VxWorks’

Programmer’s Guide

5.4

Edition 1

— R
= WindRiver

An 1SO 9001 Registered Company

Copyright [0 1984 — 1999 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,
microfilm, retrieval system, or by any other means now known or hereafter invented without the
prior written permission of Wind River Systems, Inc.

VxWorks, IxWorks, Wind River Systems, the Wind River Systems logo, wind, and Embedded Internet
are registered trademarks of Wind River Systems, Inc. CrossWind, Tornado, VxMP, VxSim, VXVMI,
WindC++, WindConfig, Wind Foundation Classes, WindNet, WindPower, WindSh, and WindView are
trademarks of Wind River Systems, Inc.

All other trademarks used in this document are the property of their respective owners.

Corporate Headquarters
Wind River Systems, Inc.

Europe
Wind River Systems, S.A.R.L.

Japan
Wind River Systems Japan

1010 Atlantic Avenue 19, Avenue de Norvége Pola Ebisu Bldg. 11F
Alameda, CA 94501-1153 Immeuble B4, Batiment 3 3-9-19 Higashi
USA Z.A. de Courtaboeuf 1 Shibuya-ku

91953 Les Ulis Cédex Tokyo 150

FRANCE JAPAN

toll free (US): 800/545-WIND
telephone: 510/748-4100

telephone: 33-1-60-92-63-00

telephone: 81-3-5467-5900

facsimile: 510/749-2010 facsimile: 33-1-60-92-63-15 facsimile: 81-3-5467-5877
CUSTOMER SUPPORT
Telephone E-mail Fax
Corporate: 800/872-4977 toll free, U.S. & Canada support@wrs.com 510/749-2164
510/748-4100 direct
Europe: 33-1-69-07-78-78 support@wrsec.fr 33-1-69-07-08-26
Japan: 011-81-3-5467-5900 support@kk.wrs.com 011-81-3-5467-5877

If you purchased your Wind River Systems product from a distributor, please contact your
distributor to determine how to reach your technical support organization.

Please provide your license number when contacting Customer Support.

VxWorks Programmer’s Guide, 5.4
Edition 1

6 May 99

Part #: DOC-12629-ZD-01

© 00 N o o A~ W DN Bk

I o m m o O ©m >»

OVEIVIEW ettt ettt e et seree e sree e e e e snnees 1
BASIC OS ..oeiiiieiieeeeeteeteete ettt ettt s 19
/O SYSIEM et 95
Local File SYStEMS ...eeveiiiirieerteeieeeteee et 175
C++ Development coooeeeriieieieereeeeee e 227
Shared-Memory ODJECES ..ccveereiiieiriieeeieecee e 255
Virtual Memory Interface cceeevviereieiniiieeeeeeeeeeeeeeee 289
Configuration and Build —ccooviiiiiiiiiieeeeeeeen 309
Target Shell ..o 369
APPENTICES ittt s 381
MOtorola MCBBOX0 ...ccceuveeerrieiriieeeeieeeeireesreeeeereeeeeee e 383
Sun SPARC, SPARCIIE ..eiveieeiiiieeeeeiieeeeeeeieeeeeeeereee e 399
INEEIIOB0 ...eeeiiriieeeeeteet ettt ettt e 417
INEEI XBB ettt ettt ettt 429
MIPS R3000, R4000, RA650cccoeveiiiiniierereeeeeeeeeeeeeeeeeeeenns 477
POWEIPC ..ttt 489
ARM ettt ettt st s aeenean 503
VXSIIM ittt ettt st e e s e s 525
Coding CONVENLIONS ..ooveieeeiieeeiieereee e e 555
INEX ettt 577

fii

Contents

OVEIVIBW ettt ettt sttt ettt st sa e sb e s bt e nesne s ennennene 1
1.1 INEPOAUCHON .ottt ettt 1
1.2 Getting Started with the Tornado Development Systemc.ccocoeueeeee. 2
1.3 VxWorks: A Partner in the Real-time Development Cycle 2
1.4 VxWorks Facilities: AN OVEIVIEWc.coccveireineeinienieienieeneetneenenneenneenne 3
Multitasking and Intertask Communicationscccccevvinneee 6
POSIX INtEIaCeScveverveveviinirieiiininieietrenietcieenteieiceses e 6
I/O SYStEIM .o 7
Local File SysStemsccccouoiirieieiiiciecccec e 8
Virtual Memory (Including VXVMI Option)cccccoeueviiienennnee. 10
Shared-Memory Objects (VXMP Option)cccccoeevviicieiiinnnnnn 10
Target-Resident TOOIScooeuemeiiiiiiiiicc 11
C++ Development (including Wind Foundation Classes Option) 11
Utility Libraries ... 11
Performance Evaluationc.cccoeeecennieveinneicennneccnenienecnennene 13
Target AGent ... 14
Board Support Packages (BSPS)ccooerurieiiiiiicieiici 15
VxWorks Simulator (VxSim Option)cccceeeviniciiiiiiiniinnns 15
1.5 CUSTOMET SETVICES ...ouvvirieeiieiiriciricintctetetetete sttt ettt neseenene 16
1.6 Documentation CONVENIONScccoeeeevereereniererieeneenieenieenieesieesreseereseenens 17

VxWorks 5.4

Programmer’s Guide

BASIC OS ..ot ettt 19
2.1 INtrodUCHON ..o 19
22 Wind Features and POSIX Features ... 20
2.3 TASKS oo s 20
231 Multitasking ..o 20

2.3.2 Task State Transition ..., 21

2.3.3 Wind Task Schedulingccccooooiiiiiiiiiii 22
Preemptive Priority Scheduling ..o 23

Round-Robin Schedulingcccooooiiieiiiiiie 23

Preemption LOCKScooruiiiiiiiieiici e 25

234 Tasking Control ... 25

Task Creation and Activation ... 25

Task Names and IDscccoorrieiniiiiiiiii e 26

Task Options ... 27

Task INformation ... 28

Task Deletion and Deletion Safetycccccooeviiiiiniiiiiiiiene, 28

Task Control ... 30

235 Tasking EXteNnSions ... 31

2.3.6 POSIX Scheduling Interfacec.cccoooveivieinininiciniccece, 32
Differences Between POSIX and Wind Scheduling 32

Getting and Setting POSIX Task Prioritiescccccoovieieininnnen. 33

Getting and Displaying the Current Scheduling Policy 35

Getting Scheduling Parameters: Priority Limits and Time Slice 35

2.3.7 Task Error Status: @Irno ..o 36
Layered Definitions of @Irnocccccooveeeiiieiiiiiiiciiiccce, 36

A Separate errno Value for Each Taskccccccoooeviiiinininininnnn, 37

Error Return Convention ... 37

Assignment of Error Status Values ..o, 38

2.3.8 Task Exception Handling ..o, 38

2.3.9 Shared Code and Reentrancyccocooeeieiiniciciniiciciciiceie, 39
Dynamic Stack Variables ... 40

Guarded Global and Static Variablesc.ccccooveeiiiiniiinnnne 40

Vi

24

25

Contents

Task Variables ..o 41
Multiple Tasks with the Same Main Routinecccocevneine 42
2.3.10 VxWorks System Tasksccccooeiueieiiicieiciic 43
Intertask CommuUNICAtiONScvevvieiiiieiiicicie 45
241 Shared Data Structuresc.ocoooeeieiiinieciiic 45
242 Mutual EXCIUSION ...oouiiiiiiii 46
Interrupt Locks and Latency ... 46
Preemptive Locks and Latency ... 47
243 5emaphores ... 47
Semaphore Control ... 48
Binary Semaphores ... 49
Mutual-Exclusion Semaphorescoooeeieiiiiiiiniiiice 52
Counting Semaphores ..o 56
Special Semaphore Options ..ot 57
POSIX Semaphorescccovieieieiiiiciciiciee s 57
244 Message QUEUEScccouiiuiiiiiicicieceie s 65
Wind Message QUEUEScoueurueiiiiniicicieicie s 66
POSIX Message QUEUEScccueuirueieiiiinieie et 68
Comparison of POSIX and Wind Message Queues 77
Displaying Message Queue Attributesccoooeveiviiiiiinnnne 78
Servers and Clients with Message Queuesc.c.cccocoeieininnnee 78
245 PIPES it 79
24.6 Network Intertask Communicationc.cccccoeeeiicieiiincienenne. 80
SOCKELS .ottt s 80
Remote Procedure Calls (RPC)cccoceveuemreineineeneenreenceecneenenne 81
247 SIGNAIS oo s 81
Basic Signal ROUtINESc.ooiuiiiiiiiii 82
POSIX Queued Signalscocceiiicieiiicici e 83
Signal Configuration ..o 84
Interrupt Service Code ... 85
251 Connecting Application Code to Interruptsccccoeeviiirinnnn. 85
252 Interrupt Stack ... 86

Vil

VxWorks 5.4
Programmer’s Guide

253 Special Limitations of ISRScccccoooeviiiiiiiiiiiicccc 87

2.5.4 Exceptions at Interrupt Levelccoooiiii, 88

255 Reserving High Interrupt Levels ..., 89

25.6 Additional Restrictions for ISRs at High Interrupt Levels 89

2.5.7 Interrupt-to-Task Communicationccccooeoreieiiiiriieiiinennne, 90

2.6 Watchdog TIMETSccoeviiiiiiiiiiiiiiiicccc e 90
2.7 POSIX ClOCKS and TIINOTS ...covvviieeiiiiieieeeeeeeetee et eie e eee e saee e e 92
2.8 POSIX Memory-Locking Interfaceccccooevieiieinininicnincce 93
/O SYSIEM ettt ettt st ettt e b et st ettt e at e e b e st s b e saeebee s 95
3.1 TNETOAUCHION. .ttt et e st e et e s e aeeesaaeeenes 95
3.2 Files, Devices, and DIIVETrSccccoiiiriiiieeieeeeeeee ettt e e e ereeereeeee e 96
3.2.1 File Names and the Default Devicecccccoooiveviiiiivcieiviieeiieeeene 97

3.3 BaSIC I/ O ettt ettt e et e st e e s aaeeenes 98
3.3.1 File DeSCIIptorsccccvviviviiiiiiiiiiiiiriiiiiiicinnciceean 99

3.3.2 Standard Input, Standard Output, and Standard Error 99

Global Redir@CtiOneeeeeevieieiiiieeieeeeeeeeeeee et 100

Task-Specific Redirectioncccccovvvvviiiiiiniiiicis 100

333 Openand ClOSeccovviiiiiiiininiiiiiiinies 100

3.34 Create and ReIMOVEooouviiiiiiiieeieeeeee ettt eseeeenes 102

3.35 Read and WIIEooiiieieeeeieeeeee ettt saee e 102

3.3.6 File TEUNCAtION cooovviiieeiiieeeie ettt et e et esaeeeenes 103

3.3.7 I/ CONEIOL ..ottt e e eseaa e e e 103

3.3.8 Pending on Multiple File Descriptors: The Select Facility 104

3.4 Buffered I/O: SEAIO .cooouviiieiieeeeeeeeeee ettt 106
341 UsSING StAIO oo 107

Viii

3.5

3.6

3.7

Contents

3.4.2 Standard Input, Standard Output, and Standard Error 108
Other FOrmatted I/ O ..ottt et 108
3.5.1 Special Cases: printf(), sprintf(), and sscanf()ccccoeuene.e. 108
3.5.2 Additional Routines: printErr() and fdprintf() ... 109
3.5.3 Message LOZZING ...coooiiiriviviviiiiiiiiiiiiiinininiiisisisss s 109
Asynchronous Input/Output ..o 109
3.6.1 The POSIX AIO ROUtINEScovvimimimiiiiiiiiiiniiiccccccie, 110
3.6.2 AIO Control BIockccoiiiiiiiiiiiiiiicccccccies 111
3.6.3 UsSING AIO ..o 112
AIO with Periodic Checks for Completionccccoeivviviincnnnen 113
Alternatives for Testing AIO Completionccccoeeveiiinininines 115
Devices in VXWOTIKScoiiiiiiiiiiiccenes 118
3.7.1 Serial I/O Devices (Terminal and Pseudo-Terminal Devices) 118
Tty OPtions ..o 119
Raw Mode and Line Modeccooriiiiiiiiiiiiccce, 119
Tty Special Characterscccooeviieieiiiciccce 120
I/0O Control FUNCHONS ...oouvvieiiieiiiiieieeeeeeeeteeeeeee et 121
3.72 Pipe DeVICES .coiviiiiiiiiiiiiiiiiitit s 122
Creating PIPesccoviiieieiiicieecc s 122
Writing to Pipes from ISRScccooiiiiiiiniicicccce 123
I/0O Control FUNCHONS ...oouvviviieiiieieieieeeeeeteeeeeee et 123
3.7.3 Pseudo Memory Devicesccooeeiiimieiiiicinieiccec 123
Installing the Memory Driver ... 124
I/0O Control FUNCHONS «..oouvvieiiieiiieieieeeeeeeteeeteee et 124
3.74 Network File System (NFS) Devicesccccoooviiiiiiiiiiicnnen. 124
Mounting a Remote NFS File System from VxWorks 125
I/0 Control Functions for NFS Clientsccccoecevvivviiviiiiiiiieeens 125
3.7.5 Non-NFS Network Devicescccoiiiiiiiiiiiiiccccnen, 126
Creating Network Devices ... 126
I/0O Control FUNCHONS ...oouvviiiiieiiieieieeeceeeeeeeeee et 127

X

3.8

3.9

VxWorks 5.4
Programmer’s Guide

3.7.6 BlOCK DEVICESccorviiriiiriiiriiicienieenicenectntetnteesretereeereee e 127
File Systems ..o 127
RAM Disk DIIVETS ..covcuvrieiriiiriiieiieirieeenieteeeeieeeeeeeseeesne e 128
SCSIDIIVETS ..ovevirieiirieirieieieteieteetetre ettt ene 129
377 SOCKELS ..ottt 139
Differences Between VxWorks and Host System I/Occcccoevirnnnen. 139
Internal StruCtUIEccvveeiriioiricceec et 140
3.9. 1 DIIVEIS eoiiiiiieiieiieieet ettt st 142
The Driver Table and Installing Driverscccccoeevirieieininnnen. 143
Example of Installing a DIiverc.cccoooiiiiiiiniciicicces 144
3.9.2 DEVICES .cuviuiiiiiiiiiiciieee sttt 144
The Device List and Adding Devicesccccoouirieiniinieiciinnne, 145
Example of Adding Devicesccccovvivieiiieiiieinicinicceeae, 146
3.9.3 File DeSCIiptorscccocvviiiiiiiiiiiiiiiciiiiiiiicccicc e 146
The Fd Table ..ot 147
Example of Opening a File ... 147
Example of Reading Data from the Filecccccccooovvnninnin, 150
Example of Closing a Filecccocooveiiiiiiniiiciiice 150
Implementing select() ... 152
Cache Coherency ...t 155
3.9.4 BlOCK DEVICESccvriiiriiiriiiriiieiinieeniecntctntctntetsreeereeeie e 158
General Implementation ..o 158
Low-Level Driver Initialization Routinec..ccceceeeeneeneccnnencnn 160
Device Creation ROULINEccccoovevevieineinerneneeneeeeececnenenne 161
Read Routine (Direct-Access Devices)c.ccceevveneeneenecnnencnn 163
Read Routine (Sequential Devices)cccoveiviiiiiiiiiiniiiiniiennns 164
Write Routine (Direct-Access Devices)ccoevevvcenecencccncrcnnencnn 165
Write Routine (Sequential Devices)cccocoveiiiiiiiiniiiniiiciiiennns 166
I/0O Control ROULINEoooviieiiiiiicieeeeeeeee ettt 166
Device-Reset ROULINEcccoovevueiiiiiiiiiiiiiiiiicciciccscecee 167
Status-Check ROULINEccoovevvevinieiinieiicinercnceeeceeeceenne 168
Write-Protected Mediacccoeevevirenncnniniinccnccneeccsecneenne 168
Change in Ready Status ..o 169
Write-File-Marks Routine (Sequential Devices)cccccevueunnens 169
Rewind Routine (Sequential Devices)ccccoeviiiiiiiniiiiniiennns 170

Contents

Reserve Routine (Sequential Devices) ..o, 170

Release Routine (Sequential Devices)ccccoovviiiiiiiinininnnnnn. 170
Read-Block-Limits Routine (Sequential Devices)c.ccccoeuenee.. 171
Load/Unload Routine (Sequential Devices)cccoovvivviiinennnen 171

Space Routine (Sequential Devices) ..o, 172

Erase Routine (Sequential Devices)cccovriiiiiiiinininininnnn. 173

3.9.5 Driver Support Libraries ... 173
LOCAI FilE SYSIEIMIS .eeiiiiiiiteeieeteete ettt ettt et ettt e s et be e s esbe e sabeesaeesateesmeesaeeeas 175
4.1 TNETOAUCHION. oottt s e e et e senaeeesnteessanes 175
4.2 MS-DOS-Compatible File System: dosFs ..., 176
4.2.1 Disk Organization ... 176
CIUSEETS ettt ettt e ettt e e s teeessaeeseaaeessnaeessnnes 177

BOOEt SECLOT . 178

File AL1ocation Tableoceoeivuiiiceiiieieeeeeee et 178

ROOt DITeCtOry ...ovcveviiiiiiiiicictccc s 179
SUDAITECTOTIES ..ottt ettt s e et e s eae e e saeeesanes 180

FHLES ettt e et 180
VOoIume Labeloooeeiiiiieeeeeeee ettt 181

422 Initializing the dosFs File Systemccccccccevvvinnnnniiiiins 181
423 Initializing a Device for Use with dOsFsccccccccevivivinininiiiinnnns 182
424 Volume Configurationccceevvivivinininiiiniiinniiinees 183
DOS_VOL_CONFIG Fieldscccovviieiiiriieiicrieeeeceeeceeeeeeeee e 184
Calculating Configuration Values ..o 185
Standard Disk Configurationsc.cccoeeeeieiiiinncieicn 186

425 Changes In Volume Configurationccccecevviviirinnniiinnnnns 187
42.6 Using an Already Initialized Diskcccccocevviiinnniiiiinnns 188
427 Accessing Volume Configuration Informationcccccevueunnnns 189
428 Mounting VOIUMEScccceuvviiiiiiiiiiiiiiiiiiniiiiss 190
429 TR T/ O ettt 190
4210 Opening the Whole Device (Raw Mode)ccccceuvuvivviriiiininnnnnnns 190
4211 Creating SUbAIrectoriesccccovviiiviviniiiiiiiiiiiicccs 191

Xi

43

44

VxWorks 5.4
Programmer’s Guide

4.2.12 Removing Subdirectories ... 192
4.2.13 Directory Entries ..., 192
4.2.14 Reading Directory Entries ... 193
4.2.15 File Attributes ..o 193
4.2.16 File Date and Timecccoevoiimrieiiiiciceccie 195
4.2.17 Changing Disksccccoiiiiiiiiiiieiiic 196

Unmounting VOIUMEScccceviiiriiiiiiiciecce 196

Announcing Disk Changes with Ready-Change 197

Disks with No Change Notificationc..ccoeoveinieinininincinine, 198

Synchronizing Volumes ..o 198

Auto-Sync Mode ... 199
4.2.18 Long Name SUPPOTtccceueviimiirieiiiciee e 199
4.2.19 Contiguous File SUPPOTItccoruriiiiiiiiec 200
4220 1/0 Control Functions Supported by dosFsLib 202
4221 Booting from a Local dosFs File System Using SCSI 203
RT-11-Compatible File System: rt11Fsccccocoioimiiiiiiiiiiiicee, 204
4.3.1 Disk Organization ..ot 205
432 Initializing the rt11Fs File Systemc.cccocooeiiiiiiiniiiicee, 205
433 Initializing a Device for Use with rt11Fsc.cccooviiiiiiiininininns 206
434 Mounting VOIUMESc.cooviiiiiiiiiiiicicecc 207
435 FeI/O o 207
43.6 Opening the Whole Device (Raw Mode)c.cccooorrieiniiirieienninnns 207
4.3.7 Reclaiming Fragmented Free Disk Spacec.cccoooeeieininieienninne, 208
438 Changing Disksccccooiiiiiiiiiicieiiicc 208

Announcing Disk Changes with Ready-Change 208

Disks with No Change Notificationc.cccoeovveinieinininincicines 209
439 1/0 Control Functions Supported by rt11FsLib 209
Raw File System: TawFsccoooiiiiiiii 209
441 Disk Organization ... 210

Xii

Contents

442 Initializing the rawFs File Systemccccocooiiiiiii, 211

443 Initializing a Device for Use with the rawFs File System 211

444 Mounting VOIUMEScccooiiiiiiiiiiece 212

445 FeI/O 212

446 Changing Disks ... 213
Unmounting VOIUMESccooiiuiiiiiiiiicieiecie s 213

Announcing Disk Changes with Ready-Changec................ 213

Disks with No Change Notificationc.cccoeveirniiiiiiieiiinine, 214

Synchronizing Volumes ... 214

447 1/0 Control Functions Supported by rawFsLib 215

4.5 Tape File System: tapeFsccccooiiiiiii 216
45.1 Tape Organizationc.cccooeeieiiiirieieiiiiciec s 216

452 Using the tapeFs File Systemc.ccccooiiiiiiii, 216
Initializing the tapeFs File Systemcccccoooiiiiiiiicin 216

Initializing a Device for Use with the tapeFs File System 217

Mounting VOIUMEScccooiiiieiiiici s 219

Modes of Operation ... 219

FAle I/O o 219

Changing Tapesccccoeeueiiicieieiiccc s 219

I/0 Control Functions Supported by tapeFsLib 220

4.6 CD-ROM File System: cdromPFscooviiiiiiiiiiccc 221
4.7 The Target Server File System: TSFS ..o 222
HOW It WOTKSoviii s 222

Security Considerationsccccoeeeeieiiiinicieiiicccce e 224

CH+ DEVEIOPIMENT ..ttt ettt ettt ettt sttt st e bt e st e e s meesmeeeebeesmeeenees 227
51 INtrodUCHON ..o 227
52 C++ Development Under Tornado ..., 228
521 TOOLS SUPPOIL «.cevviiiiiiiiiiiici s 228
WINASh ..o 228

Xiii

VxWorks 5.4
Programmer’s Guide

DEDUZZET ..o s 229

522 Programming ISSUEScccceeriieriiiiiiiiiieiiiciiiea 229
Making C++ Entry Points Accessible to C Codecccccueueneeee. 229

523 Compiling C++ Applicationsc.cccceemumieieiinicieieicce e 230

524 Configuration Constantsccccccoeeurieinieiniciniceecec e 231

525 Munching C++ Application Modules ..o, 232

5.2.6 Static Constructors and Destructors ..o, 232

Calling Static Constructors and Destructors Interactively 233

Constructors and Destructors in System Startup and Shutdown 233

527 Template Instantiation ..o 234

5.3 C++ Language and Library Support ..o, 236
5.3.1 Language Features ..., 237
Exception Handlingccoorieioiiiiice 237

Run-Time Type Information (RTTI)ccccooeveiiiiiiiniiiniccnes 239

5.3.2 Standard Template Library (STL)ccccoooriiiiiiii 239
Tostream LibIary ... 239

String and Complex Number Classesc.cccooeeieieiicicicininnnen 240

5.4 EXaMPIe ..o e 240
5.5 Wind Foundation Classesccoeueueiiiurieiiiicicieccienc 250
551 VxWorks Wrapper Class Library ..o, 251

552 Toolsht+ Library ... 254
Shared-Memory ODJECES .o.eeiiuiiiiieiteteet ettt ettt ettt st et s e saeenaees 255
6.1 INtrodUCHONcocoovviiiiiiiiii e 255
6.2 Using Shared-Memory Objectsccccocvvviviiiiiininiiiiiiriiicccnceees 256
6.2.1 Name Databasecccccovviiiinniiiiiiiiis 257

6.2.2 Shared Semaphoresccccovvviviiiiiiiiiiiiiinen 259

6.2.3 Shared Message QUEUEScccceuvuriiiiirininiiiiiiiiieceas 263

Xiv

Contents

6.2.4 Shared-Memory AllOCAtOrccooeueiiiiirieiiiiicice 268
Shared-Memory System Partition ..o 268

User-Created Partitions ..o 269

Using the Shared-Memory System Partitionccccccoeeeinne. 270

Using User-Created Partitionscccoceeieiiiiiiic 273

Side Effects of Shared-Memory Partition Optionsc.ccce...... 276

6.3 Internal Considerationsc.ccoeieieiiicicieicc 277
6.3.1 System Requirementsc.ccocoeoreieiiiicieiniiiicecccec 277

6.3.2 Spin-lock Mechanismcccccooerueieiiiicicnicec 277

6.3.3 Interrupt Latency ...t 278

6.34 ReStrictionscccooiiiiiiiiiiiiiiiiiii s 278

6.3.5 Cache COherency ... 279

6.4 ConfiUIationcocueiiuiiiieice e 279
6.4.1 Shared-Memory Objects and Shared-Memory Network Driver 279

6.4.2 Shared-Memory Region ... 280

6.4.3 Initializing the Shared-Memory Objects Packagecc.cc......... 280

644 Configuration Exampleccccocoiiiiiiniieicee 284

6.45 Initialization StePs ... 285

6.5 TroubleShOOtNGovviieiii 286
6.5.1 Configuration Problemsc.cccocoeeiriiniiiiicee 286

6.5.2 Troubleshooting Techniquesc.cccooerueiiiiiiciiiiiiccc 286

Virtual Memory INTEIMACE ..coveiiiiiieiieeteteee ettt st e e 289
7.1 INtrodUCHON ..o 289
7.2 Basic Virtual Memory SUPPOIt ..., 290
7.3 Virtual Memory Configuration ... 290
7.4 General USe ... 292

XV

VxWorks 5.4
Programmer’s Guide

7.5 Using the MMU Programmaticallyc.cccoooeiiieiiiiiiiice 293
751 Virtual Memory Contexts ... 293

Global Virtual Memory ..o 293

TNIHHAlIZAION c.eviiieeiieceeeeeee e 294

Page States ... 294

7.5.2 Private Virtual MEMOIYccooooviiiiiiiiiiiiccc e 295

753 Noncacheable MEMOTYccoeeiiiiiieiiiiiineecc e 302

754 Nonwritable MEMOIYcccccoooirieiiiiiiicieieieccece e 304

7.5.5 TroubleshOOting ... 306

7.5.6 PreCaAULIONScoovvvviiiiiiiiiiiiei ettt eeetar e eeaaree e e eesnaees 307
Configuration and BUild ..c...eoiiiiiiieetee ettt 309
8.1 TNETOAUCHION. .ttt et e st e et e s e aeeesaaeeenes 309
8.2 The Board Support Package (BSP)cccccocvvinniiiiiiiniiiiiicciiias 310
The System Library ..o 311

Virtual Memory Mapping ... 312

The Serial DITVET ...oooveueiiieiieieeeeeeeeeeee et e s e 312

BSP Initialization ModUulescocueeeeiiiiveiiieieeeeeeeeeee s 312

BSP DOcumMeEntationccceeeevieeeieeiiieiieeeeeeeeieeeee e 312

8.3 VxWorks Initialization TIMENEcooouiiiveiiiiiiiieeeeeeeeee et 313
The VxWorks Entry Point: sysInit()ccccevvviiiiivvnniiinnnns 313

The Initial Routine: UstrIBIE() ...cocueeeveeeeeeeeiiieeieeeeeeeeeeee s 314

Initializing the Kernelcccocovviiiinics 315

Initializing the Memory Poolcccccevvivniniiiniiiiiiiiicas 316

The Initial Task: #STROOT() ccceveveveeeeeeeiieeeeeeeeeeeeeeeeee e 317

The System Clock Routine: #srCIock()ccccoevuvivivivniiiiininnnns 322

Initialization SUMMATYccccoviviiiiiiniiiiiiies 322

8.4 Building, Loading, and Unloading Application Modules 325
8.4.1 Using VxWorks Header Filescccccoovviiinnniiiiiiiiins 325
VxWorks Header File: vXWoOrks.hc.ccooeeeiieiiiniicicceeeeeene, 325

Other VxWorks Header FIlesc.ooovevieiveiiiiieeeeeeeeeeee e 326

ANSI Header FILES ...t 326

XVi

8.5

8.6

8.7

Contents

The -I Compiler FIag ..o 326
VxWorks Nested Header Files ..o 326
Internal Header Files ... 327
VxWorks Private Header Files ..o 328
8.4.2 Compiling Application Modulesccccoouiiiiiiiiiiiiiicie, 329
The GNU TOOIS ..ot 329
Cross-Development Commandscocoeeieiiiinieieiiccicice 330
Defining the CPU Typeccoooieiiirininiiecicce e 330
Compiling C Modules ... 332
Compiling C++ Modulesc.ccooiiiieiiiiicieice 334
8.4.3 Static Linking (Optional)ccccooomiiiiiiiniiii 334
8.4.4 Downloading an Application Moduleccccouniiiiiiiinnnnnn. 335
8.4.5 Module IDs and Group Numbersc.cccccooiiiiiiiiiiciiiiiicee, 336
8.4.6 Unloading Modulescccooiiiiiiiiiiecc 336
Configuring VXWOTKScccoceviiiiciiciicic e 337
8.5.1 The Environment Variables ..o 337
8.5.2 The Configuration Header Filescccccoooviiiiiniiiiniic, 338
The Global Configuration Header File: configAllLh 339
The BSP-specific Configuration Header File: config.h 339
Selection of Optional Featurescccooeviieiiiniineiiicicice, 340
8.5.3 The Configuration Module: usrConfig.cc..ccoovriniiiiininnnnn. 343
Alternative VxWorks Configurationsccccoeuevviueiieinicinicieccs 344
8.6.1 Scaling Down VXWOIKScccccoooiimiiiiiiiieiccc 344
Excluding Kernel Facilities ... 344
Excluding Network Facilities ... 345
Option Dependenciescccooeviiiieiniiniciciiccece e 346
8.6.2 Executing VxWorks from ROMcccccooviiiiiiiniicicc, 346
8.6.3 Initialization Sequence for ROM-Based VxWorksccccco.c.... 349
Building a VxWorks System Imageccooovviiriiiiiic 351
8.7.1 Available VXWorks Imagescccccooimmieiniiiiiicicccc 351
8.7.2 Rebuilding VxWorks with makec.ccocoooiii 352

XVii

VxWorks 5.4
Programmer’s Guide

Making on UNIX HOSEScooovuriiiiiiiicieiiiccc e 352
Making on Windows HOStScccoruiiiiiiiiiie 352
8.7.3 Including Customized VxWorks Codeccccooemririiriiiiinnnnnne, 354
8.7.4 Linking the System Modulesc.cccoooriiiiiiiii, 355
8.7.5 Creating the System Symbol Table Moduleccccccevirnnennn. 356
8.8 Makefiles for BSPs and Applicationsccccoveuiieinininininiciiccc 357
8.8.1 Make Variablescccccoviiiiiiiiiiiiii 359
Variables for Compilation Options ..o 359
Variables for BSP Parameterscccooevriniininciniiceccecees 361
Variables for Customizing the Run-Timec.cccooviviinninne. 362
8.8.2 Using Makefile Include Files for Application Modules 363
8.8.3 Makefile for SIO DIIVerSccceoiueiiuriiieiieiiece e 364
8.9 Creating Bootable Applicationscoooeiiiiiineiii, 364
8.9.1 Creating a Standalone VxWorks System with a Built-in Symbol Table
366
8.9.2 Creating a VxWorks System in ROMccccoooiiiiiiriiiiiincnne, 367
General Procedures ... 367
Boot ROM COmPIeSSIONcccceveiierueieiiicieieiicieie s 368
TArgEE SNEII ...ttt et ettt et s e st sbe e b e aee e 369
9.1 INtrodUCHONcocviiiiiiiiiii e 369
9.2 Target-Resident Shell ..o 369
9.21 Creating the Target Shellccccccoviinniiiiiiiii, 370
9.22 Using the Target Shellcccccccoviviinnnniiiis 371
9.23 Debugging with the Target Shellcccccceviviiiiiiiiiiins 371
9.24 Aborting the Target Shellccccccovviniiiiiiiis 372
9.25 Remote Login to the Target Shellccccccoovivniiiinniiiin, 373
Remote Login From Host: telnet and rloginccccccceeii. 373
Remote Login Securityccccoveiiiiiiiiiiiiiiicccc, 374

XViil

Contents

9.2.6 Summary of Target and Host Shell Differencesc.cccccco.c.... 374

9.3 Other Target-Resident Facilities ... 376
9.3.1 Target Symbol Table, Module Loader, and Module Unloader 376

0.3.2 ShOW ROULINES ..ocviieiviiiiieiicteeceeee ettt et et et eaae s 377
APPENICES ettt ettt ettt ettt be e sttt ettt b e et sab e bt e st e sbaesaneeas 381
MOLOrOIA MCBBOX0 ...eeeeieeiiiiieeeeeiitieeeeeeerteeeeeeeitreeeeeeetareeeeeessssaeeeeesnsseeeeesenssaseessennsrseeeens 383
Al TNETOAUCHION. oottt s e e et e senaeeesnteessanes 383
A2 Building AppPLications ... 383
Defining the CPU TyPe ... 384

Configuring the GNU ToolKit Environmentccccccoviuinnnnnnn. 384

Compiling C or C++ Modules ..., 384

A3 INterface VariatiOnsc...ooouiiiieieiiiiieeeeee ettt ettt e e e e sae e e seaaeeesnaeessnnes 386
CPU-Specific Interfaces ..o, 386

a.0ut-Specific TOOLSccoiiiiiiiiiie 387

A4 Architecture ConSiderationsoceeoveeiiiieieiiieeeeeeeee et e e sereeesaeeesanes 387
MC68060 Unimplemented Integer Instructionsc.ccccoeeueneene. 388

Double-word Integers: long Iong ... 388

Interrupt Stack ... 388

MC68060 Superscalar Pipelinec.cccoocoveveiiiccieieiniceieiccne 389

CACKES oottt ettt e e st e e s eate e seaaeeesteesennes 389

Memory Management Unit ..o 392

Floating-Point SUPPOTt ... 393

Memory Layoutcceeiiiiiiiiic e 396

SUN SPARC, SPARCIIE oeeviiiiieeeeie ettt e ettt e e e e e e e e e e e e et eeeeeeeeesessssaanens 399
B.1 | 531 a'5e Yo L6 TeinTe) o U RORURRRRTNE 399
B.2 Building APPLCAtIONSc.cviiiiiiiiiiiiccceccccceeeee e 399
Defining the CPU TYPeccoveiiimiiiiiiicccccceeceeeeceenenes 400

Configuring the GNU ToolKit Environmentccccccocoeecennne 400

Xix

VxWorks 5.4
Programmer’s Guide

Compiling C or C++ Modulescooueviirieiiiiicieccee 400
B.3 Interface VAriatiOnsccoooviveiiiieiiiicieeeeeeee ettt ettt e et eesaeesane s 401
a.out-Specific Tools for SPARC and SPARCIiteccccoevvvinnnnnn 406
B4 Architecture Considerationscc.oocveviivieieiiieeeeeeeceeeeee et eae e 406
Reserved Registers ...t 407
ProceSSOr MOAEooooeeeeieeeieeeeeeeeeeeee et 407
Vector Table INitialiZationcccooeveeeeeeiecieeieeee e 407
Double-word Integers: long longccccoceevvvvvviiniiiiiiiiiennns 407
Interrupt Handlingccooiiioiiie 407
Floating-Point SUPPOItcoorieiiiiiiii e 410
Stack Pointer USagec.cccovvrurieieiiiiicieiiicicec e 412
SPARCILEE OVEIVIEW oottt eae s svee e 412
Memory Layout ... 413
101 (=TI 1< RN 417
C1 TNETOAUCHION. .ttt ettt e st e et e s e et e e saaeesnes 417
Cc2 Building Applicationscccccevviiiiiiniiniiies 417
Defining the CPU TyPeccccvvviviviviiiiiiiiiiiiiiinccnccicceieias 418
Configuring the GNU ToolKit Environmentc.ccccceoeueuiiiinnnns 418
Compiling C or C++ Modulescccccceviviiiiiniiiiiiiiiins 418
Boot Loader Changescccocvvvviiiniiininiininiiiiiccsieeiinas 420
C3 INterface VAriatiOns ...cc.oooceiiiieieeeeiie ettt et e s e et e s e aeeesaeeesnes 421
TNIHALIZATION ceeviiieiieeeeeeeee et 422
Data Breakpoint Routine bh()cccccovvvviiiviviniiiiiiiiiins 422
Parameter Change for intLevelSet()cccovvvvivvnniiicinnnnns 422
Results Change for memLibcccccccovviiiiiiiiiiiiiiis 422
Math ROULINES ..coueviiiieeeiieeeeieeeee ettt ettt e e e s e e e sveeesnns 423
Adding in Unresolved Routinescccccovviviviviniiiiiiniiiinciinnns 423
Floating-Point Task Option: VX_FP_TASKccccceceerririrruiririnnnnnns 423
COFEFE-Specific Tools FOr 1960ccccvvvviininiiniiiiiiiciiiicins 424
Limitation on d() in WINdShc..ooveiiiiiiiiieeeeeeeee s 424
C4 Architecture ConsSiderationsocc.eioeeeeiieieieeiieeeeee ettt eeree e e seaeeeenes 425
Byte Ordercovviviiiiiiiiiiiiiiiiiicc e 425

XX

Intel x86

D.1

D.2

D.3

D4

D.5

Contents

Double-word Integers: long long ..., 425
VMEbus Interrupt Handlingccoooeeiiiii 425
Memory Layout ...t 426
... 431
TNETOAUCHION. .ttt e e e e e e e seaaeeesnaeeesnnes 431
Building AppPLications ... 431
Defining the CPU TyPe ..., 432
Configuring the GNU ToolKit Environmentcccccoviinnnnnne. 432
Compiling C and C++ Modules ..., 432
INterface VariatiOnsc...ooouiiiiiieiiiiieeeeee ettt et e e et e e sae e e seaaeeesaeessanes 434
Supported Routines in mathALib ... 434
Architecture-Specific Global Variablesccccooiiiiiiinnnnnn. 434
Architecture-Specific Routines ..o, 435
a.out-Specific Tools fOr X86ccoveueieiiiriieicec 439
Architecture ConSiderationsoceeoveeeiiieieiiieeeeeeeee et e e e esaeeesanes 440
Operating Mode, Privilege Protection, and Byte Order 441
Memory Segmentationcccoeeeininiiiiininiiic e 441

I/0 Mapped DevViCes ... 441
Memory Mapped Devicesc.cccooceieiiirciniiiiceeccce 441
Memory Considerations for VME ..o 443
Interrupts and EXCeptions ..., 444
REGISLOIS ..ovveiiiiciic s 445
COUNLEIS oottt e e et e e s et e e s e e ssaaaeeeeesesasareeeeas 446
Double-word Integers: long Iong ... 447
Context SWItching ... 447

ISA /EISA BUS oottt et 447

PCTLOZ BUS ettt ettt e e e seaeeene s 447

PC I BUS ettt et ettt e e e seaeesne s 447
Software Floating-Point Emulationccccooeiiiiiiinnnnnen. 448
VxWorks Memory Layout ... 448

Board Support Packages ... 451
Boot Considerations for PC Targetscccoeoviiiiiiiiiicnnnn. 451
Mounting a DOS File System ..o, 460

XXI

VxWorks 5.4
Programmer’s Guide

DMA Buffer Alignment and cacheLib ..., 462
Support for Third-Party BSPscccccooeiiiiiieiiiciicice 462
VXWOrks IMagesccceviiurieieiicciecc 463
BSP-Specific Global Variables for 386 and 486cc.ccocueveunie. 463
Configuring the Pentium BSPccoooviiiiiiiic 463
Configuring the PentiumPro BSPc..ccooiviiiininiii, 463
ROM Card and EPROM Supportcoeeereieiincieieicieeeene 465
DEVICE DIIVETS .cooievviiiieeeeeeee et eeeare e eeaas 466
MIPS R3000, RA000, RABS50 ...ceeniiiiiiiiieie ettt e e e et e e e e eaaeessaeesaaessaaessaaesnnnens 479
E.1 TNETOAUCHION. .ttt ettt e st e et e s e aeeesaaeesnes 479
E.2 Building Applicationscccoevvviiiiiiiiiiii e 479
Defining the CPU TYPe ...cccccvvviviviviiiiiiiiriiiiicccicccceas 480
Configuring the GNU ToolKit Environmentccccceceeuiuiunnnes 480
Compiling C or C++ Modulesccccoceuviviiniiniiiiiiiiiiiias 480
E3 INterface VAariatiOons ...ccc.oooceieiieiiieiie ettt et e et st e s e et e e saeeeenes 482
cacheR3kLib and cacheR4KLIibc..ccccoovveevviiiiieicecceereee. 483
ADGLID ...t 483
INEATCRLID oottt 483
MARALID ..ot 483
TASKATCRLID ...oooineeiiieeeeeeeeeeeeee et 484
MMU SUPPOTL ..ot 484
ELF-specific TOOIScccoovuviviiiiiiiiiiiiiiiiiiininiciiicicncas 484
E4 Architecture ConsSiderationsoocceieeviviieieieeiieeeeee ettt eeeee e e e saeeeenes 485
Gprel Addressingcccovvviviviiiiiiiiiiis 485
Reserved Registers ... 485
Floating-Point SUPPOItcccovviviiiiiiiiiiiiiiiiiiciccas 485
INEEITUPLS oveiiic 486
Virtual Memory Mapping ... 488
64-bit Support (R4000 Targets Only)ccccoeevvereieeicccieiiecne 488
Memory Layout ... 488
POWEIPC .ot 491
F1 TNEFOAUCHION. oottt ettt e eneeeeaeeenee e 491

XXIi

Contents

E2 Building Applications ..o 491
Defining the CPU Typeccoooiriiirinieiiciicece e 492
Configuring the GNU ToolKit Environmentc.ccccccovvevnininnes 492
Compiling C and C++ Modulesccoorueieiiiiiiiiicee 493
Compiling Modules for GDBcccccoovviiiiriiiiecees 494
Unsupported Features ... 494
E3 Interface Changesc.ccoouveiieiiciie e 495
Memory Management Unitcooeiiiiiiiiiiiiinnnce, 495
HI and HIADJ] MaCIOS ..cvevuirierieieienieteieeeieeieeie et 497
ELF-Specific TOOISccceviviiiiiiiiiiiiiiiicccccs 498
F4 Architecture Considerationsccccooeveeiieiiierieeeeieee et e e esaees 498
ProceSSOr MOAEoooveveeiieiieeeee et 499
24-bit AAAIeSSINGcooeueveiiiiicieiiicce s 499
Byte Order ... 499
PowerPC Register Usageccccoovreueiiinicieiiiccece 499
(@F=Tal TSRS 500
Memory Management Unitcocooeeveveiiiniiiiinieccce 500
Floating-Point SUPPOTItcccoviiiiiiiiiice, 501
VxMP Support for Motorola PowerPC Boardscccoovueuninnce. 502
Memory Layout ... 504
ARM ettt ettt ee e et e et e e et e e et e eeateseae e et e seteestesaaeans 507
G.1 | gk e Te A6 Lot (o) o NRNURNURRN SRRSO RSRRRRRRRI 507
G2 Building AppPLications ... 508
Defining the CPU TyPeccoviiiiiiiiiiiiicccccccccces 508
Configuring the GNU ToolKit Environmentcccccoviurnnnnnnn. 508
Compiling C and C++ Modules ..., 509
Boot Loader Changes ..o, 510
G.3 Toolchain INFOrMAtIONcocveiiveieieiiieeeeee e et eee e e esanes 512
Assembler Pseudo Operations ... 512
Additional ARM Compiler Options ..., 512
CrossWind and GDBooooiiiiiiiieeeeeeeee et 513
G4 INterface VariatiOnsc.ooooviiiieieieiieeeeeee ettt et e e e e eae e e senaeeesnaeessanes 514

XXIil

VxWorks 5.4
Programmer’s Guide

Restrictions on cret() and ()ccoovveeeeeiieeiicieeceeeeee e, 514
CAChELID ..o 515
AbGLIb ... 515
AbGAIChLID ... 515
INEALID oottt ettt 515
INEATCHLID ..ot e 516
MMUALID oot 517
USTLID oottt et 517
VINLID oot et 517
VXALID oottt 517
VXLID oottt eaee e 517
COFF-Specific Tools For ARMcccoooviiiieiiiiiieiieee, 518
G5 Architecture Considerationsccecveeveeeiieiieeeieeereeeee e e eere e eereeene s 518
Processor Mode and Byte Order ..o 519
ARM/ThUMD StAte ..ooovviieiieeieeeieeeeeeeee ettt 519
Interrupts and EXCeptions ... 520
Floating-Point SUPPOItcooriiiiiiiiii e 522
CACNES ettt et e et eane et 522
Memory Management Unitcccooeveiriiniiiiiiccc, 524
Memory Layout ... 528
VXS ettt et e e e ettt e e e e eaae e e e e eetaaeaeeseetaaaaaeeeenbaaaeeeaartaraaeeaantaraeeeeenraaaeeeennreen 531
H.1 TNEFOAUCHION. .ottt ettt ettt eaeeeteeeareeeaeeeseeenee 531
H.2 The Built-in SIMULAtOrooviiviieieciee ettt e 533
Installation and Configuration ..., 533
Starting VXSIm ... 533
Rebooting VXSIMccccvviviiiiiiiiiiiiiiiicccccias 533
Exiting VXSIM ..o 533
System-Mode Debuggingc.cccooveieiiiiiriniiiece 534
File SYstemsccccoviviviiiiiniiiiiiiiiicic e 534
H.3 Building Applicationsccccccvviviviiiiiiniiies 535
Defining the CPU TyPeccccvuviviviviiiiiiiiiiiiciiniccnscceceeeiias 535
The Toolkit ENVIrONMENtcoovvieiieerieeieeereeeeeeerecere e 535
Compiling C and C++ Modulesc.ccccevviviiiininniiiiiiiiicinns 535
Linking an Application to VXSImcccccevvviivniniiiiiiiniiiicinnns 538
Architecture-Specific TOOIScccccovviiiviiiiiiiiiiiiccs 540

XXIV

Contents

HA4 Architecture Considerationsocoevererieieninieteeee et 540
Supported Configurationsc.c.cceveueirinicieiiieieee 540

The BSP Directorycoceeviicieieiiiciecccc s 541

INEEITUPLS o 541

Clock and Timing ISSUESccceeviurucieiiiiicieiecce s 544

H.5 VxSim Networking Component ... 545
Installing VXSim Network DIivers ... 546

Configuring VxSim for Networkingccccocoeeveiiiiniiinnininne, 552

Running Multiple Simulators ..o 553

System Mode Debuggingc.coooeieiiiiiiiiii 553

IP AddIessingcooeeueieiiiicieieicc s 555

Choosing Processor Numbers for Distinct Devices 556

Setting Up Remote ACCESScceviiucieiiiiiicieicci e 557

Setting up the Shared Memory Network (UNIX only) 559

CodiNG CONVENLIONS ..eeiiiiiiiiieiieiie ettt ettt et e e e bt s bt e bt esabeesbee st e e smeessaeebeesaneenees 563
I1 INEFOAUCHION .ottt ettt s be et e 563
1.2 File Heading ... 564
L3 C Coding CONVENtIONScoiuimimiiiiiiiiiiiiiicccee s 565
1.3.1 C Module Layout ... 565

1.3.2 C Subroutine Layout ... 567

1.3.3 C Declaration FOrmatsccoeeeveeviecienreeniieiececeeee et 568
Variablescoioiiiiieieieceeeeeeee et 569

SUDTOUNES ...veeviiiieiictieeeeeeeeteee ettt ettt et 570

1.3.4 C Code Layout ... 571
Vertical Spacingcccccovvviiviviiniiiiiiinicn 571

Horizontal Spacing ... 571

INAENEATION ..oveeeiiiieieceeeeeeeeeeee ettt 572

COMIMENES ..viiiiiieiiecieecteeieeree ettt e eteesteeeteesteesae e baessseesseessseenseennns 574

1.3.5 C Naming Conventions ... 574

L3.6 CSLYLE o 576

1.3.7 CHeader File Layoutcccoooiiiiiiiiiiiiiiiccccccen, 577

XXV

VxWorks 5.4
Programmer’s Guide

1.3.8

XXVi

SETUCEUTAL oot s ste e 577
Order of Declarationc.oooeeeeeieiiiiieeie ettt 577
Documentation Format Conventions for Ccocovvevvvvviveiineenns 579
Layout ..o 579
Format Commandscc.eeoeueiiiiiiiiiiieeeee e 580
Special Elementscccoocuoiiiiieiniiiice e 580
Formatting Displayscccccoomrueieiiiiieiccce 582
... 585

Overview

1.1 Introduction

This manual describes VxWorks, the high-performance real-time operating system
component of the Tornado development system. This manual includes the
following information:

How to use VxWorks facilities in the development of real-time applications.
(VxWorks networking facilities are covered in the VxWorks Network
Programmer’s Guide.)

How to use the optional components Wind Foundation Classes, VXMP, and
VxVML

How to configure and build VxWorks without using the project facility. (For
more information on the project facility, see Tornado User’s Guide: Projects.)

How to use the target-resident tools included in VxWorks.
Architecture-specific information for all architectures supported on VxWorks.
Wind River Systems’ C and C++ coding conventions.

This chapter begins by providing pointers to information on how to set up and
start using VxWorks as part of the Tornado development system. It then provides
an overview of the role of VxWorks in the development of real-time applications,
an overview of VxWorks facilities, a summary of Wind River Systems customer
services, and a summary of the document conventions followed in this manual.

VxWorks 5.4
Programmer’s Guide

1.2 Getting Started with the Tornado Development System

See the following documents for information on installing and configuring the
Tornado development system, including VxWorks. Information on configuration
differs depending on whether your development host is UNIX or Windows; thus,

the Tornado User’s Guide is host specific.

Tornado Getting Started provides information on installing all components of
the Tornado Development System as well as a tutorial covering the main

features of Tornado.

The Tornado User’s Guide provides information on configuring and connecting
the host and target environments, building your VxWorks application, booting

VxWorks, and running Tornado.

For either host, 8. Configuration and Build in this manual provides information on
using Tornado 1.0.1-style manual methods for VxWorks configuration.

For a complete overview of Tornado documentation, see the documentation guide

in the Tornado User’s Guide.

1.3 VxWorks: A Partner in the Real-time Development Cycle

UNIX and Windows hosts are excellent systems for program development and for
many interactive applications. However, they are not appropriate for real-time
applications. On the other hand, traditional real-time operating systems provide
poor environments for application development or for non-real-time components

of an application, such as graphical user interfaces (GUIs).

Rather than trying to create a single operating system that “does it all,” the Wind
River philosophy is to utilize two complementary and cooperating operating
systems (VxWorks and UNIX, or VxWorks and Windows) and let each do what it
does best. VxWorks handles the critical real-time chores, while the host machine is
used for program development and for applications that are not time-critical.

You can scale VxWorks to include exactly the feature combinations your
application requires. During development, you can include additional features to
speed your work (such as the networking facilities), then exclude them to save

resources in the final version of your application.

1
Overview

You can use the cross-development host machine to edit, compile, link, and store
real-time code, but then run and debug that real-time code on VxWorks. The
resulting VxWorks application can run standalone—either in ROM or disk-
based—with no further need for the network or the host system.

However, the host machine and VxWorks can also work together in a hybrid
application, with the host machine using VxWorks systems as real-time “servers”
in a networked environment. For instance, a VxWorks system controlling a robot
might itself be controlled by a host machine that runs an expert system, or several
VxWorks systems running factory equipment might be connected to host
machines that track inventory or generate reports.

1.4 VxWorks Facilities: An Overview

This section provides a summary of VxWorks facilities; they are described in more
detail in the following subsections. For details on any of these facilities, see the
appropriate chapters in this manual.

High-Performance Real-time Kernel Facilities

The VxWorks kernel, wind, includes multitasking with preemptive priority
scheduling, intertask synchronization and communications facilities, interrupt
handling support, watchdog timers, and memory management.

POSIX Compatibility

VxWorks provides most interfaces specified by the 1003.1b standard (formerly
the 1003.4 standard), simplifying your ports from other conforming systems.

1/0 System

VxWorks provides a fast and flexible ANSI C-compatible I/O system,
including UNIX standard buffered I/O and POSIX standard asynchronous
I/0. VxWorks includes the following drivers:

Network driver — for network devices (Ethernet, shared memory)
Pipe driver — for intertask communication

RAM “disk” driver — for memory-resident files

SCSI driver — for SCSI hard disks, diskettes, and tape drives
Keyboard driver — for PC x86 keyboards (x86 BSP only)

Display driver

for PC x86 VGA displays (x86 BSP only)

VxWorks 5.4
Programmer’s Guide

Disk driver — for IDE and floppy disk drives (x86 BSP only)
Parallel port driver — for PC-style target hardware

Local File Systems

VxWorks provides fast file systems tailored to real-time applications. One file
system is compatible with the MS-DOS® file system, another with the RT-11 file
system, a third is a “raw disk” file system, a fourth supports SCSI tape devices,
and a fifth supports CD-ROM devices.

C++ Development Support

In addition to general C++ support including the iostream library and the
standard template library, the optional component Wind Foundation Classes
adds the following C++ object libraries:

- VxWorks Wrapper Class library
— Tools.h++ library from Rogue Wave

Shared-Memory Objects (VXMP Option)

The VxMP option provides facilities for sharing semaphores, message queues,
and memory regions between tasks on different processors.

Virtual Memory (Including VxVMI Option)

VxWorks provides both bundled and unbundled (VxVMI) virtual memory
support for boards with an MMU, including the ability to make portions of
memory noncacheable or read-only, as well as a set of routines for virtual-
memory management.

Target-resident Tools

In the Tornado development system, the development tools reside on the host
system; see the Tornado User’s Guide for details. However, a target-resident
shell, module loader and unloader, and symbol table can be configured into
the VxWorks system if necessary.

Utility Libraries

VxWorks provides an extensive set of utility routines, including interrupt
handling, watchdog timers, message logging, memory allocation, string
formatting and scanning, linear and ring buffer manipulations, linked-list
manipulations, and ANSI C libraries.

1
Overview

Performance Evaluation Tools

VxWorks performance evaluation tools include an execution timer for timing
aroutine or group of routines, and utilities to show CPU utilization percentage
by task.

Target Agent

The target agent allows a VxWorks application to be remotely debugged using
the Tornado development tools.

Board Support Packages

Board Support Packages (BSPs) are available for a variety of boards and
provide routines for hardware initialization, interrupt setup, timers, memory
mapping, and so on.

VxWorks Simulator (VxSim) and Logic Analyzer (WindView)

Tornado comes with an integrated simulator and software logic analyzer on all
host platforms. VxSim simulates a VxWorks target for use as a prototyping and
testing environment. WindView provides advanced debugging tools for the
simulator environment.

The optional product VxSim provides networking capability and the ability to
run multiple simulators. The optional product WindView provides software
logic analyzer support for all WRS BSPs.

Network Facilities

VxWorks provides “transparent” access to other VxWorks and TCP/IP-
networked systems, a MUX interface (supporting advanced features such as
multicasting, polled-mode Ethernet, and zero-copy transmission), a BSD!
Sockets-compliant programming interface, remote procedure calls (RPC),
SNMP (optional), remote file access (including NFS client and server facilities
and a non-NFS facility utilizing RSH, FTP, or TFTP), BOOTP, proxy ARP,
DHCP, DNS, OSPF (optional), and RIP. All VxWorks network facilities comply
with standard Internet protocols, both loosely coupled over serial lines or
standard Ethernet connections and tightly coupled over a backplane bus using
shared memory.

For information on VxWorks network support, see the VxWorks Network
Programmer’s Guide.

1. BSD stands for Berkeley Software Distribution, and refers to a version of UNIX.

VxWorks 5.4
Programmer’s Guide

Multitasking and Intertask Communications

Modern real-time systems are based on the complementary concepts of
multitasking and intertask communications. A multitasking environment allows
real-time applications to be constructed as a set of independent tasks, each with a
separate thread of execution and its own set of system resources. The intertask
communication facilities allow these tasks to synchronize and coordinate their
activity.

The VxWorks multitasking kernel, wind, uses interrupt-driven, priority-based task
scheduling. It features fast context switch times and low interrupt latency. Under
VxWorks, any subroutine can be spawned as a separate task, with its own context

and stack. Other basic task control facilities allow tasks to be suspended, resumed,
deleted, delayed, and moved in priority. See 2.3 Tasks, p.20 and the reference entry
for taskLib.

The wind kernel supplies semaphores as the basic task synchronization and
mutual-exclusion mechanism. There are several kinds of semaphores in wind,
specialized for different application needs: binary semaphores, counting
semaphores, mutual-exclusion semaphores, and POSIX semaphores. All of these
semaphore types are fast and efficient. In addition to being available to application
developers, they have also been used extensively in building higher-level facilities
in VxWorks.

For intertask communications, the wind kernel also supplies message queues,
pipes, sockets, and signals. The optional component VxMP provides shared-
memory objects as a communication mechanism for tasks executing on different
CPUs. For information on all these facilities, see 6. Shared-Memory Objects and

2.4 Intertask Communications, p.45. In addition, semaphores are described in the
semLib and semPxLib reference entries; message queues are described in the
msgQLib and mqPxLib reference entries; pipes are described in the pipeDrv
reference entry and 2.4.5 Pipes, p.79; sockets are described in the sockLib reference
entry and 2.4.6 Network Intertask Communication, p.80; and signals are described in
the sigLib reference entry and 2.4.7 Signals, p.81.

POSIX Interfaces

POSIX (the Portable Operating System Interface) is a set of standards under
development by representatives of the software community, working under an
ISO/IEEE charter. The purpose of this effort is to support application portability at
the source level across operating systems. This effort has yielded a set of interfaces
(POSIX standard 1003.1b, formerly called 1003.4) for real-time operating system

I/O System

1
Overview

services. Using these interfaces makes it easier to move applications from one
operating system to another.

For a list of POSIX facilities, look under POSIX in the keyword index in the
VxWorks Reference Manual or in the Tornado Online Manuals. Nearly all POSIX
1003.1b interfaces are available in VxWorks, including POSIX interfaces for:

— asynchronous I/O

— semaphores

— message queues

— memory management
— queued signals

— scheduling

— clocks and timers

In addition, several interfaces from the traditional POSIX 1003.1 standard are also
supported.

The VxWorks I/O system provides uniform device-independent access to many
kinds of devices. You can call seven basic I/O routines: creat(), remove(), open(),
close(), read(), write(), and ioctl(). Higher-level I/O routines (such as ANSI C-
compatible printf() and scanf() routines) are also provided.

VxWorks also provides a standard buffered I/O package (stdio) that includes ANSI
C-compatible routines such as fopen(), fclose(), fread(), fwrite(), getc(), and
putc(). These routines increase I/O performance in many cases.

The VxWorks I/0O system also includes POSIX-compliant asynchronous I/0: a
library of routines that perform input and output operations concurrently with a
task’s other activities.

VxWorks includes device drivers for serial communication, disks, RAM disks,
SCSI tape devices, intertask communication devices (called pipes), and devices on
a network. Application developers can easily write additional drivers, if needed.
VxWorks allows dynamic installation and removal of drivers without rebooting
the system.

Internally, the VxWorks I/O system allows individual drivers complete control
over how the user requests are serviced. Drivers can easily implement different
protocols, unique device-specific routines, and even different file systems, without
interference from the I/O system itself. VxWorks also supplies several high-level

VxWorks 5.4
Programmer’s Guide

packages that make it easy for drivers to implement common device protocols and
file systems.

For a detailed discussion of the I/O system, see 3. I/O System. Relevant reference
entries include ioLib for basic I/O routines available to tasks, fioLib and ansiStdio
for various format-driven I/O routines, aioPxLib for asynchronous I/O, and
iosLib and tyLib for routines available to driver writers. Also see the reference
entries for the supplied drivers.

Local File Systems

VxWorks includes several local file systems for use with block devices (disks).
These devices all use a standard interface so that file systems can be freely mixed
with device drivers. Local file systems for SCSI tape devices and CD-ROM devices
are also included. The VxWorks I/O architecture makes it possible to have several
different file systems on a single VxWorks system, even at the same time.

MS-DOS Compatible File System: dosFs

VxWorks provides the dosFs file system, which is compatible with the MS-DOS file
system (for MS-DOS versions up to and including 6.2). The capabilities of dosFs
offer considerable flexibility appropriate to the varying demands of real-time
applications. Major features include:

* A hierarchical arrangement of files and directories, allowing efficient
organization and permitting an arbitrary number of files to be created on a
volume.

+ The ability to specify contiguous file allocation on a per-file basis. Contiguous
files offer enhanced performance, while non-contiguous files result in more
efficient use of disk space.

+ Compatibility with widely available storage and retrieval media. Diskettes
created with dosFs and on MS-DOS personal computers can be freely
interchanged and hard drives created with MS-DOS can be read by dosFs if it
is correctly configured.

* Optional case-sensitive file names, with name lengths not restricted to the MS-
DOS eight-character + extension convention.

Services for file-oriented device drivers using dosFs are implemented in dosFsLib.

1
Overview

RT-11 Compatible File System: rt11Fs

VxWorks provides the rt11Fs file system, which is compatible with that of the RT-
11 operating system. This file system has been used for real-time applications
because all files are contiguous. However, rt11Fs does have some drawbacks. It
lacks a hierarchical file organization that is particularly useful on large disks. Also,
the rigid contiguous allocation scheme may result in fragmented disk space. For
these reasons, dosFs is preferable to rt11Fs.

The VxWorks implementation of the RT-11 file system includes byte-addressable
random access (seeking) to all files. Each open file has a block buffer for optimized
reading and writing.

Services for file-oriented device drivers using rt11Fs are implemented in rt11FsLib.

Raw Disk File System: rawFs

VxWorks provides rawFs, a simple “raw disk file system” for use with disk devices.
rawFs treats the entire disk much like a single large file. The rawFs file system
permits reading and writing portions of the disk, specified by byte offset, and it
performs simple buffering. When only simple, low-level disk I/O is required,
rawFs has the advantages of size and speed.

Services for file-oriented device drivers using rawFs are implemented in
rawFsLib.

SCSI Sequential File System: tapeFs

VxWorks provides a file system for tape devices that do not use a standard file or
directory structure on tape. The tape volume is treated much like a raw device
where the entire volume is a large file. Any data organization on this large file is
the responsibility of a higher-level layer.

Services for SCSI sequential device drivers using tapeFs are implemented in
tapeFsLib.

cdRomFs

VxWorks provides the cdromFs file system which lets applications read any CD-
ROM that is formatted in accordance with ISO 9660 file system standards. After
initializing cdRomFs and mounting it on a CD-ROM block device, you can access
data on that device using the standard POSIX1/O calls.

VxWorks 5.4
Programmer’s Guide

Alternative File Systems

In VxWorks, the file system is not tied to the device or its driver. A device can be
associated with any file system. Alternatively, you can supply your own file
systems that use standard drivers in the same way, by following the same standard
interfaces between the file system, the driver, and the VxWorks I/O system.

Virtual Memory (Including VxVMI Option)

Virtual memory support is provided for boards with Memory Management Units
(MMU). Bundled virtual memory support provides the ability to mark buffers
noncacheable. This is useful for multiprocessor environments where memory is
shared across processors or where DMA transfers take place. For information on
bundled virtual memory support, see 7. Virtual Memory Interface and the reference
entries for vmBaseLib and cacheLib.

Unbundled virtual memory support is available as the optional component
VxVML VxVMI provides the ability to make text segments and the exception
vector table read-only, and includes a set of routines for developers to manage their
own virtual memory contexts. For information on VxVMI, see 7. Virtual Memory
Interface and the reference entry for vimLib.

Shared-Memory Objects (VxMP Option)

The following shared-memory objects (available with VxWorks as the optional
component, VxMP) are used for communication and synchronization between
tasks on different CPUs:

* Shared semaphores can be used to synchronize tasks on different CPUs as well
as provide mutual exclusion to shared data structures.

+ Shared message queues allow tasks on multiple processors to exchange
messages.

* Shared memory management is available to allocate common data buffers for
tasks on different processors.

For information on VxMP, see 6. Shared-Memory Objects and the reference entries
for smObjLib, smObjShow, semSmLib, msgQSmLib, smMemlLib, and
smNameLib.

10

1
Overview

Target-Resident Tools

In the Tornado development system, a full suite of development tools reside and
execute on the host machine; see the Tornado User’s Guide for details. However, a
target-resident shell, symbol table, and module loader/unloader can be
configured into the VxWorks system if necessary, for example, to create a
dynamically configured run-time system.

For information on these target-resident tools, see 9. Target Shell and the reference
entries for shellLib, usrLib, dbgLib, loadLib, unldLib, and symLib.

C++ Development (including Wind Foundation Classes Option)

Utility Libraries

VxWorks supports C++ development. The GNU C++ compiler is shipped with
Tornado. The Tornado compiler provides support for multi-thread-safe exception
handling. Tornado includes a new version of the iostream library and the SGI
implementation of the Standard Template Library. The standard Tornado
interactive development tools such as the debugger, the shell, and the incremental
loader include C++ support.

In addition, you can order the Wind Foundation Classes optional component to
add the following libraries:

- VxWorks Wrapper Class library
— Tools.h++ library from Rogue Wave

For more information on these libraries, see 5. C++ Development.

VxWorks supplies many subroutines of general utility to application developers.
These routines are organized as a set of subroutine libraries, which are described
below. We urge you to use these libraries wherever possible. Using library utilities
reduces both development time and memory requirements for the application.

Interrupt Handling Support

VxWorks supplies routines for handling hardware interrupts and software traps
without having to resort to assembly language coding. Routines are provided to
connect C routines to hardware interrupt vectors, and to manipulate the processor
interrupt level.

11

VxWorks 5.4
Programmer’s Guide

For information on interrupt handling, see the intLib and intArchLib reference
entries. Also see 2. Basic OS for information about the context where interrupt-
level code runs and for special restrictions that apply to interrupt service routines.

Watchdog Timers

A watchdog facility allows callers to schedule execution of their own routines after
specified time delays. As soon as the specified number of ticks have elapsed, the
specified “timeout” routine is called at the interrupt level of the system clock,
unless the watchdog is canceled first. This mechanism is entirely different from the
kernel’s task delay facility. For information on watchdog timers, see 2.6 Watchdog
Timers, p.90 and the reference entry for wdLib.

Message Logging

A simple message logging facility allows applications to send error or status
messages to a logging task, which then formats and outputs the messages to a
system-wide logging device (such as the system console, disk, or accessible
memory). The message logging facility can be used from either interrupt level or
task level. For information on this facility, see 3.5.3 Message Logging, p.109 and the
reference entry for logLib.

Memory Allocation

VxWorks supplies a memory management facility useful for dynamically
allocating, freeing, and reallocating blocks of memory from a memory pool. Blocks
of arbitrary size can be allocated, and you can specify the size of the memory pool.
This memory scheme is built on a much more general mechanism that allows
VxWorks to manage several separate memory pools.

String Formatting and Scanning

VxWorks includes a complete set of ANSI C library string formatting and scanning
subroutines that implement printf()/scanf() format-driven encoding and
decoding and associated routines. See the reference entries for fioLib and
ansiStdio.

Linear and Ring Buffer Manipulations

The library bLib contains buffer manipulation routines such as copying, filling,
comparing, and so on, that have been optimized for speed. The library rngLib
provides a set of general ring buffer routines that manage first-in-first-out (FIFO)
circular buffers. Additionally, these ring buffers have the property that a single

12

1
Overview

writer and a single reader can access a ring buffer “simultaneously” without being
required to interlock their accesses explicitly.

Linked-List Manipulations

The library 1stLib contains a complete set of routines for creating and
manipulating doubly-linked lists.

ANSI C Libraries

VxWorks provides all C libraries specified by ANSI X3.159-1989. The ANSI C
specification includes the following libraries: assert, ctype, errno, float, limits,
locale, math, setjmp, signal, stdarg, stdio, stddef, stdlib, string, and time.

The header files float.h, limits.h, errno.h, and stddef.h provide ANSI-specified
definitions and declarations. The more commonly used libraries are described in
the following reference entries:

ansiCtype routines for character manipulation

ansiMath trigonometric, exponential, and logarithmic routines

ansiSetjmp routines for implementing a non-local goto

ansiStdarg routines for traversing a variable-length argument list

ansiStdio routines for manipulating streams for input/output

ansiStdlib a variety of routines, including those for type translation,
memory allocation, and random number generation

sigLib signal-manipulation routines

Performance Evaluation

To understand and optimize the performance of a real-time system, it can be useful
to time some of the VxWorks or application routines. VxWorks provides various
timing facilities to help with this task.

The VxWorks execution timer can time any subroutine or group of subroutines.
Because the system clock is too slow to provide the resolution necessary to time
especially fast routines, the timer can also repeatedly execute a group of routines
until the time of a single iteration is known to a reasonable accuracy. For
information on the execution timer, see the timexLib reference entry.

VxWorks also provides the spy utility, which provides CPU utilization information
for each task: the CPU time consumed, the time spent at interrupt level, and the
amount of idle time. Time is displayed in ticks and in percentages. For information
on this utility, see the spyLib reference en’rry.2

13

VxWorks 5.4
Programmer’s Guide

Even more powerful monitoring of the VxWorks system is available using the
optional product WindView; for more information, see the WindView User’s Guide.

Target Agent

The target agent follows the WDB (Wind DeBug) protocol, allowing a VxWorks
target to be connected to the Tornado development tools. In the target agent’s
default configuration, shown in Figure 1-1, the agent runs as the VxWorks task
tWdbTask. The Tornado target server sends debugging requests to the target
agent. The debugging requests often result in the target agent controlling or
manipulating other tasks in the system.

By default, the target server and agent communicate using the network. However,
you can use alternative communication paths. For more information on the default
configuration or alternative configurations of the target agent, see Tornado Getting
Started. For information on the Tornado target server, see the Tornado User’s Guide:
Overview.

Figure 1-1 Interaction Between Target Server and Target Agent

HOST TARGET

VxWorks OS

— tWdbTask

Communications (Target Agent)
Driver /\
Target Server tUserl tUser2

. |

NETWORK (Ethernet, SLIP, etc.)

2. You can also use this utility through the Tornado browser; see the Tornado User’s Guide:
Browser for details.

14

1
Overview

Board Support Packages (BSPs)

Two target-specific libraries, sysLib and sysALib, are included with each port of
VxWorks. These libraries are the heart of VxWorks portability; they provide an
identical software interface to the hardware functions of all boards. They include
facilities for hardware initialization, interrupt handling and generation, hardware
clock and timer management, mapping of local and bus memory spaces, memory
sizing, and so on.

Each BSP also includes a boot ROM or other boot mechanism. Many of these
import the run-time image from the development host. For information on boot
ROMs and other booting mechanisms see Tornado Getting Started and 8.9 Creating
Bootable Applications, p.364.

For information on target-specific libraries, see 8.2 The Board Support Package (BSP),
p-310 and the target-specific reference entries for your board type.

VxWorks Simulator

VxSim, the VxWorks simulator, is a program that simulates a VxWorks target for
use as a prototyping and testing environment. The integrated version of the
simulator allows a single simulator to be run. The VxSim optional product adds
networking facilities, allowing the simulator to obtain an Internet address and
communicate with the host (or other nodes on the network) using the VxWorks
networking tools.

VxSim is essentially a port of VxWorks. In most regards, its capabilities are
identical to a true VxWorks system running on remote target hardware. You can
link in an application and rebuild the VxWorks image exactly the same way as in
any other VxWorks cross-development environment. All Tornado development
tools can be used with VxSim.

The difference between VxSim and a remote VxWorks target environment is that
in VxSim, the image executes on the host machine itself as a host process. There is
no emulation of instructions, because the code is in the host’s own CPU
architecture. Because target hardware interaction is not possible, device-driver
development may not be suitable for simulation. However, the VxWorks scheduler
is implemented in the VxSim process, maintaining true tasking interaction with
respect to priorities and preemption. This means that any application that is
written in a portable style and with minimal hardware interaction should be
portable between VxSim and VxWorks.

For more information on VxSim, see H. VxSim.

15

VxWorks 5.4
Programmer’s Guide

1.5 Customer Services

Training

A full range of support services is available from Wind River Systems to ensure
that you have the opportunity to make optimal use of the extensive features of
VxWorks.

This section summarizes the major services available. For more detailed
information, consult the Tornado User’s Guide: Customer Service.

In the United States, Wind River Systems holds regularly scheduled classes on
Tornado and VxWorks. Customers can also arrange to have Tornado classes held
at their facility. The easiest way to learn about WRS training services, schedules,
and prices is through the World Wide Web. Point your site’s Web browser at the
following URL:

http://ww.wrs.com/training

You can contact the Training Department at:

Phone: 510/749-2148
800/545-WIND

Fax: 510/749-2378

E-mail: training@wrs.com

Outside of the United States, call your local distributor or nearest Wind River
Systems office for training information. See the back cover of this manual for a list
of Wind River Systems offices.

Customer Support

Direct contact with a staff of software engineers experienced in VxWorks is
available through the Wind River Systems Customer Support program. For
information on how to contact WRS Customer Support, see the copyright page at
the front of this manual.

16

1
Overview

1.6 Documentation Conventions

Typographical Conventions

VxWorks documentation uses the conventions shown in Table 1-1 to differentiate
various elements. Parentheses are always included to indicate a subroutine name,

as in printf().

Table 1-1 Font Usage for Special Terms

Term

Example

files, pathnames

libraries, drivers

host tools

subroutines

boot commands

code display

keyboard input

display output
user-supplied parameters
constants

C keywords, cpp directives
named key on keyboard
control characters

lower-case acronyms

letc/hosts
memlLib, nfsDrv
more, chkdsk
semTake()

p

main ();

make CPU=MC68040 ...
value =0

name
INCLUDE_NFS
#define
RETURN

CTRL+C
fd

Cross-References

Cross-references in this guide to a reference entry for a tool or module refer to an
entry in the VxWorks Reference Manual (for target libraries or subroutines) or to the
reference appendix in the Tornado User’s Guide (for host tools). These references are
also provided in the Tornado Online Manuals. For more information about how to
access online documentation, see the Tornado User’s Guide: Documentation Guide.

17

VxWorks 5.4
Programmer’s Guide

Other references from one book to another are always at the chapter level, and take
the form Book Title: Chapter Name.

