers of cards that can be checked out this way. Certain
kinds of functions don't lend themselves to being checked with this
tester. This approach is, however, extremely powerful in a field
environment.

Many things have been said about LSI. Supposedly, it is the
solution to most of our problems. Computers can be designed on
the side, so to speak. Just using LSI technology, one can quickly
design the function to do whatever desired. I don't believe we are
there yet. Several computers, like the Control Data Alpha, use
MSI/LSI. Building these units involves a high cost. The general
idea is that if something fails the board with the LSI chips, it is
pulled out and thrown away. That is quite an expensive way to go.
The more LSI on the board, the higher the cost of the board and
the more expensive to repair or maintain.

Although some systems use welded modules, I feel that the
trend is away from that. You see more flow soldered or dual-in­
line plug-in boards for changing or replacing some of the sub­
components. A very pronounced trend in military computer design
is toward a short mean time to repair capability. With built-in
diagnostics, problems are sometimes located more quickly than
with the hand-held tester. One simply can work through the com­
puter itself. Other protective measures, such as use of fail-safe
capability, is increasing in both military and commercial com­
puters. All contribute to system reliability.

18. T owar~ Natural
Man-Mac~ine Dialogue

M. I. Bernstein
System Development Corporation

Santa Monica, California

The goal of this work is to provide man-machine communication
that is as natural as the dialogue between two colleagues. The
phrase "between two colleagues" is chosen with care, for we do
not mean to imply that we can make communication between man
and computer as free and arbitrary as that between two randomly
chosen individuals, for that problem is not solvable in the short
run. What we are trying to provide is the framework within which
the machine may be treated as a colleague by specifying a context
that properly bounds the domain of discourse.

Considering that communication implying understanding
implies intelligence, one is tempted to class this work as a mani­
festation of artificial intelligence. The appropriateness or accu­
racy of such classification is irrelevant, particularly if we are
able to reach our stated goal.

Three projects that we collectively call the Natural Input/
Output task are attacking three aspects of natural man-machine
communication in parallel. The English I/O Project is working
toward a natural English data management system; the Voice I/O
Project is attempting to solve the speech understanding problem,
also using data management as a vehicle; and the Graphic I/O
Project is providing capability to communicate with a computer in
printed or written natural scientific notation. The necessity of the
latter is obvious to anyone who has attempted to linearize or
verbalize a complex mathematical expression.

ENGLISH I/O

The CONVERSE Project is developing a natural English data
management system. Interrogatory, declarative, or imperative
English sentences are input to the program by keyboard. These
are parsed, in a fashion similar to that which was at one time

178

Natural Man-Machine Dialogue 179

taught in grammar school, but with more rigor and depth using the
principles of transformational grammar and techniques developed
in computational linguistics. Meaning or the semantic content is
extracted from the sentence with the combined use of the dictionary,
fact file, and concept net. The details of the method have been
documented and are inappropriate here.

The parsed result is cast into a formal intermediate language
(IL} that is a variant of the calculus. The IL forms the basis for
the generation of a procedure that is executed by the data manage­
ment portion of the system, producing the specified result: the
answer to a question, or modification to the data base content.
Since there are limitations on both subject matter and grammatical
freedom, the parsing attempt may result in a request for the user
to define a term, choose among the alternative meanings of an
ambiguous sentence or reject the sentence outright.

Some samples of sentences acceptable to CONVERSE are
reproduced below. The subject matter in the data base in this set
of examples is about census information from cities in California
and New York.

What is the population of each city?

Name pop*60

Alameda 65000
Concord 36208
Downey 82505
Los*Angeles 2479015
Lynwood 31614

More?
y

Modesto 36585
Oakland 367548
San*Diego 573224
San*Francisco 740316
Albany 129726

More?
y

Buffalo 532759
New*York 7781984
Yonkers 190634

No more

{The population of all 135 cities in the data base could be obtained
with patience.)

Is it Yonkers that isn't located in California?

Yes.

180 Multi-Access Computing

Which cities are not located in California? Name

Albany
Buffalo
New*York
Yonkers

No more

{Circumlocution in the first example and negation are properly
treated.)

What are the northeastern cities with the most and least
land area?

The one thing with the maximum of land*area * 60 for
northeastern things has the city is Buffalo

The one thing with the minimum of the land*area*60
for northeastern things has the city is Yonkers

This is how ambiguous sentences are treated.

What's the MFI of NY?

2 parsing

2 interpretations

N SearchRequest

1 What is the median*family*income*59 for New York?

2 What is the median*family*income*59 for New*York*
state?

Type: Answer N!

Answer l'.

The median-family*income*59 for New York is 6091

Answer 2'.

The median*family*income*59 for New*York*state
is not known

The last is an example of the effect of a declarative sentence
on the data base content.

Natural Man-Machine Dialogue 181

Present work on the project is directed toward extending the
scope of acceptable language forms, simplifying the creation and
update of data bases, and generally imbuing the program with more
"intelligence. "

VOICE I/O

The goal of the Voice I/O Project is to demonstrate the
feasibility of a speech understanding program. The vehicle for
the demonstration is a vocal data management system. The choice
was made with malice aforethought. The foundation provided by
the English I/O project will materially help in reaching the goal in
the shortest possible time, between three and five years.

At present, a laboratory is in place and we have replicated
the speech recognition program developed at Stanford by Vicens
and Reddy, the best program to date for recognizing single words
or phrases. But the goal is to have the system understand con­
tinuous speech. Note that in one case there is recognition and in
the other there is understanding the distinction that in the latter
case, there is no need to reproduce with any accuracy the input,
only that the reaction or response be correct or acceptable.

We believe that if properly approached the problem is
tractable and we believe we have a proper approach. The basis
of that approach is called Predictive Linguistic Constraints
(PLC). Figure 18-1 is a data flow (as opposed to control flow)
of the PLC model upon which the implementation of the program
rests.

The basic concept is that in any area of bounded behavior,
such as using a data management system, that the speaker will be
in a narrow bounded context a very high percentage of the time,
and that the loss of predictability will occur when the speaker
changes context. Since the number of contexts to which he may
change is limited, the transitional case leads back to the well
bounded predictable case in almost all instances. In the few cases
when the program gets "lost, " there is a human available, the
speaker, to bail it out. In essence, it is not much different from
the way two people interact.

GRAPHIC I/0

The primary goal of the Graphic I/O Project from its incep­
tion has been to provide natural communication with the computer
through hand-drawn, -printed or -written input. As a result, we
have not only developed software toward this end, but hardware in
the form of a unique data tablet graphics console that is nearly as
natural to use as pencils and paper. It incorporates a projection
CRT, a data tablet, and the necessary optical system to provide
a single interactive surface. It is partly true that it is done with
mirrors.

182 Multi-Access Computing

[USER } INPUT UTTERANCE

~

DATA ANSWER HARDWARE I+
RETRIEVAL PROCESSOR

(!)
PACKAGE

I
z
u;

All- LJ.J Ul
(.) (.)

~ THEMATIC LJ.J _z (.)
-' <(MEMORY (!) 0

<(MODEL OF 0 a: 0 a:
I-

USER'S STATE al LJ.J -' 0..
<(2 I- <(z -' Cl >- I- z 0 <(

Ul ::i <(i= z

lsYNTAX EQUATION_..
2 Cl <(0
LJ.J z I- i=

DATA BASE t: <(z C5
ORDERING

,... SYNTAX Ul -' LJ.J Cl AND >- LJ.J <(Ul
TOP DRIVER t: ::i I- LJ.J <(

CONCORDANCE -' -' - a: a: Cl ,..
<((!) 0.. 0 z al > - LJ.J

LJ.J <(I- ~~ .<(Cl a: u..
(.) z Ul al Cl <(
z :J Ul 0 z I-
<(0 Cl <(<(

LJ.J - a: + Cl Ul I- LJ.J a: 0.. Ul Cl
a: <(<(::i x 0 :c LJ.J

0 a: ::i -' <(s 2
(.) :c 0 <(I- (!)

<(ACOUSTIC z 0.. LJ.J > z >- :c z ~
0 >- LJ.J SEGMENTER
(.) Ul ~

..... CONCORDANCE ,..
MATCHER • • LJ.J

a: (!)

~ IDENTIFIED KEY WORD ::i z
I- -

WORD SEARCH-IN-CONTEXT <(a:
LJ.J I-

Cl
u.. Ul

a:
A"'

,
0 s
Cl SEGMENTED
~ ACOUSTICAL
u.. .1 SEGMENTS i= DATA
z
LJ.J

e ACOUSTIC
CLUE WORD

PARSER

Fig. 18-1. Data Flow of PLC Model

The initial problem that was attacked and solved was the
creation of a character recognition program that could accept a
large variety of symbols from a large and diverse set of users.
We believe that our character recognition program is more than
adequate for the kinds of usage we envision in the future. Next,
a program for accepting mathematical notation was implemented.
The necessity for a companion program that converted the internal
linearized computer representation of an expression back to its
displayable two-dimensional form became clearly obvious. Given
the ability to hand-print mathematic expressions into a computer
and have them redisplayed in well-spaced textbooklike form is all

Natural Man-Machine Dialogue 183

well and good, but certainly not an end in itself. We, therefore,
created a computational facility that we call TAM, or The Assist­
ant Mathematician. A few of its facilities are illustrated in
Figs. 18-2 and 18-3.

Figure 18-2a shows the definition of the function V(h). The
two versions represent the input through the recognizer, the lower
centered version, and the formatted output, up and to the left of
the first. Figure 18-2b shows the addition of a new definition T(h)
which is a function of V(h). Figure 18-2c is a request to compute
the value of T(l50).

Figure 18-2d is a continuation of the sequence. The user
has given a value the variable or constant called "R". The pro­
gram reminds him, the user complies in Fig. 18-2e, the program
again prompts (2f), asking for g and when it is satisfied, supplies
the value for T(150) in Fig. 18-2g.

Figure 18-3 shows how iteration over a set of values is
specified; Fig. 18-3a shows the input; Fig. 18-3b, the result.

The next logical step for this project is to select an area
of specific applicability, bound its context much as the other
two projects have done, and see if that can provide the vessel
for creating a natural system that contains no surprises for the
user and within his or its context always does what is expected
without the need for specifying a great deal of the obvious.

