
CCP

CONDITIONAL COMMAND PROCESSOR

REFERENCE MANUAL

C. A. Grant

Document No. R-29

" July 14, 1967

Contract SD-185

. Office of Secretary of Defense

Advanced Research Projects Aeency

Washington 25, D. C.

R-29

July 14, 1967

TABLE OF CONTENTS

1.0 Introduction . . . · 1-1
2.0 Basic S.yntaetic Components . . 2-1

2.1 Number:; . . . • . • • • · ~?-l

') ')
l • (._ Names

3·0

4.0

5.0
6.0

2.3 Var"j ables

2.4 Dummy Argument Names ..

2.5 Dummy Argument References .

2.6 StrIng References .

2.7 Inter;er References.

2.8

2·9

Statements ..

Labe Is. . . .

CCP Statements . .

3.1 Assignment Statements ..

3.2 Internally Coded Working Functions •

3.3 Internally Coded Predicate Functions .

3.4 Character-send Statements .

Error Handling . . · · · ·
4.1 Compile Time Errors ·
4.2 Runtime Errors. .- .
Running A Program. · · · . . ·
Examples · . · · . . ·

· · ·
· · ·

· · ·
· · ·

· 2-]

· 2-1

· 2-2

• 2-:-2

.. 2-3

· 2-3

· 3-1

· 3-1

· 3-2

· 3-7
3-10

· 4-1
4-1

4-1
5-1

6-1

R-29 1-1

July 14, 1<)67

1.0 Introduction

In its simplest form, CCP may be used to retrieve charncters

from a user supplied file and send them to a "pseudo teletype."

The pseudo teletype will react to these characters the ,same way

n teletype connected to the system would react in all cases.

CCP, then, is a pseudo-typist capable of sending characters to

the pseudo teletype.

It is possible to save the output generated by the pseudo

teletype and examine it with internally coded CCP functions.

A CCP program, therefore, can cause a user progrom to execute

and then examine the resulting output. Conditional statements

in CCP will allow appropriate action to take place based on

the output.

CCP may be viewed asa macro processor in thC1t arguments

can be supplied when a CCP program is to be run. These

nrguments may be referred to within the program.

CCP takes the form of an' algol-like language, including

recursive, user-defined functions with substitutable arguments.

Additional features are two character-send functions and several

other internally coded functions.

R-2q 2-1

July 14, ~967

2.0 Ba.sic Syntactic Components

This chapter builds the small vocabulary necessary for a

full description of cepe

2.1 Numbers

Only integer numbers are accepted by CCP.

2.2 Names

Names are composed of letters, numbers and blanks. Names

may be of any length, but only the first and last four non-blank

characters serve to recognize the name. At least one character

of a name must be a letter. A name may not refer to more than

one syntactic object (e.g., XYZ may not be a label and. a

variab1e name).

2.3 Variables

Variables may at any given moment be in unc o~ three states:

undefined, s~ring-valued or integer-valued. AJ_I vaT iables are

initia1.1y undefined. Variables may freely change state.

2.4 Dummy argument names

A dummy argument name is a name as defined above, preceded

by a ($) dollar sign~~ So

$ABC

$IB5
$LONG DUMMY NAME

are acceptable dummy argument names.

R-29 2-2

July 14, 196'7

2 .. 5 Dummy argument references

The use of dummy argument references will be explained below.

S,yntactically, a dummy argument reference consists of a dummy

argument name followed by a parenthesized expression of any

complexity involving integers and integer-valued variables.

Therefore,

$ABC(5)

$1B5 (21' (7 -X/3))

are syntactically correct dummy argument references.

2.6 String references

A string reference is either a quoted string, a string

valued variable reference, or a string-valued dummy argument

reference. For example:

'ABC'

'CARRIAGE RETURNS AND LINE

FEEDS AND CONTROL CHARACTERS

MAY BE IN A STRING'

XYZ

$ABC(7)

are string references (if XYZ and $ABC(7) are string-valued).

There is a special string-valued variable with the name

QUOTE which has the value (') quote-mark. This variable differs

from other variables only in the respect that it is initially

defined.

There is one other type of string, and this is the "non

string." This is equivalent to a null string but has special

meaning, as will be explained later.