Pathnames

The top-level Tornado directory structure includes three major directories (see the
Tornado User’s Guide: Directories and Files). Although all VxWorks files reside in the
target directory, in order to maintain consistency with other Tornado manuals this
manual uses pathnames of the following form: installDir/target. For example, if
you install Tornado in /group/wind on a UNIX host or in C:\Tornado on a
Windows host, the full pathname for the file shown as
installDir/target/config/all/config AlLh is
/group/wind/target/config/all/configAll.h (which is also
$WIND_BASE/target/config/all/configAll.h) on UNIX or
C:\Tornado\target\config\all\configAll.Lh on Windows.

NOTE: In this manual, forward slashes are used as pathname delimiters for both
UNIX and Windows file names since this is the default for VxWorks.

18

Basic OS

2.1 Introduction

Modern real-time systems are based on the complementary concepts of
multitasking and intertask communications. A multitasking environment allows a
real-time application to be constructed as a set of independent tasks, each with its
own thread of execution and set of system resources. The intertask communication
facilities allow these tasks to synchronize and communicate in order to coordinate
their activity. In VxWorks, the intertask communication facilities range from fast
semaphores to message queues and pipes to network-transparent sockets.

Another key facility in real-time systems is hardware interrupt handling, because
interrupts are the usual mechanism to inform a system of external events. To get
the fastest possible response to interrupts, interrupt service routines (ISRs) in
VxWorks run in a special context of their own, outside of any task’s context.

This chapter discusses the multitasking kernel, tasking facilities, intertask
communication, and interrupt handling facilities, which are at the heart of the
VxWorks run-time environment.

19

VxWorks 5.4
Programmer’s Guide

2.2 Wind Features and POSIX Features

2.3 Tasks

The POSIX standard for real-time extensions (1003.1b) specifies a set of interfaces
to kernel facilities. To improve application portability, the VxWorks kernel, wind,
includes both POSIX interfaces and interfaces designed specifically for VxWorks.

This manual (especially in this chapter) uses the qualifier “Wind” to identify
facilities designed expressly for use with the VxWorks wind kernel. For example,
you can find a discussion of Wind semaphores contrasted to POSIX semaphores in
Comparison of POSIX and Wind Semaphores, p.59.

It is often essential to organize applications into independent, though cooperating,
programs. Each of these programs, while executing, is called a task. In VxWorks,
tasks have immediate, shared access to most system resources, while also
maintaining enough separate context to maintain individual threads of control.

2.3.1 Multitasking

Multitasking provides the fundamental mechanism for an application to control
and react to multiple, discrete real-world events. The VxWorks real-time kernel,
wind, provides the basic multitasking environment. Multitasking creates the
appearance of many threads of execution running concurrently when, in fact, the
kernel interleaves their execution on the basis of a scheduling algorithm. Each
apparently independent program is called a task. Each task has its own context,
which is the CPU environment and system resources that the task sees each time it
is scheduled to run by the kernel. On a context switch, a task’s context is saved in
the task control block (TCB). A task’s context includes:

— athread of execution, that is, the task’s program counter
- the CPU registers and (optionally) floating-point registers
- astack for dynamic variables and function calls

- 1/0 assignments for standard input, output, and error

- adelay timer

— atimeslice timer

- kernel control structures

20

2
Basic OS

— signal handlers
- debugging and performance monitoring values

In VxWorks, one important resource that is not part of a task’s context is memory
address space: all code executes in a single common address space. Giving each
task its own memory space requires virtual-to-physical memory mapping, which
is available only with the optional product VxVMI; for more information, see

7. Virtual Memory Interface.

2.3.2 Task State Transition

Table 2-1

The kernel maintains the current state of each task in the system. A task changes
from one state to another as the result of kernel function calls made by the
application. When created, tasks enter the suspended state. Activation is necessary
for a created task to enter the ready state. The activation phase is extremely fast,
enabling applications to pre-create tasks and activate them in a timely manner. An
alternative is the spawning primitive, which allows a task to be created and
activated with a single function. Tasks can be deleted from any state.

The wind kernel states are shown in the state transition diagram in Figure 2-1, and
a summary of the corresponding state symbols you will see when working with
Tornado development tools is shown in Table 2-1.

Task State Transitions

State Symbol

Description

READY
PEND
DELAY
SUSPEND

DELAY + S
PEND + S
PEND + T
PEND+S+T

state + 1

The state of a task that is not waiting for any resource other than the CPU.
The state of a task that is blocked due to the unavailability of some resource.
The state of a task that is asleep for some duration.

The state of a task that is unavailable for execution. This state is used primarily for
debugging. Suspension does not inhibit state transition, only task execution. Thus
pended-suspended tasks can still unblock and delayed-suspended tasks can still awaken.

The state of a task that is both delayed and suspended.
The state of a task that is both pended and suspended.
The state of a task that is pended with a timeout value.
The state of a task that is both pended with a timeout value and suspended.

The state of task specified by state, plus an inherited priority.

21

VxWorks 5.4
Programmer’s Guide

Figure 2-1 Task State Transitions

The highest-priority ready task is executing.

delayed

suspended

taskInit()

ready —p pended semTake() / msgQReceive()
ready ———p delayed taskDelay()
ready - p suspended taskSuspend()
pended — p ready semGive() / msgQSend()
pended — p suspended taskSuspend()
delayed ———p ready expired delay
delayed ——p suspended taskSuspend()
suspended — p ready taskResume() / taskActivate()
suspended — » pended taskResume()
suspended — » delayed taskResume()

2.3.3 Wind Task Scheduling

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks.
Priority-based preemptive scheduling is the default algorithm in wind, but you can
select round-robin scheduling for your applications as well. The routines listed in
Table 2-2 control task scheduling.

Table 2-2 Task Scheduler Control Routines

Call Description

kernelTimeSlice() Control round-robin scheduling.
taskPrioritySet() Change the priority of a task.
taskLock() Disable task rescheduling.
taskUnlock() Enable task rescheduling.

22

2
Basic OS

Preemptive Priority Scheduling

Figure 2-2

With a preemptive priority-based scheduler, each task has a priority and the kernel
ensures that the CPU is allocated to the highest priority task that is ready to run.
This scheduling method is preemptive in that if a task that has higher priority than
the current task becomes ready to run, the kernel immediately saves the current
task’s context and switches to the context of the higher priority task. In Figure 2-2,
task t1 is preempted by higher-priority task t2, which in turn is preempted by t3.
When t3 completes, t2 continues executing. When t2 completes execution, t1
continues executing.

Priority Preemption

HIGH

priority ——>
H

LOW t1

time

KEY: 7 = preemption = task completion

The wind kernel has 256 priority levels, numbered 0 through 255. Priority 0 is the
highest and priority 255 is the lowest. Tasks are assigned a priority when created;
however, while executing, a task can change its priority using taskPrioritySet().
The ability to change task priorities dynamically allows applications to track
precedence changes in the real world.

Round-Robin Scheduling

Preemptive priority scheduling can be augmented with round-robin scheduling. A
round-robin scheduling algorithm attempts to share the CPU fairly among all
ready tasks of the same priority. Without round-robin scheduling, when multiple
tasks of equal priority must share the processor, a single task can usurp the
processor by never blocking, thus never giving other equal-priority tasks a chance
to run.

23

Figure 2-3

VxWorks 5.4
Programmer’s Guide

Round-robin scheduling achieves fair allocation of the CPU to tasks of the same
priority by an approach known as time slicing. Each task of a group of tasks
executes for a defined interval, or time slice; then another task executes for an equal
interval, in rotation. The allocation is fair in that no task of a priority group gets a
second slice of time before the other tasks of a group are given a slice.

Round-robin scheduling can be enabled with the routine kernelTimeSlice(), which
takes a parameter for a time slice, or interval. This interval is the amount of time
each task is allowed to run before relinquishing the processor to another equal-
priority task.

More precisely, a run-time counter is kept for each task and incremented on every
clock tick. When the specified time-slice interval is completed, the counter is
cleared and the task is placed at the tail of the queue of tasks at its priority. New
tasks joining a priority group are placed at the tail of the group with a run-time
counter initialized to zero.

If a task is preempted by a higher priority task during its interval, its run-time
count is saved and then restored when the task is again eligible for execution.
Figure 2-3 shows round-robin scheduling for three tasks of the same priority: t1, t2,
and t3. Task t2 is preempted by a higher priority task t4 but resumes at the count
where it left off when t4 is finished.

Round-Robin Scheduling

HIGH

t4
! time slice |
— 7

tow | | 1 | &2 [t1 | t2]

time

priority ———>

KEY: ; = preemption | = task completion

24

2
Basic OS

Preemption Locks

The wind scheduler can be explicitly disabled and enabled on a per-task basis with
the routines taskLock() and taskUnlock(). When a task disables the scheduler by
calling taskLock(), no priority-based preemption can take place while that task is
running.

However, if the task explicitly blocks or suspends, the scheduler selects the next
highest-priority eligible task to execute. When the preemption-locked task
unblocks and begins running again, preemption is again disabled.

Note that preemption locks prevent task context switching but do not lock out
interrupt handling.

Preemption locks can be used to achieve mutual exclusion; however, keep the
duration of preemption locking to a minimum. For more information, see
2.4.2 Mutual Exclusion, p.46.

2.3.4 Tasking Control

The following sections give an overview of the basic VxWorks tasking routines,
which are found in the VxWorks library taskLib. These routines provide the means
for task creation, control, and information. See the reference entry for taskLib for
further discussion. For interactive use, you can control VxWorks tasks from the
host-resident shell; see the Tornado User’s Guide: Shell.

Task Creation and Activation

Table 2-3

The routines listed in Table 2-3 are used to create tasks.

Task Creation Routines

Call Description

taskSpawn() Spawn (create and activate) a new task.
taskInit() Initialize a new task.

taskActivate() Activate an initialized task.

25

VxWorks 5.4
Programmer’s Guide

The arguments to taskSpawn() are the new task’s name (an ASCII string), priority,
an “options” word, stack size, main routine address, and 10 arguments to be
passed to the main routine as startup parameters:

id = taskSpawn (name, priority, options, stacksize, main, argl, ...argl0);

The taskSpawn() routine creates the new task context, which includes allocating
the stack and setting up the task environment to call the main routine (an ordinary
subroutine) with the specified arguments. The new task begins execution at the
entry to the specified routine.

The taskSpawn() routine embodies the lower-level steps of allocation,
initialization, and activation. The initialization and activation functions are
provided by the routines taskInit() and taskActivate(); however, we recommend
you use these routines only when you need greater control over allocation or
activation.

Task Names and IDs

When a task is spawned, you can specify an ASCII string of any length to be the
task name. VxWorks returns a task ID, which is a 4-byte handle to the task’s data
structures. Most VxWorks task routines take a task ID as the argument specifying
a task. VxWorks uses a convention that a task ID of 0 (zero) always implies the
calling task.

A task name should not conflict with any existing task name. Furthermore, to use
the Tornado development tools to their best advantage, task names should not
conflict with globally visible routine or variable names. To avoid name conflicts,
VxWorks uses a convention of prefixing all task names started from the target with
the letter t and task names started from the host with the letter u.

You may not want to name some or all of your application’s tasks. If a NULL
pointer is supplied for the name argument of taskSpawn(), then VxWorks assigns
a unique name. The name is of the form tN, where N is a decimal integer that
increases by one for each unnamed task that is spawned.

NOTE: In the shell, task names are resolved to their corresponding task IDs to
simplify interaction with existing tasks; see the Tornado User’s Guide: Shell.

The taskLib routines listed in Table 2-4 manage task IDs and names.

26

Table 2-4 Task Name and ID Routines

Task Options

Table 2-5

Table 2-6

2
Basic OS

Call

Description

taskName()
taskNameTold()
taskIdSelf()
taskIdVerify()

Get the task name associated with a task ID.
Look up the task ID associated with a task name.
Get the calling task’s ID.

Verify the existence of a specified task.

When a task is spawned, an option parameter is specified by performing a logical
OR operation on the desired options, listed in the following table. Note that

VX_FP_TASK must be specified if the task performs any floating-point operations.

Task Options
Name Hex Value Description
VX_FP_TASK 0x8 Execute with the floating-point coprocessor.

VX_NO_STACK_FILL
VX_PRIVATE_ENV

VX_UNBREAKABLE

0x100 Do not fill stack with Oxee.
0x80 Execute task with a private environment.

0x2 Disable breakpoints for the task.

To create a task that includes floating-point operations, use:

tid = taskSpawn ("tMyTask", 90, VX_FP_TASK, 20000, myFunc, 2387, 0, O,
0,0,0,0,0,0,0);

Task options can also be examined and altered after a task is spawned by means of
the routines listed in Table 2-6. Currently, only the VX_UNBREAKABLE option can

be altered.

Task Option Routines

Call

Description

taskOptionsGet()
taskOptionsSet()

Examine task options.

Set task options.

27

Task Information

Table 2-7

VxWorks 5.4
Programmer’s Guide

The routines listed in Table 2-7 get information about a task by taking a snapshot
of a task’s context when called. The state of a task is dynamic, and the information
may not be current unless the task is known to be dormant (that is, suspended).

Task Information Routines

Call Description

taskIdListGet() Fill an array with the IDs of all active tasks.
taskInfoGet() Get information about a task.
taskPriorityGet() Examine the priority of a task.
taskRegsGet() Examine a task’s registers.

taskRegsSet() Set a task’s registers.

taskIsSuspended() Check if a task is suspended.
taskIsReady() Check if a task is ready to run.

taskTcb() Get a pointer to task’s control block.

Task Deletion and Deletion Safety

A

Tasks can be dynamically deleted from the system. VxWorks includes the routines
listed in Table 2-8 to delete tasks and protect tasks from unexpected deletion.

WARNING: Make sure that tasks are not deleted at inappropriate times: a task
must release all shared resources it holds before an application deletes the task.

Tasks implicitly call exit() if the entry routine specified during task creation
returns. Alternatively, a task can explicitly call exit() at any point to kill itself. A
task can kill another task by calling taskDelete().

When a task is deleted, no other task is notified of this deletion. The routines
taskSafe() and taskUnsafe() address problems that stem from unexpected
deletion of tasks. The routine taskSafe() protects a task from deletion by other
tasks. This protection is often needed when a task executes in a critical region or
engages a critical resource.

28

2

Basic OS
Table 2-8 Task-Deletion Routines

Call Description

exit() Terminate the calling task and free memory (task stacks and task
control blocks only).

taskDelete() Terminate a specifiegl task and free memory (task stacks and task
control blocks only).

taskSafe() Protect the calling task from deletion.

taskUnsafe() Undo a taskSafe() (make the calling task available for deletion).

* Memory that is allocated by the task during its execution is not freed when the task
is terminated.

For example, a task might take a semaphore for exclusive access to some data
structure. While executing inside the critical region, the task might be deleted by
another task. Because the task is unable to complete the critical region, the data
structure might be left in a corrupt or inconsistent state. Furthermore, because the
semaphore can never be released by the task, the critical resource is now
unavailable for use by any other task and is essentially frozen.

Using taskSafe() to protect the task that took the semaphore prevents such an
outcome. Any task that tries to delete a task protected with taskSafe() is blocked.
When finished with its critical resource, the protected task can make itself available
for deletion by calling taskUnsafe(), which readies any deleting task. To support
nested deletion-safe regions, a count is kept of the number of times taskSafe() and
taskUnsafe() are called. Deletion is allowed only when the count is zero, that is,
there are as many “unsafes” as “safes.” Protection operates only on the calling task.
A task cannot make another task safe or unsafe from deletion.

The following code fragment shows how to use taskSafe() and taskUnsafe() to
protect a critical region of code:

taskSafe ();
semTake (semld, WAIT_FOREVER); /* Block until semaphore available */

critical region

éemGive (semid); /* Release semaphore */
taskUnsafe ();

Deletion safety is often coupled closely with mutual exclusion, as in this example.
For convenience and efficiency, a special kind of semaphore, the mutual-exclusion
semaphore, offers an option for deletion safety. For more information, see Mutual-
Exclusion Semaphores, p.52.

29

Task Control

Table 2-9

VxWorks 5.4
Programmer’s Guide

The routines listed in Table 2-9 provide direct control over a task’s execution.

Task Control Routines

Call Description

taskSuspend() Suspend a task.

taskResume() Resume a task.

taskRestari() Restart a task.

taskDelay() Delay a task; delay units are ticks.
nanosleep() Delay a task; delay units are nanoseconds.

VxWorks debugging facilities require routines for suspending and resuming a
task. They are used to freeze a task’s state for examination.

Tasks may require restarting during execution in response to some catastrophic
error. The restart mechanism, taskRestart(), recreates a task with the original
creation arguments. The Tornado shell also uses this mechanism to restart itself in
response to a task-abort request; for information, see the Tornado User’s Guide: Shell.

Delay operations provide a simple mechanism for a task to sleep for a fixed
duration. Task delays are often used for polling applications. For example, to delay
a task for half a second without making assumptions about the clock rate, call:

taskDelay (sysClkRateGet () / 2);

The routine sysClkRateGet() returns the speed of the system clock in ticks per
second. Instead of taskDelay(), you can use the POSIX routine nanosleep() to
specify a delay directly in time units. Only the units are different; the resolution of
both delay routines is the same, and depends on the system clock. For details, see
2.7 POSIX Clocks and Timers, p.92.

As a side effect, taskDelay() moves the calling task to the end of the ready queue
for tasks of the same priority. In particular, you can yield the CPU to any other
tasks of the same priority by “delaying” for zero clock ticks:

taskDelay (NO_WAIT); /* allow other tasks of same priority to run */

A “delay” of zero duration is only possible with taskDelay(); nanosleep()
considers it an error.

30

2
Basic OS

2.3.5 Tasking Extensions

Table 2-10

Table 2-11

To allow additional task-related facilities to be added to the system without
modifying the kernel, wind provides task create, switch, and delete hooks, which allow
additional routines to be invoked whenever a task is created, a task context switch
occurs, or a task is deleted. There are spare fields in the task control block (TCB)
available for application extension of a task’s context. These hook routines are
listed in Table 2-10; for more information, see the reference entry for taskHookLib.

Task Create, Switch, and Delete Hooks

Call Description

taskCreateHookAdd() Add a routine to be called at every task create.
taskCreateHookDelete() Delete a previously added task create routine.
taskSwitchHookAdd() Add a routine to be called at every task switch.
taskSwitchHookDelete() Delete a previously added task switch routine.
taskDeleteHookAdd() Add a routine to be called at every task delete.
taskDeleteHookDelete() Delete a previously added task delete routine.

User-installed switch hooks are called within the kernel context. Thus, switch
hooks do not have access to all VxWorks facilities. Table 2-11 summarizes the
routines that can be called from a task switch hook; in general, any routine that
does not involve the kernel can be called.

Routines that Can Be Called by Task Switch Hooks

Library Routines

bLib All routines

fppArchLib fppSave(), fppRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet(), intLock(), intUnlock()
IstLib All routines except IstFree()

mathALib All are callable if fppSave() /fopRestore() are used

rngLib All routines except rngCreate() and roundlet()

taskLib tasklIdVerify(), taskldDefault(), taskIsReady(), taskIsSuspended(), taskTcb()

vxLib vxTas()

31

VxWorks 5.4
Programmer’s Guide

2.3.6 POSIX Scheduling Interface

The POSIX 1003.1b scheduling routines, provided by schedPxLib, are shown in
Table 2-12. These routines let you use a portable interface to get and set task
priority, get the scheduling policy, get the maximum and minimum priority for
tasks, and if round-robin scheduling is in effect, get the length of a time slice. To
understand how to use the routines in this alternative interface, be aware of the
minor differences between the POSIX and Wind methods of scheduling.

Differences Between POSIX and Wind Scheduling

POSIX and Wind scheduling routines differ in the following ways:

* POSIX scheduling is based on processes, while Wind scheduling is based on
tasks. Tasks and processes differ in several ways. Most notably, tasks can
address memory directly while processes cannot; and processes inherit only
some specific attributes from their parent process, while tasks operate in
exactly the same environment as the parent task.

Tasks and processes are alike in that they can be scheduled independently.

* VxWorks documentation uses the term preemptive priority scheduling, while
the POSIX standard uses the term FIFO. This difference is purely one of
nomenclature: both describe the same priority-based policy.

* The POSIX scheduling algorithms are applied on a process-by-process basis.
The Wind methodology, on the other hand, applies scheduling algorithms on
a system-wide basis—either all tasks use a round-robin scheme, or all use a
preemptive priority scheme.

* The POSIX priority numbering scheme is the inverse of the Wind scheme. In
POSIX, the higher the number, the higher the priority; in the Wind scheme, the
lower the number, the higher the priority, where 0 is the highest priority.
Accordingly, the priority numbers used with the POSIX scheduling library
(schedPxLib) do not match those used and reported by all other components
of VxWorks. You can override this default by setting the global variable
posixPriorityNumbering to FALSE. If you do this, the Wind numbering
scheme (smaller number = higher priority) is used by schedPxLib, and its
priority numbers match those used by the other components of VxWorks.

The POSIX scheduling routines are included when INCLUDE_POSIX_SCHED is
selected for inclusion in the project facility VxWorks view; see Tornado User’s Guide:
Projects for information on configuring VxWorks.

32

Table 2-12

2

Basic OS
POSIX Scheduling Calls
Call Description
sched_setparam() Set a task’s priority.
sched_getparam() Get the scheduling parameters for a specified task.
sched_setscheduler() Set scheduling policy and parameters for a task.
sched_yield() Relinquish the CPU.
sched_getscheduler() Get the current scheduling policy.
sched_get_priority_max() Get the maximum priority.
sched_get_priority_min() Get the minimum priority.
sched_rr_get_interval() If round-robin scheduling, get the time slice length.

Getting and Setting POSIX Task Priorities

Example 2-1

The routines sched_setparam() and sched_getparam() set and get a task’s priority,
respectively. Both routines take a task ID and a sched_param structure (defined in
installDir/target/h/sched.h). A task ID of 0 sets or gets the priority for the calling
task. The sched_priority member of the sched_param structure specifies the new
task priority when sched_setparam() is called. The routine sched_getparam() fills
in the sched_priority with the specified task’s current priority.

Getting and Setting POSIX Task Priorities

[* This example sets the calling task’s priority to 150, then verifies
*that priority. To run from the shell, spawn as a task:

* ->gp priorityTest
*/

[*includes */

#include "vxWorks.h"

#include "sched.h"

[* defines */
#define PX_NEW_PRIORITY 150

STATUS priorityTest (void)
struct sched_param myParam;

/* initialize param structure to desired priority */

33

VxWorks 5.4
Programmer’s Guide

myParam.sched_priority = PX_NEW_PRIORITY;
if (sched_setparam (0, &myParam) == ERROR)
{

printf (“error setting priority\n");
return (ERROR);

/* demonstrate getting a task priority as a sanity check; ensure it
* is the same value that we just set.
*

if (sched_getparam (0, &myParam) == ERROR)
{

printf (“error getting priority\n");
return (ERROR);

if (myParam.sched_priority = PX_NEW_PRIORITY)
{

printf (“error - priorities do not match\n");
return (ERROR);

else
printf (“task priority = %d\n", myParam.sched_priority);

return (OK);
}

The routine sched_setscheduler() is designed to set both scheduling policy and
priority for a single POSIX process (which corresponds in most other cases to a
single Wind task). In the VxWorks kernel, sched_setscheduler() controls only task
priority, because the kernel does not allow tasks to have scheduling policies that
differ from one another. If its policy specification matches the current system-wide
scheduling policy, sched_setscheduler() sets only the priority, thus acting like
sched_setparam(). If its policy specification does not match the current one,
sched_setscheduler() returns an error.

The only way to change the scheduling policy is to change it for all tasks; there is
no POSIX routine for this purpose. To set a system-wide scheduling policy, use the
Wind function kernelTimeSlice() described in Round-Robin Scheduling, p.23.

Getting and Displaying the Current Scheduling Policy

The POSIX routine sched_getscheduler() returns the current scheduling policy.
There are two valid scheduling policies in VxWorks: preemptive priority
scheduling (in POSIX terms, SCHED_FIFO) and round-robin scheduling by
priority (SCHED_RR).

34

Example 2-2

2
Basic OS

Getting POSIX Scheduling Policy

[* This example gets the scheduling policy and displays it. */
/*includes */

#include "vxWorks.h"
#include "sched.h"

STATUS schedulerTest (void)
int policy;
if ((policy = sched_getscheduler (0)) == ERROR)
{
printf ("getting scheduler failed\n");
return (ERROR);
/* sched_getscheduler returns either SCHED_FIFO or SCHED_RR */
if (policy == SCHED_FIFO)
printf (“current scheduling policy is FIFO\n");
else

printf (“current scheduling policy is round robin\n“);

return (OK);

Getting Scheduling Parameters: Priority Limits and Time Slice

Example 2-3

The routines sched_get_priority_max() and sched_get_priority_min() return the
maximum and minimum possible POSIX priority values, respectively.

If round-robin scheduling is enabled, you can use sched_rr_get_interval() to
determine the length of the current time-slice interval. This routine takes as an
argument a pointer to a timespec structure (defined in time.h), and writes the
number of seconds and nanoseconds per time slice to the appropriate elements of
that structure.

Getting the POSIX Round-Robin Time Slice

/* The following example checks that round-robin scheduling is enabled,
* gets the length of the time slice, and then displays the time slice.
*

/*includes */

#include "vxWorks.h"
#include "sched.h"

35

VxWorks 5.4
Programmer’s Guide

STATUS rrgetintervalTest (void)
{

struct timespec slice;

/* turn on round robin */

kernelTimeSlice (30);

if (sched_rr_get_interval (0, &slice) == ERROR)

printf ("get-interval test failed\n");
return (ERROR);
}

printf ("time slice is %l seconds and %l nanoseconds\n",
slice.tv_sec, slice.tv_nsec);
return (OK);

2.3.7 Task Error Status: errno

By convention, C library functions set a single global integer variable errno to an
appropriate error number whenever the function encounters an error. This
convention is specified as part of the ANSI C standard.

Layered Definitions of errno

In VxWorks, errno is simultaneously defined in two different ways. There is, as in
ANSI C, an underlying global variable called errno, which you can display by
name using Tornado development tools; see the Tornado User’s Guide. However,
errno is also defined as a macro in errno.h; this is the definition visible to all of
VxWorks except for one function. The macro is defined as a call to a function
__errno() that returns the address of the global variable, errno (as you might
guess, this is the single function that does not itself use the macro definition for
errno). This subterfuge yields a useful feature: because __errno() is a function, you
can place breakpoints on it while debugging, to determine where a particular error
occurs. Nevertheless, because the result of the macro errno is the address of the
global variable errno, C programs can set the value of errno in the standard way:

errno = someErrorNumber;

As with any other errno implementation, take care not to have a local variable of
the same name.

36

2
Basic OS

A Separate errno Value for Each Task

In VxWorks, the underlying global errno is a single predefined global variable that
can be referenced directly by application code that is linked with VxWorks (either
statically on the host or dynamically at load time). However, for errno to be useful
in the multitasking environment of VxWorks, each task must see its own version
of errno. Therefore errno is saved and restored by the kernel as part of each task’s
context every time a context switch occurs. Similarly, interrupt service routines
(ISRs) see their own versions of errno.

This is accomplished by saving and restoring errno on the interrupt stack as part
of the interrupt enter and exit code provided automatically by the kernel (see
2.5.1 Connecting Application Code to Interrupts, p.85). Thus, regardless of the
VxWorks context, an error code can be stored or consulted with direct
manipulation of the global variable errno.

Error Return Convention

Almost all VxWorks functions follow a convention that indicates simple success or
failure of their operation by the actual return value of the function. Many functions
return only the status values OK (0) or ERROR (-1). Some functions that normally
return a nonnegative number (for example, open() returns a file descriptor) also
return ERROR to indicate an error. Functions that return a pointer usually return
NULL (0) to indicate an error. In most cases, a function returning such an error
indication also sets errno to the specific error code.

The global variable errno is never cleared by VxWorks routines. Thus, its value
always indicates the last error status set. When a VxWorks subroutine gets an error
indication from a call to another routine, it usually returns its own error indication
without modifying errno. Thus, the value of errno that is set in the lower-level
routine remains available as the indication of error type.

For example, the VxWorks routine intConnect(), which connects a user routine to
a hardware interrupt, allocates memory by calling malloc() and builds the
interrupt driver in this allocated memory. If malloc() fails because insufficient
memory remains in the pool, it sets errno to a code indicating an insufficient-
memory error was encountered in the memory allocation library, memLib. The
malloc() routine then returns NULL to indicate the failure. The intConnect()
routine, receiving the NULL from malloc(), then returns its own error indication of
ERROR. However, it does not alter errno, leaving it at the “insufficient memory”
code set by malloc(). For example:

37

VxWorks 5.4
Programmer’s Guide

if (pNew = malloc (CHUNK_SIZE)) == NULL)
return (ERROR);

We recommend that you use this mechanism in your own subroutines, setting and
examining errno as a debugging technique. A string constant associated with
errno can be displayed using printErrno() if the errno value has a corresponding
string entered in the error-status symbol table, statSymTbl. See the reference entry
errnoLib for details on error-status values and building statSymTbl.

Assignment of Error Status Values

VxWorks errno values encode the module that issues an error, in the most
significant two bytes, and use the least significant two bytes for individual error
numbers. All VxWorks module numbers are in the range 1-500; errno values with
a “module” number of zero are used for source compatibility.

All other errno values (that is, positive values greater than or equal to 501<<16,
and all negative values) are available for application use.

See the reference entry on errnoLib for more information about defining and
decoding errno values with this convention.

2.3.8 Task Exception Handling

Errors in program code or data can cause hardware exception conditions such as
illegal instructions, bus or address errors, divide by zero, and so forth. The
VxWorks exception handling package takes care of all such exceptions. The default
exception handler suspends the task that caused the exception, and saves the state
of the task at the point of the exception. The kernel and other tasks continue
uninterrupted. A description of the exception is transmitted to the Tornado
development tools, which can be used to examine the suspended task; see the
Tornado User’s Guide: Shell for details.

Tasks can also attach their own handlers for certain hardware exceptions through
the signal facility. If a task has supplied a signal handler for an exception, the
default exception handling described above is not performed. Signals are also used
for signaling software exceptions as well as hardware exceptions. They are
described in more detail in 2.4.7 Signals, p.81 and in the reference entry for sigLib.

38

2
Basic OS

2.3.9 Shared Code and Reentrancy

In VxWorks, it is common for a single copy of a subroutine or subroutine library to
be invoked by many different tasks. For example, many tasks may call printf(), but
there is only a single copy of the subroutine in the system. A single copy of code
executed by multiple tasks is called shared code. VxWorks dynamic linking facilities
make this particularly easy. Shared code also makes the system more efficient and
easier to maintain; see Figure 2-4.

Figure 2-4 Shared Code

TASKS SHARED CODE

taskOne (void)
{

.r'ﬁyFunc();

myFunc (void)

-

taskTwo (void)

myFunc();

Shared code must be reentrant. A subroutine is reentrant if a single copy of the
routine can be called from several task contexts simultaneously without conflict.
Such conflict typically occurs when a subroutine modifies global or static
variables, because there is only a single copy of the data and code. A routine’s
references to such variables can overlap and interfere in invocations from different
task contexts.

Most routines in VxWorks are reentrant. However, all routines which have a
corresponding name_r() routine should be assumed non-reentrant. For example,
because Idiv() has a corresponding routine Idiv_r(), you can assume that Idiv() is
not reentrant.

VxWorks I/O and driver routines are reentrant, but require careful application
design. For buffered I/O, we recommend using file-pointer buffers on a per-task

39

VxWorks 5.4
Programmer’s Guide

basis. At the driver level, it is possible to load buffers with streams from different
tasks, due to the global file descriptor table in VxWorks. This may or may not be
desirable, depending on the nature of the application. For example, a packet driver
can mix streams from different tasks because the packet header identifies the
destination of each packet.

The majority of VxWorks routines use the following reentrancy techniques:
— dynamic stack variables
— global and static variables guarded by semaphores
— task variables

We recommend applying these same techniques when writing application code
that can be called from several task contexts simultaneously.

Dynamic Stack Variables

Many subroutines are pure code, having no data of their own except dynamic stack
variables. They work exclusively on data provided by the caller as parameters. The
linked-list library, 1stLib, is a good example of this. Its routines operate on lists and
nodes provided by the caller in each subroutine call.

Subroutines of this kind are inherently reentrant. Multiple tasks can use such
routines simultaneously without interfering with each other, because each task
does indeed have its own stack. See Figure 2-5.

Guarded Global and Static Variables

Some libraries encapsulate access to common data. One example is the memory
allocation library, memLib, which manages pools of memory to be used by many
tasks. This library declares and uses its own static data variables to keep track of
pool allocation.

This kind of library requires some caution because the routines are not inherently
reentrant. Multiple tasks simultaneously invoking the routines in the library might
interfere with access to common variables. Such libraries must be made explicitly
reentrant by providing a mutual-exclusion mechanism to prohibit tasks from
simultaneously executing critical sections of code. The usual mutual-exclusion
mechanism is the semaphore facility provided by semLib and described in

2.4.3 Semaphores, p.47.

40

2
Basic OS

Figure 2-5 Stack Variables and Shared Code

TASKS TASK STACKS COMMON SUBROUTINE

taskOn{e ()

'rh'yDataOne
comFunc() (myDataOne); Ll
}

taskTvv{o () comFunc (yourData)

.r'ﬁyDataTwo

comFunc() (myDataTwo); {

Task Variables

Some routines that can be called by multiple tasks simultaneously may require
global or static variables with a distinct value for each calling task. For example,
several tasks may reference a private buffer of memory and yet refer to it with the
same global variable.

To accommodate this, VxWorks provides a facility called task variables that allows
4-byte variables to be added to a task’s context, so that the value of such a variable
is switched every time a task switch occurs to or from its owner task. Typically,
several tasks declare the same variable (4-byte memory location) as a task variable.
Each of those tasks can then treat that single memory location as its own private
variable; see Figure 2-6. This facility is provided by the routines taskVarAdd(),
taskVarDelete(), taskVarSet(), and taskVarGet(), which are described in the
reference entry for taskVarLib.

Use this mechanism sparingly. Each task variable adds a few microseconds to the
context switching time for its task, because the value of the variable must be saved
and restored as part of the task’s context. Consider collecting all of a module’s task
variables into a single dynamically allocated structure, and then making all
accesses to that structure indirectly through a single pointer. This pointer can then
be the task variable for all tasks using that module.

41

VxWorks 5.4
Programmer’s Guide

Figure 2-6 Task Variables and Context Switches

OLD TCB NEW TCB

pTaskVar -

globDat pTaskVar -

globDat

value saved value restored
in old from new
task’'s TCB task’'s TCB

current value of
globDat

Multiple Tasks with the Same Main Routine

With VxWorks, it is possible to spawn several tasks with the same main routine.
Each spawn creates a new task with its own stack and context. Each spawn can also
pass the main routine different parameters to the new task. In this case, the same
rules of reentrancy described in Task Variables, p.41 apply to the entire task.

This is useful when the same function needs to be performed concurrently with
different sets of parameters. For example, a routine that monitors a particular kind
of equipment might be spawned several times to monitor several different pieces
of that equipment. The arguments to the main routine could indicate which
particular piece of equipment the task is to monitor.

In Figure 2-7, multiple joints of the mechanical arm use the same code. The tasks
manipulating the joints invoke joint(). The joint number (jointNum) is used to
indicate which joint on the arm to manipulate.

2.3.10 VxWorks System Tasks

VxWorks includes several system tasks, described below.

42

2

Basic OS
Figure 2-7 Multiple Tasks Utilizing Same Code
joint_2
\ joint_3
joint_1 ~
\
joint

(
int jointNum
)
{
[* joint code here */
}

The Root Task: tUsrRoot

The root task, tUsrRoot, is the first task executed by the kernel. The entry point of
the root task is usrRoot() in install Dir/target/config/all/usrConfig.c and initializes
most VxWorks facilities. It spawns such tasks as the logging task, the exception
task, the network task, and the tRlogind daemon. Normally, the root task
terminates and is deleted after all initialization has occurred. You are free to add
any necessary initialization to the root task. For more information, see

8.5 Configuring VxWorks, p.337.

The Logging Task: tLogTask

The log task, tLogTask, is used by VxWorks modules to log system messages
without having to perform I/O in the current task context. For more information,
see 3.5.3 Message Logging, p.109 and the reference entry for logLib.

The Exception Task: tExcTask

The exception task, tExcTask, supports the VxWorks exception handling package
by performing functions that cannot occur at interrupt level. It must have the
highest priority in the system. Do not suspend, delete, or change the priority of this
task. For more information, see the reference entry for excLib.

43

VxWorks 5.4
Programmer’s Guide

The Network Task: tNetTask

The tNetTask daemon handles the task-level functions required by the VxWorks
network.

The Target Agent Task: tWdbTask

The target agent task, tWdbTask, is created if the target agent is set to run in task
mode; see 8.6.1 Scaling Down VxWorks, p.344. It services requests from the Tornado
target server; for information on this server, see the Tornado User’s Guide: Overview.

Tasks for Optional Components

The following VxWorks system tasks are created if their associated configuration
constants are defined; for more information, see 8.5 Configuring VxWorks, p.337.

tShell
If you have included the target shell in the VxWorks configuration, it is
spawned as this task. Any routine or task that is invoked from the target shell,
rather than spawned, runs in the tShell context. For more information, see
9. Target Shell.

tRlogind
If you have included the target shell and the rlogin facility in the VxWorks
configuration, this daemon allows remote users to log in to VxWorks. It
accepts a remote login request from another VxWorks or host system and
spawns tRlogInTask and tRlogOutTask. These tasks exist as long as the
remote user is logged on. During the remote session, the shell’s (and any other
task’s) input and output are redirected to the remote user. A tty-like interface
is provided to the remote user through the use of the VxWorks pseudo-
terminal driver, ptyDrv. For more information, see 3.7.1 Serial I/O Devices
(Terminal and Pseudo-Terminal Devices), p.118 and the reference entry for
ptyDrv.

tTelnetd
If you have included the target shell and the telnet facility in the VxWorks
configuration, this daemon allows remote users to log in to VxWorks with
telnet. It accepts a remote login request from another VxWorks or host system
and spawns the input task tTelnetInTask and output task tTelnetOutTask.
These tasks exist as long as the remote user is logged on. During the remote
session, the shell’s (and any other task’s) input and output are redirected to the
remote user. A tty-like interface is provided to the remote user through the use
of the VxWorks pseudo-terminal driver, ptyDrv. See 3.7.1 Serial I/O Devices
(Terminal and Pseudo-Terminal Devices), p.118 and the reference entry for
ptyDrv for further explanation.

44

2
Basic OS

tPortmapd
If you have included the RPC facility in the VxWorks configuration, this
daemon is an RPC server that acts as a central registrar for RPC servers
running on the same machine. RPC clients query the tPortmapd daemon to
find out how to contact the various servers.

2.4 Intertask Communications

The complement to the multitasking routines described in the 2.3 Tasks, p.20 is the
intertask communication facilities. These facilities permit independent tasks to
coordinate their actions.

VxWorks supplies a rich set of intertask communication mechanisms, including:
Shared memory, for simple sharing of data.
Semaphores, for basic mutual exclusion and synchronization.
Message queues and pipes, for intertask message passing within a CPU.

Sockets and remote procedure calls, for network-transparent intertask
communication.

Signals, for exception handling.

The optional product, VxMP, provides intertask communication over the
backplane for tasks running on different CPUs. This includes shared semaphores,
shared message queues, shared memory, and the shared name database.

2.4.1 Shared Data Structures

The most obvious way for tasks to communicate is by accessing shared data
structures. Because all tasks in VxWorks exist in a single linear address space,
sharing data structures between tasks is trivial; see Figure 2-8. Global variables,
linear buffers, ring buffers, linked lists, and pointers can be referenced directly by
code running in different contexts.

45

VxWorks 5.4
Programmer’s Guide

Figure 2-8 Shared Data Structures

TASKS MEMORY

access
task1l |sharedData

sharedData
K2 access
tas sharedData

access
task 3 |sharedData

2.4.2 Mutual Exclusion

While a shared address space simplifies exchange of data, interlocking access to
memory is crucial to avoid contention. Many methods exist for obtaining exclusive
access to resources, and vary only in the scope of the exclusion. Such methods
include disabling interrupts, disabling preemption, and resource locking with
semaphores.

Interrupt Locks and Latency
The most powerful method available for mutual exclusion is the disabling of
interrupts. Such a lock guarantees exclusive access to the CPU:
funcA ()
int lock = intLock();
. critical region that cannot be interrupted

intUnIock (lock);

While this solves problems involving mutual exclusion with ISRs, it is
inappropriate as a general-purpose mutual-exclusion method for most real-time
systems, because it prevents the system from responding to external events for the
duration of these locks. Interrupt latency is unacceptable whenever an immediate
response to an external event is required. However, interrupt locking can

46

2
Basic OS

sometimes be necessary where mutual exclusion involves ISRs. In any situation,
keep the duration of interrupt lockouts short.

Preemptive Locks and Latency

Disabling preemption offers a somewhat less restrictive form of mutual exclusion.
While no other task is allowed to preempt the current executing task, ISRs are able
to execute:

funcA ()
{
taskLock ();
. critical region that cannot be interrupted

iaskUnIock 0;
}

However, this method can lead to unacceptable real-time response. Tasks of higher
priority are unable to execute until the locking task leaves the critical region, even
though the higher-priority task is not itself involved with the critical region. While
this kind of mutual exclusion is simple, if you use it, make sure to keep the
duration short. A better mechanism is provided by semaphores, discussed in
2.4.3 Semaphores, p.47.

2.4.3 Semaphores

VxWorks semaphores are highly optimized and provide the fastest intertask
communication mechanism in VxWorks. Semaphores are the primary means for
addressing the requirements of both mutual exclusion and task synchronization:

+ For mutual exclusion, semaphores interlock access to shared resources. They
provide mutual exclusion with finer granularity than either interrupt
disabling or preemptive locks, discussed in 2.4.2 Mutual Exclusion, p.46.

+ For synchronization, semaphores coordinate a task’s execution with external
events.

There are three types of Wind semaphores, optimized to address different classes
of problems:

binary
The fastest, most general-purpose semaphore. Optimized for
synchronization or mutual exclusion.

47

VxWorks 5.4
Programmer’s Guide

mutual exclusion
A special binary semaphore optimized for problems inherent in mutual
exclusion: priority inheritance, deletion safety, and recursion.

counting
Like the binary semaphore, but keeps track of the number of times a
semaphore is given. Optimized for guarding multiple instances of a
resource.

VxWorks provides not only the Wind semaphores, designed expressly for
VxWorks, but also POSIX semaphores, designed for portability. An alternate
semaphore library provides the POSIX-compatible semaphore interface; see
POSIX Semaphores, p.57.

The semaphores described here are for use on a single CPU. The optional product
VxMP provides semaphores that can be used across processors; see 6. Shared-
Memory Objects.

Semaphore Control

Table 2-13

Instead of defining a full set of semaphore control routines for each type of
semaphore, the Wind semaphores provide a single uniform interface for
semaphore control. Only the creation routines are specific to the semaphore type.
Table 2-13 lists the semaphore control routines.

Semaphore Control Routines

Call Description

semBCreate() Allocate and initialize a binary semaphore.
semMCreate() Allocate and initialize a mutual-exclusion semaphore.
semCCreate() Allocate and initialize a counting semaphore.
semDelete() Terminate and free a semaphore.

semTake() Take a semaphore.

semGive() Give a semaphore.

semFlush() Unblock all tasks that are waiting for a semaphore.

The semBCreate(), semMCreate(), and semCCreate() routines return a
semaphore ID that serves as a handle on the semaphore during subsequent use by

48

2
Basic OS

the other semaphore-control routines. When a semaphore is created, the queue
type is specified. Tasks pending on a semaphore can be queued in priority order
(SEM_Q_PRIORITY) or in first-in first-out order (SEM_Q_FIFO).

WARNING: The semDelete() call terminates a ssmaphore and deallocates any
associated memory. Take care when deleting semaphores, particularly those used
for mutual exclusion, to avoid deleting a semaphore that another task still requires.
Do not delete a semaphore unless the same task first succeeds in taking it.

Binary Semaphores

Figure 2-9

The general-purpose binary semaphore is capable of addressing the requirements
of both forms of task coordination: mutual exclusion and synchronization. The
binary semaphore has the least overhead associated with it, making it particularly
applicable to high-performance requirements. The mutual-exclusion semaphore
described in Mutual-Exclusion Semaphores, p.52 is also a binary semaphore, but it
has been optimized to address problems inherent to mutual exclusion.
Alternatively, the binary semaphore can be used for mutual exclusion if the
advanced features of the mutual-exclusion semaphore are deemed unnecessary.

Taking a Semaphore

task is
. _ no pended for
semaphore timeout = timeout
available? NO_WAIT value

\/

task continues; task continues;
semaphore semaphore
taken not taken

A binary semaphore can be viewed as a flag that is available (full) or unavailable
(empty). When a task takes a binary semaphore, with semTake(), the outcome

depends on whether the semaphore is available (full) or unavailable (empty) at the
time of the call; see Figure 2-9. If the semaphore is available (full), the semaphore

49

VxWorks 5.4
Programmer’s Guide

Figure 2-10 Giving a Semaphore

task continues,
semaphore
made available

semaphore
available?

task continues; task at front of
semaphore gueue made ready;
remains semaphore remains
unchanged unavailable

becomes unavailable (empty) and the task continues executing immediately. If the
semaphore is unavailable (empty), the task is put on a queue of blocked tasks and
enters a state of pending on the availability of the semaphore.

When a task gives a binary semaphore, using semGive(), the outcome also
depends on whether the semaphore is available (full) or unavailable (empty) at the
time of the call; see Figure 2-10. If the semaphore is already available (full), giving
the semaphore has no effect at all. If the semaphore is unavailable (empty) and no
task is waiting to take it, then the semaphore becomes available (full). If the
semaphore is unavailable (empty) and one or more tasks are pending on its
availability, then the first task in the queue of blocked tasks is unblocked, and the
semaphore is left unavailable (empty).

Mutual Exclusion

Binary semaphores interlock access to a shared resource efficiently. Unlike
disabling interrupts or preemptive locks, binary semaphores limit the scope of the
mutual exclusion to only the associated resource. In this technique, a semaphore is
created to guard the resource. Initially the semaphore is available (full).

[* includes */
#include "vxWorks.h"
#include "semLib.h"

SEM_ID semMutex;

* Create a binary semaphore that is initially full. Tasks *

50

2
Basic OS

* blocked on semaphore wait in priority order. *
semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);

When a task wants to access the resource, it must first take that semaphore. Aslong
as the task keeps the semaphore, all other tasks seeking access to the resource are
blocked from execution. When the task is finished with the resource, it gives back
the semaphore, allowing another task to use the resource.

Thus all accesses to a resource requiring mutual exclusion are bracketed with
semTake() and semGive() pairs:

semTake (semMutex, WAIT_FOREVER);
. critical region, only accessible by a single task at a time

semGive (semMutex);

Synchronization

Example 2-4

When used for task synchronization, a semaphore can represent a condition or
event that a task is waiting for. Initially the semaphore is unavailable (empty). A
task or ISR signals the occurrence of the event by giving the semaphore (see

2.5 Interrupt Service Code, p.85 for a complete discussion of ISRs). Another task
waits for the semaphore by calling semTake(). The waiting task blocks until the
event occurs and the semaphore is given.

Note the difference in sequence between semaphores used for mutual exclusion
and those used for synchronization. For mutual exclusion, the semaphore is
initially full, and each task first takes, then gives back the semaphore. For
synchronization, the semaphore is initially empty, and one task waits to take the
semaphore given by another task.

In Example 2-4, the init() routine creates the binary semaphore, attaches an ISR to
an event, and spawns a task to process the event. The routine task1() runs until it
calls semTake(). It remains blocked at that point until an event causes the ISR to
call semGive(). When the ISR completes, task1() executes to process the event.
There is an advantage of handling event processing within the context of a
dedicated task: less processing takes place at interrupt level, thereby reducing
interrupt latency. This model of event processing is recommended for real-time
applications.

Using Semaphores for Task Synchronization

/* This example shows the use of semaphores for task synchronization. */

[* includes */

51

VxWorks 5.4
Programmer’s Guide

#include "vxWorks.h"
#include "semLib.h"
#include "arch/ archliv arch.h" I* replace arch with architecture type */

SEM_ID syncSem; /* ID of sync semaphore */

init (
int somelntNum

)

[* connect interrupt service routine */
intConnect (INUM_TO_IVEC (somelIntNum), eventinterruptSvcRout, 0);

[* create semaphore */
syncSem = semBCreate (SEM_Q_FIFO, SEM_EMPTY);

[* spawn task used for synchronization. */
taskSpawn (“sample”, 100, 0, 20000, task1, 0,0,0,0,0,0,0,0,0,0);

taskl (void)

éémTake (syncSem, WAIT_FOREVER); /* wait for event to occur */
printf (“task 1 got the semaphore\n");
... I* process event */

}

eventinterruptSvcRout (void)

{

semGive (syncSem); /*lettask 1 process event */

Broadcast synchronization allows all processes that are blocked on the same
semaphore to be unblocked atomically. Correct application behavior often requires
a set of tasks to process an event before any task of the set has the opportunity to
process further events. The routine semFlush() addresses this class of
synchronization problem by unblocking all tasks pended on a semaphore.

Mutual-Exclusion Semaphores

The mutual-exclusion semaphore is a specialized binary semaphore designed to
address issues inherent in mutual exclusion, including priority inversion, deletion
safety, and recursive access to resources.

The fundamental behavior of the mutual-exclusion semaphore is identical to the
binary semaphore, with the following exceptions:

52

2
Basic OS

+ It can be used only for mutual exclusion.

* It can be given only by the task that took it.
» It cannot be given from an ISR.

* The semFlush() operation is illegal.

Priority Inversion

Figure 2-11

Priority inversion arises when a higher-priority task is forced to wait an indefinite
period of time for a lower-priority task to complete. Consider the scenario in
Figure 2-11: t1, t2, and t3 are tasks of high, medium, and low priority, respectively.
t3 has acquired some resource by taking its associated binary guard semaphore.
When t1 preempts t3 and contends for the resource by taking the same semaphore,
itbecomes blocked. If we could be assured that t1 would be blocked no longer than
the time it normally takes t3 to finish with the resource, there would be no problem
because the resource cannot be preempted. However, the low-priority task is
vulnerable to preemption by medium-priority tasks (like t2), which could inhibit
t3 from relinquishing the resource. This condition could persist, blocking t1 for an
indefinite period of time.

Priority Inversion

HIGH

7 e
! 7
Low

priority ——
<

time
KEY: VY =take semaphore f = preemption
V = give semaphore T¢ = priority inheritance/release
= own semaphore I = block

53

VxWorks 5.4
Programmer’s Guide

The mutual-exclusion semaphore has the option SEM_INVERSION_SAFE, which
enables a priority-inheritance algorithm. The priority-inheritance protocol assures
that a task that owns a resource executes at the priority of the highest-priority task
blocked on that resource. Once the task priority has been elevated, it remains at the
higher level until all mutual-exclusion semaphores that the task owns are released;
then the task returns to its normal, or standard, priority. Hence, the “inheriting”
task is protected from preemption by any intermediate-priority tasks. This option
must be used in conjunction with a priority queue (SEM_Q_PRIORITY).

Figure 2-12 Priority Inheritance

HIGH

priority ——>
-
iy
—
-~
@
— <
-
iy

=
ow | |8 |

time

In Figure 2-12, priority inheritance solves the problem of priority inversion by
elevating the priority of t3 to the priority of t1 during the time t1 is blocked on the
semaphore. This protects t3, and indirectly t1, from preemption by t2.

The following example creates a mutual-exclusion semaphore that uses the
priority inheritance algorithm:

semld = semMCreate (SEM_Q_PRIORITY | SEM_INVERSION_SAFE);

Deletion Safety

Another problem of mutual exclusion involves task deletion. Within a critical
region guarded by semaphores, it is often desirable to protect the executing task
from unexpected deletion. Deleting a task executing in a critical region can be
catastrophic. The resource might be left in a corrupted state and the semaphore

54

2
Basic OS

guarding the resource left unavailable, effectively preventing all access to the
resource.

The primitives taskSafe() and taskUnsafe() provide one solution to task deletion.
However, the mutual-exclusion semaphore offers the option SEM_DELETE_SAFE,
which enables an implicit taskSafe() with each semTake(), and a taskUnsafe()
with each semGive(). In this way, a task can be protected from deletion while it has
the semaphore. This option is more efficient than the primitives taskSafe() and
taskUnsafe(), as the resulting code requires fewer entrances to the kernel.

semld = semMCreate (SEM_Q_FIFO | SEM_DELETE_SAFE);

Recursive Resource Access

Example 2-5

Mutual-exclusion semaphores can be taken recursively. This means that the
semaphore can be taken more than once by the task that owns it before finally
being released. Recursion is useful for a set of routines that must call each other but
that also require mutually exclusive access to a resource. This is possible because
the system keeps track of which task currently owns the mutual-exclusion
semaphore.

Before being released, a mutual-exclusion semaphore taken recursively must be
given the same number of times it is taken. This is tracked by a count that
increments with each semTake() and decrements with each semGive().

Recursive Use of a Mutual-Exclusion Semaphore

/* Function A requires access to a resource which it acquires by taking
* mySem; function A may also need to call function B, which also
* requires mySem:

*

/*includes */

#include "vxWorks.h"

#include "semLib.h"

SEM_ID mySem;

/* Create a mutual-exclusion semaphore. */

init ()

mySem = semMCreate (SEM_Q_PRIORITY);
}
funcA ()

{
semTake (mySem, WAIT_FOREVER);
printf (“funcA: Got mutual-exclusion semaphore\n");

flL;ncB 0;

55

VxWorks 5.4
Programmer’s Guide

semGive (mySem);
printf (“funcA: Released mutual-exclusion semaphore\n®);

}
funcB ()

{
semTake (mySem, WAIT_FOREVER);
printf (“funcB: Got mutual-exclusion semaphore\n");

semGive (mySem);
printf (“funcB: Releases mutual-exclusion semaphore\n");

}

Counting Semaphores

Table 2-14

Counting semaphores are another means to implement task synchronization and
mutual exclusion. The counting semaphore works like the binary semaphore
except that it keeps track of the number of times a semaphore is given. Every time
a semaphore is given, the count is incremented; every time a semaphore is taken,
the count is decremented. When the count reaches zero, a task that tries to take the
semaphore is blocked. As with the binary semaphore, if a semaphore is given and
a task is blocked, it becomes unblocked. However, unlike the binary semaphore, if
a semaphore is given and no tasks are blocked, then the count is incremented. This
means that a semaphore that is given twice can be taken twice without blocking.
Table 2-14 shows an example time sequence of tasks taking and giving a counting
semaphore that was initialized to a count of 3.

Counting Semaphore Example

Semaphore Call Count after Call Resulting Behavior

semCCreate() 3 Semaphore initialized with initial count of 3.
semTake() 2 Semaphore taken.

semTake() 1 Semaphore taken.

semTake() 0 Semaphore taken.

semTake() 0 Task blocks waiting for semaphore to be available.
semGive() 0 Task waiting is given semaphore.

semGive() 1 No task waiting for semaphore; count incremented.

Counting semaphores are useful for guarding multiple copies of resources. For
example, the use of five tape drives might be coordinated using a counting

56

2
Basic OS

semaphore with an initial count of 5, or a ring buffer with 256 entries might be
implemented using a counting semaphore with an initial count of 256. The initial
count is specified as an argument to the semCCreate() routine.

Special Semaphore Options

The uniform Wind semaphore interface includes two special options. These
options are not available for the POSIX-compatible semaphores described in
POSIX Semaphores, p.57.

Timeouts

Queues

Wind semaphores include the ability to time out from the pended state. This is
controlled by a parameter to semTake() that specifies the amount of time in ticks
that the task is willing to wait in the pended state. If the task succeeds in taking the
semaphore within the allotted time, semTake() returns OK. The errno set when a
semTake() returns ERROR due to timing out before successfully taking the
semaphore depends upon the timeout value passed. A semTake() with NO_WAIT
(0), which means do not wait at all, sets errno to S_objLib_OBJ_UNAVAILABLE. A
semTake() with a positive timeout value returns S_objLib_OBJ_TIMEOUT. A
timeout value of WAIT_FOREVER (-1) means wait indefinitely.

Wind semaphores include the ability to select the queuing mechanism employed
for tasks blocked on a semaphore. They can be queued based on either of two
criteria: first-in first-out (FIFO) order, or priority order; see Figure 2-13.

Priority ordering better preserves the intended priority structure of the system at
the expense of some overhead in semTake() in sorting the tasks by priority. A FIFO
queue requires no priority sorting overhead and leads to constant-time
performance. The selection of queue type is specified during semaphore creation
with semBCreate(), semMCreate(), or semCCreate(). Semaphores using the
priority inheritance option (SEM_INVERSION_SAFE) must select priority-order
queuing.

POSIX Semaphores

POSIX defines both named and unnamed semaphores, which have the same
properties, but use slightly different interfaces. The POSIX semaphore library
provides routines for creating, opening, and destroying both named and unnamed

57

VxWorks 5.4
Programmer’s Guide

Figure 2-13 Task Queue Types

PRIORITY QUEUE FIFO QUEUE
TCE
TCB------ } TCE
200 ' ! TC
120. TCB 4 190 TCB
J—— 100
-1 80 140
TCB TCB
110 < priority 110

semaphores. The POSIX semaphore routines provided by semPxLib are shown in
Table 2-15.

With named semaphores, you assign a symbolic name! when opening the
semaphore; the other named-semaphore routines accept this name as an
argument.

The POSIX terms wait (or lock) and post (or unlock) correspond to the VxWorks
terms take and give, respectively.

The initialization routine semPxLibInit() is called by default when
INCLUDE_POSIX_SEM is selected for inclusion in the project facility VxWorks
view. The routines sem_open(), sem_unlink(), and sem_close() are for opening
and closing/destroying named semaphores only; sem_init() and sem_destroy()
are for initializing and destroying unnamed semaphores only. The routines for
locking, unlocking, and getting the value of semaphores are used for both named
and unnamed semaphores.

1. Some host operating systems, such as UNIX, require symbolic names for objects that are to
be shared among processes. This is because processes do not normally share memory in
such operating systems. In VxWorks, there is no requirement for named semaphores,
because all objects are located within a single address space, and reference to shared objects
by memory location is standard practice.

58

Table 2-15

POSIX Semaphore Routines

2
Basic OS

Call

Description

semPxLibInit()
sem_init()
sem_destroy()
sem_open()
sem_close()
sem_unlink()
sem_wait()
sem_trywait()
sem_post()

sem_getvalue()

Initialize the POSIX semaphore library (non-POSIX).

Initialize an unnamed semaphore.

Destroy an unnamed semaphore.

Initialize /open a named semaphore.

Close a named semaphore.

Remove a named semaphore.

Lock a semaphore.

Lock a semaphore only if it is not already locked.
Unlock a semaphore.

Get the value of a semaphore.

WARNING: The sem_destroy() call terminates an unnamed semaphore and
deallocates any associated memory; the combination of sem_close() and
sem_unlink() has the same effect for named semaphores. Take care when deleting
semaphores, particularly mutual exclusion semaphores, to avoid deleting a
semaphore still required by another task. Do not delete a semaphore unless the
deleting task first succeeds in locking that semaphore. (Likewise, for named
semaphores, close semaphores only from the same task that opens them.)

Comparison of POSIX and Wind Semaphores

POSIX semaphores are counting semaphores; that is, they keep track of the number
of times they are given.

The Wind semaphore mechanism is similar to that specified by POSIX, except that
Wind semaphores offer additional features: priority inheritance, task-deletion

safety, the ability for a single task to take a semaphore multiple times, ownership
of mutual-exclusion semaphores, semaphore timeouts, and the choice of queuing

mechanism. When these features are important, Wind semaphores are preferable.

Using Unnamed Semaphores

In using unnamed semaphores, normally one task allocates memory for the
semaphore and initializes it. A semaphore is represented with the data structure

59

Example 2-6

VxWorks 5.4
Programmer’s Guide

sem_t, defined in semaphore.h. The semaphore initialization routine, sem_init(),
allows you to specify the initial value.

Once the semaphore is initialized, any task can use the semaphore by locking it
with sem_wait() (blocking) or sem_trywait() (non-blocking), and unlocking it
with sem_post().

As noted earlier, semaphores can be used for both synchronization and mutual
exclusion. When a semaphore is used for synchronization, it is typically initialized
to zero (locked). The task waiting to be synchronized blocks on a sem_wait(). The
task doing the synchronizing unlocks the semaphore using sem_post(). If the task
blocked on the semaphore is the only one waiting for that semaphore, the task
unblocks and becomes ready to run. If other tasks are blocked on the semaphore,
the task with the highest priority is unblocked.

When a semaphore is used for mutual exclusion, it is typically initialized to a value
greater than zero (meaning that the resource is available). Therefore, the first task
to lock the semaphore does so without blocking; subsequent tasks block (if the
semaphore value was initialized to 1).

POSIX Unnamed Semaphores

/* This example uses unnamed semaphores to synchronize an action between
* the calling task and a task that it spawns (tSyncTask). To run from
* the shell, spawn as a task:
* ->spunnameSem

*

/*includes */

#include "vxWorks.h"
#include "semaphore.h"

/* forward declarations */

void syncTask (sem_t * pSem);

void unnameSem (void)
sem_t * pSem;
[* reserve memory for semaphore */
pSem = (sem_t *) malloc (sizeof (sem_t));
/* initialize semaphore to unavailable */

if (sem_init (pSem, 0, 0) ==-1)
{

60

2
Basic OS

printf ("unnameSem: sem_init failed\n");
return;

}

[* create sync task */

printf ("unnameSem: spawning task...\n");
taskSpawn ("tSyncTask", 90, 0, 2000, syncTask, pSem);

/* do something useful to synchronize with syncTask */
* unlock sem */

printf ("'unnameSem: posting semaphore - synchronizing action\n");
if (sem_post (pSem) ==-1)
{

printf ("unnameSem: posting semaphore failed\n");
return;

}
/* all done - destroy semaphore */
if (sem_destroy (pSem) == -1)

printf ("unnameSem: sem_destroy failed\n");
return;
}

}

void syncTask

(

sem_t* pSem

)

[* wait for synchronization from unnameSem */

if (sem_wait (pSem) == -1)

printf ("syncTask: sem_wait failed \n");
return;

}

printf ("syncTask:sem locked; doing sync’ed action...\n");

else

/* do something useful here */

}

Using Named Semaphores

The sem_open() routine either opens a named semaphore that already exists, or, as
an option, creates a new semaphore. You can specify which of these possibilities
you want by combining the following flag values:

61

Table 2-16

VxWorks 5.4
Programmer’s Guide

O_CREAT Create the semaphore if it does not already exist (if it exists, either fail
or open the semaphore, depending on whether O_EXCL is specified).

O_EXCL Open the semaphore only if newly created; fail if the semaphore exists.

The possible effects of a call to sem_open(), depending on which flags are set and
on whether the semaphore accessed already exists, are shown in Table 2-16. There
is no entry for O_EXCL alone, because using that flag alone is not meaningful.

Possible Outcomes of Calling sem_open()

Flag Settings Semaphore Exists Semaphore Does Not Exist
None Semaphore is opened Routine fails
O_CREAT Semaphore is opened Semaphore is created
O_CREAT and O_EXCL Routine fails Semaphore is created

A POSIX named semaphore, once initialized, remains usable until explicitly
destroyed. Tasks can explicitly mark a semaphore for destruction at any time, but
the semaphore remains in the system until no task has the semaphore open.

If INCLUDE_POSIX_SEM_SHOW is selected for inclusion in the project facility
VxWorks view (for details, see Tornado User’s Guide: Projects), you can use show()
from the Tornado shell to display information about a POSIX semaphore:?

-> show semid
value = 0 = Ox0

The output is sent to the standard output device, and provides information about
the POSIX semaphore mySem with two tasks blocked waiting for it:

Semaphore name ‘mySem
sem_open() count 3
Semaphore value :0

No. of blocked tasks :2

For a group of collaborating tasks to use a named semaphore, one of the tasks first
creates and initializes the semaphore (by calling sem_open() with the O_CREAT
flag). Any task that needs to use the semaphore thereafter opens it by calling
sem_open() with the same name (but without setting O_CREAT). Any task that has
opened the semaphore can use it by locking it with sem_wait() (blocking) or
sem_trywait() (non-blocking) and unlocking it with sem_post().

. This is not a POSIX routine, nor is it designed for use from programs; use it from the

Tornado shell (see the Tornado User’s Guide: Shell for details).

62

Example 2-7

2
Basic OS

To remove a semaphore, all tasks using it must first close it with sem_close(), and
one of the tasks must also unlink it. Unlinking a semaphore with sem_unlink()
removes the semaphore name from the name table. After the name is removed
from the name table, tasks that currently have the semaphore open can still use it,
but no new tasks can open this semaphore. The next time a task tries to open the
semaphore without the O_CREAT flag, the operation fails. The semaphore vanishes
when the last task closes it.

POSIX Named Semaphores

* In this example, nameSem|() creates a task for synchronization. The
* new task, tSyncSemTask, blocks on the semaphore created in nameSem().
* Once the synchronization takes place, both tasks close the semaphore,
*and nameSem() unlinks it. To run this task from the shell, spawn
* nameSem as a task:
* ->spnameSem, "myTest"
*
/*includes */
#include "vxWorks.h"

#include "semaphore.h"
#include "fentl.h"

/* forward declaration */
int syncSemTask (char * name);

int nameSem

char * name

)

sem_t* semld;

[* create a named semaphore, initialize to 0*/

printf ("nameSem: creating semaphore\n");

if ((semld = sem_open (name, O_CREAT, 0, 0)) == (sem_t *) -1)

printf ("nameSem: sem_open failed\n");
return;

}
printf ("nameSem: spawning sync task\n");
taskSpawn ("tSyncSemTask", 90, 0, 2000, syncSemTask, name);
/* do something useful to synchronize with syncSemTask */
[* give semaphore */

printf ("nameSem: posting semaphore - synchronizing action\n”);
if (sem_post (semlid) == -1)

63

VxWorks 5.4
Programmer’s Guide

printf ("nameSem: sem_post failed\n");
return;

}

/* all done */
if (sem_close (semld) == -1)

printf ("nameSem: sem_close failed\n");
return;

}
if (sem_unlink (name) ==-1)

printf ("nameSem: sem_unlink failed\n");
return;

}

printf ("nameSem: closed and unlinked semaphore\n“);

}

int syncSemTask

char * name

)

sem_t* semld;

/* open semaphore */
printf ("syncSemTask: opening semaphore\n");
if ((semld = sem_open (name, 0)) == (sem_t *) -1)

printf ("syncSemTask: sem_open failed\n");

return;

}
* block waiting for synchronization from nameSem */
printf ("syncSemTask: attempting to take semaphore...\n");
if (sem_wait (semld) == -1)

printf ("syncSemTask: taking sem failed\n");
return;

}
printf ("syncSemTask: has semaphore, doing sync'ed action ...\n");
/* do something useful here */
if (sem_close (semld) ==-1)

printf ("syncSemTask: sem_close failed\n");

return;

}

64

2
Basic OS

2.4.4 Message Queues

Figure 2-14

Modern real-time applications are constructed as a set of independent but
cooperating tasks. While semaphores provide a high-speed mechanism for the
synchronization and interlocking of tasks, often a higher-level mechanism is
necessary to allow cooperating tasks to communicate with each other. In VxWorks,
the primary intertask communication mechanism within a single CPU is message
queues. The optional product, VXMP, provides global message queues that can be
used across processors; for more information, see 6. Shared-Memory Objects.

Message queues allow a variable number of messages, each of variable length, to
be queued. Any task or ISR can send messages to a message queue. Any task can
receive messages from a message queue. Multiple tasks can send to and receive
from the same message queue. Full-duplex communication between two tasks
generally requires two message queues, one for each direction; see Figure 2-14.

Full Duplex Communication Using Message Queues

message queue 1

‘ message|

message| »/

message queue 2

There are two message-queue subroutine libraries in VxWorks. The first of these,
msgQLib, provides Wind message queues, designed expressly for VxWorks; the
second, mqPxLib, is compatible with the POSIX standard (1003.1b) for real-time
extensions. See Comparison of POSIX and Wind Message Queues, p.77 for a
discussion of the differences between the two message-queue designs.

65

VxWorks 5.4
Programmer’s Guide

Wind Message Queues

Table 2-17

Wind message queues are created and deleted with the routines shown in

Table 2-17. This library provides messages that are queued in FIFO order, with a
single exception: there are two priority levels, and messages marked as high
priority are attached to the head of the queue.

Wind Message Queue Control

Call Description

msgQCreate() Allocate and initialize a message queue.
msgQDelete() Terminate and free a message queue.
msgQSend() Send a message to a message queue.

msgQReceive() Receive a message from a message queue.

A message queue is created with msgQCreate(). Its parameters specify the
maximum number of messages that can be queued in the message queue and the
maximum length in bytes of each message. Enough buffer space is preallocated for
the specified number and length of messages.

A task or ISR sends a message to a message queue with msgQSend(). If no tasks
are waiting for messages on that queue, the message is added to the queue’s buffer
of messages. If any tasks are already waiting for a message from that message
queue, the message is immediately delivered to the first waiting task.

A task receives a message from a message queue with msgQReceive(). If messages
are already available in the message queue’s buffer, the first message is
immediately dequeued and returned to the caller. If no messages are available,
then the calling task blocks and is added to a queue of tasks waiting for messages.
This queue of waiting tasks can be ordered either by task priority or FIFO, as
specified in an option parameter when the queue is created.

Timeouts

Both msgQSend() and msgQReceive() take timeout parameters. When sending a
message, the timeout specifies how many ticks to wait for buffer space to become
available, if no space is available to queue the message. When receiving a message,
the timeout specifies how many ticks to wait for a message to become available, if
no message is immediately available. As with semaphores, the value of the timeout
parameter can have the special values of NO_WAIT (0), meaning always return
immediately, or WAIT_FOREVER (-1), meaning never time out the routine.

66

2
Basic OS

Urgent Messages

Example 2-8

The msgQSend() function allows specification of the priority of the message as
either normal (MSG_PRI_NORMAL) or urgent (MSG_PRI_URGENT). Normal
priority messages are added to the tail of the list of queued messages, while urgent
priority messages are added to the head of the list.

Wind Message Queues

/* In this example, task t1 creates the message queue and sends a message
* to task t2. Task t2 receives the message from the queue and simply
* displays the message.
*

/¥ includes */
#include "vxWorks.h"
#include "msgQLib.h"

[* defines */
#define MAX_MSGS (10)
#define MAX_MSG_LEN (100)

MSG_Q_ID myMsgQld;
task2 (void)
{
char msgBuffMAX_MSG_LEN];

[* get message from queue; if necessary wait until msg is available */
if (msgQReceive(myMsgQld, msgBuf, MAX_MSG_LEN, WAIT_FOREVER) == ERROR)
return (ERROR);

[* display message */
printf ("Message from task 1:\n%s\n", msgBuf);

#define MESSAGE "Greetings from Task 1"
task1 (void)
{
[* create message queue */
if ((MyMsgQId = msgQCreate (MAX_MSGS, MAX_MSG_LEN, MSG_Q_PRIORITY))
== NULL)
return (ERROR);

/* send a normal priority message, blocking if queue is full */
if (msgQSend (myMsgQIld, MESSAGE, sizeof (MESSAGE), WAIT_FOREVER,
MSG_PRI_NORMAL) == ERROR)
return (ERROR);

67

VxWorks 5.4
Programmer’s Guide

POSIX Message Queues

Table 2-18

The POSIX message queue routines, provided by mqPxLib, are shown in
Table 2-18. These routines are similar to Wind message queues, except that POSIX
message queues provide named queues and messages with a range of priorities.

POSIX Message Queue Routines

Call Description

mgPxLibInit() Initialize the POSIX message queue library (non-POSIX).
mgq_open() Open a message queue.

mg_close() Close a message queue.

mq_unlink() Remove a message queue.

mq_send() Send a message to a queue.

mq_receive() Get a message from a queue.

mg_notify() Signal a task that a message is waiting on a queue.
mq_setattr() Set a queue attribute.

mgq_getattr() Get a queue attribute.

The initialization routine mgPxLibInit() makes the POSIX message queue
routines available; the system initialization code must call it before any tasks use
POSIX message queues. As shipped, usrInit() calls mqPxLibInit() when
INCLUDE_POSIX_MQ is selected for inclusion in the project facility VxWorks view.

Before a set of tasks can communicate through a POSIX message queue, one of the
tasks must create the message queue by calling mq_open() with the O_CREAT flag
set. Once a message queue is created, other tasks can open that queue by name to
send and receive messages on it. Only the first task opens the queue with the
O_CREAT flag; subsequent tasks can open the queue for receiving only
(O_RDONLY), sending only (O_WRONLY), or both sending and receiving
(O_RDWR).

To put messages on a queue, use mq_send(). If a task attempts to put a message on
the queue when the queue is full, the task blocks until some other task reads a
message from the queue, making space available. To avoid blocking on mq_send(),
set O_NONBLOCK when you open the message queue. In that case, when the

68

Example 2-9

2
Basic OS

queue is full, mg_send() returns -1 and sets errno to EAGAIN instead of pending,
allowing you to try again or take other action as appropriate.

One of the arguments to mq_send() specifies a message priority. Priorities range
from 0 (lowest priority) to 31 (highest priority).

When a task receives a message using mq_receive(), the task receives the highest-
priority message currently on the queue. Among multiple messages with the same
priority, the first message placed on the queue is the first received (FIFO order). If
the queue is empty, the task blocks until a message is placed on the queue. To avoid
pending on mgq_receive(), open the message queue with O_NONBLOCK; in that
case, when a task attempts to read from an empty queue, mq_receive() returns -1
and sets errno to EAGAIN.

To close a message queue, call mg_close(). Closing the queue does not destroy it,
but only asserts that your task is no longer using the queue. To request that the
queue be destroyed, call mmg_unlink(). Unlinking a message queue does not destroy
the queue immediately, but it does prevent any further tasks from opening that
queue, by removing the queue name from the name table. Tasks that currently
have the queue open can continue to use it. When the last task closes an unlinked
queue, the queue is destroyed.