FUTURE SYSTEMS

What does the future hold? It is not beyond the realm of the
possible that before 1980 there will be systems available with
which one will use the most natural form of input and output with
the computer that fits the situation. One will speak those things
normally spoken and draw pictures and write equations for those
things normally drawn and written. The computer's response
will be the spoken word, perhaps a song where appropriate, pic­
tures, graphs, and charts, and even the printed word. A great
deal of work going on in parallel with our own makes it clear
that it is not a question of whether such systems will be
achieved, but rather when.

184 Multi-Access Computing

a b c

d e

f g

Fig. 18-2. Functions

Fig. 18-3. Iteration Statement

19. REL: A System Designed
for the Dynamic Environment

Bozena Henisz Dostert
California Institute of Technology

Pasadena, California

REL stands for Rapidly Extensible Language System, which
is being developed at the California Institute of Technology. REL
is an integrated software system designed to facilitate conversa­
tional interaction with the computer, especially on the part of
those working with dynamic, highly interrelated data, in situations
where the data is not only to be accessed but also to be manipu­
lated in various ways by the user to suit his specific needs. In
such situations, the user must be able to work with his data in a
natural manner, through a language that is natural to him and best
suited to his task, a language that allows him to analyze the data
in a most facile and meaningful way. An essential ingredient of
such a language is its extensibility, the ability to define and rede­
fine terms so as to find the essential interrelationships in the
data.

Most current data management and analysis systems are
built around the idea of the total management information system.
In such systems, data are collected from all over a large organi­
zation, stored in a large and all-encompassing data base, and
made available to higher levels of management through statistical
analysis routines or report generators. To attain the necessary
levels of efficiency, the operation of such a system must be cen­
tralized; to remain sufficiently stable to be useful to the manage­
ment, the content and format of the material must be closely regu­
lated and under the control of the information system operation.

But there are other kinds and uses of data in organizations,
whether they be a research center, an industrial setup, or a
military headquarters. Each research team or staff office has
its own information files which are used constantly as an ongoing
part of the work. These may be records and results of a current
series of experiments, or the data and models the team is working
with in putting together a special study, or working files of raw

185

186 Multi-Access Computing

material relating to ongoing research, or records on alternative
budgets and planning charts used in the preparation of a new pro­
gram proposal. In all such cases, the research team or staff
office is directly involved in gathering and maintaining this mate­
rial, in making day to day decisions on its contents, formats and
file organizations. Such material is not appropriate for the master
file of the larger or outer organization and it is far too dynamic
in all its dimensions for standardization. Further, those who
develop and use such materials would not think of giving up control
over them, for they are in a real sense the stuff and substance of
their ongoing work. These are the dynamic, working files that
constitute the essence of research and staff operations.

In order to build a system responsive to user needs in such
dynamic environments, we have been especially attentive to two
characteristics of the work of individual users or groups who
analyze different aspects of a body of data much of which may be
common to several individuals or groups. First, they need to
deal with their data in an individualized manner, to dissect it in
new ways, to test even far-fetched hypotheses, to build up their
terminology in order to deal with the data most efficiently. Second,
they need to communicate with each other's data, consult, and
benefit from each other's analyses.

What, then, should be the characteristics of an information
system which aims to support the working files, and habits, of
many staff offices and research teams in dyl)amic environments?

First, such a system has to have the capacity to handle
highly interrelated and time-oriented data. It must allow individ­
ual queries and analyses along unanticipated avenues and allow
for the tracing of complex interrelationships. The very essence
of research and staff studies lies in the search for new interrela­
tionships, following of clues, and even guesses, tracing of impli­
cations and clarifications of emerging patterns. Thus, a system
designed for supporting such operations mustfacilitate innovative,
unprogrammed exploration of the data.

Second, in such an information system, communication
between the user and his data must be in a language natural to him
and tailored to his needs. On the one hand, this requirement calls
for man/machine languages built on the syntax of natural language.
On the other hand, the vocabulary and idioms of such languages
should be those of the working teams or individuals, they should
reflect the idiosyncratic dialect built around the concepts and
interrelationships relevant to their work.

Third, such a system must be able to accept new terms and
new data as well as new definitions of functions and relationships
in the process of the ongoing use of the system; and it must incor­
porate these language and data base extensions for immediate use
and further extensions. The changing, dynamic character is
essential to the work of the staff, since the modifications in the
data base and the concomittant modifications of the language reflect

REL 187

the staff's maintenance of the relevance of the data, and so reflect
how well they are doing their job.

Fourth, such an information system must provide enormous
flexibility, which allows for a variety of user language/data pack­
ages, individually tailored to specific needs, and provides a facility
for the intercommunication of such specialized packages. It must
allow the addition of new language/ data packages and new algorithms
and the employment of a wide variety of data structures.

Fifth, such a system must have good response times.
The REL system is designed to fulfill all of the above require­

ments. It has already stood the test of users with needs such as
were discussed above. This experimental REL system was in
operation in the spring and summer of 1970. We are now develop­
ing a fully operational prototype. This prototype will be a fully
interactive, multiprogrammed system by which a number of
researchers can communicate directly with their data and models
in a conversational way, time-sharing the computer facilities.
This prototype system should be in operation a year from now on
an IBM 370/135 in a test environment. We plan for a debugged,
evaluated and documented system by Fall, 1973.

In this paper, only some of the outstanding features of the
system are discussed and illustrated; namely:

1. its ability to handle interrelated and time-oriented data;

2. provision for communication with data in natural lan­
guage, tailored to user needs, with emphasis upon
ordinary English;

3. the extensional facility, which allows for the modifica­
tion of data through definitions of new terms and rela­
tionships as part of the user's ongoing work with the
system.

The third point receives special emphasis, since its discus­
sion and illustration also serve to bring out the other features.

First, however, the general architecture of the system
needs a brief presentation. It is more fully discussed in references
1, 2, 7.

THE REL SYSTEM DESIGN

The REL system has three main parts. As Fig. 19-1 shows,
the three main parts are:

1. the operating system, which manages the simultaneous
use of the system from a number of terminals and
handles all input/output from peripheral storage;

188

G] -
E

Multi-Access Computing

DATA
BASE

-­
i- --

USER

OS 360

HARDWARE

1--

DATA
BASE

USER

_-1

Fig. 19-1. REL Architecture

LANGUAGES

REL
SYSTEM

2. the language processor, which analyzes the incoming
query or data and schedules and executes the appropriate
calculations and processing of the data base;

3. REL languages and user language/data base packages.

One of the most distinguishing features in the architecture
of REL as compared with other relational data systems is that it
has a single language processor for all languages, and that this
language processor is tightly coupled with the operating system.
In most computing language systems, the system can accept and
process statements of a given language by using a separate com­
piler specific to the particular language. REL, however, has a
single language processor that can handle a wide variety of high­
level languages. In essence, this language processor is a straight­
forward syntax directed interpreter. It includes built-in facilities
for handling variables and recursion, and provides for extensions
by users of the languages.

REL 189

This feature of REL architecture has several major advantages.
First, it is much easier to implement a new language or extend
an existing one. Languages can be conveniently tailored to particu­
lar applications and specialized processes can be added to one's
language as the need arises.

Second, since this single language processor is closely tied
to the underlying operating system, it allows efficient scheduling,
allocation, and access of peripheral storage, which could not be
achieved otherwise.

Third, in applications where a number of offices or groups
have their own "system, " that is a language/data base package,
the specific architecture of REL facilitates intercommunication
between such subsystems.

The technical problems of implementing a natural language
question-answering system are quite different from those encoun­
tered in programming language compilers. From the system pro­
grammer's point of view the relevant characteristic of most REL
applications is that they deal with large data bases that must be
kept in disk memory. The prime problem is efficient access to
that memory. One solution is to restrict the nature of the ques­
tions that can be asked and optimize disk access methods around
these restricted queries. This solution is not acceptable in the
majority of applications to be found in dynamic situations. The
REL solution, and a principal element of the system, are the
paging algorithms for the dynamic optimization of access to the
disk memory in terms of the data requirements of each query.

The language writer controls both the allocation of data to
individual pages and the page segmentation of the interpretive
routines, and he can do this without becoming involved in the
details of the language processor or the paging mechanism. As a
result, there is a rational relationship between lexicon and syntax,
on the one hand, and the allocation and retrieval of pages from
disk storage, on the other. Scattering of data and routines hap­
hazardly over the peripheral storage, a source of major ineffi­
ciencies in other systems, is avoided.

One other design feature must be mentioned in connection
with processing of data with complex interrelationships, to which
experience with the system in Summer, 1970, pointed. An investi­
gator who has a complex data base is soon led to ask questions
that call for an extensive amount of computation and data manipu­
lation. Such an investigator is usually well aware that he must
wait a considerable time for his answer, and since he is aware of
the amount of computation he has asked for, he is prepared for the
delay in the response. This use pattern is likely to be quite
typical, in a system where the user's language can be so easily
extended, thus providing the means of succinctly expressing com­
plex questions.

To facilitate this pattern of usage, REL will have the capa­
bility to cast off a query into the "background" as a low priority

190 Multi-Access Computing

job in the system and free the terminal for continued conversational
use in the interim period. Since the REL operating system is a
multiprogrammed system in which several jobs are resident in
core memory at the same time, each occupying one of the available
"slots," the plan is to make one dynamically allocated slot avail­
able for background jobs. Thus, one could say that the system
would be both an interactive system and a conversationally driven
batch system.

Such details of implementation have to be mentioned in view
of our over-all objectives.

REL languages are of two types, which we call "base" lan­
guages and "user" languages. A highly specialized "user" language
can be developed for a particular user, incorporating the syntax
and basic algorithms natural to his problem area. More commonly,
however, a user will make use of a general language already avail­
able, tailoring it to his own needs by introducing his own vocabu­
lary and definitions.

Two such "base" languages have been implemented and
applied by users. One is REL English and the other the REL
Animated Film Language.