2.7 Integer references

An integer reference is either an expression of any complexity

involving integers and integer-valued variables, .~ a dummy

R-29 2-3

July 14, 196r
{

argument reference vii th an integer value ~ A dummy argument

reference mAy never appear in an arithmetic expression.

2.8 statements

There are four types of statements in cepe They are:

a) Assignment statements

b) Internally coded working functions

c) Internally coded predicate functions

d) Character-send mode statements.

Each type of stntement will be fully explained in the next

chapter. Any number of statements (or fractions thereof) may

appear on one line. Carriage returns, line feeds, and blnnks

are, except within 3 quoted string, completely disregarded.

2.9 Labels

Labels are identified by names. A statement (or a la.beled

statement) may be labeled by preceeding the statement by a label

name followed by a (:) colon. A label name may not be used

more than once to label a statement.

LABEL:

DOUBLY: LABELED:

R-29 3-1

July 14, 196r
{

3.0 CCP Statements

3.1 A~sjgnment statements

There are two categories of assignment statements:

a) <variable> = <String reference>,

b) <variable> = <Integer reference>,

Note that each type of assignment statement is terminated

with a comma.

It is permitted that variables change from string-valued to

integer-valued freely. Examples of assignment statements are:

A -- 3, B == A,

A = 'LOVE' ,

X'lZ = -At(B-7/A),

A .- $DUMMY(l) ,

B = $DUMMY(2) ,

R-29 3-2
July lIt-, 19(/(

3-~ Internally coded working functions

JUMP«labe1»

Execution of this function causes an unconditionul

transfer of control to the indicated label.

SJUMP«label>)

Transfer to the label takes place only if the current

predicnte value is success (see next section). Otherwise,

the flo.", of control pusses to th€ next statement in the

program.

FJUMP«label'>)

Transfer is effected only if the current predicate

value is failure.

FUNCTION «label> , <dummy argument name>, <list of local variables,»

This statement causes a function to be assoc ir:Jtcd with

the label. References to nrguments given to the function

when called will be made with the indicated dlL.'1lmy argument

name. The list of- variables "lill be cons idered local

to the function. There m~ly be only one FUNCTION strltement

for a given label. Two or more different funetions ffiClY

usc the same dummy argument name. Examples~

FUNCTION (ABC,$DUMMY)

FUNCTION (XYZ, $DUM, TEMPI, TEMP2)

CALL«label>, <list of arguments»

This statement will call the function associated with

the label. If a call to ABC {defined above} is executed:

CALL(ABC, 100, 'PEACE')

then $DUMMY{l) will be integer-valued with the value 100

and $DUMlviY(2) will be str ing-valued with the value ' PEACE I •

The zero-th reference is alwnys integer-valued with the

..

R-29 3-3
July 14, 1967

number of arguments supplied as its value. So:in this

instance $DUMMY(O) is equal to two. References to $DUMMY(N)
where N is less than zero or greater than two will be errors.

Labels must be passed as arguments enclosed in (") double

quote marks. So

CAT.lL(ABC, "!.ABELn) .
\ .

ABC: JUMP($DUMMY(l})

causes a transfer to the statement labeled with LABEL.

Arguments provided in a CALL statement must be string

references, expressions of any complexity, labels or

dummy argument references. So

CALL(ABC,7,Xt5-Y/Z, 'MOTHER', $XYZ(7), "LABEIJIl
)

is , syntactically correct.

To return from a called function, there are three ways:

JUMP(RETURN) - causes a return to the next lower level,

reinstating the value of predicacy that existed. when

the function was called.

JlJMP(SRETURN) - causes a return, and changes the value

of predicacy"at the lower level to "success.

JUMP(FRETURN) - causes a return and changes the value

of predicacy at the lower level to flailure.

SCALL«label>, <list of arguments»

The CALL is executed only if tbe current value of

predicacy is success.

FCALL«list of arguments»

The CALL is executed only if the current value of

predicacy is failure.

CONCAT{<variable>, <string reference>, <string reference»

Execution of this statement causes the value of the

variable to become the string obtained by concatenating

the two string references.

R-29 3-)~

July 14, 196'(

CNSTN1J«variable>, <string reference>'

This converts the first numeric string of characters

in the string reference to a decimal integer and sets

the value of the variable to this integer. 1\ (+) plus

sign or (-) minus Sign "lill be considered numeric

characters.

e.g. CNSTWJ(X, 'ABC123ABC') cause X to become 123

CNSTNU(X, '10') cause X to become 10

CNSTNU(X, 'A-A5') cause X to become 0

CNNUST«variablc>, <integer reference»

This function causes the integer to become converted

into a string of digits, signed only if negative, and

stored as the value of the variab'le.