POSIX Message Queues

/* In this example, the mgExInit() routine spawns two tasks that
* communicate using the message queue.
*

/* mgEx.h - message example header */

[* defines */
#define MQ_NAME "exampleMessageQueue"

/* forward declarations */
void receiveTask (void);
void sendTask (void);

/* testMQ.c - example using POSIX message queues */

/¥ includes */
#include "vxWorks.h"
#include "mqueue.h”
#include “fcntl.h"
#include "errno.h"
#include "mgEx.h"

[* defines */

#define HI_PRIO 31
#define MSG_SIZE 16

69

VxWorks 5.4
Programmer’s Guide

int mgExInit (void)

[* create two tasks */
if (taskSpawn ("tRcvTask", 95, 0, 4000, receiveTask, 0, 0, 0, O,
0,0,0,0,0, 0) == ERROR)

{

printf ("taskSpawn of tRcvTask failed\n");
return (ERROR);

}

if (taskSpawn ("tSndTask", 100, 0, 4000, sendTask, 0, 0, 0, 0,
0,0,0,0,0,0)== ERROR)

{
printf (“taskSpawn of tSendTask failed\n");
return (ERROR);

}
void receiveTask (void)

mqd_t mqgPXid; /* msg queue descriptor */
char msg[MSG_SIZE]; /* msg buffer */
int prio; [* priority of message */

[* open message queue using default attributes */

if ((mgPXId = mg_open (MQ_NAME, O_RDWR | O_CREAT, 0, NULL))
== (mqd_t) -1)
{

printf ("receiveTask: mg_open failed\n");
return;

}

[* try reading from queue */
if (mqg_receive (mgPXIld, msg, MSG_SIZE, &prio) == -1)
{

printf ("receiveTask: mg_receive failed\n");

return;
}
else
printf ("receiveTask: Msg of priority %d received:\n\t\t%s\n",
prio, msg);
}
}

/* sendTask.c - mg sending example */

/*includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fentl.h"
#include "mgEx.h"

[* defines */

#define MSG "greetings"
#define HI_PRIO 30

70

2
Basic OS

void sendTask (void)
mqd_t mqPXid; /* msg queue descriptor */

[* open msg queue; should already exist with default attributes */
if ((mgPXId = mg_open (MQ_NAME, O_RDWR, 0, NULL)) == (mqd_t) -1)
{

printf ("sendTask: mg_open failed\n");
return;

}

[* try writing to queue */
if (mg_send (mgPXId, MSG, sizeof (MSG), HI_PRIO) == -1)

printf ("sendTask: mg_send failed\n");
return;
}
else
printf ("sendTask: mq_send succeeded\n");

Notifying a Task that a Message is Waiting

A task can use the mg_notify() routine to request notification when a message for
itarrives at an empty queue. The advantage of this is that a task can avoid blocking
or polling to wait for a message.

The mgq_notify() call specifies a signal to be sent to the task when a message is
placed on an empty queue. This mechanism uses the POSIX data-carrying
extension to signaling, which allows you, for example, to carry a queue identifier
with the signal (see POSIX Queued Signals, p.83).

The mgq_notify() mechanism is designed to alert the task only for new messages
that are actually available. If the message queue already contains messages, no
notification is sent when more messages arrive. If there is another task that is
blocked on the queue with mq_receive(), that other task unblocks, and no
notification is sent to the task registered with mq_notify().

Notification is exclusive to a single task: each queue can register only one task for
notification at a time. Once a queue has a task to notify, no attempts to register with
mq_notify() can succeed until the notification request is satisfied or cancelled.

Once a queue sends notification to a task, the notification request is satisfied, and
the queue has no further special relationship with that particular task; that is, the
queue sends a notification signal only once per mq_notify() request. To arrange for
one particular task to continue receiving notification signals, the best approach is
to call mg_notify() from the same signal handler that receives the notification
signals. This reinstalls the notification request as soon as possible.

71

VxWorks 5.4
Programmer’s Guide

To cancel a notification request, specify NULL instead of a notification signal. Only
the currently registered task can cancel its notification request.

Example 2-10 Notifying a Task that a Message Queue is Waiting

/* In this example, a task uses mq_notify() to discover when a message
* is waiting for it on a previously empty queue.
*

[* includes */
#include "vxWorks.h"
#include "signal.h"
#include "mqueue.h"
#include “fcntl.h"
#include "errno.h"

* defines */
#define QNAM "PxQ1"
#define MSG_SIZE 64 /*limit on message sizes */

/* forward declarations */
static void exNotificationHandle (int, siginfo_t *, void *);
static void exMgRead (mqd_t);

/
* exMgNotify - example of how to use mq_notify()
*

* This routine illustrates the use of mg_notify() to request notification
* via signal of new messages in a queue. To simplify the example, a
* single task both sends and receives a message.

*

int exMgNotify
char * pMess /* text for message to self */
)
{
struct mg_attr attr; /* queue attribute structure */
struct sigevent sigNotify; /* to attach notification */
struct sigaction mySigAction; /* to attach signal handler */
mqd_t exMqld; /*id of message queue */

/* Minor sanity check; avoid exceeding msg buffer */
if (MSG_SIZE <= strlen (pMess))

{
printf ("exMgNotify: message too long\n");
return (-1);

/* Install signal handler for the notify signal - fill in a

* sigaction structure and pass it to sigaction(). Because the
* handler needs the siginfo structure as an argument, the

* SA_SIGINFO flag is set in sa_flags.

*

72

2
Basic OS

mySigAction.sa_sigaction = exNotificationHandle;
mySigAction.sa_flags = SA_SIGINFO;
sigemptyset (&mySigAction.sa_mask);

if (sigaction (SIGUSR1, &mySigAction, NULL) == -1)
{

printf ("sigaction failed\n");
return (-1);

/* Create a message queue - fill in a mg_attr structure with the
* size and no. of messages required, and pass it to mq_open().
*

attr.mq_flags = O_NONBLOCK; /* make nonblocking */
attr.mg_maxmsg = 2;

attr.mq_msgsize = MSG_SIZE;

if ((exMgld = mq_open (QNAM, O_CREAT | O_RDWR, 0, &attr)) ==
(mad_t)-1)

printf ("mg_open failed\n");
return (-1);

[* Set up notification: fill in a sigevent structure and pass it

* to mq_notify(). The queue ID is passed as an argument to the
* signal handler.

*

sigNotify.sigev_signo = SIGUSR1;

sigNotify.sigev_notify = SIGEV_SIGNAL;
sigNotify.sigev_value.sival_int = (int) exMq|d;

if (mq_notify (exMqld, &sigNotify) == -1)

printf ("mg_notify failed\n");
return (-1);

/* We just created the message queue, but it may not be empty;
* a higher-priority task may have placed a message there while
* we were requesting notification. mqg_notify() does nothing if
* messages are already in the queue; therefore we try to
* retrieve any messages already in the queue.

*

exMgRead (exMqld);

/* Now we know the queue is empty, so we will receive a signal
* the next time a message arrives.
*

* We send a message, which causes the notify handler to be
* invoked. It is a little silly to have the task that gets the

* notification be the one that puts the messages on the queue,
* but we do it here to simplify the example.

*

* A real application would do other work instead at this point.
*

73

VxWorks 5.4
Programmer’s Guide

if (mg_send (exMqld, pMess, 1 + strlen (pMess), 0) == -1)
{
printf ("mg_send failed\n");
return (-1);

* Cleanup */

if (mqg_close (exMgld) ==-1)
{
printf ("mg_close failed\n");
return (-1);

/* More cleanup */

if (mg_unlink (QNAM) == -1)
{
printf ("mg_unlink failed\n");

return (-1);

return (0);

!
* exNotificationHandle - handler to read in messages

*

* This routine is a signal handler; it reads in messages from a message

* queue.
*
static void exNotificationHandle
(
int sig, [* signal number */
siginfo_t * pinfo, /* signal information */
void * pSigContext /* unused (required by posix) */
)
{

struct sigevent sigNotify;
mqd_t exMqld;

/* Get the ID of the message queue out of the siginfo structure. */
exMgld = (mqd_t) pinfo->si_value.sival_int;

/* Request notification again; it resets each time a notification
* signal goes out.

*

sigNotify.sigev_signo = pInfo->si_signo;
sigNotify.sigev_value = pinfo->si_value;
sigNotify.sigev_notify = SIGEV_SIGNAL;

if (mq_notify (exMqld, &sigNotify) == -1)
printf ("mg_notify failed\n");

return;

}

74

2
Basic OS

/* Read in the messages */
exMgRead (exMgld);
}

/
* exMgRead - read in messages
*

* This small utility routine receives and displays all messages

* currently in a POSIX message queue; assumes queue has O_NONBLOCK.
*
/

static void exMgRead

maqd_t exMgld
)

{
char msg[MSG_SIZE];
int prio;

/* Read in the messages - uses a loop to read in the messages

* because a notification is sent ONLY when a message is sent on

*an EMPTY message queue. There could be multiple msgs if, for

* example, a higher-priority task was sending them. Because the

* message queue was opened with the O_NONBLOCK flag, eventually
* this loop exits with errno set to EAGAIN (meaning we did an

* mg_receive() on an empty message queue).

*
while (mg_receive (exMqgld, msg, MSG_SIZE, &prio) !=-1)

{

printf ("exMgRead: received message: %s\n",msg);

if (ermo = EAGAIN)

printf ("mg_receive: errno = %d\n", errno);

}
Message Queue Attributes

A POSIX message queue has the following attributes:

— anoptional O_NONBLOCK flag
- the maximum number of messages in the message queue
- the maximum message size

- the number of messages currently on the queue

Tasks can set or clear the O_NONBLOCK flag (but not the other attributes) using
mgq_setattr(), and get the values of all the attributes using mq_getattr().

75

Example 2-11

VxWorks 5.4
Programmer’s Guide

Setting and Getting Message Queue Attributes

/* This example sets the O_NONBLOCK flag, and examines message queue
* attributes.
*

[* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

[* defines */
#define MSG_SIZE 16

int attrEx
char * name
)
{ .
maqd_t mgPXid; /* mq descriptor */
struct mg_attr attr; [* queue attribute structure */
struct mg_attr oldAttr; /* old queue attributes */
char bufferflMSG_SIZE];
int prio;

[* create read write queue that is blocking */

attr.mq_flags = 0;

attr.mg_maxmsg = 1,

attr.mq_msgsize = 16;

if ((mgPXId = mg_open (name, O_CREAT | O_RDWR, 0, &attr))
== (mqd_t) -1)
return (ERROR);

else
printf ("mg_open with non-block succeeded\n");

/* change attributes on queue - turn on non-blocking */
attr.mq_flags = O_NONBLOCK;
if (mq_setattr (mgPXId, &attr, &oldAttr) == -1)
return (ERROR);
else

[/* paranoia check - oldAttr should not include non-blocking. */
if (oldAttr.mq_flags & O_NONBLOCK)

return (ERROR);
else

printf ("mg_setattr turning on non-blocking succeeded\n");

[* try receiving - there are no messages but this shouldn't block */
if (mqg_receive (mgPXIld, buffer, MSG_SIZE, &prio) == -1)

{

if (errno = EAGAIN)

return (ERROR);
else

76

2
Basic OS

printf ("mg_receive with non-blocking didn’t block on empty queue\n”);

else
return (ERROR);

[* use mq_getattr to verify success */

if (mq_getattr (mgPXIld, &oldAttr) == -1)
return (ERROR);

else

/* test that we got the values we think we should */
if ({(oldAttr.mq_flags & O_NONBLOCK) || (oldAttr.mg_curmsgs != 0))
return (ERROR);
else
printf ("queue attributes are:\n\tblocking is %s\n\t
message size is: %d\n\t
max messages in queue: %d\n\t
no. of current msgs in queue: %d\n",
oldAttr.mq_flags & O_NONBLOCK ? "on" : "off",
oldAttr.mq_msgsize, oldAttr.mg_maxmsg,
oldAttr.mq_curmsgs);

}

/* clean up - close and unlink mq */
if (mg_unlink (name) == -1)
return (ERROR);
if (mq_close (mgPXId) == -1)
return (ERROR);
return (OK);

Comparison of POSIX and Wind Message Queues

Table 2-19

The two forms of message queues solve many of the same problems, but there are
some significant differences. Table 2-19 summarizes the main differences between
the two forms of message queues.

Message Queue Feature Comparison

Feature Wind Message Queues POSIX Message Queues
Message Priority Levels 1 32

Blocked Task Queues FIFO or priority-based Priority-based
Receive with Timeout Optional Not available

Task Notification Not available Optional (one task)
Close/Unlink Semantics No Yes

77

VxWorks 5.4
Programmer’s Guide

Another feature of POSIX message queues is, of course, portability: if you are
migrating to VxWorks from another 1003.1b-compliant system, using POSIX
message queues enables you to leave that part of the code unchanged, reducing the
porting effort.

Displaying Message Queue Attributes

The VxWorks show() command produces a display of the key message queue
attributes, for either kind of message queue’. For example, if mqPXId is a POSIX
message queue:

-> show mgPXId
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Message queue name - MyQueue
No. of messages in queue :1
Maximum no. of messages : 16
Maximum message size : 16

Compeare this to the output when myMsgQId is a Wind message queue:4

-> show myMsgQId

Message Queue Id : 0x3adaf0
Task Queuing : FIFO
Message Byte Len : 4
Messages Max : 30
Messages Queued : 14
Receivers Blocked : 0

Send timeouts : 0

Receive timeouts : 0

Servers and Clients with Message Queues

Real-time systems are often structured using a client-server model of tasks. In this
model, server tasks accept requests from client tasks to perform some service, and
usually return a reply. The requests and replies are usually made in the form of

3. However, to get information on POSIX message queues, INCLUDE_POSIX_MQ_SHOW
must be defined in the VxWorks configuration; for information, see Tornado User’s Guide:
Projects.

4. The built-in show() routine handles Wind message queues; see the Tornado User’s Guide:
Shell for information on built-in routines. You can also use the Tornado browser to get infor-
mation on Wind message queues; see the Tornado User’s Guide: Browser for details.

78

2
Basic OS

intertask messages. In VxWorks, message queues or pipes (see 2.4.5 Pipes, p.79) are
a natural way to implement this.

For example, client-server communications might be implemented as shown in
Figure 2-15. Each server task creates a message queue to receive request messages
from clients. Each client task creates a message queue to receive reply messages
from servers. Each request message includes a field containing the msgQId of the
client’s reply message queue. A server task’s “main loop” consists of reading
request messages from its request message queue, performing the request, and
sending a reply to the client’s reply message queue.

Figure 2-15 Client-Server Communications Using Message Queues

2.4.5 Pipes

reply queue 1

message

request queue

message|

reply queue 2

message|

The same architecture can be achieved with pipes instead of message queues, or by
other means that are tailored to the needs of the particular application.

Pipes provide an alternative interface to the message queue facility that goes
through the VxWorks I/O system. Pipes are virtual I/O devices managed by the

79

VxWorks 5.4
Programmer’s Guide

driver pipeDrv. The routine pipeDevCreate() creates a pipe device and the
underlying message queue associated with that pipe. The call specifies the name
of the created pipe, the maximum number of messages that can be queued to it,
and the maximum length of each message:

status = pipeDevCreate (" /pipe/name”, max_msgs, max_length);

The created pipe is a normally named I/0O device. Tasks can use the standard I/O
routines to open, read, and write pipes, and invoke ioct! routines. As they do with
other I/O devices, tasks block when they read from an empty pipe until data is
available, and block when they write to a full pipe until there is space available.
Like message queues, ISRs can write to a pipe, but cannot read from a pipe.

As I/0 devices, pipes provide one important feature that message queues
cannot—the ability to be used with select(). This routine allows a task to wait for
data to be available on any of a set of I/O devices. The select() routine also works
with other asynchronous I/O devices including network sockets and serial
devices. Thus, by using select(), a task can wait for data on a combination of
several pipes, sockets, and serial devices; see 3.3.8 Pending on Multiple File
Descriptors: The Select Facility, p.104.

Pipes allow you to implement a client-server model of intertask communications;
see Servers and Clients with Message Queues, p.78.

2.4.6 Network Intertask Communication

Sockets

In VxWorks, the basis of intertask communications across the network is sockets. A
socket is an endpoint for communications between tasks; data is sent from one
socket to another. When you create a socket, you specify the Internet
communications protocol that is to transmit the data. VxWorks supports the
Internet protocols TCP and UDP. VxWorks socket facilities are source compatible
with BSD 4.4 UNIX.

TCP provides reliable, guaranteed, two-way transmission of data with stream
sockets. In a stream-socket communication, two sockets are “connected,” allowing
areliable byte-stream to flow between them in each direction as in a circuit. For this
reason TCP is often referred to as a virtual circuit protocol.

UDP provides a simpler but less robust form of communication. In UDP
communications, data is sent between sockets in separate, unconnected,

80

2
Basic OS

individually addressed packets called datagrams. A process creates a datagram
socket and binds it to a particular port. There is no notion of a UDP “connection.”
Any UDP socket, on any host in the network, can send messages to any other UDP
socket by specifying its Internet address and port number.

One of the biggest advantages of socket communications is that it is
“homogeneous.” Socket communications among processes are exactly the same
regardless of the location of the processes in the network, or the operating system
under which they are running. Processes can communicate within a single CPU,
across a backplane, across an Ethernet, or across any connected combination of
networks. Socket communications can occur between VxWorks tasks and host
system processes in any combination. In all cases, the communications look
identical to the application, except, of course, for their speed.

For more information, see VxWorks Network Programmer’s Guide: Networking APIs
and the reference entry for sockLib.

Remote Procedure Calls (RPC)

2.4.7 Signals

Remote Procedure Calls (RPC) is a facility that allows a process on one machine to
call a procedure that is executed by another process on either the same machine or
a remote machine. Internally, RPC uses sockets as the underlying communication
mechanism. Thus with RPC, VxWorks tasks and host system processes can invoke
routines that execute on other VxWorks or host machines, in any combination.

As discussed in the previous sections on message queues and pipes, many real-
time systems are structured with a client-server model of tasks. In this model,
client tasks request services of server tasks, and then wait for their reply. RPC
formalizes this model and provides a standard protocol for passing requests and
returning replies. Also, RPC includes tools to help generate the client interface
routines and the server skeleton.

For more information on RPC, see VxWorks Network Programmer’s Guide: RPC,
Remote Procedure Calls.

VxWorks supports a software signal facility. Signals asynchronously alter the
control flow of a task. Any task or ISR can raise a signal for a particular task. The
task being signaled immediately suspends its current thread of execution and
executes the task-specified signal handler routine the next time it is scheduled to

81

VxWorks 5.4
Programmer’s Guide

run. The signal handler executes in the receiving task’s context and makes use of
that task’s stack. The signal handler is invoked even if the task is blocked.

Signals are more appropriate for error and exception handling than as a general-
purpose intertask communication mechanism. In general, signal handlers should
be treated like ISRs; no routine should be called from a signal handler that might
cause the handler to block. Because signals are asynchronous, it is difficult to
predict which resources might be unavailable when a particular signal is raised. To
be perfectly safe, call only those routines that can safely be called from an ISR (see
Table 2-23). Deviate from this practice only when you are sure your signal handler
can not create a deadlock situation.

The wind kernel supports two types of signal interface: UNIX BSD-style signals
and POSIX-compatible signals. The POSIX-compatible signal interface, in turn,
includes both the fundamental signaling interface specified in the POSIX standard
1003.1, and the queued-signals extension from POSIX 1003.1b. For the sake of
simplicity, we recommend that you use only one interface type in a given
application, rather than mixing routines from different interfaces.

For more information on signals, see the reference entry for sigLib.

Basic Signal Routines

Table 2-20 shows the basic signal routines. To make these facilities available, the
signal library initialization routine sigInit() must be called, normally from
usrInit() in usrConfig.c, before interrupts are enabled.

The colorful name kill() harks back to the origin of these interfaces in UNIX BSD.
Although the interfaces vary, the functionality of BSD-style signals and basic
POSIX signals is similar.

In many ways, signals are analogous to hardware interrupts. The basic signal
facility provides a set of 31 distinct signals. A signal handler binds to a particular
signal with sigvec() or sigaction() in much the same way that an ISR is connected
to an interrupt vector with intConnect(). A signal can be asserted by calling kill().
This is analogous to the occurrence of an interrupt. The routines sigsetmask() and
sigblock() or sigprocmask() let signals be selectively inhibited.

Certain signals are associated with hardware exceptions. For example, bus errors,
illegal instructions, and floating-point exceptions raise specific signals.

82

2
Basic OS

Table 2-20 Basic Signal Calls (BSD and POSIX 1003.1b)

POSIX 1003.1b UNIX BSD
Compatible Compatible Description
Call Call
signal() signal() Specify the handler associated with a signal.
kill() kill() Send a signal to a task.
raise() N/A Send a signal to yourself.
sigaction() sigvec() Examine or set the signal handler for a signal.
sigsuspend() pause() Suspend a task until a signal is delivered.
sigpending() N/A Retrieve a set of pending signals blocked from delivery.
sigemptyset() sigsetmask() Manipulate a signal mask.
sigfillset()
sigaddset()
sigdelset()
sigismember()
sigprocmask() sigsetmask() Set the mask of blocked signals.
sigprocmask() sigblock() Add to a set of blocked signals.

POSIX Queued Signals

The sigqueue() routine provides an alternative to kill() for sending signals to a
task. The important differences between the two are:

sigqueue() includes an application-specified value that is sent as part of the
signal. You can use this value to supply whatever context your signal handler
finds useful. This value is of type sigval (defined in signal.h); the signal
handler finds it in the si_value field of one of its arguments, a structure
siginfo_t. An extension to the POSIX sigaction() routine allows you to register
signal handlers that accept this additional argument.

sigqueue() enables the queueing of multiple signals for any task. The kill()
routine, by contrast, delivers only a single signal, even if multiple signals
arrive before the handler runs.

VxWorks includes seven signals reserved for application use, numbered
consecutively from SIGRTMIN. The presence of these reserved signals is required
by POSIX 1003.1b, but the specific signal values are not; for portability, specify

83

VxWorks 5.4
Programmer’s Guide

these signals as offsets from SIGRTMIN (for example, write SIGRTMIN+2 to refer
to the third reserved signal number). All signals delivered with sigqueue() are
queued by numeric order, with lower-numbered signals queuing ahead of higher-
numbered signals.

POSIX 1003.1b also introduced an alternative means of receiving signals. The
routine sigwaitinfo() differs from sigsuspend() or pause() in that it allows your
application to respond to a signal without going through the mechanism of a
registered signal handler: when a signal is available, sigwaitinfo() returns the
value of that signal as a result, and does not invoke a signal handler even if one is
registered. The routine sigtimedwait() is similar, except that it can time out.

For detailed information on signals, see the reference entry for sigLib.

Table 2-21 POSIX 1003.1b Queued Signal Calls

Call Description

sigqueue() Send a queued signal.
sigwaitinfo() Wait for a signal.
sigtimedwait() Wait for a signal with a timeout.

Signal Configuration

The basic signal facility is included in VxWorks by default with
INCLUDE_SIGNALS (located under kernel components in the project facility).

Before your application can use POSIX queued signals, they must be initialized
separately with sigqueuelnit(). Like the basic signals initialization function
sigInit(), this function is normally called from usrInit() in usrConfig.c, after
sysInit() runs.

To initialize the queued signal functionality, also define
INCLUDE_POSIX_SIGNALS (located under POSIX components in the project
facility): with that definition, sigqueuelnit() is called automatically.

The routine sigqueuelnit() allocates nQueues buffers for use by sigqueue(), which
requires a buffer for each currently queued signal (see the reference entry for
sigqueunelnit()). A call to sigqueue() fails if no buffer is available.

84

2
Basic OS

2.5 Interrupt Service Code

Hardware interrupt handling is of key significance in real-time systems, because it
is usually through interrupts that the system is informed of external events. For the
fastest possible response to interrupts, interrupt service routines (ISRs) in VxWorks
run in a special context outside of any task’s context. Thus, interrupt handling
involves no task context switch. The interrupt routines, listed in Table 2-22, are

provided in intLib and intArchLib.

Table 2-22 Interrupt Routines

Call Description

intConnect() Connect a C routine to an interrupt vector.
intContext() Return TRUE if called from interrupt level.
intCount() Get the current interrupt nesting depth.
intLevelSet() Set the processor interrupt mask level.
intLock() Disable interrupts.

intUnlock() Re-enable interrupts.

intVecBaseSet() Set the vector base address.
intVecBaseGet() Get the vector base address.

intVecSet() Set an exception vector.

intVecGet() Get an exception vector.

For boards with an MMU, the optional product VxVMI provides write protection

for the interrupt vector table; see 7. Virtual Memory Interface.

2.5.1 Connecting Application Code to Interrupts

You can use system hardware interrupts other than those used by VxWorks.
VxWorks provides the routine intConnect(), which allows C functions to be
connected to any interrupt. The arguments to this routine are the byte offset of the
interrupt vector to connect to, the address of the C function to be connected, and
an argument to pass to the function. When an interrupt occurs with a vector
established in this way, the connected C function is called at interrupt level with
the specified argument. When the interrupt handling is finished, the connected

85

VxWorks 5.4
Programmer’s Guide

function returns. A routine connected to an interrupt in this way is called an
interrupt service routine (ISR).

Interrupts cannot actually vector directly to C functions. Instead, intConnect()
builds a small amount of code that saves the necessary registers, sets up a stack
entry (either on a special interrupt stack, or on the current task’s stack) with the
argument to be passed, and calls the connected function. On return from the
function it restores the registers and stack, and exits the interrupt; see Figure 2-16.

Figure 2-16 Routine Built by intConnect()

Wrapper built by intConnect() Interrupt Service Routine
save registers myISR
(
set up stack int val;
invoke routine .

restore registers and stack * deal with hardware*/

exit)

intConnect (INUM_TO_IVEC (somelntNum), myISR, someVal);

For target boards with VME backplanes, the BSP provides two standard routines
for controlling VME bus interrupts, sysIntEnable() and sysIntDisable().

2.5.2 Interrupt Stack

Whenever the architecture allows it, all ISRs use the same interrupt stack. This stack
is allocated and initialized by the system at start-up according to specified
configuration parameters. It must be large enough to handle the worst possible
combination of nested interrupts.

Some architectures, however, do not permit using a separate interrupt stack. On

such architectures, ISRs use the stack of the interrupted task. If you have such an
architecture, you must create tasks with enough stack space to handle the worst

possible combination of nested interrupts and the worst possible combination of

ordinary nested calls. See the reference entry for your BSP to determine whether
your architecture supports a separate interrupt stack.

Use the checkStack() facility during development to see how close your tasks and
ISRs have come to exhausting the available stack space.

86

2
Basic OS

2.5.3 Special Limitations of ISRs

Many VxWorks facilities are available to ISRs, but there are some important
limitations. These limitations stem from the fact that an ISR does not run in a

regular task context: it has no task control block, for example, and all ISRs share a

single stack.

Table 2-23 Routines that Can Be Called by Interrupt Service Routines

Library Routines
bLib All routines
errnoLib errnoGet(), errnoSet()

fppArchLib frpSave(), fppRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet()

intArchLib intLock(), intUnlock()

logLib logMsg()

IstLib All routines except IstFree()

mathALib All routines, if fypSave()/ fppRestore() are used

msgQLib msgQSend()

pipeDrv write()

rngLib All routines except rngCreate() and rngDelete()

selectLib selWakeup(), selWakeupAll()

semLib semGive() except mutual-exclusion semaphores, semFlush()

sigLib kill()

taskLib taskSuspend(), taskResume(), taskPrioritySet(), taskPriorityGet(),
taskIdVerify(), taskIdDefault(), taskIsReady(), taskIsSuspended(),
taskTcb()

tickLib tickAnnounce(), tickSet(), tickGet()

tyLib tyIRd(), tyITx()

vxLib vxTas(), vxMemProbe()

wdLib wdStart(), wdCancel()

87

VxWorks 5.4
Programmer’s Guide

For this reason, the basic restriction on ISRs is that they must not invoke routines
that might cause the caller to block. For example, they must not try to take a
semaphore, because if the semaphore is unavailable, the kernel tries to switch the
caller to the pended state. However, ISRs can give semaphores, releasing any tasks
waiting on them.

Because the memory facilities malloc() and free() take a semaphore, they cannot
be called by ISRs, and neither can routines that make calls to malloc() and free().
For example, ISRs cannot call any creation or deletion routines.

ISRs also must not perform I/0 through VxWorks drivers. Although there are no
inherent restrictions in the I/O system, most device drivers require a task context
because they might block the caller to wait for the device. An important exception
is the VxWorks pipe driver, which is designed to permit writes by ISRs.

VxWorks supplies a logging facility, in which a logging task prints text messages
to the system console. This mechanism was specifically designed so that ISRs
could use it, and is the most common way to print messages from ISRs. For more
information, see the reference entry for logLib.

An ISR also must not call routines that use a floating-point coprocessor. In
VxWorks, the interrupt driver code created by intConnect() does not save and
restore floating-point registers; thus, ISRs must not include floating-point
instructions. If an ISR requires floating-point instructions, it must explicitly save
and restore the registers of the floating-point coprocessor using routines in
fppArchLib.

All VxWorks utility libraries, such as the linked-list and ring-buffer libraries, can
be used by ISRs. As discussed earlier (2.3.7 Task Error Status: errno, p.36), the global
variable errno is saved and restored as a part of the interrupt enter and exit code
generated by the intConnect() facility. Thus errno can be referenced and modified
by ISRs as in any other code. Table 2-23 lists routines that can be called from ISRs.

2.5.4 Exceptions at Interrupt Level

When a task causes a hardware exception such as illegal instruction or bus error,
the task is suspended and the rest of the system continues uninterrupted.
However, when an ISR causes such an exception, there is no safe recourse for the
system to handle the exception. The ISR has no context that can be suspended.
Instead, VxWorks stores the description of the exception in a special location in low
memory and executes a system restart.

The VxWorks boot ROMs test for the presence of the exception description in low
memory and if it is detected, display it on the system console. The e command in

88

2
Basic OS

the boot ROMs re-displays the exception description; see Tornado User’s Guide:
Setup and Startup.

S 2
One example of such an exception is the message: -
workQPanic: Kernel work queue overflow.

This exception usually occurs when kernel calls are made from interrupt level at a
very high rate. It generally indicates a problem with clearing the interrupt signal
or a similar driver problem.

2.5.5 Reserving High Interrupt Levels

The VxWorks interrupt support described earlier in this section is acceptable for
most applications. However, on occasion, low-level control is required for events
such as critical motion control or system failure response. In such cases it is
desirable to reserve the highest interrupt levels to ensure zero-latency response to
these events. To achieve zero-latency response, VxWorks provides the routine
intLockLevelSet(), which sets the system-wide interrupt-lockout level to the
specified level. If you do not specify a level, the default is the highest level
supported by the processor architecture.

A CAUTION: Some hardware prevents masking certain interrupt levels; check the
hardware manufacturer’s documentation. For example, on MC680x0 chips,
interrupt level 7 is non-maskable. Because level 7 is also the highest interrupt level
on this architecture, VxWorks uses 7 as the default lockout level—but this is in fact
equivalent to a lockout level of 6, since the hardware prevents locking out level 7.

2.5.6 Additional Restrictions for ISRs at High Interrupt Levels

ISRs connected to interrupt levels that are not locked out (either an interrupt level
higher than that set by intLockLevelSet(), or an interrupt level defined in
hardware as non-maskable) have special restrictions:

* The ISR can be connected only with intVecSet().

* The ISR cannot use any VxWorks operating system facilities that depend on
interrupt locks for correct operation.

89

VxWorks 5.4
Programmer’s Guide

2.5.7 Interrupt-to-Task Communication

While it is important that VxWorks support direct connection of ISRs that run at
interrupt level, interrupt events usually propagate to task-level code. Many
VxWorks facilities are not available to interrupt-level code, including I/O to any
device other than pipes. The following techniques can be used to communicate
from ISRs to task-level code:

Shared Memory and Ring Buffers. ISRs can share variables, buffers, and ring
buffers with task-level code.

Semaphores. ISRs can give semaphores (except for mutual-exclusion
semaphores and VxMP shared semaphores) that tasks can take and wait for.

Message Queues. ISRs can send messages to message queues for tasks to
receive (except for shared message queues using VxMP). If the queue is full,
the message is discarded.

Pipes. ISRscan write messages to pipes that tasks can read. Tasks and ISRs can
write to the same pipes. However, if the pipe is full, the message written is
discarded because the ISR cannot block. ISRs must not invoke any I/O routine
on pipes other than write().

* Signals. ISRs can “signal” tasks, causing asynchronous scheduling of their
signal handlers.

2.6 Watchdog Timers

VxWorks includes a watchdog-timer mechanism that allows any C function to be
connected to a specified time delay. Watchdog timers are maintained as part of the
system clock ISR. Normally, functions invoked by watchdog timers execute as
interrupt service code at the interrupt level of the system clock. However, if the
kernel is unable to execute the function immediately for any reason (such as a
previous interrupt or kernel state), the function is placed on the tExcTask work
queue. Functions on the tExcTask work queue execute at the priority level of the
tExcTask (usually 0). Restrictions on ISRs apply to routines connected to watchdog
timers. The functions in Table 2-24 are provided by the wdLib library.

A watchdog timer is first created by calling wdCreate(). Then the timer can be
started by calling wdStart(), which takes as arguments the number of ticks to
delay, the C function to call, and an argument to be passed to that function. After

90

Table 2-24

Example 2-12

2

Basic OS
Watchdog Timer Calls
Call Description
wdCreate() Allocate and initialize a watchdog timer.
wdDelete() Terminate and deallocate a watchdog timer.
wdStart() Start a watchdog timer.
wdCancel() Cancel a currently counting watchdog timer.

the specified number of ticks have elapsed, the function is called with the specified
argument. The watchdog timer can be canceled any time before the delay has

elapsed by calling wdCancel().

Watchdog Timers

/* This example creates a watchdog timer and sets it to go off in
* 3 seconds.
*

/* includes */

#include "vxWorks.h"
#include "logLib.h"
#include "wdLib.h"

[* defines */
#define SECONDS (3)

WDOG_ID myWatchDogld;
task (void)
{

* Create watchdog */

if ((myWatchDogld = wdCreate()) == NULL)
return (ERROR);

/* Set timer to go off in SECONDS - printing a message to stdout */
if (wdStart (myWatchDogld, sysClkRateGet() * SECONDS, logMsg,
"Watchdog timer just expired\n") == ERROR)
return (ERROR);

I
}

91

VxWorks 5.4
Programmer’s Guide

2.7 POSIX Clocks and Timers

Example 2-13

A clock is a software construct (struct timespec, defined in time.h) that keeps time
in seconds and nanoseconds. The software clock is updated by system-clock ticks.
VxWorks provides a POSIX 1003.1b standard clock and timer interface.

The POSIX standard provides for identifying multiple virtual clocks, but only one
clock is required—the system-wide real-time clock, identified in the clock and
timer routines as CLOCK_REALTIME (also defined in time.h). VxWorks provides
routines to access the system-wide real-time clock; see the reference entry for
clockLib. (No virtual clocks are supported in VxWorks.)

The POSIX timer facility provides routines for tasks to signal themselves at some
time in the future. Routines are provided to create, set, and delete a timer; see the
reference entry for timerLib. When a timer goes off, the default signal (SIGALRM)
is sent to the task. Use sigaction() to install a signal handler that executes when the
timer expires (see 2.4.7 Signals, p.81).

POSIX Timers

[* This example creates a new timer and stores it in timerid. */
/*includes */
#include "vxWorks.h"
#include "time.h"
int createTimer (void)
timer_t timerid;
[* create timer */
if (timer_create (CLOCK_REALTIME, NULL, &timerid) == ERROR)
{
printf ("create FAILED\n");
return (ERROR);
return (OK);

An additional POSIX function, nanosleep(), allows specification of sleep or delay
time in units of seconds and nanoseconds, as opposed to the ticks used by the
Wind taskDelay() function. Only the units are different, however, not the
precision: both delay routines have the same precision, determined by the system
clock rate.

92

2
Basic OS

2.8 POSIX Memory-Locking Interface

Table 2-25

Many operating systems perform memory paging and swapping. These techniques
allow the use of more virtual memory than there is physical memory on a system,
by copying blocks of memory out to disk and back. These techniques impose
severe and unpredictable delays in execution time; they are therefore undesirable
in real-time systems.

Because the wind kernel is designed specifically for real-time applications, it never
performs paging or swapping. However, the POSIX 1003.1b standard for real-time
extensions also covers operating systems that perform paging or swapping. On
such systems, applications that attempt real-time performance can use the POSIX
page-locking facilities to declare that certain blocks of memory must not be paged
or swapped.

To help maximize portability, VxWorks includes the POSIX page-locking routines.
Executing these routines makes no difference in VxWorks, because all memory is,
in effect, always locked. They are included only to make it easier to port programs
between other POSIX-conforming systems and VxWorks.

The POSIX page-locking routines are in mmanPxLib (the name reflects the fact
that these routines are part of the POSIX “memory-management” routines).
Because in VxWorks all pages are always kept in memory, the routines listed in
Table 2-25 always return a value of OK (0), and have no further effect.

The mmanPxLib library is included automatically when the configuration
constant INCLUDE_POSIX_MEM is selected for inclusion in the project facility
VxWorks view.

POSIX Memory Management Calls

Call Purpose on Systems with Paging or Swapping
mlockall() Lock into memory all pages used by a task.
munlockall() Unlock all pages used by a task.

mlock() Lock a specified page.

munlock() Unlock a specified page.

93

VxWorks 5.4
Programmer’s Guide

94

/O System

3.1 Introduction

The VxWorks I/O system is designed to present a simple, uniform, device-
independent interface to any kind of device, including;:

— character-oriented devices such as terminals or communications lines
- random-access block devices such as disks

- virtual devices such as intertask pipes and sockets

— monitor and control devices such as digital /analog 1/O devices

- network devices that give access to remote devices

The VxWorks I/O system provides standard C libraries for both basic and buffered
I/0. The basic I/0 libraries are UNIX-compatible; the buffered 1/O libraries are
ANSI C-compatible. Internally, the VxWorks 1/O system has a unique design that
makes it faster and more flexible than most other I/O systems. These are important
attributes in a real-time system.

This chapter first describes the nature of files and devices, and the user view of basic
and buffered I/O. The middle section discusses the details of some specific
devices. The final section is a detailed discussion of the internal structure of the
VxWorks I/0O system.

Figure 3-1 diagrams the relationships between the different pieces of the VxWorks
I/0 system. All the elements of the I/ O system are discussed in this chapter, except
for file system routines, which are presented in 4. Local File Systems in this manual.

95

VxWorks 5.4
Programmer’s Guide

Figure 3-1 Overview of the VxWorks 1/0O System

Application \ \
Buffered 1/O; stdio fioLib
joRead
| fread) floReads)
Basic I/0 Routines furite() sprintf()
(device independent) //
read() -— /
write()

* _. File System Routines
Y L
. . | xxRead()
Driver Routines xxWrite()

xxRead()
xxWrite()

* \-.. Library Routines

Hardware Devices

Network tyLib
Disk Drive
Serial Device

3.2 Files, Devices, and Drivers
In VxWorks, applications access I/O devices by opening named files. A file can
refer to one of two things:

An unstructured “raw” device such as a serial communications channel or an
intertask pipe.

A logical file on a structured, random-access device containing a file system.
Consider the following named files:

lusr/myfile Ipipe/mypipe /tyCo/0

96

3
I/O System

The first refers to a file called myfile, on a disk device called /usr. The second is a
named pipe (by convention, pipe names begin with /pipe). The third refers to a
physical serial channel. However, I/O can be done to or from any of these in the
same way. Within VxWorks, they are all called files, even though they refer to very
different physical objects.

Devices are handled by program modules called drivers. In general, using the I/O
system does not require any further understanding of the implementation of
devices and drivers. Note, however, that the VxWorks I/O system gives drivers
considerable flexibility in the way they handle each specific device. Drivers strive
to follow the conventional user view presented here, but can differ in the specifics.
See 3.7 Devices in VxWorks, p.118.

Although all I/O is directed at named files, it can be done at two different levels:
basic and buffered. The two differ in the way data is buffered and in the types of calls
that can be made. These two levels are discussed in later sections.

3.2.1 File Names and the Default Device

A file name is specified as a character string. An unstructured device is specified
with the device name. In the case of file system devices, the device name is
followed by a file name. Thus the name /tyCo/0 might name a particular serial /O
channel, and the name DEV1:/filel probably indicates the file filel on the DEV1:
device.

When a file name is specified in an I/O call, the I/O system searches for a device
with a name that matches at least an initial substring of the file name. The I/O
function is then directed at this device.

If a matching device name cannot be found, then the I/O function is directed at a
default device. You can set this default device to be any device in the system,
including no device at all, in which case failure to match a device name returns an
error.

Non-block devices are named when they are added to the I/O system, usually at
system initialization time. Block devices are named when they are initialized for
use with a specific file system. The VxWorks I/ O system imposes no restrictions on
the names given to devices. The I/O system does not interpret device or file names
in any way, other than during the search for matching device and file names.

It is useful to adopt some naming conventions for device and file names: most
device names begin with a slash (/), except non-NFS network devices and
VxWorks DOS devices (dosFs).

97

VxWorks 5.4
Programmer’s Guide

By convention, NFS-based network devices are mounted with names that begin
with a slash. For example:

lusr

Non-NFS network devices are named with the remote machine name followed by
a colon. For example:

host:

The remainder of the name is the file name in the remote directory on the remote
system.

File system devices using dosFs are often named with uppercase letters and /or
digits followed by a colon. For example:

DEV1:

NOTE: File names and directory names on dosFs devices are often separated by
backslashes (\). These can be used interchangeably with forward slashes (/).

CAUTION: Because device names are recognized by the I/O system using simple
substring matching, a slash (/) should not be used alone as a device name.

3.3 Basic I/0

Table 3-1

Basic I/0 is the lowest level of I/O in VxWorks. The basic I/0O interface is source-
compatible with the I/O primitives in the standard C library. There are seven basic
I/0O calls, shown in the following table.

Basic I/O Routines

Call Description

creat() Create a file.

remowve() Remove a file.

open() Open a file. (Optionally, create a file.)
close() Close a file.

98

3

I/O System
Table 3-1 Basic I/O Routines
Call Description
read() Read a previously created or opened file.
write() Write a previously created or opened file.
ioctl() Perform special control functions on files or devices.

3.3.1 File Descriptors

At the basic I/O level, files are referred to by a file descriptor, or fd. An fd is a small
integer returned by a call to open() or creat(). The other basic I/O calls take an fd
as a parameter to specify the intended file. An fd has no meaning discernible to the
user; it is only a handle for the I/O system.

When a file is opened, an fd is allocated and returned. When the file is closed, the
fd is deallocated. There are a finite number of fds available in VxWorks. To avoid
exceeding the system limit, it is important to close fds that are no longer in use. The
number of available fds is specified in the initialization of the I/O system.

3.3.2 Standard Input, Standard Output, and Standard Error

Three file descriptors are reserved and have special meanings:

0 = standard input
1 = standard output
2 = standard error output

These fds are never returned as the result of an open() or creat(), but serve rather
as indirect references that can be redirected to any other open fd.

These standard fds are used to make tasks and modules independent of their actual
I/0 assignments. If a module sends its output to standard output (fd = 1), then its
output can be redirected to any file or device, without altering the module.

VxWorks allows two levels of redirection. First, there is a global assignment of the
three standard fds. Second, individual tasks can override the global assignment of
these fds with their own assignments that apply only to that task.

99

VxWorks 5.4
Programmer’s Guide

Global Redirection

When VxWorks is initialized, the global assignments of the standard fds are
directed, by default, to the system console. When tasks are spawned, they initially
have no task-specific fd assignments; instead, they use the global assignments.

The global assignments can be redirected using ioGlobalStdSet(). The parameters
to this routine are the global standard fd to be redirected, and the fd to direct it to.

For example, the following call sets global standard output (fd = 1) to be the open
file with a file descriptor of fileFd:

ioGlobalStdSet (1, fileFd);

All tasks in the system that do not have their own task-specific redirection write
standard output to that file thereafter. For example, the task tRlogind calls
i0GlobalStdSet() to redirect I/O across the network during an rlogin session.

Task-Specific Redirection

The assignments for a specific task can be redirected using the routine
ioTaskStdSet(). The parameters to this routine are the task ID (0 = self) of the task
with the assignments to be redirected, the standard fd to be redirected, and the fd
to direct it to. For example, a task can make the following call to write standard
output to fileFd:

ioTaskStdSet (0, 1, fileFd);

All other tasks are unaffected by this redirection, and subsequent global
redirections of standard output do not affect this task.

3.3.3 Open and Close

Before I/O can be performed to a device, an fd must be opened to that device by
invoking the open() routine (or creat(), as discussed in the next section). The
arguments to open() are the file name, the type of access, and, when necessary, the
mode:

fd=open(" name", flags, mode);

The possible access flags are shown in Table 3-2.

100

Table 3-2

3

I/O System
File Access Flags
Flag Hex Value Description
O_RDONLY 0 Open for reading only.
O_WRONLY 1 Open for writing only.
O_RDWR 2 Open for reading and writing.
O_CREAT 200 Create a new file.
O_TRUNC 400 Truncate the file.

The mode parameter is used in the following special cases to specify the mode
(permission bits) of a file or to create subdirectories:

In general, you can open only preexisting devices and files with open().
However, with NFS network, dosFs, and rt11Fs devices, you can also create
files with open() by or’ing O_CREAT with one of the access flags. In the case of
NFS devices, open() requires the third parameter specifying the mode of the
file:

fd=open(" name", O_CREAT | O_RDWR, 0644);

* With both dosFs and NFS devices, you can use the O_CREAT option to create
a subdirectory by setting mode to FSTAT_DIR. Other uses of the mode
parameter with dosFs devices are ignored.

The open() routine, if successful, returns an fd (a small integer). This fd is then used
in subsequent I/O calls to specify that file. The fd is a global identifier that is not task
specific. One task can open a file, and then any other tasks can use the resulting fd
(for example, pipes). The fd remains valid until close() is invoked with that fd:

close (fd);

At that point, I/O to the file is flushed (completely written out) and the fd can no
longer be used by any task. However, the same fd number can again be assigned
by the I/O system in any subsequent open().

When a task exits or is deleted, the files opened by that task are not automatically
closed, because fds are not task specific. Thus, it is recommended that tasks
explicitly close all files when they are no longer required. As stated previously,
there is a limit to the number of files that can be open at one time.

101

VxWorks 5.4
Programmer’s Guide

3.3.4 Create and Remove

File-oriented devices must be able to create and remove files as well as open
existing files. The creat() routine directs a file-oriented device to make a new file
on the device and return a file descriptor for it. The arguments to creat() are
similar to those of open() except that the file name specifies the name of the new
file rather than an existing one; the creat() routine returns an fd identifying the
new file.

fd =creat (" name", flag);

The remowve() routine removes a named file on a file-oriented device:
remove (" name");

Do not remove files while they are open.

With non-file-system oriented device names, creat() acts exactly like open();
however, remove() has no effect.

3.3.5 Read and Write

After an fd is obtained by invoking open() or creat(), tasks can read bytes from a
file with read() and write bytes to a file with write(). The arguments to read() are
the fd, the address of the buffer to receive input, and the maximum number of bytes
to read:

nBytes =read (fd, & buffer, maxBytes);

The read() routine waits for input to be available from the specified file, and
returns the number of bytes actually read. For file-system devices, if the number of
bytes read is less than the number requested, a subsequent read() returns 0 (zero),
indicating end-of-file. For non-file-system devices, the number of bytes read can be
less than the number requested even if more bytes are available; a subsequent
read() may or may not return 0. In the case of serial devices and TCP sockets,
repeated calls to read() are sometimes necessary to read a specific number of bytes.
(See the reference entry for fioRead() in fioLib). A return value of ERROR (-1)
indicates an unsuccessful read.

The arguments to write() are the fd, the address of the buffer that contains the data
to be output, and the number of bytes to be written:

actualBytes = write (fd, & buffer, nBytes);

102

3
I/O System

The write() routine ensures that all specified data is at least queued for output
before returning to the caller, though the data may not yet have been written to the
device (this is driver dependent). write() returns the number of bytes written; if
the number returned is not equal to the number requested, an error has occurred.

3.3.6 File Truncation

It is sometimes convenient to discard part of the data in a file. After a file is open
for writing, you can use the ftruncate() routine to truncate a file to a specified size.
Its arguments are an fd and the desired length of the file:

status = ftruncate (fd, length);

If it succeeds in truncating the file, ftruncate() returns OK. If the size specified is
larger than the actual size of the file, or if the fd refers to a device that cannot be
truncated, ftruncate() returns ERROR, and sets errno to EINVAL.

The ftruncate() routine is part of the POSIX 1003.1b standard, but this
implementation is only partially POSIX-compliant: creation and modification
times are not updated. This call is supported only by dosFsLib, the DOS-
compatible file system library.

3.3.7 I/O Control

The ioctl() routine is an open-ended mechanism for performing any I/O functions
that do not fit the other basic I/O calls. Examples include determining how many
bytes are currently available for input, setting device-specific options, obtaining
information about a file system, and positioning random-access files to specific
byte positions. The arguments to the ioctl() routine are the fd, a code that identifies
the control function requested, and an optional function-dependent argument:

result = ioctl (fd, function, arg);

For example, the following call uses the FIOBAUDRATE function to set the baud
rate of a tty device to 9600:

status = ioctl (fd, FIOBAUDRATE, 9600);

The discussion of specific devices in 3.7 Devices in VxWorks, p.118 summarizes the
ioctl() functions available for each device. The ioctl() control codes are defined in
ioLib.h. For more information, see the reference entries for specific device drivers.

103

VxWorks 5.4
Programmer’s Guide

3.3.8 Pending on Multiple File Descriptors: The Select Facility

Table 3-3

The VxWorks select facility provides a UNIX- and Windows-compatible method
for pending on multiple file descriptors. The library selectLib provides both task-
level support, allowing tasks to wait for multiple devices to become active, and
device driver support, giving drivers the ability to detect tasks that are pended
while waiting for I/O on the device. To use this facility, the header file selectLib.h
must be included in your application code.

Task-level support not only gives tasks the ability to simultaneously wait for I/O
on multiple devices, but it also allows tasks to specify the maximum time to wait
for I/O to become available. For an example of using the select facility to pend on
multiple file descriptors, consider a client-server model in which the server is
servicing both local and remote clients. The server task uses a pipe to communicate
with local clients and a socket to communicate with remote clients. The server task
must respond to clients as quickly as possible. If the server blocks waiting for a
request on only one of the communication streams, it cannot service requests that
come in on the other stream until it gets a request on the first stream. For example,
if the server blocks waiting for a request to arrive in the socket, it cannot service
requests that arrive in the pipe until a request arrives in the socket to unblock it.
This can delay local tasks waiting to get their requests serviced. The select facility
solves this problem by giving the server task the ability to monitor both the socket
and the pipe and service requests as they come in, regardless of the communication
stream used.

Tasks can block until data becomes available or the device is ready for writing. The
select() routine returns when one or more file descriptors are ready or a timeout
has occurred. Using the select() routine, a task specifies the file descriptors on
which to wait for activity. Bit fields are used in the select() call to specify the read
and write file descriptors of interest. When select() returns, the bit fields are
modified to reflect the file descriptors that have become available. The macros for
building and manipulating these bit fields are listed in Table 3-3.

Select Macros

Macro Function

FD_ZERO Zeros all bits.

FD_SET Sets bit corresponding to a specified file descriptor.
FD_CLR Clears a specified bit.

FD_ISSET Returns 1 if specified bit is set, otherwise returns 0.

104

Example 3-1

3
I/O System

Applications can use select() with any character I/O devices that provide support
for this facility (for example, pipes, serial devices, and sockets). For information on
writing a device driver that supports select(), see Implementing select(), p.152.

The Select Facility

[* selServer.c - select example

* |n this example, a server task uses two pipes: one for normal-priority
* requests, the other for high-priority requests. The server opens both
* pipes and blocks while waiting for data to be available in at least one
* of the pipes.

*

#include "vxWorks.h"
#include "selectLib.h"
#include "fcntl.h"

#define MAX_FDS 2

#define MAX_DATA 1024

#define PIPEHI "/pipe/highPriority"
#define PIPENORM "/pipe/normalPriority"

!
* selServer - reads data as it becomes available from two different pipes
*

* Opens two pipe fds, reading from whichever becomes available. The

* server code assumes the pipes have been created from either another
* task or the shell. To test this code from the shell do the following:

* ->1d < selServer.o

-> pipeDevCreate ("/pipe/highPriority”, 5, 1024)

-> pipeDevCreate ("/pipe/normalPriority", 5, 1024)

-> fdHi = open ("/pipe/highPriority", 1, 0)

-> fdNorm = open ("/pipe/normalPriority", 1, 0)

-> josFdShow

-> sp selServer

* >

* At this point you should see selServer's state as pended. You can now
* write to either pipe to make the selServer display your message.

* ->write fdNorm, "Howdy", 6

* > write fdHi, "Urgent", 7

* %k 3k ok ok

*

STATUS selServer (void)
struct fd_set readFds; /* bit mask of fds to read from */
int fds[MAX_FDS]; [* array of fds on which to pend */
int width; /* number of fds on which to pend */
int i; [* index for fd array */

char buffer[MAX_DATA]; /* buffer for data that is read */

105

VxWorks 5.4
Programmer’s Guide

[* open file descriptors */
if ((fds[0] = open (PIPEHI, O_RDONLY, 0)) == ERROR)
return (ERROR);
if ((fds[1] = open (PIPENORM, O_RDONLY, 0)) == ERROR)
return (ERROR);

[* loop forever reading data and servicing clients */
FOREVER

/* clear bits in read bit mask */
FD_ZERO (&readFds);

/* initialize bit mask */
FD_SET (fds[0], &readFds);
FD_SET (fds[1], &readFds);
width = (fds[0] > fds[1]) ? fds[0] : fds[1];
width++;

/* pend, waiting for one or more fds to become ready */
if (select (width, &readFds, NULL, NULL, NULL) == ERROR)
return (ERROR);

/* step through array and read from fds that are ready */
for (i=0; i< MAX_FDS; i++)

{
[* check if this fd has data to read */
if (FD_ISSET (fds[i], &readFds))

[* typically read from fd now that it is ready */

read (fds[i], buffer, MAX_DATA);

I* normally service request, for this example print it */

printf ("SELSERVER Reading from %s: %s\n",
(i==0) ? PIPEHI : PIPENORM, buffer);

3.4 Buffered I/O: Stdio

The VxWorks I/0O library provides a buffered I/O package that is compatible with
the UNIX and Windows stdio package and provides full ANSI C support. To
include the stdio package in the VxWorks system, select INCLUDE_ANSI_STDIO
for inclusion in the project facility VxWorks view; see Tornado User’s Guide: Projects
for information on configuring VxWorks.

106

3
I/O System

Note that the implementation of printf(), sprintf(), and sscanf(), traditionally
considered part of the stdio package, is part of a different package in VxWorks.
These routines are discussed in 3.5 Other Formatted 1/O, p.108.

3.4.1 Using Stdio

Although the VxWorks I/O system is efficient, some overhead is associated with
each low-level call. First, the I/O system must dispatch from the device-
independent user call (read(), write(), and so on) to the driver-specific routine for
that function. Second, most drivers invoke a mutual exclusion or queuing
mechanism to prevent simultaneous requests by multiple users from interfering
with each other.

Because the VxWorks primitives are fast, this overhead is quite small. However, an
application processing a single character at a time from a file incurs that overhead
for each character if it reads each character with a separate read() call:

n=read(fd, & char, 1),

To make this type of I/ O more efficient and flexible, the stdio package implements
a buffering scheme in which data is read and written in large chunks and buffered
privately. This buffering is transparent to the application; it is handled
automatically by the stdio routines and macros. To access a file with stdio, a file is
opened with fopen() instead of open() (many stdio calls begin with the letter f):

fp = fopen ("/usr/foo", "r");

The returned value, a file pointer (or fp) is a handle for the opened file and its
associated buffers and pointers. An fp is actually a pointer to the associated data
structure of type FILE (that s, it is declared as FILE *). By contrast, the low-level I/O
routines identify a file with a file descriptor (fd), which is a small integer. In fact, the
FILE structure pointed to by the fp contains the underlying fd of the open file.

An already open fd can be associated belatedly with a FILE buffer by calling
fdopen():

fp=fdopen(fd,"r);

After a file is opened with fopen(), data can be read with fread(), or a character at
a time with getc(), and data can be written with fwrite(), or a character at a time
with putc().

The routines and macros to get data into or out of a file are extremely efficient. They
access the buffer with direct pointers that are incremented as data is read or written

107

VxWorks 5.4
Programmer’s Guide

by the user. They pause to call the low-level read or write routines only when a
read buffer is empty or a write buffer is full.

A WARNING: The stdio buffers and pointers are private to a particular task. They are
not interlocked with semaphores or any other mutual exclusion mechanism,
because this defeats the point of an efficient private buffering scheme. Therefore,
multiple tasks must not perform I/O to the same stdio FILE pointer at the same
time.

The FILE buffer is deallocated when fclose() is called.

3.4.2 Standard Input, Standard Output, and Standard Error

As discussed earlier in 3.3 Basic I/O, p.98, there are three special file descriptors (0,
1, and 2) reserved for standard input, standard output, and standard error. Three
corresponding stdio FILE buffers are automatically created when a task uses the
standard file descriptors, stdin, stdout, and stderr, to do buffered 1/O to the standard
fds. Each task using the standard I/O fds has its own stdio FILE buffers. The FILE
buffers are deallocated when the task exits.

3.5 Other Formatted I/0O

3.5.1 Special Cases: printf(), sprintf(), and sscanf()

The routines printf(), sprintf(), and sscanf() are generally considered to be part of
the standard stdio package. However, the VxWorks implementation of these
routines, while functionally the same, does not use the stdio package. Instead, it
uses a self-contained, formatted, non-buffered interface to the I/O system in the
library fioLib. Note that these routines provide the functionality specified by
ANSI; however, printf() is not buffered.

Because these routines are implemented in this way, the full stdio package, which
is optional, can be omitted from a VxWorks configuration without sacrificing their
availability. Applications requiring printf-style output that is buffered can still
accomplish this by calling fprintf() explicitly to stdout.

108

3
I/O System

While sscanf() is implemented in fioLib and can be used even if stdio is omitted,
the same is not true of scanf(), which is implemented in the usual way in stdio.

3.5.2 Additional Routines: printErr() and fdprintf()

Additional routines in fioLib provide formatted but unbuffered output. The
routine printErr() is analogous to printf() but outputs formatted strings to the
standard error fd (2). The routine fdprintf() outputs formatted strings to a
specified fd.

3.5.3 Message Logging

Another higher-level I/O facility is provided by the library logLib, which allows
formatted messages to be logged without having to do I/O in the current task’s
context, or when there is no task context. The message format and parameters are
sent on a message queue to a logging task, which then formats and outputs the
message. This is useful when messages must be logged from interrupt level, or
when it is desirable not to delay the current task for I/O or use the current task’s
stack for message formatting (which can take up significant stack space). The
message is displayed on the console unless otherwise redirected at system startup
using logInit() or dynamically using logFdSet().

3.6 Asynchronous Input/Output

Asynchronous Input/Output (AIO) is the ability to perform input and output
operations concurrently with ordinary internal processing. AIO enables you to
decouple I/0O operations from the activities of a particular task when these are
logically independent.

The benefit of AIO is greater processing efficiency: it permits I/O operations to
take place whenever resources are available, rather than making them await
arbitrary events such as the completion of independent operations. AIO eliminates
some of the unnecessary blocking of tasks that is caused by ordinary synchronous
I/0; this decreases contention for resources between input/output and internal
processing, and expedites throughput.

109

VxWorks 5.4
Programmer’s Guide

The VxWorks AIO implementation meets the specification in the POSIX 1003.1b
standard. To include AIO in your VxWorks configuration, select
INCLUDE_POSIX_AIO and INCLUDE_POSIX_AIO_SYSDRYV in the project facility
VxWorks view; see Tornado User’s Guide: Projects for information on configuring
VxWorks. The second configuration constant enables the auxiliary AIO system
driver, required for asynchronous I/O on all current VxWorks devices.

3.6.1 The POSIX AlO Routines

Table 3-4

The VxWorks library aioPxLib provides the POSIX AIO routines. To access a file
asynchronously, open it with the open() routine, like any other file. Thereafter, use
the file descriptor returned by open() in calls to the AIO routines. The POSIX AIO
routines (and two associated non-POSIX routines) are listed in Table 3-4.

Asynchronous Input/Output Routines

Function Description

aioPxLibInit() Initialize the AIO library (non-POSIX).

aioShow() Display the outstanding AIO requests (non-POSIX)."
aio_read() Initiate an asynchronous read operation.

aio_write() Initiate an asynchronous write operation.

aio_listio() Initiate a list of up to LIO_MAX asynchronous I/O requests.
aio_error() Retrieve the error status of an AIO operation.

aio_return() Retrieve the return status of a completed AIO operation.
aio_cancel() Cancel a previously submitted AIO operation.

aio_suspend() Wait until an AIO operation is done, interrupted, or timed out.

* This function is not built into the Tornado shell. To use it from the Tornado shell, you
must select INCLUDE_POSIX_AIO_SHOW for inclusion in the project facility
VxWorks view. When you invoke the function, its output is sent to the standard
output device.

The default VxWorks initialization code calls aioPxLibInit() automatically when
INCLUDE_POSIX_AIO is selected for inclusion in the project facility VxWorks view.
This routine takes one parameter, the maximum number of lio_listio() calls that
can be outstanding at one time. By default this parameter is MAX_LIO_CALLS

110

3
I/O System

(which can be seen on the Params tab of the properties window to be 0 by default).
When the parameter is 0, the value is taken from AIO_CLUST_MAX (defined in
installDir/target/h/private/aioPxLibP.h).

The AIO system driver, aioSysDry, is initialized by default with the routine
aioSysInit() when both INCLUDE_POSIX_AIO and
INCLUDE_POSIX_AIO_SYSDRYV are included. The purpose of aioSysDrv is to
provide request queues independent of any particular device driver, so that you
can use any VxWorks device driver with AIO.

The routine aioSysInit() takes three parameters: the number of AIO system tasks
to spawn, and the priority and stack size for these system tasks. The number of
AIO system tasks spawned equals the number of AIO requests that can be handled
in parallel. The default initialization call uses three constants, all defined in
configAllLh:

aioSyslnit(MAX_AIO_SYS_TASKS, AIO_TASK_PRIORITY, AIO_TASK_STACK_SIZE)

When any of the parameters passed to aioSysInit() is 0, the corresponding value
is taken from AIO_IO_TASKS_DFLT, AIO_IO_PRIO_DFLT, and
AIO_IO_STACK_DFLT (all defined in installDir/target/h/aioSysDrv.h).

Table 3-5 lists the names of the constants called from usrConfig.c and their default
values (which can be seen on the Params tab of the properties window). It also
shows the constants used within initialization routines when the parameters are
left at their default values of 0, and where these constants are defined.

Table 3-5 AIO Initialization Functions and Related Constants

Initiali;ation configAlLh Constant Def. Header File Cor_\stant Def. Hee}der File ‘
Function Value used whenarg=0 Value (allin installDir/target
aioPxLibInit() MAX_LIO_CALLS 0 AIO_CLUST_MAX 100 h/private/aioPxLibP.h
aioSysInit() MAX_AIO_SYS_TASKS 0 AIO_IO_TASKS_DFLT 2 h/aioSysDrv.h
AIO_TASK_PRIORITY 0 AIO_IO_PRIO_DFLT 50 h/aioSysDrv.h

AIO_TASK_STACK_SIZE 0 AIO_IO_STACK_DFLT 0x7000 h/aioSysDrv.h

3.6.2 AlO Control Block

Each of the AIO calls takes an AIO control block (aiocb) as an argument to describe
the AIO operation. The calling routine must allocate space for the control block,
which is associated with a single AIO operation. No two concurrent AIO

111

VxWorks 5.4
Programmer’s Guide

operations can use the same control block; an attempt to do so yields undefined
results.

The aiocb and the data buffers it references are used by the system while
performing the associated request. Therefore, after you request an AIO operation,
you must not modify the corresponding aiocb before calling aio_return(); this
function frees the aiocb for modification or reuse.

A CAUTION: If a routine allocates stack space for the aiocb, that routine must call
aio_return() to free the aiocb before returning.

The aiocb structure is defined in aio.h. It contains the following fields:

aio_fildes
file descriptor for I/O

aio_offset
offset from the beginning of the file

aio_buf
address of the buffer from/to which AIO is requested

aio_nbytes
number of bytes to read or write

aio_reqprio
priority reduction for this AIO request

aio_sigevent
signal to return on completion of an operation (optional)

aio_lio_opcode
operation to be performed by a lio_listio() call

aio_sys
VxWorks-specific data (non-POSIX)

For full definitions and important additional information, see the reference entry
for aioPxLib.

3.6.3 Using AlO

The routines aio_read(), aio_write(), or lio_listio() initiate AIO operations. The
last of these, lio_listio(), allows you to submit a number of asynchronous requests
(read and/or write) at one time. In general, the actual I/O (reads and writes)

initiated by these routines does not happen immediately after the AIO request. For

112

3
I/O System

that reason, their return values do not reflect the outcome of the actual I/O
operation, but only whether a request is successful—that is, whether the AIO
routine is able to put the operation on a queue for eventual execution.

After the I/O operations themselves execute, they also generate return values that
reflect the success or failure of the I/O. There are two routines that you can use to
get information about the success or failure of the I/O operation: aio_error() and
aio_return(). You can use aio_error() to get the status of an AIO operation
(success, failure, or in progress), and aio_return() to obtain the return values from
the individual I/O operations. Until an AIO operation completes, its error status
is EINPROGRESS. To cancel an AIO operation, call aio_cancel().

AlO with Periodic Checks for Completion

Example 3-2

The following code uses a pipe for the asynchronous I/O operations. The example
creates the pipe, submits an AIO read request, verifies that the read request is still
in progress, and submits an AIO write request. Under normal circumstances, a
synchronous read to an empty pipe blocks and the task does not execute the write,
but in the case of AIO, we initiate the read request and continue. After the write
request is submitted, the example task loops, checking the status of the AIO
requests periodically until both the read and write complete. Because the AIO
control blocks are on the stack, we must call aio_return() before returning from
aioExample().

Asynchronous 1/0

/* aioEx.c - example code for using asynchronous 1/0 */
[* includes */

#include "vxWorks.h"

#include "aio.h"

#include "errno.h"

[* defines */

#define BUFFER_SIZE 200

!
* aioExample - use AlO library
*

* This example shows the basic functions of the AIO library.

* RETURNS: OK if successful, otherwise ERROR.
*
/

113

VxWorks 5.4
Programmer’s Guide

STATUS aioExample (void)

{

int fd;

static char exFile [] = "/pipe/1stPipe";

struct aiocb aiocb_read; /* read aiocb */

struct aiocb aioch_write; /* write aiocb */

static char * test_string = "testing 1 2 3";

char buffer [BUFFER_SIZE]; /* buffer for read aiocb */

pipeDevCreate (exFile, 50, 100);

if (fd = open (exFile, O_CREAT | O_TRUNC | O_RDWR, 0666)) ==
ERROR)

printf (“aioExample: cannot open %s errno 0x%x\n", exFile, errno);
return (ERROR);
}

printf ("aioExample: Example file = %s\tFile descriptor = %d\n",
exFile, fd);

[* initialize read and write aiocbs */
bzero ((char *) &aioch_read, sizeof (struct aioch));
bzero ((char *) buffer, sizeof (buffer));
aiocb_read.aio_fildes = fd;
aiocb_read.aio_buf = buffer;
aiocb_read.aio_nbytes = BUFFER_SIZE;
aiocb_read.aio_reqprio = 0;

bzero ((char *) &aiocb_write, sizeof (struct aiocb));
aiocb_write.aio_fildes = fd;
aiocb_write.aio_buf = test_string;
aiocb_write.aio_nbytes = strlen (test_string);
aiocb_write.aio_reqprio = 0;

[* initiate the read */
if (aio_read (&aiocb_read) == -1)
printf ("aioExample: aio_read failed\n");

[* verify that it is in progress */
if (aio_error (&aiocb_read) == EINPROGRESS)
printf ("aioExample: read is still in progress\n®);

[* write to pipe - the read should be able to complete */
printf ("aioExample: getting ready to initiate the write\n");
if (aio_write (&aiocb_write) == -1)

printf ("aioExample: aio_write failed\n");

/* wait til both read and write are complete */
while ((aio_error (&aiocb_read) == EINPROGRESS) ||
(aio_error (&aioch_write) == EINPROGRESS))
taskDelay (1);

/* print out what was read */
printf ("aioExample: message = %s\n", buffer);

114

3
I/O System

[* clean up */
if (aio_return (&aiocb_read) == -1)
printf ("aioExample: aio_return for aiocb_read failed\n");
if (aio_return (&aiocb_write) == -1)
printf ("aioExample: aio_return for aiocb_write failed\n");

close (fd);
return (OK);
}

Alternatives for Testing AIO Completion
A task can determine whether an AIO request is complete in any of the following
ways:

+ Check the result of aio_error() periodically, as in the previous example, until
the status of an AIO request is no longer EINPROGRESS.

* Use aio_suspend() to suspend the task until the AIO request is complete.
= Usesignals to be informed when the AIO request is complete.

The following example is similar to the preceding aioExample(), except that it uses
signals to be notified when the write is complete. If you test this from the shell,
spawn the routine to run at a lower priority than the AIO system tasks to assure
that the test routine does not block completion of the AIO request. (For details on
the shell, see the Tornado User’s Guide: Shell.)

Example 3-3 Asynchronous I/O with Signals

[* aloExSig.c - example code for using signals with asynchronous 1/O */
/¥ includes */

#include "vxWorks.h"

#include "aio.h"

#include "errno.h"

[* defines */

#define BUFFER_SIZE 200

#define LIST_SIZE 1

#define EXAMPLE_SIG_NO 25 /* signal number */

[* forward declarations */

void mySigHandler (int sig, struct siginfo * info, void * pContext);

115

VxWorks 5.4
Programmer’s Guide

/
* aioExampleSig - use AIO library.
*

* This example shows the basic functions of the AIO library.
* Note if this is run from the shell it must be spawned. Use:
* ->sp aioExampleSig

*

* RETURNS: OK if successful, otherwise ERROR.

*

STATUS aioExampleSig (void)
{
int fd;
static char exFile [] = "/pipe/1stPipe";
struct aioch aiocb_read; /*read aiocb */
static struct aiocb aioch_write; /* write aiocb */
struct sigaction action; * signal info */
static char* test_string = "testing 1 2 3"
char buffer [BUFFER_SIZE]; /* aiocb read buffer */

pipeDevCreate (exFile, 50, 100);
if ((fd = open (exFile, O_CREAT | O_TRUNC| O_RDWR, 0666)) == ERROR)

printf ("aioExample: cannot open %s errno 0x%x\n", exFile, errno);
return (ERROR);
}

printf ("aioExampleSig: Example file = %s\tFile descriptor = %d\n",
exFile, fd);

/* set up signal handler for EXAMPLE_SIG_NO */

action.sa_sigaction = mySigHandler;
action.sa_flags = SA_SIGINFO;

sigemptyset (&action.sa_mask);

sigaction (EXAMPLE_SIG_NO, &action, NULL);

/* initialize read and write aiocbs */

bzero ((char *) &aioch_read, sizeof (struct aioch));
bzero ((char *) buffer, sizeof (buffer));
aiocb_read.aio_fildes = fd;

aiocb_read.aio_buf = buffer;
aiocb_read.aio_nbytes = BUFFER_SIZE;
aiocb_read.aio_reqprio = 0;

bzero ((char *) &aiocb_write, sizeof (struct aiocb));
aiocb_write.aio_fildes = fd;
aiocb_write.aio_buf = test_string;
aiocb_write.aio_nbytes = strlen (test_string);
aiocb_write.aio_reqprio = 0;

/* set up signal info */

aiocb_write.aio_sigevent.sigev_signo = EXAMPLE_SIG_NO;

116

3
I/O System

aiocb_write.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
aiocb_write.aio_sigevent.sigev_value.sival_ptr =
(void *) &aioch_write;
[* initiate the read */

if (aio_read (&aiocb_read) == -1)
printf ("aioExampleSig: aio_read failed\n");

[* verify that it is in progress */

if (aio_error (&aioch_read) == EINPROGRESS)
printf ("aioExampleSig: read is still in progress\n“);

[* write to pipe - the read should be able to complete */
printf ("aioExampleSig: getting ready to initiate the write\n");
if (aio_write (&aiocb_write) == -1)

printf ("aioExampleSig: aio_write failed\n");
[* clean up */
if (aio_return (&aiocb_read) == -1)
printf ("aioExampleSig: aio_return for aiocb_read failed\n");
else
printf ("aioExampleSig: aio read message = %s\n",
aiocb_read.aio_buf);

close (fd);

return (OK);
}

void mySigHandler
int sig,
struct siginfo * info,
void* pContext
)

[* print out what was read */
printf ("mySigHandler: Got signal for aio write\n");
[* write is complete so let's do cleanup for it here */

if (aio_return (info->si_value.sival_ptr) == -1)

printf ("mySigHandler: aio_return for aiocb_write failed\n");
printErrno (0);
}

}

117

VxWorks 5.4
Programmer’s Guide

3.7 Devices in VxWorks

The VxWorks 1/0 system is flexible, allowing specific device drivers to handle the
seven I/0 functions. All VxWorks device drivers follow the basic conventions
outlined previously, but differ in specifics; this section describes those specifics.

Table 3-6 Drivers Provided with VxWorks

Module Driver Description

ttyDrv Terminal driver

ptyDrv Pseudo-terminal driver

pipeDrv Pipe driver

memDrv Pseudo memory device driver
nfsDrv NFS client driver

netDrv Network driver for remote file access
ramDrv RAM driver for creating a RAM disk
scsiLib SCSI interface library

- Other hardware-specific drivers

3.7.1 Serial I/O Devices (Terminal and Pseudo-Terminal Devices)

VxWorks provides terminal and pseudo-terminal device drivers (tty and pty
drivers). The tty driver is for actual terminals; the pty driver is for processes that
simulate terminals. These pseudo terminals are useful in applications such as
remote login facilities.

VxWorks serial I/O devices are buffered serial byte streams. Each device has a ring
buffer (circular buffer) for both input and output. Reading from a tty device
extracts bytes from the input ring. Writing to a tty device adds bytes to the output
ring. The size of each ring bulffer is specified when the device is created during
system initialization.

1. For the remainder of this section, the term tty is used to indicate both ¢ty and pty devices.

118

3
I/O System

Tty Options

The tty devices have a full range of options that affect the behavior of the device.
These options are selected by setting bits in the device option word using the
ioctl() routine with the FIOSETOPTIONS function (see I/O Control Functions,
p-121). For example, to set all the tty options except OPT_MON_TRAP:

status = ioctl (fd, FIOSETOPTIONS, OPT_TERMINAL & ~OPT_MON_TRAP);

Table 3-7 is a summary of the available options. The listed names are defined in the
header file ioLib.h. For more detailed information, see the reference entry for
tyLib.

Table 3-7 Tty Options

Library Description

OPT_LINE Select line mode. (See Raw Mode and Line Mode, p.119.)

OPT_ECHO Echo input characters to the output of the same channel.
OPT_CRMOD Translate input RETURN characters into NEWLINE (\n); translate

output NEWLINE into RETURN-LINEFEED.
OPT_TANDEM Respond to X-on/X-off protocol (CTRL+Q and CTRL+S).
OPT_7_BIT Strip the most significant bit from all input bytes.
OPT_MON_TRAP Enable the special ROM monitor trap character, CTRL+X by default.

OPT_ABORT Enable the special target shell abort character, CTRL+C by default.
(Only useful if the target shell is configured into the system; see
9. Target Shell in this manual for details.)

OPT_TERMINAL Set all of the above option bits.

OPT_RAW Set none of the above option bits.

Raw Mode and Line Mode

A tty device operates in one of two modes: raw mode (unbuffered) or line mode. Raw
mode is the default. Line mode is selected by the OPT_LINE bit of the device option
word (see Tty Options, p.119).

In raw mode, each input character is available to readers as soon as it is input from
the device. Reading from a tty device in raw mode causes as many characters as

119

VxWorks 5.4
Programmer’s Guide

possible to be extracted from the input ring, up to the limit of the user’s read buffer.
Input cannot be modified except as directed by other tty option bits.

In line mode, all input characters are saved until a NEWLINE character is input; then
the entire line of characters, including the NEWLINE, is made available in the ring
at one time. Reading from a tty device in line mode causes characters up to the end
of the next line to be extracted from the input ring, up to the limit of the user’s read
buffer. Input can be modified by the special characters CTRL+H (backspace),
CTRL+U (line-delete), and CTRL+D (end-of-file), which are discussed in Tty Special
Characters, p.120.

Tty Special Characters

The following special characters are enabled if the tty device operates in line mode,
that is, with the OPT_LINE bit set:

+ The backspace character, by default CTRL+H, causes successive previous
characters to be deleted from the current line, up to the start of the line. It does
this by echoing a backspace followed by a space, and then another backspace.

* The line-delete character, by default CTRL+U, deletes all the characters of the
current line.

* The end-of-file (EOF) character, by default CTRL+D, causes the current line to
become available in the input ring without a NEWLINE and without entering
the EOF character itself. Thus if the EOF character is the first character typed
on a line, reading that line returns a zero byte count, which is the usual
indication of end-of-file.

The following characters have special effects if the tty device is operating with the
corresponding option bit set:

* The flow control characters, CTRL+Q and CTRL+S, commonly known as
X-on/X-off protocol. Receipt of a CTRL+S input character suspends output to
that channel. Subsequent receipt of a CTRL+Q resumes the output. Conversely,
when the VxWorks input buffer is almost full, a CTRL+S is output to signal the
other side to suspend transmission. When the input buffer is empty enough, a
CTRL+Q is output to signal the other side to resume transmission. X-on/X-off
protocol is enabled by OPT_TANDEM.

* The ROM monitor trap character, by default CTRL+X. This character traps to the
ROM-resident monitor program. Note that this is drastic. All normal VxWorks
functioning is suspended, and the computer system is controlled entirely by
the monitor. Depending on the particular monitor, it may or may not be

120

Table 3-8

3
I/O System

possible to restart VxWorks from the point of interruption.? The monitor trap
character is enabled by OPT_MON_TRAP.

* The special target shell abort character, by default CTRL+C. This character
restarts the target shell if it gets stuck in an unfriendly routine, such as one that
has taken an unavailable semaphore or is caught in an infinite loop. The target
shell abort character is enabled by OPT_ABORT.

The characters for most of these functions can be changed using the tyLib routines
shown in Table 3-8.

Tty Special Characters

Character Description Modifier

CTRL+H backspace (character delete) tyBackspaceSet()
CTRL+U line delete tyDeleteLineSet()
CTRL+D EOF (end of file) tyEOFSet()
CTRL+C target shell abort tyAbortSet()
CTRL+X trap to boot ROMs tyMonitorTrapSet()
CTRL+S output suspend N/A

CTRL+Q output resume N/A

I/O Control Functions

Table 3-9

The tty devices respond to the ioctl() functions in Table 3-9, defined in ioLib.h. For
more information, see the reference entries for tyLib, ttyDrv, and ioctl().

1/0 Control Functions Supported by tyLib

Function Description

FIOBAUDRATE Set the baud rate to the specified argument.
FIOCANCEL Cancel a read or write.

FIOFLUSH Discard all bytes in the input and output buffers.

. It will not be possible to restart VxWorks if unhandled external interrupts occur during the

boot countdown.

121

Table 3-9

VxWorks 5.4
Programmer’s Guide

I/0 Control Functions Supported by ~ tyLib (Continued)

Function Description

FIOGETNAME Get the file name of the fd.

FIOGETOPTIONS Return the current device option word.
FIONREAD Get the number of unread bytes in the input buffer.
FIONWRITE Get the number of bytes in the output buffer.
FIOSETOPTIONS Set the device option word.

CAUTION: To change the driver’s hardware options (for example, the number of
stop bits or parity bits), use the ioctl() function SIO_HW_OPTS_SET. Because this
command is not implemented in most drivers, you may need to add it to your BSP
serial driver, which resides in installDir/target/src/drv/sio. The details of how to
implement this command depend on your board’s serial chip. The constants
defined in the header file installDir/target/h/sioLib.h provide the POSIX
definitions for setting the hardware options.

3.7.2 Pipe Devices

Creating Pipes

Pipes are virtual devices by which tasks communicate with each other through the
I/0 system. Tasks write messages to pipes; these messages can then be read by
other tasks. Pipe devices are managed by pipeDrv and use the kernel message
queue facility to bear the actual message traffic.

Pipes are created by calling the pipe create routine:
status = pipeDevCreate ("/pipe/name”, maxMsgs, maxLength);

The new pipe can have at most maxMsgs messages queued at a time. Tasks that
write to a pipe that already has the maximum number of messages queued are
delayed until a message is dequeued. Each message in the pipe can be at most
maxLength bytes long; attempts to write longer messages result in an error.

122

3
I/O System

Writing to Pipes from ISRs

VxWorks pipes are designed to allow ISRs to write to pipes in the same way as
task-level code. Many VxWorks facilities cannot be used from ISRs, including I/O
to devices other than pipes. However, ISRs can use pipes to communicate with
tasks, which can then invoke such facilities.

ISRs write to a pipe using the write() call. Tasks and ISRs can write to the same
pipes. However, if the pipe is full, the message is discarded because the ISRs
cannot pend. ISRs must not invoke any I/O function on pipes other than write().

I/O Control Functions

Table 3-10

Pipe devices respond to the ioctl() functions summarized in Table 3-10. The
functions listed are defined in the header file ioLib.h. For more information, see
the reference entries for pipeDrv and for ioctl() in ioLib.

1/0 Control Functions Supported by pipeDrv

Function Description

FIOFLUSH Discard all messages in the pipe.

FIOGETNAME Get the pipe name of the fd.

FIONMSGS Get the number of messages remaining in the pipe.
FIONREAD Get the size in bytes of the first message in the pipe.

3.7.3 Pseudo Memory Devices

The memDrv driver allows the I/O system to access memory directly as a pseudo-
I/0O device. Memory location and size are specified when the device is created.
This feature is useful when data must be preserved between boots of VxWorks or
when sharing data between CPUs. This driver does not implement a file system as
does ramDrv. The ramDrv driver must be given memory over which it has
absolute control; whereas memDrv provides a high-level method of reading and
writing bytes in absolute memory locations through I/0O calls.

123

VxWorks 5.4
Programmer’s Guide

Installing the Memory Driver

The driver is first initialized and then the device is created:

STATUS memDrv
(void)
STATUS memDevCreate
(char * name, char * base, int length)

Memory for the device is an absolute memory location beginning at base. The
length parameter indicates the size of the memory. For additional information on
the memory driver, see the reference entries for memDrv, memDevCreate(), and
memDro().

I/O Control Functions

Table 3-11

The memory driver responds to the ioctl() functions summarized in Table 3-11.
The functions listed are defined in the header file ioLib.h. For more information,
see the reference entries for memDrv and for ioctl() in ioLib.

I/O Control Functions Supported by memDrv

Function Description
FIOSEEK Set the current byte offset in the file.
FIOWHERE Return the current byte position in the file.

3.7.4 Network File System (NFS) Devices

Network File System (NFS) devices allow files on remote hosts to be accessed with
the NFS protocol. The NFS protocol specifies both client software, to read files from
remote machines, and server software, to export files to remote machines.

The driver nfsDrv acts as a VxWorks NFS client to access files on any NFS server
on the network. VxWorks also allows you to run an NFS server to export files to
other systems; see VxWorks Network Programmer’s Guide: File Access Applicationsl.

Using NFS devices, you can create, open, and access remote files exactly as though
they were on a file system on a local disk. This is called network transparency.

124

3
I/O System

Mounting a Remote NFS File System from VxWorks

Access to a remote NFS file system is established by mounting that file system
locally and creating an I/O device for it using nfsMount(). Its arguments are

(1) the host name of the NFS server, (2) the name of the host file system, and (3) the
local name for the file system.

For example, the following call mounts /usr of the host mars as /vxusr locally:
nfsMount (“mars", "/usr", "vxusr");

This creates a VxWorks I/O device with the specified local name (/vxusr, in this
example). If the local name is specified as NULL, the local name is the same as the
remote name.

After a remote file system is mounted, the files are accessed as though the file
system were local. Thus, after the previous example, opening the file /vxusr/foo
opens the file /usr/foo on the host mars.

The remote file system must be exported by the system on which it actually resides.
However, NFS servers can export only local file systems. Use the appropriate
command on the server to see which file systems are local. NFS requires
authentication parameters to identify the user making the remote access. To set
these parameters, use the routines nfsAuthUnixSet() and nfsAuthUnixPrompt().

Select INCLUDE_NFS for inclusion in the project facility VxWorks view to include
NFS client support in your VxWorks configuration; see Tornado User’s Guide:
Projects for information on configuring VxWorks.

The subject of exporting and mounting NFS file systems and authenticating access
permissions is discussed in more detail in VxWorks Network Programmer’s Guide:
File Access Applications. See also the reference entries nfsLib and nfsDrv, and the
NFS documentation from Sun Microsystems.

I/O Control Functions for NFS Clients

NES client devices respond to the ioctl() functions summarized in Table 3-12. The
functions listed are defined in ioLib.h. For more information, see the reference
entries for nfsDrv and for ioctl() in ioLib.

125

VxWorks 5.4
Programmer’s Guide

Table 3-12 1/O Control Functions Supported by nfsDrv

Function Description

FIOFSTATGET Get file status information (directory entry data).
FIOGETNAME Get the file name of the fd.

FIONREAD Get the number of unread bytes in the file.
FIOREADDIR Read the next directory entry.

FIOSEEK Set the current byte offset in the file.

FIOSYNC Flush data to a remote NFS file.

FIOWHERE Return the current byte position in the file.

3.7.5 Non-NFS Network Devices

VxWorks also supports network access to files on the remote host through the
Remote Shell protocol (RSH) or the File Transfer Protocol (FTP). These
implementations of network devices use the driver netDrv. When a remote file is
opened using RSH or FTP, the entire file is copied into local memory. As a result,
the largest file that can be opened is restricted by the available memory. Read and
write operations are performed on the in-memory copy of the file. When closed,
the file is copied back to the original remote file if it was modified.

In general, NFS devices are preferable to RSH and FTP devices for performance
and flexibility, because NFS does not copy the entire file into local memory.
However, NFS is not supported by all host systems.

Creating Network Devices

To access files on a remote host using either RSH or FTP, a network device must
first be created by calling the routine netDevCreate(). The arguments to
netDevCreate() are (1) the name of the device, (2) the name of the host the device
accesses, and (3) which protocol to use: 0 (RSH) or 1 (FIP).

For example, the following call creates an RSH device called mars: that accesses the
host mars. By convention, the name for a network device is the remote machine’s
name followed by a colon (:).

126

3
I/O System

Files on a network device can be created, opened, and manipulated as if on a local
disk. Thus, opening the file mars:/ust/foo actually opens /usr/foo on host mars.

Note that creating a network device allows access to any file or device on the
remote system, while mounting an NFS file system allows access only to a
specified file system.

For the files of a remote host to be accessible with RSH or FTP, permissions and
user identification must be established on both the remote and local systems.
Creating and configuring network devices is discussed in detail in VxWorks
Network Programmer’s Guide: File Access Applications and in the reference entry for
netDrv.

I/O Control Functions

RSH and FTP devices respond to the same ioctl() functions as NFS devices except
for FIOSYNC and FIOREADDIR. The functions are defined in the header file
ioLib.h. For more information, see the reference entries for netDrv and ioctl().

3.7.6 Block Devices

File Systems

A block device is a device that is organized as a sequence of individually accessible
blocks of data. The most common type of block device is a disk. In VxWorks, the
term block refers to the smallest addressable unit on the device. For most disk
devices, a VxWorks block corresponds to a sector, although terminology varies.

Block devices in VxWorks have a slightly different interface than other I/O
devices. Rather than interacting directly with the I/O system, block device support
consists of low-level drivers that interact with a file system. The file system, in turn,
interacts with the I/O system. This arrangement allows a single low-level driver
to be used with various different file systems and reduces the number of I/O
functions that must be supported in the driver. The internal implementation of
low-level drivers for block devices is discussed in 3.9.4 Block Devices, p.158.

For use with block devices, VxWorks is supplied with file system libraries
compatible with the MS-DOS (dosFs) and RT-11 (rt11Fs) file systems. In addition,
there is a library for a simple raw disk file system (rawFs), which treats an entire
disk much like a single large file. Also supplied is a file system that supports SCSI

127

VxWorks 5.4
Programmer’s Guide

tape devices, which are organized so that individual blocks of data are read and
written sequentially, and a file system that supports CD-ROM devices. Use of these
file systems is discussed in 4. Local File Systems in this manual. Also see the
reference entries for dosFsLib, rt11FsLib, rawFsLib, tapeFsLib, and cdromFsLib.

RAM Disk Drivers

RAM drivers, as implemented in ramDrv, emulate disk devices but actually keep
all data in memory. Memory location and “disk” size are specified when a RAM
device is created by calling ramDevCreate(). This routine can be called repeatedly
to create multiple RAM disks.

Memory for the RAM disk can be preallocated and the address passed to
ramDevCreate(), or memory can be automatically allocated from the system
memory pool using malloc().

After the device is created, a name and file system (dosFs, rt11Fs, or rawFs) must
be associated with it using the file system’s device initialization routine or file
system’s make routine, for example, dosFsDevInit() or dosFsMkfs(). Information
describing the device is passed to the file system in a BLK_DEV structure. A pointer
to this structure is returned by the RAM disk creation routine.

In the following example, a 200KB RAM disk is created with automatically
allocated memory, 512-byte sections, a single track, and no sector offset. The device
is assigned the name DEV1: and initialized for use with dosFs.

BLK_DEV *pBlkDev;
DOS_VOL_DESC *pVolDesc;
pBIkDev = ramDevCreate (0, 512, 400, 400, 0);
pVolDesc = dosFsMkfs ("DEV1:", pBlkDev);

The dosFsMkfs() routine calls dosFsDevInit() with default parameters and
initializes the file system on the disk by calling ioctl() with the FIODISKINIT.

If the RAM disk memory already contains a disk image, the first argument to
ramDevCreate() is the address in memory, and the formatting arguments must be
identical to those used when the image was created. For example:

pBlkDev = ramDevCreate (0xc0000, 512, 400, 400, 0);
pVolDesc = dosFsDevinit ("DEV1:", pBlkDev, NULL);

In this case, dosFsDevInit() must be used instead, because the file system already
exists on the disk and does not require re-initialization. This procedure is useful if
a RAM disk is to be created at the same address used in a previous boot of

VxWorks. The contents of the RAM disk are then preserved. Creating a RAM disk

128

SCSI Drivers

3
I/O System

with rt11Fs using rt11FsMkfs() and rt11FsDevlnit() follows these same
procedures. For more information on RAM disk drivers, see the reference entry for
ramDrv. For more information on file systems, see 4. Local File Systems.

SCSlis a standard peripheral interface that allows connection with a wide variety
of hard disks, optical disks, floppy disks, tape drives, and CD-ROM devices. SCSI
block drivers are compatible with the dosFs and rt11Fs libraries, and offer several
advantages for target configurations. They provide:

— local mass storage in non-networked environments
— faster I/O throughput than Ethernet networks

The SCSI-2 support in VxWorks supersedes previous SCSI support, although it
offers the option of configuring the original SCSI functionality, now known as
SCSI-1. With SCSI-2 enabled, the VxWorks environment can still handle SCSI-1
applications, such as file systems created under SCSI-1. However, applications that
directly used SCSI-1 data structures defined in scsiLib.h may require
modifications and recompilation for SCSI-2 compatibility.

The VxWorks SCSI implementation consists of two modules, one for the device-
independent SCSI interface and one to support a specific SCSI controller. The
scsiLib library provides routines that support the device-independent interface;
device-specific libraries provide configuration routines that support specific
controllers (for example, wd33c93Lib for the Western Digital WD33C93 device or
mb87030Lib for the Fujitsu MB87030 device). There are also additional support
routines for individual targets in sysLib.c.

Configuring SCSI Drivers

Table 3-13

Constants associated with SCSI drivers are listed in Table 3-13. Define these in the
indicated portion of the VxWorks view or in the configuration files. To enable SCSI
functionality, select INCLUDE_SCSI for inclusion in the project facility VxWorks
view. This enables SCSI-1. To enable SCSI-2, you must select, in addition to SCSI-
1, INCLUDE_SCSI2.

SCSI Constants

Constant Description Where to Configure
INCLUDE_SCSI Include SCSI interface. hardware/buses
INCLUDE_SCSI2 SCSI-2 extensions. hardware/buses

129

Table 3-13

VxWorks 5.4
Programmer’s Guide

SCSI Constants

Constant Description Where to Configure

INCLUDE_SCSI_DMA Enable DMA for SCSI. sysLib.c or sysScsi.c
INCLUDE_SCSI_BOOT Allow booting from a SCSI device. sysLib.c or sysScsi.c

SCSI_AUTO_CONFIG Auto-configure and locate all sysLib.c or sysScsi.c

targets on a SCSI bus.

INCLUDE_DOSFS Include the DOS file system. operating system
components/lIO system
components

INCLUDE_TAPEFS Include the tape file system. config.h

INCLUDE_CDROMES Include CD-ROM file system config.h

support.

Autoconfiguration, DMA, and booting from a SCSI device are defined
appropriately for each BSP. If you need to change these settings, see the online
reference for sysScsiConfig() under VxWorks Reference>Manual: Libraries and the
source file installDir/target/src/config/usrScsi.c. Except for dosFs, which can be
configured from the project facility, the file systems that can be used with SCSI
must be defined in config.h. (For more information see 8. Configuration and Build.)

CAUTION: Including SCSI-2 in your VxWorks image can significantly increase the
image size. If you receive a warning from vxsize when building VxWorks, or if the
size of your image becomes greater than that supported by the current setting of
RAM_HIGH_ADRS, be sure to see 8.6.1 Scaling Down VxWorks, p.344 and

8.9 Creating Bootable Applications, p.364 for information on how to resolve the
problem.

Configuring the SCSI Bus ID

Each board in a SCSI-2 environment must define a unique SCSI bus ID for the SCSI
initiator. SCSI-1 drivers, which support only a single initiator at a time, assume an
initiator SCSI bus ID of 7. However, SCSI-2 supports multiple initiators, up to eight
initiators and targets at one time. Therefore, to ensure a unique 1D, choose a value
in the range 0-7 to be passed as a parameter to the driver’s initialization routine
(for example, ncr710CtrlInitScsi2()) by the sysScsilnit() routine in sysScsi.c. For
more information, see the reference entry for the relevant driver initialization
routine. If there are multiple boards on one SCSI bus, and all of these boards use

130

3
I/O System

the same BSP, then different versions of the BSP must be compiled for each board
by assigning unique SCSI bus IDs.

ROM Size Adjustment for SCSI Boot

If INCLUDE_SCSI_BOOT is defined, larger ROMs may be required for some
boards. If this is the case, the definition of ROM_SIZE in Makefile and in config.h
should be changed to a size that suits the capabilities of the target hardware.

Structure of the SCSI Subsystem

The SCSI subsystem supports libraries and drivers for both SCSI-1 and SCSI-2. It
consists of the following six libraries which are independent of any SCSI controller:

scsiLib
routines that provide the mechanism for switching SCSI requests to either
the SCSI-1 library (scsilLib) or the SCSI-2 library (scsi2Lib), as configured
by the board support package (BSP).

scsilLib
SCSI-1 library routines and interface, used when only INCLUDE_SCSI is
selected for inclusion in the project facility VxWorks view (see Configuring
SCSI Drivers, p.129.)

scsi2Lib
SCSI-2 library routines and all physical device creation and deletion
routines.

scsiCommonLib
commands common to all types of SCSI devices.

scsiDirectLib
routines and commands for direct access devices (disks).

scsiSeqLib
routines and commands for sequential access block devices (tapes).

Controller-independent support for the SCSI-2 functionality is divided into
scsi2Lib, scsiCommonLib, scsiDirectLib, and scsiSeqLib. The interface to any of
these SCSI-2 libraries can be accessed directly. However, scsiSeqLib is designed to
be used in conjunction with tapeFs, while scsiDirectLib works with dosFs, rt11Fs,
and rawFs. Applications written for SCSI-1 can be used with SCSI-2; however,
SCSI-1 device drivers cannot.

VxWorks targets using SCSI interface controllers require a controller-specific
device driver. These device drivers work in conjunction with the controller-
independent SCSI libraries, and they provide controller configuration and

131

VxWorks 5.4
Programmer’s Guide

initialization routines contained in controller-specific libraries. For example, the
Western Digital WD33C93 SCSI controller is supported by the device driver
libraries wd33c¢93Lib, wd33c¢93Lib1, and wd33¢93Lib2. Routines tied to SCSI-1
(such as wd33c93CtrlCreate()) and SCSI-2 (such as wd33c¢93CtrlCreateScsi2()) are
segregated into separate libraries to simplify configuration. There are also
additional support routines for individual targets in sysLib.c.

Booting and Initialization

To boot from a SCSI device, see 4.2.21 Booting from a Local dosFs File System Using
SCSI, p.203.

After VxWorks is built with SCSI support, the system startup code initializes the
SCSI interface by executing sysSesilnit() and usrScsiConfig() when
INCLUDE_SCSI is selected for inclusion in the project facility VxWorks view. The
call to sysScsilnit() initializes the SCSI controller and sets up interrupt handling.
The physical device configuration is specified in usrScsiConfig(), which is in
installDir/target/src/config/usrScsi.c. The routine contains an example of the
calling sequence to declare a hypothetical configuration, including:

— definition of physical devices with scsiPhysDevCreate()
— creation of logical partitions with scsiBlkDevCreate()
- specification of a file system with either dosFsDevInit() or rt11FsDevInit()

If you are not using SCSI_AUTO_CONFIG, modify usrScsiConfig() to reflect your
actual configuration. For more information on the calls used in this routine, see the
reference entries for scsiPhysDevCreate(), scsiBlkDevCreate(), dosFsDevlnit(),

rt11FsDevInit(), dosFsMkfs(), and rt11FsMkfs().

Device-Specific Configuration Options
The SCSI libraries have the following default behaviors enabled:

— SCSI messages

— disconnects

- minimum period and maximum REQ/ACK offset
- tagged command queuing

— wide data transfer

Device-specific options do not need to be set if the device shares this default
behavior. However, if you need to configure a device that diverges from these
default characteristics, use scsiTargetOptionsSet() to modify option values. These
options are fields in the SCSI_OPTIONS structure, shown below. SCSI_OPTIONS is
declared in scsi2Lib.h. You can choose to set some or all of these option values to
suit your particular SCSI device and application.

132

3

I/O System
typedef struct /* SCSI_OPTIONS - programmable options */

UINT selTimeOut; [* device selection time-out (us) */
BOOL messages; /* FALSE => do not use SCSI| messages */
BOOL disconnect; /* FALSE => do not use disconnect */
UINT8 maxOffset; /* max sync xfer offset (0 => async.) */
UINT8 minPeriod,; /* min sync xfer period (X 4 ns) */
SCSI_TAG_TYPE tagType; [* default tag type *
UINT maxTags; /* max cmd tags available (0 =>untag */
UINT8 xferwidth; /* wide data trnsfr width in SCSI units */

} SCSI_OPTIONS;

There are numerous types of SCSI devices, each supporting its own mix of SCSI-2
features. To set device-specific options, define a SCSI_OPTIONS structure and
assign the desired values to the structure’s fields. After setting the appropriate
fields, call scsiTargetOptionsSet() to effect your selections. Example 3-5 illustrates
one possible device configuration using SCSI_OPTIONS.

Call scsiTargetOptionsSet() after initializing the SCSI subsystem, but before
initializing the SCSI physical device. For more information about setting and
implementing options, see the reference entry for scsilargetOptionsSet().

WARNING: Calling scsiTargetOptionsSet() after the physical device has been
initialized may lead to undefined behavior.

The SCSI subsystem performs each SCSI command request as a SCSI transaction.
This requires the SCSI subsystem to select a device. Different SCSI devices require
different amounts of time to respond to a selection; in some cases, the selTimeOut
field may need to be altered from the default.

If a device does not support SCSI messages, the boolean field messages can be set
to FALSE. Similarly, if a device does not support disconnect/reconnect, the
boolean field disconnect can be set to FALSE.

The SCSI subsystem automatically tries to negotiate synchronous data transfer
parameters. However, if a SCSI device does not support synchronous data transfer,
set the maxOffset field to 0. By default, the SCSI subsystem tries to negotiate the
maximum possible REQ/ACK offset and the minimum possible data transfer
period supported by the SCSI controller on the VxWorks target. This is done to
maximize the speed of transfers between two devices. However, speed depends
upon electrical characteristics, like cable length, cable quality, and device
termination; therefore, it may be necessary to reduce the values of maxOffset or
minPeriod for fast transfers.

The tagType field defines the type of tagged command queuing desired, using one
of the following macros:

133

VxWorks 5.4
Programmer’s Guide

— SCSI_TAG_UNTAGGED

— SCSI_TAG_SIMPLE

— SCSI_TAG_ORDERED

— SCSI_TAG_HEAD_OF_QUEUE

For more information about the types of tagged command queuing available, see
the ANSI X3T9-1/0 Interface Specification Small Computer System Interface (SCSI-
2).

The maxTags field sets the maximum number of command tags available for a
particular SCSI device.

Wide data transfers with a SCSI target device are automatically negotiated upon
initialization by the SCSI subsystem. Wide data transfer parameters are always
negotiated before synchronous data transfer parameters, as specified by the SCSI
ANSI specification, because a wide negotiation resets any prior negotiation of
synchronous parameters. However, if a SCSI device does not support wide
parameters and there are problems initializing that device, you must set the
xferWidth field to 0. By default, the SCSI subsystem tries to negotiate the
maximum possible transfer width supported by the SCSI controller on the
VxWorks target in order to maximize the default transfer speed between the two
devices. For more information on the actual routine call, see the reference entry for
scsiTargetOptionsSet().

SCSI Configuration Examples

Example 3-4

The following examples show some possible configurations for different SCSI
devices. Example 3-4 is a simple block device configuration setup. Example 3-5
involves selecting special options and demonstrates the use of
scsilargetOptionsSet(). Example 3-6 configures a tape device and a tape file
system. Example 3-7 configures a SCSI device for synchronous data transfer.
Example 3-8 shows how to configure the SCSI bus ID. These examples can be
embedded either in the usrSesiConfig() routine or in a user-defined SCSI
configuration function.

Configuring SCSI Drivers

In the following example, usrScsiConfig() was modified to reflect a new system
configuration. The new configuration has a SCSI disk with a bus ID of 4 and a
Logical Unit Number (LUN) of 0 (zero). The disk is configured with a dosFs file
system (with a total size of 0x20000 blocks) and a rawFs file system (spanning the
remainder of the disk). The following usrScsiConfig() code reflects this
modification.

134

Example 3-5

3
I/O System

[* configure Winchester at busld =4, LUN =0 */

if (pSpd40 = scsiPhysDevCreate (pSysScsiCtrl, 4, 0, 0, NONE, 0, 0, 0))
== (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
}

else

/* create block devices - one for dosFs and one for rawFs */

if (((pSbd0 = scsiBlkDevCreate (pSpd40, 0x20000, 0)) == NULL) ||
((pSbd1 = scsiBlkDevCreate (pSpd40, 0, 0x20000)) == NULL))

{
return (ERROR);

/¥ initialize both dosFs and rawFs file systems */

if ((dosFsDeviInit ("/sd0/", pSbd0, NULL) == NULL) ||
(rawFsDevlnit ("/sd1/*, pSbd1) == NULL))

{
return (ERROR);
}

If problems with your configuration occur, insert the following lines at the
beginning of usrScsiConfig() to obtain further information on SCSI bus activity.

#if FALSE

scsiDebug = TRUE;
scsilntsDebug = TRUE;
#endif

Do not declare the global variables scsiDebug and scsilntsDebug locally. They can
be set or reset from the shell; see the Tornado User’s Guide: Shell for details.

Configuring a SCSI Disk Drive with Asynchronous Data Transfer and No Tagged Command Queuing

In this example, a SCSI disk device is configured without support for synchronous
data transfer and tagged command queuing. The scsiTargetOptionsSet() routine
is used to turn off these features. The SCSI ID of this disk device is 2, and the LUN
is 0:

int which;
SCSI_OPTIONS option;
int devBusld;
devBusld = 2;

which = SCSI_SET_OPT_XFER_PARAMS | SCSI_SET_OPT_TAG_PARAMS;
option.maxOffset = SCSI_SYNC_XFER_ASYNC_OFFSET;

/*=> 0 defined in scsi2Lib.h */
option.minPeriod = SCSI_SYNC_XFER_MIN_PERIOD; /* defined in scsi2Lib.h */

135

Example 3-6

VxWorks 5.4
Programmer’s Guide

option.tagType = SCSI_TAG_UNTAGGED; /* defined in scsi2Lib.h */
option.maxTag = SCSI_MAX_TAGS;

if (scsiTargetOptionsSet (pSysScsiCtrl, devBusld, &option, which) == ERROR)
{SCSI_DEBUG_MSG ("usrScsiConfig: could not set options\n", 0, 0, O, 0,
returnoilgl)?;ROR);
}

[* configure SCSI disk drive at busld = devBusld, LUN =0 */

if (pSpd20 = scsiPhysDevCreate (pSysScsiCtrl, devBusld, 0, 0, NONE, 0, 0,
0)) == (SCSI_PHYS_DEV *) NULL)

SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
return (ERROR);

Working with Tape Devices

SCSI tape devices can be controlled using common commands from
scsiCommonLib and sequential commands from scsiSeqLib. These commands
use a pointer to a SCSI sequential device structure, SEQ_DEYV, defined in seqlo.h.
For more information on controlling SCSI tape devices, see the reference entries for
these libraries.

This example configures a SCSI tape device whose bus ID is 5 and whose LUN is
0. It includes commands to create a physical device pointer, set up a sequential
device, and initialize a tapeFs device.

* configure Exabyte 8mm tape drive at busld =5, LUN =0 */

if ((pSpd50 = scsiPhysDevCreate (pSysScsiCtrl, 5, 0, 0, NONE, 0, 0, 0))
== (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
return (ERROR);
[* configure the sequential device for this physical device */
if (pSdO = scsiSegDevCreate (pSpd50)) == (SEQ_DEV *) NULL)
{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiSeqDevCreate failed.\n");
return (ERROR);
}
[* setup the tape device configuration */
pTapeConfig = (TAPE_CONFIG *) calloc (sizeof (TAPE_CONFIG), 1);

pTapeConfig->rewind = TRUE; /* this is a rewind device */
pTapeConfig->blkSize = 512; /* uses 512 byte fixed blocks */

136

Example 3-7

3
I/O System

/* initialize a tapeFs device */
if (tapeFsDevinit ("/tapel”, pSdO, pTapeConfig) == NULL)

return (ERROR);

/* rewind the physical device using scsiSeqLib interface directly*/
if (scsiRewind (pSd0) == ERROR)

return (ERROR);
}

Configuring a SCSI Disk for Synchronous Data Transfer with Non-Default Offset and Period Values

In this example, a SCSI disk drive is configured with support for synchronous data
transfer. The offset and period values are user-defined and differ from the driver
default values.The chosen period is 25, defined in SCSI units of 4 ns. Thus the
period is actually 4 * 25 = 100 ns. The synchronous offset is chosen to be 2. Note
that you may need to adjust the values depending on your hardware environment.

int which;
SCSI_OPTIONS option;
int devBusld;
devBusld = 2;

which = SCSI_SET_IPT_XFER_PARAMS;
option.maxOffset = 2;
option.minPeriod = 25;

if (scsiTargetOptionsSet (pSysScsiCtrl, devBusld &option, which) ==
ERROR)

{
SCSI_DEBUG_MSG ("usrScsiConfig: could not set options\n“,
0,0,0,0,0,0)
return (ERROR);
}
[* configure SCSI disk drive at busld = devBusld, LUN =0 */

if (pSpd20 = scsiPhysDevCreate (pSysScsiCtrl, devBusld, 0, 0, NONE,
0,0, 0)) == (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n")
return (ERROR);

137

VxWorks 5.4

Programmer’s Guide

Example 3-8 Changing the Bus ID of the SCSI Controller

To change the bus ID of the SCSI controller, modify sysScsilnit() in sysScsi.c. Set
the SCSI bus ID to a value between 0 and 7 in the call to xxxCtrlInitScsi2() (where

XXX

is the controller name); the default bus ID for the SCSI controller is 7.

Troubleshooting

138

Incompatibilities Between SCSI-1 and SCSI-2

Applications written for SCSI-1 may not execute for SCSI-2 because data
structures in scsi2Lib.h, such as SCSI_TRANSACTION and SCSI_PHYS_DEYV,
have changed. This applies only if the application used these structures
directly.

If this is the case, you can choose to configure only the SCSI-1 level of support,
or you can modify your application according to the data structures in
scsi2Lib.h. In order to set new fields in the modified structure, some
applications may simply need to be recompiled, and some applications will
have to be modified and then recompiled.

SCSI Bus Failure

If your SCSI bus hangs, it could be for a variety of reasons. Some of the more
common are:

— Your cable has a defect. This is the most common cause of failure.

— The cable exceeds the cumulative maximum length of 6 meters specified
in the SCSI-2 standard, thus changing the electrical characteristics of the
SCSl signals.

— The bus is not terminated correctly. Consider providing termination
power at both ends of the cable, as defined in the SCSI-2 ANSI
specification.

— The minimum transfer period is insufficient or the REQ/ACK offset is too
great. Use scsiTargetOptionsSet() to set appropriate values for these
options.

— Thedriver is trying to negotiate wide data transfers on a device that does
not support them. In rejecting wide transfers, the device-specific driver
cannot handle this phase mismatch. Use scsiTargetOptionsSet() to set the
appropriate value for the xferWidth field for that particular SCSI device.

3.7.7 Sockets

3
I/O System

In VxWorks, the underlying basis of network communications is sockets. A socket
is an endpoint for communication between tasks; data is sent from one socket to
another. Sockets are not created or opened using the standard I/O functions.
Instead they are created by calling socket(), and connected and accessed using
other routines in sockLib. However, after a stream socket (using TCP) is created
and connected, it can be accessed as a standard 1/O device, using read(), write(),
ioctl(), and close(). The value returned by socket() as the socket handle is in fact
an I/0O system fd.

VxWorks socket routines are source-compatible with the BSD 4.4 UNIX socket
functions and the Windows Sockets (Winsock 1.1) networking standard. Use of
these routines is discussed in VxWorks Network Programmer’s Guide: Networking
APIs.

3.8 Differences Between VxWorks and Host System I/O

Most commonplace uses of I/O in VxWorks are completely source-compatible
with I/O in UNIX and Windows. However, note the following differences:

Device Configuration. In VxWorks, device drivers can be installed and
removed dynamically.

File Descriptors. In UNIX and Windows, fds are unique to each process. In
VxWorks, fds are global entities, accessible by any task, except for standard
input, standard output, and standard error (0, 1, and 2), which can be task
specific.

* 1/O Control. The specific parameters passed to ioctl() functions can differ
between UNIX and VxWorks.

Driver Routines. In UNIX, device drivers execute in system mode and are not
preemptible. In VxWorks, driver routines are in fact preemptible because they
execute within the context of the task that invoked them.

139

VxWorks 5.4
Programmer’s Guide

3.9 Internal Structure

The VxWorks I/O system is different from most in the way the work of performing
user I/ O requests is apportioned between the device-independent I/ O system and
the device drivers themselves.

In many systems, the device driver supplies a few routines to perform low-level
I/0 functions such as inputting or outputting a sequence of bytes to character-
oriented devices. The higher-level protocols, such as communications protocols on
character-oriented devices, are implemented in the device-independent part of the
I/0 system. The user requests are heavily processed by the I/O system before the
driver routines get control.

While this approach is designed to make it easy to implement drivers and to
ensure that devices behave as much alike as possible, it has several drawbacks. The
driver writer is often seriously hampered in implementing alternative protocols
that are not provided by the existing I/O system. In a real-time system, it is
sometimes desirable to bypass the standard protocols altogether for certain
devices where throughput is critical, or where the device does not fit the standard
model.

In the VxWorks I/O system, minimal processing is done on user I/O requests
before control is given to the device driver. Instead, the VxWorks I/O system acts
as a switch to route user requests to appropriate driver-supplied routines. Each
driver can then process the raw user requests as appropriate to its devices. In
addition, however, several high-level subroutine libraries are available to driver
writers that implement standard protocols for both character- and block-oriented
devices. Thus the VxWorks I/O system gives you the best of both worlds: while it
is easy to write a standard driver for most devices with only a few pages of device-
specific code, driver writers are free to execute the user requests in nonstandard
ways where appropriate.

There are two fundamental types of device: block and character (or non-block; see
Figure 3-8). Block devices are used for storing file systems. They are random access
devices where data is transferred in blocks. Examples of block devices include
hard and floppy disks. Character devices are any device that does not fall in the
block category. Examples of character devices include serial and graphical input
devices, for example, terminals and graphics tablets.

As discussed in earlier sections, the three main elements of the VxWorks I/0
system are drivers, devices, and files. The following sections describe these
elements in detail. The discussion focuses on character drivers; however, much of
it is applicable for block devices. Because block drivers must interact with

140

Example 3-9

3
I/O System

VxWorks file systems, they use a slightly different organization; see 3.9.4 Block
Devices, p.158.

NOTE: This discussion is designed to clarify the structure of VxWorks I/O facilities
and to highlight some considerations relevant to writing I/O drivers for VxWorks.
It is not a complete text on writing a device driver. For detailed information on this
subject, see the Tornado BSP Developer’s Kit User’s Guide.

Example 3-9 shows the abbreviated code for a hypothetical driver that is used as
an example throughout the following discussions. This example driver is typical
of drivers for character-oriented devices.

In VxWorks, each driver has a short, unique abbreviation, such as net or tty, which
is used as a prefix for each of its routines. The abbreviation for the example driver
is xx.

Hypothetical Driver

/
* xxDrv - driver initialization routine
*

* xxDrv() initializes the driver. It installs the driver via iosDrvinstall.
* |t may allocate data structures, connect ISRs, and initialize hardware.
*

STATUS xxDrv ()
{

xxDrvNum = iosDrvinstall (xxCreat, 0, xxOpen, 0, xxRead, xxWrite, xxloctl);
(void) intConnect (intvec, xxInterrupt, ...);

/
* xxDevCreate - device creation routine
*

* Called to add a device called <name> to be serviced by this driver. Other
* driver-dependent arguments may include buffer sizes, device addresses...
* The routine adds the device to the I/O system by calling iosDevAdd.

* It may also allocate and initialize data structures for the device,

* initialize semaphores, initialize device hardware, and so on.

*

STATUS xxDevCreate (name, ...)
char * name;

status = iosDevAdd (xxDev, name, xxDrvNum);

141

VxWorks 5.4
Programmer’s Guide

/
* The following routines implement the basic 1/O functions. The xxOpen()
* return value is meaningful only to this driver, and is passed back as an
* argument to the other I/O routines.

*

int xxOpen (xxDev, remainder, mode)
XXDEV * xxDev;
char * remainder;
int mode;

[* serial devices should have no file name part */

if (remainder[0] != 0)
return (ERROR);
else
return ((int) xxDev);

int xxRead (xxDev, buffer, nBytes)
XXDEV * xxDev;
char * buffer;
int nBytes;

int xxWrite (xxDev, buffer, nBytes)

int xxloctl (xxDev, requestCode, arg)

!
* xxInterrupt - interrupt service routine

*

* Most drivers have routines that handle interrupts from the devices
* serviced by the driver. These routines are connected to the interrupts
* by calling intConnect (usually in xxDrv above). They can receive a

* single argument, specified in the call to intConnect (see intLib).
*

VOID xxInterrupt (arg)

3.9.1 Drivers

A driver for a non-block device implements the seven basic I/O functions—
creat(), remove(), open(), close(), read(), write(), and ioctl()—for a particular
kind of device. In general, this type of driver has routines that implement each of
these functions, although some of the routines can be omitted if the functions are
not operative with that device.

142

3
I/O System

Drivers can optionally allow tasks to wait for activity on multiple file descriptors.
This is implemented using the driver’s ioctl() routine; see Implementing select(),
p-152.

A driver for a block device interfaces with a file system, rather than directly with
the I/O system. The file system in turn implements most I/O functions. The driver
need only supply routines to read and write blocks, reset the device, perform I/O
control, and check device status. Drivers for block devices have a number of
special requirements that are discussed in 3.9.4 Block Devices, p.158.

When the user invokes one of the basic I/O functions, the I/O system routes the
request to the appropriate routine of a specific driver, as detailed in the following
sections. The driver’s routine runs in the calling task’s context, as though it were
called directly from the application. Thus, the driver is free to use any facilities
normally available to tasks, including I/O to other devices. This means that most
drivers have to use some mechanism to provide mutual exclusion to critical
regions of code. The usual mechanism is the semaphore facility provided in
semLib.

In addition to the routines that implement the seven basic I/O functions, drivers
also have three other routines:

* Aninitialization routine that installs the driver in the I/O system, connects to
any interrupts used by the devices serviced by the driver, and performs any
necessary hardware initialization (typically named xxDrv()).

* Aroutine to add devices that are to be serviced by the driver (typically named
xxDevCreate()) to the I/O system.

+ Interrupt-level routines that are connected to the interrupts of the devices
serviced by the driver.

The Driver Table and Installing Drivers

The function of the I/O system is to route user I/O requests to the appropriate
routine of the appropriate driver. The I/O system does this by maintaining a table
that contains the address of each routine for each driver. Drivers are installed
dynamically by calling the I/O system internal routine iosDrvInstall(). The
arguments to this routine are the addresses of the seven I/O routines for the new
driver. The iosDrvInstall() routine enters these addresses in a free slot in the
driver table and returns the index of this slot. This index is known as the driver
number and is used subsequently to associate particular devices with the driver.

143

VxWorks 5.4
Programmer’s Guide

Null (0) addresses can be specified for some of the seven routines. This indicates
that the driver does not process those functions. For non-file-system drivers,
close() and remove() often do nothing as far as the driver is concerned.

VxWorks file systems (dosFsLib, rt11FsLib, and rawFsLib) contain their own
entries in the driver table, which are created when the file system library is
initialized.

Example of Installing a Driver

Figure 3-2 shows the actions taken by the example driver and by the I/O system
when the initialization routine xxDrv() runs.

[1]1 The driver calls iosDrvInstall(), specifying the addresses of the driver’s
routines for the seven basic I/O functions.

The I/O system:
[2] Locates the next available slot in the driver table, in this case slot 2.
[3] Enters the addresses of the driver routines in the driver table.

[4] Returns the slot number as the driver number of the newly installed driver.

3.9.2 Devices

Some drivers are capable of servicing many instances of a particular kind of device.
For example, a single driver for a serial communications device can often handle
many separate channels that differ only in a few parameters, such as device
address.

In the VxWorks I/0O system, devices are defined by a data structure called a device
header (DEV_HDR). This data structure contains the device name string and the
driver number for the driver that services this device. The device headers for all
the devices in the system are kept in a memory-resident linked list called the device
list. The device header is the initial part of a larger structure determined by the
individual drivers. This larger structure, called a device descriptor, contains
additional device-specific data such as device addresses, buffers, and semaphores.

144

3
I/O System

Figure 3-2 Example — Driver Initialization for Non-Block Devices
DRIVER CALL:

drvnum = iosDrvinstall (xxCreat, 0, xxOpen, 0, xxRead, xxWrite, xxloctl);

[1] Driver’s install routine specifies driver
routines for seven I/O functions.

[2] I/O system locates next

(4] {:1/ O systeml;‘eturns available slot in driver table.
river number

(drvnum =2).

create remove open close read write ioctl

DRIVER TABLE:

xxCreatf 0 |xxOpen| O |xxRead|xxWrite| xxloctl

A WNPFO

[3] I/O system enters driver
routines in driver table.

The Device List and Adding Devices

Non-block devices are added to the I/ O system dynamically by calling the internal
I/0 routine iosDevAdd(). The arguments to iosDevAdd() are the address of the
device descriptor for the new device, the device’s name, and the driver number of
the driver that services the device. The device descriptor specified by the driver
can contain any necessary device-dependent information, as long as it begins with
a device header. The driver does not need to fill in the device header, only the
device-dependent information. The iosDevAdd() routine enters the specified
device name and the driver number in the device header and adds it to the system
device list.

To add a block device to the I/O system, call the device initialization routine for
the file system required on that device (dosFsDevInit(), rt11FsDevInit(), or
rawFsDevlnit()). The device initialization routine then calls iosDevAdd()
automatically.

145

VxWorks 5.4
Programmer’s Guide

Example of Adding Devices

In Figure 3-3, the example driver’s device creation routine xxDevCreate() adds
devices to the I/O system by calling iosDevAdd().

Figure 3-3 Example — Addition of Devices to I/0O System

DRIVER CALLS: status = iosDevAdd (devO, "/xx0", drvnum);
status = iosDevAdd (dev1l, "/xx1", drvnum);

I/0 system adds device descriptors

to device list. Each descriptor contains
device name and driver number (in this
case 2) and any device-specific data.

‘o

DEVICE LIST: <= - [el =)
"/dk0/" "/xx0" "Ixx1"
1 2 2
de\llice- devlice-
dependent dependent
data data
| /

create remove open close read write ioctl

DRIVER TABLE:

A WDNPFO

3.9.3 File Descriptors

Several fds can be open to a single device at one time. A device driver can maintain
additional information associated with an fd beyond the I/O system’s device

146

3
I/O System

information. In particular, devices on which multiple files can be open at one time
have file-specific information (for example, file offset) associated with each fd. You
can also have several fds open to a non-block device, such as a tty; typically there
is no additional information, and thus writing on any of the fds produces identical
results.

The Fd Table

Files are opened with open() (or creat()). The I/O system searches the device list
for a device name that matches the file name (or an initial substring) specified by
the caller. If a match is found, the I/O system uses the driver number contained in
the corresponding device header to locate and call the driver’s open routine in the
driver table.

The I/O system must establish an association between the file descriptor used by
the caller in subsequent I/O calls, and the driver that services it. Additionally, the
driver must associate some data structure per descriptor. In the case of non-block
devices, this is usually the device descriptor that was located by the I/O system.

The I/O system maintains these associations in a table called the fd table. This table
contains the driver number and an additional driver-determined 4-byte value. The
driver value is the internal descriptor returned by the driver’s open routine, and
can be any nonnegative value the driver requires to identify the file. In subsequent
calls to the driver’s other I/O functions (read(), write(), ioctl(), and close()), this
value is supplied to the driver in place of the fd in the application-level I/O call.

Example of Opening a File

In Figure 3-4 and Figure 3-5, a user calls open() to open the file /xx0. The I/O
system takes the following series of actions:

[1] Itsearches the devicelist for a device name that matches the specified file name
(or an initial substring). In this case, a complete device name matches.

[2] Itreserves aslot in the fd table, which is used if the open is successful.

[3] It then looks up the address of the driver’s open routine, xxOpen(), and calls
that routine. Note that the arguments to xxOpen() are transformed by the I/O
system from the user’s original arguments to open(). The first argument to
xxOpen() is a pointer to the device descriptor the I/O system located in the full
file name search. The next parameter is the remainder of the file name specified
by the user, after removing the initial substring that matched the device name.

147

VxWorks 5.4
Programmer’s Guide

Figure 3-4 Example: Call to I/O Routine open() [Part 1]

USER CALL: DRIVER CALL:
fd = open ("/xx0", O_RDONLY); xxdev = xxOpen (xxdev, ", O_RDONLY);
[1] 1/O system finds [2] 1/0O system reserves [3] I/O system calls
name in device list. a slotin the fd table. driver’s open routine

with pointer to
device descriptor.

drvnum value
FD TABLE: 0
1
2
3
4
DEVICE LIST: <= g Al g Al -
"/dkO/" "/xx0" "Ixx1"
1 2 2
devlice-
dependent
data
]
DRIVER TABLE: create remove open close read write ioctl
0
1
2 xxOpen
3
4

148

3

I/O System
Figure 3-5 Example: Call to I/O Routine open() [Part 2]
USER CALL: DRIVER CALL:
fd = open ("/xx0", O_RDONLY); xxdev = xxOpen (xxdev, ", O_RDONLY);
[6]1/0O system returns [5]1/0O system enters [4] Driver returns any
index in fd table of driver number and identifying value, in
new open file (fd = 3). identifying value in this case the pointer to
reserved fd table slot. the device descriptor.
FD TABLE: . drvnum value
1
2
3 2 xxdev
4
DEVICE LIST: = ——><__ ——><__ !>
"/dk0/" "/xx0" "Ixx1"
1 2 2
device-
dependent
I data
DRIVER TABLE: create remove open close read write ioctl
0
1
Ll
3
4

149

VxWorks 5.4
Programmer’s Guide

In this case, because the device name matched the entire file name, the
remainder passed to the driver is a null string. The driver is free to interpret
this remainder in any way it wants. In the case of block devices, this remainder
is the name of a file on the device. In the case of non-block devices like this one,
it is usually an error for the remainder to be anything but the null string. The
last parameter is the file access flag, in this case O_RDONLY; that is, the file is
opened for reading only.

[4] It executes xxOpen(), which returns a value that subsequently identifies the
newly opened file. In this case, the value is the pointer to the device descriptor.
This value is supplied to the driver in subsequent I/O calls that refer to the file
being opened. Note that if the driver returns only the device descriptor, the
driver cannot distinguish multiple files opened to the same device. In the case
of non-block device drivers, this is usually appropriate.

[5] The I/O system then enters the driver number and the value returned by
xxOpen() in the reserved slot in the fd table. Again, the value entered in the fd
table has meaning only for the driver, and is arbitrary as far as the I/ O system
is concerned.

[6] Finally, it returns to the user the index of the slot in the fd table, in this case 3.

Example of Reading Data from the File

In Figure 3-6, the user calls read() to obtain input data from the file. The specified
fd is the index into the fd table for this file. The I/O system uses the driver number
contained in the table to locate the driver’s read routine, xxRead(). The I/ O system
calls xxRead(), passing it the identifying value in the fd table that was returned by
the driver’s open routine, xxOpen(). Again, in this case the value is the pointer to
the device descriptor. The driver’s read routine then does whatever is necessary to
read data from the device.

The process for user calls to write() and ioctl() follow the same procedure.

Example of Closing a File

The user terminates the use of a file by calling close(). As in the case of read(), the
I/0 system uses the driver number contained in the fd table to locate the driver’s
close routine. In the example driver, no close routine is specified; thus no driver
routines are called. Instead, the I/O system marks the slot in the fd table as being
available. Any subsequent references to that fd cause an error. However,
subsequent calls to open() can reuse that slot.

150

3

I/O System
Figure 3-6 Example: Call to I/O Routine read()
USER CALL: DRIVER CALL:
n =read (fd, buf, len); n = xxRead (xxdev, buf, len);

I/0 system transforms the user’s I/O
routine calls into driver routine calls

replacing the fd with the value returned
by the driver’s open routine, xxOpen().

drvnum value

FD TABLE:

2 xxdev

A WNEO

Y
DEVICE LIST: = -1 ——V‘_ —!>
"/dkO/" "/xx0" "Ixx1"
1 2 2
device-

dependent
. data

DRIVER TABLE: create remove open close rdad write ioctl

xxRead

A W NE O

151

VxWorks 5.4
Programmer’s Guide

Implementing select()

Supporting select() in your driver allows tasks to wait for input from multiple
devices or to specify a maximum time to wait for the device to become ready for
I/0. Writing a driver that supports select() is simple, because most of the
functionality is provided in selectLib. You might want your driver to support
select() if any of the following is appropriate for the device:

» The tasks want to specify a timeout to wait for I/O from the device. For
example, a task might want to time out on a UDP socket if the packet never
arrives.

* The driver supports multiple devices, and the tasks want to wait
simultaneously for any number of them. For example, multiple pipes might be
used for different data priorities.

* The tasks want to wait for I/O from the device while also waiting for I/ O from
another device. For example, a server task might use both pipes and sockets.

To implement select(), the driver must keep a list of tasks waiting for device
activity. When the device becomes ready, the driver unblocks all the tasks waiting
on the device.

For a device driver to support select(), it must declare a SEL_WAKEUP_LIST
structure (typically declared as part of the device descriptor structure) and
initialize it by calling selWakeupListInit(). This is done in the driver’s
xxDevCreate() routine. When a task calls select(), selectLib calls the driver’s
ioctl() routine with the function FIOSELECT or FIOUNSELECT. If ioctl() is called
with FIOSELECT, the driver must do the following:

1. Add the SEL_WAKEUP_NODE (provided as the third argument of ioctl()) to
the SEL_WAKEUP_LIST by calling seINodeAdd().

2. Use the routine selWakeupType() to check whether the task is waiting for data
to read from the device (SELREAD) or if the device is ready to be written
(SELWRITE).

3. If the device is ready (for reading or writing as determined by
selWakeupType()), the driver calls the routine selWakeup() to make sure that
the select() call in the task does not pend. This avoids the situation where the
task is blocked but the device is ready.

If ioctl() is called with FIOUNSELECT, the driver calls selNodeDelete() to remove
the provided SEL_WAKEUP_NODE from the wakeup list.

When the device becomes available, sel WakeupAlI() is used to unblock all the
tasks waiting on this device. Although this typically occurs in the driver’s ISR, it

152

Example 3-10

3
I/O System

can also occur elsewhere. For example, a pipe driver might call selWakeupAlI()
from its xxRead() routine to unblock all the tasks waiting to write, now that there
is room in the pipe to store the data. Similarly the pipe’s xxWrite() routine might
call selWakeupAll() to unblock all the tasks waiting to read, now that there is data
in the pipe.

Driver Code Using the Select Facility

/* This code fragment shows how a driver might support select(). In this

* example, the driver unblocks tasks waiting for the device to become ready
*in its interrupt service routine.

*

/* myDrvLib.h - header file for driver */

typedef struct /* MY_DEV */

{

DEV_HDR devHdr; * device header */

BOOL myDrvDataAvailable; [* data is available to read */

BOOL myDrvRdyForWriting; [* device is ready to write */
SEL_WAKEUP_LIST selWakeuplList; I* list of tasks pended in select */
}MY_DEV;

/* myDrv.c - code fragments for supporting select() in a driver */

#include "vxWorks.h"
#include "selectLib.h"

[* First create and initialize the device */

STATUS myDrvDevCreate
char * name, /* name of device to create */
)
{ . . .
MY_DEV * pMyDrvDeyv; I* pointer to device descriptor*/

additional driver code ...

[* allocate memory for MY_DEV */
pMyDrvDev = (MY_DEV *) malloc (sizeof MY_DEV);
additional driver code ...

[* initialize MY_DEV */
pMyDrvDev->myDrvDataAvailable=FALSE
pMyDrvDev->myDrvRdyForWriting=FALSE

/* initialize wakeup list */

selWakeupListlnit (&pMyDrvDev->selWakeupList);
... additional driver code ...
}

153

VxWorks 5.4
Programmer’s Guide

[* ioctl function to request reading or writing */

STATUS myDrvloctl
(
MY_DEV * pMyDrvDev, * pointer to device descriptor */
int request, /* ioctl function */
int arg /* where to send answer */
)
{

additional driver code ...
switch (request)
additional driver code ...
case FIOSELECT:
/* add node to wakeup list */
selNodeAdd (&pMyDrvDev->selWakeupList, (SEL_ WAKEUP_NODE *) arg);

if (selWakeupType ((SEL_WAKEUP_NODE *) arg) == SELREAD
&& pMyDrvDev->myDrvDataAvailable)

/* data available, make sure task does not pend */
selWakeup ((SEL_WAKEUP_NODE *) arg);

}
if (selWakeupType ((SEL_WAKEUP_NODE *) arg) == SELWRITE
&& pMyDrvDev->myDrvRdyForWriting)

[* device ready for writing, make sure task does not pend */
selWakeup ((SEL_WAKEUP_NODE *) arg);
}

break;
case FIOUNSELECT:
/* delete node from wakeup list */
selNodeDelete (&pMyDrvDev->selWakeuplList, (SEL_ WAKEUP_NODE *) arg);
break;
additional driver code ...
}
/* code that actually uses the select() function to read or write */
void myDrvlsr
(
MY_DEV * pMyDrvDev;
)
{
additional driver code ...

[* if there is data available to read, wake up all pending tasks */

154

3
I/O System

if (oMyDrvDev->myDrvDataAvailable)
selWakeupAll (&pMyDrvDev->selWakeupList, SELREAD);

[if the device is ready to write, wake up all pending tasks */

if (pMyDrvDev->myDrvRdyForWriting)
selWakeupAll (&pMyDrvDev->selWakeupList, SELWRITE);
}

Cache Coherency

Figure 3-7

Drivers written for boards with caches must guarantee cache coherency. Cache
coherency means data in the cache must be in sync, or coherent, with data in RAM.
The data cache and RAM can get out of sync any time there is asynchronous access
to RAM (for example, DMA device access or VMEbus access). Data caches are used
to increase performance by reducing the number of memory accesses. Figure 3-7
shows the relationships between the CPU, data cache, RAM, and a DMA device.

Data caches can operate in one of two modes: writethrough and copyback. Write-
through mode writes data to both the cache and RAM,; this guarantees cache
coherency on output but not input. Copyback mode writes the data only to the
cache; this makes cache coherency an issue for both input and output of data.

Cache Coherency

CPU
Data Cache
DMA
RAM .
Device

If a CPU writes data to RAM that is destined for a DMA device, the data can first
be written to the data cache. When the DMA device transfers the data from RAM,
there is no guarantee that the data in RAM was updated with the data in the cache.
Thus, the data output to the device may not be the most recent—the new data may
still be sitting in the cache. This data incoherency can be solved by making sure the
data cache is flushed to RAM before the data is transferred to the DMA device.

155

Example 3-11

VxWorks 5.4
Programmer’s Guide

If a CPU reads data from RAM that originated from a DMA device, the data read
can be from the cache buffer (if the cache buffer for this data is not marked invalid)
and not the data just transferred from the device to RAM. The solution to this data
incoherency is to make sure that the cache buffer is marked invalid so that the data
is read from RAM and not from the cache.

Drivers can solve the cache coherency problem either by allocating cache-safe
buffers (buffers that are marked non-cacheable) or flushing and invalidating cache
entries any time the data is written to or read from the device. Allocating cache-
safe buffers is useful for static buffers; however, this typically requires MMU
support. Non-cacheable buffers that are allocated and freed frequently (dynamic
buffers) can result in large amounts of memory being marked non-cacheable. An
alternative to using non-cacheable buffers is to flush and invalidate cache entries
manually; this allows dynamic buffers to be kept coherent.

The routines cacheFlush() and cachelnvalidate() are used to manually flush and
invalidate cache buffers. Before a device reads the data, flush the data from the
cache to RAM using cacheFlush() to ensure the device reads current data. After the
device has written the data into RAM, invalidate the cache entry with
cachelnvalidate(). This guarantees that when the data is read by the CPU, the
cache is updated with the new data in RAM.

DMA Transfer Routine

/* This a sample DMA transfer routine. Before programming the device to
* output the data to the device, it flushes the cache by calling

* cacheFlush(). On a read, after the device has transferred the data, the
* cache entry must be invalidated using cachelnvalidate().

*

#include "vxWorks.h"

#include "cachelLib.h"

#include "fcntl.h"

#include "example.h"

void exampleDmaTransfer /*1=READ, 0 = WRITE */

(

UINT8 *pExampleBuf,
int exampleBufLen,
int xferDirection

)
if (xferDirection == 1)
{
myDevToBuf (pExampleBuf);

cachelnvalidate (DATA_CACHE, pExampleBuf, exampleBufLen);
}

156

Example 3-12

3
I/O System

else

{

cacheFlush (DATA_CACHE, pExampleBuf, exampleBufLen);
myBufToDev (pExampleBuf);

}

}

It is possible to make a driver more efficient by combining cache-safe buffer
allocation and cache-entry flushing or invalidation. The idea is to flush or
invalidate a cache entry only when absolutely necessary. To address issues of cache
coherency for static buffers, use cacheDmaMalloc(). This routine initializes a
CACHE_FUNCS structure (defined in cacheLib.h) to point to flush and invalidate
routines that can be used to keep the cache coherent. The macros
CACHE_DMA_FLUSH and CACHE_DMA_INVALIDATE use this structure to
optimize the calling of the flush and invalidate routines. If the corresponding
function pointer in the CACHE_FUNCS structure is NULL, no unnecessary
flush/invalidate routines are called because it is assumed that the buffer is cache
coherent (hence it is not necessary to flush/invalidate the cache entry manually).

Some architectures allow the virtual address to be different from the physical
address seen by the device; see 7.3 Virtual Memory Configuration, p.290 in this
manual. In this situation, the driver code uses a virtual address and the device uses
a physical address. Whenever a device is given an address, it must be a physical
address. Whenever the driver accesses the memory, it uses the virtual address. The
driver translates the address using the following macros:
CACHE_DMA_PHYS_TO_VIRT (to translate a physical address to a virtual one) and
CACHE_DMA_VIRT_TO_PHYS (to translate a virtual address to a physical one).

Address-Translation Driver

/* The following code is an example of a driver that performs address

* translations. It attempts to allocate a cache-safe buffer, fill it, and

* then write it out to the device. It uses CACHE_DMA_FLUSH to make sure
* the data is current. The driver then reads in new data and uses

* CACHE_DMA_INVALIDATE to guarantee cache coherency.

*/

#include "vxWorks.h"

#include "cachelLib.h"

#include "myExample.h"

STATUS myDmaExample (void)

{
void * pMyBuf;
void * pPhysAddr;

[* allocate cache safe buffers if possible */

if ((pMyBuf = cacheDmaMalloc (MY_BUF_SIZE)) == NULL)
return (ERROR);

157

VxWorks 5.4
Programmer’s Guide

... fill buffer with useful information ...

[* flush cache entry before data is written to device */
CACHE_DMA_FLUSH (pMyBuf, MY_BUF_SIZE);

[* convert virtual address to physical */

pPhysAddr = CACHE_DMA_VIRT_TO_PHYS (pMyBuf);
[* program device to read data from RAM */
myBufToDev (pPhysAddr);

... wait for DMA to complete ...

... ready to read new data ...

[* program device to write data to RAM */

myDevToBuf (pPhysAddr);
... wait for transfer to complete ...

* convert physical to virtual address */
pMyBuf = CACHE_DMA_PHYS_TO_VIRT (pPhysAddr);
* invalidate buffer */

CACHE_DMA_INVALIDATE (pMyBuf, MY_BUF_SIZE);
... usedata ...

/* when done free memory */

if (cacheDmaFree (pMyBuf) == ERROR)
return (ERROR);

return (OK);
}

3.9.4 Block Devices

General Implementation

In VxWorks, block devices have a slightly different interface than other I/O
devices. Rather than interacting directly with the I/ O system, block device drivers
interact with a file system. The file system, in turn, interacts with the I/O system.
Direct access block devices have been supported since SCSI-1 and are used
compatibly with dosFs, rt11Fs, and rawFs. In addition, VxWorks supports SCSI-2
sequential devices, which are organized so individual blocks of data are read and
written sequentially. When data blocks are written, they are added sequentially at

158

3
I/O System

the end of the written medium; that is, data blocks cannot be replaced in the
middle of the medium. However, data blocks can be accessed individually for
reading throughout the medium. This process of accessing data on a sequential
medium differs from that of other block devices.

Figure 3-8 Non-Block Devices vs. Block Devices

Application

!

\

I/O System

driver table

File System

dosFs, rt11Fs, rawFs
or tapeFs

Y

\

Non-Block Block
Device Driver Device Driver

= @

Figure 3-8 shows a layered model of I/O for both block and non-block (character)
devices. This layered arrangement allows the same block device driver to be used
with different file systems, and reduces the number of I/O functions that must be
supported in the driver.

159

VxWorks 5.4
Programmer’s Guide

A device driver for a block device must provide a means for creating a logical block
device structure, a BLK_DEYV for direct access block devices or a SEQ_DEYV for
sequential block devices. The BLK_DEV/SEQ_DEYV structure describes the device
in a generic fashion, specifying only those common characteristics that must be
known to a file system being used with the device. Fields within the structures
specify various physical configuration variables for the device—for example, block
size, or total number of blocks. Other fields in the structures specify routines
within the device driver that are to be used for manipulating the device (reading
blocks, writing blocks, doing I/O control functions, resetting the device, and
checking device status). The BLK_DEV/SEQ_DEV structures also contain fields
used by the driver to indicate certain conditions (for example, a disk change) to the
file system.

When the driver creates the block device, the device has no name or file system
associated with it. These are assigned during the device initialization routine for
the chosen file system (for example, dosFsDevInit(), rt11FsDevInit() or
tapeFsDevlnit()).

The low-level device driver for a block device is not installed in the I/O system
driver table, unlike non-block device drivers. Instead, each file system in the
VxWorks system is installed in the driver table as a “driver.” Each file system has
only one entry in the table, even though several different low-level device drivers
can have devices served by that file system.

After a device is initialized for use with a particular file system, all I/ O operations
for the device are routed through that file system. To perform specific device
operations, the file system in turn calls the routines in the specified BLK_DEV or
SEQ_DEV structure.

A driver for a block device must provide the interface between the device and
VxWorks. There is a specific set of functions required by VxWorks; individual
devices vary based on what additional functions must be provided. The user
manual for the device being used, as well as any other drivers for the device, is
invaluable in creating the VxWorks driver. The following sections describe the
components necessary to build low-level block device drivers that adhere to the
standard interface for VxWorks file systems.

Low-Level Driver Initialization Routine
The driver normally requires a general initialization routine. This routine performs

all operations that are done one time only, as opposed to operations that must be
performed for each device served by the driver. As a general guideline, the

160

3
I/O System

operations in the initialization routine affect the whole device controller, while
later operations affect only specific devices.

Common operations in block device driver initialization routines include:

- initializing hardware

— allocating and initializing data structures
- creating semaphores

— initializing interrupt vectors

- enabling interrupts

The operations performed in the initialization routine are entirely specific to the
device (controller) being used; VxWorks has no requirements for a driver
initialization routine.

Unlike non-block device drivers, the driver initialization routine does not call
iosDrvlnstall() to install the driver in the I/O system driver table. Instead, the file
system installs itself as a “driver” and routes calls to the actual driver using the
routine addresses placed in the block device structure, BLK_DEV or SEQ_DEV (see
Device Creation Routine, p.161).

Device Creation Routine

The driver must provide a routine to create (define) a logical disk or sequential
device. A logical disk device may be only a portion of a larger physical device. If
this is the case, the device driver must keep track of any block offset values or other
means of identifying the physical area corresponding to the logical device.
VxWorks file systems always use block numbers beginning with zero for the start
of a device. A sequential access device can be either of variable block size or fixed
block size. Most applications use devices of fixed block size.

The device creation routine generally allocates a device descriptor structure that
the driver uses to manage the device. The first item in this device descriptor must
be a VxWorks block device structure (BLK_DEV or SEQ_DEV). It must appear first
because its address is passed by the file system during calls to the driver; having
the BLK_DEV or SEQ_DEV as the first item permits also using this address to
identify the device descriptor.

The device creation routine must initialize the fields within the BLK_DEV or
SEQ_DEV structure. The BLK_DEYV fields and their initialization values are shown
in Table 3-14. The SEQ_DEYV fields and their initialization values are shown in
Table 3-15.

161

Table 3-14

Table 3-15

VxWorks 5.4
Programmer’s Guide

Fields in the BLK_DEV Structure

Field Value

bd_blkRd Address of the driver routine that reads blocks from the device.
bd_blkWrt Addpress of the driver routine that writes blocks to the device.
bd_ioctl Address of the driver routine that performs device I/O control.
bd_reset Address of the driver routine that resets the device (NULL if

bd_statusChk

bd_removable

bd_nBlocks
bd_bytesPerBlk
bd_blksPerTrack
bd_nHeads
bd_retry
bd_mode
bd_readyChanged

none).

Address of the driver routine that checks disk status (NULL if
none).

TRUE if the device is removable (for example, a floppy disk);
FALSE otherwise.

Total number of blocks on the device.

Number of bytes per block on the device.

Number of blocks per track on the device.

Number of heads (surfaces).

Number of times to retry failed reads or writes.

Device mode (write-protect status); generally set to O_RDWR.

TRUE if the device ready status has changed; initialize to TRUE
to cause the disk to be mounted.

Fields in the SEQ_DEV Structure

Field Value

sd_seqRd Address of the driver routine that reads blocks from the device.
sd_seqWrt Address of the driver routine that writes blocks to the device.
sd_ioctl Address of the driver routine that performs device I/O control.

sd_seqWrtFileMarks
sd_rewind
sd_reserve

sd_release

Address of the driver routine that writes file marks to the device.
Address of the driver routine that rewinds the sequential device.
Address of the driver routine that reserves a sequential device.

Address of the driver routine that releases a sequential device.

162

3
I/O System

Table 3-15 Fields in the SEQ_DEYV Structure (Continued)

Field

Value

sd_readBlkLim

sd_load

sd_space

sd_erase

sd_reset

sd_statusChk

sd_blkSize

sd_mode

sd_readyChanged

sd_maxVarBlockLimit

sd_density

Address of the driver routine that reads the data block limits
from the sequential device.

Address of the driver routine that either loads or unloads a
sequential device.

Address of the driver routine that moves (spaces) the medium
forward or backward to end-of-file or end-of-record markers.

Address of the driver routine that erases a sequential device.

Address of the driver routine that resets the device (NULL if
none).

Address of the driver routine that checks sequential device
status (NULL if none).

Block size of sequential blocks for the device. A block size of 0
means that variable block sizes are used.

Device mode (write protect status).

TRUE if the device ready status has changed; initialize to TRUE
to cause the sequential device to be mounted.

Maximum block size for a variable block.

Density of sequential access media.

The device creation routine returns the address of the BLK_DEV or SEQ_DEV
structure. This address is then passed during the file system device initialization
call to identify the device.

Unlike non-block device drivers, the device creation routine for a block device
does not call iosDevAdd() to install the device in the I/O system device table.
Instead, this is done by the file system’s device initialization routine.

Read Routine (Direct-Access Devices)

The driver must supply a routine to read one or more blocks from the device. For
a direct access device, the read-blocks routine must have the following arguments

and result:

163

VxWorks 5.4

Programmer’s Guide

STATUS xxBIkRd

DEVICE * pDeyv, [* pointer to device descriptor */
int startBlk, /* starting block to read */

int numBlIks, /* number of blocks to read */

char * pBuf [* pointer to buffer to receive data */

)

NOTE: In this and following examples, the routine names begin with xx. These
names are for illustration only, and do not have to be used by your device driver.
VxWorks references the routines by address only; the name can be anything.

pDev

startBlk

numBlks

pBuf

The read routine returns OK if the transfer is successful, or ERROR if a problem
occurs.

a pointer to the driver’s device descriptor structure, represented here
by the symbolic name DEVICE. (Actually, the file system passes the
address of the corresponding BLK_DEV structure; these are
equivalent, because the BLK_DEYV is the first item in the device
descriptor.) This identifies the device.

the starting block number to be read from the device. The file system
always uses block numbers beginning with zero for the start of the
device. Any offset value used for this logical device must be added in
by the driver.

the number of blocks to be read. If the underlying device hardware
does not support multiple-block reads, the driver routine must do the
necessary looping to emulate this ability.

the address where data read from the disk is to be copied.

Read Routine (Sequential Devices)

The driver must supply a routine to read a specified number of bytes from the
device. The bytes being read are always assumed to be read from the current
location of the read /write head on the media. The read routine must have the
following arguments and result:

164

STATUS xxSegRd

DEVICE * pDev, /* pointer to device descriptor */
int numBytes, /* number of bytes to read */

char * buffer, [* pointer to buffer to receive data */
BOOL fixed /* TRUE => fixed block size */

)

3
I/O System

pDev a pointer to the driver’s device descriptor structure, represented here
by the symbolic name DEVICE. (Actually, the file system passes the
address of the corresponding SEQ_DEV structure; these are
equivalent, because the SEQ_DEV structure is the first item in the
device descriptor.) This identifies the device.

numBytes the number of bytes to be read.
buffer the buffer into which numBytes of data are read.

fixed specifies whether the read routine reads fixed-sized blocks from the
sequential device or variable-sized blocks, as specified by the file
system. If fixed is TRUE, then fixed sized blocks are used.

The read routine returns OK if the transfer is completed successfully, or ERROR if
a problem occurs.

Write Routine (Direct-Access Devices)

The driver must supply a routine to write one or more blocks to the device. The
definition of this routine closely parallels that of the read routine. For direct-access
devices, the write routine is as follows:

STATUS xxBIkWrt

DEVICE * pDev, [* pointer to device descriptor */

int startBIk, /* starting block for write */

int numBlks, /* number of blocks to write */

char * pBuf [* ptr to buffer of data to write */

)
pDev a pointer to the driver’s device descriptor structure.
startBlk the starting block number to be written to the device.

numBlks ~ the number of blocks to be written. If the underlying device hardware
does not support multiple-block writes, the driver routine must do the
necessary looping to emulate this ability.

pBuf the address of the data to be written to the disk.

The write routine returns OK if the transfer is successful, or ERROR if a problem
occurs.

165

VxWorks 5.4
Programmer’s Guide

Write Routine (Sequential Devices)

The driver must supply a routine to write a specified number of bytes to the device.
The bytes being written are always assumed to be written to the current location
of the read /write head on the media. For sequential devices, the write routine is as

follows:
STATUS xxWrtTape

(
DEVICE * pDev, [* ptr to SCSI sequential device info */
int numBytes, /* total bytes or blocks to be written */
char * buffer, [* ptr to input data buffer ~ */
BOOL fixed * TRUE => fixed block size */
)

pDev a pointer to the driver’s device descriptor structure.

numBytes the number of bytes to be written.
buffer the buffer from which numBytes of data are written.

fixed specifies whether the write routine reads fixed-sized blocks from the
sequential device or variable-sized blocks, as specified by the file
system. If fixed is TRUE, then fixed sized blocks are used.

The write routine returns OK if the transfer is successful, or ERROR if a problem
occurs.

I/O Control Routine

The driver must provide a routine that can handle I/O control requests. In
VxWorks, most I/O operations beyond basic file handling are implemented
through ioctl() functions. The majority of these are handled directly by the file
system. However, if the file system does not recognize a request, that request is
passed to the driver’s I/O control routine.

Define the driver’s I/O control routine as follows:

STATUS xxloctl

DEVICE * pDeyv, [* pointer to device descriptor */
int funcCode, /*ioctl() function code */
int arg [* function-specific argument */
)
pDev a pointer to the driver’s device descriptor structure.

166

3
I/O System

funcCode the requested ioctl() function. Standard VxWorks I/O control
functions are defined in the include file ioLib.h. Other user-defined
function code values can be used as required by your device driver.
The I/0O control functions supported by the dosFs, rt11Fs, rawFs, and
tapeFs are summarized in 4. Local File Systems in this manual.

arg specific to the particular ioctl() function requested. Not all ioctl()
functions use this argument.

The driver’s I/O control routine typically takes the form of a multi-way switch
statement, based on the function code. The driver’s I/O control routine must
supply a default case for function code requests it does not recognize. For such
requests, the I/ O control routine sets errno to S_ioLib_UNKNOWN_REQUEST and
returns ERROR.

The driver’s I/O control routine returns OK if it handled the request successfully;
otherwise, it returns ERROR.

Device-Reset Routine

The driver usually supplies a routine to reset a specific device, but it is not
required. This routine is called when a VxWorks file system first mounts a disk or
tape, and again during retry operations when a read or write fails.

Declare the driver’s device-reset routine as follows:
STATUS xxReset

(
DEVICE* pDev
)

pDev a pointer to the driver’s device descriptor structure.

When called, this routine resets the device and controller. Do not reset other
devices, if it can be avoided. The routine returns OK if the driver succeeded in
resetting the device; otherwise, it returns ERROR.

If no reset operation is required for the device, this routine can be omitted. In this
case, the device-creation routine sets the xx_reset field in the BLK_DEV or
SEQ_DEV structure to NULL.

NOTE: In this and following examples, the names of fields in the BLK_DEV and
SEQ_DEV structures are parallel except for the initial letters bd_ or sd_. In these
cases, the initial letters are represented by xx_, as in the xx_reset field to represent
both the bd_reset field and the sd_reset field.

167

VxWorks 5.4
Programmer’s Guide

Status-Check Routine

If the driver provides a routine to check device status or perform other preliminary
operations, the file system calls this routine at the beginning of each open() or
creat() on the device.

Define the status-check routine as follows:
STATUS xxStatusChk

DEVICE * pDev [* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

The routine returns OK if the open or create operation can continue. If it detects a
problem with the device, it sets errno to some value indicating the problem, and
returns ERROR. If ERROR is returned, the file system does not continue the
operation.

A primary use of the status-check routine is to check for a disk change on devices
that do not detect the change until after a new disk is inserted. If the routine
determines that a new disk is present, it sets the bd_readyChanged field in the
BLK_DEV structure to TRUE and returns OK so that the open or create operation
can continue. The new disk is then mounted automatically by the file system. (See
Change in Ready Status, p.169.)

Similarly, the status check routine can be used to check for a tape change. This
routine determines whether a new tape has been inserted. If a new tape is present,
the routine sets the sd_readyChanged field in the SEQ_DEYV structure to TRUE and
returns OK so that the open or create operation can continue. The device driver
should not be able to unload a tape, nor should you physically eject a tape, while
a file descriptor is open on the tape device.

If the device driver requires no status-check routine, the device-creation routine
sets the xx_statusChk field in the BLK_DEV or SEQ_DEYV structure to NULL.

Write-Protected Media

The device driver may detect that the disk or tape in place is write-protected. If this
is the case, the driver sets the xx_mode field in the BLK_DEV or SEQ_DEV structure
to O_RDONLY. This can be done at any time (even after the device is initialized for
use with the file system). The file system checks this value and does not allow
writes to the device until the xx_mode field is changed (to O_RDWR or
O_WRONLY) or the file system’s mode change routine (for example,

168

3
I/O System

dosFsModeChange()) is called to change the mode. (The xx_mode field is changed
automatically if the file system’s mode change routine is used.)

Change in Ready Status

The driver informs the file system whenever a change in the device’s ready status
is recognized. This can be the changing of a floppy disk, changing of the tape
medium, or any other situation that makes it advisable for the file system to
remount the disk.

To announce a change in ready status, the driver sets the xx_readyChanged field
in the BLK_DEV or SEQ_DEV structure to TRUE. This is recognized by the file
system, which remounts the disk during the nextI/O initiated on the disk. The file
system then sets the xx_readyChanged field to FALSE. The xx_readyChanged
field is never cleared by the device driver.

Setting xx_readyChanged to TRUE has the same effect as calling the file system’s
ready-change routine (for example, dosFsReadyChange()) or calling ioctl() with
the FIODISKCHANGE function code.

An optional status-check routine (see Status-Check Routine, p.168) can provide a
convenient mechanism for asserting a ready-change, particularly for devices that
cannot detect a disk change until after the new disk is inserted. If the status-check
routine detects that a new disk is present, it sets xx_readyChanged to TRUE. This
routine is called by the file system at the beginning of each open or create
operation.

Write-File-Marks Routine (Sequential Devices)
The sequential driver must provide a routine that can write file marks onto the tape
device. The write file marks routine must have the following arguments
STATUS xxWrtFileMarks
(
DEVICE * pDeyv, [* pointer to device descriptor */
int numMarks, /* number of file marks to write */
BOOL shortMark /* short or long file marks */
)
pDev a pointer to the driver’s device descriptor structure.

numMarks the number of file marks to be written sequentially.

169

VxWorks 5.4
Programmer’s Guide

shortMark the type of file mark (short or long). If shortMark is TRUE, short marks
are written.

The write file marks routine returns OK if the file marks are written correctly on
the tape device; otherwise, it returns ERROR.

Rewind Routine (Sequential Devices)
The sequential driver must provide a rewind routine in order to rewind tapes in
the tape device. The rewind routine is defined as follows:

STATUS xxRewind

(
DEVICE* pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

When called, this routine rewinds the tape in the tape device. The routine returns
OK if completion is successful; otherwise, it returns ERROR.

Reserve Routine (Sequential Devices)

The sequential driver can provide a reserve routine that reserves the physical tape
device for exclusive access by the host that is executing the reserve routine. The
tape device remains reserved until it is released by that host, using a release
routine, or by some external stimulus.

The reserve routine is defined as follows:
STATUS xxReserve

(
DEVICE* pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

If a tape device is reserved successfully, the reserve routine returns OK. However,
if the tape device cannot be reserved or an error occurs, it returns ERROR.

Release Routine (Sequential Devices)

This routine releases the exclusive access that a host has on a tape device. The tape
device is then free to be reserved again by the same host or some other host. This

170

3
I/O System

routine is the opposite of the reserve routine and must be provided by the driver if
the reserve routine is provided.

The release routine is defined as follows:

STATUS xxReset

DEVICE* pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

If the tape device is released successfully, this routine returns OK. However, if the
tape device cannot be released or an error occurs, this routine returns ERROR.

Read-Block-Limits Routine (Sequential Devices)

The read-block-limits routine can poll a tape device for its physical block limits.
These block limits are then passed back to the file system so the file system can
decide the range of block sizes to be provided to a user.

The read-block-limits routine is defined as follows:

STATUS xxReadBIkLim

DEVICE * pDeyv, [* pointer to device descriptor */

int *maxBIkLimit, /* maximum block size for device */

int *minBlkLimit /* minimum block size for device */

)
pDev a pointer to the driver’s device descriptor structure.
maxBlkLimit

returns the maximum block size that the tape device can handle to the
calling tape file system.

minBlkLimit
returns the minimum block size that the tape device can handle.

The routine returns OK if no error occurred while acquiring the block limits;
otherwise, it returns ERROR.

Load/Unload Routine (Sequential Devices)

The sequential device driver must provide a load /unload routine in order to
mount or unmount tape volumes from a physical tape device. Loading means that

171

VxWorks 5.4
Programmer’s Guide

a volume is being mounted by the file system. This is usually done upon an open()
or a creat(). However, a device should be unloaded or unmounted only when the
file system wants to eject the tape volume from the tape device.

The load /unload routine is defined as follows:
STATUS xxLoad

(
DEVICE* pDev, [*pointer to device descriptor */

BOOL load /*load or unload device */
)
pDev a pointer to the driver’s device descriptor structure.
load aboolean variable that determines if the tape is loaded or unloaded. If

load is TRUE, the tape is loaded. If load is FALSE, the tape is unloaded.

The load /unload routine returns OK if the load or unload operation ends
successfully; otherwise, it returns ERROR.

Space Routine (Sequential Devices)

The sequential device driver must provide a space routine that moves, or spaces,
the tape medium forward or backward. The amount of distance that the tape
spaces depends on the kind of search that must be performed. In general, tapes can
be searched by end-of-record marks, end-of-file marks, or other types of device-
specific markers.

The basic definition of the space routine is as follows; however, other arguments
can be added to the definition:

STATUS xxSpace

DEVICE * pDev, [* pointer to device descriptor */
int count, /* number of spaces */
int spaceCode /* type of space */
)
pDev a pointer to the driver’s device descriptor structure.
count specifies the direction of search. A positive count value represents

forward movement of the tape device from its current location
(forward space); a negative count value represents a reverse
movement (back space).

spaceCode defines the type of space mark that the tape device searches for on the
tape medium. The basic types of space marks are end-of-record and

172

3
I/O System

end-of-file. However, different tape devices may support more
sophisticated kinds of space marks designed for more efficient
maneuvering of the medium by the tape device.

If the device is able to space in the specified direction by the specified count and
space code, the routine returns OK; if these conditions cannot be met, it returns

ERROR.

Erase Routine (Sequential Devices)

The sequential driver must provide a routine that allows a tape to be erased. The
erase routine is defined as follows:

STATUS xxErase

(
DEVICE* pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

The routine returns OK if the tape is erased; otherwise, it returns ERROR.

3.9.5 Driver Support Libraries

The subroutine libraries in Table 3-16 may assist in the writing of device drivers.
Using these libraries, drivers for most devices that follow standard protocols can
be written with only a few pages of device-dependent code. See the reference entry
for each library for details.

173

Table 3-16

VxWorks 5.4
Programmer’s Guide

VxWorks Driver Support Routines

Library Description

errnoLib Error status library

ftpLib ARPA File Transfer Protocol library
ioLib I/0 interface library

iosLib I/0 system library

intLib Interrupt support subroutine library
remLib Remote command library

rngLib Ring buffer subroutine library
ttyDrv Terminal driver

wdLib Watchdog timer subroutine library

174

Local File Systems

4.1 Introduction

This chapter discusses the organization, configuration, and use of VxWorks file
systems. VxWorks provides two local file systems appropriate for real-time use
with block devices (disks): one is compatible with MS-DOS file systems and the
other with the RT-11 file system. The support libraries for these file systems are
dosFsLib and rt11FsLib. VxWorks also provides a simple raw file system, which
treats an entire disk much like a single large file. The support library for this “file
system” is rawFsLib.

VxWorks also provides a file system for tape devices that do not use a standard file
or directory structure on tape. The tape volume is treated much like a raw device
where the entire volume is a large file. The support library for this file system is
tapeFsLib. In addition, VxWorks provides a file system library, cdromFsLib, that
allows applications to read data from CD-ROMs formatted according to the ISO
9660 standard file system.

In VxWorks, the file system is not tied to a specific type of block device or its driver.
VxWorks block devices all use a standard interface so that file systems can be freely
mixed with device drivers. Alternatively, you can write your own file systems that
can be used by drivers in the same way, by following the same standard interfaces
between the file system, the driver, and the I/O system. VxWorks 1/O architecture
makes it possible to have multiple file systems, even of different types, in a single
VxWorks system. The block device interface is discussed in 3.9.4 Block Devices,
p-158.

175

VxWorks 5.4
Programmer’s Guide

4.2 MS-DOS-Compatible File System: dosFs

Diskettes formatted using the dosFs file system are compatible with MS-DOS
diskettes up to and including release 6.2. Hard disks initialized by the two file
systems have slightly different formats. However, the data itself is compatible and
dosFs can be configured to use a disk formatted by MS-DOS.

The dosFs file system offers considerable flexibility appropriate to the varying
demands of real-time applications. Major features include:

A hierarchical arrangement of files and directories, allowing efficient
organization and permitting an arbitrary number of files to be created on a
volume.

A choice of contiguous or non-contiguous files on a per-file basis. Non-
contiguous files result in more efficient use of available disk space, while
contiguous files offer enhanced performance.

Compatibility with widely available storage and retrieval media. Diskettes
created with VxWorks (that do not use dosFs extended filenames) and MS-
DOS PCs and other systems can be freely interchanged. Hard disks are
compatible if the partition table is accounted for.

The ability to boot VxWorks from any local SCSI device that has a dosFs file
system.

The ability to use longer file names than the 8-character filename plus
3-character extension (8.3) convention allowed by MS-DOS.

NFS (Network File System) support.

4.2.1 Disk Organization

The MS-DOS/dosFs file system provides the means for organizing disk data in a
flexible manner. It maintains a hierarchical set of named directories, each
containing files or other directories. Files can be appended; as they expand, new
disk space is allocated automatically. The disk space allocated to a file is not
necessarily contiguous, which results in a minimum of wasted space. However, to
enhance its real-time performance, the dosFs file system allows contiguous space
to be pre-allocated to files individually, thereby minimizing seek operations and
providing more deterministic behavior.

The general organization of an MS-DOS/dosFs file system is shown in Figure 4-1
and the various elements are discussed in the following sections.

176

Figure 4-1

Clusters

MS-DOS Disk Organization

4
Local File Systems

Boot Sector

Sector 0

File Allocation Table (FAT)
(possibly multiple copies)

Root Directory

Files and Subdirectories

NOTE: If the number of reserved sectors (dosvc_nResrvd)
is greater than 1, the first FAT copy does not immediately

follow the boot sector.

The disk space allocated to a file in an MS-DOS/dosFs file system consists of one
or more disk clusters. A cluster is a set of contiguous disk sectors.! For floppy disks,
two sectors generally make up a cluster; for fixed disks, there can be more sectors
per cluster. A cluster is the smallest amount of disk space the file system can

allocate at a time. A large number of sectors per cluster allows a larger disk to be
described in a fixed-size File Allocation Table (FAT; see File Allocation Table, p.178),

but can result in wasted disk space.

1. In this and subsequent sections covering the dosFs file system, the term sector refers to the
minimum addressable unit on a disk, because this is the term used by most MS-DOS docu-
mentation. In VxWorks, the units are normally referred to as blocks, and a disk device is

called a block device.

177

Boot Sector

VxWorks 5.4
Programmer’s Guide

The first sector on an MS-DOS/dosFs hard disk or diskette is called the boot sector.
This sector contains a variety of configuration data. Some of the data fields
describe the physical properties of the disk (such as the total number of sectors),
and other fields describe file system variables (such as the size of the root
directory).

The boot sector information is written to a disk when it is initialized. The dosFs file
system can use diskettes that are initialized on another system (for example, using
the FORMAT utility on an MS-DOS PC), or VxWorks can initialize the diskette,
using the FIODISKINIT function of the ioctl() call.

As the MS-DOS standard has evolved, various fields have been added to the boot
sector definition. Disks initialized under VxWorks use the boot sector fields
defined by MS-DOS version 5.0.

When MS-DOS initializes a hard disk, it writes a partition table in addition to the
boot sector. VxWorks does not create such a table. Therefore hard disks initialized
by the two systems are not identical. VxWorks can read files from a disk formatted
by MS-DOS if the block offset parameter in the device creation routine points
beyond the partition table to the first byte of the data area.

File Allocation Table

Each MS-DOS/dosFs volume contains a File Allocation Table (FAT). The FAT
contains an entry for each cluster on the disk that can be allocated to a file or
directory. When a cluster is unused (available for allocation), its entry is zero. If a
cluster is allocated to a file, its entry is the cluster number of the next portion of the
file. If a cluster is the last in a file, its entry is -1. Thus, the representation of a file
(or directory) consists of a linked list of FAT entries. In the example shown in
Figure 4-2, one file consists of clusters 2, 300, and 500. Cluster 3 is unused.

NOTE: dosFs does not map bad disk sectors to the FAT.

The FAT uses either 12 or 16 bits per entry. Disk volumes that contain up to 4085
clusters use 12-bit entries; disks with more than 4085 clusters use 16-bit entries. The
entries (particularly 12-bit entries) are encoded in a specific manner, done
originally to take advantage of the Intel 8088 architecture. However, all FAT
handling is done by the dosFs file system; thus the encoding and decoding is of no
concern to VxWorks applications.

178

Figure 4-2

Root Directory

4
Local File Systems

FAT Entries
cluster FAT
0
1
2 300
3 0
300 500
500 -1

A volume typically contains multiple copies of the FAT. This redundancy allows
data recovery in the event of a media error in the first FAT copy.

CAUTION: The dosFs file system maintains multiple FAT copies if that is the
specified configuration; however, the copies are not automatically used in the
event of an error.

The size of the FAT and the number of FAT copies are determined by fields in the
boot sector. For disks initialized using the dosFs file system, these parameters are
specified during the dosFsDevInit() call by setting fields in the volume
configuration structure, DOS_VOL_CONFIG.

Each MS-DOS/dosFs volume contains a root directory. The root directory always
occupies a set of contiguous disk sectors immediately following the FAT copies.
The disk area occupied by the root directory is not described by entries in the FAT.

The root directory is of a fixed size; this size is specified by a field in the boot sector
as the maximum allowed number of directory entries. For disks initialized using
the dosFs file system, this size is specified during the dosFsDevlInit() call, by
setting a field in the volume configuration structure, DOS_VOL_CONFIG.

Because the root directory has a fixed size, an error is returned if the directory is
full and an attempt is made to add entries to it.

179

Subdirectories

Files

VxWorks 5.4
Programmer’s Guide

For more information on the contents of the directory entry, see 4.2.13 Directory
Entries, p.192.

In addition to the root directory, MS-DOS/dosFs volumes sometimes contain a
hierarchy of subdirectories. Like the root directory, subdirectories contain entries
for files and other subdirectories; however, in other ways they differ from the root
directory and resemb]e files:

First, each subdirectory is described by an entry in another directory, as is a
file. Such a directory entry has a bit set in the file-attribute byte to indicate that
it describes a subdirectory. Also, subdirectories, unlike the root directory, have
user-assigned names.

Second, the disk space allocated to a subdirectory is composed of a set of disk
clusters, linked by FAT entries. This means that a subdirectory can grow as

entries are added to it, and that the subdirectory is not necessarily made up of
contiguous clusters. The root directory, unlike subdirectories, can be made up
of any number of sectors, not necessarily equal to a whole number of clusters.

“" o

Third, subdirectories always contain two special entries. The “.” entry refers to

o

the subdirectory itself, while the “..” entry refers to the subdirectory’s parent
directory. The root directory does not contain these special entries.

The disk space allocated to a file in the MS-DOS/dosFs file system is a set of
clusters that are chained together through entries in the FAT. A file is not
necessarily made up of contiguous clusters; the various clusters can be located
anywhere on the disk and in any order.

Each file has a descriptive entry in the directory where it resides. This entry
contains the file’s name, size, last modification date and time, and a field giving
several important attributes (read-only, system, hidden, modified since last
archived). It also contains the starting cluster number for the file; subsequent
clusters are located using the FAT.

180

4
Local File Systems

Volume Label

An MS-DOS/dosFs disk can have a volume label associated with it. The volume
label is a special entry in the root directory. Rather than containing the name of a
file or subdirectory, the volume label entry contains a string used to identify the
volume. This string can contain up to 11 characters. The volume label entry is
identified by a special value of the file-attribute byte in the directory entry.

Note that a volume label entry is not reported using Is(). However, it does occupy
one of the fixed number of entries in the root directory.

The volume label can be added to a dosFs volume by using the ioctl() call with the
FIOLABELSET function. This adds a label entry to the volume’s root directory if
none exists or changes the label string in an existing volume label entry. The
volume label entry takes up one of the fixed number of root directory entries;
attempting to add an entry when the root directory is full results in an error.

The current volume label string for a volume can be obtained by calling the iocti()
call with the FIOLABELGET function. If the volume has no label, this call returns
ERROR and sets errno to S_dosFsLib_NO_LABEL.

Disks initialized under VxWorks or under MS-DOS 5.0 (or later) also contain the
volume label string within a boot sector field.

4.2.2 Initializing the dosFs File System

Note that before any other operations can be performed, the dosFs file system
library, dosFsLib, must be initialized by calling dosFsInit(). This routine takes a
single parameter, the maximum number of dosFs file descriptors that can be open
at one time. That number of file descriptors is allocated during initialization; a
descriptor is used each time your application opens a file, directory, or the file
system device.

The dosFsInit() routine also makes an entry for the file system in the I/O system
driver table (with iosDrvInstall()). This entry specifies entry points for dosFs file
operations and is used for all devices that use the dosFs file system. The driver
number assigned to the dosFs file system is recorded in a global variable
dosFsDrvNum.

The dosFsInit() routine is normally called by the usrRoot() task after starting the
VxWorks system. To use this initialization, select INCLUDE_DOSEFS for inclusion in
the project facility VxWorks view, and set NUM_DOSFS_FILES to the desired
maximum open file count on the Params properties tab.

181

VxWorks 5.4
Programmer’s Guide

4.2.3 Initializing a Device for Use with dosFs

After the dosFs file system is initialized, the next step is to create one or more
devices. Devices are created by the device driver’s device creation routine
(xxDevCreate()). The driver routine returns a pointer to a block device descriptor
structure (BLK_DEV). The BLK_DEV structure describes the physical aspects of the
device and specifies the routines that the device driver provides to a file system.
For more information on block devices, see 3.9.4 Block Devices, p.158.

Immediately after its creation, the block device has neither a name nor a file system
associated with it. To initialize a block device for use with the dosFs file system, the
already-created block device must be associated with dosFs and a name must be
assigned to it. This is done with the dosFsDevInit() routine. Its parameters are the
name to be used to identify the device, a pointer to the block device descriptor
structure (BLK_DEV), and a pointer to the volume configuration structure
DOS_VOL_CONFIG (see 4.2.4 Volume Configuration, p.183). For example:

DOS_VOL_DESC *pVolDesc;
DOS_VOL_CONFIG configStruct;
pVolDesc = dosFsDevinit ("DEV1:", pBlkDev, &configStruct);

The dosFsDevlInit() call performs the following tasks:

+ Assigns the specified name to the device and enters the device in the I/O
system device table (with iosDevAdd()).

+ Allocates and initializes the file system’s volume descriptor for the device.

* Returns a pointer to the volume descriptor. This pointer is subsequently used
to identify the volume during certain file system calls.

Initializing the device for use with dosFs does not format the disk, nor does it
initialize the disk with MS-DOS structures (root directory, FAT, and so on). This
permits using dosFsDevlInit() with disks that already have data in an existing MS-
DOS file system; see 4.2.6 Using an Already Initialized Disk, p.188. Formatting and
DOS disk initialization can be done using the ioctl() functions FIODISKFORMAT
and FIODISKINIT, respectively.

The dosFsMkfs() call provides an easier method of initializing a dosFs device; it
does the following:

+ Provides a set of default configuration values.
+ Calls dosFsDevlInit().

+ Initializes the disk structures using ioctl() with the FIODISKINIT function.

182

4
Local File Systems

The routine dosFsMkfs() by default does not enable any dosFs-specific volume
options (DOS_OPT_CHANGENOWARN, DOS_OPT_AUTOSYNC,
DOS_OPT_LONGNAMES, DOS_OPT_LOWERCASE, or DOS_OPT_EXPORT). To
enable any combination of these options, use dosFsMkfsOptionsSet() before
calling dosFsMkfs() to initialize the disk. For more information on the default
configuration values, see the manual entry for dosFsMkfs().

4.2.4 Volume Configuration

Table 4-1

The volume configuration structure, DOS_VOL_CONFIG, is used during the
dosFsDevlnit() call. This structure contains various dosFs file system variables
describing the layout of data on the disk. Most of the fields in the structure
correspond to those in the boot sector. Table 4-1 lists the fields in the
DOS_VOL_CONFIG structure.

DOS_VOL_CONFIG Fields

Field Description

dosvc_mediaByte Media-descriptor byte

dosvc_secPerClust Number of sectors per cluster

dosvc_nResrvd Number of reserved sectors that precede the first FAT copy; the

minimum is 1 (the boot sector)

dosvc_nFats Number of FAT copies

dosvc_secPerFat Number of sectors per FAT copy
dosvc_maxRootEnts Maximum number of entries in root directory
dosvc_nHidden Number of hidden sectors, normally 0
dosvc_options VxWorks-specific file system options
dosvc_reserved Reserved for future use by Wind River Systems

Calling dosFsConfiglnit()is a convenient way to initialize DOS_VOL_CONFIG. It
takes the configuration variables as parameters and fills in the structure. This is
useful for initializing devices interactively from the Tornado shell (see the Tornado
User’s Guide: Shell). The DOS_VOL_CONFIG structure must be allocated before
dosFsConfigInit() is called.

183

VxWorks 5.4
Programmer’s Guide

DOS_VOL_CONFIG Fields

Table 4-2

All but the last two DOS_VOL_CONFIG fields in Table 4-1 describe standard MS-
DOS characteristics. The field dosve_options is specific to the dosFs file system.
Possible options for this field are shown in Table 4-2.

dosFs Volume Options

Option Hex Value Description
DOS_OPT_CHANGENOWARN 0x1 Disk may be changed without warning.
DOS_OPT_AUTOSYNC 0x2 Synchronize disk during I/0.
DOS_OPT_LONGNAMES 0x4 Use case-sensitive file names not
restricted to 8.3 convention.
DOS_OPT_EXPORT 0x8 Allow exporting using NFS.
DOS_OPT_LOWERCASE 0x40 Use lower case filenames on disk.

The first two options specify the action used to synchronize the disk buffers with
the physical device. The remaining options involve extensions to dosFs
capabilities.

DOS_OPT_CHANGENOWARN
Set this option if the device is a disk that can be replaced without being
unmounted or having its change in ready-status declared. In this situation,
check the disk regularly to determine whether it has changed. This causes
significant overhead; thus, we recommend that you provide a mechanism
that always synchronizes and unmounts a disk before it is removed, or at
least announces a change in ready-status. If such a mechanism is in place,
or if the disk is not removable, do not set this option. Auto-sync mode is
enabled automatically when DOS_OPT_CHANGENOWARN is set (see the
description for DOS_OPT_AUTOSYNC, next). For more information on
DOS_OPT_CHANGENOWARN, see 4.2.17 Changing Disks, p.196.

DOS_OPT_AUTOSYNC
Set this option to assure that directory and FAT data in the disk’s buffers
are written to the physical device as soon as possible after modification,
rather than only when the file is closed. This can be desirable in situations
where it is important that data be stored on the physical medium as soon
as possible so as to avoid loss in the event of a system crash. There is a
significant performance penalty incurred when using auto-sync mode;

184

4
Local File Systems

limit its use, therefore, to circumstances where there is a threat to data
integrity.

However, DOS_OPT_AUTOSYNC does not make dosFs automatically
write data to disk immediately after every write(); doing so implies an
extreme performance penalty. If your application requires this effect, use
the ioctl() function FIOFLUSH after every call to write().

Note that auto-sync mode is automatically enabled whenever
DOS_OPT_CHANGENOWARN is set. For more information on auto-sync
mode, see 4.2.17 Changing Disks, p.196.

DOS_OPT_LONGNAMES
Set this option to allow the use of case-sensitive file names, with name
lengths not restricted to MS-DOS'’s 8.3 convention. For more information
on this option, see 4.2.18 Long Name Support, p.199.

DOS_OPT_EXPORT
Set this option to initialize file systems that you intend to export using
NFS. With this option, dosFs initialization creates additional in-memory
data structures that are required to support the NFS protocol. While this
option is necessary to initialize a file system that can be exported, it does
not actually export the file system. See VxWorks Network Programmer’s
Guide: File Access Applications.

DOS_OPT_LOWERCASE
Set this option to force filenames created by dosFs to use lowercase
alphabetical characters. (Normally, filenames are created using uppercase
characters, unless the DOS_OPT_LONGNAMES option is enabled.) This
option may be required if the dosFs volume is mounted by a PC-based
NEFS client. This option has no effect if DOS_OPT_LONGNAMES is also
specified.

Calculating Configuration Values

The values for dosvc_secPerClust and dosvc_secPerFat in the DOS_VOL_CONFIG
structure must be calculated based on the particular device being used.

dosvc_secPerClust
This field specifies how many contiguous disk sectors make up a single
cluster. Because a cluster is the smallest amount of disk space that can be
allocated at a time, the size of a cluster determines how finely the disk
allocation can be controlled. A large number of sectors per cluster causes
more sectors to be allocated at a time and reduces the overall efficiency of

185

VxWorks 5.4
Programmer’s Guide

disk space usage. For this reason, it is generally preferable to use the
smallest possible number of sectors per cluster, although having less than
two sectors per cluster is generally not necessary.

The maximum size of a FAT entry is 16 bits; thus, there is a maximum of
65,536 (64KB, or 0x10000) clusters that can be described. This is therefore
the maximum number of clusters for a device. To determine the
appropriate number of sectors per cluster, divide the total number of
sectors on the disk (the bd_nBlocks field in the device’s BLK_DEV
structure) by 0x10000 (64KB). Round up the resulting value to the next
whole number. The final result is the number of sectors per cluster; place
this value in the dosvc_secPerClust field in the DOS_VOL_CONFIG
structure.

dosvc_secPerFat
This field specifies the number of sectors required on the disk for each
copy of the FAT. To calculate this value, first determine the total number of
clusters on the disk. The total number of clusters is equal to the total
number of sectors (bd_nBlocks in the BLK_DEV structure) divided by the
number of sectors per cluster. As mentioned previously, the maximum
number of clusters on a disk is 64KB.

The cluster count must then be multiplied by the size of each FAT entry: if
the total number of clusters is 4085 or less, each FAT entry requires 12 bits
(1%2 bytes); if the number of clusters is greater than 4085, each FAT entry
requires 16 bits (2 bytes). The result of this multiplication is the total
number of bytes required by each copy of the FAT. This byte count is then
divided by the size of each sector (the bd_bytesPerBlk field in the
BLK_DEYV structure) to determine the number of sectors required for each
FAT copy; if there is any remainder, add one (1) to the result. Place this
final value in the dosvc_secPerFat field.

Assuming 512-byte sectors, the largest possible FAT (with entries
describing 64KB clusters) occupies 256 sectors per copy, calculated as
follows:

64KB entries x 2 bytes/entry
= 256 sectors

512 bytes/sector
Standard Disk Configurations
For floppy disks, a number of standard disk configurations are used in MS-DOS

systems. In general, these are uniquely identified by the media-descriptor byte

186

4
Local File Systems

value (at least for a given size of floppy disk), although some manufacturers have
used duplicate values for different formats. Some widely used configurations are
summarized in Table 4-3.

Fixed disks do not use standard disk configurations because they are rarely
attached to a foreign system. Usually fixed disks use a media format byte of 0xFS8.

Table 4-3 MS-DOS Floppy Disk Configurations

Capacity 160KB 180KB 320KB 360KB 1.2MB 720KB 1.44MB
Size 5.25" 5.25" 5.25" 5.25" 5.25" 3.5" 3.5"
Sides 1 1 2 2 2 2 2
Tracks 40 40 40 40 80 80 80
Sectors/Track 8 9 8 9 15 9 18
Bytes/Sector 512 512 512 512 512 512 512
secPerClust 1 1 2 2 1 2 1
nResrvd 1 1 1 1 1 1 1
nFats 2 2 2 2 2 2 2
maxRootEnts 64 64 112 112 224 112 224
mediaByte OxFE 0xFC OxFF 0xFD 0xF9 0xF9 0xFO
secPerFat 1 2 1 2 7 3 9
nHidden 0 0 0 0 0 0 0

4.2.5 Changes In Volume Configuration

As mentioned previously, various disk configuration parameters are specified
when the dosFs file system device is first initialized using dosFsDevlInit(). These
parameters are kept in the volume descriptor, DOS_VOL_DESC, for the device.
However, it is possible for a disk with different parameter values to be placed in a
drive after the device is already initialized. If another disk is substituted for the one
with the configuration parameters that were last entered into the volume
descriptor, the configuration parameters of the new disk must be obtained before
it can be used.

187

VxWorks 5.4
Programmer’s Guide

When a disk is mounted, the boot sector information is read from the disk. This
data is used to update the configuration data in the volume descriptor. Note that
this happens the first time the disk is accessed, and again after the volume is
unmounted (using dosFsVolUnmount()) or a ready-change operation is
performed. For more information, see 4.2.17 Changing Disks, p.196.

This automatic re-initialization of the configuration data has an important
implication. The volume descriptor data is used when initializing a disk (with
FIODISKINIT); thus, the disk is initialized with the configuration of the most
recently mounted disk, regardless of the original specification during
dosFsDevlnit(). Therefore, we recommend that you use FIODISKINIT
immediately after dosFsDevlInit(), before any disk is mounted. (The device is
opened in raw mode, the FIODISKINIT ioctl() function is performed, and the
device is closed.)

4.2.6 Using an Already Initialized Disk

If you are using a disk that is already initialized with an MS-DOS boot sector, FAT,
and root directory (for example, by using the FORMAT utility in MS-DOS), it is not
necessary to provide the volume configuration data during dosFsDevInit().

You can omit the MS-DOS configuration data by specifying a NULL pointer instead
of the address of a DOS_VOL_CONFIG structure during dosFsDevInit(). However,
only use this method if you are sure that the first use of the volume is with a
properly formatted and initialized disk.

When mounting an already initialized disk, all standard MS-DOS configuration
values are obtained from the disk’s boot sector. However, the options that are
specific to dosFs must be determined differently.

Disks that are already initialized with the DOS_OPT_LONGNAMES (case-sensitive
file names not restricted to 8.3 convention) option are recognized automatically by
a specific volume ID string that is placed in the boot sector.

The DOS_OPT_CHANGENOWARN, DOS_OPT_AUTOSYNC,
DOS_OPT_LOWERCASE, and DOS_OPT_EXPORT options are recorded only in
memory, not on disk. Therefore they cannot be detected when you initialize a disk
with NULL in place of the DOS_VOL_CONFIG structure pointer; you must re-
enable them each time you mount a disk. You can set default values for these
options with the dosFsDevInitOptionsSet() routine: the defaults apply to any
dosFs file systems you initialize with dosFsDevInit() thereafter, unless you supply
explicit DOS_VOL_CONFIG information.

188

4
Local File Systems

You can also enable the DOS_OPT_CHANGENOWARN and DOS_OPT_AUTOSYNC
options dynamically during disk operation, rather than during initialization, with
the dosFsVolOptionsSet() routine.

4.2.7 Accessing Volume Configuration Information

Disk configuration information is available using dosFsConfigShow()? and
dosFsConfigGet() from the Tornado shell. See the Tornado User’s Guide: Shell.

Use dosFsConfigShow() to display configuration information such as the largest
contiguous area and the device name. For example:

-> dosFsConfigShow "/RAM1/"
value =0 = 0x0

The output is sent to the standard output device, and looks like the following:

device name: /RAM1/
total number of sectors: 400

bytes per sector: 512

media byte: 0xf0

of sectors per cluster: 2

of reserved sectors: 1

of FAT tables: 2

of sectors per FAT: 1

max # of root dir entries: 112

of hidden sectors: 0

removable medium: FALSE
disk change w/out warning: not enabled
auto-sync mode: not enabled
long file names: not enabled
exportable file system: not enabled
volume mode: O_RDWR (read/write)
available space: 199680 bytes
max avail. contig space: 199680 bytes

The dosFsConfigGet() routine stores the disk configuration information in a
DOS_VOL_CONFIG structure. This can be useful if you have a pre-existing disk
and want to initialize a new disk with the same parameters, or if you initialized the
dosFs file system on the disk using dosFsMkfs() and need to obtain the actual
configuration values that were calculated.

2. dosFsConfigShow() is automatically when dosFs is included in your VxWorks image.

189

VxWorks 5.4
Programmer’s Guide

4.2.8 Mounting Volumes

A disk volume is mounted automatically, generally during the first open() or
creat() operation for a file or directory on the disk. (Certain ioctl() calls also cause
the disk to be mounted.) If a NULL pointer is specified instead of the address of a
DOS_VOL_CONFIG structure during the dosFsDevlInit() call, the disk is mounted
immediately to obtain the configuration values.

When a disk is mounted, the boot sector, FAT, and directory data are read from the
disk. The volume descriptor, DOS_VOL_DESC, is updated to reflect the
configuration of the newly mounted disk.

Automatic mounting occurs on the first file access following dosFsVolUnmount()
or a ready-change operation (see 4.2.17 Changing Disks, p.196), or periodically if
the disk is defined during the dosFsDevlInit() call with the option
DOS_OPT_CHANGENOWARN set. Automatic mounting does not occur when a
disk is opened in raw mode; see 4.2.10 Opening the Whole Device (Raw Mode), p.190.

A CAUTION: Because device names are recognized by the I/O system using simple
substring matching, file systems should not use a slash (/) alone as a name;
unexpected results may occur.

It is possible to mount a volume with usrFdConfig(), but this routine does not
return the DOS_VOL_DESC structure. A volume mounted with usrFdConfig() can
not be operated on with most dosFs commands, including dosFsVolUnmount().
However, the dosFs ioctl() commands, including FIOUNMOUNT, access the
volume information through the fd, so they can be used with usrFdConfig().

4.2.9 File /O
Files on a dosFs file system device are created, deleted, written, and read using the
standard VxWorks 1/O routines: creat(), remove(), write(), and read(). See
3.3 Basic 1/O, p.98 for more information.

4.2.10 Opening the Whole Device (Raw Mode)
It is possible to open an entire dosFs volume. This is done by specifying only the
device name during the open() or creat() call. A file descriptor is returned, as

when a regular file is opened; however, operations on that file descriptor affect the
entire device. Opening the entire volume in this manner is called raw mode.

190

4
Local File Systems

The most common reason for opening the entire device is to obtain a file descriptor
for an ioctl() function that does not pertain to an individual file. An example is the
FIONFREE function, which returns the number of available bytes on the volume.
However, for many of these functions, the file descriptor can be any open file
descriptor to the volume, even one for a specific file.

When a disk is initialized with MS-DOS data structures (boot sector, empty root
directory, FAT), open the device in raw mode. The ioctl() function FIODISKINIT
performs the initialization.

You can both read and write data on a disk in raw mode. In this mode, the entire
disk data area (that is, the disk portion following the boot sector, root directory, and
FAT) is treated much like a single large file. No directory entry is made to describe
any data written using raw mode.

For low-level I/O to an entire device, including the area used by MS-DOS data
structures, see 4.4 Raw File System: rawFs, p.209 and the online reference for
rawFsLib under VxWorks Reference Manual>Libraries.

4.2.11 Creating Subdirectories

Subdirectories can be created in any directory at any time, except in the root
directory if it has reached its maximum entry count. Subdirectories can be created
in two ways:

1. Using ioctl() with the FIOMKDIR function: The name of the directory to be
created is passed as a parameter to ioctl(). The file descriptor used for the
ioctl() call is acquired either through opening the entire volume (raw mode),
a regular file, or another directory on the volume.

2. Using open(): To create a directory, the O_CREAT option must be set in the flags
parameter to open, and the FSTAT_DIR option must be set in the mode
parameter. The open() call returns a file descriptor that describes the new
directory. Use this file descriptor for reading only and close it when it is no
longer needed.

When creating a directory using either method, the new directory name must be
specified. This name can be either a full path name or a path name relative to the
current working directory.

191

VxWorks 5.4
Programmer’s Guide

4.2.12 Removing Subdirectories

A directory that is to be deleted must be empty (except for the “.” and “..” entries).
The root directory can never be deleted. There are two methods for removing
directories:

1. Using ioctl() call with the FIORMDIR function, specifying the name of the
directory. Again, the file descriptor used can refer to any file or directory on the
volume, or to the entire volume itself.

2. Using the remove() function, specifying the name of the directory.

4.2.13 Directory Entries

Each dosFs directory contains a set of entries describing its files and immediate
subdirectories. Each entry contains the following information about a file or
subdirectory:

file name
an 8-byte string (padded with spaces, if necessary) specifying the base name
of the file. (Names can be up to 40 characters; for details see 4.2.18 Long Name
Support, p.199.)

file extension
a 3-byte string (space-padded) specifying an optional extension to the file or
subdirectory name. (If case-sensitive file names not restricted to the 8.3
convention are selected, the extension concept is not applicable.)

file attribute
a one-byte field specifying file characteristics; see 4.2.15 File Attributes, p.193.

time
the encoded creation or modification time for the file.

date
the encoded creation or modification date for the file.

cluster number
the number of the starting cluster within the file. Subsequent clusters are
found by searching the FAT.

file size
the size of the file, in bytes. This field is always 0 for entries describing
subdirectories.

192

4
Local File Systems

4.2.14 Reading Directory Entries

Directories on dosFs volumes can be searched using the opendir(), readdir(),
rewinddir(), and closedir() routines. These calls can be used to determine the
names of files and subdirectories.

To obtain more detailed information about a specific file, use the fstat() or stat()
function. Along with standard file information, the structure used by these
routines also returns the file-attribute byte from a directory entry.

For more information, see the manual entry for dirLib.

4.2.15 File Attributes

Table 4-4

The file-attribute byte in a dosFs directory entry consists of a set of flag bits, each
indicating a particular file characteristic. The characteristics described by the file-
attribute byte are shown in Table 4-4.

Flags in the File-Attribute Byte

VxWorks Flag Name Hex value Description
DOS_ATTR_RDONLY 0x01 read-only file
DOS_ATTR_HIDDEN 0x02 hidden file
DOS_ATTR_SYSTEM 0x04 system file
DOS_ATTR_VOL_LABEL 0x08 volume label
DOS_ATTR_DIRECTORY 0x10 subdirectory
DOS_ATTR_ARCHIVE 0x20 file is subject to archiving

DOS_ATTR_RDONLY is checked when a file is opened for O_WRONLY or
O_RDWR. If the flag is set, open() returns ERROR and sets errno to
S_dosFsLib_READ_ONLY.

CAUTION: The MS-DOS hidden file and system file flags, DOS_ATTR_HIDDEN
and DOS_ATTR_SYSTEM, are ignored by dosFsLib. If present, they are kept intact,
but they produce no special handling (for example, entries with these flags are
reported when searching directories).

193

Example 4-1

VxWorks 5.4
Programmer’s Guide

The volume label flag, DOS_ATTR_VOL_LABEL, indicates that a directory entry
contains the dosFs volume label for the disk. A label is not required. If used, there
can be only one volume label entry per volume, in the root directory. The volume
label entry is not reported when reading the contents of a directory (using
readdir()). It can only be determined using the ioct() function FIOLABELGET. The
volume label can be set (or reset) to any string of 11 or fewer characters, using the
ioctl() function FIOLABELSET. Any file descriptor open to the volume can be used
during these ioctl() calls.

The directory flag, DOS_ATTR_DIRECTORY, indicates that this entry is not a
regular file, but a subdirectory.

The archive flag, DOS_ATTR_ARCHIVE, is set when a file is created or modified.
This flag is intended for use by other programs that search a volume for modified
files and selectively archive them. Such a program must clear the archive flag since
VxWorks does not.

All the flags in the attribute byte, except the directory and volume label flags, can
be set or cleared using the ioctl() function FIOATTRIBSET. This function is called
after the opening of the specific file with the attributes to be changed. The attribute-
byte value specified in the FIOATTRIBSET call is copied directly; to preserve
existing flag settings, determine the current attributes using stat() or fstat(), then
change them using bitwise and and or operations.

Setting DosFs File Attributes
This example makes a dosFs file read-only, and leaves other attributes intact.

#include "vxWorks.h"
#include "ioLib.h"
#include "dosFsLib.h"
#include "sys/stat.h"
#include “fcntl.h"

STATUS changeAttributes (void)
{
int fd;
struct stat statStruct;
[* open file */

if (fd = open (‘file", O_RDONLY, 0)) == ERROR)
return (ERROR);

[* get directory entry data */

if (fstat (fd, &statStruct) == ERROR)
return (ERROR);

194

4
Local File Systems

[* set read-only flag on file */

if (ioctl (fd, FIOATTRIBSET, (statStruct.st_attrib | DOS_ATTR_RDONLY))
== ERROR)
return (ERROR);

/* close file */

close (fd);

4.2.16 File Date and Time

Directory entries contain a time and date for each file or directory. This time is set
when the file is created, and it is updated when a file that was modified is closed.
Entries describing subdirectories are not updated—they always contain the
creation date and time for the subdirectory.

The dosFsLib library maintains the date and time in an internal structure. While
there is currently no mechanism for automatically advancing the date or time, two
different methods for setting the date and time are provided.

The first method involves using two routines, dosFsDateSet() and
dosFsTimeSet(). The following examples illustrate their use:

dosFsDateSet (1990, 12, 25); /* set date to Dec-25-1990 */
dosFsTimeSet (14, 30, 22); [* set time to 14:30:22 */

These routines must be called periodically to update the time and date values.

The second method requires a user-supplied hook routine. If a time and date hook
routine is installed using dosFsDateTimelnstall(), that routine is called whenever
dosFsLib requires the current date and time. You can use this to take advantage of
hardware time-of-day clocks that can be read to obtain the current time. It can also
be used with other applications that maintain actual time and date.

Define the date/time hook routine as follows (the name dateTimeHook is an
example; the actual routine name can be anything):

void dateTimeHook

(
DOS_DATE_TIME * pDateTime /* ptrto dosFs date & time struct */
)

On entry to the hook routine, the DOS_DATE_TIME structure contains the last time
and date set in dosFsLib. Next, the hook routine fills the structure with the correct
values for the current time and date. Unchanged fields in the structure retain their
previous values.

195

VxWorks 5.4
Programmer’s Guide

The MS-DOS specification provides only for 2-second granularity in file time-
stamps. If the number of seconds in the time specified during dosFsTimeSet() or
the date/time hook routine is odd, it is rounded down to the next even number.

The date and time used by dosFsLib is initially Jan-01-1980, 00:00:00.

4.2.17 Changing Disks

To increase performance, the dosFs file system keeps in memory copies of
directory entries and the file allocation table (FAT) for each mounted volume.
While this greatly speeds up access to files, it requires that dosFsLib be notified
when removable disks are changed (for example, when floppies are swapped).
Two different notification methods are provided: (1) dosFsVolUnmount() and (2)
the ready-change mechanism. The following sections are not generally applicable
for non-removable media (although dosFsVolUnmount() can be useful in system
shutdown situations).

Unmounting Volumes

The preferred method of announcing a disk change is to call dosFsVolUnmount()
prior to removing the disk. This call flushes all modified data structures to disk if
possible (see Synchronizing Volumes, p.198) and also marks any open file
descriptors as obsolete. During the next I/O operation, the disk is remounted. The
ioctl() call can also be used to initiate dosFsVolUnmount(), by specifying the
FIOUNMOUNT function code. Any open file descriptor to the device can be used
in the ioctl() call.

Subsequent attempts to use obsolete file descriptors for I/O operations return an
S_dosFsLib_FD_OBSOLETE error. To free such file descriptors, use close(), as usual.
This returns S_dosFsLib_FD_OBSOLETE as well, but it successfully frees the
descriptor. File descriptors acquired when opening the entire volume (raw mode)
are not marked as obsolete during dosFsVolUnmount() and can still be used.

ISRs must not call dosFsVolUnmount() directly, because it is possible for the call
to pend while the device becomes available. The ISR can instead give a semaphore
that prompts a task to unmount the volume. (Note that dosFsReadyChange() can
be called directly from ISRs; see Announcing Disk Changes with Ready-Change,
p.197.)

When dosFsVolUnmount() is called, it attempts to write buffered data out to the
disk. Its use is therefore inappropriate for situations where the disk-change
notification does not occur until a new disk is inserted, because the old buffered

196

4
Local File Systems

data would be written to the new disk. In this case, use dosFsReadyChange(),
which is described in Announcing Disk Changes with Ready-Change, p.197.

If dosFsVolUnmount() is called after the disk is physically removed, the data-
flushing portion of its operation fails. However, the file descriptors are still marked
as obsolete and the disk is marked as requiring remounting. In this situation,
dosFsVolUnmount() does not return an error. To avoid lost data, explicitly
synchronize the disk before removing it (see Synchronizing Volumes, p.198).

A CAUTION: Do not attempt to unmount a volume that was mounted with
usrFdConfig() using dosFsVolUnmount(). This routine does not return the
DOS_VOL_CONFIG structure required by dosFsVolUnmount(). You can use
ioctl() with FIOUNMOUNT, which accesses volume information through the fd.

Announcing Disk Changes with Ready-Change

The second method of informing dosFsLib that a disk change is taking place is
with the ready-change mechanism. A change in the disk’s ready-status is
interpreted by dosFsLib as indicating that the disk must be remounted before the
next I/O operation.

There are three ways to announce a ready-change:
By calling dosFsReadyChange() directly.
By calling ioctl() with the FIODISKCHANGE function.

By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying dosFsLib directly.

The ready-change mechanism does not provide the ability to flush data structures
to the disk. It merely marks the volume as needing remounting. Thus, buffered
data (data written to files, directory entries, or FAT changes) can be lost. This can
be avoided by synchronizing the disk before asserting ready-change (see
Synchronizing Volumes, p.198). The combination of synchronizing and asserting
ready-change provides all the functionality of dosFsVolUnmount(), except for
marking file descriptors as obsolete.

Ready-change can be used in ISRs, because it does not attempt to flush data or
perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field
in the BLK_DEYV structure) can be useful for asserting ready-change for devices that
detect a disk change only after the new disk is inserted. This routine is called at the

197

VxWorks 5.4
Programmer’s Guide

beginning of each open() or creat() operation, before the file system checks for
ready-change. See 3.9.4 Block Devices, p.158.

Disks with No Change Notification

If it is not possible for dosFsVolUnmount() to be called or a ready-change to be
announced, then each time the disk is changed, the device must be specially
identified when it is initialized for use with the file system. This is done by setting
DOS_OPT_CHANGENOWARN in the dosvc_options field of the
DOS_VOL_CONFIG structure when calling dosFsDevInit(); see 4.2.4 Volume
Configuration, p.183.

This configuration option results in a significant performance penalty, because the
disk configuration data must be read in regularly from the physical disk (in case it
was removed and a new one inserted). In addition, setting
DOS_OPT_CHANGENOWARN also enables auto-sync mode; see Auto-Sync Mode,
p-199. Note that all that is required for disk change notification is that either the
dosFsVolUnmount() call or ready-change be issued each time the disk is changed.
It is not necessary that it be called from the device driver or an ISR. For example, if
your application provided a user interface through which an operator could enter
a command resulting in an dosFsVolUnmount() call before removing the disk, that
would be sufficient, and DOS_OPT_CHANGENOWARN does not need to be set.
However, it is important that the operator follow such a procedure strictly.

Synchronizing Volumes

When a disk is synchronized, all modified buffered data is physically written to the
disk, so that the disk is up to date. This includes data written to files, updated
directory information, and the FAT.

To avoid loss of data, synchronize a disk before removing it. You may need to
explicitly synchronize a disk, depending on when (or if) dosFsVolUnmount() is
called. If your application does not call this routine, or it is called after the disk is
removed, use ioctl() to explicitly write the data to the device.

When dosFsVolUnmount() is called, an attempt is made to synchronize the device
before unmounting. If the disk is still present and writable at the time of the call,
synchronization takes place, and no further action is required to protect the
integrity of the data written to it before it is dismounted. However, if the
dosFsVolUnmount() call is made after a disk is removed, it is obviously too late to
synchronize, and dosFsVolUnmount() discards the buffered data.

198

Auto-Sync Mode

4
Local File Systems

To explicitly synchronize a disk before it is removed, use ioctl() specifying the
FIOSYNC function. (This could be done in response to an operator command.) Do
this if the dosFsVolUnmount() call is made after a disk is removed or if the routine
dosFsVolUnmount() is never called. The file descriptor used during the ioctl() call
is obtained when the whole volume (raw mode) is opened.

dosFsLib provides a modified mode of synchronization called auto-sync. When
this option is enabled, data for modified directories and the FAT are physically
written to these devices as soon as they are logically altered. (Otherwise, such
changes are not necessarily written out until the involved file is closed.)

Auto-sync mode is enabled by setting DOS_OPT_AUTOSYNC in the
dosvc_options field of the DOS_VOL_CONFIG structure when dosFsDevlInit() is
called; see 4.2.4 Volume Configuration, p.183. Auto-sync mode is automatically
enabled if the volume does not have disk change notification (that is, if
DOS_OPT_CHANGENOWARN is set by dosFsDevlInit()).

Auto-syncresults in a performance penalty, but it provides the highest level of data
security, because it minimizes the period during which directory and FAT data are
not up to date on the disk. Auto-sync is often desirable for applications where data
integrity is threatened by events such as a system crash.

4.2.18 Long Name Support

The dosFs long name support allows the use of case-sensitive file names longer
than MS-DOS’s 8.3 convention. These names can be up to 40 characters long and
can be made up of any ASCII characters. In addition, a dot (.), which in MS-DOS
indicates a file-name extension, has no special significance.

Long name support is enabled by setting DOS_OPT_LONGNAMES in the
dosvc_options field of the DOS_VOL_CONFIG structure when calling
dosFsDevlnit().

WARNING: If you use this feature, the disk is no longer MS-DOS compatible. Use
long name support only for storing data local to VxWorks, on a disk that is
initialized on a VxWorks system using dosFsDevInit() or dosFsMkfs().

199

VxWorks 5.4
Programmer’s Guide

4.2.19 Contiguous File Support

Example 4-2

The dosFs file system provides efficient handling of contiguous files. A contiguous
file is made up of a series of consecutive disk sectors. This capability includes both
the allocation of contiguous space to a specified file (or directory) and optimized

access to such a file.

To allocate a contiguous area to a file, first create the file in the normal fashion,
using open() or creat(). Then use the file descriptor returned during the creation
of the file to make the ioctl() call, specifying the FIOCONTIG function. The
parameter to ioctl() with the FIOCONTIG function is the size of the requested
contiguous area, in bytes. The FAT is searched for a suitable section of the disk, and
if found, it is assigned to the file. (If there is no contiguous area on the volume large
enough to satisfy the request, an error is returned.) The file can then be closed, or
it can be used for further I/O operations.

Creating a DosFs Contiguous File

This example creates a dosFs file and allocates 0x10000 contiguous bytes to it.

#include "vxWorks.h"
#include "ioLib.h"

#include “fcntl.h"

STATUS fileContigTest (void)

{
int fd;
STATUS status;

[* open file */

if ((fd = creat ("file", O_RDWR)) == ERROR)
return (ERROR);

[* get contiguous area */

status = ioctl (fd, FIOCONTIG, 0x10000);
if (status = OK)

/* do error handling */
printf ("ERROR");
* use file */
[* close file */

close (fd);

200

Example 4-3

4
Local File Systems

It is also possible to request the largest available contiguous space. Use
CONTIG_MAX for the size of the contiguous area. For example:

status = ioctl (fd, FIOCONTIG, CONTIG_MAX);

Itis important that the file descriptor used for the ioctl() call be the only descriptor
open to the file. Furthermore, because a file can be assigned a different area of the
disk than is originally allocated, perform the ioctl() FIOCONTIG operation before
any data is written to the file.

To deallocate unused reserved bytes, use the POSIX-compatible routine
ftruncate() or the ioctl() function FIOTRUNC.

Subdirectories can also be allocated a contiguous disk area in the same manner. If
the directory is created using the ioctl() function FIOMKDIR, it must be explicitly
opened to obtain a file descriptor to it; if the directory is created using options to

open(), the returned file descriptor from that call can be used. A directory must be
empty (except for the “.” and “..” entries) when it has contiguous space allocated
to it.

When any file is opened, it is checked for contiguity. If a file is recognized as
contiguous, a more efficient technique for locating specific sections of the file is
used, rather than following cluster chains in the FAT, as must be done for
fragmented files. This enhanced handling of contiguous files takes place regardless
of whether the space is explicitly allocated using FIOCONTIG.

To find the maximum contiguous area on a device, use the ioctl() function
FIONCONTIG. This information can also be displayed by dosFsConfigShow().

Finding the Maximum Contiguous Area on a DosFs Device

In this example, the size (in bytes) of the largest contiguous area is copied to the
integer pointed to by the third parameter to ioctl() (count).

#include "vxWorks.h"
#include “fcntl.h"

#include "ioLib.h"
STATUS contigTest (void)

int count;
int fd;

/* open device in raw mode */
if ((fd = open (/DEV1/", O_RDONLY, 0)) == ERROR)
return (ERROR);

/* find max contiguous area */
ioctl (fd, FIONCONTIG, &count);

201

VxWorks 5.4
Programmer’s Guide

[* close device and display size of largest contiguous area */
close (fd);
printf ("largest contiguous area = %d\n", count);

4.2.20 1/0 Control Functions Supported by dosFsLib

Table 4-5

The dosFs file system supports the ioctl() functions listed in Table 4-5. These
functions are defined in the header file ioLib.h. For more information, see the
manual entries for dosFsLib and for ioctl() in ioLib.

I/O Control Functions Supported by dosFsLib

. Decimal -
Function Value Description
FIOATTRIBSET 35 Set the file-attribute byte in the dosFs directory entry.
FIOCONTIG 36 Allocate contiguous disk space for a file or directory.

FIODISKCHANGE 13 Announce a media change.

FIODISKFORMAT 5 Format the disk (device driver function).
FIODISKINIT 6 Initialize a dosFs file system on a disk volume.
FIOFLUSH 2 Flush the file output buffer.

FIOFSTATGET 38 Get file status information (directory entry data).
FIOGETNAME 18 Get the file name of the fd.

FIOLABELGET 33 Get the volume label.

FIOLABELSET 34 Set the volume label.

FIOMKDIR 31 Create a new directory.

FIONCONTIG 41 Get the size of the maximum contiguous area on a device.
FIONFREE 30 Get the number of free bytes on the volume.
FIONREAD 1 Get the number of unread bytes in a file.
FIOREADDIR 37 Read the next directory entry.

FIORENAME 10 Rename a file or directory.

FIORMDIR 32 Remove a directory.

202

4
Local File Systems

Table 4-5 1/0O Control Functions Supported by dosFsLib (Continued)

Function D\(j;:umeal Description

FIOSEEK 7 Set the current byte offset in a file.

FIOSYNC 21 Same as FIOFLUSH, but also re-reads buffered file data.
FIOTRUNC 42 Truncate a file to a specified length.

FIOUNMOUNT 39 Unmount a disk volume.

FIOWHERE 8 Return the current byte position in a file.

4.2.21 Booting from a Local dosFs File System Using SCSI

VxWorks can be booted from a local SCSI device. Before you can boot from SCSI,
you must make new boot ROMs that contain the SCSI library. Define
INCLUDE_SCSI in the project facility and INCLUDE_SCSI_BOOT in config.h and
rebuild bootrom.hex. (For configuration information, see 8.5 Configuring VxWorks,
p-337; INCLUDE_SCSI_BOOT can only be configured in config.h. For boot ROM
information, see 8.9 Creating Bootable Applications, p.364.)

After burning the SCSI boot ROMs, you can prepare the dosFs file system for use
as a boot device. The simplest way to do this is to partition the SCSI device so that
a dosFs file system starts at block 0. You can then make the new vxWorks image,
place it on your SCSI boot device, and boot the new VxWorks system. These steps
are shown in more detail below.

A WARNING: For use as a boot device, the directory name for the dosFs file system
must begin and end with slashes (as with /sd0/ used in the following example).
This is an exception to the usual naming convention for dosFs file systems and is
incompatible with the NFS requirement that device names not end in a slash.

1. Create the SCSI device using scsiPhysDevCreate() (see SCSI Drivers, p.129),
and initialize the disk with a dosFs file system (see 4.2.2 Initializing the dosFs
File System, p.181). Modify the file installDir/target/src/config/usrScsiConfig.c
to reflect your SCSI configuration. The following example creates a SCSI
device with a dosFs file system spanning the full device:

pPhysDev = scsiPhysDevCreate (pSysScsiCtrl, 2, 0, 0, -1, 0, 0, 0);

pBlkDev = scsiBlkDevCreate (pPhysDev, 0, 0);
dosFsDeviInit ("/sd0/", pBlIkDev, 0);

203

VxWorks 5.4
Programmer’s Guide

2. Remake VxWorks and copy the new kernel to the drive:>

-> copy "unixHost:/usr/wind/target/config/ bspnamelvxWorks", \
"/sd0/vxWorks"

3. Reboot the system, and then change the boot parameters. Boot device
parameters for SCSI devices follow this format:

scsi=id,lun

where id is the SCSI ID of the boot device, and [un is its Logical Unit Number
(LUN). To enable use of the network, include the on-board Ethernet device (for
example, In for LANCE) in the other field. The following example boots from
a SCSI device with a SCSI ID of 2 and a LUN of 0.

[VxWorks Boot]: @

boot device : scsi=2,0
processor number : 0

host name : host

file name : /sd0/vxWorks
inet on ethernet (e) 1 147.11.1.222:ffffff00
host inet (h) 1 147.11.1.3

user (u) . jane

flags (f) : 0x0

target name (tn) 1222

other 2 n

Attaching to scsi device... don.e.
Loading /sdO/vxWorks... 378060 + 27484 + 21544
Starting at 0x1000...

4.3 RT-11-Compatible File System: rt11Fs

VxWorks provides the file system rt11Fs, which is compatible with the RT-11 file
system. It is provided primarily for compatibility with earlier versions of
VxWorks. Normally, the dosFs file system is the preferred choice, because it offers
such enhancements as optional contiguous file allocation, flexible file naming, and
SO on.

3. If you are using the target shell and have selected INCLUDE_NET_SYM_TBL for inclusion
in the project facility VxWorks view, you must also copy the symbol table to the drive, as
follows:

-> copy "unixHost:/usr/wind/target/config/ bspnamelvxWorks.sym", "/sd0/vxWorks.sym

"

204

4
Local File Systems

WARNING: The rt11Fs file system is considered obsolescent. In a future release of
VxWorks, rt11Fs may not be supported.

4.3.1 Disk Organization

The rtllFs file system uses a simple disk organization. Although this simplicity
results in some loss of flexibility, rt11Fs is suitable for many real-time applications.

The rt11Fs file system maintains only contiguous files. A contiguous file consists of
a series of disk sectors that are consecutive. Contiguous files are well-suited to real-
time applications because little time is spent locating specific portions of a file. The
disadvantage of using contiguous files exclusively is that a disk can gradually
become fragmented, reducing the efficiency of the disk space allocation.

The rt11Fs disk format uses a single directory to describe all files on the disk. The
size of this directory is limited to a fixed number of directory entries. Along with
regular files, unused areas of the disk are also described by special directory
entries. These special entries are used to keep track of individual sections of free
space on the disk.

4.3.2 Initializing the rt11Fs File System

Before any other operations can be performed, the rt11Fs file system library,
rt11FsLib, must be initialized by calling rt11FsInit(). This routine takes a single
parameter, the maximum number of rt11Fs file descriptors that can be open at one
time. This count is used to allocate a set of descriptors; a descriptor is used each
time a file or an rt11Fs device is opened.

The rt11FsInit() routine also makes an entry for the rt11Fs file system in the I/O
system driver table (with iosDrvInstall()). This entry specifies entry points for the
rt11Fs file operations and is used for all devices that use the rt11Fs file system. The
driver number assigned to the rt11Fs file systems is placed in a global variable
rt11FsDrvNum.

The rt11FsInit() routine is normally called by the usrRoot() task after starting the
VxWorks system. To use this initialization, make sure INCLUDE_RT11FS is selected
for inclusion in the project facility VxWorks view, and set NUM_RT11FS_FILES to

the desired maximum open file count in the Params tab of the properties window.

205

VxWorks 5.4
Programmer’s Guide

4.3.3 Initializing a Device for Use with rt11Fs

After the rt11Fs file system is initialized, the next step is to create one or more
devices. Devices are created by the device driver’s device creation routine
(xxDevCreate()). The driver routine returns a pointer to a block device descriptor
structure (BLK_DEV). The BLK_DEV structure describes the physical aspects of the
device and specifies the routines in the device driver that a file system can call. For
more information about block devices, see 3.9.4 Block Devices, p.158.

Immediately after its creation, the block device has neither a name nor a file system
associated with it. To initialize a block device for use with rt11Fs, the already-
created block device must be associated with rt11Fs and must have a name
assigned to it. This is done with rt11FsDevInit(). Its parameters are:

— the name to be used to identify the device
— apointer to the BLK_DEV structure

— aboolean value indicating whether the disk uses standard RT-11 skew and
interleave

— thenumber of entries to be used in the disk directory (in some cases, the actual
number used is greater than the number specified)

— aboolean value indicating whether this disk is subject to being changed
without notification to the file system

For example:

RT_VOL_DESC *pVolDesc;
pVolDesc = rt11FsDevinit ("DEV1:", pBlkDev, rtFmt, nEntries, changeNoWarn);

The rt11FsDevInit() call assigns the specified name to the device and enters the
device in the I/O system device table (with iosDevAdd()). It also allocates and
initializes the file system’s volume descriptor for the device. It returns a pointer to
the volume descriptor to the caller; this pointer is used to identify the volume
during some file system calls.

Note that initializing the device for use with the rt11Fs file system does not format
the disk, nor does it initialize the rt11Fs disk directory. These are done using ioctl()
with the functions FIODISKFORMAT and FIODISKINIT, respectively.

206

4
Local File Systems

4.3.4 Mounting Volumes

A disk volume is mounted automatically, generally during the first open() or
creat() for a file or directory on the disk. (Certain ioctl() functions also cause the
disk to be mounted.) When a disk is mounted, the directory data is read it.

Automatic mounting reoccurs on the first file access following a ready-change
operation (see 4.3.8 Changing Disks, p.208) or periodically if the disk is defined
during the rt11FsDevlnit() call with the changeNoWarn parameter set to TRUE.
Automatic mounting does not occur when a disk is opened in raw mode. For more
information, see 4.3.6 Opening the Whole Device (Raw Mode), p.207.

A CAUTION: Because device names are recognized by the I/O system using simple
substring matching, file systems should not use a slash (/) alone as a name;
unexpected results may occur.

4.3.5 File /O

Files on an rt11Fs file system device are created, deleted, written, and read using
the standard VxWorks I/O routines: creat(), remove(), write(), and read(). The
size of an rt11Fs file is determined during its initial open() or creat(). Once closed,
additional space cannot be allocated to the file. For more information, see 3.3 Basic
1/O, p.98.

4.3.6 Opening the Whole Device (Raw Mode)

It is possible to open an entire rt11Fs volume by specifying only the device name
during the open() or creat() call. A file descriptor is returned, as when opening a
regular file; however, operations on that file descriptor affect the entire device.
Opening the entire volume in this manner is called raw mode.

The most common reason for opening the entire device is to obtain a file descriptor
to perform an ioctl() function that does not pertain to an individual file. An
example is the FIOSQUEEZE function, which combines fragmented free space
across the entire volume.

When a disk is initialized with an rt11Fs directory, open the device in raw mode.
The ioctl() function FIODISKINIT performs the initialization.

A disk can be read or written in raw mode. In this case, the entire disk area is
treated much like a single large file. No directory entry is made to describe any

207

VxWorks 5.4
Programmer’s Guide

data written using raw mode, and care must be taken to avoid overwriting the
regular rt11Fs directory at the beginning of the disk. This type of I/O is also
provided by rawFsLib.

4.3.7 Reclaiming Fragmented Free Disk Space

As previously mentioned, the contiguous file allocation scheme used by the rt11Fs
file system can gradually result in disk fragmentation. In this situation, the
available free space on the disk is scattered in a number of small chunks. This
reduces the ability of the system to create new files.

To correct this condition, rt11FsLib includes the ioctl() function FIOSQUEEZE.
This routine moves files so that the free space is combined at the end of the disk.
When you call ioctl() with FIOSQUEEZE, it is critical that there be no open files on
the device. With large disks, this call may require considerable time to execute.

4.3.8 Changing Disks

To increase performance, rt11Fs keeps copies of directory entries for each volume
in memory. While this greatly speeds up access to files, it requires that rt11FsLib
be notified when removable disks are changed (for example, when floppies are
swapped). This notification is provided by the ready-change mechanism.

Announcing Disk Changes with Ready-Change

A change in ready-status is interpreted by rt11FsLib to mean that the disk must be
remounted during the next I/O operation. There are three ways to announce a
ready-change:

* By calling rt11FsReadyChange() directly.
* By calling ioctl() with FIODISKCHANGE.

* By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying rt11FsLib directly.

The ready-change announcement does not cause buffered data to be flushed to the
disk; it merely marks the volume as needing remounting. As a result, data written
to files or directory entry changes can be lost. To avoid this loss of data, close all
files on the volume before changing the disk.

208

4
Local File Systems

Ready-change can be used in ISRs, because it does not attempt to flush data or
perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field
in the BLK_DEV structure) can be useful for asserting ready-change for devices that
only detect a disk change after the new disk is inserted. This routine is called at the
start of each open() or creat(), before the file system checks for ready-change.

Disks with No Change Notification

If it is not possible for a ready-change to be announced each time the disk is
changed, the device must be specially identified when it is initialized for use with
the file system. This is done by setting the changeNoWarn parameter to TRUE
when calling rt11FsDevInit().

When this parameter is defined as TRUE, the disk is checked regularly to obtain
the current directory information (in case the disk is removed and a new one
inserted). As a result, this option causes a significant loss in performance.

4.3.9 I/0 Control Functions Supported by rt11FsLib

The rt11Fs file system supports the ioctl() functions shown in Table 4-6. The
functions listed are defined in the header file ioLib.h. For more information, see
the manual entries for rt11FsLib and for ioctl() in ioLib.

4.4 Raw File System: rawFs

VxWorks provides a minimal “file system,” rawFs, for use in systems that require
only the most basic disk I/O functions. The rawFs file system, implemented in
rawFsLib, treats the entire disk volume much like a single large file. Although the
dosFs and rt11Fs file systems do provide this ability to varying degrees, the rawFs
file system offers advantages in size and performance if more complex functions
are not required.

209

Table 4-6

VxWorks 5.4
Programmer’s Guide

I/O Control Functions Supported by rt11FsLib

Function D\(j;::Teal Description

FIODIRENTRY 9 Get information about specified device directory entries.
FIODISKCHANGE 13 Announce a media change.

FIODISKFORMAT 5 Format the disk.

FIODISKINIT 6 Initialize an rt11Fs file system on a disk volume.
FIOFLUSH 2 Flush the file output buffer.

FIOFSTATGET 38 Get file status information (directory entry data).
FIOGETNAME 18 Get the file name of the fd.

FIONREAD 1 Get the number of unread bytes in a file.
FIOREADDIR 37 Read the next directory entry.

FIORENAME 10 Rename a file.

FIOSEEK 7 Reset the current byte offset in a file.

FIOSQUEEZE 15 Coalesce fragmented free space on an rt11Fs volume.
FIOWHERE 8 Return the current byte position in a file.

4.4.1 Disk Organization

As mentioned previously, rawFs imposes no organization of the data on the disk.

The rawFs file system maintains no directory information; thus there is no division
of the disk area into specific files, and no file names are used. All open() operations
on rawFs devices specify only the device name; no additional file names are

allowed.

The entire disk area is available to any file descriptor that is open for the device.
All read and write operations to the disk use a byte-offset relative to the start of the

first block on the disk.

210

4
Local File Systems

4.4.2 Initializing the rawFs File System

Before any other operations can be performed, the rawFs library, rawFsLib, must
be initialized by calling rawFsInit(). This routine takes a single parameter, the
maximum number of rawFs file descriptors that can be open at one time. This
count is used to allocate a set of descriptors; a descriptor is used each time a rawFs
device is opened.

The rawFsInit() routine also makes an entry for the rawFs file system in the I/O
system driver table (with iosDrvInstall()). This entry specifies the entry points for
rawFs file operations and is for all devices that use the rawFs file system. The
driver number assigned to the rawFs file systems is placed in a global variable
rawFsDrvNum.

The rawFsInit() routine is normally called by the usrRoot() task after starting the
VxWorks system. To use this initialization, define INCLUDE_RAWFS in the project
facility VxWorks view, and set NUM_RAWFS_FILES to the desired maximum open
file descriptor count on the Params tab of the properties window.

4.4.3 Initializing a Device for Use with the rawFs File System

After the rawFs file system is initialized, the next step is to create one or more
devices. Devices are created by the device driver’s device creation routine
(xxDevCreate()). The driver routine returns a pointer to a block device descriptor
structure (BLK_DEV). The BLK_DEV structure describes the physical aspects of the
device and specifies the routines in the device driver that a file system can call. For
more information on block devices, see 3.9.4 Block Devices, p.158.

Immediately after its creation, the block device has neither a name nor a file system
associated with it. To initialize a block device for use with rawFs, the already-
created block device must be associated with rawFs and a name must be assigned
to it. This is done with the rawFsDevInit() routine. Its parameters are the name to
be used to identify the device and a pointer to the block device descriptor structure
(BLK_DEV):

RAW_VOL_DESC *pVolDesc;
BLK_DEV *pBIkDev;
pVolDesc = rawFsDevinit ("DEV1:", pBlkDev);

The rawFsDevInit() call assigns the specified name to the device and enters the
device in the I/O system device table (with iosDevAdd()). It also allocates and
initializes the file system’s volume descriptor for the device. It returns a pointer to

211

VxWorks 5.4
Programmer’s Guide

the volume descriptor to the caller; this pointer is used to identify the volume
during certain file system calls.

Note that initializing the device for use with rawFs does not format the disk. That
is done using an ioctl() call with the FIODISKFORMAT function.

No disk initialization (FIODISKINIT) is required, because there are no file system
structures on the disk. Note, however, that rawFs accepts that ioctl() function code
for compatibility with other file systems; in such cases, it performs no action and
always returns OK.

4.4.4 Mounting Volumes

A

4.4.5 File /0O

A disk volume is mounted automatically, generally during the first open() or
creat() operation. (Certain ioctl() functions also cause the disk to be mounted.)
The volume is again mounted automatically on the first disk access following a
ready-change operation (see 4.4.6 Changing Disks, p.213).

CAUTION: Because device names are recognized by the I/O system using simple
substring matching, file systems should not use a slash (/) alone as a name;
unexpected results may occur.

To begin I/O to a rawFs device, first open the device using the standard open()
function. (The creat() function can be used instead, although nothing is actually
“created.”) Data on the rawFs device is written and read using the standard I/0O
routines write() and read(). For more information, see 3.3 Basic 1/O, p.98.

The character pointer associated with a file descriptor (that is, the byte offset where
reads and writes take place) can be set by using ioctl() with the FIOSEEK function.

Multiple file descriptors can be open simultaneously for a single device. These
must be carefully managed to avoid modifying data that is also being used by
another file descriptor. In most cases, such multiple open descriptors use FIOSEEK
to set their character pointers to separate disk areas.

212

4
Local File Systems

4.4.6 Changing Disks

The rawFs file system must be notified when removable disks are changed (for
example, when floppies are swapped). Two different notification methods are
provided: (1) rawFsVolUnmount() and (2) the ready-change mechanism.

Unmounting Volumes

The first method of announcing a disk change is to call rawFsVolUnmount() prior
to removing the disk. This call flushes all modified file descriptor buffers if possible
(see Synchronizing Volumes, p.214) and also marks any open file descriptors as
obsolete. The next I/O operation remounts the disk. Calling ioctl() with
FIOUNMOUNT is equivalent to using rawFsVolUnmount(). Any open file
descriptor to the device can be used in the ioctI() call.

Attempts to use obsolete file descriptors for further I/O operations produce an
S_rawFsLib_FD_OBSOLETE error. To free an obsolete descriptor, use close(), as
usual. This frees the descriptor even though it produces the same error.

ISRs must not call rawFsVolUnmount() directly, because the call can pend while
the device becomes available. The ISR can instead give a semaphore that prompts
a task to unmount the volume. (Note that rawFsReadyChange() can be called
directly from ISRs; see Announcing Disk Changes with Ready-Change, p.213.)

When rawFsVolUnmount() is called, it attempts to write buffered data out to the
disk. Its use is therefore inappropriate for situations where the disk-change
notification does not occur until a new disk is inserted, because the old buffered
data would be written to the new disk. In this case, use rawFsReadyChange(),
which is described in Announcing Disk Changes with Ready-Change, p.213.

If rawFsVolUnmount() is called after the disk is physically removed, the data
flushing portion of its operation fails. However, the file descriptors are still marked
as obsolete, and the disk is marked as requiring remounting. An error is not
returned by rawFsVolUnmount(); to avoid lost data in this situation, explicitly
synchronize the disk before removing it (see Synchronizing Volumes, p.214).

Announcing Disk Changes with Ready-Change
The second method of announcing that a disk change is taking place is with the

ready-change mechanism. A change in the disk’s ready-status is interpreted by
rawFsLib to indicate that the disk must be remounted during the next I/O call.

213

VxWorks 5.4
Programmer’s Guide

There are three ways to announce a ready-change:
* By calling rawFsReadyChange() directly.
* By calling ioctl() with FIODISKCHANGE.

* By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying rawFsLib directly.

The ready-change announcement does not cause buffered data to be flushed to the
disk. It merely marks the volume as needing remounting. As a result, data written
to files can be lost. This can be avoided by synchronizing the disk before asserting
ready-change. The combination of synchronizing and asserting ready-change
provides all the functionality of rawFsVolUnmount() except for marking file
descriptors as obsolete.

Ready-change can be used in ISRs, because it does not attempt to flush data or
perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field
in the BLK_DEYV structure) is useful for asserting ready-change for devices that
only detect a disk change after the new disk is inserted. This routine is called at the
beginning of each open() or creat(), before the file system checks for ready-
change.

Disks with No Change Notification

If it is not possible for a ready-change to be announced each time the disk is
changed, close all file descriptors for the volume before changing the disk.

Synchronizing Volumes

When a disk is synchronized, all buffered data that is modified is written to the
physical device so that the disk is up to date. For the rawFs file system, the only
such data is that contained in open file descriptor buffers.

To avoid loss of data, synchronize a disk before removing it. You may need to
explicitly synchronize a disk, depending on when (or if) the rawFsVolUnmount()
call is issued.

When rawFsVolUnmount() is called, an attempt is made to synchronize the device
before unmounting. If this disk is still present and writable at the time of the call,
synchronization takes place automatically; there is no need to synchronize the disk
explicitly.

214

4
Local File Systems

However, if the rawFsVolUnmount() call is made after a disk is removed, it is
obviously too late to synchronize, and rawFsVolUnmount() discards the buffered
data. Therefore, make a separate ioctl() call with the FIOSYNC function before
removing the disk. (For example, this could be done in response to an operator
command.) Any open file descriptor to the device can be used during the ioctI()
call. This call writes all modified file descriptor buffers for the device out to the
disk.

4.4.7 1/0 Control Functions Supported by =~ rawFsLib

Table 4-7

The rawFs file system supports the ioctl() functions shown in Table 4-7. The
functions listed are defined in the header file ioLib.h. For more information, see
the manual entries for rawFsLib and for ioctl() in ioLib.

I/0 Control Functions Supported by ~ rawFsLib

Function Decimal Description
Value

FIODISKCHANGE 13 Announce a media change.

FIODISKFORMAT 5 Format the disk (device driver function).

FIODISKINIT 6 Initialize a rawFs file system on a disk volume (not required).
FIOFLUSH 2 Same as FIOSYNC.

FIOGETNAME 18 Get the file name of the fd.

FIONREAD 1 Get the number of unread bytes on the device.

FIOSEEK 7 Set the current byte offset on the device.

FIOSYNC 21 Write out all modified file descriptor buffers.
FIOUNMOUNT 39 Unmount a disk volume.

FIOWHERE 8 Return the current byte position on the device.

215

VxWorks 5.4
Programmer’s Guide

4.5 Tape File System: tapeFs

The tapeFs library, tapeFsLib, provides basic services for tape devices that do not
use a standard file or directory structure on tape. The tape volume is treated much
like a raw device where the entire volume is a large file. Any data organization on
this large file is the responsibility of a higher-level layer.

4.5.1 Tape Organization

The tapeFs file system imposes no organization of the data on the tape volume. It
maintains no directory information; there is no division of the tape area into
specific files; and no file names are used. An open() operation on the tapeFs device
specifies only the device name; no additional file names are allowed.

The entire tape area is available to any file descriptor open for the device. All read
and write operations to the tape use a location offset relative to the current location
of the tape head. When a file is configured as a rewind device and first opened, tape
operations begin at the beginning-of-medium (BOM); see Initializing a Device for
Use with the tapeFs File System, p.217. Thereafter, all operations occur relative to
where the tape head is located at that instant of time. No location information, as
such, is maintained by tapeFs.

4.5.2 Using the tapeFs File System

Before tapeFs can be used, it must be configured by defining INCLUDE_TAPEFS in
the BSP file config.h. (See 8.5 Configuring VxWorks, p.337.) Note that the tape file
system must be configured with SCSI-2 enabled. See Configuring SCSI Drivers,
p-129 for configuration details.

Once the tape file system has been configured, you must initialize it and then
define a tape device. Once the device is initialized, the physical tape device is
available to the tape file system and normal I/O system operations can be
performed.

Initializing the tapeFs File System
The tapeFs library, tapeFsLib, is initialized by calling tapeFsInit(). Each tape file

system can handle multiple tape devices. However, each tape device is allowed
only one file descriptor. Thus you cannot open two files on the same tape device.

216

4
Local File Systems

The tapeFsInit() routine also makes an entry for the tapeFs file system in the I/O
system driver table (with iosDrvInstall()). This entry specifies function pointers
to carry out tapeFs file operations on devices that use the tapeFs file system. The
driver number assigned to the tapeFs file system is placed in a global variable,
tapeFsDrvNum.

When initializing a tape device, tapeFsInit() is called automatically if
tapeFsDevlInit() is called; thus, the tape file system does not require explicit
initialization.

Initializing a Device for Use with the tapeFs File System

Once the tapeFs file system has been initialized, the next step is to create one or
more devices that can be used with it. This is done using the sequential device
creation routine, scsiSeqDevCreate(). The driver routine returns a pointer to a
sequential device descriptor structure, SEQ_DEV. The SEQ_DEYV structure
describes the physical aspects of the device and specifies the routines in the device
driver that tapeFs can call. For more information on sequential devices, see the
manual entry for scsiSeqDevCreate(), Configuring SCSI Drivers, p.129, 3.9.4 Block
Devices, p.158, and Example 3-6.

Immediately after its creation, the sequential device has neither a name nor a file
system associated with it. To initialize a sequential device for use with tapeFs, call
tapeFsDevlInit() to assign a name and declare a file system. Its parameters are the
volume name, for identifying the device; a pointer to SEQ_DEYV, the sequential
device descriptor structure; and a pointer to an initialized tape configuration
structure TAPE_CONFIG. This structure has the following form:

typedef struct /* TAPE_CONFIG tape device config structure */

int blkSize; [* block size; 0 => var. block size */

BOOL rewind; /* TRUE => a rewind device; FALSE => no rewind */
int numFileMarks; /* not used */

int density; /* not used */

} TAPE_CONFIG;

In the preceding definition of TAPE_CONFIG, only two fields, blkSize and rewind,
are currently in use. If rewind is TRUE, then a tape device is rewound to the
beginning-of-medium (BOM) upon closing a file with close(). However, if rewind
is FALSE, then closing a file has no effect on the position of the read /write head on
the tape medium.

For more information on initializing a tapeFs device, see the online reference for
tapeFsDevlInit() under VxWorks Reference Manual>Libraries.

217

VxWorks 5.4
Programmer’s Guide

The blkSize field specifies the block size of the physical tape device. Having set the
block size, each read or write operation has a transfer unit of blkSize. Tape devices
can perform fixed or variable block transfers, a distinction also captured in the
blkSize field.

Fixed Block and Variable Block Devices

Example 4-4

A tape file system can be created for fixed block size transfers or variable block size
transfers, depending on the capabilities of the underlying physical device. The
type of data transfer (fixed block or variable block) is usually decided when the
tape device is being created in the file system, that is, before the call to
tapeFsDevlnit(). A block size of zero represents variable block size data transfers.

Once the block size has been set for a particular tape device, it is usually not
modified. To modify the block size, use the ioctl() functions FIOBLKSIZESET and
FIOBLKSIZEGET to set and get the block size on the physical device.

Note that for fixed block transfers, the tape file system buffers a block of data. If the
block size of the physical device is changed after a file is opened, the file should
first be closed and then re-opened in order for the new block size to take effect.

Tape Device Configuration

There are many ways to configure a tape device. In this code example, a tape
device is configured with a block size of 512 bytes and the option to rewind the
device at the end of operations.

[* global variables assigned elsewhere */
SCSI_PHYS_DEV* pScsiPhysDeyv;
/* local variable declarations */

TAPE_VOL_DESC * pTapeVol;
SEQ_DEV * pSeqDev;
TAPE_CONFIG pTapeConfig;

/* initialization code */

pTapeConfig.blkSize =512;

pTapeConfig.rewind = TRUE;

pSegDev = scsiSeqDevCreate (pScsiPhysDev);

pTapeVol =tapeFsDevinit ("/tapel”, pSegDev, pTapeConfig);

The tapeFsDevlnit() call assigns the specified name to the device and enters the
device in the I/O system device table (with iosDevAdd()). The return value of this
routine is a pointer to a volume descriptor structure that contains volume-specific
configuration and state information.

218

4
Local File Systems

Mounting Volumes

A

A tape volume is mounted automatically during the open() operation. There is no
specific mount operation, that is, the mount is implicit in the open() operation.

CAUTION: Because device names are recognized by the I/O system using simple
substring matching, file systems should not use a slash (/) alone as a name;
unexpected results may occur.

Modes of Operation

File I/O

Changing Tapes

The tapeFs tape volumes can be operated in only one of two modes: read-only
(O_RDONLY) or write-only (O_WRONLY). There is no read-write mode. The mode
of operation is defined when the file is opened using open().

To begin 1/O to a tapeFs device, the device is first opened using open(). Data on
the tapeFs device is written and read using the standard I/O routines write() and
read(). For more information, see 3.7.6 Block Devices, p.127.

End-of-file markers can be written using ioctl() with the MTWEOF function. For
more information, see I/O Control Functions Supported by tapeFsLib, p.220.

The tapeFs file system should be notified when removable media are changed (for
example, when tapes are swapped). The tapeFsVolUnmount() routine controls the
mechanism to unmount a tape volume.

A tape should be unmounted before it is removed. Prior to unmounting a tape
volume, an open file descriptor must be closed. Closing an open file flushes any
buffered data to the tape, thus synchronizing the file system with the data on the
tape. To flush or synchronize data, call ioctl() with the FIOFLUSH or FIOSYNC
functions, prior to closing the file descriptor.

After closing any open file, call tapeFsVolUnmount() before removing the tape.
Once a tape has been unmounted, the next I/O operation must remount the tape
using open().

219

VxWorks 5.4
Programmer’s Guide

Interrupt handlers must not call tapeFsVolUnmount() directly, because it is
possible for the call to pend while the device becomes available. The interrupt
handler can instead give a semaphore that prompts a task to unmount the volume.

I/O Control Functions Supported by ~ tapeFsLib

Table 4-8

The tapeFs file system supports the ioctl() functions shown in Table 4-8. The
functions listed are defined in the header files ioLib.h, seqlo.h, and tapeFsLib.h.
For more information, see the reference entries for tapeFsLib, ioLib, and ioctI().

I/O Control Functions Supported by tapeFsLib

Function Value Meaning

FIOFLUSH 2 Write out all modified file descriptor buffers.
FIOSYNC 21 Same as FIOFLUSH.

FIOBLKSIZEGET 1001 Get the actual block size of the tape device by issuing a

driver command to it. Check this value with that set in
the SEQ_DEV data structure.

FIOBLKSIZESET 1000 Set the block size of the tape device on the device and in
the SEQ_DEV data structure.

MTIOCTOP 1005 Perform a UNIX-like MTIO operation to the tape
device. The type of operation and operation count is set
in an MTIO structure passed to the ioctl() routine. The
MTIO operations are defined in Table 4-9.

The MTIOCTOP operation is compatible with the UNIX MTIOCTOP operation. The
argument passed to ioctl() with MTIOCTOP is a pointer to an MTOP structure that
contains the following two fields:

typedef struct mtop

short mt_op; /* operation */
int mt_count; /* number of operations */
} MTOP;

The mt_op field contains the type of MTIOCTOP operation to perform. These
operations are defined in Table 4-9. The mt_count field contains the number of
times the operation defined in mt_op should be performed.

220

4
Local File Systems

Table 4-9 MTIOCTOP Operations

Function Value Meaning

MTWEOF 0 Write an end-of-file record or “file mark.”

MTEFSF 1 Forward space over file mark.

MTBSF 2 Backward space over file mark.

MTFSR 3 Forward space over data block.

MTBSR 4 Backward space over data block.

MTREW 5 Rewind the tape device to the beginning-of-medium.
MTOFFL 6 Rewind and put the drive offline.

MTNOP 7 No operation, sets status in the SEQ_DEYV structure only.
MTRETEN 8 Re-tension the tape (cartridge tape only).

MTERASE 9 Erase the entire tape.

MTEOM 10 Position tape to end-of-media.

MTNBSF 11 Backward space file to beginning-of-medium.

4.6 CD-ROM File System: cdromFs

The cdromFs library, cdromFsLib, lets applications read any CD-ROM that is
formatted in accordance with ISO 9660 file system standards. After initializing
cdromFs and mounting it on a CD-ROM block device, you can access data on that
device using the standard POSIX 1/O calls: open(), close(), read(), ioctl(),
readdir(), and stat(). The write() call always returns an error.

The cdromFs utility supports multiple drives, multiple open files, and concurrent
file access. When you specify a pathname, cdromFS accepts both “/” and “\”.
However, the backslash is not recommended because it might not be supported in
future releases.

The strict ISO 9660 specification allows only uppercase file names consisting of 8
characters plus a 3-character suffix.

221

VxWorks 5.4
Programmer’s Guide

CdromFs provides access to CD-ROM file systems using any standard BLK_DEV
structure. The basic initialization sequence is similar to installing a dosFs file
system on a SCSI device.

Before cdromFs can be used, it must be configured by defining
INCLUDE_CDROMEFS in config.h. (See 8.5 Configuring VxWorks, p.337.) For
information on using cdromFs, see the online reference for cdromFsLib under
VxWorks Reference Manual>Libraries.

4.7 The Target Server File System: TSFS

How It Works

The Target Server File System (TSES) is a full-featured VxWorks file system, but the
files operated on by using the file system are actually located on the host. TSFS uses
a WDB driver to transfer requests from the I/O system to the target server. The
target server reads the request and executes it using the host file system. Thus
when you open a file with TSFES, the file being opened is actually on the host.
Future read() and write() calls on the file descriptor obtained from the open() call
actually read from and write to the opened host file.

The TSES VIO driver is oriented toward file I/O rather than toward console
operations as is the Tornado 1.0 VIO driver. TSES provides all the I/O features that
netDrv provides, without requiring any target resource beyond what is already
configured to support communication between target and target server. It is
possible to access host files randomly without copying the entire file to the target,
to load an object module from a virtual file source, and to supply the file name to
routines such as Id() and copy().

Two steps are required to configure TSFS. First, TSFS must be included in your
VxWorks image. This creates a new file system entry, /tgtsvr. Then the target server
must be configured for TSFS, which involves assigning a root directory on your
host to TSFS. For example, you could set the TSFES root to c:\windview\logs.

Having done this, opening the file /tgtsvr/eventLog.wvr from the target causes
c\windview\logs\eventLog.wvr to be opened on the host by the target server. A
new file descriptor representing that file is returned to the caller on the target.

222

4
Local File Systems

Each I/O request, including open(), is synchronous; the calling target task is
blocked until the operation is complete. This provides flow control not available in
the console VIO implementation. In addition, there is no need for WTX protocol
requests to be issued to associate the VIO channel with a particular host file; the
information is contained in the name of the file.

Consider a read() call. The driver transmits the ID of the file (previously
established by an open() call), the address of the buffer to receive the file data, and
the desired length of the read to the target server. The target server responds by
issuing the equivalent read() call on the host and transfers the data read to the
target program. The return value of read() and any errno that might arise are also
relayed to the target, so that the file appears to be local in every way. For detailed
information on the supported routines and ioctl requests, see the online reference
for wdbTsfsDrv under VxWorks Reference Manual>Libraries.

Socket Support

TSFS sockets are operated on in a similar way to other TSFS files, using open(),
close(), read(), write(),and ioctl(). To open a TSFS socket use one of the following
forms of filename:

"TCP: hostIP: port"
"TCP: hostname: port"

The flags and permissions arguments are ignored. The following examples show
how to use these filenames:

fd = open("/tgtsvr/TCP:phobos:6164"0,0) /* open socket and connect */

/* to server phobos */
fd = open("/tgtsvr/TCP:150.50.50.50:6164",0,0) /* open socket and */
[*connect to server */
/*150.50.50.50 *

The result of this open() call is to open a TCP socket on the host and connect it to
the target server socket at hostname or hostIP awaiting connections on port. The
resultant socket is non-blocking. Use read() and write() to read and write to the
TSFS socket. Because the socket is non-blocking, the read() call returns
immediately with an error and the appropriate errno if there is no data available
to read from the socket. Ioctls specific to TSFS sockets are discussed in the online
reference for wdbTsfsDrv under VxWorks Reference Manual>Libraries. This socket
configuration allows WindView to use the socket facility without requiring
sockLib and the networking modules on the target.

223

VxWorks 5.4
Programmer’s Guide

Error Handling

Errors can arise at various points within TSFS and are reported back to the original
caller on the target, along with an appropriate error code. The error code returned
is the VxWorks errno which most closely matches the error experienced on the
host. If a WDB error is encountered, a WDB error message is returned rather than
a VxWorks errno.

Security Considerations

While TSES has much in common with netDrv, the security considerations are
different. With TSFS, the host file operations are done on behalf of the user that
launched the target server. The user name given to the target as a boot parameter
has no effect. In fact, none of the boot parameters have any effect on the access
privileges of TSFS.

In this environment, it is less clear to the user what the privilege restrictions to
TSEFES actually are, since the user ID and host machine that start the target server
may vary from invocation to invocation. In any case, any Tornado tool that
connects to a target server which is supporting TSFS has access to any file with the
same authorizations as the user that started that target server. For this reason, the
target server is locked by default when TSFS is started.

The options which have been added to the target server startup routine to control
target access to host files using TSFS include:

-R set the root of TSFS

For example, specifying -R /tftpboot prepends this string to all TSFS file
names received by the target server, so that /tgtsvr/etc/passwd maps to
/tftpboot/etc/passwd. If -R is not specified, TSFS is not activated and no
TSFS requests from the target will succeed. Restarting the target server
without specifying -R disables TSFS.

-RW make TSFS read-write

The target server interprets this option to mean that modifying operations
(including file create and delete or write) are authorized. If -RW is not
specified, the default is read only and no file modification are allowed.

224

4
Local File Systems

A WARNING: When you specify -RW the target server is locked (reserved to the user
who started it). The target server owner can unlock it, but then any Tornado tool
that attached to it has exactly the same file access permissions as the target server
owner. A target server started on UNIX is automatically owned by the user ID that
started it. A target server started on Windows is assigned to the variable
WIND_UID, which must be set as described in Setting WIND_UID on Windows
Hosts, p.225.

Setting WIND_UID on Windows Hosts

The variable WIND_UID must be set to use TSFS with WindView on Windows
hosts. There are two ways to set it:

» Use the System Properties dialog box, accessible through the Control Panel , to
set the value of WIND_UID. This technique makes the value available to all
tools in your environment.

+ Type a unique number or string at the DOS prompt:
%set WIND_UID= " num

If you choose this option, you must set WIND_UID before starting both
Tornado and the target server because both must have WIND_UID set to the
same value. Note that this method sets WIND_UID only for tools that are
started from this DOS prompt.

NOTE: If you have an environment that mixes Windows and UNIX hosts, you may
want to set WIND_UID to your UNIX user ID number. This will allow you to attach
the Tornado session on your Windows host to a target server running on your
UNIX host.

For more information on WIND_UID, see the Tornado User’s Guide (Windows
version): Target Server.

225

VxWorks 5.4
Programmer’s Guide

226

C++ Development

Basic Support and the Optional Component
Wind Foundation Classes

5.1 Introduction

In the Tornado environment, C++ development support consists of the GNU C++
toolchain, run-time support, the Standard Template Library (STL), exception
handling, Run-Time Type Identification (RTTI), and the Iostream library. In
addition, Wind River Systems offers an optional product, the Wind Foundation
Classes, providing several additional class libraries to extend VxWorks
functionality.

This chapter discusses basic application development using C++ and provides
references to relevant information in other Wind River documentation. In addition,
the Iostream library and the Wind Foundation Classes are documented here.

The Standard Template Library provides support for “generic” programming. Two
template instantiation strategies are supported. Templates may be instantiated in
every translation unit that uses them, or the compiler can determine where to
instantiate them. The STL is VxWorks thread safe at the class level.

Exception handling is available for use in your application code. The GNU
Iostream library does not throw without specific enabling. The STL throws only in
some methods in the basic_string class.

The Iostream library provides support for formatted I/O in C++. The C++
language definition (like C) does not include special input and output statements,
relying instead on standard library facilities. The lostream library provides C++
capabilities analogous to the C functions offered by the stdio library. The principal
differences are that the Iostream library gives you enhanced type security and can
be extended to support your own class definitions. The Iostream library is thread
safe at the object level.

227

VxWorks 5.4
Programmer’s Guide

The Wind Foundation Classes consist of a group of libraries (some of which are
industry standard) that provide a broad range of C++ classes to extend VxWorks
functionality in several important ways. They are called Foundation classes because
they provide basic services which are fundamental to many programming tasks,
and which can be used in almost every application domain. For information about
how to install the Wind Foundation Classes, see Tornado Getting Started.

The Wind Foundation Classes consist of the following libraries:
* VxWorks Wrapper Class library

+ Tools.h++ library from Rogue Wave Software

5.2 C++ Development Under Tornado

Basic C++ support is bundled with the Tornado development environment.
VxWorks provides header files containing C++ safe declarations for all routines
and the necessary run-time support. The standard Tornado interactive
development tools such as the debugger, the shell, and the incremental loader
include C++ support.

5.2.1 Tools Support

WindSh

Tornado supports both C and C++ as development languages. WindSh can
interpret simple C++ expressions. To exercise C++ facilities that are missing from
the C-expression interpreter, you can compile and download routines that
encapsulate the special C++ syntax. See the Tornado User’s Guide: Tornado Tools
Reference or the HTML online reference for WindSh C++ options.

Demangling

When C++ functions are compiled, the class membership (if any) and the type and
number of the function’s arguments are encoded in the function’s linkage name.
This is called name mangling or mangling. The debugging and system information

228

5
C++ Development

routines in WindSh can print C++ function names in demangled or mangled
representations.

The default representation is gnu. In addition, arm and none (no demangling) are
available options. To select an alternate mode, modify the Tcl variable
shDemangleStyle. For instance:

-> ?set shDemangleStyle none

Overloaded Function Names

Debugger

When you invoke an overloaded function, WindSh prints the matching functions’
signatures and prompts you for the desired function. For more information on
how WindSh handles overloaded function names, including an example, see the
Tornado User’s Guide: Shell.

The Tornado debugger supports debugging of C++ class member functions
including stepping through constructors and templates. For details, see the Tornado
User’s Guide: Tornado Tools Reference and Debugging with GDB.

5.2.2 Programming Issues

Making C++ Entry Points Accessible to C Code

If you want to reference a (non-overloaded, global) C++ symbol from your C code
you will need to give it C linkage by prototyping it using extern "C":

#ifdef __cplusplus

extern "C" void myEntryPoint ();
telse

void myEntryPoint ();

#endif

You can also use this syntax to make C symbols accessible to C++ code. VxWorks
C symbols are automatically available to C++ because the VxWorks header files
use this mechanism for declarations.

229

VxWorks 5.4

Programmer’s Guide

5.2.3 Compiling C++ Applications

The Tornado project tool fully supports C++. The recommended way to configure
and compile C++ applications is to use the project tool. The information below
may be useful for understanding the C++ environment but unless you have a
particular reason to use manual methods, you should use the methods explained
in the Tornado User’s Guide: Projects.

For details on the GNU compiler and on the associated tools, see the GNU ToolKit
User’s Guide.

When compiling C++ modules with the GNU compiler, invoke ccarch (just as for
C source) on any source file with a C++ suffix (such as .cpp). Compiling C++
applications in the VxWorks environment involves the following steps:

1.

Each C++ source file is compiled into object code for your target architecture,
just as for C applications. For example, to compile for a 68K target:

cc68k -fno-builtin -I$WIND_BASE/target/h -nostdinc -O2 \
-DCPU=MC68040 -c foo.cpp

cc68k -fno-builtin -I$WIND_BASE/target/h -nostdinc -O2 \
-DCPU=MC68040 -c bar.cpp

The objects are munched (see 5.2.5 Munching C++ Application Modules, p.232).
In our example:

nm68k foo.o bar.o | wixtcl $WIND_BASE/host/src/hutils/munch.tcl \
-asm 68k > ctdt.c
cc68k -c ctdt.c

The objects are linked with the compiled munch output. (They may be
partially linked using -r for downloadable applications or statically linked
with a VxWorks BSP for bootable applications.) If you are using the GNU tools,
invoke the linker from the compiler driver as follows:

cc68k -r ctdt.o foo.o bar.o -o linkedObjs.o

Here we have linked two objects modules, foo.o and bar.o, to give a
downloadable object, linkedObjs.o. Using ccarch rather than ldarch performs
template instantiation if you use the -frepo option. (see 5.2.7 Template
Instantiation, p.234).

NOTE: If you use a Wind River Systems makefile to build your application,
munching is handled by make.

230

5
C++ Development

WARNING: In the linking step, -r is used to specify partial linking. A partially
linked file is still relocatable, and is suitable for downloading and linking using the
VxWorks module loader. The GNU ToolKit User’s Guide: Using Id describes a -Ur
option for resolving references to C++ constructors. That option is for native
development, not for cross-development. Do not use -Ur with C++ modules for
VxWorks.

5.2.4 Configuration Constants

By default VxWorks kernels contain the C++ run-time, basic Iostream functionality
and support for the Standard Template Library. You may add/remove C++
components by including any of the following macros:

INCLUDE_CPLUS
Includes all basic C++ run-time support in VxWorks. This enables you to
download and run compiled and munched C++ modules. It does not
configure any of the Wind Foundation Class libraries into VxWorks.

INCLUDE_CPLUS_STL
Includes support for the standard template library.

INCLUDE_CPLUS_STRING
Includes the basic components of the string type library.

INCLUDE_CPLUS_IOSTREAMS
Includes the basic components of the Iostream library.

INCLUDE_CPLUS_COMPLEX
Includes the basic components of the complex type library.

INCLUDE_CPLUS_IOSTREAMS_FULL

Includes the full Iostream library; this implies INCLUDE_CPLUS_IOSTREAMS.

INCLUDE_CPLUS_STRING_IO
Includes string I/O function; this implies INCLUDE_CPLUS_STRING and
INCLUDE_CPLUS_IOSTREAMS.

INCLUDE_CPLUS_COMPLEX_IO
Includes I/O for complex number objects; this implies
INCLUDE_CPLUS_IOSTREAMS and INCLUDE_CPLUS_COMPLEX.

To include one or more of the Wind Foundation Classes, include one or more of the
following constants:

231

VxWorks 5.4
Programmer’s Guide

INCLUDE_CPLUS_VXW
Includes the VxWorks Wrapper Class library.

INCLUDE_CPLUS_TOOLS
Includes Rogue Wave’s Tools.h++ class library.

For more information on configuring VxWorks, see the Tornado User’s Guide:
Projects.

5.2.5 Munching C++ Application Modules

A

Modules written in C++ must undergo an additional host processing step before
being downloaded to a VxWorks target. This extra step (called munching, by
convention) initializes support for static objects and ensures that when the module
is downloaded to VxWorks, the C++ run-time support is able to call the correct
constructors and destructors in the correct order for all static objects.

The following commands will compile hello.cpp, then munch hello.o, resulting in
the munched file hello.out suitable for loading by the Tornado module loader:

cc68k -I installDirltarget/h -DCPU=MC68020 -nostdinc -fno-builtin \
-c hello.cpp

nm68k hello.o | wixtcl installDirlhost/src/hutils/munch.tcl \
-asm 68k > ctdt.c

cc68k -c ctdt.c

1d68k -r -0 hello.out hello.o ctdt.o

NOTE: You can substitute the actual name of your installDir or use $WIND_BASE
(UNIX) or %WIND_BASE% (Windows).

CAUTION: The GNU ToolKit User’s Guide: Using Id describes a -Ur option for
resolving references to C++ constructors. That option is for native development,
not for cross-development. Do not use -Ur with C++ modules for VxWorks.

5.2.6 Static Constructors and Destructors

After munching, downloading, and linking, the static constructors and destructors
must be called.

232

5
C++ Development

Calling Static Constructors and Destructors Interactively

VxWorks provides two strategies for calling static constructors and destructors
interactively:

automatic
Static constructors are called as a side effect of downloading. Static destructors
are called as a side effect of unloading.

manual
Static constructors and destructors are called indirectly by invoking
cplusCtors() and cplusDtors().

Use cplusXtorSet() to change the strategy; see its entry in the windsh reference
entry for details. To report on the current strategy, call cplusStratShow().

Under the automatic strategy, which is the default, static constructors are called
immediately after a successful download. If the automatic strategy is set before a
module is downloaded, that module’s static constructors are called before the
module loader returns to its caller. Under the automatic strategy, the module
unloader calls a module’s static destructors before actually unloading the module.

The manual strategy causes static constructors to be called as a result of invoking
cplusCtors(). Refer to the entries for cplusCtors() and cplusDtors() in the windsh
reference for more information. To invoke all currently-loaded static constructors
or destructors, manual mode can be used with no argument. Manual mode can
also be used to call static constructors and destructors explicitly on a module-by-
module basis.

Constructors and Destructors in System Startup and Shutdown

When you create bootable VxWorks applications, call static constructors during
system initialization. Modify the usrRoot() routine in usrConfig.c to include a call
to cplusCtorsLink(). This calls all static constructors linked with your system.

To modify usrConfig.c to call cplusCtorsLink(), locate the C++ initialization

sections:
#ifdef INCLUDE_CPLUS [* C++ product */
cplusLibinit ();
#endif
#ifdef INCLUDE_CPLUS_MIN [* C++ product */
cplusLibMinlnit ();
#endif

233

VxWorks 5.4
Programmer’s Guide

Next, add cplusCtorsLink() to one or both sections, depending on your system
requirements. In the following example, cplusCtorsLink() is called only when
minimal C++ is configured:

#ifdef INCLUDE_CPLUS_MIN [* C++ product */
cplusLibMinlnit ();
cplusCtorsLink ();

#endif

A CAUTION: Static objects are not initialized until the call to cplusCtorsLink(). Thus,
if your application uses static objects in usrRoot(), call cplusCtorsLink() before
using them.

For cplusCtorsLink() to work correctly, you must perform the munch operation on
the fully-linked VxWorks image rather than on individual modules.

A corresponding routine, cplusDtorsLink(), is provided to call all static
destructors. This routine is useful in systems that have orderly shutdown
procedures. Include a call to cplusDtorsLink() at the point in your code where it
is appropriate to call all static destructors that were initially linked with your
system.

The cplusCtorsLink() and cplusDtorsLink() routines do not call static
constructors and destructors for modules that are downloaded after system
initialization. If your system uses the module downloader, follow the procedures
described in Calling Static Constructors and Destructors Interactively, p.233.

5.2.7 Template Instantiation

Our C++ toolchain supports three distinct template instantiation strategies. The
simplest (and the one that is used by default in VxWorks makefiles) is implicit
instantiation. In this case code for each template gets emitted in every module that
needs it. For this to work the body of a template must be available in each module
that uses it. Typically this is done by including template function bodies along with
their declarations in a header file. The disadvantage of implicit instantiation is that
it may lead to code duplication and larger application size.

The second approach is to explicitly instantiate any templates you require using
the syntax found in Example 5-1. In this case you should compile with
-fno-implicit-templates. This scheme allows you the most control over where
templates get instantiated and avoids code bloat.

234

-frepo

5
C++ Development

This approach combines the simplicity of implicit instantiation with the smaller
footprint obtained by instantiating templates by hand. It works by manipulating a
database of template instances for each module.

The compiler will generate files with the extension .rpo; these files list all the
template instantiations used in the corresponding object files which could be
instantiated there. The link wrapper collect2 then updates the .rpo files to tell the
compiler where to place those instantiations and rebuilds any affected object files.
The link-time overhead is negligible after the first pass, as the compiler continues
to place the instantiations in the same files.

Procedure

The header file for a template must contain the template body. If template bodies
are currently stored in .cpp files, the line #include theTemplate.cpp must be added
to theTemplate.h.

A full build with the -frepo option is required to create the .rpo files that tell the
compiler which templates to instantiate. The link step should be driven from ccarch
rather than ldarch.

Subsequently individual modules can be compiled as usual (but with the -frepo
option and no other template flags).

When a new template instance is required the relevant part of the project must be
rebuilt to update the .rpo files.

Loading Order

Example

Example 5-1

The Tornado tools” dynamic linking ability requires that the module containing a
symbol definition be downloaded before a module that references it. For instance,
in the example below you should download PairA.o before downloading PairB.o.
(You could also prelink them and download the linked object).

This example uses a standard VxWorks BSP makefile (for concreteness, we assume
a 68K target).

Sample Makefile

make PairA.o PairB.o ADDED_C++FLAGS=-frepo

/* dummy link step to instantiate templates */
cc68k -r -o Pair PairA.o PairB.o

235

VxWorks 5.4
Programmer’s Guide

/* In this case the template Pair<int>::Sum(void)
* will be instantiated in PairA.o.
*

/IPair.h
template <class T> class Pair

{

public:
Pair (T _x, T _y);
T Sum ();

protected:
Xy,
8

template <class T>

Pair<T>:Pair (T _x, T _y) : x (X), y(_Y)
{

}

template <class T>
T Pair<T>:Sum ()
{

return X +y;

}
/I PairA.cpp
#include "Pair.h"

int Add (int x, int'y)
Pair <int> Two (X, y);

return Two.Sum ();

}

I/ PairB.cpp
#include "Pair.h"

int Double (int x)
Pair <int> Two (X, X);

return Two.Sum ();

}

5.3 C++ Language and Library Support

In this section we describe some of the VxWorks-specific aspects of our C++
implementation. To learn more about the C++ language and the Standard libraries

236

5
C++ Development

consult any standard C++ reference (a good one is Stroustrup, The C++
Programming Language, Third Edition). For documentation on the GNU
implementation of the Iostream library see

5.3.1 Language Features

We support many but not all of the new language features contained in the recently
approved ANSI C++ Standard. Tornado 2.0 has support for exception handling
and run-time type information, as well as improved template support. We do not
yet support the namespace feature although the compiler will accept (and ignore)
references to the std namespace.

Exception Handling

Our C++ compiler supports multithread safe exception handling by default. To
turn off exception handling support use the -fno-exceptions compiler flag.
Using Exceptions

You may have code which was designed around the pre-exception model of C++
compilation. Your calls to new may check the returned pointer for a failure value
of zero, for example. If you are worried that the exception handling enhancements
in this release will not compile your code correctly, you could adhere to the
following simple rules:

* Use new (nothrow).

* Do not explicitly turn on exceptions in your Iostream objects.

* Do not use string objects or wrap them in “try { } catch (...) { }"” blocks.
These rules derive from the following observations:

* The GNU Iostream does not throw unless IO_THROW is defined when the
library is built and exceptions are explicitly enabled for the particular Iostream
object in use. The default is no exceptions. Exceptions have to be explicitly
turned on for each iostate flag that wants to throw.

* The STL does not throw except in some methods in the basic_string class (of
which string is a specialization).

237

VxWorks 5.4
Programmer’s Guide

Exception Handling Overhead

To support destruction of automatic objects during stack-unwinding the compiler
must insert house-keeping code into any function that creates an automatic (stack
based) object with a destructor.

Below are some of the costs of exception handling as measured on a PowerPC 604
target (BSP mv2604); counts are in executed instructions. 1,235 instructions are
executed to execute a “throw 1” and the associated “catch (...)”. There are 14
“extra” instructions to register and deregister automatic variables and temporary
objects with destructors and 29 “extra” instructions per non-inlined function for
exception-handling setup if any exception handling is used in the function. Finally,
the implementation executes 947 “extra” instructions upon encountering the first
exception-handling construct (try, catch, throw, or registration of an auto variable
or temporary).

first time normal case

void test() { 1/ 3+29 3+29
throw 1; /11235 1235 total time to printf
}
void doit() { 11 3+29+947 3+29
try { 1122 22
test(); 1 1
}catch (...) {
printf("Hi\n");
}
struct A{~A(){}}
void local_var (){ // 3+29
Aa; " 14

} I 4

-fno-exceptions can be used to turn exception handling off. Doing so will reduce
the overheads back to classical C++.

Unhandled Exceptions

As required by the Standard, an uncaught exception will eventually lead to a call
to terminate(). The default behavior of this function is to suspend the offending
task and log a warning message to the console. You may install your own
termination handler by calling set_terminate() (defined in the header file
exception).

238

5
C++ Development

Run-Time Type Information (RTTI)

This feature is turned on by default and adds a small overhead to any C++
program containing classes with virtual functions. If you do not need this feature
you may turn it off using -fno-rtti.

5.3.2 Standard Template Library (STL)

lostream Library

The Standard Template library consists of a small run-time component (which may
be configured into your kernel by selecting INCLUDE_CPLUS_STL for inclusion in
the project facility VxWorks view) and a set of header files.

Our STL port is VxWorks thread safe at the class level. This means that the client
has to provide explicit locking if two tasks want to use the same container object.
(For example, this could be done by using a semaphore; for details, see

2.4.3 Semaphores, p.47.) However two different objects of the same STL container
class may be accessed concurrently.

This library is configured into VxWorks by selecting
INCLUDE_CPLUS_IOSTREAMS for inclusion in the project facility VxWorks view;
see 5.2.4 Configuration Constants, p.231.

The Iostream library header files reside in the standard VxWorks header file
directory, installDir/target/h. To use this library, include one or more of the header
files after the vxWorks.h header in the appropriate modules of your application.
The most frequently used header file is iostream.h, but others are available; see a
C++ reference such as Stroustrup for information.

The standard Iostream objects (cin, cout, cerr, and clog) are global: that is, they are
not private to any given task. They are correctly initialized regardless of the
number of tasks or modules that reference them and they may safely be used
across multiple tasks that have the same definitions of stdin, stdout, and stderr.
However they cannot safely be used in the case that different tasks have different
standard i/ o file-descriptors; in this case, the responsibility for mutual exclusion
rests with the application.

The effect of private standard Iostream objects can be simulated by creating a new
Iostream object of the same class as the standard Iostream object (for example, cin
is an istream_withassign), and assigning to it a new filebuf object tied to the

239

VxWorks 5.4
Programmer’s Guide

appropriate file descriptor. The new filebuf and Iostream objects are private to the
calling task, ensuring that no other task can accidentally corrupt them.

ostream my_out (new filebuf (1)); /1 ==STDOUT */
istream my_in (new filebuf (0), &my_out); /*0 == STDIN;
*TIE to my_out */

For complete details on the Iostreams library, see the online manual The GNU C++
lostream Library.

String and Complex Number Classes

These classes are part of the new Standard C++ library. They may be configured
into the kernel by selecting INCLUDE_CPLUS_STRING and
INCLUDE_CPLUS_COMPLEX for inclusion in the project facility VxWorks view.
You may optionally include I/O facilities for these classes by selecting
INCLUDE_CPLUS_STRING_IO and INCLUDE_CPLUS_COMPLEX_IO.

NOTE: Tornado 2.0 C++ support does not include support for multi-byte strings.
This includes certain classes which are part of the tools.h++ portion of the Wind
Foundation Classes.

5.4 Example

Example 5-2

Example 5-2 exercises various C++ features including the Standard Template
Library, user defined templates, Run-Time Type Identification, and exception
handling. To try it out, create a project containing factory.cpp and factory.h and
build and download linkedObjs.o. At the shell type:

-> testFactory
Full documentation on what you should except to see is given in the source code.
Code Factory Example

[* factory.cpp - implements an object factory */
/* Copyright 1993-1998 Wind River Systems, Inc. */

/*

240

5
C++ Development

maodification history
0l1a,050ct98,sn wrote
*/

/*
DESCRIPTION

We implement an "object factory". The first step is to give
classes human-readable names by registering them with a
"global class registry". Then objects of a named type may be
created and registered with an "object registry".

This gives us an opportunity to exercise various C++ features:

* Standard Template Library
A "map" is used as the basis for the various registries.

* User defined templates
The class registry and object registry are both based on a
generic registry type.

* Run Time Type Checking
We provide a function to determine the type of a registered
object using "dynamic_cast".

* Exception Handling
If we attempt to cast to the "wrong" type we have to handle a
C++ exception.

We provide a C interface to facilitate easy testing from the Wind Shell.

Here is an example test run (you can run this whole test through the
function testFactory()):

-> classRegistryShow
Showing Class Registry ...
Name Address

blue_t 0x6blc7a0
green_t 0x6b1c790
red_t Ox6blc7b0

-> objectRegistryShow
Showing Object Registry ...
Name Address

-> objectCreate "green_t", "bob"
Creating an object called 'bob' of type 'green_t'

-> objectCreate "red_t", "hill"
Creating an object called 'bill' of type 'red_t'

-> objectRegistryShow
Showing Object Registry ...
Name Address

bill Ox6blabf8

241

VxWorks 5.4
Programmer’s Guide

bob Ox6blacl8

-> objectTypeShowByName "bob"

Looking up object 'bob'

Attempting to ascertain type of object at 0x6blac18
Attempting a dynamic_casttored_t ...
dynamic_cast threw an exception ... caught here!
Attempting a dynamic_cast to blue_t ...
dynamic_cast threw an exception ... caught here!
Attempting a dynamic_cast to green_t ...

Cast to green_t succeeded!

green.

*/

[* includes */
#include "factory.h"

[* locals */

[* pointer to the global class registry */
LOCAL class_registry_t* pClassRegistry;

[* pointer to the global object registry */
LOCAL object_registry_t* pObjectRegistry;

I
*

* testFactory - an example test run
*

*
void testFactory ()

cout << "classRegistryShow ()" << endl;
classRegistryShow ();

cout << "objectRegistryShow ()" << endl;
objectRegistryShow ();

cout << "objectCreate (\"green_t\", \"bob\")" << endl;
objectCreate ("green_t", "bob");

cout << "objectCreate (\"red_t\", \"bil\")" << endl;
objectCreate ("red_t", "bill");

cout << "objectRegistryShow ()" << endl;
objectRegistryShow ();

cout << "objectTypeShowByName (\"bob\")" << end|;
objectTypeShowByName ("bob");

}

!
*

* class_registry_t::create - create an object of type className
*

* Look up ‘className' in this registry. If it exists then

* create an object of this type by using the registered class factory;
* otherwise return NULL.

*

* RETURNS : pointer to new object of type className or NULL.

242

5
C++ Development

*
object_t* class_registry_t::create

string className

)

object_factory_t* pFactory = lookup (className);
if (pFactory = NULL)

return lookup (className)-> create ();

else
{
cout << "No such class in Class Registry. " << endl;
return NULL;
}
}

!
*

* classRegistryGet - get a reference to the global class registry
*

* Create and populate a new class registry if necessary.

*

* RETURNS : a reference to the global class registry
*
LOCAL class_registry t& classRegistryGet ()

{

if (pClassRegistry == NULL)

pClassRegistry = new class_registry_t;

pClassRegistry -> insert (“red_t", new red_factory _t);
pClassRegistry -> insert ("blue_t", new blue_factory t);
pClassRegistry -> insert (“green_t", new green_factory_t);

return *pClassRegistry;
}

/
*

* objectRegistryGet - get a reference to the global object registry
*

* Create a new object registry if necessary.

*

* RETURNS : a reference to the global object registry
*/

LOCAL object_registry_t& objectRegistryGet ()
{
if (pObjectRegistry == NULL)
{
pObjectRegistry = new object_registry_t;
}

return *pObjectRegistry;

243

VxWorks 5.4
Programmer’s Guide

I
*

* objectCreate - create an object of a given type
*

* Use the class factory registered in the global class registry

* under ‘className' to create a new object. Register this object
* in the global object registry under 'object name'.

*

* RETURNS : object of type className
*/

object_t* objectCreate

char* className,
char* objectName

)
{

cout << "Creating an object called " << objectName << "
<< " of type " << className << "" << endl;

object_t* pObject = classRegistryGet().create (className);

if (pObject = NULL)
objectRegistryGet().insert(objectName, pObject);

else
cout << "Could not create object. Sorry. " << endl;

return pObject;

!

*

* isRed

*isBlue - is anObject a reference to an object of the specified type?
* isGreen

*

* Try a dynamic_cast. If this succeeds then return TRUE. If it fails
* then catch the resulting exception and return FALSE.

*

* RETURNS : TRUE or FALSE

*

/

[*isRed */

LOCAL BOOL isRed (object_t& anObject)
{
try

cout << "Attempting a dynamic_casttored_t..." << endl;
dynamic_cast<red_t&> (anObject);

cout << "Cast to red_t succeeded!" << endl;

return TRUE;

}

244

5
C++ Development

catch (exception)

cout << "dynamic_cast threw an exception ... caught here!" << endl;
return FALSE;
}

}

[* isBlue */

LOCAL BOOL isBlue (object_t& anObject)
{
try

cout << "Attempting a dynamic_cast to blue_t ..." << endl;
dynamic_cast<blue_t&> (anObject);

cout << "Cast to blue_t succeeded!" << endl;

return TRUE;

catch (exception)

cout << "dynamic_cast threw an exception ... caught here!" << endl;
return FALSE;
}

}

[*isGreen */

LOCAL BOOL isGreen (object_t& anObject)
{
try

cout << "Attempting a dynamic_cast to green_t ..." << endl;
dynamic_cast<green_t&> (anObject);

cout << "Cast to green_t succeeded!" << end|;

return TRUE;

catch (exception)
cout << "dynamic_cast threw an exception ... caught here!" << endl;

return FALSE;
}

!
* objectTypeShow - ascertain the type of an object
* Use dynamic type checking to determine the type of an object.

*RETURNS : N/A
*/

LOCAL void objectTypeShow (object_t* pObject)

cout << "Attempting to ascertain type of object at " << "0x" << hex

245

VxWorks 5.4
Programmer’s Guide

<< (int) pObject << endl;
if (isRed (*pObject))
{

cout << "red." << endl;
else h% (isBlue (*pObiject))

cout << "blue." << endl;
else hi (isGreen (*pObject))

cout << "green." << end|;

}

!
*

* objectTypeShowByName - ascertain the type of a registered object
*

* Lookup 'objectName’ in the global object registry and
* print the type of the associated object.

*RETURNS : N/A
*/

void objectTypeShowByName

char* objectName

)

cout << "Looking up object " << objectName << " << endl;
object_t *pObject = objectRegistryGet ().lookup (objectName);
if (pObject = NULL)

objectTypeShow (pObject);
}

else
{ o . .
cout << "No such object in the Object Registry." << endl;
}

}

!
*

* objectRegistryShow - show contents of global object registry
*

*RETURNS : N/A
*

void objectRegistryShow ()

cout << "Showing Object Registry ..." << endl;
objectRegistryGet ().list ();
}

246

5
C++ Development

I
*

* classRegistryShow - show contents of global class registry
*

*RETURNS : N/A
*/

void classRegistryShow ()
{

cout << "Showing Class Registry ..." << end|;
classRegistryGet ().list ();

[* factory.h - class declarations for the object factory */
[* Copyright 1993-1998 Wind River Systems, Inc. */

/*

modification history
01a,050ct98,sn wrote
*/

#include <vxWorks.h>
#include <iostream.h>
#include <string>
#include <typeinfo>
#include <map>

/*

* object_t hierarchy

*

* object_t

* I

* 4 + +

*

* red_t blue_ t green_t
*

*

struct object_t

{
virtual void method () {}
3

struct red_t : object _t

{
3

struct blue_t : object_t

{
3

247

VxWorks 5.4
Programmer’s Guide

struct green_t : object _t
3

/*
* object_factory_t hierarchy
*

object_factory_t

+ + +

red factory t blue_factory t green_factory t

EE I

*
struct object_factory t

virtual object_t* create () = 0;

2
struct red_factory t : object_factory t

red_t* create () { return new red_t; }

struct blue_factory t : object_factory_t

blue_t* create () { return new blue_t; }

struct green_factory_t : object_factory_t

green_t* create () { return new green_t; }

/*
* registry_t<T> - a registry of objects of type T
*

* The registry maps user readable names to pointers to objects.
*
*

template <class T> class registry_t
{
private:
typedef map <string, T*> map_t;
map_t registry;
public:
void insert (string objectName, T* pObject);
T* lookup (string objectName);
void list ();
h

248

5
C++ Development

[* object_registry_t - a registry of objects derived from object_t */
typedef registry_t <object_t> object_registry_t;

[* class_registry_t - a registry of object factories (‘classes’) */
class class_registry_t : public registry_t <object_factory t>

public:
object_t* create (string className) ;

/*
* template method definitions
*

* It is common to put template method definitions in header
* files so that they may be instantiated whenever necessary.

*

*

.

* registry_t<T>:insert - register an object

*

* Register object pointed to by pObject under 'objectName".
*

*RETURNS : N/A
*/

template <class T>
void registry_t<T>:insert

string objectName,
T* pObject
)

registry [objectName] = pObject;
}

/
*
* registry_t<T>::lookup - lookup an object by name
*

* Lookup 'objectName' in this registry and return a pointer
* to the corresponding object.
*

* RETURNS : a pointer to an object or NULL
*
/

template <class T>
T* registry_t<T>::lookup

string objectName

249

VxWorks 5.4
Programmer’s Guide

return registry [objectName];

I
*

* registry_t<T>::list - list objects in this registry
*

*RETURNS : N/A
*/

template <class T>
void registry_t<T>::list ()

cout << "Name \t" << "Address" << endl;
cout <<" " <<endl;
for (map_t:iterator i = registry.begin ();

i I=registry.end (); ++i)

cout << ->first << " \t"
<< "0X" << hex << (int) i -> second << endl;
}

}
/* function declarations */

[* objectCreate - create an object of a given type */
object_t* objectCreate (char* className, char* objectName);

* objectTypeShowByName - ascertain the type of a registered object */
void objectTypeShowByName (char* objectName);

/* objectRegistryShow - show contents of global object registry */
void objectRegistryShow ();

[* classRegistryShow - show contents of global class registry */
void classRegistryShow ();

5.5 Wind Foundation Classes

The Wind Foundation Classes include three libraries:

- VxWorks Wrapper Class library
- Tools.h++ library from Rogue Wave Software

The VxWorks Wrapper Class library provides a thin C++ interface to several
standard VxWorks modules. The Tools.h++ foundation class library from Rogue
Wave Software supports a variety of C++ features.

250

5
C++ Development

CAUTION: In order to prevent dependency conflicts between VxWorks libraries
and Rogue Wave libraries, all VxWorks libraries, including the VxWorks Wrapper
Class Library, should be included before all Rogue Wave libraries, including the
Tools.h++ library.

5.5.1 VxWorks Wrapper Class Library

Table 5-1

The classes in this library are called wrapper classes because each class
encapsulates, or wraps, the interfaces for some portion of standard VxWorks
functionality. Select INCLUDE_CPLUS_VXW for inclusion in the project facility
VxWorks view to configure this library into VxWorks; see 5.2.4 Configuration
Constants, p.231.

The VxWorks Wrapper Class library header files reside in the standard VxWorks
header file directory, installDir/target/h. The classes and their corresponding
header files are shown in Table 5-1. To use one of these classes, include the
corresponding header file in the appropriate modules of your application.

Header Files for VxWorks Wrapper Classes

Header File Description

vxwLoadLib.h Object module loader and unloader (wraps loadLib, unldLib,
moduleLib)

vxwLstLib.h Linked lists (wraps IstLib)
vxwMemPartLib.h Memory partitions (wraps memLib)

vxwMsgQLib.h Message queues (wraps msgQLib)

vxwRngLib.h Ring buffers (wraps rngLib)
vxwSemlLib.h Semaphores (wraps semLib)
vxwSmLib.h Shared memory objects (adds support for shared memory semaphores,

message queues, and memory partitions)
vxwSymlLib.h Symbol tables (wraps symLib)
vxwTaskLib.h Tasks (wraps taskLib, envLib, errnoLib, sigLib, and taskVarLib)

vxwWdLib.h Watchdog timers (wraps wdLib)

251

A

Figure 5-1

Example 5-3

VxWorks 5.4
Programmer’s Guide

The VxWorks Wrapper Classes are designed to provide C++ language bindings to
VxWorks modules that are inherently object-oriented, but for which only C
bindings have previously been available. Figure 5-1 shows the inheritance
relationships for all of the VxWorks Wrapper Classes. The classes are named to
correspond with the VxWorks features that they wrap. For example, VXWMsgQ
is the class of message queues, and provides a C++ interface to msgQLib.

CAUTION: The classes VXWError and VXWIdObject are used internally by the
VxWorks Wrapper Classes. They are listed in Figure 5-1 for completeness only.
These two classes are not intended for direct use by applications.

Wrapper-Class Inheritance

VXWError
VXWMemPart < VXWSmMemPart
VXWModule
VXWMsgQ VXWSmMsgQ
VXWRingBuf
VXWIdObject VXWSem
VXWSmBSem
VXWSmsem <VXWSmCSem
VXWSmName VXWSmMemBlock
VXWSymTab
VXWTask
VXWWd
VXWList (Derived classes appear to the right.)

Watchdog Timers

To illustrate the way in which the wrapper classes provide C++ language bindings
for VxWorks objects, the following example exhibits methods in the watchdog
timer class, VXWWd. See 2.6 Watchdog Timers, p.90 for general information about
watchdog timers.

252

5
C++ Development

/* Create a watchdog timer and set it to go off in 3 seconds. */
/*includes */

#include "vxWorks.h"
#include "logLib.h"
#include "vxwwWdLib.h"

* defines */
#define SECONDS (3)
task (void)
/* Create watchdog */
[1] VXWWd myWatchDog;
[* Set timer to go off in SECONDS - printing a message to stdout */

[2] if (myWatchDog.start (sysClkRateGet() * SECONDS, logMsg,
int ("Watchdog timer just expired\n")) == ERROR)
return (ERROR);

while (TIMER_NEEDED)

{

I

}
(81}

A notable difference from the C interface is that the wrapper classes allow you to
manipulate watchdog timers as objects rather than through an object ID. Line [1]
creates and names a watchdog object; C++ automatically calls the VXWWd
constructor, implicitly invoking the C routine wdCreate() to create a watchdog
timer.

Line [2] in the example illustrates how to use a method from the wrapper classes.
The example invokes the method start() for the instance myWatchDog of the class
VXWW(d to call the timer. Because this method is invoked on a specific object, the
argument list for the method start() does not require an argument to identify
which timer to start (unlike wdStart(), the corresponding C routine).

Finally, because myWatchDog is a local object, exiting from the routine task() on
line [3] automatically calls the destructor for the VXWWd watchdog class. This
implicit call to the destructor deallocates the watchdog object, and if the timer was
still running removes it from the system timer queues. Thus, for objects declared
on the stack, it is not necessary to call a routine equivalent to the C routine
wdDelete(). (However, if an object is created dynamically with the operator new,
you must delete it explicitly with the operator delete, once your application no
longer needs the object.)

253

VxWorks 5.4
Programmer’s Guide

For details of the wrapper classes and on each of the wrapper class functions, see
the VxWorks Reference Manual.

5.5.2 Tools.h++ Library

Tools.h++ is an industry-standard foundation class library from Rogue Wave
Software which supports the following features:

— A complete set of collection classes

— Template based classes

— DPersistent store facility

— File classes and file space manager

— B-tree disk retrieval

— Multi-thread safety

— Multi-byte and wide character strings

— Localized string collation

— Parse and format times, dates, and currency in multiple locales
- Support for multiple time zones and daylight savings rules
- Support for localized messages

— Localized I/O streams

This library is configured into VxWorks by selecting INCLUDE_CPLUS_TOOLS for
inclusion in the project facility VxWorks view; see 5.2.4 Configuration Constants,
p-231.

The Tools.h++ library header files reside in the VxWorks header file directory
installDir/target/h/rw. To use this library, #include one or more of these header files
after the #include "vxWorks.h" statement and after the #include statements for all
other VxWorks libraries in the appropriate modules of your application. For a list
of all the header files and details on this library, see Rogue Wave’s Tools.h++
Introduction and Reference Manual.

254

Shared-Memory Objects

Optional Component VXMP

6.1 Introduction

VxMP is an optional VxWorks component that provides shared-memory objects
dedicated to high-speed synchronization and communication between tasks
running on separate CPUs. For information on how to install VXMP, see Tornado
Getting Started.

Shared-memory objects are a class of system objects that can be accessed by tasks
running on different processors. They are called shared-memory objects because the
object’s data structures must reside in memory accessible by all processors.
Shared-memory objects are an extension of local VxWorks objects. Local objects are
only available to tasks on a single processor. VxMP supplies three kinds of shared-
memory objects:

shared semaphores (binary and counting)

shared message queues

shared-memory partitions (system- and user-created partitions)
Shared-memory objects provide the following advantages:

A transparent interface that allows shared-memory objects to be manipulated
with the same routines that are used for manipulating local objects.

High-speed inter-processor communication—no unnecessary packet passing
is required.

The shared memory can reside either in dual-ported RAM or on a separate
memory board.

255

VxWorks 5.4
Programmer’s Guide

The components of VXMP consist of the following: a name database
(smNameLib), shared semaphores (semSmLib), shared message queues
(msgQSmLib), and a shared-memory allocator (smMemLib).

This chapter presents a detailed description of each shared-memory object and
internal considerations. It then describes configuration and troubleshooting.

6.2 Using Shared-Memory Objects

VXMP provides a transparent interface that makes it easy to execute code using
shared-memory objects on both a multiprocessor system and a single-processor
system. After an object is created, tasks can operate on shared objects with the
same routines used to operate on their corresponding local objects. For example,
shared semaphores, shared message queues, and shared-memory partitions have
the same syntax and interface as their local counterparts. Routines such as
semGive(), semTake(), msgQSend(), msgQReceive(), memPartAlloc(), and
memPartFree() operate on both local and shared objects. Only the create routines
are different. This allows an application to run in either a single-processor or a
multiprocessor environment with only minor changes to system configuration,
initialization, and object creation.

All shared-memory objects can be used on a single-processor system. This is useful
for testing an application before porting it to a multiprocessor configuration.
However, for objects that are used only locally, local objects always provide the
best performance.

After the shared-memory facilities are initialized (see 6.4 Configuration, p.279 for
initialization differences), all processors are treated alike. Tasks on any CPU can
create and use shared-memory objects. No processor has priority over another
from a shared-memory object’s point of view.!

Systems making use of shared memory can include a combination of supported
architectures. This enables applications to take advantage of different processor
types and still have them communicate. However, on systems where the
processors have different byte ordering, you must call the macros ntohl and htonl
to byte-swap the application’s shared data (see VxWorks Network Programmer’s
Guide: TCP/IP Under VxWorks).

1. Do not confuse this type of priority with the CPU priorities associated with VMEbus access.

256

6
Shared-Memory Objects

When an object is created, an object ID is returned to identify it. For tasks on
different CPUs to access shared-memory objects, they must be able to obtain this
ID. An object’s ID is the same regardless of the CPU. This allows IDs to be passed
using shared message queues, data structures in shared memory, or the name
database.

Throughout the remainder of this chapter, system objects under discussion refer to
shared objects unless otherwise indicated.

6.2.1 Name Database

The name database allows the association of any value to any name, such as a
shared-memory object’s ID with a unique name. It can communicate or advertise a
shared-memory block’s address and object type. The name database provides
name-to-value and value-to-name translation, allowing objects in the database to
be accessed either by name or by value. While other methods exist for advertising
an object’s ID, the name database is a convenient method for doing this.

Typically the task that creates an object also advertises the object’s ID by means of
the name database. By adding the new object to the database, the task associates
the object’s ID with a name. Tasks on other processors can look up the name in the
database to get the object’s ID. After the task has the ID, it can use it to access the
object.

For example, task t1 on CPU 1 creates an object. The object ID is returned by the
creation routine and entered in the name database with the name myODbj. For task
t2 on CPU 0 to operate on this object, it first finds the ID by looking up the name
myODbj in the name database.

This same technique can be used to advertise a shared-memory address. For
example, task t1 on CPU 0 allocates a chunk of memory and adds the address to
the database with the name mySharedMem. Task t2 on CPU 1 can find the address
of this shared memory by looking up the address in the name database using
mySharedMem.

Tasks on different processors can use an agreed-upon name to get a newly created
object’s value. See Table 6-1 for a list of name service routines. Note that retrieving
an ID from the name database need occur only one time for each task, and usually
occurs during application initialization.

The name database service routines automatically convert to or from network-byte
order; do not call htonl() or ntohl() explicitly for values from the name database.

The object types listed in Table 6-2 are defined in smNameLib.h.

257

Table 6-1

Table 6-2

VxWorks 5.4
Programmer’s Guide

Name Service Routines

Routine Functionality

smNameAdd() Add a name to the name database.

smNameRemove() Remove a name from the name database.

smNameFind() Find a shared symbol by name.

smNameFindByValue() Find a shared symbol by value.

smNameShow() Display the name database to the standard output device;

automatically included if INCLUDE_SM_OB] is selected.

Shared-Memory Object Types

Constant Hex Value
T_SM_SEM_B 0
T_SM_SEM_C 1
T_SM_MSG_Q 2
T_SM_PART_ID 3
T_SM_BLOCK 4

The following example shows the name database as displayed by
smNameShow(), which is automatically included if INCLUDE_SM_OB]J is selected
for inclusion in the project facility VxWorks view. The parameter to
smNameShow() specifies the level of information displayed; in this case, 1
indicates that all information is shown. For additional information on
smNameShow(), see its reference entry.

-> smNameShow 1
value =0 = 0x0

The output is sent to the standard output device, and looks like the following:

Name in Database Max : 100 Current : 5 Free : 95

Name Value Type
myMemory 0x3835a0 SM_BLOCK
myMemPart 0x3659f9 SM_PART_ID
myBuff 0x383564 SM_BLOCK
mySmSemaphore 0x36431d SM_SEM_B
myMsgQ 0x365899 SM_MSG_Q

258

6
Shared-Memory Objects

6.2.2 Shared Semaphores

Like local semaphores, shared semaphores provide synchronization by means of
atomic updates of semaphore state information. See 2. Basic OS in this manual and
the reference entry for semLib for a complete discussion of semaphores. Shared
semaphores can be given and taken by tasks executing on any CPU with access to
the shared memory. They can be used for either synchronization of tasks running
on different CPUs or mutual exclusion for shared resources.

To use a shared semaphore, a task creates the semaphore and advertises its ID. This
can be done by adding it to the name database. A task on any CPU in the system
can use the semaphore by first getting the semaphore ID (for example, from the
name database). When it has the ID, it can then take or give the semaphore.

In the case of employing shared semaphores for mutual exclusion, typically there
is a system resource that is shared between tasks on different CPUs and the
semaphore is used to prevent concurrent access. Any time a task requires exclusive
access to the resource, it takes the semaphore. When the task is finished with the
resource, it gives the semaphore.

For example, there are two tasks, t1 on CPU 0 and t2 on CPU 1. Task t1 creates the
semaphore and advertises the semaphore’s ID by adding it to the database and
assigning the name myMutexSem. Task t2 looks up the name myMutexSem in the
database to get the semaphore’s ID. Whenever a task wants to access the resource,
it first takes the semaphore by using the semaphore ID. When a task is done using
the resource, it gives the semaphore.

In the case of employing shared semaphores for synchronization, assume a task on
one CPU must notify a task on another CPU that some event has occurred. The task
being synchronized pends on the semaphore waiting for the event to occur. When
the event occurs, the task doing the synchronizing gives the semaphore.

For example, there are two tasks, t1 on CPU 0 and 2 on CPU 1. Both t1 and {2 are
monitoring robotic arms. The robotic arm that is controlled by t1 is passing a
physical object to the robotic arm controlled by t2. Task t2 moves the arm into
position but must then wait until t1 indicates that it is ready for t2 to take the object.
Task t1 creates the shared semaphore and advertises the semaphore’s ID by adding
it to the database and assigning the name objReadySem. Task t2 looks up the name
objReadySem in the database to get the semaphore’s ID. It then takes the
semaphore by using the semaphore ID. If the semaphore is unavailable, t2 pends,
waiting for t1 to indicate that the object is ready for t2. When t1 is ready to transfer
control of the object to t2, it gives the semaphore, readying t2 on CPU1.

There are two types of shared semaphores, binary and counting. Shared
semaphores have their own create routines and return a SEM_ID. Table 6-3 lists the

259

Table 6-3

VxWorks 5.4
Programmer’s Guide

create routines. All other semaphore routines, except semDelete(), operate
transparently on the created shared semaphore.

Shared Semaphore Create Routines

Create Routine Description
semBSmCreate() Create a shared binary semaphore.
semCSmCreate() Create a shared counting semaphore.

The use of shared semaphores and local semaphores differs in several ways:

+ Theshared semaphore queuing order specified when the semaphore is created
must be FIFO. Figure 6-1 shows two tasks executing on different CPUs, both
trying to take the same semaphore. Task 1 executes first, and is put at the front
of the queue because the semaphore is unavailable (empty). Task 2 (executing
on a different CPU) tries to take the semaphore after task 1’s attempt and is put
on the queue behind task 1.

» Shared semaphores cannot be given from interrupt level.

+ Shared semaphores cannot be deleted. Attempts to delete a shared semaphore
return ERROR and set errno to S_smObjLib_NO_OBJECT_DESTROY.

Use semlInfo() to get the shared task control block of tasks pended on a shared
semaphore. Use semShow(), if INCLUDE_SEM_SHOW is included in the project
facility VxWorks view, to display the status of the shared semaphore and a list of
pended tasks. The following example displays detailed information on the shared
semaphore mySmSemaphoreld as indicated by the second argument (0 =
summary, 1 = details):

-> semShow mySmSemaphoreld, 1
value =0 = 0x0

The output is sent to the standard output device, and looks like the following:

Semaphore Id 1 0x36431d

Semaphore Type : SHARED BINARY

Task Queuing : FIFO

Pended Tasks D2

State : EMPTY

TID CPU Number Shared TCB
0xd0618 1 0x364204
0x3be924 0 0x36421c

260

Figure 6-1

Example 6-1

6

Shared-Memory Objects
Shared Semaphore Queues
Executes on CPU 2 after
task1 is put on queue:
taSk{Z €) Pended Queue Semaphore
State
semTake (semSmid,t);
} EMPTY

Executes on CPU 1
before task?2:

taskl ()
{ Binary Shared Semaphore
semTake (semSmid,t);

} SHARED MEMORY

Shared Semaphores

The following code example depicts two tasks executing on different CPUs and
using shared semaphores. The routine semTask1() creates the shared semaphore,
initializing the state to full. It adds the semaphore to the name database (to enable
the task on the other CPU to access it), takes the semaphore, does some processing,
and gives the semaphore. The routine semTask2() gets the semaphore ID from the
database, takes the semaphore, does some processing, and gives the semaphore.

/* semExample.h - shared semaphore example header file */
#define SEM_NAME "mySmSemaphore"

/* semTaskl.c - shared semaphore example */

[* This code is executed by a task on CPU #1 */

#include "vxWorks.h"

#include "semLib.h"

#include "semSmLib.h"
#include "smNameLib.h"

261

VxWorks 5.4
Programmer’s Guide

#include "stdio.h"
#include "taskLib.h"
#include "semExample.h"

I
*

* semTask1 - shared semaphore user
*/

STATUS semTask1 (void)
{
SEM_ID semSmid;
[* create shared semaphore */

if ((semSmld = semBSmCreate (SEM_Q_FIFO, SEM_FULL)) == NULL)
return (ERROR);

/* add object to name database */

if (smNameAdd (SEM_NAME, semSmid, T_SM_SEM_B) == ERROR)
return (ERROR);

/* grab shared semaphore and hold it for awhile */
semTake (semSmld, WAIT_FOREVER);

/* normally do something useful */

printf (“Taskl has the shared semaphore\n");
taskDelay (sysClkRateGet () * 5);

printf (“Task1 is releasing the shared semaphore\n“);
/* release shared semaphore */

semGive (semSmld);

return (OK);

[* semTask2.c - shared semaphore example */
[* This code is executed by a task on CPU #2. */
#include "vxWorks.h"

#include "semLib.h"

#include "semSmLib.h"

#include "smNameLib.h"

#include "stdio.h"
#include "semExample.h"

262

6
Shared-Memory Objects

I
*

* semTask2 - shared semaphore user
*/

STATUS semTask2 (void)

{
SEM_ID semSmid;
int objType;

/* find object in name database */

if (smNameFind (SEM_NAME, (void **) &semSmld, &objType, WAIT_FOREVER)
== ERROR)
return (ERROR);

[* take the shared semaphore */

printf ("semTask2 is now going to take the shared semaphore\n");
semTake (semSmld, WAIT_FOREVER);

/* normally do something useful */

printf (“Task2 got the shared semaphore!\n");

[* release shared semaphore */

semGive (semSmld);

printf ("Task2 has released the shared semaphore\n");

return (OK);
}

6.2.3 Shared Message Queues

Shared message queues are FIFO queues used by tasks to send and receive variable-
length messages on any of the CPUs that have access to the shared memory. They
can be used either to synchronize tasks or to exchange data between tasks running
on different CPUs. See 2. Basic OS in this manual and the reference entry for
msgQLib for a complete discussion of message queues.

To use a shared message queue, a task creates the message queue and advertises
its ID. A task that wants to send or receive a message with this message queue first
gets the message queue’s ID. It then uses this ID to access the message queue.

For example, consider a typical server/client scenario where a server task t1 (on
CPU 1) reads requests from one message queue and replies to these requests with
a different message queue. Task t1 creates the request queue and advertises its ID
by adding it to the name database assigning the name requestQue. If task t2 (on

263

VxWorks 5.4
Programmer’s Guide

CPU 0) wants to send a request to t1, it first gets the message queue ID by looking
up the name requestQue in the name database. Before sending its first request,
task t2 creates a reply message queue. Instead of adding its ID to the database, it
advertises the ID by sending it as part of the request message. When t1 receives the
request from the client, it finds in the message the ID of the queue to use when
replying to that client. Task t1 then sends the reply to the client by using this ID.

To pass messages between tasks on different CPUs, first create the message queue
by calling msgQSmCreate(). This routine returns a MSG_Q_ID. This ID is used for
sending and receiving messages on the shared message queue.

Like their local counterparts, shared message queues can send both urgent or
normal priority messages.

The use of shared message queues and local message queues differs in several
ways:

* The shared message queue task queueing order specified when a message
queue is created must be FIFO. Figure 6-2 shows two tasks executing on
different CPUs, both trying to receive a message from the same shared
message queue. Task 1 executes first, and is put at the front of the queue
because there are no messages in the message queue. Task 2 (executing on a
different CPU) tries to receive a message from the message queue after task 1’s
attempt and is put on the queue behind task 1.

* Messages cannot be sent on a shared message queue at interrupt level. (This is
true even in NO_WAIT mode.)

+ Shared message queues cannot be deleted. Attempts to delete a shared
message queue return ERROR and sets errno to
S_smObjLib_NO_OBJECT_DESTROY.

To achieve optimum performance with shared message queues, align send and
receive buffers on 4-byte boundaries.

To display the status of the shared message queue as well as a list of tasks pended
on the queue, select INCLUDE_MSG_Q_SHOW for inclusion in the project facility
VxWorks view and call msgQShow(). The following example displays detailed
information on the shared message queue 0x7f8c21 as indicated by the second
argument (0 = summary display, 1 = detailed display).

-> msgQShow 0x7f8c21, 1
value =0 = 0x0

The output is sent to the standard output device, and looks like the following:

264

6

Shared-Memory Objects
Figure 6-2 Shared Message Queues
Executes on CPU 2 after task1:
task2 () Message
{ Pended Queue Queue
H{ngReceive (smMsgQld,...); task?2
EMPTY ‘
} task1 n

Executes on CPU 1 before task2:

taskl ()
{

msgQReceive (smMsgQld,...); Shared Message Queue

} SHARED MEMORY

Message Queue Id : 0x7f8c21

Task Queuing . FIFO
Message Byte Len : 128
Messages Max : 10
Messages Queued : 0
Receivers Blocked : 1
Send timeouts : 0

Receive timeouts : 0
Receivers blocked :
TID CPU Number Shared TCB

0xd0618 1 0x1364204

Example 6-2 Shared Message Queues

In the following code example, two tasks executing on different CPUs use shared
message queues to pass data to each other. The server task creates the request
message queue, adds it to the name database, and reads a message from the queue.
The client task gets the smRequestQId from the name database, creates a reply
message queue, bundles the ID of the reply queue as part of the message, and
sends the message to the server. The server gets the ID of the reply queue and uses
it to send a message back to the client. This technique requires the use of the
network byte-order conversion macros htonl() and ntohl(), because the numeric
queue ID is passed over the network in a data field.

265

VxWorks 5.4
Programmer’s Guide

/* msgExample.h - shared message queue example header file */

#define MAX_MSG (10)
#define MAX_MSG_LEN (100)
#define REQUEST_Q "requestQue"

typedef struct message
{
MSG_Q_ID replyQId;

char clientRequestiMAX_MSG_LEN];
} REQUEST_MSG;

[* server.c - shared message queue example server */
/* This file contains the code for the message queue server task. */

#include "vxWorks.h"
#include "msgQLib.h"
#include "msgQSmLib.h"
#include "stdio.h"
#include "smNameLib.h"
#include "msgExample.h"
#include "netinet/in.h"

#define REPLY_TEXT "Server received your request"

I
*

* serverTask - receive and process a request from a shared message queue
*/

STATUS serverTask (void)

MSG_Q_ID smRequestQld; /* request shared message queue */
REQUEST_MSG request; [* request text */

[* create a shared message queue to handle requests */

if ((smRequestQld = msgQSmCreate (MAX_MSG, sizeof (REQUEST_MSG),
MSG_Q_FIFO)) == NULL)
return (ERROR);

/* add newly created request message queue to name database */

if (smNameAdd (REQUEST_Q, smRequestQId, T_SM_MSG_Q) == ERROR)
return (ERROR);

/* read messages from request queue */

FOREVER

266

6
Shared-Memory Objects

{

if (msgQReceive (smRequestQId, (char *) &request, sizeof (REQUEST_MSG),
WAIT_FOREVER) == ERROR)
return (ERROR);

[* process request - in this case simply print it */

printf ("Server received the following message:\n%s\n",
request.clientRequest);

/* send a reply using ID specified in client's request message */

if (msgQSend (MSG_Q_ID) ntohl ((int) request.replyQId),
REPLY_TEXT, sizeof (REPLY_TEXT),
WAIT_FOREVER, MSG_PRI_NORMAL) == ERROR)
return (ERROR);

[* client.c - shared message queue example client */
[* This file contains the code for the message queue client task. */

#include "vxWorks.h"
#include "msgQLib.h"
#include "msgQSmLib.h"
#include "smNameLib.h"
#include "stdio.h"
#include "msgExample.h"
#include "netinet/in.h"

1
*

* clientTask - sends request to server and reads reply
*/

STATUS clientTask
char * pRequestToServer /* request to send to the server */

/* limited to 100 chars */
)
{

MSG_Q_ID smRequestQld; /* request message queue */
MSG_Q_ID smReplyQIld; /*reply message queue */

REQUEST_MSG request; [* request text */
int objType; /* dummy variable for smNameFind */
char serverReply[MAX_MSG_LEN]; /*buffer for server's reply */

[* get request queue ID using its name */
if (smNameFind (REQUEST_Q, (void **) &smRequestQld, &objType,

WAIT_FOREVER) == ERROR)
return (ERROR);

267

VxWorks 5.4
Programmer’s Guide

[* create reply queue, build request and send it to server */

if ((smReplyQld = msgQSmCreate (MAX_MSG, MAX_MSG_LEN,
MSG_Q_FIFO)) == NULL)
return (ERROR);

request.replyQld = (MSG_Q_ID) htonl ((int) smReplyQId);
strepy (request.clientRequest, pRequestToServer);

if (msgQSend (smRequestQld, (char *) &request, sizeof (REQUEST_MSG),
WAIT_FOREVER, MSG_PRI_NORMAL) == ERROR)
return (ERROR);

[* read reply and print it */

if (msgQReceive (request.replyQId, serverReply, MAX_MSG_LEN,
WAIT_FOREVER) == ERROR)
return (ERROR);

printf ("Client received the following message:\n%s\n", serverReply);

return (OK);

6.2.4 Shared-Memory Allocator

The shared-memory allocator allows tasks on different CPUs to allocate and release
variable size chunks of memory that are accessible from all CPUs with access to the
shared-memory system. Two sets of routines are provided: low-level routines for
manipulating user-created shared-memory partitions, and high-level routines for
manipulating a shared-memory partition dedicated to the shared-memory system
pool. (This organization is similar to that used by the local-memory manager,
memPartLib.)

Shared-memory blocks can be allocated from different partitions. Both a shared-
memory system partition and user-created partitions are available. User-created
partitions can be created and used for allocating data blocks of a particular size.
Memory fragmentation is avoided when fixed-sized blocks are allocated from
user-created partitions dedicated to a particular block size.

Shared-Memory System Partition

To use the shared-memory system partition, a task allocates a shared-memory
block and advertises its address. One way of advertising the ID is to add the
address to the name database. The routine used to allocate a block from the shared-

268

6
Shared-Memory Objects

memory system partition returns a local address. Before the address is advertised
to tasks on other CPUs, this local address must be converted to a global address.
Any task that must use the shared memory must first get the address of the
memory block and convert the global address to a local address. When the task has
the address, it can use the memory.

However, to address issues of mutual exclusion, typically a shared semaphore is
used to protect the data in the shared memory. Thus in a more common scenario,
the task that creates the shared memory (and adds it to the database) also creates a
shared semaphore. The shared semaphore ID is typically advertised by storing it
in a field in the shared data structure residing in the shared-memory block. The
first time a task must access the shared data structure, it looks up the address of the
memory in the database and gets the semaphore ID from a field in the shared data
structure. Whenever a task must access the shared data, it must first take the
semaphore. Whenever a task is finished with the shared data, it must give the
semaphore.

For example, assume two tasks executing on two different CPUs must share data.
Task t1 executing on CPU 1 allocates a memory block from the shared-memory
system partition and converts the local address to a global address. It then adds the
global address of the shared data to the name database with the name
mySharedData. Task t1 also creates a shared semaphore and stores the ID in the
first field of the data structure residing in the shared memory. Task t2 executing on
CPU 2 looks up the name mySharedData in the name database to get the address
of the shared memory. It then converts this address to a local address. Before
accessing the data in the shared memory, t2 gets the shared semaphore ID from the
first field of the data structure residing in the shared-memory block. It then takes
the semaphore before using the data and gives the semaphore when it is done
using the data.

User-Created Patrtitions

To make use of user-created shared-memory partitions, a task creates a shared-
memory partition and adds it to the name database. Before a task can use the
shared-memory partition, it must first look in the name database to get the
partition ID. When the task has the partition ID, it can access the memory in the
shared-memory partition.

For example, task t1 creates a shared-memory partition and adds it to the name
database using the name myMemPartition. Task t2 executing on another CPU
wants to allocate memory from the new partition. Task t2 first looks up

269

VxWorks 5.4
Programmer’s Guide

myMemPartition in the name database to get the partition ID. It can then allocate
memory from it, using the ID.

Using the Shared-Memory System Partition

Table 6-4

The shared-memory system partition is analogous to the system partition for local
memory. Table 6-4 lists routines for manipulating the shared-memory system
partition.

Shared-Memory System Partition Routines

Routine Functionality

smMemMalloc() Allocate a block of shared system memory.
smMemCalloc() Allocate a block of shared system memory for an array.
smMemRealloc() Resize a block of shared system memory.
smMemFree() Free a block of shared system memory.

smMemShow() Display usage statistics of the shared-memory system

partition on the standard output device; this routine is
automatically included if INCLUDE_SM_OB] is selected for
inclusion in the project facility VxWorks view.

smMemOptionsSet() Set the debugging options for the shared-memory system
partition.

smMemAddToPool() Add memory to the shared-memory system pool.

smMemFindMax() Find the size of the largest free block in the shared-memory

system partition.

Routines that return a pointer to allocated memory return a local address (that is,
an address suitable for use from the local CPU). To share this memory across
processors, this address must be converted to a global address before it is
advertised to tasks on other CPUs. Before a task on another CPU uses the memory,
it must convert the global address to a local address. Macros and routines are
provided to convert between local addresses and global addresses; see the header
file smObjLib.h and the reference entry for smObjLib.

270

Example 6-3

6
Shared-Memory Objects

Shared-Memory System Partition

The following code example uses memory from the shared-memory system
partition to share data between tasks on different CPUs. The first member of the
data structure is a shared semaphore that is used for mutual exclusion. The send
task creates and initializes the structure, then the receive task accesses the data and
displays it.

* buffProtocol.h - simple buffer exchange protocol header file */

#define BUFFER_SIZE 200 [* shared data buffer size */
#define BUFF_NAME "myMemory" I* name of data buffer in database */

typedef struct shared_buff
{
SEM_ID semSmid;

char buff [BUFFER_SIZE];
} SHARED_BUFF;

/* buffSend.c - simple buffer exchange protocol send side */
[* This file writes to the shared memory. */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "smObijLib.h"
#include "stdio.h"
#include "buffProtocol.h"

* ok ok

buffSend - write to shared semaphore protected buffer
*
STATUS buffSend (void)

{
SHARED_BUFF * pSharedBuff;
SEM_ID mySemSmid;

[* grab shared system memory */

pSharedBuff = (SHARED_BUFF *) smMemMalloc (sizeof (SHARED_BUFF));

271

VxWorks 5.4
Programmer’s Guide

/*

* Initialize shared buffer structure before adding to database. The

* protection semaphore is initially unavailable and the receiver blocks.
*,

/

if (mySemSmld = semBSmCreate (SEM_Q_FIFO, SEM_EMPTY)) == NULL)
return (ERROR);

pSharedBuff->semSmid = (SEM_ID) htonl ((int) mySemSmid);
/*

* Convert address of shared buffer to a global address and add to
* database.

*

if (smNameAdd (BUFF_NAME, (void *) smObjLocalToGlobal (pSharedBuff),
T_SM_BLOCK) == ERROR)
return (ERROR);
[* put data into shared buffer */
sprintf (pSharedBuff->buff,"Hello from sender\n");

/* allow receiver to read data by giving protection semaphore */

if (semGive (mySemSmid) = OK)
return (ERROR);

return (OK);
}

* buffReceive.c - simple buffer exchange protocol receive side */
[* This file reads the shared memory. */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "smObijLib.h"
#include "stdio.h"
#include "buffProtocol.h"

!
*

* buffReceive - receive shared semaphore protected buffer
*

STATUS buffReceive (void)
{
SHARED_BUFF * pSharedBuff;

SEM_ID mySemSmid;
int objType;

272

6
Shared-Memory Objects

[* get shared buffer address from name database */
if (smNameFind (BUFF_NAME, (void **) &pSharedBuff,
&objType, WAIT_FOREVER) == ERROR)

return (ERROR);
[* convert global address of buff to its local value */
pSharedBuff = (SHARED_BUFF *) smObjGlobalToLocal (pSharedBuff);
* convert shared semaphore ID to host (local) byte order */
mySemSmld = (SEM_ID) ntohl ((int) pSharedBuff->semSmid);

[* take shared semaphore before reading the data buffer */

if (semTake (mySemSmld,WAIT_FOREVER) != OK)
return (ERROR);

/* read data buffer and print it */
printf ("Receiver reading from shared memory: %s\n", pSharedBuff->buff);
* give back the data buffer semaphore */

if (semGive (mySemSmid) = OK)
return (ERROR);

return (OK);

Using User-Created Partitions

Example 6-4

Shared-memory partitions have a separate create routine, memPartSmCreate(),
that returns a MEM_PART_ID. After a user-defined shared-memory partition is
created, routines in memPartLib operate on it transparently. Note that the address
of the shared-memory area passed to memPartSmCreate() (or
memPartAddToPool()) must be the global address.

User-Created Partition

This example is similar to Example 6-3, which uses the shared-memory system
partition. This example creates a user-defined partition and stores the shared data
in this new partition. A shared semaphore is used to protect the data.

273

VxWorks 5.4
Programmer’s Guide

/* memPartExample.h - shared memory partition example header file */

#define CHUNK_SIZE (2400)

#define MEM_PART NAME “myMemPart"
#define PART_BUFF_NAME "myBuff"
#define BUFFER_SIZE (40)

typedef struct shared_buff
{
SEM_ID semSmld;

char buff [BUFFER_SIZE];
} SHARED_BUFF;

/* memPartSend.c - shared memory partition example send side */
* This file writes to the user-defined shared memory patrtition. */

#include "vxWorks.h"

#include "memLib.h"

#include "semLib.h"

#include "semSmLib.h"
#include "smNameLib.h"
#include "smObjLib.h"
#include "smMemLib.h"
#include "stdio.h"

#include "memPartExample.h"

!
*

* memPartSend - send shared memory partition buffer
*

STATUS memPartSend (void)

char * pMem;
PART_ID smMemPartld;
SEM_ID mySemSmid;

SHARED_BUFF * pSharedBuff;

[* allocate shared system memory to use for partition */

pMem = smMemMalloc (CHUNK_SIZE);

* Create user defined partition using the previously allocated

* block of memory.

* WARNING: memPartSmCreate uses the global address of a memory

* pool as first parameter.
*

274

6
Shared-Memory Objects

if ((smMemPartld = memPartSmCreate (smObjLocalToGlobal (pMem), CHUNK_SIZE))
== NULL)
return (ERROR);

[* allocate memory from partition */
pSharedBuff = (SHARED_BUFF *) memPartAlloc (smMemPartld,
sizeof (SHARED_BUFF));
if (pSharedBuff == 0)
return (ERROR);

[* initialize structure before adding to database */

if ((mySemSmld = semBSmCreate (SEM_Q_FIFO, SEM_EMPTY)) == NULL)
return (ERROR);

pSharedBuff->semSmld = (SEM_1ID) htonl ((int) mySemSmid);

[* enter shared patrtition ID in name database */

if smNameAdd (MEM_PART_NAME, (void *) smMemPartld, T_SM_PART_ID) == ERROR)
return (ERROR);

* convert shared buffer address to a global address and add to database */
if (smNameAdd (PART_BUFF_NAME, (void *) smObjLocalToGlobal(pSharedBuff),
T_SM_BLOCK) == ERROR)
return (ERROR);
/* send data using shared buffer */

sprintf (pSharedBuff->buff,"Hello from sender\n");

if (semGive (mySemSmild) = OK)
return (ERROR);

return (OK);

/* memPartReceive.c - shared memory partition example receive side */
[* This file reads from the user-defined shared memory partition. */

#include "vxWorks.h"

#include "memLib.h"

#include "stdio.h"

#include "semLib.h"

#include "semSmLib.h"
#include "stdio.h"

#include "memPartExample.h"

275

VxWorks 5.4
Programmer’s Guide

I
*

* memPartReceive - receive shared memory partition buffer

*

* execute on CPU 1 - use a shared semaphore to protect shared memory

*

*
STATUS memPartReceive (void)

{

SHARED_BUFF * pBuff;
SEM_ID mySemSmid;
int objType;

[* get shared buffer address from name database */

if (smNameFind (PART_BUFF_NAME, (void **) &pBuff, &objType,
WAIT_FOREVER) == ERROR)
return (ERROR);

[* convert global address of buffer to its local value */
pBuff = (SHARED_BUFF *) smObjGlobalToLocal (pBuff);
[* Grab shared semaphore before using the shared memory */

mySemSmild = (SEM_ID) ntohl ((int) pBuff->semSmid);

semTake (mySemSmid,WAIT_FOREVER);

printf ("Receiver reading from shared memory: %s\n", pBuff->buff);
semGive (mySemSmild);

return (OK);
}

Side Effects of Shared-Memory Partition Options

Like their local counterparts, shared-memory partitions (both system- and user-
created) can have different options set for error handling; see the reference entries
for memPartOptionsSet() and smMemOptionsSet().

If the MEM_BLOCK_CHECK option is used in the following situation, the system
can get into a state where the memory partition is no longer available. If a task
attempts to free a bad block and a bus error occurs, the task is suspended. Because
shared semaphores are used internally for mutual exclusion, the suspended task
still has the semaphore, and no other task has access to the memory partition. By
default, shared-memory partitions are created without the MEM_BLOCK_CHECK
option.

276

6
Shared-Memory Objects

6.3 Internal Considerations

6.3.1 System Requirements

The shared-memory region used by shared-memory objects must be visible to all
CPUs in the system. Either dual-ported memory on the master CPU (CPU 0) or a
separate memory board can be used. The shared-memory objects” anchor must be
in the same address space as the shared-memory region. Note that the memory
does not have to appear at the same address for all CPUs.

A CAUTION: Boards that make use of VxMP must support hardware test-and-set
(indivisible read-modify-write cycle). PowerPC is an exception; see F. PowerPC.

All CPUs in the system must support indivisible read-modify-write cycle across
the (VME) bus. The indivisible RMW is used by the spin-lock mechanism to gain
exclusive access to internal shared data structures; see 6.3.2 Spin-lock Mechanism,
p-277 for details. Because all the boards must support a hardware test-and-set, the
constant SM_TAS_TYPE must be set to SM_TAS_HARD on the Parameters tab of the
project facility VxWorks view.

CPUs must be notified of any event that affects them. The preferred method is for
the CPU initiating the event to interrupt the affected CPU. The use of interrupts is
dependent on the capabilities of the hardware. If interrupts cannot be used, a
polling scheme can be employed, although this generally results in a significant
performance penalty.

The maximum number of CPUs that can use shared-memory objects is 20 (CPUs
numbered 0 through 19). The practical maximum is usually a smaller number that
depends on the CPU, bus bandwidth, and application.

6.3.2 Spin-lock Mechanism

Internal shared-memory object data structures are protected against concurrent
access by a spin-lock mechanism. The spin-lock mechanism is a loop where an
attempt is made to gain exclusive access to a resource (in this case an internal data
structure). An indivisible hardware read-modify-write cycle (hardware test-and-
set) is used for this mutual exclusion. If the first attempt to take the lock fails,
multiple attempts are made, each with a decreasing random delay between one
attempt and the next. The average time it takes between the original attempt to
take the lock and the first retry is 70 microseconds on an MC68030 at 20MHz.
Operating time for the spin-lock cycle varies greatly because it is affected by the

277

VxWorks 5.4
Programmer’s Guide

processor cache, access time to shared memory, and bus traffic. If the lock is not
obtained after the maximum number of tries specified by SM_OBJ_MAX_TRIES
(defined in the Params tab of the properties window for shared memory objects in
the VxWorks view), errno is set to S_smObjLib_LOCK_TIMEOUT. If this error
occurs, set the maximum number of tries to a higher value. Note that any failure
to take a spin-lock prevents proper functioning of shared-memory objects. In most
cases, this is due to problems with the shared-memory configuration; see

6.5.2 Troubleshooting Techniques, p.286.

6.3.3 Interrupt Latency

For the duration of the spin-lock, interrupts are disabled to avoid the possibility of
a task being preempted while holding the spin-lock. As a result, the interrupt
latency of each processor in the system is increased. However, the interrupt latency
added by shared-memory objects is constant for a particular CPU.

6.3.4 Restrictions

Unlike local semaphores and message queues, shared-memory objects cannot be
used at interrupt level. No routines that use shared-memory objects can be called
from ISRs. An ISR is dedicated to handle time-critical processing associated with
an external event; therefore, using shared-memory objects at interrupt time is not
appropriate. On a multiprocessor system, run event-related time-critical
processing on the CPU where the time-related interrupt occurred.

Note that shared-memory objects are allocated from dedicated shared-memory
pools, and cannot be deleted.

When using shared-memory objects, the maximum number of each object type
must be specified on the Params tab of the properties window; see 6.4.3 Initializing
the Shared-Memory Objects Package, p.280. If applications are creating more than the
specified maximum number of objects, it is possible to run out of memory. If this
happens, the shared object creation routine returns an error and errno is set to
S_memLib_NOT_ENOUGH_MEM. To solve this problem, first increase the
maximum number of shared-memory objects of corresponding type; see Table 6-5
for a list of the applicable configuration constants. This decreases the size of the
shared-memory system pool because the shared-memory pool uses the remainder
of the shared memory. If this is undesirable, increase both the number of the
corresponding shared-memory objects and the size of the overall shared-memory
region, SM_OBJ_MEM_SIZE. See 6.4 Configuration, p.279 for a discussion of the
constants used for configuration.

278

6
Shared-Memory Objects

6.3.5 Cache Coherency

When dual-ported memory is used on some boards without MMU or bus
snooping mechanisms, the data cache must be disabled for the shared-memory
region on the master CPU. If you see the following error message, make sure that
the constant INCLUDE_CACHE_ENABLE is not selected for inclusion in the
VxWorks view:

usrSmObjInit - cache coherent buffer not available. Giving up.

6.4 Configuration

To include shared-memory objects in VxWorks, select INCLUDE_SM_OBJ for
inclusion in the project facility VxWorks view. Most of the configuration is already
done automatically from usrSmObjInit() in usrConfig.c. However, you may also
need to modify some values in the Params tab of the properties window to reflect
your configuration; these are described in this section.

6.4.1 Shared-Memory Objects and Shared-Memory Network Driver

Shared-memory objects and the shared-memory network? use the same memory
region, anchor address, and interrupt mechanism. Configuring the system to use
shared-memory objects is similar to configuring the shared-memory network
driver. For a more detailed description of configuring and using the shared-
memory network, see VxWorks Network Programmer’s Guide: Data Link Layer
Network Components. If the default value for the shared-memory anchor address is
modified, the anchor must be on a 256-byte boundary.

One of the most important aspects of configuring shared-memory objects is
computing the address of the shared-memory anchor. The shared-memory anchor
is a location accessible to all CPUs on the system, and is used by both VxMP and
the shared-memory network driver. The anchor stores a pointer to the shared-
memory header, a pointer to the shared-memory packet header (used by the
shared-memory network driver), and a pointer to the shared-memory object
header.

2. Also known as the backplane network.

279

VxWorks 5.4
Programmer’s Guide

The address of the anchor is defined in the Params tab of the Properties window
with the constant SM_ANCHOR_ADRS. If the processor is booted with the shared-
memory network driver, the anchor address is the same value as the boot device
(sm=anchorAddress). The shared-memory object initialization code uses the value
from the boot line instead of the constant. If the shared-memory network driver is
not used, modify the definition of SM_ANCHOR_ADRS as appropriate to reflect
your system.

Two types of interrupts are supported and defined by SM_INT_TYPE: mailbox
interrupts and bus interrupts (see VxWorks Network Programmer’s Guide: Data Link
Layer Network Components). Mailbox interrupts (SM_INT_MAILBOX) are the
preferred method, and bus interrupts (SM_INT_BUS) are the second choice. If
interrupts cannot be used, a polling scheme can be employed (SM_INT_NONE),
but this is much less efficient.

When a CPU initializes its shared-memory objects, it defines the interrupt type as
well as three interrupt arguments. These describe how the CPU is notified of
events. These values can be obtained for any attached CPU by calling
smCpulnfoGet().

The default interrupt method for a target is defined by SM_INT_TYPE,
SM_INT_ARG1, SM_INT_ARG2, and SM_INT_ARGS3 on the Params tab.

6.4.2 Shared-Memory Region

Shared-memory objects rely on a shared-memory region that is visible to all
processors. This region is used to store internal shared-memory object data
structures and the shared-memory system partition.

The shared-memory region is usually in dual-ported RAM on the master, but it can
also be located on a separate memory card. The shared-memory region address is
defined when configuring the system as an offset from the shared-memory anchor
address, SM_ANCHOR_ADRS, as shown in Figure 6-3.

6.4.3 Initializing the Shared-Memory Objects Package

Shared-memory objects are initialized by default in the routine usrSmObjInit() in
installDir/target/src/config/usrSmODbj.c. The configuration steps taken for the
master CPU differ slightly from those taken for the slaves.

The address for the shared-memory pool must be defined. If the memory is off-
board, the value must be calculated (see Figure 6-5).

280

6
Shared-Memory Objects

Figure 6-3 Shared-Memory Layout

SHARED MEMORY
SM_ANCHOR_ADRS B> -

0x600 (default) : Shared-Memory

pointer to shared-memory Anchor
objects’ shared-memory region

~ ~
Sy iy n

shared-memory objects Shared-Memory
Region

The example configuration in Figure 6-4 uses the shared memory in the master
CPU’s dual-ported RAM. On the Params tab of the properties window for the
master, SM_OFF_BOARD is FALSE and SM_ANCHOR_ADRS is 0x600.
SM_OBJ_MEM_ADRS is set to NONE, because on-board memory is used (it is
malloc’ed at run-time); SM_OBJ_MEM_SIZE is set to 0x20000. For the slave, the
board maps the base of the VME bus to the address 0x1000000. SM_OFF_BOARD is
TRUE and the anchor address is 0x1800600. This is calculated by taking the
VMEDbus address (0x800000) and adding it to the anchor address (0x600). Many
boards require further address translation, depending on where the board maps
VME memory. In this example, the anchor address for the slave is 0x1800600,
because the board maps the base of the VME bus to the address 0x1000000.

Figure 6-4 Example Configuration: Dual-Ported Memory

CPUO CPU1
RAM Sm=0x1800600

anchor 0x600

Local address of
allocated VMEbus address 0
pool is 0x1000000

VMEbus address of dual
ported RAM = 0x800000

281

Figure 6-5

VxWorks 5.4
Programmer’s Guide

In the example configuration in Figure 6-5, the shared memory is on a separate
memory board. On the Params tab for the master, SM_OFF_BOARD is TRUE,
SM_ANCHOR_ADRS is 0x3000000, SM_OBJ_MEM_ADRS is set to
SM_ANCHOR_ADRS, and SM_OBJ_MEM_SIZE is set to 0x100000. For the slave
board, SM_OFF_BOARD is TRUE and the anchor address is 0x2100000. This is
calculated by taking the VMEbus address of the memory board (0x2000000) and
adding it to the local VMEbus address (0x100000).

Example Configuration: an External Memory Board

External RAM

CPUO CPU1 Board (1MB)
anchor
anchor = 0x3000000 sm=0x2100000
Local address of Local address of shared-memory
VMEDbus address 0 VMEDbus address 0 pool
is 0x1000000 is 0x100000

VMEbus address
of RAM on external
board = 0x2000000

Some additional configuration are sometimes required to make the shared
memory non-cacheable, because the shared-memory pool is accessed by all
processors on the backplane. By default, boards with an MMU have the MMU
turned on. With the MMU on, memory that is off-board must be made
non-cacheable. This is done using the data structure sysPhysMemDesc in
sysLib.c. This data structure must contain a virtual-to-physical mapping for the
VME address space used for the shared-memory pool, and mark the memory as
non-cacheable. (Most BSPs include this mapping by default.) See 7.3 Virtual
Memory Configuration, p.290 in this manual for additional information.

CAUTION: For the MC68030, if the MMU is off, data caching must be turned off
globally; see the reference entry for cacheLib.

282

Table 6-5

6
Shared-Memory Objects

When shared-memory objects are initialized, the memory size as well as the
maximum number of each object type must be specified. The master processor
specifies the size of memory using the constant SM_OBJ_MEM_SIZE. Symbolic
constants are used to set the maximum number of different objects. These
constants are specified on the Params tab of the properties window. See Table 6-5
for a list of these constants.

Configuration Constants for Shared-Memory Objects

Default

Symbolic Constant Value

Description

SM_OBJ_MAX_TASK 40

SM_OBJ_MAX_SEM 30

SM_OBJ_MAX_NAME 100
SM_OBJ_MAX_MSG_Q 10

SM_OBJ_MAX_MEM_PART 4

Maximum number of tasks using shared-memory
objects.

Maximum number of shared semaphores
(counting and binary).

Maximum number of names in the name database.
Maximum number of shared message queues.

Maximum number of user-created shared-memory

partitions.

If the size of the objects created exceeds the shared-memory region, an error
message is displayed on CPU 0 during initialization. After shared memory is
configured for the shared objects, the remainder of shared memory is used for the
shared-memory system partition.

The routine smObjShow() displays the current number of used shared-memory
objects and other statistics, as follows:

-> smObjShow
value = 0 = 0x0

The routine is automatically included if INCLUDE_SM_OBJ is selected for inclusion
in the project facility VxWorks view. The output of smObjShow() is sent to the
standard output device, and looks like the following:

Shared Mem Anchor Local Addr : 0x600
Shared Mem Hdr Local Addr : 0x363ed0
Attached CPU D2

Max Tries to Take Lock : 0

Shared Object Type Current- Maximum Available

Tasks 1 40 39
Binary Semaphores 3 30 27

283

A\

VxWorks 5.4
Programmer’s Guide

Counting Semaphores 0 30 27
Messages Queues 1 10 9
Memory Partitions 1 4 3
Names in Database 5 100 95

CAUTION: If the master CPU is rebooted, it is necessary to reboot all the slaves. If
a slave CPU is to be rebooted, it must not have tasks pended on a shared-memory
object.

6.4.4 Configuration Example

Table 6-6

The following example shows the configuration for a multiprocessor system with
three CPUs. The master is CPU 0, and shared memory is configured from its dual-
ported memory. This application has 20 tasks using shared-memory objects, and
uses 12 message queues and 20 semaphores. The maximum size of the name
database is the default value (100), and only one user-defined memory partition is
required. On CPU 0, the shared-memory pool is configured to be on-board. This
memory is allocated from the processor’s system memory. On CPU 1 and CPU 2,
the shared-memory pool is configured to be off-board. Table 6-6 shows the values
set on the Params tab of the properties window for INCLUDE_SM_OBJECTS in the
project facility.

Configuration Settings for Three CPU System

CPU Symbolic Constant Value

Master

(CPUO0) SM_OBJ_MAX_TASK 20
SM_OBJ_MAX_SEM 20
SM_OBJ_MAX_NAME 100
SM_OBJ_MAX_MSG_Q 12
SM_OBJ_MAX_MEM_PART 1
SM_OFF_BOARD FALSE
SM_MEM_ADRS NONE
SM_MEM_SIZE 0x10000
SM_OBJ_MEM_ADRS NONE

284

6

Shared-Memory Objects
Table 6-6 Configuration Settings for Three CPU System
CPU Symbolic Constant Value
SM_OBJ_MEM_SIZE 0x10000

Slaves

(CPU 1,

CPU2) SM_OBJ_MAX TASK 20
SM_OBJ_MAX_SEM 20
SM_OBJ_MAX_NAME 100
SM_OBJ_MAX_MSG_Q 12
SM_OBJ_MAX_MEM_PART 1
SM_OFF_BOARD TRUE
SM_ANCHOR_ADRS (char *) 0xfb800000
SM_MEM_ADRS SM_ANCHOR_ADRS
SM_MEM_SIZE 0x80000
SM_OBJ_MEM_ADRS (SM_MEM_ADRS + SM_MEM_SIZE)
SM_OBJ_MEM_SIZE 0x80000

Note that for the slave CPUs, the value of SM_OBJ_MEM_SIZE is not actually used.

6.4.5 Initialization Steps

Initialization is performed by default in usrSmObjInit(), in
installDir/target/src/config/usrfSmODbj.c. On the master CPU, the initialization of
shared-memory objects consists of the following:

1. Setting up the shared-memory objects header and its pointer in the shared-
memory anchor, with smObjSetup().

2. Initializing shared-memory object parameters for this CPU, with smObjInit().
3. Attaching the CPU to the shared-memory object facility, with smObjAttach().
On slave CPUs, only steps 2 and 3 are required.

285

VxWorks 5.4
Programmer’s Guide

The routine smObjAttach() checks the setup of shared-memory objects. It looks
for the shared-memory heartbeat to verify that the facility is running. The shared-
memory heartbeat is an unsigned integer that is incremented once per second by
the master CPU. It indicates to the slaves that shared-memory objects are
initialized, and can be used for debugging. The heartbeat is the first field in the
shared-memory object header; see 6.5 Troubleshooting, p.286.

6.5 Troubleshooting

Problems with shared-memory objects can be due to a number of causes. This
section discusses the most common problems and a number of troubleshooting
tools. Often, you can locate the problem by rechecking your hardware and
software configurations.

6.5.1 Configuration Problems

Refer to the following list to confirm that your system is properly configured:

Be sure to verify that the constant INCLUDE_SM_OB] is selected for inclusion
in the project facility VxWorks view for each processor using VxMP.

Be sure the anchor address specified is the address seen by the CPU. This can
be defined with the constant SM_ANCHOR_ADRS in the Params tab of the
properties window or at boot time (sm=) if the target is booted with the
shared-memory network.

If there is heavy bus traffic relating to shared-memory objects, bus errors can
occur. Avoid this problem by changing the bus arbitration mode or by
changing relative CPU priorities on the bus.

If memAddToPool(), memPartSmCreate(), or smMemAddToPool() fail, check
that any address you are passing to these routines is in fact a global address.

6.5.2 Troubleshooting Techniques

Use the following techniques to troubleshoot any problems you encounter:

286

6
Shared-Memory Objects

The routine smObjTimeoutLogEnable() enables or disables the printing of an
error message indicating that the maximum number of attempts to take a spin-
lock has been reached. By default, message printing is enabled.

The routine smObjShow() displays the status of the shared-memory objects
facility on the standard output device. It displays the maximum number of
tries a task took to get a spin-lock on a particular CPU. A high value can
indicate that an application might run into problems due to contention for
shared-memory resources.

The shared-memory heartbeat can be checked to verify that the master CPU
has initialized shared-memory objects. The shared-memory heartbeat is in the
first 4-byte word of the shared-memory object header. The offset to the header
is in the sixth 4-byte word in the shared-memory anchor. (See VxWorks Network
Programmer’s Guide: Data Link Layer Network Components.)

Thus, if the shared-memory anchor were located at 0x800000:

[VxWorks Boot]: d 0x800000

800000: 8765 4321 0000 0001 0000 0000 0000 002c *.eCl..........., *
800010: 0000 0000 0000 0170 0000 0000 0000 0000 *...p............ *
800020: 0000 0000 0000 0000 0000 0000 0000 0000 *................ *

The offset to the shared-memory object header is 0x170. To view the shared-
memory object header display 0x800170:

[VxWorks Boot]: d 0x800170
800170: 0000 0050 0000 0000 0000 Obfc 0000 0350 *...P........... p*

In the preceding example, the value of the shared-memory heartbeat is 0x50.
Display this location again to ensure that the heartbeat is alive; if its value has
changed, shared-memory objects are initialized.

The global variable smIfVerbose, when set to 1 (IRUE), causes shared-
memory interface error messages to print to the console, along with additional
details of shared-memory operations. This variable enables you to get run-
time information from the device driver level that would be unavailable at the
debugger level. The default setting for smIfVerbose is 0 (FALSE). That can be
reset programmatically or from the shell.

287

VxWorks 5.4
Programmer’s Guide

288

Virtual Memory Interface

Basic Support and Optional Component VxVMI

7.1 Introduction

VxWorks provides two levels of virtual memory support. The basic level is
bundled with VxWorks and provides caching on a per-page basis. The full level is
unbundled, and requires the optional component, VxVMI. VxVMI provides write
protection of text segments and the VxWorks exception vector table, and an
architecture-independent interface to the CPU’s memory management unit
(MMU). For information on how to install VxVMI, see Tornado Getting Started.

This chapter contains the following sections:
The first describes the basic level of support.
The second describes configuration, and is applicable to both levels of support.
The third and fourth parts apply only to the optional component, VxVMI:

— The third is for general use, discussing the write protection implemented
by VxVML

— The fourth describes a set of routines for manipulating the MMU. VxVMI
provides low-level routines for interfacing with the MMU in an
architecture-independent manner, allowing you to implement your own
virtual memory systems.

289

VxWorks 5.4
Programmer’s Guide

7.2 Basic Virtual Memory Support

For systems with an MMU, VxWorks allows you to perform DMA and
interprocessor communication more efficiently by rendering related buffers
noncacheable. This is necessary to ensure that data is not being buffered locally
when other processors or DMA devices are accessing the same memory location.
Without the ability to make portions of memory noncacheable, caching must be
turned off globally (resulting in performance degradation) or buffers must be
flushed /invalidated manually.

Basic virtual memory support is included by selecting INCLUDE_MMU_BASIC in
the project facility VxWorks view; see 7.3 Virtual Memory Configuration, p.290. It is
also possible to allocate noncacheable buffers using cacheDmaMalloc(); see the
reference entry for cacheLib.

7.3 Virtual Memory Configuration

Table 7-1

The following discussion of configuration applies to both bundled and unbundled
virtual memory support.

In the project facility, define the constants in Table 7-1 to reflect your system
configuration.

MMU Configuration Constants

Constant Description

INCLUDE_MMU_BASIC Basic MMU support without VxVMI option.

INCLUDE_MMU_FULL Full MMU support with the VxVMI option.

INCLUDE_PROTECT_TEXT Text segment protection (requires full MMU
support).

INCLUDE_PROTECT_VEC_TABLE Exception vector table protection (requires full
MMU support).

The appropriate default page size for your processor (4 KB or 8KB) is defined by
VM_PAGE_SIZE in your BSP. If you must change this value for some reason,
redefine VM_PAGE_SIZE in config.h. (See 8. Configuration and Build.)

290

7
Virtual Memory Interface

To make memory noncacheable, it must have a virtual-to-physical mapping. The
data structure PHYS_MEM_DESC in vinLib.h defines the parameters used for
mapping physical memory. Each board’s memory map is defined in sysLib.c using
sysPhysMemDesc (which is declared as an array of PHYS_MEM_DESC). In
addition to defining the initial state of the memory pages, the sysPhysMemDesc
structure defines the virtual addresses used for mapping virtual-to-physical
memory. For a discussion of page states, see Page States, p.294.

Modify the sysPhysMemDesc structure to reflect your system configuration. For
example, you may need to add the addresses of interprocessor communication
buffers not already included in the structure. Or, you may need to map and make
noncacheable the VMEbus addresses of the shared-memory data structures. Most
board support packages have a section of VME space defined in
sysPhysMemDesc; however, this may not include all the space required by your
system configuration.

I/0 devices and memory not already included in the structure must also be
mapped and made noncacheable. In general, off-board memory regions are
specified as noncacheable; see VxWorks Network Programmer’s Guide: Data Link
Layer Network Components.

CAUTION: The regions of memory defined in sysPhysMemDesc must be page-
aligned, and must span complete pages. In other words, the first three fields
(virtual address, physical address, and length) of a PHYS_MEM_DESC structure
must all be even multiples of VM_PAGE_SIZE. Specifying elements of
sysPhysMemDesc that are not page-aligned leads to crashes during VxWorks
initialization.

The following example configuration consists of multiple CPUs using the shared-
memory network. A separate memory board is used for the shared-memory pool.
Because this memory is not already mapped, it must be added to
sysPhysMemDesc for all the boards on the network. The memory starts at
0x4000000 and must be made noncacheable, as shown in the following code
excerpt:

[* shared memory */

{

(void *) 0x4000000, [* virtual address */

(void *) 0x4000000, [* physical address */

0x20000, /* length */

/* initial state mask */

VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |VM_STATE_MASK_CACHEABLE,
[* initial state */

VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT

}

291

VxWorks 5.4
Programmer’s Guide

For MC680x0 boards, the virtual address must be the same as the physical address.
For other boards, the virtual and physical addresses are the same as a matter of
convention.

7.4 General Use

This section describes VxVMI's general use and configuration for write-protecting
text segments and the exception vector table.

VxVMI uses the MMU to prevent portions of memory from being overwritten.
This is done by write-protecting pages of memory. Not all target hardware
supports write protection; see the architecture appendices in this manual for
further information. For most architectures, the page size is 8KB. An attempt to
write to a memory location that is write-protected causes a bus error.

When VxWorks is loaded, all text segments are write-protected; see 7.3 Virtual
Memory Configuration, p.290. The text segments of additional object modules
loaded using Id() are automatically marked as read-only. When object modules are
loaded, memory to be write-protected is allocated in page-size increments. No
additional steps are required to write-protect application code.

During system initialization, VxWorks write-protects the exception vector table.
The only way to modify the interrupt vector table is to use the routine
intConnect(), which write-enables the exception vector table for the duration of
the call.

To include write-protection, select the following in the project facility VxWorks
view:

INCLUDE_MMU_FULL
INCLUDE_PROTECT_TEXT
INCLUDE_PROTECT_VEC_TABLE

292

7
Virtual Memory Interface

7.5 Using the MMU Programmatically

This section describes the facilities provided for manipulating the MMU
programmatically using low-level routines in vmLib. You can make data private
to a task or code segment, make portions of memory noncacheable, or write-
protect portions of memory. The fundamental structure used to implement virtual
memory is the virtual memory context (VMC).

For a summary of the VxVMI routines, see the reference entry for vimLib.

7.5.1 Virtual Memory Contexts

A virtual memory context (VM_CONTEXT, defined in vimLib) is made up of a
translation table and other information used for mapping a virtual address to a
physical address. Multiple virtual memory contexts can be created and swapped
in and out as desired.

Global Virtual Memory

Some system objects, such as text segments and semaphores, must be accessible to
all tasks in the system regardless of which virtual memory context is made current.
These objects are made accessible by means of global virtual memory. Global virtual
memory is created by mapping all the physical memory in the system (the
mapping is defined in sysPhysMemDesc) to the identical address in the virtual
memory space. In the default system configuration, this initially gives a one-to-one
relationship between physical memory and global virtual memory; for example,
virtual address 0x5000 maps to physical address 0x5000. On some architectures, it
is possible to use sysPhysMemDesc to set up virtual memory so that the mapping
of virtual-to-physical addresses is not one-to-one; see 7.3 Virtual Memory
Configuration, p.290 for additional information.

Global virtual memory is accessible from all virtual memory contexts.
Modifications made to the global mapping in one virtual memory context appear
in all virtual memory contexts. Before virtual memory contexts are created, add all
global memory with vmGlobalMap(). Global memory that is added after virtual
memory contexts are created may not be available to existing contexts.

293

Initialization

Page States

Table 7-2

VxWorks 5.4
Programmer’s Guide

Global virtual memory is initialized by vmGlobalMapInit() in usrMmulnit(),
which is called from usrRoot(). The routine usrMmulnit() is in
installDir/target/src/config/ustMmulnit.c, and creates global virtual memory
using sysPhysMemDesc. It then creates a default virtual memory context and
makes the default context current. Optionally, it also enables the MMU.

Each virtual memory page (typically 8KB) has a state associated with it. A page can
be valid /invalid, writable /nonwritable, or cacheable /noncacheable. See Table 7-2
for the associated constants.

State Flags
Constant Description
VM_STATE_VALID Valid translation
VM_STATE_VALID_NOT Invalid translation
VM_STATE_WRITABLE Writable memory
VM_STATE_WRITABLE_NOT Read-only memory
VM_STATE_CACHEABLE Cacheable memory
VM_STATE_CACHEABLE_NOT Noncacheable memory
Validity
A valid state indicates the virtual-to-physical translation is true. When the
translation tables are initialized, global virtual memory is marked as valid.
All other virtual memory is initialized as invalid.
Writability
Pages can be made read-only by setting the state to nonwritable. This is
used by VxWorks to write-protect all text segments.
Cacheability

The caching of memory pages can be prevented by setting the state flags
to noncacheable. This is useful for memory that is shared between
processors (including DMA devices).

294

7
Virtual Memory Interface

Change the state of a page with the routine vmStateSet(). In addition to specifying
the state flags, a state mask must describe which flags are being changed; see
Table 7-3. Additional architecture-dependent states are specified in vmLib.h.

Table 7-3 State Masks

Constant Description

VM_STATE_MASK_VALID Modify valid flag
VM_STATE_MASK_WRITABLE Modify write flag
VM_STATE_MASK_CACHEABLE Modify cache flag

7.5.2 Private Virtual Memory

Private virtual memory can be created by creating a new virtual memory context.
This is useful for protecting data by making it inaccessible to other tasks or by
limiting access to specific routines. Virtual memory contexts are not automatically
created for tasks, but can be created and swapped in and out in an application-
specific manner.

At system initialization, a default context is created. All tasks use this default
context. To create private virtual memory, a task must create a new virtual memory
context using vmContextCreate(), and make it current. All virtual memory
contexts share the global mappings that are created at system initialization; see
Figure 7-1. Only the valid virtual memory in the current virtual memory context
(including global virtual memory) is accessible. Virtual memory defined in other
virtual memory contexts is not accessible. To make another memory context
current, use vmCurrentSet().

To create a new virtual-to-physical mapping, use vmMap(); both the physical and
virtual address must be determined in advance. The physical memory (which
must be page aligned) can be obtained using valloc(). The easiest way to
determine the virtual address is to use vmGloballnfoGet() to find a virtual page
that is not a global mapping. With this scheme, if multiple mappings are required,
a task must keep track of its own private virtual memory pages to guarantee it does
not map the same non-global address twice.

When physical pages are mapped into new sections of the virtual space, the
physical page is accessible from two different virtual addresses (a condition
known as aliasing): the newly mapped virtual address and the virtual address
equal to the physical address in the global virtual memory. This can cause
problems for some architectures, because the cache may hold two different values

295

Figure 7-1

Example 7-1

VxWorks 5.4
Programmer’s Guide

Global Mappings of Virtual Memory

TRANSLATION TRANSLATION
TABLE TABLE
| i~
y 4

GLOBAL GLOBAL PRIVATE

MAPPING MAPPING MAPPING
Default Private

Virtual Memory Context Virtual Memory Context

for the same underlying memory location. To avoid this, invalidate the virtual
page (using vmStateSet()) in the global virtual memory. This also ensures that the
data is accessible only when the virtual memory context containing the new
mapping is current.

Figure 7-2 depicts two private virtual memory contexts. The new context (pvmc2)
maps virtual address 0x6000000 to physical address 0x10000. To prevent access to
this address from outside of this virtual context (pvmc1), the corresponding
physical address (0x10000) must be set to invalid. If access to the memory is made
using address 0x10000, a bus error occurs because that address is now invalid.

Private Virtual Memory Contexts

In the following code example, private virtual memory contexts are used for
allocating memory from a task’s private memory partition. The setup routine,
contextSetup(), creates a private virtual memory context that is made current
during a context switch. The virtual memory context is stored in the field sparel in
the task’s TCB. Switch hooks are used to save the old context and install the task’s
private context. Note that the use of switch hooks increases the context switch
time. A user-defined memory partition is created using the private virtual memory

296

7
Virtual Memory Interface

Figure 7-2 Mapping Private Virtual Memory

Private New
Virtual Memory Context Virtual Memory Context
pvmcl pvmc2
N\ — [\
0 v 0x6000000 [0x10000] V | yebtio
\%
invalid
0x10000 |0x10000| T mapping
\%
Vv Global Private
Virtual Virtual
Memory ... | Memory
VIRTUAL PHYSICAL STATE VIRTUAL PHYSICAL STATE
ADDRESS ADDRESS ADDRESS ADDRESS

context. The partition ID is stored in spare2 in the tasks TCB. Any task wanting a
private virtual memory context must call contextSetup(). A sample task to test the
code is included.

* contextExample.h - header file for vm contexts used by switch hooks */

#define NUM_PAGES (3)

* context.c - use context switch hooks to make task private context current */

#include "vxWorks.h"
#include "vmLib.h"

#include "semLib.h"
#include "taskLib.h"
#include "taskHookLib.h"
#include "memLib.h"
#include "contextExample.h"

void privContextSwitch (WIND_TCB *pOldTask, WIND_TCB *pNewTask);

297

VxWorks 5.4
Programmer’s Guide

I
*

* initContextSetup - install context switch hook
*
STATUS initContextSetup ()

/* Install switch hook */

if (taskSwitchHookAdd ((FUNCPTR) privContextSwitch) == ERROR)
return (ERROR);

return (OK);
}

I
*

* contextSetup - initialize context and create separate memory partition
*

* Call only once for each task that wants a private context.

*

* This could be made into a create-hook routine if every task on the

* system needs a private context. To use as a create hook, the code for
* installing the new virtual memory context should be replaced by simply
* saving the new context in sparel of the task’s TCB.

*

STATUS contextSetup (void)

{

VM_CONTEXT_ID pNewContext;
int pageSize;

int pageBIkSize;

char * pPhysAddr;

char * pVirtAddr;

UINT8 * globalPgBIkArray;

int newMemsSize;

int index;

WIND_TCB * pTcb;

[* create context */

pNewContext = vmContextCreate();

[* get page and page block size */
pageSize = vmPageSizeGet ();
pageBIkSize = vmPageBlockSizeGet ();
newMemSize = pageSize * NUM_PAGES;

/* allocate physical memory that is page aligned */

if (pPhysAddr = (char *) valloc (newMemSize)) == NULL)
return (ERROR);

298

7
Virtual Memory Interface

[* Select virtual address to map. For this example, since only one page
*block is used per task, simply use the first address that is not a
* global mapping. vmGloballnfoGet() retums a boolean array where each
* element corresponds to a block of virtual memory.
*

globalPgBIkArray = vmGloballnfoGet();
for (index = 0; globalPgBIkArray[index] == TRUE; index++)

pVirtAddr = (char *) (index * pageBIkSize);

/* map physical memory to new context */

if (vmMap (pNewContext, pVirtAddr, pPhysAddr, newMemSize) == ERROR)
free (pPhysAddr);
return (ERROR);

/*
* Set state in global virtual memory to be invalid - any access to
* this memory must be done through new context.
*
if (vmStateSet(pNewContext, pPhysAddr, newMemSize, VM_STATE_MASK_VALID,
VM_STATE_VALID_NOT) == ERROR)
return (ERROR);
[* get tasks TCB */
pTcb = taskTcb (taskldSelf());
[* change virtual memory contexts */
/*
* Stash the current vm context in the spare TCB field -- the switch
* hook will install this when this task gets swapped out.
*
/
pTcb->sparel = (int) vmCurrentGet();
/* install new tasks context */
vmCurrentSet (pNewContext);

[* create new memory partition and store id in task’s TCB */

if ((pTch->spare2 = (int) memPartCreate (pVirtAddr,newMemSize)) == NULL)
return (ERROR);

return (OK);

299

VxWorks 5.4
Programmer’s Guide

/
*

* privContextSwitch - routine to be executed on a context switch
*

* If old task had private context, save it. If new task has private
* context, install it.

*

void privContextSwitch

(
WIND_TCB *pOIdTcb,
WIND_TCB *pNewTcb
)
{
VM_CONTEXT_ID pContext = NULL;
[* If previous task had private context, save it--reset previous context. */
if (pOldTcb->sparel)
{

pContext = (VM_CONTEXT_ID) pOldTcb->sparel,;
pOIdTch->sparel = (int) vmCurrentGet ();

[* restore old context */

vmCurrentSet (pContext);

}
/*
* |f next task has private context, map new context and save previous
* context in task’s TCB.
*
if (p)NewTcb->sparel)
{

pContext = (VM_CONTEXT_ID) pNewTcb->sparel,;
pNewTcb->sparel = (int) vmCurrentGet();

/* install new tasks context */

vmCurrentSet (pContext);

}

[* taskExample.h - header file for testing VM contexts used by switch hook */
[* This code is used by the sample task. */

#define MAX (10000000)

300

7
Virtual Memory Interface

typedef struct myStuff {
int stuff;
int myStuff;
}MY_DATA,;

/* testTask.c - task code to test switch hooks */

#include "vxWorks.h"
#include "memLib.h"
#include "taskLib.h"
#include "stdio.h"
#include "vmLib.h"
#include "taskExample.h"

IMPORT char *string = "test\n";

MY_DATA *pMem;

!
*

* testTask - allocate private memory and use it
*

* Loop forever, modifying memory and printing out a global string. Use this
*in conjunction with testing from the shell. Since pMem points to private

* memory, the shell should generate a bus error when it tries to read it.
* For example:

* -> sp testTask

* ->d pMem

*

STATUS testTask (void)
{
int val;

WIND_TCB *myTcb;
/* install private context */

if (contextSetup () == ERROR)
return (ERROR);

/*get TCB */

myTcb = taskTcb (taskidSelf ());

[* allocate private memory */

if ((PMem = (MY_DATA *) memPartAlloc((PART_ID) myTch->spare2,

sizeof (MY_DATA))) == NULL)
return (ERROR);

301

VxWorks 5.4
Programmer’s Guide

/*
* Forever, modify data in private memory and display string in
* global memory.
*
FOREVER
for (val = 0; val <= MAX; val++)

/* modify structure */

pMem->stuff = val;
pMem->myStuff = val / 2;

/* make sure can access global virtual memory */
printf (string);

taskDelay (sysClkRateGet() * 10);
}

}
return (OK);
}

I
*

* testVmContextGet - return a task’s virtual memory context stored in TCB

*

* Used with vmContextShow() 1to display a task’s virtual memory context.
* For example, from the shell, type:

* ->tid = sp (testTask)

* ->vmContextShow (testVmContextGet (tid))

*

VM_CONTEXT_ID testVmContextGet

(UINT tid
)

{
return ((VM_CONTEXT_ID) ((taskTcb (tid))->sparel));
}

7.5.3 Noncacheable Memory

Architectures that do not support bus snooping must disable the memory caching
that is used for interprocessor communication (or by DMA devices). If multiple

1. This routine is not built in to the Tornado shell. To use it from the Tornado shell, you must
define INCLUDE_MMU_FULL_SHOW in your VxWorks configuration; see the Tornado
User’s Guide: Projects. When invoked this routine’s output is sent to the standard output
device.

302

7
Virtual Memory Interface

processors are reading from and writing to a memory location, you must

guarantee that when the CPU accesses the data, it is using the most recent value. If

caching is used in one or more CPUs in the system, there can be a local copy of the

data in one of the CPUs’ data caches. In the example in Figure 7-3, a system with

multiple CPUs share data, and one CPU on the system (CPU 0) caches the shared

data. A task on CPU 0 reads the data [1] and then modifies the value [2]; however,

the new value may still be in the cache and not flushed to memory when a task on

another CPU (CPU 1) accesses it [3]. Thus the value of the data used by the task on

CPU 1 is the old value and does not reflect the modifications done by the task on

CPU 0; that value is still in CPU 0’s data cache [2].

Figure 7-3 Example of Possible Problems with Data Caching

CPUO

(task executes first)

Access and
modify myVal .
Cache myVal.

% [2] 4’/’ 25 myVal
Data

Cache myVal = 100

Access myVal;
myVal = 25
(not the value
of 100 just
set by CPUO0).

Memory

CPU1

(task executes second)

To disable caching on a page basis, use vmStateSet(); for example:
vmStateSet (pContext, pSData, len, VM_STATE_MASK_CACHEABLE, VM_STATE_CACHEABLE_NOT)

To allocate noncacheable memory, see the reference entry for cacheDmaMalloc().

303

VxWorks 5.4
Programmer’s Guide

7.5.4 Nonwritable Memory

Example 7-2

Memory can be marked as nonwritable. Sections of memory can be write-
protected using vmStateSet() to prevent inadvertent access.

One use of this is to restrict modification of a data object to a particular routine. If
a data object is global but read-only, tasks can read the object but not modify it. Any
task that must modify this object must call the associated routine. Inside the

routine, the data is made writable for the duration of the routine, and on exit, the

memory is set to VM_STATE_WRITABLE_NOT.

Nonwritable Memory

In this code example, to modify the data structure pointed to by pData, a task must
call dataModify(). This routine makes the memory writable, modifies the data,
and sets the memory back to nonwritable. If a task tries to read the memory, it is
successful; however, if it tries to modify the data outside of dataModify(), a bus

error occurs.

[* privateCode.h - header file to make data writable from routine only */
#define MAX 1024
typedef struct myData

char stufffMAX];

int moreStuff;
} MY_DATA,;

[* privateCode.c - uses VM contexts to make data private to a code segment */

#include "vxWorks.h"
#include "vmLib.h"
#include "semLib.h"
#include "privateCode.h"

MY_DATA * pData;
SEM_ID dataSemid;
int pageSize;

!
*

* initData - allocate memory and make it nonwritable
*

304

7
Virtual Memory Interface

* This routine initializes data and should be called only once.
y
STATUS initData (void)
pageSize = vmPageSizeGet();
[* create semaphore to protect data */
dataSemld = semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);
[* allocate memory = to a page */
pData = (MY_DATA *) valloc (pageSize);
[* initialize data and make it read-only */
bzero (pData, pageSize);
if (vmStateSet (NULL, pData, pageSize, VM_STATE_MASK_WRITABLE,
VM_STATE_WRITABLE_NOT) == ERROR)
semGive (dataSemld);
return (ERROR);

[* release semaphore */

semGive (dataSemld);
return (OK);
}

I
*

* dataModify - modify data

* To modify data, tasks must call this routine, passing a pointer to
* the new data.
* To test from the shell use:

* -> initData

* -> sp dataModify

* ->d pData

* -> pfill (pdata, 1024, 'X')
*/

STATUS dataModify

(
MY_DATA * pNewData

)
{

/* take semaphore for exclusive access to data */
semTake (dataSemld, WAIT_FOREVER);

/* make memory writable */

305

VxWorks 5.4

Programmer’s Guide

if (vmStateSet (NULL, pData, pageSize, VM_STATE_MASK_WRITABLE,
VM_STATE_WRITABLE) == ERROR)

semGive (dataSemld);

return (ERROR);
[* update data*/
bcopy (pNewData, pData, sizeof(MY_DATA));
/* make memory not writable */

if (vmStateSet (NULL, pData, pageSize, VM_STATE_MASK_WRITABLE,
VM_STATE_WRITABLE_NOT) == ERROR)

semGive (dataSemld);
return (ERROR);
}

semGive (dataSemld);

return (OK);

7.5.5 Troubleshooting

If INCLUDE_MMU_FULL_SHOW is included in the project facility VxWorks view,
you can use vmContextShow() to display a virtual memory context on the
standard output device. In the following example, the current virtual memory
context is displayed. Virtual addresses between 0x0 and 0x59fff are write
protected; 0xff800000 through Oxffbfffff are noncacheable; and 0x2000000 through
0x2005fff are private. All valid entries are listed and marked with a V+. Invalid
entries are not listed.

-> vmContextShow 0
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

306

VIRTUAL ADDR BLOCK LENGTH PHYSICAL ADDR STATE

0x0 0x5a000 0x0 W- C+ V+ (global)
0x5a000 0x1f3c000 0x5a000 W+ C+ V+ (global)
0x1f9c000 0x2000 0x1f9c000 W+ C+ V+ (global)
0x1f9e000 0x2000 0x1f9e000 W- C+ V+ (global)
0x1fa0000 0x2000 0x1fa0000 W+ C+ V+ (global)
0x1fa2000 0x2000 0x1fa2000 W- C+ V+ (global)
0x1fa4000 0x6000 0x1fa4000 W+ C+ V+ (global)
0x1faa000 0x2000 0x1faa000 W- C+ V+ (global)
0x1fac000 0xa000 0x1fac000 W+ C+ V+ (global)
0x1fb6000 0x2000 0x1fb6000 W- C+ V+ (global)

7
Virtual Memory Interface

0x1fb8000 0x36000 0x1fb8000 W+ C+ V+ (global)
0x1fee000 0x2000 0x1fee000 W- C+ V+ (global)
0x1ff0000 0x2000 0x1ff0000 W+ C+ V+ (global)
0x1ff2000 0x2000 0x1ff2000 W- C+ V+ (global)
0x1ff4000 0x2000 0x1ff4000 W+ C+ V+ (global)
0x1ff6000 0x2000 0x1ff6000 W- C+ V+ (global)
0x1ff8000 0x2000 0x1ff8000 W+ C+ V+ (global)
0x1ffa000 0x2000 0x1ffa000 W- C+ V+ (global)
0x1ffc000 0x4000 0x1ffc000 W+ C+ V+ (global)
0x2000000 0x6000 0x1f96000 W+ C+ V+
0xff800000 0x400000 0xff800000 W- C- V+ (global)
0xffe00000 0x20000 0xffe00000 W+ C+ V+ (global)
0xfff00000 0xf0000 0xfff00000 W+ C- V+ (global)

7.5.6 Precautions

Memory that is marked as global cannot be remapped using vmMap(). To add to
global virtual memory, use vmGlobalMap(). For further information on adding
global virtual memory, see 7.5.2 Private Virtual Memory, p.295.

Performances of MMUs vary across architectures; in fact, some architectures may
cause the system to become non-deterministic. For additional information, see the

architecture-specific documentation for your hardware.

307

VxWorks 5.4
Programmer’s Guide

308

Configuration and Build

8.1 Introduction

The Tornado distribution includes a VxWorks system image for each target shipped.
The system image is a binary module that can be booted and run on a target system.
The system image consists of all desired system object modules linked together

into a single non-relocatable object module with no unresolved external references.

In most cases, you will find the supplied system image entirely adequate for initial
development. However, later in the cycle you may want to tailor its configuration
to reflect your application requirements.

In order to tailor the system image, you will need to understand the BSP structure
and the VxWorks initialization process. These topics are discussed in the following
sections:

8.2 The Board Support Package (BSP), p.310
8.3 VxWorks Initialization Timeline, p.313

In addition, this chapter describes in detail the manual cross-development
procedures used to create and run VxWorks systems and applications as well as
how to configure the system image by directly editing configuration files.

The following topics are included:
How to build, load, run, and unload VxWorks applications manually.
VxWorks configuration files and configuration options and parameters.
How to include manually generated configuration files in the project facility.

Some of the common alternative configurations of VxWorks.

309

VxWorks 5.4
Programmer’s Guide

* Rebuilding VxWorks system images, bootable applications, and ROM images
using manual methods.

A WARNING: Use of the project facility for configuring and building applications is
largely independent of the methods used prior to Tornado 2.0 (which included
manually editing the configuration file config.h). The project facility provides the
recommended and simpler means for configuration and build, although the
manual method may still be used as described in this chapter.

To avoid confusion and errors, the two methods should not be used together for
the same project. The one exception is for any configuration macro that is not
exposed through the project facility GUI (which may be the case, for example, for
some BSP driver parameters). In this case, a configuration file must be edited, and
the project facility will implement the change in the subsequent build.

Note that the project facility overrides any changes made to a macro in config.h
which is also exposed through the project facility. If you are using the project
facility, only edit macros in config.h which can not be configured through the
project facility.

VxWorks has been ported to numerous development and target systems, and can
support many different hardware configurations. Some of the cross-development
procedures discussed in this chapter depend somewhat on the specific system and
configuration you are running. The procedures in this chapter are presented in
generic form, and may differ slightly on your particular system.

For information specific to an architecture family, see the corresponding appendix
in this manual. Information specific to particular target boards is provided with
each BSP.

8.2 The Board Support Package (BSP)

The directory installDir/target/config/bspname contains the Board Support Package
(BSP), which consists of files for the particular hardware used to run VxWorks,
such as a VME board with serial lines, timers, and other devices. The files include:
Makefile, sysLib.c, sysSerial.c, sysALib.s, romlInit.s, bspname.h, and config.h.

Wind River Systems BSPs conform to a standard, introduced with BSP Version 1.1.
The standard is fully described in the Tornado BSP Developer’s Kit for VxWorks.

310

8
Configuration and Build

The System Library

The file sysLib.c provides the board-level interface on which VxWorks and
application code can be built in a hardware-independent manner. The functions
addressed in this file include:

= Initialization functions

— initialize the hardware to a known state
— identify the system
— initialize drivers, such as SCSI or custom drivers

* Memory/address space functions

— get the on-board memory size

- make on-board memory accessible to external bus (optional)

— map local and bus address spaces

- enable/disable cache memory

- set/get nonvolatile RAM (NVRAM)

— define the board’s memory map (optional)

- virtual-to-physical memory map declarations for processors with MMUs

* Bus interrupt functions

- enable/disable bus interrupt levels
— generate bus interrupts

= Clock/timer functions

— enable/disable timer interrupts
- set the periodic rate of the timer

* Mailbox/location monitor functions (optional)
- enable mailbox/location monitor interrupts

The sysLib library does not support every feature of every board: some boards
may have additional features, others may have fewer, others still may have the
same features with a different interface. For example, some boards provide some
sysLib functions by means of hardware switches, jumpers, or PALs, instead of by
software-controllable registers.

The configuration modules usrConfig.c and bootConfig.c in config/all are
responsible for invoking this library’s routines at the appropriate time. Device
drivers can use some of the memory mapping routines and bus functions.

311

VxWorks 5.4
Programmer’s Guide

Virtual Memory Mapping

For boards with MMU support, the data structure sysPhysMemDesc defines the
virtual-to-physical memory map. This table is typically defined in sysLib.c,
although some BSPs place it in a separate file, memDesc.c. It is declared as an array
of the data structure PHYS_MEM_DESC. No two entries in this descriptor can
overlap; each entry must be a unique memory space.

The sysPhysMemDesc array should reflect your system configuration, and you
may encounter a number of reasons for changing the MMU memory map, for
example: the need to change the size of local memory or the size of the VME master
access space, or because the address of the VME master access space has been
moved. For information on virtual memory mapping, as well as an example of
how to modify sysPhysMemDesc, see 7.3 Virtual Memory Configuration, p.290.

A CAUTION: A bus error can occur if you try to access memory that is not mapped.

The Serial Driver

The file sysSerial.c provides board-specific initialization for the on-board serial
ports. The actual serial I/O driver is in the installDir/target/src/drv/sio directory.
The library ttyDrv uses the serial I/O driver to provide terminal operations for
VxWorks.

BSP Initialization Modules

The following files initialize the BSP:
The file romInit.s contains assembly-level initialization routines.

The file sysALib.s contains initialization and system-specific assembly-level
routines.

BSP Documentation

The file target.nr in the installDir/target/config/bspname directory is the source of
the online reference entry for target-specific information. (For information on how
to view these reference entries, see Tornado Getting Started.) The target.nr file
describes the supported board variations, the relevant jumpering, and supported

312

8
Configuration and Build

devices. It also includes an ASCII representation of the board layout with an
indication of board jumpers (if applicable) and the location of the ROM sockets.

8.3 VxWorks Initialization Timeline

This section covers the initialization sequence for VxWorks in a typical
development configuration. The steps are described in sequence of execution. This
is not the only way VxWorks can be bootstrapped on a particular processor. There
are often more efficient or robust techniques unique to a particular processor or
hardware; consult your hardware’s documentation.

For final production, the sequence can be revisited to include diagnostics or to
remove some of the generic operations that are required for booting a development
environment, but that are unnecessary for production. This description can
provide only an approximate guide to the processor initialization sequence and
does not document every exception to this time-line.

The early steps of the initialization sequence are slightly different for ROM-based
versions of VxWorks; for information, see 8.6.3 Initialization Sequence for ROM-
Based VxWorks, p.349.

For a summary of the initialization time-line, see Table 8-1. The following sections
describe the initialization in detail by routine name. For clarity, the sequence is
divided into a number of main steps or function calls. The key routines are listed
in the headings and are described in chronological order.

The VxWorks Entry Point: sysInit()

The first step in starting a VxWorks system is to load a system image into main
memory. This usually occurs as a download from the development host, under the
control of the VxWorks boot ROM. Next, the boot ROM transfers control to the
VxWorks startup entry point, sysInit(). This entry point is configured by
RAM_LOW_ADRS in the makefile and in config.h. The VxWorks memory layout is
different for each architecture; for details, see the appendix that describes your
architecture.

The entry point, sysInit(), is in the system-dependent assembly language module,
sysALib.s. It locks out all interrupts, invalidates caches if applicable, and

313

VxWorks 5.4
Programmer’s Guide

initializes processor registers (including the C stack pointer) to default values. It
also disables tracing, clears all pending interrupts, and invokes usrInit(), a C
subroutine in the usrConfig.c module. For some targets, sysInit() also performs
some minimal system-dependent hardware initialization, enough to execute the
remaining initialization in usrInit(). The initial stack pointer, which is used only
by usrlnit(), is set to occupy an area below the system image but above the vector
table (if any).

The Initial Routine: usrInit()

The usrInit() routine (in usrConfig.c) saves information about the boot type,
handles all the initialization that must be performed before the kernel is actually
started, and then starts the kernel execution. It is the first C code to run in VxWorks.
It is invoked in supervisor mode with all hardware interrupts locked out.

Many VxWorks facilities cannot be invoked from this routine. Because there is no
task context as yet (no TCB and no task stack), facilities that require a task context
cannot be invoked. This includes any facility that can cause the caller to be
preempted, such as semaphores, or any facility that uses such facilities, such as
printf(). Instead, the usrInit() routine does only what is necessary to create an
initial task, usrRoot(). This task then completes the startup.

The initialization in usrInit() includes the following:

Cache Initialization

The code at the beginning of usrInit() initializes the caches, sets the mode of the
caches and puts the caches in a safe state. At the end of usrInit(), the instruction
and data caches are enabled by default.

Zeroing Out the System bss Segment

The C and C++ languages specify that all uninitialized variables must have initial
values of 0. These uninitialized variables are put together in a segment called bss.
This segment is not actually loaded during the bootstrap, because it is known to be
zeroed out. Because usrInit() is the first C code to execute, it clears the section of
memory containing bss as its very first action. While the VxWorks boot ROMs clear
all memory, VxWorks does not assume that the boot ROMs are used.

Initializing Interrupt Vectors

The exception vectors must be set up before enabling interrupts and starting the
kernel. First, intVecBaseSet() is called to establish the vector table base address.

314

8
Configuration and Build

NOTE: There are exceptions to this in some architectures; see the appendix that
describes your architecture for details.

After intVecBaseSet() is called, the routine excVecInit() initializes all exception
vectors to default handlers that safely trap and report exceptions caused by
program errors or unexpected hardware interrupts.

Initializing System Hardware to a Quiescent State

System hardware is initialized by calling the system-dependent routine

sysHwlInit(). This mainly consists of resetting and disabling hardware devices

that can cause interrupts after interrupts are enabled (when the kernel is started). n
This is important because the VxWorks ISRs (for I/O devices, system clocks, and

so on), are not connected to their interrupt vectors until the system initialization is
completed in the usrRoot() task. However, do not attempt to connect an interrupt

handler to an interrupt during the sysHwlInit() call, because the memory pool is

not yet initialized.

Initializing the Kernel

The usrlInit() routine ends with calls to two kernel initialization routines:

usrKernellnit() (defined in usrKernel.c)
calls the appropriate initialization routines for each of the specified
optional kernel facilities (see Table 8-1 for a list).

kernellnit() (part of kernelLib.c)
initiates the multitasking environment and never returns. It takes the
following parameters:

— The application to be spawned as the “root” task, typically usrRoot().
— The stack size.

— The start of usable memory; that is, the memory after the main text, data,
and bss of the VxWorks image. All memory after this area is added to the
system memory pool, which is managed by memPartLib. Allocation for
dynamic module loading, task control blocks, stacks, and so on, all come
out of this region. See Initializing the Memory Pool, p.316.

— The top of memory as indicated by sysMemTop(). If a contiguous block of
memory is to be preserved from normal memory allocation, pass
sysMemTop() less the reserved memory.

315

VxWorks 5.4
Programmer’s Guide

— The interrupt stack size. The interrupt stack corresponds to the largest
amount of stack space any interrupt-level routine uses, plus a safe margin
for the nesting of interrupts.

— The interrupt lock-out level. For architectures that have a level concept, it
is the maximum level. For architectures that do not have a level concept, it
is the mask to disable interrupts. See the appendix that describes your
architecture for details.

kernellnit() calls intLockLevelSet(), disables round-robin mode, and creates an
interrupt stack if supported by the architecture. It then creates a root stack and TCB
from the top of the memory pool, spawns the root task, usrRoot(), and terminates
the usrInit() thread of execution. At this time, interrupts are enabled; it is critical
that all interrupt sources are disabled and pending interrupts cleared.

Initializing the Memory Pool

VxWorks includes a memory allocation facility, in the module memPartLib, that
manages a pool of available memory. The malloc() routine allows callers to obtain
variable-size blocks of memory from the pool. Internally, VxWorks uses malloc()
for dynamic allocation of memory. In particular, many VxWorks facilities allocate
data structures during initialization. Therefore, the memory pool must be
initialized before any other VxWorks facilities are initialized.

Note that the Tornado target server manages a portion of target memory to
support downloading of object modules and other development functions.
VxWorks makes heavy use of malloc(), including allocation of space for loaded
modules, allocation of stacks for spawned tasks, and allocation of data structures
on initialization. You are also encouraged to use malloc() to allocate any memory
your application requires. Therefore, it is recommended that you assign to the
VxWorks memory pool all unused memory, unless you must reserve some fixed
absolute memory area for a particular application use.

The memory pool is initialized by kernellnit(). The parameters to kernellnit()
specify the start and end address of the initial memory pool. In the default
usrlnit() distributed with VxWorks, the pool is set to start immediately following
the end of the booted system, and to contain all the rest of available memory.

The extent of available memory is determined by sysMemTop(), which is a system-
dependent routine that determines the size of available memory. If your system
has other noncontiguous memory areas, you can make them available in the
general memory pool by later calling memAddToPool() in the usrRoot() task.

316

The Initial Task:

8
Configuration and Build

usrRoot()

When the multitasking kernel starts executing, all VxWorks multitasking facilities
are available. Control is transferred to the usrRoot() task and the initialization of
the system can be completed. For example, usrRoot() performs the following:

— initialization of the system clock

— initialization of the I/O system and drivers

- creation of the console devices

- setting of standard in and standard out

— installation of exception handling and logging

— initialization of the pipe driver

— initialization of standard I/0O

— creation of file system devices and installation of disk drivers
— initialization of floating-point support

— initialization of performance monitoring facilities

— initialization of the network

— initialization of optional facilities

— initialization of WindView (see the WindView User’s Guide)
— initialization of target agent

— execution of a user-supplied startup script

To review the complete initialization sequence within usrRoot(), see
installDir/target/config/all/ usrConfig.c.

Modify these initializations to suit your configuration. The meaning of each step
and the significance of the various parameters are explained in the following
sections.

Initialization of the System Clock

The first action in the usrRoot() task is to initialize the VxWorks clock. The system
clock interrupt vector is connected to the routine usrClock() (described in The
System Clock Routine: usrClock(), p.322) by calling sysClkConnect(). Then, the
system clock rate (usually 60Hz) is set by sysClkRateSet(). Most boards allow
clock rates as low as 30Hz (some even as low as 1Hz), and as high as several
thousand Hz. Hi%h clock rates (>1000Hz) are not desirable, because they can cause
system thrashing.

The timer drivers supplied by WRS include a call to sysHwlInit2() as part of the
sysClkConnect() routine. Wind River BSPs use sysHwlInit2() to perform further

. Thrashing occurs when clock interrupts are so frequent that the processor spends too much

time servicing the interrupts, and no application code can run.

317

VxWorks 5.4
Programmer’s Guide

board initialization that is not completed in sysHwInit(). For example, an
intConnect() of ISRs can take place here, because memory can be allocated now
that the system is multitasking.

Initialization of the I/O System

If INCLUDE_IO_SYSTEM is defined in configAlLh, the VxWorks I/O system is
initialized by calling the routine iosInit(). The arguments specify the maximum
number of drivers that can be subsequently installed, the maximum number of
files that can be open in the system simultaneously, and the desired name of the
“null” device that is included in the VxWorks I/O system. This null device is a “bit-
bucket” on output and always returns end-of-file for input.

The inclusion or exclusion of INCLUDE_IO_SYSTEM also affects whether the
console devices are created, and whether standard in, standard out, and standard
error are set; see the next two sections for more information.

Creation of the Console Devices

If the driver for the on-board serial ports is included (INCLUDE_TTY_DEV), it is
installed in the I/O system by calling the driver’s initialization routine, typically
ttyDro(). The actual devices are then created and named by calling the driver’s
device-creation routine, typically ttyDevCreate(). The arguments to this routine
includes the device name, a serial I/ O channel descriptor (from the BSP), and input
and output buffer sizes.

The macro NUM_TTY specifies the number of tty ports (default is 2),
CONSOLE_TTY specifies which port is the console (default is 0), and
CONSOLE_BAUD_RATE specifies the bps rate (default is 9600). These macros are
specified in configAlLh, but can be overridden in config.h for boards with a
nonstandard number of ports.

PCs can use an alternative console with keyboard input and VGA output; see your
PC workstation documentation for details.

Setting of Standard In, Standard Out, and Standard Error

The system-wide standard in, standard out, and standard error assignments are
established by opening the console device and calling ioGlobalStdSet(). These
assignments are used throughout VxWorks as the default devices for
communicating with the application developer. To make the console device an
interactive terminal, call ioctl() to set the device options to OPT_TERMINAL.

318

8
Configuration and Build

Installation of Exception Handling and Logging

Initialization of the VxWorks exception handling facilities (supplied by the module
excLib) and logging facilities (supplied by logLib) takes place early in the
execution of the root task. This facilitates detection of program errors in the root
task itself or in the initialization of the various facilities.

The exception handling facilities are initialized by calling excInit() when
INCLUDE_EXC_HANDLING and INCLUDE_EXC_TASK are defined. The excInit()
routine spawns the exception support task, excTask(). Following this
initialization, program errors causing hardware exceptions are safely trapped and
reported, and hardware interrupts to uninitialized vectors are reported and
dismissed. The VxWorks signal facility, used for task-specific exception handling,
is initialized by calling sigInit() when INCLUDE_SIGNALS is defined.

The logging facilities are initialized by calling logInit() when
INCLUDE_LOGGING is defined. The arguments specify the file descriptor of the
device to which logging messages are to be written, and the number of log message
buffers to allocate. The logging initialization also includes spawning the logging
task, logTask().

Initialization of the Pipe Driver

If named pipes are desired, define INCLUDE_PIPE in configAllLh so that pipeDrv()
is called automatically to initialize the pipe driver. Tasks can then use pipes to
communicate with each other through the standard I/O interface. Pipes must be
created with pipeDevCreate().

Initialization of Standard 1/O

VxWorks includes an optional standard I/O package when INCLUDE_STDIO is
defined.

Creation of File System Devices and Initialization of Device Drivers

Many VxWorks configurations include at least one disk device or RAM disk with
a dosFs, rt11Fs, or rawFs file system. First, a disk driver is installed by calling the
driver’s initialization routine. Next, the driver’s device-creation routine defines a
device. This call returns a pointer to a BLK_DEV structure that describes the device.

The new device can then be initialized and named by calling the file system’s
device-initialization routine—dosFsDevInit(), rt11FsDevInit(), or
rawFsDevInit()—when the respective constants INCLUDE_DOSFS,
INCLUDE_RT11FS, and INCLUDE_RAWFS are defined. (Before a device can be
initialized, the file system module must already be initialized with dosFsInit(),

319

VxWorks 5.4
Programmer’s Guide

rt11FsInit(), or rawFsInit().) The arguments to the file system device-
initialization routines depend on the particular file system, but typically include
the device name, a pointer to the BLK_DEYV structure created by the driver’s
device-creation routine, and possibly some file-system-specific configuration
parameters.

Initialization of Floating-Point Support

Support for floating-point I/O is initialized by calling the routine floatInit() when
INCLUDE_FLOATING_POINT is defined in configAlLh. Support for floating-point
coprocessors is initialized by calling mathHardInit() when INCLUDE_HW_FP is
defined. Support for software floating-point emulation is initialized by calling
mathSoftInit() when INCLUDE_SW_FP is defined. See the appropriate
architecture appendix for details on your processor’s floating-point support.

Inclusion of Performance Monitoring Tools

VxWorks has two built-in performance monitoring tools. A task activity summary
is provided by spyLib, and a subroutine execution timer is provided by timexLib.
These facilities are included by defining the macros INCLUDE_SPY and
INCLUDE_TIMEX, respectively, in configAlLh.

Initialization of the Network

Before the network can be used, it must be initialized with the routine
usrNetInit(), whichis called by usrRoot() when the constant INCLUDE_NET_INIT
is defined in one of the configuration header files. (The source for usrNetInit() is
in installDir/target/src/config/ustNetwork.c.) The routine usrNetInit() takes a
configuration string as an argument. This configuration string is usually the “boot
line” that is specified to the VxWorks boot ROMs to boot the system (see Tornado
Getting Started). Based on this string, usrNetInit() performs the following:

+ Initializes network subsystem by calling the routine netLibInit().
» Attaches and configures appropriate network drivers.
* Adds gateway routes.

= Initializes the remote file access driver netDrv, and adds a remote file access
device.

+ Initializes the remote login facilities.
+ Optionally initializes the Remote Procedure Calls (RPC) facility.
* Optionally initializes the Network File System (NFS) facility.

320

8
Configuration and Build

As noted previously, the inclusion of some of these network facilities is controlled
by definitions in configAlLh; see Table 8-6 for a list of these constants. The network
initialization steps are described in the VxWorks Network Programmer’s Guide.

Initialization of Optional Products and Other Facilities

Shared memory objects are provided with the optional product VxMP. Before
shared memory objects can be used, they must be initialized with the routine
usrSmObjInit() (in installDir/target/src/config/usrSmODbj.c), which is called from
usrRoot() if INCLUDE_SM_OB] is defined.

A CAUTION: The shared memory objects library requires information from fields in
the VxWorks boot line. The functions are contained in the usrNetwork.c file. If no
network services are included, usrNetwork.c is not included and the shared
memory initialization fails. The project facility calculates all dependencies but if
you are using manual configuration, either add INCLUDE_NETWORK to
configAllLh or extract the bootline cracking routines from usrNetwork.c and
include them elsewhere.

Basic MMU support is provided if INCLUDE_MMU_BASIC is defined. Text
protection, vector table protection, and a virtual memory interface are provided
with the optional product VxVM]I, if INCLUDE_MMU_FULL is defined. The MMU
is initialized by the routine usrMmulnit(), located in
installDir/target/src/config/usrMmulnit.c. If the macros
INCLUDE_PROTECT_TEXT and INCLUDE_PROTECT_VEC_TABLE are also
defined, text protection and vector table protection are initialized.

The GNU C++ compiler is shipped with Tornado. To initialize C++ support for the
GNU compiler, define either INCLUDE_CPLUS or INCLUDE_CPLUS_MIN. To
include one or more of the Wind Foundation Class libraries, define the appropriate
INCLUDE_CPLUS_library macros (listed in Table 8-6).2

Initialization of WindView

Kernel instrumentation is provided with the optional product WindView. It is
initialized in usrRoot() when INCLUDE_WINDVIEW is defined in configAlLh.
Other Wind View configuration constants control particular initialization steps; see
the WindView User’s Guide: Configuring WindView.

2. For information on using the GNU C++ compiler and the optional Wind Foundation
Classes, see 5. C++ Development and 8.4.2 Compiling Application Modules, p.329.

321

VxWorks 5.4
Programmer’s Guide

Initialization of the Target Agent

If INCLUDE_WDB is defined, wdbConfig() in installDir/target/src/config/ustWdb.c
is called. This routine initializes the agent’s communication interface, then starts
the agent. For information on configuring the agent and the agent’s initialization
sequence, see Tornado Getting Started.

Execution of a Startup Script

The usrRoot() routine executes a user-supplied startup script if the target-resident
shell is configured into VxWorks, INCLUDE_STARTUP_SCRIPT is defined, and the
script’s file name is specified at boot time with the startup script parameter (see

Tornado Getting Started). If the parameter is missing, no startup script is executed.

The System Clock Routine: usrClock()

Finally, the system clock ISR usrClock() is attached to the system clock timer
interrupt by the usrRoot() task described The Initial Task: usrRoot(), p.317. The
usrClock() routine calls the kernel clock tick routine tickAnnounce(), which
performs OS bookkeeping. You can add application-specific processing to this
routine.

Initialization Summary
Table 8-1 shows a summary of the entire VxWorks initialization sequence for
typical configurations. For a similar summary applicable to ROM-based VxWorks

systems, see Ouverall Initialization for ROM-Based VxWorks, p.350.

Table 8-1 VxWorks Run-time System Initialization Sequence

Routine Activity File

sysInit() (a) lock out interrupts sysALib.s
(b) invalidate caches, if any

(c) initialize system interrupt tables with default
stubs (1960 only)

(d) initialize system fault tables with default stubs
(1960 only)

322

8
Configuration and Build

Table 8-1 VxWorks Run-time System Initialization Sequence (Continued)

Routine

Activity File

(e) initialize processor registers to known default
values

(f) disable tracing
(g) clear all pending interrupts

(h) invoke usrInit() specifying boot type

usrlnit()

(a) zero bss (uninitialized data) usrConfig.c
(b) save bootType in sysStartType

(c) invoke excVeclnit() to initialize all system and
default interrupt vectors

(d) invoke sysHwlnit()
(e) invoke usrKernelInit()

(f) invoke kernellnit()

usrKernellnit()

The following routines are invoked if their usrKernel.c
configuration constants are defined.

(a) classLibInit()
(b) taskLibInit()
(c) taskHookInit()
(d) semBLibInit()
(e) semMLibInit()
(f) semCLibInit()
(g) semOLibInit()
(h) wdLibInit()

(i) msgQLibInit()
(j) gInit() for all system queues
(k) workQInit()

kernellnit()

Initialize and start the kernel. kernelLib.c

323

Table 8-1

VxWorks 5.4
Programmer’s Guide

VxWorks Run-time System Initialization Sequence (Continued)

Routine Activity File

(a) invoke intLockLevelSet()

(b) create root stack and TCB from top of memory
pool

(c) invoke taskInit() for usrRoot()
(d) invoke taskActivate() for usrRoot()

(e) usrRoot()

usrRoot() Initialize I/O system, install drivers, and create usrConfig.c
devices as specified in configAll.h and config.h.

(a) sysClkConnect()
(b) sysClkRateSet()
(c) iosInit()

(d) if INCLUDE_TTY_DEV and NUM_TTY)
ttyDro(),
then establish console port, STD_IN,
STD_OUT, STD_ERR

(e) initialize exception handling with excInit(),
logInit(), siglnit()

(f) initialize the pipe driver with pipeDro()

(g) stdiolnit()

(h) mathSoftInit() or mathHardInit()

(i) wdbConfig(): configure and initialize target agent

(j) run startup script if target-resident shell is
configured

324

8
Configuration and Build

8.4 Building, Loading, and Unloading Application Modules

In the Tornado development environment, application modules for the target
system are created and maintained on a separate development host. First, the
source code, generally in C or C++, is edited and compiled to produce a relocatable
object module. Application modules use VxWorks facilities by virtue of including
header files that define operating-system interfaces and data structures. The
resulting object modules can then be loaded and dynamically linked into a running
VxWorks system over the network.

The following sections describe in detail the procedures for carrying out cross-
development manually (without using the project facility).

8.4.1 Using VxWorks Header Files

Many application modules make use of VxWorks operating system facilities or
utility libraries. This usually requires that the source module refer to VxWorks
header files. The following sections discuss the use of VxWorks header files.

VxWorks header files supply ANSI C function prototype declarations for all global
VxWorks routines. The ANSI C prototypes are conditionally compiled; to use
them, the preprocessor constant __STDC__ must be defined. ANSI C compilers
define this constant by default. VxWorks provides all header files specified by the
ANSI X3.159-1989 standard.

VxWorks system header files are in the directory installDir/target/h and its
subdirectories.

NOTE: The notation $(WIND_BASE) is used in makefiles to refer to the Tornado
installation directory. This chapter uses that notation because makefiles are the
most convenient way to run the Tornado compilation tools. If you run the compiler
from the Windows command prompt, write %WIND_BASE% instead.

VxWorks Header File: vxWorks.h

The header file vxWorks.h contains many basic definitions and types that are used
extensively by other VxWorks modules. Many other VxWorks header files require
these definitions. Thus, this file must be included first by every application module
that uses VxWorks facilities. Include vxWorks.h with the following line:

#include "vxWorks.h"

325

VxWorks 5.4
Programmer’s Guide

Other VxWorks Header Files

Application modules can include other VxWorks header files as needed to access
VxWorks facilities. For example, an application module that uses the VxWorks
linked-list subroutine library must include the IstLib.h file with the following line:

#include "IstLib.h"

The manual entry for each library lists all header files necessary to use that library.

ANSI Header Files

All ANSI-specified header files are included in VxWorks. (UNIX)

This implies that many familiar UNIX header files are available under VxWorks as
well. There are two file names that differ from the usual UNIX names: a_out.h
(which corresponds to the UNIX a.out.h) and stdlib.h (which corresponds to the
UNIX malloc.h)

The -1 Compiler Flag

By default, the compiler searches for header files first in the directory of the source
module and then in directories that apply only to the development host. With the
GNU compiler, you can avoid these host-system include directories with the
compilation flag -nostdinc. To access the VxWorks header files, the compiler must
also be directed to search $(WIND_BASE)/target/h. Thus, the following option
flag is standard for VxWorks compilation:

-| $(WIND_BASE)/target/h

Some header files are located in subdirectories. To refer to header files in these
subdirectories, be sure to specify the subdirectory name in the include statement,
so that the files can be located with a single -I specifier. For example:

#include "vxWorks.h"
#include "sys/stat.h"

VxWorks Nested Header Files

Some VxWorks facilities make use of other, lower-level VxWorks facilities. For
example, the tty management facility uses the ring buffer subroutine library. The

326

8
Configuration and Build

tty header file tyLib.h uses definitions that are supplied by the ring buffer header
file rngLib.h.

It would be inconvenient to require you to be aware of such include-file
interdependencies and ordering. Instead, all VxWorks header files explicitly
include all prerequisite header files. Thus, tyLib.h itself contains an include of
rngLib.h. (The exception to this is the basic VxWorks header file vxWorks.h, which
all other header files assume is already included.)

This, in turn, might lead to a problem: a header file could get included more than
once, if one were included by several other header files, or if it were also included
directly by the application module. Normally, including a header file more than
once generates fatal compilation errors, because the C preprocessor regards
duplicate definitions as potential sources of conflict. To avoid this problem, all
VxWorks header files contain conditional compilation statements and definitions
that ensure that their text is included only once, no matter how many times they
are specified by include statements. Thus, an application module can include just
those header files it needs directly, without regard for interdependencies or
ordering, and no conflicts arise.

Internal Header Files

Table 8-2

Table 8-2lists the subdirectories of installDir/target/h used by VxWorks for internal
header files. These header files are, for the most part, not intended for applications.
The following subdirectories are exceptions, and are sometimes required by
application programs:

+ installDir/target/h/net, which is used by network drivers for specific network
controllers.

» installDir/target/h/rpc, which is used by applications using the remote
procedure call library.

+ installDir/target/h/sys, which is used by applications using standard POSIX
functions.

Include Subdirectories

Subdirectory Use

installDirltarget/h/arch Architecture-specific header files.
installDirltarget/h/arpa Fundamental Internet header file.
installDir/target/h/make Generic makefile information.

327

VxWorks 5.4
Programmer’s Guide

Table 8-2 Include Subdirectories

Subdirectory Use
installDir/target/h/drv Device-driver header files.
installDirltarget/h/net Network header files.

installDir/target/h/netinet Internet protocol header files.

installDir/target/h/private ~ VxWorks private header files.

installDir/target/h/rpc Remote Procedure Call (RPC) header files.
installDir/target/h/rw Header files for Tools.h++ from Rogue Wave (Optional).
installDirltarget/h/sys System header files specified by POSIX.

installDirltarget/h/types Data types used by the system.

installDir/target/h/wdb Target-agent declarations.

VxWorks Private Header Files

VxWorks modules are designed so that you never need to know or reference the
modules” internal data structures. In general, all legitimate access to a facility is
provided by a module’s subroutine interfaces. The internal details should be
thought of as “hidden” from application developers. This means that the internal
implementations can change without affecting your use of the corresponding
facilities.

Internal details in VxWorks are hidden using two conventions. Some header files
mark hidden code using the following comments:

/* HIDDEN */
/* END HIDDEN */

Internal details are also hidden with private header files: files that are stored in the
directory installDir/target/h/private. The naming conventions for these files
parallel those in installDir/target/h with the library name followed by P.h. For
example, the private header file for semLib is
installDir/target/h/private/semLibP.h.

328

8
Configuration and Build

CAUTION: Never make references to any of the hidden definitions, or base any
assumptions on those definitions. The only supported uses of a module’s facilities
are through the public definitions in the header file, and through the module’s
subroutine interfaces. Although this rule is not currently enforced in any way, it is
in your interest to observe it. Your adherence ensures that your application code is
not affected by internal changes in the implementation of a VxWorks module.

8.4.2 Compiling Application Modules

The GNU Tools

Tornado includes a full-featured C and C++ compiler and associated tools,
collectively called the GNU ToolKit. Extensive documentation for this set of tools is
printed in a separate manual: the GNU ToolKit User’s Guide. This section provides
some general orientation about the source of these tools, and describes how the
tools are integrated into the Tornado development environment.

GNU (“GNU’s Not UNIX!”) is a project of the Free Software Foundation started by
Richard Stallman and others to promote free software. To the FSF, free software is
software whose source code can be copied, modified, and redistributed without
restriction. GNU software is not in the public domain; it is protected by copyright
and subject to the terms of the GNU General Public License, a legal document
designed to ensure that the software remains free—for example, by prohibiting
proprietary modifications and concomitant restrictions on its use. The General
Public License can be found in the file COPYING that accompanies the source code
for the GNU tools, and in the section titled Free Software at the back of the GNU
ToolKit User’s Guide.

It is important to be aware that the terms under which the GNU tools are
distributed do not apply to the software you create with them. In fact, the General
Public License makes no requirements of you as a software developer at all, as long
as you do not modify or redistribute the tools themselves. On the other hand, it
gives you the right to do both of these things, provided you comply with its terms
and conditions. It also permits you to make unrestricted copies for your own use.

The Wind River GNU distribution consists of the GNU ToolKit, which contains
GNU tools modified and configured for use with your VxWorks target
architecture. The source code for these tools is included.

329

VxWorks 5.4
Programmer’s Guide

Cross-Development Commands

Table 8-3

The GNU cross-development tools in Tornado have names that clearly indicate the
target architecture. This allows you to install and use tools for more than one
architecture, and to avoid confusion with corresponding host native tools. A suffix
identifying the target architecture is appended to each tool name. For example, the
cross-compiler for the 68K processor family is called cc68k, and the assembler
as68k. The suffixes used are shown in Table 8-3. Note that the text in the GNU
ToolKit User’s Guide refers to these tools by their generic names (without a suffix).

Suffixes for Cross-Development Tools

Architecture Command Suffix
MC680x0 68k
SPARC/SPARClite sparc

1960)

x86 386

MIPS mips

PowerPC ppc

ARM arm

Simulators simso, hppa, simnt

* See C. Intel 1960.

Defining the CPU Type

Tornado can support multiple target architectures in a single development tree. To
accommodate this, several VxWorks header files contain conditional compilation
directives based on the definition of the variable CPU. When using these header
files, the variable CPU must be defined in one of the following places:

— the source modules
— the header files
— the compilation command line

To define CPU in the source modules or header files, add the following line:

#define CPU cputype

330

Table 8-4

8
Configuration and Build

To define CPU on the compilation command line, add the following flag:
-DCPU=cputype

The constants shown in Table 8-4 are supported values for cputype.

Values for cputype

Architecture Value
MC680x0 MC68000, MC68010, MC68020*, MC68040, MC68LC040+, MC68060,
CPU32

SPARC, SPARClite SPARC#

1960 1960CA, 1960KB, 1960KA, 1960JX

i386,1486, Pentium, 180386, 180486, PENTIUM

PentiumPro

MIPS R3000, R4000, R4650

PowerPC PPC403, PPC603, PPC604, PPC860

ARM ARM7TDMI, ARM7TDMI_T, ARMSA110, ARM710A, ARM810
Simulators SIMSPARCSOLARIS, SIMHPPA, SIMNT

* MC68020 is the appropriate value for both the MC68020 and the MC68030 CPUs.

t MC68LC040 is the appropriate value for both the MC68LC040 and the MC68EC040.
1 SPARC is the appropriate value for both SPARC and SPARClite CPUs.
*PENTIUM is the appropriate value for both Pentium and PentiumPro CPUs.

With makefiles, the CPU definition can be added to the definition of the flags
passed to the compiler (usually CFLAGS).

In the source code, the file vxWorks.h must be included before any other files with
dependencies on the CPU flag.

As well as specifying the CPU value, you must usually run the compiler with one
or more option flags to generate object code optimally for the particular
architecture variant. These option flags usually begin with -m; see Compiling C
Modules, p.332.

331

VxWorks 5.4
Programmer’s Guide

Compiling C Modules

Table 8-5

The following is an example command to compile an application module for a
VxWorks MC68020 system:

% cc68k -fno-builtin -1 %WIND_BASE%\target\h -nostdinc -O \
-c -DCPU=MC68020 applic.c

This compiles the module applic.c into an object file applic.o. Table 8-5 shows a
similar example compiler invocation for each CPU architecture family.

Compiler Invocation by Architecture Family

Architecture Example Invocation

MC680x0 cc68k -fno-builtin -1 $(WIND_BASE)/target/h -nostdinc -O -c\
-m68040 -DCPU=MC68040 applic.c

SPARC cesparc -fno-builtin -1 $(WIND_BASE)/target/h -nostdinc -O2 -c \
-DCPU=SPARC applic.c

SPARClite cesparc -fno-builtin -I $(WIND_BASE)/target/h -nostdinc -O2 -c \
-msparclite -DCPU=SPARC applic.c

1960 See your 1960 toolkit documentation and C. Intel i960.

i386/1486 cc386 -fno-builtin -1 $(WIND_BASE)/target/h -nostdinc -O -c \

-fno-defer-pop -mno-486 -DCPU=I80386 applic.c

MIPS cemips -fno-builtin -1 $(WIND_BASE)/target/h -nostdinc -O2 -c¢ \
-mcpu=r4000 -mips3 -G 0 -DCPU=R4000 applic.c

PowerPC ccppce -02 -mepu=603 -ISWIND_BASE/target/h -fno-builtin \
-fno-for-scope -nostdinc -DCPU=PPC603 -D_GNU_TOOL -c applic.c

ARM ccarm -DCPU=ARM7TDMI -mcpu=arm7tdmi -mno-sched-prolog \
-fno-builtin -O2 -nostdinc -1 SWIND_BASE/target/h -c applic.c

Simulator ccsimso -DCPU=SIMSPARCSOLARIS -ansi -nostdinc -g \
-fno-builtin -fvolatile -DRW_MULTI_THREAD -D_REENTRANT \
-02 -I. -I /wind/target/h -c applic.c

The following list gives summary descriptions of the compiler flags in Table 8-5.
For more information, see the GNU ToolKit User’s Guide, or the architecture
appendices.

-c Compile only; do not link for execution under the host. The output is an
unlinked object module with the suffix “.0”, in this case applic.o.

332

8
Configuration and Build

-DCPU=arch
Define the CPU type.

-DVX_IGNORE_GNU_LIBS
Define the constant used by the i960 configuration to suppress the use of
the GNU libraries (cc960 only).

-D_GNU_TOOL
Required; defines the compilation toolkit used to compile VxWorks or
applications (ccppc only).

-fno-builtin
Use library calls even for common library subroutines.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function
returns.

-fno-for-scope
Required; allows the scope of variables declared within a for loop to be
outside of the for loop.

-G 0 Do not use the MIPS global pointer (ccmips only).

-I $(WIND_BASE)/target/h
Include VxWorks header files (see 8.4.1 Using VxWorks Header Files, p.325).

-m68040
Generate code for a specific variant of the MC680x0 family.

-mcpu=
Generate MIPS R4200 or R4600 specific code (ccmips only).

-mips3
Issue instructions from level 3 of the MIPS instruction set (ccmips only).

-mno-486
Generate code optimized for an 1386 rather than for an 1486 (cc386 only).

-msparclite
Generate SPARClite-specific code (ccsparc only).

-nostdinc
Do not search host-system header files; search only the directories
specified with the -I flag and the current directory for header files.

-0 Perform standard optimizations.

-02 Use level 2 optimization.

333

VxWorks 5.4
Programmer’s Guide

Compiling C++ Modules

Tornado supports the GNU compiler, a standard part of the cross-compilation
tools distributed for Tornado, compiles source programs in either C or C++. To use
this compiler for C++, invoke ccarch on any source file with a C++ suffix (such as
.cpp). For complete information on using C++, including a detailed discussion of
compiling C++ modules, see 5. C++ Development.

Compiling C++ applications in the VxWorks environment involves the following
steps:

1. C++ source code is compiled into object code for a specific target architecture,
just as for C applications.

2. The compiled object module is munched. Munching is the process of scanning
an object module for non-local static objects, and generating data structures
that VxWorks run-time support can use to call the objects’ constructors and
destructors. The details are described in 5.2.5 Munching C++ Application
Modules, p.232.

8.4.3 Static Linking (Optional)

After you compile an application module, you can load it directly into the target
with the Tornado dynamic loader (through the shell or through the debugger).

In general, application modules do not need to be linked with the linker from the
GNU ToolKit, Idarch. However, using ldarch may be required when several
application modules cross-reference each other. The following example is a
command to link several application modules, using the GNU linker for the
MC680x0 family of processors.

C:\devt> 1d68k -0 applic.o -r applicl.o applic2.0 applic3.0

This creates the object module applic.o from the object modules applicl.o,
applic2.0, and applic3.0. The -r option is required, because the object-module
output must be left in relocatable form so that it can be downloaded and linked to
the target VxWorks image.

Any VxWorks facilities called by the application modules are reported by ldarch as
unresolved externals. These are resolved by the Tornado loader when the module
is loaded into VxWorks memory.

334

8
Configuration and Build

A WARNING: Do not link each application module with the VxWorks libraries.
Doing this defeats the load-time linking feature of Tornado, and wastes space by
writing multiple copies of VxWorks system modules on the target.

8.4.4 Downloading an Application Module

After application object modules are compiled (and possibly linked by the host

Idarch command), they can be dynamically loaded into a running VxWorks system

by invoking the Tornado module loader. You can do this either from the Tornado

shell using the built-in command Id(), or from the debugger using the Debug menu n
or the load command.

The following is a typical load command from the Tornado shell:
-> |d <applic.o

This relocates the code from the host file applic.o, linking to previously loaded
modules, and loads the object module into the target’s memory. Once an
application module is loaded into target memory, any subroutine in the module
can be invoked directly from the shell, spawned as a task, connected to an
interrupt, and so on.

The shell Id() command, by default, adds only global symbols to the symbol table.
During debugging, you may want local symbols as well. To get all symbols loaded
(including local symbols), you can use the GDB command load from the debugger.
Because this command is meant for debugging, it always loads all symbols.
Alternately, you can load all symbols by calling the shell command Id() with a full
argument list instead of the shell-redirection syntax shown above. When you use
an argument list, you can get all symbols loaded by specifying a 1 as the first
argument, as in the following example:

-> |d 1,0,"applic.0"

In the foregoing examples, the object module applic.o comes from the shell’s
current working directory. Normally, you can use either relative path names or
absolute path names to identify object modules to Id(). If you use a relative path
name, the shell converts it to an absolute path (using its current working directory)
before passing the download request to the target server. In order to avoid trouble
when the shell where you call Id() is not running on the same host as its target
server, Tornado supplies the LD_SEND_MODULES facility; see the Tornado User’s
Guide: Shell. If you are using a remote target server and Id() fails with a “no such
file” message, be sure that LD_SEND_MODULES is set to “on.”

335

VxWorks 5.4
Programmer’s Guide

A CAUTION: (Windows) If you call Id() with an explicit argument list, any backslash
characters in the module-name argument must be doubled. If you supply the
module name with the redirection symbol, as in the earlier example in this section,
no double backslashes are needed. See the Tornado User’s Guide: Shell for more
discussion of this issue.

For more information about loader arguments, see the discussion of 1d() (in the
reference entry for windsh).

For information about the target-resident version of the loader (which also
requires the target-resident symbol table), see the VxWorks reference entry for
loadLib.

8.4.5 Module IDs and Group Numbers

When a module is loaded, it is assigned a module ID and a group number. Both the
module ID and the group number are used to reference the module. The module
ID is returned by Id() as well as by the target-resident loader routines. When
symbols are added to the symbol table, the associated module is identified by the
group number (a small integer). (Due to limitations on the size of the symbol table,
the module ID is inappropriate for this purpose.) All symbols with the same group
number are from the same module. When a module is unloaded, the group
number is used to identify and remove all the module’s symbols from the symbol
table.

8.4.6 Unloading Modules

Whenever you load a particular object module more than once, using the target
server (from either the shell or the debugger), the older version is unloaded
automatically. You can also unload a module explicitly: both the Tornado shell and
the target-resident VxWorks libraries include an unloader. To remove a module
from the shell, use the shell routine unld(); see the reference entry for windsh.

For information about the target-resident version of the unloader (which also
requires the target-resident symbol table and loader), see the VxWorks reference
entry for unldLib.

After a module has been unloaded, any calls to routines in that module fail with
unpredictable results. Take care to avoid unloading any modules that are required
by other modules. One solution is to link interdependent files using the static

336

8
Configuration and Build

linker 1darch as described in 8.4.3 Static Linking (Optional), p.334, so that they can
only be loaded and unloaded as a unit.

8.5 Configuring VxWorks

The configuration of VxWorks is determined by the configuration header files
installDir/target/config/all/configAll.h and
installDir/target/config/bspnamel/config.h. These files are used by the usrConfig.c,
bootConfig.c, and bootInit.c modules as they run the initialization routines
distributed in the directory installDir/target/src/config to configure VxWorks.

The VxWorks distribution includes the configuration files for the default
development configuration. You can create your own versions of these files to
better suit your particular configurations; this is described in the following
subsections. In addition, if you need multiple configurations, environment
variables are provided so you can move easily between them.

NOTE: To rebuild VxWorks for your own configuration, follow the procedures
described in the Tornado User’s Guide: Projects (recommended) or see 8.7 Building a
VxWorks System Image, p.351.

Including optional components in your VxWorks image can significantly increase
the image size. If you receive a warning from vxsize when building VxWorks, or if
the size of your image becomes greater than that supported by the current setting
of RAM_HIGH_ADRS, be sure to see 8.6.1 Scaling Down VxWorks, p.344 and

8.9 Creating Bootable Applications, p.364 for information on how to resolve the
problem.

8.5.1 The Environment Variables

In a development environment, you may have several different configurations you
wish to test, or you may wish to specify different target code in different situations.
In order to build VxWorks to these different specifications, you need to modify
your environment.

In general, your Tornado environment consists of three parts: the host code
(Tornado), the target code, and the configuration files discussed in this section. If

337

VxWorks 5.4
Programmer’s Guide

you use the default environment, your UNIX environment variables are defined as

follows:

Host code: $WIND_BASE/host/hosttype/bin

Target code: TGT_DIR = $WIND_BASE/target

Configuration code: CONFIG_ALL = $TGT_DIR/config/all

On Windows hosts, the IDE automatically locates Tornado code in the following
locations:

Host code: installDir/host/hosttype/bin

Target code: installDir/target

Configuration code: installDir/target/config/all

To use different versions of usrConfig.c, bootConfig.c, and bootlnit.c, store them
in a different directory and change the value of CONFIG_ALL. To use different
target code, point to the alternate directory by changing the value of TGT_DIR.

You can change the value of CONFIG_ALL by changing it either in your makefile
or on the command line. The value of TGT_DIR must be changed on the command
line.

NOTE: Changing TGT_DIR will change the default value of CONFIG_ALL. If this
is not what you want, reset CONFIG_ALL as well.

To change CONFIG_ALL in your makefile, add the following command:
CONFIG_ALL = $WIND_BASE/target/config/ newDir

To change CONFIG_ALL on the command line, do the following:
%make ... CONFIG_ALL = $WIND_BASE/target/config/ newDir

To change TGT_DIR on the command line, do the following:

%make ... TGT_DIR=$% ALT_DIR/target

8.5.2 The Configuration Header Files
You can control VxWorks’s configuration by including or excluding definitions in

the global configuration header file configAll.h and in the target-specific
configuration header file config.h. This section describes these files.

338

8
Configuration and Build

The Global Configuration Header File: configAll.h

The configAllLh header file, in the directory installDir/target/config/all, contains
default definitions that apply to all targets, unless redefined in the target-specific
header file config.h. The following options and parameters are defined in
configAllLh:

— kernel configuration parameters

- 1/O system parameters

— NFS parameters

- selection of optional software modules

— selection of optional device controllers

— cache modes

- maximum number of the different shared memory objects

- device controller I/O addresses, interrupt vectors, and interrupt levels
— miscellaneous addresses and constants

The BSP-specific Configuration Header File: ~ config.h

There is also a BSP-specific header file, config.h, in the directory
installDir/target/config/bspname. This file contains definitions that apply only to the
specific target, and can also redefine default definitions in configAlLh that are
inappropriate for the particular target. For example, if a target cannot access a
device controller at the default I/O address defined in configAllh because of
addressing limitations, the address can be redefined in config.h.

The config.h header file includes definitions for the following parameters:

— default boot parameter string for boot ROMs

— interrupt vectors for system clock and parity errors

- device controller I/O addresses, interrupt vectors, and interrupt levels
— shared memory network parameters

— miscellaneous memory addresses and constants

A CAUTION: If any options from configAll.h need to be changed for this one BSP,
then any previous definition of that option should be undefined and redefined as
necessary in config.h. Unless options are to apply to all BSPs at your site, do not
change them in installDir/target/config/all/configAll.h.

339

VxWorks 5.4
Programmer’s Guide

Selection of Optional Features

Table 8-6

VxWorks ships with optional features and device drivers that can be included or
omitted from the target system. These are controlled by macros in the project
facility or the configuration header files that cause conditional compilation in the
installDir/target/config/all/usrConfig.c module.

The distributed versions of the configuration header files configAll.h and config.h
include all the available software options and several network device drivers. If
you are not using the project facility (see Tornado User’s Guide: Projects), you define
a macro by moving it from the EXCLUDED FACILITIES section of the header file
to the INCLUDED SOFTWARE FACILITIES section.? For example, to include the
ANSI C assert library, make sure the macro INCLUDE_ANSI_ASSERT is defined; to
include the Network File System (NFS) facility, make sure INCLUDE_NFS is
defined. Modification or exclusion of particular facilities is discussed in detail in
8.6 Alternative VxWorks Configurations, p.344.

Macros shown in Table 8-6 that end in XXX are not valid macros but represent
families of options where the XXX is replaced by a suffix declaring a specific
routine. For example, INCLUDE_CPLUS_XXX refers to a family of macros that
includes INCLUDE_CPLUS_MIN and INCLUDE_CPLUS_STL.

Key VxWorks Options

Macro Option

INCLUDE_ANSI_XXX * Various ANSI C library options
INCLUDE_BOOTLINE_INIT Parse boot device configuration information
INCLUDE_BOOTP * BOOTP support
INCLUDE_CACHE_SUPPORT * Cache support

INCLUDE_CPLUS * Bundled C++ support
INCLUDE_CPLUS_XXX Various C++ support options

. For a partial listing of the configuration macros, see Table 8-6. To see all the available macros

with their descriptions, see installDir/target/config/all/config All.h (for macros applicable to
all bsps) and installDir/target/config/bspname/config.h (for macros applicable to a specific
BSP).

340

Table 8-6

Key VxWorks Options (Continued)

8
Configuration and Build

Macro

Option

INCLUDE_DOSFS
INCLUDE_FLOATING_POINT
INCLUDE_FORMATTED_IO
INCLUDE_FTP_SERVER
INCLUDE_IO_SYSTEM
INCLUDE_LOADER
INCLUDE_LOGGING
INCLUDE_MEM_MGR_BASIC
INCLUDE_MEM_MGR_FULL
INCLUDE_MIB2_XXX
INCLUDE_MMU_BASIC
INCLUDE_MMU_FULL
INCLUDE_MSG_Q
INCLUDE_NETWORK
INCLUDE_NFS
INCLUDE_NFS_SERVER
INCLUDE_PIPES
INCLUDE_POSIX_XXX
INCLUDE_PROTECT_TEXT
INCLUDE_PROTECT_VEC_TABLE
INCLUDE_PROXY_CLIENT

INCLUDE_PROXY_SERVER

DOS-compatible file system

Floating-point I/O

Formatted I/O

FTP server support

I/0 system package

Target-resident object module loader package
Logging facility

Core partition memory manager
Full-featured memory manager

Various MIB-2 options

Bundled MMU support

Unbundled MMU support (requires VxVMI)
Message queue support

Network subsystem code

Network File System (NFS)

NFS server

Pipe driver

Various POSIX options

Text segment write protection (requires VxVMI)
Vector table write protection (requires VxVMI)
Proxy ARP client support

Proxy ARP server support

341

Table 8-6

VxWorks 5.4
Programmer’s Guide

Key VxWorks Options (Continued)

Macro

Option

INCLUDE_RAWFS
INCLUDE_RLOGIN
INCLUDE_SCSI
INCLUDE_SCSI2
INCLUDE_SECURITY
INCLUDE_SELECT

INCLUDE_SEM_BINARY

INCLUDE_SEM_COUNTING

INCLUDE_SEM_MUTEX
INCLUDE_SHELL
INCLUDE_XXX_SHOW
INCLUDE_SIGNALS
INCLUDE_SM_OB]J
INCLUDE_SNMPD
INCLUDE_SPY
INCLUDE_STDIO
INCLUDE_SW_FP
INCLUDE_SYM_TBL
INCLUDE_TASK_HOOKS
INCLUDE_TASK_VARS
INCLUDE_TELNET
INCLUDE_TFTP_CLIENT
INCLUDE_TFTP_SERVER

Raw file system

Remote login with rlogin

SCSI support

SCSI-2 extensions

Remote login security package
Remote login security package
Binary semaphore support

Counting semaphore support
Mutual exclusion semaphore support
C-expression interpreter (target shell)
Various system object show facilities

Software signal facilities

Shared memory object support (requires VxMP)

SNMP agent
Task activity monitor

Standard buffered I/O package

Software Floating point emulation package

Target-resident symbol table support
Kernel call-out support

Task variable support

Remote login with telnet

TFTP client support

TFTP server support

342

8
Configuration and Build

Table 8-6 Key VxWorks Options (Continued)

Macro Option

INCLUDE_TIMEX * Function execution timer

INCLUDE_TRIGGERING Function execution timer

INCLUDE_UNLOADER Target-resident object module unloader
package

INCLUDE_WATCHDOGS * Watchdog support

INCLUDE_WDB * Target agent

INCLUDE_WDB_TSFS * Target server file system

INCLUDE_WINDVIEW WindView command server; see the Wind View

User’s Guide for details

INCLUDE_ZBUF_SOCK Zbuf socket interface

* Items marked with an asterisk are included in the default configuration. Note that,
since this list of options is not complete, not all macros included in the default
configuration are listed here. Note also that their inclusion may be overridden in
config.h for your BSP.

8.5.3 The Configuration Module: usrConfig.c

Use VxWorks configuration header files to configure your VxWorks system to meet
your development requirements. Users should not resort to changing the WRS-
supplied usrConfig.c, or any other module in the directory
installDir/target/config/all. If an extreme situation requires such a change, we
recommend you copy all the files in installDir/target/config/all to another
directory, and add a CONFIG_ALL macro to your makefile to point the make
system to the location of the modified files. For example, add the following to your
makefile after the first group of include statements:

../myAll contains a copy of all the ../all files
CONFIG_ALL = ../myAll

343

VxWorks 5.4
Programmer’s Guide

8.6 Alternative VxWorks Configurations

The discussion of the usrConfig module in 8.5.3 The Configuration Module:
usrConfig.c, p.343 outlined the default configuration for a development
environment. In this configuration, the VxWorks system image contains all of the
VxWorks modules that are necessary to allow you to interact with the system
through the Tornado host tools.

However, as you approach a final production version of your application, you may
want to change the VxWorks configuration in one or more of the following ways:

Change the configuration of the target agent.
Decrease the size of VxWorks.
Run VxWorks from ROM.

The following sections discuss the latter two alternatives to the typical
development configuration. For a discussion on reconfiguring the target agent, see
the Tornado User’s Guide: Projects.

8.6.1 Scaling Down VxWorks

In a production configuration, it is often desirable to remove some of the VxWorks
facilities to reduce the memory requirements of the system, to reduce boot time, or
for security purposes.

Optional VxWorks facilities can be omitted by commenting out or using #undef to
undefine their corresponding control constants in the header files configAll.h or
config.h. For example, logging facilities can be omitted by undefining
INCLUDE_LOGGING, and signalling facilities can be omitted by undefining
INCLUDE_SIGNALS.

VxWorks is structured to make it easy to exclude facilities you do not need.
However, not every BSP will be structured in this way. If you wish to minimize
your application, be sure to examine your BSP code and eliminate references to
facilities you do not need to include. Otherwise, they will be included even though
you undefined them in your VxWorks configuration files.

Excluding Kernel Facilities
The definition of the following constants in configAllLh is optional, because

referencing any of the corresponding kernel facilities from the application
automatically includes the kernel service:

344

8
Configuration and Build

— INCLUDE_SEM_BINARY

— INCLUDE_SEM_MUTEX

— INCLUDE_SEM_COUNTING
— INCLUDE_MSG_Q

— INCLUDE_WATCHDOGS

These configuration constants appear in the default VxWorks configuration to
ensure that all kernel facilities are configured into the system, even if not
referenced by the application. However, if your goal is to achieve the smallest
possible system, exclude these constants; this ensures that the kernel does not
include facilities you are not actually using.

There are two other configuration constants that control optional kernel facilities:
INCLUDE_TASK_HOOKS and INCLUDE_CONSTANT_RDY_Q. Define these
constants in configAlLh if the application requires either kernel callouts (use of
task hook routines) or a constant-insertion-time, priority-based ready queue. A
ready queue with constant insert time allows the kernel to operate context
switches with a fixed overhead regardless of the number of tasks in the system.
Otherwise, the worst-case performance degrades linearly with the number of
ready tasks in the system. Note that the constant-insert-time ready queue uses 2KB
for the data structure; some systems do not have sufficient memory for this. In
those cases, the definition of INCLUDE_CONSTANT_RDY_Q may be omitted, thus
enabling use of a smaller (but less deterministic) ready queue mechanism.

Excluding Network Facilities

In some applications it may be appropriate to eliminate the VxWorks network
facilities. For example, in the ROM-based systems or standalone configurations
described in 8.9 Creating Bootable Applications, p.364, there may be no need for
network facilities.

To exclude the network facilities, be sure the following constants are not defined:

— INCLUDE_NETWORK

— INCLUDE_NET_INIT

— INCLUDE_NET_SYM_TBL
— INCLUDE_NFS

— INCLUDE_RPC

To exclude the Remote Procedure Call library (RPC), undefine INCLUDE_RPC.

345

VxWorks 5.4
Programmer’s Guide

Option Dependencies

Option dependencies are coded in the file
installDir/target/src/config/usrDepend.c, so that when a particular option is
chosen, everything required is included. This assures you of a working system
with minimum effort. Although you can exclude the features that you do not need
by undefining them in config.h and configAllLh, you should be aware that in some
cases they may not be excluded because of dependencies.

For example, you cannot use telnet without running the network. Therefore, if in
your configAlLh file, the option INCLUDE_TELNET is selected but the option
INCLUDE_NET_INIT is not, usrDepend.c defines INCLUDE_NET_INIT for you.
Because the network initialization requires the network software, the
userDepend.c file also defines INCLUDE_NETWORK.

Because most of the dependencies are taken care of in usrDepend.c, that file is
currently included in usrConfig.c. This simplifies the build process and the
selection of options. However, you can change or add dependencies if you choose.

8.6.2 Executing VxWorks from ROM

You can put VxWorks or a VxWorks-based application into ROM,; this is discussed
in 8.9.2 Creating a VxWorks System in ROM, p.367. For an example of a ROM-based
VxWorks application, see the VxWorks boot ROM program. The file
installDir/target/config/all/bootConfig.c is the configuration module for the boot
ROM, replacing the file usrConfig.c provided for the default VxWorks
development system.

In such ROM configurations, the text and data segments of the boot or VxWorks
image are first copied into the system RAM, then the boot procedure or VxWorks
executes in RAM. On some systems where memory is a scarce resource, it is
possible to save space by copying only the data segment to RAM. The text segment
remains in ROM and executes from that address space, and thus is termed

ROM resident. The memory that was to be occupied by the text segment in RAM is
now available for an application (up to 300KB for a standalone VxWorks system).
Note that ROM-resident VxWorks is not supported on all boards; see your target’s
man page if you are not sure that your board supports this configuration.

The drawback of a ROM-resident text segment is the limited data widths and
lower memory access time of the EPROM, which causes ROM-resident text to
execute more slowly than if it was in RAM. This can sometimes be alleviated by
using faster EPROM devices or by reconfiguring the standalone system to exclude
unnecessary system features.

346

Table 8-7

8
Configuration and Build

Aside from program text not being copied to RAM, the ROM-resident versions of
the VxWorks boot ROMs and the standalone VxWorks system are identical to the
conventional versions. A ROM-resident image is built with an uncompressed
version of either the boot ROM or standalone VxWorks system image. VxWorks
target makefiles include entries for building these images; see Table 8-7.

Makefile ROM-Resident Images

Architecture Image Flle Description
MIPSand bootrom_res_high ROM-resident boot ROM image. The
PowerPC data segment is copied from ROM to

RAM at address RAM_HIGH_ADRS.

vxWorks.res_rom_res_low ROM-resident standalone system image
without compression. The data segment
is copied from ROM to RAM at address
RAM_LOW_ADRS.

vxWorks.res_rom_nosym_res_low ROM-residentstandalone systemimage
without compression or symbol table.
Data segment is copied from ROM to
RAM at address RAM_LOW_ADRS.

All Other bootrom_res ROM-resident boot ROM image.
Targets

vxWorks.res_rom ROM-resident standalone system image
without compression.

vxWorks.res_rom_nosym ROM-resident system image without
compression or symbol table. Ideal for
the Tornado environment.

* All images have a corresponding file in Motorola S-record or Intel Hex format with
the same file name plus the extension .hex.

Because of the size of the system image, 512KB of EPROM is recommended for the
ROM-resident version of the standalone VxWorks system. More space is probably
required if applications are linked with the standalone VxWorks system. For a
ROM-resident version of the boot ROM, 256KB of EPROM is recommended. If you
use ROMs of a size other than the default, modify the value of ROM_SIZE in the
target makefile and config.h.

A new make target, vxWorks.res_rom_nosym, has been created to provide a
ROM-resident image without the symbol table. This is intended to be a standard

347

VxWorks 5.4

Programmer’s Guide

Figure 8-1 ROM-Resident Memory Layout

BOOT IMAGE

RAM

data

bss

ROM

text

data

348

LOCAL_MEM_LOCAL_ADRS

RAM_HIGH_ADRS

ROM_TEXT_ADRS

[] =copied to RAM

VXWORKS IMAGE

RAM

data

bss

ROM

text

data

LOCAL_MEM_LOCAL_ADRS

RAM_LOW_ADRS

ROM_TEXT_ADRS

8
Configuration and Build

ROM image for use with the Tornado environment where the symbol table resides
on the host system. Being ROM-resident, the debug agent and VxWorks are ready
almost immediately after power-up or restart.

The data segment of a ROM-resident standalone VxWorks system is loaded at
RAM_LOW_ADRS (defined in the makefile) to minimize fragmentation. The data

segment of ROM-resident boot ROMs is loaded at RAM_HIGH_ADRS, so that

loading VxWorks does not overwrite the resident boot ROMs. For a CPU board

with limited memory (under 1MB of RAM), make sure that RAM_HIGH_ADRS is

less than LOCAL_MEM_SIZE by a margin sufficient to accommodate the data

segment. Note that RAM_HIGH_ADRS is defined in both the makefile and

config.h. These definitions must agree. n

Figure 8-1 shows the memory layout for ROM-resident boot and VxWorks images.
The lower portion of the diagram shows the layout for ROM; the upper portion
shows the layout for RAM. LOCAL_MEM_LOCAL_ADRS is the starting address of
RAM. For the boot image, the data segment gets copied into RAM above
RAM_HIGH_ADRS (after space for bss is reserved). For the VxWorks image, the
data segment gets copied into RAM above RAM_LOW_ADRS (after space for bss is
reserved). Note that for both images the text segment remains in ROM.

8.6.3 Initialization Sequence for ROM-Based VxWorks

The early steps of system initialization are somewhat different for the ROM-based
versions of VxWorks: on most target architectures, the two routines romlInit() and
romStart() execute instead of the usual VxWorks entry point, sysInit().

ROM Entry Point: romlInit()

At power-up the processor begins executing at romlInit() (defined in
installDir/target/config/bspname/romlInit.s). The romInit() routine disables
interrupts, puts the boot type (cold /warm) on the stack, performs hardware-
dependent initialization (such as clearing caches or enabling DRAM), and
branches to romStart(). The stack pointer is initialized to reside below the data
section in the case of ROM-resident versions of VxWorks (in RAM versions, the
stack pointer instead resides below the text section).

Copying the VxWorks Image: romStart()

Next, the romStart() routine (in installDir/target/config/all/bootInit.c) loads the
VxWorks system image into RAM. If the ROM-resident version of VxWorks is
selected, the data segment is copied from ROM to RAM and memory is cleared. If
VxWorks is not ROM resident, all of the text and code segment is copied and

349

VxWorks 5.4
Programmer’s Guide

decompressed from ROM to RAM, to the location defined by RAM_HIGH_ADRS
in Makefile. If VxWorks is neither ROM resident nor compressed, the entire text
and data segment is copied without decompression straight to RAM, to the
location defined by RAM_LOW_ADRS in Makefile.

Overall Initialization for ROM-Based VxWorks

Beyond romStart(), the initialization sequence for ROM-based VxWorks
resembles the normal sequence, continuing with the usrInit() call.

Table 8-8 summarizes the complete initialization sequence. For details on the steps
after romInit() and romStart(), see 8.3 VxWorks Initialization Timeline, p.313.

Table 8-8 ROM-Based VxWorks Initialization Sequence

Routine Activity File

1. romInit() (a) disable interrupts romlnit.s
(b) save boot type (cold /warm)
(c) hardware-dependent initialization
(d) branch to romStart()

2. romStart() (a) copy data segment from ROM to RAM; clear bootInit.c
memory

(b) copy code segment from ROM to RAM,
decompressing if necessary

(c) invoke usrInit() with boot type
3. usrlnit() Initial routine. usrConfig.c

4. usrKernellnit() Routines invoked if the corresponding usrKernel.c
configuration constants are defined.

5. kernellnit() Initialize and start the kernel. kernelLib.c

6. usrRoot() Initialize I/O system, install drivers, and create usrConfig.c
devices as configured in configAllL.h and config.h.

Application routine Application code. Application
source file

350

8
Configuration and Build

8.7 Building a VxWorks System Image

You can redefine the VxWorks configuration in two ways: interactively, as
described in this manual in the Tornado User’s Guide: Projects, or by editing
VxWorks configuration files as described in 8.5 Configuring VxWorks, p.337. In
either case, after you alter the configuration, VxWorks must be rebuilt to
incorporate the changes. This includes recompiling certain modules and re-linking
the system image. This section explains the procedures for rebuilding the VxWorks
system image using manual techniques.

8.7.1 Available VxWorks Images

There are three types of VxWorks images.

Boot ROM images

Downloaded VxWorks images

ROMmed VxWorks images
Boot ROM images come in 3 flavors: compressed, uncompressed, and ROM-
resident.

bootrom normal compressed boot ROM

bootrom_uncmp uncompressed boot ROM

bootrom_res ROM-resident boot ROM

Downloaded VxWorks images come in two basic varieties, Tornado and
standalone. (Here “Tornado” is a Vxworks image that uses the host-based tools

and symbol table.)
vxWorks basic Tornado uses host shell and symbol table
vxWorks.st standalone image has target shell and symbol table
ROMmed VxWorks images:
vxWorks_rom Tornado in ROM (uncompressed)
vxWorks.st_rom vxWorks.st in ROM (compressed)
vxWorks.res_rom vxWorks.st ROM-resident

vxWorks.res_rom_nosym Tornado, ROM-resident

Note that there are variations in available targets for the x86 architecture. See
D. Intel x86 for details.

351

VxWorks 5.4
Programmer’s Guide

8.7.2 Rebuilding VxWorks with make

VxWorks uses the GNU make facility to recompile and relink modules. A file
called Makefile in each VxWorks target directory contains the directives for
rebuilding VxWorks for that target. See GNU ToolKit User’s Guide: GNU Make for a
detailed description of GNU make and of how to write makefiles.

Making on UNIX Hosts

With a UNIX host, you can use either the GNU version of make included with
Tornado or the version included with your UNIX system. If you choose that
version, see your host system’s reference for make for information about the
version of make supplied in that system.

To rebuild VxWorks on a UNIX host, first change to the VxWorks target directory
for the desired target, and invoke make as follows:

% cd ${WIND_BASE}/target/config/ bspname
% make

Making on Windows Hosts

If you choose to use manual techniques on Windows hosts, you must use the
command line for building individual application modules. You can use either the
command line or the project facility in Tornado 1.0.1 compatibility mode to rebuild
BSPs. For information on how to implement Tornado 1.0.1 compatibility mode, see
the Tornado User’s Guide: Customization.

Rebuilding BSP Components

The Project menu includes entries for rebuilding every BSP installed on your
system as a part of Tornado. These entries all have the form Make bspname.
Figure 8-2 illustrates the Project menu in a Tornado system that has a family of
i386/i486 BSPs installed.

When you select any Make bspname menu entry, the make targets available are
grouped into the following categories (also illustrated in Figure 8-2):

Common Targets
The BSP make targets needed most often. Two of them also appear in the
next two categories: vxWorks, the VxWorks system image, and
bootrom.hex, the simplest form of the boot-program object code.

352

Figure 8-2

8
Configuration and Build

Rebuilding VxWorks from the Project Menu

¥ Tomado - Project Workspace: Projectl

Fie Edt View Project BN} Debug Tooks window Help

][Gog Buid E |ccll]]|
% Rebuild Al 2] EI EI il ﬂl
I wrzimE@ontario LCampile

Dependencies...
Stop Build

LCommon Targets ¥
Mawforks Targets
Boot ROM Targets ¥

[+ ot s

The standard make target clean (which erases all objects that can be built
by the BSP makefile) is also in this category.

VxWorks Targets
Alternate forms of the VxWorks run-time image, as described in
8.7 Building a VxWorks System Image, p.351 and 8.9 Creating Bootable
Applications, p.364.

Boot ROM Targets
Alternate forms of the VxWorks boot program, discussed in
8.6.2 Executing VxWorks from ROM, p.346.

When you click any of the targets from the categories above, Tornado builds the
corresponding object in the BSP directory. Output from the build goes to a Build
Output window, which you can use as a diagnostic aid.

Rebuilding VxWorks

To rebuild VxWorks, click the vxWorks target name under the appropriate Make
bspname entry for your target in the Project menu. For example, Figure 8-2 shows
the vxWorks target selected for the EPC4 BSP.

You can also rebuild VxWorks from the Windows command prompt (or from a
batch file). Change to the config directory for the desired target, and invoke make
as follows:

C:\> cd tornado\target\config\ bspname
C:\tornado\target\config\ bspname> make

In either case, make compiles and links modules as necessary, based on the
directives in the target directory’s Makefile.

353

VxWorks 5.4
Programmer’s Guide

NOTE: For the sake of compactness, most examples of calling make in this chapter
use the command line; in real practice, the Project menu is usually more
convenient. This is true for Windows hosts even if you use the Tornado 1.0.1
methods described in this section.

To rebuild VxWorks when only header files change:
% make clean VxWorks
This regenerate all .o files required by VxWorks. Or:

% make clean
% make

The "make clean" removes all existing .o files, and then "make" recreates the new
.0 files required by VxWorks.

8.7.3 Including Customized VxWorks Code

The directory installDir/target/target/src/usr contains the source code for certain
portions of VxWorks that you may wish to customize. For example, usrLib.c is a
popular place to add target-resident routines that provide application-specific
development aids. For a summary of other files in this directory, see the Tornado
User’s Guide: Directories and Files.

If you modify one of these files, an extra step is necessary before rebuilding your
VxWorks image: you must replace the modified object code in the appropriate
VxWorks archive. The Makefile in installDir/target/target/src/usr automates the
details; however, because this directory is not specific to a single architecture, you
must specify the value of the CPU variable on the make command line:

% make CPU=cputype

If you do this frequently on a Windows host, you can record the CPU definition in
the Build Target field of a custom command in the Project menu; see Tornado User’s
Guide: Customization.

This step recompiles all modified files in the directory, and replaces the
corresponding object code in the appropriate architecture-dependent directory.
After that, the next time you rebuild VxWorks, the resulting system image includes
your modified code.

The following example illustrates replacing usrLib with a modified version,
rebuilding the archives, and then rebuilding the VxWorks system image. For the

354

8
Configuration and Build

sake of conciseness, the make output is not shown. The example assumes the epc4
(180386) BSP; replace the BSP directory name and CPU value as appropriate for
your environment. (On a Windows host, use copy instead of the UNIX cp.)

% cd ${WIND_BASE}/target/src/usr
% cp usrLib.c usrLib.c.orig

% cp develDirlusrLib.c usrLib.c

% make CPU=I80386

% cd ${WIND_BASE}/target/config/epc4
% make

8.7.4 Linking the System Modules

The commands to link a VxWorks system image are somewhat complicated.
Fortunately, it is not necessary to understand those commands in detail because
the Makefile in each VxWorks target directory includes the necessary commands.
However, for completeness, this section gives an explanation of the flags and
parameters used to link VxWorks.

VxWorks operating system modules are distributed in the form of an archive
library for each target architecture. The library is
installDir/target/lib/libcpugnuvx.a.

These modules are combined with the configuration module usrConfig.o by the
1darch command on the host. (usrConfig.c is described in 8.5.3 The Configuration
Module: usrConfig.c, p.343.) The following is an example command for linking a

VxWorks system using the GNU linker for the MC680x0:

1d68k -0 vxWorks -X -N -Ttext 1000 -e _syslnit sysALib.o sysLib.o \
usrConfig.o version.o /tornado/target/lib/lib cpugnuvx.a

The meanings of the flags in this command are as follows:

-0 vxWorks
name the output object module vxWorks.

-X eliminate some compiler-generated symbols from the symbol table.
-N do not configure the output object module for a virtual-memory system.
-Ttext 1000

specify the relocation address as a hexadecimal constant; in this example,
1000 hexadecimal. This is the address where the system must be loaded in

355

VxWorks 5.4
Programmer’s Guide

the target, and is also the address where execution starts. Some target
systems have limitations on where this relocation address can be.

-e _sysInit
define the entry point to vxWorks. sysInit() is the first routine in
sysALib.o, which is the first module loaded by ldarch.

sysALib.o and sysLib.o
modules that contain CPU-dependent initialization and support routines.
The module sysALib.o must be the first module specified in the 1darch
command.

usrConfig.o
the configuration module (described in detail in 8.5.3 The Configuration
Module: usrConfig.c, p.343). If you have several different system
configurations, you may maintain several different configuration
modules, either in installDir/target or in your own directory.

version.o
a module that defines the creation date and version number of this
vxWorks object module. It is created by compiling the output of
makeVersion, an auxiliary tool in the installDir/host/host-os/bin directory.

installDir/target/lib/libcpugnuvx.a
the archive library that contains all the VxWorks modules.

Additional object modules:
You can link additional object modules (with .o suffix) into the run-time
VxWorks system by naming them on the 1darch command line. An easy
way to do this is to use the variable MACH_EXTRA in the BSP makefiles.
Define this variable and list the object modules to be linked with VxWorks.
Note that during development, application object modules are generally
not linked with the system (unless they are needed by the usrConfig
module), because it is more convenient to load them incrementally from
the host, after booting VxWorks. See 8.9 Creating Bootable Applications,
p-364 for more detail on linking application modules in a bootable system.

1960 systems require additional Intel libraries, which are listed in the
makefiles for i960 BSPs.

8.7.5 Creating the System Symbol Table Module

The Tornado target server uses the VxWorks symbol table on the host system, both
for dynamic linking and for symbolic debugging. The symbol table file is created

356

8
Configuration and Build

by the supplied tool xsym. Processing an object module with xsym creates a new
object module that contains all the symbols of the original file, but with no code or
data. The line in Makefile that creates this file executes the command as follows:

xsym < vxWorks > vxWorks.sym

The file vxWorks.sym is the symbol table that the target server loads when it
begins executing.

8.8 Makefiles for BSPs and Applications

Example 8-1

Makefiles for VxWorks applications are easy to create by exploiting the makefiles
and make include files shipped with VxWorks BSPs. This section discusses how
the VxWorks BSP makefiles are structured. An example of how to utilize this
structure for application makefiles is in 8.8.2 Using Makefile Include Files for
Application Modules, p.363.

In Tornado, a set of supporting files in installDir/target/h/make makes it possible
for each BSP or application Makefile to be terse, specifying only the essential
parameters that are unique to the object being built.

Example 8-1 shows the makefile from the installDir/target/config/imv147 directory;
the makefile for any other BSP is similar. Two variables are defined at the start of
the makefile: CPU, to specify the target architecture, and TOOL to identify what
compilation tools to use. Based on the values of these variables and on the
environment variables defined as part of your Tornado configuration, the makefile
selects the appropriate set of definitions from installDir/target/h/make. After the
standard definitions, several variables define properties specific to this BSP.
Finally, the standard rules for building a BSP on your host are included.

Makefile for MVME147

Makefile - makefile for target/config/mv147

#

Copyright 1984-1995 Wind River Systems, Inc.
#

DESCRIPTION
This file contains rules for building VxWorks for the

Motorola MVME147.
#*/
CPU =MC68020

357

VxWorks 5.4
Programmer’s Guide

TOOL =gnu

include $(WIND_BASE)/target/h/make/defs.bsp

include $(WIND_BASE)/target/h/make/make.(CPU)(TOOL)
include $(WIND_BASE)/target/h/make/defs.$(WIND_HOST_TYPE)
Only redefine make definitions below this point, or your definitions
will be overwritten by the makefile stubs above.

TARGET_DIR =mv147

VENDOR = Motorola
BOARD = MVME147, MVME147S-1
#

The constants ROM_TEXT_ADRS, ROM_SIZE, and RAM_HIGH_ADRS are
defined in config.h as well as in this Makefile.

Both definitions of these constants must be identical.

#

ROM_TEXT_ADRS = ff800008 # ROM entry address
ROM_SIZE = 00020000 # number of bytes of ROM space

RAM_LOW_ADRS =00001000 # RAM text/data address
RAM_HIGH_ADRS =00090000 # RAM text/data address

HEX_FLAGS =-v-p $(ROM_TEXT_ADRS)-a 8
MACH_EXTRA =

Only redefine make definitions above this point, or the expansion of
makefile target dependencies may be incorrect.

include $(WIND_BASE)/target/h/make/rules.bsp
include $(WIND_BASE)/target/h/make/rules.$(WIND_HOST_TYPE)

There are two kinds of include files in installDir/target/h/make (as reflected by the
two blocks of include statements in Example 8-1): variable definitions, and rule
definitions. Just as for #include statements in the C preprocessor, include
statements in makefiles accept the slash (/) character between directory segments
of a file name. This feature of GNU make helps to write portable makefiles.

The following make include files define variables. These files are useful for
application-module makefiles, as well as for BSP makefiles.

defs.bsp
Standard variable definitions for a VxWorks run-time system.

make.(CPU)(TOOL)
Files named using this pattern (such as make.MC68060gnu) provide
definitions for a particular target architecture and a particular set of

358

8
Configuration and Build

compilation tools, such as architecture-specific tool names and option
flags.

defs.$(WIND_HOST_TYPE)
Files named using this pattern (such as make.x86-win32) provide
definitions that depend on the host system: names of tools that are
independent of the target architecture, and pathnames for the Tornado
installation on your host.

The following include files define make targets, and the rules to build them. These
files are usually not required for building application modules in separate
directories, because most of the rules they define are specific to the VxWorks run-
time system and boot programs.

rules.bsp
Rules defining all the standard targets for building a VxWorks run-time
system (described in 8.7 Building a VxWorks System Image, p.351 and
8.9 Creating Bootable Applications, p.364). The rules for building object code
from C, C++, or assembly language are also spelled out here.

rules.$(WIND_HOST_TYPE)
Files named using this pattern (such as make.x86-win32) specify targets
that depend only on the host system (dependency lists).

8.8.1 Make Variables

The variables defined in the make include files provide convenient defaults for
most situations, and allow individual makefiles to specify only the definitions that
are unique to each. This section describes the make variables most often used to
specify properties of BSPs or applications. The following lists are not intended to
be comprehensive; see the make include files for the complete set.

NOTE: Certain make variables are intended specifically for customization; see
Variables for Customizing the Run-Time, p.362. Do not override other variables in
BSP makefiles. They are described in the following sections for expository
purposes.

Variables for Compilation Options

The variables grouped in this section are useful for either BSP makefiles or
application-module makefiles. They specify aspects of how to invoke the compiler.

359

VxWorks 5.4
Programmer’s Guide

CFLAGS
The complete set of option flags for any invocation of the C compiler. This
variable gathers the options specified in CC_COMPILER, CC_WARNINGS,
CC_OPTIM, CC_INCLUDE, CC_DEFINES, and ADDED_CFLAGS. To add
your own option flags, define them as ADDED_CFLAGS.

C++FLAGS
The complete set of option flags for any invocation of the C++ compiler.
This variable gathers together the options specified in C++_COMPILER,
C++_WARNINGS, CC_OPTIM, CC_INCLUDE, CC_DEFINES, and
ADDED_C++FLAGS. To add your own option flags, use
ADDED_C++FLAGS.

CC_COMPILER
Option flags specific to compiling the C language. Default: -ansi
-nostdinc.

C++_COMPILER
Option flags specific to compiling the C++ language. Default: -ansi
-nostdinc.

CC_WARNINGS
Option flags to select the level of warning messages from the compiler,
when compiling C programs. Two predefined sets of warnings are
available: CC_LWARNINGS_ALL (the compiler’s most comprehensive
collection of warnings) and CC_WARNINGS_NONE (no warning flags).
Default: CC_WARNINGS_ALL.

C++_WARNINGS
Option flags to select the level of warning messages from the compiler,
when compiling C++ programs. The same two sets of flags are available as
for C programs. Default: CC_WARNINGS_NONE.

CC_OPTIM
Optimization flags. Three sets of flags are predefined for each architecture:
CC_OPTIM_DRIVER (optimization level appropriate to a device driver),
CC_OPTIM_TARGET (optimization level for BSPs), and
CC_OPTIM_NORMAL (optimization level for application modules).
Default: CC_OPTIM_TARGET.

CC_INCLUDE
Standard set of header-file directories. To add application-specific header-
file paths, specify them in EXTRA_INCLUDE.

360

8
Configuration and Build

CC_DEFINES
Definitions of preprocessor constants. This variable is predefined to
propagate the makefile variable CPU to the preprocessor, to include any
constants required for particular target architectures, and to include the
value of the makefile variable EXTRA_DEFINE. To add application-specific
constants, specify them in EXTRA_DEFINE.

Variables for BSP Parameters

The variables included in this section specify properties of a particular BSP, and are
thus recorded in each BSP makefile. They are not normally used in application-
module makefiles.

TARGET_DIR
Name of the BSP (used for dependency lists and name of documentation
reference entry). The value matches the bspname directory name.

ROM_TEXT_ADRS
Address of the ROM entry point. Also defined in config.h; the two
definitions must match.

ROM_SIZE
Number of bytes available in the ROM. Also defined in config.h; the two
definitions must match.

RAM_HIGH_ADRS
RAM address where the boot ROM data segment is loaded. Must be a high
enough value to ensure loading VxWorks does not overwrite part of the
ROM program. Also defined in config.h; the two definitions must match.
See 8.9 Creating Bootable Applications, p.364 for more discussion.

RAM_LOW_ADRS
Beginning address to use for the VxWorks run-time in RAM.

HEX_FLAGS
Option flags for the program (such as hex, coffHex, or elfHex) that
converts a boot program into S-records or the equivalent.

LDFLAGS
Linker options for the static link of VxWorks and boot ROMs.

ROM_LDFLAGS
Additional static-link option flags specific to boot ROM images.

361

VxWorks 5.4
Programmer’s Guide

Variables for Customizing the Run-Time

The variables listed in this section make it easy to control what facilities are
statically linked into your run-time system. You can specify values for these
variables either from the make command line, or from your own makefiles (when
you take advantage of the predefined VxWorks make include files).

CONFIG_ALL
Location of a directory containing the architecture-independent BSP
configuration files. Set this variable if you maintain several versions of
these files for different purposes. Default: installDir/target/config/all.

LIB_EXTRA
Linker options to include additional archive libraries (you must specify
the complete option, including the -L for each library). These libraries
appear in the link command before the standard VxWorks libraries.

MACH_EXTRA
Names of application modules to include in the static link to produce a
VxWorks run-time. See 8.9 Creating Bootable Applications, p.364.

ADDED_MODULES
Do not define a value for this variable in makefiles. This variable is
reserved for adding modules to a static link from the make command line.
Its value is used in the same way as MACH_EXTRA, to include additional
modules in the link. Reserving a separate variable for use from the
command line avoids the danger of overriding any object modules that are
already listed in MACH_EXTRA.

EXTRA_INCLUDE
Preprocessor options to define any additional header-file directories
required for your application (you must specify the complete option,
including the -I).

EXTRA_DEFINE
Definitions for application-specific preprocessor constants (you must
specify the complete option, including the -D).

ADDED_CFLAGS
Application-specific compiler options for C programs.

ADDED_C++FLAGS
Application-specific compiler options for C++ programs.

362

8
Configuration and Build

8.8.2 Using Makefile Include Files for Application Modules

Example 8-2

You can exploit the VxWorks makefile structure to put together your own
application makefiles quickly and tersely. If you build your application directly in
a BSP directory (or in a copy of one), you can use the Makefile in that BSP, by
specifying variable definitions (Variables for Customizing the Run-Time, p.362) that
include the components of your application.

You can also take advantage of the Tornado makefile structure if you develop
application modules in separate directories. Example 8-2 illustrates the general
scheme: inc