REL English, further discussed and illustrated in subsequent
paragraphs, is a sizable subset of natural English. In the base
version, the vocabulary is limited to the "little" words such as all,
and, what, before. Together with the grammar rules for natural
English, this constitutes a base on which a user can build his own
special language, and then extend it and modify it according to
his needs. As he makes use of the inherent definitional capability
of the system, his language and his data base become tightly inter­
woven, constituting his own language/ data base package. Several
actual examples from user experience with REL English and the
construction of a specialized language/ data base package are given
in Section III.

How, then, what exactly is meant when we refer to the "rapid
extensibility" of REL languages? Our notion of extensibility derives
from 'Our understanding of how a researcher or any person dealing
with dynamic data goes about his work. As his understanding of
his material grows, he develops new concepts, finds new patterns
in his data, interrelates his data in new ways. This evolving con­
ceptualization is mirrored in his use of language. He defines new
patterns and relationships in terms of old, and adds terms as he

· needs them. As he moves forward, he makes use of those newly
defined terms and concepts. In dealing with his data, he needs
to be able to communicate with the computer in these new terms
rather than always having to express himself in some rudimentary
language. Only in this way can be use the computer as a facile
tool of his analysis.

The REL definitional capability can best be illustrated through
the experience of two users who worked with those two entirely
different languages: REL Animated Film Language and REL English.

REL 191

Mr. John Whitney, the computer artist of international
reknown, used the REL. AFL language. This language is a highly
specialized language for conversational interaction with the graphic
display terminal (IBM 2250) for composition and subsequent ani­
mation of motion picture films. Mr. Whitney used this language
to make his film called MATRIX, which he presented at the Inter­
national IFIP 71 Congress in Ljubljana, Yugoslavia, last August. 3

In a typical working session, Whitney could define several
visual forms, say a cube and a pleasing curve space. The defini­
tion of these forms might be either in terms of an array of simpler
forms, e.g., line segments arranged to define the planar projec­
tion of the cube, or might involve mathematical expressions, for
instance in defining space curve. Once defined, these forms
could then be manipulated by the artist as conceptual units and
be composed into higher level forms and sequences. For example,
a series of cubes might move rhythmically along the space curve
in such a way as to move into and out of symmetric interrelation­
ships. The artist would then proceed by executing and modifying
his developing composition on the display scope, working with the
visual images to bring the ultimate composition into artistic bal­
ance. If it had been necessary for him to state these high level
compositions in terms of the basic shapes of two-dimensional
lines and mathematical equations, rather than in terms of cubes
and the space curve, the artist would have been strained beyond
his ability to conceptualize.

As far as REL English is concerned, this passage to new,
high level conceptual forms can be seen in the protocol of Dr.
Thayer Scudder who made extensive use of the experimental REL
system. Dr. Scudder, a Caltech anthropologist, and Dr. Elizabeth
Colson, of the University of California at Berkeley, used the REL
system to analyze their data concerning the Gwenbe Tonga, a 5
people living in Zambia. Their data base was of the order of 10
items. The following illustration is from one of Dr. Scudder's
sessions with the computer. First he defined the term "sex ratio."
Later on, he was interested in considering only the older women
of the Mazulu village, whom he defined as "Mazulu crones. " He
could then ask:

"What is the sex ratio of the children of Mazulu crones?"
"What is the number of male children of Mazulu dames who

were born before 1920, times 100, divided by the number of
female children of Mazulu dames who were born before 1920?"

On the surface, this seems a minor advantage. However,
in the process of ongoing investigation, the recogniting, testing
and establishment of new conceptual forms is expected to take
this step-by-step path.

These steps, as they build up, evolve into new and more
revealing conceptual patterns. How a user extends his language
through definitions during his ongoing conversation with the com­
puter is well illustrated through Scudder's protocol. Definitions

192 Multi-Access Computing

can, of course, be deleted and changed, as well as added. The
concepts defined, as well as the questions that can be asked, may
involve higher level abstractions and complex interrelationships,
not just simple identifiers of individual entities or subsets of the
data, as might seem initially.

As a user builds up a hierarchy of definitions, computing
efficiency is likely to be degraded when the higher forms are
used, especially when they entail complex calculations on the
data. The investigator should then have recourse to a program­
ming staff who can replace the hierarchy of definitions leading
to a term by an efficient algorithm expressing internally the com­
plex meaning of the term.

Thus, REL provides for two kinds of language extension.
First, it is easy for the investigator himself to define new terms
and extend and modify his language, i. e. , his lexicon and his
data, while working with the data. Second, it is easy, at the pro­
gramming staff level, to initiate and extend languages tailored
to the needs of the users. It is precisely these two capabilities
that constitute the extensibility provided by REL.

Finally, the data itself may need frequent extensions. There
are two sides to this issue: adding small amounts of data, which
the investigator can add just as easily as he adds definitions. Such
additions are immediately incorporated into the data. The other
side is adding large bodies of data, particularly when that data is
on punch cards in typical field formatted form. Let us consider,
for example, a data deck whose card format is:

NAME POPULATION LAND AREA

France 45540 213

Using a language based on REL English, an investigator
could enter from a terminal the following definition:

def: "France" "45540" "213":

The population of "France" is "45540" and the land area of
"France" is "213".

The quotes indicate that any other similar term may be used
in place of the ones shown, e. g. , names of countries and other
numerical data. It is easily noticed that this simple definition
decodes the card format into a statement whose processing will
build the facts indicated into the data base. Having submitted
the card deck to the machine operator, one types: "Alternate
input: cards. " and the system then processes the data cards,
whose translation is understood by the language processor in
terms of the above definition.

REL 193

REL English

REL English is currently the most prominent language within
the REL system; it has already been tested extensively in user
applications and has a variety of applications as a natural means
of communication with the computer.

Just as in ordinary English we use different modes of expres­
sion, different styles to suit specific situations, in REL English
not all constructions of ordinary English are available. For
instance, colloquial, casual on the one hand, and extremely
elaborate constructions on the other, are not part of REL English.
However, we are continually bringing it closer to normal English
by incorporating new structural features. Currently, REL
English grammar consists of more than 350 rules which allow a
variety of constructions to be handled. The grammatical struc­
ture of REL English is discussed in (4, 5, 6); here the presenta­
tion is limited to illustration of the constructions that can be
handled and samples of actual conversations with the data.

uses:
As for the range of constructions handled, REL English

1. Complex verb structures, including references to
time; e.g.,

Had John been given the message before his Boston
friend arrived?

Did John arrive in New York after July 1, 1970?

2. Relative clauses; e.g.,

Did some boy see the girl who left London?

Did John give Mary books which he bought from Tom?

3. Complex noun phrases; e.g.,

Mary is the daughter of John's wife's brother.

John sent a letter to his wife's mother.

4. Qualifiers, which select data and group it; e. g. ,

Which ships left Boston after May 1971?

How many reports were sent by John last year?

5. Conjunctions, which join nouns and sentences;
e.g.,

194 Multi-Access Computing

Did John live in New York or Boston?

Mary attended Harvard and her brother enrolled in
Yale.

Combinations of such constructions, with some others not
illustrated here, make it possible to use REL English with ease
and a feeling of conversation in natural English.

To quote Dr. Scudder: "A great strength of REL is that
the investigator can afford, in playing with the data, to search
out a multiplicity of relationships, whereas in using other tech­
niques he might settle on a single suspected relationship and after
lengthy statistical analysis be tempted to read too much into
correlations found. ,,7

Comments such as Dr. Scudder's make those of us in the
design and implementation of the REL system and REL English
feel that we have already had very valuable experience with the
system and we are confident of the REL promise.

With the tremendous developments in computing which we
have witnessed in the past two decades, it is now time that com­
puters should be "humanized" and that many men and women be
liberated from the distance between men and machines. Computers
should be easily manipulable tools in the hands of those to whose
work they could contribute immensely - members of dynamic,
complex environments. REL is a computer system for these
types of users.

REFERENCES

1. Thompson, F. B., Lockmann, P. C., Dostert, B. H., and
Deverill, R. S., "REL: A Rapidly Extensible Language
System, 11 Proc. 24th National ACM Conference, August,
1969.

2. Lockemann, P. C., and Thompson, F. B., 11A Rapidly
Extensible Language System: The REL Language Processor,"
1969 International Conference on Computational Linguistics,
Stockholm, 1969.

3. Whitney, John H., "A Computer Art for the Video Picture
Wall," 1971 Congress of the International Federation of
Inform. Proc. Soc., Ljubljana, Yugoslavia, August, 1971.

4. Dostert, B. H., and Thompson, F. B., "A Rapidly Extensible
Language System: REL English. 11 1969 International Con­
ference on Computational Linguistics, Stockholm, 1969.

5. Dostert, B. H., and Thompson, F. B., "How Features
Resolve Syntactic Ambiguity, " Proceedings, National

REL 195

Symposium on Information Storage and Retrieval, University
of Maryland, April 1971.

6. Dostert, B. H., and Thompson, F. B., "Syntactic Analysis
in REL English," Proceedings, 1971 International Meeting
on Computational Linguistics, Debrecen, Hungary, September
1971.

7. "REL Protocol: July 1970" California Institute of Technology,
1970.

20. A Computer-Oirecte~ Training System
John B. Goodenough

Softech, Inc.

This chapter will discuss one successful Air Force experience
in using multi-access computers to help people learn to use a com­
puter system effectively. It will then turn to some techniques
which might be used in future systems.

Recent Air Force experience has centered on the Phase II
Base-Level System, which consists of approximately 130 Burroughs
3500 computers located around the world. These computers calcu­
late payrolls, assist in personnel management, and in general,
accomplish functions which are common to Air Force bases every­
where. Some of the B3500 programs are interactive, in particular,
the personnel management system; training personnel at each base
to use this system effectively requires vast and continuing efforts.
The training problem multiplies as more base level functions are
supported by the Base-Level System.

In anticipation of these training problems, a system called
the Computer Directed Training System (CDTS) was developed to
train B3500 users on-the-job in the use of various functional pro­
grams supported by the B3500. (A course was also developed to
train B3500 computer operators 1.) Within the last year, initial
tests of one CDTS course have been completed, and the system
is scheduled for world-wide implementation in January, 1972.
Savings from the use of CDTS for this course alone are estimated
at one million dollars per year, and moreover, the CDTS tech­
nique has achieved enthusiastic user acceptance.

CDTS is a simple system as computer-aided training systems
go - it supports only simple training techniques. ·Specifically,
it presents information or questions to a trainee, the trainee
makes some kind of response, the system analyzes that response,
presents either remedial material or new material, and waits
for the trainee's next response. There's nothing particularly
new about this style of instruction; it received the name "program­
med instruction" years ago.

196

A Computer Training System 197

Certain management functions are also supported by CTDS;
e.g., it keeps records of each trainee's progress and what kinds
of errors he is making so that the course can be improved later.

The most significant aspect of .the system is neither the
method it uses to train people nor the training management func­
tions that it supports, but that CDTS is available on the job. The
console on which the trainee receives instruction is the same one
that he will use to do his work when he finishes the course. CDTS
is available on request and requires minimal trainee supervision
even though it is a form of on-the-job training. The trainee's
supervisor need not spend a lot of time making sure the trainee
is getting the proper kind of training - the trainee just goes off
and does it. Moreover, the trainee is on site while he is taking
the course so that when a work crisis arises or questions arise
in his area of responsibility, he is right on hand to help out. This
is one reason why management likes an on-the-job training sys­
tem. Another reason is that the personnel system course takes
only 30 to 40 hours to complete, compared with three weeks of
classroom training for the same course, and the computer-trained
personnel perform as well or better than the classroom trained
personnel. Finally, everyone in the personnel office can be
trained to the same level of competence when CDTS is used,
whereas at most 10 percent of the personnel are normally given
the full classroom course.

Trainee acceptance has also been gained, despite a mean
system response time of 44 seconds (with a large variance as
well). All 25 of the original test trainees preferred this method
of instruction to classroom instruction (although I should state
that initially only 24 out of the 25 preferred the CDTS method;
when the lone dissenter was asked why he preferred the class­
room method he said he liked getting the per diem payments that
came along with off-site classroom instruction. When we excluded
this factor from his judgment, he admitted that he preferred the
CDTS method).

From a cost viewpoint, direct costs of running CDTS come
to about $2. 70 per trainee hour as detailed below, as opposed to
an estimated $5 per classroom hour.

Trainee management for CDTS costs cover management
time required to identify the next person in the base personnel
office who should receive training and similar functions. Class­
room costs do not include TDY expenses of trainees, which can
reach a considerable sum. Neither set of costs includes course
preparation costs, costs for facility overhead or for course
development. It is reasonable to ignore facility overhead costs,
because the facility is required whether the training system exists
or not. Course development costs come to between $70, 000 and
$100, 000 per course. With respect to the CDTS personnel man­
agement course, course development costs are negligible, because,
considering the number of trainees who should take the course

198 Multi-Access Computing

COMPUTING THE NUMBER OF PERMUTATIONS

INTRODUCTION THERE ARE ONLY TWENTY-FOUR PERMUTATIONS OF FOUR
OBJECTS, BUT THERE ARE 120 PERMUTATIONS OF FIVE OBJECTS
AND 720 PERMUTATIONS OF SIX OBJECTS. IT IS OBVIOUS THAT
AFTER A CERTAIN POINT THE LISTING OF PERMUTATIONS OF
OBJECTS BECOMES AN ENORMOUS TASK.

DEFINITION

NOTATION

FORMULA

THE TOTAL NUMBER OF PERMUTATIONS OF A GROUP OF OBJECTS,
OR ANY SUBGROUP, IS EQUAL TO

n!
(n-r) !

WHERE n =THE TOTAL NUMBER OF OBJECTS
AND r =THE NUMBER OF OBJECTS IN EACH PERMUTATION,

SUCH THAT O:';'.; r:';'.; n.

THE TOTAL NUMBER OF PERMUTATIONS OF A GROUP OF OBJECTS,
OR ANY SUBGROUP, IS DENOTED BY THE SYMBOL

WHICH IS READ "THE PERMUTATIONS OF A GROUP OF n OBJECTS
TAKEN r AT A TIME."

THE FORMULA FOR FINDING THE TOTAL NUMBER OF PERMUTA-
TIONS, THEREFORE, IS

1°HE PERMUTATIONS'
OF n OBJECTS TAKEN
rATA TIME IS
EQUAL TO ...

'i~c; ;;-- 1lov1DEDBYTHE'
OF n ... FACTORIAL OF

THE QUANTITY
n MINUS r.

EXAMPLE ONE AN EXPERIMENTER HAS FIVE VARIABLES WHICH HE WOULD LIKE
TO TEST IN PAIRS. HE IS ALSO INTERESTED IN THE ORDER OF
THOSE PAIRS. IF HE WANTS TO RUN ALL THE POSSIBLE TESTS
ON THESE FIVE VARIABLES TAKEN TWO AT A TIME IN DEFINITE
ORDERS, HOW MANY TIMES MUST HE RUN THE TEST?

5!
(5-2)!

5!
3!

120

6
= 20

Fig. 20-1. An Example of an Information Map.

A Computer Training System

each year (approximately 12, 000, due to the great personnel
turnover experienced), the savings based on the cost analysis
in Table 1 will be approximately one million dollars per year,
exclusive of savings in TDY costs. Savings of this magnitude
quickly amortize course development costs.

199

A few problems exist. First, the testing phase revealed
that each base installation has too few consoles to train people
on the job. The use of consoles for training had not been taken
into account when the system was initially sized, and so while
installations reported that they liked the training system, their
workload was such that no time was available to use the consoles
for training. The solution, of course, is to provide more con­
soles. The Air Force has estimated that 245 additional consoles
will be needed for effective use of CDTS world-wide. Of course,
these consoles need not be used solely for training - during peak
workloads, they can be used for real work. Moreover, when a
new system is made operational at a given site, the Air Force
will import additional temporary consoles to handle the initial
peak training requirement. The cost of the additional permanent
and temporary consoles can be recovered easily from savings
due to the use of the system. (It should be noted that as addi­
tional consoles are justified on a cost effective basis due to train­
ing needs, we come closer to the situation desired by the speakers
at this meeting; namely, one console per person for his full-time
use, be it training or work.)

A second problem is that the B3500 is heavily loaded. The
large amounts of text required for the training system and its
courses stretch online disk storage capacity to its breaking point.
CDTS cannot be kept online at all times because of limited disk
capacity, and when training system is in use, access to some
other systems must be denied. Provision of more disk space is
economically feasible, however, because of the magnitude of sav­
ings that can be realized from the full use of CDTS.

These two problems occurred largely because CDTS was
an afterthought to the over-all system design. In sizing the sys­
tem, CDTS requirements were not a factor. The lesson here is
obvious - since simple online training systems are technically
and economically feasible today, at least in the military environ­
ment, their demands should be considered from the start in sys -
tern design and sizing. In fact, one of the main points I wish to
make today is that training systems should be routinely provided
(or at least, their provision should be explicitly considered) in
future military multi-access systems.

One advantage of CDTS has still not been mentioned - ease
of update. The procedures for using computer systems such as
the personnel management system are constantly changing. Train­
ing materials must be revised accordingly. When training materials
are published in book form, keeping the training manuals in agree­
ment with the actual system is almost impossible. But with training

200 Multi-Access Computing

COST/CONSOLE HR.

DISK STORAGE $0.089

TERMINAL $1.23

CPU TIME $1.10

TRAINEE MANAGEMENT $0.272

$2.69

COST/CLASSROOM HR. $5.00

Fig. 20-2. Costs per Trainee Hour

handled by CDTS, as the personnel system changes, corresponding
changes will be made to the lessons. When the changed system is
released, the changed training course will be released simulta­
neously. Thus all installations - world-wide - will have an up-to­
date set of training materials, and the distribution of the changes
is handled routinely - as part of its regular maintenance updates.
If we were limited to printed training media - a book or something
similar which, offhand, might seem to be a cheaper way of doing
business - we would lose this simple method of keeping course
materials up to date. This ease of change is really a tremendous
benefit.

The CDTS system supports very well the teaching of a
cookbook approach to problem solving. In the Personnel Manage­
ment System course, a user is trained to process certain kinds
of transactions using certain techniques available in the personnel
management system. He is not trained to use a powerful set of
data base update and query operations per se. To some extent,
this is an advantage, because if a user has not dealt with a certain
kind of transaction for some time, he can ask to be taken through
the lesson module dealing with that sort of transaction again, i.e.,
the system can be used as a review mechanism by an already

A Computer Training System 201

trained user, even though CDTS is not particularly organized to
facilitate review. And it is not set up to give a quick answer to
a specific question about how to accomplish a certain action.
Some technique other than the "programmed instruction" tech­
nique of CDTS is needed to meet the multiple requirements of
users effectively, so that the computer can become more than
just a training aid; it can become a continuing on-the-job perform­
ance aid as well, being continually available to assist the user in
making effective use of his system.

One promising technique which overcomes the limitations
of traditional computer aided training methods is information
mapping2, 3, Information mapping was originally developed with
the printed page in mind. One characteristic of information maps
is the marginal notations which indicate in a general way the
nature of each box's content. From one page to the next, the
marginal notations are generally the same. The content in each
box is grammatically separated from the content of adjacent
boxes, i.e., there are no pronouns that refer back to a sentence
in a preceding box. This means that when a person reads a printed
page in this format, the order in which he reads the material is up
to him. (Some people, for example, may prefer to read a defini­
tion, then read an example, and then look at the notation. Others
may prefer to look at examples first, then the definition, and
finally the notation.) With information mapped material, the
reader can jump around quite readily, according to his own per­
sonal style of reading and learning.

The same information mapped page is suitable for initial
learning and for review. For example, to review, a user can
flip from page to page and look just at definitions and notation.
The material is indexed by the marginal notations, and so is sus­
ceptible to use for different purposes.

Information structured in this way is particularly suitable
for use in computer-based training systems. Each of the boxes
on the printed page is a chunk of information of a particular kind,
i. e., introductory, definitional, notational, etc. Given material
organized in this fashion and a description of a user need, the
computer can reorder the material to suit the particular need.
For example, if a user requests a review of the material in the
probability course, the computer system applies a system (or
user) defined specification of what material is most appropriate
for review purposes (e.g. , just definitions, notations, and a
single example), and then presents this material to the user.
If he wants to reference a specific topic, he can enter a query
and focus on a map or set of maps containing the information he
wants.