ERCOMP«labeJ>)

Execution of this function causes a transfer to the

label onl~ if during compile-time errors were detected

in the program.

I

ERJUMP(<labeJ>)

This function saves the label and will cause transfer

to the label in the event that a run-time error occurs.

If a second run-time error occurs before another ERJillvlP

statement is executed, execution halts.

COMMENT«string reference»
/

This function causes the string to be printed on the

teletype when this function is executed.

TTYON«integer reference»

This function determines whether or not out.put of the

pseudo teletype is to be printed on the controlling (user)

teletype. Initially, the output is not printed. To

cause the output to be printed, execute TTYON with the

value of the integer reference non-negative. To turn

.R-29 3-5

Ju]-y 14, 1967

the teletype off, execute TTYON with a negative argument.

Note that TTYON and OUTFlLE are completely independent

of' each other.

OUTFlLE«string reference»

This function opens the file specified by the string

reference and causes all ou~put of the pseudo teletype

to be diverted to the file. The file is opened at its

beginning.

REO~~«string reference»

Same as above except file is opened at its end

(i.e., output from the pseudo teletype is added to the

contents of this file.)

SETFIAG(<string reference»

The string referenced is written on the current outfile

between two control ([) left-bracket characters. This

flag may be used by the predicate functions MATCH and

GSTRING, to be described below.

ERSFLAG«string reference»

This function erases all flags written on the file

indicated by the string reference.

TThlli«integer reference>, <label»

This function spec~fies that a transfer to the indicated

label is effected if and only if the next character-send

statement does not termi!1ate within N" seconds, where N

is the value of this integer reference.

INTERACT(<mode character»

Read about character-send statements before trying to

understand this function. This fWlction may be used to

R-29 3-6
July Ih, 196'{

allow interaction to take place between the user (via

the teletype) and the pseudo teletype.. The mode character

(C.-lor» determines whether@'-mode or >-mode is desired.

All characters are sent literally except that control

(~) left arrow causes a rubout to be sent, control ([)

left-bracket causes termination of the mode, and rubout

terminates the CCP program. When INTERACT is executed,

several bells will ring to let the user know.

R-29]-7

Jul:{ 14, 1967

Internally Coded Predicate Functions

DllY"ing execution of a CCP program, there is a state of

be inK, known as predica.cy, which exj sts \-lith one of two

values: success or failure. Initially (when a program

starts) and ea.ch time a function is c.alled, predicacy is

automatically set to success. Thereafter, the only ways

the value of predicacy may be changed are by executing one

of the followine; predicate functions, or by returning from

a called functjon via SRETURN or FRF.:TURN. Predicacy may be

tested for by any of the previously explained runctions

SCAI,IJ, FCALl" SJUMP, and FJUMP.

lnITJL«string referencc»

Sets predicacy to success if the string reference is

the null string, else sets predicacy to failure.

EQUAL«integer reference>, <integer reference»

Success if the t 10 integers are the same value, else

failure.

GRTR«integer reference>, <integer reference»

Success if the first integer is greater than the second,

else failure.

STREQI,(<string reference>, <string reference»

Success if the two strings ate exactly the same,

else failure.

MATCH«string ref!>, <string ref2>, <string ref3>, <string ref4»
This function executes a search on the file specified

by string reference 1. The string referenced by string

reference 2 is the string of characters sea.rched for.

MATCH changes the value of predicacy to success if the

string is found, else changes the value to failure. ,~€

R-29 3-8

bounds of the search are indicated with string references

3 and 4 in the following complicated manner.

If string reference 3 is a flag by SETFLAG, the search

commences after the first occurrence of this flag. If

string reference 3 is the (n) null string, the search

will begin after the point ,where the search was most

recently discontinued. If the () non-string is specified,

then the search begins at the beginning of the file (see

example below for clarification).

string reference 4 determines where the search will

terminate. If string referen~e 4 is a flag set by

SETlnAG, then the search will termj:nate at the first

occurrence of this flag after the search has started.

If string reference 4 is the () non-string, or if the

fla.g is not encountered in the file during the search,

then the search will terminate at the end of the file.

Assume the file Ixl has the following characters, with

flags (Fl) and' (F2):

~(Fl)~(F2)l~
I

1 2 3

Then the following program will count the occurrences

of the string '12' in regions 1 and 3:

LOOPl:

REGION3:

LOOP3 :

EXIT:

COUNT = 0,

MATCH('/x/', '12'" 'Fl')

COUNT = COUNT + 1,

MATCH(, Ix/ I, t 12', ", 'Fl')

MATCH(' Ix/', '12', 'F2')

COUNT = COUNrr + 1,

MATCH(1 lxi', '12 1
, ")

Jt\JUMP(REGION3)

SJUMP(LOOPl.)

Jc'JUM P (EX IT)

SJUMP(LOOP3)

R-29 3-9

July ll~, 1967

GSTRn~G(<string ref 1>, <variable>, <string ref 2>, <string ref 3>,

<string ref 4>, <string .ref 5»

This function executes a search on the file specified by

string reference 1. It searches for a string of cha.racters

preceded by the string referenced by string reference 2

and followed by the string referenced by string reference 3.

If such a string is found, then the value of the variable

is set to this string, and the value of predicacy is set

to success. If not found, the variable is set to the null

string and the value of predicacy is set to failure. String

references '+ and 5 spec ify the bounds of the search j n the

same way the bounds are set in the function tv1l\TCH.

Consider the file /Y/ whose contents, with flags (}~3)

and (F4) are as follows:

ABCDCD7F{F3)/1/2/3/4/(F4)l/1/1/

The st.atement

GSTRING('/Y/', X, 'CD', '7t)

sucqeeds with X = tcn".
The following program calls the user function EXM~INE for

each number found between (I) slashes on the file:

LOOP:

EXIT:

GSTRING('/Y/',x, '1','/t)
CALL(EXAMJNE, X)

GSTRING(' IY/' ,X, '/' , 'It, tI)

FJUMP(EXIT)

SJUMP(LOOP)

Carefully notice that this program will call EXAMINE for

all 7 cases. The flag (F4) will be ignored completely.

3.4 Character-send statements

R-29 3-10

Ju].y 14, 1967

There are two modes for sending characters to the pseudo

teletype. ~-mode insures that the Time-Sharing executive

is the listening program by sending several rubouts. >-mode

does not oisturb the pseudo teletype before sending characters.

For example, the CCP statement

{~CAL. !

first causes several rubouts to be sent, then a C, an A,

a L, ano. finally a (.) period. The exclamation point indicates

the termination of the statement. Character-send statements may

also be termi.nated with a (%) percent sign, and the distinction

will be described below. If the next CCP character-send statement

is
>SET A = I!

Then the characters

SET A = 1

would be sent, and CAL would still be listening. The pseudo

teletype is initially set in BEGmNER mode (see document $-2~!).

It is possible for the value of a string-valued dummy

argument reference to be sent in character-send-mode, and this

is indicated by including the reference in the statement:

COpy FIrn $DU1~1Y(3) TO $DUMMY(4).%

if $D~~(3) is 'XYZ' and $Duw~(4) is ~/XYZ' then the

characters sent will be several rubouts and then:

COPY FILE XYZ TO /XYZ. ,

To cause the string value of a variable to be sent, the

variable name must be preceded by a .($) dollar $ign and follovled

by a (.) period: If X has the value '/FILE/', then

>GO TO $X .• !-

causes the strjng

GO TO /FTrn/.
to be sent.

R-29 3-11

July 14, 196?

If a control (~) left arrow is found in the statement, then

a rubout will be sent to the pseudo teletype instead of that

character. If a control ([) left-bracket is found in the state

ment, then the statement will immediately terminate (as if the

(:) exclamation point had appeared at that point.) Clearly

the value of this convention is seen only where variable and

dummy argument references are involved. Carrtage returns and.

line feeds are not normally sent.
/.",I'\t;'

(~:. ~.D.

$x ..

1,5
YES

c c C
t- (- +-

$Y
COpy FILE /A/ TO /B/.

If X has the value 'fA/' and Y has the value 'AB]cCD ', then

the characters sent will be

QED./A/.l,5.YES rubout rubout AB"

In the sending of variable and dummy argument rc"ferences,

all characters are sent literally except control (~) left arrow

and control ([) left bracket. i.e., if X is '$Y. I then

>$X. !

causes the characters

$Y.

to be sent.