So the point of information maps is that the same material
is suitable for initial training, suitable for reviewing, suitable
for referencing, and useful for just browsing through a course.
A single preparation of the material can meet these diverse needs.

202 Multi-Access Computing

No computer-based system exists at present which uses
information maps, although efforts are underway at the University
of Pittsburgh and at The MITRE Corporation to develop such sys­
tems. A system design has been completed4 using a set of decision
tables which specifies how to sequence through material in various
modes, but since these procedures have not been tested, undoubtedly
some revisions will be necessary. It does seem likely, however,
that a system which uses information maps will be more than just
a training aid - it will be a job performance aid as well because
of its utility for reference and review purposes.

CDTS and information mapped systems have a common
characteristic, namely that all material presented to a trainee
has been prepared in advance by the course author - the systems
differ primarily in the extent to which the course material may
be selected and rearranged by the trainee. In contrast, generative
training systems use artificial intelligence techniques to create
highly individualized questions and answers for a particular trainee.
A course author in such a system does not prepare chunks of
training material in advance, but rather develops a network of
concepts and information about some topic. The system, using
general rules, analyzes the network and either responds to ques­
tions by trainees or generates its own sequence of questions.
Such a system is, potentially, capable of conducting a true dia­
logue between man and machine. Initial experimental results
are promising5. At present, an experimental system containing
information needed by ARPA network users is under design. The
system will respond to queries in a seemingly intelligent fashion.
For example, if someone asks how to use the Lincoln Laboratory
computer, the system might reply that there are two computers
at Lincoln Laboratory available on the network: an IBM 360 and
the TX2. It would then ask which computer the user was spe­
cifically interested in. In another mode of use, the system
would test a user's knowledge in a particular area selected by
the user, and would proceed to fill in gaps revealed by the user's
answers.

Of course, one realizes how speculative this sort of system
is, but some success has been achieved in this direction and this
is the kind of system that may well be in productive use in 15 or
20 years.

The three types of training and performance-aiding systems
that I have discussed are distinguished in part according to the
extent to which the computer or the trainee/user is in control of
the dialogue. In the case of CDTS, the trainee has only very
limited control over the system. In an information map system,
the locus of control may vary more widely, although the style of
the dialogue is still highly restricted. Finally, with generative
systems, the locus of control may easily switch back and forth
between user and computer, and the style of dialogue may appear
quite free and natural. The Computer-Directed Training System,

A Computer Training System 203

information mapped systems, and generative systems are thus
examples drawn from a spectrum of training and performance
aids.

In conclusion, computer-based training aids can significantly
help meet the training problems posed by sophisticated or even
seemingly simple interactive, applications-oriented systems.
According to Professor Corbato, the real system is the system
that the user knows about. The only way he is going to get to
know about the system is if he is provided with suitable training.
And increasingly, at least in military systems, a computer-based
training subsystem will be the most economical and effective
means of providing that training. Unfortunately, neither users
nor developers have the proper set of expectations about what
training and performance aids a system should and can supply.
No checklist for system design includes a training subsystem as
a design possibility. There are systems where it is not worth­
while to implement computer-based training aids, but the decision
not to use these techniques should be made consciously rather
than by default.

Finally, computer-based training aids should be implemented
in many systems and only when this is more widely realized and
more systems have these training subsystems built in will the
benefits of multi-access computing be fully realizable.

ACKNOWLEDGMENT

The work described here is and has been mainly the respon­
sibility of Dr. Sylvia Mayer of AF Electronic Systems Division.
Dr. Mayer's work over the past years and the many discussions
we have had concerning the significance of these systems and
concepts for improving the effectiveness of multi-access systems
have been invaluable.

REFERENCES

1. ----, The development of a computer-directed training
subsystem and computer operator training material for
the Air Force Phase II Base Level System, ESD-TR-70-27
(AD 702 529), November 1969.

2. Horn, R. E., Nicol, E. H., Roman, R. A., et al. Informa­
tion mapping for computer-based learning and reference,
ESD-TR-71-165 (AD 729 895), March 1971.

3. Horn, R. E., Nicol, E. H., and Kleinman, J. C., et al.
Information mapping for learning and reference, ESD-TR-
69-296 (AD 699 201), August 1969.

204 Multi-Access Computing

4. Horn, R. E., Nicol, E. H., Roman, R. A., and Razar, M. E.,
Description of a computer-based learning-reference system
for use with information-mapped data bases, Project Docu­
ment No. 1, Information Resources, Inc. , Cambridge, Mass. ,
March 1971.

5. Carbonnell, J. R. and Collins, A. M. , Mixed-initiative
systems for training and decision-aid applications, ESD-TR-
70-373 (AD 718 977), November 1970.

21. Integrative Analysis in Biology
Wilfrid J. Dixon

UCLA

Los Angeles, California

In this chapter, I wish to describe the Health Sciences
Computing Facility and what it is attempting to do. I believe
our approach to the pr oblem is different from those described
in earlier chapters. In some sense, this chapter will discuss
earlier chapters as well.

Our facility is located in the Medical Center at UCLA.
It is supported by the National Institutes of Health to provide
mathematical, statistical, and computer support for medical
research. A large part of that activity is the continuing develop­
ment of the BMD programs. Originally, these statistically­
oriented programs operated in a batch environment. They have
been widely distributed and provide a basis for many types of
research. A more recent project is the support of research,
development, and improvement of modeling systems. Major
emphasis is now being placed on the development of interactive
programs, some of them using graphical devices. As research
tools, we have used the IBM 2250 and a variety of alphanumeric
terminals. Interactive support brings a greatly increased power
to the researcher. In addition to getting fast turnaround, he can
interact directly with his analysis, and, with a graphical terminal,
he has a pictorial output capability at his command. Programs
are written not only by our own staff programmers but also by
graduate students and various investigators who use our statistics
and aid us in developing the computer support which makes these
most effective. In addition to the systems to facilitate use and the
package programs to provide the analytic tools, this has led us
to the development of general purpose programs to aid the user
in the development of special purpose tools for his needs. A
retrieval program designed for handling tree-structured files is
the first set of such programs planned for assisting users in the
retrieval of data. Another application, which may be of interest

205

206 Multi-Access Computing

to some of the more system-inclined people, is a computer-aided
instruction system. Using PL/1, we have written a set of macros
which comprise a very effective means of developing teaching
programs. Courses developed in this way are now in use for
teaching the medical and dental students. The instructor merely
specifies his statements and branching conditions and the macros
are used to implement his requirements. The resulting systems
run on an interactive terminal used by the student.

Effective tutorial and collaborative consulting is an essential
part of our service to a user community which is predominantly
inexpert in both computer usage and analytic techniques. Our
plans for exporting our research and improving our local effective­
ness entail expansion of our consulting capabilities. To this end,
we are developing the capacity to permit two or more terminals
to consult online, viewing the same output and responses, and
commenting as required. This capacity is based on our "Inter­
active Consulting Program" - a set of modules which can be link­
edited with any FORTRAN program to provide this capacity. ICP
provides the system interfaces which enable the users to estab-
lish communication, view the same input and output, and interject
comments. The first version became available in January, 1971,
and we are finding it an effective way of carrying on communica­
tion at places both remote and close at hand. I want to stress
here that two or more individuals are operating out of the same
applications program at the same time in a facility. To facilitate
program development by these users, we have concentrated on
languages and systems which can be readily used for applications
in medical research by people with little interest in or experience
with computers. This has led us to the development of systems,
special user-interfaces, and many applied programs. The graph­
ical programs developed by our staff and our users have been
written in either GRAF or PLOT, which are language extensions
to FORTRAN and PL/1, respectively. These extensions are very
simple to learn and use, so that anyone who knows either FORTRAN
or PL/1 can become a graphics programmer in just a few hours.

The nongraphical interactive FORTRAN programs use a
special version of the standard FORTRAN input/ output routines.
Input/output to the terminal is specified just like any other FOR­
TRAN input/output. If desired, special control information may
be specified in a COMMON block. Although it is usually neces­
sary to re-work the control logic of a batch application program
in order to take full advantage of the interactive capability, many
batch programs become fairly satisfactory interactive programs
when FORTRAN units 5 and 6 (usually the card reader and printer,
respectively, in batch) are assigned to the terminal. Nongraphical
interactive PL/1 programs use special input/output subroutines
which are also quite easy to use.

All interactive jobs are handled on a time-shared basis,
executing simultaneously with a full batch stream. This is carried

Integrative Analysis in Biology 207

out under the control of our operating system, which we call
TORTOS (Terminal Oriented Real Time Operating System). The
system was developed jointly by IBM and members of our staff
to meet the needs of this installation. TORTOS is based on the
standard system 360 operating system with the MVT option, and
consists of a set of added modules activated by a START command.
Thus, as the additional releases of OS/ 360 become available we
are able to add these modules to the standard operating system.
Our operating system and interactive work were originally sup­
ported by an IBM System 360/75; in 1968, the system capacity
was extended by replacing the central processor with a Model 91.

The basic structure of TORTOS permits almost total flex­
ibility of use, but without special tools designed for user con­
venience its effective use requires considerable training. Now
that our system is functioning well, we are turning our attention
to expediting its use by beginners. The basic approach is being
made with a terminal monitor. The monitor provides a simpli­
fied command language, with defaults and a prompting facility,
which makes it possible to use it to solve relatively simple prob­
lems without first learning several different command language
instructional sequences. It also makes it very easy for the user
to perform certain very frequently used sequences of operations
(e.g., compile, load and execute, look at termination codes,
etc., edit programs, compile, - etc.). All monitor operations
bypass the OS/360 job scheduling facilities, resulting in a very
significant improvement in performance for the user.

Another significant development is TORTFORT, an inter­
active editor and FORTRAN compiler. With TORTFORT, the
user may enter a FORTRAN program or specify a source program
in our file service, and modify it, compiling the program line by
line and correcting errors as they occur. When his entire pro­
gram has been compiled and no errors found, he can execute it,
still under the control of TORTFORT. Errors found during exe­
cution are indicated, and the user may return to the compiler or
editor phase to correct his program. TORTFORT is easy to use
and provides full facilities for the FORTRAN programmer. It
is based on the University of Waterloo WATFOR compiler. The
new version, based on W ATFIV and offering greater convenience
and efficiency, is near completion.

The guiding over-all impetus in the facility is that of serv­
ing medical research through mathematics and statistics, provid­
ing support with a computer operating in a time-sharing mode, and
providing applications software that allows many problems to be
solved with no changes to the applications program.

When I came into the biological area from the engineering
research area, it took me some time to really find out that I was
in a different culture. I think that that must be taken into account
when one is thinking of computer systems and the man-machine
interface. I feel that in some of the other chapters the man which

208 Multi-Access Computing

the speaker was interfacing with the computer was a man like
himself. There are many other kinds of people in the world than
those represented in this book. Biologists and medical people
are really quite different. We have found this means we are now
designing different systems than if we had tried in advance to
guess what these researchers might need.

We find an integration of our techniques with our users'
perspectives in almost any project we bring in. For example,
the organ transplant problem is one of our important projects at
present. The problem comes from the medical field, through a
specialist in the medical area who knows something about the
basic processes, the surgery, and so on. He comes to our facility
to a mathematically or statistically inclined individual who then
thinks about the role of the computer in the problem solution. So
the interface has a long route to begin with, but, as the problem
develops, even the most remote individual comes right up to the
computer and starts interacting with it. This kind of a problem
needs both new kinds of mathematics and new systems capabilities.
We developed some new statistical techniques (e.g., one we call
"Boolean factor analysis") which have been the basis for typing
the white cells for organ transplant. We also found that the
demands of this data system and the demands of the computations
for the Boolean factor analysis really required new systems
developments, so we have the man-to-man interface in developing
the computer aspects.

Biological scientists stressed graphs before those in the
computer field ever thought it might be a nice thing to do. You
can see this in the journals of ten or twenty or thirty years ago.
If one takes off the shelf a journal labeled "biology" and one
labeled "engineering" or "physics," one will find a wealth of
graphic material in the biological field - ten to a hundred-fold
more than in the others. So, in moving into graphics in this
field, we found the people around us were really already graphics­
minded, much more than those who were based in the computer
science area. We have a very graphics-minded population with
which to work, and they push us hard in the graphics area.

We have been trying for some time to find out why there
isn't more interest in using color in graphics. In reading the
literature on color, which exists in art, psychology, and the
humanities, one will find they long ago suggested that mathe­
maticians and engineers probably had a limited interest in color.
However, since the engineer and the mathematician do not regu­
larly read the biological journals, they are not impressed with
the need for color and therefore may not be effective interfaces
for bringing an additional dimension in the graphics field to the
biologist or to others who think in color.

Perhaps some are in the computer field because a high
school biology teacher tried to make them draw all of those
graphics. The biology teacher was already involved in graphics

Integrative Analysis in Biology 209

and has remained so. The mathematician and engineer are now
ready to enter the field. Getting these people back together, I
think, really must be done in the biologist's own environment.
Perhaps I will be permitted to call that a graphic example of
how one might well develop tools quite differently if the user
population, which is really a different population, is steering
and pushing the process which one is trying to develop.

PART IV. POLICY CONSIDERATIONS AND COMMENTARY

The two papers in this section were presented at the banquets
and at the Commentary Session of the conference. They are quite
philosophical in approach and, therefore, have been placed
together.

Dr. Thompson presents a brief commentary on the character
of ADP research today as reflected in the conference. He then
discusses the need for a science of information and closes with
some thoughts on the impact of computing on our society's organi­
zational structures.

The last paper is a brief commentary by Dr. Syms on the
conference. He closes with a discussion of the hyPothesis that
single-language/single-application computers may be so much
more efficient than most current practices that we should con­
sider them as the approach of the 70s.

210

22. The Neea for

a Science of Information
Fred Thompson

California Institute of Technology

Pasadena, California

I was asked to see if I could find some threads running
through these chapters and to comment on them. But the one
thing that stands out is their great heterogeneity and their incon­
gruity. Each author reported from his own vantage point, seeing
requirements and solutions and things to do from the point of
view of his own experience in his own area, and these seldom
matched the views of any other speaker. Many of the words used
were at very high levels of abstraction, and as they got to that
level, we could relate because we could also abstract our own
experience to that level. This was markedly noticeable in the
enormous number of cliches used. Yet, when we got right down
to details, there was essentially no transfer value. For example,
Dr. Bergman's report on "Real-Time Systems Requirements" was
very convincing yet had no impact upon me at all, although I was
completely aware of the thesis being spelled out and completely
agreed with the speaker. It's a thesis favoring modular hard­
ware that I am very familiar with because our own electrical
engineers preach the same line very convincingly. I have no
possibility of using such circuits both because of funding prob­
lems and, more important, because of political problems. I
simply must use the general purpose computer at my installation.
I would even like to go mini. I could afford a mini. In fact, it
would be a considerable savings. I could use my grant money
much more efficiently on minis but, because of the political situa­
tion in our own installation, I use the general purpose computer.

In a short conversation, I spelled out the capabilities of an
English language direct-access system to several people at this
conference, saying, suppose I had a magnetic tape under my arm
and I could give it to you, could you use it? It turned out I was
talking to some people who get thousands of bits per second off
radars and have that as their only problem. So there was an

211

212 Multi-Access Computing

incongruity and we need to examine the implications of that to
see what it means for the kinds of operations we ourselves do,
to see what it implies for our community.

I would like to examine two major reasons for this incon­
gruity and then I would like to comment on its implications and
on what long-range solutions may exist.

The first reason is, certainly, a lack of any science of
information. I should like to divide this notion of a science of
information into two parts: the science of computers, what you
might call computer science, and the science of human informa­
tion or human information processing in social organizations.
In information, we are beginning to have the basic units and basic
conceptual ingredients of such a science. Certainly the work of
Godel, Turing, and others in that area has given us a very firm
hold on the notions of computability. The work of the theoretical
linguists in the last several years has augmented that hold with
a knowledge of language and its relation to semantics. On the
basis of these results, we are beginning to put together a science
of computing. Indeed, many contributions are being made at the
present time. However, it certainly has not jelled into a form
where we can make cogent comment upon the kinds of systems
we are deyeloping, the kinds of directions we should take.

To return to decision making and the area of the social inter­
relation of information, the area of management, which was very
clearly pointed out as a major shortcoming by Commander Knepell,
we find essentially no coherent body of data or of theory at that
level at all. At the present time, most social scientists are not
well enough equipped in mathematics to handle the material.
Nevertheless, a growing body of social scientists is beginning
to develop a common theory based again on mathematics - the
mathematics of statistical decision theory, the mathematics of
game theory, the mathematics of information theory tied in with
the theory of automata and recursive function theory. This is
not a single mathematics yet. But if we examine the various con­
cepts across this rather broad field, we find a beginning of a
unification of mathematics in that area. So I would like to say
that the basic beginning of a social science, a quantitative and
empirical social science is being made.

That basic beginning as it is now established, however,
has one very bad flaw: All the mathematics and conceptual
development underlying so much in this area, statistical decision
theory on the one hand and artificial intelligence and simulation
of cognitive processes on the other, seems to depend on a basic
assumption that the various alternative states of the world can
be adequately described in a given language. Notice, for example,
in statistical decision theory, it is assumed that the consequences
and alternatives existent in a given situation can be prescribed
beforehand so that, on the basis of subjective probability decision
rules, one can decide among them. In game theory, one presumes

A Science of Information 213

that the strategy space is available, that both players are playing
the same game and have equal understanding of the problem,
that what they lack is information about the plays the other is
making and the problem again is to choose from a predetermined
set of alternatives. Information theory presumes a sample space
is given and again it is a matter of choosing among alternatives.
Certainly, in the artificial intelligence area, it is assumed that
the language of the computer is adequate to describe the state in
which the artificial intelligence is to perform.

This basic notion is a very dominant notion among those
who are dealing quantitatively with social information. Even
though this is a small part of the community, it is a growing part
and a very powerful part. Certainly a dominant notion of all of
the theoreticians that are working in an area need not necessarily
reflect the reality about which it is supposedly built. Now I say,
"need not necessarily" because I do want to take somewhat of an
objective position in this regard. I believe that it does not at all
reflect, that it indeed ignores, the very essence of the human
cognitive process which I would like to characterize in a slightly
different vein in a minute. In any case, it is certainly open to
controversy. Indeed, there are very deep results in the litera­
ture, namely, the undecideability results of Godel and Tarski
and others which, when brought into the balance, weigh heavily
against the thesis that the states of the universe that are relevant
to the management process can be formulated in any formal lan­
guage. Thus they can certainly not be simulated on a computer.
The situation then is simply that if we can formulate a total theory
of, say, how a human being thinks, in a language that can be pre­
cisely described (and obviously if it can't be done on a computer),
then the theory must indeed account for that language and must
be adequate to describe it. Therefore, one falls into all the
underlying antinomies. Consequently, there are deep reasons
to believe that the human brain is not a computer and cannot be
described in any formal language. That would apply also to the
social processes in which we are involved, which would suggest
the basic creative processes that underlie the processes of man­
agement most certainly are processes that cannot be simulated
or initiated on a computer.

Now, these arguments are presented not to convince,
but simply to give evidence that there are other, contrary argu­
ments to the underlying thesis that all- of these systems and
system requirements can be adequately defined, can be put
down in some precise way. There are alternative views. These
views are well established in the philosophical literature. They
have been discussed for eons and, indeed, with some mathe­
matical bases that derive from some of the deepest mathematical
philosophies of our decade. Consequently, we are in an area
where there is deep controversy, even about those basic theories
on which all our quantitative theories of computer science and

214 Multi-Access Computing

management science and artificial intelligence are now being
based.

One of the most striking things about almost every paper
presented here was the tacit assumption that the alternative space
underlying the decisions that are to be made could be stated suc­
cinctly in a clear language whether they are procurement decisions
among different computing systems, whether they are decisions
concerning the kinds of systems that should be available to our
managers, or whether they arise from decision processes in
military establishment. All of the papers seem to make that
underlying tacit assumption. And I raise grave doubt whether
that can be done. In any case, we do not have an over-all theory
of information and management in the broader sense. I don't
think there's any serious worker in the field who would claim we
did and that lack is contributing very heavily to the enormous
heterogeneity and incongruity of the papers here.

The second and, I believe, the major reason for the amount
of incongruity is that our social organizations have now come out
of kilter, are incommensurable with the kinds of tasks we have
to do. One may recall that the old farmer was born into a task­
oriented environment. His job was to run that whole farm. He
had to learn how to weld, to plow, to take care of fields, and
to take care of animals. He had a great variety of skills to learn,
all aimed at one single task which would occupy him all the rest
of his life. In the development of our major systems, particularly
the very large military systems, the split in the life of the develop­
ment of a system falls along people lines. No one goes through
the entire cycle of dreaming up the system, developing the sys­
tem, learning all the skills of programming, carrying on through
to management, growing up with the system, staying with it for
a lifetime like the old farmer stayed with his farm, ending up as
a system operator responsible for system operation in his old
age. It is a way that we may wish to turn to in developing and
living with the system.

I was particularly interested in Dr. Corbato'' s description
of the programmers working in Multics - that many of them are
growing up liking to live with Multics, building a whole career
around a single system, being in on the design, continuing the
development, upgrading the system, and looking forward to being
in that particular system an entire lifetime. It would be interest­
ing to see if we couldn't do this in the military where we hatch
our officers in our schools of higher education, train them in
particular military tasks involving the hardware, go on to develop
systems for those environments, then go on to being the com­
manding officers in environments that actually use such systems.
This may give a system a great deal more integrity than the way
we do it now. Now, in spelling out this alternative, I'm simply
trying to draw attention to the fact that we're not doing it that way
and the very fact that the system developers have essentially no

A Science of Information 215

experience in the management function again gives rise to myths
that are believed by those people who produce systems which
simply have no integrity when they get into the operational
environment.

Let me spell out one aspect of that which occurred to me
from the experience I've had working with the military in my
past. It is this question of large data bases of up to a million
items of data. I'm quite aware that most military people now
consider such a data base to be very small, as 107 and 109 items
of information is the order of magnitude of information that is
being talked about. However, every experience that I've had
and every officer I've talked to who has had direct experience
with such data bases, confirm that those data bases are pure,
unadulterated garbage. There are error-filled data bases such
as, for example, a logistics data base for the Marine Corps
which is estimated as having 60 percent of its entries incorrect.
At one time $2 million was spent on a crash project headed by a
very senior colonel in the Marine Corps to try to upgrade that
data base so it could be useful. At the end of two years, the
project was abandoned; it was recognized that there was no hope
that it could indeed be put into any shape accurate enough for
any honest use.

Let me give you another example of the same type. Many
millions of dollars are spent each year on the Movements Report
Section at the Chief Naval Operations {CNO). This is a section
that opens teletypes to all major Navy installations where all
flag-ranked officers and all major ships must report their posi­
tions within one-half hour of where they are at all times. This is
a very extensive system, a very high priority system, and it
presumably keeps the positions of these officers and ships tabu­
lated in the Pentagon for CNO staff usage in a very accurate way.
OEG did a study some years ago and asked what is the average
positional error in ships underway {that is, ships at sea) as tabu­
lated in the Movements Report and found that the average error
was eight-hundred miles. No doubt there have been improvements
in this system. However, it is clear these systems are grossly
inadequate.

We considered the problems of privacy and their effect on
the individual. On the other hand, these major data bases are
such that the statistical summaries being taken from them are
grossly inadequate to estimate the parameters they presumably
measure. This is well known in the economic sphere, where
many economists are completely convinced that the Bureau of
Labor Statistics - such as, for example, the levels of unemploy­
ment - simply do not reflect the facts of life of our economy in
any way that is adequate for establishing economic policy. The
simple fact is that data bases of the size being talked about are
not viable entries. Now there are good information theoretic
reasons for this to be true, having to do with the rates of change

216 Multi-Access Computing

of the underlying conceptual elements that go into these bases.
Officers and systems analysts who have had direct experience
with these bases are very aware of these shortcomings. Now
what we're doing is training very bright young men who are
coming out of our colleges in the computer science area, to be
excellent system programmers with broad knowledge of automata
theory and recursive function theory; to be highly skilled men,
often able to do fantastic jobs in artificial intelligence; but having
absolutely no management experience, and no experience with
operations, no experience in guiding through a large project, no
experience with large data bases. They then make the completely
fallacious assumption that we can get accurate information into
a system that will give the CNO access to the position of every
ship and every flag-ranked officer in the Navy at all times. They
talk about unbiased and true situations, when every officer or
every manager knows that the one thing he wants of his staff is
good, honest bias, and we can't get that out of our computers.
Consequently, we are designing systems that, when they get into
the field, do not meet the requirements of their operating com­
mands, largely because of the kinds of incongruities that cut the
development of the system at all of its stages, from men experi­
enced in one area to men experienced in another area to men
experienced in a third area. As a consequence, we are losing
congruity across the total community that deals with the kinds of
systems we are talking about.

What are the implications, both social and scientific of
these inadequacies, in our understanding of these kinds of sys­
tems? I think we should be hardheaded about this. We shouldn't
go off crying in a corner. We should face up to what the situation
is and what we should be doing about it. Certainly the first thing
we've got to do is to increase the plurality of the kinds of systems
we are developing, the kinds of effort we are making and the kinds
of programs we are supporting. This is a pluralistic environment
in which no sharp decisions should be made at this time. We
should avoid, at all costs, major development programs that pre­
sumably give some sort of coherency to the kinds of programs and
kinds of systems we are trying to develop. Rather, when a man
stands up and shows by his experience that he is able to do some­
thing, we should give him the opportunity to prove himself. We
should encourage individual efforts across a wide spectrum and
watch the results of those programs carefully, choose those that
are highly successful and push on with them. We should see that
men of various points of view have the opportunity to step forward
and do their thing and do it well. We've heard a lot about a lot
of systems here. Some of the people who have been producing
various sound and able ideas over a long period of time, often
with very little financial support, are now beginning to be recog­
nized as competent in this area and are being put in charge of
larger systems and given larger responsibilities. This is a

A Science of Information 217

wonderful thing to see. And we have had several people of that
kind reporting at this conference.

The second thing we must do is drive, drive, drive for
early operational implementation of these systems. We simply
must stop trying to make these huge conceptual systems of great
complexity. We've got to come right down to trying to get these
systems into operationally significant and valid places early.
For that is the only way we are going to learn what the problems
are. We are going to have to iterate them, just as Dr. Corbato
maintains. We iterate and iterate and iterate in redesigning and
reimplementing. But the first thing I think that all of our develop­
ment people and the development offices that support our grants
should insist upon is aiming at early operations so as to get
operational experience.

A third area is certainly that we should take more statistics
on the operations of these systems. I think that Dr. Boehm was
absolutely on the right track. We must have adequate statistics
coming out of the system on its operation in live environments
and then we must look at those statistics.

It seems to me these are the three main things that those
of us working on systems and working with systems should do.
Now the heavy responsibility in all this is on the research and
development grant offices. I must say I not only take off my hat
to them but I get down on my knees and pray for them. They
have an enormous amount of leverage in this area. Thank good­
ness we've had ONR - which I consider to be one of the best agen­
cies in this regard - that has indeed sponsored a great many and
a great variety of things all across our country.

I'm very much worried about the ARPA situation right now.
They can exercise enormous leverage on the community by apply­
ing poli,tical pressure to get into the ARPA net. This new effort
of putting a lot too much money, as far as I can see, into this
speech recognition problem just simply dries up the money for
pluralistic efforts and aims at a far too narrow and too specific a
task at this time when we know so very little. I think the R&D
people have got to keep much more flexible. They've got to keep
their grants low, and they've got to keep looking at the individual
research grant. Now in this regard, the large contractors like
SDC and SRI are going to have large marketing staffs that are going
to push hard; they're going to try to sell, sell, sell to get the big
grants. This is fine. That's what they should do in our capitalistic
economy. This puts enormous pressure and responsibility on our
grant officers, who must insist upon getting right down to the
individual research team and evaluating that team on the substan­
tive basis of what that team is doing and must not be hoodwinked
into making large grants to large organizations who then can spread
it around among many mediocre and a few good people.

In the longer range, I think there is hope for a much broader
and more humanistic theory of information processing. It's one

218 Multi-Access Computing

of today's most challenging problems. I think that in the long run
we will find an increase in our theoretical capability that will
allow us to be more integrated and selective in the kinds of devel­
opment we go into. But that is a long way off.

I think that another aspect of the situation is that of lowering
costs of computer systems. This will be a very great blessing
because it will allow us a greater pluralistic situation. We can
afford to do a lot of things when the costs go down. Certainly
the major limitation for a lot of us is this fact of hardware costs.
Quite frankly, if I don't raise $35, 000 a year for computing alone,
I have no computer. I simply have to go out and raise $35, 000.
Now to get $35, 000 for computer time, I've got to multiply that
by at least four to convince the funding agencies that I've got a
big enough project to afford $35, 000 worth of computer. It's a
fact of life for me. Many of us can't do many of the things we
want to do because the computer costs are high. So one of the
blessings we can look to in the future is lower computer costs.

Finally, I think that a major area that needs some funda­
mental looking into in this country is the revamping of our social
institutions and social practices to cope with the kinds of prob­
lems we're coming up with. We're coming up with problems
both in large and complex systems and in systems that are rela­
tively short lived and of unstable time periods. The kinds of
corporate organizations, the kinds of development organizations
that we now have - in which we have this stratification of effort
among people with varying experience who cannot talk to one
another and a system that goes floating up through this - may be
the wrong kind of social organization to encourage. To get really
complex systems into the field and operating properly, it might
be very much better if we could turn that stratification on its
side and have people who receive their training in a technology,
carry that technology into being, apply that technology to social
problems, and die happy as managers of that technology while
other developments are coming on to replace them. It may be a
different kind of social organization and one more amenable to
the kinds of social problems we have. It is important to recog­
nize that there are alternative social organizations. And this,
it seems to me, is one of the primary problems of our time,
because it may very well be that we have outgrown the social
patterns we now have.

23. The Trend T award One-Language Computers

Gordon H. Syms
Navy Post Graduate School

Monterey, California

I agree with Dr. Thompson that the level of the talks was
usually general and quite vague. I don't want to imply that that
is a unique criticism of this conference; it is a much more gen­
eral criticism. I would say the same about every conference I
have attended in the last five years. I ask the question, How
many here found solutions to his particular problems? This is
quite a useful criterion for the success of any conference. If
each person found one technique that helped him with one of his
problems, or changed the way that he attacked one problem,
then the conference was a success. If most people found a solu­
tion to one of their problems, then the conference was a great
success, despite the vague and general nature of the talks.

We discussed communicating across disciplines; what
about the communication within our own discipline? What
have we done to improve communications between computer
scientists? If we could solve this problem, we would really be
taking a big step forward. We discussed adequate means of com­
municating ideas within a small group. We certainly have not
come close to effectively communicating among groups of a hun­
dred, and communicating in groups of four or five thousand, as
at the Fall Joint Computer Conference, is just about hopeless.

About 1900, a study group proved that the lecture system
was a poor means of communicating ideas, and the results of a
discussion were retained much longer. Yet for some reason the
lecture system continues to survive. Despite all the times I have
tried to change my classes by using discussions, seminars or
problem sessions, I usually return to the lecture system. Cer­
tainly all conferences use the lecture system. The main reason
for this is that in the lecture system the person who stands on
the podium looks very good. He has prepared for many hours on
the subject of his choice; he can brag about his accomplishments;

219

220 Multi-Access Computing

he can demonstrate his superior knowledge; and only rarely is
anyone in the audience prepared to challenge his facts or
conclusions.

I disagree with Dr. Thompson about the discussion he
singled out as being the least useful because the subject has
been discussed at conferences for the last ten years. It was
the one I found the most useful. Dr. Bergman talked about sys­
tems with many processes in parallel as opposed to all processes
going through one or a few single ports, such as a few general
purpose computers. He convinced me that, for some applications,
new technology has made special purpose computers economically
feasible, despite the improved capacity and reduced costs of
general purpose computers. The problem that he did not address
is the design cost of such systems. If that method is to be adopted,
each special purpose processor must be designed at a relatively
low cost. If the design cost is small, we don't have to worry
about flexibility because the hardware can be redesigned and
modified as cheaply as the software for the general purpose com -
puter. I am very interested in lowering these design costs.

A concept developed by Bell and Grason for Digital Equip­
ment Corp. is based on what they called Register Transfer
Modules (RTM) which reduces the design cost. They developed
a simple technique for determining and specifying the intercon­
nections between the RTM, and thus were able to design a special
purpose computer easily and efficiently using these modules.
Their technique involved using a special flowchart, which was
similar to a FORTRAN flowchart, to specify the interconnection
of the modules. The flowchart then completely specifies the
design of the computer hardware. Although there were 20 mod­
ules in total, the basic ones were a simple control module that
transfers control to the next module, a decision module that
transfers control to one of two modules on a condition, a general
purpose arithmetic unit, a bus communication module, and a
memory module. Using these modules they designed a simple
computer. In fact, Digital Equipment now markets a small com­
puter called a PDP-16 which they design to specification using
these modules. They also claim that using these modules they
can design the equivalent of a PDP-8 in six man-hours. Now
that's really fast. I think the person must know a lot about the
modules, a lot about the PDP-8 and be a real expert before he
can do that; but if we're talking about designing a small computer
in even one week we're talking about a relatively easy task.

I was interested when I saw this technique because I thought
it had several possibilities. I looked at these modules and won­
dered how one could simulate the hardware and try some sample
implementations. I looked at how to build a FORTRAN machine
using these modules, and simulated some of the most difficult
portions that one would encounter in building a FORTRAN machine.
I also looked at the triangulation problem in airborne interception

One-Language Computers 221

to determine how big a problem that would be. The simulations
showed that these problems could be solved quite easily by inter­
connecting register transfer modules as specified by flowcharts.
I am now convinced that if you can draw a standard flowchart
specifying a computer program for a problem, I can convert it
to a register transfer module flowchart that specifies the inter­
connections of these modules. Thus, this technique is much
simpler than other methods for designing special purpose hard­
ware. Furthermore, it makes feasible the design of such items
as hardware master executives, or monitors.

I believe the Navy could use the register transfer module
design technique in several areas, two of which are special appli­
cations in NTDS (Navy Tactical Data Systems) and in the new
Advanced Avionics Digital Computer. I have made a proposal
for further development in this area and so I should have some
further information in six months to a year. If we could cut the
design cost substantially, then it becomes feasible to go back to
designing processes in parallel and we can get rid of these mon­
strous operating systems we are all fighting.

ONE-LANGUAGE COMPUTER

I believe there is a trend towards networks of one-language
computers. There are many one-language computers operating,
many with terminals. For example, I know of 75 BASIC terminals
running on a GE 635 and 50 APL terminals running on an IBM 360
Model 67 and using only about 25 or 30 percent of its resources.
As soon as one switches to the general purpose multiple-language
terminals, 30 terminals will completely load the same 360/67.
So what we need is several one-language computers connected
together so that any one can be accessed from any terminal, and
files can be transferred from one to another. As well as the
common languages like FORTRAN and COBOL, what kind of lan­
guages should be available on these processors? The language
should be easy to use, it should be powerful and it should run
efficiently. Let's look at these.

1. Easy to use

It should be easy enough to use so that the man off the
street or the high-level manager will be able to use
this language. I don't care what he does with that lan­
guage, but he must be able to do something in the same
language that his system programmers are using. If
a manager feels comfortable using the language that
his computer people are using, even if he's only doing
simple problems, he will spread the use of computers
throughout his company. I think that APL is one lan­
guage which in fact can do this. It can be used as a

222 Multi-Access Computing

desk calculator to do very simple things and yet it is
powerful enough to do complex calculations, too. That
brings me to the second point.

2. Power of the language

The power of a language is defined here as the ability
to express complex operations in very simple terms.
A language that is not powerful enough is not a good
general purpose language because someone will quickly
run out of power in that language and switch to one that
makes his programming easier. This language must
also serve an intermediate group of people, the once­
in-a-month programmers. If it's not easy to use and
powerful enough for this type of programmer, he will
not use it. I think APL in fact does come a long way
in that respect. This person is different because most
of his effort is used in learning the language, which
he doesn't want to do anyway, and little effort used in
solving a problem; I contrast this to the next type who,
as a system programmer, spends only a small portion
of his total time in learning the language. He will learn
a difficult computer language in order to get the power­
ful language he needs. I have a testimonial from an
EE person who says he used to do his problems by
forming a concept, translating it into mathematical
notation, then into flowcharts, then into a programming
language. Now he says that, with about six months'
experience with APL, he skips all intermediate steps
and formulates his concept directly in APL. He uses
the power of the computer to help improve his concepts
where they are weak and verify the results on test
cases. Afterwards he may have to convert the results
to mathematic notation or flowcharts in order to show
someone else. An example of the power of APL is
found in the calculating of the length of a vector which
requires only one symbol in APL, compared to several
statements in other languages. The trouble with all of
of us is that we grew up with FORTRAN and so we think
FORTRAN (or COBOL), and it's going to be a long time
before we really start thinking in parallel or matrix
code. The worst thing is that if one starts thinking in
that way he always gets clobbered by the amount of com -
puter time he uses. This brings us to the third point.

3. Efficiency of implementation

The operation must be efficient. This brings us around
to the special-purpose APL machine. We could use

One-Language Computers 223

conventional designs and I know of two already, but
that's a lot of work. Perhaps we could use micropro­
gram machines, but I would like to propose another
alternate, which is using the register transfer mod­
ules I spoke of earlier and interconnecting them. I
have not attempted this problem but I am certain that
the technology is at the point where we could build a
special-purpose machine, and fairly easily. Anyone
planning to crusade to get this language or equipment
accepted has a lot of momentum to buck.

Now I'm not suggesting that APL is the answer to all the
languages. It has some very major shortcomings. In most imple­
mentations, for example, it limits the size of the workspace
(memory size of a program). That restriction could be easily
changed. It also does not have decent I/O particularly with respect
to disk files, card readers and line printers. Finally, one must
be able to produce compatible files that can be used on other
computers using other languages.

In conclusion, I would like to see somebody become interested
in developing an APL machine. I'm not currently working in that
area at all but I have some very strong ideas. Incidentally, the
developers of the CDC Star have hired some people to look at
implementing APL on that machine. That should be a powerful
one.

Other books of interest ...

PARALLEL PROCESSOR SYSTEMS,

Edited by L. C. Hobbs and D. J. Theis, Hobbs Associates, Inc.;
Joel Trimble, Office of Naval Research; Harold Titus, Naval Postgraduate
School; Ivar Highberg, Naval Weapons Center.

Providing a much-needed excl1ange of information, this book
brings together a collection of papers by active workers from
system, device, software, and application disciplines. Di­
rected primarily toward those involved in the design and
utilization of parallel processor systems, it also provides new­
comers to the field with an excellent overview and introduc­
tion to the subject. # 9175, 448 pages, 6 x 9, cloth.

RJC U F 0
By David Lefkovitz, Moore School of Electrical Engineering,
University of Pennsylvania .

Widely adopted, this well-written, illustrated volume is an
invaluable aid to the programmer, analyst, and student. It
provides the programmer or systems analyst with basic prin­
ciples, as well as specific techniques, for the organization of
files in mass random access computer storage. Design prin­
ciples are given which illustrate broad areas of application
and cost/performance trade-offs. #5943-4, 232 pages, 6 x 9,
cloth.

0 E N VSTEM ANALYSIS AND DESIGN
By Leo J. Cohen

A broadly based text that determines the fundamental prop­
erties of operating systems, and develops tools that are ap­
plicable to their formal design and analysis - particularly
multiprogramming systems. The author orders and organizes
the materials of a subject for which there has been no accept­
able definition. # 5643-5, 192 pages, 6 x 9, cloth.

[J]
HAYDEN BOOK COMPANY, INC.

Rochelle Park, New Jersey

ISBN 0-8104-5964-7