If it is desired that the characters $,!, %, C
t-,

c (, cr, If

'be sent without the above-mentioned conventions, then they must

be preceded by a ($) dollar sign. (This does not hold within

varia.ble. or dummy argument references.) A ($) dollar sign

:found in any context other than those heretofore described

will cause a compile error. The CCP statement

sends

to the pseudo teletype.

R-29 3-12

July 11+, 1967

Now the difference between terminating a character-send

mode statement with (!) exclamation point or (%) 'vill be

explained. Hhen (!) exclamation point is used, the flow of

control will not pass to the next statement until the last

character has been sent and the pseudo teletype 1S again waiting

for input. Termination with (%) causes completion of the

statement as soon as the last character is sent.

R-29 4-1

July ll~, 1967

4.0 Error Handling

4.1 Compile Time Errors

Syntactic errors "Till be discovered at compile-time and error

messages giving the line number and an explana.tion will be generated

to the teletype. After each discovered syntacti.c error, CCP will

search through the input text for a labeled statement. At this

point compilation will continue. VJnether or noL there were

compilation errors can be tested at runtime with the function

ERCOMP.

When a name is found to have double use, an error message

is generated and the first use remains in effect (e.g., doubly

used label, or a name first used as a variable and then as a

label) .

4.2 Runtime Errors

Runtime errors will likewise result in hopefully elucidative

error messages. Possible runtime errors are: finding an out-of

bounds dummy argument reference, using a vITong-type variable or

trying to execute a statement which did not compile correctly.

vfuen a runtime error is encountered, a check is made to see

if an ERJUMP statement bas been executed. If such a statement

was executed, and no runtime errors have occurred since, then

the stack is reset to level. 0 and a transfer to the ERJUMP label

is executed. A message is printed on the teletype indicating

this activity. Otherwise, execution of the program is terminated.

f'

R-29 5-1

July 14, 1967

5.0 Running a Program

CCP programs are best composed in QED. If serious work is

being done, it is suggested that free use of the functions ERCOMP

and ERJlTI-4P is made.

'\-!hen calling the subsystem CCP, a list of arguments is

requested. Arguments may be supplied in exactly the same manner

as in a CALL function. Typing a ()) right parenthesis will

terminate the list, and CCP will request the name of the rile

on which the program lies. A typical encounter with CCP might

appear as follows (underlined characters are typed by CCP):

~CCI·
ARGUMENTS: (27, '/FIIE', "IABELl", 21"5)

JNPUT: /CCP.

BAD EXPRESSION AT LINE+2

NAME USED villONG LY LINE+7

'STEFLAG' IS NOT A CCP FUNCTION AT LINE 12

*** COVLPIIED HITH 3 ERRORS ***

COMPILE ERROR ENCOUNTERED

LINE 2, LEVEL 0

ERJUMP TRANSFER TO LABEL 1

OUT-OF-BOUNDS DUMMY REFERENCE

LINE 36, LEVEL 7

NO ERJUMP TRANSFER

END

'.'

R-29 5-2

July 14, 1967

The arguments given to CCP at runtime are referred to with

fl special dummy argument name. In the above example:

$(1) is 27

$(2) is '/FlLE' etc.

and

$(0) is 4

R-29 6-i
July 14, 1967

6.0 Examples

\

This program expects a list of files in pairs that are to

be copied. When the argument t!' is*found, the rest of the

arguments are files to be assembled. Checks are made during

the copying that no errors occurred.

ERCOMP(EXIT)

FUNCTION(COPYCHECK,$DUM)

N - 1,
LOOPl: STREQL($(N), I!') SJUMP(ASSEMBLE)

OUTFlLE(' /$X')

~COPY FILE $(N) TO $(N+l).!

CALL (COPYCHECK)

N == N+2, JUMP(LOOPl.)

ASSEMBLE: EQUAL($ (0) , N) SJUMP(EXIT)

(YARPAS .$(N+l) ,$(N+2). !

. N = N+2, JUMP {ASSEMBLE.)

COPYCHECK: MATCH(, /$X', • cr 1f 1f') SJUMP(RETURN)

lNTERACT(» JUMP(RETURN)

EXI'f:

