
VxWorks
Programmer’s Guide

®

5.4

Edition 1
An ISO 9001 Registered Company

Copyright  1984 – 1999 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,

microfilm, retrieval system, or by any other means now known or hereafter invented without the

prior written permission of Wind River Systems, Inc.

VxWorks, IxWorks,Wind River Systems, the Wind River Systems logo, wind, and Embedded Internet

are registered trademarks of Wind River Systems, Inc. CrossWind, Tornado, VxMP, VxSim, VxVMI,

WindC++, WindConfig,Wind Foundation Classes, WindNet, WindPower, WindSh,andWindView are

trademarks of Wind River Systems, Inc.

All other trademarks used in this document are the property of their respective owners.

Corporate Headquarters
Wind River Systems, Inc.

1010 Atlantic Avenue

Alameda, CA 94501-1153

USA

toll free (US): 800/545-WIND

telephone: 510/748-4100

facsimile: 510/749-2010

Europe
Wind River Systems, S.A.R.L.

19, Avenue de Norvège

Immeuble B4, Bâtiment 3

Z.A. de Courtaboeuf 1

91953 Les Ulis Cédex

FRANCE

telephone: 33-1-60-92-63-00

facsimile: 33-1-60-92-63-15

Japan
Wind River Systems Japan

Pola Ebisu Bldg. 11F

3-9-19 Higashi

Shibuya-ku

Tokyo 150

JAPAN

telephone: 81-3-5467-5900

facsimile: 81-3-5467-5877

VxWorks Programmer’s Guide, 5.4
Edition 1

6 May 99

Part #: DOC-12629-ZD-01

CUSTOMER SUPPORT

Telephone E-mail Fax

Corporate: 800/872-4977 toll free, U.S. & Canada

510/748-4100 direct

support@wrs.com 510/749-2164

Europe: 33-1-69-07-78-78 support@wrsec.fr 33-1-69-07-08-26

Japan: 011-81-3-5467-5900 support@kk.wrs.com 011-81-3-5467-5877

If you purchased your Wind River Systems product from a distributor, please contact your

distributor to determine how to reach your technical support organization.

Please provide your license number when contacting Customer Support.

1 Overview ... 1

2 Basic OS ... 19

3 I/O System .. 95

4 Local File Systems .. 175

5 C++ Development .. 227

6 Shared-Memory Objects ... 255

7 Virtual Memory Interface .. 289

8 Configuration and Build .. 309

9 Target Shell .. 369

Appendices .. 381

A Motorola MC680x0 ... 383

B Sun SPARC, SPARClite ... 399

C Intel i960 ... 417

D Intel x86 .. 429

E MIPS R3000, R4000, R4650 ... 477

F PowerPC ... 489

G ARM .. 503

H VxSim .. 525

I Coding Conventions .. 555

Index ... 577
iii

Contents
1 Overview ... 1

1.1 Introduction .. 1

1.2 Getting Started with the Tornado Development System 2

1.3 VxWorks: A Partner in the Real-time Development Cycle 2

1.4 VxWorks Facilities: An Overview .. 3

Multitasking and Intertask Communications 6

POSIX Interfaces ... 6

I/O System .. 7

Local File Systems .. 8

Virtual Memory (Including VxVMI Option) 10

Shared-Memory Objects (VxMP Option) 10

Target-Resident Tools .. 11

C++ Development (including Wind Foundation Classes Option) 11

Utility Libraries .. 11

Performance Evaluation .. 13

Target Agent ... 14

Board Support Packages (BSPs) ... 15

VxWorks Simulator (VxSim Option) ... 15

1.5 Customer Services .. 16

1.6 Documentation Conventions .. 17
v

VxWorks 5.4
Programmer’s Guide
2 Basic OS ... 19

2.1 Introduction .. 19

2.2 Wind Features and POSIX Features .. 20

2.3 Tasks ... 20

2.3.1 Multitasking ... 20

2.3.2 Task State Transition .. 21

2.3.3 Wind Task Scheduling .. 22

Preemptive Priority Scheduling .. 23

Round-Robin Scheduling ... 23

Preemption Locks .. 25

2.3.4 Tasking Control .. 25

Task Creation and Activation .. 25

Task Names and IDs .. 26

Task Options ... 27

Task Information .. 28

Task Deletion and Deletion Safety .. 28

Task Control .. 30

2.3.5 Tasking Extensions .. 31

2.3.6 POSIX Scheduling Interface ... 32

Differences Between POSIX and Wind Scheduling 32

Getting and Setting POSIX Task Priorities 33

Getting and Displaying the Current Scheduling Policy 35

Getting Scheduling Parameters: Priority Limits and Time Slice 35

2.3.7 Task Error Status: errno .. 36

Layered Definitions of errno .. 36

A Separate errno Value for Each Task .. 37

Error Return Convention .. 37

Assignment of Error Status Values ... 38

2.3.8 Task Exception Handling ... 38

2.3.9 Shared Code and Reentrancy ... 39

Dynamic Stack Variables .. 40

Guarded Global and Static Variables .. 40
vi

Contents
Task Variables ... 41

Multiple Tasks with the Same Main Routine 42

2.3.10 VxWorks System Tasks .. 43

2.4 Intertask Communications .. 45

2.4.1 Shared Data Structures .. 45

2.4.2 Mutual Exclusion ... 46

Interrupt Locks and Latency .. 46

Preemptive Locks and Latency .. 47

2.4.3 Semaphores ... 47

Semaphore Control .. 48

Binary Semaphores .. 49

Mutual-Exclusion Semaphores .. 52

Counting Semaphores ... 56

Special Semaphore Options .. 57

POSIX Semaphores .. 57

2.4.4 Message Queues ... 65

Wind Message Queues .. 66

POSIX Message Queues .. 68

Comparison of POSIX and Wind Message Queues 77

Displaying Message Queue Attributes ... 78

Servers and Clients with Message Queues 78

2.4.5 Pipes ... 79

2.4.6 Network Intertask Communication .. 80

Sockets ... 80

Remote Procedure Calls (RPC) .. 81

2.4.7 Signals .. 81

Basic Signal Routines ... 82

POSIX Queued Signals .. 83

Signal Configuration ... 84

2.5 Interrupt Service Code ... 85

2.5.1 Connecting Application Code to Interrupts 85

2.5.2 Interrupt Stack .. 86
vii

VxWorks 5.4
Programmer’s Guide
2.5.3 Special Limitations of ISRs ... 87

2.5.4 Exceptions at Interrupt Level ... 88

2.5.5 Reserving High Interrupt Levels ... 89

2.5.6 Additional Restrictions for ISRs at High Interrupt Levels 89

2.5.7 Interrupt-to-Task Communication .. 90

2.6 Watchdog Timers ... 90

2.7 POSIX Clocks and Timers ... 92

2.8 POSIX Memory-Locking Interface .. 93

3 I/O System .. 95

3.1 Introduction .. 95

3.2 Files, Devices, and Drivers ... 96

3.2.1 File Names and the Default Device .. 97

3.3 Basic I/O ... 98

3.3.1 File Descriptors .. 99

3.3.2 Standard Input, Standard Output, and Standard Error 99

Global Redirection ... 100

Task-Specific Redirection .. 100

3.3.3 Open and Close .. 100

3.3.4 Create and Remove ... 102

3.3.5 Read and Write ... 102

3.3.6 File Truncation ... 103

3.3.7 I/O Control ... 103

3.3.8 Pending on Multiple File Descriptors: The Select Facility 104

3.4 Buffered I/O: Stdio .. 106

3.4.1 Using Stdio ... 107
viii

Contents
3.4.2 Standard Input, Standard Output, and Standard Error 108

3.5 Other Formatted I/O ... 108

3.5.1 Special Cases: printf(), sprintf(), and sscanf() 108

3.5.2 Additional Routines: printErr() and fdprintf() 109

3.5.3 Message Logging ... 109

3.6 Asynchronous Input/Output ... 109

3.6.1 The POSIX AIO Routines .. 110

3.6.2 AIO Control Block ... 111

3.6.3 Using AIO ... 112

AIO with Periodic Checks for Completion 113

Alternatives for Testing AIO Completion 115

3.7 Devices in VxWorks ... 118

3.7.1 Serial I/O Devices (Terminal and Pseudo-Terminal Devices) 118

Tty Options ... 119

Raw Mode and Line Mode ... 119

Tty Special Characters ... 120

I/O Control Functions ... 121

3.7.2 Pipe Devices .. 122

Creating Pipes ... 122

Writing to Pipes from ISRs ... 123

I/O Control Functions ... 123

3.7.3 Pseudo Memory Devices .. 123

Installing the Memory Driver .. 124

I/O Control Functions ... 124

3.7.4 Network File System (NFS) Devices ... 124

Mounting a Remote NFS File System from VxWorks 125

I/O Control Functions for NFS Clients .. 125

3.7.5 Non-NFS Network Devices .. 126

Creating Network Devices ... 126

I/O Control Functions ... 127
ix

VxWorks 5.4
Programmer’s Guide
3.7.6 Block Devices ... 127

File Systems .. 127

RAM Disk Drivers ... 128

SCSI Drivers ... 129

3.7.7 Sockets ... 139

3.8 Differences Between VxWorks and Host System I/O 139

3.9 Internal Structure ... 140

3.9.1 Drivers ... 142

The Driver Table and Installing Drivers ... 143

Example of Installing a Driver ... 144

3.9.2 Devices .. 144

The Device List and Adding Devices ... 145

Example of Adding Devices .. 146

3.9.3 File Descriptors .. 146

The Fd Table ... 147

Example of Opening a File ... 147

Example of Reading Data from the File ... 150

Example of Closing a File ... 150

Implementing select() .. 152

Cache Coherency ... 155

3.9.4 Block Devices ... 158

General Implementation ... 158

Low-Level Driver Initialization Routine .. 160

Device Creation Routine ... 161

Read Routine (Direct-Access Devices) .. 163

Read Routine (Sequential Devices) .. 164

Write Routine (Direct-Access Devices) .. 165

Write Routine (Sequential Devices) ... 166

I/O Control Routine .. 166

Device-Reset Routine .. 167

Status-Check Routine .. 168

Write-Protected Media .. 168

Change in Ready Status .. 169

Write-File-Marks Routine (Sequential Devices) 169

Rewind Routine (Sequential Devices) .. 170
x

Contents
Reserve Routine (Sequential Devices) .. 170

Release Routine (Sequential Devices) ... 170

Read-Block-Limits Routine (Sequential Devices) 171

Load/Unload Routine (Sequential Devices) 171

Space Routine (Sequential Devices) .. 172

Erase Routine (Sequential Devices) ... 173

3.9.5 Driver Support Libraries ... 173

4 Local File Systems ... 175

4.1 Introduction .. 175

4.2 MS-DOS-Compatible File System: dosFs .. 176

4.2.1 Disk Organization .. 176

Clusters .. 177

Boot Sector .. 178

File Allocation Table .. 178

Root Directory .. 179

Subdirectories ... 180

Files ... 180

Volume Label ... 181

4.2.2 Initializing the dosFs File System .. 181

4.2.3 Initializing a Device for Use with dosFs ... 182

4.2.4 Volume Configuration ... 183

DOS_VOL_CONFIG Fields .. 184

Calculating Configuration Values ... 185

Standard Disk Configurations ... 186

4.2.5 Changes In Volume Configuration .. 187

4.2.6 Using an Already Initialized Disk ... 188

4.2.7 Accessing Volume Configuration Information 189

4.2.8 Mounting Volumes .. 190

4.2.9 File I/O .. 190

4.2.10 Opening the Whole Device (Raw Mode) .. 190

4.2.11 Creating Subdirectories ... 191
xi

VxWorks 5.4
Programmer’s Guide
4.2.12 Removing Subdirectories ... 192

4.2.13 Directory Entries .. 192

4.2.14 Reading Directory Entries .. 193

4.2.15 File Attributes ... 193

4.2.16 File Date and Time ... 195

4.2.17 Changing Disks .. 196

Unmounting Volumes ... 196

Announcing Disk Changes with Ready-Change 197

Disks with No Change Notification .. 198

Synchronizing Volumes .. 198

Auto-Sync Mode .. 199

4.2.18 Long Name Support .. 199

4.2.19 Contiguous File Support .. 200

4.2.20 I/O Control Functions Supported by dosFsLib 202

4.2.21 Booting from a Local dosFs File System Using SCSI 203

4.3 RT-11-Compatible File System: rt11Fs ... 204

4.3.1 Disk Organization ... 205

4.3.2 Initializing the rt11Fs File System ... 205

4.3.3 Initializing a Device for Use with rt11Fs .. 206

4.3.4 Mounting Volumes .. 207

4.3.5 File I/O .. 207

4.3.6 Opening the Whole Device (Raw Mode) 207

4.3.7 Reclaiming Fragmented Free Disk Space 208

4.3.8 Changing Disks .. 208

Announcing Disk Changes with Ready-Change 208

Disks with No Change Notification .. 209

4.3.9 I/O Control Functions Supported by rt11FsLib 209

4.4 Raw File System: rawFs .. 209

4.4.1 Disk Organization ... 210
xii

Contents
4.4.2 Initializing the rawFs File System ... 211

4.4.3 Initializing a Device for Use with the rawFs File System 211

4.4.4 Mounting Volumes .. 212

4.4.5 File I/O .. 212

4.4.6 Changing Disks .. 213

Unmounting Volumes ... 213

Announcing Disk Changes with Ready-Change 213

Disks with No Change Notification .. 214

Synchronizing Volumes .. 214

4.4.7 I/O Control Functions Supported by rawFsLib 215

4.5 Tape File System: tapeFs .. 216

4.5.1 Tape Organization .. 216

4.5.2 Using the tapeFs File System .. 216

Initializing the tapeFs File System ... 216

Initializing a Device for Use with the tapeFs File System 217

Mounting Volumes .. 219

Modes of Operation ... 219

File I/O .. 219

Changing Tapes .. 219

I/O Control Functions Supported by tapeFsLib 220

4.6 CD-ROM File System: cdromFs ... 221

4.7 The Target Server File System: TSFS .. 222

How It Works .. 222

Security Considerations .. 224

5 C++ Development ... 227

5.1 Introduction .. 227

5.2 C++ Development Under Tornado .. 228

5.2.1 Tools Support .. 228

WindSh .. 228
xiii

VxWorks 5.4
Programmer’s Guide
Debugger .. 229

5.2.2 Programming Issues .. 229

Making C++ Entry Points Accessible to C Code 229

5.2.3 Compiling C++ Applications ... 230

5.2.4 Configuration Constants .. 231

5.2.5 Munching C++ Application Modules .. 232

5.2.6 Static Constructors and Destructors ... 232

Calling Static Constructors and Destructors Interactively 233

Constructors and Destructors in System Startup and Shutdown 233

5.2.7 Template Instantiation .. 234

5.3 C++ Language and Library Support ... 236

5.3.1 Language Features .. 237

Exception Handling .. 237

Run-Time Type Information (RTTI) .. 239

5.3.2 Standard Template Library (STL) .. 239

Iostream Library .. 239

String and Complex Number Classes .. 240

5.4 Example ... 240

5.5 Wind Foundation Classes ... 250

5.5.1 VxWorks Wrapper Class Library ... 251

5.5.2 Tools.h++ Library .. 254

6 Shared-Memory Objects ... 255

6.1 Introduction .. 255

6.2 Using Shared-Memory Objects .. 256

6.2.1 Name Database .. 257

6.2.2 Shared Semaphores ... 259

6.2.3 Shared Message Queues ... 263
xiv

Contents
6.2.4 Shared-Memory Allocator .. 268

Shared-Memory System Partition ... 268

User-Created Partitions ... 269

Using the Shared-Memory System Partition 270

Using User-Created Partitions ... 273

Side Effects of Shared-Memory Partition Options 276

6.3 Internal Considerations ... 277

6.3.1 System Requirements .. 277

6.3.2 Spin-lock Mechanism .. 277

6.3.3 Interrupt Latency ... 278

6.3.4 Restrictions .. 278

6.3.5 Cache Coherency .. 279

6.4 Configuration .. 279

6.4.1 Shared-Memory Objects and Shared-Memory Network Driver 279

6.4.2 Shared-Memory Region .. 280

6.4.3 Initializing the Shared-Memory Objects Package 280

6.4.4 Configuration Example ... 284

6.4.5 Initialization Steps ... 285

6.5 Troubleshooting .. 286

6.5.1 Configuration Problems .. 286

6.5.2 Troubleshooting Techniques ... 286

7 Virtual Memory Interface ... 289

7.1 Introduction .. 289

7.2 Basic Virtual Memory Support ... 290

7.3 Virtual Memory Configuration .. 290

7.4 General Use ... 292
xv

VxWorks 5.4
Programmer’s Guide
7.5 Using the MMU Programmatically ... 293

7.5.1 Virtual Memory Contexts ... 293

Global Virtual Memory ... 293

Initialization ... 294

Page States .. 294

7.5.2 Private Virtual Memory .. 295

7.5.3 Noncacheable Memory ... 302

7.5.4 Nonwritable Memory ... 304

7.5.5 Troubleshooting ... 306

7.5.6 Precautions ... 307

8 Configuration and Build .. 309

8.1 Introduction .. 309

8.2 The Board Support Package (BSP) ... 310

The System Library ... 311

Virtual Memory Mapping .. 312

The Serial Driver .. 312

BSP Initialization Modules ... 312

BSP Documentation ... 312

8.3 VxWorks Initialization Timeline .. 313

The VxWorks Entry Point: sysInit() ... 313

The Initial Routine: usrInit() ... 314

Initializing the Kernel ... 315

Initializing the Memory Pool ... 316

The Initial Task: usrRoot() ... 317

The System Clock Routine: usrClock() .. 322

Initialization Summary ... 322

8.4 Building, Loading, and Unloading Application Modules 325

8.4.1 Using VxWorks Header Files ... 325

VxWorks Header File: vxWorks.h ... 325

Other VxWorks Header Files ... 326

ANSI Header Files ... 326
xvi

Contents
The -I Compiler Flag ... 326

VxWorks Nested Header Files ... 326

Internal Header Files ... 327

VxWorks Private Header Files ... 328

8.4.2 Compiling Application Modules ... 329

The GNU Tools ... 329

Cross-Development Commands .. 330

Defining the CPU Type ... 330

Compiling C Modules ... 332

Compiling C++ Modules .. 334

8.4.3 Static Linking (Optional) ... 334

8.4.4 Downloading an Application Module .. 335

8.4.5 Module IDs and Group Numbers ... 336

8.4.6 Unloading Modules ... 336

8.5 Configuring VxWorks .. 337

8.5.1 The Environment Variables .. 337

8.5.2 The Configuration Header Files .. 338

The Global Configuration Header File: configAll.h 339

The BSP-specific Configuration Header File: config.h 339

Selection of Optional Features ... 340

8.5.3 The Configuration Module: usrConfig.c .. 343

8.6 Alternative VxWorks Configurations .. 344

8.6.1 Scaling Down VxWorks .. 344

Excluding Kernel Facilities ... 344

Excluding Network Facilities ... 345

Option Dependencies .. 346

8.6.2 Executing VxWorks from ROM ... 346

8.6.3 Initialization Sequence for ROM-Based VxWorks 349

8.7 Building a VxWorks System Image ... 351

8.7.1 Available VxWorks Images ... 351

8.7.2 Rebuilding VxWorks with make ... 352
xvii

VxWorks 5.4
Programmer’s Guide
Making on UNIX Hosts .. 352

Making on Windows Hosts .. 352

8.7.3 Including Customized VxWorks Code ... 354

8.7.4 Linking the System Modules ... 355

8.7.5 Creating the System Symbol Table Module 356

8.8 Makefiles for BSPs and Applications .. 357

8.8.1 Make Variables ... 359

Variables for Compilation Options ... 359

Variables for BSP Parameters ... 361

Variables for Customizing the Run-Time 362

8.8.2 Using Makefile Include Files for Application Modules 363

8.8.3 Makefile for SIO Drivers ... 364

8.9 Creating Bootable Applications ... 364

8.9.1 Creating a Standalone VxWorks System with a Built-in Symbol Table

366

8.9.2 Creating a VxWorks System in ROM .. 367

General Procedures ... 367

Boot ROM Compression ... 368

9 Target Shell ... 369

9.1 Introduction .. 369

9.2 Target-Resident Shell ... 369

9.2.1 Creating the Target Shell .. 370

9.2.2 Using the Target Shell ... 371

9.2.3 Debugging with the Target Shell ... 371

9.2.4 Aborting the Target Shell .. 372

9.2.5 Remote Login to the Target Shell .. 373

Remote Login From Host: telnet and rlogin 373

Remote Login Security .. 374
xviii

Contents
9.2.6 Summary of Target and Host Shell Differences 374

9.3 Other Target-Resident Facilities ... 376

9.3.1 Target Symbol Table, Module Loader, and Module Unloader 376

9.3.2 Show Routines .. 377

Appendices ... 381

A Motorola MC680x0 ... 383

A.1 Introduction .. 383

A.2 Building Applications .. 383

Defining the CPU Type ... 384

Configuring the GNU ToolKit Environment 384

Compiling C or C++ Modules ... 384

A.3 Interface Variations .. 386

CPU-Specific Interfaces ... 386

a.out-Specific Tools .. 387

A.4 Architecture Considerations ... 387

MC68060 Unimplemented Integer Instructions 388

Double-word Integers: long long .. 388

Interrupt Stack .. 388

MC68060 Superscalar Pipeline ... 389

Caches ... 389

Memory Management Unit .. 392

Floating-Point Support .. 393

Memory Layout .. 396

B Sun SPARC, SPARClite .. 399

B.1 Introduction .. 399

B.2 Building Applications .. 399

Defining the CPU Type ... 400

Configuring the GNU ToolKit Environment 400
xix

VxWorks 5.4
Programmer’s Guide
Compiling C or C++ Modules ... 400

B.3 Interface Variations .. 401

a.out-Specific Tools for SPARC and SPARClite 406

B.4 Architecture Considerations ... 406

Reserved Registers ... 407

Processor Mode .. 407

Vector Table Initialization ... 407

Double-word Integers: long long ... 407

Interrupt Handling .. 407

Floating-Point Support ... 410

Stack Pointer Usage ... 412

SPARClite Overview ... 412

Memory Layout ... 413

C Intel i960 ... 417

C.1 Introduction .. 417

C.2 Building Applications ... 417

Defining the CPU Type ... 418

Configuring the GNU ToolKit Environment 418

Compiling C or C++ Modules .. 418

Boot Loader Changes .. 420

C.3 Interface Variations .. 421

Initialization ... 422

Data Breakpoint Routine bh() .. 422

Parameter Change for intLevelSet() .. 422

Results Change for memLib .. 422

Math Routines .. 423

Adding in Unresolved Routines .. 423

Floating-Point Task Option: VX_FP_TASK .. 423

COFF-Specific Tools For i960 ... 424

Limitation on d() in WindSh ... 424

C.4 Architecture Considerations ... 425

Byte Order ... 425
xx

Contents
Double-word Integers: long long .. 425

VMEbus Interrupt Handling .. 425

Memory Layout .. 426

D Intel x86 ... 431

D.1 Introduction .. 431

D.2 Building Applications .. 431

Defining the CPU Type ... 432

Configuring the GNU ToolKit Environment 432

Compiling C and C++ Modules .. 432

D.3 Interface Variations .. 434

Supported Routines in mathALib .. 434

Architecture-Specific Global Variables ... 434

Architecture-Specific Routines ... 435

a.out-Specific Tools for x86 ... 439

D.4 Architecture Considerations ... 440

Operating Mode, Privilege Protection, and Byte Order 441

Memory Segmentation .. 441

I/O Mapped Devices ... 441

Memory Mapped Devices .. 441

Memory Considerations for VME ... 443

Interrupts and Exceptions .. 444

Registers .. 445

Counters .. 446

Double-word Integers: long long .. 447

Context Switching .. 447

ISA/EISA Bus ... 447

PC104 Bus .. 447

PCI Bus .. 447

Software Floating-Point Emulation ... 448

VxWorks Memory Layout .. 448

D.5 Board Support Packages .. 451

Boot Considerations for PC Targets .. 451

Mounting a DOS File System ... 460
xxi

VxWorks 5.4
Programmer’s Guide
DMA Buffer Alignment and cacheLib .. 462

Support for Third-Party BSPs .. 462

VxWorks Images .. 463

BSP-Specific Global Variables for 386 and 486 463

Configuring the Pentium BSP .. 463

Configuring the PentiumPro BSP .. 463

ROM Card and EPROM Support .. 465

Device Drivers .. 466

E MIPS R3000, R4000, R4650 ... 479

E.1 Introduction .. 479

E.2 Building Applications ... 479

Defining the CPU Type ... 480

Configuring the GNU ToolKit Environment 480

Compiling C or C++ Modules ... 480

E.3 Interface Variations .. 482

cacheR3kLib and cacheR4kLib .. 483

dbgLib ... 483

intArchLib .. 483

mathALib ... 483

taskArchLib ... 484

MMU Support .. 484

ELF-specific Tools .. 484

E.4 Architecture Considerations ... 485

Gprel Addressing .. 485

Reserved Registers .. 485

Floating-Point Support ... 485

Interrupts .. 486

Virtual Memory Mapping .. 488

64-bit Support (R4000 Targets Only) ... 488

Memory Layout ... 488

F PowerPC ... 491

F.1 Introduction .. 491
xxii

Contents
F.2 Building Applications .. 491

Defining the CPU Type ... 492

Configuring the GNU ToolKit Environment 492

Compiling C and C++ Modules .. 493

Compiling Modules for GDB ... 494

Unsupported Features ... 494

F.3 Interface Changes ... 495

Memory Management Unit .. 495

HI and HIADJ Macros ... 497

ELF-Specific Tools .. 498

F.4 Architecture Considerations ... 498

Processor Mode .. 499

24-bit Addressing ... 499

Byte Order ... 499

PowerPC Register Usage .. 499

Caches ... 500

Memory Management Unit .. 500

Floating-Point Support .. 501

VxMP Support for Motorola PowerPC Boards 502

Memory Layout .. 504

G ARM ... 507

G.1 Introduction .. 507

G.2 Building Applications .. 508

Defining the CPU Type ... 508

Configuring the GNU ToolKit Environment 508

Compiling C and C++ Modules .. 509

Boot Loader Changes .. 510

G.3 Toolchain Information ... 512

Assembler Pseudo Operations ... 512

Additional ARM Compiler Options .. 512

CrossWind and GDB ... 513

G.4 Interface Variations .. 514
xxiii

VxWorks 5.4
Programmer’s Guide
Restrictions on cret() and tt() .. 514

cacheLib .. 515

dbgLib ... 515

dbgArchLib .. 515

intALib .. 515

intArchLib .. 516

mmuALib ... 517

usrLib ... 517

vmLib ... 517

vxALib .. 517

vxLib ... 517

COFF-Specific Tools For ARM ... 518

G.5 Architecture Considerations ... 518

Processor Mode and Byte Order ... 519

ARM/Thumb State ... 519

Interrupts and Exceptions .. 520

Floating-Point Support ... 522

Caches ... 522

Memory Management Unit .. 524

Memory Layout ... 528

H VxSim .. 531

H.1 Introduction .. 531

H.2 The Built-in Simulator ... 533

Installation and Configuration .. 533

Starting VxSim ... 533

Rebooting VxSim ... 533

Exiting VxSim ... 533

System-Mode Debugging ... 534

File Systems .. 534

H.3 Building Applications ... 535

Defining the CPU Type ... 535

The Toolkit Environment .. 535

Compiling C and C++ Modules .. 535

Linking an Application to VxSim .. 538

Architecture-Specific Tools ... 540
xxiv

Contents
H.4 Architecture Considerations ... 540

Supported Configurations .. 540

The BSP Directory .. 541

Interrupts ... 541

Clock and Timing Issues ... 544

H.5 VxSim Networking Component .. 545

Installing VxSim Network Drivers .. 546

Configuring VxSim for Networking ... 552

Running Multiple Simulators .. 553

System Mode Debugging ... 553

IP Addressing ... 555

Choosing Processor Numbers for Distinct Devices 556

Setting Up Remote Access .. 557

Setting up the Shared Memory Network (UNIX only) 559

I Coding Conventions .. 563

I.1 Introduction .. 563

I.2 File Heading .. 564

I.3 C Coding Conventions .. 565

I.3.1 C Module Layout ... 565

I.3.2 C Subroutine Layout ... 567

I.3.3 C Declaration Formats ... 568

Variables .. 569

Subroutines ... 570

I.3.4 C Code Layout .. 571

Vertical Spacing .. 571

Horizontal Spacing .. 571

Indentation .. 572

Comments ... 574

I.3.5 C Naming Conventions .. 574

I.3.6 C Style .. 576

I.3.7 C Header File Layout .. 577
xxv

VxWorks 5.4
Programmer’s Guide
Structural .. 577

Order of Declaration ... 577

I.3.8 Documentation Format Conventions for C 579

Layout ... 579

Format Commands .. 580

Special Elements .. 580

Formatting Displays .. 582

Index ... 585
xxvi

1
Overview
1.1 Introduction

This manual describes VxWorks, the high-performance real-time operating system

component of the Tornado development system. This manual includes the

following information:

■ How to use VxWorks facilities in the development of real-time applications.

(VxWorks networking facilities are covered in the VxWorks Network
Programmer’s Guide.)

■ How to use the optional components Wind Foundation Classes, VxMP, and

VxVMI.

■ How to configure and build VxWorks without using the project facility. (For

more information on the project facility, see Tornado User’s Guide: Projects.)

■ How to use the target-resident tools included in VxWorks.

■ Architecture-specific information for all architectures supported on VxWorks.

■ Wind River Systems’ C and C++ coding conventions.

This chapter begins by providing pointers to information on how to set up and

start using VxWorks as part of the Tornado development system. It then provides

an overview of the role of VxWorks in the development of real-time applications,

an overview of VxWorks facilities, a summary of Wind River Systems customer

services, and a summary of the document conventions followed in this manual.
1

VxWorks 5.4
Programmer’s Guide
1.2 Getting Started with the Tornado Development System

See the following documents for information on installing and configuring the

Tornado development system, including VxWorks. Information on configuration

differs depending on whether your development host is UNIX or Windows; thus,

the Tornado User’s Guide is host specific.

■ Tornado Getting Started provides information on installing all components of

the Tornado Development System as well as a tutorial covering the main

features of Tornado.

■ The Tornado User’s Guide provides information on configuring and connecting

the host and target environments, building your VxWorks application, booting

VxWorks, and running Tornado.

For either host, 8. Configuration and Build in this manual provides information on

using Tornado 1.0.1-style manual methods for VxWorks configuration.

For a complete overview of Tornado documentation, see the documentation guide

in the Tornado User’s Guide.

1.3 VxWorks: A Partner in the Real-time Development Cycle

UNIX and Windows hosts are excellent systems for program development and for

many interactive applications. However, they are not appropriate for real-time

applications. On the other hand, traditional real-time operating systems provide

poor environments for application development or for non-real-time components

of an application, such as graphical user interfaces (GUIs).

Rather than trying to create a single operating system that “does it all,” the Wind

River philosophy is to utilize two complementary and cooperating operating

systems (VxWorks and UNIX, or VxWorks and Windows) and let each do what it

does best. VxWorks handles the critical real-time chores, while the host machine is

used for program development and for applications that are not time-critical.

You can scale VxWorks to include exactly the feature combinations your

application requires. During development, you can include additional features to

speed your work (such as the networking facilities), then exclude them to save

resources in the final version of your application.
2

1

1
Overview
You can use the cross-development host machine to edit, compile, link, and store

real-time code, but then run and debug that real-time code on VxWorks. The

resulting VxWorks application can run standalone—either in ROM or disk-

based—with no further need for the network or the host system.

However, the host machine and VxWorks can also work together in a hybrid

application, with the host machine using VxWorks systems as real-time “servers”

in a networked environment. For instance, a VxWorks system controlling a robot

might itself be controlled by a host machine that runs an expert system, or several

VxWorks systems running factory equipment might be connected to host

machines that track inventory or generate reports.

1.4 VxWorks Facilities: An Overview

This section provides a summary of VxWorks facilities; they are described in more

detail in the following subsections. For details on any of these facilities, see the

appropriate chapters in this manual.

■ High-Performance Real-time Kernel Facilities

The VxWorks kernel, wind, includes multitasking with preemptive priority

scheduling, intertask synchronization and communications facilities, interrupt

handling support, watchdog timers, and memory management.

■ POSIX Compatibility

VxWorks provides most interfaces specified by the 1003.1b standard (formerly

the 1003.4 standard), simplifying your ports from other conforming systems.

■ I/O System

VxWorks provides a fast and flexible ANSI C-compatible I/O system,

including UNIX standard buffered I/O and POSIX standard asynchronous

I/O. VxWorks includes the following drivers:

Network driver – for network devices (Ethernet, shared memory)

Pipe driver – for intertask communication

RAM “disk” driver – for memory-resident files

SCSI driver – for SCSI hard disks, diskettes, and tape drives

Keyboard driver – for PC x86 keyboards (x86 BSP only)

Display driver – for PC x86 VGA displays (x86 BSP only)
3

VxWorks 5.4
Programmer’s Guide
■ Local File Systems

VxWorks provides fast file systems tailored to real-time applications. One file

system is compatible with the MS-DOS® file system, another with the RT-11 file

system, a third is a “raw disk” file system, a fourth supports SCSI tape devices,

and a fifth supports CD-ROM devices.

■ C++ Development Support

In addition to general C++ support including the iostream library and the

standard template library, the optional component Wind Foundation Classes

adds the following C++ object libraries:

– VxWorks Wrapper Class library

– Tools.h++ library from Rogue Wave

■ Shared-Memory Objects (VxMP Option)

The VxMP option provides facilities for sharing semaphores, message queues,

and memory regions between tasks on different processors.

■ Virtual Memory (Including VxVMI Option)

VxWorks provides both bundled and unbundled (VxVMI) virtual memory

support for boards with an MMU, including the ability to make portions of

memory noncacheable or read-only, as well as a set of routines for virtual-

memory management.

■ Target-resident Tools

In the Tornado development system, the development tools reside on the host

system; see the Tornado User’s Guide for details. However, a target-resident

shell, module loader and unloader, and symbol table can be configured into

the VxWorks system if necessary.

■ Utility Libraries

VxWorks provides an extensive set of utility routines, including interrupt

handling, watchdog timers, message logging, memory allocation, string

formatting and scanning, linear and ring buffer manipulations, linked-list

manipulations, and ANSI C libraries.

Disk driver – for IDE and floppy disk drives (x86 BSP only)

Parallel port driver – for PC-style target hardware
4

1

1
Overview
■ Performance Evaluation Tools

VxWorks performance evaluation tools include an execution timer for timing

a routine or group of routines, and utilities to show CPU utilization percentage

by task.

■ Target Agent

The target agent allows a VxWorks application to be remotely debugged using

the Tornado development tools.

■ Board Support Packages

Board Support Packages (BSPs) are available for a variety of boards and

provide routines for hardware initialization, interrupt setup, timers, memory

mapping, and so on.

■ VxWorks Simulator (VxSim) and Logic Analyzer (WindView)

Tornado comes with an integrated simulator and software logic analyzer on all

host platforms. VxSim simulates a VxWorks target for use as a prototyping and

testing environment. WindView provides advanced debugging tools for the

simulator environment.

The optional product VxSim provides networking capability and the ability to

run multiple simulators. The optional product WindView provides software

logic analyzer support for all WRS BSPs.

■ Network Facilities

VxWorks provides “transparent” access to other VxWorks and TCP/IP-

networked systems, a MUX interface (supporting advanced features such as

multicasting, polled-mode Ethernet, and zero-copy transmission), a BSD1

Sockets-compliant programming interface, remote procedure calls (RPC),

SNMP (optional), remote file access (including NFS client and server facilities

and a non-NFS facility utilizing RSH, FTP, or TFTP), BOOTP, proxy ARP,

DHCP, DNS, OSPF (optional), and RIP. All VxWorks network facilities comply

with standard Internet protocols, both loosely coupled over serial lines or

standard Ethernet connections and tightly coupled over a backplane bus using

shared memory.

For information on VxWorks network support, see the VxWorks Network
Programmer’s Guide.

1. BSD stands for Berkeley Software Distribution, and refers to a version of UNIX.
5

VxWorks 5.4
Programmer’s Guide
Multitasking and Intertask Communications

Modern real-time systems are based on the complementary concepts of

multitasking and intertask communications. A multitasking environment allows

real-time applications to be constructed as a set of independent tasks, each with a

separate thread of execution and its own set of system resources. The intertask

communication facilities allow these tasks to synchronize and coordinate their

activity.

The VxWorks multitasking kernel, wind, uses interrupt-driven, priority-based task

scheduling. It features fast context switch times and low interrupt latency. Under

VxWorks, any subroutine can be spawned as a separate task, with its own context

and stack. Other basic task control facilities allow tasks to be suspended, resumed,

deleted, delayed, and moved in priority. See 2.3 Tasks, p.20 and the reference entry

for taskLib.

The wind kernel supplies semaphores as the basic task synchronization and

mutual-exclusion mechanism. There are several kinds of semaphores in wind,

specialized for different application needs: binary semaphores, counting

semaphores, mutual-exclusion semaphores, and POSIX semaphores. All of these

semaphore types are fast and efficient. In addition to being available to application

developers, they have also been used extensively in building higher-level facilities

in VxWorks.

For intertask communications, the wind kernel also supplies message queues,

pipes, sockets, and signals. The optional component VxMP provides shared-

memory objects as a communication mechanism for tasks executing on different

CPUs. For information on all these facilities, see 6. Shared-Memory Objects and

2.4 Intertask Communications, p.45. In addition, semaphores are described in the

semLib and semPxLib reference entries; message queues are described in the

msgQLib and mqPxLib reference entries; pipes are described in the pipeDrv
reference entry and 2.4.5 Pipes, p.79; sockets are described in the sockLib reference

entry and 2.4.6 Network Intertask Communication, p.80; and signals are described in

the sigLib reference entry and 2.4.7 Signals, p.81.

POSIX Interfaces

POSIX (the Portable Operating System Interface) is a set of standards under

development by representatives of the software community, working under an

ISO/IEEE charter. The purpose of this effort is to support application portability at

the source level across operating systems. This effort has yielded a set of interfaces

(POSIX standard 1003.1b, formerly called 1003.4) for real-time operating system
6

1

1
Overview
services. Using these interfaces makes it easier to move applications from one

operating system to another.

For a list of POSIX facilities, look under POSIX in the keyword index in the

VxWorks Reference Manual or in the Tornado Online Manuals. Nearly all POSIX

1003.1b interfaces are available in VxWorks, including POSIX interfaces for:

– asynchronous I/O

– semaphores

– message queues

– memory management

– queued signals

– scheduling

– clocks and timers

In addition, several interfaces from the traditional POSIX 1003.1 standard are also

supported.

I/O System

The VxWorks I/O system provides uniform device-independent access to many

kinds of devices. You can call seven basic I/O routines: creat(), remove(), open(),
close(), read(), write(), and ioctl(). Higher-level I/O routines (such as ANSI C-

compatible printf() and scanf() routines) are also provided.

VxWorks also provides a standard buffered I/O package (stdio) that includes ANSI

C-compatible routines such as fopen(), fclose(), fread(), fwrite(), getc(), and

putc(). These routines increase I/O performance in many cases.

The VxWorks I/O system also includes POSIX-compliant asynchronous I/O: a

library of routines that perform input and output operations concurrently with a

task’s other activities.

VxWorks includes device drivers for serial communication, disks, RAM disks,

SCSI tape devices, intertask communication devices (called pipes), and devices on

a network. Application developers can easily write additional drivers, if needed.

VxWorks allows dynamic installation and removal of drivers without rebooting

the system.

Internally, the VxWorks I/O system allows individual drivers complete control

over how the user requests are serviced. Drivers can easily implement different

protocols, unique device-specific routines, and even different file systems, without

interference from the I/O system itself. VxWorks also supplies several high-level
7

VxWorks 5.4
Programmer’s Guide
packages that make it easy for drivers to implement common device protocols and

file systems.

For a detailed discussion of the I/O system, see 3. I/O System. Relevant reference

entries include ioLib for basic I/O routines available to tasks, fioLib and ansiStdio
for various format-driven I/O routines, aioPxLib for asynchronous I/O, and

iosLib and tyLib for routines available to driver writers. Also see the reference

entries for the supplied drivers.

Local File Systems

VxWorks includes several local file systems for use with block devices (disks).

These devices all use a standard interface so that file systems can be freely mixed

with device drivers. Local file systems for SCSI tape devices and CD-ROM devices

are also included. The VxWorks I/O architecture makes it possible to have several

different file systems on a single VxWorks system, even at the same time.

MS-DOS Compatible File System: dosFs

VxWorks provides the dosFs file system, which is compatible with the MS-DOS file

system (for MS-DOS versions up to and including 6.2). The capabilities of dosFs

offer considerable flexibility appropriate to the varying demands of real-time

applications. Major features include:

■ A hierarchical arrangement of files and directories, allowing efficient

organization and permitting an arbitrary number of files to be created on a

volume.

■ The ability to specify contiguous file allocation on a per-file basis. Contiguous

files offer enhanced performance, while non-contiguous files result in more

efficient use of disk space.

■ Compatibility with widely available storage and retrieval media. Diskettes

created with dosFs and on MS-DOS personal computers can be freely

interchanged and hard drives created with MS-DOS can be read by dosFs if it

is correctly configured.

■ Optional case-sensitive file names, with name lengths not restricted to the MS-

DOS eight-character + extension convention.

Services for file-oriented device drivers using dosFs are implemented in dosFsLib.
8

1

1
Overview
RT-11 Compatible File System: rt11Fs

VxWorks provides the rt11Fs file system, which is compatible with that of the RT-

11 operating system. This file system has been used for real-time applications

because all files are contiguous. However, rt11Fs does have some drawbacks. It

lacks a hierarchical file organization that is particularly useful on large disks. Also,

the rigid contiguous allocation scheme may result in fragmented disk space. For

these reasons, dosFs is preferable to rt11Fs.

The VxWorks implementation of the RT-11 file system includes byte-addressable

random access (seeking) to all files. Each open file has a block buffer for optimized

reading and writing.

Services for file-oriented device drivers using rt11Fs are implemented in rt11FsLib.

Raw Disk File System: rawFs

VxWorks provides rawFs, a simple “raw disk file system” for use with disk devices.

rawFs treats the entire disk much like a single large file. The rawFs file system

permits reading and writing portions of the disk, specified by byte offset, and it

performs simple buffering. When only simple, low-level disk I/O is required,

rawFs has the advantages of size and speed.

Services for file-oriented device drivers using rawFs are implemented in

rawFsLib.

SCSI Sequential File System: tapeFs

VxWorks provides a file system for tape devices that do not use a standard file or

directory structure on tape. The tape volume is treated much like a raw device

where the entire volume is a large file. Any data organization on this large file is

the responsibility of a higher-level layer.

Services for SCSI sequential device drivers using tapeFs are implemented in

tapeFsLib.

cdRomFs

VxWorks provides the cdromFs file system which lets applications read any CD-

ROM that is formatted in accordance with ISO 9660 file system standards. After

initializing cdRomFs and mounting it on a CD-ROM block device, you can access

data on that device using the standard POSIX I/O calls.
9

VxWorks 5.4
Programmer’s Guide
Alternative File Systems

In VxWorks, the file system is not tied to the device or its driver. A device can be

associated with any file system. Alternatively, you can supply your own file

systems that use standard drivers in the same way, by following the same standard

interfaces between the file system, the driver, and the VxWorks I/O system.

Virtual Memory (Including VxVMI Option)

Virtual memory support is provided for boards with Memory Management Units

(MMU). Bundled virtual memory support provides the ability to mark buffers

noncacheable. This is useful for multiprocessor environments where memory is

shared across processors or where DMA transfers take place. For information on

bundled virtual memory support, see 7. Virtual Memory Interface and the reference

entries for vmBaseLib and cacheLib.

Unbundled virtual memory support is available as the optional component

VxVMI. VxVMI provides the ability to make text segments and the exception

vector table read-only, and includes a set of routines for developers to manage their

own virtual memory contexts. For information on VxVMI, see 7. Virtual Memory
Interface and the reference entry for vmLib.

Shared-Memory Objects (VxMP Option)

The following shared-memory objects (available with VxWorks as the optional

component, VxMP) are used for communication and synchronization between

tasks on different CPUs:

■ Shared semaphores can be used to synchronize tasks on different CPUs as well

as provide mutual exclusion to shared data structures.

■ Shared message queues allow tasks on multiple processors to exchange

messages.

■ Shared memory management is available to allocate common data buffers for

tasks on different processors.

For information on VxMP, see 6. Shared-Memory Objects and the reference entries

for smObjLib, smObjShow, semSmLib, msgQSmLib, smMemLib, and

smNameLib.
10

1

1
Overview
Target-Resident Tools

In the Tornado development system, a full suite of development tools reside and

execute on the host machine; see the Tornado User’s Guide for details. However, a

target-resident shell, symbol table, and module loader/unloader can be

configured into the VxWorks system if necessary, for example, to create a

dynamically configured run-time system.

For information on these target-resident tools, see 9. Target Shell and the reference

entries for shellLib, usrLib, dbgLib, loadLib, unldLib, and symLib.

C++ Development (including Wind Foundation Classes Option)

VxWorks supports C++ development. The GNU C++ compiler is shipped with

Tornado. The Tornado compiler provides support for multi-thread-safe exception

handling. Tornado includes a new version of the iostream library and the SGI

implementation of the Standard Template Library. The standard Tornado

interactive development tools such as the debugger, the shell, and the incremental

loader include C++ support.

In addition, you can order the Wind Foundation Classes optional component to

add the following libraries:

– VxWorks Wrapper Class library

– Tools.h++ library from Rogue Wave

For more information on these libraries, see 5. C++ Development.

Utility Libraries

VxWorks supplies many subroutines of general utility to application developers.

These routines are organized as a set of subroutine libraries, which are described

below. We urge you to use these libraries wherever possible. Using library utilities

reduces both development time and memory requirements for the application.

Interrupt Handling Support

VxWorks supplies routines for handling hardware interrupts and software traps

without having to resort to assembly language coding. Routines are provided to

connect C routines to hardware interrupt vectors, and to manipulate the processor

interrupt level.
11

VxWorks 5.4
Programmer’s Guide
For information on interrupt handling, see the intLib and intArchLib reference

entries. Also see 2. Basic OS for information about the context where interrupt-

level code runs and for special restrictions that apply to interrupt service routines.

Watchdog Timers

A watchdog facility allows callers to schedule execution of their own routines after

specified time delays. As soon as the specified number of ticks have elapsed, the

specified “timeout” routine is called at the interrupt level of the system clock,

unless the watchdog is canceled first. This mechanism is entirely different from the

kernel’s task delay facility. For information on watchdog timers, see 2.6 Watchdog
Timers, p.90 and the reference entry for wdLib.

Message Logging

A simple message logging facility allows applications to send error or status

messages to a logging task, which then formats and outputs the messages to a

system-wide logging device (such as the system console, disk, or accessible

memory). The message logging facility can be used from either interrupt level or

task level. For information on this facility, see 3.5.3 Message Logging, p.109 and the

reference entry for logLib.

Memory Allocation

VxWorks supplies a memory management facility useful for dynamically

allocating, freeing, and reallocating blocks of memory from a memory pool. Blocks

of arbitrary size can be allocated, and you can specify the size of the memory pool.

This memory scheme is built on a much more general mechanism that allows

VxWorks to manage several separate memory pools.

String Formatting and Scanning

VxWorks includes a complete set of ANSI C library string formatting and scanning

subroutines that implement printf()/scanf() format-driven encoding and

decoding and associated routines. See the reference entries for fioLib and

ansiStdio.

Linear and Ring Buffer Manipulations

The library bLib contains buffer manipulation routines such as copying, filling,

comparing, and so on, that have been optimized for speed. The library rngLib
provides a set of general ring buffer routines that manage first-in-first-out (FIFO)

circular buffers. Additionally, these ring buffers have the property that a single
12

1

1
Overview
writer and a single reader can access a ring buffer “simultaneously” without being

required to interlock their accesses explicitly.

Linked-List Manipulations

The library lstLib contains a complete set of routines for creating and

manipulating doubly-linked lists.

ANSI C Libraries

VxWorks provides all C libraries specified by ANSI X3.159-1989. The ANSI C

specification includes the following libraries: assert, ctype, errno, float, limits,

locale, math, setjmp, signal, stdarg, stdio, stddef, stdlib, string, and time.

The header files float.h, limits.h, errno.h, and stddef.h provide ANSI-specified

definitions and declarations. The more commonly used libraries are described in

the following reference entries:

Performance Evaluation

To understand and optimize the performance of a real-time system, it can be useful

to time some of the VxWorks or application routines. VxWorks provides various

timing facilities to help with this task.

The VxWorks execution timer can time any subroutine or group of subroutines.

Because the system clock is too slow to provide the resolution necessary to time

especially fast routines, the timer can also repeatedly execute a group of routines

until the time of a single iteration is known to a reasonable accuracy. For

information on the execution timer, see the timexLib reference entry.

VxWorks also provides the spy utility, which provides CPU utilization information

for each task: the CPU time consumed, the time spent at interrupt level, and the

amount of idle time. Time is displayed in ticks and in percentages. For information

on this utility, see the spyLib reference entry.2

ansiCtype routines for character manipulation

ansiMath trigonometric, exponential, and logarithmic routines

ansiSetjmp routines for implementing a non-local goto

ansiStdarg routines for traversing a variable-length argument list

ansiStdio routines for manipulating streams for input/output

ansiStdlib a variety of routines, including those for type translation,

memory allocation, and random number generation

sigLib signal-manipulation routines
13

VxWorks 5.4
Programmer’s Guide
Even more powerful monitoring of the VxWorks system is available using the

optional product WindView; for more information, see the WindView User’s Guide.

Target Agent

The target agent follows the WDB (Wind DeBug) protocol, allowing a VxWorks

target to be connected to the Tornado development tools. In the target agent’s

default configuration, shown in Figure 1-1, the agent runs as the VxWorks task

tWdbTask. The Tornado target server sends debugging requests to the target

agent. The debugging requests often result in the target agent controlling or

manipulating other tasks in the system.

By default, the target server and agent communicate using the network. However,

you can use alternative communication paths. For more information on the default

configuration or alternative configurations of the target agent, see Tornado Getting
Started. For information on the Tornado target server, see the Tornado User’s Guide:
Overview.

2. You can also use this utility through the Tornado browser; see the Tornado User’s Guide:
Browser for details.

Figure 1-1 Interaction Between Target Server and Target Agent

HOST TARGET

VxWorks OS

Communications
Driver

tWdbTask

tUser1 tUser2Target Server

(Target Agent)

(Ethernet, SLIP, etc.)NETWORK
14

1

1
Overview
Board Support Packages (BSPs)

Two target-specific libraries, sysLib and sysALib, are included with each port of

VxWorks. These libraries are the heart of VxWorks portability; they provide an

identical software interface to the hardware functions of all boards. They include

facilities for hardware initialization, interrupt handling and generation, hardware

clock and timer management, mapping of local and bus memory spaces, memory

sizing, and so on.

Each BSP also includes a boot ROM or other boot mechanism. Many of these

import the run-time image from the development host. For information on boot

ROMs and other booting mechanisms see Tornado Getting Started and 8.9 Creating
Bootable Applications, p.364.

For information on target-specific libraries, see 8.2 The Board Support Package (BSP),
p.310 and the target-specific reference entries for your board type.

VxWorks Simulator

VxSim, the VxWorks simulator, is a program that simulates a VxWorks target for

use as a prototyping and testing environment. The integrated version of the

simulator allows a single simulator to be run. The VxSim optional product adds

networking facilities, allowing the simulator to obtain an Internet address and

communicate with the host (or other nodes on the network) using the VxWorks

networking tools.

VxSim is essentially a port of VxWorks. In most regards, its capabilities are

identical to a true VxWorks system running on remote target hardware. You can

link in an application and rebuild the VxWorks image exactly the same way as in

any other VxWorks cross-development environment. All Tornado development

tools can be used with VxSim.

The difference between VxSim and a remote VxWorks target environment is that

in VxSim, the image executes on the host machine itself as a host process. There is

no emulation of instructions, because the code is in the host’s own CPU

architecture. Because target hardware interaction is not possible, device-driver

development may not be suitable for simulation. However, the VxWorks scheduler

is implemented in the VxSim process, maintaining true tasking interaction with

respect to priorities and preemption. This means that any application that is

written in a portable style and with minimal hardware interaction should be

portable between VxSim and VxWorks.

For more information on VxSim, see H. VxSim.
15

VxWorks 5.4
Programmer’s Guide
1.5 Customer Services

A full range of support services is available from Wind River Systems to ensure

that you have the opportunity to make optimal use of the extensive features of

VxWorks.

This section summarizes the major services available. For more detailed

information, consult the Tornado User’s Guide: Customer Service.

Training

In the United States, Wind River Systems holds regularly scheduled classes on

Tornado and VxWorks. Customers can also arrange to have Tornado classes held

at their facility. The easiest way to learn about WRS training services, schedules,

and prices is through the World Wide Web. Point your site’s Web browser at the

following URL:

http://www.wrs.com/training

You can contact the Training Department at:

Outside of the United States, call your local distributor or nearest Wind River

Systems office for training information. See the back cover of this manual for a list

of Wind River Systems offices.

Customer Support

Direct contact with a staff of software engineers experienced in VxWorks is

available through the Wind River Systems Customer Support program. For

information on how to contact WRS Customer Support, see the copyright page at

the front of this manual.

Phone: 510/749-2148

800/545–WIND

Fax: 510/749–2378

E-mail: training@wrs.com
16

1

1
Overview
1.6 Documentation Conventions

Typographical Conventions

VxWorks documentation uses the conventions shown in Table 1-1 to differentiate

various elements. Parentheses are always included to indicate a subroutine name,

as in printf().

Cross-References

Cross-references in this guide to a reference entry for a tool or module refer to an

entry in the VxWorks Reference Manual (for target libraries or subroutines) or to the

reference appendix in the Tornado User’s Guide (for host tools). These references are

also provided in the Tornado Online Manuals. For more information about how to

access online documentation, see the Tornado User’s Guide: Documentation Guide.

Table 1-1 Font Usage for Special Terms

Term Example

files, pathnames /etc/hosts

libraries, drivers memLib, nfsDrv

host tools more, chkdsk

subroutines semTake()

boot commands p

code display main ();

keyboard input make CPU=MC68040 ...

display output value = 0

user-supplied parameters name

constants INCLUDE_NFS

C keywords, cpp directives #define

named key on keyboard RETURN

control characters CTRL+C

lower-case acronyms fd
17

VxWorks 5.4
Programmer’s Guide
Other references from one book to another are always at the chapter level, and take

the form Book Title: Chapter Name.

Pathnames

The top-level Tornado directory structure includes three major directories (see the

Tornado User’s Guide: Directories and Files). Although all VxWorks files reside in the

target directory, in order to maintain consistency with other Tornado manuals this

manual uses pathnames of the following form: installDir/target. For example, if

you install Tornado in /group/wind on a UNIX host or in C:\Tornado on a

Windows host, the full pathname for the file shown as

installDir/target/config/all/configAll.h is

/group/wind/target/config/all/configAll.h (which is also

$WIND_BASE/target/config/all/configAll.h) on UNIX or

C:\Tornado\target\config\all\configAll.h on Windows.

NOTE: In this manual, forward slashes are used as pathname delimiters for both

UNIX and Windows file names since this is the default for VxWorks.
18

2
Basic OS
2.1 Introduction

Modern real-time systems are based on the complementary concepts of

multitasking and intertask communications. A multitasking environment allows a

real-time application to be constructed as a set of independent tasks, each with its

own thread of execution and set of system resources. The intertask communication

facilities allow these tasks to synchronize and communicate in order to coordinate

their activity. In VxWorks, the intertask communication facilities range from fast

semaphores to message queues and pipes to network-transparent sockets.

Another key facility in real-time systems is hardware interrupt handling, because

interrupts are the usual mechanism to inform a system of external events. To get

the fastest possible response to interrupts, interrupt service routines (ISRs) in
VxWorks run in a special context of their own, outside of any task’s context.

This chapter discusses the multitasking kernel, tasking facilities, intertask

communication, and interrupt handling facilities, which are at the heart of the

VxWorks run-time environment.
19

VxWorks 5.4
Programmer’s Guide
2.2 Wind Features and POSIX Features

The POSIX standard for real-time extensions (1003.1b) specifies a set of interfaces

to kernel facilities. To improve application portability, the VxWorks kernel, wind,

includes both POSIX interfaces and interfaces designed specifically for VxWorks.

This manual (especially in this chapter) uses the qualifier “Wind” to identify

facilities designed expressly for use with the VxWorks wind kernel. For example,

you can find a discussion of Wind semaphores contrasted to POSIX semaphores in

Comparison of POSIX and Wind Semaphores, p.59.

2.3 Tasks

It is often essential to organize applications into independent, though cooperating,

programs. Each of these programs, while executing, is called a task. In VxWorks,

tasks have immediate, shared access to most system resources, while also

maintaining enough separate context to maintain individual threads of control.

2.3.1 Multitasking

Multitasking provides the fundamental mechanism for an application to control

and react to multiple, discrete real-world events. The VxWorks real-time kernel,

wind, provides the basic multitasking environment. Multitasking creates the

appearance of many threads of execution running concurrently when, in fact, the

kernel interleaves their execution on the basis of a scheduling algorithm. Each

apparently independent program is called a task. Each task has its own context,
which is the CPU environment and system resources that the task sees each time it

is scheduled to run by the kernel. On a context switch, a task’s context is saved in

the task control block (TCB). A task’s context includes:

– a thread of execution, that is, the task’s program counter

– the CPU registers and (optionally) floating-point registers

– a stack for dynamic variables and function calls

– I/O assignments for standard input, output, and error

– a delay timer

– a timeslice timer

– kernel control structures
20

2

2
Basic OS
– signal handlers

– debugging and performance monitoring values

In VxWorks, one important resource that is not part of a task’s context is memory

address space: all code executes in a single common address space. Giving each

task its own memory space requires virtual-to-physical memory mapping, which

is available only with the optional product VxVMI; for more information, see

7. Virtual Memory Interface.

2.3.2 Task State Transition

The kernel maintains the current state of each task in the system. A task changes

from one state to another as the result of kernel function calls made by the

application. When created, tasks enter the suspended state. Activation is necessary

for a created task to enter the ready state. The activation phase is extremely fast,

enabling applications to pre-create tasks and activate them in a timely manner. An

alternative is the spawning primitive, which allows a task to be created and

activated with a single function. Tasks can be deleted from any state.

The wind kernel states are shown in the state transition diagram in Figure 2-1, and

a summary of the corresponding state symbols you will see when working with

Tornado development tools is shown in Table 2-1.

Table 2-1 Task State Transitions

State Symbol Description

READY The state of a task that is not waiting for any resource other than the CPU.

PEND The state of a task that is blocked due to the unavailability of some resource.

DELAY The state of a task that is asleep for some duration.

SUSPEND The state of a task that is unavailable for execution. This state is used primarily for

debugging. Suspension does not inhibit state transition, only task execution. Thus

pended-suspended tasks can still unblock and delayed-suspended tasks can still awaken.

DELAY + S The state of a task that is both delayed and suspended.

PEND + S The state of a task that is both pended and suspended.

PEND + T The state of a task that is pended with a timeout value.

PEND + S + T The state of a task that is both pended with a timeout value and suspended.

state + I The state of task specified by state, plus an inherited priority.
21

VxWorks 5.4
Programmer’s Guide
2.3.3 Wind Task Scheduling

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks.

Priority-based preemptive scheduling is the default algorithm in wind, but you can

select round-robin scheduling for your applications as well. The routines listed in

Table 2-2 control task scheduling.

Figure 2-1 Task State Transitions

Table 2-2 Task Scheduler Control Routines

Call Description

kernelTimeSlice() Control round-robin scheduling.

taskPrioritySet() Change the priority of a task.

taskLock() Disable task rescheduling.

taskUnlock() Enable task rescheduling.

suspended

pended

taskInit()

The highest-priority ready task is executing.

ready delayed

ready pended
ready delayed
ready suspended

pended ready
pended suspended
delayed ready
delayed suspended

suspended ready
suspended pended
suspended delayed

semTake() / msgQReceive()
taskDelay()
taskSuspend()
semGive() / msgQSend()
taskSuspend()
expired delay

taskSuspend()
taskResume() / taskActivate()
taskResume()
taskResume()
22

2

2
Basic OS
Preemptive Priority Scheduling

With a preemptive priority-based scheduler, each task has a priority and the kernel

ensures that the CPU is allocated to the highest priority task that is ready to run.

This scheduling method is preemptive in that if a task that has higher priority than

the current task becomes ready to run, the kernel immediately saves the current

task’s context and switches to the context of the higher priority task. In Figure 2-2,

task t1 is preempted by higher-priority task t2, which in turn is preempted by t3.

When t3 completes, t2 continues executing. When t2 completes execution, t1
continues executing.

The wind kernel has 256 priority levels, numbered 0 through 255. Priority 0 is the

highest and priority 255 is the lowest. Tasks are assigned a priority when created;

however, while executing, a task can change its priority using taskPrioritySet().
The ability to change task priorities dynamically allows applications to track

precedence changes in the real world.

Round-Robin Scheduling

Preemptive priority scheduling can be augmented with round-robin scheduling. A

round-robin scheduling algorithm attempts to share the CPU fairly among all

ready tasks of the same priority. Without round-robin scheduling, when multiple

tasks of equal priority must share the processor, a single task can usurp the

processor by never blocking, thus never giving other equal-priority tasks a chance

to run.

Figure 2-2 Priority Preemption

t1

KEY: = preemption

time

HIGH

LOW

pr
io

rit
y

t3

t2

= task completion

t1

t2
23

VxWorks 5.4
Programmer’s Guide
Round-robin scheduling achieves fair allocation of the CPU to tasks of the same

priority by an approach known as time slicing. Each task of a group of tasks

executes for a defined interval, or time slice; then another task executes for an equal

interval, in rotation. The allocation is fair in that no task of a priority group gets a

second slice of time before the other tasks of a group are given a slice.

Round-robin scheduling can be enabled with the routine kernelTimeSlice(), which

takes a parameter for a time slice, or interval. This interval is the amount of time

each task is allowed to run before relinquishing the processor to another equal-

priority task.

More precisely, a run-time counter is kept for each task and incremented on every

clock tick. When the specified time-slice interval is completed, the counter is

cleared and the task is placed at the tail of the queue of tasks at its priority. New

tasks joining a priority group are placed at the tail of the group with a run-time

counter initialized to zero.

If a task is preempted by a higher priority task during its interval, its run-time

count is saved and then restored when the task is again eligible for execution.

Figure 2-3 shows round-robin scheduling for three tasks of the same priority: t1, t2,

and t3. Task t2 is preempted by a higher priority task t4 but resumes at the count

where it left off when t4 is finished.

Figure 2-3 Round-Robin Scheduling

t1

KEY: = preemption

time

HIGH

LOW

pr
io

rit
y

t2 t3 t1

t4

t2 t2

= task completion

time slice

t3
24

2

2
Basic OS
Preemption Locks

The wind scheduler can be explicitly disabled and enabled on a per-task basis with

the routines taskLock() and taskUnlock(). When a task disables the scheduler by

calling taskLock(), no priority-based preemption can take place while that task is

running.

However, if the task explicitly blocks or suspends, the scheduler selects the next

highest-priority eligible task to execute. When the preemption-locked task

unblocks and begins running again, preemption is again disabled.

Note that preemption locks prevent task context switching but do not lock out

interrupt handling.

Preemption locks can be used to achieve mutual exclusion; however, keep the

duration of preemption locking to a minimum. For more information, see

2.4.2 Mutual Exclusion, p.46.

2.3.4 Tasking Control

The following sections give an overview of the basic VxWorks tasking routines,

which are found in the VxWorks library taskLib. These routines provide the means

for task creation, control, and information. See the reference entry for taskLib for

further discussion. For interactive use, you can control VxWorks tasks from the

host-resident shell; see the Tornado User’s Guide: Shell.

Task Creation and Activation

The routines listed in Table 2-3 are used to create tasks.

Table 2-3 Task Creation Routines

Call Description

taskSpawn() Spawn (create and activate) a new task.

taskInit() Initialize a new task.

taskActivate() Activate an initialized task.
25

VxWorks 5.4
Programmer’s Guide
The arguments to taskSpawn() are the new task’s name (an ASCII string), priority,

an “options” word, stack size, main routine address, and 10 arguments to be

passed to the main routine as startup parameters:

id = taskSpawn (name, priority, options, stacksize, main, arg1, …arg10);

The taskSpawn() routine creates the new task context, which includes allocating

the stack and setting up the task environment to call the main routine (an ordinary

subroutine) with the specified arguments. The new task begins execution at the

entry to the specified routine.

The taskSpawn() routine embodies the lower-level steps of allocation,

initialization, and activation. The initialization and activation functions are

provided by the routines taskInit() and taskActivate(); however, we recommend

you use these routines only when you need greater control over allocation or

activation.

Task Names and IDs

When a task is spawned, you can specify an ASCII string of any length to be the

task name. VxWorks returns a task ID, which is a 4-byte handle to the task’s data

structures. Most VxWorks task routines take a task ID as the argument specifying

a task. VxWorks uses a convention that a task ID of 0 (zero) always implies the

calling task.

A task name should not conflict with any existing task name. Furthermore, to use

the Tornado development tools to their best advantage, task names should not

conflict with globally visible routine or variable names. To avoid name conflicts,

VxWorks uses a convention of prefixing all task names started from the target with

the letter t and task names started from the host with the letter u.

You may not want to name some or all of your application’s tasks. If a NULL

pointer is supplied for the name argument of taskSpawn(), then VxWorks assigns

a unique name. The name is of the form tN, where N is a decimal integer that

increases by one for each unnamed task that is spawned.

The taskLib routines listed in Table 2-4 manage task IDs and names.

NOTE: In the shell, task names are resolved to their corresponding task IDs to

simplify interaction with existing tasks; see the Tornado User’s Guide: Shell.
26

2

2
Basic OS
Task Options

When a task is spawned, an option parameter is specified by performing a logical

OR operation on the desired options, listed in the following table. Note that

VX_FP_TASK must be specified if the task performs any floating-point operations.

To create a task that includes floating-point operations, use:

tid = taskSpawn ("tMyTask", 90, VX_FP_TASK, 20000, myFunc, 2387, 0, 0,
0, 0, 0, 0, 0, 0, 0);

Task options can also be examined and altered after a task is spawned by means of

the routines listed in Table 2-6. Currently, only the VX_UNBREAKABLE option can

be altered.

Table 2-4 Task Name and ID Routines

Call Description

taskName() Get the task name associated with a task ID.

taskNameToId() Look up the task ID associated with a task name.

taskIdSelf() Get the calling task’s ID.

taskIdVerify() Verify the existence of a specified task.

Table 2-5 Task Options

Name Hex Value Description

VX_FP_TASK 0x8 Execute with the floating-point coprocessor.

VX_NO_STACK_FILL 0x100 Do not fill stack with 0xee.

VX_PRIVATE_ENV 0x80 Execute task with a private environment.

VX_UNBREAKABLE 0x2 Disable breakpoints for the task.

Table 2-6 Task Option Routines

Call Description

taskOptionsGet() Examine task options.

taskOptionsSet() Set task options.
27

VxWorks 5.4
Programmer’s Guide
Task Information

The routines listed in Table 2-7 get information about a task by taking a snapshot

of a task’s context when called. The state of a task is dynamic, and the information

may not be current unless the task is known to be dormant (that is, suspended).

Task Deletion and Deletion Safety

Tasks can be dynamically deleted from the system. VxWorks includes the routines

listed in Table 2-8 to delete tasks and protect tasks from unexpected deletion.

Tasks implicitly call exit() if the entry routine specified during task creation

returns. Alternatively, a task can explicitly call exit() at any point to kill itself. A

task can kill another task by calling taskDelete().

When a task is deleted, no other task is notified of this deletion. The routines

taskSafe() and taskUnsafe() address problems that stem from unexpected

deletion of tasks. The routine taskSafe() protects a task from deletion by other

tasks. This protection is often needed when a task executes in a critical region or

engages a critical resource.

Table 2-7 Task Information Routines

Call Description

taskIdListGet() Fill an array with the IDs of all active tasks.

taskInfoGet() Get information about a task.

taskPriorityGet() Examine the priority of a task.

taskRegsGet() Examine a task’s registers.

taskRegsSet() Set a task’s registers.

taskIsSuspended() Check if a task is suspended.

taskIsReady() Check if a task is ready to run.

taskTcb() Get a pointer to task’s control block.

! WARNING: Make sure that tasks are not deleted at inappropriate times: a task

must release all shared resources it holds before an application deletes the task.
28

2

2
Basic OS
For example, a task might take a semaphore for exclusive access to some data

structure. While executing inside the critical region, the task might be deleted by

another task. Because the task is unable to complete the critical region, the data

structure might be left in a corrupt or inconsistent state. Furthermore, because the

semaphore can never be released by the task, the critical resource is now

unavailable for use by any other task and is essentially frozen.

Using taskSafe() to protect the task that took the semaphore prevents such an

outcome. Any task that tries to delete a task protected with taskSafe() is blocked.

When finished with its critical resource, the protected task can make itself available

for deletion by calling taskUnsafe(), which readies any deleting task. To support

nested deletion-safe regions, a count is kept of the number of times taskSafe() and

taskUnsafe() are called. Deletion is allowed only when the count is zero, that is,

there are as many “unsafes” as “safes.” Protection operates only on the calling task.

A task cannot make another task safe or unsafe from deletion.

The following code fragment shows how to use taskSafe() and taskUnsafe() to
protect a critical region of code:

taskSafe ();
semTake (semId, WAIT_FOREVER); /* Block until semaphore available */
.
. critical region
.
semGive (semId); /* Release semaphore */
taskUnsafe ();

Deletion safety is often coupled closely with mutual exclusion, as in this example.

For convenience and efficiency, a special kind of semaphore, the mutual-exclusion
semaphore, offers an option for deletion safety. For more information, see Mutual-
Exclusion Semaphores, p.52.

Table 2-8 Task-Deletion Routines

Call Description

exit() Terminate the calling task and free memory (task stacks and task

control blocks only).*

taskDelete() Terminate a specified task and free memory (task stacks and task

control blocks only).*

taskSafe() Protect the calling task from deletion.

taskUnsafe() Undo a taskSafe() (make the calling task available for deletion).

* Memory that is allocated by the task during its execution is not freed when the task

is terminated.
29

VxWorks 5.4
Programmer’s Guide
Task Control

The routines listed in Table 2-9 provide direct control over a task’s execution.

VxWorks debugging facilities require routines for suspending and resuming a

task. They are used to freeze a task’s state for examination.

Tasks may require restarting during execution in response to some catastrophic

error. The restart mechanism, taskRestart(), recreates a task with the original

creation arguments. The Tornado shell also uses this mechanism to restart itself in

response to a task-abort request; for information, see the Tornado User’s Guide: Shell.

Delay operations provide a simple mechanism for a task to sleep for a fixed

duration. Task delays are often used for polling applications. For example, to delay

a task for half a second without making assumptions about the clock rate, call:

taskDelay (sysClkRateGet () / 2);

The routine sysClkRateGet() returns the speed of the system clock in ticks per

second. Instead of taskDelay(), you can use the POSIX routine nanosleep() to
specify a delay directly in time units. Only the units are different; the resolution of

both delay routines is the same, and depends on the system clock. For details, see

2.7 POSIX Clocks and Timers, p.92.

As a side effect, taskDelay() moves the calling task to the end of the ready queue

for tasks of the same priority. In particular, you can yield the CPU to any other

tasks of the same priority by “delaying” for zero clock ticks:

taskDelay (NO_WAIT); /* allow other tasks of same priority to run */

A “delay” of zero duration is only possible with taskDelay(); nanosleep()
considers it an error.

Table 2-9 Task Control Routines

Call Description

taskSuspend() Suspend a task.

taskResume() Resume a task.

taskRestart() Restart a task.

taskDelay() Delay a task; delay units are ticks.

nanosleep() Delay a task; delay units are nanoseconds.
30

2

2
Basic OS

)

2.3.5 Tasking Extensions

To allow additional task-related facilities to be added to the system without

modifying the kernel, wind provides task create, switch, and delete hooks, which allow

additional routines to be invoked whenever a task is created, a task context switch

occurs, or a task is deleted. There are spare fields in the task control block (TCB)

available for application extension of a task’s context. These hook routines are

listed in Table 2-10; for more information, see the reference entry for taskHookLib.

User-installed switch hooks are called within the kernel context. Thus, switch

hooks do not have access to all VxWorks facilities. Table 2-11 summarizes the

routines that can be called from a task switch hook; in general, any routine that

does not involve the kernel can be called.

Table 2-10 Task Create, Switch, and Delete Hooks

Call Description

taskCreateHookAdd() Add a routine to be called at every task create.

taskCreateHookDelete() Delete a previously added task create routine.

taskSwitchHookAdd() Add a routine to be called at every task switch.

taskSwitchHookDelete() Delete a previously added task switch routine.

taskDeleteHookAdd() Add a routine to be called at every task delete.

taskDeleteHookDelete() Delete a previously added task delete routine.

Table 2-11 Routines that Can Be Called by Task Switch Hooks

Library Routines

bLib All routines

fppArchLib fppSave(), fppRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet(), intLock(), intUnlock()

lstLib All routines except lstFree()

mathALib All are callable if fppSave()/fppRestore() are used

rngLib All routines except rngCreate() and roundlet()

taskLib taskIdVerify(), taskIdDefault(), taskIsReady(), taskIsSuspended(), taskTcb(

vxLib vxTas()
31

VxWorks 5.4
Programmer’s Guide
2.3.6 POSIX Scheduling Interface

The POSIX 1003.1b scheduling routines, provided by schedPxLib, are shown in

Table 2-12. These routines let you use a portable interface to get and set task

priority, get the scheduling policy, get the maximum and minimum priority for

tasks, and if round-robin scheduling is in effect, get the length of a time slice. To

understand how to use the routines in this alternative interface, be aware of the

minor differences between the POSIX and Wind methods of scheduling.

Differences Between POSIX and Wind Scheduling

POSIX and Wind scheduling routines differ in the following ways:

■ POSIX scheduling is based on processes, while Wind scheduling is based on

tasks. Tasks and processes differ in several ways. Most notably, tasks can

address memory directly while processes cannot; and processes inherit only

some specific attributes from their parent process, while tasks operate in

exactly the same environment as the parent task.

Tasks and processes are alike in that they can be scheduled independently.

■ VxWorks documentation uses the term preemptive priority scheduling, while

the POSIX standard uses the term FIFO. This difference is purely one of

nomenclature: both describe the same priority-based policy.

■ The POSIX scheduling algorithms are applied on a process-by-process basis.

The Wind methodology, on the other hand, applies scheduling algorithms on

a system-wide basis—either all tasks use a round-robin scheme, or all use a

preemptive priority scheme.

■ The POSIX priority numbering scheme is the inverse of the Wind scheme. In

POSIX, the higher the number, the higher the priority; in the Wind scheme, the

lower the number, the higher the priority, where 0 is the highest priority.

Accordingly, the priority numbers used with the POSIX scheduling library

(schedPxLib) do not match those used and reported by all other components

of VxWorks. You can override this default by setting the global variable

posixPriorityNumbering to FALSE. If you do this, the Wind numbering

scheme (smaller number = higher priority) is used by schedPxLib, and its

priority numbers match those used by the other components of VxWorks.

The POSIX scheduling routines are included when INCLUDE_POSIX_SCHED is

selected for inclusion in the project facility VxWorks view; see Tornado User’s Guide:
Projects for information on configuring VxWorks.
32

2

2
Basic OS
Getting and Setting POSIX Task Priorities

The routines sched_setparam() and sched_getparam() set and get a task’s priority,

respectively. Both routines take a task ID and a sched_param structure (defined in

installDir/target/h/sched.h). A task ID of 0 sets or gets the priority for the calling

task. The sched_priority member of the sched_param structure specifies the new

task priority when sched_setparam() is called. The routine sched_getparam() fills

in the sched_priority with the specified task’s current priority.

Example 2-1 Getting and Setting POSIX Task Priorities

/* This example sets the calling task’s priority to 150, then verifies
* that priority. To run from the shell, spawn as a task:

 * -> sp priorityTest
*/

/* includes */
#include "vxWorks.h"
#include "sched.h"

/* defines */
#define PX_NEW_PRIORITY 150

STATUS priorityTest (void)
{
struct sched_param myParam;

/* initialize param structure to desired priority */

Table 2-12 POSIX Scheduling Calls

Call Description

sched_setparam() Set a task’s priority.

sched_getparam() Get the scheduling parameters for a specified task.

sched_setscheduler() Set scheduling policy and parameters for a task.

sched_yield() Relinquish the CPU.

sched_getscheduler() Get the current scheduling policy.

sched_get_priority_max() Get the maximum priority.

sched_get_priority_min() Get the minimum priority.

sched_rr_get_interval() If round-robin scheduling, get the time slice length.
33

VxWorks 5.4
Programmer’s Guide
myParam.sched_priority = PX_NEW_PRIORITY;
if (sched_setparam (0, &myParam) == ERROR)

{
printf ("error setting priority\n");
return (ERROR);
}

/* demonstrate getting a task priority as a sanity check; ensure it
 * is the same value that we just set.
 */

if (sched_getparam (0, &myParam) == ERROR)
{
printf ("error getting priority\n");
return (ERROR);
}

if (myParam.sched_priority != PX_NEW_PRIORITY)
{
printf ("error - priorities do not match\n");
return (ERROR);
}

else
printf ("task priority = %d\n", myParam.sched_priority);

return (OK);
}

The routine sched_setscheduler() is designed to set both scheduling policy and

priority for a single POSIX process (which corresponds in most other cases to a

single Wind task). In the VxWorks kernel, sched_setscheduler() controls only task

priority, because the kernel does not allow tasks to have scheduling policies that

differ from one another. If its policy specification matches the current system-wide

scheduling policy, sched_setscheduler() sets only the priority, thus acting like

sched_setparam(). If its policy specification does not match the current one,

sched_setscheduler() returns an error.

The only way to change the scheduling policy is to change it for all tasks; there is

no POSIX routine for this purpose. To set a system-wide scheduling policy, use the

Wind function kernelTimeSlice() described in Round-Robin Scheduling, p.23.

Getting and Displaying the Current Scheduling Policy

The POSIX routine sched_getscheduler() returns the current scheduling policy.

There are two valid scheduling policies in VxWorks: preemptive priority

scheduling (in POSIX terms, SCHED_FIFO) and round-robin scheduling by

priority (SCHED_RR).
34

2

2
Basic OS
Example 2-2 Getting POSIX Scheduling Policy

/* This example gets the scheduling policy and displays it. */

/* includes */

#include "vxWorks.h"
#include "sched.h"

STATUS schedulerTest (void)
{
int policy;

if ((policy = sched_getscheduler (0)) == ERROR)
{
printf ("getting scheduler failed\n");
return (ERROR);
}

/* sched_getscheduler returns either SCHED_FIFO or SCHED_RR */

if (policy == SCHED_FIFO)
printf ("current scheduling policy is FIFO\n");

else
printf ("current scheduling policy is round robin\n");

return (OK);
}

Getting Scheduling Parameters: Priority Limits and Time Slice

The routines sched_get_priority_max() and sched_get_priority_min() return the

maximum and minimum possible POSIX priority values, respectively.

If round-robin scheduling is enabled, you can use sched_rr_get_interval() to
determine the length of the current time-slice interval. This routine takes as an

argument a pointer to a timespec structure (defined in time.h), and writes the

number of seconds and nanoseconds per time slice to the appropriate elements of

that structure.

Example 2-3 Getting the POSIX Round-Robin Time Slice

/* The following example checks that round-robin scheduling is enabled,
* gets the length of the time slice, and then displays the time slice.
*/

/* includes */

#include "vxWorks.h"
#include "sched.h"
35

VxWorks 5.4
Programmer’s Guide
STATUS rrgetintervalTest (void)
{
struct timespec slice;

/* turn on round robin */

kernelTimeSlice (30);

if (sched_rr_get_interval (0, &slice) == ERROR)
{
printf ("get-interval test failed\n");
return (ERROR);
}

printf ("time slice is %l seconds and %l nanoseconds\n",
slice.tv_sec, slice.tv_nsec);

return (OK);
}

2.3.7 Task Error Status: errno

By convention, C library functions set a single global integer variable errno to an

appropriate error number whenever the function encounters an error. This

convention is specified as part of the ANSI C standard.

Layered Definitions of errno

In VxWorks, errno is simultaneously defined in two different ways. There is, as in

ANSI C, an underlying global variable called errno, which you can display by

name using Tornado development tools; see the Tornado User’s Guide. However,

errno is also defined as a macro in errno.h; this is the definition visible to all of

VxWorks except for one function. The macro is defined as a call to a function

__errno() that returns the address of the global variable, errno (as you might

guess, this is the single function that does not itself use the macro definition for

errno). This subterfuge yields a useful feature: because __errno() is a function, you

can place breakpoints on it while debugging, to determine where a particular error

occurs. Nevertheless, because the result of the macro errno is the address of the

global variable errno, C programs can set the value of errno in the standard way:

errno = someErrorNumber;

As with any other errno implementation, take care not to have a local variable of

the same name.
36

2

2
Basic OS
A Separate errno Value for Each Task

In VxWorks, the underlying global errno is a single predefined global variable that

can be referenced directly by application code that is linked with VxWorks (either

statically on the host or dynamically at load time). However, for errno to be useful

in the multitasking environment of VxWorks, each task must see its own version

of errno. Therefore errno is saved and restored by the kernel as part of each task’s

context every time a context switch occurs. Similarly, interrupt service routines
(ISRs) see their own versions of errno.

This is accomplished by saving and restoring errno on the interrupt stack as part

of the interrupt enter and exit code provided automatically by the kernel (see

2.5.1 Connecting Application Code to Interrupts, p.85). Thus, regardless of the

VxWorks context, an error code can be stored or consulted with direct

manipulation of the global variable errno.

Error Return Convention

Almost all VxWorks functions follow a convention that indicates simple success or

failure of their operation by the actual return value of the function. Many functions

return only the status values OK (0) or ERROR (-1). Some functions that normally

return a nonnegative number (for example, open() returns a file descriptor) also

return ERROR to indicate an error. Functions that return a pointer usually return

NULL (0) to indicate an error. In most cases, a function returning such an error

indication also sets errno to the specific error code.

The global variable errno is never cleared by VxWorks routines. Thus, its value

always indicates the last error status set. When a VxWorks subroutine gets an error

indication from a call to another routine, it usually returns its own error indication

without modifying errno. Thus, the value of errno that is set in the lower-level

routine remains available as the indication of error type.

For example, the VxWorks routine intConnect(), which connects a user routine to

a hardware interrupt, allocates memory by calling malloc() and builds the

interrupt driver in this allocated memory. If malloc() fails because insufficient

memory remains in the pool, it sets errno to a code indicating an insufficient-

memory error was encountered in the memory allocation library, memLib. The

malloc() routine then returns NULL to indicate the failure. The intConnect()
routine, receiving the NULL from malloc(), then returns its own error indication of

ERROR. However, it does not alter errno, leaving it at the “insufficient memory”

code set by malloc(). For example:
37

VxWorks 5.4
Programmer’s Guide
if ((pNew = malloc (CHUNK_SIZE)) == NULL)
return (ERROR);

We recommend that you use this mechanism in your own subroutines, setting and

examining errno as a debugging technique. A string constant associated with

errno can be displayed using printErrno() if the errno value has a corresponding

string entered in the error-status symbol table, statSymTbl. See the reference entry

errnoLib for details on error-status values and building statSymTbl.

Assignment of Error Status Values

VxWorks errno values encode the module that issues an error, in the most

significant two bytes, and use the least significant two bytes for individual error

numbers. All VxWorks module numbers are in the range 1–500; errno values with

a “module” number of zero are used for source compatibility.

All other errno values (that is, positive values greater than or equal to 501<<16,

and all negative values) are available for application use.

See the reference entry on errnoLib for more information about defining and

decoding errno values with this convention.

2.3.8 Task Exception Handling

Errors in program code or data can cause hardware exception conditions such as

illegal instructions, bus or address errors, divide by zero, and so forth. The

VxWorks exception handling package takes care of all such exceptions. The default

exception handler suspends the task that caused the exception, and saves the state

of the task at the point of the exception. The kernel and other tasks continue

uninterrupted. A description of the exception is transmitted to the Tornado

development tools, which can be used to examine the suspended task; see the

Tornado User’s Guide: Shell for details.

Tasks can also attach their own handlers for certain hardware exceptions through

the signal facility. If a task has supplied a signal handler for an exception, the

default exception handling described above is not performed. Signals are also used

for signaling software exceptions as well as hardware exceptions. They are

described in more detail in 2.4.7 Signals, p.81 and in the reference entry for sigLib.
38

2

2
Basic OS
2.3.9 Shared Code and Reentrancy

In VxWorks, it is common for a single copy of a subroutine or subroutine library to

be invoked by many different tasks. For example, many tasks may call printf(), but

there is only a single copy of the subroutine in the system. A single copy of code

executed by multiple tasks is called shared code. VxWorks dynamic linking facilities

make this particularly easy. Shared code also makes the system more efficient and

easier to maintain; see Figure 2-4.

Shared code must be reentrant. A subroutine is reentrant if a single copy of the

routine can be called from several task contexts simultaneously without conflict.

Such conflict typically occurs when a subroutine modifies global or static

variables, because there is only a single copy of the data and code. A routine’s

references to such variables can overlap and interfere in invocations from different

task contexts.

Most routines in VxWorks are reentrant. However, all routines which have a

corresponding name_r() routine should be assumed non-reentrant. For example,

because ldiv() has a corresponding routine ldiv_r(), you can assume that ldiv() is

not reentrant.

VxWorks I/O and driver routines are reentrant, but require careful application

design. For buffered I/O, we recommend using file-pointer buffers on a per-task

Figure 2-4 Shared Code

TASKS SHARED CODE

...

taskTwo (void)
{
myFunc();

...
}

myFunc();

taskOne (void)
{
...

...
}

}

myFunc (void)
{
...
39

VxWorks 5.4
Programmer’s Guide
basis. At the driver level, it is possible to load buffers with streams from different

tasks, due to the global file descriptor table in VxWorks. This may or may not be

desirable, depending on the nature of the application. For example, a packet driver

can mix streams from different tasks because the packet header identifies the

destination of each packet.

The majority of VxWorks routines use the following reentrancy techniques:

– dynamic stack variables

– global and static variables guarded by semaphores

– task variables

We recommend applying these same techniques when writing application code

that can be called from several task contexts simultaneously.

Dynamic Stack Variables

Many subroutines are pure code, having no data of their own except dynamic stack

variables. They work exclusively on data provided by the caller as parameters. The

linked-list library, lstLib, is a good example of this. Its routines operate on lists and

nodes provided by the caller in each subroutine call.

Subroutines of this kind are inherently reentrant. Multiple tasks can use such

routines simultaneously without interfering with each other, because each task

does indeed have its own stack. See Figure 2-5.

Guarded Global and Static Variables

Some libraries encapsulate access to common data. One example is the memory

allocation library, memLib, which manages pools of memory to be used by many

tasks. This library declares and uses its own static data variables to keep track of

pool allocation.

This kind of library requires some caution because the routines are not inherently

reentrant. Multiple tasks simultaneously invoking the routines in the library might

interfere with access to common variables. Such libraries must be made explicitly

reentrant by providing a mutual-exclusion mechanism to prohibit tasks from

simultaneously executing critical sections of code. The usual mutual-exclusion

mechanism is the semaphore facility provided by semLib and described in

2.4.3 Semaphores, p.47.
40

2

2
Basic OS
Task Variables

Some routines that can be called by multiple tasks simultaneously may require

global or static variables with a distinct value for each calling task. For example,

several tasks may reference a private buffer of memory and yet refer to it with the

same global variable.

To accommodate this, VxWorks provides a facility called task variables that allows

4-byte variables to be added to a task’s context, so that the value of such a variable

is switched every time a task switch occurs to or from its owner task. Typically,

several tasks declare the same variable (4-byte memory location) as a task variable.

Each of those tasks can then treat that single memory location as its own private

variable; see Figure 2-6. This facility is provided by the routines taskVarAdd(),
taskVarDelete(), taskVarSet(), and taskVarGet(), which are described in the

reference entry for taskVarLib.

Use this mechanism sparingly. Each task variable adds a few microseconds to the

context switching time for its task, because the value of the variable must be saved

and restored as part of the task’s context. Consider collecting all of a module’s task

variables into a single dynamically allocated structure, and then making all

accesses to that structure indirectly through a single pointer. This pointer can then

be the task variable for all tasks using that module.

Figure 2-5 Stack Variables and Shared Code

TASKS COMMON SUBROUTINETASK STACKS

...
myDataOne
...

...
myDataTwo
...

comFunc() (myDataOne);

taskOne ()
{
...

...
}

...

taskTwo ()
{
...

comFunc() (myDataTwo);
}

{

comFunc (yourData)
{
...
41

VxWorks 5.4
Programmer’s Guide
Multiple Tasks with the Same Main Routine

With VxWorks, it is possible to spawn several tasks with the same main routine.

Each spawn creates a new task with its own stack and context. Each spawn can also

pass the main routine different parameters to the new task. In this case, the same

rules of reentrancy described in Task Variables, p.41 apply to the entire task.

This is useful when the same function needs to be performed concurrently with

different sets of parameters. For example, a routine that monitors a particular kind

of equipment might be spawned several times to monitor several different pieces

of that equipment. The arguments to the main routine could indicate which

particular piece of equipment the task is to monitor.

In Figure 2-7, multiple joints of the mechanical arm use the same code. The tasks

manipulating the joints invoke joint(). The joint number (jointNum) is used to

indicate which joint on the arm to manipulate.

2.3.10 VxWorks System Tasks

VxWorks includes several system tasks, described below.

Figure 2-6 Task Variables and Context Switches

OLD TCB

pTaskVar globDat

NEW TCB

pTaskVar

value saved
in old

task’s TCB

value restored
from new

task’s TCB

current value of
globDat

globDat
42

2

2
Basic OS
The Root Task: tUsrRoot

The root task, tUsrRoot, is the first task executed by the kernel. The entry point of

the root task is usrRoot() in installDir/target/config/all/usrConfig.c and initializes

most VxWorks facilities. It spawns such tasks as the logging task, the exception

task, the network task, and the tRlogind daemon. Normally, the root task

terminates and is deleted after all initialization has occurred. You are free to add

any necessary initialization to the root task. For more information, see

8.5 Configuring VxWorks, p.337.

The Logging Task: tLogTask

The log task, tLogTask, is used by VxWorks modules to log system messages

without having to perform I/O in the current task context. For more information,

see 3.5.3 Message Logging, p.109 and the reference entry for logLib.

The Exception Task: tExcTask

The exception task, tExcTask, supports the VxWorks exception handling package

by performing functions that cannot occur at interrupt level. It must have the

highest priority in the system. Do not suspend, delete, or change the priority of this

task. For more information, see the reference entry for excLib.

Figure 2-7 Multiple Tasks Utilizing Same Code

joint_1

joint_2

joint_3

joint
(
int jointNum
)
{
/* joint code here */
}

43

VxWorks 5.4
Programmer’s Guide
The Network Task: tNetTask

The tNetTask daemon handles the task-level functions required by the VxWorks

network.

The Target Agent Task: tWdbTask

The target agent task, tWdbTask, is created if the target agent is set to run in task

mode; see 8.6.1 Scaling Down VxWorks, p.344. It services requests from the Tornado

target server; for information on this server, see the Tornado User’s Guide: Overview.

Tasks for Optional Components

The following VxWorks system tasks are created if their associated configuration

constants are defined; for more information, see 8.5 Configuring VxWorks, p.337.

tShell
If you have included the target shell in the VxWorks configuration, it is

spawned as this task. Any routine or task that is invoked from the target shell,

rather than spawned, runs in the tShell context. For more information, see

9. Target Shell.

tRlogind
If you have included the target shell and the rlogin facility in the VxWorks

configuration, this daemon allows remote users to log in to VxWorks. It

accepts a remote login request from another VxWorks or host system and

spawns tRlogInTask and tRlogOutTask. These tasks exist as long as the

remote user is logged on. During the remote session, the shell’s (and any other

task’s) input and output are redirected to the remote user. A tty-like interface

is provided to the remote user through the use of the VxWorks pseudo-

terminal driver, ptyDrv. For more information, see 3.7.1 Serial I/O Devices
(Terminal and Pseudo-Terminal Devices), p.118 and the reference entry for

ptyDrv.

tTelnetd
If you have included the target shell and the telnet facility in the VxWorks

configuration, this daemon allows remote users to log in to VxWorks with

telnet. It accepts a remote login request from another VxWorks or host system

and spawns the input task tTelnetInTask and output task tTelnetOutTask.

These tasks exist as long as the remote user is logged on. During the remote

session, the shell’s (and any other task’s) input and output are redirected to the

remote user. A tty-like interface is provided to the remote user through the use

of the VxWorks pseudo-terminal driver, ptyDrv. See 3.7.1 Serial I/O Devices
(Terminal and Pseudo-Terminal Devices), p.118 and the reference entry for

ptyDrv for further explanation.
44

2

2
Basic OS
tPortmapd
If you have included the RPC facility in the VxWorks configuration, this

daemon is an RPC server that acts as a central registrar for RPC servers

running on the same machine. RPC clients query the tPortmapd daemon to

find out how to contact the various servers.

2.4 Intertask Communications

The complement to the multitasking routines described in the 2.3 Tasks, p.20 is the

intertask communication facilities. These facilities permit independent tasks to

coordinate their actions.

VxWorks supplies a rich set of intertask communication mechanisms, including:

■ Shared memory, for simple sharing of data.

■ Semaphores, for basic mutual exclusion and synchronization.

■ Message queues and pipes, for intertask message passing within a CPU.

■ Sockets and remote procedure calls, for network-transparent intertask

communication.

■ Signals, for exception handling.

The optional product, VxMP, provides intertask communication over the

backplane for tasks running on different CPUs. This includes shared semaphores,

shared message queues, shared memory, and the shared name database.

2.4.1 Shared Data Structures

The most obvious way for tasks to communicate is by accessing shared data

structures. Because all tasks in VxWorks exist in a single linear address space,

sharing data structures between tasks is trivial; see Figure 2-8. Global variables,

linear buffers, ring buffers, linked lists, and pointers can be referenced directly by

code running in different contexts.
45

VxWorks 5.4
Programmer’s Guide
2.4.2 Mutual Exclusion

While a shared address space simplifies exchange of data, interlocking access to

memory is crucial to avoid contention. Many methods exist for obtaining exclusive

access to resources, and vary only in the scope of the exclusion. Such methods

include disabling interrupts, disabling preemption, and resource locking with

semaphores.

Interrupt Locks and Latency

The most powerful method available for mutual exclusion is the disabling of

interrupts. Such a lock guarantees exclusive access to the CPU:

funcA ()
{
int lock = intLock();
.
. critical region that cannot be interrupted
.
intUnlock (lock);
}

While this solves problems involving mutual exclusion with ISRs, it is

inappropriate as a general-purpose mutual-exclusion method for most real-time

systems, because it prevents the system from responding to external events for the

duration of these locks. Interrupt latency is unacceptable whenever an immediate

response to an external event is required. However, interrupt locking can

Figure 2-8 Shared Data Structures

TASKS MEMORY

task 1

task 2

task 3

access
sharedData

access
sharedData

access
sharedData

sharedData
46

2

2
Basic OS
sometimes be necessary where mutual exclusion involves ISRs. In any situation,

keep the duration of interrupt lockouts short.

Preemptive Locks and Latency

Disabling preemption offers a somewhat less restrictive form of mutual exclusion.

While no other task is allowed to preempt the current executing task, ISRs are able

to execute:

funcA ()
{
taskLock ();
.
. critical region that cannot be interrupted
.
taskUnlock ();
}

However, this method can lead to unacceptable real-time response. Tasks of higher

priority are unable to execute until the locking task leaves the critical region, even

though the higher-priority task is not itself involved with the critical region. While

this kind of mutual exclusion is simple, if you use it, make sure to keep the

duration short. A better mechanism is provided by semaphores, discussed in

2.4.3 Semaphores, p.47.

2.4.3 Semaphores

VxWorks semaphores are highly optimized and provide the fastest intertask

communication mechanism in VxWorks. Semaphores are the primary means for

addressing the requirements of both mutual exclusion and task synchronization:

■ For mutual exclusion, semaphores interlock access to shared resources. They

provide mutual exclusion with finer granularity than either interrupt

disabling or preemptive locks, discussed in 2.4.2 Mutual Exclusion, p.46.

■ For synchronization, semaphores coordinate a task’s execution with external

events.

There are three types of Wind semaphores, optimized to address different classes

of problems:

binary
The fastest, most general-purpose semaphore. Optimized for

synchronization or mutual exclusion.
47

VxWorks 5.4
Programmer’s Guide
mutual exclusion
A special binary semaphore optimized for problems inherent in mutual

exclusion: priority inheritance, deletion safety, and recursion.

counting
Like the binary semaphore, but keeps track of the number of times a

semaphore is given. Optimized for guarding multiple instances of a

resource.

VxWorks provides not only the Wind semaphores, designed expressly for

VxWorks, but also POSIX semaphores, designed for portability. An alternate

semaphore library provides the POSIX-compatible semaphore interface; see

POSIX Semaphores, p.57.

The semaphores described here are for use on a single CPU. The optional product

VxMP provides semaphores that can be used across processors; see 6. Shared-
Memory Objects.

Semaphore Control

Instead of defining a full set of semaphore control routines for each type of

semaphore, the Wind semaphores provide a single uniform interface for

semaphore control. Only the creation routines are specific to the semaphore type.

Table 2-13 lists the semaphore control routines.

The semBCreate(), semMCreate(), and semCCreate() routines return a

semaphore ID that serves as a handle on the semaphore during subsequent use by

Table 2-13 Semaphore Control Routines

Call Description

semBCreate() Allocate and initialize a binary semaphore.

semMCreate() Allocate and initialize a mutual-exclusion semaphore.

semCCreate() Allocate and initialize a counting semaphore.

semDelete() Terminate and free a semaphore.

semTake() Take a semaphore.

semGive() Give a semaphore.

semFlush() Unblock all tasks that are waiting for a semaphore.
48

2

2
Basic OS
the other semaphore-control routines. When a semaphore is created, the queue

type is specified. Tasks pending on a semaphore can be queued in priority order

(SEM_Q_PRIORITY) or in first-in first-out order (SEM_Q_FIFO).

Binary Semaphores

The general-purpose binary semaphore is capable of addressing the requirements

of both forms of task coordination: mutual exclusion and synchronization. The

binary semaphore has the least overhead associated with it, making it particularly

applicable to high-performance requirements. The mutual-exclusion semaphore

described in Mutual-Exclusion Semaphores, p.52 is also a binary semaphore, but it

has been optimized to address problems inherent to mutual exclusion.

Alternatively, the binary semaphore can be used for mutual exclusion if the

advanced features of the mutual-exclusion semaphore are deemed unnecessary.

A binary semaphore can be viewed as a flag that is available (full) or unavailable

(empty). When a task takes a binary semaphore, with semTake(), the outcome

depends on whether the semaphore is available (full) or unavailable (empty) at the

time of the call; see Figure 2-9. If the semaphore is available (full), the semaphore

! WARNING: The semDelete() call terminates a semaphore and deallocates any

associated memory. Take care when deleting semaphores, particularly those used

for mutual exclusion, to avoid deleting a semaphore that another task still requires.

Do not delete a semaphore unless the same task first succeeds in taking it.

Figure 2-9 Taking a Semaphore

no no
semaphore
available?

timeout =
NO_WAIT

yes yes

task continues;
semaphore

not taken

task continues;
semaphore

taken

task is
pended for

timeout
value
49

VxWorks 5.4
Programmer’s Guide
becomes unavailable (empty) and the task continues executing immediately. If the

semaphore is unavailable (empty), the task is put on a queue of blocked tasks and

enters a state of pending on the availability of the semaphore.

When a task gives a binary semaphore, using semGive(), the outcome also

depends on whether the semaphore is available (full) or unavailable (empty) at the

time of the call; see Figure 2-10. If the semaphore is already available (full), giving

the semaphore has no effect at all. If the semaphore is unavailable (empty) and no

task is waiting to take it, then the semaphore becomes available (full). If the

semaphore is unavailable (empty) and one or more tasks are pending on its

availability, then the first task in the queue of blocked tasks is unblocked, and the

semaphore is left unavailable (empty).

Mutual Exclusion

Binary semaphores interlock access to a shared resource efficiently. Unlike

disabling interrupts or preemptive locks, binary semaphores limit the scope of the

mutual exclusion to only the associated resource. In this technique, a semaphore is

created to guard the resource. Initially the semaphore is available (full).

/* includes */
#include "vxWorks.h"
#include "semLib.h"

SEM_ID semMutex;

/* Create a binary semaphore that is initially full. Tasks *

Figure 2-10 Giving a Semaphore

no no
semaphore
available?

yes yes

task continues;
semaphore

remains
unchanged

tasks
pended?

task continues,
semaphore

made available

task at front of
queue made ready;
semaphore remains

unavailable
50

2

2
Basic OS
* blocked on semaphore wait in priority order. */

semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);

When a task wants to access the resource, it must first take that semaphore. As long

as the task keeps the semaphore, all other tasks seeking access to the resource are

blocked from execution. When the task is finished with the resource, it gives back

the semaphore, allowing another task to use the resource.

Thus all accesses to a resource requiring mutual exclusion are bracketed with

semTake() and semGive() pairs:

semTake (semMutex, WAIT_FOREVER);
.
. critical region, only accessible by a single task at a time
.
semGive (semMutex);

Synchronization

When used for task synchronization, a semaphore can represent a condition or

event that a task is waiting for. Initially the semaphore is unavailable (empty). A

task or ISR signals the occurrence of the event by giving the semaphore (see

2.5 Interrupt Service Code, p.85 for a complete discussion of ISRs). Another task

waits for the semaphore by calling semTake(). The waiting task blocks until the

event occurs and the semaphore is given.

Note the difference in sequence between semaphores used for mutual exclusion

and those used for synchronization. For mutual exclusion, the semaphore is

initially full, and each task first takes, then gives back the semaphore. For

synchronization, the semaphore is initially empty, and one task waits to take the

semaphore given by another task.

In Example 2-4, the init() routine creates the binary semaphore, attaches an ISR to

an event, and spawns a task to process the event. The routine task1() runs until it

calls semTake(). It remains blocked at that point until an event causes the ISR to

call semGive(). When the ISR completes, task1() executes to process the event.

There is an advantage of handling event processing within the context of a

dedicated task: less processing takes place at interrupt level, thereby reducing

interrupt latency. This model of event processing is recommended for real-time

applications.

Example 2-4 Using Semaphores for Task Synchronization

/* This example shows the use of semaphores for task synchronization. */

/* includes */
51

VxWorks 5.4
Programmer’s Guide
#include "vxWorks.h"
#include "semLib.h"
#include "arch/ arch/iv arch.h" /* replace arch with architecture type */

SEM_ID syncSem; /* ID of sync semaphore */

init (
int someIntNum
)
{
/* connect interrupt service routine */
intConnect (INUM_TO_IVEC (someIntNum), eventInterruptSvcRout, 0);

/* create semaphore */
syncSem = semBCreate (SEM_Q_FIFO, SEM_EMPTY);

/* spawn task used for synchronization. */
taskSpawn ("sample", 100, 0, 20000, task1, 0,0,0,0,0,0,0,0,0,0);
}

task1 (void)
{
...
semTake (syncSem, WAIT_FOREVER); /* wait for event to occur */
printf ("task 1 got the semaphore\n");
... /* process event */
}

eventInterruptSvcRout (void)
{
...
semGive (syncSem); /* let task 1 process event */
...
}

Broadcast synchronization allows all processes that are blocked on the same

semaphore to be unblocked atomically. Correct application behavior often requires

a set of tasks to process an event before any task of the set has the opportunity to

process further events. The routine semFlush() addresses this class of

synchronization problem by unblocking all tasks pended on a semaphore.

Mutual-Exclusion Semaphores

The mutual-exclusion semaphore is a specialized binary semaphore designed to

address issues inherent in mutual exclusion, including priority inversion, deletion

safety, and recursive access to resources.

The fundamental behavior of the mutual-exclusion semaphore is identical to the

binary semaphore, with the following exceptions:
52

2

2
Basic OS
■ It can be used only for mutual exclusion.
■ It can be given only by the task that took it.
■ It cannot be given from an ISR.
■ The semFlush() operation is illegal.

Priority Inversion

Priority inversion arises when a higher-priority task is forced to wait an indefinite

period of time for a lower-priority task to complete. Consider the scenario in

Figure 2-11: t1, t2, and t3 are tasks of high, medium, and low priority, respectively.

t3 has acquired some resource by taking its associated binary guard semaphore.

When t1 preempts t3 and contends for the resource by taking the same semaphore,

it becomes blocked. If we could be assured that t1 would be blocked no longer than

the time it normally takes t3 to finish with the resource, there would be no problem

because the resource cannot be preempted. However, the low-priority task is

vulnerable to preemption by medium-priority tasks (like t2), which could inhibit

t3 from relinquishing the resource. This condition could persist, blocking t1 for an

indefinite period of time.

Figure 2-11 Priority Inversion

t3

t1

t3

t2

HIGH

LOW

KEY: = preemption= take semaphore

= give semaphore

= own semaphore

pr
io

rit
y

= priority inheritance/release

= block

time

t1

t3
53

VxWorks 5.4
Programmer’s Guide
The mutual-exclusion semaphore has the option SEM_INVERSION_SAFE, which

enables a priority-inheritance algorithm. The priority-inheritance protocol assures

that a task that owns a resource executes at the priority of the highest-priority task

blocked on that resource. Once the task priority has been elevated, it remains at the

higher level until all mutual-exclusion semaphores that the task owns are released;

then the task returns to its normal, or standard, priority. Hence, the “inheriting”

task is protected from preemption by any intermediate-priority tasks. This option

must be used in conjunction with a priority queue (SEM_Q_PRIORITY).

In Figure 2-12, priority inheritance solves the problem of priority inversion by

elevating the priority of t3 to the priority of t1 during the time t1 is blocked on the

semaphore. This protects t3, and indirectly t1, from preemption by t2.

The following example creates a mutual-exclusion semaphore that uses the

priority inheritance algorithm:

semId = semMCreate (SEM_Q_PRIORITY | SEM_INVERSION_SAFE);

Deletion Safety

Another problem of mutual exclusion involves task deletion. Within a critical

region guarded by semaphores, it is often desirable to protect the executing task

from unexpected deletion. Deleting a task executing in a critical region can be

catastrophic. The resource might be left in a corrupted state and the semaphore

Figure 2-12 Priority Inheritance

t3

t1 t3 t1

t2

HIGH

LOW

pr
io

rit
y

time
54

2

2
Basic OS
guarding the resource left unavailable, effectively preventing all access to the

resource.

The primitives taskSafe() and taskUnsafe() provide one solution to task deletion.

However, the mutual-exclusion semaphore offers the option SEM_DELETE_SAFE,

which enables an implicit taskSafe() with each semTake(), and a taskUnsafe()
with each semGive(). In this way, a task can be protected from deletion while it has

the semaphore. This option is more efficient than the primitives taskSafe() and

taskUnsafe(), as the resulting code requires fewer entrances to the kernel.

semId = semMCreate (SEM_Q_FIFO | SEM_DELETE_SAFE);

Recursive Resource Access

Mutual-exclusion semaphores can be taken recursively. This means that the

semaphore can be taken more than once by the task that owns it before finally

being released. Recursion is useful for a set of routines that must call each other but

that also require mutually exclusive access to a resource. This is possible because

the system keeps track of which task currently owns the mutual-exclusion

semaphore.

Before being released, a mutual-exclusion semaphore taken recursively must be

given the same number of times it is taken. This is tracked by a count that

increments with each semTake() and decrements with each semGive().

Example 2-5 Recursive Use of a Mutual-Exclusion Semaphore

/* Function A requires access to a resource which it acquires by taking
* mySem; function A may also need to call function B, which also
* requires mySem:
*/

/* includes */
#include "vxWorks.h"
#include "semLib.h"
SEM_ID mySem;

/* Create a mutual-exclusion semaphore. */

init ()
{
mySem = semMCreate (SEM_Q_PRIORITY);
}

funcA ()
{
semTake (mySem, WAIT_FOREVER);
printf ("funcA: Got mutual-exclusion semaphore\n");
...
funcB ();
...
55

VxWorks 5.4
Programmer’s Guide
semGive (mySem);
printf ("funcA: Released mutual-exclusion semaphore\n");
}

funcB ()
{
semTake (mySem, WAIT_FOREVER);
printf ("funcB: Got mutual-exclusion semaphore\n");
...
semGive (mySem);
printf ("funcB: Releases mutual-exclusion semaphore\n");
}

Counting Semaphores

Counting semaphores are another means to implement task synchronization and

mutual exclusion. The counting semaphore works like the binary semaphore

except that it keeps track of the number of times a semaphore is given. Every time

a semaphore is given, the count is incremented; every time a semaphore is taken,

the count is decremented. When the count reaches zero, a task that tries to take the

semaphore is blocked. As with the binary semaphore, if a semaphore is given and

a task is blocked, it becomes unblocked. However, unlike the binary semaphore, if

a semaphore is given and no tasks are blocked, then the count is incremented. This

means that a semaphore that is given twice can be taken twice without blocking.

Table 2-14 shows an example time sequence of tasks taking and giving a counting

semaphore that was initialized to a count of 3.

Counting semaphores are useful for guarding multiple copies of resources. For

example, the use of five tape drives might be coordinated using a counting

Table 2-14 Counting Semaphore Example

Semaphore Call Count after Call Resulting Behavior

semCCreate() 3 Semaphore initialized with initial count of 3.

semTake() 2 Semaphore taken.

semTake() 1 Semaphore taken.

semTake() 0 Semaphore taken.

semTake() 0 Task blocks waiting for semaphore to be available.

semGive() 0 Task waiting is given semaphore.

semGive() 1 No task waiting for semaphore; count incremented.
56

2

2
Basic OS
semaphore with an initial count of 5, or a ring buffer with 256 entries might be

implemented using a counting semaphore with an initial count of 256. The initial

count is specified as an argument to the semCCreate() routine.

Special Semaphore Options

The uniform Wind semaphore interface includes two special options. These

options are not available for the POSIX-compatible semaphores described in

POSIX Semaphores, p.57.

Timeouts

Wind semaphores include the ability to time out from the pended state. This is

controlled by a parameter to semTake() that specifies the amount of time in ticks

that the task is willing to wait in the pended state. If the task succeeds in taking the

semaphore within the allotted time, semTake() returns OK. The errno set when a

semTake() returns ERROR due to timing out before successfully taking the

semaphore depends upon the timeout value passed. A semTake() with NO_WAIT
(0), which means do not wait at all, sets errno to S_objLib_OBJ_UNAVAILABLE. A

semTake() with a positive timeout value returns S_objLib_OBJ_TIMEOUT. A

timeout value of WAIT_FOREVER (-1) means wait indefinitely.

Queues

Wind semaphores include the ability to select the queuing mechanism employed

for tasks blocked on a semaphore. They can be queued based on either of two

criteria: first-in first-out (FIFO) order, or priority order; see Figure 2-13.

Priority ordering better preserves the intended priority structure of the system at

the expense of some overhead in semTake() in sorting the tasks by priority. A FIFO

queue requires no priority sorting overhead and leads to constant-time

performance. The selection of queue type is specified during semaphore creation

with semBCreate(), semMCreate(), or semCCreate(). Semaphores using the

priority inheritance option (SEM_INVERSION_SAFE) must select priority-order

queuing.

POSIX Semaphores

POSIX defines both named and unnamed semaphores, which have the same

properties, but use slightly different interfaces. The POSIX semaphore library

provides routines for creating, opening, and destroying both named and unnamed
57

VxWorks 5.4
Programmer’s Guide
semaphores. The POSIX semaphore routines provided by semPxLib are shown in

Table 2-15.

With named semaphores, you assign a symbolic name1 when opening the

semaphore; the other named-semaphore routines accept this name as an

argument.

The POSIX terms wait (or lock) and post (or unlock) correspond to the VxWorks

terms take and give, respectively.

The initialization routine semPxLibInit() is called by default when

INCLUDE_POSIX_SEM is selected for inclusion in the project facility VxWorks

view. The routines sem_open(), sem_unlink(), and sem_close() are for opening

and closing/destroying named semaphores only; sem_init() and sem_destroy()
are for initializing and destroying unnamed semaphores only. The routines for

locking, unlocking, and getting the value of semaphores are used for both named

and unnamed semaphores.

Figure 2-13 Task Queue Types

1. Some host operating systems, such as UNIX, require symbolic names for objects that are to

be shared among processes. This is because processes do not normally share memory in

such operating systems. In VxWorks, there is no requirement for named semaphores,

because all objects are located within a single address space, and reference to shared objects

by memory location is standard practice.

TCB

110

TCB

200

PRIORITY QUEUE FIFO QUEUE

priority

TCB

120 TCB

80

TCB

110

TCB

90
TCB

100
TCB

140
58

2

2
Basic OS
Comparison of POSIX and Wind Semaphores

POSIX semaphores are counting semaphores; that is, they keep track of the number

of times they are given.

The Wind semaphore mechanism is similar to that specified by POSIX, except that

Wind semaphores offer additional features: priority inheritance, task-deletion

safety, the ability for a single task to take a semaphore multiple times, ownership

of mutual-exclusion semaphores, semaphore timeouts, and the choice of queuing

mechanism. When these features are important, Wind semaphores are preferable.

Using Unnamed Semaphores

In using unnamed semaphores, normally one task allocates memory for the

semaphore and initializes it. A semaphore is represented with the data structure

Table 2-15 POSIX Semaphore Routines

Call Description

semPxLibInit() Initialize the POSIX semaphore library (non-POSIX).

sem_init() Initialize an unnamed semaphore.

sem_destroy() Destroy an unnamed semaphore.

sem_open() Initialize/open a named semaphore.

sem_close() Close a named semaphore.

sem_unlink() Remove a named semaphore.

sem_wait() Lock a semaphore.

sem_trywait() Lock a semaphore only if it is not already locked.

sem_post() Unlock a semaphore.

sem_getvalue() Get the value of a semaphore.

! WARNING: The sem_destroy() call terminates an unnamed semaphore and

deallocates any associated memory; the combination of sem_close() and

sem_unlink() has the same effect for named semaphores. Take care when deleting

semaphores, particularly mutual exclusion semaphores, to avoid deleting a

semaphore still required by another task. Do not delete a semaphore unless the

deleting task first succeeds in locking that semaphore. (Likewise, for named

semaphores, close semaphores only from the same task that opens them.)
59

VxWorks 5.4
Programmer’s Guide
sem_t, defined in semaphore.h. The semaphore initialization routine, sem_init(),
allows you to specify the initial value.

Once the semaphore is initialized, any task can use the semaphore by locking it

with sem_wait() (blocking) or sem_trywait() (non-blocking), and unlocking it

with sem_post().

As noted earlier, semaphores can be used for both synchronization and mutual

exclusion. When a semaphore is used for synchronization, it is typically initialized

to zero (locked). The task waiting to be synchronized blocks on a sem_wait(). The

task doing the synchronizing unlocks the semaphore using sem_post(). If the task

blocked on the semaphore is the only one waiting for that semaphore, the task

unblocks and becomes ready to run. If other tasks are blocked on the semaphore,

the task with the highest priority is unblocked.

When a semaphore is used for mutual exclusion, it is typically initialized to a value

greater than zero (meaning that the resource is available). Therefore, the first task

to lock the semaphore does so without blocking; subsequent tasks block (if the

semaphore value was initialized to 1).

Example 2-6 POSIX Unnamed Semaphores

/* This example uses unnamed semaphores to synchronize an action between
* the calling task and a task that it spawns (tSyncTask). To run from
* the shell, spawn as a task:
* -> sp unnameSem

 */

/* includes */

#include "vxWorks.h"
#include "semaphore.h"

/* forward declarations */

void syncTask (sem_t * pSem);

void unnameSem (void)
{
sem_t * pSem;

/* reserve memory for semaphore */

pSem = (sem_t *) malloc (sizeof (sem_t));

/* initialize semaphore to unavailable */

if (sem_init (pSem, 0, 0) == -1)
{

60

2

2
Basic OS
printf ("unnameSem: sem_init failed\n");
return;
}

/* create sync task */

printf ("unnameSem: spawning task...\n");
taskSpawn ("tSyncTask", 90, 0, 2000, syncTask, pSem);

/* do something useful to synchronize with syncTask */

/* unlock sem */

printf ("unnameSem: posting semaphore - synchronizing action\n");
if (sem_post (pSem) == -1)

{
printf ("unnameSem: posting semaphore failed\n");
return;
}

/* all done - destroy semaphore */

if (sem_destroy (pSem) == -1)
 {
 printf ("unnameSem: sem_destroy failed\n");
 return;
 }
}

void syncTask
(
sem_t * pSem
)
{
/* wait for synchronization from unnameSem */

if (sem_wait (pSem) == -1)
{
printf ("syncTask: sem_wait failed \n");
return;
}

else
printf ("syncTask:sem locked; doing sync’ed action...\n");

/* do something useful here */
}

Using Named Semaphores

The sem_open() routine either opens a named semaphore that already exists, or, as

an option, creates a new semaphore. You can specify which of these possibilities

you want by combining the following flag values:
61

VxWorks 5.4
Programmer’s Guide
O_CREAT Create the semaphore if it does not already exist (if it exists, either fail

or open the semaphore, depending on whether O_EXCL is specified).

O_EXCL Open the semaphore only if newly created; fail if the semaphore exists.

The possible effects of a call to sem_open(), depending on which flags are set and

on whether the semaphore accessed already exists, are shown in Table 2-16. There

is no entry for O_EXCL alone, because using that flag alone is not meaningful.

A POSIX named semaphore, once initialized, remains usable until explicitly

destroyed. Tasks can explicitly mark a semaphore for destruction at any time, but

the semaphore remains in the system until no task has the semaphore open.

If INCLUDE_POSIX_SEM_SHOW is selected for inclusion in the project facility

VxWorks view (for details, see Tornado User’s Guide: Projects), you can use show()
from the Tornado shell to display information about a POSIX semaphore:2

-> show semId
value = 0 = 0x0

The output is sent to the standard output device, and provides information about

the POSIX semaphore mySem with two tasks blocked waiting for it:

Semaphore name :mySem
sem_open() count :3
Semaphore value :0
No. of blocked tasks :2

For a group of collaborating tasks to use a named semaphore, one of the tasks first

creates and initializes the semaphore (by calling sem_open() with the O_CREAT
flag). Any task that needs to use the semaphore thereafter opens it by calling

sem_open() with the same name (but without setting O_CREAT). Any task that has

opened the semaphore can use it by locking it with sem_wait() (blocking) or

sem_trywait() (non-blocking) and unlocking it with sem_post().

Table 2-16 Possible Outcomes of Calling sem_open()

Flag Settings Semaphore Exists Semaphore Does Not Exist

None Semaphore is opened Routine fails

O_CREAT Semaphore is opened Semaphore is created

O_CREAT and O_EXCL Routine fails Semaphore is created

2. This is not a POSIX routine, nor is it designed for use from programs; use it from the

Tornado shell (see the Tornado User’s Guide: Shell for details).
62

2

2
Basic OS
To remove a semaphore, all tasks using it must first close it with sem_close(), and

one of the tasks must also unlink it. Unlinking a semaphore with sem_unlink()
removes the semaphore name from the name table. After the name is removed

from the name table, tasks that currently have the semaphore open can still use it,

but no new tasks can open this semaphore. The next time a task tries to open the

semaphore without the O_CREAT flag, the operation fails. The semaphore vanishes

when the last task closes it.

Example 2-7 POSIX Named Semaphores

/* In this example, nameSem() creates a task for synchronization. The
* new task, tSyncSemTask, blocks on the semaphore created in nameSem().
* Once the synchronization takes place, both tasks close the semaphore,
* and nameSem() unlinks it. To run this task from the shell, spawn
* nameSem as a task:

 * -> sp nameSem, "myTest"
 */

/* includes */
#include "vxWorks.h"
#include "semaphore.h"
#include "fcntl.h"

/* forward declaration */
int syncSemTask (char * name);

int nameSem
(
char * name
)
{
sem_t * semId;

/* create a named semaphore, initialize to 0*/
printf ("nameSem: creating semaphore\n");
if ((semId = sem_open (name, O_CREAT, 0, 0)) == (sem_t *) -1)

{
printf ("nameSem: sem_open failed\n");
return;
}

printf ("nameSem: spawning sync task\n");

taskSpawn ("tSyncSemTask", 90, 0, 2000, syncSemTask, name);

/* do something useful to synchronize with syncSemTask */

/* give semaphore */
printf ("nameSem: posting semaphore - synchronizing action\n");
if (sem_post (semId) == -1)

{

63

VxWorks 5.4
Programmer’s Guide
printf ("nameSem: sem_post failed\n");
return;
}

/* all done */
if (sem_close (semId) == -1)

{
printf ("nameSem: sem_close failed\n");
return;
}

if (sem_unlink (name) == -1)
{
printf ("nameSem: sem_unlink failed\n");
return;
}

printf ("nameSem: closed and unlinked semaphore\n");
}

int syncSemTask
(
char * name
)

{
sem_t * semId;

/* open semaphore */
printf ("syncSemTask: opening semaphore\n");
if ((semId = sem_open (name, 0)) == (sem_t *) -1)

{
printf ("syncSemTask: sem_open failed\n");
return;
}

/* block waiting for synchronization from nameSem */
printf ("syncSemTask: attempting to take semaphore...\n");
if (sem_wait (semId) == -1)

{
printf ("syncSemTask: taking sem failed\n");
return;
}

printf ("syncSemTask: has semaphore, doing sync’ed action ...\n");

/* do something useful here */

if (sem_close (semId) == -1)
{
printf ("syncSemTask: sem_close failed\n");
return;
}

}

64

2

2
Basic OS
2.4.4 Message Queues

Modern real-time applications are constructed as a set of independent but

cooperating tasks. While semaphores provide a high-speed mechanism for the

synchronization and interlocking of tasks, often a higher-level mechanism is

necessary to allow cooperating tasks to communicate with each other. In VxWorks,

the primary intertask communication mechanism within a single CPU is message
queues. The optional product, VxMP, provides global message queues that can be

used across processors; for more information, see 6. Shared-Memory Objects.

Message queues allow a variable number of messages, each of variable length, to

be queued. Any task or ISR can send messages to a message queue. Any task can

receive messages from a message queue. Multiple tasks can send to and receive

from the same message queue. Full-duplex communication between two tasks

generally requires two message queues, one for each direction; see Figure 2-14.

There are two message-queue subroutine libraries in VxWorks. The first of these,

msgQLib, provides Wind message queues, designed expressly for VxWorks; the

second, mqPxLib, is compatible with the POSIX standard (1003.1b) for real-time

extensions. See Comparison of POSIX and Wind Message Queues, p.77 for a

discussion of the differences between the two message-queue designs.

Figure 2-14 Full Duplex Communication Using Message Queues

task 2task 1

message queue 1

message queue 2

message

message
65

VxWorks 5.4
Programmer’s Guide
Wind Message Queues

Wind message queues are created and deleted with the routines shown in

Table 2-17. This library provides messages that are queued in FIFO order, with a

single exception: there are two priority levels, and messages marked as high

priority are attached to the head of the queue.

A message queue is created with msgQCreate(). Its parameters specify the

maximum number of messages that can be queued in the message queue and the

maximum length in bytes of each message. Enough buffer space is preallocated for

the specified number and length of messages.

A task or ISR sends a message to a message queue with msgQSend(). If no tasks

are waiting for messages on that queue, the message is added to the queue’s buffer

of messages. If any tasks are already waiting for a message from that message

queue, the message is immediately delivered to the first waiting task.

A task receives a message from a message queue with msgQReceive(). If messages

are already available in the message queue’s buffer, the first message is

immediately dequeued and returned to the caller. If no messages are available,

then the calling task blocks and is added to a queue of tasks waiting for messages.

This queue of waiting tasks can be ordered either by task priority or FIFO, as

specified in an option parameter when the queue is created.

Timeouts

Both msgQSend() and msgQReceive() take timeout parameters. When sending a

message, the timeout specifies how many ticks to wait for buffer space to become

available, if no space is available to queue the message. When receiving a message,

the timeout specifies how many ticks to wait for a message to become available, if

no message is immediately available. As with semaphores, the value of the timeout

parameter can have the special values of NO_WAIT (0), meaning always return

immediately, or WAIT_FOREVER (-1), meaning never time out the routine.

Table 2-17 Wind Message Queue Control

Call Description

msgQCreate() Allocate and initialize a message queue.

msgQDelete() Terminate and free a message queue.

msgQSend() Send a message to a message queue.

msgQReceive() Receive a message from a message queue.
66

2

2
Basic OS
Urgent Messages

The msgQSend() function allows specification of the priority of the message as

either normal (MSG_PRI_NORMAL) or urgent (MSG_PRI_URGENT). Normal

priority messages are added to the tail of the list of queued messages, while urgent

priority messages are added to the head of the list.

Example 2-8 Wind Message Queues

/* In this example, task t1 creates the message queue and sends a message
* to task t2. Task t2 receives the message from the queue and simply
* displays the message.
*/

/* includes */
#include "vxWorks.h"
#include "msgQLib.h"

/* defines */
#define MAX_MSGS (10)
#define MAX_MSG_LEN (100)

MSG_Q_ID myMsgQId;

task2 (void)
{
char msgBuf[MAX_MSG_LEN];

/* get message from queue; if necessary wait until msg is available */
if (msgQReceive(myMsgQId, msgBuf, MAX_MSG_LEN, WAIT_FOREVER) == ERROR)

return (ERROR);

/* display message */
printf ("Message from task 1:\n%s\n", msgBuf);
}

#define MESSAGE "Greetings from Task 1"
task1 (void)

{
/* create message queue */
if ((myMsgQId = msgQCreate (MAX_MSGS, MAX_MSG_LEN, MSG_Q_PRIORITY))

== NULL)
return (ERROR);

/* send a normal priority message, blocking if queue is full */
if (msgQSend (myMsgQId, MESSAGE, sizeof (MESSAGE), WAIT_FOREVER,

MSG_PRI_NORMAL) == ERROR)
return (ERROR);

}

67

VxWorks 5.4
Programmer’s Guide
POSIX Message Queues

The POSIX message queue routines, provided by mqPxLib, are shown in

Table 2-18. These routines are similar to Wind message queues, except that POSIX

message queues provide named queues and messages with a range of priorities.

The initialization routine mqPxLibInit() makes the POSIX message queue

routines available; the system initialization code must call it before any tasks use

POSIX message queues. As shipped, usrInit() calls mqPxLibInit() when

INCLUDE_POSIX_MQ is selected for inclusion in the project facility VxWorks view.

Before a set of tasks can communicate through a POSIX message queue, one of the

tasks must create the message queue by calling mq_open() with the O_CREAT flag

set. Once a message queue is created, other tasks can open that queue by name to

send and receive messages on it. Only the first task opens the queue with the

O_CREAT flag; subsequent tasks can open the queue for receiving only

(O_RDONLY), sending only (O_WRONLY), or both sending and receiving

(O_RDWR).

To put messages on a queue, use mq_send(). If a task attempts to put a message on

the queue when the queue is full, the task blocks until some other task reads a

message from the queue, making space available. To avoid blocking on mq_send(),
set O_NONBLOCK when you open the message queue. In that case, when the

Table 2-18 POSIX Message Queue Routines

Call Description

mqPxLibInit() Initialize the POSIX message queue library (non-POSIX).

mq_open() Open a message queue.

mq_close() Close a message queue.

mq_unlink() Remove a message queue.

mq_send() Send a message to a queue.

mq_receive() Get a message from a queue.

mq_notify() Signal a task that a message is waiting on a queue.

mq_setattr() Set a queue attribute.

mq_getattr() Get a queue attribute.
68

2

2
Basic OS
queue is full, mq_send() returns -1 and sets errno to EAGAIN instead of pending,

allowing you to try again or take other action as appropriate.

One of the arguments to mq_send() specifies a message priority. Priorities range

from 0 (lowest priority) to 31 (highest priority).

When a task receives a message using mq_receive(), the task receives the highest-

priority message currently on the queue. Among multiple messages with the same

priority, the first message placed on the queue is the first received (FIFO order). If

the queue is empty, the task blocks until a message is placed on the queue. To avoid

pending on mq_receive(), open the message queue with O_NONBLOCK; in that

case, when a task attempts to read from an empty queue, mq_receive() returns -1

and sets errno to EAGAIN.

To close a message queue, call mq_close(). Closing the queue does not destroy it,

but only asserts that your task is no longer using the queue. To request that the

queue be destroyed, call mq_unlink(). Unlinking a message queue does not destroy

the queue immediately, but it does prevent any further tasks from opening that

queue, by removing the queue name from the name table. Tasks that currently

have the queue open can continue to use it. When the last task closes an unlinked

queue, the queue is destroyed.

Example 2-9 POSIX Message Queues

/* In this example, the mqExInit() routine spawns two tasks that
* communicate using the message queue.
*/

/* mqEx.h - message example header */

/* defines */
#define MQ_NAME "exampleMessageQueue"

/* forward declarations */
void receiveTask (void);
void sendTask (void);

/* testMQ.c - example using POSIX message queues */

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"
#include "mqEx.h"

/* defines */
#define HI_PRIO 31
#define MSG_SIZE 16
69

VxWorks 5.4
Programmer’s Guide
int mqExInit (void)
{
/* create two tasks */
if (taskSpawn ("tRcvTask", 95, 0, 4000, receiveTask, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0) == ERROR)
{
printf ("taskSpawn of tRcvTask failed\n");
return (ERROR);
}

if (taskSpawn ("tSndTask", 100, 0, 4000, sendTask, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0) == ERROR)

{
printf ("taskSpawn of tSendTask failed\n");
return (ERROR);
}

}

void receiveTask (void)
{
mqd_t mqPXId; /* msg queue descriptor */
char msg[MSG_SIZE]; /* msg buffer */
int prio; /* priority of message */

/* open message queue using default attributes */
if ((mqPXId = mq_open (MQ_NAME, O_RDWR | O_CREAT, 0, NULL))

== (mqd_t) -1)
{
printf ("receiveTask: mq_open failed\n");
return;
}

/* try reading from queue */
if (mq_receive (mqPXId, msg, MSG_SIZE, &prio) == -1)

{
printf ("receiveTask: mq_receive failed\n");
return;
}

else
{
printf ("receiveTask: Msg of priority %d received:\n\t\t%s\n",

prio, msg);
}

}

/* sendTask.c - mq sending example */

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "mqEx.h"

/* defines */
#define MSG "greetings"
#define HI_PRIO 30
70

2

2
Basic OS
void sendTask (void)
{
mqd_t mqPXId; /* msg queue descriptor */

/* open msg queue; should already exist with default attributes */
if ((mqPXId = mq_open (MQ_NAME, O_RDWR, 0, NULL)) == (mqd_t) -1)

{
printf ("sendTask: mq_open failed\n");
return;
}

/* try writing to queue */
if (mq_send (mqPXId, MSG, sizeof (MSG), HI_PRIO) == -1)

{
printf ("sendTask: mq_send failed\n");
return;
}

else
printf ("sendTask: mq_send succeeded\n");

}

Notifying a Task that a Message is Waiting

A task can use the mq_notify() routine to request notification when a message for

it arrives at an empty queue. The advantage of this is that a task can avoid blocking

or polling to wait for a message.

The mq_notify() call specifies a signal to be sent to the task when a message is

placed on an empty queue. This mechanism uses the POSIX data-carrying

extension to signaling, which allows you, for example, to carry a queue identifier

with the signal (see POSIX Queued Signals, p.83).

The mq_notify() mechanism is designed to alert the task only for new messages

that are actually available. If the message queue already contains messages, no

notification is sent when more messages arrive. If there is another task that is

blocked on the queue with mq_receive(), that other task unblocks, and no

notification is sent to the task registered with mq_notify().

Notification is exclusive to a single task: each queue can register only one task for

notification at a time. Once a queue has a task to notify, no attempts to register with

mq_notify() can succeed until the notification request is satisfied or cancelled.

Once a queue sends notification to a task, the notification request is satisfied, and

the queue has no further special relationship with that particular task; that is, the

queue sends a notification signal only once per mq_notify() request. To arrange for

one particular task to continue receiving notification signals, the best approach is

to call mq_notify() from the same signal handler that receives the notification

signals. This reinstalls the notification request as soon as possible.
71

VxWorks 5.4
Programmer’s Guide
To cancel a notification request, specify NULL instead of a notification signal. Only

the currently registered task can cancel its notification request.

Example 2-10 Notifying a Task that a Message Queue is Waiting

/* In this example, a task uses mq_notify() to discover when a message
* is waiting for it on a previously empty queue.
*/

/* includes */
#include "vxWorks.h"
#include "signal.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

/* defines */
#define QNAM "PxQ1"
#define MSG_SIZE 64 /* limit on message sizes */

/* forward declarations */
static void exNotificationHandle (int, siginfo_t *, void *);
static void exMqRead (mqd_t);

/**
* exMqNotify - example of how to use mq_notify()
*
* This routine illustrates the use of mq_notify() to request notification
* via signal of new messages in a queue. To simplify the example, a
* single task both sends and receives a message.
*/

int exMqNotify
(
char * pMess /* text for message to self */
)
{
struct mq_attr attr; /* queue attribute structure */
struct sigevent sigNotify; /* to attach notification */
struct sigaction mySigAction; /* to attach signal handler */
mqd_t exMqId; /* id of message queue */

/* Minor sanity check; avoid exceeding msg buffer */
if (MSG_SIZE <= strlen (pMess))

{
printf ("exMqNotify: message too long\n");
return (-1);
}

/* Install signal handler for the notify signal - fill in a
 * sigaction structure and pass it to sigaction(). Because the
 * handler needs the siginfo structure as an argument, the
 * SA_SIGINFO flag is set in sa_flags.
 */
72

2

2
Basic OS
mySigAction.sa_sigaction = exNotificationHandle;
mySigAction.sa_flags = SA_SIGINFO;
sigemptyset (&mySigAction.sa_mask);

if (sigaction (SIGUSR1, &mySigAction, NULL) == -1)
{
printf ("sigaction failed\n");
return (-1);
}

/* Create a message queue - fill in a mq_attr structure with the
 * size and no. of messages required, and pass it to mq_open().
 */
attr.mq_flags = O_NONBLOCK; /* make nonblocking */
attr.mq_maxmsg = 2;
attr.mq_msgsize = MSG_SIZE;

if ((exMqId = mq_open (QNAM, O_CREAT | O_RDWR, 0, &attr)) ==
 (mqd_t) - 1)
{
printf ("mq_open failed\n");
return (-1);
}

/* Set up notification: fill in a sigevent structure and pass it
 * to mq_notify(). The queue ID is passed as an argument to the
 * signal handler.
 */
sigNotify.sigev_signo = SIGUSR1;
sigNotify.sigev_notify = SIGEV_SIGNAL;
sigNotify.sigev_value.sival_int = (int) exMqId;

if (mq_notify (exMqId, &sigNotify) == -1)
{
printf ("mq_notify failed\n");
return (-1);
}

/* We just created the message queue, but it may not be empty;
 * a higher-priority task may have placed a message there while
 * we were requesting notification. mq_notify() does nothing if
 * messages are already in the queue; therefore we try to
 * retrieve any messages already in the queue.
 */
exMqRead (exMqId);

/* Now we know the queue is empty, so we will receive a signal
 * the next time a message arrives.
 *
 * We send a message, which causes the notify handler to be
 * invoked. It is a little silly to have the task that gets the
 * notification be the one that puts the messages on the queue,
 * but we do it here to simplify the example.

*
 * A real application would do other work instead at this point.
 */
73

VxWorks 5.4
Programmer’s Guide
if (mq_send (exMqId, pMess, 1 + strlen (pMess), 0) == -1)
{
printf ("mq_send failed\n");
return (-1);
}

/* Cleanup */
if (mq_close (exMqId) == -1)

{
printf ("mq_close failed\n");
return (-1);
}

/* More cleanup */
if (mq_unlink (QNAM) == -1)

{
printf ("mq_unlink failed\n");
return (-1);
}

return (0);
}

/**
* exNotificationHandle - handler to read in messages
*
* This routine is a signal handler; it reads in messages from a message
* queue.
*/

static void exNotificationHandle
(
int sig, /* signal number */
siginfo_t * pInfo, /* signal information */
void * pSigContext /* unused (required by posix) */
)
{
struct sigevent sigNotify;
mqd_t exMqId;

/* Get the ID of the message queue out of the siginfo structure. */
exMqId = (mqd_t) pInfo->si_value.sival_int;

/* Request notification again; it resets each time a notification
 * signal goes out.
 */
sigNotify.sigev_signo = pInfo->si_signo;
sigNotify.sigev_value = pInfo->si_value;
sigNotify.sigev_notify = SIGEV_SIGNAL;

if (mq_notify (exMqId, &sigNotify) == -1)
{
printf ("mq_notify failed\n");
return;
}

74

2

2
Basic OS
/* Read in the messages */
exMqRead (exMqId);
}

/**
* exMqRead - read in messages
*
* This small utility routine receives and displays all messages
* currently in a POSIX message queue; assumes queue has O_NONBLOCK.
*/

static void exMqRead
(
mqd_t exMqId
)
{
char msg[MSG_SIZE];
int prio;

/* Read in the messages - uses a loop to read in the messages
 * because a notification is sent ONLY when a message is sent on
 * an EMPTY message queue. There could be multiple msgs if, for
 * example, a higher-priority task was sending them. Because the
 * message queue was opened with the O_NONBLOCK flag, eventually
 * this loop exits with errno set to EAGAIN (meaning we did an
 * mq_receive() on an empty message queue).
 */
while (mq_receive (exMqId, msg, MSG_SIZE, &prio) != -1)

{
printf ("exMqRead: received message: %s\n",msg);
}

if (errno != EAGAIN)
{
printf ("mq_receive: errno = %d\n", errno);
}

}

Message Queue Attributes

A POSIX message queue has the following attributes:

– an optional O_NONBLOCK flag

– the maximum number of messages in the message queue

– the maximum message size

– the number of messages currently on the queue

Tasks can set or clear the O_NONBLOCK flag (but not the other attributes) using

mq_setattr(), and get the values of all the attributes using mq_getattr().
75

VxWorks 5.4
Programmer’s Guide
Example 2-11 Setting and Getting Message Queue Attributes

/* This example sets the O_NONBLOCK flag, and examines message queue
* attributes.
*/

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

/* defines */
#define MSG_SIZE 16

int attrEx
(
char * name
)
{
mqd_t mqPXId; /* mq descriptor */
struct mq_attr attr; /* queue attribute structure */
struct mq_attr oldAttr; /* old queue attributes */
char buffer[MSG_SIZE];
int prio;

/* create read write queue that is blocking */
attr.mq_flags = 0;
attr.mq_maxmsg = 1;
attr.mq_msgsize = 16;
if ((mqPXId = mq_open (name, O_CREAT | O_RDWR , 0, &attr))

 == (mqd_t) -1)
return (ERROR);

else
printf ("mq_open with non-block succeeded\n");

/* change attributes on queue - turn on non-blocking */
attr.mq_flags = O_NONBLOCK;
if (mq_setattr (mqPXId, &attr, &oldAttr) == -1)

return (ERROR);
else

{
/* paranoia check - oldAttr should not include non-blocking. */
if (oldAttr.mq_flags & O_NONBLOCK)

return (ERROR);
else

printf ("mq_setattr turning on non-blocking succeeded\n");
}

/* try receiving - there are no messages but this shouldn't block */
if (mq_receive (mqPXId, buffer, MSG_SIZE, &prio) == -1)

{
if (errno != EAGAIN)

return (ERROR);
else
76

2

2
Basic OS
printf ("mq_receive with non-blocking didn’t block on empty queue\n");
}

else
return (ERROR);

/* use mq_getattr to verify success */
if (mq_getattr (mqPXId, &oldAttr) == -1)

return (ERROR);
else

{
/* test that we got the values we think we should */
if (!(oldAttr.mq_flags & O_NONBLOCK) || (oldAttr.mq_curmsgs != 0))

return (ERROR);
else

printf ("queue attributes are:\n\tblocking is %s\n\t
message size is: %d\n\t
max messages in queue: %d\n\t
no. of current msgs in queue: %d\n",
oldAttr.mq_flags & O_NONBLOCK ? "on" : "off",
oldAttr.mq_msgsize, oldAttr.mq_maxmsg,
oldAttr.mq_curmsgs);

}

/* clean up - close and unlink mq */
if (mq_unlink (name) == -1)

return (ERROR);
if (mq_close (mqPXId) == -1)

return (ERROR);
return (OK);
}

Comparison of POSIX and Wind Message Queues

The two forms of message queues solve many of the same problems, but there are

some significant differences. Table 2-19 summarizes the main differences between

the two forms of message queues.

Table 2-19 Message Queue Feature Comparison

Feature Wind Message Queues POSIX Message Queues

Message Priority Levels 1 32

Blocked Task Queues FIFO or priority-based Priority-based

Receive with Timeout Optional Not available

Task Notification Not available Optional (one task)

Close/Unlink Semantics No Yes
77

VxWorks 5.4
Programmer’s Guide
Another feature of POSIX message queues is, of course, portability: if you are

migrating to VxWorks from another 1003.1b-compliant system, using POSIX

message queues enables you to leave that part of the code unchanged, reducing the

porting effort.

Displaying Message Queue Attributes

The VxWorks show() command produces a display of the key message queue

attributes, for either kind of message queue3. For example, if mqPXId is a POSIX

message queue:

-> show mqPXId
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Message queue name : MyQueue
No. of messages in queue : 1
Maximum no. of messages : 16
Maximum message size : 16

Compare this to the output when myMsgQId is a Wind message queue:4

-> show myMsgQId
Message Queue Id : 0x3adaf0
Task Queuing : FIFO
Message Byte Len : 4
Messages Max : 30
Messages Queued : 14
Receivers Blocked : 0
Send timeouts : 0
Receive timeouts : 0

Servers and Clients with Message Queues

Real-time systems are often structured using a client-server model of tasks. In this

model, server tasks accept requests from client tasks to perform some service, and

usually return a reply. The requests and replies are usually made in the form of

3. However, to get information on POSIX message queues, INCLUDE_POSIX_MQ_SHOW
must be defined in the VxWorks configuration; for information, see Tornado User’s Guide:
Projects.

4. The built-in show() routine handles Wind message queues; see the Tornado User’s Guide:
Shell for information on built-in routines. You can also use the Tornado browser to get infor-

mation on Wind message queues; see the Tornado User’s Guide: Browser for details.
78

2

2
Basic OS
intertask messages. In VxWorks, message queues or pipes (see 2.4.5 Pipes, p.79) are

a natural way to implement this.

For example, client-server communications might be implemented as shown in

Figure 2-15. Each server task creates a message queue to receive request messages

from clients. Each client task creates a message queue to receive reply messages

from servers. Each request message includes a field containing the msgQId of the

client’s reply message queue. A server task’s “main loop” consists of reading

request messages from its request message queue, performing the request, and

sending a reply to the client’s reply message queue.

The same architecture can be achieved with pipes instead of message queues, or by

other means that are tailored to the needs of the particular application.

2.4.5 Pipes

Pipes provide an alternative interface to the message queue facility that goes

through the VxWorks I/O system. Pipes are virtual I/O devices managed by the

Figure 2-15 Client-Server Communications Using Message Queues

reply queue 1

reply queue 2

server task

request queue

message

message

message

client 2

client 1
79

VxWorks 5.4
Programmer’s Guide
driver pipeDrv. The routine pipeDevCreate() creates a pipe device and the

underlying message queue associated with that pipe. The call specifies the name

of the created pipe, the maximum number of messages that can be queued to it,

and the maximum length of each message:

status = pipeDevCreate (" /pipe/name", max_msgs, max_length);

The created pipe is a normally named I/O device. Tasks can use the standard I/O

routines to open, read, and write pipes, and invoke ioctl routines. As they do with

other I/O devices, tasks block when they read from an empty pipe until data is

available, and block when they write to a full pipe until there is space available.

Like message queues, ISRs can write to a pipe, but cannot read from a pipe.

As I/O devices, pipes provide one important feature that message queues

cannot—the ability to be used with select(). This routine allows a task to wait for

data to be available on any of a set of I/O devices. The select() routine also works

with other asynchronous I/O devices including network sockets and serial

devices. Thus, by using select(), a task can wait for data on a combination of

several pipes, sockets, and serial devices; see 3.3.8 Pending on Multiple File
Descriptors: The Select Facility, p.104.

Pipes allow you to implement a client-server model of intertask communications;

see Servers and Clients with Message Queues, p.78.

2.4.6 Network Intertask Communication

Sockets

In VxWorks, the basis of intertask communications across the network is sockets. A

socket is an endpoint for communications between tasks; data is sent from one

socket to another. When you create a socket, you specify the Internet

communications protocol that is to transmit the data. VxWorks supports the

Internet protocols TCP and UDP. VxWorks socket facilities are source compatible

with BSD 4.4 UNIX.

TCP provides reliable, guaranteed, two-way transmission of data with stream
sockets. In a stream-socket communication, two sockets are “connected,” allowing

a reliable byte-stream to flow between them in each direction as in a circuit. For this

reason TCP is often referred to as a virtual circuit protocol.

UDP provides a simpler but less robust form of communication. In UDP

communications, data is sent between sockets in separate, unconnected,
80

2

2
Basic OS
individually addressed packets called datagrams. A process creates a datagram

socket and binds it to a particular port. There is no notion of a UDP “connection.”

Any UDP socket, on any host in the network, can send messages to any other UDP

socket by specifying its Internet address and port number.

One of the biggest advantages of socket communications is that it is

“homogeneous.” Socket communications among processes are exactly the same

regardless of the location of the processes in the network, or the operating system

under which they are running. Processes can communicate within a single CPU,

across a backplane, across an Ethernet, or across any connected combination of

networks. Socket communications can occur between VxWorks tasks and host

system processes in any combination. In all cases, the communications look

identical to the application, except, of course, for their speed.

For more information, see VxWorks Network Programmer’s Guide: Networking APIs
and the reference entry for sockLib.

Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC) is a facility that allows a process on one machine to

call a procedure that is executed by another process on either the same machine or

a remote machine. Internally, RPC uses sockets as the underlying communication

mechanism. Thus with RPC, VxWorks tasks and host system processes can invoke

routines that execute on other VxWorks or host machines, in any combination.

As discussed in the previous sections on message queues and pipes, many real-

time systems are structured with a client-server model of tasks. In this model,

client tasks request services of server tasks, and then wait for their reply. RPC

formalizes this model and provides a standard protocol for passing requests and

returning replies. Also, RPC includes tools to help generate the client interface

routines and the server skeleton.

For more information on RPC, see VxWorks Network Programmer’s Guide: RPC,
Remote Procedure Calls.

2.4.7 Signals

VxWorks supports a software signal facility. Signals asynchronously alter the

control flow of a task. Any task or ISR can raise a signal for a particular task. The

task being signaled immediately suspends its current thread of execution and

executes the task-specified signal handler routine the next time it is scheduled to
81

VxWorks 5.4
Programmer’s Guide
run. The signal handler executes in the receiving task’s context and makes use of

that task’s stack. The signal handler is invoked even if the task is blocked.

Signals are more appropriate for error and exception handling than as a general-

purpose intertask communication mechanism. In general, signal handlers should

be treated like ISRs; no routine should be called from a signal handler that might

cause the handler to block. Because signals are asynchronous, it is difficult to

predict which resources might be unavailable when a particular signal is raised. To

be perfectly safe, call only those routines that can safely be called from an ISR (see

Table 2-23). Deviate from this practice only when you are sure your signal handler

can not create a deadlock situation.

The wind kernel supports two types of signal interface: UNIX BSD-style signals

and POSIX-compatible signals. The POSIX-compatible signal interface, in turn,

includes both the fundamental signaling interface specified in the POSIX standard

1003.1, and the queued-signals extension from POSIX 1003.1b. For the sake of

simplicity, we recommend that you use only one interface type in a given

application, rather than mixing routines from different interfaces.

For more information on signals, see the reference entry for sigLib.

Basic Signal Routines

Table 2-20 shows the basic signal routines. To make these facilities available, the

signal library initialization routine sigInit() must be called, normally from

usrInit() in usrConfig.c, before interrupts are enabled.

The colorful name kill() harks back to the origin of these interfaces in UNIX BSD.

Although the interfaces vary, the functionality of BSD-style signals and basic

POSIX signals is similar.

In many ways, signals are analogous to hardware interrupts. The basic signal

facility provides a set of 31 distinct signals. A signal handler binds to a particular

signal with sigvec() or sigaction() in much the same way that an ISR is connected

to an interrupt vector with intConnect(). A signal can be asserted by calling kill().
This is analogous to the occurrence of an interrupt. The routines sigsetmask() and

sigblock() or sigprocmask() let signals be selectively inhibited.

Certain signals are associated with hardware exceptions. For example, bus errors,

illegal instructions, and floating-point exceptions raise specific signals.
82

2

2
Basic OS
POSIX Queued Signals

The sigqueue() routine provides an alternative to kill() for sending signals to a

task. The important differences between the two are:

■ sigqueue() includes an application-specified value that is sent as part of the

signal. You can use this value to supply whatever context your signal handler

finds useful. This value is of type sigval (defined in signal.h); the signal

handler finds it in the si_value field of one of its arguments, a structure

siginfo_t. An extension to the POSIX sigaction() routine allows you to register

signal handlers that accept this additional argument.

■ sigqueue() enables the queueing of multiple signals for any task. The kill()
routine, by contrast, delivers only a single signal, even if multiple signals

arrive before the handler runs.

VxWorks includes seven signals reserved for application use, numbered

consecutively from SIGRTMIN. The presence of these reserved signals is required

by POSIX 1003.1b, but the specific signal values are not; for portability, specify

Table 2-20 Basic Signal Calls (BSD and POSIX 1003.1b)

POSIX 1003.1b
Compatible
Call

UNIX BSD
Compatible
Call

Description

signal() signal() Specify the handler associated with a signal.

kill() kill() Send a signal to a task.

raise() N/A Send a signal to yourself.

sigaction() sigvec() Examine or set the signal handler for a signal.

sigsuspend() pause() Suspend a task until a signal is delivered.

sigpending() N/A Retrieve a set of pending signals blocked from delivery.

sigemptyset()
sigfillset()
sigaddset()
sigdelset()
sigismember()

sigsetmask() Manipulate a signal mask.

sigprocmask() sigsetmask() Set the mask of blocked signals.

sigprocmask() sigblock() Add to a set of blocked signals.
83

VxWorks 5.4
Programmer’s Guide
these signals as offsets from SIGRTMIN (for example, write SIGRTMIN+2 to refer

to the third reserved signal number). All signals delivered with sigqueue() are

queued by numeric order, with lower-numbered signals queuing ahead of higher-

numbered signals.

POSIX 1003.1b also introduced an alternative means of receiving signals. The

routine sigwaitinfo() differs from sigsuspend() or pause() in that it allows your

application to respond to a signal without going through the mechanism of a

registered signal handler: when a signal is available, sigwaitinfo() returns the

value of that signal as a result, and does not invoke a signal handler even if one is

registered. The routine sigtimedwait() is similar, except that it can time out.

For detailed information on signals, see the reference entry for sigLib.

Signal Configuration

The basic signal facility is included in VxWorks by default with

INCLUDE_SIGNALS (located under kernel components in the project facility).

Before your application can use POSIX queued signals, they must be initialized

separately with sigqueueInit(). Like the basic signals initialization function

sigInit(), this function is normally called from usrInit() in usrConfig.c, after

sysInit() runs.

To initialize the queued signal functionality, also define

INCLUDE_POSIX_SIGNALS (located under POSIX components in the project

facility): with that definition, sigqueueInit() is called automatically.

The routine sigqueueInit() allocates nQueues buffers for use by sigqueue(), which

requires a buffer for each currently queued signal (see the reference entry for

sigqueueInit()). A call to sigqueue() fails if no buffer is available.

Table 2-21 POSIX 1003.1b Queued Signal Calls

Call Description

sigqueue() Send a queued signal.

sigwaitinfo() Wait for a signal.

sigtimedwait() Wait for a signal with a timeout.
84

2

2
Basic OS
2.5 Interrupt Service Code

Hardware interrupt handling is of key significance in real-time systems, because it

is usually through interrupts that the system is informed of external events. For the

fastest possible response to interrupts, interrupt service routines (ISRs) in VxWorks

run in a special context outside of any task’s context. Thus, interrupt handling

involves no task context switch. The interrupt routines, listed in Table 2-22, are

provided in intLib and intArchLib.

For boards with an MMU, the optional product VxVMI provides write protection

for the interrupt vector table; see 7. Virtual Memory Interface.

2.5.1 Connecting Application Code to Interrupts

You can use system hardware interrupts other than those used by VxWorks.

VxWorks provides the routine intConnect(), which allows C functions to be

connected to any interrupt. The arguments to this routine are the byte offset of the

interrupt vector to connect to, the address of the C function to be connected, and

an argument to pass to the function. When an interrupt occurs with a vector

established in this way, the connected C function is called at interrupt level with

the specified argument. When the interrupt handling is finished, the connected

Table 2-22 Interrupt Routines

Call Description

intConnect() Connect a C routine to an interrupt vector.

intContext() Return TRUE if called from interrupt level.

intCount() Get the current interrupt nesting depth.

intLevelSet() Set the processor interrupt mask level.

intLock() Disable interrupts.

intUnlock() Re-enable interrupts.

intVecBaseSet() Set the vector base address.

intVecBaseGet() Get the vector base address.

intVecSet() Set an exception vector.

intVecGet() Get an exception vector.
85

VxWorks 5.4
Programmer’s Guide
function returns. A routine connected to an interrupt in this way is called an

interrupt service routine (ISR).

Interrupts cannot actually vector directly to C functions. Instead, intConnect()
builds a small amount of code that saves the necessary registers, sets up a stack

entry (either on a special interrupt stack, or on the current task’s stack) with the

argument to be passed, and calls the connected function. On return from the

function it restores the registers and stack, and exits the interrupt; see Figure 2-16.

For target boards with VME backplanes, the BSP provides two standard routines

for controlling VME bus interrupts, sysIntEnable() and sysIntDisable().

2.5.2 Interrupt Stack

Whenever the architecture allows it, all ISRs use the same interrupt stack. This stack

is allocated and initialized by the system at start-up according to specified

configuration parameters. It must be large enough to handle the worst possible

combination of nested interrupts.

Some architectures, however, do not permit using a separate interrupt stack. On

such architectures, ISRs use the stack of the interrupted task. If you have such an

architecture, you must create tasks with enough stack space to handle the worst

possible combination of nested interrupts and the worst possible combination of

ordinary nested calls. See the reference entry for your BSP to determine whether

your architecture supports a separate interrupt stack.

Use the checkStack() facility during development to see how close your tasks and

ISRs have come to exhausting the available stack space.

Figure 2-16 Routine Built by intConnect()

Wrapper built by intConnect() Interrupt Service Routine

intConnect (INUM_TO_IVEC (someIntNum), myISR, someVal);

save registers

set up stack

invoke routine

restore registers and stack

exit

myISR
(
int val;
)
(
/* deal with hardware*/

...
)

86

2

2
Basic OS
2.5.3 Special Limitations of ISRs

Many VxWorks facilities are available to ISRs, but there are some important

limitations. These limitations stem from the fact that an ISR does not run in a

regular task context: it has no task control block, for example, and all ISRs share a

single stack.

Table 2-23 Routines that Can Be Called by Interrupt Service Routines

Library Routines

bLib All routines

errnoLib errnoGet(), errnoSet()

fppArchLib fppSave(), fppRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet()

intArchLib intLock(), intUnlock()

logLib logMsg()

lstLib All routines except lstFree()

mathALib All routines, if fppSave()/fppRestore() are used

msgQLib msgQSend()

pipeDrv write()

rngLib All routines except rngCreate() and rngDelete()

selectLib selWakeup(), selWakeupAll()

semLib semGive() except mutual-exclusion semaphores, semFlush()

sigLib kill()

taskLib taskSuspend(), taskResume(), taskPrioritySet(), taskPriorityGet(),
taskIdVerify(), taskIdDefault(), taskIsReady(), taskIsSuspended(),
taskTcb()

tickLib tickAnnounce(), tickSet(), tickGet()

tyLib tyIRd(), tyITx()

vxLib vxTas(), vxMemProbe()

wdLib wdStart(), wdCancel()
87

VxWorks 5.4
Programmer’s Guide
For this reason, the basic restriction on ISRs is that they must not invoke routines

that might cause the caller to block. For example, they must not try to take a

semaphore, because if the semaphore is unavailable, the kernel tries to switch the

caller to the pended state. However, ISRs can give semaphores, releasing any tasks

waiting on them.

Because the memory facilities malloc() and free() take a semaphore, they cannot

be called by ISRs, and neither can routines that make calls to malloc() and free().
For example, ISRs cannot call any creation or deletion routines.

ISRs also must not perform I/O through VxWorks drivers. Although there are no

inherent restrictions in the I/O system, most device drivers require a task context

because they might block the caller to wait for the device. An important exception

is the VxWorks pipe driver, which is designed to permit writes by ISRs.

VxWorks supplies a logging facility, in which a logging task prints text messages

to the system console. This mechanism was specifically designed so that ISRs

could use it, and is the most common way to print messages from ISRs. For more

information, see the reference entry for logLib.

An ISR also must not call routines that use a floating-point coprocessor. In

VxWorks, the interrupt driver code created by intConnect() does not save and

restore floating-point registers; thus, ISRs must not include floating-point

instructions. If an ISR requires floating-point instructions, it must explicitly save

and restore the registers of the floating-point coprocessor using routines in

fppArchLib.

All VxWorks utility libraries, such as the linked-list and ring-buffer libraries, can

be used by ISRs. As discussed earlier (2.3.7 Task Error Status: errno, p.36), the global

variable errno is saved and restored as a part of the interrupt enter and exit code

generated by the intConnect() facility. Thus errno can be referenced and modified

by ISRs as in any other code. Table 2-23 lists routines that can be called from ISRs.

2.5.4 Exceptions at Interrupt Level

When a task causes a hardware exception such as illegal instruction or bus error,

the task is suspended and the rest of the system continues uninterrupted.

However, when an ISR causes such an exception, there is no safe recourse for the

system to handle the exception. The ISR has no context that can be suspended.

Instead, VxWorks stores the description of the exception in a special location in low

memory and executes a system restart.

The VxWorks boot ROMs test for the presence of the exception description in low

memory and if it is detected, display it on the system console. The e command in
88

2

2
Basic OS
the boot ROMs re-displays the exception description; see Tornado User’s Guide:
Setup and Startup.

One example of such an exception is the message:

workQPanic: Kernel work queue overflow.

This exception usually occurs when kernel calls are made from interrupt level at a

very high rate. It generally indicates a problem with clearing the interrupt signal

or a similar driver problem.

2.5.5 Reserving High Interrupt Levels

The VxWorks interrupt support described earlier in this section is acceptable for

most applications. However, on occasion, low-level control is required for events

such as critical motion control or system failure response. In such cases it is

desirable to reserve the highest interrupt levels to ensure zero-latency response to

these events. To achieve zero-latency response, VxWorks provides the routine

intLockLevelSet(), which sets the system-wide interrupt-lockout level to the

specified level. If you do not specify a level, the default is the highest level

supported by the processor architecture.

2.5.6 Additional Restrictions for ISRs at High Interrupt Levels

ISRs connected to interrupt levels that are not locked out (either an interrupt level

higher than that set by intLockLevelSet(), or an interrupt level defined in

hardware as non-maskable) have special restrictions:

■ The ISR can be connected only with intVecSet().

■ The ISR cannot use any VxWorks operating system facilities that depend on

interrupt locks for correct operation.

! CAUTION: Some hardware prevents masking certain interrupt levels; check the

hardware manufacturer’s documentation. For example, on MC680x0 chips,

interrupt level 7 is non-maskable. Because level 7 is also the highest interrupt level

on this architecture, VxWorks uses 7 as the default lockout level—but this is in fact

equivalent to a lockout level of 6, since the hardware prevents locking out level 7.
89

VxWorks 5.4
Programmer’s Guide
2.5.7 Interrupt-to-Task Communication

While it is important that VxWorks support direct connection of ISRs that run at

interrupt level, interrupt events usually propagate to task-level code. Many

VxWorks facilities are not available to interrupt-level code, including I/O to any

device other than pipes. The following techniques can be used to communicate

from ISRs to task-level code:

■ Shared Memory and Ring Buffers. ISRs can share variables, buffers, and ring

buffers with task-level code.

■ Semaphores. ISRs can give semaphores (except for mutual-exclusion

semaphores and VxMP shared semaphores) that tasks can take and wait for.

■ Message Queues. ISRs can send messages to message queues for tasks to

receive (except for shared message queues using VxMP). If the queue is full,

the message is discarded.

■ Pipes. ISRs can write messages to pipes that tasks can read. Tasks and ISRs can

write to the same pipes. However, if the pipe is full, the message written is

discarded because the ISR cannot block. ISRs must not invoke any I/O routine

on pipes other than write().

■ Signals. ISRs can “signal” tasks, causing asynchronous scheduling of their

signal handlers.

2.6 Watchdog Timers

VxWorks includes a watchdog-timer mechanism that allows any C function to be

connected to a specified time delay. Watchdog timers are maintained as part of the

system clock ISR. Normally, functions invoked by watchdog timers execute as

interrupt service code at the interrupt level of the system clock. However, if the

kernel is unable to execute the function immediately for any reason (such as a

previous interrupt or kernel state), the function is placed on the tExcTask work

queue. Functions on the tExcTask work queue execute at the priority level of the

tExcTask (usually 0). Restrictions on ISRs apply to routines connected to watchdog

timers. The functions in Table 2-24 are provided by the wdLib library.

A watchdog timer is first created by calling wdCreate(). Then the timer can be

started by calling wdStart(), which takes as arguments the number of ticks to

delay, the C function to call, and an argument to be passed to that function. After
90

2

2
Basic OS
the specified number of ticks have elapsed, the function is called with the specified

argument. The watchdog timer can be canceled any time before the delay has

elapsed by calling wdCancel().

Example 2-12 Watchdog Timers

/* This example creates a watchdog timer and sets it to go off in
* 3 seconds.
*/

/* includes */
#include "vxWorks.h"
#include "logLib.h"
#include "wdLib.h"

/* defines */
#define SECONDS (3)

WDOG_ID myWatchDogId;
task (void)

{
/* Create watchdog */

if ((myWatchDogId = wdCreate()) == NULL)
return (ERROR);

/* Set timer to go off in SECONDS - printing a message to stdout */

if (wdStart (myWatchDogId, sysClkRateGet() * SECONDS, logMsg,
"Watchdog timer just expired\n") == ERROR)

return (ERROR);

/* ... */
}

Table 2-24 Watchdog Timer Calls

Call Description

wdCreate() Allocate and initialize a watchdog timer.

wdDelete() Terminate and deallocate a watchdog timer.

wdStart() Start a watchdog timer.

wdCancel() Cancel a currently counting watchdog timer.
91

VxWorks 5.4
Programmer’s Guide
2.7 POSIX Clocks and Timers

A clock is a software construct (struct timespec, defined in time.h) that keeps time

in seconds and nanoseconds. The software clock is updated by system-clock ticks.

VxWorks provides a POSIX 1003.1b standard clock and timer interface.

The POSIX standard provides for identifying multiple virtual clocks, but only one

clock is required—the system-wide real-time clock, identified in the clock and

timer routines as CLOCK_REALTIME (also defined in time.h). VxWorks provides

routines to access the system-wide real-time clock; see the reference entry for

clockLib. (No virtual clocks are supported in VxWorks.)

The POSIX timer facility provides routines for tasks to signal themselves at some

time in the future. Routines are provided to create, set, and delete a timer; see the

reference entry for timerLib. When a timer goes off, the default signal (SIGALRM)

is sent to the task. Use sigaction() to install a signal handler that executes when the

timer expires (see 2.4.7 Signals, p.81).

Example 2-13 POSIX Timers

/* This example creates a new timer and stores it in timerid. */

/* includes */
#include "vxWorks.h"
#include "time.h"

int createTimer (void)
{
timer_t timerid;

/* create timer */

if (timer_create (CLOCK_REALTIME, NULL, &timerid) == ERROR)
{
printf ("create FAILED\n");
return (ERROR);
}

return (OK);
}

An additional POSIX function, nanosleep(), allows specification of sleep or delay

time in units of seconds and nanoseconds, as opposed to the ticks used by the

Wind taskDelay() function. Only the units are different, however, not the

precision: both delay routines have the same precision, determined by the system

clock rate.
92

2

2
Basic OS
2.8 POSIX Memory-Locking Interface

Many operating systems perform memory paging and swapping. These techniques

allow the use of more virtual memory than there is physical memory on a system,

by copying blocks of memory out to disk and back. These techniques impose

severe and unpredictable delays in execution time; they are therefore undesirable

in real-time systems.

Because the wind kernel is designed specifically for real-time applications, it never

performs paging or swapping. However, the POSIX 1003.1b standard for real-time

extensions also covers operating systems that perform paging or swapping. On

such systems, applications that attempt real-time performance can use the POSIX

page-locking facilities to declare that certain blocks of memory must not be paged

or swapped.

To help maximize portability, VxWorks includes the POSIX page-locking routines.

Executing these routines makes no difference in VxWorks, because all memory is,

in effect, always locked. They are included only to make it easier to port programs

between other POSIX-conforming systems and VxWorks.

The POSIX page-locking routines are in mmanPxLib (the name reflects the fact

that these routines are part of the POSIX “memory-management” routines).

Because in VxWorks all pages are always kept in memory, the routines listed in

Table 2-25 always return a value of OK (0), and have no further effect.

The mmanPxLib library is included automatically when the configuration

constant INCLUDE_POSIX_MEM is selected for inclusion in the project facility

VxWorks view.

Table 2-25 POSIX Memory Management Calls

Call Purpose on Systems with Paging or Swapping

mlockall() Lock into memory all pages used by a task.

munlockall() Unlock all pages used by a task.

mlock() Lock a specified page.

munlock() Unlock a specified page.
93

VxWorks 5.4
Programmer’s Guide
94

3
I/O System
3.1 Introduction

The VxWorks I/O system is designed to present a simple, uniform, device-

independent interface to any kind of device, including:

– character-oriented devices such as terminals or communications lines

– random-access block devices such as disks

– virtual devices such as intertask pipes and sockets
– monitor and control devices such as digital/analog I/O devices

– network devices that give access to remote devices

The VxWorks I/O system provides standard C libraries for both basic and buffered

I/O. The basic I/O libraries are UNIX-compatible; the buffered I/O libraries are

ANSI C-compatible. Internally, the VxWorks I/O system has a unique design that

makes it faster and more flexible than most other I/O systems. These are important

attributes in a real-time system.

This chapter first describes the nature of files and devices, and the user view of basic

and buffered I/O. The middle section discusses the details of some specific

devices. The final section is a detailed discussion of the internal structure of the

VxWorks I/O system.

Figure 3-1 diagrams the relationships between the different pieces of the VxWorks

I/O system. All the elements of the I/O system are discussed in this chapter, except

for file system routines, which are presented in 4. Local File Systems in this manual.
95

VxWorks 5.4
Programmer’s Guide
3.2 Files, Devices, and Drivers

In VxWorks, applications access I/O devices by opening named files. A file can

refer to one of two things:

■ An unstructured “raw” device such as a serial communications channel or an

intertask pipe.

■ A logical file on a structured, random-access device containing a file system.

Consider the following named files:

Figure 3-1 Overview of the VxWorks I/O System

/usr/myfile /pipe/mypipe /tyCo/0

Driver Routines

xxRead()
xxWrite()

Basic I/O Routines
(device independent)

write()
read()

Application

Hardware Devices

Buffered I/O: stdio

fread()
fwrite()

Library Routines

tyLib

fioLib

fioRead()
printf()
sprintf()

Network
Disk Drive

Serial Device

File System Routines

xxRead()
xxWrite()
96

3

3
I/O System
The first refers to a file called myfile, on a disk device called /usr. The second is a

named pipe (by convention, pipe names begin with /pipe). The third refers to a

physical serial channel. However, I/O can be done to or from any of these in the

same way. Within VxWorks, they are all called files, even though they refer to very

different physical objects.

Devices are handled by program modules called drivers. In general, using the I/O

system does not require any further understanding of the implementation of

devices and drivers. Note, however, that the VxWorks I/O system gives drivers

considerable flexibility in the way they handle each specific device. Drivers strive

to follow the conventional user view presented here, but can differ in the specifics.

See 3.7 Devices in VxWorks, p.118.

Although all I/O is directed at named files, it can be done at two different levels:

basic and buffered. The two differ in the way data is buffered and in the types of calls

that can be made. These two levels are discussed in later sections.

3.2.1 File Names and the Default Device

A file name is specified as a character string. An unstructured device is specified

with the device name. In the case of file system devices, the device name is

followed by a file name. Thus the name /tyCo/0 might name a particular serial I/O

channel, and the name DEV1:/file1 probably indicates the file file1 on the DEV1:
device.

When a file name is specified in an I/O call, the I/O system searches for a device

with a name that matches at least an initial substring of the file name. The I/O

function is then directed at this device.

If a matching device name cannot be found, then the I/O function is directed at a

default device. You can set this default device to be any device in the system,

including no device at all, in which case failure to match a device name returns an

error.

Non-block devices are named when they are added to the I/O system, usually at

system initialization time. Block devices are named when they are initialized for

use with a specific file system. The VxWorks I/O system imposes no restrictions on

the names given to devices. The I/O system does not interpret device or file names

in any way, other than during the search for matching device and file names.

It is useful to adopt some naming conventions for device and file names: most

device names begin with a slash (/), except non-NFS network devices and

VxWorks DOS devices (dosFs).
97

VxWorks 5.4
Programmer’s Guide
By convention, NFS-based network devices are mounted with names that begin

with a slash. For example:

/usr

Non-NFS network devices are named with the remote machine name followed by

a colon. For example:

host:

The remainder of the name is the file name in the remote directory on the remote

system.

File system devices using dosFs are often named with uppercase letters and/or

digits followed by a colon. For example:

DEV1:

3.3 Basic I/O

Basic I/O is the lowest level of I/O in VxWorks. The basic I/O interface is source-

compatible with the I/O primitives in the standard C library. There are seven basic

I/O calls, shown in the following table.

NOTE: File names and directory names on dosFs devices are often separated by

backslashes (\). These can be used interchangeably with forward slashes (/).

! CAUTION: Because device names are recognized by the I/O system using simple

substring matching, a slash (/) should not be used alone as a device name.

Table 3-1 Basic I/O Routines

Call Description

creat() Create a file.

remove() Remove a file.

open() Open a file. (Optionally, create a file.)

close() Close a file.
98

3

3
I/O System
3.3.1 File Descriptors

At the basic I/O level, files are referred to by a file descriptor, or fd. An fd is a small

integer returned by a call to open() or creat(). The other basic I/O calls take an fd
as a parameter to specify the intended file. An fd has no meaning discernible to the

user; it is only a handle for the I/O system.

When a file is opened, an fd is allocated and returned. When the file is closed, the

fd is deallocated. There are a finite number of fds available in VxWorks. To avoid

exceeding the system limit, it is important to close fds that are no longer in use. The

number of available fds is specified in the initialization of the I/O system.

3.3.2 Standard Input, Standard Output, and Standard Error

Three file descriptors are reserved and have special meanings:

0 = standard input

1 = standard output

2 = standard error output

These fds are never returned as the result of an open() or creat(), but serve rather

as indirect references that can be redirected to any other open fd.

These standard fds are used to make tasks and modules independent of their actual

I/O assignments. If a module sends its output to standard output (fd = 1), then its

output can be redirected to any file or device, without altering the module.

VxWorks allows two levels of redirection. First, there is a global assignment of the

three standard fds. Second, individual tasks can override the global assignment of

these fds with their own assignments that apply only to that task.

read() Read a previously created or opened file.

write() Write a previously created or opened file.

ioctl() Perform special control functions on files or devices.

Table 3-1 Basic I/O Routines

Call Description
99

VxWorks 5.4
Programmer’s Guide
Global Redirection

When VxWorks is initialized, the global assignments of the standard fds are

directed, by default, to the system console. When tasks are spawned, they initially

have no task-specific fd assignments; instead, they use the global assignments.

The global assignments can be redirected using ioGlobalStdSet(). The parameters

to this routine are the global standard fd to be redirected, and the fd to direct it to.

For example, the following call sets global standard output (fd = 1) to be the open

file with a file descriptor of fileFd:

ioGlobalStdSet (1, fileFd);

All tasks in the system that do not have their own task-specific redirection write

standard output to that file thereafter. For example, the task tRlogind calls

ioGlobalStdSet() to redirect I/O across the network during an rlogin session.

Task-Specific Redirection

The assignments for a specific task can be redirected using the routine

ioTaskStdSet(). The parameters to this routine are the task ID (0 = self) of the task

with the assignments to be redirected, the standard fd to be redirected, and the fd
to direct it to. For example, a task can make the following call to write standard

output to fileFd:

ioTaskStdSet (0, 1, fileFd);

All other tasks are unaffected by this redirection, and subsequent global

redirections of standard output do not affect this task.

3.3.3 Open and Close

Before I/O can be performed to a device, an fd must be opened to that device by

invoking the open() routine (or creat(), as discussed in the next section). The

arguments to open() are the file name, the type of access, and, when necessary, the

mode:

fd = open (" name", flags, mode);

The possible access flags are shown in Table 3-2.
100

3

3
I/O System
The mode parameter is used in the following special cases to specify the mode

(permission bits) of a file or to create subdirectories:

■ In general, you can open only preexisting devices and files with open().
However, with NFS network, dosFs, and rt11Fs devices, you can also create

files with open() by or’ing O_CREAT with one of the access flags. In the case of

NFS devices, open() requires the third parameter specifying the mode of the

file:

fd = open (" name", O_CREAT | O_RDWR, 0644);

■ With both dosFs and NFS devices, you can use the O_CREAT option to create

a subdirectory by setting mode to FSTAT_DIR. Other uses of the mode

parameter with dosFs devices are ignored.

The open() routine, if successful, returns an fd (a small integer). This fd is then used

in subsequent I/O calls to specify that file. The fd is a global identifier that is not task

specific. One task can open a file, and then any other tasks can use the resulting fd
(for example, pipes). The fd remains valid until close() is invoked with that fd:

close (fd);

At that point, I/O to the file is flushed (completely written out) and the fd can no

longer be used by any task. However, the same fd number can again be assigned

by the I/O system in any subsequent open().

When a task exits or is deleted, the files opened by that task are not automatically

closed, because fds are not task specific. Thus, it is recommended that tasks

explicitly close all files when they are no longer required. As stated previously,

there is a limit to the number of files that can be open at one time.

Table 3-2 File Access Flags

Flag Hex Value Description

O_RDONLY 0 Open for reading only.

O_WRONLY 1 Open for writing only.

O_RDWR 2 Open for reading and writing.

O_CREAT 200 Create a new file.

O_TRUNC 400 Truncate the file.
101

VxWorks 5.4
Programmer’s Guide
3.3.4 Create and Remove

File-oriented devices must be able to create and remove files as well as open

existing files. The creat() routine directs a file-oriented device to make a new file

on the device and return a file descriptor for it. The arguments to creat() are

similar to those of open() except that the file name specifies the name of the new

file rather than an existing one; the creat() routine returns an fd identifying the

new file.

fd = creat (" name", flag);

The remove() routine removes a named file on a file-oriented device:

remove (" name");

Do not remove files while they are open.

With non-file-system oriented device names, creat() acts exactly like open();
however, remove() has no effect.

3.3.5 Read and Write

After an fd is obtained by invoking open() or creat(), tasks can read bytes from a

file with read() and write bytes to a file with write(). The arguments to read() are

the fd, the address of the buffer to receive input, and the maximum number of bytes

to read:

nBytes = read (fd, & buffer, maxBytes);

The read() routine waits for input to be available from the specified file, and

returns the number of bytes actually read. For file-system devices, if the number of

bytes read is less than the number requested, a subsequent read() returns 0 (zero),

indicating end-of-file. For non-file-system devices, the number of bytes read can be

less than the number requested even if more bytes are available; a subsequent

read() may or may not return 0. In the case of serial devices and TCP sockets,

repeated calls to read() are sometimes necessary to read a specific number of bytes.

(See the reference entry for fioRead() in fioLib). A return value of ERROR (-1)

indicates an unsuccessful read.

The arguments to write() are the fd, the address of the buffer that contains the data

to be output, and the number of bytes to be written:

actualBytes = write (fd, & buffer, nBytes);
102

3

3
I/O System
The write() routine ensures that all specified data is at least queued for output

before returning to the caller, though the data may not yet have been written to the

device (this is driver dependent). write() returns the number of bytes written; if

the number returned is not equal to the number requested, an error has occurred.

3.3.6 File Truncation

It is sometimes convenient to discard part of the data in a file. After a file is open

for writing, you can use the ftruncate() routine to truncate a file to a specified size.

Its arguments are an fd and the desired length of the file:

status = ftruncate (fd, length);

If it succeeds in truncating the file, ftruncate() returns OK. If the size specified is

larger than the actual size of the file, or if the fd refers to a device that cannot be

truncated, ftruncate() returns ERROR, and sets errno to EINVAL.

The ftruncate() routine is part of the POSIX 1003.1b standard, but this

implementation is only partially POSIX-compliant: creation and modification

times are not updated. This call is supported only by dosFsLib, the DOS-

compatible file system library.

3.3.7 I/O Control

The ioctl() routine is an open-ended mechanism for performing any I/O functions

that do not fit the other basic I/O calls. Examples include determining how many

bytes are currently available for input, setting device-specific options, obtaining

information about a file system, and positioning random-access files to specific

byte positions. The arguments to the ioctl() routine are the fd, a code that identifies

the control function requested, and an optional function-dependent argument:

result = ioctl (fd, function, arg);

For example, the following call uses the FIOBAUDRATE function to set the baud

rate of a tty device to 9600:

status = ioctl (fd, FIOBAUDRATE, 9600);

The discussion of specific devices in 3.7 Devices in VxWorks, p.118 summarizes the

ioctl() functions available for each device. The ioctl() control codes are defined in

ioLib.h. For more information, see the reference entries for specific device drivers.
103

VxWorks 5.4
Programmer’s Guide
3.3.8 Pending on Multiple File Descriptors: The Select Facility

The VxWorks select facility provides a UNIX- and Windows-compatible method

for pending on multiple file descriptors. The library selectLib provides both task-

level support, allowing tasks to wait for multiple devices to become active, and

device driver support, giving drivers the ability to detect tasks that are pended

while waiting for I/O on the device. To use this facility, the header file selectLib.h
must be included in your application code.

Task-level support not only gives tasks the ability to simultaneously wait for I/O

on multiple devices, but it also allows tasks to specify the maximum time to wait

for I/O to become available. For an example of using the select facility to pend on

multiple file descriptors, consider a client-server model in which the server is

servicing both local and remote clients. The server task uses a pipe to communicate

with local clients and a socket to communicate with remote clients. The server task

must respond to clients as quickly as possible. If the server blocks waiting for a

request on only one of the communication streams, it cannot service requests that

come in on the other stream until it gets a request on the first stream. For example,

if the server blocks waiting for a request to arrive in the socket, it cannot service

requests that arrive in the pipe until a request arrives in the socket to unblock it.

This can delay local tasks waiting to get their requests serviced. The select facility

solves this problem by giving the server task the ability to monitor both the socket

and the pipe and service requests as they come in, regardless of the communication

stream used.

Tasks can block until data becomes available or the device is ready for writing. The

select() routine returns when one or more file descriptors are ready or a timeout

has occurred. Using the select() routine, a task specifies the file descriptors on

which to wait for activity. Bit fields are used in the select() call to specify the read

and write file descriptors of interest. When select() returns, the bit fields are

modified to reflect the file descriptors that have become available. The macros for

building and manipulating these bit fields are listed in Table 3-3.

Table 3-3 Select Macros

Macro Function

FD_ZERO Zeros all bits.

FD_SET Sets bit corresponding to a specified file descriptor.

FD_CLR Clears a specified bit.

FD_ISSET Returns 1 if specified bit is set, otherwise returns 0.
104

3

3
I/O System
Applications can use select() with any character I/O devices that provide support

for this facility (for example, pipes, serial devices, and sockets). For information on

writing a device driver that supports select(), see Implementing select(), p.152.

Example 3-1 The Select Facility

/* selServer.c - select example
 * In this example, a server task uses two pipes: one for normal-priority
 * requests, the other for high-priority requests. The server opens both
 * pipes and blocks while waiting for data to be available in at least one
 * of the pipes.
 */

#include "vxWorks.h"
#include "selectLib.h"
#include "fcntl.h"

#define MAX_FDS 2
#define MAX_DATA 1024
#define PIPEHI "/pipe/highPriority"
#define PIPENORM "/pipe/normalPriority"

/**
* selServer - reads data as it becomes available from two different pipes
*
* Opens two pipe fds, reading from whichever becomes available. The
* server code assumes the pipes have been created from either another
* task or the shell. To test this code from the shell do the following:
* -> ld < selServer.o
* -> pipeDevCreate ("/pipe/highPriority", 5, 1024)
* -> pipeDevCreate ("/pipe/normalPriority", 5, 1024)
* -> fdHi = open ("/pipe/highPriority", 1, 0)
* -> fdNorm = open ("/pipe/normalPriority", 1, 0)
* -> iosFdShow
* -> sp selServer
* -> i
* At this point you should see selServer’s state as pended. You can now
* write to either pipe to make the selServer display your message.
* -> write fdNorm, "Howdy", 6
* -> write fdHi, "Urgent", 7
*/

STATUS selServer (void)
 {
 struct fd_set readFds; /* bit mask of fds to read from */
 int fds[MAX_FDS]; /* array of fds on which to pend */
 int width; /* number of fds on which to pend */
 int i; /* index for fd array */
 char buffer[MAX_DATA]; /* buffer for data that is read */
105

VxWorks 5.4
Programmer’s Guide
/* open file descriptors */
 if ((fds[0] = open (PIPEHI, O_RDONLY, 0)) == ERROR)
 return (ERROR);
 if ((fds[1] = open (PIPENORM, O_RDONLY, 0)) == ERROR)
 return (ERROR);

/* loop forever reading data and servicing clients */
 FOREVER
 {
 /* clear bits in read bit mask */
 FD_ZERO (&readFds);

/* initialize bit mask */
 FD_SET (fds[0], &readFds);
 FD_SET (fds[1], &readFds);
 width = (fds[0] > fds[1]) ? fds[0] : fds[1];
 width++;

/* pend, waiting for one or more fds to become ready */
 if (select (width, &readFds, NULL, NULL, NULL) == ERROR)
 return (ERROR);

/* step through array and read from fds that are ready */
 for (i=0; i< MAX_FDS; i++)
 {
 /* check if this fd has data to read */
 if (FD_ISSET (fds[i], &readFds))
 {
 /* typically read from fd now that it is ready */
 read (fds[i], buffer, MAX_DATA);
 /* normally service request, for this example print it */
 printf ("SELSERVER Reading from %s: %s\n",
 (i == 0) ? PIPEHI : PIPENORM, buffer);
 }
 }
 }
 }

3.4 Buffered I/O: Stdio

The VxWorks I/O library provides a buffered I/O package that is compatible with

the UNIX and Windows stdio package and provides full ANSI C support. To

include the stdio package in the VxWorks system, select INCLUDE_ANSI_STDIO
for inclusion in the project facility VxWorks view; see Tornado User’s Guide: Projects
for information on configuring VxWorks.
106

3

3
I/O System
Note that the implementation of printf(), sprintf(), and sscanf(), traditionally

considered part of the stdio package, is part of a different package in VxWorks.

These routines are discussed in 3.5 Other Formatted I/O, p.108.

3.4.1 Using Stdio

Although the VxWorks I/O system is efficient, some overhead is associated with

each low-level call. First, the I/O system must dispatch from the device-

independent user call (read(), write(), and so on) to the driver-specific routine for

that function. Second, most drivers invoke a mutual exclusion or queuing

mechanism to prevent simultaneous requests by multiple users from interfering

with each other.

Because the VxWorks primitives are fast, this overhead is quite small. However, an

application processing a single character at a time from a file incurs that overhead

for each character if it reads each character with a separate read() call:

n = read (fd, & char, 1);

To make this type of I/O more efficient and flexible, the stdio package implements

a buffering scheme in which data is read and written in large chunks and buffered

privately. This buffering is transparent to the application; it is handled

automatically by the stdio routines and macros. To access a file with stdio, a file is

opened with fopen() instead of open() (many stdio calls begin with the letter f):

fp = fopen ("/usr/foo", "r");

The returned value, a file pointer (or fp) is a handle for the opened file and its

associated buffers and pointers. An fp is actually a pointer to the associated data

structure of type FILE (that is, it is declared as FILE *). By contrast, the low-level I/O

routines identify a file with a file descriptor (fd), which is a small integer. In fact, the

FILE structure pointed to by the fp contains the underlying fd of the open file.

An already open fd can be associated belatedly with a FILE buffer by calling

fdopen():

fp = fdopen (fd, "r");

After a file is opened with fopen(), data can be read with fread(), or a character at

a time with getc(), and data can be written with fwrite(), or a character at a time

with putc().

The routines and macros to get data into or out of a file are extremely efficient. They

access the buffer with direct pointers that are incremented as data is read or written
107

VxWorks 5.4
Programmer’s Guide
by the user. They pause to call the low-level read or write routines only when a

read buffer is empty or a write buffer is full.

The FILE buffer is deallocated when fclose() is called.

3.4.2 Standard Input, Standard Output, and Standard Error

As discussed earlier in 3.3 Basic I/O, p.98, there are three special file descriptors (0,

1, and 2) reserved for standard input, standard output, and standard error. Three

corresponding stdio FILE buffers are automatically created when a task uses the

standard file descriptors, stdin, stdout, and stderr, to do buffered I/O to the standard

fds. Each task using the standard I/O fds has its own stdio FILE buffers. The FILE
buffers are deallocated when the task exits.

3.5 Other Formatted I/O

3.5.1 Special Cases: printf(), sprintf(), and sscanf()

The routines printf(), sprintf(), and sscanf() are generally considered to be part of

the standard stdio package. However, the VxWorks implementation of these

routines, while functionally the same, does not use the stdio package. Instead, it

uses a self-contained, formatted, non-buffered interface to the I/O system in the

library fioLib. Note that these routines provide the functionality specified by

ANSI; however, printf() is not buffered.

Because these routines are implemented in this way, the full stdio package, which

is optional, can be omitted from a VxWorks configuration without sacrificing their

availability. Applications requiring printf-style output that is buffered can still

accomplish this by calling fprintf() explicitly to stdout.

! WARNING: The stdio buffers and pointers are private to a particular task. They are

not interlocked with semaphores or any other mutual exclusion mechanism,

because this defeats the point of an efficient private buffering scheme. Therefore,

multiple tasks must not perform I/O to the same stdio FILE pointer at the same

time.
108

3

3
I/O System
While sscanf() is implemented in fioLib and can be used even if stdio is omitted,

the same is not true of scanf(), which is implemented in the usual way in stdio.

3.5.2 Additional Routines: printErr() and fdprintf()

Additional routines in fioLib provide formatted but unbuffered output. The

routine printErr() is analogous to printf() but outputs formatted strings to the

standard error fd (2). The routine fdprintf() outputs formatted strings to a

specified fd.

3.5.3 Message Logging

Another higher-level I/O facility is provided by the library logLib, which allows

formatted messages to be logged without having to do I/O in the current task’s

context, or when there is no task context. The message format and parameters are

sent on a message queue to a logging task, which then formats and outputs the

message. This is useful when messages must be logged from interrupt level, or

when it is desirable not to delay the current task for I/O or use the current task’s

stack for message formatting (which can take up significant stack space). The

message is displayed on the console unless otherwise redirected at system startup

using logInit() or dynamically using logFdSet().

3.6 Asynchronous Input/Output

Asynchronous Input/Output (AIO) is the ability to perform input and output

operations concurrently with ordinary internal processing. AIO enables you to

decouple I/O operations from the activities of a particular task when these are

logically independent.

The benefit of AIO is greater processing efficiency: it permits I/O operations to

take place whenever resources are available, rather than making them await

arbitrary events such as the completion of independent operations. AIO eliminates

some of the unnecessary blocking of tasks that is caused by ordinary synchronous

I/O; this decreases contention for resources between input/output and internal

processing, and expedites throughput.
109

VxWorks 5.4
Programmer’s Guide
The VxWorks AIO implementation meets the specification in the POSIX 1003.1b

standard. To include AIO in your VxWorks configuration, select

INCLUDE_POSIX_AIO and INCLUDE_POSIX_AIO_SYSDRV in the project facility

VxWorks view; see Tornado User’s Guide: Projects for information on configuring

VxWorks. The second configuration constant enables the auxiliary AIO system

driver, required for asynchronous I/O on all current VxWorks devices.

3.6.1 The POSIX AIO Routines

The VxWorks library aioPxLib provides the POSIX AIO routines. To access a file

asynchronously, open it with the open() routine, like any other file. Thereafter, use

the file descriptor returned by open() in calls to the AIO routines. The POSIX AIO

routines (and two associated non-POSIX routines) are listed in Table 3-4.

The default VxWorks initialization code calls aioPxLibInit() automatically when

INCLUDE_POSIX_AIO is selected for inclusion in the project facility VxWorks view.

This routine takes one parameter, the maximum number of lio_listio() calls that

can be outstanding at one time. By default this parameter is MAX_LIO_CALLS

Table 3-4 Asynchronous Input/Output Routines

Function Description

aioPxLibInit() Initialize the AIO library (non-POSIX).

aioShow() Display the outstanding AIO requests (non-POSIX).*

* This function is not built into the Tornado shell. To use it from the Tornado shell, you

must select INCLUDE_POSIX_AIO_SHOW for inclusion in the project facility

VxWorks view. When you invoke the function, its output is sent to the standard

output device.

aio_read() Initiate an asynchronous read operation.

aio_write() Initiate an asynchronous write operation.

aio_listio() Initiate a list of up to LIO_MAX asynchronous I/O requests.

aio_error() Retrieve the error status of an AIO operation.

aio_return() Retrieve the return status of a completed AIO operation.

aio_cancel() Cancel a previously submitted AIO operation.

aio_suspend() Wait until an AIO operation is done, interrupted, or timed out.
110

3

3
I/O System
(which can be seen on the Params tab of the properties window to be 0 by default).

When the parameter is 0, the value is taken from AIO_CLUST_MAX (defined in

installDir/target/h/private/aioPxLibP.h).

The AIO system driver, aioSysDrv, is initialized by default with the routine

aioSysInit() when both INCLUDE_POSIX_AIO and

INCLUDE_POSIX_AIO_SYSDRV are included. The purpose of aioSysDrv is to

provide request queues independent of any particular device driver, so that you

can use any VxWorks device driver with AIO.

The routine aioSysInit() takes three parameters: the number of AIO system tasks

to spawn, and the priority and stack size for these system tasks. The number of

AIO system tasks spawned equals the number of AIO requests that can be handled

in parallel. The default initialization call uses three constants, all defined in

configAll.h:

aioSysInit(MAX_AIO_SYS_TASKS, AIO_TASK_PRIORITY, AIO_TASK_STACK_SIZE)

When any of the parameters passed to aioSysInit() is 0, the corresponding value

is taken from AIO_IO_TASKS_DFLT, AIO_IO_PRIO_DFLT, and

AIO_IO_STACK_DFLT (all defined in installDir/target/h/aioSysDrv.h).

Table 3-5 lists the names of the constants called from usrConfig.c and their default

values (which can be seen on the Params tab of the properties window). It also

shows the constants used within initialization routines when the parameters are

left at their default values of 0, and where these constants are defined.

3.6.2 AIO Control Block

Each of the AIO calls takes an AIO control block (aiocb) as an argument to describe

the AIO operation. The calling routine must allocate space for the control block,

which is associated with a single AIO operation. No two concurrent AIO

Table 3-5 AIO Initialization Functions and Related Constants

Initialization
Function

configAll.h Constant
Def.

Value
Header File Constant
used when arg = 0

Def.
Value

Header File
(all in installDir/target

aioPxLibInit() MAX_LIO_CALLS 0 AIO_CLUST_MAX 100 h/private/aioPxLibP.h

aioSysInit() MAX_AIO_SYS_TASKS 0 AIO_IO_TASKS_DFLT 2 h/aioSysDrv.h

AIO_TASK_PRIORITY 0 AIO_IO_PRIO_DFLT 50 h/aioSysDrv.h

AIO_TASK_STACK_SIZE 0 AIO_IO_STACK_DFLT 0x7000 h/aioSysDrv.h
111

VxWorks 5.4
Programmer’s Guide
operations can use the same control block; an attempt to do so yields undefined

results.

The aiocb and the data buffers it references are used by the system while

performing the associated request. Therefore, after you request an AIO operation,

you must not modify the corresponding aiocb before calling aio_return(); this

function frees the aiocb for modification or reuse.

The aiocb structure is defined in aio.h. It contains the following fields:

aio_fildes
file descriptor for I/O

aio_offset
offset from the beginning of the file

aio_buf
address of the buffer from/to which AIO is requested

aio_nbytes
number of bytes to read or write

aio_reqprio
priority reduction for this AIO request

aio_sigevent
signal to return on completion of an operation (optional)

aio_lio_opcode
operation to be performed by a lio_listio() call

aio_sys
VxWorks-specific data (non-POSIX)

For full definitions and important additional information, see the reference entry

for aioPxLib.

3.6.3 Using AIO

The routines aio_read(), aio_write(), or lio_listio() initiate AIO operations. The

last of these, lio_listio(), allows you to submit a number of asynchronous requests

(read and/or write) at one time. In general, the actual I/O (reads and writes)

initiated by these routines does not happen immediately after the AIO request. For

! CAUTION: If a routine allocates stack space for the aiocb, that routine must call

aio_return() to free the aiocb before returning.
112

3

3
I/O System
that reason, their return values do not reflect the outcome of the actual I/O

operation, but only whether a request is successful—that is, whether the AIO

routine is able to put the operation on a queue for eventual execution.

After the I/O operations themselves execute, they also generate return values that

reflect the success or failure of the I/O. There are two routines that you can use to

get information about the success or failure of the I/O operation: aio_error() and

aio_return(). You can use aio_error() to get the status of an AIO operation

(success, failure, or in progress), and aio_return() to obtain the return values from

the individual I/O operations. Until an AIO operation completes, its error status

is EINPROGRESS. To cancel an AIO operation, call aio_cancel().

AIO with Periodic Checks for Completion

The following code uses a pipe for the asynchronous I/O operations. The example

creates the pipe, submits an AIO read request, verifies that the read request is still

in progress, and submits an AIO write request. Under normal circumstances, a

synchronous read to an empty pipe blocks and the task does not execute the write,

but in the case of AIO, we initiate the read request and continue. After the write

request is submitted, the example task loops, checking the status of the AIO

requests periodically until both the read and write complete. Because the AIO

control blocks are on the stack, we must call aio_return() before returning from

aioExample().

Example 3-2 Asynchronous I/O

/* aioEx.c - example code for using asynchronous I/O */

/* includes */

#include "vxWorks.h"
#include "aio.h"
#include "errno.h"

/* defines */

#define BUFFER_SIZE 200

/**
* aioExample - use AIO library
*
* This example shows the basic functions of the AIO library.
*
* RETURNS: OK if successful, otherwise ERROR.
*/
113

VxWorks 5.4
Programmer’s Guide
STATUS aioExample (void)
 {
 int fd;
 static char exFile [] = "/pipe/1stPipe";
 struct aiocb aiocb_read; /* read aiocb */
 struct aiocb aiocb_write; /* write aiocb */
 static char * test_string = "testing 1 2 3";
 char buffer [BUFFER_SIZE]; /* buffer for read aiocb */

pipeDevCreate (exFile, 50, 100);

if ((fd = open (exFile, O_CREAT | O_TRUNC | O_RDWR, 0666)) ==
 ERROR)
 {
 printf ("aioExample: cannot open %s errno 0x%x\n", exFile, errno);
 return (ERROR);
 }

printf ("aioExample: Example file = %s\tFile descriptor = %d\n",
 exFile, fd);

/* initialize read and write aiocbs */
 bzero ((char *) &aiocb_read, sizeof (struct aiocb));
 bzero ((char *) buffer, sizeof (buffer));
 aiocb_read.aio_fildes = fd;
 aiocb_read.aio_buf = buffer;
 aiocb_read.aio_nbytes = BUFFER_SIZE;
 aiocb_read.aio_reqprio = 0;

bzero ((char *) &aiocb_write, sizeof (struct aiocb));
 aiocb_write.aio_fildes = fd;
 aiocb_write.aio_buf = test_string;
 aiocb_write.aio_nbytes = strlen (test_string);
 aiocb_write.aio_reqprio = 0;

/* initiate the read */
 if (aio_read (&aiocb_read) == -1)
 printf ("aioExample: aio_read failed\n");

/* verify that it is in progress */
 if (aio_error (&aiocb_read) == EINPROGRESS)
 printf ("aioExample: read is still in progress\n");

/* write to pipe - the read should be able to complete */
 printf ("aioExample: getting ready to initiate the write\n");
 if (aio_write (&aiocb_write) == -1)
 printf ("aioExample: aio_write failed\n");

/* wait til both read and write are complete */
 while ((aio_error (&aiocb_read) == EINPROGRESS) ||
 (aio_error (&aiocb_write) == EINPROGRESS))
 taskDelay (1);

/* print out what was read */
 printf ("aioExample: message = %s\n", buffer);
114

3

3
I/O System
/* clean up */
 if (aio_return (&aiocb_read) == -1)
 printf ("aioExample: aio_return for aiocb_read failed\n");
 if (aio_return (&aiocb_write) == -1)
 printf ("aioExample: aio_return for aiocb_write failed\n");

close (fd);
 return (OK);
 }

Alternatives for Testing AIO Completion

A task can determine whether an AIO request is complete in any of the following

ways:

■ Check the result of aio_error() periodically, as in the previous example, until

the status of an AIO request is no longer EINPROGRESS.

■ Use aio_suspend() to suspend the task until the AIO request is complete.

■ Use signals to be informed when the AIO request is complete.

The following example is similar to the preceding aioExample(), except that it uses

signals to be notified when the write is complete. If you test this from the shell,

spawn the routine to run at a lower priority than the AIO system tasks to assure

that the test routine does not block completion of the AIO request. (For details on

the shell, see the Tornado User’s Guide: Shell.)

Example 3-3 Asynchronous I/O with Signals

/* aioExSig.c - example code for using signals with asynchronous I/O */

/* includes */

#include "vxWorks.h"
#include "aio.h"
#include "errno.h"

/* defines */

#define BUFFER_SIZE 200
#define LIST_SIZE 1
#define EXAMPLE_SIG_NO 25 /* signal number */

/* forward declarations */

void mySigHandler (int sig, struct siginfo * info, void * pContext);
115

VxWorks 5.4
Programmer’s Guide
/**
* aioExampleSig - use AIO library.
*
* This example shows the basic functions of the AIO library.
* Note if this is run from the shell it must be spawned. Use:
* -> sp aioExampleSig
*
* RETURNS: OK if successful, otherwise ERROR.
*/

STATUS aioExampleSig (void)
 {
 int fd;
 static char exFile [] = "/pipe/1stPipe";
 struct aiocb aiocb_read; /* read aiocb */
 static struct aiocb aiocb_write; /* write aiocb */
 struct sigaction action; /* signal info */
 static char * test_string = "testing 1 2 3";
 char buffer [BUFFER_SIZE]; /* aiocb read buffer */

pipeDevCreate (exFile, 50, 100);

if ((fd = open (exFile, O_CREAT | O_TRUNC| O_RDWR, 0666)) == ERROR)
 {
 printf ("aioExample: cannot open %s errno 0x%x\n", exFile, errno);
 return (ERROR);
 }

printf ("aioExampleSig: Example file = %s\tFile descriptor = %d\n",
 exFile, fd);

/* set up signal handler for EXAMPLE_SIG_NO */

 action.sa_sigaction = mySigHandler;
 action.sa_flags = SA_SIGINFO;
 sigemptyset (&action.sa_mask);
 sigaction (EXAMPLE_SIG_NO, &action, NULL);

/* initialize read and write aiocbs */

 bzero ((char *) &aiocb_read, sizeof (struct aiocb));
 bzero ((char *) buffer, sizeof (buffer));
 aiocb_read.aio_fildes = fd;
 aiocb_read.aio_buf = buffer;
 aiocb_read.aio_nbytes = BUFFER_SIZE;
 aiocb_read.aio_reqprio = 0;

bzero ((char *) &aiocb_write, sizeof (struct aiocb));
 aiocb_write.aio_fildes = fd;
 aiocb_write.aio_buf = test_string;
 aiocb_write.aio_nbytes = strlen (test_string);
 aiocb_write.aio_reqprio = 0;

/* set up signal info */

 aiocb_write.aio_sigevent.sigev_signo = EXAMPLE_SIG_NO;
116

3

3
I/O System
 aiocb_write.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
 aiocb_write.aio_sigevent.sigev_value.sival_ptr =
 (void *) &aiocb_write;

/* initiate the read */

 if (aio_read (&aiocb_read) == -1)
 printf ("aioExampleSig: aio_read failed\n");

/* verify that it is in progress */

 if (aio_error (&aiocb_read) == EINPROGRESS)
 printf ("aioExampleSig: read is still in progress\n");

/* write to pipe - the read should be able to complete */

 printf ("aioExampleSig: getting ready to initiate the write\n");
 if (aio_write (&aiocb_write) == -1)
 printf ("aioExampleSig: aio_write failed\n");

/* clean up */

 if (aio_return (&aiocb_read) == -1)
 printf ("aioExampleSig: aio_return for aiocb_read failed\n");
 else
 printf ("aioExampleSig: aio read message = %s\n",
 aiocb_read.aio_buf);

close (fd);
 return (OK);
 }

void mySigHandler
 (
 int sig,
 struct siginfo * info,
 void * pContext
)

 {
 /* print out what was read */

 printf ("mySigHandler: Got signal for aio write\n");

 /* write is complete so let’s do cleanup for it here */

 if (aio_return (info->si_value.sival_ptr) == -1)
 {
 printf ("mySigHandler: aio_return for aiocb_write failed\n");
 printErrno (0);
 }
 }
117

VxWorks 5.4
Programmer’s Guide
3.7 Devices in VxWorks

The VxWorks I/O system is flexible, allowing specific device drivers to handle the

seven I/O functions. All VxWorks device drivers follow the basic conventions

outlined previously, but differ in specifics; this section describes those specifics.

3.7.1 Serial I/O Devices (Terminal and Pseudo-Terminal Devices)

VxWorks provides terminal and pseudo-terminal device drivers (tty and pty
drivers). The tty driver is for actual terminals; the pty driver is for processes that

simulate terminals. These pseudo terminals are useful in applications such as

remote login facilities.1

VxWorks serial I/O devices are buffered serial byte streams. Each device has a ring

buffer (circular buffer) for both input and output. Reading from a tty device

extracts bytes from the input ring. Writing to a tty device adds bytes to the output

ring. The size of each ring buffer is specified when the device is created during

system initialization.

Table 3-6 Drivers Provided with VxWorks

Module Driver Description

ttyDrv Terminal driver

ptyDrv Pseudo-terminal driver

pipeDrv Pipe driver

memDrv Pseudo memory device driver

nfsDrv NFS client driver

netDrv Network driver for remote file access

ramDrv RAM driver for creating a RAM disk

scsiLib SCSI interface library

- Other hardware-specific drivers

1. For the remainder of this section, the term tty is used to indicate both tty and pty devices.
118

3

3
I/O System
Tty Options

The tty devices have a full range of options that affect the behavior of the device.

These options are selected by setting bits in the device option word using the

ioctl() routine with the FIOSETOPTIONS function (see I/O Control Functions,

p.121). For example, to set all the tty options except OPT_MON_TRAP:

status = ioctl (fd, FIOSETOPTIONS, OPT_TERMINAL & ~OPT_MON_TRAP);

Table 3-7 is a summary of the available options. The listed names are defined in the

header file ioLib.h. For more detailed information, see the reference entry for

tyLib.

Raw Mode and Line Mode

A tty device operates in one of two modes: raw mode (unbuffered) or line mode. Raw

mode is the default. Line mode is selected by the OPT_LINE bit of the device option

word (see Tty Options, p.119).

In raw mode, each input character is available to readers as soon as it is input from

the device. Reading from a tty device in raw mode causes as many characters as

Table 3-7 Tty Options

Library Description

OPT_LINE Select line mode. (See Raw Mode and Line Mode, p.119.)

OPT_ECHO Echo input characters to the output of the same channel.

OPT_CRMOD Translate input RETURN characters into NEWLINE (\n); translate

output NEWLINE into RETURN-LINEFEED.

OPT_TANDEM Respond to X-on/X-off protocol (CTRL+Q and CTRL+S).

OPT_7_BIT Strip the most significant bit from all input bytes.

OPT_MON_TRAP Enable the special ROM monitor trap character, CTRL+X by default.

OPT_ABORT Enable the special target shell abort character, CTRL+C by default.

(Only useful if the target shell is configured into the system; see

9. Target Shell in this manual for details.)

OPT_TERMINAL Set all of the above option bits.

OPT_RAW Set none of the above option bits.
119

VxWorks 5.4
Programmer’s Guide
possible to be extracted from the input ring, up to the limit of the user’s read buffer.

Input cannot be modified except as directed by other tty option bits.

In line mode, all input characters are saved until a NEWLINE character is input; then

the entire line of characters, including the NEWLINE, is made available in the ring

at one time. Reading from a tty device in line mode causes characters up to the end

of the next line to be extracted from the input ring, up to the limit of the user’s read

buffer. Input can be modified by the special characters CTRL+H (backspace),

CTRL+U (line-delete), and CTRL+D (end-of-file), which are discussed in Tty Special
Characters, p.120.

Tty Special Characters

The following special characters are enabled if the tty device operates in line mode,

that is, with the OPT_LINE bit set:

■ The backspace character, by default CTRL+H, causes successive previous

characters to be deleted from the current line, up to the start of the line. It does

this by echoing a backspace followed by a space, and then another backspace.

■ The line-delete character, by default CTRL+U, deletes all the characters of the

current line.

■ The end-of-file (EOF) character, by default CTRL+D, causes the current line to

become available in the input ring without a NEWLINE and without entering

the EOF character itself. Thus if the EOF character is the first character typed

on a line, reading that line returns a zero byte count, which is the usual

indication of end-of-file.

The following characters have special effects if the tty device is operating with the

corresponding option bit set:

■ The flow control characters, CTRL+Q and CTRL+S, commonly known as

X-on/X-off protocol. Receipt of a CTRL+S input character suspends output to

that channel. Subsequent receipt of a CTRL+Q resumes the output. Conversely,

when the VxWorks input buffer is almost full, a CTRL+S is output to signal the

other side to suspend transmission. When the input buffer is empty enough, a

CTRL+Q is output to signal the other side to resume transmission. X-on/X-off

protocol is enabled by OPT_TANDEM.

■ The ROM monitor trap character, by default CTRL+X. This character traps to the

ROM-resident monitor program. Note that this is drastic. All normal VxWorks

functioning is suspended, and the computer system is controlled entirely by

the monitor. Depending on the particular monitor, it may or may not be
120

3

3
I/O System
possible to restart VxWorks from the point of interruption.2 The monitor trap

character is enabled by OPT_MON_TRAP.

■ The special target shell abort character, by default CTRL+C. This character

restarts the target shell if it gets stuck in an unfriendly routine, such as one that

has taken an unavailable semaphore or is caught in an infinite loop. The target

shell abort character is enabled by OPT_ABORT.

The characters for most of these functions can be changed using the tyLib routines

shown in Table 3-8.

I/O Control Functions

The tty devices respond to the ioctl() functions in Table 3-9, defined in ioLib.h. For

more information, see the reference entries for tyLib, ttyDrv, and ioctl().

2. It will not be possible to restart VxWorks if unhandled external interrupts occur during the

boot countdown.

Table 3-8 Tty Special Characters

Character Description Modifier

CTRL+H backspace (character delete) tyBackspaceSet()

CTRL+U line delete tyDeleteLineSet()

CTRL+D EOF (end of file) tyEOFSet()

CTRL+C target shell abort tyAbortSet()

CTRL+X trap to boot ROMs tyMonitorTrapSet()

CTRL+S output suspend N/A

CTRL+Q output resume N/A

Table 3-9 I/O Control Functions Supported by tyLib

Function Description

FIOBAUDRATE Set the baud rate to the specified argument.

FIOCANCEL Cancel a read or write.

FIOFLUSH Discard all bytes in the input and output buffers.
121

VxWorks 5.4
Programmer’s Guide
3.7.2 Pipe Devices

Pipes are virtual devices by which tasks communicate with each other through the

I/O system. Tasks write messages to pipes; these messages can then be read by

other tasks. Pipe devices are managed by pipeDrv and use the kernel message

queue facility to bear the actual message traffic.

Creating Pipes

Pipes are created by calling the pipe create routine:

status = pipeDevCreate ("/pipe/name", maxMsgs, maxLength);

The new pipe can have at most maxMsgs messages queued at a time. Tasks that

write to a pipe that already has the maximum number of messages queued are

delayed until a message is dequeued. Each message in the pipe can be at most

maxLength bytes long; attempts to write longer messages result in an error.

FIOGETNAME Get the file name of the fd.

FIOGETOPTIONS Return the current device option word.

FIONREAD Get the number of unread bytes in the input buffer.

FIONWRITE Get the number of bytes in the output buffer.

FIOSETOPTIONS Set the device option word.

! CAUTION: To change the driver’s hardware options (for example, the number of

stop bits or parity bits), use the ioctl() function SIO_HW_OPTS_SET. Because this

command is not implemented in most drivers, you may need to add it to your BSP

serial driver, which resides in installDir/target/src/drv/sio. The details of how to

implement this command depend on your board’s serial chip. The constants

defined in the header file installDir/target/h/sioLib.h provide the POSIX

definitions for setting the hardware options.

Table 3-9 I/O Control Functions Supported by tyLib (Continued)

Function Description
122

3

3
I/O System
Writing to Pipes from ISRs

VxWorks pipes are designed to allow ISRs to write to pipes in the same way as

task-level code. Many VxWorks facilities cannot be used from ISRs, including I/O

to devices other than pipes. However, ISRs can use pipes to communicate with

tasks, which can then invoke such facilities.

ISRs write to a pipe using the write() call. Tasks and ISRs can write to the same

pipes. However, if the pipe is full, the message is discarded because the ISRs

cannot pend. ISRs must not invoke any I/O function on pipes other than write().

I/O Control Functions

Pipe devices respond to the ioctl() functions summarized in Table 3-10. The

functions listed are defined in the header file ioLib.h. For more information, see

the reference entries for pipeDrv and for ioctl() in ioLib.

3.7.3 Pseudo Memory Devices

The memDrv driver allows the I/O system to access memory directly as a pseudo-

I/O device. Memory location and size are specified when the device is created.

This feature is useful when data must be preserved between boots of VxWorks or

when sharing data between CPUs. This driver does not implement a file system as

does ramDrv. The ramDrv driver must be given memory over which it has

absolute control; whereas memDrv provides a high-level method of reading and

writing bytes in absolute memory locations through I/O calls.

Table 3-10 I/O Control Functions Supported by pipeDrv

Function Description

FIOFLUSH Discard all messages in the pipe.

FIOGETNAME Get the pipe name of the fd.

FIONMSGS Get the number of messages remaining in the pipe.

FIONREAD Get the size in bytes of the first message in the pipe.
123

VxWorks 5.4
Programmer’s Guide
Installing the Memory Driver

The driver is first initialized and then the device is created:

STATUS memDrv
(void)

STATUS memDevCreate
(char * name, char * base, int length)

Memory for the device is an absolute memory location beginning at base. The

length parameter indicates the size of the memory. For additional information on

the memory driver, see the reference entries for memDrv, memDevCreate(), and

memDrv().

I/O Control Functions

The memory driver responds to the ioctl() functions summarized in Table 3-11.

The functions listed are defined in the header file ioLib.h. For more information,

see the reference entries for memDrv and for ioctl() in ioLib.

3.7.4 Network File System (NFS) Devices

Network File System (NFS) devices allow files on remote hosts to be accessed with

the NFS protocol. The NFS protocol specifies both client software, to read files from

remote machines, and server software, to export files to remote machines.

The driver nfsDrv acts as a VxWorks NFS client to access files on any NFS server

on the network. VxWorks also allows you to run an NFS server to export files to

other systems; see VxWorks Network Programmer’s Guide: File Access Applicationsl.

Using NFS devices, you can create, open, and access remote files exactly as though

they were on a file system on a local disk. This is called network transparency.

Table 3-11 I/O Control Functions Supported by memDrv

Function Description

FIOSEEK Set the current byte offset in the file.

FIOWHERE Return the current byte position in the file.
124

3

3
I/O System
Mounting a Remote NFS File System from VxWorks

Access to a remote NFS file system is established by mounting that file system

locally and creating an I/O device for it using nfsMount(). Its arguments are

(1) the host name of the NFS server, (2) the name of the host file system, and (3) the

local name for the file system.

For example, the following call mounts /usr of the host mars as /vxusr locally:

nfsMount ("mars", "/usr", "/vxusr");

This creates a VxWorks I/O device with the specified local name (/vxusr, in this

example). If the local name is specified as NULL, the local name is the same as the

remote name.

After a remote file system is mounted, the files are accessed as though the file

system were local. Thus, after the previous example, opening the file /vxusr/foo
opens the file /usr/foo on the host mars.

The remote file system must be exported by the system on which it actually resides.

However, NFS servers can export only local file systems. Use the appropriate

command on the server to see which file systems are local. NFS requires

authentication parameters to identify the user making the remote access. To set

these parameters, use the routines nfsAuthUnixSet() and nfsAuthUnixPrompt().

Select INCLUDE_NFS for inclusion in the project facility VxWorks view to include

NFS client support in your VxWorks configuration; see Tornado User’s Guide:
Projects for information on configuring VxWorks.

The subject of exporting and mounting NFS file systems and authenticating access

permissions is discussed in more detail in VxWorks Network Programmer’s Guide:
File Access Applications. See also the reference entries nfsLib and nfsDrv, and the

NFS documentation from Sun Microsystems.

I/O Control Functions for NFS Clients

NFS client devices respond to the ioctl() functions summarized in Table 3-12. The

functions listed are defined in ioLib.h. For more information, see the reference

entries for nfsDrv and for ioctl() in ioLib.
125

VxWorks 5.4
Programmer’s Guide
3.7.5 Non-NFS Network Devices

VxWorks also supports network access to files on the remote host through the

Remote Shell protocol (RSH) or the File Transfer Protocol (FTP). These

implementations of network devices use the driver netDrv. When a remote file is

opened using RSH or FTP, the entire file is copied into local memory. As a result,

the largest file that can be opened is restricted by the available memory. Read and

write operations are performed on the in-memory copy of the file. When closed,

the file is copied back to the original remote file if it was modified.

In general, NFS devices are preferable to RSH and FTP devices for performance

and flexibility, because NFS does not copy the entire file into local memory.

However, NFS is not supported by all host systems.

Creating Network Devices

To access files on a remote host using either RSH or FTP, a network device must

first be created by calling the routine netDevCreate(). The arguments to

netDevCreate() are (1) the name of the device, (2) the name of the host the device

accesses, and (3) which protocol to use: 0 (RSH) or 1 (FTP).

For example, the following call creates an RSH device called mars: that accesses the

host mars. By convention, the name for a network device is the remote machine’s

name followed by a colon (:).

netDevCreate ("mars:", "mars", 0);

Table 3-12 I/O Control Functions Supported by nfsDrv

Function Description

FIOFSTATGET Get file status information (directory entry data).

FIOGETNAME Get the file name of the fd.

FIONREAD Get the number of unread bytes in the file.

FIOREADDIR Read the next directory entry.

FIOSEEK Set the current byte offset in the file.

FIOSYNC Flush data to a remote NFS file.

FIOWHERE Return the current byte position in the file.
126

3

3
I/O System
Files on a network device can be created, opened, and manipulated as if on a local

disk. Thus, opening the file mars:/usr/foo actually opens /usr/foo on host mars.

Note that creating a network device allows access to any file or device on the

remote system, while mounting an NFS file system allows access only to a

specified file system.

For the files of a remote host to be accessible with RSH or FTP, permissions and

user identification must be established on both the remote and local systems.

Creating and configuring network devices is discussed in detail in VxWorks
Network Programmer’s Guide: File Access Applications and in the reference entry for

netDrv.

I/O Control Functions

RSH and FTP devices respond to the same ioctl() functions as NFS devices except

for FIOSYNC and FIOREADDIR. The functions are defined in the header file

ioLib.h. For more information, see the reference entries for netDrv and ioctl().

3.7.6 Block Devices

A block device is a device that is organized as a sequence of individually accessible

blocks of data. The most common type of block device is a disk. In VxWorks, the

term block refers to the smallest addressable unit on the device. For most disk

devices, a VxWorks block corresponds to a sector, although terminology varies.

Block devices in VxWorks have a slightly different interface than other I/O

devices. Rather than interacting directly with the I/O system, block device support

consists of low-level drivers that interact with a file system. The file system, in turn,

interacts with the I/O system. This arrangement allows a single low-level driver

to be used with various different file systems and reduces the number of I/O

functions that must be supported in the driver. The internal implementation of

low-level drivers for block devices is discussed in 3.9.4 Block Devices, p.158.

File Systems

For use with block devices, VxWorks is supplied with file system libraries

compatible with the MS-DOS (dosFs) and RT-11 (rt11Fs) file systems. In addition,

there is a library for a simple raw disk file system (rawFs), which treats an entire

disk much like a single large file. Also supplied is a file system that supports SCSI
127

VxWorks 5.4
Programmer’s Guide
tape devices, which are organized so that individual blocks of data are read and

written sequentially, and a file system that supports CD-ROM devices. Use of these

file systems is discussed in 4. Local File Systems in this manual. Also see the

reference entries for dosFsLib, rt11FsLib, rawFsLib, tapeFsLib, and cdromFsLib.

RAM Disk Drivers

RAM drivers, as implemented in ramDrv, emulate disk devices but actually keep

all data in memory. Memory location and “disk” size are specified when a RAM

device is created by calling ramDevCreate(). This routine can be called repeatedly

to create multiple RAM disks.

Memory for the RAM disk can be preallocated and the address passed to

ramDevCreate(), or memory can be automatically allocated from the system

memory pool using malloc().

After the device is created, a name and file system (dosFs, rt11Fs, or rawFs) must

be associated with it using the file system’s device initialization routine or file

system’s make routine, for example, dosFsDevInit() or dosFsMkfs(). Information

describing the device is passed to the file system in a BLK_DEV structure. A pointer

to this structure is returned by the RAM disk creation routine.

In the following example, a 200KB RAM disk is created with automatically

allocated memory, 512-byte sections, a single track, and no sector offset. The device

is assigned the name DEV1: and initialized for use with dosFs.

BLK_DEV *pBlkDev;
DOS_VOL_DESC *pVolDesc;
pBlkDev = ramDevCreate (0, 512, 400, 400, 0);
pVolDesc = dosFsMkfs ("DEV1:", pBlkDev);

The dosFsMkfs() routine calls dosFsDevInit() with default parameters and

initializes the file system on the disk by calling ioctl() with the FIODISKINIT.

If the RAM disk memory already contains a disk image, the first argument to

ramDevCreate() is the address in memory, and the formatting arguments must be

identical to those used when the image was created. For example:

pBlkDev = ramDevCreate (0xc0000, 512, 400, 400, 0);
pVolDesc = dosFsDevInit ("DEV1:", pBlkDev, NULL);

In this case, dosFsDevInit() must be used instead, because the file system already

exists on the disk and does not require re-initialization. This procedure is useful if

a RAM disk is to be created at the same address used in a previous boot of

VxWorks. The contents of the RAM disk are then preserved. Creating a RAM disk
128

3

3
I/O System
with rt11Fs using rt11FsMkfs() and rt11FsDevInit() follows these same

procedures. For more information on RAM disk drivers, see the reference entry for

ramDrv. For more information on file systems, see 4. Local File Systems.

SCSI Drivers

SCSI is a standard peripheral interface that allows connection with a wide variety

of hard disks, optical disks, floppy disks, tape drives, and CD-ROM devices. SCSI

block drivers are compatible with the dosFs and rt11Fs libraries, and offer several

advantages for target configurations. They provide:

– local mass storage in non-networked environments

– faster I/O throughput than Ethernet networks

The SCSI-2 support in VxWorks supersedes previous SCSI support, although it

offers the option of configuring the original SCSI functionality, now known as

SCSI-1. With SCSI-2 enabled, the VxWorks environment can still handle SCSI-1

applications, such as file systems created under SCSI-1. However, applications that

directly used SCSI-1 data structures defined in scsiLib.h may require

modifications and recompilation for SCSI-2 compatibility.

The VxWorks SCSI implementation consists of two modules, one for the device-

independent SCSI interface and one to support a specific SCSI controller. The

scsiLib library provides routines that support the device-independent interface;

device-specific libraries provide configuration routines that support specific

controllers (for example, wd33c93Lib for the Western Digital WD33C93 device or

mb87030Lib for the Fujitsu MB87030 device). There are also additional support

routines for individual targets in sysLib.c.

Configuring SCSI Drivers

Constants associated with SCSI drivers are listed in Table 3-13. Define these in the

indicated portion of the VxWorks view or in the configuration files. To enable SCSI

functionality, select INCLUDE_SCSI for inclusion in the project facility VxWorks

view. This enables SCSI-1. To enable SCSI-2, you must select, in addition to SCSI-

1, INCLUDE_SCSI2.

Table 3-13 SCSI Constants

Constant Description Where to Configure

INCLUDE_SCSI Include SCSI interface. hardware/buses

INCLUDE_SCSI2 SCSI-2 extensions. hardware/buses
129

VxWorks 5.4
Programmer’s Guide
Autoconfiguration, DMA, and booting from a SCSI device are defined

appropriately for each BSP. If you need to change these settings, see the online

reference for sysScsiConfig() under VxWorks Reference>Manual: Libraries and the

source file installDir/target/src/config/usrScsi.c. Except for dosFs, which can be

configured from the project facility, the file systems that can be used with SCSI

must be defined in config.h. (For more information see 8. Configuration and Build.)

Configuring the SCSI Bus ID

Each board in a SCSI-2 environment must define a unique SCSI bus ID for the SCSI

initiator. SCSI-1 drivers, which support only a single initiator at a time, assume an

initiator SCSI bus ID of 7. However, SCSI-2 supports multiple initiators, up to eight

initiators and targets at one time. Therefore, to ensure a unique ID, choose a value

in the range 0-7 to be passed as a parameter to the driver’s initialization routine

(for example, ncr710CtrlInitScsi2()) by the sysScsiInit() routine in sysScsi.c. For

more information, see the reference entry for the relevant driver initialization

routine. If there are multiple boards on one SCSI bus, and all of these boards use

INCLUDE_SCSI_DMA Enable DMA for SCSI. sysLib.c or sysScsi.c

INCLUDE_SCSI_BOOT Allow booting from a SCSI device. sysLib.c or sysScsi.c

SCSI_AUTO_CONFIG Auto-configure and locate all

targets on a SCSI bus.

sysLib.c or sysScsi.c

INCLUDE_DOSFS Include the DOS file system. operating system
components/IO system
components

INCLUDE_TAPEFS Include the tape file system. config.h

INCLUDE_CDROMFS Include CD-ROM file system

support.

config.h

! CAUTION: Including SCSI-2 in your VxWorks image can significantly increase the

image size. If you receive a warning from vxsize when building VxWorks, or if the

size of your image becomes greater than that supported by the current setting of

RAM_HIGH_ADRS, be sure to see 8.6.1 Scaling Down VxWorks, p.344 and

8.9 Creating Bootable Applications, p.364 for information on how to resolve the

problem.

Table 3-13 SCSI Constants

Constant Description Where to Configure
130

3

3
I/O System
the same BSP, then different versions of the BSP must be compiled for each board

by assigning unique SCSI bus IDs.

ROM Size Adjustment for SCSI Boot

If INCLUDE_SCSI_BOOT is defined, larger ROMs may be required for some

boards. If this is the case, the definition of ROM_SIZE in Makefile and in config.h
should be changed to a size that suits the capabilities of the target hardware.

Structure of the SCSI Subsystem

The SCSI subsystem supports libraries and drivers for both SCSI-1 and SCSI-2. It

consists of the following six libraries which are independent of any SCSI controller:

scsiLib
routines that provide the mechanism for switching SCSI requests to either

the SCSI-1 library (scsi1Lib) or the SCSI-2 library (scsi2Lib), as configured

by the board support package (BSP).

scsi1Lib
SCSI-1 library routines and interface, used when only INCLUDE_SCSI is
selected for inclusion in the project facility VxWorks view (see Configuring
SCSI Drivers, p.129.)

scsi2Lib
SCSI-2 library routines and all physical device creation and deletion

routines.

scsiCommonLib
commands common to all types of SCSI devices.

scsiDirectLib
routines and commands for direct access devices (disks).

scsiSeqLib
routines and commands for sequential access block devices (tapes).

Controller-independent support for the SCSI-2 functionality is divided into

scsi2Lib, scsiCommonLib, scsiDirectLib, and scsiSeqLib. The interface to any of

these SCSI-2 libraries can be accessed directly. However, scsiSeqLib is designed to

be used in conjunction with tapeFs, while scsiDirectLib works with dosFs, rt11Fs,

and rawFs. Applications written for SCSI-1 can be used with SCSI-2; however,

SCSI-1 device drivers cannot.

VxWorks targets using SCSI interface controllers require a controller-specific

device driver. These device drivers work in conjunction with the controller-

independent SCSI libraries, and they provide controller configuration and
131

VxWorks 5.4
Programmer’s Guide
initialization routines contained in controller-specific libraries. For example, the

Western Digital WD33C93 SCSI controller is supported by the device driver

libraries wd33c93Lib, wd33c93Lib1, and wd33c93Lib2. Routines tied to SCSI-1

(such as wd33c93CtrlCreate()) and SCSI-2 (such as wd33c93CtrlCreateScsi2()) are

segregated into separate libraries to simplify configuration. There are also

additional support routines for individual targets in sysLib.c.

Booting and Initialization

To boot from a SCSI device, see 4.2.21 Booting from a Local dosFs File System Using
SCSI, p.203.

After VxWorks is built with SCSI support, the system startup code initializes the

SCSI interface by executing sysScsiInit() and usrScsiConfig() when

INCLUDE_SCSI is selected for inclusion in the project facility VxWorks view. The

call to sysScsiInit() initializes the SCSI controller and sets up interrupt handling.

The physical device configuration is specified in usrScsiConfig(), which is in

installDir/target/src/config/usrScsi.c. The routine contains an example of the

calling sequence to declare a hypothetical configuration, including:

– definition of physical devices with scsiPhysDevCreate()
– creation of logical partitions with scsiBlkDevCreate()
– specification of a file system with either dosFsDevInit() or rt11FsDevInit()

If you are not using SCSI_AUTO_CONFIG, modify usrScsiConfig() to reflect your

actual configuration. For more information on the calls used in this routine, see the

reference entries for scsiPhysDevCreate(), scsiBlkDevCreate(), dosFsDevInit(),
rt11FsDevInit(), dosFsMkfs(), and rt11FsMkfs().

Device-Specific Configuration Options

The SCSI libraries have the following default behaviors enabled:

– SCSI messages

– disconnects

– minimum period and maximum REQ/ACK offset

– tagged command queuing

– wide data transfer

Device-specific options do not need to be set if the device shares this default

behavior. However, if you need to configure a device that diverges from these

default characteristics, use scsiTargetOptionsSet() to modify option values. These

options are fields in the SCSI_OPTIONS structure, shown below. SCSI_OPTIONS is

declared in scsi2Lib.h. You can choose to set some or all of these option values to

suit your particular SCSI device and application.
132

3

3
I/O System
typedef struct /* SCSI_OPTIONS - programmable options */
{
UINT selTimeOut; /* device selection time-out (us) */
BOOL messages; /* FALSE => do not use SCSI messages */
BOOL disconnect; /* FALSE => do not use disconnect */
UINT8 maxOffset; /* max sync xfer offset (0 => async.) */
UINT8 minPeriod; /* min sync xfer period (x 4 ns) */
SCSI_TAG_TYPE tagType; /* default tag type */
UINT maxTags; /* max cmd tags available (0 => untag */
UINT8 xferWidth; /* wide data trnsfr width in SCSI units */
} SCSI_OPTIONS;

There are numerous types of SCSI devices, each supporting its own mix of SCSI-2

features. To set device-specific options, define a SCSI_OPTIONS structure and

assign the desired values to the structure’s fields. After setting the appropriate

fields, call scsiTargetOptionsSet() to effect your selections. Example 3-5 illustrates

one possible device configuration using SCSI_OPTIONS.

Call scsiTargetOptionsSet() after initializing the SCSI subsystem, but before

initializing the SCSI physical device. For more information about setting and

implementing options, see the reference entry for scsiTargetOptionsSet().

The SCSI subsystem performs each SCSI command request as a SCSI transaction.

This requires the SCSI subsystem to select a device. Different SCSI devices require

different amounts of time to respond to a selection; in some cases, the selTimeOut
field may need to be altered from the default.

If a device does not support SCSI messages, the boolean field messages can be set

to FALSE. Similarly, if a device does not support disconnect/reconnect, the

boolean field disconnect can be set to FALSE.

The SCSI subsystem automatically tries to negotiate synchronous data transfer

parameters. However, if a SCSI device does not support synchronous data transfer,

set the maxOffset field to 0. By default, the SCSI subsystem tries to negotiate the

maximum possible REQ/ACK offset and the minimum possible data transfer

period supported by the SCSI controller on the VxWorks target. This is done to

maximize the speed of transfers between two devices. However, speed depends

upon electrical characteristics, like cable length, cable quality, and device

termination; therefore, it may be necessary to reduce the values of maxOffset or

minPeriod for fast transfers.

The tagType field defines the type of tagged command queuing desired, using one

of the following macros:

! WARNING: Calling scsiTargetOptionsSet() after the physical device has been

initialized may lead to undefined behavior.
133

VxWorks 5.4
Programmer’s Guide
– SCSI_TAG_UNTAGGED
– SCSI_TAG_SIMPLE
– SCSI_TAG_ORDERED
– SCSI_TAG_HEAD_OF_QUEUE

For more information about the types of tagged command queuing available, see

the ANSI X3T9-I/O Interface Specification Small Computer System Interface (SCSI-
2).

The maxTags field sets the maximum number of command tags available for a

particular SCSI device.

Wide data transfers with a SCSI target device are automatically negotiated upon

initialization by the SCSI subsystem. Wide data transfer parameters are always

negotiated before synchronous data transfer parameters, as specified by the SCSI

ANSI specification, because a wide negotiation resets any prior negotiation of

synchronous parameters. However, if a SCSI device does not support wide

parameters and there are problems initializing that device, you must set the

xferWidth field to 0. By default, the SCSI subsystem tries to negotiate the

maximum possible transfer width supported by the SCSI controller on the

VxWorks target in order to maximize the default transfer speed between the two

devices. For more information on the actual routine call, see the reference entry for

scsiTargetOptionsSet().

SCSI Configuration Examples

The following examples show some possible configurations for different SCSI

devices. Example 3-4 is a simple block device configuration setup. Example 3-5

involves selecting special options and demonstrates the use of

scsiTargetOptionsSet(). Example 3-6 configures a tape device and a tape file

system. Example 3-7 configures a SCSI device for synchronous data transfer.

Example 3-8 shows how to configure the SCSI bus ID. These examples can be

embedded either in the usrScsiConfig() routine or in a user-defined SCSI

configuration function.

Example 3-4 Configuring SCSI Drivers

In the following example, usrScsiConfig() was modified to reflect a new system

configuration. The new configuration has a SCSI disk with a bus ID of 4 and a

Logical Unit Number (LUN) of 0 (zero). The disk is configured with a dosFs file

system (with a total size of 0x20000 blocks) and a rawFs file system (spanning the

remainder of the disk). The following usrScsiConfig() code reflects this

modification.
134

3

3
I/O System
/* configure Winchester at busId = 4, LUN = 0 */

if ((pSpd40 = scsiPhysDevCreate (pSysScsiCtrl, 4, 0, 0, NONE, 0, 0, 0))
== (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
}

else
{
/* create block devices - one for dosFs and one for rawFs */

if (((pSbd0 = scsiBlkDevCreate (pSpd40, 0x20000, 0)) == NULL) ||
((pSbd1 = scsiBlkDevCreate (pSpd40, 0, 0x20000)) == NULL))
{
return (ERROR);
}

/* initialize both dosFs and rawFs file systems */

if ((dosFsDevInit ("/sd0/", pSbd0, NULL) == NULL) ||
(rawFsDevInit ("/sd1/", pSbd1) == NULL))
{
return (ERROR);
}

}

If problems with your configuration occur, insert the following lines at the

beginning of usrScsiConfig() to obtain further information on SCSI bus activity.

#if FALSE
scsiDebug = TRUE;
scsiIntsDebug = TRUE;
#endif

Do not declare the global variables scsiDebug and scsiIntsDebug locally. They can

be set or reset from the shell; see the Tornado User’s Guide: Shell for details.

Example 3-5 Configuring a SCSI Disk Drive with Asynchronous Data Transfer and No Tagged Command Queuing

In this example, a SCSI disk device is configured without support for synchronous

data transfer and tagged command queuing. The scsiTargetOptionsSet() routine

is used to turn off these features. The SCSI ID of this disk device is 2, and the LUN

is 0:

int which;
SCSI_OPTIONS option;
int devBusId;

devBusId = 2;
which = SCSI_SET_OPT_XFER_PARAMS | SCSI_SET_OPT_TAG_PARAMS;
option.maxOffset = SCSI_SYNC_XFER_ASYNC_OFFSET;

/* => 0 defined in scsi2Lib.h */
option.minPeriod = SCSI_SYNC_XFER_MIN_PERIOD; /* defined in scsi2Lib.h */
135

VxWorks 5.4
Programmer’s Guide
option.tagType = SCSI_TAG_UNTAGGED; /* defined in scsi2Lib.h */
option.maxTag = SCSI_MAX_TAGS;

if (scsiTargetOptionsSet (pSysScsiCtrl, devBusId, &option, which) == ERROR)
{
SCSI_DEBUG_MSG ("usrScsiConfig: could not set options\n", 0, 0, 0, 0,

0, 0);
return (ERROR);
}

/* configure SCSI disk drive at busId = devBusId, LUN = 0 */

if ((pSpd20 = scsiPhysDevCreate (pSysScsiCtrl, devBusId, 0, 0, NONE, 0, 0,
0)) == (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
return (ERROR);
}

Example 3-6 Working with Tape Devices

SCSI tape devices can be controlled using common commands from

scsiCommonLib and sequential commands from scsiSeqLib. These commands

use a pointer to a SCSI sequential device structure, SEQ_DEV, defined in seqIo.h.

For more information on controlling SCSI tape devices, see the reference entries for

these libraries.

This example configures a SCSI tape device whose bus ID is 5 and whose LUN is

0. It includes commands to create a physical device pointer, set up a sequential

device, and initialize a tapeFs device.

/* configure Exabyte 8mm tape drive at busId = 5, LUN = 0 */

if ((pSpd50 = scsiPhysDevCreate (pSysScsiCtrl, 5, 0, 0, NONE, 0, 0, 0))
== (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
return (ERROR);
}

/* configure the sequential device for this physical device */

if ((pSd0 = scsiSeqDevCreate (pSpd50)) == (SEQ_DEV *) NULL)
{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiSeqDevCreate failed.\n");

return (ERROR);
}

/* setup the tape device configuration */

pTapeConfig = (TAPE_CONFIG *) calloc (sizeof (TAPE_CONFIG), 1);
pTapeConfig->rewind = TRUE; /* this is a rewind device */
pTapeConfig->blkSize = 512; /* uses 512 byte fixed blocks */
136

3

3
I/O System
/* initialize a tapeFs device */

if (tapeFsDevInit ("/tape1", pSd0, pTapeConfig) == NULL)
{
return (ERROR);
}

/* rewind the physical device using scsiSeqLib interface directly*/

if (scsiRewind (pSd0) == ERROR)
{
return (ERROR);
}

Example 3-7 Configuring a SCSI Disk for Synchronous Data Transfer with Non-Default Offset and Period Values

In this example, a SCSI disk drive is configured with support for synchronous data

transfer. The offset and period values are user-defined and differ from the driver

default values.The chosen period is 25, defined in SCSI units of 4 ns. Thus the

period is actually 4 * 25 = 100 ns. The synchronous offset is chosen to be 2. Note

that you may need to adjust the values depending on your hardware environment.

int which;
SCSI_OPTIONS option;
int devBusId;

devBusId = 2;

which = SCSI_SET_IPT_XFER_PARAMS;
option.maxOffset = 2;
option.minPeriod = 25;

if (scsiTargetOptionsSet (pSysScsiCtrl, devBusId &option, which) ==
ERROR)
{
SCSI_DEBUG_MSG ("usrScsiConfig: could not set options\n",

0, 0, 0, 0, 0, 0)
return (ERROR);
}

/* configure SCSI disk drive at busId = devBusId, LUN = 0 */

if ((pSpd20 = scsiPhysDevCreate (pSysScsiCtrl, devBusId, 0, 0, NONE,
0, 0, 0)) == (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n")
return (ERROR);
}

137

VxWorks 5.4
Programmer’s Guide
Example 3-8 Changing the Bus ID of the SCSI Controller

To change the bus ID of the SCSI controller, modify sysScsiInit() in sysScsi.c. Set

the SCSI bus ID to a value between 0 and 7 in the call to xxxCtrlInitScsi2() (where

xxx is the controller name); the default bus ID for the SCSI controller is 7.

Troubleshooting

■ Incompatibilities Between SCSI-1 and SCSI-2

Applications written for SCSI-1 may not execute for SCSI-2 because data

structures in scsi2Lib.h, such as SCSI_TRANSACTION and SCSI_PHYS_DEV,

have changed. This applies only if the application used these structures

directly.

If this is the case, you can choose to configure only the SCSI-1 level of support,

or you can modify your application according to the data structures in

scsi2Lib.h. In order to set new fields in the modified structure, some

applications may simply need to be recompiled, and some applications will

have to be modified and then recompiled.

■ SCSI Bus Failure

If your SCSI bus hangs, it could be for a variety of reasons. Some of the more

common are:

– Your cable has a defect. This is the most common cause of failure.

– The cable exceeds the cumulative maximum length of 6 meters specified

in the SCSI-2 standard, thus changing the electrical characteristics of the

SCSI signals.

– The bus is not terminated correctly. Consider providing termination

power at both ends of the cable, as defined in the SCSI-2 ANSI

specification.

– The minimum transfer period is insufficient or the REQ/ACK offset is too

great. Use scsiTargetOptionsSet() to set appropriate values for these

options.

– The driver is trying to negotiate wide data transfers on a device that does

not support them. In rejecting wide transfers, the device-specific driver

cannot handle this phase mismatch. Use scsiTargetOptionsSet() to set the

appropriate value for the xferWidth field for that particular SCSI device.
138

3

3
I/O System
3.7.7 Sockets

In VxWorks, the underlying basis of network communications is sockets. A socket

is an endpoint for communication between tasks; data is sent from one socket to

another. Sockets are not created or opened using the standard I/O functions.

Instead they are created by calling socket(), and connected and accessed using

other routines in sockLib. However, after a stream socket (using TCP) is created

and connected, it can be accessed as a standard I/O device, using read(), write(),
ioctl(), and close(). The value returned by socket() as the socket handle is in fact

an I/O system fd.

VxWorks socket routines are source-compatible with the BSD 4.4 UNIX socket

functions and the Windows Sockets (Winsock 1.1) networking standard. Use of

these routines is discussed in VxWorks Network Programmer’s Guide: Networking
APIs.

3.8 Differences Between VxWorks and Host System I/O

Most commonplace uses of I/O in VxWorks are completely source-compatible

with I/O in UNIX and Windows. However, note the following differences:

■ Device Configuration. In VxWorks, device drivers can be installed and

removed dynamically.

■ File Descriptors. In UNIX and Windows, fds are unique to each process. In

VxWorks, fds are global entities, accessible by any task, except for standard

input, standard output, and standard error (0, 1, and 2), which can be task

specific.

■ I/O Control. The specific parameters passed to ioctl() functions can differ

between UNIX and VxWorks.

■ Driver Routines. In UNIX, device drivers execute in system mode and are not

preemptible. In VxWorks, driver routines are in fact preemptible because they

execute within the context of the task that invoked them.
139

VxWorks 5.4
Programmer’s Guide
3.9 Internal Structure

The VxWorks I/O system is different from most in the way the work of performing

user I/O requests is apportioned between the device-independent I/O system and

the device drivers themselves.

In many systems, the device driver supplies a few routines to perform low-level

I/O functions such as inputting or outputting a sequence of bytes to character-

oriented devices. The higher-level protocols, such as communications protocols on

character-oriented devices, are implemented in the device-independent part of the

I/O system. The user requests are heavily processed by the I/O system before the

driver routines get control.

While this approach is designed to make it easy to implement drivers and to

ensure that devices behave as much alike as possible, it has several drawbacks. The

driver writer is often seriously hampered in implementing alternative protocols

that are not provided by the existing I/O system. In a real-time system, it is

sometimes desirable to bypass the standard protocols altogether for certain

devices where throughput is critical, or where the device does not fit the standard

model.

In the VxWorks I/O system, minimal processing is done on user I/O requests

before control is given to the device driver. Instead, the VxWorks I/O system acts

as a switch to route user requests to appropriate driver-supplied routines. Each

driver can then process the raw user requests as appropriate to its devices. In

addition, however, several high-level subroutine libraries are available to driver

writers that implement standard protocols for both character- and block-oriented

devices. Thus the VxWorks I/O system gives you the best of both worlds: while it

is easy to write a standard driver for most devices with only a few pages of device-

specific code, driver writers are free to execute the user requests in nonstandard

ways where appropriate.

There are two fundamental types of device: block and character (or non-block; see

Figure 3-8). Block devices are used for storing file systems. They are random access

devices where data is transferred in blocks. Examples of block devices include

hard and floppy disks. Character devices are any device that does not fall in the

block category. Examples of character devices include serial and graphical input

devices, for example, terminals and graphics tablets.

As discussed in earlier sections, the three main elements of the VxWorks I/O

system are drivers, devices, and files. The following sections describe these

elements in detail. The discussion focuses on character drivers; however, much of

it is applicable for block devices. Because block drivers must interact with
140

3

3
I/O System
VxWorks file systems, they use a slightly different organization; see 3.9.4 Block
Devices, p.158.

Example 3-9 shows the abbreviated code for a hypothetical driver that is used as

an example throughout the following discussions. This example driver is typical

of drivers for character-oriented devices.

In VxWorks, each driver has a short, unique abbreviation, such as net or tty, which

is used as a prefix for each of its routines. The abbreviation for the example driver

is xx.

Example 3-9 Hypothetical Driver

/***
* xxDrv - driver initialization routine
*
* xxDrv() initializes the driver. It installs the driver via iosDrvInstall.
* It may allocate data structures, connect ISRs, and initialize hardware.
*/

STATUS xxDrv ()
 {

xxDrvNum = iosDrvInstall (xxCreat, 0, xxOpen, 0, xxRead, xxWrite, xxIoctl);
 (void) intConnect (intvec, xxInterrupt, ...);
 ...
 }

/***
* xxDevCreate - device creation routine
*
* Called to add a device called <name> to be serviced by this driver. Other
* driver-dependent arguments may include buffer sizes, device addresses...
* The routine adds the device to the I/O system by calling iosDevAdd.
* It may also allocate and initialize data structures for the device,
* initialize semaphores, initialize device hardware, and so on.
*/

STATUS xxDevCreate (name, ...)
 char * name;
 ...
 {
 status = iosDevAdd (xxDev, name, xxDrvNum);
 ...
 }

NOTE: This discussion is designed to clarify the structure of VxWorks I/O facilities

and to highlight some considerations relevant to writing I/O drivers for VxWorks.

It is not a complete text on writing a device driver. For detailed information on this

subject, see the Tornado BSP Developer’s Kit User’s Guide.
141

VxWorks 5.4
Programmer’s Guide
/***
* The following routines implement the basic I/O functions. The xxOpen()
* return value is meaningful only to this driver, and is passed back as an
* argument to the other I/O routines.
*/

int xxOpen (xxDev, remainder, mode)
 XXDEV * xxDev;
 char * remainder;
 int mode;
 {
 /* serial devices should have no file name part */

 if (remainder[0] != 0)
 return (ERROR);
 else
 return ((int) xxDev);
 }

int xxRead (xxDev, buffer, nBytes)
 XXDEV * xxDev;
 char * buffer;
 int nBytes;
 ...
int xxWrite (xxDev, buffer, nBytes)
 ...
int xxIoctl (xxDev, requestCode, arg)
 ...

/***
* xxInterrupt - interrupt service routine
*
* Most drivers have routines that handle interrupts from the devices
* serviced by the driver. These routines are connected to the interrupts
* by calling intConnect (usually in xxDrv above). They can receive a
* single argument, specified in the call to intConnect (see intLib).
*/

VOID xxInterrupt (arg)
 ...

3.9.1 Drivers

A driver for a non-block device implements the seven basic I/O functions—

creat(), remove(), open(), close(), read(), write(), and ioctl()—for a particular

kind of device. In general, this type of driver has routines that implement each of

these functions, although some of the routines can be omitted if the functions are

not operative with that device.
142

3

3
I/O System
Drivers can optionally allow tasks to wait for activity on multiple file descriptors.

This is implemented using the driver’s ioctl() routine; see Implementing select(),
p.152.

A driver for a block device interfaces with a file system, rather than directly with

the I/O system. The file system in turn implements most I/O functions. The driver

need only supply routines to read and write blocks, reset the device, perform I/O

control, and check device status. Drivers for block devices have a number of

special requirements that are discussed in 3.9.4 Block Devices, p.158.

When the user invokes one of the basic I/O functions, the I/O system routes the

request to the appropriate routine of a specific driver, as detailed in the following

sections. The driver’s routine runs in the calling task’s context, as though it were

called directly from the application. Thus, the driver is free to use any facilities

normally available to tasks, including I/O to other devices. This means that most

drivers have to use some mechanism to provide mutual exclusion to critical

regions of code. The usual mechanism is the semaphore facility provided in

semLib.

In addition to the routines that implement the seven basic I/O functions, drivers

also have three other routines:

■ An initialization routine that installs the driver in the I/O system, connects to

any interrupts used by the devices serviced by the driver, and performs any

necessary hardware initialization (typically named xxDrv()).

■ A routine to add devices that are to be serviced by the driver (typically named

xxDevCreate()) to the I/O system.

■ Interrupt-level routines that are connected to the interrupts of the devices

serviced by the driver.

The Driver Table and Installing Drivers

The function of the I/O system is to route user I/O requests to the appropriate

routine of the appropriate driver. The I/O system does this by maintaining a table

that contains the address of each routine for each driver. Drivers are installed

dynamically by calling the I/O system internal routine iosDrvInstall(). The

arguments to this routine are the addresses of the seven I/O routines for the new

driver. The iosDrvInstall() routine enters these addresses in a free slot in the

driver table and returns the index of this slot. This index is known as the driver
number and is used subsequently to associate particular devices with the driver.
143

VxWorks 5.4
Programmer’s Guide
Null (0) addresses can be specified for some of the seven routines. This indicates

that the driver does not process those functions. For non-file-system drivers,

close() and remove() often do nothing as far as the driver is concerned.

VxWorks file systems (dosFsLib, rt11FsLib, and rawFsLib) contain their own

entries in the driver table, which are created when the file system library is

initialized.

Example of Installing a Driver

Figure 3-2 shows the actions taken by the example driver and by the I/O system

when the initialization routine xxDrv() runs.

[1] The driver calls iosDrvInstall(), specifying the addresses of the driver’s

routines for the seven basic I/O functions.

The I/O system:

[2] Locates the next available slot in the driver table, in this case slot 2.

[3] Enters the addresses of the driver routines in the driver table.

[4] Returns the slot number as the driver number of the newly installed driver.

3.9.2 Devices

Some drivers are capable of servicing many instances of a particular kind of device.

For example, a single driver for a serial communications device can often handle

many separate channels that differ only in a few parameters, such as device

address.

In the VxWorks I/O system, devices are defined by a data structure called a device
header (DEV_HDR). This data structure contains the device name string and the

driver number for the driver that services this device. The device headers for all

the devices in the system are kept in a memory-resident linked list called the device
list. The device header is the initial part of a larger structure determined by the

individual drivers. This larger structure, called a device descriptor, contains

additional device-specific data such as device addresses, buffers, and semaphores.
144

3

3
I/O System
The Device List and Adding Devices

Non-block devices are added to the I/O system dynamically by calling the internal

I/O routine iosDevAdd(). The arguments to iosDevAdd() are the address of the

device descriptor for the new device, the device’s name, and the driver number of

the driver that services the device. The device descriptor specified by the driver

can contain any necessary device-dependent information, as long as it begins with

a device header. The driver does not need to fill in the device header, only the

device-dependent information. The iosDevAdd() routine enters the specified

device name and the driver number in the device header and adds it to the system

device list.

To add a block device to the I/O system, call the device initialization routine for

the file system required on that device (dosFsDevInit(), rt11FsDevInit(), or

rawFsDevInit()). The device initialization routine then calls iosDevAdd()
automatically.

Figure 3-2 Example – Driver Initialization for Non-Block Devices

I/O system enters driver
routines in driver table.

DRIVER TABLE:

DRIVER CALL:

drvnum = iosDrvInstall (xxCreat, 0, xxOpen, 0, xxRead, xxWrite, xxIoctl);

xxCreat 0 xxOpen 0 xxRead xxWrite xxIoctl

open

0
1
2
3
4

create remove close read write ioctl

I/O system returns
driver number
(drvnum = 2).

routines for seven I/O functions.

I/O system locates next

available slot in driver table.

Driver’s install routine specifies driver[1]

[2]

[3]

[4]
145

VxWorks 5.4
Programmer’s Guide
Example of Adding Devices

In Figure 3-3, the example driver’s device creation routine xxDevCreate() adds

devices to the I/O system by calling iosDevAdd().

3.9.3 File Descriptors

Several fds can be open to a single device at one time. A device driver can maintain

additional information associated with an fd beyond the I/O system’s device

Figure 3-3 Example – Addition of Devices to I/O System

DRIVER CALLS: status = iosDevAdd (dev0, "/xx0", drvnum);

status = iosDevAdd (dev1, "/xx1", drvnum);

DEVICE LIST:

DRIVER TABLE:

I/O system adds device descriptors
to device list. Each descriptor contains
device name and driver number (in this
case 2) and any device-specific data.

open

0
1
2
3
4

create remove close read write ioctl

"/dk0/"
1

"/xx0"
2

"/xx1"
2

device-
dependent

data

device-
dependent

data
146

3

3
I/O System
information. In particular, devices on which multiple files can be open at one time

have file-specific information (for example, file offset) associated with each fd. You

can also have several fds open to a non-block device, such as a tty; typically there

is no additional information, and thus writing on any of the fds produces identical

results.

The Fd Table

Files are opened with open() (or creat()). The I/O system searches the device list

for a device name that matches the file name (or an initial substring) specified by

the caller. If a match is found, the I/O system uses the driver number contained in

the corresponding device header to locate and call the driver’s open routine in the

driver table.

The I/O system must establish an association between the file descriptor used by

the caller in subsequent I/O calls, and the driver that services it. Additionally, the

driver must associate some data structure per descriptor. In the case of non-block

devices, this is usually the device descriptor that was located by the I/O system.

The I/O system maintains these associations in a table called the fd table. This table

contains the driver number and an additional driver-determined 4-byte value. The

driver value is the internal descriptor returned by the driver’s open routine, and

can be any nonnegative value the driver requires to identify the file. In subsequent

calls to the driver’s other I/O functions (read(), write(), ioctl(), and close()), this

value is supplied to the driver in place of the fd in the application-level I/O call.

Example of Opening a File

In Figure 3-4 and Figure 3-5, a user calls open() to open the file /xx0. The I/O

system takes the following series of actions:

[1] It searches the device list for a device name that matches the specified file name

(or an initial substring). In this case, a complete device name matches.

[2] It reserves a slot in the fd table, which is used if the open is successful.

[3] It then looks up the address of the driver’s open routine, xxOpen(), and calls

that routine. Note that the arguments to xxOpen() are transformed by the I/O

system from the user’s original arguments to open(). The first argument to

xxOpen() is a pointer to the device descriptor the I/O system located in the full

file name search. The next parameter is the remainder of the file name specified

by the user, after removing the initial substring that matched the device name.
147

VxWorks 5.4
Programmer’s Guide
Figure 3-4 Example: Call to I/O Routine open() [Part 1]

fd = open ("/xx0", O_RDONLY);

DEVICE LIST:

DRIVER TABLE:

USER CALL: DRIVER CALL:

xxdev = xxOpen (xxdev, "", O_RDONLY);

FD TABLE:

I/O system reserves
a slot in the fd table.

xxOpen

open

0
1
2
3
4

create remove close read write ioctl

"/dk0/"
1

"/xx0"
2

"/xx1"
2

I/O system calls
driver’s open routine
with pointer to
device descriptor.

device-
dependent

data

0
1
2
3

drvnum value

4

I/O system finds
name in device list.

[1] [2] [3]
148

3

3
I/O System
Figure 3-5 Example: Call to I/O Routine open() [Part 2]

fd = open ("/xx0", O_RDONLY);

"/dk0/"
1

"/xx0"
2

"/xx1"
2

DEVICE LIST:

DRIVER TABLE:

USER CALL: DRIVER CALL:

xxdev = xxOpen (xxdev, "", O_RDONLY);

FD TABLE:

I/O system returns
index in fd table of
new open file (fd = 3).

I/O system enters
driver number and
identifying value in
reserved fd table slot.

Driver returns any
identifying value, in
this case the pointer to
the device descriptor.

0
1
2
3

drvnum value

xxdev2

device-
dependent

data

open

0
1
2
3
4

create remove close read write ioctl

4

[6] [5] [4]
149

VxWorks 5.4
Programmer’s Guide
In this case, because the device name matched the entire file name, the

remainder passed to the driver is a null string. The driver is free to interpret

this remainder in any way it wants. In the case of block devices, this remainder

is the name of a file on the device. In the case of non-block devices like this one,

it is usually an error for the remainder to be anything but the null string. The

last parameter is the file access flag, in this case O_RDONLY; that is, the file is

opened for reading only.

[4] It executes xxOpen(), which returns a value that subsequently identifies the

newly opened file. In this case, the value is the pointer to the device descriptor.

This value is supplied to the driver in subsequent I/O calls that refer to the file

being opened. Note that if the driver returns only the device descriptor, the

driver cannot distinguish multiple files opened to the same device. In the case

of non-block device drivers, this is usually appropriate.

[5] The I/O system then enters the driver number and the value returned by

xxOpen() in the reserved slot in the fd table. Again, the value entered in the fd
table has meaning only for the driver, and is arbitrary as far as the I/O system

is concerned.

[6] Finally, it returns to the user the index of the slot in the fd table, in this case 3.

Example of Reading Data from the File

In Figure 3-6, the user calls read() to obtain input data from the file. The specified

fd is the index into the fd table for this file. The I/O system uses the driver number

contained in the table to locate the driver’s read routine, xxRead(). The I/O system

calls xxRead(), passing it the identifying value in the fd table that was returned by

the driver’s open routine, xxOpen(). Again, in this case the value is the pointer to

the device descriptor. The driver’s read routine then does whatever is necessary to

read data from the device.

The process for user calls to write() and ioctl() follow the same procedure.

Example of Closing a File

The user terminates the use of a file by calling close(). As in the case of read(), the

I/O system uses the driver number contained in the fd table to locate the driver’s

close routine. In the example driver, no close routine is specified; thus no driver

routines are called. Instead, the I/O system marks the slot in the fd table as being

available. Any subsequent references to that fd cause an error. However,

subsequent calls to open() can reuse that slot.
150

3

3
I/O System
Figure 3-6 Example: Call to I/O Routine read()

n = read (fd, buf, len);

"/dk0/"
1

"/xx0"
2

"/xx1"
2

DEVICE LIST:

DRIVER TABLE:

USER CALL: DRIVER CALL:

n = xxRead (xxdev, buf, len);

FD TABLE:

xxRead

open

0
1
2
3
4

create remove close read write ioctl

0
1
2
3

drvnum value

xxdev2
4

device-
dependent

data

I/O system transforms the user’s I/O
routine calls into driver routine calls
replacing the fd with the value returned
by the driver’s open routine, xxOpen().
151

VxWorks 5.4
Programmer’s Guide
Implementing select()

Supporting select() in your driver allows tasks to wait for input from multiple

devices or to specify a maximum time to wait for the device to become ready for

I/O. Writing a driver that supports select() is simple, because most of the

functionality is provided in selectLib. You might want your driver to support

select() if any of the following is appropriate for the device:

■ The tasks want to specify a timeout to wait for I/O from the device. For

example, a task might want to time out on a UDP socket if the packet never

arrives.

■ The driver supports multiple devices, and the tasks want to wait

simultaneously for any number of them. For example, multiple pipes might be

used for different data priorities.

■ The tasks want to wait for I/O from the device while also waiting for I/O from

another device. For example, a server task might use both pipes and sockets.

To implement select(), the driver must keep a list of tasks waiting for device

activity. When the device becomes ready, the driver unblocks all the tasks waiting

on the device.

For a device driver to support select(), it must declare a SEL_WAKEUP_LIST
structure (typically declared as part of the device descriptor structure) and

initialize it by calling selWakeupListInit(). This is done in the driver’s

xxDevCreate() routine. When a task calls select(), selectLib calls the driver’s

ioctl() routine with the function FIOSELECT or FIOUNSELECT. If ioctl() is called

with FIOSELECT, the driver must do the following:

1. Add the SEL_WAKEUP_NODE (provided as the third argument of ioctl()) to
the SEL_WAKEUP_LIST by calling selNodeAdd().

2. Use the routine selWakeupType() to check whether the task is waiting for data

to read from the device (SELREAD) or if the device is ready to be written

(SELWRITE).

3. If the device is ready (for reading or writing as determined by

selWakeupType()), the driver calls the routine selWakeup() to make sure that

the select() call in the task does not pend. This avoids the situation where the

task is blocked but the device is ready.

If ioctl() is called with FIOUNSELECT, the driver calls selNodeDelete() to remove

the provided SEL_WAKEUP_NODE from the wakeup list.

When the device becomes available, selWakeupAll() is used to unblock all the

tasks waiting on this device. Although this typically occurs in the driver’s ISR, it
152

3

3
I/O System
can also occur elsewhere. For example, a pipe driver might call selWakeupAll()
from its xxRead() routine to unblock all the tasks waiting to write, now that there

is room in the pipe to store the data. Similarly the pipe’s xxWrite() routine might

call selWakeupAll() to unblock all the tasks waiting to read, now that there is data

in the pipe.

Example 3-10 Driver Code Using the Select Facility

/* This code fragment shows how a driver might support select(). In this
 * example, the driver unblocks tasks waiting for the device to become ready
 * in its interrupt service routine.
 */

/* myDrvLib.h - header file for driver */

typedef struct /* MY_DEV */
{
DEV_HDR devHdr; /* device header */
BOOL myDrvDataAvailable; /* data is available to read */
BOOL myDrvRdyForWriting; /* device is ready to write */
SEL_WAKEUP_LIST selWakeupList; /* list of tasks pended in select */
} MY_DEV;

/* myDrv.c - code fragments for supporting select() in a driver */

#include "vxWorks.h"
#include "selectLib.h"

/* First create and initialize the device */

STATUS myDrvDevCreate
(
char * name, /* name of device to create */
)
{
MY_DEV * pMyDrvDev; /* pointer to device descriptor*/
... additional driver code ...

/* allocate memory for MY_DEV */
pMyDrvDev = (MY_DEV *) malloc (sizeof MY_DEV);
... additional driver code ...

/* initialize MY_DEV */
pMyDrvDev->myDrvDataAvailable=FALSE
pMyDrvDev->myDrvRdyForWriting=FALSE

/* initialize wakeup list */
selWakeupListInit (&pMyDrvDev->selWakeupList);
... additional driver code ...
}

153

VxWorks 5.4
Programmer’s Guide
/* ioctl function to request reading or writing */

STATUS myDrvIoctl
(
MY_DEV * pMyDrvDev, /* pointer to device descriptor */
int request, /* ioctl function */
int arg /* where to send answer */
)
{
... additional driver code ...

switch (request)
{
... additional driver code ...

case FIOSELECT:

/* add node to wakeup list */

selNodeAdd (&pMyDrvDev->selWakeupList, (SEL_WAKEUP_NODE *) arg);

if (selWakeupType ((SEL_WAKEUP_NODE *) arg) == SELREAD
&& pMyDrvDev->myDrvDataAvailable)
{
/* data available, make sure task does not pend */
selWakeup ((SEL_WAKEUP_NODE *) arg);
}

if (selWakeupType ((SEL_WAKEUP_NODE *) arg) == SELWRITE
&& pMyDrvDev->myDrvRdyForWriting)
{
/* device ready for writing, make sure task does not pend */
selWakeup ((SEL_WAKEUP_NODE *) arg);
}

break;

case FIOUNSELECT:

/* delete node from wakeup list */
selNodeDelete (&pMyDrvDev->selWakeupList, (SEL_WAKEUP_NODE *) arg);
break;

... additional driver code ...
}

}

/* code that actually uses the select() function to read or write */

void myDrvIsr
(
MY_DEV * pMyDrvDev;
)
{

 ... additional driver code ...

/* if there is data available to read, wake up all pending tasks */
154

3

3
I/O System
if (pMyDrvDev->myDrvDataAvailable)
selWakeupAll (&pMyDrvDev->selWakeupList, SELREAD);

/* if the device is ready to write, wake up all pending tasks */

if (pMyDrvDev->myDrvRdyForWriting)
selWakeupAll (&pMyDrvDev->selWakeupList, SELWRITE);

}

Cache Coherency

Drivers written for boards with caches must guarantee cache coherency. Cache

coherency means data in the cache must be in sync, or coherent, with data in RAM.

The data cache and RAM can get out of sync any time there is asynchronous access

to RAM (for example, DMA device access or VMEbus access). Data caches are used

to increase performance by reducing the number of memory accesses. Figure 3-7

shows the relationships between the CPU, data cache, RAM, and a DMA device.

Data caches can operate in one of two modes: writethrough and copyback. Write-

through mode writes data to both the cache and RAM; this guarantees cache

coherency on output but not input. Copyback mode writes the data only to the

cache; this makes cache coherency an issue for both input and output of data.

If a CPU writes data to RAM that is destined for a DMA device, the data can first

be written to the data cache. When the DMA device transfers the data from RAM,

there is no guarantee that the data in RAM was updated with the data in the cache.

Thus, the data output to the device may not be the most recent—the new data may

still be sitting in the cache. This data incoherency can be solved by making sure the

data cache is flushed to RAM before the data is transferred to the DMA device.

Figure 3-7 Cache Coherency

CPU

Data Cache

RAM
DMA

Device
155

VxWorks 5.4
Programmer’s Guide
If a CPU reads data from RAM that originated from a DMA device, the data read

can be from the cache buffer (if the cache buffer for this data is not marked invalid)

and not the data just transferred from the device to RAM. The solution to this data

incoherency is to make sure that the cache buffer is marked invalid so that the data

is read from RAM and not from the cache.

Drivers can solve the cache coherency problem either by allocating cache-safe

buffers (buffers that are marked non-cacheable) or flushing and invalidating cache

entries any time the data is written to or read from the device. Allocating cache-

safe buffers is useful for static buffers; however, this typically requires MMU

support. Non-cacheable buffers that are allocated and freed frequently (dynamic

buffers) can result in large amounts of memory being marked non-cacheable. An

alternative to using non-cacheable buffers is to flush and invalidate cache entries

manually; this allows dynamic buffers to be kept coherent.

The routines cacheFlush() and cacheInvalidate() are used to manually flush and

invalidate cache buffers. Before a device reads the data, flush the data from the

cache to RAM using cacheFlush() to ensure the device reads current data. After the

device has written the data into RAM, invalidate the cache entry with

cacheInvalidate(). This guarantees that when the data is read by the CPU, the

cache is updated with the new data in RAM.

Example 3-11 DMA Transfer Routine

/* This a sample DMA transfer routine. Before programming the device to
 * output the data to the device, it flushes the cache by calling
 * cacheFlush(). On a read, after the device has transferred the data, the
 * cache entry must be invalidated using cacheInvalidate().
 */

#include "vxWorks.h"
#include "cacheLib.h"
#include "fcntl.h"
#include "example.h"
void exampleDmaTransfer /* 1 = READ, 0 = WRITE */

(
UINT8 *pExampleBuf,
int exampleBufLen,
int xferDirection
)
{
if (xferDirection == 1)

{
myDevToBuf (pExampleBuf);
cacheInvalidate (DATA_CACHE, pExampleBuf, exampleBufLen);
}

156

3

3
I/O System
else
{
cacheFlush (DATA_CACHE, pExampleBuf, exampleBufLen);
myBufToDev (pExampleBuf);
}

}

It is possible to make a driver more efficient by combining cache-safe buffer

allocation and cache-entry flushing or invalidation. The idea is to flush or

invalidate a cache entry only when absolutely necessary. To address issues of cache

coherency for static buffers, use cacheDmaMalloc(). This routine initializes a

CACHE_FUNCS structure (defined in cacheLib.h) to point to flush and invalidate

routines that can be used to keep the cache coherent. The macros

CACHE_DMA_FLUSH and CACHE_DMA_INVALIDATE use this structure to

optimize the calling of the flush and invalidate routines. If the corresponding

function pointer in the CACHE_FUNCS structure is NULL, no unnecessary

flush/invalidate routines are called because it is assumed that the buffer is cache

coherent (hence it is not necessary to flush/invalidate the cache entry manually).

Some architectures allow the virtual address to be different from the physical

address seen by the device; see 7.3 Virtual Memory Configuration, p.290 in this

manual. In this situation, the driver code uses a virtual address and the device uses

a physical address. Whenever a device is given an address, it must be a physical

address. Whenever the driver accesses the memory, it uses the virtual address. The

driver translates the address using the following macros:

CACHE_DMA_PHYS_TO_VIRT (to translate a physical address to a virtual one) and

CACHE_DMA_VIRT_TO_PHYS (to translate a virtual address to a physical one).

Example 3-12 Address-Translation Driver

/* The following code is an example of a driver that performs address
 * translations. It attempts to allocate a cache-safe buffer, fill it, and
 * then write it out to the device. It uses CACHE_DMA_FLUSH to make sure
 * the data is current. The driver then reads in new data and uses
 * CACHE_DMA_INVALIDATE to guarantee cache coherency.
 */

#include "vxWorks.h"
#include "cacheLib.h"
#include "myExample.h"
STATUS myDmaExample (void)

{
void * pMyBuf;
void * pPhysAddr;

/* allocate cache safe buffers if possible */

if ((pMyBuf = cacheDmaMalloc (MY_BUF_SIZE)) == NULL)
return (ERROR);
157

VxWorks 5.4
Programmer’s Guide
… fill buffer with useful information …

/* flush cache entry before data is written to device */

CACHE_DMA_FLUSH (pMyBuf, MY_BUF_SIZE);

/* convert virtual address to physical */

pPhysAddr = CACHE_DMA_VIRT_TO_PHYS (pMyBuf);

/* program device to read data from RAM */

myBufToDev (pPhysAddr);
… wait for DMA to complete …
… ready to read new data …

/* program device to write data to RAM */

myDevToBuf (pPhysAddr);
… wait for transfer to complete …

/* convert physical to virtual address */

pMyBuf = CACHE_DMA_PHYS_TO_VIRT (pPhysAddr);

/* invalidate buffer */

CACHE_DMA_INVALIDATE (pMyBuf, MY_BUF_SIZE);
… use data …

/* when done free memory */

if (cacheDmaFree (pMyBuf) == ERROR)
return (ERROR);

return (OK);
}

3.9.4 Block Devices

General Implementation

In VxWorks, block devices have a slightly different interface than other I/O

devices. Rather than interacting directly with the I/O system, block device drivers

interact with a file system. The file system, in turn, interacts with the I/O system.

Direct access block devices have been supported since SCSI-1 and are used

compatibly with dosFs, rt11Fs, and rawFs. In addition, VxWorks supports SCSI-2

sequential devices, which are organized so individual blocks of data are read and

written sequentially. When data blocks are written, they are added sequentially at
158

3

3
I/O System
the end of the written medium; that is, data blocks cannot be replaced in the

middle of the medium. However, data blocks can be accessed individually for

reading throughout the medium. This process of accessing data on a sequential

medium differs from that of other block devices.

Figure 3-8 shows a layered model of I/O for both block and non-block (character)

devices. This layered arrangement allows the same block device driver to be used

with different file systems, and reduces the number of I/O functions that must be

supported in the driver.

Figure 3-8 Non-Block Devices vs. Block Devices

I/O System

driver table

Device(s) Device(s)

File System
dosFs, rt11Fs, rawFs

Block
Device Driver

Non-Block
Device Driver

Application

or tapeFs
159

VxWorks 5.4
Programmer’s Guide
A device driver for a block device must provide a means for creating a logical block

device structure, a BLK_DEV for direct access block devices or a SEQ_DEV for

sequential block devices. The BLK_DEV/SEQ_DEV structure describes the device

in a generic fashion, specifying only those common characteristics that must be

known to a file system being used with the device. Fields within the structures

specify various physical configuration variables for the device—for example, block

size, or total number of blocks. Other fields in the structures specify routines

within the device driver that are to be used for manipulating the device (reading

blocks, writing blocks, doing I/O control functions, resetting the device, and

checking device status). The BLK_DEV/SEQ_DEV structures also contain fields

used by the driver to indicate certain conditions (for example, a disk change) to the

file system.

When the driver creates the block device, the device has no name or file system

associated with it. These are assigned during the device initialization routine for

the chosen file system (for example, dosFsDevInit(), rt11FsDevInit() or

tapeFsDevInit()).

The low-level device driver for a block device is not installed in the I/O system

driver table, unlike non-block device drivers. Instead, each file system in the

VxWorks system is installed in the driver table as a “driver.” Each file system has

only one entry in the table, even though several different low-level device drivers

can have devices served by that file system.

After a device is initialized for use with a particular file system, all I/O operations

for the device are routed through that file system. To perform specific device

operations, the file system in turn calls the routines in the specified BLK_DEV or

SEQ_DEV structure.

A driver for a block device must provide the interface between the device and

VxWorks. There is a specific set of functions required by VxWorks; individual

devices vary based on what additional functions must be provided. The user

manual for the device being used, as well as any other drivers for the device, is

invaluable in creating the VxWorks driver. The following sections describe the

components necessary to build low-level block device drivers that adhere to the

standard interface for VxWorks file systems.

Low-Level Driver Initialization Routine

The driver normally requires a general initialization routine. This routine performs

all operations that are done one time only, as opposed to operations that must be

performed for each device served by the driver. As a general guideline, the
160

3

3
I/O System
operations in the initialization routine affect the whole device controller, while

later operations affect only specific devices.

Common operations in block device driver initialization routines include:

– initializing hardware

– allocating and initializing data structures

– creating semaphores

– initializing interrupt vectors

– enabling interrupts

The operations performed in the initialization routine are entirely specific to the

device (controller) being used; VxWorks has no requirements for a driver

initialization routine.

Unlike non-block device drivers, the driver initialization routine does not call

iosDrvInstall() to install the driver in the I/O system driver table. Instead, the file

system installs itself as a “driver” and routes calls to the actual driver using the

routine addresses placed in the block device structure, BLK_DEV or SEQ_DEV (see

Device Creation Routine, p.161).

Device Creation Routine

The driver must provide a routine to create (define) a logical disk or sequential

device. A logical disk device may be only a portion of a larger physical device. If

this is the case, the device driver must keep track of any block offset values or other

means of identifying the physical area corresponding to the logical device.

VxWorks file systems always use block numbers beginning with zero for the start

of a device. A sequential access device can be either of variable block size or fixed

block size. Most applications use devices of fixed block size.

The device creation routine generally allocates a device descriptor structure that

the driver uses to manage the device. The first item in this device descriptor must

be a VxWorks block device structure (BLK_DEV or SEQ_DEV). It must appear first

because its address is passed by the file system during calls to the driver; having

the BLK_DEV or SEQ_DEV as the first item permits also using this address to

identify the device descriptor.

The device creation routine must initialize the fields within the BLK_DEV or

SEQ_DEV structure. The BLK_DEV fields and their initialization values are shown

in Table 3-14. The SEQ_DEV fields and their initialization values are shown in

Table 3-15.
161

VxWorks 5.4
Programmer’s Guide
Table 3-14 Fields in the BLK_DEV Structure

Field Value

bd_blkRd Address of the driver routine that reads blocks from the device.

bd_blkWrt Address of the driver routine that writes blocks to the device.

bd_ioctl Address of the driver routine that performs device I/O control.

bd_reset Address of the driver routine that resets the device (NULL if

none).

bd_statusChk Address of the driver routine that checks disk status (NULL if

none).

bd_removable TRUE if the device is removable (for example, a floppy disk);

FALSE otherwise.

bd_nBlocks Total number of blocks on the device.

bd_bytesPerBlk Number of bytes per block on the device.

bd_blksPerTrack Number of blocks per track on the device.

bd_nHeads Number of heads (surfaces).

bd_retry Number of times to retry failed reads or writes.

bd_mode Device mode (write-protect status); generally set to O_RDWR.

bd_readyChanged TRUE if the device ready status has changed; initialize to TRUE
to cause the disk to be mounted.

Table 3-15 Fields in the SEQ_DEV Structure

Field Value

sd_seqRd Address of the driver routine that reads blocks from the device.

sd_seqWrt Address of the driver routine that writes blocks to the device.

sd_ioctl Address of the driver routine that performs device I/O control.

sd_seqWrtFileMarks Address of the driver routine that writes file marks to the device.

sd_rewind Address of the driver routine that rewinds the sequential device.

sd_reserve Address of the driver routine that reserves a sequential device.

sd_release Address of the driver routine that releases a sequential device.
162

3

3
I/O System
The device creation routine returns the address of the BLK_DEV or SEQ_DEV
structure. This address is then passed during the file system device initialization

call to identify the device.

Unlike non-block device drivers, the device creation routine for a block device

does not call iosDevAdd() to install the device in the I/O system device table.

Instead, this is done by the file system’s device initialization routine.

Read Routine (Direct-Access Devices)

The driver must supply a routine to read one or more blocks from the device. For

a direct access device, the read-blocks routine must have the following arguments

and result:

sd_readBlkLim Address of the driver routine that reads the data block limits

from the sequential device.

sd_load Address of the driver routine that either loads or unloads a

sequential device.

sd_space Address of the driver routine that moves (spaces) the medium

forward or backward to end-of-file or end-of-record markers.

sd_erase Address of the driver routine that erases a sequential device.

sd_reset Address of the driver routine that resets the device (NULL if

none).

sd_statusChk Address of the driver routine that checks sequential device

status (NULL if none).

sd_blkSize Block size of sequential blocks for the device. A block size of 0

means that variable block sizes are used.

sd_mode Device mode (write protect status).

sd_readyChanged TRUE if the device ready status has changed; initialize to TRUE
to cause the sequential device to be mounted.

sd_maxVarBlockLimit Maximum block size for a variable block.

sd_density Density of sequential access media.

Table 3-15 Fields in the SEQ_DEV Structure (Continued)

Field Value
163

VxWorks 5.4
Programmer’s Guide
STATUS xxBlkRd
(
DEVICE * pDev, /* pointer to device descriptor */
int startBlk, /* starting block to read */
int numBlks, /* number of blocks to read */
char * pBuf /* pointer to buffer to receive data */
)

pDev a pointer to the driver’s device descriptor structure, represented here

by the symbolic name DEVICE. (Actually, the file system passes the

address of the corresponding BLK_DEV structure; these are

equivalent, because the BLK_DEV is the first item in the device

descriptor.) This identifies the device.

startBlk the starting block number to be read from the device. The file system

always uses block numbers beginning with zero for the start of the

device. Any offset value used for this logical device must be added in

by the driver.

numBlks the number of blocks to be read. If the underlying device hardware

does not support multiple-block reads, the driver routine must do the

necessary looping to emulate this ability.

pBuf the address where data read from the disk is to be copied.

The read routine returns OK if the transfer is successful, or ERROR if a problem

occurs.

Read Routine (Sequential Devices)

The driver must supply a routine to read a specified number of bytes from the

device. The bytes being read are always assumed to be read from the current

location of the read/write head on the media. The read routine must have the

following arguments and result:

STATUS xxSeqRd
(
DEVICE * pDev, /* pointer to device descriptor */
int numBytes, /* number of bytes to read */
char * buffer, /* pointer to buffer to receive data */
BOOL fixed /* TRUE => fixed block size */
)

NOTE: In this and following examples, the routine names begin with xx. These

names are for illustration only, and do not have to be used by your device driver.

VxWorks references the routines by address only; the name can be anything.
164

3

3
I/O System
pDev a pointer to the driver’s device descriptor structure, represented here

by the symbolic name DEVICE. (Actually, the file system passes the

address of the corresponding SEQ_DEV structure; these are

equivalent, because the SEQ_DEV structure is the first item in the

device descriptor.) This identifies the device.

numBytes the number of bytes to be read.

buffer the buffer into which numBytes of data are read.

fixed specifies whether the read routine reads fixed-sized blocks from the

sequential device or variable-sized blocks, as specified by the file

system. If fixed is TRUE, then fixed sized blocks are used.

The read routine returns OK if the transfer is completed successfully, or ERROR if

a problem occurs.

Write Routine (Direct-Access Devices)

The driver must supply a routine to write one or more blocks to the device. The

definition of this routine closely parallels that of the read routine. For direct-access

devices, the write routine is as follows:

STATUS xxBlkWrt
(
DEVICE * pDev, /* pointer to device descriptor */
int startBlk, /* starting block for write */
int numBlks, /* number of blocks to write */
char * pBuf /* ptr to buffer of data to write */
)

pDev a pointer to the driver’s device descriptor structure.

startBlk the starting block number to be written to the device.

numBlks the number of blocks to be written. If the underlying device hardware

does not support multiple-block writes, the driver routine must do the

necessary looping to emulate this ability.

pBuf the address of the data to be written to the disk.

The write routine returns OK if the transfer is successful, or ERROR if a problem

occurs.
165

VxWorks 5.4
Programmer’s Guide
Write Routine (Sequential Devices)

The driver must supply a routine to write a specified number of bytes to the device.

The bytes being written are always assumed to be written to the current location

of the read/write head on the media. For sequential devices, the write routine is as

follows:

STATUS xxWrtTape
(
DEVICE * pDev, /* ptr to SCSI sequential device info */
int numBytes, /* total bytes or blocks to be written */
char * buffer, /* ptr to input data buffer */
BOOL fixed /* TRUE => fixed block size */
)

pDev a pointer to the driver’s device descriptor structure.

numBytes the number of bytes to be written.

buffer the buffer from which numBytes of data are written.

fixed specifies whether the write routine reads fixed-sized blocks from the

sequential device or variable-sized blocks, as specified by the file

system. If fixed is TRUE, then fixed sized blocks are used.

The write routine returns OK if the transfer is successful, or ERROR if a problem

occurs.

I/O Control Routine

The driver must provide a routine that can handle I/O control requests. In

VxWorks, most I/O operations beyond basic file handling are implemented

through ioctl() functions. The majority of these are handled directly by the file

system. However, if the file system does not recognize a request, that request is

passed to the driver’s I/O control routine.

Define the driver’s I/O control routine as follows:

STATUS xxIoctl
(
DEVICE * pDev, /* pointer to device descriptor */
int funcCode, /* ioctl() function code */
int arg /* function-specific argument */
)

pDev a pointer to the driver’s device descriptor structure.
166

3

3
I/O System
funcCode the requested ioctl() function. Standard VxWorks I/O control

functions are defined in the include file ioLib.h. Other user-defined

function code values can be used as required by your device driver.

The I/O control functions supported by the dosFs, rt11Fs, rawFs, and

tapeFs are summarized in 4. Local File Systems in this manual.

arg specific to the particular ioctl() function requested. Not all ioctl()
functions use this argument.

The driver’s I/O control routine typically takes the form of a multi-way switch

statement, based on the function code. The driver’s I/O control routine must

supply a default case for function code requests it does not recognize. For such

requests, the I/O control routine sets errno to S_ioLib_UNKNOWN_REQUEST and

returns ERROR.

The driver’s I/O control routine returns OK if it handled the request successfully;

otherwise, it returns ERROR.

Device-Reset Routine

The driver usually supplies a routine to reset a specific device, but it is not

required. This routine is called when a VxWorks file system first mounts a disk or

tape, and again during retry operations when a read or write fails.

Declare the driver’s device-reset routine as follows:

STATUS xxReset
(
DEVICE * pDev
)

pDev a pointer to the driver’s device descriptor structure.

When called, this routine resets the device and controller. Do not reset other

devices, if it can be avoided. The routine returns OK if the driver succeeded in

resetting the device; otherwise, it returns ERROR.

If no reset operation is required for the device, this routine can be omitted. In this

case, the device-creation routine sets the xx_reset field in the BLK_DEV or

SEQ_DEV structure to NULL.

NOTE: In this and following examples, the names of fields in the BLK_DEV and

SEQ_DEV structures are parallel except for the initial letters bd_ or sd_. In these

cases, the initial letters are represented by xx_, as in the xx_reset field to represent

both the bd_reset field and the sd_reset field.
167

VxWorks 5.4
Programmer’s Guide
Status-Check Routine

If the driver provides a routine to check device status or perform other preliminary

operations, the file system calls this routine at the beginning of each open() or

creat() on the device.

Define the status-check routine as follows:

STATUS xxStatusChk
(
DEVICE * pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

The routine returns OK if the open or create operation can continue. If it detects a

problem with the device, it sets errno to some value indicating the problem, and

returns ERROR. If ERROR is returned, the file system does not continue the

operation.

A primary use of the status-check routine is to check for a disk change on devices

that do not detect the change until after a new disk is inserted. If the routine

determines that a new disk is present, it sets the bd_readyChanged field in the

BLK_DEV structure to TRUE and returns OK so that the open or create operation

can continue. The new disk is then mounted automatically by the file system. (See

Change in Ready Status, p.169.)

Similarly, the status check routine can be used to check for a tape change. This

routine determines whether a new tape has been inserted. If a new tape is present,

the routine sets the sd_readyChanged field in the SEQ_DEV structure to TRUE and

returns OK so that the open or create operation can continue. The device driver

should not be able to unload a tape, nor should you physically eject a tape, while

a file descriptor is open on the tape device.

If the device driver requires no status-check routine, the device-creation routine

sets the xx_statusChk field in the BLK_DEV or SEQ_DEV structure to NULL.

Write-Protected Media

The device driver may detect that the disk or tape in place is write-protected. If this

is the case, the driver sets the xx_mode field in the BLK_DEV or SEQ_DEV structure

to O_RDONLY. This can be done at any time (even after the device is initialized for

use with the file system). The file system checks this value and does not allow

writes to the device until the xx_mode field is changed (to O_RDWR or

O_WRONLY) or the file system’s mode change routine (for example,
168

3

3
I/O System
dosFsModeChange()) is called to change the mode. (The xx_mode field is changed

automatically if the file system’s mode change routine is used.)

Change in Ready Status

The driver informs the file system whenever a change in the device’s ready status

is recognized. This can be the changing of a floppy disk, changing of the tape

medium, or any other situation that makes it advisable for the file system to

remount the disk.

To announce a change in ready status, the driver sets the xx_readyChanged field

in the BLK_DEV or SEQ_DEV structure to TRUE. This is recognized by the file

system, which remounts the disk during the next I/O initiated on the disk. The file

system then sets the xx_readyChanged field to FALSE. The xx_readyChanged
field is never cleared by the device driver.

Setting xx_readyChanged to TRUE has the same effect as calling the file system’s

ready-change routine (for example, dosFsReadyChange()) or calling ioctl() with

the FIODISKCHANGE function code.

An optional status-check routine (see Status-Check Routine, p.168) can provide a

convenient mechanism for asserting a ready-change, particularly for devices that

cannot detect a disk change until after the new disk is inserted. If the status-check

routine detects that a new disk is present, it sets xx_readyChanged to TRUE. This

routine is called by the file system at the beginning of each open or create

operation.

Write-File-Marks Routine (Sequential Devices)

The sequential driver must provide a routine that can write file marks onto the tape

device. The write file marks routine must have the following arguments

STATUS xxWrtFileMarks
(
DEVICE * pDev, /* pointer to device descriptor */
int numMarks, /* number of file marks to write */
BOOL shortMark /* short or long file marks */
)

pDev a pointer to the driver’s device descriptor structure.

numMarks the number of file marks to be written sequentially.
169

VxWorks 5.4
Programmer’s Guide
shortMark the type of file mark (short or long). If shortMark is TRUE, short marks

are written.

The write file marks routine returns OK if the file marks are written correctly on

the tape device; otherwise, it returns ERROR.

Rewind Routine (Sequential Devices)

The sequential driver must provide a rewind routine in order to rewind tapes in

the tape device. The rewind routine is defined as follows:

STATUS xxRewind
(
DEVICE * pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

When called, this routine rewinds the tape in the tape device. The routine returns

OK if completion is successful; otherwise, it returns ERROR.

Reserve Routine (Sequential Devices)

The sequential driver can provide a reserve routine that reserves the physical tape

device for exclusive access by the host that is executing the reserve routine. The

tape device remains reserved until it is released by that host, using a release

routine, or by some external stimulus.

The reserve routine is defined as follows:

STATUS xxReserve
(
DEVICE * pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

If a tape device is reserved successfully, the reserve routine returns OK. However,

if the tape device cannot be reserved or an error occurs, it returns ERROR.

Release Routine (Sequential Devices)

This routine releases the exclusive access that a host has on a tape device. The tape

device is then free to be reserved again by the same host or some other host. This
170

3

3
I/O System
routine is the opposite of the reserve routine and must be provided by the driver if

the reserve routine is provided.

The release routine is defined as follows:

STATUS xxReset
(
DEVICE * pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

If the tape device is released successfully, this routine returns OK. However, if the

tape device cannot be released or an error occurs, this routine returns ERROR.

Read-Block-Limits Routine (Sequential Devices)

The read-block-limits routine can poll a tape device for its physical block limits.

These block limits are then passed back to the file system so the file system can

decide the range of block sizes to be provided to a user.

The read-block-limits routine is defined as follows:

STATUS xxReadBlkLim
(
DEVICE * pDev, /* pointer to device descriptor */
int *maxBlkLimit, /* maximum block size for device */
int *minBlkLimit /* minimum block size for device */
)

pDev a pointer to the driver’s device descriptor structure.

maxBlkLimit
returns the maximum block size that the tape device can handle to the

calling tape file system.

minBlkLimit
returns the minimum block size that the tape device can handle.

The routine returns OK if no error occurred while acquiring the block limits;

otherwise, it returns ERROR.

Load/Unload Routine (Sequential Devices)

The sequential device driver must provide a load/unload routine in order to

mount or unmount tape volumes from a physical tape device. Loading means that
171

VxWorks 5.4
Programmer’s Guide
a volume is being mounted by the file system. This is usually done upon an open()
or a creat(). However, a device should be unloaded or unmounted only when the

file system wants to eject the tape volume from the tape device.

The load/unload routine is defined as follows:

STATUS xxLoad
(
DEVICE * pDev, /* pointer to device descriptor */
BOOL load /* load or unload device */
)

pDev a pointer to the driver’s device descriptor structure.

load a boolean variable that determines if the tape is loaded or unloaded. If

load is TRUE, the tape is loaded. If load is FALSE, the tape is unloaded.

The load/unload routine returns OK if the load or unload operation ends

successfully; otherwise, it returns ERROR.

Space Routine (Sequential Devices)

The sequential device driver must provide a space routine that moves, or spaces,

the tape medium forward or backward. The amount of distance that the tape

spaces depends on the kind of search that must be performed. In general, tapes can

be searched by end-of-record marks, end-of-file marks, or other types of device-

specific markers.

The basic definition of the space routine is as follows; however, other arguments

can be added to the definition:

STATUS xxSpace
(
DEVICE * pDev, /* pointer to device descriptor */
int count, /* number of spaces */
int spaceCode /* type of space */
)

pDev a pointer to the driver’s device descriptor structure.

count specifies the direction of search. A positive count value represents

forward movement of the tape device from its current location

(forward space); a negative count value represents a reverse

movement (back space).

spaceCode defines the type of space mark that the tape device searches for on the

tape medium. The basic types of space marks are end-of-record and
172

3

3
I/O System
end-of-file. However, different tape devices may support more

sophisticated kinds of space marks designed for more efficient

maneuvering of the medium by the tape device.

If the device is able to space in the specified direction by the specified count and

space code, the routine returns OK; if these conditions cannot be met, it returns

ERROR.

Erase Routine (Sequential Devices)

The sequential driver must provide a routine that allows a tape to be erased. The

erase routine is defined as follows:

STATUS xxErase
(
DEVICE * pDev /* pointer to device descriptor */
)

pDev a pointer to the driver’s device descriptor structure.

The routine returns OK if the tape is erased; otherwise, it returns ERROR.

3.9.5 Driver Support Libraries

The subroutine libraries in Table 3-16 may assist in the writing of device drivers.

Using these libraries, drivers for most devices that follow standard protocols can

be written with only a few pages of device-dependent code. See the reference entry

for each library for details.
173

VxWorks 5.4
Programmer’s Guide
Table 3-16 VxWorks Driver Support Routines

Library Description

errnoLib Error status library

ftpLib ARPA File Transfer Protocol library

ioLib I/O interface library

iosLib I/O system library

intLib Interrupt support subroutine library

remLib Remote command library

rngLib Ring buffer subroutine library

ttyDrv Terminal driver

wdLib Watchdog timer subroutine library
174

4
Local File Systems
4.1 Introduction

This chapter discusses the organization, configuration, and use of VxWorks file

systems. VxWorks provides two local file systems appropriate for real-time use

with block devices (disks): one is compatible with MS-DOS file systems and the

other with the RT-11 file system. The support libraries for these file systems are

dosFsLib and rt11FsLib. VxWorks also provides a simple raw file system, which

treats an entire disk much like a single large file. The support library for this “file

system” is rawFsLib.

VxWorks also provides a file system for tape devices that do not use a standard file

or directory structure on tape. The tape volume is treated much like a raw device

where the entire volume is a large file. The support library for this file system is

tapeFsLib. In addition, VxWorks provides a file system library, cdromFsLib, that

allows applications to read data from CD-ROMs formatted according to the ISO

9660 standard file system.

In VxWorks, the file system is not tied to a specific type of block device or its driver.

VxWorks block devices all use a standard interface so that file systems can be freely

mixed with device drivers. Alternatively, you can write your own file systems that

can be used by drivers in the same way, by following the same standard interfaces

between the file system, the driver, and the I/O system. VxWorks I/O architecture

makes it possible to have multiple file systems, even of different types, in a single

VxWorks system. The block device interface is discussed in 3.9.4 Block Devices,

p.158.
175

VxWorks 5.4
Programmer’s Guide
4.2 MS-DOS-Compatible File System: dosFs

Diskettes formatted using the dosFs file system are compatible with MS-DOS

diskettes up to and including release 6.2. Hard disks initialized by the two file

systems have slightly different formats. However, the data itself is compatible and

dosFs can be configured to use a disk formatted by MS-DOS.

The dosFs file system offers considerable flexibility appropriate to the varying

demands of real-time applications. Major features include:

■ A hierarchical arrangement of files and directories, allowing efficient

organization and permitting an arbitrary number of files to be created on a

volume.

■ A choice of contiguous or non-contiguous files on a per-file basis. Non-

contiguous files result in more efficient use of available disk space, while

contiguous files offer enhanced performance.

■ Compatibility with widely available storage and retrieval media. Diskettes

created with VxWorks (that do not use dosFs extended filenames) and MS-

DOS PCs and other systems can be freely interchanged. Hard disks are

compatible if the partition table is accounted for.

■ The ability to boot VxWorks from any local SCSI device that has a dosFs file

system.

■ The ability to use longer file names than the 8-character filename plus

3-character extension (8.3) convention allowed by MS-DOS.

■ NFS (Network File System) support.

4.2.1 Disk Organization

The MS-DOS/dosFs file system provides the means for organizing disk data in a

flexible manner. It maintains a hierarchical set of named directories, each

containing files or other directories. Files can be appended; as they expand, new

disk space is allocated automatically. The disk space allocated to a file is not

necessarily contiguous, which results in a minimum of wasted space. However, to

enhance its real-time performance, the dosFs file system allows contiguous space

to be pre-allocated to files individually, thereby minimizing seek operations and

providing more deterministic behavior.

The general organization of an MS-DOS/dosFs file system is shown in Figure 4-1

and the various elements are discussed in the following sections.
176

4

4
Local File Systems
Clusters

The disk space allocated to a file in an MS-DOS/dosFs file system consists of one

or more disk clusters. A cluster is a set of contiguous disk sectors.1 For floppy disks,

two sectors generally make up a cluster; for fixed disks, there can be more sectors

per cluster. A cluster is the smallest amount of disk space the file system can

allocate at a time. A large number of sectors per cluster allows a larger disk to be

described in a fixed-size File Allocation Table (FAT; see File Allocation Table, p.178),

but can result in wasted disk space.

Figure 4-1 MS-DOS Disk Organization

1. In this and subsequent sections covering the dosFs file system, the term sector refers to the

minimum addressable unit on a disk, because this is the term used by most MS-DOS docu-

mentation. In VxWorks, the units are normally referred to as blocks, and a disk device is

called a block device.

Sector 0Boot Sector

File Allocation Table (FAT)

(possibly multiple copies)

Root Directory

Files and Subdirectories

NOTE: If the number of reserved sectors (dosvc_nResrvd)
is greater than 1, the first FAT copy does not immediately
follow the boot sector.
177

VxWorks 5.4
Programmer’s Guide
Boot Sector

The first sector on an MS-DOS/dosFs hard disk or diskette is called the boot sector.
This sector contains a variety of configuration data. Some of the data fields

describe the physical properties of the disk (such as the total number of sectors),

and other fields describe file system variables (such as the size of the root

directory).

The boot sector information is written to a disk when it is initialized. The dosFs file

system can use diskettes that are initialized on another system (for example, using

the FORMAT utility on an MS-DOS PC), or VxWorks can initialize the diskette,

using the FIODISKINIT function of the ioctl() call.

As the MS-DOS standard has evolved, various fields have been added to the boot

sector definition. Disks initialized under VxWorks use the boot sector fields

defined by MS-DOS version 5.0.

When MS-DOS initializes a hard disk, it writes a partition table in addition to the

boot sector. VxWorks does not create such a table. Therefore hard disks initialized

by the two systems are not identical. VxWorks can read files from a disk formatted

by MS-DOS if the block offset parameter in the device creation routine points

beyond the partition table to the first byte of the data area.

File Allocation Table

Each MS-DOS/dosFs volume contains a File Allocation Table (FAT). The FAT

contains an entry for each cluster on the disk that can be allocated to a file or

directory. When a cluster is unused (available for allocation), its entry is zero. If a

cluster is allocated to a file, its entry is the cluster number of the next portion of the

file. If a cluster is the last in a file, its entry is -1. Thus, the representation of a file

(or directory) consists of a linked list of FAT entries. In the example shown in

Figure 4-2, one file consists of clusters 2, 300, and 500. Cluster 3 is unused.

The FAT uses either 12 or 16 bits per entry. Disk volumes that contain up to 4085

clusters use 12-bit entries; disks with more than 4085 clusters use 16-bit entries. The

entries (particularly 12-bit entries) are encoded in a specific manner, done

originally to take advantage of the Intel 8088 architecture. However, all FAT

handling is done by the dosFs file system; thus the encoding and decoding is of no

concern to VxWorks applications.

NOTE: dosFs does not map bad disk sectors to the FAT.
178

4

4
Local File Systems
A volume typically contains multiple copies of the FAT. This redundancy allows

data recovery in the event of a media error in the first FAT copy.

The size of the FAT and the number of FAT copies are determined by fields in the

boot sector. For disks initialized using the dosFs file system, these parameters are

specified during the dosFsDevInit() call by setting fields in the volume

configuration structure, DOS_VOL_CONFIG.

Root Directory

Each MS-DOS/dosFs volume contains a root directory. The root directory always

occupies a set of contiguous disk sectors immediately following the FAT copies.

The disk area occupied by the root directory is not described by entries in the FAT.

The root directory is of a fixed size; this size is specified by a field in the boot sector

as the maximum allowed number of directory entries. For disks initialized using

the dosFs file system, this size is specified during the dosFsDevInit() call, by

setting a field in the volume configuration structure, DOS_VOL_CONFIG.

Because the root directory has a fixed size, an error is returned if the directory is

full and an attempt is made to add entries to it.

Figure 4-2 FAT Entries

! CAUTION: The dosFs file system maintains multiple FAT copies if that is the

specified configuration; however, the copies are not automatically used in the

event of an error.

1

FATcluster

2

3

300

500

.

..

.

..

-1

.

..

.

..

500

0

300

0

179

VxWorks 5.4
Programmer’s Guide
For more information on the contents of the directory entry, see 4.2.13 Directory
Entries, p.192.

Subdirectories

In addition to the root directory, MS-DOS/dosFs volumes sometimes contain a

hierarchy of subdirectories. Like the root directory, subdirectories contain entries

for files and other subdirectories; however, in other ways they differ from the root

directory and resemble files:

■ First, each subdirectory is described by an entry in another directory, as is a

file. Such a directory entry has a bit set in the file-attribute byte to indicate that

it describes a subdirectory. Also, subdirectories, unlike the root directory, have

user-assigned names.

■ Second, the disk space allocated to a subdirectory is composed of a set of disk

clusters, linked by FAT entries. This means that a subdirectory can grow as

entries are added to it, and that the subdirectory is not necessarily made up of

contiguous clusters. The root directory, unlike subdirectories, can be made up

of any number of sectors, not necessarily equal to a whole number of clusters.

■ Third, subdirectories always contain two special entries. The “.” entry refers to

the subdirectory itself, while the “..” entry refers to the subdirectory’s parent

directory. The root directory does not contain these special entries.

Files

The disk space allocated to a file in the MS-DOS/dosFs file system is a set of

clusters that are chained together through entries in the FAT. A file is not

necessarily made up of contiguous clusters; the various clusters can be located

anywhere on the disk and in any order.

Each file has a descriptive entry in the directory where it resides. This entry

contains the file’s name, size, last modification date and time, and a field giving

several important attributes (read-only, system, hidden, modified since last

archived). It also contains the starting cluster number for the file; subsequent

clusters are located using the FAT.
180

4

4
Local File Systems
Volume Label

An MS-DOS/dosFs disk can have a volume label associated with it. The volume

label is a special entry in the root directory. Rather than containing the name of a

file or subdirectory, the volume label entry contains a string used to identify the

volume. This string can contain up to 11 characters. The volume label entry is

identified by a special value of the file-attribute byte in the directory entry.

Note that a volume label entry is not reported using ls(). However, it does occupy

one of the fixed number of entries in the root directory.

The volume label can be added to a dosFs volume by using the ioctl() call with the

FIOLABELSET function. This adds a label entry to the volume’s root directory if

none exists or changes the label string in an existing volume label entry. The

volume label entry takes up one of the fixed number of root directory entries;

attempting to add an entry when the root directory is full results in an error.

The current volume label string for a volume can be obtained by calling the ioctl()
call with the FIOLABELGET function. If the volume has no label, this call returns

ERROR and sets errno to S_dosFsLib_NO_LABEL.

Disks initialized under VxWorks or under MS-DOS 5.0 (or later) also contain the

volume label string within a boot sector field.

4.2.2 Initializing the dosFs File System

Note that before any other operations can be performed, the dosFs file system

library, dosFsLib, must be initialized by calling dosFsInit(). This routine takes a

single parameter, the maximum number of dosFs file descriptors that can be open

at one time. That number of file descriptors is allocated during initialization; a

descriptor is used each time your application opens a file, directory, or the file

system device.

The dosFsInit() routine also makes an entry for the file system in the I/O system

driver table (with iosDrvInstall()). This entry specifies entry points for dosFs file

operations and is used for all devices that use the dosFs file system. The driver

number assigned to the dosFs file system is recorded in a global variable

dosFsDrvNum.

The dosFsInit() routine is normally called by the usrRoot() task after starting the

VxWorks system. To use this initialization, select INCLUDE_DOSFS for inclusion in

the project facility VxWorks view, and set NUM_DOSFS_FILES to the desired

maximum open file count on the Params properties tab.
181

VxWorks 5.4
Programmer’s Guide
4.2.3 Initializing a Device for Use with dosFs

After the dosFs file system is initialized, the next step is to create one or more

devices. Devices are created by the device driver’s device creation routine

(xxDevCreate()). The driver routine returns a pointer to a block device descriptor

structure (BLK_DEV). The BLK_DEV structure describes the physical aspects of the

device and specifies the routines that the device driver provides to a file system.

For more information on block devices, see 3.9.4 Block Devices, p.158.

Immediately after its creation, the block device has neither a name nor a file system

associated with it. To initialize a block device for use with the dosFs file system, the

already-created block device must be associated with dosFs and a name must be

assigned to it. This is done with the dosFsDevInit() routine. Its parameters are the

name to be used to identify the device, a pointer to the block device descriptor

structure (BLK_DEV), and a pointer to the volume configuration structure

DOS_VOL_CONFIG (see 4.2.4 Volume Configuration, p.183). For example:

DOS_VOL_DESC *pVolDesc;
DOS_VOL_CONFIG configStruct;
pVolDesc = dosFsDevInit ("DEV1:", pBlkDev, &configStruct);

The dosFsDevInit() call performs the following tasks:

■ Assigns the specified name to the device and enters the device in the I/O

system device table (with iosDevAdd()).

■ Allocates and initializes the file system’s volume descriptor for the device.

■ Returns a pointer to the volume descriptor. This pointer is subsequently used

to identify the volume during certain file system calls.

Initializing the device for use with dosFs does not format the disk, nor does it

initialize the disk with MS-DOS structures (root directory, FAT, and so on). This

permits using dosFsDevInit() with disks that already have data in an existing MS-

DOS file system; see 4.2.6 Using an Already Initialized Disk, p.188. Formatting and

DOS disk initialization can be done using the ioctl() functions FIODISKFORMAT
and FIODISKINIT, respectively.

The dosFsMkfs() call provides an easier method of initializing a dosFs device; it

does the following:

■ Provides a set of default configuration values.

■ Calls dosFsDevInit().

■ Initializes the disk structures using ioctl() with the FIODISKINIT function.
182

4

4
Local File Systems
The routine dosFsMkfs() by default does not enable any dosFs-specific volume

options (DOS_OPT_CHANGENOWARN, DOS_OPT_AUTOSYNC,

DOS_OPT_LONGNAMES, DOS_OPT_LOWERCASE, or DOS_OPT_EXPORT). To

enable any combination of these options, use dosFsMkfsOptionsSet() before

calling dosFsMkfs() to initialize the disk. For more information on the default

configuration values, see the manual entry for dosFsMkfs().

4.2.4 Volume Configuration

The volume configuration structure, DOS_VOL_CONFIG, is used during the

dosFsDevInit() call. This structure contains various dosFs file system variables

describing the layout of data on the disk. Most of the fields in the structure

correspond to those in the boot sector. Table 4-1 lists the fields in the

DOS_VOL_CONFIG structure.

Calling dosFsConfigInit()is a convenient way to initialize DOS_VOL_CONFIG. It

takes the configuration variables as parameters and fills in the structure. This is

useful for initializing devices interactively from the Tornado shell (see the Tornado
User’s Guide: Shell). The DOS_VOL_CONFIG structure must be allocated before
dosFsConfigInit() is called.

Table 4-1 DOS_VOL_CONFIG Fields

Field Description

dosvc_mediaByte Media-descriptor byte

dosvc_secPerClust Number of sectors per cluster

dosvc_nResrvd Number of reserved sectors that precede the first FAT copy; the

minimum is 1 (the boot sector)

dosvc_nFats Number of FAT copies

dosvc_secPerFat Number of sectors per FAT copy

dosvc_maxRootEnts Maximum number of entries in root directory

dosvc_nHidden Number of hidden sectors, normally 0

dosvc_options VxWorks-specific file system options

dosvc_reserved Reserved for future use by Wind River Systems
183

VxWorks 5.4
Programmer’s Guide
DOS_VOL_CONFIG Fields

All but the last two DOS_VOL_CONFIG fields in Table 4-1 describe standard MS-

DOS characteristics. The field dosvc_options is specific to the dosFs file system.

Possible options for this field are shown in Table 4-2.

The first two options specify the action used to synchronize the disk buffers with

the physical device. The remaining options involve extensions to dosFs

capabilities.

DOS_OPT_CHANGENOWARN
Set this option if the device is a disk that can be replaced without being

unmounted or having its change in ready-status declared. In this situation,

check the disk regularly to determine whether it has changed. This causes

significant overhead; thus, we recommend that you provide a mechanism

that always synchronizes and unmounts a disk before it is removed, or at

least announces a change in ready-status. If such a mechanism is in place,

or if the disk is not removable, do not set this option. Auto-sync mode is

enabled automatically when DOS_OPT_CHANGENOWARN is set (see the

description for DOS_OPT_AUTOSYNC, next). For more information on

DOS_OPT_CHANGENOWARN, see 4.2.17 Changing Disks, p.196.

DOS_OPT_AUTOSYNC
Set this option to assure that directory and FAT data in the disk’s buffers

are written to the physical device as soon as possible after modification,

rather than only when the file is closed. This can be desirable in situations

where it is important that data be stored on the physical medium as soon

as possible so as to avoid loss in the event of a system crash. There is a

significant performance penalty incurred when using auto-sync mode;

Table 4-2 dosFs Volume Options

Option Hex Value Description

DOS_OPT_CHANGENOWARN 0x1 Disk may be changed without warning.

DOS_OPT_AUTOSYNC 0x2 Synchronize disk during I/O.

DOS_OPT_LONGNAMES 0x4 Use case-sensitive file names not

restricted to 8.3 convention.

DOS_OPT_EXPORT 0x8 Allow exporting using NFS.

DOS_OPT_LOWERCASE 0x40 Use lower case filenames on disk.
184

4

4
Local File Systems
limit its use, therefore, to circumstances where there is a threat to data

integrity.

However, DOS_OPT_AUTOSYNC does not make dosFs automatically

write data to disk immediately after every write(); doing so implies an

extreme performance penalty. If your application requires this effect, use

the ioctl() function FIOFLUSH after every call to write().

Note that auto-sync mode is automatically enabled whenever

DOS_OPT_CHANGENOWARN is set. For more information on auto-sync

mode, see 4.2.17 Changing Disks, p.196.

DOS_OPT_LONGNAMES
Set this option to allow the use of case-sensitive file names, with name

lengths not restricted to MS-DOS’s 8.3 convention. For more information

on this option, see 4.2.18 Long Name Support, p.199.

DOS_OPT_EXPORT
Set this option to initialize file systems that you intend to export using

NFS. With this option, dosFs initialization creates additional in-memory

data structures that are required to support the NFS protocol. While this

option is necessary to initialize a file system that can be exported, it does

not actually export the file system. See VxWorks Network Programmer’s
Guide: File Access Applications.

DOS_OPT_LOWERCASE
Set this option to force filenames created by dosFs to use lowercase

alphabetical characters. (Normally, filenames are created using uppercase

characters, unless the DOS_OPT_LONGNAMES option is enabled.) This

option may be required if the dosFs volume is mounted by a PC-based

NFS client. This option has no effect if DOS_OPT_LONGNAMES is also

specified.

Calculating Configuration Values

The values for dosvc_secPerClust and dosvc_secPerFat in the DOS_VOL_CONFIG
structure must be calculated based on the particular device being used.

dosvc_secPerClust
This field specifies how many contiguous disk sectors make up a single

cluster. Because a cluster is the smallest amount of disk space that can be

allocated at a time, the size of a cluster determines how finely the disk

allocation can be controlled. A large number of sectors per cluster causes

more sectors to be allocated at a time and reduces the overall efficiency of
185

VxWorks 5.4
Programmer’s Guide
disk space usage. For this reason, it is generally preferable to use the

smallest possible number of sectors per cluster, although having less than

two sectors per cluster is generally not necessary.

The maximum size of a FAT entry is 16 bits; thus, there is a maximum of

65,536 (64KB, or 0x10000) clusters that can be described. This is therefore

the maximum number of clusters for a device. To determine the

appropriate number of sectors per cluster, divide the total number of

sectors on the disk (the bd_nBlocks field in the device’s BLK_DEV
structure) by 0x10000 (64KB). Round up the resulting value to the next

whole number. The final result is the number of sectors per cluster; place

this value in the dosvc_secPerClust field in the DOS_VOL_CONFIG
structure.

dosvc_secPerFat
This field specifies the number of sectors required on the disk for each

copy of the FAT. To calculate this value, first determine the total number of

clusters on the disk. The total number of clusters is equal to the total

number of sectors (bd_nBlocks in the BLK_DEV structure) divided by the

number of sectors per cluster. As mentioned previously, the maximum

number of clusters on a disk is 64KB.

The cluster count must then be multiplied by the size of each FAT entry: if

the total number of clusters is 4085 or less, each FAT entry requires 12 bits

(11⁄2 bytes); if the number of clusters is greater than 4085, each FAT entry

requires 16 bits (2 bytes). The result of this multiplication is the total

number of bytes required by each copy of the FAT. This byte count is then

divided by the size of each sector (the bd_bytesPerBlk field in the

BLK_DEV structure) to determine the number of sectors required for each

FAT copy; if there is any remainder, add one (1) to the result. Place this

final value in the dosvc_secPerFat field.

Assuming 512-byte sectors, the largest possible FAT (with entries

describing 64KB clusters) occupies 256 sectors per copy, calculated as

follows:

Standard Disk Configurations

For floppy disks, a number of standard disk configurations are used in MS-DOS

systems. In general, these are uniquely identified by the media-descriptor byte

64KB entries × 2 bytes/entry
= 256 sectors

512 bytes/sector
186

4

4
Local File Systems
value (at least for a given size of floppy disk), although some manufacturers have

used duplicate values for different formats. Some widely used configurations are

summarized in Table 4-3.

Fixed disks do not use standard disk configurations because they are rarely

attached to a foreign system. Usually fixed disks use a media format byte of 0xF8.

4.2.5 Changes In Volume Configuration

As mentioned previously, various disk configuration parameters are specified

when the dosFs file system device is first initialized using dosFsDevInit(). These

parameters are kept in the volume descriptor, DOS_VOL_DESC, for the device.

However, it is possible for a disk with different parameter values to be placed in a

drive after the device is already initialized. If another disk is substituted for the one

with the configuration parameters that were last entered into the volume

descriptor, the configuration parameters of the new disk must be obtained before

it can be used.

Table 4-3 MS-DOS Floppy Disk Configurations

Capacity 160KB 180KB 320KB 360KB 1.2MB 720KB 1.44MB

Size 5.25" 5.25" 5.25" 5.25" 5.25" 3.5" 3.5"

Sides 1 1 2 2 2 2 2

Tracks 40 40 40 40 80 80 80

Sectors/Track 8 9 8 9 15 9 18

Bytes/Sector 512 512 512 512 512 512 512

secPerClust 1 1 2 2 1 2 1

nResrvd 1 1 1 1 1 1 1

nFats 2 2 2 2 2 2 2

maxRootEnts 64 64 112 112 224 112 224

mediaByte 0xFE 0xFC 0xFF 0xFD 0xF9 0xF9 0xF0

secPerFat 1 2 1 2 7 3 9

nHidden 0 0 0 0 0 0 0
187

VxWorks 5.4
Programmer’s Guide
When a disk is mounted, the boot sector information is read from the disk. This

data is used to update the configuration data in the volume descriptor. Note that

this happens the first time the disk is accessed, and again after the volume is

unmounted (using dosFsVolUnmount()) or a ready-change operation is

performed. For more information, see 4.2.17 Changing Disks, p.196.

This automatic re-initialization of the configuration data has an important

implication. The volume descriptor data is used when initializing a disk (with

FIODISKINIT); thus, the disk is initialized with the configuration of the most

recently mounted disk, regardless of the original specification during

dosFsDevInit(). Therefore, we recommend that you use FIODISKINIT
immediately after dosFsDevInit(), before any disk is mounted. (The device is

opened in raw mode, the FIODISKINIT ioctl() function is performed, and the

device is closed.)

4.2.6 Using an Already Initialized Disk

If you are using a disk that is already initialized with an MS-DOS boot sector, FAT,

and root directory (for example, by using the FORMAT utility in MS-DOS), it is not

necessary to provide the volume configuration data during dosFsDevInit().

You can omit the MS-DOS configuration data by specifying a NULL pointer instead

of the address of a DOS_VOL_CONFIG structure during dosFsDevInit(). However,

only use this method if you are sure that the first use of the volume is with a

properly formatted and initialized disk.

When mounting an already initialized disk, all standard MS-DOS configuration

values are obtained from the disk’s boot sector. However, the options that are

specific to dosFs must be determined differently.

Disks that are already initialized with the DOS_OPT_LONGNAMES (case-sensitive

file names not restricted to 8.3 convention) option are recognized automatically by

a specific volume ID string that is placed in the boot sector.

The DOS_OPT_CHANGENOWARN, DOS_OPT_AUTOSYNC,

DOS_OPT_LOWERCASE, and DOS_OPT_EXPORT options are recorded only in

memory, not on disk. Therefore they cannot be detected when you initialize a disk

with NULL in place of the DOS_VOL_CONFIG structure pointer; you must re-

enable them each time you mount a disk. You can set default values for these

options with the dosFsDevInitOptionsSet() routine: the defaults apply to any

dosFs file systems you initialize with dosFsDevInit() thereafter, unless you supply

explicit DOS_VOL_CONFIG information.
188

4

4
Local File Systems
You can also enable the DOS_OPT_CHANGENOWARN and DOS_OPT_AUTOSYNC
options dynamically during disk operation, rather than during initialization, with

the dosFsVolOptionsSet() routine.

4.2.7 Accessing Volume Configuration Information

Disk configuration information is available using dosFsConfigShow()2 and

dosFsConfigGet() from the Tornado shell. See the Tornado User’s Guide: Shell.

Use dosFsConfigShow() to display configuration information such as the largest

contiguous area and the device name. For example:

-> dosFsConfigShow "/RAM1/"
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

device name: /RAM1/
total number of sectors: 400
bytes per sector: 512
media byte: 0xf0
of sectors per cluster: 2
of reserved sectors: 1
of FAT tables: 2
of sectors per FAT: 1
max # of root dir entries: 112
of hidden sectors: 0
removable medium: FALSE
disk change w/out warning: not enabled
auto-sync mode: not enabled
long file names: not enabled
exportable file system: not enabled
volume mode: O_RDWR (read/write)
available space: 199680 bytes
max avail. contig space: 199680 bytes

The dosFsConfigGet() routine stores the disk configuration information in a

DOS_VOL_CONFIG structure. This can be useful if you have a pre-existing disk

and want to initialize a new disk with the same parameters, or if you initialized the

dosFs file system on the disk using dosFsMkfs() and need to obtain the actual

configuration values that were calculated.

2. dosFsConfigShow() is automatically when dosFs is included in your VxWorks image.
189

VxWorks 5.4
Programmer’s Guide
4.2.8 Mounting Volumes

A disk volume is mounted automatically, generally during the first open() or

creat() operation for a file or directory on the disk. (Certain ioctl() calls also cause

the disk to be mounted.) If a NULL pointer is specified instead of the address of a

DOS_VOL_CONFIG structure during the dosFsDevInit() call, the disk is mounted

immediately to obtain the configuration values.

When a disk is mounted, the boot sector, FAT, and directory data are read from the

disk. The volume descriptor, DOS_VOL_DESC, is updated to reflect the

configuration of the newly mounted disk.

Automatic mounting occurs on the first file access following dosFsVolUnmount()
or a ready-change operation (see 4.2.17 Changing Disks, p.196), or periodically if

the disk is defined during the dosFsDevInit() call with the option

DOS_OPT_CHANGENOWARN set. Automatic mounting does not occur when a

disk is opened in raw mode; see 4.2.10 Opening the Whole Device (Raw Mode), p.190.

It is possible to mount a volume with usrFdConfig(), but this routine does not

return the DOS_VOL_DESC structure. A volume mounted with usrFdConfig() can

not be operated on with most dosFs commands, including dosFsVolUnmount().
However, the dosFs ioctl() commands, including FIOUNMOUNT, access the

volume information through the fd, so they can be used with usrFdConfig().

4.2.9 File I/O

Files on a dosFs file system device are created, deleted, written, and read using the

standard VxWorks I/O routines: creat(), remove(), write(), and read(). See

3.3 Basic I/O, p.98 for more information.

4.2.10 Opening the Whole Device (Raw Mode)

It is possible to open an entire dosFs volume. This is done by specifying only the

device name during the open() or creat() call. A file descriptor is returned, as

when a regular file is opened; however, operations on that file descriptor affect the

entire device. Opening the entire volume in this manner is called raw mode.

! CAUTION: Because device names are recognized by the I/O system using simple

substring matching, file systems should not use a slash (/) alone as a name;

unexpected results may occur.
190

4

4
Local File Systems
The most common reason for opening the entire device is to obtain a file descriptor

for an ioctl() function that does not pertain to an individual file. An example is the

FIONFREE function, which returns the number of available bytes on the volume.

However, for many of these functions, the file descriptor can be any open file

descriptor to the volume, even one for a specific file.

When a disk is initialized with MS-DOS data structures (boot sector, empty root

directory, FAT), open the device in raw mode. The ioctl() function FIODISKINIT
performs the initialization.

You can both read and write data on a disk in raw mode. In this mode, the entire

disk data area (that is, the disk portion following the boot sector, root directory, and

FAT) is treated much like a single large file. No directory entry is made to describe

any data written using raw mode.

For low-level I/O to an entire device, including the area used by MS-DOS data

structures, see 4.4 Raw File System: rawFs, p.209 and the online reference for

rawFsLib under VxWorks Reference Manual>Libraries.

4.2.11 Creating Subdirectories

Subdirectories can be created in any directory at any time, except in the root

directory if it has reached its maximum entry count. Subdirectories can be created

in two ways:

1. Using ioctl() with the FIOMKDIR function: The name of the directory to be

created is passed as a parameter to ioctl(). The file descriptor used for the

ioctl() call is acquired either through opening the entire volume (raw mode),

a regular file, or another directory on the volume.

2. Using open(): To create a directory, the O_CREAT option must be set in the flags
parameter to open, and the FSTAT_DIR option must be set in the mode
parameter. The open() call returns a file descriptor that describes the new

directory. Use this file descriptor for reading only and close it when it is no

longer needed.

When creating a directory using either method, the new directory name must be

specified. This name can be either a full path name or a path name relative to the

current working directory.
191

VxWorks 5.4
Programmer’s Guide
4.2.12 Removing Subdirectories

A directory that is to be deleted must be empty (except for the “.” and “..” entries).

The root directory can never be deleted. There are two methods for removing

directories:

1. Using ioctl() call with the FIORMDIR function, specifying the name of the

directory. Again, the file descriptor used can refer to any file or directory on the

volume, or to the entire volume itself.

2. Using the remove() function, specifying the name of the directory.

4.2.13 Directory Entries

Each dosFs directory contains a set of entries describing its files and immediate

subdirectories. Each entry contains the following information about a file or

subdirectory:

file name

an 8-byte string (padded with spaces, if necessary) specifying the base name

of the file. (Names can be up to 40 characters; for details see 4.2.18 Long Name
Support, p.199.)

file extension

a 3-byte string (space-padded) specifying an optional extension to the file or

subdirectory name. (If case-sensitive file names not restricted to the 8.3

convention are selected, the extension concept is not applicable.)

file attribute

a one-byte field specifying file characteristics; see 4.2.15 File Attributes, p.193.

time

the encoded creation or modification time for the file.

date

the encoded creation or modification date for the file.

cluster number

the number of the starting cluster within the file. Subsequent clusters are

found by searching the FAT.

file size

the size of the file, in bytes. This field is always 0 for entries describing

subdirectories.
192

4

4
Local File Systems
4.2.14 Reading Directory Entries

Directories on dosFs volumes can be searched using the opendir(), readdir(),
rewinddir(), and closedir() routines. These calls can be used to determine the

names of files and subdirectories.

To obtain more detailed information about a specific file, use the fstat() or stat()
function. Along with standard file information, the structure used by these

routines also returns the file-attribute byte from a directory entry.

For more information, see the manual entry for dirLib.

4.2.15 File Attributes

The file-attribute byte in a dosFs directory entry consists of a set of flag bits, each

indicating a particular file characteristic. The characteristics described by the file-

attribute byte are shown in Table 4-4.

DOS_ATTR_RDONLY is checked when a file is opened for O_WRONLY or

O_RDWR. If the flag is set, open() returns ERROR and sets errno to

S_dosFsLib_READ_ONLY.

Table 4-4 Flags in the File-Attribute Byte

VxWorks Flag Name Hex value Description

DOS_ATTR_RDONLY 0x01 read-only file

DOS_ATTR_HIDDEN 0x02 hidden file

DOS_ATTR_SYSTEM 0x04 system file

DOS_ATTR_VOL_LABEL 0x08 volume label

DOS_ATTR_DIRECTORY 0x10 subdirectory

DOS_ATTR_ARCHIVE 0x20 file is subject to archiving

! CAUTION: The MS-DOS hidden file and system file flags, DOS_ATTR_HIDDEN
and DOS_ATTR_SYSTEM, are ignored by dosFsLib. If present, they are kept intact,

but they produce no special handling (for example, entries with these flags are

reported when searching directories).
193

VxWorks 5.4
Programmer’s Guide
The volume label flag, DOS_ATTR_VOL_LABEL, indicates that a directory entry

contains the dosFs volume label for the disk. A label is not required. If used, there

can be only one volume label entry per volume, in the root directory. The volume

label entry is not reported when reading the contents of a directory (using

readdir()). It can only be determined using the ioctl() function FIOLABELGET. The

volume label can be set (or reset) to any string of 11 or fewer characters, using the

ioctl() function FIOLABELSET. Any file descriptor open to the volume can be used

during these ioctl() calls.

The directory flag, DOS_ATTR_DIRECTORY, indicates that this entry is not a

regular file, but a subdirectory.

The archive flag, DOS_ATTR_ARCHIVE, is set when a file is created or modified.

This flag is intended for use by other programs that search a volume for modified

files and selectively archive them. Such a program must clear the archive flag since

VxWorks does not.

All the flags in the attribute byte, except the directory and volume label flags, can

be set or cleared using the ioctl() function FIOATTRIBSET. This function is called

after the opening of the specific file with the attributes to be changed. The attribute-

byte value specified in the FIOATTRIBSET call is copied directly; to preserve

existing flag settings, determine the current attributes using stat() or fstat(), then

change them using bitwise and and or operations.

Example 4-1 Setting DosFs File Attributes

This example makes a dosFs file read-only, and leaves other attributes intact.

#include "vxWorks.h"
#include "ioLib.h"
#include "dosFsLib.h"
#include "sys/stat.h"
#include "fcntl.h"

STATUS changeAttributes (void)
{
int fd;
struct stat statStruct;

/* open file */

if ((fd = open ("file", O_RDONLY, 0)) == ERROR)
return (ERROR);

/* get directory entry data */

if (fstat (fd, &statStruct) == ERROR)
return (ERROR);
194

4

4
Local File Systems
/* set read-only flag on file */

if (ioctl (fd, FIOATTRIBSET, (statStruct.st_attrib | DOS_ATTR_RDONLY))
== ERROR)
return (ERROR);

/* close file */

close (fd);
}

4.2.16 File Date and Time

Directory entries contain a time and date for each file or directory. This time is set

when the file is created, and it is updated when a file that was modified is closed.

Entries describing subdirectories are not updated—they always contain the

creation date and time for the subdirectory.

The dosFsLib library maintains the date and time in an internal structure. While

there is currently no mechanism for automatically advancing the date or time, two

different methods for setting the date and time are provided.

The first method involves using two routines, dosFsDateSet() and

dosFsTimeSet(). The following examples illustrate their use:

dosFsDateSet (1990, 12, 25); /* set date to Dec-25-1990 */
dosFsTimeSet (14, 30, 22); /* set time to 14:30:22 */

These routines must be called periodically to update the time and date values.

The second method requires a user-supplied hook routine. If a time and date hook

routine is installed using dosFsDateTimeInstall(), that routine is called whenever

dosFsLib requires the current date and time. You can use this to take advantage of

hardware time-of-day clocks that can be read to obtain the current time. It can also

be used with other applications that maintain actual time and date.

Define the date/time hook routine as follows (the name dateTimeHook is an

example; the actual routine name can be anything):

void dateTimeHook
(
DOS_DATE_TIME * pDateTime /* ptr to dosFs date & time struct */
)

On entry to the hook routine, the DOS_DATE_TIME structure contains the last time

and date set in dosFsLib. Next, the hook routine fills the structure with the correct

values for the current time and date. Unchanged fields in the structure retain their

previous values.
195

VxWorks 5.4
Programmer’s Guide
The MS-DOS specification provides only for 2-second granularity in file time-

stamps. If the number of seconds in the time specified during dosFsTimeSet() or

the date/time hook routine is odd, it is rounded down to the next even number.

The date and time used by dosFsLib is initially Jan-01-1980, 00:00:00.

4.2.17 Changing Disks

To increase performance, the dosFs file system keeps in memory copies of

directory entries and the file allocation table (FAT) for each mounted volume.

While this greatly speeds up access to files, it requires that dosFsLib be notified

when removable disks are changed (for example, when floppies are swapped).

Two different notification methods are provided: (1) dosFsVolUnmount() and (2)

the ready-change mechanism. The following sections are not generally applicable

for non-removable media (although dosFsVolUnmount() can be useful in system

shutdown situations).

Unmounting Volumes

The preferred method of announcing a disk change is to call dosFsVolUnmount()
prior to removing the disk. This call flushes all modified data structures to disk if

possible (see Synchronizing Volumes, p.198) and also marks any open file

descriptors as obsolete. During the next I/O operation, the disk is remounted. The

ioctl() call can also be used to initiate dosFsVolUnmount(), by specifying the

FIOUNMOUNT function code. Any open file descriptor to the device can be used

in the ioctl() call.

Subsequent attempts to use obsolete file descriptors for I/O operations return an

S_dosFsLib_FD_OBSOLETE error. To free such file descriptors, use close(), as usual.

This returns S_dosFsLib_FD_OBSOLETE as well, but it successfully frees the

descriptor. File descriptors acquired when opening the entire volume (raw mode)

are not marked as obsolete during dosFsVolUnmount() and can still be used.

ISRs must not call dosFsVolUnmount() directly, because it is possible for the call

to pend while the device becomes available. The ISR can instead give a semaphore

that prompts a task to unmount the volume. (Note that dosFsReadyChange() can

be called directly from ISRs; see Announcing Disk Changes with Ready-Change,

p.197.)

When dosFsVolUnmount() is called, it attempts to write buffered data out to the

disk. Its use is therefore inappropriate for situations where the disk-change

notification does not occur until a new disk is inserted, because the old buffered
196

4

4
Local File Systems
data would be written to the new disk. In this case, use dosFsReadyChange(),
which is described in Announcing Disk Changes with Ready-Change, p.197.

If dosFsVolUnmount() is called after the disk is physically removed, the data-

flushing portion of its operation fails. However, the file descriptors are still marked

as obsolete and the disk is marked as requiring remounting. In this situation,

dosFsVolUnmount() does not return an error. To avoid lost data, explicitly

synchronize the disk before removing it (see Synchronizing Volumes, p.198).

Announcing Disk Changes with Ready-Change

The second method of informing dosFsLib that a disk change is taking place is

with the ready-change mechanism. A change in the disk’s ready-status is

interpreted by dosFsLib as indicating that the disk must be remounted before the

next I/O operation.

There are three ways to announce a ready-change:

■ By calling dosFsReadyChange() directly.

■ By calling ioctl() with the FIODISKCHANGE function.

■ By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying dosFsLib directly.

The ready-change mechanism does not provide the ability to flush data structures

to the disk. It merely marks the volume as needing remounting. Thus, buffered

data (data written to files, directory entries, or FAT changes) can be lost. This can

be avoided by synchronizing the disk before asserting ready-change (see

Synchronizing Volumes, p.198). The combination of synchronizing and asserting

ready-change provides all the functionality of dosFsVolUnmount(), except for

marking file descriptors as obsolete.

Ready-change can be used in ISRs, because it does not attempt to flush data or

perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field

in the BLK_DEV structure) can be useful for asserting ready-change for devices that

detect a disk change only after the new disk is inserted. This routine is called at the

! CAUTION: Do not attempt to unmount a volume that was mounted with

usrFdConfig() using dosFsVolUnmount(). This routine does not return the

DOS_VOL_CONFIG structure required by dosFsVolUnmount(). You can use

ioctl() with FIOUNMOUNT, which accesses volume information through the fd.
197

VxWorks 5.4
Programmer’s Guide
beginning of each open() or creat() operation, before the file system checks for

ready-change. See 3.9.4 Block Devices, p.158.

Disks with No Change Notification

If it is not possible for dosFsVolUnmount() to be called or a ready-change to be

announced, then each time the disk is changed, the device must be specially

identified when it is initialized for use with the file system. This is done by setting

DOS_OPT_CHANGENOWARN in the dosvc_options field of the

DOS_VOL_CONFIG structure when calling dosFsDevInit(); see 4.2.4 Volume
Configuration, p.183.

This configuration option results in a significant performance penalty, because the

disk configuration data must be read in regularly from the physical disk (in case it

was removed and a new one inserted). In addition, setting

DOS_OPT_CHANGENOWARN also enables auto-sync mode; see Auto-Sync Mode,

p.199. Note that all that is required for disk change notification is that either the

dosFsVolUnmount() call or ready-change be issued each time the disk is changed.

It is not necessary that it be called from the device driver or an ISR. For example, if

your application provided a user interface through which an operator could enter

a command resulting in an dosFsVolUnmount() call before removing the disk, that

would be sufficient, and DOS_OPT_CHANGENOWARN does not need to be set.

However, it is important that the operator follow such a procedure strictly.

Synchronizing Volumes

When a disk is synchronized, all modified buffered data is physically written to the

disk, so that the disk is up to date. This includes data written to files, updated

directory information, and the FAT.

To avoid loss of data, synchronize a disk before removing it. You may need to

explicitly synchronize a disk, depending on when (or if) dosFsVolUnmount() is
called. If your application does not call this routine, or it is called after the disk is

removed, use ioctl() to explicitly write the data to the device.

When dosFsVolUnmount() is called, an attempt is made to synchronize the device

before unmounting. If the disk is still present and writable at the time of the call,

synchronization takes place, and no further action is required to protect the

integrity of the data written to it before it is dismounted. However, if the

dosFsVolUnmount() call is made after a disk is removed, it is obviously too late to

synchronize, and dosFsVolUnmount() discards the buffered data.
198

4

4
Local File Systems
To explicitly synchronize a disk before it is removed, use ioctl() specifying the

FIOSYNC function. (This could be done in response to an operator command.) Do

this if the dosFsVolUnmount() call is made after a disk is removed or if the routine

dosFsVolUnmount() is never called. The file descriptor used during the ioctl() call

is obtained when the whole volume (raw mode) is opened.

Auto-Sync Mode

dosFsLib provides a modified mode of synchronization called auto-sync. When

this option is enabled, data for modified directories and the FAT are physically

written to these devices as soon as they are logically altered. (Otherwise, such

changes are not necessarily written out until the involved file is closed.)

Auto-sync mode is enabled by setting DOS_OPT_AUTOSYNC in the

dosvc_options field of the DOS_VOL_CONFIG structure when dosFsDevInit() is
called; see 4.2.4 Volume Configuration, p.183. Auto-sync mode is automatically

enabled if the volume does not have disk change notification (that is, if

DOS_OPT_CHANGENOWARN is set by dosFsDevInit()).

Auto-sync results in a performance penalty, but it provides the highest level of data

security, because it minimizes the period during which directory and FAT data are

not up to date on the disk. Auto-sync is often desirable for applications where data

integrity is threatened by events such as a system crash.

4.2.18 Long Name Support

The dosFs long name support allows the use of case-sensitive file names longer

than MS-DOS’s 8.3 convention. These names can be up to 40 characters long and

can be made up of any ASCII characters. In addition, a dot (.), which in MS-DOS

indicates a file-name extension, has no special significance.

Long name support is enabled by setting DOS_OPT_LONGNAMES in the

dosvc_options field of the DOS_VOL_CONFIG structure when calling

dosFsDevInit().

! WARNING: If you use this feature, the disk is no longer MS-DOS compatible. Use

long name support only for storing data local to VxWorks, on a disk that is

initialized on a VxWorks system using dosFsDevInit() or dosFsMkfs().
199

VxWorks 5.4
Programmer’s Guide
4.2.19 Contiguous File Support

The dosFs file system provides efficient handling of contiguous files. A contiguous

file is made up of a series of consecutive disk sectors. This capability includes both

the allocation of contiguous space to a specified file (or directory) and optimized

access to such a file.

To allocate a contiguous area to a file, first create the file in the normal fashion,

using open() or creat(). Then use the file descriptor returned during the creation

of the file to make the ioctl() call, specifying the FIOCONTIG function. The

parameter to ioctl() with the FIOCONTIG function is the size of the requested

contiguous area, in bytes. The FAT is searched for a suitable section of the disk, and

if found, it is assigned to the file. (If there is no contiguous area on the volume large

enough to satisfy the request, an error is returned.) The file can then be closed, or

it can be used for further I/O operations.

Example 4-2 Creating a DosFs Contiguous File

This example creates a dosFs file and allocates 0x10000 contiguous bytes to it.

#include "vxWorks.h"
#include "ioLib.h"
#include "fcntl.h"

STATUS fileContigTest (void)
{
int fd;
STATUS status;

/* open file */

if ((fd = creat ("file", O_RDWR)) == ERROR)
return (ERROR);

/* get contiguous area */

status = ioctl (fd, FIOCONTIG, 0x10000);
if (status != OK)

 /* do error handling */

printf ("ERROR");

/* use file */

/* close file */

close (fd);
}

200

4

4
Local File Systems
It is also possible to request the largest available contiguous space. Use

CONTIG_MAX for the size of the contiguous area. For example:

status = ioctl (fd, FIOCONTIG, CONTIG_MAX);

It is important that the file descriptor used for the ioctl() call be the only descriptor

open to the file. Furthermore, because a file can be assigned a different area of the

disk than is originally allocated, perform the ioctl() FIOCONTIG operation before

any data is written to the file.

To deallocate unused reserved bytes, use the POSIX-compatible routine

ftruncate() or the ioctl() function FIOTRUNC.

Subdirectories can also be allocated a contiguous disk area in the same manner. If

the directory is created using the ioctl() function FIOMKDIR, it must be explicitly

opened to obtain a file descriptor to it; if the directory is created using options to

open(), the returned file descriptor from that call can be used. A directory must be

empty (except for the “.” and “..” entries) when it has contiguous space allocated

to it.

When any file is opened, it is checked for contiguity. If a file is recognized as

contiguous, a more efficient technique for locating specific sections of the file is

used, rather than following cluster chains in the FAT, as must be done for

fragmented files. This enhanced handling of contiguous files takes place regardless

of whether the space is explicitly allocated using FIOCONTIG.

To find the maximum contiguous area on a device, use the ioctl() function

FIONCONTIG. This information can also be displayed by dosFsConfigShow().

Example 4-3 Finding the Maximum Contiguous Area on a DosFs Device

In this example, the size (in bytes) of the largest contiguous area is copied to the

integer pointed to by the third parameter to ioctl() (count).

#include "vxWorks.h"
#include "fcntl.h"
#include "ioLib.h"

STATUS contigTest (void)
{
int count;
int fd;

/* open device in raw mode */
if ((fd = open ("/DEV1/", O_RDONLY, 0)) == ERROR)

return (ERROR);

/* find max contiguous area */
ioctl (fd, FIONCONTIG, &count);
201

VxWorks 5.4
Programmer’s Guide
/* close device and display size of largest contiguous area */
close (fd);
printf ("largest contiguous area = %d\n", count);
}

4.2.20 I/O Control Functions Supported by dosFsLib

The dosFs file system supports the ioctl() functions listed in Table 4-5. These

functions are defined in the header file ioLib.h. For more information, see the

manual entries for dosFsLib and for ioctl() in ioLib.

Table 4-5 I/O Control Functions Supported by dosFsLib

Function
Decimal

Value
Description

FIOATTRIBSET 35 Set the file-attribute byte in the dosFs directory entry.

FIOCONTIG 36 Allocate contiguous disk space for a file or directory.

FIODISKCHANGE 13 Announce a media change.

FIODISKFORMAT 5 Format the disk (device driver function).

FIODISKINIT 6 Initialize a dosFs file system on a disk volume.

FIOFLUSH 2 Flush the file output buffer.

FIOFSTATGET 38 Get file status information (directory entry data).

FIOGETNAME 18 Get the file name of the fd.

FIOLABELGET 33 Get the volume label.

FIOLABELSET 34 Set the volume label.

FIOMKDIR 31 Create a new directory.

FIONCONTIG 41 Get the size of the maximum contiguous area on a device.

FIONFREE 30 Get the number of free bytes on the volume.

FIONREAD 1 Get the number of unread bytes in a file.

FIOREADDIR 37 Read the next directory entry.

FIORENAME 10 Rename a file or directory.

FIORMDIR 32 Remove a directory.
202

4

4
Local File Systems
4.2.21 Booting from a Local dosFs File System Using SCSI

VxWorks can be booted from a local SCSI device. Before you can boot from SCSI,

you must make new boot ROMs that contain the SCSI library. Define

INCLUDE_SCSI in the project facility and INCLUDE_SCSI_BOOT in config.h and

rebuild bootrom.hex. (For configuration information, see 8.5 Configuring VxWorks,

p.337; INCLUDE_SCSI_BOOT can only be configured in config.h. For boot ROM

information, see 8.9 Creating Bootable Applications, p.364.)

After burning the SCSI boot ROMs, you can prepare the dosFs file system for use

as a boot device. The simplest way to do this is to partition the SCSI device so that

a dosFs file system starts at block 0. You can then make the new vxWorks image,

place it on your SCSI boot device, and boot the new VxWorks system. These steps

are shown in more detail below.

1. Create the SCSI device using scsiPhysDevCreate() (see SCSI Drivers, p.129),

and initialize the disk with a dosFs file system (see 4.2.2 Initializing the dosFs
File System, p.181). Modify the file installDir/target/src/config/usrScsiConfig.c
to reflect your SCSI configuration. The following example creates a SCSI

device with a dosFs file system spanning the full device:

pPhysDev = scsiPhysDevCreate (pSysScsiCtrl, 2, 0, 0, -1, 0, 0, 0);
pBlkDev = scsiBlkDevCreate (pPhysDev, 0, 0);
dosFsDevInit ("/sd0/", pBlkDev, 0);

FIOSEEK 7 Set the current byte offset in a file.

FIOSYNC 21 Same as FIOFLUSH, but also re-reads buffered file data.

FIOTRUNC 42 Truncate a file to a specified length.

FIOUNMOUNT 39 Unmount a disk volume.

FIOWHERE 8 Return the current byte position in a file.

! WARNING: For use as a boot device, the directory name for the dosFs file system

must begin and end with slashes (as with /sd0/ used in the following example).

This is an exception to the usual naming convention for dosFs file systems and is

incompatible with the NFS requirement that device names not end in a slash.

Table 4-5 I/O Control Functions Supported by dosFsLib (Continued)

Function
Decimal

Value
Description
203

VxWorks 5.4
Programmer’s Guide
2. Remake VxWorks and copy the new kernel to the drive:3

-> copy "unixHost:/usr/wind/target/config/ bspname/vxWorks", \
"/sd0/vxWorks"

3. Reboot the system, and then change the boot parameters. Boot device

parameters for SCSI devices follow this format:

scsi=id,lun

where id is the SCSI ID of the boot device, and lun is its Logical Unit Number

(LUN). To enable use of the network, include the on-board Ethernet device (for

example, ln for LANCE) in the other field. The following example boots from

a SCSI device with a SCSI ID of 2 and a LUN of 0.

[VxWorks Boot]: @
boot device : scsi=2,0
processor number : 0
host name : host
file name : /sd0/vxWorks
inet on ethernet (e) : 147.11.1.222:ffffff00
host inet (h) : 147.11.1.3
user (u) : jane
flags (f) : 0x0
target name (tn) : t222
other : ln
Attaching to scsi device... done.
Loading /sd0/vxWorks... 378060 + 27484 + 21544
Starting at 0x1000...

4.3 RT-11-Compatible File System: rt11Fs

VxWorks provides the file system rt11Fs, which is compatible with the RT-11 file

system. It is provided primarily for compatibility with earlier versions of

VxWorks. Normally, the dosFs file system is the preferred choice, because it offers

such enhancements as optional contiguous file allocation, flexible file naming, and

so on.

3. If you are using the target shell and have selected INCLUDE_NET_SYM_TBL for inclusion

in the project facility VxWorks view, you must also copy the symbol table to the drive, as

follows:

-> copy "unixHost:/usr/wind/target/config/ bspname/vxWorks.sym", "/sd0/vxWorks.sym "
204

4

4
Local File Systems
4.3.1 Disk Organization

The rtllFs file system uses a simple disk organization. Although this simplicity

results in some loss of flexibility, rt11Fs is suitable for many real-time applications.

The rt11Fs file system maintains only contiguous files. A contiguous file consists of

a series of disk sectors that are consecutive. Contiguous files are well-suited to real-

time applications because little time is spent locating specific portions of a file. The

disadvantage of using contiguous files exclusively is that a disk can gradually

become fragmented, reducing the efficiency of the disk space allocation.

The rt11Fs disk format uses a single directory to describe all files on the disk. The

size of this directory is limited to a fixed number of directory entries. Along with

regular files, unused areas of the disk are also described by special directory

entries. These special entries are used to keep track of individual sections of free

space on the disk.

4.3.2 Initializing the rt11Fs File System

Before any other operations can be performed, the rt11Fs file system library,

rt11FsLib, must be initialized by calling rt11FsInit(). This routine takes a single

parameter, the maximum number of rt11Fs file descriptors that can be open at one

time. This count is used to allocate a set of descriptors; a descriptor is used each

time a file or an rt11Fs device is opened.

The rt11FsInit() routine also makes an entry for the rt11Fs file system in the I/O

system driver table (with iosDrvInstall()). This entry specifies entry points for the

rt11Fs file operations and is used for all devices that use the rt11Fs file system. The

driver number assigned to the rt11Fs file systems is placed in a global variable

rt11FsDrvNum.

The rt11FsInit() routine is normally called by the usrRoot() task after starting the

VxWorks system. To use this initialization, make sure INCLUDE_RT11FS is selected

for inclusion in the project facility VxWorks view, and set NUM_RT11FS_FILES to

the desired maximum open file count in the Params tab of the properties window.

! WARNING: The rt11Fs file system is considered obsolescent. In a future release of

VxWorks, rt11Fs may not be supported.
205

VxWorks 5.4
Programmer’s Guide
4.3.3 Initializing a Device for Use with rt11Fs

After the rt11Fs file system is initialized, the next step is to create one or more

devices. Devices are created by the device driver’s device creation routine

(xxDevCreate()). The driver routine returns a pointer to a block device descriptor

structure (BLK_DEV). The BLK_DEV structure describes the physical aspects of the

device and specifies the routines in the device driver that a file system can call. For

more information about block devices, see 3.9.4 Block Devices, p.158.

Immediately after its creation, the block device has neither a name nor a file system

associated with it. To initialize a block device for use with rt11Fs, the already-

created block device must be associated with rt11Fs and must have a name

assigned to it. This is done with rt11FsDevInit(). Its parameters are:

– the name to be used to identify the device

– a pointer to the BLK_DEV structure

– a boolean value indicating whether the disk uses standard RT-11 skew and

interleave

– the number of entries to be used in the disk directory (in some cases, the actual

number used is greater than the number specified)

– a boolean value indicating whether this disk is subject to being changed

without notification to the file system

For example:

RT_VOL_DESC *pVolDesc;
pVolDesc = rt11FsDevInit ("DEV1:", pBlkDev, rtFmt, nEntries, changeNoWarn);

The rt11FsDevInit() call assigns the specified name to the device and enters the

device in the I/O system device table (with iosDevAdd()). It also allocates and

initializes the file system’s volume descriptor for the device. It returns a pointer to

the volume descriptor to the caller; this pointer is used to identify the volume

during some file system calls.

Note that initializing the device for use with the rt11Fs file system does not format

the disk, nor does it initialize the rt11Fs disk directory. These are done using ioctl()
with the functions FIODISKFORMAT and FIODISKINIT, respectively.
206

4

4
Local File Systems
4.3.4 Mounting Volumes

A disk volume is mounted automatically, generally during the first open() or

creat() for a file or directory on the disk. (Certain ioctl() functions also cause the

disk to be mounted.) When a disk is mounted, the directory data is read it.

Automatic mounting reoccurs on the first file access following a ready-change

operation (see 4.3.8 Changing Disks, p.208) or periodically if the disk is defined

during the rt11FsDevInit() call with the changeNoWarn parameter set to TRUE.

Automatic mounting does not occur when a disk is opened in raw mode. For more

information, see 4.3.6 Opening the Whole Device (Raw Mode), p.207.

4.3.5 File I/O

Files on an rt11Fs file system device are created, deleted, written, and read using

the standard VxWorks I/O routines: creat(), remove(), write(), and read(). The

size of an rt11Fs file is determined during its initial open() or creat(). Once closed,

additional space cannot be allocated to the file. For more information, see 3.3 Basic
I/O, p.98.

4.3.6 Opening the Whole Device (Raw Mode)

It is possible to open an entire rt11Fs volume by specifying only the device name

during the open() or creat() call. A file descriptor is returned, as when opening a

regular file; however, operations on that file descriptor affect the entire device.

Opening the entire volume in this manner is called raw mode.

The most common reason for opening the entire device is to obtain a file descriptor

to perform an ioctl() function that does not pertain to an individual file. An

example is the FIOSQUEEZE function, which combines fragmented free space

across the entire volume.

When a disk is initialized with an rt11Fs directory, open the device in raw mode.

The ioctl() function FIODISKINIT performs the initialization.

A disk can be read or written in raw mode. In this case, the entire disk area is

treated much like a single large file. No directory entry is made to describe any

! CAUTION: Because device names are recognized by the I/O system using simple

substring matching, file systems should not use a slash (/) alone as a name;

unexpected results may occur.
207

VxWorks 5.4
Programmer’s Guide
data written using raw mode, and care must be taken to avoid overwriting the

regular rt11Fs directory at the beginning of the disk. This type of I/O is also

provided by rawFsLib.

4.3.7 Reclaiming Fragmented Free Disk Space

As previously mentioned, the contiguous file allocation scheme used by the rt11Fs

file system can gradually result in disk fragmentation. In this situation, the

available free space on the disk is scattered in a number of small chunks. This

reduces the ability of the system to create new files.

To correct this condition, rt11FsLib includes the ioctl() function FIOSQUEEZE.

This routine moves files so that the free space is combined at the end of the disk.

When you call ioctl() with FIOSQUEEZE, it is critical that there be no open files on

the device. With large disks, this call may require considerable time to execute.

4.3.8 Changing Disks

To increase performance, rt11Fs keeps copies of directory entries for each volume

in memory. While this greatly speeds up access to files, it requires that rt11FsLib
be notified when removable disks are changed (for example, when floppies are

swapped). This notification is provided by the ready-change mechanism.

Announcing Disk Changes with Ready-Change

A change in ready-status is interpreted by rt11FsLib to mean that the disk must be

remounted during the next I/O operation. There are three ways to announce a

ready-change:

■ By calling rt11FsReadyChange() directly.

■ By calling ioctl() with FIODISKCHANGE.

■ By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying rt11FsLib directly.

The ready-change announcement does not cause buffered data to be flushed to the

disk; it merely marks the volume as needing remounting. As a result, data written

to files or directory entry changes can be lost. To avoid this loss of data, close all

files on the volume before changing the disk.
208

4

4
Local File Systems
Ready-change can be used in ISRs, because it does not attempt to flush data or

perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field

in the BLK_DEV structure) can be useful for asserting ready-change for devices that

only detect a disk change after the new disk is inserted. This routine is called at the

start of each open() or creat(), before the file system checks for ready-change.

Disks with No Change Notification

If it is not possible for a ready-change to be announced each time the disk is

changed, the device must be specially identified when it is initialized for use with

the file system. This is done by setting the changeNoWarn parameter to TRUE

when calling rt11FsDevInit().

When this parameter is defined as TRUE, the disk is checked regularly to obtain

the current directory information (in case the disk is removed and a new one

inserted). As a result, this option causes a significant loss in performance.

4.3.9 I/O Control Functions Supported by rt11FsLib

The rt11Fs file system supports the ioctl() functions shown in Table 4-6. The

functions listed are defined in the header file ioLib.h. For more information, see

the manual entries for rt11FsLib and for ioctl() in ioLib.

4.4 Raw File System: rawFs

VxWorks provides a minimal “file system,” rawFs, for use in systems that require

only the most basic disk I/O functions. The rawFs file system, implemented in

rawFsLib, treats the entire disk volume much like a single large file. Although the

dosFs and rt11Fs file systems do provide this ability to varying degrees, the rawFs

file system offers advantages in size and performance if more complex functions

are not required.
209

VxWorks 5.4
Programmer’s Guide
4.4.1 Disk Organization

As mentioned previously, rawFs imposes no organization of the data on the disk.

The rawFs file system maintains no directory information; thus there is no division

of the disk area into specific files, and no file names are used. All open() operations

on rawFs devices specify only the device name; no additional file names are

allowed.

The entire disk area is available to any file descriptor that is open for the device.

All read and write operations to the disk use a byte-offset relative to the start of the

first block on the disk.

Table 4-6 I/O Control Functions Supported by rt11FsLib

Function
Decimal

Value
Description

FIODIRENTRY 9 Get information about specified device directory entries.

FIODISKCHANGE 13 Announce a media change.

FIODISKFORMAT 5 Format the disk.

FIODISKINIT 6 Initialize an rt11Fs file system on a disk volume.

FIOFLUSH 2 Flush the file output buffer.

FIOFSTATGET 38 Get file status information (directory entry data).

FIOGETNAME 18 Get the file name of the fd.

FIONREAD 1 Get the number of unread bytes in a file.

FIOREADDIR 37 Read the next directory entry.

FIORENAME 10 Rename a file.

FIOSEEK 7 Reset the current byte offset in a file.

FIOSQUEEZE 15 Coalesce fragmented free space on an rt11Fs volume.

FIOWHERE 8 Return the current byte position in a file.
210

4

4
Local File Systems
4.4.2 Initializing the rawFs File System

Before any other operations can be performed, the rawFs library, rawFsLib, must

be initialized by calling rawFsInit(). This routine takes a single parameter, the

maximum number of rawFs file descriptors that can be open at one time. This

count is used to allocate a set of descriptors; a descriptor is used each time a rawFs

device is opened.

The rawFsInit() routine also makes an entry for the rawFs file system in the I/O

system driver table (with iosDrvInstall()). This entry specifies the entry points for

rawFs file operations and is for all devices that use the rawFs file system. The

driver number assigned to the rawFs file systems is placed in a global variable

rawFsDrvNum.

The rawFsInit() routine is normally called by the usrRoot() task after starting the

VxWorks system. To use this initialization, define INCLUDE_RAWFS in the project

facility VxWorks view, and set NUM_RAWFS_FILES to the desired maximum open

file descriptor count on the Params tab of the properties window.

4.4.3 Initializing a Device for Use with the rawFs File System

After the rawFs file system is initialized, the next step is to create one or more

devices. Devices are created by the device driver’s device creation routine

(xxDevCreate()). The driver routine returns a pointer to a block device descriptor

structure (BLK_DEV). The BLK_DEV structure describes the physical aspects of the

device and specifies the routines in the device driver that a file system can call. For

more information on block devices, see 3.9.4 Block Devices, p.158.

Immediately after its creation, the block device has neither a name nor a file system

associated with it. To initialize a block device for use with rawFs, the already-

created block device must be associated with rawFs and a name must be assigned

to it. This is done with the rawFsDevInit() routine. Its parameters are the name to

be used to identify the device and a pointer to the block device descriptor structure

(BLK_DEV):

RAW_VOL_DESC *pVolDesc;
BLK_DEV *pBlkDev;
pVolDesc = rawFsDevInit ("DEV1:", pBlkDev);

The rawFsDevInit() call assigns the specified name to the device and enters the

device in the I/O system device table (with iosDevAdd()). It also allocates and

initializes the file system’s volume descriptor for the device. It returns a pointer to
211

VxWorks 5.4
Programmer’s Guide
the volume descriptor to the caller; this pointer is used to identify the volume

during certain file system calls.

Note that initializing the device for use with rawFs does not format the disk. That

is done using an ioctl() call with the FIODISKFORMAT function.

No disk initialization (FIODISKINIT) is required, because there are no file system

structures on the disk. Note, however, that rawFs accepts that ioctl() function code

for compatibility with other file systems; in such cases, it performs no action and

always returns OK.

4.4.4 Mounting Volumes

A disk volume is mounted automatically, generally during the first open() or

creat() operation. (Certain ioctl() functions also cause the disk to be mounted.)

The volume is again mounted automatically on the first disk access following a

ready-change operation (see 4.4.6 Changing Disks, p.213).

4.4.5 File I/O

To begin I/O to a rawFs device, first open the device using the standard open()
function. (The creat() function can be used instead, although nothing is actually

“created.”) Data on the rawFs device is written and read using the standard I/O

routines write() and read(). For more information, see 3.3 Basic I/O, p.98.

The character pointer associated with a file descriptor (that is, the byte offset where

reads and writes take place) can be set by using ioctl() with the FIOSEEK function.

Multiple file descriptors can be open simultaneously for a single device. These

must be carefully managed to avoid modifying data that is also being used by

another file descriptor. In most cases, such multiple open descriptors use FIOSEEK
to set their character pointers to separate disk areas.

! CAUTION: Because device names are recognized by the I/O system using simple

substring matching, file systems should not use a slash (/) alone as a name;

unexpected results may occur.
212

4

4
Local File Systems
4.4.6 Changing Disks

The rawFs file system must be notified when removable disks are changed (for

example, when floppies are swapped). Two different notification methods are

provided: (1) rawFsVolUnmount() and (2) the ready-change mechanism.

Unmounting Volumes

The first method of announcing a disk change is to call rawFsVolUnmount() prior

to removing the disk. This call flushes all modified file descriptor buffers if possible

(see Synchronizing Volumes, p.214) and also marks any open file descriptors as

obsolete. The next I/O operation remounts the disk. Calling ioctl() with

FIOUNMOUNT is equivalent to using rawFsVolUnmount(). Any open file

descriptor to the device can be used in the ioctl() call.

Attempts to use obsolete file descriptors for further I/O operations produce an

S_rawFsLib_FD_OBSOLETE error. To free an obsolete descriptor, use close(), as

usual. This frees the descriptor even though it produces the same error.

ISRs must not call rawFsVolUnmount() directly, because the call can pend while

the device becomes available. The ISR can instead give a semaphore that prompts

a task to unmount the volume. (Note that rawFsReadyChange() can be called

directly from ISRs; see Announcing Disk Changes with Ready-Change, p.213.)

When rawFsVolUnmount() is called, it attempts to write buffered data out to the

disk. Its use is therefore inappropriate for situations where the disk-change

notification does not occur until a new disk is inserted, because the old buffered

data would be written to the new disk. In this case, use rawFsReadyChange(),
which is described in Announcing Disk Changes with Ready-Change, p.213.

If rawFsVolUnmount() is called after the disk is physically removed, the data

flushing portion of its operation fails. However, the file descriptors are still marked

as obsolete, and the disk is marked as requiring remounting. An error is not
returned by rawFsVolUnmount(); to avoid lost data in this situation, explicitly

synchronize the disk before removing it (see Synchronizing Volumes, p.214).

Announcing Disk Changes with Ready-Change

The second method of announcing that a disk change is taking place is with the

ready-change mechanism. A change in the disk’s ready-status is interpreted by

rawFsLib to indicate that the disk must be remounted during the next I/O call.
213

VxWorks 5.4
Programmer’s Guide
There are three ways to announce a ready-change:

■ By calling rawFsReadyChange() directly.

■ By calling ioctl() with FIODISKCHANGE.

■ By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying rawFsLib directly.

The ready-change announcement does not cause buffered data to be flushed to the

disk. It merely marks the volume as needing remounting. As a result, data written

to files can be lost. This can be avoided by synchronizing the disk before asserting

ready-change. The combination of synchronizing and asserting ready-change

provides all the functionality of rawFsVolUnmount() except for marking file

descriptors as obsolete.

Ready-change can be used in ISRs, because it does not attempt to flush data or

perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field

in the BLK_DEV structure) is useful for asserting ready-change for devices that

only detect a disk change after the new disk is inserted. This routine is called at the

beginning of each open() or creat(), before the file system checks for ready-

change.

Disks with No Change Notification

If it is not possible for a ready-change to be announced each time the disk is

changed, close all file descriptors for the volume before changing the disk.

Synchronizing Volumes

When a disk is synchronized, all buffered data that is modified is written to the

physical device so that the disk is up to date. For the rawFs file system, the only

such data is that contained in open file descriptor buffers.

To avoid loss of data, synchronize a disk before removing it. You may need to

explicitly synchronize a disk, depending on when (or if) the rawFsVolUnmount()
call is issued.

When rawFsVolUnmount() is called, an attempt is made to synchronize the device

before unmounting. If this disk is still present and writable at the time of the call,

synchronization takes place automatically; there is no need to synchronize the disk

explicitly.
214

4

4
Local File Systems
However, if the rawFsVolUnmount() call is made after a disk is removed, it is

obviously too late to synchronize, and rawFsVolUnmount() discards the buffered

data. Therefore, make a separate ioctl() call with the FIOSYNC function before

removing the disk. (For example, this could be done in response to an operator

command.) Any open file descriptor to the device can be used during the ioctl()
call. This call writes all modified file descriptor buffers for the device out to the

disk.

4.4.7 I/O Control Functions Supported by rawFsLib

The rawFs file system supports the ioctl() functions shown in Table 4-7. The

functions listed are defined in the header file ioLib.h. For more information, see

the manual entries for rawFsLib and for ioctl() in ioLib.

Table 4-7 I/O Control Functions Supported by rawFsLib

Function
Decimal

Value
Description

FIODISKCHANGE 13 Announce a media change.

FIODISKFORMAT 5 Format the disk (device driver function).

FIODISKINIT 6 Initialize a rawFs file system on a disk volume (not required).

FIOFLUSH 2 Same as FIOSYNC.

FIOGETNAME 18 Get the file name of the fd.

FIONREAD 1 Get the number of unread bytes on the device.

FIOSEEK 7 Set the current byte offset on the device.

FIOSYNC 21 Write out all modified file descriptor buffers.

FIOUNMOUNT 39 Unmount a disk volume.

FIOWHERE 8 Return the current byte position on the device.
215

VxWorks 5.4
Programmer’s Guide
4.5 Tape File System: tapeFs

The tapeFs library, tapeFsLib, provides basic services for tape devices that do not

use a standard file or directory structure on tape. The tape volume is treated much

like a raw device where the entire volume is a large file. Any data organization on

this large file is the responsibility of a higher-level layer.

4.5.1 Tape Organization

The tapeFs file system imposes no organization of the data on the tape volume. It

maintains no directory information; there is no division of the tape area into

specific files; and no file names are used. An open() operation on the tapeFs device

specifies only the device name; no additional file names are allowed.

The entire tape area is available to any file descriptor open for the device. All read

and write operations to the tape use a location offset relative to the current location

of the tape head. When a file is configured as a rewind device and first opened, tape

operations begin at the beginning-of-medium (BOM); see Initializing a Device for
Use with the tapeFs File System, p.217. Thereafter, all operations occur relative to

where the tape head is located at that instant of time. No location information, as

such, is maintained by tapeFs.

4.5.2 Using the tapeFs File System

Before tapeFs can be used, it must be configured by defining INCLUDE_TAPEFS in

the BSP file config.h. (See 8.5 Configuring VxWorks, p.337.) Note that the tape file

system must be configured with SCSI-2 enabled. See Configuring SCSI Drivers,

p.129 for configuration details.

Once the tape file system has been configured, you must initialize it and then

define a tape device. Once the device is initialized, the physical tape device is

available to the tape file system and normal I/O system operations can be

performed.

Initializing the tapeFs File System

The tapeFs library, tapeFsLib, is initialized by calling tapeFsInit(). Each tape file

system can handle multiple tape devices. However, each tape device is allowed

only one file descriptor. Thus you cannot open two files on the same tape device.
216

4

4
Local File Systems
The tapeFsInit() routine also makes an entry for the tapeFs file system in the I/O

system driver table (with iosDrvInstall()). This entry specifies function pointers

to carry out tapeFs file operations on devices that use the tapeFs file system. The

driver number assigned to the tapeFs file system is placed in a global variable,

tapeFsDrvNum.

When initializing a tape device, tapeFsInit() is called automatically if

tapeFsDevInit() is called; thus, the tape file system does not require explicit

initialization.

Initializing a Device for Use with the tapeFs File System

Once the tapeFs file system has been initialized, the next step is to create one or

more devices that can be used with it. This is done using the sequential device

creation routine, scsiSeqDevCreate(). The driver routine returns a pointer to a

sequential device descriptor structure, SEQ_DEV. The SEQ_DEV structure

describes the physical aspects of the device and specifies the routines in the device

driver that tapeFs can call. For more information on sequential devices, see the

manual entry for scsiSeqDevCreate(), Configuring SCSI Drivers, p.129, 3.9.4 Block
Devices, p.158, and Example 3-6.

Immediately after its creation, the sequential device has neither a name nor a file

system associated with it. To initialize a sequential device for use with tapeFs, call

tapeFsDevInit() to assign a name and declare a file system. Its parameters are the

volume name, for identifying the device; a pointer to SEQ_DEV, the sequential

device descriptor structure; and a pointer to an initialized tape configuration

structure TAPE_CONFIG. This structure has the following form:

typedef struct /* TAPE_CONFIG tape device config structure */
{
int blkSize; /* block size; 0 => var. block size */
BOOL rewind; /* TRUE => a rewind device; FALSE => no rewind */
int numFileMarks; /* not used */
int density; /* not used */
} TAPE_CONFIG;

In the preceding definition of TAPE_CONFIG, only two fields, blkSize and rewind,

are currently in use. If rewind is TRUE, then a tape device is rewound to the

beginning-of-medium (BOM) upon closing a file with close(). However, if rewind
is FALSE, then closing a file has no effect on the position of the read/write head on

the tape medium.

For more information on initializing a tapeFs device, see the online reference for

tapeFsDevInit() under VxWorks Reference Manual>Libraries.
217

VxWorks 5.4
Programmer’s Guide
The blkSize field specifies the block size of the physical tape device. Having set the

block size, each read or write operation has a transfer unit of blkSize. Tape devices

can perform fixed or variable block transfers, a distinction also captured in the

blkSize field.

Fixed Block and Variable Block Devices

A tape file system can be created for fixed block size transfers or variable block size

transfers, depending on the capabilities of the underlying physical device. The

type of data transfer (fixed block or variable block) is usually decided when the

tape device is being created in the file system, that is, before the call to

tapeFsDevInit(). A block size of zero represents variable block size data transfers.

Once the block size has been set for a particular tape device, it is usually not

modified. To modify the block size, use the ioctl() functions FIOBLKSIZESET and

FIOBLKSIZEGET to set and get the block size on the physical device.

Note that for fixed block transfers, the tape file system buffers a block of data. If the

block size of the physical device is changed after a file is opened, the file should

first be closed and then re-opened in order for the new block size to take effect.

Example 4-4 Tape Device Configuration

There are many ways to configure a tape device. In this code example, a tape

device is configured with a block size of 512 bytes and the option to rewind the

device at the end of operations.

/* global variables assigned elsewhere */

SCSI_PHYS_DEV * pScsiPhysDev;

/* local variable declarations */

TAPE_VOL_DESC * pTapeVol;
SEQ_DEV * pSeqDev;
TAPE_CONFIG pTapeConfig;

/* initialization code */

pTapeConfig.blkSize = 512;
pTapeConfig.rewind = TRUE;
pSeqDev = scsiSeqDevCreate (pScsiPhysDev);
pTapeVol = tapeFsDevInit ("/tape1", pSeqDev, pTapeConfig);

The tapeFsDevInit() call assigns the specified name to the device and enters the

device in the I/O system device table (with iosDevAdd()). The return value of this

routine is a pointer to a volume descriptor structure that contains volume-specific

configuration and state information.
218

4

4
Local File Systems
Mounting Volumes

A tape volume is mounted automatically during the open() operation. There is no

specific mount operation, that is, the mount is implicit in the open() operation.

Modes of Operation

The tapeFs tape volumes can be operated in only one of two modes: read-only

(O_RDONLY) or write-only (O_WRONLY). There is no read-write mode. The mode

of operation is defined when the file is opened using open().

File I/O

To begin I/O to a tapeFs device, the device is first opened using open(). Data on

the tapeFs device is written and read using the standard I/O routines write() and

read(). For more information, see 3.7.6 Block Devices, p.127.

End-of-file markers can be written using ioctl() with the MTWEOF function. For

more information, see I/O Control Functions Supported by tapeFsLib, p.220.

Changing Tapes

The tapeFs file system should be notified when removable media are changed (for

example, when tapes are swapped). The tapeFsVolUnmount() routine controls the

mechanism to unmount a tape volume.

A tape should be unmounted before it is removed. Prior to unmounting a tape

volume, an open file descriptor must be closed. Closing an open file flushes any

buffered data to the tape, thus synchronizing the file system with the data on the

tape. To flush or synchronize data, call ioctl() with the FIOFLUSH or FIOSYNC
functions, prior to closing the file descriptor.

After closing any open file, call tapeFsVolUnmount() before removing the tape.

Once a tape has been unmounted, the next I/O operation must remount the tape

using open().

! CAUTION: Because device names are recognized by the I/O system using simple

substring matching, file systems should not use a slash (/) alone as a name;

unexpected results may occur.
219

VxWorks 5.4
Programmer’s Guide
Interrupt handlers must not call tapeFsVolUnmount() directly, because it is

possible for the call to pend while the device becomes available. The interrupt

handler can instead give a semaphore that prompts a task to unmount the volume.

I/O Control Functions Supported by tapeFsLib

The tapeFs file system supports the ioctl() functions shown in Table 4-8. The

functions listed are defined in the header files ioLib.h, seqIo.h, and tapeFsLib.h.
For more information, see the reference entries for tapeFsLib, ioLib, and ioctl().

The MTIOCTOP operation is compatible with the UNIX MTIOCTOP operation. The

argument passed to ioctl() with MTIOCTOP is a pointer to an MTOP structure that

contains the following two fields:

typedef struct mtop
{
short mt_op; /* operation */
int mt_count; /* number of operations */
} MTOP;

The mt_op field contains the type of MTIOCTOP operation to perform. These

operations are defined in Table 4-9. The mt_count field contains the number of

times the operation defined in mt_op should be performed.

Table 4-8 I/O Control Functions Supported by tapeFsLib

Function Value Meaning

FIOFLUSH 2 Write out all modified file descriptor buffers.

FIOSYNC 21 Same as FIOFLUSH.

FIOBLKSIZEGET 1001 Get the actual block size of the tape device by issuing a

driver command to it. Check this value with that set in

the SEQ_DEV data structure.

FIOBLKSIZESET 1000 Set the block size of the tape device on the device and in

the SEQ_DEV data structure.

MTIOCTOP 1005 Perform a UNIX-like MTIO operation to the tape

device. The type of operation and operation count is set

in an MTIO structure passed to the ioctl() routine. The

MTIO operations are defined in Table 4-9.
220

4

4
Local File Systems
4.6 CD-ROM File System: cdromFs

The cdromFs library, cdromFsLib, lets applications read any CD-ROM that is

formatted in accordance with ISO 9660 file system standards. After initializing

cdromFs and mounting it on a CD-ROM block device, you can access data on that

device using the standard POSIX I/O calls: open(), close(), read(), ioctl(),
readdir(), and stat(). The write() call always returns an error.

The cdromFs utility supports multiple drives, multiple open files, and concurrent

file access. When you specify a pathname, cdromFS accepts both “/” and “\”.

However, the backslash is not recommended because it might not be supported in

future releases.

The strict ISO 9660 specification allows only uppercase file names consisting of 8

characters plus a 3-character suffix.

Table 4-9 MTIOCTOP Operations

Function Value Meaning

MTWEOF 0 Write an end-of-file record or “file mark.”

MTFSF 1 Forward space over file mark.

MTBSF 2 Backward space over file mark.

MTFSR 3 Forward space over data block.

MTBSR 4 Backward space over data block.

MTREW 5 Rewind the tape device to the beginning-of-medium.

MTOFFL 6 Rewind and put the drive offline.

MTNOP 7 No operation, sets status in the SEQ_DEV structure only.

MTRETEN 8 Re-tension the tape (cartridge tape only).

MTERASE 9 Erase the entire tape.

MTEOM 10 Position tape to end-of-media.

MTNBSF 11 Backward space file to beginning-of-medium.
221

VxWorks 5.4
Programmer’s Guide
CdromFs provides access to CD-ROM file systems using any standard BLK_DEV
structure. The basic initialization sequence is similar to installing a dosFs file

system on a SCSI device.

Before cdromFs can be used, it must be configured by defining

INCLUDE_CDROMFS in config.h. (See 8.5 Configuring VxWorks, p.337.) For

information on using cdromFs, see the online reference for cdromFsLib under

VxWorks Reference Manual>Libraries.

4.7 The Target Server File System: TSFS

The Target Server File System (TSFS) is a full-featured VxWorks file system, but the

files operated on by using the file system are actually located on the host. TSFS uses

a WDB driver to transfer requests from the I/O system to the target server. The

target server reads the request and executes it using the host file system. Thus

when you open a file with TSFS, the file being opened is actually on the host.

Future read() and write() calls on the file descriptor obtained from the open() call

actually read from and write to the opened host file.

The TSFS VIO driver is oriented toward file I/O rather than toward console

operations as is the Tornado 1.0 VIO driver. TSFS provides all the I/O features that

netDrv provides, without requiring any target resource beyond what is already

configured to support communication between target and target server. It is

possible to access host files randomly without copying the entire file to the target,

to load an object module from a virtual file source, and to supply the file name to

routines such as ld() and copy().

How It Works

Two steps are required to configure TSFS. First, TSFS must be included in your

VxWorks image. This creates a new file system entry, /tgtsvr. Then the target server

must be configured for TSFS, which involves assigning a root directory on your

host to TSFS. For example, you could set the TSFS root to c:\windview\logs.

Having done this, opening the file /tgtsvr/eventLog.wvr from the target causes

c:\windview\logs\eventLog.wvr to be opened on the host by the target server. A

new file descriptor representing that file is returned to the caller on the target.
222

4

4
Local File Systems
Each I/O request, including open(), is synchronous; the calling target task is

blocked until the operation is complete. This provides flow control not available in

the console VIO implementation. In addition, there is no need for WTX protocol

requests to be issued to associate the VIO channel with a particular host file; the

information is contained in the name of the file.

Consider a read() call. The driver transmits the ID of the file (previously

established by an open() call), the address of the buffer to receive the file data, and

the desired length of the read to the target server. The target server responds by

issuing the equivalent read() call on the host and transfers the data read to the

target program. The return value of read() and any errno that might arise are also

relayed to the target, so that the file appears to be local in every way. For detailed

information on the supported routines and ioctl requests, see the online reference

for wdbTsfsDrv under VxWorks Reference Manual>Libraries.

Socket Support

TSFS sockets are operated on in a similar way to other TSFS files, using open(),
close(), read(), write(), and ioctl(). To open a TSFS socket use one of the following

forms of filename:

"TCP: hostIP: port"
"TCP: hostname: port"

The flags and permissions arguments are ignored. The following examples show

how to use these filenames:

fd = open("/tgtsvr/TCP:phobos:6164"0,0) /* open socket and connect */
/* to server phobos */

fd = open("/tgtsvr/TCP:150.50.50.50:6164",0,0) /* open socket and */
/*connect to server */
/* 150.50.50.50 */

The result of this open() call is to open a TCP socket on the host and connect it to

the target server socket at hostname or hostIP awaiting connections on port. The

resultant socket is non-blocking. Use read() and write() to read and write to the

TSFS socket. Because the socket is non-blocking, the read() call returns

immediately with an error and the appropriate errno if there is no data available

to read from the socket. Ioctls specific to TSFS sockets are discussed in the online

reference for wdbTsfsDrv under VxWorks Reference Manual>Libraries. This socket

configuration allows WindView to use the socket facility without requiring

sockLib and the networking modules on the target.
223

VxWorks 5.4
Programmer’s Guide
Error Handling

Errors can arise at various points within TSFS and are reported back to the original

caller on the target, along with an appropriate error code. The error code returned

is the VxWorks errno which most closely matches the error experienced on the

host. If a WDB error is encountered, a WDB error message is returned rather than

a VxWorks errno.

Security Considerations

While TSFS has much in common with netDrv, the security considerations are

different. With TSFS, the host file operations are done on behalf of the user that

launched the target server. The user name given to the target as a boot parameter

has no effect. In fact, none of the boot parameters have any effect on the access

privileges of TSFS.

In this environment, it is less clear to the user what the privilege restrictions to

TSFS actually are, since the user ID and host machine that start the target server

may vary from invocation to invocation. In any case, any Tornado tool that

connects to a target server which is supporting TSFS has access to any file with the

same authorizations as the user that started that target server. For this reason, the

target server is locked by default when TSFS is started.

The options which have been added to the target server startup routine to control

target access to host files using TSFS include:

-R set the root of TSFS

For example, specifying -R /tftpboot prepends this string to all TSFS file

names received by the target server, so that /tgtsvr/etc/passwd maps to

/tftpboot/etc/passwd. If -R is not specified, TSFS is not activated and no

TSFS requests from the target will succeed. Restarting the target server

without specifying -R disables TSFS.

-RW make TSFS read-write

The target server interprets this option to mean that modifying operations

(including file create and delete or write) are authorized. If -RW is not

specified, the default is read only and no file modification are allowed.
224

4

4
Local File Systems
Setting WIND_UID on Windows Hosts

The variable WIND_UID must be set to use TSFS with WindView on Windows

hosts. There are two ways to set it:

■ Use the System Properties dialog box, accessible through the Control Panel , to

set the value of WIND_UID. This technique makes the value available to all

tools in your environment.

■ Type a unique number or string at the DOS prompt:

% set WIND_UID= num

If you choose this option, you must set WIND_UID before starting both

Tornado and the target server because both must have WIND_UID set to the

same value. Note that this method sets WIND_UID only for tools that are

started from this DOS prompt.

For more information on WIND_UID, see the Tornado User’s Guide (Windows
version): Target Server.

! WARNING: When you specify -RW the target server is locked (reserved to the user

who started it). The target server owner can unlock it, but then any Tornado tool

that attached to it has exactly the same file access permissions as the target server

owner. A target server started on UNIX is automatically owned by the user ID that

started it. A target server started on Windows is assigned to the variable

WIND_UID, which must be set as described in Setting WIND_UID on Windows
Hosts, p.225.

NOTE: If you have an environment that mixes Windows and UNIX hosts, you may

want to set WIND_UID to your UNIX user ID number. This will allow you to attach

the Tornado session on your Windows host to a target server running on your

UNIX host.
225

VxWorks 5.4
Programmer’s Guide
226

5
C++ Development

Basic Support and the Optional Component

Wind Foundation Classes
5.1 Introduction

In the Tornado environment, C++ development support consists of the GNU C++

toolchain, run-time support, the Standard Template Library (STL), exception

handling, Run-Time Type Identification (RTTI), and the Iostream library. In

addition, Wind River Systems offers an optional product, the Wind Foundation

Classes, providing several additional class libraries to extend VxWorks

functionality.

This chapter discusses basic application development using C++ and provides

references to relevant information in other Wind River documentation. In addition,

the Iostream library and the Wind Foundation Classes are documented here.

The Standard Template Library provides support for “generic” programming. Two

template instantiation strategies are supported. Templates may be instantiated in

every translation unit that uses them, or the compiler can determine where to

instantiate them. The STL is VxWorks thread safe at the class level.

Exception handling is available for use in your application code. The GNU

Iostream library does not throw without specific enabling. The STL throws only in

some methods in the basic_string class.

The Iostream library provides support for formatted I/O in C++. The C++

language definition (like C) does not include special input and output statements,

relying instead on standard library facilities. The Iostream library provides C++

capabilities analogous to the C functions offered by the stdio library. The principal

differences are that the Iostream library gives you enhanced type security and can

be extended to support your own class definitions. The Iostream library is thread

safe at the object level.
227

VxWorks 5.4
Programmer’s Guide
The Wind Foundation Classes consist of a group of libraries (some of which are

industry standard) that provide a broad range of C++ classes to extend VxWorks

functionality in several important ways. They are called Foundation classes because

they provide basic services which are fundamental to many programming tasks,

and which can be used in almost every application domain. For information about

how to install the Wind Foundation Classes, see Tornado Getting Started.

The Wind Foundation Classes consist of the following libraries:

■ VxWorks Wrapper Class library

■ Tools.h++ library from Rogue Wave Software

5.2 C++ Development Under Tornado

Basic C++ support is bundled with the Tornado development environment.

VxWorks provides header files containing C++ safe declarations for all routines

and the necessary run-time support. The standard Tornado interactive

development tools such as the debugger, the shell, and the incremental loader

include C++ support.

5.2.1 Tools Support

WindSh

Tornado supports both C and C++ as development languages. WindSh can

interpret simple C++ expressions. To exercise C++ facilities that are missing from

the C-expression interpreter, you can compile and download routines that

encapsulate the special C++ syntax. See the Tornado User’s Guide: Tornado Tools
Reference or the HTML online reference for WindSh C++ options.

Demangling

When C++ functions are compiled, the class membership (if any) and the type and

number of the function’s arguments are encoded in the function’s linkage name.

This is called name mangling or mangling. The debugging and system information
228

5

5
C++ Development
routines in WindSh can print C++ function names in demangled or mangled

representations.

The default representation is gnu. In addition, arm and none (no demangling) are

available options. To select an alternate mode, modify the Tcl variable

shDemangleStyle. For instance:

-> ?set shDemangleStyle none

Overloaded Function Names

When you invoke an overloaded function, WindSh prints the matching functions’

signatures and prompts you for the desired function. For more information on

how WindSh handles overloaded function names, including an example, see the

Tornado User’s Guide: Shell.

Debugger

The Tornado debugger supports debugging of C++ class member functions

including stepping through constructors and templates. For details, see the Tornado
User’s Guide: Tornado Tools Reference and Debugging with GDB.

5.2.2 Programming Issues

Making C++ Entry Points Accessible to C Code

If you want to reference a (non-overloaded, global) C++ symbol from your C code

you will need to give it C linkage by prototyping it using extern "C":

#ifdef __cplusplus
extern "C" void myEntryPoint ();
#else
void myEntryPoint ();
#endif

You can also use this syntax to make C symbols accessible to C++ code. VxWorks

C symbols are automatically available to C++ because the VxWorks header files

use this mechanism for declarations.
229

VxWorks 5.4
Programmer’s Guide
5.2.3 Compiling C++ Applications

The Tornado project tool fully supports C++. The recommended way to configure

and compile C++ applications is to use the project tool. The information below

may be useful for understanding the C++ environment but unless you have a

particular reason to use manual methods, you should use the methods explained

in the Tornado User’s Guide: Projects.

For details on the GNU compiler and on the associated tools, see the GNU ToolKit
User’s Guide.

When compiling C++ modules with the GNU compiler, invoke ccarch (just as for

C source) on any source file with a C++ suffix (such as .cpp). Compiling C++

applications in the VxWorks environment involves the following steps:

1. Each C++ source file is compiled into object code for your target architecture,

just as for C applications. For example, to compile for a 68K target:

cc68k -fno-builtin -I$WIND_BASE/target/h -nostdinc -O2 \
-DCPU=MC68040 -c foo.cpp

cc68k -fno-builtin -I$WIND_BASE/target/h -nostdinc -O2 \
-DCPU=MC68040 -c bar.cpp

2. The objects are munched (see 5.2.5 Munching C++ Application Modules, p.232).

In our example:

nm68k foo.o bar.o | wtxtcl $WIND_BASE/host/src/hutils/munch.tcl \
-asm 68k > ctdt.c

cc68k -c ctdt.c

3. The objects are linked with the compiled munch output. (They may be

partially linked using -r for downloadable applications or statically linked

with a VxWorks BSP for bootable applications.) If you are using the GNU tools,

invoke the linker from the compiler driver as follows:

cc68k -r ctdt.o foo.o bar.o -o linkedObjs.o

Here we have linked two objects modules, foo.o and bar.o, to give a

downloadable object, linkedObjs.o. Using ccarch rather than ldarch performs

template instantiation if you use the -frepo option. (see 5.2.7 Template
Instantiation, p.234).

NOTE: If you use a Wind River Systems makefile to build your application,

munching is handled by make.
230

5

5
C++ Development
5.2.4 Configuration Constants

By default VxWorks kernels contain the C++ run-time, basic Iostream functionality

and support for the Standard Template Library. You may add/remove C++

components by including any of the following macros:

INCLUDE_CPLUS
Includes all basic C++ run-time support in VxWorks. This enables you to

download and run compiled and munched C++ modules. It does not

configure any of the Wind Foundation Class libraries into VxWorks.

INCLUDE_CPLUS_STL
Includes support for the standard template library.

INCLUDE_CPLUS_STRING
Includes the basic components of the string type library.

INCLUDE_CPLUS_IOSTREAMS
Includes the basic components of the Iostream library.

INCLUDE_CPLUS_COMPLEX
Includes the basic components of the complex type library.

INCLUDE_CPLUS_IOSTREAMS_FULL
Includes the full Iostream library; this implies INCLUDE_CPLUS_IOSTREAMS.

INCLUDE_CPLUS_STRING_IO
Includes string I/O function; this implies INCLUDE_CPLUS_STRING and

INCLUDE_CPLUS_IOSTREAMS.

INCLUDE_CPLUS_COMPLEX_IO
Includes I/O for complex number objects; this implies

INCLUDE_CPLUS_IOSTREAMS and INCLUDE_CPLUS_COMPLEX.

To include one or more of the Wind Foundation Classes, include one or more of the

following constants:

! WARNING: In the linking step, -r is used to specify partial linking. A partially

linked file is still relocatable, and is suitable for downloading and linking using the

VxWorks module loader. The GNU ToolKit User’s Guide: Using ld describes a -Ur
option for resolving references to C++ constructors. That option is for native

development, not for cross-development. Do not use -Ur with C++ modules for

VxWorks.
231

VxWorks 5.4
Programmer’s Guide
INCLUDE_CPLUS_VXW
Includes the VxWorks Wrapper Class library.

INCLUDE_CPLUS_TOOLS
Includes Rogue Wave’s Tools.h++ class library.

For more information on configuring VxWorks, see the Tornado User’s Guide:
Projects.

5.2.5 Munching C++ Application Modules

Modules written in C++ must undergo an additional host processing step before

being downloaded to a VxWorks target. This extra step (called munching, by

convention) initializes support for static objects and ensures that when the module

is downloaded to VxWorks, the C++ run-time support is able to call the correct

constructors and destructors in the correct order for all static objects.

The following commands will compile hello.cpp, then munch hello.o, resulting in

the munched file hello.out suitable for loading by the Tornado module loader:

cc68k -I installDir/target/h -DCPU=MC68020 -nostdinc -fno-builtin \
-c hello.cpp

nm68k hello.o | wtxtcl installDir/host/src/hutils/munch.tcl \
-asm 68k > ctdt.c

cc68k -c ctdt.c
ld68k -r -o hello.out hello.o ctdt.o

5.2.6 Static Constructors and Destructors

After munching, downloading, and linking, the static constructors and destructors

must be called.

NOTE: You can substitute the actual name of your installDir or use $WIND_BASE
(UNIX) or %WIND_BASE% (Windows).

! CAUTION: The GNU ToolKit User’s Guide: Using ld describes a -Ur option for

resolving references to C++ constructors. That option is for native development,

not for cross-development. Do not use -Ur with C++ modules for VxWorks.
232

5

5
C++ Development
Calling Static Constructors and Destructors Interactively

VxWorks provides two strategies for calling static constructors and destructors

interactively:

automatic
Static constructors are called as a side effect of downloading. Static destructors
are called as a side effect of unloading.

manual
Static constructors and destructors are called indirectly by invoking

cplusCtors() and cplusDtors().

Use cplusXtorSet() to change the strategy; see its entry in the windsh reference

entry for details. To report on the current strategy, call cplusStratShow().

Under the automatic strategy, which is the default, static constructors are called

immediately after a successful download. If the automatic strategy is set before a

module is downloaded, that module’s static constructors are called before the

module loader returns to its caller. Under the automatic strategy, the module

unloader calls a module’s static destructors before actually unloading the module.

The manual strategy causes static constructors to be called as a result of invoking

cplusCtors(). Refer to the entries for cplusCtors() and cplusDtors() in the windsh
reference for more information. To invoke all currently-loaded static constructors

or destructors, manual mode can be used with no argument. Manual mode can

also be used to call static constructors and destructors explicitly on a module-by-

module basis.

Constructors and Destructors in System Startup and Shutdown

When you create bootable VxWorks applications, call static constructors during

system initialization. Modify the usrRoot() routine in usrConfig.c to include a call

to cplusCtorsLink(). This calls all static constructors linked with your system.

To modify usrConfig.c to call cplusCtorsLink(), locate the C++ initialization

sections:

#ifdef INCLUDE_CPLUS /* C++ product */
cplusLibInit ();

#endif

#ifdef INCLUDE_CPLUS_MIN /* C++ product */
cplusLibMinInit ();

#endif
233

VxWorks 5.4
Programmer’s Guide
Next, add cplusCtorsLink() to one or both sections, depending on your system

requirements. In the following example, cplusCtorsLink() is called only when

minimal C++ is configured:

#ifdef INCLUDE_CPLUS_MIN /* C++ product */
cplusLibMinInit ();
cplusCtorsLink ();

#endif

A corresponding routine, cplusDtorsLink(), is provided to call all static

destructors. This routine is useful in systems that have orderly shutdown

procedures. Include a call to cplusDtorsLink() at the point in your code where it

is appropriate to call all static destructors that were initially linked with your

system.

The cplusCtorsLink() and cplusDtorsLink() routines do not call static

constructors and destructors for modules that are downloaded after system

initialization. If your system uses the module downloader, follow the procedures

described in Calling Static Constructors and Destructors Interactively, p.233.

5.2.7 Template Instantiation

Our C++ toolchain supports three distinct template instantiation strategies. The

simplest (and the one that is used by default in VxWorks makefiles) is implicit
instantiation. In this case code for each template gets emitted in every module that

needs it. For this to work the body of a template must be available in each module

that uses it. Typically this is done by including template function bodies along with

their declarations in a header file. The disadvantage of implicit instantiation is that

it may lead to code duplication and larger application size.

The second approach is to explicitly instantiate any templates you require using

the syntax found in Example 5-1. In this case you should compile with

-fno-implicit-templates. This scheme allows you the most control over where

templates get instantiated and avoids code bloat.

! CAUTION: Static objects are not initialized until the call to cplusCtorsLink(). Thus,

if your application uses static objects in usrRoot(), call cplusCtorsLink() before

using them.

For cplusCtorsLink() to work correctly, you must perform the munch operation on

the fully-linked VxWorks image rather than on individual modules.
234

5

5
C++ Development
-frepo

This approach combines the simplicity of implicit instantiation with the smaller

footprint obtained by instantiating templates by hand. It works by manipulating a

database of template instances for each module.

The compiler will generate files with the extension .rpo; these files list all the

template instantiations used in the corresponding object files which could be

instantiated there. The link wrapper collect2 then updates the .rpo files to tell the

compiler where to place those instantiations and rebuilds any affected object files.

The link-time overhead is negligible after the first pass, as the compiler continues

to place the instantiations in the same files.

Procedure

The header file for a template must contain the template body. If template bodies

are currently stored in .cpp files, the line #include theTemplate.cpp must be added

to theTemplate.h.

A full build with the -frepo option is required to create the .rpo files that tell the

compiler which templates to instantiate. The link step should be driven from ccarch
rather than ldarch.

Subsequently individual modules can be compiled as usual (but with the -frepo
option and no other template flags).

When a new template instance is required the relevant part of the project must be

rebuilt to update the .rpo files.

Loading Order

The Tornado tools’ dynamic linking ability requires that the module containing a

symbol definition be downloaded before a module that references it. For instance,

in the example below you should download PairA.o before downloading PairB.o.

(You could also prelink them and download the linked object).

Example

This example uses a standard VxWorks BSP makefile (for concreteness, we assume

a 68K target).

Example 5-1 Sample Makefile

make PairA.o PairB.o ADDED_C++FLAGS=-frepo

/* dummy link step to instantiate templates */
cc68k -r -o Pair PairA.o PairB.o
235

VxWorks 5.4
Programmer’s Guide
/* In this case the template Pair<int>::Sum(void)
* will be instantiated in PairA.o.
*/

//Pair.h

template <class T> class Pair
{
public:

Pair (T _x, T _y);
T Sum ();

protected:
T x, y;

};

template <class T>
Pair<T>::Pair (T _x, T _y) : x (_x), y(_y)
{
}

template <class T>
T Pair<T>::Sum ()
{

return x + y;
}
// PairA.cpp
#include "Pair.h"

int Add (int x, int y)
{

Pair <int> Two (x, y);
return Two.Sum ();

}

// PairB.cpp
#include "Pair.h"

int Double (int x)
{
Pair <int> Two (x, x);
return Two.Sum ();
}

5.3 C++ Language and Library Support

In this section we describe some of the VxWorks-specific aspects of our C++

implementation. To learn more about the C++ language and the Standard libraries
236

5

5
C++ Development
consult any standard C++ reference (a good one is Stroustrup, The C++
Programming Language, Third Edition). For documentation on the GNU

implementation of the Iostream library see

5.3.1 Language Features

We support many but not all of the new language features contained in the recently

approved ANSI C++ Standard. Tornado 2.0 has support for exception handling

and run-time type information, as well as improved template support. We do not

yet support the namespace feature although the compiler will accept (and ignore)

references to the std namespace.

Exception Handling

Our C++ compiler supports multithread safe exception handling by default. To

turn off exception handling support use the -fno-exceptions compiler flag.

Using Exceptions

You may have code which was designed around the pre-exception model of C++

compilation. Your calls to new may check the returned pointer for a failure value

of zero, for example. If you are worried that the exception handling enhancements

in this release will not compile your code correctly, you could adhere to the

following simple rules:

■ Use new (nothrow).

■ Do not explicitly turn on exceptions in your Iostream objects.

■ Do not use string objects or wrap them in “try { } catch (...) { }” blocks.

These rules derive from the following observations:

■ The GNU Iostream does not throw unless IO_THROW is defined when the

library is built and exceptions are explicitly enabled for the particular Iostream

object in use. The default is no exceptions. Exceptions have to be explicitly

turned on for each iostate flag that wants to throw.

■ The STL does not throw except in some methods in the basic_string class (of

which string is a specialization).
237

VxWorks 5.4
Programmer’s Guide
Exception Handling Overhead

To support destruction of automatic objects during stack-unwinding the compiler

must insert house-keeping code into any function that creates an automatic (stack

based) object with a destructor.

Below are some of the costs of exception handling as measured on a PowerPC 604

target (BSP mv2604); counts are in executed instructions. 1,235 instructions are

executed to execute a “throw 1” and the associated “catch (...)”. There are 14

“extra” instructions to register and deregister automatic variables and temporary

objects with destructors and 29 “extra” instructions per non-inlined function for

exception-handling setup if any exception handling is used in the function. Finally,

the implementation executes 947 “extra” instructions upon encountering the first

exception-handling construct (try, catch, throw, or registration of an auto variable

or temporary).

first time normal case
void test() { // 3+29 3+29

throw 1; // 1235 1235 total time to printf
}

void doit() { // 3+29+947 3+29
try { // 22 22

test(); // 1 1
} catch (...) {

printf("Hi\n");
}

}

struct A { ~A() { } };

void local_var () { // 3+29
A a; // 14

} // 4

-fno-exceptions can be used to turn exception handling off. Doing so will reduce

the overheads back to classical C++.

Unhandled Exceptions

As required by the Standard, an uncaught exception will eventually lead to a call

to terminate(). The default behavior of this function is to suspend the offending

task and log a warning message to the console. You may install your own

termination handler by calling set_terminate() (defined in the header file

exception).
238

5

5
C++ Development
Run-Time Type Information (RTTI)

This feature is turned on by default and adds a small overhead to any C++

program containing classes with virtual functions. If you do not need this feature

you may turn it off using -fno-rtti.

5.3.2 Standard Template Library (STL)

The Standard Template library consists of a small run-time component (which may

be configured into your kernel by selecting INCLUDE_CPLUS_STL for inclusion in

the project facility VxWorks view) and a set of header files.

Our STL port is VxWorks thread safe at the class level. This means that the client

has to provide explicit locking if two tasks want to use the same container object.

(For example, this could be done by using a semaphore; for details, see

2.4.3 Semaphores, p.47.) However two different objects of the same STL container

class may be accessed concurrently.

Iostream Library

This library is configured into VxWorks by selecting

INCLUDE_CPLUS_IOSTREAMS for inclusion in the project facility VxWorks view;

see 5.2.4 Configuration Constants, p.231.

The Iostream library header files reside in the standard VxWorks header file

directory, installDir/target/h. To use this library, include one or more of the header

files after the vxWorks.h header in the appropriate modules of your application.

The most frequently used header file is iostream.h, but others are available; see a

C++ reference such as Stroustrup for information.

The standard Iostream objects (cin, cout, cerr, and clog) are global: that is, they are

not private to any given task. They are correctly initialized regardless of the

number of tasks or modules that reference them and they may safely be used

across multiple tasks that have the same definitions of stdin, stdout, and stderr.

However they cannot safely be used in the case that different tasks have different

standard i/o file-descriptors; in this case, the responsibility for mutual exclusion

rests with the application.

The effect of private standard Iostream objects can be simulated by creating a new

Iostream object of the same class as the standard Iostream object (for example, cin
is an istream_withassign), and assigning to it a new filebuf object tied to the
239

VxWorks 5.4
Programmer’s Guide
appropriate file descriptor. The new filebuf and Iostream objects are private to the

calling task, ensuring that no other task can accidentally corrupt them.

ostream my_out (new filebuf (1)); /* 1 == STDOUT */
istream my_in (new filebuf (0), &my_out); /* 0 == STDIN;

* TIE to my_out */

For complete details on the Iostreams library, see the online manual The GNU C++
Iostream Library.

String and Complex Number Classes

These classes are part of the new Standard C++ library. They may be configured

into the kernel by selecting INCLUDE_CPLUS_STRING and

INCLUDE_CPLUS_COMPLEX for inclusion in the project facility VxWorks view.

You may optionally include I/O facilities for these classes by selecting

INCLUDE_CPLUS_STRING_IO and INCLUDE_CPLUS_COMPLEX_IO.

5.4 Example

Example 5-2 exercises various C++ features including the Standard Template

Library, user defined templates, Run-Time Type Identification, and exception

handling. To try it out, create a project containing factory.cpp and factory.h and

build and download linkedObjs.o. At the shell type:

-> testFactory

Full documentation on what you should except to see is given in the source code.

Example 5-2 Code Factory Example

/* factory.cpp - implements an object factory */

/* Copyright 1993-1998 Wind River Systems, Inc. */

/*

NOTE: Tornado 2.0 C++ support does not include support for multi-byte strings.

This includes certain classes which are part of the tools.h++ portion of the Wind

Foundation Classes.
240

5

5
C++ Development
modification history

01a,05oct98,sn wrote
*/

/*
DESCRIPTION

We implement an "object factory". The first step is to give
classes human-readable names by registering them with a
"global class registry". Then objects of a named type may be
created and registered with an "object registry".

This gives us an opportunity to exercise various C++ features:

* Standard Template Library
A "map" is used as the basis for the various registries.

* User defined templates
The class registry and object registry are both based on a
generic registry type.

* Run Time Type Checking
We provide a function to determine the type of a registered
object using "dynamic_cast".

* Exception Handling
If we attempt to cast to the "wrong" type we have to handle a
C++ exception.

We provide a C interface to facilitate easy testing from the Wind Shell.

Here is an example test run (you can run this whole test through the
function testFactory()):

-> classRegistryShow
Showing Class Registry ...
Name Address
===
blue_t 0x6b1c7a0
green_t 0x6b1c790
red_t 0x6b1c7b0

-> objectRegistryShow
Showing Object Registry ...
Name Address
===

-> objectCreate "green_t", "bob"
Creating an object called 'bob' of type 'green_t'

-> objectCreate "red_t", "bill"
Creating an object called 'bill' of type 'red_t'

-> objectRegistryShow
Showing Object Registry ...
Name Address
===
bill 0x6b1abf8
241

VxWorks 5.4
Programmer’s Guide
bob 0x6b1ac18

-> objectTypeShowByName "bob"
Looking up object 'bob'
Attempting to ascertain type of object at 0x6b1ac18
Attempting a dynamic_cast to red_t ...
dynamic_cast threw an exception ... caught here!
Attempting a dynamic_cast to blue_t ...
dynamic_cast threw an exception ... caught here!
Attempting a dynamic_cast to green_t ...
Cast to green_t succeeded!
green.

*/

/* includes */
#include "factory.h"

/* locals */

/* pointer to the global class registry */
LOCAL class_registry_t* pClassRegistry;

/* pointer to the global object registry */
LOCAL object_registry_t* pObjectRegistry;

/***
*
* testFactory - an example test run
*
*/
void testFactory ()
{

cout << "classRegistryShow ()" << endl;
classRegistryShow ();
cout << "objectRegistryShow ()" << endl;
objectRegistryShow ();
cout << "objectCreate (\"green_t\", \"bob\")" << endl;
objectCreate ("green_t", "bob");
cout << "objectCreate (\"red_t\", \"bill\")" << endl;
objectCreate ("red_t", "bill");
cout << "objectRegistryShow ()" << endl;
objectRegistryShow ();
cout << "objectTypeShowByName (\"bob\")" << endl;
objectTypeShowByName ("bob");

}

/***
*
* class_registry_t::create - create an object of type className
*
* Look up 'className' in this registry. If it exists then
* create an object of this type by using the registered class factory;
* otherwise return NULL.
*
* RETURNS : pointer to new object of type className or NULL.
242

5

5
C++ Development
*/

object_t* class_registry_t::create
(
string className
)
{
object_factory_t* pFactory = lookup (className);
if (pFactory != NULL)

{
return lookup (className)-> create ();
}

else
{
cout << "No such class in Class Registry. " << endl;
return NULL;
}

}

/***
*
* classRegistryGet - get a reference to the global class registry
*
* Create and populate a new class registry if necessary.
*
* RETURNS : a reference to the global class registry
*/

LOCAL class_registry_t& classRegistryGet ()
{
if (pClassRegistry == NULL)

{
pClassRegistry = new class_registry_t;
pClassRegistry -> insert ("red_t", new red_factory_t);
pClassRegistry -> insert ("blue_t", new blue_factory_t);
pClassRegistry -> insert ("green_t", new green_factory_t);
}

return *pClassRegistry;
}

/***
*
* objectRegistryGet - get a reference to the global object registry
*
* Create a new object registry if necessary.
*
* RETURNS : a reference to the global object registry
*/

LOCAL object_registry_t& objectRegistryGet ()
{
if (pObjectRegistry == NULL)

{
pObjectRegistry = new object_registry_t;
}

return *pObjectRegistry;
243

VxWorks 5.4
Programmer’s Guide
}

/***
*
* objectCreate - create an object of a given type
*
* Use the class factory registered in the global class registry
* under 'className' to create a new object. Register this object
* in the global object registry under 'object name'.
*
* RETURNS : object of type className
*/

object_t* objectCreate
(
char* className,
char* objectName
)
{
cout << "Creating an object called '" << objectName << "'"

 << " of type '" << className << "'" << endl;
object_t* pObject = classRegistryGet().create (className);
if (pObject != NULL)

{
objectRegistryGet().insert(objectName, pObject);
}

else
{
cout << "Could not create object. Sorry. " << endl;
}

return pObject;
}

/***
*
* isRed
* isBlue - is anObject a reference to an object of the specified type?
* isGreen
*
* Try a dynamic_cast. If this succeeds then return TRUE. If it fails
* then catch the resulting exception and return FALSE.
*
* RETURNS : TRUE or FALSE
*/

/* isRed */

LOCAL BOOL isRed (object_t& anObject)
{
try

{
cout << "Attempting a dynamic_cast to red_t ..." << endl;
dynamic_cast<red_t&> (anObject);
cout << "Cast to red_t succeeded!" << endl;
return TRUE;
}

244

5

5
C++ Development
catch (exception)
{
cout << "dynamic_cast threw an exception ... caught here!" << endl;
return FALSE;
}

}

/* isBlue */

LOCAL BOOL isBlue (object_t& anObject)
{
try

{
cout << "Attempting a dynamic_cast to blue_t ..." << endl;
dynamic_cast<blue_t&> (anObject);
cout << "Cast to blue_t succeeded!" << endl;
return TRUE;
}

catch (exception)
{
cout << "dynamic_cast threw an exception ... caught here!" << endl;
return FALSE;
}

}

/* isGreen */

LOCAL BOOL isGreen (object_t& anObject)
{
try

{
cout << "Attempting a dynamic_cast to green_t ..." << endl;
dynamic_cast<green_t&> (anObject);
cout << "Cast to green_t succeeded!" << endl;
return TRUE;
}

catch (exception)
{
cout << "dynamic_cast threw an exception ... caught here!" << endl;
return FALSE;
}

}

/***
*
* objectTypeShow - ascertain the type of an object
*
* Use dynamic type checking to determine the type of an object.
*
* RETURNS : N/A
*/

LOCAL void objectTypeShow (object_t* pObject)
{
cout << "Attempting to ascertain type of object at " << "0x" << hex
245

VxWorks 5.4
Programmer’s Guide
 << (int) pObject << endl;
if (isRed (*pObject))

{
cout << "red." << endl;
}

else if (isBlue (*pObject))
{
cout << "blue." << endl;
}

else if (isGreen (*pObject))
{
cout << "green." << endl;
}

}

/***
*
* objectTypeShowByName - ascertain the type of a registered object
*
* Lookup 'objectName' in the global object registry and
* print the type of the associated object.
*
* RETURNS : N/A
*/

void objectTypeShowByName
(
char* objectName
)
{
cout << "Looking up object '" << objectName << "'" << endl;
object_t *pObject = objectRegistryGet ().lookup (objectName);
if (pObject != NULL)

{
objectTypeShow (pObject);
}

else
{
cout << "No such object in the Object Registry." << endl;
}

}

/***
*
* objectRegistryShow - show contents of global object registry
*
* RETURNS : N/A
*/

void objectRegistryShow ()
{
cout << "Showing Object Registry ..." << endl;
objectRegistryGet ().list ();
}

246

5

5
C++ Development
/***
*
* classRegistryShow - show contents of global class registry
*
* RETURNS : N/A
*/

void classRegistryShow ()
{
cout << "Showing Class Registry ..." << endl;
classRegistryGet ().list ();
}

/* factory.h - class declarations for the object factory */

/* Copyright 1993-1998 Wind River Systems, Inc. */

/*
modification history

01a,05oct98,sn wrote
*/

#include <vxWorks.h>
#include <iostream.h>
#include <string>
#include <typeinfo>
#include <map>

/*
 * object_t hierarchy
 *
 * object_t
 * |
 * +------------+------------+
 * | | |
 * red_t blue_t green_t
 *
 */

struct object_t
{
virtual void method () {}
};

struct red_t : object_t
{
};

struct blue_t : object_t
{
};
247

VxWorks 5.4
Programmer’s Guide
struct green_t : object_t
{
};

/*
 * object_factory_t hierarchy
 *
 *
 * object_factory_t
 * |
 * +--------------------+--------------------+
 * | | |
 * red_factory_t blue_factory_t green_factory_t

 */

struct object_factory_t
{
virtual object_t* create () = 0;
};

struct red_factory_t : object_factory_t
{
red_t* create () { return new red_t; }
};

struct blue_factory_t : object_factory_t
{
blue_t* create () { return new blue_t; }
};

struct green_factory_t : object_factory_t
{
green_t* create () { return new green_t; }
};

/*
 * registry_t<T> - a registry of objects of type T
 *
 * The registry maps user readable names to pointers to objects.
 *
 */

template <class T> class registry_t
{

private:
typedef map <string, T*> map_t;
map_t registry;

public:
void insert (string objectName, T* pObject);
T* lookup (string objectName);
void list ();
};
248

5

5
C++ Development
/* object_registry_t - a registry of objects derived from object_t */

typedef registry_t <object_t> object_registry_t;

/* class_registry_t - a registry of object factories ('classes') */

class class_registry_t : public registry_t <object_factory_t>
{

public:
object_t* create (string className) ;
};

/*
 * template method definitions
 *
 * It is common to put template method definitions in header
 * files so that they may be instantiated whenever necessary.
 *
 */

/***
*
* registry_t<T>::insert - register an object
*
* Register object pointed to by pObject under 'objectName'.
*
* RETURNS : N/A
*/

template <class T>
void registry_t<T>::insert

(
string objectName,
T* pObject
)
{
registry [objectName] = pObject;
}

/***
*
* registry_t<T>::lookup - lookup an object by name
*
* Lookup 'objectName' in this registry and return a pointer
* to the corresponding object.
*
* RETURNS : a pointer to an object or NULL
*/

template <class T>
T* registry_t<T>::lookup

(
string objectName
)

249

VxWorks 5.4
Programmer’s Guide
{
return registry [objectName];
}

/***
*
* registry_t<T>::list - list objects in this registry
*
* RETURNS : N/A
*/

template <class T>
void registry_t<T>::list ()

{
cout << "Name \t" << "Address" << endl;
cout << "==" << endl;
for (map_t::iterator i = registry.begin ();

 i != registry.end (); ++i)
{
cout << i -> first << " \t"

 << "0x" << hex << (int) i -> second << endl;
}

}

/* function declarations */

/* objectCreate - create an object of a given type */
object_t* objectCreate (char* className, char* objectName);

/* objectTypeShowByName - ascertain the type of a registered object */
void objectTypeShowByName (char* objectName);

/* objectRegistryShow - show contents of global object registry */
void objectRegistryShow ();

/* classRegistryShow - show contents of global class registry */
void classRegistryShow ();

5.5 Wind Foundation Classes

The Wind Foundation Classes include three libraries:

– VxWorks Wrapper Class library

– Tools.h++ library from Rogue Wave Software

The VxWorks Wrapper Class library provides a thin C++ interface to several

standard VxWorks modules. The Tools.h++ foundation class library from Rogue

Wave Software supports a variety of C++ features.
250

5

5
C++ Development
5.5.1 VxWorks Wrapper Class Library

The classes in this library are called wrapper classes because each class

encapsulates, or wraps, the interfaces for some portion of standard VxWorks

functionality. Select INCLUDE_CPLUS_VXW for inclusion in the project facility

VxWorks view to configure this library into VxWorks; see 5.2.4 Configuration
Constants, p.231.

The VxWorks Wrapper Class library header files reside in the standard VxWorks

header file directory, installDir/target/h. The classes and their corresponding

header files are shown in Table 5-1. To use one of these classes, include the

corresponding header file in the appropriate modules of your application.

! CAUTION: In order to prevent dependency conflicts between VxWorks libraries

and Rogue Wave libraries, all VxWorks libraries, including the VxWorks Wrapper

Class Library, should be included before all Rogue Wave libraries, including the

Tools.h++ library.

Table 5-1 Header Files for VxWorks Wrapper Classes

Header File Description

vxwLoadLib.h Object module loader and unloader (wraps loadLib, unldLib,

moduleLib)

vxwLstLib.h Linked lists (wraps lstLib)

vxwMemPartLib.h Memory partitions (wraps memLib)

vxwMsgQLib.h Message queues (wraps msgQLib)

vxwRngLib.h Ring buffers (wraps rngLib)

vxwSemLib.h Semaphores (wraps semLib)

vxwSmLib.h Shared memory objects (adds support for shared memory semaphores,

message queues, and memory partitions)

vxwSymLib.h Symbol tables (wraps symLib)

vxwTaskLib.h Tasks (wraps taskLib, envLib, errnoLib, sigLib, and taskVarLib)

vxwWdLib.h Watchdog timers (wraps wdLib)
251

VxWorks 5.4
Programmer’s Guide
The VxWorks Wrapper Classes are designed to provide C++ language bindings to

VxWorks modules that are inherently object-oriented, but for which only C

bindings have previously been available. Figure 5-1 shows the inheritance

relationships for all of the VxWorks Wrapper Classes. The classes are named to

correspond with the VxWorks features that they wrap. For example, VXWMsgQ
is the class of message queues, and provides a C++ interface to msgQLib.

Example 5-3 Watchdog Timers

To illustrate the way in which the wrapper classes provide C++ language bindings

for VxWorks objects, the following example exhibits methods in the watchdog

timer class, VXWWd. See 2.6 Watchdog Timers, p.90 for general information about

watchdog timers.

! CAUTION: The classes VXWError and VXWIdObject are used internally by the

VxWorks Wrapper Classes. They are listed in Figure 5-1 for completeness only.

These two classes are not intended for direct use by applications.

Figure 5-1 Wrapper-Class Inheritance

VXWError

VXWIdObject

VXWList

VXWMemPart

VXWModule

VXWMsgQ

VXWRingBuf

VXWBSem

VXWCSem

VXWMSem

VXWSmBSem

VXWSmCSem

VXWSmName

VXWSymTab

VXWTask

VXWWd

VXWSem

VXWSmMemBlock

VXWSmSem

VXWSmMemPart

VXWSmMsgQ

(Derived classes appear to the right.)
252

5

5
C++ Development
/* Create a watchdog timer and set it to go off in 3 seconds. */

/* includes */

#include "vxWorks.h"
#include "logLib.h"
#include "vxwWdLib.h"

/* defines */

#define SECONDS (3)

task (void)
 {
 /* Create watchdog */

[1] VXWWd myWatchDog;

/* Set timer to go off in SECONDS - printing a message to stdout */

[2] if (myWatchDog.start (sysClkRateGet() * SECONDS, logMsg,
int ("Watchdog timer just expired\n")) == ERROR)

 return (ERROR);

while (TIMER_NEEDED)
{
/* ... */
}

[3] }

A notable difference from the C interface is that the wrapper classes allow you to

manipulate watchdog timers as objects rather than through an object ID. Line [1]

creates and names a watchdog object; C++ automatically calls the VXWWd
constructor, implicitly invoking the C routine wdCreate() to create a watchdog

timer.

Line [2] in the example illustrates how to use a method from the wrapper classes.

The example invokes the method start() for the instance myWatchDog of the class

VXWWd to call the timer. Because this method is invoked on a specific object, the

argument list for the method start() does not require an argument to identify

which timer to start (unlike wdStart(), the corresponding C routine).

Finally, because myWatchDog is a local object, exiting from the routine task() on

line [3] automatically calls the destructor for the VXWWd watchdog class. This

implicit call to the destructor deallocates the watchdog object, and if the timer was

still running removes it from the system timer queues. Thus, for objects declared

on the stack, it is not necessary to call a routine equivalent to the C routine

wdDelete(). (However, if an object is created dynamically with the operator new,

you must delete it explicitly with the operator delete, once your application no

longer needs the object.)
253

VxWorks 5.4
Programmer’s Guide
For details of the wrapper classes and on each of the wrapper class functions, see

the VxWorks Reference Manual.

5.5.2 Tools.h++ Library

Tools.h++ is an industry-standard foundation class library from Rogue Wave

Software which supports the following features:

– A complete set of collection classes

– Template based classes

– Persistent store facility

– File classes and file space manager

– B-tree disk retrieval

– Multi-thread safety

– Multi-byte and wide character strings

– Localized string collation

– Parse and format times, dates, and currency in multiple locales

– Support for multiple time zones and daylight savings rules

– Support for localized messages

– Localized I/O streams

This library is configured into VxWorks by selecting INCLUDE_CPLUS_TOOLS for

inclusion in the project facility VxWorks view; see 5.2.4 Configuration Constants,

p.231.

The Tools.h++ library header files reside in the VxWorks header file directory

installDir/target/h/rw. To use this library, #include one or more of these header files

after the #include "vxWorks.h" statement and after the #include statements for all

other VxWorks libraries in the appropriate modules of your application. For a list

of all the header files and details on this library, see Rogue Wave’s Tools.h++
Introduction and Reference Manual.
254

6
Shared-Memory Objects

Optional Component VxMP
6.1 Introduction

VxMP is an optional VxWorks component that provides shared-memory objects

dedicated to high-speed synchronization and communication between tasks

running on separate CPUs. For information on how to install VxMP, see Tornado
Getting Started.

Shared-memory objects are a class of system objects that can be accessed by tasks

running on different processors. They are called shared-memory objects because the

object’s data structures must reside in memory accessible by all processors.

Shared-memory objects are an extension of local VxWorks objects. Local objects are

only available to tasks on a single processor. VxMP supplies three kinds of shared-

memory objects:

■ shared semaphores (binary and counting)

■ shared message queues

■ shared-memory partitions (system- and user-created partitions)

Shared-memory objects provide the following advantages:

■ A transparent interface that allows shared-memory objects to be manipulated

with the same routines that are used for manipulating local objects.

■ High-speed inter-processor communication—no unnecessary packet passing

is required.

■ The shared memory can reside either in dual-ported RAM or on a separate

memory board.
255

VxWorks 5.4
Programmer’s Guide
The components of VxMP consist of the following: a name database

(smNameLib), shared semaphores (semSmLib), shared message queues

(msgQSmLib), and a shared-memory allocator (smMemLib).

This chapter presents a detailed description of each shared-memory object and

internal considerations. It then describes configuration and troubleshooting.

6.2 Using Shared-Memory Objects

VxMP provides a transparent interface that makes it easy to execute code using

shared-memory objects on both a multiprocessor system and a single-processor

system. After an object is created, tasks can operate on shared objects with the

same routines used to operate on their corresponding local objects. For example,

shared semaphores, shared message queues, and shared-memory partitions have

the same syntax and interface as their local counterparts. Routines such as

semGive() , semTake(), msgQSend(), msgQReceive(), memPartAlloc() , and

memPartFree() operate on both local and shared objects. Only the create routines

are different. This allows an application to run in either a single-processor or a

multiprocessor environment with only minor changes to system configuration,

initialization, and object creation.

All shared-memory objects can be used on a single-processor system. This is useful

for testing an application before porting it to a multiprocessor configuration.

However, for objects that are used only locally, local objects always provide the

best performance.

After the shared-memory facilities are initialized (see 6.4 Configuration, p.279 for

initialization differences), all processors are treated alike. Tasks on any CPU can

create and use shared-memory objects. No processor has priority over another

from a shared-memory object’s point of view.1

Systems making use of shared memory can include a combination of supported

architectures. This enables applications to take advantage of different processor

types and still have them communicate. However, on systems where the

processors have different byte ordering, you must call the macros ntohl and htonl
to byte-swap the application’s shared data (see VxWorks Network Programmer’s
Guide: TCP/IP Under VxWorks).

1. Do not confuse this type of priority with the CPU priorities associated with VMEbus access.
256

6

6
Shared-Memory Objects
When an object is created, an object ID is returned to identify it. For tasks on

different CPUs to access shared-memory objects, they must be able to obtain this

ID. An object’s ID is the same regardless of the CPU. This allows IDs to be passed

using shared message queues, data structures in shared memory, or the name

database.

Throughout the remainder of this chapter, system objects under discussion refer to

shared objects unless otherwise indicated.

6.2.1 Name Database

The name database allows the association of any value to any name, such as a

shared-memory object’s ID with a unique name. It can communicate or advertise a

shared-memory block’s address and object type. The name database provides

name-to-value and value-to-name translation, allowing objects in the database to

be accessed either by name or by value. While other methods exist for advertising

an object’s ID, the name database is a convenient method for doing this.

Typically the task that creates an object also advertises the object’s ID by means of

the name database. By adding the new object to the database, the task associates

the object’s ID with a name. Tasks on other processors can look up the name in the

database to get the object’s ID. After the task has the ID, it can use it to access the

object.

For example, task t1 on CPU 1 creates an object. The object ID is returned by the

creation routine and entered in the name database with the name myObj. For task

t2 on CPU 0 to operate on this object, it first finds the ID by looking up the name

myObj in the name database.

This same technique can be used to advertise a shared-memory address. For

example, task t1 on CPU 0 allocates a chunk of memory and adds the address to

the database with the name mySharedMem. Task t2 on CPU 1 can find the address

of this shared memory by looking up the address in the name database using

mySharedMem.

Tasks on different processors can use an agreed-upon name to get a newly created

object’s value. See Table 6-1 for a list of name service routines. Note that retrieving

an ID from the name database need occur only one time for each task, and usually

occurs during application initialization.

The name database service routines automatically convert to or from network-byte

order; do not call htonl() or ntohl() explicitly for values from the name database.

The object types listed in Table 6-2 are defined in smNameLib.h.
257

VxWorks 5.4
Programmer’s Guide
The following example shows the name database as displayed by

smNameShow(), which is automatically included if INCLUDE_SM_OBJ is selected

for inclusion in the project facility VxWorks view. The parameter to

smNameShow() specifies the level of information displayed; in this case, 1

indicates that all information is shown. For additional information on

smNameShow(), see its reference entry.

-> smNameShow 1
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Name in Database Max : 100 Current : 5 Free : 95
Name Value Type
----------------- ------------- -------------
myMemory 0x3835a0 SM_BLOCK
myMemPart 0x3659f9 SM_PART_ID
myBuff 0x383564 SM_BLOCK
mySmSemaphore 0x36431d SM_SEM_B
myMsgQ 0x365899 SM_MSG_Q

Table 6-1 Name Service Routines

Routine Functionality

smNameAdd() Add a name to the name database.

smNameRemove() Remove a name from the name database.

smNameFind() Find a shared symbol by name.

smNameFindByValue() Find a shared symbol by value.

smNameShow() Display the name database to the standard output device;

automatically included if INCLUDE_SM_OBJ is selected.

Table 6-2 Shared-Memory Object Types

Constant Hex Value

T_SM_SEM_B 0

T_SM_SEM_C 1

T_SM_MSG_Q 2

T_SM_PART_ID 3

T_SM_BLOCK 4
258

6

6
Shared-Memory Objects
6.2.2 Shared Semaphores

Like local semaphores, shared semaphores provide synchronization by means of

atomic updates of semaphore state information. See 2. Basic OS in this manual and

the reference entry for semLib for a complete discussion of semaphores. Shared

semaphores can be given and taken by tasks executing on any CPU with access to

the shared memory. They can be used for either synchronization of tasks running

on different CPUs or mutual exclusion for shared resources.

To use a shared semaphore, a task creates the semaphore and advertises its ID. This

can be done by adding it to the name database. A task on any CPU in the system

can use the semaphore by first getting the semaphore ID (for example, from the

name database). When it has the ID, it can then take or give the semaphore.

In the case of employing shared semaphores for mutual exclusion, typically there

is a system resource that is shared between tasks on different CPUs and the

semaphore is used to prevent concurrent access. Any time a task requires exclusive

access to the resource, it takes the semaphore. When the task is finished with the

resource, it gives the semaphore.

For example, there are two tasks, t1 on CPU 0 and t2 on CPU 1. Task t1 creates the

semaphore and advertises the semaphore’s ID by adding it to the database and

assigning the name myMutexSem. Task t2 looks up the name myMutexSem in the

database to get the semaphore’s ID. Whenever a task wants to access the resource,

it first takes the semaphore by using the semaphore ID. When a task is done using

the resource, it gives the semaphore.

In the case of employing shared semaphores for synchronization, assume a task on

one CPU must notify a task on another CPU that some event has occurred. The task

being synchronized pends on the semaphore waiting for the event to occur. When

the event occurs, the task doing the synchronizing gives the semaphore.

For example, there are two tasks, t1 on CPU 0 and t2 on CPU 1. Both t1 and t2 are

monitoring robotic arms. The robotic arm that is controlled by t1 is passing a

physical object to the robotic arm controlled by t2. Task t2 moves the arm into

position but must then wait until t1 indicates that it is ready for t2 to take the object.

Task t1 creates the shared semaphore and advertises the semaphore’s ID by adding

it to the database and assigning the name objReadySem. Task t2 looks up the name

objReadySem in the database to get the semaphore’s ID. It then takes the

semaphore by using the semaphore ID. If the semaphore is unavailable, t2 pends,

waiting for t1 to indicate that the object is ready for t2. When t1 is ready to transfer

control of the object to t2, it gives the semaphore, readying t2 on CPU1.

There are two types of shared semaphores, binary and counting. Shared

semaphores have their own create routines and return a SEM_ID. Table 6-3 lists the
259

VxWorks 5.4
Programmer’s Guide
create routines. All other semaphore routines, except semDelete(), operate

transparently on the created shared semaphore.

The use of shared semaphores and local semaphores differs in several ways:

■ The shared semaphore queuing order specified when the semaphore is created

must be FIFO. Figure 6-1 shows two tasks executing on different CPUs, both

trying to take the same semaphore. Task 1 executes first, and is put at the front

of the queue because the semaphore is unavailable (empty). Task 2 (executing

on a different CPU) tries to take the semaphore after task 1’s attempt and is put

on the queue behind task 1.

■ Shared semaphores cannot be given from interrupt level.

■ Shared semaphores cannot be deleted. Attempts to delete a shared semaphore

return ERROR and set errno to S_smObjLib_NO_OBJECT_DESTROY.

Use semInfo() to get the shared task control block of tasks pended on a shared

semaphore. Use semShow(), if INCLUDE_SEM_SHOW is included in the project

facility VxWorks view, to display the status of the shared semaphore and a list of

pended tasks. The following example displays detailed information on the shared

semaphore mySmSemaphoreId as indicated by the second argument (0 =

summary, 1 = details):

-> semShow mySmSemaphoreId, 1
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Semaphore Id : 0x36431d
Semaphore Type : SHARED BINARY
Task Queuing : FIFO
Pended Tasks : 2
State : EMPTY
TID CPU Number Shared TCB
------------- ------------- --------------
0xd0618 1 0x364204
0x3be924 0 0x36421c

Table 6-3 Shared Semaphore Create Routines

Create Routine Description

semBSmCreate() Create a shared binary semaphore.

semCSmCreate() Create a shared counting semaphore.
260

6

6
Shared-Memory Objects
Example 6-1 Shared Semaphores

The following code example depicts two tasks executing on different CPUs and

using shared semaphores. The routine semTask1() creates the shared semaphore,

initializing the state to full. It adds the semaphore to the name database (to enable

the task on the other CPU to access it), takes the semaphore, does some processing,

and gives the semaphore. The routine semTask2() gets the semaphore ID from the

database, takes the semaphore, does some processing, and gives the semaphore.

/* semExample.h - shared semaphore example header file */

#define SEM_NAME "mySmSemaphore"

/* semTask1.c - shared semaphore example */

/* This code is executed by a task on CPU #1 */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"

Figure 6-1 Shared Semaphore Queues

SHARED MEMORY

task2

task1

Pended Queue Semaphore

EMPTY

Executes on CPU 1
before task2:

Executes on CPU 2 after
task1 is put on queue:

State

Binary Shared Semaphore

task2 ()
{
...
semTake (semSmId,t);
...
}

task1 ()
{
...
semTake (semSmId,t);
...
}

261

VxWorks 5.4
Programmer’s Guide
#include "stdio.h"
#include "taskLib.h"
#include "semExample.h"

/**
*
* semTask1 - shared semaphore user
*/

STATUS semTask1 (void)
{
SEM_ID semSmId;

/* create shared semaphore */

if ((semSmId = semBSmCreate (SEM_Q_FIFO, SEM_FULL)) == NULL)
return (ERROR);

/* add object to name database */

if (smNameAdd (SEM_NAME, semSmId, T_SM_SEM_B) == ERROR)
return (ERROR);

/* grab shared semaphore and hold it for awhile */

semTake (semSmId, WAIT_FOREVER);

/* normally do something useful */

printf ("Task1 has the shared semaphore\n");
taskDelay (sysClkRateGet () * 5);
printf ("Task1 is releasing the shared semaphore\n");

/* release shared semaphore */

semGive (semSmId);

return (OK);
}

/* semTask2.c - shared semaphore example */

/* This code is executed by a task on CPU #2. */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"

#include "smNameLib.h"
#include "stdio.h"
#include "semExample.h"
262

6

6
Shared-Memory Objects
/**
*
* semTask2 - shared semaphore user
*/

STATUS semTask2 (void)
{
SEM_ID semSmId;
int objType;

/* find object in name database */

if (smNameFind (SEM_NAME, (void **) &semSmId, &objType, WAIT_FOREVER)
== ERROR)
return (ERROR);

/* take the shared semaphore */

printf ("semTask2 is now going to take the shared semaphore\n");
semTake (semSmId, WAIT_FOREVER);

/* normally do something useful */

printf ("Task2 got the shared semaphore!!\n");

/* release shared semaphore */

semGive (semSmId);

printf ("Task2 has released the shared semaphore\n");

return (OK);
}

6.2.3 Shared Message Queues

Shared message queues are FIFO queues used by tasks to send and receive variable-

length messages on any of the CPUs that have access to the shared memory. They

can be used either to synchronize tasks or to exchange data between tasks running

on different CPUs. See 2. Basic OS in this manual and the reference entry for

msgQLib for a complete discussion of message queues.

To use a shared message queue, a task creates the message queue and advertises

its ID. A task that wants to send or receive a message with this message queue first

gets the message queue’s ID. It then uses this ID to access the message queue.

For example, consider a typical server/client scenario where a server task t1 (on

CPU 1) reads requests from one message queue and replies to these requests with

a different message queue. Task t1 creates the request queue and advertises its ID

by adding it to the name database assigning the name requestQue. If task t2 (on
263

VxWorks 5.4
Programmer’s Guide
CPU 0) wants to send a request to t1, it first gets the message queue ID by looking

up the name requestQue in the name database. Before sending its first request,

task t2 creates a reply message queue. Instead of adding its ID to the database, it

advertises the ID by sending it as part of the request message. When t1 receives the

request from the client, it finds in the message the ID of the queue to use when

replying to that client. Task t1 then sends the reply to the client by using this ID.

To pass messages between tasks on different CPUs, first create the message queue

by calling msgQSmCreate(). This routine returns a MSG_Q_ID. This ID is used for

sending and receiving messages on the shared message queue.

Like their local counterparts, shared message queues can send both urgent or

normal priority messages.

The use of shared message queues and local message queues differs in several

ways:

■ The shared message queue task queueing order specified when a message

queue is created must be FIFO. Figure 6-2 shows two tasks executing on

different CPUs, both trying to receive a message from the same shared

message queue. Task 1 executes first, and is put at the front of the queue

because there are no messages in the message queue. Task 2 (executing on a

different CPU) tries to receive a message from the message queue after task 1’s

attempt and is put on the queue behind task 1.

■ Messages cannot be sent on a shared message queue at interrupt level. (This is

true even in NO_WAIT mode.)

■ Shared message queues cannot be deleted. Attempts to delete a shared

message queue return ERROR and sets errno to

S_smObjLib_NO_OBJECT_DESTROY.

To achieve optimum performance with shared message queues, align send and

receive buffers on 4-byte boundaries.

To display the status of the shared message queue as well as a list of tasks pended

on the queue, select INCLUDE_MSG_Q_SHOW for inclusion in the project facility

VxWorks view and call msgQShow(). The following example displays detailed

information on the shared message queue 0x7f8c21 as indicated by the second

argument (0 = summary display, 1 = detailed display).

-> msgQShow 0x7f8c21, 1
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:
264

6

6
Shared-Memory Objects
Message Queue Id : 0x7f8c21
Task Queuing : FIFO
Message Byte Len : 128
Messages Max : 10
Messages Queued : 0
Receivers Blocked : 1
Send timeouts : 0
Receive timeouts : 0
Receivers blocked :
TID CPU Number Shared TCB
---------- -------------------- --------------
0xd0618 1 0x1364204

Example 6-2 Shared Message Queues

In the following code example, two tasks executing on different CPUs use shared

message queues to pass data to each other. The server task creates the request

message queue, adds it to the name database, and reads a message from the queue.

The client task gets the smRequestQId from the name database, creates a reply

message queue, bundles the ID of the reply queue as part of the message, and

sends the message to the server. The server gets the ID of the reply queue and uses

it to send a message back to the client. This technique requires the use of the

network byte-order conversion macros htonl() and ntohl(), because the numeric

queue ID is passed over the network in a data field.

Figure 6-2 Shared Message Queues

Pended Queue
Message

Executes on CPU 1 before task2:

Executes on CPU 2 after task1:

task2

task1

Queue

Shared Message Queue

SHARED MEMORY

EMPTY

task2 ()
{
...
msgQReceive (smMsgQId,...);
...
}

task1 ()
{
...
msgQReceive (smMsgQId,...);
...
}

265

VxWorks 5.4
Programmer’s Guide
/* msgExample.h - shared message queue example header file */

#define MAX_MSG (10)
#define MAX_MSG_LEN (100)
#define REQUEST_Q "requestQue"

typedef struct message
{
MSG_Q_ID replyQId;
char clientRequest[MAX_MSG_LEN];
} REQUEST_MSG;

/* server.c - shared message queue example server */

/* This file contains the code for the message queue server task. */

#include "vxWorks.h"
#include "msgQLib.h"
#include "msgQSmLib.h"
#include "stdio.h"
#include "smNameLib.h"
#include "msgExample.h"
#include "netinet/in.h"

#define REPLY_TEXT "Server received your request"

/**
*
* serverTask - receive and process a request from a shared message queue
*/

STATUS serverTask (void)
{
MSG_Q_ID smRequestQId; /* request shared message queue */
REQUEST_MSG request; /* request text */

/* create a shared message queue to handle requests */

if ((smRequestQId = msgQSmCreate (MAX_MSG, sizeof (REQUEST_MSG),
MSG_Q_FIFO)) == NULL)
return (ERROR);

/* add newly created request message queue to name database */

if (smNameAdd (REQUEST_Q, smRequestQId, T_SM_MSG_Q) == ERROR)
return (ERROR);

/* read messages from request queue */

FOREVER
266

6

6
Shared-Memory Objects
{
if (msgQReceive (smRequestQId, (char *) &request, sizeof (REQUEST_MSG),

WAIT_FOREVER) == ERROR)
return (ERROR);

/* process request - in this case simply print it */

printf ("Server received the following message:\n%s\n",
request.clientRequest);

/* send a reply using ID specified in client’s request message */

if (msgQSend ((MSG_Q_ID) ntohl ((int) request.replyQId),
REPLY_TEXT, sizeof (REPLY_TEXT),
WAIT_FOREVER, MSG_PRI_NORMAL) == ERROR)
return (ERROR);

}
}

/* client.c - shared message queue example client */

/* This file contains the code for the message queue client task. */

#include "vxWorks.h"
#include "msgQLib.h"
#include "msgQSmLib.h"
#include "smNameLib.h"
#include "stdio.h"
#include "msgExample.h"
#include "netinet/in.h"

/**
*
* clientTask - sends request to server and reads reply
*/

STATUS clientTask
(
char * pRequestToServer /* request to send to the server */

/* limited to 100 chars */
)
{
MSG_Q_ID smRequestQId; /* request message queue */
MSG_Q_ID smReplyQId; /* reply message queue */
REQUEST_MSG request; /* request text */
int objType; /* dummy variable for smNameFind */
char serverReply[MAX_MSG_LEN]; /*buffer for server’s reply */

/* get request queue ID using its name */

if (smNameFind (REQUEST_Q, (void **) &smRequestQId, &objType,
WAIT_FOREVER) == ERROR)
return (ERROR);
267

VxWorks 5.4
Programmer’s Guide
/* create reply queue, build request and send it to server */

if ((smReplyQId = msgQSmCreate (MAX_MSG, MAX_MSG_LEN,
MSG_Q_FIFO)) == NULL)
return (ERROR);

request.replyQId = (MSG_Q_ID) htonl ((int) smReplyQId);

strcpy (request.clientRequest, pRequestToServer);

if (msgQSend (smRequestQId, (char *) &request, sizeof (REQUEST_MSG),
WAIT_FOREVER, MSG_PRI_NORMAL) == ERROR)
return (ERROR);

/* read reply and print it */

if (msgQReceive (request.replyQId, serverReply, MAX_MSG_LEN,
WAIT_FOREVER) == ERROR)
return (ERROR);

printf ("Client received the following message:\n%s\n", serverReply);

return (OK);
}

6.2.4 Shared-Memory Allocator

The shared-memory allocator allows tasks on different CPUs to allocate and release

variable size chunks of memory that are accessible from all CPUs with access to the

shared-memory system. Two sets of routines are provided: low-level routines for

manipulating user-created shared-memory partitions, and high-level routines for

manipulating a shared-memory partition dedicated to the shared-memory system

pool. (This organization is similar to that used by the local-memory manager,

memPartLib.)

Shared-memory blocks can be allocated from different partitions. Both a shared-

memory system partition and user-created partitions are available. User-created

partitions can be created and used for allocating data blocks of a particular size.

Memory fragmentation is avoided when fixed-sized blocks are allocated from

user-created partitions dedicated to a particular block size.

Shared-Memory System Partition

To use the shared-memory system partition, a task allocates a shared-memory

block and advertises its address. One way of advertising the ID is to add the

address to the name database. The routine used to allocate a block from the shared-
268

6

6
Shared-Memory Objects
memory system partition returns a local address. Before the address is advertised

to tasks on other CPUs, this local address must be converted to a global address.

Any task that must use the shared memory must first get the address of the

memory block and convert the global address to a local address. When the task has

the address, it can use the memory.

However, to address issues of mutual exclusion, typically a shared semaphore is

used to protect the data in the shared memory. Thus in a more common scenario,

the task that creates the shared memory (and adds it to the database) also creates a

shared semaphore. The shared semaphore ID is typically advertised by storing it

in a field in the shared data structure residing in the shared-memory block. The

first time a task must access the shared data structure, it looks up the address of the

memory in the database and gets the semaphore ID from a field in the shared data

structure. Whenever a task must access the shared data, it must first take the

semaphore. Whenever a task is finished with the shared data, it must give the

semaphore.

For example, assume two tasks executing on two different CPUs must share data.

Task t1 executing on CPU 1 allocates a memory block from the shared-memory

system partition and converts the local address to a global address. It then adds the

global address of the shared data to the name database with the name

mySharedData. Task t1 also creates a shared semaphore and stores the ID in the

first field of the data structure residing in the shared memory. Task t2 executing on

CPU 2 looks up the name mySharedData in the name database to get the address

of the shared memory. It then converts this address to a local address. Before

accessing the data in the shared memory, t2 gets the shared semaphore ID from the

first field of the data structure residing in the shared-memory block. It then takes

the semaphore before using the data and gives the semaphore when it is done

using the data.

User-Created Partitions

To make use of user-created shared-memory partitions, a task creates a shared-

memory partition and adds it to the name database. Before a task can use the

shared-memory partition, it must first look in the name database to get the

partition ID. When the task has the partition ID, it can access the memory in the

shared-memory partition.

For example, task t1 creates a shared-memory partition and adds it to the name

database using the name myMemPartition. Task t2 executing on another CPU

wants to allocate memory from the new partition. Task t2 first looks up
269

VxWorks 5.4
Programmer’s Guide
myMemPartition in the name database to get the partition ID. It can then allocate

memory from it, using the ID.

Using the Shared-Memory System Partition

The shared-memory system partition is analogous to the system partition for local

memory. Table 6-4 lists routines for manipulating the shared-memory system

partition.

Routines that return a pointer to allocated memory return a local address (that is,

an address suitable for use from the local CPU). To share this memory across

processors, this address must be converted to a global address before it is

advertised to tasks on other CPUs. Before a task on another CPU uses the memory,

it must convert the global address to a local address. Macros and routines are

provided to convert between local addresses and global addresses; see the header

file smObjLib.h and the reference entry for smObjLib.

Table 6-4 Shared-Memory System Partition Routines

Routine Functionality

smMemMalloc() Allocate a block of shared system memory.

smMemCalloc() Allocate a block of shared system memory for an array.

smMemRealloc() Resize a block of shared system memory.

smMemFree() Free a block of shared system memory.

smMemShow() Display usage statistics of the shared-memory system

partition on the standard output device; this routine is

automatically included if INCLUDE_SM_OBJ is selected for

inclusion in the project facility VxWorks view.

smMemOptionsSet() Set the debugging options for the shared-memory system

partition.

smMemAddToPool() Add memory to the shared-memory system pool.

smMemFindMax() Find the size of the largest free block in the shared-memory

system partition.
270

6

6
Shared-Memory Objects
Example 6-3 Shared-Memory System Partition

The following code example uses memory from the shared-memory system

partition to share data between tasks on different CPUs. The first member of the

data structure is a shared semaphore that is used for mutual exclusion. The send

task creates and initializes the structure, then the receive task accesses the data and

displays it.

/* buffProtocol.h - simple buffer exchange protocol header file */

#define BUFFER_SIZE 200 /* shared data buffer size */
#define BUFF_NAME "myMemory" /* name of data buffer in database */

typedef struct shared_buff
{
SEM_ID semSmId;
char buff [BUFFER_SIZE];
} SHARED_BUFF;

/* buffSend.c - simple buffer exchange protocol send side */

/* This file writes to the shared memory. */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "smObjLib.h"
#include "stdio.h"
#include "buffProtocol.h"

/**
*
* buffSend - write to shared semaphore protected buffer
*
*/

STATUS buffSend (void)
{
SHARED_BUFF * pSharedBuff;
SEM_ID mySemSmId;

/* grab shared system memory */

pSharedBuff = (SHARED_BUFF *) smMemMalloc (sizeof (SHARED_BUFF));
271

VxWorks 5.4
Programmer’s Guide
/*
* Initialize shared buffer structure before adding to database. The
* protection semaphore is initially unavailable and the receiver blocks.

 */

if ((mySemSmId = semBSmCreate (SEM_Q_FIFO, SEM_EMPTY)) == NULL)
return (ERROR);

pSharedBuff->semSmId = (SEM_ID) htonl ((int) mySemSmId);

/*
 * Convert address of shared buffer to a global address and add to
 * database.
 */

if (smNameAdd (BUFF_NAME, (void *) smObjLocalToGlobal (pSharedBuff),
T_SM_BLOCK) == ERROR)

return (ERROR);

/* put data into shared buffer */

sprintf (pSharedBuff->buff,"Hello from sender\n");

/* allow receiver to read data by giving protection semaphore */

if (semGive (mySemSmId) != OK)
return (ERROR);

return (OK);
}

/* buffReceive.c - simple buffer exchange protocol receive side */

/* This file reads the shared memory. */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "smObjLib.h"
#include "stdio.h"
#include "buffProtocol.h"

/**
*
* buffReceive - receive shared semaphore protected buffer
*/

STATUS buffReceive (void)
{
SHARED_BUFF * pSharedBuff;
SEM_ID mySemSmId;
int objType;
272

6

6
Shared-Memory Objects
/* get shared buffer address from name database */

if (smNameFind (BUFF_NAME, (void **) &pSharedBuff,
&objType, WAIT_FOREVER) == ERROR)

return (ERROR);

/* convert global address of buff to its local value */

pSharedBuff = (SHARED_BUFF *) smObjGlobalToLocal (pSharedBuff);

/* convert shared semaphore ID to host (local) byte order */

mySemSmId = (SEM_ID) ntohl ((int) pSharedBuff->semSmId);

/* take shared semaphore before reading the data buffer */

if (semTake (mySemSmId,WAIT_FOREVER) != OK)
return (ERROR);

/* read data buffer and print it */

printf ("Receiver reading from shared memory: %s\n", pSharedBuff->buff);

/* give back the data buffer semaphore */

if (semGive (mySemSmId) != OK)
return (ERROR);

return (OK);
}

Using User-Created Partitions

Shared-memory partitions have a separate create routine, memPartSmCreate(),
that returns a MEM_PART_ID. After a user-defined shared-memory partition is

created, routines in memPartLib operate on it transparently. Note that the address

of the shared-memory area passed to memPartSmCreate() (or

memPartAddToPool()) must be the global address.

Example 6-4 User-Created Partition

This example is similar to Example 6-3, which uses the shared-memory system

partition. This example creates a user-defined partition and stores the shared data

in this new partition. A shared semaphore is used to protect the data.
273

VxWorks 5.4
Programmer’s Guide
/* memPartExample.h - shared memory partition example header file */

#define CHUNK_SIZE (2400)
#define MEM_PART_NAME "myMemPart"
#define PART_BUFF_NAME "myBuff"
#define BUFFER_SIZE (40)

typedef struct shared_buff
{
SEM_ID semSmId;
char buff [BUFFER_SIZE];
} SHARED_BUFF;

/* memPartSend.c - shared memory partition example send side */

/* This file writes to the user-defined shared memory partition. */

#include "vxWorks.h"
#include "memLib.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "smObjLib.h"
#include "smMemLib.h"
#include "stdio.h"
#include "memPartExample.h"

/***
*
* memPartSend - send shared memory partition buffer
*/

STATUS memPartSend (void)
{
char * pMem;
PART_ID smMemPartId;
SEM_ID mySemSmId;
SHARED_BUFF * pSharedBuff;

/* allocate shared system memory to use for partition */

pMem = smMemMalloc (CHUNK_SIZE);

/* Create user defined partition using the previously allocated
 * block of memory.
 * WARNING: memPartSmCreate uses the global address of a memory
 * pool as first parameter.
 */
274

6

6
Shared-Memory Objects
if ((smMemPartId = memPartSmCreate (smObjLocalToGlobal (pMem), CHUNK_SIZE))
 == NULL)

return (ERROR);

/* allocate memory from partition */

pSharedBuff = (SHARED_BUFF *) memPartAlloc (smMemPartId,
sizeof (SHARED_BUFF));

if (pSharedBuff == 0)
return (ERROR);

/* initialize structure before adding to database */

if ((mySemSmId = semBSmCreate (SEM_Q_FIFO, SEM_EMPTY)) == NULL)
return (ERROR);

pSharedBuff->semSmId = (SEM_ID) htonl ((int) mySemSmId);

/* enter shared partition ID in name database */

if (smNameAdd (MEM_PART_NAME, (void *) smMemPartId, T_SM_PART_ID) == ERROR)
return (ERROR);

/* convert shared buffer address to a global address and add to database */

if (smNameAdd (PART_BUFF_NAME, (void *) smObjLocalToGlobal(pSharedBuff),
T_SM_BLOCK) == ERROR)

return (ERROR);

/* send data using shared buffer */

sprintf (pSharedBuff->buff,"Hello from sender\n");

if (semGive (mySemSmId) != OK)
return (ERROR);

return (OK);
}

/* memPartReceive.c - shared memory partition example receive side */

/* This file reads from the user-defined shared memory partition. */

#include "vxWorks.h"
#include "memLib.h"
#include "stdio.h"
#include "semLib.h"
#include "semSmLib.h"
#include "stdio.h"
#include "memPartExample.h"
275

VxWorks 5.4
Programmer’s Guide
/***
*
* memPartReceive - receive shared memory partition buffer
*
* execute on CPU 1 - use a shared semaphore to protect shared memory
*
*/

STATUS memPartReceive (void)
{
SHARED_BUFF * pBuff;
SEM_ID mySemSmId;
int objType;

/* get shared buffer address from name database */

if (smNameFind (PART_BUFF_NAME, (void **) &pBuff, &objType,
WAIT_FOREVER) == ERROR)

return (ERROR);

/* convert global address of buffer to its local value */

pBuff = (SHARED_BUFF *) smObjGlobalToLocal (pBuff);

/* Grab shared semaphore before using the shared memory */

mySemSmId = (SEM_ID) ntohl ((int) pBuff->semSmId);
semTake (mySemSmId,WAIT_FOREVER);
printf ("Receiver reading from shared memory: %s\n", pBuff->buff);
semGive (mySemSmId);

return (OK);
}

Side Effects of Shared-Memory Partition Options

Like their local counterparts, shared-memory partitions (both system- and user-

created) can have different options set for error handling; see the reference entries

for memPartOptionsSet() and smMemOptionsSet().

If the MEM_BLOCK_CHECK option is used in the following situation, the system

can get into a state where the memory partition is no longer available. If a task

attempts to free a bad block and a bus error occurs, the task is suspended. Because

shared semaphores are used internally for mutual exclusion, the suspended task

still has the semaphore, and no other task has access to the memory partition. By

default, shared-memory partitions are created without the MEM_BLOCK_CHECK
option.
276

6

6
Shared-Memory Objects
6.3 Internal Considerations

6.3.1 System Requirements

The shared-memory region used by shared-memory objects must be visible to all

CPUs in the system. Either dual-ported memory on the master CPU (CPU 0) or a

separate memory board can be used. The shared-memory objects’ anchor must be

in the same address space as the shared-memory region. Note that the memory

does not have to appear at the same address for all CPUs.

All CPUs in the system must support indivisible read-modify-write cycle across

the (VME) bus. The indivisible RMW is used by the spin-lock mechanism to gain

exclusive access to internal shared data structures; see 6.3.2 Spin-lock Mechanism,

p.277 for details. Because all the boards must support a hardware test-and-set, the

constant SM_TAS_TYPE must be set to SM_TAS_HARD on the Parameters tab of the

project facility VxWorks view.

CPUs must be notified of any event that affects them. The preferred method is for

the CPU initiating the event to interrupt the affected CPU. The use of interrupts is

dependent on the capabilities of the hardware. If interrupts cannot be used, a

polling scheme can be employed, although this generally results in a significant

performance penalty.

The maximum number of CPUs that can use shared-memory objects is 20 (CPUs

numbered 0 through 19). The practical maximum is usually a smaller number that

depends on the CPU, bus bandwidth, and application.

6.3.2 Spin-lock Mechanism

Internal shared-memory object data structures are protected against concurrent

access by a spin-lock mechanism. The spin-lock mechanism is a loop where an

attempt is made to gain exclusive access to a resource (in this case an internal data

structure). An indivisible hardware read-modify-write cycle (hardware test-and-

set) is used for this mutual exclusion. If the first attempt to take the lock fails,

multiple attempts are made, each with a decreasing random delay between one

attempt and the next. The average time it takes between the original attempt to

take the lock and the first retry is 70 microseconds on an MC68030 at 20MHz.

Operating time for the spin-lock cycle varies greatly because it is affected by the

! CAUTION: Boards that make use of VxMP must support hardware test-and-set

(indivisible read-modify-write cycle). PowerPC is an exception; see F. PowerPC.
277

VxWorks 5.4
Programmer’s Guide
processor cache, access time to shared memory, and bus traffic. If the lock is not

obtained after the maximum number of tries specified by SM_OBJ_MAX_TRIES
(defined in the Params tab of the properties window for shared memory objects in

the VxWorks view), errno is set to S_smObjLib_LOCK_TIMEOUT. If this error

occurs, set the maximum number of tries to a higher value. Note that any failure

to take a spin-lock prevents proper functioning of shared-memory objects. In most

cases, this is due to problems with the shared-memory configuration; see

6.5.2 Troubleshooting Techniques, p.286.

6.3.3 Interrupt Latency

For the duration of the spin-lock, interrupts are disabled to avoid the possibility of

a task being preempted while holding the spin-lock. As a result, the interrupt

latency of each processor in the system is increased. However, the interrupt latency

added by shared-memory objects is constant for a particular CPU.

6.3.4 Restrictions

Unlike local semaphores and message queues, shared-memory objects cannot be

used at interrupt level. No routines that use shared-memory objects can be called

from ISRs. An ISR is dedicated to handle time-critical processing associated with

an external event; therefore, using shared-memory objects at interrupt time is not

appropriate. On a multiprocessor system, run event-related time-critical

processing on the CPU where the time-related interrupt occurred.

Note that shared-memory objects are allocated from dedicated shared-memory

pools, and cannot be deleted.

When using shared-memory objects, the maximum number of each object type

must be specified on the Params tab of the properties window; see 6.4.3 Initializing
the Shared-Memory Objects Package, p.280. If applications are creating more than the

specified maximum number of objects, it is possible to run out of memory. If this

happens, the shared object creation routine returns an error and errno is set to

S_memLib_NOT_ENOUGH_MEM. To solve this problem, first increase the

maximum number of shared-memory objects of corresponding type; see Table 6-5

for a list of the applicable configuration constants. This decreases the size of the

shared-memory system pool because the shared-memory pool uses the remainder

of the shared memory. If this is undesirable, increase both the number of the

corresponding shared-memory objects and the size of the overall shared-memory

region, SM_OBJ_MEM_SIZE. See 6.4 Configuration, p.279 for a discussion of the

constants used for configuration.
278

6

6
Shared-Memory Objects
6.3.5 Cache Coherency

When dual-ported memory is used on some boards without MMU or bus

snooping mechanisms, the data cache must be disabled for the shared-memory

region on the master CPU. If you see the following error message, make sure that

the constant INCLUDE_CACHE_ENABLE is not selected for inclusion in the

VxWorks view:

usrSmObjInit - cache coherent buffer not available. Giving up.

6.4 Configuration

To include shared-memory objects in VxWorks, select INCLUDE_SM_OBJ for

inclusion in the project facility VxWorks view. Most of the configuration is already

done automatically from usrSmObjInit() in usrConfig.c. However, you may also

need to modify some values in the Params tab of the properties window to reflect

your configuration; these are described in this section.

6.4.1 Shared-Memory Objects and Shared-Memory Network Driver

Shared-memory objects and the shared-memory network2 use the same memory

region, anchor address, and interrupt mechanism. Configuring the system to use

shared-memory objects is similar to configuring the shared-memory network

driver. For a more detailed description of configuring and using the shared-

memory network, see VxWorks Network Programmer’s Guide: Data Link Layer
Network Components. If the default value for the shared-memory anchor address is

modified, the anchor must be on a 256-byte boundary.

One of the most important aspects of configuring shared-memory objects is

computing the address of the shared-memory anchor. The shared-memory anchor

is a location accessible to all CPUs on the system, and is used by both VxMP and

the shared-memory network driver. The anchor stores a pointer to the shared-

memory header, a pointer to the shared-memory packet header (used by the

shared-memory network driver), and a pointer to the shared-memory object

header.

2. Also known as the backplane network.
279

VxWorks 5.4
Programmer’s Guide
The address of the anchor is defined in the Params tab of the Properties window

with the constant SM_ANCHOR_ADRS. If the processor is booted with the shared-

memory network driver, the anchor address is the same value as the boot device

(sm=anchorAddress). The shared-memory object initialization code uses the value

from the boot line instead of the constant. If the shared-memory network driver is

not used, modify the definition of SM_ANCHOR_ADRS as appropriate to reflect

your system.

Two types of interrupts are supported and defined by SM_INT_TYPE: mailbox

interrupts and bus interrupts (see VxWorks Network Programmer’s Guide: Data Link
Layer Network Components). Mailbox interrupts (SM_INT_MAILBOX) are the

preferred method, and bus interrupts (SM_INT_BUS) are the second choice. If

interrupts cannot be used, a polling scheme can be employed (SM_INT_NONE),

but this is much less efficient.

When a CPU initializes its shared-memory objects, it defines the interrupt type as

well as three interrupt arguments. These describe how the CPU is notified of

events. These values can be obtained for any attached CPU by calling

smCpuInfoGet().

The default interrupt method for a target is defined by SM_INT_TYPE,

SM_INT_ARG1, SM_INT_ARG2, and SM_INT_ARG3 on the Params tab.

6.4.2 Shared-Memory Region

Shared-memory objects rely on a shared-memory region that is visible to all

processors. This region is used to store internal shared-memory object data

structures and the shared-memory system partition.

The shared-memory region is usually in dual-ported RAM on the master, but it can

also be located on a separate memory card. The shared-memory region address is

defined when configuring the system as an offset from the shared-memory anchor

address, SM_ANCHOR_ADRS, as shown in Figure 6-3.

6.4.3 Initializing the Shared-Memory Objects Package

Shared-memory objects are initialized by default in the routine usrSmObjInit() in

installDir/target/src/config/usrSmObj.c. The configuration steps taken for the

master CPU differ slightly from those taken for the slaves.

The address for the shared-memory pool must be defined. If the memory is off-

board, the value must be calculated (see Figure 6-5).
280

6

6
Shared-Memory Objects
The example configuration in Figure 6-4 uses the shared memory in the master

CPU’s dual-ported RAM. On the Params tab of the properties window for the

master, SM_OFF_BOARD is FALSE and SM_ANCHOR_ADRS is 0x600.

SM_OBJ_MEM_ADRS is set to NONE, because on-board memory is used (it is

malloc’ed at run-time); SM_OBJ_MEM_SIZE is set to 0x20000. For the slave, the

board maps the base of the VME bus to the address 0x1000000. SM_OFF_BOARD is

TRUE and the anchor address is 0x1800600. This is calculated by taking the

VMEbus address (0x800000) and adding it to the anchor address (0x600). Many

boards require further address translation, depending on where the board maps

VME memory. In this example, the anchor address for the slave is 0x1800600,

because the board maps the base of the VME bus to the address 0x1000000.

Figure 6-3 Shared-Memory Layout

Figure 6-4 Example Configuration: Dual-Ported Memory

SHARED MEMORY
SM_ANCHOR_ADRS .

.

.

pointer to shared-memory
objects’ shared-memory region

shared-memory objects

~~ ~~

0x600 (default) Shared-Memory
Anchor

Shared-Memory
Region

CPU 0 CPU 1

RAM

0x600anchor

allocated
pool

VMEbus address of dual
ported RAM = 0x800000

Local address of
VMEbus address 0

is 0x1000000

sm=0x1800600
281

VxWorks 5.4
Programmer’s Guide
In the example configuration in Figure 6-5, the shared memory is on a separate

memory board. On the Params tab for the master, SM_OFF_BOARD is TRUE,

SM_ANCHOR_ADRS is 0x3000000, SM_OBJ_MEM_ADRS is set to

SM_ANCHOR_ADRS, and SM_OBJ_MEM_SIZE is set to 0x100000. For the slave

board, SM_OFF_BOARD is TRUE and the anchor address is 0x2100000. This is

calculated by taking the VMEbus address of the memory board (0x2000000) and

adding it to the local VMEbus address (0x100000).

Some additional configuration are sometimes required to make the shared

memory non-cacheable, because the shared-memory pool is accessed by all

processors on the backplane. By default, boards with an MMU have the MMU

turned on. With the MMU on, memory that is off-board must be made

non-cacheable. This is done using the data structure sysPhysMemDesc in

sysLib.c. This data structure must contain a virtual-to-physical mapping for the

VME address space used for the shared-memory pool, and mark the memory as

non-cacheable. (Most BSPs include this mapping by default.) See 7.3 Virtual
Memory Configuration, p.290 in this manual for additional information.

Figure 6-5 Example Configuration: an External Memory Board

! CAUTION: For the MC68030, if the MMU is off, data caching must be turned off

globally; see the reference entry for cacheLib.

CPU 1

VMEbus address
of RAM on external
board = 0x2000000

Local address of
VMEbus address 0

is 0x100000

sm=0x2100000

External RAM
Board (1MB)

anchor

shared-memory
pool

anchor = 0x3000000

CPU 0

Local address of
VMEbus address 0

is 0x1000000
282

6

6
Shared-Memory Objects
When shared-memory objects are initialized, the memory size as well as the

maximum number of each object type must be specified. The master processor

specifies the size of memory using the constant SM_OBJ_MEM_SIZE. Symbolic

constants are used to set the maximum number of different objects. These

constants are specified on the Params tab of the properties window. See Table 6-5

for a list of these constants.

If the size of the objects created exceeds the shared-memory region, an error

message is displayed on CPU 0 during initialization. After shared memory is

configured for the shared objects, the remainder of shared memory is used for the

shared-memory system partition.

The routine smObjShow() displays the current number of used shared-memory

objects and other statistics, as follows:

-> smObjShow
value = 0 = 0x0

The routine is automatically included if INCLUDE_SM_OBJ is selected for inclusion

in the project facility VxWorks view. The output of smObjShow() is sent to the

standard output device, and looks like the following:

Shared Mem Anchor Local Addr : 0x600
Shared Mem Hdr Local Addr : 0x363ed0
Attached CPU : 2
Max Tries to Take Lock : 0
Shared Object Type Current Maximum Available
------------------ ------- ------- ---------
Tasks 1 40 39
Binary Semaphores 3 30 27

Table 6-5 Configuration Constants for Shared-Memory Objects

Symbolic Constant
Default
Value

Description

SM_OBJ_MAX_TASK 40 Maximum number of tasks using shared-memory

objects.

SM_OBJ_MAX_SEM 30 Maximum number of shared semaphores

(counting and binary).

SM_OBJ_MAX_NAME 100 Maximum number of names in the name database.

SM_OBJ_MAX_MSG_Q 10 Maximum number of shared message queues.

SM_OBJ_MAX_MEM_PART 4 Maximum number of user-created shared-memory

partitions.
283

VxWorks 5.4
Programmer’s Guide
Counting Semaphores 0 30 27
Messages Queues 1 10 9
Memory Partitions 1 4 3
Names in Database 5 100 95

6.4.4 Configuration Example

The following example shows the configuration for a multiprocessor system with

three CPUs. The master is CPU 0, and shared memory is configured from its dual-

ported memory. This application has 20 tasks using shared-memory objects, and

uses 12 message queues and 20 semaphores. The maximum size of the name

database is the default value (100), and only one user-defined memory partition is

required. On CPU 0, the shared-memory pool is configured to be on-board. This

memory is allocated from the processor’s system memory. On CPU 1 and CPU 2,

the shared-memory pool is configured to be off-board. Table 6-6 shows the values

set on the Params tab of the properties window for INCLUDE_SM_OBJECTS in the

project facility.

! CAUTION: If the master CPU is rebooted, it is necessary to reboot all the slaves. If

a slave CPU is to be rebooted, it must not have tasks pended on a shared-memory

object.

Table 6-6 Configuration Settings for Three CPU System

CPU Symbolic Constant Value

Master

(CPU 0) SM_OBJ_MAX_TASK 20

SM_OBJ_MAX_SEM 20

SM_OBJ_MAX_NAME 100

SM_OBJ_MAX_MSG_Q 12

SM_OBJ_MAX_MEM_PART 1

SM_OFF_BOARD FALSE

SM_MEM_ADRS NONE

SM_MEM_SIZE 0x10000

SM_OBJ_MEM_ADRS NONE
284

6

6
Shared-Memory Objects
Note that for the slave CPUs, the value of SM_OBJ_MEM_SIZE is not actually used.

6.4.5 Initialization Steps

Initialization is performed by default in usrSmObjInit(), in
installDir/target/src/config/usrSmObj.c. On the master CPU, the initialization of

shared-memory objects consists of the following:

1. Setting up the shared-memory objects header and its pointer in the shared-

memory anchor, with smObjSetup().

2. Initializing shared-memory object parameters for this CPU, with smObjInit().

3. Attaching the CPU to the shared-memory object facility, with smObjAttach().

On slave CPUs, only steps 2 and 3 are required.

SM_OBJ_MEM_SIZE 0x10000

Slaves

(CPU 1,

CPU 2) SM_OBJ_MAX_TASK 20

SM_OBJ_MAX_SEM 20

SM_OBJ_MAX_NAME 100

SM_OBJ_MAX_MSG_Q 12

SM_OBJ_MAX_MEM_PART 1

SM_OFF_BOARD TRUE

SM_ANCHOR_ADRS (char *) 0xfb800000

SM_MEM_ADRS SM_ANCHOR_ADRS

SM_MEM_SIZE 0x80000

SM_OBJ_MEM_ADRS (SM_MEM_ADRS + SM_MEM_SIZE)

SM_OBJ_MEM_SIZE 0x80000

Table 6-6 Configuration Settings for Three CPU System

CPU Symbolic Constant Value
285

VxWorks 5.4
Programmer’s Guide
The routine smObjAttach() checks the setup of shared-memory objects. It looks

for the shared-memory heartbeat to verify that the facility is running. The shared-

memory heartbeat is an unsigned integer that is incremented once per second by

the master CPU. It indicates to the slaves that shared-memory objects are

initialized, and can be used for debugging. The heartbeat is the first field in the

shared-memory object header; see 6.5 Troubleshooting, p.286.

6.5 Troubleshooting

Problems with shared-memory objects can be due to a number of causes. This

section discusses the most common problems and a number of troubleshooting

tools. Often, you can locate the problem by rechecking your hardware and

software configurations.

6.5.1 Configuration Problems

Refer to the following list to confirm that your system is properly configured:

■ Be sure to verify that the constant INCLUDE_SM_OBJ is selected for inclusion

in the project facility VxWorks view for each processor using VxMP.

■ Be sure the anchor address specified is the address seen by the CPU. This can

be defined with the constant SM_ANCHOR_ADRS in the Params tab of the

properties window or at boot time (sm=) if the target is booted with the

shared-memory network.

■ If there is heavy bus traffic relating to shared-memory objects, bus errors can

occur. Avoid this problem by changing the bus arbitration mode or by

changing relative CPU priorities on the bus.

■ If memAddToPool(), memPartSmCreate(), or smMemAddToPool() fail, check

that any address you are passing to these routines is in fact a global address.

6.5.2 Troubleshooting Techniques

Use the following techniques to troubleshoot any problems you encounter:
286

6

6
Shared-Memory Objects
■ The routine smObjTimeoutLogEnable() enables or disables the printing of an

error message indicating that the maximum number of attempts to take a spin-

lock has been reached. By default, message printing is enabled.

■ The routine smObjShow() displays the status of the shared-memory objects

facility on the standard output device. It displays the maximum number of

tries a task took to get a spin-lock on a particular CPU. A high value can

indicate that an application might run into problems due to contention for

shared-memory resources.

■ The shared-memory heartbeat can be checked to verify that the master CPU

has initialized shared-memory objects. The shared-memory heartbeat is in the

first 4-byte word of the shared-memory object header. The offset to the header

is in the sixth 4-byte word in the shared-memory anchor. (See VxWorks Network
Programmer’s Guide: Data Link Layer Network Components.)

Thus, if the shared-memory anchor were located at 0x800000:

[VxWorks Boot]: d 0x800000
800000: 8765 4321 0000 0001 0000 0000 0000 002c *.eC!...........,*
800010: 0000 0000 0000 0170 0000 0000 0000 0000 *...p............*
800020: 0000 0000 0000 0000 0000 0000 0000 0000 *................*

The offset to the shared-memory object header is 0x170. To view the shared-

memory object header display 0x800170:

[VxWorks Boot]: d 0x800170
800170: 0000 0050 0000 0000 0000 0bfc 0000 0350 *...P...........P*

In the preceding example, the value of the shared-memory heartbeat is 0x50.

Display this location again to ensure that the heartbeat is alive; if its value has

changed, shared-memory objects are initialized.

■ The global variable smIfVerbose, when set to 1 (TRUE), causes shared-

memory interface error messages to print to the console, along with additional

details of shared-memory operations. This variable enables you to get run-

time information from the device driver level that would be unavailable at the

debugger level. The default setting for smIfVerbose is 0 (FALSE). That can be

reset programmatically or from the shell.
287

VxWorks 5.4
Programmer’s Guide
288

7
Virtual Memory Interface

Basic Support and Optional Component VxVMI
7.1 Introduction

VxWorks provides two levels of virtual memory support. The basic level is

bundled with VxWorks and provides caching on a per-page basis. The full level is

unbundled, and requires the optional component, VxVMI. VxVMI provides write

protection of text segments and the VxWorks exception vector table, and an

architecture-independent interface to the CPU’s memory management unit

(MMU). For information on how to install VxVMI, see Tornado Getting Started.

This chapter contains the following sections:

■ The first describes the basic level of support.

■ The second describes configuration, and is applicable to both levels of support.

■ The third and fourth parts apply only to the optional component, VxVMI:

– The third is for general use, discussing the write protection implemented

by VxVMI.

– The fourth describes a set of routines for manipulating the MMU. VxVMI

provides low-level routines for interfacing with the MMU in an

architecture-independent manner, allowing you to implement your own

virtual memory systems.
289

VxWorks 5.4
Programmer’s Guide
7.2 Basic Virtual Memory Support

For systems with an MMU, VxWorks allows you to perform DMA and

interprocessor communication more efficiently by rendering related buffers

noncacheable. This is necessary to ensure that data is not being buffered locally

when other processors or DMA devices are accessing the same memory location.

Without the ability to make portions of memory noncacheable, caching must be

turned off globally (resulting in performance degradation) or buffers must be

flushed/invalidated manually.

Basic virtual memory support is included by selecting INCLUDE_MMU_BASIC in

the project facility VxWorks view; see 7.3 Virtual Memory Configuration, p.290. It is

also possible to allocate noncacheable buffers using cacheDmaMalloc(); see the

reference entry for cacheLib.

7.3 Virtual Memory Configuration

The following discussion of configuration applies to both bundled and unbundled

virtual memory support.

In the project facility, define the constants in Table 7-1 to reflect your system

configuration.

The appropriate default page size for your processor (4 KB or 8KB) is defined by

VM_PAGE_SIZE in your BSP. If you must change this value for some reason,

redefine VM_PAGE_SIZE in config.h. (See 8. Configuration and Build.)

Table 7-1 MMU Configuration Constants

Constant Description

INCLUDE_MMU_BASIC Basic MMU support without VxVMI option.

INCLUDE_MMU_FULL Full MMU support with the VxVMI option.

INCLUDE_PROTECT_TEXT Text segment protection (requires full MMU

support).

INCLUDE_PROTECT_VEC_TABLE Exception vector table protection (requires full

MMU support).
290

7

7
Virtual Memory Interface
To make memory noncacheable, it must have a virtual-to-physical mapping. The

data structure PHYS_MEM_DESC in vmLib.h defines the parameters used for

mapping physical memory. Each board’s memory map is defined in sysLib.c using

sysPhysMemDesc (which is declared as an array of PHYS_MEM_DESC). In

addition to defining the initial state of the memory pages, the sysPhysMemDesc
structure defines the virtual addresses used for mapping virtual-to-physical

memory. For a discussion of page states, see Page States, p.294.

Modify the sysPhysMemDesc structure to reflect your system configuration. For

example, you may need to add the addresses of interprocessor communication

buffers not already included in the structure. Or, you may need to map and make

noncacheable the VMEbus addresses of the shared-memory data structures. Most

board support packages have a section of VME space defined in

sysPhysMemDesc; however, this may not include all the space required by your

system configuration.

I/O devices and memory not already included in the structure must also be

mapped and made noncacheable. In general, off-board memory regions are

specified as noncacheable; see VxWorks Network Programmer’s Guide: Data Link
Layer Network Components.

The following example configuration consists of multiple CPUs using the shared-

memory network. A separate memory board is used for the shared-memory pool.

Because this memory is not already mapped, it must be added to

sysPhysMemDesc for all the boards on the network. The memory starts at

0x4000000 and must be made noncacheable, as shown in the following code

excerpt:

/* shared memory */
{
(void *) 0x4000000, /* virtual address */
(void *) 0x4000000, /* physical address */
0x20000, /* length */
/* initial state mask */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |VM_STATE_MASK_CACHEABLE,
/* initial state */
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT
}

! CAUTION: The regions of memory defined in sysPhysMemDesc must be page-

aligned, and must span complete pages. In other words, the first three fields

(virtual address, physical address, and length) of a PHYS_MEM_DESC structure

must all be even multiples of VM_PAGE_SIZE. Specifying elements of

sysPhysMemDesc that are not page-aligned leads to crashes during VxWorks

initialization.
291

VxWorks 5.4
Programmer’s Guide
For MC680x0 boards, the virtual address must be the same as the physical address.

For other boards, the virtual and physical addresses are the same as a matter of

convention.

7.4 General Use

This section describes VxVMI’s general use and configuration for write-protecting

text segments and the exception vector table.

VxVMI uses the MMU to prevent portions of memory from being overwritten.

This is done by write-protecting pages of memory. Not all target hardware

supports write protection; see the architecture appendices in this manual for

further information. For most architectures, the page size is 8KB. An attempt to

write to a memory location that is write-protected causes a bus error.

When VxWorks is loaded, all text segments are write-protected; see 7.3 Virtual
Memory Configuration, p.290. The text segments of additional object modules

loaded using ld() are automatically marked as read-only. When object modules are

loaded, memory to be write-protected is allocated in page-size increments. No

additional steps are required to write-protect application code.

During system initialization, VxWorks write-protects the exception vector table.

The only way to modify the interrupt vector table is to use the routine

intConnect(), which write-enables the exception vector table for the duration of

the call.

To include write-protection, select the following in the project facility VxWorks

view:

INCLUDE_MMU_FULL
INCLUDE_PROTECT_TEXT
INCLUDE_PROTECT_VEC_TABLE
292

7

7
Virtual Memory Interface
7.5 Using the MMU Programmatically

This section describes the facilities provided for manipulating the MMU

programmatically using low-level routines in vmLib. You can make data private

to a task or code segment, make portions of memory noncacheable, or write-

protect portions of memory. The fundamental structure used to implement virtual

memory is the virtual memory context (VMC).

For a summary of the VxVMI routines, see the reference entry for vmLib.

7.5.1 Virtual Memory Contexts

A virtual memory context (VM_CONTEXT, defined in vmLib) is made up of a

translation table and other information used for mapping a virtual address to a

physical address. Multiple virtual memory contexts can be created and swapped

in and out as desired.

Global Virtual Memory

Some system objects, such as text segments and semaphores, must be accessible to

all tasks in the system regardless of which virtual memory context is made current.

These objects are made accessible by means of global virtual memory. Global virtual

memory is created by mapping all the physical memory in the system (the

mapping is defined in sysPhysMemDesc) to the identical address in the virtual

memory space. In the default system configuration, this initially gives a one-to-one

relationship between physical memory and global virtual memory; for example,

virtual address 0x5000 maps to physical address 0x5000. On some architectures, it

is possible to use sysPhysMemDesc to set up virtual memory so that the mapping

of virtual-to-physical addresses is not one-to-one; see 7.3 Virtual Memory
Configuration, p.290 for additional information.

Global virtual memory is accessible from all virtual memory contexts.

Modifications made to the global mapping in one virtual memory context appear

in all virtual memory contexts. Before virtual memory contexts are created, add all

global memory with vmGlobalMap(). Global memory that is added after virtual

memory contexts are created may not be available to existing contexts.
293

VxWorks 5.4
Programmer’s Guide
Initialization

Global virtual memory is initialized by vmGlobalMapInit() in usrMmuInit(),
which is called from usrRoot(). The routine usrMmuInit() is in

installDir/target/src/config/usrMmuInit.c, and creates global virtual memory

using sysPhysMemDesc. It then creates a default virtual memory context and

makes the default context current. Optionally, it also enables the MMU.

Page States

Each virtual memory page (typically 8KB) has a state associated with it. A page can

be valid/invalid, writable/nonwritable, or cacheable/noncacheable. See Table 7-2

for the associated constants.

Validity

A valid state indicates the virtual-to-physical translation is true. When the

translation tables are initialized, global virtual memory is marked as valid.

All other virtual memory is initialized as invalid.

Writability

Pages can be made read-only by setting the state to nonwritable. This is

used by VxWorks to write-protect all text segments.

Cacheability

The caching of memory pages can be prevented by setting the state flags

to noncacheable. This is useful for memory that is shared between

processors (including DMA devices).

Table 7-2 State Flags

Constant Description

VM_STATE_VALID Valid translation

VM_STATE_VALID_NOT Invalid translation

VM_STATE_WRITABLE Writable memory

VM_STATE_WRITABLE_NOT Read-only memory

VM_STATE_CACHEABLE Cacheable memory

VM_STATE_CACHEABLE_NOT Noncacheable memory
294

7

7
Virtual Memory Interface
Change the state of a page with the routine vmStateSet(). In addition to specifying

the state flags, a state mask must describe which flags are being changed; see

Table 7-3. Additional architecture-dependent states are specified in vmLib.h.

7.5.2 Private Virtual Memory

Private virtual memory can be created by creating a new virtual memory context.

This is useful for protecting data by making it inaccessible to other tasks or by

limiting access to specific routines. Virtual memory contexts are not automatically

created for tasks, but can be created and swapped in and out in an application-

specific manner.

At system initialization, a default context is created. All tasks use this default

context. To create private virtual memory, a task must create a new virtual memory

context using vmContextCreate(), and make it current. All virtual memory

contexts share the global mappings that are created at system initialization; see

Figure 7-1. Only the valid virtual memory in the current virtual memory context

(including global virtual memory) is accessible. Virtual memory defined in other

virtual memory contexts is not accessible. To make another memory context

current, use vmCurrentSet().

To create a new virtual-to-physical mapping, use vmMap(); both the physical and

virtual address must be determined in advance. The physical memory (which

must be page aligned) can be obtained using valloc(). The easiest way to

determine the virtual address is to use vmGlobalInfoGet() to find a virtual page

that is not a global mapping. With this scheme, if multiple mappings are required,

a task must keep track of its own private virtual memory pages to guarantee it does

not map the same non-global address twice.

When physical pages are mapped into new sections of the virtual space, the

physical page is accessible from two different virtual addresses (a condition

known as aliasing): the newly mapped virtual address and the virtual address

equal to the physical address in the global virtual memory. This can cause

problems for some architectures, because the cache may hold two different values

Table 7-3 State Masks

Constant Description

VM_STATE_MASK_VALID Modify valid flag

VM_STATE_MASK_WRITABLE Modify write flag

VM_STATE_MASK_CACHEABLE Modify cache flag
295

VxWorks 5.4
Programmer’s Guide
for the same underlying memory location. To avoid this, invalidate the virtual

page (using vmStateSet()) in the global virtual memory. This also ensures that the

data is accessible only when the virtual memory context containing the new

mapping is current.

Figure 7-2 depicts two private virtual memory contexts. The new context (pvmc2)

maps virtual address 0x6000000 to physical address 0x10000. To prevent access to

this address from outside of this virtual context (pvmc1), the corresponding

physical address (0x10000) must be set to invalid. If access to the memory is made

using address 0x10000, a bus error occurs because that address is now invalid.

Example 7-1 Private Virtual Memory Contexts

In the following code example, private virtual memory contexts are used for

allocating memory from a task’s private memory partition. The setup routine,

contextSetup(), creates a private virtual memory context that is made current

during a context switch. The virtual memory context is stored in the field spare1 in

the task’s TCB. Switch hooks are used to save the old context and install the task’s

private context. Note that the use of switch hooks increases the context switch

time. A user-defined memory partition is created using the private virtual memory

Figure 7-1 Global Mappings of Virtual Memory

...

PRIVATE

TRANSLATION
TABLE

Private

...

GLOBAL GLOBAL

TRANSLATION
TABLE

Default
Virtual Memory Context Virtual Memory Context

MAPPING MAPPING MAPPING
296

7

7
Virtual Memory Interface
context. The partition ID is stored in spare2 in the tasks TCB. Any task wanting a

private virtual memory context must call contextSetup(). A sample task to test the

code is included.

/* contextExample.h - header file for vm contexts used by switch hooks */

#define NUM_PAGES (3)

/* context.c - use context switch hooks to make task private context current */

#include "vxWorks.h"
#include "vmLib.h"
#include "semLib.h"
#include "taskLib.h"
#include "taskHookLib.h"
#include "memLib.h"
#include "contextExample.h"

void privContextSwitch (WIND_TCB *pOldTask, WIND_TCB *pNewTask);

Figure 7-2 Mapping Private Virtual Memory

... ...

...

0

0x10000 0x10000

V

V

I

V

V

...

0x6000000

...

V

...

0x10000

VIRTUAL
ADDRESS

PHYSICAL
ADDRESS

STATE PHYSICAL
ADDRESS

STATEVIRTUAL
ADDRESS

invalid
mapping

valid
mapping

pvmc1 pvmc2

Global
Virtual
Memory

Private
Virtual
Memory

Private
Virtual Memory Context

New
Virtual Memory Context
297

VxWorks 5.4
Programmer’s Guide
/**
*
* initContextSetup - install context switch hook
*
*/

STATUS initContextSetup ()
{
/* Install switch hook */

if (taskSwitchHookAdd ((FUNCPTR) privContextSwitch) == ERROR)
return (ERROR);

return (OK);
}

/**
*
* contextSetup - initialize context and create separate memory partition
*
* Call only once for each task that wants a private context.
*
* This could be made into a create-hook routine if every task on the
* system needs a private context. To use as a create hook, the code for
* installing the new virtual memory context should be replaced by simply
* saving the new context in spare1 of the task’s TCB.
*/

STATUS contextSetup (void)
{
VM_CONTEXT_ID pNewContext;
int pageSize;
int pageBlkSize;
char * pPhysAddr;
char * pVirtAddr;
UINT8 * globalPgBlkArray;
int newMemSize;
int index;
WIND_TCB * pTcb;

/* create context */

pNewContext = vmContextCreate();

/* get page and page block size */

pageSize = vmPageSizeGet ();
pageBlkSize = vmPageBlockSizeGet ();
newMemSize = pageSize * NUM_PAGES;

/* allocate physical memory that is page aligned */

if ((pPhysAddr = (char *) valloc (newMemSize)) == NULL)
return (ERROR);
298

7

7
Virtual Memory Interface
/* Select virtual address to map. For this example, since only one page
* block is used per task, simply use the first address that is not a
* global mapping. vmGlobalInfoGet() returns a boolean array where each
* element corresponds to a block of virtual memory.

 */

globalPgBlkArray = vmGlobalInfoGet();
for (index = 0; globalPgBlkArray[index] == TRUE; index++)

;
pVirtAddr = (char *) (index * pageBlkSize);

/* map physical memory to new context */

if (vmMap (pNewContext, pVirtAddr, pPhysAddr, newMemSize) == ERROR)
{
free (pPhysAddr);
return (ERROR);
}

/*
 * Set state in global virtual memory to be invalid - any access to
 * this memory must be done through new context.
 */

if (vmStateSet(pNewContext, pPhysAddr, newMemSize, VM_STATE_MASK_VALID,
VM_STATE_VALID_NOT) == ERROR)

return (ERROR);

/* get tasks TCB */

pTcb = taskTcb (taskIdSelf());

/* change virtual memory contexts */

/*
 * Stash the current vm context in the spare TCB field -- the switch
 * hook will install this when this task gets swapped out.
 */

pTcb->spare1 = (int) vmCurrentGet();

/* install new tasks context */

vmCurrentSet (pNewContext);

/* create new memory partition and store id in task’s TCB */

if ((pTcb->spare2 = (int) memPartCreate (pVirtAddr,newMemSize)) == NULL)
return (ERROR);

return (OK);
}

299

VxWorks 5.4
Programmer’s Guide
/***
*
* privContextSwitch - routine to be executed on a context switch
*
* If old task had private context, save it. If new task has private
* context, install it.
*/

void privContextSwitch
(
WIND_TCB *pOldTcb,
WIND_TCB *pNewTcb
)

{
VM_CONTEXT_ID pContext = NULL;

/* If previous task had private context, save it--reset previous context. */

if (pOldTcb->spare1)
{
pContext = (VM_CONTEXT_ID) pOldTcb->spare1;
pOldTcb->spare1 = (int) vmCurrentGet ();

/* restore old context */

vmCurrentSet (pContext);
}

/*
 * If next task has private context, map new context and save previous
 * context in task’s TCB.
 */

if (pNewTcb->spare1)
{
pContext = (VM_CONTEXT_ID) pNewTcb->spare1;
pNewTcb->spare1 = (int) vmCurrentGet();

/* install new tasks context */

vmCurrentSet (pContext);
}

}

/* taskExample.h - header file for testing VM contexts used by switch hook */

/* This code is used by the sample task. */

#define MAX (10000000)
300

7

7
Virtual Memory Interface
typedef struct myStuff {
int stuff;
int myStuff;
} MY_DATA;

/* testTask.c - task code to test switch hooks */

#include "vxWorks.h"
#include "memLib.h"
#include "taskLib.h"
#include "stdio.h"
#include "vmLib.h"
#include "taskExample.h"

IMPORT char *string = "test\n";

MY_DATA *pMem;

/**
*
* testTask - allocate private memory and use it
*
* Loop forever, modifying memory and printing out a global string. Use this
* in conjunction with testing from the shell. Since pMem points to private
* memory, the shell should generate a bus error when it tries to read it.
* For example:
* -> sp testTask
* -> d pMem
*/

STATUS testTask (void)
{
int val;
WIND_TCB *myTcb;

/* install private context */

if (contextSetup () == ERROR)
return (ERROR);

/* get TCB */

myTcb = taskTcb (taskIdSelf ());

/* allocate private memory */

if ((pMem = (MY_DATA *) memPartAlloc((PART_ID) myTcb->spare2,
 sizeof (MY_DATA))) == NULL)
return (ERROR);
301

VxWorks 5.4
Programmer’s Guide
/*
 * Forever, modify data in private memory and display string in
 * global memory.
 */

FOREVER
{
for (val = 0; val <= MAX; val++)

{
/* modify structure */

pMem->stuff = val;
pMem->myStuff = val / 2;

/* make sure can access global virtual memory */

printf (string);

taskDelay (sysClkRateGet() * 10);
}

}
return (OK);
}

/**
*
* testVmContextGet - return a task’s virtual memory context stored in TCB
*
* Used with vmContextShow() 1 to display a task’s virtual memory context.
* For example, from the shell, type:
* -> tid = sp (testTask)
* -> vmContextShow (testVmContextGet (tid))
*/

VM_CONTEXT_ID testVmContextGet
(
UINT tid
)
{
return ((VM_CONTEXT_ID) ((taskTcb (tid))->spare1));
}

7.5.3 Noncacheable Memory

Architectures that do not support bus snooping must disable the memory caching

that is used for interprocessor communication (or by DMA devices). If multiple

1. This routine is not built in to the Tornado shell. To use it from the Tornado shell, you must

define INCLUDE_MMU_FULL_SHOW in your VxWorks configuration; see the Tornado
User’s Guide: Projects. When invoked this routine’s output is sent to the standard output

device.
302

7

7
Virtual Memory Interface
processors are reading from and writing to a memory location, you must

guarantee that when the CPU accesses the data, it is using the most recent value. If

caching is used in one or more CPUs in the system, there can be a local copy of the

data in one of the CPUs’ data caches. In the example in Figure 7-3, a system with

multiple CPUs share data, and one CPU on the system (CPU 0) caches the shared

data. A task on CPU 0 reads the data [1] and then modifies the value [2]; however,

the new value may still be in the cache and not flushed to memory when a task on

another CPU (CPU 1) accesses it [3]. Thus the value of the data used by the task on

CPU 1 is the old value and does not reflect the modifications done by the task on

CPU 0; that value is still in CPU 0’s data cache [2].

To disable caching on a page basis, use vmStateSet(); for example:

vmStateSet (pContext, pSData, len, VM_STATE_MASK_CACHEABLE, VM_STATE_CACHEABLE_NOT)

To allocate noncacheable memory, see the reference entry for cacheDmaMalloc().

Figure 7-3 Example of Possible Problems with Data Caching

CPU 0

CPU 1

Data
Cache

Access and
modify myVal .
Cache myVal .

myVal = 100

(task executes first)

(task executes second)

Access myVal;
myVal = 25

(not the value
of 100 just

set by CPU0).

[1]
[2]

[3]

Memory

myVal25
303

VxWorks 5.4
Programmer’s Guide
7.5.4 Nonwritable Memory

Memory can be marked as nonwritable. Sections of memory can be write-

protected using vmStateSet() to prevent inadvertent access.

One use of this is to restrict modification of a data object to a particular routine. If

a data object is global but read-only, tasks can read the object but not modify it. Any

task that must modify this object must call the associated routine. Inside the

routine, the data is made writable for the duration of the routine, and on exit, the

memory is set to VM_STATE_WRITABLE_NOT.

Example 7-2 Nonwritable Memory

In this code example, to modify the data structure pointed to by pData, a task must

call dataModify(). This routine makes the memory writable, modifies the data,

and sets the memory back to nonwritable. If a task tries to read the memory, it is

successful; however, if it tries to modify the data outside of dataModify(), a bus

error occurs.

/* privateCode.h - header file to make data writable from routine only */

#define MAX 1024

typedef struct myData
{
char stuff[MAX];
int moreStuff;
} MY_DATA;

/* privateCode.c - uses VM contexts to make data private to a code segment */

#include "vxWorks.h"
#include "vmLib.h"
#include "semLib.h"
#include "privateCode.h"

MY_DATA * pData;
SEM_ID dataSemId;
int pageSize;

/***
*
* initData - allocate memory and make it nonwritable
*

304

7

7
Virtual Memory Interface
* This routine initializes data and should be called only once.
*
*/

STATUS initData (void)
{
pageSize = vmPageSizeGet();

/* create semaphore to protect data */

dataSemId = semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);

/* allocate memory = to a page */

pData = (MY_DATA *) valloc (pageSize);

/* initialize data and make it read-only */

bzero (pData, pageSize);
if (vmStateSet (NULL, pData, pageSize, VM_STATE_MASK_WRITABLE,

VM_STATE_WRITABLE_NOT) == ERROR)
{
semGive (dataSemId);
return (ERROR);
}

/* release semaphore */

semGive (dataSemId);
return (OK);
}

/**
*
* dataModify - modify data
*
* To modify data, tasks must call this routine, passing a pointer to
* the new data.
* To test from the shell use:
* -> initData
* -> sp dataModify
* -> d pData
* -> bfill (pdata, 1024, 'X')
*/

STATUS dataModify
(
MY_DATA * pNewData
)
{

/* take semaphore for exclusive access to data */

semTake (dataSemId, WAIT_FOREVER);

/* make memory writable */
305

VxWorks 5.4
Programmer’s Guide
if (vmStateSet (NULL, pData, pageSize, VM_STATE_MASK_WRITABLE,
VM_STATE_WRITABLE) == ERROR)

{
semGive (dataSemId);
return (ERROR);
}

/* update data*/

bcopy (pNewData, pData, sizeof(MY_DATA));

/* make memory not writable */

if (vmStateSet (NULL, pData, pageSize, VM_STATE_MASK_WRITABLE,
VM_STATE_WRITABLE_NOT) == ERROR)

{
semGive (dataSemId);
return (ERROR);
}

semGive (dataSemId);

return (OK);
}

7.5.5 Troubleshooting

If INCLUDE_MMU_FULL_SHOW is included in the project facility VxWorks view,

you can use vmContextShow() to display a virtual memory context on the

standard output device. In the following example, the current virtual memory

context is displayed. Virtual addresses between 0x0 and 0x59fff are write

protected; 0xff800000 through 0xffbfffff are noncacheable; and 0x2000000 through

0x2005fff are private. All valid entries are listed and marked with a V+. Invalid

entries are not listed.

-> vmContextShow 0
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

VIRTUAL ADDR BLOCK LENGTH PHYSICAL ADDR STATE
0x0 0x5a000 0x0 W- C+ V+ (global)
0x5a000 0x1f3c000 0x5a000 W+ C+ V+ (global)
0x1f9c000 0x2000 0x1f9c000 W+ C+ V+ (global)
0x1f9e000 0x2000 0x1f9e000 W- C+ V+ (global)
0x1fa0000 0x2000 0x1fa0000 W+ C+ V+ (global)
0x1fa2000 0x2000 0x1fa2000 W- C+ V+ (global)
0x1fa4000 0x6000 0x1fa4000 W+ C+ V+ (global)
0x1faa000 0x2000 0x1faa000 W- C+ V+ (global)
0x1fac000 0xa000 0x1fac000 W+ C+ V+ (global)
0x1fb6000 0x2000 0x1fb6000 W- C+ V+ (global)
306

7

7
Virtual Memory Interface
0x1fb8000 0x36000 0x1fb8000 W+ C+ V+ (global)
0x1fee000 0x2000 0x1fee000 W- C+ V+ (global)
0x1ff0000 0x2000 0x1ff0000 W+ C+ V+ (global)
0x1ff2000 0x2000 0x1ff2000 W- C+ V+ (global)
0x1ff4000 0x2000 0x1ff4000 W+ C+ V+ (global)
0x1ff6000 0x2000 0x1ff6000 W- C+ V+ (global)
0x1ff8000 0x2000 0x1ff8000 W+ C+ V+ (global)
0x1ffa000 0x2000 0x1ffa000 W- C+ V+ (global)
0x1ffc000 0x4000 0x1ffc000 W+ C+ V+ (global)
0x2000000 0x6000 0x1f96000 W+ C+ V+
0xff800000 0x400000 0xff800000 W- C- V+ (global)
0xffe00000 0x20000 0xffe00000 W+ C+ V+ (global)
0xfff00000 0xf0000 0xfff00000 W+ C- V+ (global)

7.5.6 Precautions

Memory that is marked as global cannot be remapped using vmMap(). To add to

global virtual memory, use vmGlobalMap(). For further information on adding

global virtual memory, see 7.5.2 Private Virtual Memory, p.295.

Performances of MMUs vary across architectures; in fact, some architectures may

cause the system to become non-deterministic. For additional information, see the

architecture-specific documentation for your hardware.
307

VxWorks 5.4
Programmer’s Guide
308

8
Configuration and Build
8.1 Introduction

The Tornado distribution includes a VxWorks system image for each target shipped.

The system image is a binary module that can be booted and run on a target system.

The system image consists of all desired system object modules linked together

into a single non-relocatable object module with no unresolved external references.

In most cases, you will find the supplied system image entirely adequate for initial

development. However, later in the cycle you may want to tailor its configuration

to reflect your application requirements.

In order to tailor the system image, you will need to understand the BSP structure

and the VxWorks initialization process. These topics are discussed in the following

sections:

■ 8.2 The Board Support Package (BSP), p.310

■ 8.3 VxWorks Initialization Timeline, p.313

In addition, this chapter describes in detail the manual cross-development

procedures used to create and run VxWorks systems and applications as well as

how to configure the system image by directly editing configuration files.

The following topics are included:

■ How to build, load, run, and unload VxWorks applications manually.

■ VxWorks configuration files and configuration options and parameters.

■ How to include manually generated configuration files in the project facility.

■ Some of the common alternative configurations of VxWorks.
309

VxWorks 5.4
Programmer’s Guide
■ Rebuilding VxWorks system images, bootable applications, and ROM images

using manual methods.

VxWorks has been ported to numerous development and target systems, and can

support many different hardware configurations. Some of the cross-development

procedures discussed in this chapter depend somewhat on the specific system and

configuration you are running. The procedures in this chapter are presented in

generic form, and may differ slightly on your particular system.

For information specific to an architecture family, see the corresponding appendix

in this manual. Information specific to particular target boards is provided with

each BSP.

8.2 The Board Support Package (BSP)

The directory installDir/target/config/bspname contains the Board Support Package
(BSP), which consists of files for the particular hardware used to run VxWorks,

such as a VME board with serial lines, timers, and other devices. The files include:

Makefile, sysLib.c, sysSerial.c, sysALib.s, romInit.s, bspname.h, and config.h.

Wind River Systems BSPs conform to a standard, introduced with BSP Version 1.1.

The standard is fully described in the Tornado BSP Developer’s Kit for VxWorks.

! WARNING: Use of the project facility for configuring and building applications is

largely independent of the methods used prior to Tornado 2.0 (which included

manually editing the configuration file config.h). The project facility provides the

recommended and simpler means for configuration and build, although the

manual method may still be used as described in this chapter.

To avoid confusion and errors, the two methods should not be used together for

the same project. The one exception is for any configuration macro that is not

exposed through the project facility GUI (which may be the case, for example, for

some BSP driver parameters). In this case, a configuration file must be edited, and

the project facility will implement the change in the subsequent build.

Note that the project facility overrides any changes made to a macro in config.h
which is also exposed through the project facility. If you are using the project

facility, only edit macros in config.h which can not be configured through the

project facility.
310

8

8
Configuration and Build
The System Library

The file sysLib.c provides the board-level interface on which VxWorks and

application code can be built in a hardware-independent manner. The functions

addressed in this file include:

■ Initialization functions

– initialize the hardware to a known state

– identify the system

– initialize drivers, such as SCSI or custom drivers

■ Memory/address space functions

– get the on-board memory size

– make on-board memory accessible to external bus (optional)

– map local and bus address spaces

– enable/disable cache memory

– set/get nonvolatile RAM (NVRAM)

– define the board’s memory map (optional)

– virtual-to-physical memory map declarations for processors with MMUs

■ Bus interrupt functions

– enable/disable bus interrupt levels

– generate bus interrupts

■ Clock/timer functions

– enable/disable timer interrupts

– set the periodic rate of the timer

■ Mailbox/location monitor functions (optional)

– enable mailbox/location monitor interrupts

The sysLib library does not support every feature of every board: some boards

may have additional features, others may have fewer, others still may have the

same features with a different interface. For example, some boards provide some

sysLib functions by means of hardware switches, jumpers, or PALs, instead of by

software-controllable registers.

The configuration modules usrConfig.c and bootConfig.c in config/all are

responsible for invoking this library’s routines at the appropriate time. Device

drivers can use some of the memory mapping routines and bus functions.
311

VxWorks 5.4
Programmer’s Guide
Virtual Memory Mapping

For boards with MMU support, the data structure sysPhysMemDesc defines the

virtual-to-physical memory map. This table is typically defined in sysLib.c,

although some BSPs place it in a separate file, memDesc.c. It is declared as an array

of the data structure PHYS_MEM_DESC. No two entries in this descriptor can

overlap; each entry must be a unique memory space.

The sysPhysMemDesc array should reflect your system configuration, and you

may encounter a number of reasons for changing the MMU memory map, for

example: the need to change the size of local memory or the size of the VME master

access space, or because the address of the VME master access space has been

moved. For information on virtual memory mapping, as well as an example of

how to modify sysPhysMemDesc, see 7.3 Virtual Memory Configuration, p.290.

The Serial Driver

The file sysSerial.c provides board-specific initialization for the on-board serial

ports. The actual serial I/O driver is in the installDir/target/src/drv/sio directory.

The library ttyDrv uses the serial I/O driver to provide terminal operations for

VxWorks.

BSP Initialization Modules

The following files initialize the BSP:

■ The file romInit.s contains assembly-level initialization routines.

■ The file sysALib.s contains initialization and system-specific assembly-level

routines.

BSP Documentation

The file target.nr in the installDir/target/config/bspname directory is the source of

the online reference entry for target-specific information. (For information on how

to view these reference entries, see Tornado Getting Started.) The target.nr file

describes the supported board variations, the relevant jumpering, and supported

! CAUTION: A bus error can occur if you try to access memory that is not mapped.
312

8

8
Configuration and Build
devices. It also includes an ASCII representation of the board layout with an

indication of board jumpers (if applicable) and the location of the ROM sockets.

8.3 VxWorks Initialization Timeline

This section covers the initialization sequence for VxWorks in a typical

development configuration. The steps are described in sequence of execution. This

is not the only way VxWorks can be bootstrapped on a particular processor. There

are often more efficient or robust techniques unique to a particular processor or

hardware; consult your hardware’s documentation.

For final production, the sequence can be revisited to include diagnostics or to

remove some of the generic operations that are required for booting a development

environment, but that are unnecessary for production. This description can

provide only an approximate guide to the processor initialization sequence and

does not document every exception to this time-line.

The early steps of the initialization sequence are slightly different for ROM-based

versions of VxWorks; for information, see 8.6.3 Initialization Sequence for ROM-
Based VxWorks, p.349.

For a summary of the initialization time-line, see Table 8-1. The following sections

describe the initialization in detail by routine name. For clarity, the sequence is

divided into a number of main steps or function calls. The key routines are listed

in the headings and are described in chronological order.

The VxWorks Entry Point: sysInit()

The first step in starting a VxWorks system is to load a system image into main

memory. This usually occurs as a download from the development host, under the

control of the VxWorks boot ROM. Next, the boot ROM transfers control to the

VxWorks startup entry point, sysInit(). This entry point is configured by

RAM_LOW_ADRS in the makefile and in config.h. The VxWorks memory layout is

different for each architecture; for details, see the appendix that describes your

architecture.

The entry point, sysInit(), is in the system-dependent assembly language module,

sysALib.s. It locks out all interrupts, invalidates caches if applicable, and
313

VxWorks 5.4
Programmer’s Guide
initializes processor registers (including the C stack pointer) to default values. It

also disables tracing, clears all pending interrupts, and invokes usrInit(), a C

subroutine in the usrConfig.c module. For some targets, sysInit() also performs

some minimal system-dependent hardware initialization, enough to execute the

remaining initialization in usrInit(). The initial stack pointer, which is used only

by usrInit(), is set to occupy an area below the system image but above the vector

table (if any).

The Initial Routine: usrInit()

The usrInit() routine (in usrConfig.c) saves information about the boot type,

handles all the initialization that must be performed before the kernel is actually

started, and then starts the kernel execution. It is the first C code to run in VxWorks.

It is invoked in supervisor mode with all hardware interrupts locked out.

Many VxWorks facilities cannot be invoked from this routine. Because there is no

task context as yet (no TCB and no task stack), facilities that require a task context

cannot be invoked. This includes any facility that can cause the caller to be

preempted, such as semaphores, or any facility that uses such facilities, such as

printf(). Instead, the usrInit() routine does only what is necessary to create an

initial task, usrRoot(). This task then completes the startup.

The initialization in usrInit() includes the following:

Cache Initialization

The code at the beginning of usrInit() initializes the caches, sets the mode of the

caches and puts the caches in a safe state. At the end of usrInit(), the instruction

and data caches are enabled by default.

Zeroing Out the System bss Segment

The C and C++ languages specify that all uninitialized variables must have initial

values of 0. These uninitialized variables are put together in a segment called bss.

This segment is not actually loaded during the bootstrap, because it is known to be

zeroed out. Because usrInit() is the first C code to execute, it clears the section of

memory containing bss as its very first action. While the VxWorks boot ROMs clear

all memory, VxWorks does not assume that the boot ROMs are used.

Initializing Interrupt Vectors

The exception vectors must be set up before enabling interrupts and starting the

kernel. First, intVecBaseSet() is called to establish the vector table base address.
314

8

8
Configuration and Build
After intVecBaseSet() is called, the routine excVecInit() initializes all exception

vectors to default handlers that safely trap and report exceptions caused by

program errors or unexpected hardware interrupts.

Initializing System Hardware to a Quiescent State

System hardware is initialized by calling the system-dependent routine

sysHwInit(). This mainly consists of resetting and disabling hardware devices

that can cause interrupts after interrupts are enabled (when the kernel is started).

This is important because the VxWorks ISRs (for I/O devices, system clocks, and

so on), are not connected to their interrupt vectors until the system initialization is

completed in the usrRoot() task. However, do not attempt to connect an interrupt

handler to an interrupt during the sysHwInit() call, because the memory pool is

not yet initialized.

Initializing the Kernel

The usrInit() routine ends with calls to two kernel initialization routines:

usrKernelInit() (defined in usrKernel.c)

calls the appropriate initialization routines for each of the specified

optional kernel facilities (see Table 8-1 for a list).

kernelInit() (part of kernelLib.c)

initiates the multitasking environment and never returns. It takes the

following parameters:

– The application to be spawned as the “root” task, typically usrRoot().

– The stack size.

– The start of usable memory; that is, the memory after the main text, data,

and bss of the VxWorks image. All memory after this area is added to the

system memory pool, which is managed by memPartLib. Allocation for

dynamic module loading, task control blocks, stacks, and so on, all come

out of this region. See Initializing the Memory Pool, p.316.

– The top of memory as indicated by sysMemTop(). If a contiguous block of

memory is to be preserved from normal memory allocation, pass

sysMemTop() less the reserved memory.

NOTE: There are exceptions to this in some architectures; see the appendix that

describes your architecture for details.
315

VxWorks 5.4
Programmer’s Guide
– The interrupt stack size. The interrupt stack corresponds to the largest

amount of stack space any interrupt-level routine uses, plus a safe margin

for the nesting of interrupts.

– The interrupt lock-out level. For architectures that have a level concept, it

is the maximum level. For architectures that do not have a level concept, it

is the mask to disable interrupts. See the appendix that describes your

architecture for details.

kernelInit() calls intLockLevelSet(), disables round-robin mode, and creates an

interrupt stack if supported by the architecture. It then creates a root stack and TCB

from the top of the memory pool, spawns the root task, usrRoot(), and terminates

the usrInit() thread of execution. At this time, interrupts are enabled; it is critical

that all interrupt sources are disabled and pending interrupts cleared.

Initializing the Memory Pool

VxWorks includes a memory allocation facility, in the module memPartLib, that

manages a pool of available memory. The malloc() routine allows callers to obtain

variable-size blocks of memory from the pool. Internally, VxWorks uses malloc()
for dynamic allocation of memory. In particular, many VxWorks facilities allocate

data structures during initialization. Therefore, the memory pool must be

initialized before any other VxWorks facilities are initialized.

Note that the Tornado target server manages a portion of target memory to

support downloading of object modules and other development functions.

VxWorks makes heavy use of malloc(), including allocation of space for loaded

modules, allocation of stacks for spawned tasks, and allocation of data structures

on initialization. You are also encouraged to use malloc() to allocate any memory

your application requires. Therefore, it is recommended that you assign to the

VxWorks memory pool all unused memory, unless you must reserve some fixed

absolute memory area for a particular application use.

The memory pool is initialized by kernelInit(). The parameters to kernelInit()
specify the start and end address of the initial memory pool. In the default

usrInit() distributed with VxWorks, the pool is set to start immediately following

the end of the booted system, and to contain all the rest of available memory.

The extent of available memory is determined by sysMemTop(), which is a system-

dependent routine that determines the size of available memory. If your system

has other noncontiguous memory areas, you can make them available in the

general memory pool by later calling memAddToPool() in the usrRoot() task.
316

8

8
Configuration and Build
The Initial Task: usrRoot()

When the multitasking kernel starts executing, all VxWorks multitasking facilities

are available. Control is transferred to the usrRoot() task and the initialization of

the system can be completed. For example, usrRoot() performs the following:

– initialization of the system clock

– initialization of the I/O system and drivers

– creation of the console devices

– setting of standard in and standard out

– installation of exception handling and logging

– initialization of the pipe driver

– initialization of standard I/O

– creation of file system devices and installation of disk drivers

– initialization of floating-point support

– initialization of performance monitoring facilities

– initialization of the network

– initialization of optional facilities

– initialization of WindView (see the WindView User’s Guide)

– initialization of target agent

– execution of a user-supplied startup script

To review the complete initialization sequence within usrRoot(), see

installDir/target/config/all/ usrConfig.c.

Modify these initializations to suit your configuration. The meaning of each step

and the significance of the various parameters are explained in the following

sections.

Initialization of the System Clock

The first action in the usrRoot() task is to initialize the VxWorks clock. The system

clock interrupt vector is connected to the routine usrClock() (described in The
System Clock Routine: usrClock(), p.322) by calling sysClkConnect(). Then, the

system clock rate (usually 60Hz) is set by sysClkRateSet(). Most boards allow

clock rates as low as 30Hz (some even as low as 1Hz), and as high as several

thousand Hz. High clock rates (>1000Hz) are not desirable, because they can cause

system thrashing.1

The timer drivers supplied by WRS include a call to sysHwInit2() as part of the

sysClkConnect() routine. Wind River BSPs use sysHwInit2() to perform further

1. Thrashing occurs when clock interrupts are so frequent that the processor spends too much

time servicing the interrupts, and no application code can run.
317

VxWorks 5.4
Programmer’s Guide
board initialization that is not completed in sysHwInit(). For example, an

intConnect() of ISRs can take place here, because memory can be allocated now

that the system is multitasking.

Initialization of the I/O System

If INCLUDE_IO_SYSTEM is defined in configAll.h, the VxWorks I/O system is

initialized by calling the routine iosInit(). The arguments specify the maximum

number of drivers that can be subsequently installed, the maximum number of

files that can be open in the system simultaneously, and the desired name of the

“null” device that is included in the VxWorks I/O system. This null device is a “bit-

bucket” on output and always returns end-of-file for input.

The inclusion or exclusion of INCLUDE_IO_SYSTEM also affects whether the

console devices are created, and whether standard in, standard out, and standard

error are set; see the next two sections for more information.

Creation of the Console Devices

If the driver for the on-board serial ports is included (INCLUDE_TTY_DEV), it is

installed in the I/O system by calling the driver’s initialization routine, typically

ttyDrv(). The actual devices are then created and named by calling the driver’s

device-creation routine, typically ttyDevCreate(). The arguments to this routine

includes the device name, a serial I/O channel descriptor (from the BSP), and input

and output buffer sizes.

The macro NUM_TTY specifies the number of tty ports (default is 2),

CONSOLE_TTY specifies which port is the console (default is 0), and

CONSOLE_BAUD_RATE specifies the bps rate (default is 9600). These macros are

specified in configAll.h, but can be overridden in config.h for boards with a

nonstandard number of ports.

PCs can use an alternative console with keyboard input and VGA output; see your

PC workstation documentation for details.

Setting of Standard In, Standard Out, and Standard Error

The system-wide standard in, standard out, and standard error assignments are

established by opening the console device and calling ioGlobalStdSet(). These

assignments are used throughout VxWorks as the default devices for

communicating with the application developer. To make the console device an

interactive terminal, call ioctl() to set the device options to OPT_TERMINAL.
318

8

8
Configuration and Build
Installation of Exception Handling and Logging

Initialization of the VxWorks exception handling facilities (supplied by the module

excLib) and logging facilities (supplied by logLib) takes place early in the

execution of the root task. This facilitates detection of program errors in the root

task itself or in the initialization of the various facilities.

The exception handling facilities are initialized by calling excInit() when

INCLUDE_EXC_HANDLING and INCLUDE_EXC_TASK are defined. The excInit()
routine spawns the exception support task, excTask(). Following this

initialization, program errors causing hardware exceptions are safely trapped and

reported, and hardware interrupts to uninitialized vectors are reported and

dismissed. The VxWorks signal facility, used for task-specific exception handling,

is initialized by calling sigInit() when INCLUDE_SIGNALS is defined.

The logging facilities are initialized by calling logInit() when

INCLUDE_LOGGING is defined. The arguments specify the file descriptor of the

device to which logging messages are to be written, and the number of log message

buffers to allocate. The logging initialization also includes spawning the logging

task, logTask().

Initialization of the Pipe Driver

If named pipes are desired, define INCLUDE_PIPE in configAll.h so that pipeDrv()
is called automatically to initialize the pipe driver. Tasks can then use pipes to

communicate with each other through the standard I/O interface. Pipes must be

created with pipeDevCreate().

Initialization of Standard I/O

VxWorks includes an optional standard I/O package when INCLUDE_STDIO is

defined.

Creation of File System Devices and Initialization of Device Drivers

Many VxWorks configurations include at least one disk device or RAM disk with

a dosFs, rt11Fs, or rawFs file system. First, a disk driver is installed by calling the

driver’s initialization routine. Next, the driver’s device-creation routine defines a

device. This call returns a pointer to a BLK_DEV structure that describes the device.

The new device can then be initialized and named by calling the file system’s

device-initialization routine—dosFsDevInit(), rt11FsDevInit(), or

rawFsDevInit()—when the respective constants INCLUDE_DOSFS,

INCLUDE_RT11FS, and INCLUDE_RAWFS are defined. (Before a device can be

initialized, the file system module must already be initialized with dosFsInit(),
319

VxWorks 5.4
Programmer’s Guide
rt11FsInit(), or rawFsInit().) The arguments to the file system device-

initialization routines depend on the particular file system, but typically include

the device name, a pointer to the BLK_DEV structure created by the driver’s

device-creation routine, and possibly some file-system-specific configuration

parameters.

Initialization of Floating-Point Support

Support for floating-point I/O is initialized by calling the routine floatInit() when

INCLUDE_FLOATING_POINT is defined in configAll.h. Support for floating-point

coprocessors is initialized by calling mathHardInit() when INCLUDE_HW_FP is

defined. Support for software floating-point emulation is initialized by calling

mathSoftInit() when INCLUDE_SW_FP is defined. See the appropriate

architecture appendix for details on your processor’s floating-point support.

Inclusion of Performance Monitoring Tools

VxWorks has two built-in performance monitoring tools. A task activity summary

is provided by spyLib, and a subroutine execution timer is provided by timexLib.

These facilities are included by defining the macros INCLUDE_SPY and

INCLUDE_TIMEX, respectively, in configAll.h.

Initialization of the Network

Before the network can be used, it must be initialized with the routine

usrNetInit(), which is called by usrRoot() when the constant INCLUDE_NET_INIT
is defined in one of the configuration header files. (The source for usrNetInit() is
in installDir/target/src/config/usrNetwork.c.) The routine usrNetInit() takes a

configuration string as an argument. This configuration string is usually the “boot

line” that is specified to the VxWorks boot ROMs to boot the system (see Tornado
Getting Started). Based on this string, usrNetInit() performs the following:

■ Initializes network subsystem by calling the routine netLibInit().

■ Attaches and configures appropriate network drivers.

■ Adds gateway routes.

■ Initializes the remote file access driver netDrv, and adds a remote file access

device.

■ Initializes the remote login facilities.

■ Optionally initializes the Remote Procedure Calls (RPC) facility.

■ Optionally initializes the Network File System (NFS) facility.
320

8

8
Configuration and Build
As noted previously, the inclusion of some of these network facilities is controlled

by definitions in configAll.h; see Table 8-6 for a list of these constants. The network

initialization steps are described in the VxWorks Network Programmer’s Guide.

Initialization of Optional Products and Other Facilities

Shared memory objects are provided with the optional product VxMP. Before

shared memory objects can be used, they must be initialized with the routine

usrSmObjInit() (in installDir/target/src/config/usrSmObj.c), which is called from

usrRoot() if INCLUDE_SM_OBJ is defined.

Basic MMU support is provided if INCLUDE_MMU_BASIC is defined. Text

protection, vector table protection, and a virtual memory interface are provided

with the optional product VxVMI, if INCLUDE_MMU_FULL is defined. The MMU

is initialized by the routine usrMmuInit(), located in

installDir/target/src/config/usrMmuInit.c. If the macros

INCLUDE_PROTECT_TEXT and INCLUDE_PROTECT_VEC_TABLE are also

defined, text protection and vector table protection are initialized.

The GNU C++ compiler is shipped with Tornado. To initialize C++ support for the

GNU compiler, define either INCLUDE_CPLUS or INCLUDE_CPLUS_MIN. To

include one or more of the Wind Foundation Class libraries, define the appropriate

INCLUDE_CPLUS_library macros (listed in Table 8-6).2

Initialization of WindView

Kernel instrumentation is provided with the optional product WindView. It is

initialized in usrRoot() when INCLUDE_WINDVIEW is defined in configAll.h.

Other WindView configuration constants control particular initialization steps; see

the WindView User’s Guide: Configuring WindView.

! CAUTION: The shared memory objects library requires information from fields in

the VxWorks boot line. The functions are contained in the usrNetwork.c file. If no

network services are included, usrNetwork.c is not included and the shared

memory initialization fails. The project facility calculates all dependencies but if

you are using manual configuration, either add INCLUDE_NETWORK to

configAll.h or extract the bootline cracking routines from usrNetwork.c and

include them elsewhere.

2. For information on using the GNU C++ compiler and the optional Wind Foundation

Classes, see 5. C++ Development and 8.4.2 Compiling Application Modules, p.329.
321

VxWorks 5.4
Programmer’s Guide
Initialization of the Target Agent

If INCLUDE_WDB is defined, wdbConfig() in installDir/target/src/config/usrWdb.c
is called. This routine initializes the agent’s communication interface, then starts

the agent. For information on configuring the agent and the agent’s initialization

sequence, see Tornado Getting Started.

Execution of a Startup Script

The usrRoot() routine executes a user-supplied startup script if the target-resident

shell is configured into VxWorks, INCLUDE_STARTUP_SCRIPT is defined, and the

script’s file name is specified at boot time with the startup script parameter (see

Tornado Getting Started). If the parameter is missing, no startup script is executed.

The System Clock Routine: usrClock()

Finally, the system clock ISR usrClock() is attached to the system clock timer

interrupt by the usrRoot() task described The Initial Task: usrRoot(), p.317. The

usrClock() routine calls the kernel clock tick routine tickAnnounce(), which

performs OS bookkeeping. You can add application-specific processing to this

routine.

Initialization Summary

Table 8-1 shows a summary of the entire VxWorks initialization sequence for

typical configurations. For a similar summary applicable to ROM-based VxWorks

systems, see Overall Initialization for ROM-Based VxWorks, p.350.

Table 8-1 VxWorks Run-time System Initialization Sequence

Routine Activity File

sysInit() (a) lock out interrupts sysALib.s

(b) invalidate caches, if any

(c) initialize system interrupt tables with default

stubs (i960 only)

(d) initialize system fault tables with default stubs

(i960 only)
322

8

8
Configuration and Build
(e) initialize processor registers to known default

values

(f) disable tracing

(g) clear all pending interrupts

(h) invoke usrInit() specifying boot type

usrInit() (a) zero bss (uninitialized data) usrConfig.c

(b) save bootType in sysStartType

(c) invoke excVecInit() to initialize all system and

default interrupt vectors

(d) invoke sysHwInit()

(e) invoke usrKernelInit()

(f) invoke kernelInit()

usrKernelInit() The following routines are invoked if their

configuration constants are defined.

usrKernel.c

(a) classLibInit()

(b) taskLibInit()

(c) taskHookInit()

(d) semBLibInit()

(e) semMLibInit()

(f) semCLibInit()

(g) semOLibInit()

(h) wdLibInit()

(i) msgQLibInit()

(j) qInit() for all system queues

(k) workQInit()

kernelInit() Initialize and start the kernel. kernelLib.c

Table 8-1 VxWorks Run-time System Initialization Sequence (Continued)

Routine Activity File
323

VxWorks 5.4
Programmer’s Guide
(a) invoke intLockLevelSet()

(b) create root stack and TCB from top of memory

pool

(c) invoke taskInit() for usrRoot()

(d) invoke taskActivate() for usrRoot()

(e) usrRoot()

usrRoot() Initialize I/O system, install drivers, and create

devices as specified in configAll.h and config.h.

usrConfig.c

(a) sysClkConnect()

(b) sysClkRateSet()

(c) iosInit()

(d) if (INCLUDE_TTY_DEV and NUM_TTY)

ttyDrv(),
then establish console port, STD_IN,

STD_OUT, STD_ERR

(e) initialize exception handling with excInit(),
logInit(), sigInit()

(f) initialize the pipe driver with pipeDrv()

(g) stdioInit()

(h) mathSoftInit() or mathHardInit()

(i) wdbConfig(): configure and initialize target agent

(j) run startup script if target-resident shell is

configured

Table 8-1 VxWorks Run-time System Initialization Sequence (Continued)

Routine Activity File
324

8

8
Configuration and Build
8.4 Building, Loading, and Unloading Application Modules

In the Tornado development environment, application modules for the target

system are created and maintained on a separate development host. First, the

source code, generally in C or C++, is edited and compiled to produce a relocatable

object module. Application modules use VxWorks facilities by virtue of including

header files that define operating-system interfaces and data structures. The

resulting object modules can then be loaded and dynamically linked into a running

VxWorks system over the network.

The following sections describe in detail the procedures for carrying out cross-

development manually (without using the project facility).

8.4.1 Using VxWorks Header Files

Many application modules make use of VxWorks operating system facilities or

utility libraries. This usually requires that the source module refer to VxWorks

header files. The following sections discuss the use of VxWorks header files.

VxWorks header files supply ANSI C function prototype declarations for all global

VxWorks routines. The ANSI C prototypes are conditionally compiled; to use

them, the preprocessor constant _ _STDC_ _ must be defined. ANSI C compilers

define this constant by default. VxWorks provides all header files specified by the

ANSI X3.159-1989 standard.

VxWorks system header files are in the directory installDir/target/h and its

subdirectories.

VxWorks Header File: vxWorks.h

The header file vxWorks.h contains many basic definitions and types that are used

extensively by other VxWorks modules. Many other VxWorks header files require

these definitions. Thus, this file must be included first by every application module

that uses VxWorks facilities. Include vxWorks.h with the following line:

#include "vxWorks.h"

NOTE: The notation $(WIND_BASE) is used in makefiles to refer to the Tornado

installation directory. This chapter uses that notation because makefiles are the

most convenient way to run the Tornado compilation tools. If you run the compiler

from the Windows command prompt, write %WIND_BASE% instead.
325

VxWorks 5.4
Programmer’s Guide
Other VxWorks Header Files

Application modules can include other VxWorks header files as needed to access

VxWorks facilities. For example, an application module that uses the VxWorks

linked-list subroutine library must include the lstLib.h file with the following line:

#include "lstLib.h"

The manual entry for each library lists all header files necessary to use that library.

ANSI Header Files

All ANSI-specified header files are included in VxWorks. (UNIX)

This implies that many familiar UNIX header files are available under VxWorks as

well. There are two file names that differ from the usual UNIX names: a_out.h
(which corresponds to the UNIX a.out.h) and stdlib.h (which corresponds to the

UNIX malloc.h)

The -I Compiler Flag

By default, the compiler searches for header files first in the directory of the source

module and then in directories that apply only to the development host. With the

GNU compiler, you can avoid these host-system include directories with the

compilation flag -nostdinc. To access the VxWorks header files, the compiler must

also be directed to search $(WIND_BASE)/target/h. Thus, the following option

flag is standard for VxWorks compilation:

-I $(WIND_BASE)/target/h

Some header files are located in subdirectories. To refer to header files in these

subdirectories, be sure to specify the subdirectory name in the include statement,

so that the files can be located with a single -I specifier. For example:

#include "vxWorks.h"
#include "sys/stat.h"

VxWorks Nested Header Files

Some VxWorks facilities make use of other, lower-level VxWorks facilities. For

example, the tty management facility uses the ring buffer subroutine library. The
326

8

8
Configuration and Build
tty header file tyLib.h uses definitions that are supplied by the ring buffer header

file rngLib.h.

It would be inconvenient to require you to be aware of such include-file

interdependencies and ordering. Instead, all VxWorks header files explicitly

include all prerequisite header files. Thus, tyLib.h itself contains an include of

rngLib.h. (The exception to this is the basic VxWorks header file vxWorks.h, which

all other header files assume is already included.)

This, in turn, might lead to a problem: a header file could get included more than

once, if one were included by several other header files, or if it were also included

directly by the application module. Normally, including a header file more than

once generates fatal compilation errors, because the C preprocessor regards

duplicate definitions as potential sources of conflict. To avoid this problem, all

VxWorks header files contain conditional compilation statements and definitions

that ensure that their text is included only once, no matter how many times they

are specified by include statements. Thus, an application module can include just

those header files it needs directly, without regard for interdependencies or

ordering, and no conflicts arise.

Internal Header Files

Table 8-2 lists the subdirectories of installDir/target/h used by VxWorks for internal

header files. These header files are, for the most part, not intended for applications.

The following subdirectories are exceptions, and are sometimes required by

application programs:

■ installDir/target/h/net, which is used by network drivers for specific network

controllers.
■ installDir/target/h/rpc, which is used by applications using the remote

procedure call library.
■ installDir/target/h/sys, which is used by applications using standard POSIX

functions.

Table 8-2 Include Subdirectories

Subdirectory Use

installDir/target/h/arch Architecture-specific header files.

installDir/target/h/arpa Fundamental Internet header file.

installDir/target/h/make Generic makefile information.
327

VxWorks 5.4
Programmer’s Guide
VxWorks Private Header Files

VxWorks modules are designed so that you never need to know or reference the

modules’ internal data structures. In general, all legitimate access to a facility is

provided by a module’s subroutine interfaces. The internal details should be

thought of as “hidden” from application developers. This means that the internal

implementations can change without affecting your use of the corresponding

facilities.

Internal details in VxWorks are hidden using two conventions. Some header files

mark hidden code using the following comments:

/* HIDDEN */
...
/* END HIDDEN */

Internal details are also hidden with private header files: files that are stored in the

directory installDir/target/h/private. The naming conventions for these files

parallel those in installDir/target/h with the library name followed by P.h. For

example, the private header file for semLib is

installDir/target/h/private/semLibP.h.

installDir/target/h/drv Device-driver header files.

installDir/target/h/net Network header files.

installDir/target/h/netinet Internet protocol header files.

installDir/target/h/private VxWorks private header files.

installDir/target/h/rpc Remote Procedure Call (RPC) header files.

installDir/target/h/rw Header files for Tools.h++ from Rogue Wave (Optional).

installDir/target/h/sys System header files specified by POSIX.

installDir/target/h/types Data types used by the system.

installDir/target/h/wdb Target-agent declarations.

Table 8-2 Include Subdirectories

Subdirectory Use
328

8

8
Configuration and Build
8.4.2 Compiling Application Modules

Tornado includes a full-featured C and C++ compiler and associated tools,

collectively called the GNU ToolKit. Extensive documentation for this set of tools is

printed in a separate manual: the GNU ToolKit User’s Guide. This section provides

some general orientation about the source of these tools, and describes how the

tools are integrated into the Tornado development environment.

The GNU Tools

GNU (“GNU’s Not UNIX!”) is a project of the Free Software Foundation started by

Richard Stallman and others to promote free software. To the FSF, free software is

software whose source code can be copied, modified, and redistributed without

restriction. GNU software is not in the public domain; it is protected by copyright

and subject to the terms of the GNU General Public License, a legal document

designed to ensure that the software remains free—for example, by prohibiting

proprietary modifications and concomitant restrictions on its use. The General

Public License can be found in the file COPYING that accompanies the source code

for the GNU tools, and in the section titled Free Software at the back of the GNU
ToolKit User’s Guide.

It is important to be aware that the terms under which the GNU tools are

distributed do not apply to the software you create with them. In fact, the General

Public License makes no requirements of you as a software developer at all, as long

as you do not modify or redistribute the tools themselves. On the other hand, it

gives you the right to do both of these things, provided you comply with its terms

and conditions. It also permits you to make unrestricted copies for your own use.

The Wind River GNU distribution consists of the GNU ToolKit, which contains

GNU tools modified and configured for use with your VxWorks target

architecture. The source code for these tools is included.

! CAUTION: Never make references to any of the hidden definitions, or base any

assumptions on those definitions. The only supported uses of a module’s facilities

are through the public definitions in the header file, and through the module’s

subroutine interfaces. Although this rule is not currently enforced in any way, it is

in your interest to observe it. Your adherence ensures that your application code is

not affected by internal changes in the implementation of a VxWorks module.
329

VxWorks 5.4
Programmer’s Guide
Cross-Development Commands

The GNU cross-development tools in Tornado have names that clearly indicate the

target architecture. This allows you to install and use tools for more than one

architecture, and to avoid confusion with corresponding host native tools. A suffix

identifying the target architecture is appended to each tool name. For example, the

cross-compiler for the 68K processor family is called cc68k, and the assembler

as68k. The suffixes used are shown in Table 8-3. Note that the text in the GNU
ToolKit User’s Guide refers to these tools by their generic names (without a suffix).

Defining the CPU Type

Tornado can support multiple target architectures in a single development tree. To

accommodate this, several VxWorks header files contain conditional compilation

directives based on the definition of the variable CPU. When using these header

files, the variable CPU must be defined in one of the following places:

– the source modules

– the header files

– the compilation command line

To define CPU in the source modules or header files, add the following line:

#define CPU cputype

Table 8-3 Suffixes for Cross-Development Tools

Architecture Command Suffix

MC680x0 68k

SPARC/SPARClite sparc

i960 *

* See C. Intel i960.

x86 386

MIPS mips

PowerPC ppc

ARM arm

Simulators simso, hppa, simnt
330

8

8
Configuration and Build
To define CPU on the compilation command line, add the following flag:

-DCPU=cputype

The constants shown in Table 8-4 are supported values for cputype.

With makefiles, the CPU definition can be added to the definition of the flags

passed to the compiler (usually CFLAGS).

In the source code, the file vxWorks.h must be included before any other files with

dependencies on the CPU flag.

As well as specifying the CPU value, you must usually run the compiler with one

or more option flags to generate object code optimally for the particular

architecture variant. These option flags usually begin with -m; see Compiling C
Modules, p.332.

Table 8-4 Values for cputype

Architecture Value

MC680x0 MC68000, MC68010, MC68020*, MC68040, MC68LC040†, MC68060,

CPU32

* MC68020 is the appropriate value for both the MC68020 and the MC68030 CPUs.

† MC68LC040 is the appropriate value for both the MC68LC040 and the MC68EC040.

SPARC, SPARClite SPARC‡

‡ SPARC is the appropriate value for both SPARC and SPARClite CPUs.

i960 I960CA, I960KB, I960KA, I960JX

i386,i486, Pentium,

PentiumPro

I80386, I80486, PENTIUM**

**PENTIUM is the appropriate value for both Pentium and PentiumPro CPUs.

MIPS R3000, R4000, R4650

PowerPC PPC403, PPC603, PPC604, PPC860

ARM ARM7TDMI, ARM7TDMI_T, ARMSA110, ARM710A, ARM810

Simulators SIMSPARCSOLARIS, SIMHPPA, SIMNT
331

VxWorks 5.4
Programmer’s Guide
Compiling C Modules

The following is an example command to compile an application module for a

VxWorks MC68020 system:

% cc68k -fno-builtin -I %WIND_BASE%\target\h -nostdinc -O \
-c -DCPU=MC68020 applic.c

This compiles the module applic.c into an object file applic.o. Table 8-5 shows a

similar example compiler invocation for each CPU architecture family.

The following list gives summary descriptions of the compiler flags in Table 8-5.

For more information, see the GNU ToolKit User’s Guide, or the architecture

appendices.

-c Compile only; do not link for execution under the host. The output is an

unlinked object module with the suffix “.o”, in this case applic.o.

Table 8-5 Compiler Invocation by Architecture Family

Architecture Example Invocation

MC680x0 cc68k -fno-builtin -I $(WIND_BASE)/target/h -nostdinc -O -c\
-m68040 -DCPU=MC68040 applic.c

SPARC ccsparc -fno-builtin -I $(WIND_BASE)/target/h -nostdinc -O2 -c \
-DCPU=SPARC applic.c

SPARClite ccsparc -fno-builtin -I $(WIND_BASE)/target/h -nostdinc -O2 -c \
-msparclite -DCPU=SPARC applic.c

i960 See your i960 toolkit documentation and C. Intel i960.

i386/i486 cc386 -fno-builtin -I $(WIND_BASE)/target/h -nostdinc -O -c \
-fno-defer-pop -mno-486 -DCPU=I80386 applic.c

MIPS ccmips -fno-builtin -I $(WIND_BASE)/target/h -nostdinc -O2 -c \
-mcpu=r4000 -mips3 -G 0 -DCPU=R4000 applic.c

PowerPC ccppc -O2 -mcpu=603 -I$WIND_BASE/target/h -fno-builtin \
-fno-for-scope -nostdinc -DCPU=PPC603 -D_GNU_TOOL -c applic.c

ARM ccarm -DCPU=ARM7TDMI -mcpu=arm7tdmi -mno-sched-prolog \
-fno-builtin -O2 -nostdinc -I $WIND_BASE/target/h -c applic.c

Simulator ccsimso -DCPU=SIMSPARCSOLARIS -ansi -nostdinc -g \
-fno-builtin -fvolatile -DRW_MULTI_THREAD -D_REENTRANT \
-O2 -I. -I /wind/target/h -c applic.c
332

8

8
Configuration and Build
-DCPU=arch
Define the CPU type.

-DVX_IGNORE_GNU_LIBS
Define the constant used by the i960 configuration to suppress the use of

the GNU libraries (cc960 only).

-D_GNU_TOOL
Required; defines the compilation toolkit used to compile VxWorks or

applications (ccppc only).

-fno-builtin
Use library calls even for common library subroutines.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function

returns.

-fno-for-scope
Required; allows the scope of variables declared within a for loop to be

outside of the for loop.

-G 0 Do not use the MIPS global pointer (ccmips only).

-I $(WIND_BASE)/target/h
Include VxWorks header files (see 8.4.1 Using VxWorks Header Files, p.325).

-m68040
Generate code for a specific variant of the MC680x0 family.

-mcpu=
Generate MIPS R4200 or R4600 specific code (ccmips only).

-mips3
Issue instructions from level 3 of the MIPS instruction set (ccmips only).

-mno-486
Generate code optimized for an i386 rather than for an i486 (cc386 only).

-msparclite
Generate SPARClite-specific code (ccsparc only).

-nostdinc
Do not search host-system header files; search only the directories

specified with the -I flag and the current directory for header files.

-O Perform standard optimizations.

-O2 Use level 2 optimization.
333

VxWorks 5.4
Programmer’s Guide
Compiling C++ Modules

Tornado supports the GNU compiler, a standard part of the cross-compilation

tools distributed for Tornado, compiles source programs in either C or C++. To use

this compiler for C++, invoke ccarch on any source file with a C++ suffix (such as

.cpp). For complete information on using C++, including a detailed discussion of

compiling C++ modules, see 5. C++ Development.

Compiling C++ applications in the VxWorks environment involves the following

steps:

1. C++ source code is compiled into object code for a specific target architecture,

just as for C applications.

2. The compiled object module is munched. Munching is the process of scanning

an object module for non-local static objects, and generating data structures

that VxWorks run-time support can use to call the objects’ constructors and

destructors. The details are described in 5.2.5 Munching C++ Application
Modules, p.232.

8.4.3 Static Linking (Optional)

After you compile an application module, you can load it directly into the target

with the Tornado dynamic loader (through the shell or through the debugger).

In general, application modules do not need to be linked with the linker from the

GNU ToolKit, ldarch. However, using ldarch may be required when several

application modules cross-reference each other. The following example is a

command to link several application modules, using the GNU linker for the

MC680x0 family of processors.

C:\devt> ld68k -o applic.o -r applic1.o applic2.o applic3.o

This creates the object module applic.o from the object modules applic1.o,

applic2.o, and applic3.o. The -r option is required, because the object-module

output must be left in relocatable form so that it can be downloaded and linked to

the target VxWorks image.

Any VxWorks facilities called by the application modules are reported by ldarch as

unresolved externals. These are resolved by the Tornado loader when the module

is loaded into VxWorks memory.
334

8

8
Configuration and Build
8.4.4 Downloading an Application Module

After application object modules are compiled (and possibly linked by the host

ldarch command), they can be dynamically loaded into a running VxWorks system

by invoking the Tornado module loader. You can do this either from the Tornado

shell using the built-in command ld(), or from the debugger using the Debug menu

or the load command.

The following is a typical load command from the Tornado shell:

-> ld <applic.o

This relocates the code from the host file applic.o, linking to previously loaded

modules, and loads the object module into the target’s memory. Once an

application module is loaded into target memory, any subroutine in the module

can be invoked directly from the shell, spawned as a task, connected to an

interrupt, and so on.

The shell ld() command, by default, adds only global symbols to the symbol table.

During debugging, you may want local symbols as well. To get all symbols loaded

(including local symbols), you can use the GDB command load from the debugger.

Because this command is meant for debugging, it always loads all symbols.

Alternately, you can load all symbols by calling the shell command ld() with a full

argument list instead of the shell-redirection syntax shown above. When you use

an argument list, you can get all symbols loaded by specifying a 1 as the first

argument, as in the following example:

-> ld 1,0,"applic.o"

In the foregoing examples, the object module applic.o comes from the shell’s

current working directory. Normally, you can use either relative path names or

absolute path names to identify object modules to ld(). If you use a relative path

name, the shell converts it to an absolute path (using its current working directory)

before passing the download request to the target server. In order to avoid trouble

when the shell where you call ld() is not running on the same host as its target

server, Tornado supplies the LD_SEND_MODULES facility; see the Tornado User’s
Guide: Shell. If you are using a remote target server and ld() fails with a “no such

file” message, be sure that LD_SEND_MODULES is set to “on.”

! WARNING: Do not link each application module with the VxWorks libraries.

Doing this defeats the load-time linking feature of Tornado, and wastes space by

writing multiple copies of VxWorks system modules on the target.
335

VxWorks 5.4
Programmer’s Guide
For more information about loader arguments, see the discussion of ld() (in the

reference entry for windsh).

For information about the target-resident version of the loader (which also

requires the target-resident symbol table), see the VxWorks reference entry for

loadLib.

8.4.5 Module IDs and Group Numbers

When a module is loaded, it is assigned a module ID and a group number. Both the

module ID and the group number are used to reference the module. The module

ID is returned by ld() as well as by the target-resident loader routines. When

symbols are added to the symbol table, the associated module is identified by the

group number (a small integer). (Due to limitations on the size of the symbol table,

the module ID is inappropriate for this purpose.) All symbols with the same group

number are from the same module. When a module is unloaded, the group

number is used to identify and remove all the module’s symbols from the symbol

table.

8.4.6 Unloading Modules

Whenever you load a particular object module more than once, using the target

server (from either the shell or the debugger), the older version is unloaded

automatically. You can also unload a module explicitly: both the Tornado shell and

the target-resident VxWorks libraries include an unloader. To remove a module

from the shell, use the shell routine unld(); see the reference entry for windsh.

For information about the target-resident version of the unloader (which also

requires the target-resident symbol table and loader), see the VxWorks reference

entry for unldLib.

After a module has been unloaded, any calls to routines in that module fail with

unpredictable results. Take care to avoid unloading any modules that are required

by other modules. One solution is to link interdependent files using the static

! CAUTION: (Windows) If you call ld() with an explicit argument list, any backslash

characters in the module-name argument must be doubled. If you supply the

module name with the redirection symbol, as in the earlier example in this section,

no double backslashes are needed. See the Tornado User’s Guide: Shell for more

discussion of this issue.
336

8

8
Configuration and Build
linker ldarch as described in 8.4.3 Static Linking (Optional), p.334, so that they can

only be loaded and unloaded as a unit.

8.5 Configuring VxWorks

The configuration of VxWorks is determined by the configuration header files

installDir/target/config/all/configAll.h and

installDir/target/config/bspname/config.h. These files are used by the usrConfig.c,

bootConfig.c, and bootInit.c modules as they run the initialization routines

distributed in the directory installDir/target/src/config to configure VxWorks.

The VxWorks distribution includes the configuration files for the default

development configuration. You can create your own versions of these files to

better suit your particular configurations; this is described in the following

subsections. In addition, if you need multiple configurations, environment

variables are provided so you can move easily between them.

Including optional components in your VxWorks image can significantly increase

the image size. If you receive a warning from vxsize when building VxWorks, or if

the size of your image becomes greater than that supported by the current setting

of RAM_HIGH_ADRS, be sure to see 8.6.1 Scaling Down VxWorks, p.344 and

8.9 Creating Bootable Applications, p.364 for information on how to resolve the

problem.

8.5.1 The Environment Variables

In a development environment, you may have several different configurations you

wish to test, or you may wish to specify different target code in different situations.

In order to build VxWorks to these different specifications, you need to modify

your environment.

In general, your Tornado environment consists of three parts: the host code

(Tornado), the target code, and the configuration files discussed in this section. If

NOTE: To rebuild VxWorks for your own configuration, follow the procedures

described in the Tornado User’s Guide: Projects (recommended) or see 8.7 Building a
VxWorks System Image, p.351.
337

VxWorks 5.4
Programmer’s Guide
you use the default environment, your UNIX environment variables are defined as

follows:

On Windows hosts, the IDE automatically locates Tornado code in the following

locations:

To use different versions of usrConfig.c, bootConfig.c, and bootInit.c, store them

in a different directory and change the value of CONFIG_ALL. To use different

target code, point to the alternate directory by changing the value of TGT_DIR.

You can change the value of CONFIG_ALL by changing it either in your makefile

or on the command line. The value of TGT_DIR must be changed on the command

line.

To change CONFIG_ALL in your makefile, add the following command:

CONFIG_ALL = $WIND_BASE/target/config/ newDir

To change CONFIG_ALL on the command line, do the following:

% make ... CONFIG_ALL = $WIND_BASE/target/config/ newDir

To change TGT_DIR on the command line, do the following:

% make ... TGT_DIR = $ ALT_DIR/target

8.5.2 The Configuration Header Files

You can control VxWorks’s configuration by including or excluding definitions in

the global configuration header file configAll.h and in the target-specific

configuration header file config.h. This section describes these files.

Host code: $WIND_BASE/host/hosttype/bin

Target code: TGT_DIR = $WIND_BASE/target

Configuration code: CONFIG_ALL = $TGT_DIR/config/all

Host code: installDir/host/hosttype/bin

Target code: installDir/target

Configuration code: installDir/target/config/all

NOTE: Changing TGT_DIR will change the default value of CONFIG_ALL. If this

is not what you want, reset CONFIG_ALL as well.
338

8

8
Configuration and Build
The Global Configuration Header File: configAll.h

The configAll.h header file, in the directory installDir/target/config/all, contains

default definitions that apply to all targets, unless redefined in the target-specific

header file config.h. The following options and parameters are defined in

configAll.h:

– kernel configuration parameters

– I/O system parameters

– NFS parameters

– selection of optional software modules

– selection of optional device controllers

– cache modes

– maximum number of the different shared memory objects

– device controller I/O addresses, interrupt vectors, and interrupt levels

– miscellaneous addresses and constants

The BSP-specific Configuration Header File: config.h

There is also a BSP-specific header file, config.h, in the directory

installDir/target/config/bspname. This file contains definitions that apply only to the

specific target, and can also redefine default definitions in configAll.h that are

inappropriate for the particular target. For example, if a target cannot access a

device controller at the default I/O address defined in configAll.h because of

addressing limitations, the address can be redefined in config.h.

The config.h header file includes definitions for the following parameters:

– default boot parameter string for boot ROMs

– interrupt vectors for system clock and parity errors

– device controller I/O addresses, interrupt vectors, and interrupt levels

– shared memory network parameters

– miscellaneous memory addresses and constants

! CAUTION: If any options from configAll.h need to be changed for this one BSP,

then any previous definition of that option should be undefined and redefined as

necessary in config.h. Unless options are to apply to all BSPs at your site, do not

change them in installDir/target/config/all/configAll.h.
339

VxWorks 5.4
Programmer’s Guide
Selection of Optional Features

VxWorks ships with optional features and device drivers that can be included or

omitted from the target system. These are controlled by macros in the project

facility or the configuration header files that cause conditional compilation in the

installDir/target/config/all/usrConfig.c module.

The distributed versions of the configuration header files configAll.h and config.h
include all the available software options and several network device drivers. If

you are not using the project facility (see Tornado User’s Guide: Projects), you define

a macro by moving it from the EXCLUDED FACILITIES section of the header file

to the INCLUDED SOFTWARE FACILITIES section.3 For example, to include the

ANSI C assert library, make sure the macro INCLUDE_ANSI_ASSERT is defined; to

include the Network File System (NFS) facility, make sure INCLUDE_NFS is

defined. Modification or exclusion of particular facilities is discussed in detail in

8.6 Alternative VxWorks Configurations, p.344.

Macros shown in Table 8-6 that end in XXX are not valid macros but represent

families of options where the XXX is replaced by a suffix declaring a specific

routine. For example, INCLUDE_CPLUS_XXX refers to a family of macros that

includes INCLUDE_CPLUS_MIN and INCLUDE_CPLUS_STL.

3. For a partial listing of the configuration macros, see Table 8-6. To see all the available macros

with their descriptions, see installDir/target/config/all/configAll.h (for macros applicable to

all bsps) and installDir/target/config/bspname/config.h (for macros applicable to a specific

BSP).

Table 8-6 Key VxWorks Options

Macro * Option

INCLUDE_ANSI_XXX * Various ANSI C library options

INCLUDE_BOOTLINE_INIT Parse boot device configuration information

INCLUDE_BOOTP * BOOTP support

INCLUDE_CACHE_SUPPORT * Cache support

INCLUDE_CPLUS * Bundled C++ support

INCLUDE_CPLUS_XXX Various C++ support options
340

8

8
Configuration and Build
INCLUDE_DOSFS DOS-compatible file system

INCLUDE_FLOATING_POINT * Floating-point I/O

INCLUDE_FORMATTED_IO * Formatted I/O

INCLUDE_FTP_SERVER FTP server support

INCLUDE_IO_SYSTEM * I/O system package

INCLUDE_LOADER Target-resident object module loader package

INCLUDE_LOGGING * Logging facility

INCLUDE_MEM_MGR_BASIC * Core partition memory manager

INCLUDE_MEM_MGR_FULL * Full-featured memory manager

INCLUDE_MIB2_XXX Various MIB-2 options

INCLUDE_MMU_BASIC * Bundled MMU support

INCLUDE_MMU_FULL Unbundled MMU support (requires VxVMI)

INCLUDE_MSG_Q * Message queue support

INCLUDE_NETWORK * Network subsystem code

INCLUDE_NFS Network File System (NFS)

INCLUDE_NFS_SERVER NFS server

INCLUDE_PIPES * Pipe driver

INCLUDE_POSIX_XXX Various POSIX options

INCLUDE_PROTECT_TEXT Text segment write protection (requires VxVMI)

INCLUDE_PROTECT_VEC_TABLE Vector table write protection (requires VxVMI)

INCLUDE_PROXY_CLIENT * Proxy ARP client support

INCLUDE_PROXY_SERVER Proxy ARP server support

Table 8-6 Key VxWorks Options (Continued)

Macro * Option
341

VxWorks 5.4
Programmer’s Guide
INCLUDE_RAWFS Raw file system

INCLUDE_RLOGIN Remote login with rlogin

INCLUDE_SCSI SCSI support

INCLUDE_SCSI2 SCSI-2 extensions

INCLUDE_SECURITY Remote login security package

INCLUDE_SELECT Remote login security package

INCLUDE_SEM_BINARY * Binary semaphore support

INCLUDE_SEM_COUNTING * Counting semaphore support

INCLUDE_SEM_MUTEX * Mutual exclusion semaphore support

INCLUDE_SHELL C-expression interpreter (target shell)

INCLUDE_XXX_SHOW Various system object show facilities

INCLUDE_SIGNALS * Software signal facilities

INCLUDE_SM_OBJ Shared memory object support (requires VxMP)

INCLUDE_SNMPD SNMP agent

INCLUDE_SPY Task activity monitor

INCLUDE_STDIO * Standard buffered I/O package

INCLUDE_SW_FP Software Floating point emulation package

INCLUDE_SYM_TBL Target-resident symbol table support

INCLUDE_TASK_HOOKS * Kernel call-out support

INCLUDE_TASK_VARS * Task variable support

INCLUDE_TELNET Remote login with telnet

INCLUDE_TFTP_CLIENT * TFTP client support

INCLUDE_TFTP_SERVER TFTP server support

Table 8-6 Key VxWorks Options (Continued)

Macro * Option
342

8

8
Configuration and Build
8.5.3 The Configuration Module: usrConfig.c

Use VxWorks configuration header files to configure your VxWorks system to meet

your development requirements. Users should not resort to changing the WRS-

supplied usrConfig.c, or any other module in the directory

installDir/target/config/all. If an extreme situation requires such a change, we

recommend you copy all the files in installDir/target/config/all to another

directory, and add a CONFIG_ALL macro to your makefile to point the make

system to the location of the modified files. For example, add the following to your

makefile after the first group of include statements:

../myAll contains a copy of all the ../all files
CONFIG_ALL = ../myAll

INCLUDE_TIMEX * Function execution timer

INCLUDE_TRIGGERING Function execution timer

INCLUDE_UNLOADER Target-resident object module unloader

package

INCLUDE_WATCHDOGS * Watchdog support

INCLUDE_WDB * Target agent

INCLUDE_WDB_TSFS * Target server file system

INCLUDE_WINDVIEW WindView command server; see the WindView
User’s Guide for details

INCLUDE_ZBUF_SOCK Zbuf socket interface

* Items marked with an asterisk are included in the default configuration. Note that,

since this list of options is not complete, not all macros included in the default

configuration are listed here. Note also that their inclusion may be overridden in

config.h for your BSP.

Table 8-6 Key VxWorks Options (Continued)

Macro * Option
343

VxWorks 5.4
Programmer’s Guide
8.6 Alternative VxWorks Configurations

The discussion of the usrConfig module in 8.5.3 The Configuration Module:
usrConfig.c, p.343 outlined the default configuration for a development

environment. In this configuration, the VxWorks system image contains all of the

VxWorks modules that are necessary to allow you to interact with the system

through the Tornado host tools.

However, as you approach a final production version of your application, you may

want to change the VxWorks configuration in one or more of the following ways:

■ Change the configuration of the target agent.
■ Decrease the size of VxWorks.
■ Run VxWorks from ROM.

The following sections discuss the latter two alternatives to the typical

development configuration. For a discussion on reconfiguring the target agent, see

the Tornado User’s Guide: Projects.

8.6.1 Scaling Down VxWorks

In a production configuration, it is often desirable to remove some of the VxWorks

facilities to reduce the memory requirements of the system, to reduce boot time, or

for security purposes.

Optional VxWorks facilities can be omitted by commenting out or using #undef to

undefine their corresponding control constants in the header files configAll.h or

config.h. For example, logging facilities can be omitted by undefining

INCLUDE_LOGGING, and signalling facilities can be omitted by undefining

INCLUDE_SIGNALS.

VxWorks is structured to make it easy to exclude facilities you do not need.

However, not every BSP will be structured in this way. If you wish to minimize

your application, be sure to examine your BSP code and eliminate references to

facilities you do not need to include. Otherwise, they will be included even though

you undefined them in your VxWorks configuration files.

Excluding Kernel Facilities

The definition of the following constants in configAll.h is optional, because

referencing any of the corresponding kernel facilities from the application

automatically includes the kernel service:
344

8

8
Configuration and Build
– INCLUDE_SEM_BINARY
– INCLUDE_SEM_MUTEX
– INCLUDE_SEM_COUNTING
– INCLUDE_MSG_Q
– INCLUDE_WATCHDOGS

These configuration constants appear in the default VxWorks configuration to

ensure that all kernel facilities are configured into the system, even if not

referenced by the application. However, if your goal is to achieve the smallest

possible system, exclude these constants; this ensures that the kernel does not

include facilities you are not actually using.

There are two other configuration constants that control optional kernel facilities:

INCLUDE_TASK_HOOKS and INCLUDE_CONSTANT_RDY_Q. Define these

constants in configAll.h if the application requires either kernel callouts (use of

task hook routines) or a constant-insertion-time, priority-based ready queue. A

ready queue with constant insert time allows the kernel to operate context

switches with a fixed overhead regardless of the number of tasks in the system.

Otherwise, the worst-case performance degrades linearly with the number of

ready tasks in the system. Note that the constant-insert-time ready queue uses 2KB

for the data structure; some systems do not have sufficient memory for this. In

those cases, the definition of INCLUDE_CONSTANT_RDY_Q may be omitted, thus

enabling use of a smaller (but less deterministic) ready queue mechanism.

Excluding Network Facilities

In some applications it may be appropriate to eliminate the VxWorks network

facilities. For example, in the ROM-based systems or standalone configurations

described in 8.9 Creating Bootable Applications, p.364, there may be no need for

network facilities.

To exclude the network facilities, be sure the following constants are not defined:

– INCLUDE_NETWORK
– INCLUDE_NET_INIT
– INCLUDE_NET_SYM_TBL
– INCLUDE_NFS
– INCLUDE_RPC

To exclude the Remote Procedure Call library (RPC), undefine INCLUDE_RPC.
345

VxWorks 5.4
Programmer’s Guide
Option Dependencies

Option dependencies are coded in the file

installDir/target/src/config/usrDepend.c, so that when a particular option is

chosen, everything required is included. This assures you of a working system

with minimum effort. Although you can exclude the features that you do not need

by undefining them in config.h and configAll.h, you should be aware that in some

cases they may not be excluded because of dependencies.

For example, you cannot use telnet without running the network. Therefore, if in

your configAll.h file, the option INCLUDE_TELNET is selected but the option

INCLUDE_NET_INIT is not, usrDepend.c defines INCLUDE_NET_INIT for you.

Because the network initialization requires the network software, the

userDepend.c file also defines INCLUDE_NETWORK.

Because most of the dependencies are taken care of in usrDepend.c, that file is

currently included in usrConfig.c. This simplifies the build process and the

selection of options. However, you can change or add dependencies if you choose.

8.6.2 Executing VxWorks from ROM

You can put VxWorks or a VxWorks-based application into ROM; this is discussed

in 8.9.2 Creating a VxWorks System in ROM, p.367. For an example of a ROM-based

VxWorks application, see the VxWorks boot ROM program. The file

installDir/target/config/all/bootConfig.c is the configuration module for the boot

ROM, replacing the file usrConfig.c provided for the default VxWorks

development system.

In such ROM configurations, the text and data segments of the boot or VxWorks

image are first copied into the system RAM, then the boot procedure or VxWorks

executes in RAM. On some systems where memory is a scarce resource, it is

possible to save space by copying only the data segment to RAM. The text segment

remains in ROM and executes from that address space, and thus is termed

ROM resident. The memory that was to be occupied by the text segment in RAM is

now available for an application (up to 300KB for a standalone VxWorks system).

Note that ROM-resident VxWorks is not supported on all boards; see your target’s

man page if you are not sure that your board supports this configuration.

The drawback of a ROM-resident text segment is the limited data widths and

lower memory access time of the EPROM, which causes ROM-resident text to

execute more slowly than if it was in RAM. This can sometimes be alleviated by

using faster EPROM devices or by reconfiguring the standalone system to exclude

unnecessary system features.
346

8

8
Configuration and Build
Aside from program text not being copied to RAM, the ROM-resident versions of

the VxWorks boot ROMs and the standalone VxWorks system are identical to the

conventional versions. A ROM-resident image is built with an uncompressed

version of either the boot ROM or standalone VxWorks system image. VxWorks

target makefiles include entries for building these images; see Table 8-7.

Because of the size of the system image, 512KB of EPROM is recommended for the

ROM-resident version of the standalone VxWorks system. More space is probably

required if applications are linked with the standalone VxWorks system. For a

ROM-resident version of the boot ROM, 256KB of EPROM is recommended. If you

use ROMs of a size other than the default, modify the value of ROM_SIZE in the

target makefile and config.h.

A new make target, vxWorks.res_rom_nosym, has been created to provide a

ROM-resident image without the symbol table. This is intended to be a standard

Table 8-7 Makefile ROM-Resident Images

Architecture Image FIle *

* All images have a corresponding file in Motorola S-record or Intel Hex format with

the same file name plus the extension .hex.

Description

MIPS and

PowerPC

bootrom_res_high ROM-resident boot ROM image. The

data segment is copied from ROM to

RAM at address RAM_HIGH_ADRS.

vxWorks.res_rom_res_low ROM-resident standalone system image

without compression. The data segment

is copied from ROM to RAM at address

RAM_LOW_ADRS.

vxWorks.res_rom_nosym_res_low ROM-resident standalone system image

without compression or symbol table.

Data segment is copied from ROM to

RAM at address RAM_LOW_ADRS.

All Other

Targets

bootrom_res ROM-resident boot ROM image.

vxWorks.res_rom ROM-resident standalone system image

without compression.

vxWorks.res_rom_nosym ROM-resident system image without

compression or symbol table. Ideal for

the Tornado environment.
347

VxWorks 5.4
Programmer’s Guide
Figure 8-1 ROM-Resident Memory Layout

BOOT IMAGE VXWORKS IMAGE

text
text

data

RAM_HIGH_ADRS

ROM_TEXT_ADRS

RAM_LOW_ADRS

ROM

RAM

data

data

bss

bss

ROM

RAM

data

ROM_TEXT_ADRS

LOCAL_MEM_LOCAL_ADRS LOCAL_MEM_LOCAL_ADRS

= copied to RAM
348

8

8
Configuration and Build
ROM image for use with the Tornado environment where the symbol table resides

on the host system. Being ROM-resident, the debug agent and VxWorks are ready

almost immediately after power-up or restart.

The data segment of a ROM-resident standalone VxWorks system is loaded at

RAM_LOW_ADRS (defined in the makefile) to minimize fragmentation. The data

segment of ROM-resident boot ROMs is loaded at RAM_HIGH_ADRS, so that

loading VxWorks does not overwrite the resident boot ROMs. For a CPU board

with limited memory (under 1MB of RAM), make sure that RAM_HIGH_ADRS is

less than LOCAL_MEM_SIZE by a margin sufficient to accommodate the data

segment. Note that RAM_HIGH_ADRS is defined in both the makefile and

config.h. These definitions must agree.

Figure 8-1 shows the memory layout for ROM-resident boot and VxWorks images.

The lower portion of the diagram shows the layout for ROM; the upper portion

shows the layout for RAM. LOCAL_MEM_LOCAL_ADRS is the starting address of

RAM. For the boot image, the data segment gets copied into RAM above

RAM_HIGH_ADRS (after space for bss is reserved). For the VxWorks image, the

data segment gets copied into RAM above RAM_LOW_ADRS (after space for bss is

reserved). Note that for both images the text segment remains in ROM.

8.6.3 Initialization Sequence for ROM-Based VxWorks

The early steps of system initialization are somewhat different for the ROM-based

versions of VxWorks: on most target architectures, the two routines romInit() and

romStart() execute instead of the usual VxWorks entry point, sysInit().

ROM Entry Point: romInit()

At power-up the processor begins executing at romInit() (defined in

installDir/target/config/bspname/romInit.s). The romInit() routine disables

interrupts, puts the boot type (cold/warm) on the stack, performs hardware-

dependent initialization (such as clearing caches or enabling DRAM), and

branches to romStart(). The stack pointer is initialized to reside below the data

section in the case of ROM-resident versions of VxWorks (in RAM versions, the

stack pointer instead resides below the text section).

Copying the VxWorks Image: romStart()

Next, the romStart() routine (in installDir/target/config/all/bootInit.c) loads the

VxWorks system image into RAM. If the ROM-resident version of VxWorks is

selected, the data segment is copied from ROM to RAM and memory is cleared. If

VxWorks is not ROM resident, all of the text and code segment is copied and
349

VxWorks 5.4
Programmer’s Guide
decompressed from ROM to RAM, to the location defined by RAM_HIGH_ADRS
in Makefile. If VxWorks is neither ROM resident nor compressed, the entire text

and data segment is copied without decompression straight to RAM, to the

location defined by RAM_LOW_ADRS in Makefile.

Overall Initialization for ROM-Based VxWorks

Beyond romStart(), the initialization sequence for ROM-based VxWorks

resembles the normal sequence, continuing with the usrInit() call.

Table 8-8 summarizes the complete initialization sequence. For details on the steps

after romInit() and romStart(), see 8.3 VxWorks Initialization Timeline, p.313.

Table 8-8 ROM-Based VxWorks Initialization Sequence

Routine Activity File

1. romInit() (a) disable interrupts romInit.s

(b) save boot type (cold/warm)

(c) hardware-dependent initialization

(d) branch to romStart()

2. romStart() (a) copy data segment from ROM to RAM; clear

memory

bootInit.c

(b) copy code segment from ROM to RAM,

decompressing if necessary

(c) invoke usrInit() with boot type

3. usrInit() Initial routine. usrConfig.c

4. usrKernelInit() Routines invoked if the corresponding

configuration constants are defined.

usrKernel.c

5. kernelInit() Initialize and start the kernel. kernelLib.c

6. usrRoot() Initialize I/O system, install drivers, and create

devices as configured in configAll.h and config.h.

usrConfig.c

Application routine Application code. Application

source file
350

8

8
Configuration and Build
8.7 Building a VxWorks System Image

You can redefine the VxWorks configuration in two ways: interactively, as

described in this manual in the Tornado User’s Guide: Projects, or by editing

VxWorks configuration files as described in 8.5 Configuring VxWorks, p.337. In
either case, after you alter the configuration, VxWorks must be rebuilt to

incorporate the changes. This includes recompiling certain modules and re-linking

the system image. This section explains the procedures for rebuilding the VxWorks

system image using manual techniques.

8.7.1 Available VxWorks Images

There are three types of VxWorks images.

■ Boot ROM images
■ Downloaded VxWorks images
■ ROMmed VxWorks images

Boot ROM images come in 3 flavors: compressed, uncompressed, and ROM-

resident.

Downloaded VxWorks images come in two basic varieties, Tornado and

standalone. (Here “Tornado” is a Vxworks image that uses the host-based tools

and symbol table.)

ROMmed VxWorks images:

Note that there are variations in available targets for the x86 architecture. See

D. Intel x86 for details.

bootrom normal compressed boot ROM

bootrom_uncmp uncompressed boot ROM

bootrom_res ROM-resident boot ROM

vxWorks basic Tornado uses host shell and symbol table

vxWorks.st standalone image has target shell and symbol table

vxWorks_rom Tornado in ROM (uncompressed)

vxWorks.st_rom vxWorks.st in ROM (compressed)

vxWorks.res_rom vxWorks.st ROM-resident

vxWorks.res_rom_nosym Tornado, ROM-resident
351

VxWorks 5.4
Programmer’s Guide
8.7.2 Rebuilding VxWorks with make

VxWorks uses the GNU make facility to recompile and relink modules. A file

called Makefile in each VxWorks target directory contains the directives for

rebuilding VxWorks for that target. See GNU ToolKit User’s Guide: GNU Make for a

detailed description of GNU make and of how to write makefiles.

Making on UNIX Hosts

With a UNIX host, you can use either the GNU version of make included with

Tornado or the version included with your UNIX system. If you choose that

version, see your host system’s reference for make for information about the

version of make supplied in that system.

To rebuild VxWorks on a UNIX host, first change to the VxWorks target directory

for the desired target, and invoke make as follows:

% cd ${WIND_BASE}/target/config/ bspname
% make

Making on Windows Hosts

If you choose to use manual techniques on Windows hosts, you must use the

command line for building individual application modules. You can use either the

command line or the project facility in Tornado 1.0.1 compatibility mode to rebuild

BSPs. For information on how to implement Tornado 1.0.1 compatibility mode, see

the Tornado User’s Guide: Customization.

Rebuilding BSP Components

The Project menu includes entries for rebuilding every BSP installed on your

system as a part of Tornado. These entries all have the form Make bspname.

Figure 8-2 illustrates the Project menu in a Tornado system that has a family of

i386/i486 BSPs installed.

When you select any Make bspname menu entry, the make targets available are

grouped into the following categories (also illustrated in Figure 8-2):

Common Targets

The BSP make targets needed most often. Two of them also appear in the

next two categories: vxWorks, the VxWorks system image, and

bootrom.hex, the simplest form of the boot-program object code.
352

8

8
Configuration and Build
The standard make target clean (which erases all objects that can be built

by the BSP makefile) is also in this category.

VxWorks Targets

Alternate forms of the VxWorks run-time image, as described in

8.7 Building a VxWorks System Image, p.351 and 8.9 Creating Bootable
Applications, p.364.

Boot ROM Targets

Alternate forms of the VxWorks boot program, discussed in

8.6.2 Executing VxWorks from ROM, p.346.

When you click any of the targets from the categories above, Tornado builds the

corresponding object in the BSP directory. Output from the build goes to a Build
Output window, which you can use as a diagnostic aid.

Rebuilding VxWorks

To rebuild VxWorks, click the vxWorks target name under the appropriate Make
bspname entry for your target in the Project menu. For example, Figure 8-2 shows

the vxWorks target selected for the EPC4 BSP.

You can also rebuild VxWorks from the Windows command prompt (or from a

batch file). Change to the config directory for the desired target, and invoke make
as follows:

C:\> cd tornado\target\config\ bspname
C:\tornado\target\config\ bspname> make

In either case, make compiles and links modules as necessary, based on the

directives in the target directory’s Makefile.

Figure 8-2 Rebuilding VxWorks from the Project Menu
353

VxWorks 5.4
Programmer’s Guide
To rebuild VxWorks when only header files change:

% make clean VxWorks

This regenerate all .o files required by VxWorks. Or:

% make clean
% make

The "make clean" removes all existing .o files, and then "make" recreates the new

.o files required by VxWorks.

8.7.3 Including Customized VxWorks Code

The directory installDir/target/target/src/usr contains the source code for certain

portions of VxWorks that you may wish to customize. For example, usrLib.c is a

popular place to add target-resident routines that provide application-specific

development aids. For a summary of other files in this directory, see the Tornado
User’s Guide: Directories and Files.

If you modify one of these files, an extra step is necessary before rebuilding your

VxWorks image: you must replace the modified object code in the appropriate

VxWorks archive. The Makefile in installDir/target/target/src/usr automates the

details; however, because this directory is not specific to a single architecture, you

must specify the value of the CPU variable on the make command line:

% make CPU=cputype

If you do this frequently on a Windows host, you can record the CPU definition in

the Build Target field of a custom command in the Project menu; see Tornado User’s
Guide: Customization.

This step recompiles all modified files in the directory, and replaces the

corresponding object code in the appropriate architecture-dependent directory.

After that, the next time you rebuild VxWorks, the resulting system image includes

your modified code.

The following example illustrates replacing usrLib with a modified version,

rebuilding the archives, and then rebuilding the VxWorks system image. For the

NOTE: For the sake of compactness, most examples of calling make in this chapter

use the command line; in real practice, the Project menu is usually more

convenient. This is true for Windows hosts even if you use the Tornado 1.0.1

methods described in this section.
354

8

8
Configuration and Build
sake of conciseness, the make output is not shown. The example assumes the epc4
(I80386) BSP; replace the BSP directory name and CPU value as appropriate for

your environment. (On a Windows host, use copy instead of the UNIX cp.)

% cd ${WIND_BASE}/target/src/usr
% cp usrLib.c usrLib.c.orig
% cp develDir/usrLib.c usrLib.c
% make CPU=I80386
...

% cd ${WIND_BASE}/target/config/epc4
% make
...

8.7.4 Linking the System Modules

The commands to link a VxWorks system image are somewhat complicated.

Fortunately, it is not necessary to understand those commands in detail because

the Makefile in each VxWorks target directory includes the necessary commands.

However, for completeness, this section gives an explanation of the flags and

parameters used to link VxWorks.

VxWorks operating system modules are distributed in the form of an archive

library for each target architecture. The library is

installDir/target/lib/libcpugnuvx.a.

These modules are combined with the configuration module usrConfig.o by the

ldarch command on the host. (usrConfig.c is described in 8.5.3 The Configuration
Module: usrConfig.c, p.343.) The following is an example command for linking a

VxWorks system using the GNU linker for the MC680x0:

ld68k -o vxWorks -X -N -Ttext 1000 -e _sysInit sysALib.o sysLib.o \
usrConfig.o version.o /tornado/target/lib/lib cpugnuvx.a

The meanings of the flags in this command are as follows:

-o vxWorks
name the output object module vxWorks.

-X eliminate some compiler-generated symbols from the symbol table.

-N do not configure the output object module for a virtual-memory system.

-Ttext 1000
specify the relocation address as a hexadecimal constant; in this example,

1000 hexadecimal. This is the address where the system must be loaded in
355

VxWorks 5.4
Programmer’s Guide
the target, and is also the address where execution starts. Some target

systems have limitations on where this relocation address can be.

-e _sysInit
define the entry point to vxWorks. sysInit() is the first routine in

sysALib.o, which is the first module loaded by ldarch.

sysALib.o and sysLib.o
modules that contain CPU-dependent initialization and support routines.

The module sysALib.o must be the first module specified in the ldarch
command.

usrConfig.o
the configuration module (described in detail in 8.5.3 The Configuration
Module: usrConfig.c, p.343). If you have several different system

configurations, you may maintain several different configuration

modules, either in installDir/target or in your own directory.

version.o
a module that defines the creation date and version number of this

vxWorks object module. It is created by compiling the output of

makeVersion, an auxiliary tool in the installDir/host/host-os/bin directory.

installDir/target/lib/libcpugnuvx.a
the archive library that contains all the VxWorks modules.

Additional object modules:

You can link additional object modules (with .o suffix) into the run-time

VxWorks system by naming them on the ldarch command line. An easy

way to do this is to use the variable MACH_EXTRA in the BSP makefiles.

Define this variable and list the object modules to be linked with VxWorks.

Note that during development, application object modules are generally

not linked with the system (unless they are needed by the usrConfig
module), because it is more convenient to load them incrementally from

the host, after booting VxWorks. See 8.9 Creating Bootable Applications,

p.364 for more detail on linking application modules in a bootable system.

i960 systems require additional Intel libraries, which are listed in the

makefiles for i960 BSPs.

8.7.5 Creating the System Symbol Table Module

The Tornado target server uses the VxWorks symbol table on the host system, both

for dynamic linking and for symbolic debugging. The symbol table file is created
356

8

8
Configuration and Build
by the supplied tool xsym. Processing an object module with xsym creates a new

object module that contains all the symbols of the original file, but with no code or

data. The line in Makefile that creates this file executes the command as follows:

xsym < vxWorks > vxWorks.sym

The file vxWorks.sym is the symbol table that the target server loads when it

begins executing.

8.8 Makefiles for BSPs and Applications

Makefiles for VxWorks applications are easy to create by exploiting the makefiles

and make include files shipped with VxWorks BSPs. This section discusses how

the VxWorks BSP makefiles are structured. An example of how to utilize this

structure for application makefiles is in 8.8.2 Using Makefile Include Files for
Application Modules, p.363.

In Tornado, a set of supporting files in installDir/target/h/make makes it possible

for each BSP or application Makefile to be terse, specifying only the essential

parameters that are unique to the object being built.

Example 8-1 shows the makefile from the installDir/target/config/mv147 directory;

the makefile for any other BSP is similar. Two variables are defined at the start of

the makefile: CPU, to specify the target architecture, and TOOL to identify what

compilation tools to use. Based on the values of these variables and on the

environment variables defined as part of your Tornado configuration, the makefile

selects the appropriate set of definitions from installDir/target/h/make. After the

standard definitions, several variables define properties specific to this BSP.

Finally, the standard rules for building a BSP on your host are included.

Example 8-1 Makefile for MVME147

Makefile - makefile for target/config/mv147
#
Copyright 1984-1995 Wind River Systems, Inc.
#
DESCRIPTION
This file contains rules for building VxWorks for the
Motorola MVME147.
#*/

CPU = MC68020
357

VxWorks 5.4
Programmer’s Guide
TOOL = gnu

include $(WIND_BASE)/target/h/make/defs.bsp
include $(WIND_BASE)/target/h/make/make.(CPU)(TOOL)
include $(WIND_BASE)/target/h/make/defs.$(WIND_HOST_TYPE)

Only redefine make definitions below this point, or your definitions
will be overwritten by the makefile stubs above.

TARGET_DIR = mv147
VENDOR = Motorola
BOARD = MVME147, MVME147S-1

#
The constants ROM_TEXT_ADRS, ROM_SIZE, and RAM_HIGH_ADRS are
defined in config.h as well as in this Makefile.
Both definitions of these constants must be identical.
#

ROM_TEXT_ADRS = ff800008 # ROM entry address
ROM_SIZE = 00020000 # number of bytes of ROM space

RAM_LOW_ADRS = 00001000 # RAM text/data address
RAM_HIGH_ADRS = 00090000 # RAM text/data address

HEX_FLAGS = -v -p $(ROM_TEXT_ADRS) -a 8

MACH_EXTRA =

Only redefine make definitions above this point, or the expansion of
makefile target dependencies may be incorrect.

include $(WIND_BASE)/target/h/make/rules.bsp
include $(WIND_BASE)/target/h/make/rules.$(WIND_HOST_TYPE)

There are two kinds of include files in installDir/target/h/make (as reflected by the

two blocks of include statements in Example 8-1): variable definitions, and rule

definitions. Just as for #include statements in the C preprocessor, include
statements in makefiles accept the slash (/) character between directory segments

of a file name. This feature of GNU make helps to write portable makefiles.

The following make include files define variables. These files are useful for

application-module makefiles, as well as for BSP makefiles.

defs.bsp
Standard variable definitions for a VxWorks run-time system.

make.(CPU)(TOOL)
Files named using this pattern (such as make.MC68060gnu) provide

definitions for a particular target architecture and a particular set of
358

8

8
Configuration and Build
compilation tools, such as architecture-specific tool names and option

flags.

defs.$(WIND_HOST_TYPE)
Files named using this pattern (such as make.x86-win32) provide

definitions that depend on the host system: names of tools that are

independent of the target architecture, and pathnames for the Tornado

installation on your host.

The following include files define make targets, and the rules to build them. These

files are usually not required for building application modules in separate

directories, because most of the rules they define are specific to the VxWorks run-

time system and boot programs.

rules.bsp
Rules defining all the standard targets for building a VxWorks run-time

system (described in 8.7 Building a VxWorks System Image, p.351 and

8.9 Creating Bootable Applications, p.364). The rules for building object code

from C, C++, or assembly language are also spelled out here.

rules.$(WIND_HOST_TYPE)
Files named using this pattern (such as make.x86-win32) specify targets

that depend only on the host system (dependency lists).

8.8.1 Make Variables

The variables defined in the make include files provide convenient defaults for

most situations, and allow individual makefiles to specify only the definitions that

are unique to each. This section describes the make variables most often used to

specify properties of BSPs or applications. The following lists are not intended to

be comprehensive; see the make include files for the complete set.

Variables for Compilation Options

The variables grouped in this section are useful for either BSP makefiles or

application-module makefiles. They specify aspects of how to invoke the compiler.

NOTE: Certain make variables are intended specifically for customization; see

Variables for Customizing the Run-Time, p.362. Do not override other variables in

BSP makefiles. They are described in the following sections for expository

purposes.
359

VxWorks 5.4
Programmer’s Guide
CFLAGS
The complete set of option flags for any invocation of the C compiler. This

variable gathers the options specified in CC_COMPILER, CC_WARNINGS,

CC_OPTIM, CC_INCLUDE, CC_DEFINES, and ADDED_CFLAGS. To add

your own option flags, define them as ADDED_CFLAGS.

C++FLAGS
The complete set of option flags for any invocation of the C++ compiler.

This variable gathers together the options specified in C++_COMPILER,

C++_WARNINGS, CC_OPTIM, CC_INCLUDE, CC_DEFINES, and

ADDED_C++FLAGS. To add your own option flags, use

ADDED_C++FLAGS.

CC_COMPILER
Option flags specific to compiling the C language. Default: -ansi
-nostdinc.

C++_COMPILER
Option flags specific to compiling the C++ language. Default: -ansi
-nostdinc.

CC_WARNINGS
Option flags to select the level of warning messages from the compiler,

when compiling C programs. Two predefined sets of warnings are

available: CC_WARNINGS_ALL (the compiler’s most comprehensive

collection of warnings) and CC_WARNINGS_NONE (no warning flags).

Default: CC_WARNINGS_ALL.

C++_WARNINGS
Option flags to select the level of warning messages from the compiler,

when compiling C++ programs. The same two sets of flags are available as

for C programs. Default: CC_WARNINGS_NONE.

CC_OPTIM
Optimization flags. Three sets of flags are predefined for each architecture:

CC_OPTIM_DRIVER (optimization level appropriate to a device driver),

CC_OPTIM_TARGET (optimization level for BSPs), and

CC_OPTIM_NORMAL (optimization level for application modules).

Default: CC_OPTIM_TARGET.

CC_INCLUDE
Standard set of header-file directories. To add application-specific header-

file paths, specify them in EXTRA_INCLUDE.
360

8

8
Configuration and Build
CC_DEFINES
Definitions of preprocessor constants. This variable is predefined to

propagate the makefile variable CPU to the preprocessor, to include any

constants required for particular target architectures, and to include the

value of the makefile variable EXTRA_DEFINE. To add application-specific

constants, specify them in EXTRA_DEFINE.

Variables for BSP Parameters

The variables included in this section specify properties of a particular BSP, and are

thus recorded in each BSP makefile. They are not normally used in application-

module makefiles.

TARGET_DIR
Name of the BSP (used for dependency lists and name of documentation

reference entry). The value matches the bspname directory name.

ROM_TEXT_ADRS
Address of the ROM entry point. Also defined in config.h; the two

definitions must match.

ROM_SIZE
Number of bytes available in the ROM. Also defined in config.h; the two

definitions must match.

RAM_HIGH_ADRS
RAM address where the boot ROM data segment is loaded. Must be a high

enough value to ensure loading VxWorks does not overwrite part of the

ROM program. Also defined in config.h; the two definitions must match.

See 8.9 Creating Bootable Applications, p.364 for more discussion.

RAM_LOW_ADRS
Beginning address to use for the VxWorks run-time in RAM.

HEX_FLAGS
Option flags for the program (such as hex, coffHex, or elfHex) that

converts a boot program into S-records or the equivalent.

LDFLAGS
Linker options for the static link of VxWorks and boot ROMs.

ROM_LDFLAGS
Additional static-link option flags specific to boot ROM images.
361

VxWorks 5.4
Programmer’s Guide
Variables for Customizing the Run-Time

The variables listed in this section make it easy to control what facilities are

statically linked into your run-time system. You can specify values for these

variables either from the make command line, or from your own makefiles (when

you take advantage of the predefined VxWorks make include files).

CONFIG_ALL
Location of a directory containing the architecture-independent BSP

configuration files. Set this variable if you maintain several versions of

these files for different purposes. Default: installDir/target/config/all.

LIB_EXTRA
Linker options to include additional archive libraries (you must specify

the complete option, including the -L for each library). These libraries

appear in the link command before the standard VxWorks libraries.

MACH_EXTRA
Names of application modules to include in the static link to produce a

VxWorks run-time. See 8.9 Creating Bootable Applications, p.364.

ADDED_MODULES
Do not define a value for this variable in makefiles. This variable is

reserved for adding modules to a static link from the make command line.

Its value is used in the same way as MACH_EXTRA, to include additional

modules in the link. Reserving a separate variable for use from the

command line avoids the danger of overriding any object modules that are

already listed in MACH_EXTRA.

EXTRA_INCLUDE
Preprocessor options to define any additional header-file directories

required for your application (you must specify the complete option,

including the -I).

EXTRA_DEFINE
Definitions for application-specific preprocessor constants (you must

specify the complete option, including the -D).

ADDED_CFLAGS
Application-specific compiler options for C programs.

ADDED_C++FLAGS
Application-specific compiler options for C++ programs.
362

8

8
Configuration and Build
8.8.2 Using Makefile Include Files for Application Modules

You can exploit the VxWorks makefile structure to put together your own

application makefiles quickly and tersely. If you build your application directly in

a BSP directory (or in a copy of one), you can use the Makefile in that BSP, by

specifying variable definitions (Variables for Customizing the Run-Time, p.362) that

include the components of your application.

You can also take advantage of the Tornado makefile structure if you develop

application modules in separate directories. Example 8-2 illustrates the general

scheme: include the makefile headers that specify variables, and list the object

modules you want built as dependencies of a target. This simple scheme is usually

sufficient, because the Tornado makefile variables are carefully designed to fit into

the default rules that make knows about.4

Example 8-2 Skeleton Makefile for Application Modules

Makefile - makefile for ...
#
Copyright ...
#
DESCRIPTION
This file specifies how to build ...
#

It is often convenient to override the following with "make CPU=..."
CPU = cputype
TOOL = gnu

include $(WIND_BASE)/target/h/make/defs.bsp
include $(WIND_BASE)/target/h/make/make.(CPU)(TOOL)
include $(WIND_BASE)/target/h/make/defs.$(WIND_HOST_TYPE)

Only redefine make definitions below this point, or your definitions
will be overwritten by the makefile stubs above.

exe : myApp.o

4. However, if you are working with C++, it may be also convenient to copy the .cpp.out rule

from installDir/target/h/make/rules.bsp into your application’s Makefile.

NOTE: The target name exe is the Tornado convention for a default make target.

You may either use that target name (as in Example 8-2), or define a different

default rule in your makefiles. However, there must always be an exe target in

makefiles based on the Tornado makefile headers (even if the associated rules do

nothing).
363

VxWorks 5.4
Programmer’s Guide
8.8.3 Makefile for SIO Drivers

The directory installDir/target/src/drv/sio/ contains source and templates for serial

drivers that support both polled and asynchronous communications. The makefile

for drivers in this directory is named Makefile.sio. Because this is not one of the

names make can find automatically, you must specify the makefile with the -f
option when you build a driver in this directory.

For example, to build the driver cd2400Sio.c and install it in the VxWorks archives,

execute the following commands in this directory:

Windows

C:\tornado\target\src\drv\sio> make -f Makefile.sio CPU= cputype cd2400Sio.o
C:\tornado\target\src\drv\sio> make -f Makefile.sio CPU= cputype default

UNIX

% make -f Makefile.sio CPU= cputype cd2400Sio.o default

8.9 Creating Bootable Applications

As you approach a final version of your application, you will probably want to add

modules to the bootable system image, and include startup of your application

with the system initialization routines. In this way, you can create a bootable
application, which is completely initialized and functional after booting, without

requiring any interaction with the host-resident development tools.

Linking the application with VxWorks is really a two-step process. You must add

an entry point to the application in usrConfig.c, and you must modify the makefile

to link the application statically with VxWorks.

To start your application during system initialization, add code to the usrRoot()
routine in usrConfig.c. You can call application initialization routines, create

additional I/O devices, spawn application tasks, and so on, just as you do from the

Tornado shell during development. An example is provided in usrConfig.c. This

file includes and initializes a simple demo if the preprocessor constant

INCLUDE_DEMO is defined in one of the configuration files. In that situation,

usrRoot() spawns usrDemo() as a task as the last step in booting the system. You
364

8

8
Configuration and Build
can simply insert the appropriate initialization of your application after the

conditional code to start the demo. For example:

/* spawn demo if selected */
#if defined(INCLUDE_DEMO)

taskSpawn ("demo", 20, 0, 2000, (FUNCPTR)usrDemo, 0,0,0,0,0,0,0,0,0,0);
#endif

taskSpawn ("myMod", 100, 0, 20000, (FUNCPTR)myModEntryPt,
0,0,0,0,0,0,0,0,0,0);

To include your application modules in the bootable system image, add the names

of the application object modules (with the .o suffix) to MACH_EXTRA in Makefile.

For example, to link the module myMod.o, add a line like the following:

MACH_EXTRA = myMod.o
...

Building the system image with the application linked in is the final part of this

step. In the target directory, execute the following command:

% make vxWorks

Application size is usually an important consideration in building bootable

applications. Generally, VxWorks boot ROM code is copied to a start address in

RAM above the constant RAM_HIGH_ADRS, and the ROM in turn copies the

downloaded system image starting at RAM_LOW_ADRS. The values of these

constants are architecture dependent, but in any case the system image must not

exceed the space between the two. Otherwise the system image overwrites the

boot ROM code while downloading, thus killing the booting process.

To help avoid this, the last command executed when you make a new VxWorks

image is vxsize, which shows the size of the new executable image and how much

space (if any) is left in the area below the space used for ROM code:

vxsize 386 -v 00100000 00020000 vxWorks
vxWorks: 612328(t) + 69456(d) + 34736(b) = 716520 (235720 bytes left)

If your new image is too large, vxsize issues a warning. In this case, you can

reprogram the boot ROMs to copy the ROM code to a sufficiently high memory

address by increasing the value of RAM_HIGH_ADRS in config.h and in your

BSP’s Makefile (both values must agree). Then rebuild the boot ROMs by

executing the following command:

% make bootrom.hex

The binary image size of typical boot ROM code is 128KB or less. This small size is

achieved through compression; see Boot ROM Compression, p.368. The compressed

boot image begins execution with a single uncompressed routine, which
365

VxWorks 5.4
Programmer’s Guide
uncompresses the remaining boot code to RAM. To avoid uncompressing and thus

initialize the system a bit faster, you can build a larger, uncompressed boot ROM

image by specifying the make target bootrom_uncmp.hex.

8.9.1 Creating a Standalone VxWorks System with a Built-in Symbol Table

It is sometimes necessary to create a VxWorks system that includes a copy of its

own symbol table. However, it is confusing to work with the host-resident Tornado

tools when there is a target-resident symbol table, because the host-resident tools

use a separate symbol table on the host. Thus, it is advisable to include the target-

resident versions of the development tools (especially the shell) in this

configuration, until you are ready to build a finished application that requires no

interaction with the target.

The procedure for building such a system is somewhat different from the

procedure described above. No change is necessary to usrConfig.c. A different

make target, vxWorks.st, specifies the standalone form of VxWorks:

% make vxWorks.st

The rules for building vxWorks.st create a module usrConfig_st.o, which is the

usrConfig.c module compiled with the STANDALONE flag defined. The

STANDALONE flag causes the usrConfig.c module to be compiled with the built-

in system symbol table, the target-resident shell, and associated interactive

routines.

The STANDALONE flag also suppresses the initialization of the network. If you

want to include network initialization, define STANDALONE_NET in either of the

header files installDir/target/config/bspname/config.h or

installDir/target/config/all/configAll.h.5

VxWorks is linked as described previously, except that the first pass through the

loader does not specify the final load address; thus the output from this stage is still

relocatable. The makeSymTbl tool is invoked on the loader output; it constructs a

data structure containing all the symbols in VxWorks. This structure is then

compiled and linked with VxWorks itself to produce the final bootable VxWorks

object module.

5. vxWorks.st suppresses network initialization, but it includes the network. The STANDA-
LONE option defines INCLUDE_STANDALONE_SYM_TBL and INCLUDE_NETWORK, and

undefines INCLUDE_NET_SYM_TBL and INCLUDE_NET_INIT. The alternative option

STANDALONE_NET includes INCLUDE_NET_INIT.
366

8

8
Configuration and Build
As before, to include your own application in the system image, add the object

modules to the definition of MACH_EXTRA and follow the procedures discussed

in the previous section.

Because vxWorks.st has a built-in symbol table, there are some minor differences

in how it treats VxWorks symbols, by contrast with the symbol table used through

the target server during development. First, VxWorks symbol table entries cannot

be deleted from the vxWorks.st symbol table. Second, no local (static) VxWorks

symbols are present in vxWorks.st.

8.9.2 Creating a VxWorks System in ROM

General Procedures

To put VxWorks or a VxWorks-based application into ROM, you must enter the

object files on the loader command line in an order that lists the module romInit.o
before sysALib.o. Also specify the entry point option -e _romInit. The romInit()
routine initializes the stack pointer to point directly below the text segment. It then

calls bootInit(), which clears memory and copies the vxWorks text and data

segments to the proper location in RAM. Control is then passed to usrInit().

A good example of a ROM-based VxWorks application is the VxWorks boot ROM

program itself. The file installDir/target/config/all/bootConfig.c is the

configuration module for the boot ROM, replacing the file usrConfig.c provided

for the default VxWorks development system. The makefiles in the target-specific

directories contain directives for building the boot ROMs, including conversion to

a file format suitable for downloading to a PROM programmer. Thus, you can

generate the ROM image with the following make command:

% make bootrom.hex

Tornado makefiles also define a ROMable VxWorks runtime system suitable for

use with Tornado tools, as the target vxWorks.res_rom_nosym. To generate this

image in a form suitable for writing ROMs, run the following command:

% make vxWorks.res_rom_nosym.hex

VxWorks target makefiles also include the entry vxWorks.st_rom for creating a

ROMable version of the standalone system described in the previous section.

vxWorks.st_rom differs from vxWorks.st in two respects: (1) romInit code is

loaded as discussed above, and (2) the portion of the system image that is not
367

VxWorks 5.4
Programmer’s Guide
essential for booting is compressed by approximately 40 percent using the

VxWorks compress tool (see Boot ROM Compression, p.368).

To build the form of this target that is suitable for writing into a ROM (most often,

this form uses the Motorola S-record format), enter:

% make vxWorks.st_rom.hex

When adding application modules to a ROMable system, size is again an

important consideration. Keep in mind that by using the compress tool, a

configuration that normally requires a 256-KB ROM may well fit into a 128-KB

ROM. Be sure that ROM_SIZE (in both config.h and Makefile) reflects the capacity

of the ROMs used.

Boot ROM Compression

VxWorks boot ROMs are compressed to about 40 percent of their actual size using

a binary compression algorithm, which is supplied as the tool compress. When

control is passed to the ROMs on system reset or reboot, a small (8 KB)

uncompression routine, which is not itself compressed, is executed. It then

uncompresses the remainder of the ROM into RAM and jumps to the start of the

uncompressed image in RAM. There is a short delay during the uncompression

before the VxWorks prompt appears. The uncompression time depends on CPU

speed and code size; it takes about 4 seconds on an MC68030 at 25 MHz.

This mechanism is also available to compress a ROMable VxWorks application.

The entry for vxWorks.st_rom in the architecture-independent portion of the

makefile, installDir/target/h/make/rules.bsp, demonstrates how this can be

accomplished. For more information, see also the reference manual entries for

bootInit and compress.
368

9
Target Shell
9.1 Introduction

In the Tornado development system, a full suite of development tools resides and

executes on the host machine, thus conserving target memory and resources; see

the Tornado User’s Guide for details. However, a target-resident symbol table and

module loader/unloader can be configured into the VxWorks system if necessary,

for example, to create a dynamically configured run-time system. In this case, use

the target-resident shell for development.

This chapter briefly describes these target-resident facilities.

9.2 Target-Resident Shell

For the most part, the target-resident shell works the same as the Tornado shell; for

details, see the Tornado User’s Guide: Shell. However, there are some differences,

which are described in this section.

! CAUTION: If you choose to use the target-resident tools, you must use the target

shell. The host tools cannot access the target-resident symbol table; thus symbols

defined on the target are not visible to the host.
369

VxWorks 5.4
Programmer’s Guide
9.2.1 Creating the Target Shell

To create the target shell, you must configure it into the VxWorks configuration by

selecting INCLUDE_SHELL for inclusion in the project facility VxWorks view (for

details, see Tornado User’s Guide: Projects). When you do so, usrRoot() (in
usrConfig.c) spawns the target shell task by calling shellInit(). The first argument

to shellInit() specifies the target shell’s stack size, which must be large enough to

accommodate any routines you call from the target shell. The second argument is

a boolean that specifies whether the target shell’s input is from an interactive

source (TRUE), or a non-interactive source (FALSE) such as a script file. If the

source is interactive, then the shell prompts for commands but does not echo them

to standard out; the reverse is true if the source is non-interactive.

The shell task (tShell) is created with the VX_UNBREAKABLE option; therefore,

breakpoints cannot be set in this task, because a breakpoint in the shell would

make it impossible for the user to interact with the system. Any routine or task that

is invoked from the target shell, rather than spawned, runs in the tShell context.

Only one target shell can run on a VxWorks system at a time; the target shell parser

is not reentrant, because it is implemented using the UNIX tool yacc.

When the shell is started, the banner displayed in Figure 9-1 appears.For more

information, see the reference entry for shellLib.

Figure 9-1 Typical Target Shell Sign-on Banner

]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] (R)
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]] Development System
]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]] VxWorks version 5.4
]]]]]]]]]]]]]]]]]]]]]]]]]] KERNEL: WIND version 2.5
]]]]]]]]]]]]]]]]]]]]]]]]] Copyright Wind River Systems, Inc., 1984-1998

 CPU: Motorola MVME2600 - MPC 603p. Processor #0.
 Memory Size: 0x400000. BSP version 1.2/0.
WDB: Ready.

->
370

9

9
Target Shell
9.2.2 Using the Target Shell

The target shell works almost exactly like the Tornado shell; see the Tornado User’s
Guide: Shell and the usrLib reference entry for details. You can also type the

following command to display help:

-> help

The following target shell command lists all the available help routines:

-> lkup "Help"

The target shell has its own set of terminal-control characters, unlike the Tornado

shell, which inherits its setting from the host window from which it was invoked.

Table 9-1 lists the target shell’s terminal-control characters. The first four of these

are defaults that can be mapped to different keys using routines in tyLib (see also

Tty Special Characters, p.120).

The shell line-editing commands are the same as they are for the Tornado shell. For

a summary of the commands, see the Tornado User’s Guide: Shell.

9.2.3 Debugging with the Target Shell

The target shell includes the same debugging utilities as the Tornado shell, if

INCLUDE_DEBUG is selected for inclusion in the project facility VxWorks view. For

details, see the Tornado User’s Guide: Shell and the reference entry for dbgLib.

Table 9-1 Target Shell Terminal Control Characters

Command Description

CTRL+H Delete a character (backspace).

CTRL+U Delete an entire line.

CTRL+C Abort and restart the shell.

CTRL+X Reboot (trap to the ROM monitor).

CTRL+S Temporarily suspend output.

CTRL+Q Resume output.

ESC Toggle between input mode and edit mode.
371

VxWorks 5.4
Programmer’s Guide
9.2.4 Aborting the Target Shell

Occasionally it is desirable to abort the shell’s evaluation of a statement. For

example, an invoked routine may loop excessively, suspend, or wait on a

semaphore. This may happen as the result of errors in arguments specified in the

invocation, errors in the implementation of the routine itself, or simply oversight

as to the consequences of calling the routine at all.

In such cases it is usually possible to abort and restart the target shell task. This is

done by pressing the special target-shell abort character on the keyboard, CTRL+C
by default. This causes the target shell task to restart execution at its original entry

point. Note that the abort key can be changed to a character other than CTRL+C by

calling tyAbortSet().

When restarted, the target shell automatically reassigns the system standard input

and output streams to the original assignments they had when the target shell was

first spawned. Thus any target shell redirections are canceled, and any executing

shell scripts are aborted.

The abort facility works only if the following are true:

■ dbgInit() has been called (see 9.2.3 Debugging with the Target Shell, p.371).

■ excTask() is running (see Installation of Exception Handling and Logging, p.319).

■ The driver for the particular keyboard device supports it (all VxWorks-

supplied drivers do).

■ The device’s abort option is enabled. This is done with an ioctl() call, usually

in the root task in usrConfig.c. For information on enabling the target shell

abort character, see Tty Options, p.119.

Also, you may occasionally enter an expression that causes the target shell to incur

a fatal error such as a bus/address error or a privilege violation. Such errors

normally result in the suspension of the offending task, which allows further

debugging.

However, when such an error is incurred by the target shell task, VxWorks

automatically restarts the target shell, because further debugging is impossible

without it. Note that for this reason, as well as to allow the use of breakpoints and

single-stepping, it is often useful when debugging to spawn a routine as a task

instead of just calling it directly from the target shell.

When the target shell is aborted for any reason, either because of a fatal error or

because it is aborted from the terminal, a task trace is displayed automatically. This

trace shows where the target shell was executing when it died.
372

9

9
Target Shell
Note that an offending routine can leave portions of the system in a state that may

not be cleared when the target shell is aborted. For instance, the target shell might

have taken a semaphore, which cannot be given automatically as part of the abort.

9.2.5 Remote Login to the Target Shell

Remote Login From Host: telnet and rlogin

When VxWorks is first booted, the target shell’s terminal is normally the system

console. You can use telnet to access the target shell from a host over the network

if you select INCLUDE_TELNET for inclusion in the project facility VxWorks view

(see Tornado User’s Guide: Projects). Defining INCLUDE_TELNET creates the

tTelnetd task. To access the target shell over the network, enter the following

command from the host (targetname is the name of the target VxWorks system):

% telnet " targetname"

UNIX host systems also use rlogin to provide access to the target shell from the

host. Select INCLUDE_RLOGIN for inclusion in the project facility VxWorks view

to create the tRlogind task. However, note that VxWorks does not support telnet
or rlogin access from the VxWorks system to the host.

A message is printed on the system console indicating that the target shell is being

accessed via telnet or rlogin, and that it is no longer available from its console.

If the target shell is being accessed remotely, typing at the system console has no

effect. The target shell is a single-user system—it allows access either from the

system console or from a single remote login session, but not both simultaneously.

To prevent someone from remotely logging in while you are at the console, use the

routine shellLock() as follows:

-> shellLock 1

To make the target shell available again to remote login, enter the following:

-> shellLock 0

To end a remote-login target shell session, call logout() from the target shell. To

end an rlogin session, type TILDE and DOT as the only characters on a line:

-> ~.
373

VxWorks 5.4
Programmer’s Guide
Remote Login Security

You can be prompted to enter a login user name and password when accessing

VxWorks remotely:

VxWorks login: user_name

Password: password

The remote-login security feature is enabled by selecting INCLUDE_SECURITY for

inclusion in the project facility VxWorks view. The default login user name and

password provided with the supplied system image is target and password. You can

change the user name and password with the loginUserAdd() routine, as follows:

-> loginUserAdd "fred", " encrypted_password"

To obtain encrypted_password, use the tool vxencrypt on the host system. This tool

prompts you to enter your password, and then displays the encrypted version.

To define a group of login names, include a list of loginUserAdd() commands in a

startup script and run the script after the system has been booted. Or include the

list of loginUserAdd() commands to the file usrConfig.c, then rebuild VxWorks.

The remote-login security feature can be disabled at boot time by specifying the

flag bit 0x20 (SYSFLAG_NO_SECURITY) in the flags parameter on the boot line (see

Tornado Getting Started). This feature can also be disabled by deselecting

INCLUDE_SECURITY in the project facility VxWorks view.

9.2.6 Summary of Target and Host Shell Differences

For details on the Tornado shell, see the Tornado User’s Guide: Shell. The following

is a summary of the differences between it and the target shell:

■ Both shells contain a C interpreter, which allows C-shell and vi editing

facilities. However, the Tornado shell also provides a Tcl interpreter.

■ You can have multiple Tornado shells active for any given target; only one

target shell can be active for a target at any one time.

■ The Tornado shell allows virtual I/O; the target shell does not.

NOTE: The values for the user name and password apply only to remote login into

the VxWorks system. They do not affect network access from VxWorks to a remote

system; See VxWorks Network Programmer’s Guide: rlogin and telnet, Host Access
Applications.
374

9

9
Target Shell
■ The target shell does not have a GNU C++ demangler; it is necessary to use the

target tools when C++ demangling is required.

■ The Tornado shell is always ready to execute. The target shell, as well as its

associated target-resident symbol table and module loader/unloader, must be

configured into the VxWorks image by including the appropriate components

in the project facility VxWorks view (discussed throughout this chapter).

■ Because the target shell is often started from the system console, the standard

input and output are directed to the same window. For the Tornado shell, these

standard I/O streams are not necessarily directed to the same window as the

Tornado shell. For details, see the Tornado User’s Guide: Shell.

■ The Tornado shell can perform many control and information functions

entirely on the host without consuming target resources.

■ The Tornado shell uses host resources for most functions so that it remains

segregated from the target. This means that the Tornado shell can operate on

the target from the outside. The target shell, on the other hand, must act on

itself. This means that there are limitations to what the target shell can do (for

example, while debugging it cannot set breakpoints on itself or on routines it

calls). Also, conflicts in priority may occur while using the target shell.

■ When the target shell encounters a string literal ("...") in an expression, it

allocates space for the string including the null-byte string terminator. The

value of the literal is the address of the string in the newly allocated storage.

For example, the following expression allocates 12 bytes from the target

memory pool, enters the string in those 12 bytes (including the null

terminator), and assigns the address of the string to x:

-> x = "hello there"

The following expression can be used to return those 12 bytes to the target

memory pool (see the memLib reference entry for information on memory

management):

-> free (x)

Furthermore, even when a string literal is not assigned to a symbol, memory

is still permanently allocated for it. For example, the following expression uses

12 bytes of memory that are never freed:

-> printf ("hello there")

This is because if strings were only temporarily allocated, and a string literal

were passed to a routine being spawned as a task, then by the time the task
375

VxWorks 5.4
Programmer’s Guide
executed and attempted to access the string, the target shell would have

already released (and possibly even reused) the temporary storage where the

string was held.

After extended development sessions with the target shell, the cumulative

memory used for strings may be noticeable. If this becomes a problem, you

must reboot your target. Because the Tornado shell has access to a host-

controlled target memory pool, this memory leak never occurs.

9.3 Other Target-Resident Facilities

9.3.1 Target Symbol Table, Module Loader, and Module Unloader

To make full use of the target shell’s features, you should also define the target

symbol table, as well as the target module loader and unloader. Select the

following components (identified by their associated macros) in the VxWorks view

(see Tornado User’s Guide: Projects for configuration information):

■ INCLUDE_SYM_TBL for target symbol table support, plus one of the following:

– INCLUDE_NET_SYM_TBL to load the symbol table from the network

(vxWorks.sym; you will also need to separately load vxWorks)

– INCLUDE_STANDALONE_SYM_TBL to build a VxWorks image that

includes the target symbol table (vxWorks.st)

■ INCLUDE_LOADER

■ INCLUDE_UNLOADER

If the target symbol table is included, usrRoot() runs hashLibInit() and

symLibInit() to initialize the corresponding libraries. The target symbol table is

created by calling symTblCreate(). For convenience during debugging (see

9.2.3 Debugging with the Target Shell, p.371), it is most useful to have access to all

symbols in the system. On the other hand, a production version of a system can be

built that does not require the target symbol table, if (for example) memory

resources are constrained.

The symTblCreate() call creates an empty target symbol table. VxWorks system

facilities are not accessible through the target shell until the symbol definitions for

the booted VxWorks system are entered into the target symbol table. This is done
376

9

9
Target Shell
by reading the target symbol table from a file called vxWorks.sym in the same

directory from which vxWorks was loaded (installDir/target/config/bspname). This

file contains an object module that consists only of a target symbol table section

containing the symbol definitions for all the variables and routines in the booted

system module. It has zero-length (empty) code, data, and relocation sections.

Nonetheless, it is a legitimate object module in the standard object module format.

The symbols in vxWorks.sym are entered in the target symbol table by calling

loadSymTbl() (whose source is in installDir/target/src/config/usrLoadSym.c). This

routine uses the target-resident module loader to load symbols from vxWorks.sym
into the target symbol table.

For the most part, the target-resident facilities work the same as their Tornado host

counterparts; see 8.9.1 Creating a Standalone VxWorks System with a Built-in Symbol
Table, p.366, 8.4.4 Downloading an Application Module, p.335, and 8.4.6 Unloading
Modules, p.336. However, as stated earlier, the target-resident facilities can be

useful if you are building dynamically configured applications. For example, with

the target-resident loader, you can load from a target disk as well as over the

network, with these caveats: If you use the target-resident loader to load a module

over the network (as opposed to loading from a target-system disk), the amount of

memory required to load an object module depends on what kind of access is

available to the remote file system over the network. Loading a file that is mounted

over the default network driver requires enough memory to hold two copies of the

file simultaneously. First, the entire file is copied to a buffer in local memory when

opened; second, the file resides in memory when it is linked to VxWorks. On the

other hand, loading an object module from a host file system mounted through

NFS only requires enough memory for one copy of the file (plus a small amount of

overhead). In any case, however, using the target-resident loader takes away

additional memory from your application—most significantly for the target-

resident symbol table required by the target-resident loader.

For information on the target-resident module loader, unloader, and symbol table,

see the loadLib, unldLib, and symLib reference entries.

9.3.2 Show Routines

VxWorks includes system information routines which print pertinent system

status on the specified object or service; however, they show only a snapshot of the

system service at the time of the call and may not reflect the current state of the

system. To use these routines, you must define the associated configuration macro

(see the Tornado User’s Guide: Projects). When you invoke them, their output is sent

to the standard output device. Table 9-2 lists common system show routines.
377

VxWorks 5.4
Programmer’s Guide
An alternative method of viewing system information is the Tornado browser,

which can be configured to update system information periodically. For

information on this tool, see the Tornado User’s Guide: Browser.

VxWorks also includes several network information routines. These routines are

initialized by defining INCLUDE_NET_SHOW in your VxWorks configuration; see

8. Configuration and Build. Table 9-3 lists commonly called network show routines.

Table 9-2 Show Routines

Call Description Configuration Macro

envShow() Display the environment

for a given task on stdout
INCLUDE_TASK_SHOW

memPartShow() Show the partition blocks

and statistics

INCLUDE_MEM_SHOW

memShow() System memory show

routine

INCLUDE_MEM_SHOW

moduleShow() Show statistics for all

loaded modules

Included automatically with

INCLUDE_MODULE_MANAGER

msgQShow() Message queue show util-

ity (both POSIX and wind)

INCLUDE_POSIX_MQ_SHOW
INCLUDE_MSG_Q_SHOW

semShow() Semaphore show utility

(both POSIX and wind)

INCLUDE_SEM_SHOW,

INCLUDE_POSIX_SEM_SHOW

show() Generic object show utility

stdioShow() Standard I/O file pointer

show utility

INCLUDE_STDIO_SHOW

taskSwitchHookShow() Show the list of task switch

routines

INCLUDE_TASK_HOOKS_SHOW

taskCreateHookShow() Show the list of task create

routines

INCLUDE_TASK_HOOKS_SHOW

taskDeleteHookShow() Show the list of task delete

routines

INCLUDE_TASK_HOOKS_SHOW

taskShow() Display the contents of a

task control block

INCLUDE_TASK_SHOW

wdShow() Watchdog show utility INCLUDE_WATCHDOGS_SHOW
378

9

9
Target Shell
Table 9-3 Network Show Routines

Call Description

ifShow() Display the attached network interfaces.

inetstatShow() Display all active connections for Internet protocol

sockets.

ipstatShow() Display IP statistics.

netPoolShow() Show pool statistics.

netStackDataPoolShow() Show network stack data pool statistics.

netStackSysPoolShow() Show network stack system pool statistics.

mbufShow() Report mbuf statistics.

netShowInit() Initialize network show routines.

arpShow() Display entries in the system ARP table.

arptabShow() Display the known ARP entries.

routestatShow() Display routing statistics.

routeShow() Display host and network routing tables.

hostShow() Display the host table.

mRouteShow() Print the entries of the routing table.
379

VxWorks 5.4
Programmer’s Guide
380

Appendices
381

A
Motorola MC680x0
A.1 Introduction

This appendix provides information specific to VxWorks development on

Motorola MC680x0 targets. It includes the following topics:

■ Building Applications: how to compile modules for your target architecture.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the MC680x0 processors.

■ Architecture Considerations: special features and limitations of the MC680x0

processors, including a figure showing the VxWorks memory layout for these

processors.

For general information on the Tornado development environment’s cross-

development tools, see the Tornado User’s Guide: Projects.

A.2 Building Applications

The Tornado 2.0 project facility is correctly preconfigured for building WRS BSPs.

However, if you choose not to use the project facility or if you need to customize

your build, you may need the information in the following sections. This includes

a configuration constant, an environment variable, and compiler options that

together specify the information the GNU toolkit requires to compile correctly for

MC680x0 targets.
383

VxWorks 5.4
Programmer’s Guide
Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

build with the appropriate architecture-specific features enabled. Define this

variable to one of the following values, to match the processor you are using:

– MC68000
– MC68010
– MC68020 (used also for MC68030 processors)

– MC68040
– MC68LC040 (used also for MC68EC040 processors)

– MC68060
– CPU32

For example, to define CPU for a MC68040 on the compiler command line, specify

the following command-line option when you invoke the compiler:

-DCPU=MC68040

To provide the same information in a header or source file instead, include the

following line in the file:

#define CPU MC68040

Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. Tornado is configured

to use these tools by default. No change is required to the execution path, because

the compilation chain is installed in the same bin directory as the other Tornado

executables.

Compiling C or C++ Modules

The following is an example of a compiler command line for MC680x0 cross-

development. The file to be compiled in this example has a base name of applic.

% cc68k -DCPU=MC68040 -I $WIND_BASE/target/h -fno-builtin \
-O -nostdinc -c applic. language_id

The options shown in the example have the following meanings:1
384

A

A
Motorola MC680x0
-DCPU=MC68040
Required; defines the CPU type. If you are using another MC680x0 processor,

specify the appropriate value (see Defining the CPU Type, p.384).

-I $WIND_BASE/target/h
Required; includes VxWorks header files. (Additional -I flags may be included

to specify other header files.)

-fno-builtin
Required; uses library calls even for common library subroutines.

-O Optional; performs standard optimization.

-nostdinc
Required; searches only the directory specified with the -I flag (see above) and

the current directory for header files. Does not search host-system include files.

-c Required; specifies that the module is to be compiled only, and not linked for

execution under the host.

applic.language_id
Required; the file(s) to compile. For C compilation, specify a suffix of .c. For

C++ compilation, specify a suffix of .cpp. The output is an unlinked object

module in a.out format with the suffix .o; for the example, the output is

applic.o.

During C++ compilation, the compiled object module (applic.o) is munched.

Munching is the process of scanning an object module for non-local static

objects, and generating data structures that VxWorks run-time support can use

to call the objects’ constructors and destructors. See the VxWorks Programmer’s
Guide: C++ Development for details.

1. For more information on these and other compiler options, see the GNU ToolKit User’s Guide.

WRS supports compiler options used in building WRS software; a list of these options is

included in the Guide. Other options are not supported, although they are available with the

tools as shipped.

! CAUTION: Do not use -msoft-float on the MC68040 or MC68060. However, do use

this flag for floating-point support on the MC68LC040. See Floating-Point Support,
p.393.
385

VxWorks 5.4
Programmer’s Guide
A.3 Interface Variations

This section describes particular routines and tools that are specific to 68K targets

in any of the following ways:

■ available only on certain 68K targets

■ parameters specific to 68K targets

■ special restrictions or characteristics on 68K targets

For complete documentation, see the reference entries for the libraries,

subroutines, and tools discussed below.

CPU-Specific Interfaces

Because of specific characteristics of the MC68040 or MC68060, certain VxWorks

features are not useful on these targets. Conversely, other VxWorks features are

particular to one or both of these processors, to exploit specific characteristics.

Note that discussion of the MC68040 also applies to the MC68LC040 unless

otherwise noted. The MC68LC040 is a derivative of the MC68040 and differs only

in that it has no floating-point unit.

Table A-1 lists such CPU-specific VxWorks interfaces. Section A.4 Architecture
Considerations, p.387 discusses these interfaces in the context of CPU architecture.

For more complete documentation on these routines, see the associated reference

entries.

Table A-1 VxWorks Interface Variations for MC68040/MC68060

Routine or Macro Name CPU Change Detailed Discussion

checkStack() 060 Interrupt stack display meaningless MC68060: No Interrupt Stack, p.389

vxSSEnable()
vxSSDisable()

060 Only for this architecture MC68060 Superscalar Pipeline, p.389

cacheLock()
cacheUnlock()

040 Always return ERROR MC68040 Caches, p.390

cacheStoreBufEnable()
cacheStoreBufDisable()

060 Only for this architecture MC68060 Caches, p.391

USER_B_CACHE_ENABLE 060 Architecture-specific configuration MC68060 Caches, p.391
386

A

A
Motorola MC680x0
a.out-Specific Tools

The following tools are specific to the a.out format. For more information, see the

reference entries for each tool.

hex
converts an a.out-format object file into Motorola hex records. The syntax is:

hex [-a adrs] [-l] [-v] [-p PC] [-s SP] file

aoutToBin
extracts text and data segments from an a.out file and writes it to standard

output as a simple binary image. The syntax is:

aoutToBin < inFile > outfile

xsym
extracts the symbol table from an a.out file. The syntax is:

xsym < objMod > symTbl

A.4 Architecture Considerations

This section describes the following characteristics of the MC680x0 processors

(particularly the MC68040 and MC68060) that you should keep in mind as you

write a VxWorks application:

■ MC68060 unimplemented integer instructions
■ Double-word integers
■ Interrupt stack
■ MC68060 superscalar pipeline
■ Caches
■ Memory Management Unit

BRANCH_CACHE 060 Architecture-specific cache MC68060 Caches, p.391

VM_STATE… both Architecture-specific MMU states Memory Management Unit, p.392

Table A-1 VxWorks Interface Variations for MC68040/MC68060 (Continued)

Routine or Macro Name CPU Change Detailed Discussion
387

VxWorks 5.4
Programmer’s Guide
■ Floating-point support
■ Memory layout

Note that discussion of the MC68040 also applies to the MC68LC040 unless

otherwise noted. The MC68LC040 is a derivative of the MC68040 and differs only

in that it has no floating-point unit.

For comprehensive documentation of Motorola architectures, see the appropriate

Motorola microprocessor user’s manual.

The names of macros specific to these architectures, and specialized terms in the

remainder of this section, match the terms used by the Motorola manuals.

MC68060 Unimplemented Integer Instructions

Neither the 64-bit divide and multiply instructions, nor the movep, cmp2, chk2,

cas, and cas2 instructions are implemented on the MC68060 processor. To

eliminate these restrictions, VxWorks integrates the software emulation provided

in the Motorola MC68060 software package, version B1. This package contains an

exception handler that allows full emulation of the instructions listed above.

VxWorks connects this exception handler to the unimplemented-integer-

instruction exception (vector 61).

The Motorola exception handler allows the host operating system to add or to

substitute its own routines. VxWorks does not add or substitute any routines; the

instruction emulation is the full Motorola implementation.

Double-word Integers: long long

The double-word integer long long is not supported, except as an artifact of your

particular architecture and compiler. For more information about handling

unsupported features, please see the Customer Support User’s Guide.

Interrupt Stack

VxWorks uses a separate interrupt stack whenever the underlying architecture

supports it. All MC680x0 processors, except the MC68060, have an interrupt stack.
388

A

A
Motorola MC680x0
The MC680x0 Interrupt Stack

For all MC680x0 processors that have an interrupt stack, VxWorks uses the

separate interrupt stack instead of the current task stack when the processor takes

an interrupt.

The interrupt stack size is defined by the ISR_STACK_SIZE parameter in the project

facility under INCLUDE_KERNEL. The default size of the interrupt stack is 1000

bytes.

MC68060: No Interrupt Stack

When the MC68060 processor takes an interrupt, VxWorks uses the current

supervisor stack. To avoid stack overflow, spawn every task with a stack big

enough to hold both the task stack and the interrupt stack.

The routine checkStack(), which is built into the Tornado shell, displays the stack

state for each task and also for the interrupt stack. Because this routine is the same

for all processors that VxWorks supports, checkStack() displays a line for the

interrupt stack state. For the MC68060, the values appearing on this line are

meaningless.

MC68060 Superscalar Pipeline

The MC68060 implements a superscalar pipeline that allows multiple instructions

to be executed in a single machine cycle. This feature can be enabled or disabled

by setting or clearing the ESS (Enable SuperScalar) bit of the Processor

Configuration Register (PCR). For this architecture, VxWorks provides two

routines to enable and disable the superscalar pipeline, declared as follows:

void vxSSEnable (void)
void vxSSDisable (void)

In the default configuration, VxWorks enables the superscalar pipeline.

Caches

The MC68000 and MC68010 processors do not have caches. The MC68020 has only

a 256-byte instruction cache; see the general cache information presented in Cache
Coherency, p.155.
389

VxWorks 5.4
Programmer’s Guide
The MC68040 has 4KB instruction and data caches, and the MC68060 has 8KB

instruction and data caches. The following subsections augment the information in

Cache Coherency, p.155.

MC68040 Caches

The MC68040 processor contains an instruction cache and a data cache. By default,

VxWorks uses both caches; that is, both are enabled. To disable the instruction

cache, highlight the USER_I_CACHE_ENABLE macro in the Params tab under

INCLUDE_CACHE_ENABLE and remove the TRUE; to disable the data cache,

highlight the USER_D_CACHE_ENABLE macro and remove the TRUE.

These caches can be set to the following modes:

– cacheable writethrough (the default for both caches)

– cacheable copyback

– cache-inhibited serialized

– cache-inhibited not-serialized

Choose the mode by setting the USER_I_CACHE_MODE parameter or the

USER_D_CACHE_MODE parameter in the Params tab under

INCLUDE_CACHE_MODE. The list of possible values for these macros is defined in

installDir/target/h/cacheLib.h.

For most boards, the cache capabilities must be used with the MMU to resolve

cache coherency problems. In that situation, the page descriptor for each page

selects the cache mode. This page descriptor is configured by filling the

sysPhysMemDesc[] data structure defined in the BSP

installDir/target/config/bspname/sysLib.c file. (For more information about cache

coherency, see the cacheLib reference entry. See also 7. Virtual Memory Interface for

information on VxWorks MMU support. For MMU information specific to the

MC680x0 family, see Memory Management Unit, p.392.)

The MC68040 caches do not support cache locking and unlocking. Thus the

cacheLock() and cacheUnlock() routines have no effect on this target, and always

return ERROR.

The cacheClear() and cacheInvalidate() routines are very similar. Their effect

depends on the cache:

■ With the data cache, cacheClear() first pushes dirty data2 to memory (if the

cache line contains any) and then invalidates the cache line, while

cacheInvalidate() just invalidates the line (in which case any dirty data

contained in this line is lost).

2. Dirty data refers to data saved in the cache, not in memory (copyback mode only).
390

A

A
Motorola MC680x0
■ For the instruction cache, both routines have the same result: they invalidate

the cache lines.

MC68060 Caches

VxWorks for the MC68060 processor provides all the cache features of the

MC68040, and some additional features.

■ Instruction and Data Cache

Motorola has introduced a change of terminology with the MC68060: the mode

called “cache-inhibited serialized mode” on the MC68040 is called “cache-

inhibited precise mode” on the MC68060, and the MC68040’s “cache-inhibited not-

serialized mode” is replaced by “cache-inhibited imprecise mode” on the

MC68060.

To make your code consistent with this change, you can use the macros3

CACHE_INH_PRECISE and CACHE_INH_IMPRECISE with VxWorks cache

routines when writing specifically for the MC68060, instead of using the MC68040-

oriented macro names CACHE_INH_SERIAL and CACHE_INH_NONSERIAL. (The

corresponding macros in each pair have the same definition, however, to make

MC68040 object code compatible with the MC68060.)

A four-entry first-in-first-out (FIFO) buffer is implemented on the MC68060. This

buffer, used by the cacheable writethrough and cache inhibited imprecise mode, is

enabled by default. Two VxWorks routines are available to enable or disable this

store buffer. Their names and prototypes are declared as follows:

void cacheStoreBufEnable (void)
void cacheStoreBufDisable (void)

On the MC68060, the instruction cache and data cache can be locked by software.

Thus, on this architecture (unlike for the MC68040), the cacheLock() and

cacheUnlock() routines are effective.

VxWorks does not support the MC68060 option to use only half of the instruction

cache or data cache.

■ Branch Cache

In addition to the instruction cache and the data cache, the MC68060 contains a

branch cache that VxWorks supports as an additional cache. Use the name

BRANCH_CACHE to refer to this cache with the VxWorks cache routines.

3. Defined in h/arch/mc68k/cacheMc68kLib.h.
391

VxWorks 5.4
Programmer’s Guide
Most routines available for both instruction and data caches are also available for

the branch cache. However, the branch cache cannot be locked; thus, the

cacheLock() and cacheUnlock() routines have no effect and always return ERROR.

The branch cache uses only one operating mode and does not require a macro to

specify the current mode. In the default configuration, VxWorks enables the

branch cache. This option can be removed by highlighting the

USER_B_CACHE_ENABLE macro in the Params tab under

INCLUDE_CACHE_ENABLE and remove the TRUE.

The branch cache can be invalidated only in its entirety. Trying to invalidate one

branch cache line, or, as for the instruction cache, clearing the branch cache,

invalidates the whole cache.

The branch cache is automatically cleared by the hardware as part of any

instruction-cache invalidate.

Memory Management Unit

VxWorks provides two levels of virtual memory support: the basic level bundled

with VxWorks, and the full level, unbundled, that requires the optional product

VxVMI. These two levels are supported by the MC68040 and MC68060 processors;

however, the MC68000, MC68010, and MC68020 processors do not have MMUs.

For detailed information on VxWorks’s MMU support, see 7. Virtual Memory
Interface. The following subsections augment the information in that chapter.

MC68040 Memory Management Unit

On the MC68040, you can set a specific configuration for each memory page. The

entire physical memory is described by the data structure sysPhysMemDesc[]
defined in the BSP file sysLib.c. This data structure is made up of state flags for

each page or group of pages. All the state flags defined in Table 7-2 of 7. Virtual
Memory Interface are available for MC68040 virtual memory pages.

In addition, two other state flags are supported:

– VM_STATE_CACHEABLE_WRITETHROUGH
– VM_STATE_CACHEABLE_NOT_NON_SERIAL

! CAUTION: The VM_STATE_CACHEABLE flag listed in Table 7-2 of 7. Virtual
Memory Interface sets the cache to copyback mode for each page or group of pages.
392

A

A
Motorola MC680x0
The first flag sets the page descriptor cache mode field in cacheable writethrough

mode, and the second sets it in cache-inhibited non-serialized mode.

For more information on memory page states, state flags, and state masks, see Page
States, p.294.

MC68060 Memory Management Unit

The MMU on the MC68060 is very similar to the MC68040 MMU, and MC68060

virtual memory management provides the same capabilities as the MC68040

virtual memory; see MC68040 Memory Management Unit, p.392 for details.

You can use the page state constant VM_STATE_CACHEABLE_NOT_IMPRECISE
instead of VM_STATE_CACHEABLE_NOT_NON_SERIAL, to match changes in

Motorola terminology (see MC68060 Caches, p.391). Use this constant (as its name

suggests) to set the page descriptor cache mode field to “cache-inhibited imprecise

mode.” To set the page cache mode to “cache-inhibited precise mode,” use

VM_STATE_CACHEABLE_NOT.

The MC68060 does not use the data cache when searching MMU address tables,

because the MC68060 tablewalker unit has a direct interface to the bus controller.

Therefore, virtual address translation tables are always placed in writethrough

space. (Although VxWorks maps virtual addresses to the identical physical

addresses, the MMU address translation tables also record the page protection

provided through VxVMI.)

Floating-Point Support

The MC68020 uses an MC68881/MC68882 floating-point coprocessor for

hardware floating-point support. The MC68040 and MC68060 CPUs (but not the

MC68LC040) include internal floating-point units that provide a significant subset

of the MC68881/MC68882 instruction set, in addition to the same control, status,

and data register programming model. Basic floating-point arithmetic and

manipulation functions are provided, but higher-level transcendental functions

(for example, trigonometric, logarithmic, rounding) are not. Floating-point

support for the MC68LC040 is provided in software only.

Different subsets of the floating-point math routines in mathALib are supported

for each processor of the MC680x0 family. Table A-2 shows the supported double-

precision routines.
393

VxWorks 5.4
Programmer’s Guide
There is no hardware support for single-precision floating-point. On the MC68000,

MC68010, MC68020, MC68LC040, and CPU32, software support is available for

the following single-precision routines:

On the MC68040 or MC68060, there are no supported single-precision floating-

point routines.

acosf() asinf() atanf() atan2f() cbrtf()
ceilf() cosf() expf() fabsf() floorf()
infinityf() logf() log10f() log2f() powf()
sinf() sincosf() sqrtf() tanf()

Table A-2 Double-Precision Floating-Point Routines Supported for MC680x0 Family

MC68000/
MC68010

MC68020/
CPU32

MC68040 MC68LC040 MC68060

acos() S HS E S E

asin() S HS E S E

atan() S HS E S E

atan2() S HS E S E

cbrt() S S S

ceil() S HS E S H

cos() S HS E S E

cosh() S HS E S E

exp() S HS E S E

fabs() S HS E S H

floor() S HS E S H

fmod() H E E

infinity() S HS E S H

irint() H E H

iround() H E H

log() S HS E S E

log10() S HS E S E

log2() S HS E S E

pow() S HS E S E

round() H E H

sin() S HS E S E

sincos() S HS E S E

sinh() S HS E S E
394

A

A
Motorola MC680x0
Floating-Point Support for MC680x0 CPUs Using MC68881/MC68882

VxWorks provides both hardware and software floating-point, in support of those

target configurations that include a floating-point coprocessor as well as those that

do not. Use the compiler option -msoft-float to generate object code that uses

software floating-point, and the compiler option -m68881 for hardware floating-

point.

Floating-Point Support for the MC68040 and MC68060

For the MC68040 and the MC68060 (but not the MC68LC040), VxWorks includes

support for MC68881/MC68882 floating-point instructions that are not directly

supported by the CPU. This emulation is provided by the Floating-Point Software

Package (FPSP) from Motorola, which is integrated into VxWorks.

The FPSP is called by special exception handlers that are invoked when one of the

unsupported instructions executes. This allows MC68881/MC68882 instructions

to be interpreted, although the exception overhead can be significant. Exception

handlers are also provided for other floating-point exceptions (for example,

floating-point division by zero, over- and underflow).

The initialization routine mathHardInit() installs these exception handlers; this

routine is called from usrConfig.c when you configure VxWorks for hardware

floating-point by selecting INCLUDE_HW_FP for inclusion in the project facility

VxWorks view. (It is defined by default.)

To avoid the overhead associated with unimplemented-instruction exceptions, the

floating-point libraries in VxWorks call specific routines in the FPSP directly. As a

result, application code written in C that uses transcendental functions (for

example, the sin() or log() routines) does not suffer from the exception-handling

overhead. No special changes to application source code are necessary. (However,

support is provided only for double-precision floating-point operations.)

sqrt() S HS E S H

tan() S HS E S E

tanh() S HS E S E

trunc() H E H

S = software floating-point support

H = hardware floating-point support

E = emulated hardware floating-point support

Table A-2 Double-Precision Floating-Point Routines Supported for MC680x0 Family

MC68000/
MC68010

MC68020/
CPU32

MC68040 MC68LC040 MC68060
395

VxWorks 5.4
Programmer’s Guide
If you are using the GNU ToolKit C compiler (cc68k) distributed by Wind River

Systems, compile your code without the flag -msoft-float.

■ MC68040 Floating-Point Software Package

On the MC68040, VxWorks uses version 2.2 of the MC68040 Floating-Point

Software Package (FPSP) from Motorola. This library makes full use of the

floating-point support provided by the MC68040 hardware, as opposed to

pure software emulation. The size of this FPSP is approximately 64KB.

■ MC68060 Floating-Point Software Package

As with the MC68040, the MC68060 floating-point unit implements only a

subset of the MC68881/MC68882 instruction set. The two subsets are not

identical (see §6.5.1 Unimplemented Floating-Point Instructions in the MC68060
Microprocessors User’s Manual); hence the MC68060 has its own FPSP. VxWorks

uses version B1 of the MC68060 Floating-Point Software Package from

Motorola. The size of this FPSP is approximately 84KB.

Floating-Point Support for the MC68LC040

While the MC68LC040 is a derivative of the MC68040 (implementing the same

integer unit and memory management unit), it has no floating-point unit.

Applications for the MC68LC040 must use software floating-point emulation. Use

the compiler option -msoft-float to generate object code that uses software

floating-point. Be sure to specify a CPU value of MC68LC040 when building

VxWorks (see Defining the CPU Type, p.384).

Memory Layout

The VxWorks memory layout is the same for all MC680x0 processors, except that

the MC68060 has no interrupt stack. Figure A-1 shows memory layout, labeled as

follows:

Interrupt Vector Table Table of exception/interrupt vectors.

SM Anchor Anchor for the shared memory network (if there is

shared memory on the board).

Boot Line ASCII string of boot parameters.

Exception Message ASCII string of the fatal exception message.

Initial Stack Initial stack for usrInit(), until usrRoot() gets allocated

stack.
396

A

A
Motorola MC680x0
All addresses shown in Figure A-1 are relative to the start of memory for a

particular target board. The start of memory (corresponding to 0x0 in the memory-

layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS under

INCLUDE_MEMORY_CONFIG for each target.

System Image VxWorks itself (three sections: text, data, bss). The entry

point for VxWorks is at the start of this region.

WDB Memory Pool Size depends on the macro WDB_POOL_SIZE which

defaults to one-sixteenth of the system memory pool.

This space is used by the target server to support host-

based tools. Modify WDB_POOL_SIZE under

INCLUDE_WDB.

Interrupt Stack Stack for interrupt handlers (where present). Size is

defined by ISR_STACK_SIZE under INCLUDE_KERNEL.

Location depends on system image size.

System Memory Pool Size depends on size of the system image and (on the all

but MC68060) the interrupt stack. The sysMemTop()
routine returns the end of the free memory pool.
397

VxWorks 5.4
Programmer’s Guide
Figure A-1 VxWorks System Memory Layout (MC680x0)

+0x0000 LOCAL_MEM_LOCAL_ADRS

+400
+500
+600
+700
+800
+900

c00

+1000

Address

Initial Stack

Interrupt Vector Table
(1KB)

Exception Message

Boot Line

SM Anchor
(Bus Control Latch - HKV2F only)

System Image

text

data

bss

Interrupt Stack

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

(not available on MC68060)

WDB Memory Pool
_end
398

B
Sun SPARC, SPARClite
B.1 Introduction

This appendix provides information specific to VxWorks development on Sun

SPARC and SPARClite targets. It includes the following topics:

■ Building Applications: how to compile modules for your target architecture.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the Sun processors.

■ Architecture Considerations: special features and limitations of the Sun

processors, including information specific to the SPARClite and a figure

showing the VxWorks memory layout for these processors.

For general information on the Tornado development environment’s cross-

development tools, see the Tornado User’s Guide: Projects.

B.2 Building Applications

The Tornado 2.0 project facility is correctly preconfigured for building WRS BSPs.

However, if you choose not to use the project facility or if you need to customize

your build, you may need the information in the following sections. This includes

a configuration constant, an environment variable, and compiler options that

together specify the information the GNU toolkit requires to compile correctly for

SPARC and SPARClite targets.
399

VxWorks 5.4
Programmer’s Guide
Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

build with the appropriate architecture-specific features enabled. Define this

variable to SPARC for both the SPARC and SPARClite processors.

For example, to define CPU for a SPARC on the compiler command line, specify the

following command-line option when you invoke the compiler:

-DCPU=SPARC

To provide the same information in a header or source file instead, include the

following line in the file:

#define CPU SPARC

Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. Tornado is configured

to use these tools by default. No change is required to the execution path, because

the compilation chain is installed in the same bin directory as the other Tornado

executables.

Compiling C or C++ Modules

The following is an example of a compiler command line for SPARClite cross-

development. The file to be compiled in this example has a base name of applic.

% ccsparc -DCPU=SPARC -I $WIND_BASE/target/h -O2 -nostdinc \
-fno-builtin -msparclite -msoft-float -c applic. language_id

The options shown in the example have the following meanings:1

-DCPU=SPARC
Required; defines the CPU type. Use SPARClite for SPARClite processors.

-I $WIND_BASE/target/h
Required; includes VxWorks header files. (Additional -I flags may be included

to specify other header files.)

1. For more information on these and other compiler options, see the GNU ToolKit User’s Guide.

WRS supports compiler options used in building WRS software; a list of these options is

included in the Guide. Other options are not supported, although they are available with the

tools as shipped.
400

B

B
Sun SPARC, SPARClite
-O2 Optional; performs level 2 optimization.

-nostdinc
Required; searches only the directory(ies) specified with the -I flag (see above)

and the current directory for header files. Does not search host-system include

files.

-fno-builtin
Required; uses library calls even for common library subroutines.

-msparclite
Required for SPARClite; generates SPARClite-specific code.

-msoft-float
Optional; generates software floating point library calls, rather than hardware

floating point instructions. For more information, see USS Floating-Point
Emulation Library, p.413,

-c Required; specifies that the module is to be compiled only, and not linked for

execution under the host.

applic.language_id
Required; the file(s) to compile. For C compilation, specify a suffix of .c. For

C++ compilation, specify a suffix of .cpp. The output is an unlinked object

module in a.out format with the suffix .o; for the example, the output is

applic.o.

During C++ compilation, the compiled object module (applic.o) is munched.

Munching is the process of scanning an object module for non-local static

objects, and generating data structures that VxWorks can use to call the objects’

constructors and destructors. See the VxWorks Programmer’s Guide: C++
Development for details

B.3 Interface Variations

This section describes particular routines that are specific to SPARC targets in one

of the following ways:

■ available only for SPARC or SPARClite targets

■ parameters specific to SPARC or SPARClite targets
401

VxWorks 5.4
Programmer’s Guide
■ special restrictions or characteristics on SPARC or SPARClite targets

For complete documentation on these routines, see the reference entries.

bALib

The following buffer-manipulation routines provided by bALib exploit the

SPARC LDD and STD instructions.

bzeroDoubles()
Zeroes out a buffer, 256 bytes at a time.

bfillDoubles()
Fills a buffer with a specified eight-byte pattern.

bcopyDoubles()
Copies one buffer to another, eight bytes at a time.

cacheMb930Lib

The library cacheMb930Lib contains routines that allow you to initialize, lock, and

clear the Fujitsu MB86930 (SPARClite) cache. For more information, see the

manual pages and Instruction and Data Cache Locking, p.412.

cacheMicroSparcLib

The library cacheMicroSparcLib contains routines that allow you to initialize,

flush, and clear the MicroSparc I and II caches. For more information, see the

manual pages.

dbgLib

If you are using the target shell, note the following architecture-specific

information on routines in the dbgLib:

■ Optional Parameter for c() and s()

The SPARC versions of c() (continue) and s() (single-step) can take a second

address parameter, addr1. With this parameter, you can set nPC as well as the PC.

Note that if addr is NULL, addr1 is ignored.

NOTE: Unless otherwise noted, the information in this section applies to both the

SPARC and SPARClite. For SPARClite-specific information, see SPARClite
Overview, p.412.
402

B

B
Sun SPARC, SPARClite
■ Restrictions on cret()

In VxWorks for SPARC, cret() cannot determine the correct return address.

Because the actual return address is determined by code within the routine, only

the calling address is known. With C code in general, the calling instruction is a

CALL and routines return with the following:

ret
restore

This is the assumption made by cret() when it places a breakpoint at the return

address of the current subroutine and continues execution. Note that returns other

than %i7 + 8 result in cret() setting an incorrect breakpoint value and continuing.

■ Restrictions on so()

The so() routine single-steps a task stopped at a breakpoint, but steps over a

subroutine. However, in the SPARC version, if the next instruction is a CALL or

JMPL x, %o7, the routine breaks at the second instruction following the subroutine

(that is, the first instruction following the delay slot’s instruction). In general, the

delay slot loads parameters for the subroutine. This loading can have unintended

consequences if the delay slot is also a transfer of control.

■ Trace Routine, tt()

In general, a task trace works for all non-leaf C-language routines and any

assembly language routines that contain the standard prologue and epilogue:

save %sp, -STACK_FRAME_SIZE, %sp
...
ret
restore

Although the tt() routine works correctly in general, note the following caveats:

– Routines written in assembly or other languages, strange entries in routines,

or tasks with corrupted stacks, can result in confusing trace information.

– All parameters are assumed to be 32-bit quantities.

– The cross-compiler does not handle structures passed as parameters correctly.

– The current trace-back tag generated by C compilers is limited to 16

parameters; thus, tt() does not report the value of parameters above 16.

However, this does not mean that your application cannot use routines with

more than 16 parameters.
403

VxWorks 5.4
Programmer’s Guide
– If the routine changes the values of its local registers between the time it is

called and the time it calls the next level down (or, at the lowest level, the time

the task is suspended), tt() reports the changed values. It has no way to locate

the original values.

– If the routine changes the values of registers i0 through i5 between the time it

is called and the time it calls the next level down (or, at the lowest level, the

time the task is suspended), tt() reports the changed values. It has no way to

locate the original values.

– If you attempt a tt() of a routine between the time the routine is called and the

time its initial save is finished, you can expect strange results.

dbgArchLib

If you are using the target shell, the following architecture-specific show routines

are available if INCLUDE_DEBUG is defined:

psrShow()
Displays the symbolic meaning of a specified PSR value on the standard

output device.

fsrShow()
Displays the symbolic meaning of a specified FSR value on the standard

output device.

fppArchLib

The SPARC version of fppArchLib saves and restores a math coprocessor context

appropriate to the SPARC floating-point architecture standard.

intArchLib

intLevelSet() parameters

The SPARC version of intLevelSet() takes an argument from 0 to 15.

intLock() returns

The SPARC version of intLock() returns an interrupt level.

ioMmuMicroSparcLib

The library ioMmuMicroSparcLib contains routines that allow you to initialize

and map memory in the microSPARC I/O MMU. For more information, see the

manual pages.
404

B

B
Sun SPARC, SPARClite
mathALib

Because the overall SPARC architecture includes hardware floating-point support,

while the SPARClite variant does not, VxWorks includes mathALib hardware

floating-point support for SPARC and software floating-point support for

SPARClite.

■ SPARC

On SPARC targets, the following mathALib routines are available. Note that these

are all double-precision routines; no single-precision routines are supported for

SPARC:

■ SPARClite

On SPARClite targets, the following mathALib routines are supported (for

information about how to use this support, see USS Floating-Point Emulation
Library, p.413):

– Double-precision routines:

– Single-precision routines:

vxALib

The test-and-set primitive vxTas() provides a C-callable interface to the SPARC

ldstub instruction.

vxLib

The routine vxMemProbeAsi() probes addresses in SPARC ASI space.

acos() asin() atan() atan2() cbrt() ceil() cos()
cosh() exp() fabs() floor() fmod() irint() iround()
log() log10() pow() round() sin() sinh() sqrt()
tan() tanh() trunc()

acos() asin() atan() atan2() ceil() cos() cosh()
exp() fabs() floor() fmod() frexp() ldexp() log()
log10() pow() sin() sinh() sqrt() tan() tanh()

acosf() asinf() atanf() atan2f() ceilf() cosf() coshf()
expf() fabsf() floorf() fmodf() logf() log10f() modf()
powf() sinf() sinhf() sqrtf() tanf() tanhf()
405

VxWorks 5.4
Programmer’s Guide
a.out-Specific Tools for SPARC and SPARClite

The following tools are specific to the a.out format. For more information, see the

reference entries for each tool.

hex
converts an a.out-format object file into Motorola hex records. The syntax is:

hex [-a adrs] [-l] [-v] [-p PC] [-s SP] file

aoutToBin
extracts text and data segments from an a.out file and writes it to standard

output as a simple binary image. The syntax is:

aoutToBin < inFile > outfile

xsym
extracts the symbol table from an a.out file. The syntax is:

xsym < objMod > symTbl

B.4 Architecture Considerations

This section describes the following characteristics of the SPARC and SPARClite

architectures that you should keep in mind as you write a VxWorks application:

■ Reserved registers
■ Processor mode
■ Vector table initialization
■ Double-word Integers
■ Interrupt handling
■ Floating-point support
■ Stack pointer usage
■ SPARClite overview
■ Memory layout
406

B

B
Sun SPARC, SPARClite
Reserved Registers

Following the SPARC specification (Appendix D, Software Considerations, in The
SPARC Architecture Manual, Version 8 from Sun Microsystems), registers g5, g6, and

g7 are reserved for VxWorks kernel use. Avoid using these registers in your

applications.

Processor Mode

VxWorks for SPARC and SPARClite always runs in Supervisor mode.

Vector Table Initialization

After the VxWorks for SPARC or SPARClite has completed initialization, traps are

enabled and the PIL (Processor Interrupt Level) is set to zero. All 15 interrupt levels

are active with the coprocessor enables set according to hardware availability and

application use.

The TBR (Trap Base Register) points to the active vector table at address 0x1000 in

local memory.

Make sure that vectors are not reserved for the processor or the kernel before

acquiring them for an application.

Double-word Integers: long long

The double-word integer long long is not supported, except as an artifact of your

particular architecture and compiler. For more information about handling

unsupported features, please see the Customer Support User’s Guide.

Interrupt Handling

For VxWorks for SPARC and SPARClite, an interrupt stack allows all interrupt

processing to be performed on a separate stack. The interrupt stack is implemented

in software because the SPARC family does not support such a stack in hardware.
407

VxWorks 5.4
Programmer’s Guide
SPARC Interrupts

The SPARC microprocessor allows 15 levels of interrupts. The level is encoded by

external hardware on the four interrupt signal lines. The integer unit (CPU)

decodes this level and passes control directly to the entry in the vector table at an

offset of 0x100 plus the interrupt level times 16 bytes. This corresponds to vectors

16 through 31 (addresses 0x100 to 0x1F0). Each 16-byte entry in the vector table

contains up to four instructions. Typically, control passes to an interrupt service

routine (ISR) with a call or branch instruction.

The SPARC uses auto-vectored interrupts. The chip does not perform any type of

interrupt acknowledge (IACK) cycle. The address in the Trap Base Register (TBR)

concatenated with the interrupt level vector displacement allows the SPARC to

begin interrupt processing.

The alternative is vectored interrupts. The CPU responds to the interrupt with an

IACK cycle so that an interrupt controller chip or individual device can return a

value that clears and identifies the source of the interrupt. This is extremely useful

for multiple sources of interrupts on a single-interrupt level.

The ability to perform an interrupt acknowledge cycle is a function of the

microprocessor (not the software or board-level hardware). However, a target

board can synthesize an IACK cycle by accessing an area created in its address

space. This is often necessary to clear the interrupt pending bit in an interrupting

device. An IACK cycle also differs from a normal read cycle in that the value

returned is an interrupt vector. This vector is used to select an offset in the vector

table that has the device’s ISR connected to that table entry.

VxWorks allows an application to connect ISRs to vectors with the routine

intConnect(). A stub is built dynamically that calls an interrupt entry routine, calls

the ISR, and then calls an exit routine. The SPARC, like other RISC processors,

delegates to software the task of building an exception stack frame (ESF) to save

volatile information. The kernel builds up two types of exception stack frames: one

for interrupts and one for all other exceptions. The code execution sequence

following an interrupt is as follows:

1. Vector table

2. Exception stack frame building

3. Overflow exception handling

4. Interrupt entry code

5. ISR

6. Interrupt exit code

7. Rescheduling, if the interrupt added work for the kernel (such as a semGive())
408

B

B
Sun SPARC, SPARClite
Vectored Interrupts

The SPARC kernel was designed to handle vectored interrupts as an option.

Because this implementation varies with every target board, the kernel must work

with the board support package (BSP). The implementation of vectored interrupts

on a processor that does not support them must be done in software.

A table in the BSP allows an IACK for each of the 15 interrupt levels. A NULL (0)

entry corresponds to no interrupt acknowledge. If an IACK is required, the table

entry corresponds to a routine that performs the necessary operations. Because the

SPARC vector table contains 256 entries, a byte-sized vector can select any

exception handler.

Note that the microprocessor, the board, and the kernel reserve certain vector table

entries. The kernel appends this vector to the TBR and continues execution with

the selected ISR. All checking for the IACK condition and performing of the

operation is done by the kernel and is transparent. The interrupt connection

mechanism is the same, and checking for and clearing the pending interrupt is

done before the ISR attached by intConnect() is called.

The following shows the structure used on the SPARCengine 1E (also known as a

Sun 1E) SPARC board in installDir/target/config/sun1e/sysLib.c. It illustrates the

use of vectored interrupts for VME, but does not require an IACK cycle for local

(on-board) interrupts:

extern sysVmeAck(); /* IACK Leaf Functions, code in sysALib */

int (*sysIntAckTable [16])() =
{
NULL, /* Reserved for Kernel */
NULL, /* Interrupt Level 1 - Software 1 */
sysVmeAck, /* Interrupt Level 2 - VME 1 */
sysVmeAck, /* Interrupt Level 3 - VME 2 */
NULL, /* Interrupt Level 4 - SCSI */
sysVmeAck, /* Interrupt Level 5 - VME 3 */
NULL, /* Interrupt Level 6 - Ethernet */
NULL, /* Interrupt Level 7 - P2 Bus */
sysVmeAck, /* Interrupt Level 8 - VME 4 */
sysVmeAck, /* Interrupt Level 9 - VME 5 */
NULL, /* Interrupt Level 10 - Timer 0 */
sysVmeAck, /* Interrupt Level 11 - VME 6 */
NULL, /* Interrupt Level 12 - Serial Ports */
NULL, /* Interrupt Level 13 - Mailbox */
NULL, /* Interrupt Level 14 - Timer 1 */
NULL /* Interrupt Level 15 - NMI */
};

The performance penalty for this added feature is negligible. When vectored

interrupts are used, this penalty increases, because an operation is being handled
409

VxWorks 5.4
Programmer’s Guide
in software that the SPARC microprocessor was not designed to do. There are some

restrictions on these vector routines because they are called in a critical section of

code. Again, the Sun 1E SPARC board is used as an example. Note that you must

use special “leaf” procedures.

The corresponding code for the function table is in

installDir/target/config/sun1e/sysALib.s:

/* IACK Function Call Template
/* Input: %l5 - return address
/* Volatile: %l4, %l6 (DO NOT USE OTHER REGISTERS !!!)
/* Return: %l5 - vector table index */

.global _sysVmeAck

_sysVmeAck:
sethi %hi(SUN_VME_ACK),%l6 /* VMEbus IACK - 0xFFD18001 */
or %l6,%lo(SUN_VME_ACK),%l6
rd %tbr,%l4 /* Extract interrupt level */
and %l4,0x00F0,%l4
add %l4,0x0010,%l4 /* Sun 1E to VME level conversion */
srl %l4,5,%l4 /* Add 1, divide by 2 (no remainder) */
sll %l4,1,%l4 /* Multiply VME level by 2 */
ldub [%l6 + %l4],%l4 /* VMEbus IACK and get vector */
jmpl %l5,%g0 /* Return address - leaf routine */
mov %l4,%l5 /* Interrupt vector to %l5 */

VMEbus Interrupt Handling

SPARC uses fifteen interrupt levels instead of the seven used by VMEbus. The

mapping of the seven VMEbus interrupts to the fifteen SPARC levels is board

dependent. VMEbus interrupts must be acknowledged.

Floating-Point Support

Floating-Point Contexts

A task can be spawned with floating-point support by setting the VX_FP_TASK
option. This causes switch hooks to initialize, save, and restore a floating-point

context. This option increases the task’s context switch time and memory

consumption, so only spawn tasks with VX_FP_TASK if they must perform

floating-point operations.

The floating-point data registers are initialized to NaN (Not-a-Number), which is

0xFFFFFFFF. You can change the FSR’s (Floating-point Status Register) value using

the global variable fppFsrDefault.
410

B

B
Sun SPARC, SPARClite
Floating-Point Exceptions

The following are SPARC floating-point exceptions (most are deferred):

– FPU Disabled (or not present)

– Unfinished Operation

– Unimplemented Operation

– Sequence Error

– Invalid Operation

– Overflow

– Underflow

– Divide-by-Zero

– Inexact

■ Exception Options

The application can configure the types of floating-point exceptions that VxWorks

handles. The ideal solution is to not generate any floating-point exceptions in the

application tasks. However, a more realistic scheme is to mask all exceptions

globally (all tasks) in the TEM (Trap Enable Mask) field of the FSR (Floating-point

Status Register). Alternatively, this can be done locally (on a per task basis) as tasks

are spawned and the FSR is initialized. In addition to global and local masks,

individual exceptions (invalid operation, overflow, underflow, divide-by-zero,

inexact) can be masked in the TEM. The masked exception continues to accrue (for

example, become more inexact, continue to overflow, and so on). The default for

VxWorks is to mask only the inexact exception.

■ Exception Handlers

All floating-point exceptions (if enabled) result in the suspension of the offending

task and a message sent through the exception handling task, excTask(). The

floating-point unit is flushed so that other tasks can still use the hardware and

continue their numeric processing.

■ Deferred Exceptions

Floating-point exceptions on the SPARC floating-point units are deferred. When

they occur in the FPU, they do not immediately interrupt the CPU (integer unit).

Instead they remain pended until they are pushed out of the queue by additional

floating-point operations or an FSR access.

If one of the last floating-point operations causes an unmasked exception before a

context switch, saving the task’s context flushes out the exception while in the

kernel. The exception handler checks for this special case and works its way back

to the kernel so that it can continue the context switch. When the task that caused
411

VxWorks 5.4
Programmer’s Guide
the exception is switched back in, it continues in the exception handler and

suspends itself. The relationship between a deferred exception and a context

switch cannot be controlled due to its asynchronous nature.

■ Floating-Point Exception Simulation

SPARCmon is a product from Sun Microsystems that you can attach to the floating-

point exception vectors to handle all exception cases for the SPARC. Any floating-

point exceptions must be simulated by software and the queue flushed of all

pending operations. This simulation fixes the error that caused the exception

whenever possible, or takes some default action (for example, suspends the task).

Stack Pointer Usage

Because the stack pointer can advance without stack memory actually being

written or read, it is possible for the stack high water marker to appear below the

current stack pointer. In other words, current stack usage can be greater than the

high stack usage. This is an artifact of the SPARC architecture’s rolling register

windows.

The stack pointer is used very little. The local and output registers in each register

window perform the bulk of stack operations. The stack is used for long argument

lists, or if a window overflow exception pushes registers onto the stack.

SPARClite Overview

All information pertaining to the SPARC applies to the SPARClite, with the

addition of the architectural enhancements described in the following subsections.

Instruction and Data Cache Locking

The SPARClite allows the global and local locking of the instruction and data

caches. The ability to lock instructions and/or data in the caches allows for higher

performance and more deterministic systems. The locking must be done in such a

way that overall system performance is improved, not degraded. For a better real-

time system, call cacheMb930LockAuto() to enable instruction and data cache

locking. After the caches are locked, they cannot be unlocked or disabled.

To enhance performance, some of the VxWorks kernel data items are locked in the

data cache. This uses approximately 128 bytes. The remainder of the data cache is

available to the developer. Additional data can be locked in the cache using the

BSP.
412

B

B
Sun SPARC, SPARClite
USS Floating-Point Emulation Library

The SPARClite does not have a floating-point coprocessor; thus, the USS floating-

point emulation library is used. Using the -msparclite compile flag allows this

library to be accessed by your code for floating-point calculations.

Memory Layout

The memory layout of both the SPARC and SPARClite processors is shown in

Figure B-1. The memory layout of the microSPARC processor is in Figure B-2.

These figures contain the following labels:

All addresses shown are relative to the start of memory for a particular target

board. The start of memory (corresponding to 0x0 in the memory-layout diagram)

is defined as LOCAL_MEM_LOCAL_ADRS under INCLUDE_MEMORY_CONFIG
for each target.

SM Anchor Anchor for the shared memory network (if there is

shared memory on the board).

Boot Line ASCII string of boot parameters.

Exception Message ASCII string of the fatal exception message.

Interrupt Vector Table Table of exception/interrupt vectors.

Initial Stack Initial stack for usrInit(), until usrRoot() gets allocated

stack.

System Image Entry point for VxWorks.

WDB Memory Pool Size depends on the macro WDB_POOL_SIZE which

defaults to one-sixteenth of the system memory pool.

This space is used by the target server to support host-

based tools. Modify WDB_POOL_SIZE under

INCLUDE_WDB.

Interrupt Stack Size is defined by ISR_STACK_SIZE under

INCLUDE_KERNEL. Location depends on system image

size.

System Memory Pool Size depends on size of system image and interrupt

stack. The end of the free memory pool for this board is

returned by sysMemTop().
413

VxWorks 5.4
Programmer’s Guide
Figure B-1 VxWorks System Memory Layout (SPARC/SPARClite)

+0x0000 LOCAL_MEM_LOCAL_ADRS

+600
+700
+800
+900

+1000

Address

Exception Message

Boot Line

SM Anchor

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

System Image

text

data

bss

+2000

Interrupt Vector Table

+3000

Initial Stack

(4KB)

Interrupt Stack

WDB Memory Pool
_end
414

B

B
Sun SPARC, SPARClite
Figure B-2 VxWorks System Memory Layout (microSPARC I & II)

+0x0000 LOCAL_MEM_LOCAL_ADRS

+600
+700
+800
+900

+1000

Address

Exception Message

Boot Line

SM Anchor

Interrupt Stack

System Memory Pool

+800000 sysMemTop()

= Available

= Reserved

KEY

System Image
text

data

bss

+2000

Interrupt Vector Table

+3000

Initial Stack

(4KB)

+10000

+20000

Shared Memory Pool

Ethernet Buffer Pool

(64KB)

(128KB)

Additional System Memory Pool
(added by ADD_MEM option)

Boot ROM / MMU Tables LOCAL_MEM_RSVD_SIZE{

WDB Memory Pool
_end
415

VxWorks 5.4
Programmer’s Guide
416

C
Intel i960
C.1 Introduction

This appendix provides information specific to VxWorks development on Intel

i960CA, JX, KA, and KB targets. It includes the following topics:

■ Building Applications: how to compile modules for your target architecture.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the i960 processors.

■ Architecture Considerations: special features and limitations of the i960

processors.

For general information on the Tornado development environment’s cross-

development tools, see the Tornado User’s Guide: Projects.

C.2 Building Applications

The Tornado 2.0 project facility is correctly preconfigured for building WRS BSPs.

However, if you choose not to use the project facility or if you need to customize

your build, you may need the information in the following sections. This includes

a configuration constant, an environment variable, and compiler options that

together specify the information the GNU toolkit requires to compile correctly for

i960 targets.
417

VxWorks 5.4
Programmer’s Guide
Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

build with the appropriate architecture-specific features enabled. Define this

variable to one of the following values, to match the processor you are using:

– I960CA
– I960JX
– I960KA
– I960KB

For example, to define CPU for a i960CA on the compiler command line, specify

the following command-line option when you invoke the compiler:

-DCPU=I960CA

To provide the same information in a header or source file instead, include the

following line in the file:

#define CPU I960CA

Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. Tornado is configured

to use these tools by default. No change is required to the execution path, because

the compilation chain is installed in the same bin directory as the other Tornado

executables.

Compiling C or C++ Modules

The following is an example of a compiler command line for i960 cross-

development. The file to be compiled in this example has a base name of applic.

% cc960 -fno-builtin -I $WIND_BASE/target/h -0 -c -mca\
-mstrict-align -fvolatile -nostdinc -DCPU=I960CA applic.c

The options shown in the example have the following meanings:1

1. For more information on these and other compiler options, see the GNU ToolKit User’s Guide.

WRS supports compiler options used in building WRS software; a list of these options is

included in the Guide. Other options are not supported, although they are available with the

tools as shipped.
418

C

C
Intel i960
-fno-builtin
Required; uses library calls even for common library subroutines.

-I $WIND_BASE/target/h
Required; includes VxWorks header files. (Additional -I flags may be included

to specify other header files.)

-O Optional; performs standard optimization.

-c Required; specifies that the module is to be compiled only, and not linked for

execution under the host.

-mca
Required for i960CA and i960JX; specifies the instruction set. For the i960KA

and KB, use -mka and -mkb, respectively.

-mstrict-align
Required; do not permit unaligned accesses.

-fvolatile
Required; consider all memory references through pointers to be volatile.

-nostdinc
Required; searches only the directory(ies) specified with the -I flag (see above)

and the current directory for header files. Does not search host-system include

files.

-DCPU=I960CA
Required; defines the CPU type. If you are using an i960 processor other than

the CA, specify the appropriate value (see Defining the CPU Type, p.418).

applic.language_id
Required; the file(s) to compile. For C compilation, specify a suffix of .c. For

C++ compilation, specify a suffix of .cpp. The output is an unlinked object

module in COFF format with the suffix .o; for the example, the output is

applic.o.

During C++ compilation, the compiled object module (applic.o) is munched.

Munching is the process of scanning an object module for non-local static

objects, and generating data structures that VxWorks run-time support can use

to call the objects’ constructors and destructors. For details, see the VxWorks
Programmer’s Guide: C++ Development.
419

VxWorks 5.4
Programmer’s Guide
Boot Loader Changes

The target-resident loader for i960 targets loads COFF format VxWorks images

which are composed of multiple text sections and multiple data sections. The

ability to load COFF files with multiple text and data sections facilitates the use of

linker scripts which scatter-load the VxWorks image at boot time. In addition,

because the number of relocation entries for any particular COFF section may not

exceed 65,535 entries, it may be necessary to split very large images into multiple

sections.

It is assumed that users implementing linker scripts are comfortable with the GNU

linker, the GNU linker command language, the particular OMF used by the GNU

tools, and the target memory architecture. In addition to the aforementioned

requisite background, the target-resident loader implementation places certain

restrictions on how fully-linked COFF files (for example, a VxWorks image) are

organized.

The target-resident loader assumes that a COFF format VxWorks image is ordered

such that the COFF file header, optional header, and section headers are followed

immediately by the section contents for text, data, or lit sections in the binary file.

Moreover, it is assumed that the section contents are contiguous in the binary file.

Figure C-1 shows typical headers in the binary file.

The fact that text, data, and lit sections must be contiguous with each other and

follow the section headers in the binary file does not preclude using a linker script

to locate multiple text and data sections at non-contiguous RAM addresses. For

more information on the GNU linker and GNU linker command language, see the

GNU ToolKit User’s Guide.

Figure C-1 COFF File Headers

FILHSZ

AOUTSZ

f_nscns * SCNHZ

section content
. . .

File header

Optional header

Section headers

Section contents must be .text, .data, or .lit and
they must be contiguous in the binary file.
420

C

C
Intel i960
The target-resident loader for i960 reports the sizes of individual text and data

sections in addition to the bss section when VxWorks is booted. For example, if a

multiple text section image is booted, output similar to the following might be

seen:

Attaching network interface oli0... done.
Attaching network interface lo0... done.
Loading... 277764 + 82348 + 66664 + 7948 + 29692
Starting at 0x1000...

Attached TCP/IP interface to oli unit 0
Attaching network interface lo0... done.
NFS client support not included.

VxWorks

Copyright 1984-1998 Wind River Systems, Inc.

CPU: Cyclone EP960Cx
VxWorks: 5.4

BSP version: 1.2/0
 Creation date: Feb 10 1999

WDB: Ready.

This format is a slight cosmetic modification to the section size values which WRS

boot loaders have traditionally reported as size of text + size of data + size of bss.

Reporting the size of individual text and data sections rather than summing them

up is intended to be an aid for developers working on VxWorks images which are

organized by way of a linker script. This change is not likely to be noticed when

the default VxWorks image types are used.

C.3 Interface Variations

This section describes particular routines that are specific to i960 targets in any of

the following ways:

■ available only on i960 targets

■ parameters specific to i960 targets

■ special restrictions or characteristics on i960 targets

For complete documentation on these routines, see the reference entries.
421

VxWorks 5.4
Programmer’s Guide
Initialization

There are several differences in what sysInit() initializes and in the initialization

sequence on i960 targets.

Differences in sysInit() Routine

For the i960, the sysInit() routine initializes the system interrupt and fault tables

with default stubs, in addition to its standard functions.

ROM-Based VxWorks with i960 Targets

As with other target architectures, the routines romInit() and romStart() execute

first. Then initialization continues at the sysInit() call, rather than with the

usrInit() call as for other ROM-based targets.

Data Breakpoint Routine bh()

In addition to being able to break at an instruction with b(), the i960CA permits

breakpoints at a data address using bh(). For more information, see the reference

entry for bh(). For example, the following command from the VxWorks shell

causes a data breakpoint on any access to data address 0xFFFF:

-> bh 0xFFFF, 3

The delete-breakpoint routines, bd() and bdall(), delete both instruction and data

breakpoints. Only two data breakpoints can be present in the system at one time.

Parameter Change for intLevelSet()

The i960 version of intLevelSet() takes an argument from 0 to 31. Level 31 is

equivalent to locking all interrupts.

Results Change for memLib

In VxWorks for the i960, the library memLib forces both partitions and blocks

returned by malloc() to be 16-byte aligned.

! CAUTION: The bh() routine does not work reliably on instruction fetches; use b()
to break on instructions.
422

C

C
Intel i960
Math Routines

Mathematics routines using software floating-point emulation are part of the

GNU/960 distribution from Cygnus, in the libraries libm.a, libg.a, and libgcc.a.

The location of these libraries is described in

installDir/target/h/make/make.I960xxgnu by the variable LIBS (where xx identifies

libraries specific to the CA, JX, KA, or KB variant of the i960 architecture).

The following double-precision floating-point routines are included in the

GNU/960 distribution from Cygnus:

The following single-precision floating-point routines are also available:

Adding in Unresolved Routines

Occasions can arise when an application requires libm.a, libg.a, and libgcc.a
routines, although the application has not been prelinked with the VxWorks image.

There are several alternatives for dealing with this situation:

■ You can compile and link a set of dummy calls with VxWorks to ensure that

the necessary routines are included in the VxWorks image.

■ You can explicitly link the appropriate archive with your application module

by using ld960.

■ You can add any unresolved reference symbols to

installDir/target/src/config/mathInit.c and rebuild VxWorks.

Floating-Point Task Option: VX_FP_TASK

The i960CA, JX, and KA processors contain no floating-point hardware; thus no

floating-point context is used. Floating-point emulation is performed in software

with the routines provided by the Cygnus libraries (see Math Routines, p.423);

therefore, the task option VX_FP_TASK is not required.

acos() asin() atan() atan2() ceil() cos() cosh()
exp() fabs() floor() fmod() log() log10() log2()
pow() sin() sinh() sqrt() tan() tanh()

atanf() atan2() ceilf() expf()
fabsf() floorf() logf() log2f()
powf() sinf() sqrtf() tanf()
423

VxWorks 5.4
Programmer’s Guide
The i960KB has on-board floating-point hardware. The task option VX_FP_TASK is

required when spawning tasks on the i960KB processor.

COFF-Specific Tools For i960

The following tools are specific to the COFF format on i960 processors. For more

information, see the reference entries for each tool.

coffHex960
converts an COFF-format object file into Motorola hex records. The syntax is:

coffHex960 [- [TD]imifile, offset] [-a offset] [-l] file

coffToBin
extracts text and data segments from a COFF file and writes it to standard

output as a simple binary image. The syntax is:

coffToBin < inFile > outfile

xsymc
extracts the symbol table from a COFF file. The syntax is:

xsymc < objMod > symTbl

Limitation on d() in WindSh

On i960 targets not all memory is accessible from the host shell. For example, if

there is no PCI bus on an ep960cx board, addresses 0x10000000 to 0x 9fffffff are not

accessible. Although a d() command from the target shell can access this region,

the same command from the host can not. This is because the host shell d()
command verifies the memory using vxMemProbe() before displaying it, while

the target shell d() command does not.

A further complication occurs with ev960 boards. vxMemProbe() uses the bus

error signal to detect whether a region of memory is accessible or not. If this signal

is not present, as it is not on ev960 boards, vxMemProbe() uses sysProbeMem() to

detect whether the requested address is valid or not. sysProbeMem() determines

whether an address is between LOCAL_MEM_LOCAL_ADRS and

sysPhysMemTop or not. This means that if you want to access a new address on

ev960 boards, for example because you added a new component, you must modify

sysProbeMem() so that it considers your new memory zone valid.
424

C

C
Intel i960
C.4 Architecture Considerations

This section describes the following characteristics of the i960 architecture that you

should keep in mind as you write a VxWorks application:

■ Byte order
■ Double-word Integers
■ VMEbus interrupt handling
■ Memory layout

Byte Order

The i960 architecture uses little-endian byte order. For information about macros

and routines to convert byte order (from big-endian to little-endian and vice

versa), see VxWorks Network Programmer’s Guide: TCP/IP Under VxWorks.

The VxWorks loader allows object module headers to be in either big-endian or

little-endian byte order. Host utility programs can use the most convenient byte

order to process i960 objects. Object file text and data segments must be little

endian for i960 processors.

Double-word Integers: long long

The double-word integer long long is not supported, except as an artifact of your

particular architecture and compiler. For more information about handling

unsupported features, please see the Customer Support User’s Guide.

VMEbus Interrupt Handling

The i960 uses 31 interrupt levels instead of the seven used by VMEbus. The

mapping of the seven VMEbus interrupts to the 31 i960 levels is board dependent.

VMEbus interrupts must be acknowledged with sysBusIntAck(). VxWorks does

not use the vector submitted by the interrupting device. For more information, see

the file installDir/target/h/arch/i960/ivI960.h.
425

VxWorks 5.4
Programmer’s Guide
Memory Layout

The figures on the following pages show the layout of a VxWorks system in

memory for various target architectures. Areas contain the following labels:

Figure C-2 shows the memory layout for an i960CA target; Figure C-3 shows the

memory layout for an i960JX target; Figure C-4 shows the memory layout for an

i960KA or i960KB target.

All addresses shown in these figures are relative to the start of memory for a

particular target board. The start of memory (corresponding to 0x0 in the memory-

layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS under

INCLUDE_MEMORY_CONFIG for each target.

Interrupt Vector Table Table of exception/interrupt vectors.

SM Anchor Anchor for the shared memory network (if there is shared

memory on the board).

Boot Line ASCII string of boot parameters.

Exception Message ASCII string of the fatal exception message.

Initial Stack Initial stack for usrInit(), until usrRoot() gets allocated

stack.

System Image Entry point for VxWorks.

WDB Memory Pool Size depends on the macro WDB_POOL_SIZE which

defaults to one-sixteenth of the system memory pool. This

space is used by the target server to support host-based

tools. Modify WDB_POOL_SIZE under INCLUDE_WDB.

Interrupt Stack Location depends on system image size. Size is defined by

ISR_STACK_SIZE under INCLUDE_KERNEL.

System Memory Pool Size depends on size of system image and interrupt stack.

The end of the free memory pool for this board is returned

by sysMemTop().
426

C

C
Intel i960
Figure C-2 VxWorks System Memory Layout (i960CA)

+0x0000 LOCAL_MEM_LOCAL_ADRS

+400

+600

+700

+800

+900

+e00

+1000

Address

Initial Stack

Exception Message

Boot Line

SM Anchor

System Image

text

data

bss

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

NMI Vector

ffffff00

Initialization Boot Record

Interrupt Vector Table

Interrupt Stack

WDB Memory Pool

_end
427

VxWorks 5.4
Programmer’s Guide
Figure C-3 VxWorks System Memory Layout (i960JX)

+0x0000 LOCAL_MEM_LOCAL_ADRS

+400

+600

+800

+900

+30000

Address

Exception Message

Boot Line

System Image

text

data

bss

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

NMI Vector

ffffffd0

Initialization Boot Record

Interrupt Vector Table

Interrupt Stack

WDB Memory Pool

_end
428

C

C
Intel i960
Figure C-4 VxWorks System Memory Layout (i960KA and i960KB)

0x0000
+ac

+600

+700

+800

+900

+e00

+1000

Address

Initial Stack

Exception Message
Boot Line

SM Anchor

System Image

text

data

bss

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

Initial Memory Image

Interrupt Vector Table

Interrupt Stack

ff000000

+400

ffffffff

WDB Memory Pool

_end

+0x0000 LOCAL_MEM_LOCAL_ADRS
429

VxWorks 5.4
Programmer’s Guide
430

D
Intel x86
D.1 Introduction

This appendix provides information specific to VxWorks development on Intel

i386, i486, Pentium, and PentiumPro (x86) targets. It includes the following topics:

■ Building Applications: how to compile modules for your target architecture.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the x86 processors.

■ Architecture Considerations: special features and limitations of the x86

processors.

■ Board Support Packages: information on specific BSPs and device drivers.

For general information on the Tornado development environment’s cross-

development tools, see the Tornado User’s Guide: Projects.

D.2 Building Applications

The Tornado 2.0 project facility is correctly preconfigured for building WRS BSPs.

However, if you choose not to use the project facility or if you need to customize

your build, you may need the information in the following sections. This includes

a configuration constant, an environment variable, and compiler options that
431

VxWorks 5.4
Programmer’s Guide
together specify the information the GNU toolkit requires to compile correctly for

x86 targets.

Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

build with the appropriate architecture-specific features enabled. Define this

variable to either I80386, I80486, or PENTIUM to match the processor you are using.

For example, to define CPU for an i386 on the compiler command line, specify the

following command-line option when you invoke the compiler:

-DCPU=I80386

To provide the same information in a header or source file, include the following

line in the file:

#define CPU I80386

Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. Tornado is configured

to use these tools by default. No change is required to the execution path, because

the compilation chain is installed in the same bin directory as the other Tornado

executables.

Compiling C and C++ Modules

The following is an example of a compiler command line for Intel x86 cross-

development. The file to be compiled in this example has the base name of applic.

% cc386 -DCPU=I80386 -I $WIND_BASE/target/h -fno-builtin -0 \
-mno-486 -fno-defer-pop -nostdinc -c applic. lang_id

The options shown in the example have the following meanings:1

1. For more information on these and other compiler options, see the GNU ToolKit User’s Guide.

WRS supports compiler options used in building WRS software; a list of these options is

included in the Guide. Other options are not supported, although they are available with the

tools as shipped.
432

D

D
Intel x86
cc386
Required; use cc386 for all supported x86 processors.

-DCPU=I80386
Required; defines the CPU type for the i386. If you are using another CPU type,

specify the appropriate value (see Defining the CPU Type, p.432).

-I $WIND_BASE/target/h
Required; includes VxWorks header files. (Additional -I flags may be included

to specify other header files.)

-fno-builtin
Required; uses library calls even for common library routines.

-O
Optional; performs standard optimizations. Note that optimization is not

supported for the Pentium.

-mno-486
Required for the i386; generates optimized code for the i386. For the i486, the

compiler automatically generates optimized code; no additional flags are

required.

-fno-defer-pop
Required; pops the arguments to each subroutine call as soon as that

subroutine returns.

-nostdinc
Required; searches only the directory(ies) specified with the -I flag (see above)

and the current directory for header files. Does not search host-system include

files.

-fvolatile
Optional; considers all memory references through pointers to be volatile.

-c
Required; specifies that the module is to be compiled only, and not linked for

execution under the host.

applic.lang_id
Required; the file(s) to compile. For C compilation, specify a suffix of .c. For

C++ compilation, specify a suffix of .cpp. The output is an unlinked object

module in a.out format with the suffix .o; for the example, the output is

applic.o.

During C++ compilation, the compiled object module (applic.o) is munched.

Munching is the process of scanning an object module for non-local static
433

VxWorks 5.4
Programmer’s Guide
objects, and generating data structures that VxWorks run-time support can use

to call the objects’ constructors and destructors. For details, see the VxWorks
Programmer’s Guide: C++ Development.

D.3 Interface Variations

This section describes particular features and routines that are specific to x86

targets in any of the following ways:

■ available only for x86 targets

■ parameters specific to x86 targets

■ special restrictions or characteristics on x86 targets

For complete documentation, see the reference entries.

Supported Routines in mathALib

For x86 targets, the following floating-point routines are supported. These routines

are also available without a hardware floating-point processor by selecting

INCLUDE_SW_FP for inclusion in the project facility VxWorks view. For more

information about configuring the software floating-point emulation library, see

Software Floating-Point Emulation, p.448. See mathALib and the individual manual

entries for descriptions of each routine.

Architecture-Specific Global Variables

The file sysLib.c contains the global variables shown in Table D-1.

acos() asin() atan() atan2() ceil() cos()
exp() fabs() floor() fmod() infinity() irint()
iround() log() log10() log2() pow() round()
sin() sincos() sqrt() tan() trunc()
434

D

D
Intel x86
Architecture-Specific Routines

Register Routines

The following routines read x86 register values, and require one parameter, the

task ID:

Table D-2 shows additional architecture-specific routines. Other architecture-

specific routines are described throughout this section.

Table D-1 Architecture-Specific Global Variables

Global Variable Value Description

sysVectorIRQ0 0x20 (default) A mapping of the base vector for IRQ0.

sysIntIdtType 0x0000fe00

(default)

= trap gate

0x0000ee00

= interrupt gate

Used when VxWorks initializes the interrupt

vector table. The choice of trap gate vs. interrupt

gate affects all interrupts (vectors 0x20 through

0xff).

sysGDT[] 0x3ff limit (default) The Global Descriptor Table has five entries. The

first is a null descriptor. The second and third are

for task-level routines. The fourth is for interrupt-

level routines. The fifth is reserved.

sysProcessor 0 = i386

1 = i486

2 = Pentium

4 = PentiumPro

The processor type (set by VxWorks).

sysCoprocessor 0 = no coprocessor

1 = 387 coprocessor

2 = 487 coprocessor

The type of floating-point coprocessor (set by

VxWorks).

eax() ebx() ecx() edx() edi()
esi() ebp() esp() eflags()
435

VxWorks 5.4
Programmer’s Guide
Table D-2 Architecture-Specific Routines

Routine Function Header Description

pentiumBts() STATUS pentiumBts
(char * pFlag)

Execute an atomic compare-and-exchange

instruction to set a bit. (Pentium and

PentiumPro.)

pentiumBtc() STATUS pentiumBtc (pFlag)
(char * pFlag)

Execute an atomic compare-and-exchange

instruction to clear a bit. (Pentium and

PentiumPro.)

pentiumMcaShow void pentiumMcaShow (void) Show machine check global control registers

and error reporting register banks.

pentiumMsrGet() void pentiumMsrGet
(
int address,
long long int * pData
)

Get the contents of the specified MSR.

(PentiumPro)

pentiumMsrSet() void pentiumMsrSet
(
int address,
long long int * pData
)

Set the value of the specified MSR.

(PentiumPro)

pentiumMtrrEnable() void pentiumMtrrEnable (void) Enable MTRR. (PentiumPro)

pentiumMtrrDisable() void pentiumMtrrDisable (void) Disable MTRR. (PentiumPro)

pentiumMtrrGet() void pentiumMtrrGet
(MTRR * pMtrr)

Get MTRRs to the MTRR table specified by the

pointer. (PentiumPro)

pentiumMtrrSet() void pentiumMtrrSet (void)
(MTRR * pMtrr)

Set MTRRs from the MTRR table specified by

the pointer. (PentiumPro)

pentiumPmcStart() STATUS pentiumPmcStart
(int pmcEvtSel0;
int pmcEvtSel1;
)

Start PMC0 and PMC1. (PentiumPro)

pentiumPmcStop() void pentiumPmcStop (void) Stop PMC0 and PMC1. (PentiumPro)

pentiumPmcStop1() void pentiumPmcStop1 (void) Stop PMC1 only. (PentiumPro)
436

D

D
Intel x86
pentiumPmcGet() void pentiumPmcGet
(long long int * pPmc0;
long long int * pPmc1;
)

Get the contents of PMC0 and PMC1.

(PentiumPro)

pentiumPmcGet0() void pentiumPmcGet0
(long long int * pPmc0)

Get the contents of PMC0. (PentiumPro)

pentiumPmcGet1() void pentiumPmcGet1
(long long int * pPmc1)

Get the contents of PMC1. (PentiumPro)

pentiumPmcReset() void pentiumPmcReset (void) Reset PMC0 and PMC1. (PentiumPro)

pentiumPmcReset0() void pentiumPmcReset0 (void) Reset PMC0. (PentiumPro)

pentiumPmcReset1() void pentiumPmcReset1 (void) Reset PMC1. (PentiumPro)

pentiumSerialize() void pentiumSerialize (void) Serialize by executing the CPUID instruction.

(Pentium and PentiumPro.)

pentiumPmcShow() void pentiumPmcShow
(BOOL zap)

Show PMC0 and PMC1, and reset them if the

parameter zap is TRUE. (Pentium and

PentiumPro.)

pentiumTlbFlush() void pentiumTlbFlush (void) Flush the TLBs (Translation Lookaside

Buffers). (Pentium and PentiumPro.)

pentiumTscReset() void pentiumTscReset (void) Reset the TSC. (PentiumPro)

pentiumTscGet32() void pentiumTscGet32 (void) Get the lower half of the 64-bit TSC.

(PentiumPro)

pentiumTscGet64() void pentiumTscGet64
(long long int * pTsc)

Get the 64-bit TSC. (PentiumPro)

sysCpuProbe() Use CPUID to get information about the CPU.

sysInByte() UCHAR sysInByte
(int port)

Read one byte from I/O.

sysInWord() USHORT sysInWord
(int port)

Read one word (two bytes) from I/O.

sysInLong() ULONG sysInLong
(int port)

Read one long word (four bytes) from I/O.

Table D-2 Architecture-Specific Routines (Continued)

Routine Function Header Description
437

VxWorks 5.4
Programmer’s Guide
Breakpoints and the bh() Routine

VxWorks for the x86 supports both software and hardware breakpoints. When you

set a software breakpoint, VxWorks replaces an instruction with an int 3 software

interrupt instruction. VxWorks restores the original code when the breakpoint is

removed. The instruction queue is purged each time VxWorks changes an

instruction to a software break instruction.

sysOutByte() void sysOutByte
(int port, char data)

Write one byte to I/O.

sysOutWord() void sysOutWord
(int port, short data)

Write one word (two bytes) to I/O.

sysOutLong() void sysOutLong
(int port, long data)

Write one long word (four bytes) to I/O.

sysInWordString() void sysInWordString
(int port, short *address,
int count)

Read word string from I/O.

sysInLongString() void sysInLongString
(int port, short *address,
int count

Read long string from I/O.

sysOutWordString() void sysOutWordString
(int port, short *address,
int count)

Write word string to I/O.

sysOutLongString() void sysOutLongString
(int port, short *address,
int count)

Write long string to I/O.

sysDelay() void sysDelay
(void)

Allow enough recovery time for port accesses.

sysIntDisablePIC() STATUS sysIntDisablePIC
(int intLevel)

Disable a Programmable Interrupt Controller

(PIC) interrupt level.

sysIntEnablePIC() STATUS sysIntEnablePIC
(int intLevel)

Enable a PIC interrupt level.

sysCpuProbe() UINT sysCpuProbe
(void)

Check for type of CPU (i386, i486, or Pentium).

Table D-2 Architecture-Specific Routines (Continued)

Routine Function Header Description
438

D

D
Intel x86
A hardware breakpoint uses the processor’s debug registers to set the breakpoint.

The x86 architectures have four breakpoint registers. If you are using the target

shell, you can use the bh() routine to set hardware breakpoints. The routine is

declared as follows:

STATUS bh
(
INSTR *addr, /* where to set breakpoint, or */
 /* 0 = display all breakpoints */
int task, /* task to set breakpoint; */
 /* 0 = set all tasks */
int count, /* number of passes before hit */
int type, /* breakpoint type; see below */
INSTR *addr0 /* ignored for x86 targets */
)

The bh() routine takes the following types in parameter type:

Disassembler: l()

If you are using the target shell, note that the VxWorks disassembler l() does not

support 16-bit code compiled for earlier generations of 80x86 processors. However,

the disassembler does support 32-bit code for both the i386 and i486 processors.

vxMemProbe()

The vxMemProbe() routine, which probes an address for a bus error, is supported

on the x86 architectures by trapping both general protection faults and page faults.

a.out-Specific Tools for x86

The following tools are specific to the a.out format for x86 processors and the PC

simulator. For more information, see the reference entries for each tool.

BRK_INST Instruction hardware breakpoint (0x1000)

BRK_DATAW1 Data write 1-byte breakpoint (0x1400)

BRK_DATAW2 Data write 2-byte breakpoint (0x1500)

BRK_DATAW4 Data write 4-byte breakpoint (0x1700)

BRK_DATARW1 Data read-write 1-byte breakpoint (0x1c00)

BRK_DATARW2 Data read-write 2-byte breakpoint (1d00)

BRK_DATARW4 Data read-write 4-byte breakpoint (1f00)
439

VxWorks 5.4
Programmer’s Guide
hexDec
converts an a.out-format object file into Motorola hex records. The syntax is:

hexDec [-a adrs] [-l] [-v] [-p PC] [-s SP] file

aoutToBinDec
extracts text and data segments from an a.out file and writes it to standard

output as a simple binary image. The syntax is:

aoutToBinDec < inFile > outfile

xsymDec
extracts the symbol table from an a.out file. The syntax is:

xsymDec < objMod > symTbl

D.4 Architecture Considerations

This section describes the following characteristics of the Intel x86 architectures

that you should keep in mind as you write a VxWorks application:

■ Operating mode, privilege protection, and byte order
■ Memory segmentation and the MMU
■ I/O and memory mapped devices
■ Memory considerations for VME
■ Interrupts and exceptions
■ Registers
■ Counters
■ Context switching
■ ISA/EISA bus
■ PC104 bus
■ PCI bus
■ Software floating-point emulation
■ VxWorks memory layout

Consult Intel’s Intel486 Microprocessor Family Programmer’s Reference Manual for

details on the x86 architectures.
440

D

D
Intel x86
Operating Mode, Privilege Protection, and Byte Order

VxWorks for the x86 runs in the 32-bit protected mode.

No privilege protection is used, thus there are no call gates. The privilege level is

always 0, the most privileged level (Supervisor mode).

The x86 byte order is little-endian, but network applications must convert some

data to a standard network order, which is big-endian. In particular, in network

applications, be sure to convert the port number to network byte order using

htons().

See VxWorks Network Programmer’s Guide: TCP/IP under VxWorks for more

information about macros and routines to convert byte order (from little-endian to

big-endian or vice versa).

Memory Segmentation

The Intel x86 processors support both I/O-mapped devices and memory-mapped

devices.

I/O Mapped Devices

For I/O mapped devices, developers may use the following routines from

installDir/target/config/bspName/sysALib.s:

Memory Mapped Devices

For memory mapped devices, there are two kinds of memory protection provided

by VxWorks: the Memory Management Unit and the Global Descriptor Table.

sysInByte() – input one byte from I/O space

sysOutByte() – output one byte to I/O space

sysInWord() – input one word from I/O space

sysOutWord() – output one word to I/O space

sysInLong() – input one long word from I/O space

sysOutLong() – output one long word to I/O space

sysInWordString() – input a word string from I/O space

sysOutWordString() – output a word string to I/O space

sysInLongString() – input a long string from I/O space

sysOutLongString() – output a long string to I/O space
441

VxWorks 5.4
Programmer’s Guide
Because VxWorks operates at the highest processor privilege level, no “protection

rings” exist.

The x86 processors allow you to configure the memory space into valid and invalid

areas, even under Supervisor mode. Thus, you receive a page fault only if the

processor attempts to access addresses mapped as invalid, or addresses that have

not been mapped. Conversely, if the processor attempts to access a nonexistent

address space that has been mapped as valid, no page fault occurs.

Memory Management Unit (MMU)

If INCLUDE_MMU_BASIC is selected for inclusion in the project facility VxWorks

view, then VxWorks enables the MMU with the mmuPhysDesc[] table which

includes PCI memory mapping information. This is the default.

If you have other memory mapped devices and if INCLUDE_MMU_BASIC is

included (the default), you may need to add your device address space into the

MMU table by manually editing the MMU configuration structure

sysPhysMemDesc[] in sysLib.c. For information on editing the

sysPhysMemDesc[] structure, see 7.3 Virtual Memory Configuration, p.290. Do not

overlap any existing MMU entries, and be sure all entries are page aligned. We

recommend that you also maintain a 1:1 correlation between virtual and physical

memory, since VxWorks and all tasks use a common address space.

Attempts to access areas not mapped as valid in the MMU result in page faults.

PentiumPro MMU

PentiumPro’s enhanced MMU supports two additional page attribute bits.

The global bit (G) indicates a global page when set. When a page is marked global

and the page global enable (PGE) bit in register CR4 is set, the page-table or page-

directory entry for the page is not invalidated in the TLB when register CR3 is

loaded or a task switch occurs. This bit is provided to prevent frequently used

pages (such as pages that contain kernel or other operating system or executive

code) from being flushed from the TLB.

The page-level write-through/back bit (PWT) controls the write-through or write-

back caching policy of individual pages or page tables. When the PWT bit is set,

write-through caching is enabled for the associated page or page table. When the

bit is clear, write-back caching is enabled for the associated page and page table.

! CAUTION: The i386 MMU does not have write-protect capability.
442

D

D
Intel x86
The following macros describe these attribute bits in the physical memory

descriptor table sysPhysMemDesc[] in sysLib.c.

Support is provided for two page sizes, 4KB and 4MB. The linear address for 4KB

pages is divided into three sections:

The linear address for 4MB pages is divided into two sections:

The page size is configured using VM_PAGE_SIZE. The default is 4 KB pages. If you

wish to reconfigure 4 MB pages, you must change VM_PAGE_SIZE in config.h. (See

8. Configuration and Build.)

Global Descriptor Table (GDT)

The GDT is defined as the table sysGDT[] in sysALib.s. The table has five entries:

a null entry, an entry for program code, an entry for program data, an entry for

ISRs, and a reserved entry. It is initially set so that the available memory range is

0x0-0xffffffff. For boards that support PCI, INCLUDE_PCI is defined in config.h and

VxWorks does not alter the pre-set memory range. This memory range is available

at run-time with the MMU configuration.

If INCLUDE_PCI is not defined (the default for boards that do not support PCI),

VxWorks adjusts the GDT using the sysMemTop() routine to check the actual

memory size during system initialization and set the table so that the available

memory range is 0x0-sysMemTop. This causes a General Protection Fault to be

generated for any memory access outside the memory range 0x0-sysMemTop.

Memory Considerations for VME

The global descriptors for x86 targets are configured for a flat 4GB memory space.

If you are running VxWorks for the x86 on a VME board, be aware that addressing

nonexistent memory or peripherals does not generate a bus error or fault.

VM_STATE_WBACK use write-back cache policy for the page

VM_STATE_WBACK_NOT use write-through cache policy for the page

VM_STATE_GLOBAL set page global bit

VM_STATE_GLOBAL_NOT not set page global bit

Page directory entry bits 22 through 31

Page table entry bits 12 through 21

Page offset bits 0 through 11

Page directory entry bits 22 through 31

Page offset bits 0 through 21
443

VxWorks 5.4
Programmer’s Guide
Interrupts and Exceptions

Interrupt Descriptor Table

The Interrupt Descriptor Table (IDT) occupies the address range 0x0 to 0x800 (also

called the Interrupt Vector Table, see Figure D-2). Vector numbers 0x0 to 0x1f are

handled by the default exception handler. Vector numbers 0x20 to 0xff are handled

by the default interrupt handler.

By default, vector numbers 0x20 to 0x2f are mapped to IRQ levels 0 to 15. To

redefine the base address, edit sysVectorIRQ0 in sysLib.c.

For vector numbers 0x0 to 0x11, no task gates are used, only interrupt gates. By

default, vector numbers 0x12 to 0xff are trap gates, but this can be changed by

redefining the global variable sysIntIdtType.

The difference between an interrupt gate and a trap gate is its effect on the IF flag:

using an interrupt gate clears the IF flag, which prevents other interrupts from

interfering with the current interrupt handler.

Each vector of the IDT contains the following information:

The interrupt handler calls intEnt() and saves the volatile registers (eax, edx, and

ecx). It then calls the ISR, which is usually written in C. Finally, the handler restores

the saved registers and calls intExit().

There is no designated interrupt stack. The interrupt’s stack frame is built on the

interrupted task’s stack. Thus, each task requires extra stack space for interrupt

nesting; the amount of extra space varies, depending on your ISRs and the

potential nesting level.

Some device drivers (depending on the manufacturer, the configuration, and so

on) generate a stray interrupt on IRQ7, which is used by the parallel driver. The

global variable sysStrayIntCount (see Table D-3) is incremented each time such an

interrupt occurs, and a dummy ISR is connected to handle these interrupts.

offset: offset to the interrupt handler

selector: 0x0018, third descriptor (code) in GDT for

exception;

0x0020, fourth descriptor (code) in GDT for

interrupt.

descriptor

privilege level: 3

descriptor

present bit: 1
444

D

D
Intel x86
The chip generates an exception stack frame in one of two formats, depending on

the exception type: (EIP + CS + EFLAGS) or (ERROR + EIP + CS + EFLAGS).

Machine Check Architecture (MCA)

The Pentium processor introduced a new exception called the machine-check

exception (interrupt-18). This exception is used to signal hardware-related errors,

such as a parity error on a read cycle. The PentiumPro processor extends the types

of errors that can be detected and that generate a machine- check exceptions. It also

provides a new machine-check architecture that records information about a

machine-check error and provides the basis for an extended error logging

capability.

MCA is enabled and its status registers are set to zero in sysHwInit(). Its registers

are accessed by pentiumMsrSet() and pentiumMsrGet().

Registers

Memory Type Range Register (MTRR)

MTRR is a feature of the PentiumPro processor that allow the processor to

optimize memory operations for different types of memory, such as RAM, ROM,

frame buffer memory, and memory-mapped I/O. MTRRs configure an internal

map of how physical address ranges are mapped to various types of memory. The

processor uses this internal map to determine the cacheability of various physical

memory locations and the optimal method of accessing memory locations.

For example, if a memory location is specified in an MTRR as write-through

memory, the processor handles accesses to this location either by reading data from

that location in lines and caching the read data or by mapping all writes to that

location to the bus and updating the cache to maintain cache coherency. In

mapping the physical address space with MTRRs, the processor recognizes five

types of memory: uncacheable (UC), write-combining (WC), write-through (WT),

write-protected (WP), and write-back (WB).

The MTRR table is defined as follows:

typedef struct mtrr_fix /* MTRR - fixed range register */
{
char type[8]; /* address range: [0]=0-7 ... [7]=56-63 */
} MTRR_FIX;

typedef struct mtrr_var /* MTRR - variable range register */
{
long long int base; /* base register */
long long int mask; /* mask register */
445

VxWorks 5.4
Programmer’s Guide
} MTRR_VAR;
typedef struct mtrr /* MTRR */
{
int cap[2]; /* MTRR cap register */
int deftype[2]; /* MTRR defType register */
MTRR_FIX fix[11]; /* MTRR fixed range registers */
MTRR_VAR var[8]; /* MTRR variable range registers */
} MTRR;

Model Specific Register (MSR)

The PentiumPro processor implements the concept of model-specific registers

(MSRs) to control hardware functions in the processor or to monitor processor

activity. The new registers control the debug extensions, the performance counters,

the machine-check exception capability, the machine check architecture, and the

MTRRs. The MSRs can be read and written to using the RDMSR and WRMSR

instructions, respectively.

Counters

Performance Monitoring Counters (PMC)

The PentiumPro processor has two performance-monitoring counters for use in

monitoring internal hardware operations. These counters are duration or event

counters that can be programmed to count any of approximately 100 different

types of events, such as the number of instructions decoded, number of interrupts

received, or number of cache loads.

PMC is enabled in sysHwInit(). Selected events in the default configuration are

PMC0 = number of hardware interrupts received and PMC1 = number of

misaligned data memory references.

Time Stamp Counter (TSC)

The PentiumPro processor provides a 64-bit time-stamp counter that is

incremented every processor clock cycle. The counter is incremented even when

the processor is halted by the HLT instruction or the external STPCLK# pin. The

time-stamp counter is set to 0 following a hardware reset of the processor. The

RDTSC instruction reads the time stamp counter and is guaranteed to return a

monotonically increasing unique value whenever executed, except for 64-bit

counter wraparound. Intel guarantees, architecturally, that the time-stamp counter

frequency and configuration will be such that it will not wraparound within 10

years after being reset to 0. The period for counter wrap is several thousands of

years in the PentiumPro and Pentium processors.
446

D

D
Intel x86
Double-word Integers: long long

The double-word integer long long is not supported, except as an artifact of your

particular architecture and compiler. For more information about handling

unsupported features, please see the Customer Support User’s Guide.

Context Switching

Hardware multitasking and the TSS descriptor are not used. VxWorks creates a

dummy exception stack frame, loads the registers from the TCB, and then starts the

task.

ISA/EISA Bus

The optional PC-compatible hardware cards supported in this release (the

Ethernet adapter cards and the Blunk Microsystems ROM Card) use the ISA/EISA

bus architecture.

PC104 Bus

The PC104 bus is supported and tested with the NE2000-compatible Ethernet card

(4i24: Mesa Electronics). Ampro’s Ethernet card (Ethernet-II) is also supported.

PCI Bus

The PCI bus is supported and tested with the Intel EtherExpress PRO100B

Ethernet card. Several functions to access PCI configuration space are supported.

Functions addressed here include:

■ Locate the device by deviceID and vendorID.

■ Locate the device by classCode.

■ Generate the special cycle.

■ Access its configuration registers.
447

VxWorks 5.4
Programmer’s Guide
Software Floating-Point Emulation

The software floating-point library is supported for the x86 architectures; select

INCLUDE_SW_FP for inclusion in the project facility VxWorks view to include the

library in your system image. This library emulates each floating point instruction,

by using the exception “Device Not Available.” For other floating-point support

information, see Supported Routines in mathALib, p.434.

VxWorks Memory Layout

Two memory layouts for the x86 are shown in the following figures: Figure D-2

illustrates the typical upper memory configuration, while Figure D-1 shows a

lower memory option. These figures contain the following labels:

Interrupt Vector Table Table of exception/interrupt vectors.

GDT Global descriptor table.

Anchor for the shared memory network (if there is

shared memory on the board).

Boot Line ASCII string of boot parameters.

Exception Message ASCII string of the fatal exception message.

FD DMA Area Diskette (floppy device) direct memory access area.

Initial Stack Initial stack for usrInit(), until usrRoot() gets allocated

stack.

System Image Entry point for VxWorks.

WDB Memory Pool Size depends on the macro WDB_POOL_SIZE which

defaults to one-sixteenth of the system memory pool.

This space is used by the target server to support host-

based tools. Modify WDB_POOL_SIZE under

INCLUDE_WDB.

Interrupt Stack Size is defined by ISR_STACK_SIZE under

INCLUDE_KERNEL. Location depends on system image

size.

System Memory Pool Size depends on size of system image and interrupt

stack. The end of the free memory pool for this board is

returned by sysMemTop().
448

D

D
Intel x86
All addresses shown in Figure D-2 are relative to the start of memory for a

particular target board. The start of memory (corresponding to 0x0 in the memory-

layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS under

INCLUDE_MEMORY_CONFIG for each target.

In general, the boot image is placed in lower memory and the VxWorks image is

placed in upper memory, leaving a gap between lower and upper memory. Some

BSPs have additional configurations which must fit within their hardware

constraints. For details, see the reference entry for each specific BSP.

Figure D-1 VxWorks System Memory Layout (x86 Lower Memory)

Initial Stack

System Image

Interrupt Stack

System Memory Pool
sysMemTop()

+8000

_end
WDB Memory Pool

+0x0000 + LOCAL_MEM_LOCAL_ADRS

+800

+1100

+1200

Address

Interrupt Vector Table
(2KB)

= Available

KEY

GDT

SM Anchor

Exception Message

+1300
Boot Line

+2000

FD DMA Area

+5000

+100000

= Reserved

(no memory)
+a0000
449

VxWorks 5.4
Programmer’s Guide
Figure D-2 VxWorks System Memory Layout (x86 Upper Memory)

+0x0000 + LOCAL_MEM_LOCAL_ADRS

+800

+1100

+1200

Address

Interrupt Vector Table
(2KB)

System Memory Pool

sysMemTop()

= Available

KEY

GDT

SM Anchor

Exception Message

+1300
Boot Line

+2000

FD DMA Area

+5000

+100000
Initial Stack

+108000

System Image

= Reserved

_end

Interrupt Stack

(no memory)
+a0000

WDB Memory Pool
450

D

D
Intel x86
D.5 Board Support Packages

Boot Considerations for PC Targets

For general information on booting VxWorks, see Tornado Getting Started.

This section describes how to build a boot disk, how to boot VxWorks, and how to

mount a DOS file system. VxWorks for x86 targets includes the following DOS

diskettes (in 3.5" (1.44MB) format):

■ The diskette labeled “VxWorks Utility Disk” contains the DOS executables

vxsys.com, vxcopy.exe, vxload.com, and mkboot.bat.

■ The diskette labeled “VxWorks Boot Disk” contains the VxWorks bootstrap

loader file; the minimal boot program, bootrom.sys, (renamed from

bootrom_uncmp); and standalone VxWorks, vxWorks.st. These files work for

all PC BSPs. (For additional boot images, see VxWorks Images, p.463.)

These utilities help you build new boot disks and are described in the following

subsections.

Boot Process

When a standard PC-AT computer is powered on, the system BIOS code loads and

executes the bootstrap loader. The bootstrap loader is written in 8088 16-bit assembly

language. The BIOS obtains the bootstrap loader from the boot sector, which may

be in one of several locations: a diskette, a hard disk, or some other alternatives

such as a ROM.2 When it finds the bootstrap loader, it executes it to find out where

to find the bootrom.sys file.

The VxWorks bootstrap loader must be written to the boot sector instead of the

standard bootstrap loader in order to create a VxWorks boot disk (or diskette). In

addition, you must create the appropriate bootrom.sys file. This can be a bootable

VxWorks kernel or it can be an intermediate kernel designed to load VxWorks from

another source, such as a diskette, a hard disk, ROM, or flash. The following

subsections describe how to do this from MS-DOS, from Solaris, and from

VxWorks.

NOTE: These utilities are also included in the Tornado tree at

installDir/host/x86-win32/bin.

2. You can use a boot ROM if you install the Blunk Microsystems ROM Card 1.0; see ROM Card
and EPROM Support, p.465.
451

VxWorks 5.4
Programmer’s Guide
Building a Boot Disk/Diskette from MS-DOS

The VxWorks Utility Disk includes several utility programs for creating VxWorks

boot disks. These utilities write the VxWorks bootstrap loader to the boot sector,

and then copy the VxWorks executables from the host to the disk in a format

suitable for the bootstrap loader. The utilities mimic the corresponding MS-DOS

utilities, but they can be run under a DOS session of Windows, not “pure” DOS.

They are summarized as follows and described in more detail later in this section:

vxsys.com
installs a VxWorks bootstrap loader in a disk’s boot sector.

vxcopy.exe
copies a VxWorks a.out executable to the boot disk in the required format.

vxload.com
loads and executes VxWorks from MS-DOS (must be run under “pure” DOS).

mkboot.bat
an MS-DOS batch file that creates boot disks.

■ Creating a Boot Disk for PC-Compatible Targets

To create a diskette or a bootable hard disk for PC-compatible targets, follow these

steps:

1. On the development host, change to the BSP directory, for example,

config/pc386. Use make to produce the minimal boot program (the target

bootrom_uncmp) or a bootable VxWorks (the targets vxWorks_rom,

vxWorks_rom_low, or vxWorks.st_rom).3 We recommend you copy the

resulting file to a legal MS-DOS file name, such as bootrom.dat, to simplify the

rest of the process.

The commands for this sequence in a Windows DOS shell are as follows:

C:\> cd installDir\target\config\pc386
C:\> make bootrom_uncmp
C:\> copy bootrom_uncmp bootrom.dat

2. Transfer the executable image to a PC running MS-DOS. In many cases, the PC

is networked with the workstation, using PC-NFS or a similar networking

package. For example:

3. Before making either version of the image, make sure that DEFAULT_BOOT_LINE in

config.h is set correctly, and that the size of the boot image (text+data+bss) is less than

512KB. It cannot be larger than this, because x86 chips boot in “real” mode and therefore do

have access to all available memory until later in the boot process.
452

D

D
Intel x86
C:\> copy drive:bootrom.dat c:

where drive refers to the mounted file system on your PC.

3. Use the mkboot utility (or a combination of vxsys and vxcopy) to create the

boot disk. If this boot disk is a diskette, it must be a high-density diskette. The

following example shows this step, assuming the diskette is in drive A:

C:\> mkboot a: bootrom.dat

The mkboot utility uses vxsys to create the VxWorks bootstrap loader in the

disk’s boot sector. mkboot then runs vxcopy to copy bootrom.dat to the boot

file bootrom.sys on the target disk, excluding the a.out header.

4. Check that bootrom.sys is contiguous on the boot disk, using the MS-DOS

chkdsk utility. (The mkboot utility runs chkdsk automatically.) If chkdsk
shows that there are non-contiguous blocks, delete all files from the disk and

repeat the vxcopy operation to ensure that MS-DOS lays down the file

contiguously.

The following example shows chkdsk output where the boot file is not

contiguous (note especially the last line of output):

C:\> chkdsk a:bootrom.sys

Volume Serial Number is 2A35-18ED
1457664 bytes total disk space
 895488 bytes in 11 user files
 562176 bytes available on disk

 512 bytes in each allocation unit
 2847 total allocation units on disk
 1098 available allocation units on disk

 655360 total bytes memory
 602400 bytes free

A:\BOOTROM.SYS Contains 2 non-contiguous blocks

5. To test your boot disk, first make sure that the correct drive holds the boot disk

(in this example case, drive A: holds the boot diskette).

6. Reboot the PC.

Depending on the configuration of your VxWorks image, if the boot is

successful, the VxWorks boot prompt appears either on the VGA console or on

the COM1 serial port. You can boot VxWorks by entering @:

[VxWorks Boot]: @
453

VxWorks 5.4
Programmer’s Guide
■ The MS-DOS Boot Utilities in More Detail

vxsys drive:

This command installs a VxWorks bootstrap loader in a drive’s boot sector. The

drive can be either a diskette (drive A:), or a hard disk that is searched by the

BIOS bootstrap (drive C:).4 The VxWorks bootstrap loader searches for the file

bootrom.sys in the root directory and loads it directly into memory at 0x8000.

Execution then jumps to romInit() at 0x8000.

vxcopy source_file target_file
This command copies the VxWorks image file from source_file to target_file.

Normally this copies the bootrom_uncmp output to bootrom.sys on the boot

disk. vxcopy strips the 32-byte a.out header from source_file as it copies.

mkboot drive: source_file
This command is an MS-DOS batch file that uses vxsys to install the VxWorks

bootstrap loader in the drive’s boot sector, and then uses vxcopy to transfer

source_file to drive:bootrom.sys. It also runs the MS-DOS utility chkdsk to

check whether bootrom.sys is contiguous.

vxload [image_file]

This command is used during an MS-DOS session to load and execute the

VxWorks image (normally vxWorks.st or bootrom_uncmp). It can be more

convenient or quicker than loading the image via the PC boot cycle. vxload
takes an optional parameter, the image file name; the default is vxWorks.st in

the current directory.

Because vxload must read the image file to memory at 0x8000, it checks to see

that this memory is not in use by MS-DOS, and generates an error if it is. If you

receive such an error, reconfigure your PC target to make the space available

by loading MS-DOS into high memory and reducing the number of device

4. For embedded applications, actual disk drives are often replaced by solid state disks.

Because there are no moving parts, boot performance and reliability are increased.

NOTE: After a bootstrap loader is installed in the disk’s boot sector, you do not

need to repeat the vxsys operation for new ROM images. Just use vxcopy to make

a new version of bootrom.sys.

! CAUTION: vxload cannot be used to load VxWorks if the MS-DOS session has a

protected mode program in use. Typical examples include the MS-DOS RAM disk

driver, vdisk.sys, and the extended memory manager, emm386.exe. To use vxload,

remove or disable such facilities.
454

D

D
Intel x86
drivers. Or start vxload instead of the MS-DOS command interpreter

command.com. (If you take this approach, remember to first ensure that you

can restore your previous configuration.)

The following is a sample config.sys file that shows these suggestions:

device=c:\dos\himem.sys
dos=high,umb
shell=c:\vxload.com c:\bootrom.dat

The file bootrom.dat must have an a.out header, unlike the bootrom.sys file

made by mkboot.

Building a Boot Disk/Diskette from a Solaris Host

Use /usr/bin/fdformat that comes with Solaris. It requires a bootstrap loader file

called vxld.bin, which can be downloaded from WindSurf.

Copy vxld.bin to your Solaris file system, insert a 1.44 MB diskette into the Sun

diskette drive, and issue the fdformat command to format the diskette and install

the boot block.

fdformat -U -d -B vxld.bin

Formatting 1.44 MB in /vol/dev/rdiskette0/no_name#7
Press return to start formatting floppy.
..
fdformat: using "vxld.bin" for MS-DOS boot loader

Now create the bootrom.sys:

% cd installDir/target/config/ bspName
% make bootrom_uncmp
% aoutToBinDec < bootrom_uncop > bootrom.sys

Copy the new bootrom.sys file to your boot diskette.

Building a Boot Disk/Diskette from VxWorks

The routine mkbootFd() produces a VxWorks boot diskette, and mkbootAta()
produces a VxWorks boot disk (an IDE or ATA hard disk). Both run on any

VxWorks x86 target. They are provided in

installDir/target/config/bspname/mkboot.c. Use a DOS-formatted disk or diskette.

The mkbootFd(), mkbootAta(), and mkbootTffs() routines write the boot sector

so that it contains the VxWorks bootstrap loader and make a boot image named

! CAUTION: The mkbootFd() routine supports only high-density diskettes.
455

VxWorks 5.4
Programmer’s Guide
bootrom.sys. The boot image can be derived from one of the images listed in

VxWorks Images, p.463. Before making any version of the image, make sure that

DEFAULT_BOOT_LINE in config.h is set correctly (see Tornado User’s Guide: Setup
and Startup), and that the size of the boot image (text+data+bss) is verified to be less

than 512KB. It cannot be larger than this, because it is written into lower memory.

During the booting process, the VxWorks bootstrap loader reads bootrom.sys and

then jumps to the entry point of the boot image.

The mkbootFd() routine requires the following parameters:

STATUS mkbootFd (int drive, int fdType, char *filename)

The first two parameters specify the drive number and diskette type, specified as

in Booting VxWorks from a Diskette, an ATA/IDE Disk, a PC Card, or a Flash File System,

p.457. The third parameter specifies the file name of the boot image.

The mkbootAta() routine requires the following parameters:

STATUS mkbootAta (int ctrl, int drive, char *filename)

The first two parameters specify the controller number and drive number,

specified as in Booting VxWorks from a Diskette, an ATA/IDE Disk, a PC Card, or a
Flash File System, p.457. The third parameter specifies the file name of the boot

image.

The mkbootTffs() routine requires the following parameters:

STATUS mkbootTffs (int drive, int removeBit, char *filename)

The first two parameters specify the drive number and removable bit, specified as

in Booting VxWorks from a Diskette, an ATA/IDE Disk, a PC Card, or a Flash File System,

p.457. The third parameter specifies the file name of the boot image.

For example, to create a boot disk for the pc386 BSP if you are using a UNIX host,

first use the following commands on the host to create the mkboot.o object from

mkboot.c:

% cd installDir/target/config/pc386
% make mkboot.o

Then, from the Tornado shell, move to the appropriate directory, load mkboot.o,

and then invoke mkbootFd(), mkbootAta(), or mkbootTffs(). Remember to place

a formatted, empty diskette in the appropriate drive if you use mkbootFd().

In this example, mkbootAta() builds a local IDE disk on drive C: from

bootrom_uncmp with the default ataResources[] table (see ATA/IDE Disk Driver,
p.471):
456

D

D
Intel x86
-> cd " installDir/target/config/pc386"
-> ld < mkboot.o
-> mkbootAta 0,0,"bootrom_uncmp"

Booting VxWorks from a Diskette, an ATA/IDE Disk, a PC Card, or a Flash File System

Four boot devices are available in VxWorks for the x86, one for diskettes, one for

ATA/IDE hard disks, one for PCMCIA PC cards, and one for flash files. You can

also build your own VxWorks boot ROMs using optional hardware; see ROM Card
and EPROM Support, p.465. Alternatively, as with other VxWorks platforms, you

can also boot over an Ethernet (using one of the supported Ethernet cards), or over

a SLIP connection.

When booting from a diskette, an ATA/IDE disk, a PC card, or a flash file system,

first make sure that the boot device is formatted for an MS-DOS file system. The

VxWorks boot program mounts the boot device by automatically calling either

usrFdConfig() in usrFd.c for diskettes, usrAtaConfig() in usrAta.c for ATA/IDE

hard disks, usrPcmciaConfig() in usrPcmcia.c for PC cards, or usrTffsConfig() for

flash file systems. (All files are located in installDir/target/src/config.)

In each case, a mount point name is taken from the file name specified as one of the

boot parameters. You might choose diskette zero (drive A:) to be mounted as /fd0
(by supplying a boot file name that begins with that string). Similarly, you might

choose ATA/IDE hard disk zero (drive C:) to be mounted as /ata0, you might

choose the PC card in socket 0 to be mounted as /pc0, or you might choose the flash

file system called drive 1 as /tffs0. In each case, the name of the directory mount

point (fd0, ata0, pc0, or tffs0 in these examples) can be any legal file name. (For

more information on usrFdConfig(), usrAtaConfig(), usrPcmciaConfig(), or

usrTffsConfig(), see Mounting a DOS File System, p.460.)

Because the PC hardware does not have a standard NVRAM interface, the only

way to change default boot parameters is to rebuild the bootstrap code with a new

! CAUTION: Because standard PC BIOS components do not support initial booting

from PCMCIA devices, systems which load VxWorks from these devices must use

a VxWorks boot disk/diskette. See Building a Boot Disk/Diskette from MS-DOS,

p.452, Building a Boot Disk/Diskette from a Solaris Host, p.455, and Building a Boot
Disk/Diskette from VxWorks, p.455.

! CAUTION: Because the boot program uses usrFdConfig() for floppy diskettes, and

because usrFdConfig() does not provide the DOS_VOL_CONFIG structure

required to use dosFsVolUnmount(), you must instead use ioctl() with

FIOUNMOUNT before removing the floppy diskette.
457

VxWorks 5.4
Programmer’s Guide
definition for DEFAULT_BOOT_LINE in config.h. See Boot Process, p.451 for

instructions on how to rebuild the bootstrap code.

■ Booting from Diskette

To boot from a diskette, specify the boot device as fd (for floppy device). First,

specify the drive number on the boot device: line of the boot parameters display.

Then, specify the diskette type (3.5" or 5.25"). The format is as follows:

boot device: fd= drive number, diskette type

drive number
a digit specifying the diskette drive:

diskette type
a digit specifying the type of diskette:

Thus, to boot from drive B: with a 5.25" diskette, enter the following:

boot device: fd=1,1

The default value of the file-name boot parameter is /fd0/vxWorks.st. You can

specify another boot image; for example, assume that you have placed your

vxWorks and vxWorks.sym files in the root directory of the 5.25" diskette in drive

A: as the files A:_vxworks and A:\vxworks.sym, and that the mount point for

this drive is /fd0. To boot this image, enter the following in the boot parameters

display:

boot device: fd=0,1
...
file name: /fd0/vxworks

! CAUTION: To enable rebooting with CTRL+X, you must set some of the BSP-

specific global variables sysWarmType, sysWarmFdType, sysWarmFdDrive,

sysWarmAtaCtrl, sysWarmAtaDrive, and sysWarmTffsDrive, depending on

which boot device you use. For more information, see Table D-3.

0 = default; the first diskette drive (drive A:)
1 = the second diskette drive (drive B:)

0 = default; 3.5" diskette

1 = 5.25" diskette
458

D

D
Intel x86
■ Booting from ATA/IDE Disk

To boot from an ATA/IDE disk, specify the boot device as ata. First, specify the

controller number on the boot device line of the boot parameters display. Then,

specify the drive number. The format is as follows:

boot device: ata= controller number, drive number

controller number
a digit specifying the controller number:

drive number
a digit specifying the hard drive:

If your vxWorks and vxWorks.sym files are in the root directory of your IDE hard

disk drive C: as the files C:\vxworks and C:\vxworks.sym, where C: is the first

IDE disk drive on the system and the mount point for the drive is /ata0, then enter

the following in the boot parameters display:

boot device: ata=0,0
...
file name: /ata0/vxworks

■ Booting from PCMCIA PC Card

To boot from a PCMCIA PC card, specify the boot device as pcmcia. Specify the

socket number on the boot device: line of the boot parameters display. The format is

as follows:

boot device: pcmcia= socket number

socket number
a digit specifying the socket number:

0 = a controller described in the first entry of the ataResources table (in

the default configuration, the local IDE disk is the first controller)

1 = a controller described in the second entry of the ataResources table

(in the default configuration, the ATA PCMCIA PC card is the

second controller)

0 = the first drive on the controller (drive C: or E:)
1 = the second drive on the controller (drive D: or F:)

0 = the first PCMCIA socket

1 = the second PCMCIA socket
459

VxWorks 5.4
Programmer’s Guide
If your vxWorks and vxWorks.sym files are in the root directory of your ATA or

SRAM PCMCIA PC card drive E: as the files E:\vxworks and E:\vxworks.sym,

and the mount point for your PC card drive is /pc0, then enter the following:

boot device: pcmcia=0
...
file name: /pc0/vxworks

If you are using an Ethernet PC card, the boot device is the same and the file name

is:

file name: /usr/wind/target/config/pc386/vxWorks

■ Booting from Flash File System

To boot from an TFFS disk, specify the boot device as tffs. Specify both the drive

number and the removable bit on the boot device: line of the boot parameters

display. The format is as follows:

boot device: tffs= drive number, removable bit

drive number

a digit specifying the drive number; it should be in the range of 0 to

(noOfDrives - 1). The global variable noOfDrives holds the number of

registered drives, and is initialized by sysTffsInit() in tffsDrv.

removable bit

a digit specifying whether or not the drive is removable.

If your vxWorks and vxWorks.sym files are in the root directory of your TFFS

(Disk On Chip) drive E: as the file E:\vxWorks and E:\vxWorks.sym, and the

mount point for your TFFS drive is /tffs0, then enter the following:

boot device: tffs=0,0
...
file name: /tffs0/vxWorks

Mounting a DOS File System

You can mount a DOS file system from a diskette, an ATA/IDE disk, a PC card

(SRAM or ATA), or a flash file system to your VxWorks target.

0 = non-removable flash media

1 = removable flash media, such as a Flash PC Card
460

D

D
Intel x86
Diskette

Use the routine usrFdConfig() to mount the file system from a diskette. It takes the

following parameters:

drive number
the drive that contains the diskette: MS-DOS drive A: is 0; drive B: is 1.

diskette type
0 (3.5" 2HD) or 1 (5.25" 2HD).

mount point
from where on the file system to mount, for example, /fd0/.

ATA/IDE Hard Drive

Use the routine usrAtaConfig() to mount the file system from an ATA/IDE disk. It

takes the following parameters:

controller number
the controller: a controller described in the first entry of the ataResources[]
table is 0; a controller described in the second entry is 1. In the default

configuration, the local IDE disk is 0; the PCMCIA ATA drive is 1.

drive number
the drive: the first drive of the controller is 0; the second drive of the controller

is 1. In the default configuration, MS-DOS drive C: is 0; drive D: is 1.

mount point
from where on the file system to mount, for example, /ata0/.

PCMCIA Card

Use pccardMount() to mount the file system from a PC card (SRAM or ATA). This

routine differs from usrPcmciaConfig() in that pccardMount() uses the default

device. A default device is created by the enabler routine when the PC card is

initialized. The default device is removed automatically when the PC card is

removed. pccardMount() takes the following parameters:

socket number
the socket that contains the PC card; the first socket is 0.

! CAUTION: Because the boot program uses usrFdConfig() for floppy diskettes, and

because usrFdConfig() does not provide the DOS_VOL_CONFIG structure

required to use dosFsVolUnmount(), you must instead use ioctl() with

FIOUNMOUNT before removing the floppy diskette.
461

VxWorks 5.4
Programmer’s Guide
mount point
from where on the file system to mount, for example, /pc0/.

Use pccardMkfs() to initialize a PC card and mount the file system from a PC card

(SRAM or ATA). It takes the following parameters:

socket number
the socket that contains the PC card; the first socket is 0.

mount point
from where on the file system to mount, for example, /pc0/.

The pccardMount() and pccardMkfs() routines are provided in source form in

src/drv/pcmcia/pccardLib.c.

TFFS Drive

Use the routine usrTffsConfig() to mount the file system from an TFFS drive. It

takes the following parameters:

drive number
the drive number in the range of 0 to (noOfDrives - 1). The global variable

noOfDrives holds a number of registered drives that is initialized in

sysTffsInit() in tffsDrv.

removable bit
the removable bit of the drive is 0 for non-removable flash media and 1 for

removable flash media.

mount point
from where on the file system to mount, for example, /tffs0/.

DMA Buffer Alignment and cacheLib

If you write your own device drivers that use direct memory access into buffers

obtained from cacheLib, the buffer must be aligned on a 64KB boundary.

Support for Third-Party BSPs

To support third party pc386 and pc486 BSPs, the global variable sysCodeSelector
and the routines sysIntVecSetEnt() and sysIntVecSetExit() are defined in

sysLib.c.
462

D

D
Intel x86
VxWorks Images

The executable target bootrom_uncmp uses lower memory (0x0 - 0xa0000), while

vxWorks and vxWorks.st use upper memory (0x100000 - pcMemSize). A minimum

of 1MB of memory in upper memory is required for vxWorks and vxWorks.st.

The VxWorks makefile targets listed below are supported in these BSPs. They

should be placed on a bootable diskette by mkboot (a DOS utility) or by

mkbootFd() or mkbootAta() or mkbootTffs() (VxWorks utilities). The makefile

target vxWorks_rom should be downloaded by the bootrom_high bootROM

image; for information on all VxWorks makefile targets, see 8.6.2 Executing
VxWorks from ROM, p.346:

BSP-Specific Global Variables for 386 and 486

The BSP-specific global variables shown in Table D-3 apply to pc386, pc486, and

epc4.

Configuring the Pentium BSP

The project facility configures the Pentium BSP with hardware floating point

support and user data cache support set to copyback by default. This configuration

is equivalent to the default configuration in config.h:

#undef INCLUDE_SW_FP /* Pentium has hardware FPP */
#undef USER_D_CACHE_MODE /* Pentium write-back data cache support */
#define USER_D_CACHE_MODE CACHE_COPYBACK
#define INCLUDE_MTRR_GET /* get MTRR to sysMtrr[] */
#define INCLUDE_PMC /* include PMC */

Configuring the PentiumPro BSP

The project facility configures the PentiumPro BSP automatically to use the board’s

special functionality. This configuration is equivalent to the default configuration

vxWorks_rom bootable VxWorks: upper memory

vxWorks_rom_low bootable VxWorks: lower memory

vxWorks.st_rom bootable VxWorks.st (compressed): upper memory

bootrom bootROM (compressed): lower memory

bootrom_uncmp bootROM: lower memory

bootrom_high bootROM (compressed): upper memory
463

VxWorks 5.4
Programmer’s Guide
in config.h. Changes to floating point and cache support can be made in the project

facility. If you must change the default setting for other functionality, you must

change config.h. (See 8. Configuration and Build.)

#undef INCLUDE_SW_FP /* PentiumPro has hardware FPP *
#undef USER_D_CACHE_MODE /* PentiumPro write-back data cache support */
#define USER_D_CACHE_MODE (CACHE_COPYBACK|CACHE_SNOOP_ENABLED)
#define INCLUDE_MTRR_GET /* get MTRR to sysMtrr[] */
#define INCLUDE_PMC /* include PMC */
#undef VIRTUAL_WIRE_MODE /* Interrupt Mode: Virtual Wire Mode */
#undef SYMMETRIC_IO_MODE /* Interrupt Mode: Symmetric IO Mode */

#if defined(VIRTUAL_WIRE_MODE) || defined(SYMMETRIC_IO_MODE)
#define INCLUDE_APIC_TIMER /* include Local APIC timer */
#define PIT0_FOR_AUX /* use channel 0 as an Aux Timer */
#endif /* defined(VIRTUAL_WIRE_MODE) || defined(SYMMETRIC_IO_MODE) */

#define INCLUDE_TIMESTAMP_TSC /* include TSC for timestamp */
#define PENTIUMPRO_TSC_FREQ 0 /* auto detect TSC freq */
#if FALSE
#define PENTIUMPRO_TSC_FREQ 150000000 /* use specified TSC freq */
#endif /* FALSE */

#define INCLUDE_MMU_PENTIUMPRO /* include 32bit MMU for PentiumPro */
#ifdef INCLUDE_MMU_PENTIUMPRO

#undef VM_PAGE_SIZE /* page size could be 4KB or 4MB */

Table D-3 BSP-Specific Global Variables

Location Global Variable Value Description

sysLib.c sysWarmType
sysWarmFdType
sysWarmFdDrive
sysWarmAtaCtrl
sysWarmAtaDrive
sysWarmTffsDrive

0 = ROMBIOS

1 (default) =

Diskette

2 = ATA

3 = TFFS

sysWarmType controls how CTRL+X is processed.

If 0, VxWorks asserts SYSRESET line, and CTRL+X
produces cold start. If 1, VxWorks reads a boot image

from the diskette specified by sysWarmFdType and

sysWarmFdDrive, and jumps to the boot image

entry point. If 2, VxWorks reads a boot image from

the ATA/IDE disk specified by sysWarmAtaCtrl
and sysWarmAtaDrive and jumps to the boot image

entry point. If 3, VxWorks reads a boot image from

the TFFS Disk On Chip specified by

sysWarmTffsDrive and jumps to the boot image

entry point.

sysFdBufAddr
sysFdBufSize

0x2000

0x3000

Address and size of diskette DMA buffer.

sysStrayIntCount VxWorks increments this when it catches a stray

interrupt on IRQ7.
464

D

D
Intel x86
#define VM_PAGE_SIZE PAGE_SIZE_4KB /* 4KB page */
#if FALSE
#define VM_PAGE_SIZE PAGE_SIZE_4MB /* 4MB page */
#endif /* FALSE */

#undef VM_STATE_MASK_FOR_ALL
#undef VM_STATE_FOR_IO
#undef VM_STATE_FOR_MEM_OS
#undef VM_STATE_FOR_MEM_APPLICATION
#undef VM_STATE_FOR_PCI

#define VM_STATE_MASK_FOR_ALL \
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | \
VM_STATE_MASK_CACHEABLE | VM_STATE_MASK_WBACK | VM_STATE_MASK_GLOBAL

#define VM_STATE_FOR_IO \
VM_STATE_VALID | VM_STATE_WRITABLE | \
VM_STATE_CACHEABLE_NOT | VM_STATE_WBACK_NOT | VM_STATE_GLOBAL_NOT

#define VM_STATE_FOR_MEM_OS \
VM_STATE_VALID | VM_STATE_WRITABLE | \
VM_STATE_CACHEABLE | VM_STATE_WBACK | VM_STATE_GLOBAL_NOT

#define VM_STATE_FOR_MEM_APPLICATION \
VM_STATE_VALID | VM_STATE_WRITABLE | \
VM_STATE_CACHEABLE | VM_STATE_WBACK | VM_STATE_GLOBAL_NOT

#define VM_STATE_FOR_PCI \
VM_STATE_VALID | VM_STATE_WRITABLE | \
VM_STATE_CACHEABLE_NOT | VM_STATE_WBACK_NOT | VM_STATE_GLOBAL_NOT

#endif /* INCLUDE_MMU_PENTIUMPRO */

ROM Card and EPROM Support

A boot EPROM (type 27020 or 27040) is supported with Blunk Microsystems’ ROM

Card 1.0. For information on booting from these devices, see the Blunk

Microsystems documentation.

The following program is provided to support VxWorks with the ROM Card:

config/bspname/romcard.s
a loader for code programmed in to the EPROM.

In addition, the following configurations are defined in the makefile to generate

Motorola S-record format from bootrom_uncmp or from vxWorks_boot.st:

romcard_bootrom_512.hex
boot ROM image for 27040 (512 KB)
465

VxWorks 5.4
Programmer’s Guide
romcard_bootrom_256.hex
boot ROM image for 27020 (256 KB)

romcard_vxWorks_st_512.hex
bootable VxWorks image for 27040 (512 KB)

Neither the ROM Card nor the EPROM is distributed with VxWorks. To contact

Blunk Microsystems, see their Web site at http://www.blunkmicro.com.

Device Drivers

VxWorks for the x86 includes a console driver, network drivers for several kinds

of hardware, a diskette driver, an ATA/IDE hard disk driver, and a line printer

driver.

VGA and Keyboard Drivers

The keyboard and VGA drivers are character-oriented drivers; thus, they are

treated as additional serial devices. Because the keyboard deals only with input

and the VGA deals only with output, they are integrated into a single driver in the

module installDir/target/src/drv/serial/pcConsole.c.

To include the console drivers in your configuration, select the macro

INCLUDE_PC_CONSOLE for inclusion in the project facility VxWorks view. When

this macro is defined, the serial driver automatically initializes the console drivers.

The console drivers do not change any hardware initialization that the BIOS has

done. The I/O addresses for the keyboard and the console, and the base address of

the on-board VGA memory, are defined in installDir/target/config/bspname/pc.h.

The macro PC_KBD_TYPE specifies the type of keyboard. The default is a PS/2

keyboard with 101 keys. If the keyboard is a portable PC keyboard with 83 keys,

define the macro as PC_XT_83_KBD in installDir/target/config/bspname/config.h.

In the default configuration, /tyCo/0 is serial device 1 (COM1), /tyCo/1 is serial

device 2 (COM2), and /tyCo/2 is the console.

You can define the following configuration macros for the console drivers in pc.h:

■ INCLUDE_ANSI_ESC_SEQUENCE supports the ANSI terminal escape

sequences. The VGA driver does special processing for recognized escape

sequences.

■ COMMAND_8042, DATA_8042, and STATUS_8042 refer to the I/O base

addresses of the various keyboard controller registers.
466

D

D
Intel x86
■ GRAPH_ADAPTER can be set to either VGA or MONOCHROME.

Network Drivers

Several network drivers are available, corresponding to an assortment of boards

from different manufacturers. To include specific network drivers in your

configuration, see the project facility under network components.

For all network drivers, the I/O address, RAM address, RAM size, and interrupt

request (IRQ) levels are defined on the driver Params tab in the project facility (the

I/O address must match the value recorded in the EEPROM). Use the

configuration program supplied by the manufacturer to set the I/O address; in

some cases you can set IRQ levels with the same configuration program.

You can set the board-specific macro listed in Table D-4 (defined on the Params tab)

to specify whether you are using EEPROM, thin coaxial cable (BNC), twisted-pair

cable (RJ45), thick coaxial cable (AUI), or some combination (for example,

RJ45+AUI and/or RJ45+BNC). The exceptions are the Intel EtherExpress32, which

uses EEPROM only, and the Novell/Eagle NE2000, which uses a hardware jumper.

For most network drivers, a board-specific routine boardShow() 5 displays

statistics collected in the interrupt handler on the standard output device. This

routine requires two parameters: interface unit and zap. For all boards currently

supported, interface unit is 0; zap can be either 0 or 1. If zap is 1, all collected statistics

are cleared to zero.

Table D-4 shows the software configuration details for each network driver.

5. The prefix board is an abbreviation for the corresponding network board. For example, the

abbreviation for the 3Com EtherLink III board is elt, so the show routine is eltShow().

Table D-4 Network Drivers

Network Board IRQ Levels Supported
Ethernet
Configuration
Macro

Show Routine

SMC Elite 16 2, 3, 4, 5, 7, 9, 10, 11, 15 CONFIG_ELC elcShow*()

SMC Elite 16 Ultra 2, 3, 5, 7, 10, 11 CONFIG_ULTRA ultraShow()*

Intel EtherExpress† 2, 3, 4, 5, 9, 10, 11 CONFIG_EEX (none)

Intel EtherExpress32✝ 3, 5, 7, 9, 10, 11, 12, 15 (EEPROM) (none)

Intel EtherExpress PRO100B 0 - 15 (EEPROM) (none)
467

VxWorks 5.4
Programmer’s Guide
Certain network boards are also configurable in hardware. Use the jumper settings

shown in Table D-5 with the network drivers supplied.

Diskette Driver

To include the diskette driver in your configuration, select the macro INCLUDE_FD
for inclusion in the project facility VxWorks view (“fd” stands for floppy disk).

When INCLUDE_FD is included, the initialization routine fdDrv() is called

automatically from usrRoot() in installDir/target/config/all/usrConfig.c. To

3Com EtherLink III 3, 5, 7, 9, 10, 11, 12, 15 CONFIG_ELT eltShow()*

Novell/Eagle NE2000 2, 3, 4, 5, 10, 11, 12, 15 (jumper) eneShow()*

Ampro Ethernet-II 2, 3, 10, 11 CONFIG_ESMC esmcShow()*

* These routines are automatically included when the board is configured. When you

invoke them, their output is sent to the standard output device.

† Auto-detect mode is not supported for these boards.

Table D-5 Network Board Hardware Configuration

Network Board Jumpers Settings

SMC Elite 16 W1

W2

SOFT

NONE/SOFT

SMC Elite 16 Ultra W1 SOFT

Intel EtherExpress (none)

Intel EtherExpress32 (none)

Intel EtherExpress PRO100B (none)

3Com EtherLink III (none)

Novell/Eagle NE2000 various follow manufacturer’s instructions

Ampro Ethernet-II W1

W3

W4

PROM size: 16K or 32K

No.0: 0x300

Select IRQ-10,11

Table D-4 Network Drivers (Continued)

Network Board IRQ Levels Supported
Ethernet
Configuration
Macro

Show Routine
468

D

D
Intel x86
change the interrupt vector and level used by fdDrv(), edit the definitions of

FD_INT_VEC and FD_INT_LVL on the Params tab of the Properties window.

The fdDevCreate() routine installs a diskette device in VxWorks. You must call

fdDevCreate() explicitly for each diskette device you wish to install; it is not called

automatically. The fdDevCreate() routine requires the following parameters:

drive number
the diskette drive that corresponds to this device: MS-DOS drive A: is 0; drive

B: is 1.

diskette type
0 (3.5" 2HD) or 1 (5.25" 2HD). These numbers are indices to the structure table

fdTypes[] in installDir/target/config/bspname/sysLib.c, which is described

below.

number of blocks
the size of the device.

offset
the number of blocks to leave unused at the start of a diskette.

As shipped, the fdTypes[] table in sysLib.c describes two diskette types: the 3.5"

1.44MB 2HD diskette and the 5.25" 1.2MB 2HD diskette. (In particular, there is no

entry for low-density diskettes.) To use another type of diskette, add the

appropriate disk descriptions to the fdTypes[] table, shown below. Note that each

entry in the table is a structure. The entry dataRate is described in more detail in

Table D-6 and the entries stepRate, headUnload, and headLoad are described in

Table D-7.

int sectors; /* number of sectors */
int sectorsTrack; /* sectors per track */
int heads; /* number of heads */
int cylinders; /* number of cylinders */
int secSize; /* 128 << secSize gives bytes per sector */
char gap1; /* suggested gap value in read/write cmds */
 /* to avoid splice point between data field */
 /* and ID field of contiguous sections */
char gap2; /* suggested gap values for format-track cmd */
char dataRate; /* data transfer rate */
char stepRate; /* stepping rate */
char headUnload; /* head unload time */
char headLoad; /* head load time */
char mfm; /* 1-->MFM (double density),
 0--> FM (single density) */
char sk; /* if 1, skip bad sectors on read-data cmd */
char *name; /* name */
469

VxWorks 5.4
Programmer’s Guide
The dataRate field must have a value ranging from 0 to 3. The bit value controls

the data transfer rate by setting the configuration control register in some IBM

diskette controllers. The values correspond to transfer rates as shown in Table D-6.

The stepRate, headUnload, and headLoad parameters describe time intervals

related to physical operation of the diskette drive. The time intervals are a simple

function of the parameter value and of a multiplier corresponding to the data

transfer rate, except that 0 has a special meaning for headUnload and headLoad,

as shown in Table D-7.

Interleaving is not supported when the driver formats a diskette; the driver always

uses a 1:1 interleave. Use the MS-DOS format program to get the recommended

DOS interleave factor.

The driver uses memory area 0x2000 to 0x5000 for DMA, for the following reasons:

Table D-6 Diskette Data Transfer Rates

dataRate MFM (double density) FM (single density)

3 1Mbps invalid

0 500Kbps 250Kbps

1 300Kbps 150Kbps

2 250Kbps 125Kbps

Table D-7 Time Interval Parameters in fdTypes[]

Time (ms) by transfer rate

Description Field Value 1M 500K 300K 250K

Transfer rate multiplier (T): 1 2 3.33 4

Interval between stepper

pulses

stepRate 0 8 16 26.7 32

0–15 (8 – 0.5 × stepRate) × T

Interval from end of read or

write to head unload

headUnload 0 128 256 426 512

1–15 8 × headUnload × T

Interval from end of head

load to start of read or write

headLoad 0 128 256 426 512

1–127 headLoad × T
470

D

D
Intel x86
■ The DMA chip has an addressing range of only 24 bits.

■ A buffer must fit in one page; that is, a buffer cannot cross the 64KB boundary.

Another routine associated with the diskette driver is fdRawio(). This routine

allows you to read and write directly to the device; thus, the overhead associated

with moving data through a file system is eliminated. The fdRawio() routine

requires the following parameters:

drive number
the diskette drive that corresponds to this device: MS-DOS drive A: is 0; drive

B: is 1.

diskette type
0 (3.5" 2HD) or 1 (5.25" 2HD). These numbers are indices to the structure table

fdTypes[] in installDir/target/config/bspname/sysLib.c.

FD_RAW ptr
pointer to the FD_RAW[] structure, where the data that is being read and

written is stored; see below.

The following is the definition of the FD_RAW[] structure:

typedef struct fdRaw
{
UINT cylinder; /* cylinder (0 -> (cylinders-1)) */
UINT head; /* head (0 -> (heads-1)) */
UINT sector; /* sector (1 -> sectorsTrack) */
UINT *pBuf; /* ptr to buff (bytesSector*nSecs) */
UINT nSecs; /* # of sectors (1-> sectorsTrack) */
UINT direction; /* read=0, write=1 */
} FD_RAW;

ATA/IDE Disk Driver

To include the ATA/IDE disk device driver in your configuration, select the macro

INCLUDE_ATA for inclusion in the project facility VxWorks view. When

INCLUDE_ATA is defined, the initialization routine ataDrv() is called

automatically from usrRoot() in usrConfig.c for the local IDE disk. To change the

interrupt vector and level and the configuration type used by ataDrv(), edit the

definitions of the constants ATA0_INT_VEC, ATA0_INT_LVL, and ATA0_CONFIG in

pc.h. The default configuration is suitable for the i8259 interrupt controller; most

PCs use that chip. The ataDrv() routine requires the following parameters:

controller number
the controller: a controller described in the first entry of the ataResources[]
table is 0; a controller described in the second entry is 1. In the default

configuration, the local IDE disk is 0; the PCMCIA ATA drive is 1.
471

VxWorks 5.4
Programmer’s Guide
number of drives
number of drives on the controller: maximum of two drives per controller is

supported.

interrupt vector
interrupt vector

interrupt level
IRQ level

configuration type
configuration type

semaphore timeout
timeout value for the semaphore in the device driver.

watchdog timeout
timeout value for the watchdog in the device driver.

The ataDevCreate() routine installs an ATA/IDE disk device in VxWorks. You

must call ataDevCreate() explicitly for each local IDE disk device you wish to

install; it is not called automatically. The ataDevCreate() routine requires the

following parameters:

controller number
the controller: a controller described in the first entry of the ataResources[]
table is 0; a controller described in the second entry is 1. In the default

configuration, the local IDE disk is 0; the PCMCIA ATA drive is 1.

drive number
the drive: the first drive of the controller is 0; the second drive of the controller

is 1. In the default configuration, MS-DOS drive C: is 0 on controller 0.

number of blocks
the size of the device.

offset
the number of blocks to leave unused at the start of a disk.

If the configuration type specified with ataDrv() is 0, the ATA/IDE driver does not

initialize drive parameters. This is the right value for most PC hardware, where the

ROMBIOS initialization takes care of initializing the ATA/IDE drive. If you have

custom hardware and the ATA/IDE drive is not initialized, set the configuration

type to 1 to cause the driver to initialize drive parameters.

The drive parameters are the number of sectors per track, the number of heads,

and the number of cylinders. The table has two other members used by the driver:
472

D

D
Intel x86
the number of bytes per sector, and the precompensation cylinder. For each drive,

the information is stored in an ATA_TYPE structure, with the following elements:

int cylinders; /* number of cylinders */
int heads; /* number of heads */
int sectorsTrack; /* number of sectors per track */
int bytesSector; /* number of bytes per sector */
int precomp; /* precompensation cylinder */

A structure for each drive is stored in the ataTypes[] table in sysLib.c. That table

has two sets of entries: the first is for drives on controller 0 (the local IDE disk) and

the second is for drives on controller 1 (the PCMCIA ATA card). The table is

defined as follows:

ATA_TYPE ataTypes[ATA_MAX_CTRLS][ATA_MAX_DRIVES] =
{
{{761, 8, 39, 512, 0xff}, /* ctrl 0 drive 0 */
 {761, 8, 39, 512, 0xff}}, /* ctrl 0 drive 1 */
{{761, 8, 39, 512, 0xff}, /* ctrl 1 drive 0 */
 {761, 8, 39, 512, 0xff}}, /* ctrl 1 drive 1 */
};

The ioctl() function FIODISKFORMAT always returns ERROR for this driver,

because ATA/IDE disks are always preformatted and bad sectors are already

mapped.

If INCLUDE_ATA_SHOW is selected for inclusion, the routine ataShow() displays

the table and other drive parameters on the standard output device. This routine

requires two parameters: controller number, which must be either 0 (local IDE) or 1

(PCMCIA ATA), and drive number, which must be either 0 or 1.

Another routine associated with the ATA/IDE disk driver is ataRawio(). This

routine allows you to read and write directly to the device; thus, the overhead

associated with moving data through a file system is eliminated. The ataRawio()
routine requires the following parameters:

controller number
the controller: a controller described in the first entry of the ataResources[]
table is 0; a controller described in the second entry is 1. In the default

configuration, the local IDE disk is 0; the PCMCIA ATA drive is 1.

drive number
the drive: the first drive of the controller is 0; the second drive of the controller

is 1. In the default configuration, MS-DOS drive C: is 0 on controller 0.

ATA_RAW ptr
pointer to the ATA_RAW structure, where the data that is being read and

written is stored; see below.
473

VxWorks 5.4
Programmer’s Guide
The following is the definition of the ATA_RAW structure:

typedef struct ataRaw
{
UINT cylinder; /* cylinder (0 -> (cylinders-1)) */
UINT head; /* head (0 -> (heads-1)) */
UINT sector; /* sector (1 -> sectorsTrack) */
UINT *pBuf; /* ptr to buff (bytesSector*nSecs) */
UINT nSecs; /* #of sectors (1 -> sectorsTrack) */
UINT direction; /* read=0, write=1 */
} ATA_RAW;

The resource table used by ataDrv(), ataResources[], is defined in sysLib.c as

follows:

ATA_RESOURCE ataResources[ATA_MAX_CTRLS] =
{
{
{
5, 0,
{ATA0_IO_START0, ATA0_IO_START1}, {ATA0_IO_STOP0, ATA0_IO_STOP1},
 0, 0, 0, 0, 0, 0
 }
IDE_LOCAL, 1, ATA0_INT_VEC, ATA0_INT_LVL, ATA0_CONFIG,
ATA_SEM_TIMEOUT, ATA_WDG_TIMEOUT, 0, 0
}, /* ctrl 0 */
{
{
5, 0,
{ATA1_IO_START0, ATA1_IO_START1}, {ATA1_IO_STOP0, ATA1_IO_STOP1},
 0, 0, 0, 0, 0, 0
 }
ATA_PCMCIA, 1, ATA1_INT_VEC, ATA1_INT_LVL, ATA1_CONFIG,
ATA_SEM_TIMEOUT, ATA_WDG_TIMEOUT, 0, 0
}, /* ctrl 1 */
};

Each resource in the table is an ATA_RESOURCE structure, defined as follows:

typedef struct ataResource /* PCCARD ATA resources */
{
PCCARD_RESOURCE resource; /* must be the first member */
int ctrlType; /* controller type: IDE_LOCAL */

/* or ATA_PCMCIA */
int drives; /* 1,2: number of drives */
int intVector; /* interrupt vector */
int intLevel; /* IRQ level */
int configType; /* 0,1: configuration type */
int semTimeout; /* timeout seconds for sync semaphore */
int wdgTimeout; /* timeout seconds for watch dog */
int sockTwin; /* socket number for twin card */
int pwrdown; /* power down mode */
} ATA_RESOURCE;
474

D

D
Intel x86
Line Printer Driver

This release of VxWorks for the x86 supports write operations to an LPT line

printer driver.

To include the line printer driver in your configuration, select the macro

INCLUDE_LPT for inclusion in the project facility VxWorks view. When

INCLUDE_LPT is included, the initialization routine lptDrv() is called

automatically from usrRoot() in usrConfig.c.

The resource table used by lptDrv() is stored in the structure lptResource[] in
sysLib.c. The resources are defined as follows:

int ioBase; /* IO base address */
int intVector; /* interrupt vector */
int intLevel; /* interrupt level */
BOOL autofeed; /* TRUE if enable autofeed */
int busyWait; /* loop count for BUSY wait */
int strobeWait; /* loop count for STROBE wait */
int retryCnt; /* timeout second for syncSem */

lptDrv() takes two arguments. The first argument is the number of channels (0, 1,

or 2). The second argument is a pointer to the resource table.

To change lptDrv()’s interrupt vector or interrupt level, change the value of the

appropriate constant (LPT_INT_VEC or LPT_INT_LVL) in pc.h.

Many of the LPT driver’s routines are accessible only through the I/O system.

However, the following routines are available (see the manual pages for details):

lptDevCreate()
installs an LPT device into VxWorks. Call lptDevCreate() explicitly for each

LPT device you wish to install; it is not called automatically. This routine takes

the following parameters:

name = device name

channel = physical device channel (0, 1, or 2)

lptAutofeed()
enables or disables the autofeed feature; takes the parameter channel (0, 1, or 2).

! CAUTION: This structure applies to both ATA PCMCIA PC cards and local IDE

hard disks. For the definition of PCCARD_RESOURCE, see PCMCIA for x86 Release
Notes and Supplement.
475

VxWorks 5.4
Programmer’s Guide
lptShow()
if INCLUDE_LPT is defined, shows driver statistics; takes the parameter

channel (0, 1, or 2).

In addition, you can perform the following ioctl() functions on the LPT driver:

LPT_GETSTATUS
gets the value of the status register; takes an integer value where status is

stored

LPT_SETCONTROL
sets the control register; takes a value for the register

Advanced Programmable Interrupt Controllers (APICs)

This module is a driver for the Intel 82093 I/O APIC (Advanced Programmable

Interrupt Controller).

The Local and I/O APICs support 240 distinct vectors in the range of 16 to 255.

Interrupt priority is implied by its vector, according to the following relationship:

priority = vector / 16

One is the lowest and 15 is the highest. Vectors 16 through 31 are reserved for

exclusive use by the processor. The remaining vectors are for general use. The

processor’s Local APIC includes an in-service entry and a holding entry for each

priority level. To avoid losing interrupts, software should allocate no more than 2

interrupt vectors per priority.

■ I/O APIC

The I/O APIC unit consists of a set of interrupt input signals, a 24-entry by 64-bit

interrupt redirection table, programmable registers, and a message unit for

sending and receiving APIC messages over the APIC bus. I/O devices inject

interrupts into the system by asserting one of the interrupt lines to the I/O APIC.

The I/O APIC selects the corresponding entry in the redirection table and uses the

information in that entry to format an interrupt request message. Each entry in the

redirection table can be individually programmed to indicate edge/level sensitive

interrupt signals, the interrupt vector and priority, the destination processor, and

how the processor is selected (statically and dynamically). The information in the

table is used to transmit a message to other APIC units (via the APIC bus).

I/O APIC is used in the symmetric I/O mode (define SYMMETRIC_IO_MODE in

config.h). The base address of I/O APIC is determined in loApicInit() and stored

in the global variable ioApicBase. ioApicInit() initializes the I/O APIC with

information stored in the redTable[]. The redTable[] has three entries: lsw,
476

D

D
Intel x86
vectorNo, and mask. The lsw entry stores the least significant word of the I/O

APIC redirection table. That word indicates the trigger mode, interrupt input pin

polarity, destination mode, and delivery mode. The vectorNo entry is the vector

number of the redirection table. The mask entry should be 0; it is used by

ioApicIntLock() and ioApicIntUnlock() to hold the interrupt mask status.

ioApicShow() shows the contents of the I/O APIC registers.

■ Local APIC

This module is a driver for the Intel PentiumPro’s Local APIC (Advanced

Programmable Interrupt Controller).

Local APIC controls the dispatching of interrupts that it receives either locally or

from the I/O APIC to its associated processor. It provides facilities for queuing,

nesting, and masking interrupts. It handles the interrupt delivery protocol with its

local processor, accesses APIC registers, and manages interprocessor interrupts

and remote APIC register reads. A timer on the Local APIC allows local generation

of interrupts, and local interrupt pins permit local reception of processor-specific

interrupts. The Local APIC can be disabled and used in conjunction with a

standard 8259-A style interrupt controller.

The base address of the Local APIC is not fixed. The BIOS writes the base address

in some standard memory ranges as specified in Intel MP Specification Version 1.4.

The initialization routine scans certain memory regions as specified in the

specification, to determine the base addresses. It uses the LOAPIC_BASE and

IOAPIC_BASE values defined in pc.h if it is not able to find the addresses in the MP

configuration table. Local APIC is used in the virtual wire mode (define

VIRTUAL_WIRE_MODE in config.h) and the symmetric I/O mode (define

SYMMETRIC_IO_MODE in config.h), but not in the PIC Mode.

loApicInit() initializes the Local APIC for the interrupt mode chosen.

loApicShow() shows the Local APIC registers.

mpShow() shows the MP configuration table.

■ Local APIC Timer

This library contains routines for the timer on the Intel PentiumPro’s Local APIC.

Local APIC contains a 32-bit programmable timer for use by the local processor.

This timer is configured through the timer register in the local vector table. The

time base is derived from the processor’s bus clock, divided by a value specified in

the divide configuration register. After reset, the timer is initialized to zero. The

timer supports one-shot and periodic modes. The timer can be configured to

interrupt the local processor with an arbitrary vector.
477

VxWorks 5.4
Programmer’s Guide
This library gets the system clock from the Local APIC timer and the auxiliary

clock from either RTC or PIT channel 0 (define PIT0_FOR_AUX in the BSP). The

macro TIMER_CLOCK_HZ must also be defined in pc.h to indicate the clock

frequency of the Local APIC Timer.

The macros SYS_CLK_RATE_MIN, SYS_CLK_RATE_MAX, AUX_CLK_RATE_MIN,

and AUX_CLK_RATE_MAX must be defined to provide parameter checking for the

sysAuxClkRateSet() and sysClkRateSet()routines. They are located in the project

facility under INCLUDE_SYSCLK_INIT and INCLUDE_AUX_CLK.

This driver uses PentiumPro’s on-chip TSC (see Time Stamp Counter (TSC), p.446)

for the time stamp driver.

The PentiumPro processor provides a 64-bit time-stamp counter that is

incremented every processor clock cycle. The counter is incremented even when

the processor is halted by the HLT instruction or the external STPCLK# pin. The

time-stamp counter is set to 0 following a hardware reset of the processor. The

RDTSC instruction reads the time stamp counter and is guaranteed to return a

monotonically increasing unique value whenever executed, except for 64-bit

counter wraparound. Intel guarantees, architecturally, that the time-stamp counter

frequency and configuration will be such that it will not wraparound within 10

years after being reset to 0. The period for counter wrap is several thousands of

years in the PentiumPro and Pentium processors.
478

E
MIPS R3000, R4000, R4650
E.1 Introduction

This appendix provides information specific to VxWorks development on MIPS

targets. It includes the following topics:

■ Building Applications: how to compile modules for your target architecture.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the MIPS processors.

■ Architecture Considerations: special features and limitations of the MIPS

processors, including a figure showing the VxWorks memory layout for these

processors.

For general information on the Tornado development environment’s cross-

development tools, see the Tornado User’s Guide: Projects.

E.2 Building Applications

The Tornado 2.0 project facility is correctly preconfigured for building WRS BSPs.

However, if you choose not to use the project facility or if you need to customize

your build, you may need the information in the following sections. This includes

a configuration constant, an environment variable, and compiler options that

together specify the information the GNU toolkit requires to compile correctly for

the MIPS targets.
479

VxWorks 5.4
Programmer’s Guide
Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

build with the appropriate architecture-specific features enabled. Define this

variable to be R3000 (for the MIPS R3000 or R3500), R4000 (for the R4200 or R4600),

or R4650 (for the MIPS R4640 or R4650).

For example, to define CPU for an R3500 on the compiler command line, specify

the following command-line option when you invoke the compiler:

-DCPU=R3000

To provide the same information in a header or source file, include the following

line in the file:

#define CPU R3000

All VxWorks makefiles pass along the definition of this variable to the compiler.

You can define CPU on the make command line as follows:

% make CPU=R3000 ...

You can also set the definition directly in a makefile, with the following line:

CPU=R3000

Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. Tornado is configured

to use these tools by default. No change is required to the execution path, because

the compilation chain is installed in the same bin directory as the other Tornado

executables.

Compiling C or C++ Modules

The following is an example of a compiler command line for R3000 cross-

development. The file to be compiled in this example has a base name of applic.

% ccmips -DCPU=R3000 -I/usr/vw/h -mcpu=r3000 -O2 -funroll-loops \
-nostdinc -G 0 -c applic.c

This is an example for the R4000:

% ccmips -DCPU=R4000 -I/usr/vw/h -mcpu=r4000 -mips3 -mgp32 \
-mfp32 -O2 -funroll-loops -nostdinc -G 0 -c applic.c
480

E

E
MIPS R3000, R4000, R4650
The options shown in the examples have the following meanings:1

-DCPU=R3000
Required; defines the CPU type for the R3000 or R3500. For the R4200 or R4600,

specify R4000. For the R4640 or R4650, specify R4650.

-I $WIND_BASE/target/h
Required; gives access to the VxWorks include files. (Additional

-I flags may be included to specify other header files.)

-mcpu=r3000
Required; tells the compiler to produce code for the R3000 or R3500. For the

R4200 or R4600, specify r4000. For the R4640 or R4650, specify r4650.

-mips3
Required for R4000 targets (R4200 and R4600) and R4650 targets (R4640 and

R4650); tells the compiler to issue instructions from level 3 of the MIPS ISA (64-

bit instructions). This compiler option does not apply to R3000 or R3500

targets.

-mfp32
Required for R4000 and R4650 targets; tells compiler to issue instructions

assuming that fp registers are 32 bits, required for compatibility with

mathALib.

-mgp32
Required for R4000 and R4650 targets in code which makes calls to varargs

functions provided by VxWorks (printf(), sprintf(), and so forth); tells the

compiler to issue instructions assuming that all general-purpose registers are

32 bits.

-msingle-float
Required for R4640 and R4650; tells the compiler to assume that the floating-

point processor supports only single-precision operations.

-m4650
Required for R4650 targets; sets -msingle-float and -mmad2 flags.

-O2 Optional; tells the compiler to use level 2 optimization.

1. For more information on these and other compiler options, see the GNU ToolKit User’s Guide.

WRS supports compiler options used in building WRS software; a list of these options is

included in the Guide. Other options are not supported, although they are available with the

tools as shipped.

2. Consult GNU Toolkit User’s Guide.
481

VxWorks 5.4
Programmer’s Guide
-funroll-loops
Optional; tells the compiler to use loop unrolling optimization.

-nostdinc
Required; searches only the directories specified with the -I flag (see above)

and the current directory for header files.

-msoft-float
Required for software emulation, tells the compiler to issue library callouts for

floating point. For more information, see Floating-Point Support, p.485.

-G 0
Required; tells the compiler not to use the global pointer. For more

information, see Gprel Addressing, p.485.

-c Required; specifies that the module is to be compiled only, not linked for

execution under the host.

The output is an unlinked object module in ELF format with the suffix .o; for

the example above, the output would be applic.o.

The default for ccmips is big-endian (set explicitly with -EB) and defines MIPSEB.

Tornado does not support little-endian; do not use -EL. Users should not define

either MIPSEB or MIPSEL.

E.3 Interface Variations

This section describes particular routines and tools that are specific to MIPS targets

in any of the following ways:

■ available only on MIPS targets

■ parameters specific to MIPS targets

■ special restrictions or characteristics on MIPS targets

For complete documentation, see the reference entries for the libraries,

subroutines, and tools discussed below.

NOTE: To specify optimization for use with GDB, use the -O0 flag.
482

E

E
MIPS R3000, R4000, R4650
cacheR3kLib and cacheR4kLib

The libraries cacheR3kLib and cacheR4kLib are specific to the MIPS release. They

each contain a routine that initializes the R3000 or R4000 cache library.

dbgLib

In the MIPS release, the routine tt() displays the first four parameters of each

subroutine call, as passed in registers a0 through a3. For routines with less than

four parameters, ignore the contents of the remaining registers.

For a complete stack trace, use GDB.

intArchLib

In the MIPS release, the routines intLevelSet() and intVecBaseSet() have no effect.

For a discussion of the MIPS interrupt architecture, see Interrupts, p.486.

mathALib

VxWorks for MIPS supports the same set of mathALib functions using either

hardware facilities or software emulation.3

The following double-precision routines are supported for MIPS architectures:

The following single-precision routines are supported for MIPS architectures:

In addition, the single precision routines fmodf() and powf() are supported for

R4650 processors only.

3. To use software emulation, compile your application with the -msoft-float compiler option

as well as selecting INCLUDE_SW_FP for inclusion in the project facility VxWorks view;

see Floating-Point Support, p.485. Use of these functions on the R4000 requires that your code

be compiled with -mfp32.

acos() asin() atan() atan2() ceil() cos() cosh()
exp() fabs() floor() fmod() log10() log() pow()
sin() sincos() sinh() sqrt() tan() tanh() trunc()

acosf() asinf() atanf() atan2f() ceilf() cosf() coshf()
expf() floorf() logf() log2f() log10f() sinf() sinhf()
sqrtf() tanf() tanhf() truncf()
483

VxWorks 5.4
Programmer’s Guide
The following math routines are not supported by VxWorks for MIPS:

taskArchLib

The routine taskSRInit() is specific to the MIPS release. This routine allows you to

change the default status register with which a task is spawned. For more

information, see Interrupt Support Routines, p.487.

MMU Support

MIPS targets do not support memory management units (MMUs). Thus, neither

INCLUDE_MMU_BASIC or INCLUDE_MMU_FULL is included in the project facility

VxWorks view, and you do not need to define sysPhysMemDesc[] in sysLib.c. For

more information, see Virtual Memory Mapping, p.488.

ELF-specific Tools

The following tools are specific to the ELF format. For more information, see the

reference entries for each tool.

elfHex
converts an ELF-format object file into Motorola hex records. The syntax is:

elfHex [-a adrs] [-l] [-v] [-p PC] [-s SP] file

elfToBin
extracts text and data segments from an ELF file. The syntax is:

elfToBin < inFile > outfile

elfXsyms
extracts the symbol table from an ELF file. The syntax is:

elfXsyms < objMod > symTbl

cbrt() cbrtf() infinity() infinityf() irint() irintf() iround()
iroundf() log2() round() roundf() sincosf()
484

E

E
MIPS R3000, R4000, R4650
E.4 Architecture Considerations

This section describes the following characteristics of the MIPS architecture that

you should keep in mind as you write a VxWorks application:

■ Gprel addressing

■ Reserved registers

■ Floating-point support

■ Interrupts

■ Virtual memory mapping

■ 64-bit support

■ Memory layout

Gprel Addressing

The VxWorks kernel uses gprel (gp-relative) addressing. However, the VxWorks

module loader cannot dynamically load tasks that use gprel addressing.

To keep the loader from returning an error, compile application tasks with the -G 0
option. This option tells the compiler not to use the global pointer.

Reserved Registers

Registers k0 and k1 are reserved for VxWorks kernel use, following standard MIPS

usage. The gp register is also reserved for the VxWorks kernel, because only the

kernel uses gprel addressing, as discussed in above. Avoid using these registers in

your applications.

Floating-Point Support

R4650

For the R4650, single precision hardware floating-point support is included by

INCLUDE_HW_FP (which is included by default in the project facility VxWorks

view). Double precision floating-point support is provided by software emulation

when you use -msoft-float. (Note that INCLUDE_SW_FP is not required with

-msoft-float for the R4650.)
485

VxWorks 5.4
Programmer’s Guide
R3000 and R4000

If your MIPS board includes a floating-point coprocessor (CP1), we recommend

you use it for best performance.

However, if this chip is not available, you can use the GNU compiler -msoft-float
option. This option keeps all floating-point values in integer registers (a pair of

them for double-precision) and emulates all floating-point arithmetic.

To use this software emulation support, select INCLUDE_SW_FP in the project

facility VxWorks view and unselect INCLUDE_HW_FP. Then, in the BSP directory,

build VxWorks with the following command:

% make [CPU= cpuType] TOOL=sfgnu

Interrupts

MIPS Interrupts

The MIPS architecture has inputs for six external hardware interrupts and two

software interrupts. In cases where the number of hardware interrupts is

insufficient, board manufacturers can multiplex several interrupts on one or more

interrupt lines.

The MIPS CPU treats exceptions and interrupts in the same way: it branches to a

common vector and provides status and cause registers that let system software

determine the CPU state. The MIPS CPU does not switch to an interrupt stack or

exception stack, nor does it generate an IACK cycle. These functions must be

implemented in software or board-level hardware (for example, the VMEbus

IACK cycle is a board-level hardware function). VxWorks for MIPS has

implemented a single interrupt stack, and uses task stacks for exception

conditions.

Because the MIPS CPU does not provide an IACK cycle, your interrupt handler

must acknowledge (or clear) the interrupt condition. If the interrupt handler does

not acknowledge the interrupt, VxWorks hangs while trying to process the

interrupt condition.

VxWorks for MIPS uses a 256-entry table of vectors. You can attach exception or

interrupt handlers to any given vector with the routines intConnect() and

intVecSet(). The files installDir/target/h/arch/mips/ivMips.h and bspname.h list the

vectors used by VxWorks.
486

E

E
MIPS R3000, R4000, R4650
Interrupt Support Routines

Because the MIPS architecture does not use interrupt levels, the intLevelSet()
routine is not implemented. The six external interrupts and two software

interrupts can be masked or enabled by manipulating eight bits in the status

register with intDisable() and intEnable(). Be careful to pass correct arguments to

these routines, because the MIPS status register controls much more than just

interrupt generation.

For interrupt control, the routines intLock() and intUnlock() are recommended.

All interrupts are blocked when calling intLock(). The routine intVecBaseSet()
has no meaning on the MIPS; calling it has no effect.

To change the default status register with which all tasks are spawned, use the

routine taskSRInit(). If used, call this routine before kernelInit() in sysHwInit().
taskSRInit() is provided in case your BSP must mask interrupts from all tasks. For

example, the FPA interrupt must be disabled for all tasks.

VMEbus Interrupt Handling

The processing of VMEbus interrupts is the only case where it is not necessary for

an interrupt handler to acknowledge the interrupt condition. If you define the

option VME_VECTORED as TRUE in config.h (and rebuild VxWorks), all VMEbus

interrupts are acknowledged by the low-level exception/interrupt handling code.

The VxWorks interrupt vector number corresponds to the VMEbus interrupt

vector returned by the VMEbus IACK cycle. With this interrupt handling scheme,

VxWorks for MIPS allows multiple VMEbus boards to share the same VMEbus

interrupt level without requiring further decoding by a user-attached interrupt

handler.

You can still bind to VMEbus interrupts without vectored interrupts enabled, as

long as the VMEbus interrupt condition is acknowledged with sysBusIntAck() (as

defined in sysLib.c). In this case, there is no longer a direct correlation with the

vector number returned during the VMEbus IACK cycle. The vector number used

to attach the interrupt handler corresponds to one of the seven VMEbus interrupt

levels as defined in bspname.h. The mapping of the seven VMEbus interrupts to a

single MIPS interrupt is board-dependent.

Vectored interrupts do not change the handling of any interrupt condition except

VMEbus interrupts. All the necessary interrupt-acknowledge routines are

provided in either sysLib.c or sysALib.s.

! CAUTION: Not all boards support VME-vectored interrupts. For more

information, see the BSP reference entries.
487

VxWorks 5.4
Programmer’s Guide
Virtual Memory Mapping

VxWorks for MIPS operates exclusively in kernel mode and makes use of the kseg0
and kseg1 address spaces. A physical addressing range of 512 MB is available. Use

of the on-chip translation lookaside buffer (TLB) is not supported.

■ kseg0 . When the most significant three bits of the virtual address are 100, the

229-byte (512 MB) kernel physical space labeled kseg0 is the virtual address

space selected. References to kseg0 are not mapped through the TLB; the

physical address selected is defined by subtracting 0x8000 0000 from the

virtual address. Caches are always enabled for accesses to these addresses.

■ kseg1. When the most significant three bits of the virtual address are 101, the

229-byte (512 MB) kernel physical space labeled kseg1 is the virtual address

space selected. References to kseg1 are not mapped through the TLB; the

physical address selected is defined by subtracting 0xa000 0000 from the

virtual address. Caches are always disabled for accesses to these addresses;

physical memory or memory-mapped I/O device registers are accessed

directly.

64-bit Support (R4000 Targets Only)

With VxWorks for MIPS, real-time applications have access to the MIPS R4000 64-

bit registers. This lets applications perform 64-bit math for enhanced performance.

To specify 64-bit integers in C, declare them as long long. Pointers, integers, and

longs are 32-bit quantities in this release of VxWorks.

Memory Layout

The memory layout of the MIPS is shown in Figure E-1. The figure contains the

following labels:

Exception Vectors Table of exception/interrupt vectors.

SM Anchor Anchor for the shared memory network (if there is

shared memory on the board).

Boot Line ASCII string of boot parameters.

Exception Message ASCII string of the fatal exception message.
488

E

E
MIPS R3000, R4000, R4650
All addresses shown in Figure E-1 depend on the start of memory for a particular

target board. The start of memory is defined as LOCAL_MEM_LOCAL_ADRS under

INCLUDE_MEMORY_CONFIG for each target.

Initial Stack Initial stack for usrInit(), until usrRoot() gets

allocated stack.

System Image Entry point for VxWorks.

Host Memory Pool Memory allocated by host tools. The size depends

on the system image and is defined in the macro

WDB_POOL_SIZE. Modify WDB_POOL_SIZE
under INCLUDE_WDB.

Interrupt Stack Size is defined by ISR_STACK_SIZE under

INCLUDE_KERNEL. Location depends on system

image size.

System Memory Pool Size depends on size of system image and

interrupt stack. The end of the free memory pool

for this board is returned by sysMemTop().
489

VxWorks 5.4
Programmer’s Guide
Figure E-1 VxWorks System Memory Layout (MIPS)

80000200

80000600

80000700

80000800

80000900

80000c00

80010000

Address

Initial Stack

Exception Vectors

Exception Message

Boot Line

SM Anchor

System Image

text

data

bss

Interrupt Stack

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

0x80000000

Host Memory Pool
end
490

F
PowerPC
F.1 Introduction

This appendix provides information specific to VxWorks development on

PowerPC targets. It includes the following topics:

■ Building Applications: how to compile modules for your target architecture.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the PowerPC processors.

■ Architecture Considerations: special features and limitations of the PowerPC

processors, including a figure showing the VxWorks memory layout for these

processors.

For general information on the Tornado development environment’s cross-

development tools, see the Tornado User’s Guide: Projects.

F.2 Building Applications

The Tornado 2.0 project facility is correctly preconfigured for building WRS BSPs.

However, if you choose not to use the project facility or if you need to customize

NOTE: The compiler for PowerPC conforms to the Embedded Application Binary

Interface (EABI) protocol. Therefore type checking is more rigorous than for other

architectures.
491

VxWorks 5.4
Programmer’s Guide
your build, you may need the information in the following sections. This includes

a configuration constant, an environment variable, and compiler options that

together specify the information the GNU toolkit requires to compile correctly for

PowerPC targets.

Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

are compiled with the appropriate architecture-specific features enabled. This

variable should be set to one of the following values, depending on the processor

you are using:

– PPC403
– PPC603
– PPC604
– PPC860

For example, to specify CPU for a PowerPC 603 on the compiler command line, use

the following command-line option when you invoke the compiler:

-DCPU=PPC603

To provide the same information in a header or source file, include the following

line in the file:

#define CPU PPC603

All VxWorks makefiles pass along the definition of this variable to the compiler.

You can define CPU on the make command line as follows:

% make CPU=PPC603 …

You can also set the definition directly in a makefile, with the following line:

CPU=PPC603

Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. Tornado is configured

to use these tools by default. No change is required to the execution path, because

! CAUTION: If you are using a PowerPC 821 processor, define CPU to be PPC860.
492

F

F
PowerPC
the compilation chain is installed in the same bin directory as the other Tornado

executables.

Compiling C and C++ Modules

The following is an example of a compiler command line for PowerPC 603 cross-

development. The file to be compiled in this example has a base name of applic.

% ccppc -O2 -mcpu=603 -I$WIND_BASE/target/h -fno-builtin \
-fno-for-scope -nostdinc -DCPU=PPC603 -D_GNU_TOOL -c applic. language_id

The options shown in the example have the following meanings:

-O2
Optional; performs level 2 optimization.

-mcpu=603
Optional for 603 and 604; required for other processors (specify the

appropriate processor values: 601, 403, 860, or 821); instructs the compiler to

produce code for the specified PowerPC architecture. The default is 604, which

applies to 603 as well.

-I$WIND_BASE/target/h
Required; gives access to the VxWorks include files. (Additional

-I flags may be included to specify other header files.)

-fno-builtin
Required; uses library calls even for common library subroutines.

-fno-for-scope
Required; allows the scope of variables declared within a for loop to be outside

of the for loop.

-nostdinc
Required; searches only the directory or directories specified with the -I flag

(see above) and the current directory for header files. It does not search host-

system include files.

-DCPU=PPC603
Required; defines the CPU type. If you are using another PowerPC processor,

specify the appropriate value (see Defining the CPU Type, p.492).

-D_GNU_TOOL
Required; defines the compilation toolkit used to compile VxWorks or

applications.
493

VxWorks 5.4
Programmer’s Guide
-c Required; specifies that the module is to be compiled only, and not linked for

execution under the host.

applic.language_id
Required; specifies the file(s) to compile. For C compilation, specify a suffix of

.c. For C++ compilations, specifies a suffix of .cpp. The output is an unlinked

object module in ELF format with the suffix .o. For the example above, the

output would be applic.o.

Compiling Modules for GDB

To compile C modules for debugging in GDB, we recommend using the -gdwarf
flag to generate DWARF debug information instead of the -g flag, which generates

STABS information. For example:

% ccppc -mcpu=603 -I$WIND_BASE/target/h -fno-builtin -nostdinc \
-DCPU=PPC603 -c -gdwarf test.c

where $WIND_BASE is the location of your Tornado tree and -DCPU specifies the

CPU type.

The compiler does not support DWARF debug information for C++. If you are

using C++, you must use the -g flag:

% ccppc -mcpu=603 -I$WIND_BASE/target/h -fno-builtin -nostdinc \
-DCPU=PPC603 -c -g test.cpp

Unsupported Features

Prefixed Underscore

In the PowerPC architecture, the compiler does not prefix underscores to symbols.

In other words, symbol is not equivalent to _symbol as it is in other architecture

implementations.

Small Data Area

The compiler supports the small data area. However, for this release of Tornado for

PowerPC, VxWorks does not support the small data area. Therefore the -msdata
compiler flag must not be used.
494

F

F
PowerPC
F.3 Interface Changes

This section describes particular routines and tools that are specific to PowerPC

targets in any of the following ways:

■ available only for PowerPC targets

■ parameters specific to PowerPC targets

■ special restrictions or characteristics on PowerPC targets

For complete documentation, see the online documentation.

Memory Management Unit

VxWorks provides two levels of virtual memory support: the basic level bundled

with VxWorks, and the full level that requires the optional product VxVMI.Check

with your sales representative for the availability of VxVMI for PowerPC.

For detailed information on VxWorks MMU support, see 7. Virtual Memory
Interface. The following subsections augment the information in that chapter.

Instruction and Data MMU

The PowerPC MMU introduces a distinction between instruction and data MMU

and allows them to be separately enabled or disabled. Two parameters,

USER_I_MMU_ENABLE and USER_D_MMU_ENABLE, are enabled by default in the

Params tab of the Properties window under SELECT_MMU. To enable/disable one

or both MMUs, select the corresponding parameter and remove the TRUE.

60X Memory Mapping

The PowerPC 603 and 604 MMU supports two models for memory mapping. The

first, the BAT model, allows mapping of a memory block ranging in size from

128KB to 256MB into a BAT register. The second, the segment model, gives the

ability to map the memory in pages of 4KB. Tornado for PowerPC supports both

memory models.

■ 603/604 Block Address Translation Model

The size of a BAT register is two words of 32 bits. For the PowerPC 603 and

PowerPC 604, eight BAT registers are implemented: four for the instruction MMU

and four for the data MMU.
495

VxWorks 5.4
Programmer’s Guide
The data structure sysBatDesc[], defined in sysLib.c, handles the BAT register

configuration. The registers will be set by the initialization software in the MMU

library. By default these registers are cleared and set to zero.

All the configuration constants used to fill the sysBatDesc[] are defined in

installDir/target/h/arch/ppc/mmu603Lib.h for both the PowerPC 603 and the

PowerPC 604.

■ 603/604 Segment Model

This model specifies the configuration for each memory page. The entire physical

memory is described by the data structure sysPhysMemDesc[], defined in

sysLib.c. This data structure is made up of configuration constants for each page

or group of pages. All the configuration constants defined in Table 7-1 of 7. Virtual
Memory Interface are available for PowerPC virtual memory pages.

Use of the VM_STATE_CACHEABLE constant listed in Table 7-1 for each page or

group of pages, sets the cache to copy-back mode.

In addition to VM_STATE_CACHEABLE, the following additional constants are

supported:

– VM_STATE_CACHEABLE_WRITETHROUGH
– VM_STATE_MEM_COHERENCY
– VM_STATE_MEM_COHERENCY_NOT
– VM_STATE_GUARDED
– VM_STATE_GUARDED_NOT

The first constant sets the page descriptor cache mode field in cacheable write-

through mode. Cache coherency and guarded modes are controlled by the other

constants.

For more information regarding cache modes, refer to PowerPC Microprocessor
Family: The Programming Environments.

For more information on memory page states, state flags, and state masks, see

7. Virtual Memory Interface.

The page table size depends on the total memory to be mapped. The larger the

memory to be mapped, the bigger the page table will be. The VxWorks

implementation of the segment model follows the recommendations given in

PowerPC Microprocessor Family: The Programming Environments. During MMU

library initialization, the total size of the memory to be mapped is computed,

allowing dynamic determination of the page table size. The following table shows

the correspondence between the total amount of memory to map and the page

table size.
496

F

F
PowerPC
HI and HIADJ Macros

The HI and HIADJ macros are used in PowerPC assembly code. The macro HI(x) is

the simple high order 16 bits of the value x. The macro HIADJ(x) is the high order

16 bits adjusted by bit 15. If bit 15 is set, then the value is adjusted by adding 1.

The macro HIADJ(x) must be used whenever the low order 16 bits are to be used

with an instruction that interprets them as a signed quantity (for instance, addi,
lwz). If the low order bits are used in an instruction that interprets them as an

unsigned quantity (for instance, ori) then the proper macro is HI, not HIADJ.

For example, addi uses a SIGNED quantity, so HIADJ is the proper macro:

lis rx, HIADJ(VALUE)
addi rx, rx, LO(VALUE)

However, ori uses an UNSIGNED quantity, so HI is the proper macro:

lis rx, HI(VALUE)
ori rx, rx, LO(VALUE)

Table 9-4 Page table size

Total Memory to map Page table size

8 MB or less 64 KB

16 MB 128 KB

32 MB 256 KB

64 MB 512 KB

128 MB 1 MB

256 MB 2 MB

512 MB 4 MB

1 GB 8 MB

2 GB 16 MB

4 GB 32 MB
497

VxWorks 5.4
Programmer’s Guide
ELF-Specific Tools

The following tools are specific to the ELF format. For more information, see the

reference entries for each tool.

elfHex
converts an ELF-format object file into Motorola hex records. The syntax is:

elfHex [-a adrs] [-l] [-v] [-p PC] [-s SP] file

elfToBin
extracts text and data segments from an ELF file. The syntax is:

elfToBin < inFile > outfile

elfXsyms
extracts the symbol table from an ELF file. The syntax is:

elfXsyms < objMod > symTbl

F.4 Architecture Considerations

This section describes the following characteristics of the PowerPC processors that

will affect your VxWorks application:

■ supervisor/user mode
■ 24-bit addressing
■ byte order
■ PowerPC register usage
■ caches
■ memory management unit (MMU)
■ floating-point support
■ memory layout

For a more comprehensive documentation of PowerPC architectures, see the

appropriate Motorola microprocessor user’s manual or the IBM user’s manual.
498

F

F
PowerPC
Processor Mode

VxWorks always runs in Supervisor mode on processors in the PowerPC family.

24-bit Addressing

The PowerPC architecture limits its relative addressing to 24-bit offsets to conform

to the EABI (Embedded Application Binary Interface) standard.

Byte Order

The byte order used by VxWorks for the PowerPC family is big-endian.

PowerPC Register Usage

The PowerPC conventions regarding register usage, stack frame formats,

parameter passing between routines, and other factors involving code inter-

operability, are defined by the ABI (Application Binary Interface) and the EABI

(Embedded Application Binary Interface) protocols. The VxWorks

implementation for the PowerPC follows these protocols. Table F-1 shows

PowerPC register usage in VxWorks.

Table F-1 PowerPC Registers

Register Name Usage

gpr0 Volatile register which may be modified during function linkage.

gpr1 Stack frame pointer, always valid.

gpr2 Second small data area pointer register (_SDA2_BASE_).

gpr3 -gpr4 Volatile registers used for parameter passing and return value.

gpr5-gpr10 Volatile registers used for parameter passing.

gpr11-gpr12 Volatile registers that may be modified during function linkage.

gpr13 Small data area pointer register (_SDA_BASE_).

gpr14-gpr30 Non-volatile registers used for local variables.

gpr31 Used for local variables or “environment pointers.”

fpr0 Volatile floating-point register.

fpr1 Volatile floating-point register used for parameter passing and return value.
499

VxWorks 5.4
Programmer’s Guide
Caches

The following subsections augment the information in 3. I/O System.

PowerPC processors contain an instruction cache and a data cache. In the default

configuration, VxWorks enables both caches. To disable the instruction cache,

highlight the USER_I_CACHE_ENABLE macro in the Params tab under

INCLUDE_CACHE_ENABLE and remove the TRUE; to disable the data cache,

highlight the USER_D_CACHE_ENABLE macro and remove the TRUE.

For most boards, the cache capabilities must be used with the MMU to resolve

cache coherency problems. The page descriptor for each page selects the cache

mode. This page descriptor is configured by filling the data structure

sysPhysMemDesc[] defined in sysLib.c. (For more information about cache

coherency, see the reference entry for cacheLib. For information about the MMU

and VxWorks virtual memory, see 7. Virtual Memory Interface. For MMU

information specific to the PowerPC family, see Memory Management Unit, p.500.)

The state of both data and instruction caches is controlled by the WIMG1

information saved either in the BAT (Block Address Translation) registers or in the

segment descriptors. Since a default cache state cannot be supplied, each cache

may be enabled separately after the corresponding MMU is turned on. For more

information on these cache control bits, refer to PowerPC Microprocessor Family: The
Programming Environments, published jointly by Motorola and IBM.

Memory Management Unit

The PowerPC MMU architecture required some extensions to the standard

VxWorks MMU interface. See Memory Management Unit, p.495.

fpr2-fpr8 Volatile floating-point registers used for parameter passing.

fpr9-fpr13 Volatile floating-point registers.

fpr14-fpr31 Non-volatile floating-point registers used for local variables.

1. W: the WRITETHROUGH or COPYBACK attribute.

I: the inhibited attribute.

M: the memory coherency attribute

G: the guarded attribute

Table F-1 PowerPC Registers (Continued)

Register Name Usage
500

F

F
PowerPC
Floating-Point Support

PowerPC 403 and 860

The PowerPC 403 and 860 do not support hardware floating-point instructions.

However, VxWorks provides a floating-point library that emulates these

mathematical functions. All ANSI floating-point functions have been optimized

using libraries from U. S. Software.

In addition, the following single-precision functions are also available:

The following floating-point functions are not available on PowerPC 403 and 860

processors:

PowerPC 60X

The following floating-point functions are available for PowerPC 60X processors:

A subset of the ANSI functions is optimized using libraries from Motorola:

acos() asin() atan() atan2()
ciel() cos() cosh() exp()
fabs() floor() fmod() log()
log10() pow() sin() sinh()
sqrt() tan() tanh()

acosf() asinf() atanf() atan2f()
cielf() cosf() expf() fabsf()
floorf() fmodf() logf() log10f()
powf() sinf() sinhf() sqrtf()
tanf() tanhf()

cbrt() infinity() irint() iround()
log2() round() sincos() trunc()
trunc() cbrtf() infinityf() irintf()
iroundf() log2f() roundf() sincosf()
truncf()

acos() asin() atan() atan2()
ciel() cos() cosh() exp()
fabs() floor() fmod() log()
log10() pow() sin() sinh()
sqrt() tan() tanh()

acos() asin() atan() atan2()
cos() exp() log() log10()
pow() sin() sqrt()
501

VxWorks 5.4
Programmer’s Guide
The following floating-point functions are not available on PowerPC 60X

processors:

No single-precision functions are available for 60X processors.

Handling of floating-point exceptions is supported for PowerPC 60X processors.

By default the floating-point exceptions are disabled.

To change the default for a task spawned with the VX_FP_TASK option, modify the

values of the Machine State Register (MSR) and the Floating Point Status and

Control Register (FPSCR) at the beginning of the task code.

– The MSR’s FE0 and FE1 bits select the floating-point exception mode.

– The FPSCR’s VE, OE, UE, ZE, XE, NI, and RN bits enable or disable the

corresponding floating-point exceptions and rounding mode. (See archPpc.h
for the macros PPC_FPSCR_VE and so forth.)

Register values may be accessed by the routines vxMsrGet(), vxMsrSet(),
vxFpscrGet(), and vxFpscrSet().

VxMP Support for Motorola PowerPC Boards

VxMP is an optional VxWorks component that provides shared-memory objects

dedicated to high-speed synchronization and communication between tasks

running on separate CPUs. For complete documentation of the optional

component VxMP, see 6. Shared-Memory Objects.

Normally, boards that make use of VxMP must support hardware test-and-set

(TAS: atomic read-modify-write cycle). Motorola PowerPC boards do not provide

atomic (indivisible) TAS as a hardware function. VxMP for PowerPC provides

special software routines which allow these Motorola boards to make use of VxMP.

Boards Affected

The current release of VxMP provides a software implementation of a hardware

TAS for PowerPC-based VME boards of the 1300, 1600, and 2600 families

manufactured by Motorola. No other PowerPC boards are affected.

cbrt() infinity() irint() iround()
log2() round() sincos() trunc()
trunc() sin() sqrt()
502

F

F
PowerPC
Implementation

The VxMP product for Motorola PowerPC boards has special software routines

which compensate for the lack of atomic TAS operations in the PowerPC and the

lack of atomic instruction propagation to and from these boards. This software

consists of the routines sysBusTas() and sysBusTasClear().

The software implementation uses ownership of the VME bus as a semaphore; in

other words, no TAS operation can be performed by a task until that task owns the

VME bus. When the TAS operation completes, the VME bus is released. This

method is similar to the special read-modify-write cycle on the VME bus in which

the bus is owned implicitly by the task issuing a TAS instruction. (This is the

hardware implementation employed, for example, with a 68K processor.)

However, the software implementation comes at a price. Execution is slower

because, unlike true atomic instructions, sysBusTas() and sysBusTasClear()
require many clock cycles to complete.

Configuring Hardware TAS

To invoke this feature, set SM_TAS_TYPE to SM_TAS_HARD on the Params tab of

the project facility under INCLUDE_SM_OBJ.

Restrictions for Multi-Board Configurations

Systems using multiple VME boards where at least one board is a Motorola

PowerPC board must have a Motorola PowerPC board as the board with a

processor ID equal to 0 (the board whose memory is allocated and shared). This is

because a TAS operation on local memory by, for example, a 68K processor does

not involve VME bus ownership and is, therefore, not atomic as seen from a

Motorola PowerPC board.

This restriction does not apply to systems that have globally shared memory

boards which are used for shared memory operations. Specifying

SM_OFF_BOARD as TRUE on the Params tab of the properties window for the

processor with ID of 0 and setting the associated parameters will enable you to

assign processor IDs in any configuration. (See 6.4.3 Initializing the Shared-
Memory Objects Package, p.280.)

NOTE: Some PowerPC board manufacturers, for example Cetia, claim to equip

their boards with hardware support for true atomic operations over the VME bus.

Such boards do not need the special software written for the Motorola boards.
503

VxWorks 5.4
Programmer’s Guide
Memory Layout

The VxWorks memory layout is the same for all PowerPC processors. Figure F-1

shows the memory layout, labeled as follows:

All addresses shown in Figure F-1 are relative to the start of memory for a

particular target board. The start of memory (corresponding to 0x0 in the memory-

layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS under

INCLUDE_MEMORY_CONFIG for each target.

Interrupt Vector Table Table of exception/interrupt vectors.

SM Anchor Anchor for the shared memory network and VxMP

shared memory objects (if there is shared memory on the

board).

Boot Line ASCII string of boot parameters.

Exception Message ASCII string of the fatal exception message.

Initial Stack Initial stack for usrInit(), until usrRoot() gets allocated

stack.

System Image VxWorks itself (three sections: text, data, bss). The entry

point for VxWorks is at the start of this region, which is

BSP dependent. The entry point for each BSP is as

follows:

cetCvme604: 0x100,000

evb403, ads850: 0x10,000

mv1603/4: 0x30,000

ultra60X: 0x10,000

Host Memory Pool Memory allocated by host tools. The size depends on the

the macro WDB_POOL_SIZE. Modify WDB_POOL_SIZE
under INCLUDE_WDB.

Interrupt Stack Size is defined by ISR_STACK_SIZE under

INCLUDE_KERNEL. Location depends on system image

size.

System Memory Pool Size depends on the size of the system image. The

sysMemTop() routine returns the address of the end of

the free memory pool.
504

F

F
PowerPC
Figure F-1 VxWorks System Memory Layout (PowerPC)

+0x0000

+0x3000
+0x4100

+0x4200

+0x4300

+0x4c00

BSP dependent value

Address

Initial Stack

Interrupt Vector Table
(12KB)

Exception Message

Boot Line

SM Anchor

System Image

text

data

bss

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

LOCAL_MEM_LOCAL_ADRS

_end

Interrupt Stack

Host Memory Pool
505

VxWorks 5.4
Programmer’s Guide
506

G
ARM
G.1 Introduction

Tornado for ARM provides the Tornado development tools and the VxWorks

RTOS for the Advanced RISC Machines (ARM) family of architectures. ARM is a

compact core which operates at a low power level. In addition to the standard 32-bit

instruction set, it is available with a 16-bit instruction set (the Thumb instruction

set), which permits applications to be developed with very compact code.

This appendix provides information specific to VxWorks development on ARM

targets. It includes the following topics:

■ Building Applications: how to compile modules for the ARM architecture.

■ Toolchain Information: updates to the assembler, CrossWind, and the included

toolchain files not yet included in GNU ToolKit or Debugging with GDB.

■ Interface Changes: information on changes or additions to particular VxWorks

features to support the ARM processors.

■ Architecture Considerations: special features and limitations of the ARM

processors, including a figure showing the VxWorks memory layout for these

processors.

For general information on the Tornado development environment’s cross-

development tools, see the Tornado User’s Guide: Projects.
507

VxWorks 5.4
Programmer’s Guide
G.2 Building Applications

The Tornado 2.0 project facility is correctly preconfigured for building WRS BSPs.

However, if you choose not to use the project facility or if you need to customize

your build, you may need the information in the following sections. This includes

a configuration constant, an environment variable, and compiler options that

together specify the information the GNU toolkit requires to compile correctly for

ARM/Thumb targets.

Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

build with the appropriate architecture-specific features enabled. Define this

variable to one of the following values, to match the processor you are using:

For example, to define CPU for an ARM-7TDMI on the compiler command line,

specify the following command-line option when you invoke the compiler:

-DCPU=ARM7TDMI

To provide the same information in a header or source file instead, include the

following line in the file:

#define CPU ARM7TDMI

Configuring the GNU ToolKit Environment

Tornado includes the GNU compiler and associated tools. No change is required

to the execution path, because the compilation chain is installed in the same bin
directory as the other Tornado executables. For more information, see Tornado
Getting Started.

ARM7TDMI ARM-7TDMI (ARM state)

ARM7TDMI_T ARM-7TDMI (Thumb state)

ARMSA110 StrongARM-110 or StrongARM-1100

ARM710A ARM-710A

ARM810 ARM-810
508

G

G
ARM
Compiling C and C++ Modules

The following is an example of a compiler command line for ARM cross-

development. The file to be compiled in this example has a base name of applic.

% ccarm -DCPU=ARM7TDMI -mcpu=arm7tdmi -mno-sched-prolog \
-I $WIND_BASE/target/h -fno-builtin -O2 -nostdinc -c applic. language_id

The options shown in the example have the following meanings:1

ccarm
Required; use ccarm for GNU C and C++ support.

-DCPU=ARM7TDMI
Required; defines the CPU type. See the table on page 508.

-mcpu=arm7tdmi
Required for ARM; specifies the instruction set. Use the following:

-mno-sched-prolog
Do not perform scheduling in function prologs and epilogs. This is required

for reliable debugging.

-I $WIND_BASE/target/h
Required; includes VxWorks header files. (Additional -I flags may be included

to specify other header files.)

-fno-builtin
Required; uses library calls even for common library subroutines.

-O2
Optional; performs level 2 optimization.

1. For more information on these and other compiler options, see the GNU ToolKit User’s Guide.

WRS supports compiler options used in building WRS software; see the Guide for a list.

Other options are not supported, although they are available with the tools as shipped.

-mcpu=arm7tdmi for the ARM-7TDMI

-mcpu=arm710 for the ARM-710A

-mcpu=arm810 for the ARM-810

-mcpu=strongarm110 for the StrongARM-110 and StrongARM-1100

! CAUTION: To compile for Thumb state, do not specify -mcpu. Specify both

-mthumb and -mthumb-interwork. Although -mthumb-interwork is required in

this release in order to compile code correctly for Thumb state, the ARM interwork

feature is not supported. See Additional ARM Compiler Options, p.512.
509

VxWorks 5.4
Programmer’s Guide
-nostdinc
Required; searches only the directories specified with the -I flag (see above)

and the current directory for header files. Does not search host-system include

files.

-c Required; specifies that the module is to be compiled only, and not linked for

execution under the host.

applic.language_id
Required; the files to compile. For C compilation, specify a suffix of .c. For C++

compilation, specify a suffix of .cpp. The output is an unlinked object module

in COFF format with the suffix .o; for the example, the output is applic.o.

Following C++ compilation, the compiled object module (applic.o) is munched.

Munching is the process of scanning an object module for non-local static objects,

and generating data structures that VxWorks run-time support can use to call the

object constructors and destructors. See5.2.5 Munching C++ Application Modules,

p.232.

Boot Loader Changes

The target-resident loader for ARM targets loads COFF format VxWorks images

which are composed of multiple text sections and multiple data sections. The

ability to load COFF files with multiple text and data sections facilitates the use of

linker scripts which scatter-load the VxWorks image at boot time. In addition,

because the number of relocation entries for any particular COFF section may not

exceed 65,535 entries, it may be necessary to split very large images into multiple

sections.

It is assumed that users implementing linker scripts are comfortable with the GNU

linker, the GNU linker command language, the particular OMF used by the GNU

tools, and the target memory architecture. In addition to the aforementioned

requisite background, the target-resident loader implementation places certain

restrictions on how fully-linked COFF files (for example, a VxWorks image) are

organized.

The target-resident loader assumes that a COFF format VxWorks image is ordered

such that the COFF file header, optional header, and section headers are followed

immediately by the section contents for text, data, or lit sections in the binary file.

Moreover, it is assumed that the section contents are contiguous in the binary file.

Figure G-1 shows typical headers in the binary file.

The fact that text, data, and lit sections must be contiguous with each other and

follow the section headers in the binary file does not preclude using a linker script
510

G

G
ARM
to locate multiple text and data sections at non-contiguous RAM addresses. For

more information on the GNU linker and GNU linker command language, see the

GNU ToolKit User’s Guide.

The target-resident loader for ARM reports the sizes of individual text and data

sections in addition to the bss section when VxWorks is booted. For example, if a

multiple text section image is booted, output similar to the following might be

seen:

Attaching network interface oli0... done.
Attaching network interface lo0... done.
Loading... 277764 + 82348 + 66664 + 7948 + 29692
Starting at 0x1000...

Attached TCP/IP interface to oli unit 0
Attaching network interface lo0... done.
NFS client support not included.

VxWorks

Copyright 1984-1998 Wind River Systems, Inc.

CPU: ARM PID - ARM7TDMI (Thumb)
VxWorks: 5.4

BSP version: 1.2/0
 Creation date: Feb 10 1999

WDB: Ready.

This format is a slight cosmetic modification to the section size values which WRS

boot loaders have traditionally reported as size of text + size of data + size of bss.

Reporting the size of individual text and data sections rather than summing them

up is intended to be an aid for developers working on VxWorks images which are

organized by way of a linker script. This change is not likely to be noticed when

the default VxWorks image types are used.

Figure G-1 COFF File Headers

FILHSZ

AOUTSZ

f_nscns * SCNHZ

section content
. . .

File header

Optional header

Section headers

Section contents must be .text, .data, or .lit and
they must be contiguous in the binary file.
511

VxWorks 5.4
Programmer’s Guide
G.3 Toolchain Information

Assembler Pseudo Operations

Additional ARM Compiler Options

In addition to the new ARM compiler options described in Compiling C and C++
Modules, p.509, the following compiler options are added to the GNU compiler

with Tornado for ARM:

-mapcs-32
Specifies the use of the 32-bit ARM Procedure Call Standard. This is the

default. Note that -mapcs-26 is not supported.

-marm
Generates plain ARM code. This is the default in all current configurations; the

option is supplied for symmetry.

-mthumb
Required to generate Thumb code. Requires an ARM CPU with Thumb

support.

-mthumb-interwork
Required to generate Thumb code.

-mapcs-frame
-mapcs-leaf-frame

Creates a “stack backtrace” structure for non-leaf and leaf functions

respectively. Applies when ARM code is generated. These are the default for

ARM state and are automatically disabled when -mthumb is active.

.arm no arguments Generate ARM (32-bit) code.

.thumb no arguments Generate Thumb (16-bit) code.

.code 16 or 32 Generate 16- or 32-bit code.

.thumb_func no arguments Flag this function as a Thumb function.

! CAUTION: The -mthumb-interwork option is required to compile code for Thumb

state in this release. Although you must use this option in order to use Thumb

state, ARM interworking (switching between ARM and Thumb modes in the same

application, running ARM code under the Thumb kernel, or running Thumb code

under the ARM kernel) is not supported for this release.
512

G

G
ARM
-mtpcs-frame
-mtpcs-leaf-frame

Create a “stack backtrace” structure for non-leaf and leaf functions

respectively. Analogous to -mapcs-frame and -mapcs-leaf-frame but apply

when -mthumb is active.

CrossWind and GDB

CrossWind for Tornado for ARM is based on GDB 4.16. The following new

debugger commands are implemented:

VxWorks-timeout args
All VxWorks-based targets now support the option vxworks-timeout. args
represents the number of seconds the debugger waits for responses to RPCs.

complete arg
List possible completions for arg.

hbreak
Set a hardware-assisted breakpoint (if applicable).

set print static-members [on,off]

Print static members when displaying a C++ object. The default is on.

show input-radix
Display the current default base for numeric entry.

show output-radix
Display the current default base for numeric display.

set output-radix base
Set the default base for numeric display. Supported choices for base are decimal

8, 10, or 16. base must itself be specified either unambiguously or using the

current default radix.

Commands whose functionality has changed in this release are as follows:

■ The watch command has been greatly expanded with regard to hardware

watchpoints (on applicable systems). New related commands include:

rwatch args
Set a watchpoint that breaks when watch args is read.

awatch args
Set watchpoint that breaks when watch args is read or written.

For more information on the watch command, see Debugging With GDB.
513

VxWorks 5.4
Programmer’s Guide
■ The step command no longer steps into functions that contain no debugging

information. Use the stepi command to enter functions with no debugging

symbols.

Additionally, step only enters a subroutine if line number information exists;

otherwise, it acts like next.

G.4 Interface Variations

This section describes particular features and routines that are specific to ARM

targets in one of the following ways:

■ available only on ARM targets

■ parameters specific to ARM targets

■ special restrictions or characteristics on ARM targets.

For more complete documentation on these routines, see the reference entries.

Restrictions on cret() and tt()

These routines make assumptions about the standard prologue for routines. If

routines are written in assembly language, or in another language that generates a

different prologue, unexpected results may occur.

tt() does not report the parameters to C functions as it cannot determine these

from the code generated by the compiler.

! CAUTION: The Thumb kernel is compiled without backtrace structures. This

means that tt() does not work within kernel routines and cret() occasionally does

the wrong thing. Thumb breakpoints and single-stepping work even if the code is

compiled without backtrace structures. One solution for debugging is to use ARM

state and then switch to Thumb state for your final debugging and production.
514

G

G
ARM
cacheLib

The cacheLock() and cacheUnlock() routines always return ERROR (see Caches,

p.522). Use of the cache and MMU are very closely linked on ARM processors.

Consequently, if cacheLib is used, vmLib is also required. In addition, the

cacheLib and vmLib calls need to be coordinated, see Memory Management Unit,
p.524.

dbgLib

Many ARM processors have no debug or trace mode and no support for hardware-

assisted debugging. Because of this, VxWorks for ARM uses only software

breakpoints. When you set a software breakpoint, VxWorks replaces an instruction

with a known undefined instruction. VxWorks restores the original code when the

breakpoint is removed; if memory is examined or disassembled, the original code

is shown.

dbgArchLib

If you are using the target shell, note that the following additional architecture-

specific routines are available to you:

psrShow()

Display the symbolic meaning of a specified PSR value on the standard output.

cpsr()

Return the contents of the Current Processor Status Register (CPSR) of the

specified task.

intALib

intLock() and intUnlock()

The routine intLock() returns the I bit from the CPSR as the lock-out key for the

interrupt level prior to the call to intLock(). The routine intUnlock() takes this

value as a parameter. For ARM, these routines control the CPU interrupt mask

directly. They do not manipulate the interrupt levels in the interrupt controller

chip.
515

VxWorks 5.4
Programmer’s Guide
intArchLib

ARM processors generally have no on-chip interrupt controllers to handle the

interrupts multiplexed on the IRQ pin. Control of interrupts is a BSP-specific

matter. All of these routines are connected by function pointers to routines which

must be provided in ARM BSPs by a standard interrupt controller driver. For

general information on interrupt controller drivers, see Wind Technical Note #46.

For special requirements or limitations, see the appropriate interrupt controller

device driver documents.

intLibInit()

STATUS intLibInit(nLevels, nVecs, mode)

This routine initializes the interrupt architecture library. It is usually called from

sysHwInit2() in the BSP code. The mode argument specifies whether interrupts are

handled in preemptive mode (INT_PREEMPT_MODEL) or non-preemptive mode

(INT_NON_PREEMPT_MODEL).

intEnable() and intDisable()

The intEnable() and intDisable() calls affect the masking of interrupts in the BSP

interrupt controller and do not affect the CPU interrupt mask.

intVecSet() and intVecGet()

Not supported, not present.

intLockLevelSet() and intLockLevelGet()

Not supported. Present, but not functional.

intVecBaseSet() and intVecBaseGet()

Not supported. Present, but not functional.

intUninitVecSet()

The user can use this function to install a default interrupt handler for all

uninitialized interrupt vectors. The routine is called with the vector number as a

single argument.
516

G

G
ARM
mmuALib

The routine mmuReadId() is provided on processors with MMUs to return the

processor ID (the SA-110, the SA-1100, the ARM-710A, and the ARM-810). This

routine is not available on the ARM-7TDMI, as it has no MMU to return the

processor ID.

usrLib

The interrupt stack display produced by checkStack() in the target shell shows

two interrupt stacks. For details, see section Interrupt stacks, p.521.

vmLib

As mentioned above for cacheLib, caching and virtual memory are linked on ARM

processors. Use of vmLib requires that cacheLib be included as well and that calls

to the two libraries be coordinated. See Memory Management Unit, p.524.

vxALib

The test-and-set primitive vxTas() provides a C-callable interface to the ARM

SWPB (swap byte) instruction.

vxLib

The vxMemProbe() routine, which probes an address for a bus error, is supported

by trapping data aborts. If the BSP hardware does not generate data aborts when

illegal addresses are accessed, vxMemProbe() does not return the expected results,

The BSP can provide an alternate routine by inserting the address of the alternate

routine in the global variable _func_vxMemProbeHook.
517

VxWorks 5.4
Programmer’s Guide
COFF-Specific Tools For ARM

The following tools are specific to the COFF format on ARM processors. For more

information, see the reference entries for each tool.

coffHexArm
converts an COFF-format object file into Motorola hex records. The syntax is:

coffHexArm [-a offset] [-l] file

coffArmToBin
extracts text and data segments from a COFF file and writes it to standard

output as a simple binary image. The syntax is:

coffArmToBin < infile > outfile

xsymcArm
extracts the symbol table from a COFF file. The syntax is:

xsymcArm < objMod > symTbl

G.5 Architecture Considerations

This section describes the following characteristics of the ARM processors that you

may need to keep in mind as you write a VxWorks application:

■ processor mode and byte order
■ ARM/Thumb state
■ interrupts and exceptions
■ floating point support
■ caches
■ memory management unit
■ WindView
■ memory layout

For comprehensive documentation of the ARM architecture and for specific

processors, you may wish to refer to the ARM Architecture Reference Manual and the

appropriate data sheets of the processors.
518

G

G
ARM
Processor Mode and Byte Order

VxWorks for ARM executes mainly in 32-bit supervisor mode (SVC32). When

exceptions occur which cause the CPU to enter other modes, the kernel generally

switches to SVC32 mode for most of the processing. No code should execute in

user mode. No support is included for the 26-bit modes, which are obsolete.

ARM CPUs include some support for both little-endian and big-endian byte

orders. This release includes only support for little-endian byte order, but network

applications must convert some data to a standard network order, which is big-

endian. In particular, in network applications, be sure to convert the port number

to network byte order using htons().

For more information about macros and routines to convert byte order from little-

endian to big-endian or vice-versa, see the VxWorks Network Programmer’s Guide:
TCP/IP Under VxWorks.

ARM/Thumb State

This release of Tornado for ARM supports both 32-bit instructions (ARM state) and

16-bit instructions (Thumb state).

Thumb Limitation

When running a Thumb kernel and using either the host or target shell, passing a

function name as a parameter to a function does not pass an address suitable for

calling. The failure is due to the fact that addresses in Thumb state must have bit

zero set, but the symbol table has bit zero clear.

Example: At the shell prompt, type the following:

-> sp func1,func2

where func1 and func2 are names of functions. Function func1 is spawned as a

task and passed the address of func2 as a parameter. Unfortunately, that address

is not suitable for use as a Thumb function pointer by func1 because, when the

shell looks up func2 in the symbol table, it gets back an address with bit zero clear.

Calling that address causes it to be entered in ARM state, not Thumb state.

The simplest workaround is to type the following:

-> sp func1,func2 | 1
519

VxWorks 5.4
Programmer’s Guide
An alternative is to write func1 as follows:

extern int func2(void);
int func1(void)

{
return func2();
}

In this case, the loader provides the correct address for func2 when the object file

is loaded. Thus func2 is entered in Thumb state as required when you type the

following:

-> sp func1

A more flexible alternative is to write func1 as follows:

int func1(FUNCPTR f)
{
f = (FUNCPTR)((UINT32)f | 1);
return f();
}

This allows you to call the function successfully as follows:

-> sp func1,func2

Interrupts and Exceptions

When an ARM interrupt or exception occurs, the CPU switches to one of several

exception modes, each of which has a number of dedicated registers. In order to

make the handlers reentrant, the stub routines that VxWorks installs to trap

interrupts and exceptions switch from the exception mode to SVC mode for further

processing; the handler cannot be reentrant while executing in an exception mode

because reentry would destroy the link register. When an exception or base-level

interrupt handler is installed by a call to VxWorks, the address of the handler is

stored for use by the stub when the mode switching is complete. The handler returns

to the stub routine to restore the processor state to what it was before the exception

occurred. Exception handlers (excluding interrupt handlers) can modify the state

to be restored by changing the contents of the register set passed to the handler.

ARM processors do not, in general, have on-chip interrupt controllers. All

interrupts are multiplexed on the IRQ pin except for FIQs (see Fast Interrupt (FIQ),
p.521). Therefore routines must be provided within the BSP to enable and disable

specific device interrupts, to install handlers for specific device interrupts, and to

determine the cause of the interrupt and dispatch the correct handler when an

interrupt occurs. These routines are installed by setting function pointers. For
520

G

G
ARM
examples, see the interrupt control modules in installDir/target/src/drv/intrCtl. A
device driver then installs an interrupt handler by calling intConnect(). For more

information, see Wind Technical Note #46.

Exceptions other than interrupts are handled in a similar fashion: the exception

stub switches to SVC mode and then calls any installed handler. Handlers are

installed by calls to excVecSet() and the addresses of installed handlers can be read

by calls to excVecGet().

Thumb State Interrupt Handling

When an interrupt occurs in a Thumb kernel (in other words, a kernel built with

CPU=ARM7TDMI_T) the CPU switches to ARM state. The kernel code then saves

appropriate state information and calls the interrupt demultiplexing code. This

code can, in theory, be ARM or Thumb code but only Thumb code is supported

and tested.

The interrupt demultiplexing code then calls the device-specific ISR (the routine

installed by a call to intConnect()). Again, in theory, that code could be ARM or

Thumb code but only Thumb code is supported and tested.

Interrupt stacks

VxWorks for ARM uses a separate interrupt stack to avoid having to make task

interrupt stacks big enough to accommodate the needs of interrupt handlers. The

ARM architecture has a dedicated stack pointer for its IRQ interrupt mode.

However, because the low-level interrupt handling code must be reentrant, IRQ

mode is only used on entry and exit from the handler; an interrupt destroys the

IRQ mode link register. The majority of interrupt handling code runs in SVC mode

on a dedicated SVC-mode interrupt stack.

Fast Interrupt (FIQ)

Fast Interrupt (FIQ) is not handled by VxWorks. BSPs can use FIQ as they wish, but

VxWorks code should not be called from FIQ handlers. If this functionality is

required, the preferred mechanism is to downgrade the FIQ to an IRQ by software

access to appropriately-designed hardware which generates an IRQ. The IRQ

handler can then make the call to VxWorks.

! CAUTION: In non-Thumb kernels (kernels built with CPU=ARM7TDMI rather

than CPU=ARM7TDMI_T) only ARM code ISRs will be entered correctly.
521

VxWorks 5.4
Programmer’s Guide
Floating-Point Support

In this release, no support is included for floating-point coprocessors. Support for

floating-point arithmetic is provided as part of the GNU ARM distribution from

the Free Software Foundation, in libgcc.a. The GNU implementation utilizes call-

outs rather than emulation of floating-point instructions.

On ARM, while each word of a double is stored little-endian, the most significant

word (the word containing the sign bit) is at the lower address. This is neither pure
big-endian (as implemented in 68k processors) nor pure little-endian (as

implemented in x86 processors). Cygnus added a new binary floating point

format, littlebyte_bigword, to GNU libiberty and changed GDB to use this format

for ARM; this implementation is adopted for WRS ARM BSPs and for CrossWind.

This format is chosen to be consistent with the ARM hardware floating point

implementation, the ARM7500FE FPA Coprocessor Macrocell. However, since

most IEEE floating point implementations are pure big- or little-endian, shared

memory exchange of double variables is complicated by the unique cross-
endianness of ARM double variables.

Caches

The ARM-7TDMI processor does not have a cache or an MMU. The ARM SA-110

processor has a 16 KB instruction cache, a 16 KB data cache, a write buffer, and an

MMU on the chip. The ARM SA-1100 has a 16 KB instruction cache, an 8 KB data cache, and

a 512 byte minicache. The ARM-710A and ARM-810 each have an 8KB mixed instruction

and data cache, with write buffer and an MMU on chip. The following subsections

augment the information in 7. Virtual Memory Interface.

For all of the ARM caches, the cache capabilities must be used with the MMU to

resolve cache coherency problems. When the MMU is enabled, the page descriptor

for each page selects the cache mode, which can be cacheable or non-cacheable.

This page descriptor is configured by filling in the sysPhysMemDesc[] structure

defined in the BSP installDir/target/config/bspname/sysLib.c file. (For more

information about cache coherency, see the cacheLib reference entry. For

! WARNING: On ARM processors, double variables have a different format from

IEEE double on most other processors. The bit pattern used by the ARM hardware

and software floating point implementations follows the IEEE standard; however,

the byte order is different from standard practice leading to a cross-endian
implementation. Be careful when sharing double values in memory between ARM

and other processors.
522

G

G
ARM
information on VxWorks’s MMU support, see 7. Virtual Memory Interface. For

MMU information specific to the ARM family, see Memory Management Unit,
p.524.)

VxWorks for ARM does not support locking and unlocking of ARM caches. Not all

ARM caches support cache locking and unlocking. Thus the cacheLock() and

cacheUnlock() routines have no effect on ARM targets and always return ERROR.

The effects of the cacheClear() and cacheInvalidate() routines depend on the CPU

type and on which cache is specified.

SA-110 and SA-1100 Caches

The SA-110 and SA-1100 processors contain an instruction cache and a data cache.

By default, VxWorks uses both caches; that is, both are enabled. To disable the

instruction cache, highlight the USER_I_CACHE_ENABLE macro in the Params tab

under INCLUDE_CACHE_ENABLE and remove the TRUE; to disable the data cache,

highlight the USER_D_CACHE_ENABLE macro and remove the TRUE.

The data cache, if enabled, must be set to cacheable copyback mode. Although the

cache appears to support a write-through mode, the effect of the write-buffer is to

make this effectively a copyback mode, as all writes from the cache are buffered.

The USER_D_CACHE_MODE parameter in the Params tab under

INCLUDE_CACHE_MODE should not, therefore be changed from the default

setting of CACHE_COPYBACK.

It is not appropriate to think of the mode of the instruction cache. The instruction

cache is a read cache that is not coherent with stores to memory so code that writes

to cacheable instruction locations must ensure instruction cache validity. You

should set the USER_I_CACHE_MODE parameter in the Params tab under

INCLUDE_CACHE_MODE.to CACHE_WRITETHROUGH and not change it.

With the data cache specified, cacheClear() first pushes dirty data to memory and

then invalidates the cache lines, while cacheInvalidate() just invalidates the lines

(in which case any dirty data contained in the lines is lost).

With the instruction cache specified, both routines have the same result: they

invalidate all of the instruction cache. As the instruction cache is a separate cache

from the data cache, there can be no dirty entries in the instruction cache, so no

dirty data can be lost.

ARM-710A Caches

The ARM-710A has a combined instruction and data cache. The cache is actually a

write-through cache, but the separate write-buffer makes this a copyback cache if

the write-buffer is enabled. VxWorks uses the USER_D_CACHE_MODE parameter
523

VxWorks 5.4
Programmer’s Guide
in the Params tab under INCLUDE_CACHE_MODE (which must be the same as

USER_I_CACHE_MODE) to determine whether to enable the write buffer.

With either cache specified, cacheClear() flushes the write-buffer and invalidates

all the ID-cache, while cacheInvalidate() just invalidates all the ID-cache. As the

cache is a combined, writethrough cache, no dirty data can be lost.

ARM-810 Caches

The ARM-810 has a combined instruction and data cache. Although the ARM-810

cache appears to support a write-through mode, the effect of the write-buffer is to

make this effectively a copyback mode, as all writes from the cache are buffered.

The USER_D_CACHE_MODE parameter in the Params tab under

INCLUDE_CACHE_MODE should not, therefore, be changed from the default

setting of CACHE_COPYBACK. The ARM-810 also has a Branch Prediction

capability, but this feature is not supported in this release.

The ARM-810 has a copyback, combined instruction and data cache and

invalidating a part of the cache is not possible without invalidating other,

unintended parts of the cache which might contain dirty data. Before invalidating

a cache line, others may need to be pushed to memory.

With the data cache specified, cacheClear() has the same effect as for the SA-110:

it first pushes dirty data to memory and then invalidates the cache lines. For

cacheInvalidate(), unless ENTIRE_CACHE is specified, the behavior is the same as

cacheClear(). If ENTIRE_CACHE is specified, the entire ID-cache is invalidated.

With the instruction cache specified, the behavior of the cacheClear() and

cacheInvalidate() routines is identical: both just flush the Prefetch Unit, so no

dirty data is lost from the ID-cache.

Memory Management Unit

VxWorks provides two levels of virtual memory support. The basic level is

bundled with VxWorks. The full level requires the optional product VxVMI. Both

are supported by the ARM SA-110, SA-1100, ARM-710A and ARM-810 processors;

the ARM-7TDMI supports neither since it does not have an MMU.

For detailed information on VxWorks’s MMU support, see 7. Virtual Memory
Interface. The following subsections augment the information in that chapter.
524

G

G
ARM
ARM Cache/MMU

The caching and memory management functions on the ARM are both provided

on-chip and are very closely interlinked. In general, caching functions on the ARM

require the MMU to be enabled. Consequently, if cache support is configured into

VxWorks, MMU support is also included by default. On the SA-110, the instruction

cache can be enabled without enabling the MMU, but no specific support for this

mode of operation is included in this release.

Only certain combinations of MMU and cache enabling are valid, and there are no

hardware interlocks to enforce this. In particular, enabling the data cache without

enabling the MMU can lead to undefined results. Consequently, if an attempt is

made to enable the data cache via cacheEnable() before the MMU has been

enabled, the data cache is not enabled immediately. Instead, flags are set internally

so that if the MMU is enabled later, the data cache is enabled with it. Similarly, if

the MMU is disabled, the data cache is also disabled, until the MMU is reenabled.

All memory management is performed on “small pages” which are 4 KB in size.

No use is made of the ARM concepts of “sections” or “large pages.”

Support is provided for BSPs that include separate static RAM for the MMU

translation tables. This support requires the ability to specify an alternate source of

memory other than the system memory partition. A global function pointer,

_func_armPageSource should be set by the BSP to point to a routine that returns

a memory partition identifier describing memory to be used as the source for

translation table memory. If this function pointer is NULL, the system memory

partition is used. The BSP must modify the function pointer before calling

mmuLibInit(). The initial memory partition must be large enough for all

requirements; it does not expand dynamically or overflow into the system memory

partition if it fills.

Support is also provided for those SA-110/SA-1100 BSPs that provide a special

area in the address space to be read, to flush the data cache. All SA-110/SA-1100

BSPs must declare a pointer (sysCacheFlushReadArea) to a readable, cached block

of address space, used for nothing else. If the BSP has an area of the address space

that does not actually contain memory, but is readable, it may set the pointer to

point to that area. If it does not, it should allocate some RAM for this area. In either

case, the area must be marked as readable and cacheable in the page tables. The

declaration can be in the BSP sysLib.c file, for example:

UINT32 sysCacheFlushReadArea[D_CACHE_SIZE/sizeof(UINT32)];

or in the BSP romInit.s and sysALib.s files, for example:

.globl _sysCacheFlushReadArea

.equ _sysCacheFlushReadArea, 0x50000000
525

VxWorks 5.4
Programmer’s Guide
Note that a declaration in sysLib.c of the form:

UINT32 * sysCacheFlushReadArea = (UINT32 *) 0x50000000;

cannot be used as this introduces another level of indirection, causing the wrong

address to be used for the cache flush buffer.

During certain cache/MMU operations (for example, cache flushing), interrupts

must be disabled and BSPs may wish to have control over this. The contents of the

variable cacheArchIntMask determine which interrupts are disabled. This has the

default value I_BIT | F_BIT, indicating that both IRQs and FIQs are disabled during

these operations. If a BSP requires leaving FIQs enabled, the contents of

cacheArchIntMask should be changed to I_BIT. Use extreme caution when

changing the contents of this variable from its default.

Some systems cannot provide an environment where virtual and physical

addresses are the same. (The SA-1100 CPU is an example of this.) This is

particularly important for those areas containing page tables. In order to support

these systems, the BSP must provide mapping functions to convert between

virtual and physical addresses: the global function pointers _func_armVirtToPhys
and _func_armPhysToVirt should be set to point to those functions. If these

function pointers are NULL, it is assumed that virtual addresses are equal to

physical addresses in the initial mapping. The BSP must set the function pointers

before either mmuLibInit() or cacheLibInit() is called.

ARM Memory Management Units

On those ARM CPUs with MMUs, you can set a specific configuration for each

memory page. The entire physical memory is described by sysPhysMemDesc[],
which is defined in installDir/target/config/bspname/sysLib.c. This data structure is

made up of state flags for each page or group of pages. All the state flags defined

in Page States, p.294 are available for virtual memory pages.

NOTE: The VM_STATE_CACHEABLE flag listed in Table 7-2 sets the cache to

copyback mode for each page or group of pages by setting the B and C bits in the

page tables. On the ARM-710A only, set the cache to writethrough mode using

VM_STATE_CACHEABLE_WRITETHROUGH which sets only the C bit in the page

tables.
526

G

G
ARM
ARM -710A

The ARM-710a has an MMU Control Register that is not readable. In order to have

access to the information, a soft copy is kept in the architecture code. This soft copy

is initialized to the symbolic constant MMU_INIT_VALUE. In all WRS ARM-710A

BSPs, the initialization code sets the MMU Control Register to this value, so that

the register and soft copy are in step.

Writers of other 710a-based BSPs must ensure that the register is set to the initial

value of the soft-copy, and that (assuming they use the VxWorks MMU/cache) no

discrepancy between the soft copy and the register is allowed to happen.

SA-1100

The SA-1100 CPU has elements of its physical address map fixed such that it is not

possible to run VxWorks on it without enabling the MMU to produce a virtual

address map of the standard form (in other words, RAM mapped over the

exception vectors). BSPs for this CPU (such as Brutus) select

INCLUDE_MMU_BASIC for inclusion by default, and use the MMU to implement

a standard VxWorks virtual address map.

The SA-1100 contains extensions to the SA-110 MMU, including a read buffer,

process ID mapping, and a minicache. No support is provided for the read buffer

or process ID mapping in this release. However, the extra state

VM_STATE_CACHEABLE_MINICACHE is available on the SA-1100, which is not

available on other ARM CPUs. Setting pages to this state using vmStateSet()
results in those pages being cached in the minicache and not in the main data

cache. Calling cacheInvalidate() with the parameters DATA_CACHE,

ENTIRE_CACHE invalidates the minicache and the main data cache.

NOTE: The VM_STATE_BUFFERABLE flag is also available on the ARM. Setting

pages to this state using vmStateSet() results in those pages being bufferable but

not cacheable (only the B bit in the page tables is set). Thus writes go through the

write buffer, but not the cache. If VM_STATE_CACHEABLE_NOT is used, pages are

set to neither cacheable nor bufferable (both the B and C bits are clear).

! WARNING: In all other respects, no support is provided for the minicache and the

user is entirely responsible for ensuring cache coherency between the minicache,

the main cache, and main memory. If no pages are marked with the flag

VM_STATE_CACHEABLE_MINICACHE, then cache coherency is handled in the

normal fashion, using the standard cacheLib() routines.
527

VxWorks 5.4
Programmer’s Guide
Memory Layout

The VxWorks memory layout is the same for all the ARM processors. Figure G-2

shows memory layout, labeled as follows:

All addresses shown in Figure G-2 are relative to the start of memory for a

particular target board. The start of memory (corresponding to 0x0 in the memory-

layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS under

INCLUDE_MEMORY_CONFIG for each target.

Vectors Table of exception/interrupt vectors.

FIQ Code Reserved for FIQ handling code.

Exception pointers Pointers to exception routines, which are used by the

vectors.

Boot Line ASCII string of boot parameters.

Exception Message ASCII string of fatal exception message.

Initial Stack Initial stack for usrInit(), until usrRoot() gets allocated

stack.

System Image VxWorks itself (three sections: text, data, bss). The entry

point for VxWorks is at the start of this region.

WDB Memory Pool Size depends on the macro WDB_POOL_SIZE which

defaults to one-sixteenth of the system memory pool.

This space is used by the target server to support host-

based tools. Modify WDB_POOL_SIZE under

INCLUDE_WDB.

System Memory Pool Size depends on size of the system image.The

sysMemTop() routine returns the end of the free

memory pool.

NOTE: The initial stack and system image addresses are configured within the BSP.
528

G

G
ARM
Figure G-2 VxWorks System Memory Layout (ARM)

+0x0000 LOCAL_MEM_LOCAL_ADRS
+0x0020

+0x0100

+0x0700

+0x0800

+0x0900

+0x1000

Address

Initial Stack

Vectors

Exception Message

Boot Line

System Image

text

data

bss

System Memory Pool

sysMemTop()

= Available

= Reserved

KEY

WDB Memory Pool
_end

Reserved For FIQ code

Exception pointers +0x0120

RAM_LOW_ADRS
529

VxWorks 5.4
Programmer’s Guide
530

H
VxSim

Built-in Simulator and Optional Product
H.1 Introduction

VxSim, the VxWorks simulator, is a port of VxWorks to the various host

architectures. It provides a simulated target for use as a prototyping and test-bed

environment. In most regards, its capabilities are identical to a true VxWorks

system running on target hardware. Users link in applications and rebuild the

VxWorks image exactly as they do in any VxWorks cross-development

environment using a standard BSP.

The difference between VxSim and the VxWorks target environment is that in

VxSim the image is executed on the host machine itself as a host process. There is

no emulation of instructions, because the code is for the host’s own architecture. A

communication mechanism is provided to allow VxSim to obtain an Internet IP

address and communicate with the Tornado tools on the host (or with other nodes

on the network) using the VxWorks networking tools.

Because target hardware interaction is not possible, device driver development

may not be suitable for simulation. However, the VxWorks scheduler is

implemented in the host process, maintaining true tasking interaction with respect

to priorities and preemption. This means that any application that is written in a

portable style and with minimal hardware interaction should be portable between

VxSim and VxWorks.

The basic functionality of VxSim is included with the Tornado tools and is

preconfigured to allow immediate access to the simulated target. The optional

component of VxSim provides the simulator with networking capability.
531

VxWorks 5.4
Programmer’s Guide
The key differences between VxSim and other BSPs are summarized below. For a

detailed discussion of subtle implementation differences which may affect

application development, see H.4 Architecture Considerations, p.540.

Built-In Simulator

VxSim has only a few differences from VxWorks:

Drivers

Because device drivers require direct hardware interaction, most VxWorks

device drivers are not available with VxSim.

File System

VxSim defaults to using a pass-through file system (passFs) to access files

directly on the workstation. (See the online reference for passFsLib under

VxWorks Reference Manual> Libraries.) Most VxWorks targets default to using

netDrv to access files on the host.

Networking

Networking is not available in the base product.

Optional Product

The optional VxSim component provides full network capability for your

simulator. The optional product also allows you to run more than one instance of

VxSim on your host.

In order to simulate the network IP connectivity of a VxWorks target, VxSim

includes special drivers which operate using IP addresses. The following network

interfaces are available, depending on your host type:

All interfaces provide an I/O-based interface for IP networking that allows VxSim

processes to be addressed at the IP level. When multiple programs are run, they

can send packets to each other directly. This is because the host hands the packets

back and forth; that is, the host OS effectively becomes a router with multiple

interfaces.

For more information on PPP and SLIP, see the VxWorks Networking Guide. For

information on the ULIP-specific library if_ulip, see the VxWorks Reference Manual.

ULIP User-Level Internet Protocol Solaris 2, Windows NT

PPP Point-to-Point Protocol Solaris 2

SLIP Serial Line Internet Protocol HP-UX 10
532

H

H
VxSim
H.2 The Built-in Simulator

All the functionality of the built-in simulator is available with the optional

product. All the information in this section applies to both versions of VxSim. For

information specific to the optional product, see H.5 VxSim Networking Component,
p.545.

Installation and Configuration

Tornado 2.0 comes configured with basic VxSim on all hosts. Installing and starting

Tornado as described in the Tornado Getting Started Guide installs and starts the

basic VxSim.

Starting VxSim

VxSim automatically starts when you request a function that requires a connection

to a target. For example, when you request download of a module, if you have not

started a target server VxSim and a target server are automatically started.

You can also start VxSim from the command line or the VxSim icon on the launcher

(UNIX) or from the Start>Run dialog box (Windows) using the command vxWorks.

Rebooting VxSim

As with other targets, you can reboot VxSim by typing CTRL+X in the shell.

Exiting VxSim

Windows: Close the VxSim window.

HP-UX: Close the VxSim window or use CTRL+\ in the VxSim window.

Solaris: Normally, CTRL+\ is mapped to SIGQUIT, which is the correct way to exit

VxSim. however, in Solaris 2.6, the default terminal does not have this mapping.

To check your mapping, use:

% stty -a
533

VxWorks 5.4
Programmer’s Guide
To change it to CTRL+\, use:

% stty quit ^\

Then you can exit VxSim by typing CTRL+\ in the VxSim window.

System-Mode Debugging

System-mode debugging allows developers to suspend the entire VxWorks

operating system.1 One notable application of system mode is to debug ISRs,

which—because they run outside any task context—are not visible to debugging

tools in the default task mode. For more discussion of system mode, see the

chapters Shell and Debugger in the Tornado User’s Guide.

All three simulators are automatically configured for system mode debugging by

including the WDB pipe back end.

File Systems

VxSim can use any VxWorks file system. The default file system is the pass-

through file system, passFs, which is unique to VxSim.

passFs allows direct access to any files on the host. Essentially, the VxWorks

functions open(), read(), write(), and close() eventually call the host equivalents

in the host library libc.a. With passFs, you can open any file available on the host,

including NFS-mounted files. By default, the INCLUDE_PASSFS macro (UNIX) or

the INCLUDE_NTPASSFS (Windows) is enabled to cause this file system to be

mounted on startup.

For more information on passFs, see the library entry for passFsLib in the VxWorks
Reference Manual or HTML help. For more information on other VxWorks file

systems, see 4. Local File Systems.

! CAUTION: Do not attempt to exit a VxSim session running ULIP on Solaris 2.5 or

2.6 using SIGKILL. This prevents VxSim from restarting properly.

1. System mode is sometimes also called external mode, reflecting that the target agent operates

externally to the VxWorks system in this mode.
534

H

H
VxSim
H.3 Building Applications

The following sections describe how to use the VxSim compilers. The

recommended way to build VxSim modules is to use the project tool. For complete

information on this tool, see the Tornado User’s Guide: Projects. If you are using

manual methods in your project, the information required for manual builds and

loading is summarized below.

This information applies to using manual methods on both the built-in version of

VxSim and the optional networking product.

Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications

build with the appropriate features enabled. Define this variable to one of the

following values, to match the host you are using:

The Toolkit Environment

All VxWorks simulators use the GNU C/C++ compiler.

Compiling C and C++ Modules

Solaris

The following is an example of a compiler command line for VxSim development.

The file to be compiled in this example has a base name of applic.

% ccsimso -DCPU=SIMSPARCSOLARIS -ansi -nostdinc -g -fno-builtin \
-fvolatile -DRW_MULTI_THREAD -D_REENTRANT -O2 -I. \
-I /wind/target/h -c applic.c

SIMSPARCSOLARIS VxSim for Solaris

SIMHPPA VxSim for HP-UX

SIMNT VxSim for Windows NT

! CAUTION: The compiler used by the Tornado tools to compile VxSim applications

for Windows is the GNU C/C++ compiler rather than the MicroSoft tools.
535

VxWorks 5.4
Programmer’s Guide
HP-UX

The following is an example of a compiler command line for VxSim development.

The file to be compiled in this example has a base name of applic.

% cchppa -g -ansi -nostdinc -DRW_MULTI_THREAD -D_REENTRANT -O2 \
-fvolitile -fno-builtin -I. -I/wind/target/h -DCUP_SIMHPPA \
-c applic.c

Windows

The following is an example of a compiler command line for VxSim development.

The file to be compiled in this example has a base name of applic.

% ccsimpc -DCPU=SIMNT -mpentium -ansi -nostdinc -g -nostdlib \
-fno-builtin -fno-defer-pop -Wall -DRW_MULTI_THREAD \
-D_REENTRANT -I. -I C:/Tornado/target/h -c applic.c

Option Definitions

The options shown in the example have the following meanings:2

ccsimso
Required; use ccsimso for the Solaris simulator, cchppa for the HP-UX

simulator, and ccsimpc for the Windows simulator.

-DCPU=SIMNT
Required; defines the CPU type. See the table on page Defining the CPU Type,

p.535.

-mpentium
Optional for Windows only; specifies Pentium optimizations.

-ansi
Recommended; supports all ANSI standard C programs.

-nostdinc
Required; searches only the directories specified with the -I flag (see below)

and the current directory for header files. Does not search host-system include

files.

-O2
Optional; implements optimization. Not recommended for the PC simulator.

2. For more information on these and other compiler options, see the GNU ToolKit User’s Guide.

WRS supports compiler options used in building WRS software; see the Guide for a list.

Other options are not supported, although they are available with the tools as shipped.
536

H

H
VxSim
-g
Optional; produces debugging information.

-nostdlib
Required for Windows; does not use the standard system startup files or

libraries when linking.

-fvolatile
Required for Solaris and HP-UX; considers all memory references through

pointers to be volatile.

-fno-builtin
Required; uses library calls even for common library subroutines.

-fno-defer-pop
Required for Windows, optional for UNIX. Causes arguments to each function

call to be popped as soon as the function returns.

-Wall
Optional; enables most warnings.

-DRW_MULTI_THREAD
Required; specifies Rogue Wave multi-threading.

-D_REENTRANT
Required; causes reentrant code to be generated.

-I $WIND_BASE/target/h
Required; includes VxWorks header files. (Additional -I flags may be included

to specify other header files.)

-c Required; specifies that the module is to be compiled only, and not linked for

execution under the host.

applic.language_id
Required; the files to compile. For C compilation, specify a suffix of .c. For C++

compilation, specify a suffix of .cpp. The output is an unlinked object module

with the suffix .o; for the example, the output is applic.o. The object module

format for each simulator is as follows:

Following C++ compilation, the compiled object module (applic.o) is munched.

Munching is the process of scanning an object module for non-local static

objects, and generating data structures that VxWorks run-time support can use

SIMSPARCSOLARIS ELF
SIMHPPA SOM
SIMNT a.out
537

VxWorks 5.4
Programmer’s Guide
to call the object constructors and destructors. See 5.2.5 Munching C++
Application Modules, p.232.

Linking an Application to VxSim

By default, applications can be loaded into VxSim while it is running.

Alternatively, the application can be statically linked to VxSim by modifying the

target makefile.

This information applies to using manual methods on both the built-in version of

VxSim and the optional networking product.

Dynamic Loading

To load your application dynamically into VxSim, follow these steps:

1. Start VxSim as described in Starting VxSim, p.533.

2. From a WindSh window, use the ld() function to load the application

dynamically. For example:

-> ld </usr/tony/application.o
value = 3957696 = 0x3c63c0

A nonzero return value indicates that the load was successful.

As with VxWorks, the Tornado dynamic linker ld() requires a relocatable object

module. The object format is as follows:

! CAUTION: VxSim for HP-UX uses the HP native linker ld rather than the GNU

linker (ldhppa).

Table H-1 Object Formats by VxSim Host

Host Type Object Format Produced By…

Solaris 2 elf ccsimso

HP-UX som cchppa

Windows a.out ccsimpc
538

H

H
VxSim
Static Linking

The other method of linking is to modify the target makefile to link the application

code statically into VxSim when VxSim is built. This method is also useful if you

have already debugged a module and you do not want to download it to the target

every time you start VxSim.

To link the application code statically into VxSim, follow these steps:

1. Add your application modules in the makefile definition of MACH_EXTRA.
The makefile is ${WIND_BASE}/target/config/bspname/Makefile, where

bspname is one of solaris, hpux, or simpc:

MACH_EXTRA = application.o

If your application module is in another directory, specify the pathname.

2. Use make to rebuild VxSim with application.o linked in.

For a discussion of using BSP makefiles to incorporate application modules,

see 8. Configuration and Build.

Partial Linking

Large applications may be managed more effectively by using multiple object files.

Before downloading the application to VxSim, the objects can be combined into a

single file by performing a partial link as shown below:

% /bin/ldsimso -B immediate -N -r -o application.o module1.o \
module2.o ...

% /bin/ld -B immediate -N -r -o application.o module1.o module2.o ...

% /bin/ldsimpc -B immediate -N -r -o application.o module1.o \
module2.o ...

If you want to use CrossWind to debug your application on the HP-UX simulator,

you must run xlinkHppa on the partially-linked object file before downloading it

to VxWorks. For example:

% xlinkHppa application.o

For more information on xlinkHppa, see its reference entry.
539

VxWorks 5.4
Programmer’s Guide
Architecture-Specific Tools

The following tools are available to extract the symbol table from an object file

created for a simulator. The syntax is:

elfXsyms
is used for an ELF file for the Solaris simulator. The syntax is:

elfXsyms < objMod > symTbl

xsymHppa
is used for a SOM file for the HP-UX simulator. The syntax is:

xsymHppa < objMod > symTbl

No tool is required for the Windows simulator. When a symbol table is required,

the loader loads the entire executable but only the symbol table is referenced.

H.4 Architecture Considerations

The information in this section highlights differences between VxSim (both the

built-in and optional versions) and other VxWorks BSPs. These differences should

be taken into consideration as you develop applications on VxSim that will

eventually be ported to another target architecture.

VxSim uses the VxWorks scheduler, which behaves the same way as for any other

VxWorks architecture (see 2. Basic OS). The BSP is extensible; for example, pseudo-

drivers can be written for additional timers, serial drivers, and so forth.

The rest of this section discusses some details of the VxSim implementation.

Differences between VxSim and other VxWorks environments are noted where

appropriate.

Supported Configurations

Most of the optional features and device drivers for VxWorks are supported by

VxSim. The few that are not are hardware devices (SCSI, Ethernet), and ROM

configurations, and so on. The BSP makefile builds only the images vxWorks and

vxWorks.st (standalone VxWorks).
540

H

H
VxSim
The BSP Directory

Aside from the following exceptions, the VxSim BSP is the same as a VxWorks BSP:

■ The sysLib.c module contains the same essential functions: sysModel(),
sysHwInit(), and sysClkConnect() through sysNvRamSet(). Because there is

no bus, sysBusToLocalAdrs() and related functions have no effect.

■ tyCoDrv.c ultimately calls host read() and write() routines on the process’s

true standard input and output. But all the “driver” functions and tyLib.c are

intact.

■ The configuration header config.h is minimal:

– It does not reference a bspname.h file.

– Most network devices are excluded.

– The boot line has no fixed memory location. Instead, it is stored in the

variable sysBootLine in sysLib.c.

■ The Makefile is the standard version for VxWorks BSPs. It does not build boot

ROM images (although the makefile rules remain intact); it can only build

vxWorks and vxWorks.st (standalone) images. The final linking does not

arrange for the TEXT segment to be loaded at a fixed area in RAM, but follows

the usual loading model. The makefile macro MACH_EXTRA is provided so

that users can easily link their application modules into the VxWorks image if

they are using manual build methods.

The BSP file sysLib.c can be extended to emulate the eventual target hardware

more completely.

Interrupts

Solaris and HP-UX

Host signals are used to simulate hardware interrupts. For example, VxSim uses

the SIGALRM signal to simulate system clock interrupts, the SIGPROF signal for

the auxiliary clock, and the SIGVTALRM signal for virtual timer interrupts.

Furthermore, all host file descriptors (such as standard input) are put in

asynchronous mode, so that the SIGIO signal is sent to VxSim when data becomes

ready. The signal handlers are the VxSim equivalent to Interrupt Service Routines

(ISRs) on other VxWorks targets.

You can install ISRs in VxSim to handle these “interrupts.” Not all VxWorks

functions can be called from ISRs; see 2. Basic OS.
541

VxWorks 5.4
Programmer’s Guide
To run ISR code during a future system clock interrupt, use the watchdog timer

facilities. To run ISR code during auxiliary clock interrupts, use the

sysAuxClkxxx() functions.

Table H-2 shows how the interrupt vector table is set up.

Pseudo-drivers can be created to use these interrupts. Interrupt code must be

connected with the standard VxWorks intConnect() mechanism.

For example, to install an ISR that logs a message whenever host signal SIGUSR2
arrives, execute the following:

-> intConnect (31, logMsg, "Help!\n")

Then send signal 31 to VxSim from a host task, for example using the host kill
command. Every time the signal is received, the ISR (logMsg() in this case) runs.

If a VxSim task reads from a host device, the task would normally require a

blocking read; however, this would stop the VxSim process entirely until data is

ready. The alternative is to put the device into asynchronous mode so that a SIGIO
signal is sent whenever data becomes ready. In this case, an input ISR reads the

data, puts it in a buffer, and unblocks some waiting task.

To install an ISR that runs whenever data is ready on some underlying host device,

first open the host device (use u_open(), the underlying host routine, not the

VxSim open() function). Put the file descriptor in asynchronous mode, using the

VxSim-specific routine s_fdint() so that the host sends a SIGIO signal when data

Table H-2 Interrupt Assignments

Interrupts Assigned To

1–32 host signals

33–64 host file descriptors 1-32 (SIGIO)

! CAUTION: Do not use the preprocessor constants SIGUSR1 or SIGUSR2 for this

purpose in VxWorks applications, since those constants evaluate to the VxWorks

definitions for these signals. You need to specify your host’s signal numbers

instead.

! CAUTION: Only SIGUSR1 (16 on Solaris 2 hosts) and SIGUSR2 (17 on Solaris 2

hosts) can be used to represent user-defined interrupts.
542

H

H
VxSim
is ready. Finally, connect the ISR. The following code fragment does this on one of

the host serial ports:

...
fd = u_open ("/dev/ttyb", 2);
s_fdint (fd, 1);
intConnect (32 + fd, ISRfunc, 0);
...

Since VxSim uses the task’s stack when taking interrupts, the task stacks are

artificially inflated to compensate. You may notice this if you spawn a task of a

certain size and then examine the stack size.

Windows

Windows messages are used to simulate hardware interrupts. For example, VxSim

uses messages 0xc000 - 0xc010 to simulate interrupts from ULIP, the pipe back end,

and so forth. The messages are the VxSim equivalent to Interrupt Service Routines

(ISRs) on other VxWorks targets. You can install ISRs in VxSim to handle these

“interrupts.” Not all VxWorks functions can be called from ISRs; see 2. Basic OS. To

run ISR code during a future system clock interrupt, use the watchdog timer

facilities. To run ISR code during auxiliary clock interrupts, use the

sysAuxClkxxx() functions.

Table H-2 shows how the message table is set up.

Pseudo-drivers can be created to use these interrupts. Interrupt code must be

connected with the standard VxWorks intConnect() mechanism.

For example, to install an ISR that logs a message whenever host message

WM_TIMER_CLOCK arrives, execute the following:

-> intConnect (0xc011, logMsg, "Help!\n")

Then send message 0xc011 to VxSim from a host task. Every time the message is

received, the ISR (logMsg() in this case) runs.

If a VxSim task reads from a host device, the task would normally block while

reading; however, this would stop the VxSim process entirely until data is ready.

Table H-3 Interrupt Assignments

Interrupts Assigned To

0xc000-0xc010 host messages

0xc011 on available for user messages
543

VxWorks 5.4
Programmer’s Guide
Instead the device is put into asynchronous mode so that a message is sent

whenever data becomes ready. In this case, an input ISR reads the data, puts it in a

buffer, and unblocks some waiting task.

Since VxSim uses the task’s stack when taking interrupts, the task stacks are

artificially inflated to compensate. You may notice this if you spawn a task of a

certain size and then examine the stack size.

Clock and Timing Issues

Solaris and HP-UX

The execution times of VxSim functions are not, in general, the same as on a real

target. For example, the VxWorks intLock() function is normally very fast because

it just writes to the processor status register. However, under VxSim, intLock() is

relatively slow because it makes a host system call to mask signals.

The clock facilities are provided by the host routine setitimer() (ITIMER_REAL for

the system clock; ITIMER_PROF for the auxiliary clock). The problem with using

ITIMER_REAL for the system clock is that it produces inaccurate timings when

VxSim is swapped out as a host process.3 On the other hand, the timing of VxSim

is, in general, different than on an actual target, so this is not really a problem.

The BSP system clock can be configured to use the virtual timer

(ITIMER_VIRTUAL) in addition to ITIMER_REAL; see sysLib.c. In this way, when

the process is swapped out by the host, VxSim does not count wall-clock elapsed

time as part of simulated elapsed time. VxSim still uses ITIMER_REAL to keep

track of the elapsed time during the wind kernel’s idle loop. Although the addition

of ITIMER_VIRTUAL results in more accurate relative time, the problem is that the

host system becomes increasingly loaded (due to the extra signal generation) and

as a result connections to the outside world (such as the network) become delayed

and can fail.

The spy() facility is built on top of the auxiliary clock (ITIMER_PROF). The task

monitoring occurs during each interrupt of the auxiliary clock to see which task is

executing or if the kernel is executing. Because the profiling timer includes host

system time and user time, discrepancies can occur, especially if intensive host I/O

occurs.

3. Because VxSim is a host process, it shares resources with all other processes and is swapped

in and out. In addition, the kernel’s idle loop has been modified to suspend VxSim until a

signal arrives (rather than busy waiting), thus allowing other processes to run.
544

H

H
VxSim
Windows

The execution times of VxSim functions are not, in general, the same as on a real

target. For example, the VxWorks intLock() function is normally very fast because

it just writes to the processor status register. However, under VxSim, intLock() is

relatively slow because it takes a host semaphore, allowing other processes to run.

The clock facilities are provided by the host routine settimer() for both the system

and auxiliary clocks. The problem with using settimer() for the target system clock

is that it produces inaccurate timings when VxSim is swapped out as a host

process.4 On the other hand, the timing of VxSim is, in general, different than on

an actual target, so this is not really a problem.

The spy() facility is built on top of the auxiliary clock. The task monitoring occurs

during each interrupt of the auxiliary clock to see which task is executing or if the

kernel is executing. Because the profiling timer includes host system time and user

time, discrepancies can occur, especially if intensive host I/O occurs.

H.5 VxSim Networking Component

This section contains information that pertains only to the VxSim optional product.

All information in previous sections also pertains to that product. The VxSim

optional product provides networking facilities. Most of the special considerations

associated with it are network considerations.

If you purchase the optional VxSim component for networking, you must take

additional configuration steps.

■ Install the optional VxSim component using SETUP, either when you install

Tornado 2.0 or at a later time. (For more information, see the Tornado Getting
Started Guide.)

■ Install the appropriate network driver on your host. (See Installing VxSim
Network Drivers, p.546.)

4. Because VxSim is a host process, it shares resources with all other processes and is swapped

in and out. In addition, the kernel’s idle loop has been modified to suspend VxSim until a

signal arrives (rather than busy waiting), thus allowing other processes to run.
545

VxWorks 5.4
Programmer’s Guide
■ Configure VxWorks to use networking, rebuild it, and download it using

either the project facility or manual methods. (See Configuring VxSim for
Networking, p.552.)

Installing VxSim Network Drivers

The SETUP tool writes the appropriate host drivers on your disk, but they must be

installed on your host operating system.

Loading ULIP on a Solaris 2 Host

Two network interfaces, ULIP and PPP, are available for Solaris 2 hosts. ULIP is

provided as the default network interface. Due to its non-portable nature, we

provide PPP as an alternative. At some point in the future, ULIP may no longer be

supported for VxSim on Solaris hosts.

Follow these steps to add the ULIP driver to your Solaris 2 host (replace the leading

path segment installDir with the path to your installed Tornado tree):

% su root
password:
cd installDir/host/sun4-solaris2/bin
./installUlipSolaris
exit
%

The installUlipSolaris script copies ULIP resources to system directories, installs

the loadable ULIP driver into the Solaris kernel, and creates symbolic links which

allow /etc/init.d/ulip to start and stop ULIP upon changes to the system run level5.

! WARNING: Project facility configuration and building of projects is independent

of the methods used for configuring and building applications prior to Tornado 2.0

(which included manually editing config.h and configAll.h). Use of the project

facility is the recommended, and is much simpler. However, the manual method

may still be used (see 8. Configuration and Build for details). Avoid using the two

methods together for the same project except where specific BSP and driver macros

are not available in the project facility.

! CAUTION: ULIP and PPP are not compatible with each other; you must uninstall

one before using the other. If PPP is already installed on your Solaris host, be sure

to remove it (or at least stop service with /etc/init.d/asppp stop) before loading

ULIP.
546

H

H
VxSim
installUlipSolaris creates sixteen ULIP devices, /dev/ulip0 through /dev/ulip15,

and uses the host command ifconfig to configure the devices with default IP

numbers 127.0.1.0 through 127.0.1.15. You will most likely want to match these IP

addresses with host names in /etc/hosts: for example, vxsim0 through vxsim15.

You can also use the following commands to start or stop the Solaris ULIP driver

after the driver has been installed (you must have root privileges):

/etc/init.d/ulip start

/etc/init.d/ulip stop

installUlipSolaris allows two optional arguments:

installUlipSolaris [basic | uninstall]

Using installUlipSolaris with no argument sets ULIP to be installed automatically

when Solaris reboots.

basic
Do not set ULIP to be installed automatically when Solaris reboots. If you

install the ULIP driver using the basic option, you must stop and start ULIP

services each time you reboot your Solaris workstation by invoking

/etc/init.d/ulip manually as shown above.

uninstall
Remove the files and symbolic links created by installUlipSolaris. This script

stops the ULIP driver before uninstalling.

Loading PPP on a Solaris 2 Host

PPP is provided as a portable alternative to ULIP.

5. For more information on run levels, see the Solaris man page for init(1M).

NOTE: installUlipSolaris calls a program called configUlipSolaris and copies it

to /etc/init.d/ulip (in other words, configUlipSolaris and /etc/init.d/ulip are the

same program). If you have questions about the ULIP installation procedure, see

the reference entry for configUlipSolaris as well as for installUlipSolaris in the

VxWorks Reference Manual or the HTML online reference.

! CAUTION: Make sure all VxSim sessions are closed before running

installUlipSolaris or /etc/init.d/ulip.
547

VxWorks 5.4
Programmer’s Guide
Follow these steps to add PPP support to VxSim on your Solaris host.

First, use the command pkginfo to check whether the following packages are

installed on your host:

For example:

% pkginfo | egrep ’ppp|bnu’
system SUNWapppr PPP/IP Asynchronous PPP daemon configuration files
system SUNWapppu PPP/IP Asynchronous PPP daemon and PPP login service
system SUNWpppk PPP/IP and IPdialup Device Drivers
system SUNWbnur Networking UUCP Utilities, (Root)
system SUNWbnuu Networking UUCP Utilities, (Usr)
%

If they are not already installed, mount the Solaris installation disk and change

your working directory to the location of these packages (for example, on a Solaris

2.5.1 CD-ROM they can be found in /cdrom/solaris_2_5_1_sparc/s0/Solaris_2.5.1)

and install them with the following commands:

% su root
Password:
pkgadd -d ‘pwd‘ SUNWbnur SUNWbnuu SUNWpppk SUNWapppr SUNWapppu

Next, as root, copy installDir/target/config/solaris/asppp.cf to the /etc directory as

follows (replace the leading path segment installDir/target/ with the path to your

installed Tornado tree):

cp installDir/target/config/solaris/asppp.cf /etc

! WARNING: The VxWorks Networking Guide states that “the PPP link can serve as

an additional network interface apart from the existing default network interface.”

This is not the case with VxSim when ULIP is used. ULIP and PPP are not

compatible with each other; you must uninstall one before using the other. If you

wish to use PPP and you have already installed ULIP, you must first uninstall ULIP

using installUlipSolaris uninstall (see Loading ULIP on a Solaris 2 Host, p.546).

SUNWapppr PPP/IP Asynchronous PPP daemon configuration files

SUNWapppu PPP/IP Asynchronous PPP daemon and PPP login service

SUNWpppk PPP/IP and IPdialup Device Drivers

SUNWbnur Networking UUCP Utilities, (Root)

SUNWbnuu Networking UUCP Utilities, (Usr)

! CAUTION: If you already have aspppd running, stop it with asppp stop before

proceeding.
548

H

H
VxSim
Finally, start the PPP daemon aspppd by typing the following as root:

/etc/init.d/asppp start

The PPP driver is now installed and running on your Solaris system, and will be

restarted automatically when Solaris reboots.

The PPP configuration assigns IP addresses 127.0.1.0 through 127.0.1.15 to sixteen

devices, and associates with them the peer system names vxsim0 through

vxsim15, respectively.

You can also use the following commands to start or stop the Solaris PPP driver

after the driver has been installed (you must have root privileges):

/etc/init.d/asppp start

/etc/init.d/asppp stop

Loading SLIP on a HP-UX Host

Some additional configuration of your system is required to complete the

connection. Perform the following steps to configure SLIP:

1. Update your ppl.remotes file.

HP-UX uses ppl to configure pty lines for SLIP (see the HP-UX man page for

ppl). Each SLIP line requires a ppl process. When a ppl process is initiated, its

configuration parameters are read from the configuration file

/etc/ppl/ppl.remotes.

(a) If you use none of your SLIP lines for other applications, you may replace

/etc/ppl/ppl.remotes with the provided configuration file

installDir/target/config/hpux/ppl.remotes.hpux10:

% su
cd /etc/ppl
mv ppl.remotes ppl.remotes.bak
cp installDir/target/config/hpux/ppl.remotes.hpux10 ppl.remotes

(b) If your system is already using SLIP, /etc/ppl/ppl.remotes contains

working data, not just comments and a template for future additions.

Edit /etc/ppl/ppl.remotes and import the entries from

installDir/target/config/hpux/ppl.remotes.hpux10. Be sure to adhere to

the format restrictions of the ppl.remotes file, or the PPL software can not

parse the entries.

See your system administrator with any concerns.
549

VxWorks 5.4
Programmer’s Guide
2. Start the ppl process.

% su
ppl -o -t /dev/ptym/ptyr n 192.168.1. n

Each simulator should have a unique pseudo-terminal device, the second

argument of the ppl command, in the range ptyr0 to ptyr9. If one of these

pseudo-terminals is already in use, choose another set of pseudo-terminals to

use, such as ptyq0 to ptyq9. (Examine the directory /dev/ptym for the

complete collection of pseudo-terminal devices.)

The last argument to ppl is the IP address of the VxWorks target. In the case

shown above, n corresponds to the VxWorks processor number. Each

simulator must have its own ppl process. For example, to add a PPL

connection for VxWorks processor number 5, use the following command:

ppl -o -t /dev/ptym/ptyr5 192.168.1.5

3. Enable IP packet forwarding.

By default, the VxSim BSP is built to use SLIP over the network on an HP-UX

host. To ping() two VxSim targets, IP packet forwarding must be enabled.

To view the current ip_forwarding flag status, use the following command:

% ndd /dev/ip ip_forwarding

To enable IP packet forwarding, set the parameter ip_forwarding in the IP

driver to one:

% ndd -set /dev/ip ip_forwarding 1

NOTE: If you use a pty group other than the default, you must redefine

SLIP_PSEUDO_TTY_PATH in config.h. This macro can not be configured using the

project facility. For this reason, while you must configure it manually, doing so

does not prevent you from using the project facility to configure the rest of your

project.

! CAUTION: HP-UX kernels allow only two SLIP network interfaces to operate at

one time. If you want to run more than two simulators, you must rebuild your

HP-UX kernel. The parameter that sets the number of interfaces is NNI in

/usr/conf/master.d/net. Do not configure more than 10 network interfaces, as this

is the maximum number allowed according to the file /usr/conf/net/if_ni.h.

NOTE: You have to be ’root’ to use ndd.
550

H

H
VxSim
4. Check your network interface.

netstat -i

For example, if you started two SLIP connections (0 and 1), you would see the

following lines in the network interface table:

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ni0 1006 192 192.168.2.0 0 0 0 0 0
ni1 1006 192 192.168.2.1 0 0 0 0 0

Installing ULIP on a Windows NT Host

For Windows hosts, the VxSim BSP includes an NDIS driver called the ULIP

driver. Follow these steps to add the ULIP driver to your Windows host.

From the Start menu select Settings>Control Panel>Network. Click the Adapters tab in

the Network window, click the Add button, and click Have Disk in the Select Network
Adaptor window. Enter the path to the installation file, for example,

C:\Tornado\host\x86-win32\bin and click OK. Click on Ulip Virtual Adapter and

click OK (see Figure H-1). ULIP is added to the Network Adapters list.

Figure H-1 Installing the Ulip Virtual Adapter
551

VxWorks 5.4
Programmer’s Guide
Click OK. The TCP/IP Properties window opens. Select Ulip Virtual Adapter in the

Adapter drop-down list. Enter an IP address of the form nn.0.0.255 (for example,

90.0.0.255). For a discussion of network addressing in general and ULIP in

particular, see IP Addressing, p.555.

Click OK and restart the computer to cause the new settings to take effect.

Configuring VxSim for Networking

As with any other BSP, adding components to VxWorks requires including them,

rebuilding VxWorks, the downloading and restarting it. The easiest method for

doing this is to use the project facility. However, if you have used manual methods

in your project, you should continue to use those methods.

For a discussion of networking as it relates to VxSim, see H.5 VxSim Networking
Component, p.545.

Using the Project Tool

Use the Create Project facility to create a bootable VxWorks image. On the VxWorks

tab in the Project Workspace window, select the folder called network components.
Right click and select Include ‘network components’ from the context menu. Click OK
to accept the defaults. Then rebuild and download VxWorks.

If you want to use multiple simulators simultaneously and you are using ULIP,

you must also locate ULIP on the list in the Include Folder and check it before

clicking OK. In this case, you must also change your target server configuration

from wdbpipe to wdbrpc before connecting it to the new VxWorks image.

If you are using PPP, be sure BSD43 Compatible Sockets is not selected in the Include

Folder.

For more information on using the configuration tool, see the Tornado User’s Guide:
Projects.

Using Manual Techniques

For all hosts, be sure that INCLUDE_NETWORK is defined in config.h. If you want

to use multiple simulators simultaneously and you are using ULIP on Solaris, also

add the following to config.h:

#undef WDB_COMM_TYPE
#define WDB_COMM_TYPE WDB_COMM_NETWORK
552

H

H
VxSim
If you are using ULIP on Windows NT with multiple simulators, also add the

following to config.h:

#define WDB_COMM_END
#define INCLUDE_NT_ULIP

If you are using PPP, be sure the following is defined in config.h:

#ifdef BSD43_COMPATIBLE
#undef BSD43_COMPATIBLE
#endif

Then rebuild and download VxWorks.

You must also change your target server configuration from wdbpipe to wdbrpc.

For additional information on configuring BSPs using manual methods, see the

VxWorks Networking Guide.

Running Multiple Simulators

When you install the optional VxSim component, your system is automatically

configured to run up to 16 simulators. When you start VxSim from the GUI,

vxsim0 starts. To start additional instances, use the command line or the Windows

Start>Run facility. The command takes the following forms (where n is the

processor number):

System Mode Debugging

Including the simulator networking facility means that system mode debugging

can be done without using the WDB pipe back end. SLIP, PPP, and ULIP on

Windows all allow the network connection to be used for both network packets

and host-target communications. However, special considerations apply to using

ULIP on Solaris in this way.

Although it is possible to use the network connection for system mode debugging

and use a back end other than the WDB pipe back end, the recommended method

is to use the default, WDB pipe, even when networking is installed.

UNIX: vxWorks -p n

Windows: vxWorks /p n
553

VxWorks 5.4
Programmer’s Guide
ULIP on Solaris Without WDB Pipe Back End

To use system mode debugging with ULIP on Solaris and no WDB pipe back end,

you must enable a different ULIP channel for the target agent (the part of Tornado

that resides on the target) than is used by the rest of VxWorks. This allows

communications with the Tornado tools to proceed independently of the VxWorks

operating system.

Changing WDB_COMM_TYPE to WDB_COMM_ULIP enables additional ULIP

channels. This can be done either manually or using the project facility (see Tornado
User’s Guide: Projects).

With no further configuration changes, the target agent uses /dev/ulip14 and the

corresponding IP address (127.0.1.14) as its debugging channel to the Tornado host

tools. (VxWorks networking calls continue to connect to whatever ULIP channel

you specify with the -p option if you start VxSim from the command line.)

Connect the target server to your modified VxSim using the target name vxsim14.

In system mode, the target name identifies the debugging ULIP channel.

The ULIP channel corresponding to the -p option (0 by default) also remains in use

for the simulated VxWorks session, even in system mode. Thus, the IP address

corresponding to the -p option is always the IP address to communicate with

applications on the simulated VxWorks target, regardless of whether or not

system-mode debugging is in effect. The only VxSim IP traffic that uses a different

channel in system mode is between the target agent and the Tornado host tools.

If you wish to arrange another ULIP channel for system-mode debugging, change

or override the WDB_ULIP_DEV definition in

installDir/target/config/all/configAll.h, and use a target name to match.

! WARNING: A single Solaris ULIP channel cannot be used for two purposes at one

time. Thus, you must not use -p 14 with a VxSim that has system mode enabled on

the default channel. Similarly, you can only use system mode (over the default

channel) with one VxSim at a time, though you can still debug multiple VxSim

processes in task mode at the same time.
554

H

H
VxSim
IP Addressing

All of the networking facilities available under VxWorks—for example, sockets,

RPC, NFS—are available with VxSim. For VxSim to communicate with the outside

world, it must have its own target IP address as provided through a network

interface.

Internet addressing is handled slightly differently among the available network

interfaces. For each VxSim process, there are three associated IP addresses:

■ Target IP – the address of each VxSim process, internal to your host.

■ Local IP – your host’s address on the VxSim network, internal to your host.

■ Host IP – your host’s address according to the network at your site.

The target IP address and the local IP address communicate according to the

protocol of the chosen network interface. The host IP address is not directly

relevant to the VxSim network.

Figure H-2 VxSim IP Addressing

VxSim

External
Ethernet

host IP

hostULIP, PPP, SLIP

Network

Network

local IP n=1

target IP n=1

vxsim1

local IP n=0

target IP n=0

vxsim0
555

VxWorks 5.4
Programmer’s Guide
Addressing is according to processor number, such that when you run VxSim with

processor number n (with the command vxWorks -p n), the network addresses

packets as shown in Table H-4.

Choosing Processor Numbers for Distinct Devices

ULIP (Solaris 2, Windows NT)

When you run VxSim with ULIP and specify processor number n (with the

command vxWorks -p n), VxSim for Solaris attaches to /dev/ulipn and uses IP

address 127.0.1.n. VxSim for Windows attaches to the IP number you specified

when installing ULIP, which must not be 127.n.n.n.

Only one process at a time can open the same ULIP device; this is enforced in the

ULIP driver. Thus, if you want multiple VxSim targets to use ULIP, you must give

each of them a distinct processor number. If another VxSim process is already

running with the same processor number, then the ULIP device cannot be opened

(ulip0 corresponds to processor 0), and the following message is displayed during

the startup of VxSim:

Solaris (0xd translates to S_errno_EACCES):

ulipInit failed, errno = 0xd

Windows NT:

Error -
An Integrated Simulator is already running.
Only one may be running at a time.
To run multiple simulators, use the optional Full Simulator.
Hit Any Key to Exit

Table H-4 VxSim Network Addressing

Network Interface Local IP Target IP

ULIP: Solaris

Windows

host IP addr
host IP addr

127.0.1.n
90.0.0.n*

* Note that you can use 90.n.n.n or any other

number except 127.n.n.n for a target IP

address on a Windows host. 127 is

reserved for other purposes on Windows.

PPP 127.0.1.254 127.0.1.n

SLIP 192.168.2.n 192.168.1.n
556

H

H
VxSim
When you run VxSim, usrConfig.c creates host entries for vxsim0 through

vxsim15 and adds a default route to the host.

PPP (Solaris 2)

When you run VxSim with PPP and specify processor number n (with the

command vxWorks -p n), VxSim creates a network connection to the IP address

127.0.1.n by communicating through a pipe. Normally, VxWorks uses PPP over a

serial device to connect to the host (see VxWorks Networking Guide). The only

difference with PPP is that a pipe replaces the physical serial link.

SLIP (HP-UX)

When you run VxSim with SLIP and specify processor number n (with the

command vxWorks -p n), VxSim creates a network connection to the IP address

specified when you started the ppl process (192.168.1.n) by attaching to a pty
device (see Loading SLIP on a HP-UX Host, p.549). Normally, VxWorks uses SLIP

over a serial device to connect to the host (see VxWorks Networking Guide). The only

difference with VxSim is that a pty device replaces the physical serial link.

Setting Up Remote Access

You can add host-specific routing entries to the local host to allow remote hosts to

connect to a local VxSim “target.” IP addresses are set up only for the host where

the network simulation software is installed (see Setting Up Remote Access, p.557).

The network interface does not have to be installed remotely; the remote host uses

the local host as the gateway to the VxSim target.

In the example shown in Figure H-2, host1 can communicate with vxsim0 or

vxsim1 if the following steps are taken:

On UNIX, the following commands are issued on host1 (as root):

% route add host 127.0.1.0 90.0.0.1 1
% route add host 127.0.1.1 90.0.0.1 1

! WARNING: The VxSim ULIP driver will not attach to a network interface if it is

already in use, that is, ul0 can be used by only one VxSim process. Use the -p flag

to run VxSim with a different processor number; see Starting VxSim, p.533.
557

VxWorks 5.4
Programmer’s Guide
On Windows, the following are added to

C:\WINNT\SYSTEM32\drivers\etc\hosts:

90.0.1.0 vxsim0
90.0.1.1 vxsim1

ULIP is used in this example, but the concept is identical under PPP or SLIP.

Contrast Figure H-3 below with Figure H-2, p. 555, to see the way addresses are set

up, paying particular attention to the addressing algorithm described in

Table H-4.

Verify the success of the above commands by pinging vxsim0 from host1:

% ping 127.0.1.0

To allow a VxSim process on one host to communicate with a VxSim process on a

different host, you must make sure that the two VxSim processes have different IP

addresses. You must also make additional host-specific routes using unique

addresses for each process.

For example, to ping vxsim2 from host0 above, you must add an additional route

from host0 as follows:

% route add host 192.168.1.3 90.0.0.2 1

Figure H-3 Example of VxSim IP Addressing (ULIP on Solaris)

VxSim

External

Ethernet

90.0.0.1 90.0.0.2

host1host0

Network

Network

90.0.0.11

127.0.1.1

vxsim1

90.0.0.1

127.0.1.0

vxsim0

90.0.0.2

127.0.1.2

vxsim2
558

H

H
VxSim
Setting up the Shared Memory Network (UNIX only)

Many VxWorks users connect multiple CPU boards through a backplane (for

example, VMEbus), which allows the boards to communicate through shared

memory. VxWorks provides a standard network driver to access this shared

memory so that all the higher level network protocols are available over the

backplane. In a typical configuration, one of the CPU boards (CPU 0)

communicates with the host using Ethernet. The rest of the CPU boards

communicate with each other and the host using the shared memory network,

using CPU 0 as a gateway to the outside world. For more information on this

configuration in a normal VxWorks environment, see VxWorks Networking Guide.

This configuration can be emulated for VxSim. Multiple VxSim processes use a

host shared-memory region as the basis for the shared memory network (see

Figure H-4).

To set this up, use a subnet mask of 0xffffff00 to create a 127.0.2.0 subnet (from the

127.0.0.0 network) for the shared memory network. The following steps are

required.

NOTE: The Solaris simulator automatically assigns addresses starting with 127.

You assign addresses for the HP-UX and Windows simulators when you install

SLIP or ULIP. Windows can not use addresses starting with 127.

Figure H-4 VxSim Shared Memory Network

127.0.1.0:ffffff00

Shared Memory Network

127.0.2.50:ffffff00 127.0.2.51:ffffff00

master

host

ULIP

90.0.0.1
Ethernet

(vxsim0) processor 1

(UNIX)
559

VxWorks 5.4
Programmer’s Guide
1. Use the bootChange() command from the Tornado shell to change the

following boot parameter on CPU 0. You must specify the subnet mask, as

follows:

inet on backplane (b): 127.0.2.50:ffffff00

2. Restart VxSim by typing ^X. When VxSim boots, it sets up the shared-memory

network and prints the address of the shared memory region it has created (in

the VxSim console window, with the other boot messages).

3. Start CPU 1 (vxWorks -p 1), attach the Tornado target server to it, and then use

bootChange() to set the following boot parameters on CPU 1. For the boot

device parameter, use the address printed in step 2. Leave the “inet on

ethernet” parameter blank by typing a period (.).

boot device : sm=sharedMemoryRegion
inet on ethernet (e) : .
inet on backplane (b) : 127.0.2.51:ffffff00
gateway inet (g) : 127.0.2.50

4. Quit CPU 1 and restart it. When it comes up again, it should attach to the

shared memory network. To verify that everything is working correctly, ping

CPU 1 (from a shell attached to CPU 0) with the following command:

-> ping "127.0.2.51"

5. Until you configure your UNIX routing table or Windows hosts file with

information on how to reach the new subnet, you will be unable to use

network communication between CPU 1 and the host over the shared memory

network. To configure the route from UNIX, use the following commands:

% su root
password:
route add net 127.0.2.0 127.0.1.0 1
exit
%

NOTE: Any time you need to attach a VxSim process within the subnet to the target

server, you need to specify it by its new IP address rather than by hostname. All

VxSim processors other than 0 are no longer directly accessible to the external

network; the processors use vxsim0 as the gateway. The hostnames normally

associated with VxSim IP addresses cannot be used, since the routing table entries

point to their usual IP addresses. For example, vxsim1 is normally associated with

IP address 127.0.1.1; with the shared memory network active, CPU 1 must be

addressed through the subnet as 127.0.2.51.
560

H

H
VxSim
6. Verify that you can now communicate from the host to CPU 1 over the shared

memory network by using ping from the host to CPU 1.

% ping 127.0.2.51

Note that if you attempt to access CPU 1 through its normally associated IP

address, it appears to be unavailable:

% ping 127.0.1.1
ping: no answer

For more information on the shared memory network and network configuration,

see VxWorks Networking Guide.

NOTE: The optional product VxMP can be used with VxSim. This product

provides shared semaphores and other shared memory objects to multiple

VxWorks targets over the backplane. VxMP is sold separately. It is not available for

the PC simulator.
561

VxWorks 5.4
Programmer’s Guide
562

I
Coding Conventions
I.1 Introduction

This document defines the Wind River Systems standard for all C code and for the

accompanying documentation included in source code. The conventions are

intended, in part, to encourage higher quality code; every source module is

required to have certain essential documentation, and the code and

documentation is required to be in a format that has been found to be readable and

accessible.

The conventions are also intended to provide a level of uniformity in the code

produced by different programmers. Uniformity allows programmers to work on

code written by others with less overhead in adjusting to stylistic differences. Also

it allows automated processing of the source; tools can be written to generate

reference entries, module summaries, change reports, and so on.

The conventions described here are grouped as follows:

■ File Headings. Regardless of the programming language, a single convention

specifies a heading at the top of every source file.

■ C Coding Conventions
563

VxWorks 5.4
Programmer’s Guide
I.2 File Heading

Every file containing C code—whether it is a header file, a resource file, or a file

that implements a host tool, a library of routines, or an application—must contain

a standard file heading. The conventions in this section define the standard for the

heading that must come at the beginning of every source file.

The file heading consists of the blocks described below. The blocks are separated

by one or more empty lines and contain no empty lines within the block. This

facilitates automated processing of the heading.

■ Title: The title consists of a one-line comment containing the tool, library, or

applications name followed by a short description. The name must be the

same as the file name. This line will become the title of automatically generated

reference entries and indexes.

■ Copyright: The copyright consists of a single-line comment containing the

appropriate copyright information.

■ Modification History: The modification history consists of a comment block: in

C, a multi-line comment. Each entry in the modification history consists of the

version number, date of modification, initials of the programmer who made

the change, and a complete description of the change. If the modification fixes

an SPR, then the modification history must include the SPR number.

The version number is a two-digit number and a letter (for example, 03c). The

letter is incremented for internal changes, and the number is incremented for

large changes, especially those that materially affect the module’s external

interface.

The following example shows a standard file heading from a C source file:

Example I-1 Standard File Heading (C Version)

/* fooLib.c - foo subroutine library */

/* Copyright 1984-1995 Wind River Systems, Inc. */

/*
modification history

02a,15sep92,nfs added defines MAX_FOOS and MIN_FATS.
01b,15feb86,dnw added routines fooGet() and fooPut();

added check for invalid index in fooFind().
01a,10feb86,dnw written.
*/
564

I

I
Coding Conventions
I.3 C Coding Conventions

These conventions are divided into the following categories:

■ Module Layout
■ Subroutine Layout
■ Code Layout
■ Naming Conventions
■ Style
■ Header File Layout
■ Documentation Generation

I.3.1 C Module Layout

A module is any unit of code that resides in a single source file. The conventions in

this section define the standard module heading that must come at the beginning

of every source module following the standard file heading. The module heading

consists of the blocks described below; the blocks should be separated by one or

more blank lines.

After the modification history and before the first function or executable code of

the module, the following sections are included in the following order, if

appropriate:

■ General Module Documentation: The module documentation is a C comment

consisting of a complete description of the overall module purpose and

function, especially the external interface. The description includes the

heading INCLUDE FILES: followed by a list of relevant header files.

■ Includes: The include block consists of a one-line C comment containing the

word includes followed by one or more C pre-processor #include directives.

This block groups all header files included in the module in one place.

■ Defines: The defines block consists of a one-line C comment containing the

word defines followed by one or more C pre-processor #define directives. This

block groups all definitions made in the module in one place.

■ Typedefs: The typedefs block consists of a one-line C comment containing the

word typedefs followed by one or more C typedef statements, one per line. This

block groups all type definitions made in the module in one place.

■ Globals: The globals block consists of a one-line C comment containing the

word globals followed by one or more C declarations, one per line. This block
565

VxWorks 5.4
Programmer’s Guide
groups together all declarations in the module that are intended to be visible

outside the module.

■ Locals: The locals block consists of a one-line C comment containing the word

locals followed by one or more C declarations, one per line. This block groups

together all declarations in the module that are intended not to be visible

outside the module.

■ Forward Declarations: The forward declarations block consists of a one-line C

comment containing the words forward declarations followed by one or more

ANSI C function prototypes, one per line. This block groups together all the

function prototype definitions required in the module. Forward declarations

must only apply to local functions; other types of functions belong in a header

file.

The format of these blocks is shown in the following example (which also includes

the file heading specified earlier).

Example I-2 C File and Module Headings

/* fooLib.c - foo subroutine library */

/* Copyright 1984-1995 Wind River Systems, Inc. */

/*
modification history

02a,15sep92,nfs added defines MAX_FOOS and MIN_FATS.
01b,15feb86,dnw added routines fooGet() and fooPut();

added check for invalid index in fooFind().
01a,10feb86,dnw written.
*/

/*
DESCRIPTION
This module is an example of the Wind River Systems C coding conventions.
...
INCLUDE FILES: fooLib.h
*/

/* includes */

#include "vxWorks.h"
#include "fooLib.h"

/* defines */

#define MAX_FOOS 112 /* max # of foo entries */
#define MIN_FATS 2 * min # of FAT copies */

/* typedefs */
566

I

I
Coding Conventions
typedef struct fooMsg /* FOO_MSG */
{
VOIDFUNCPTR func; /* pointer to function to invoke */
int arg [FOO_MAX_ARGS]; /* args for function */
} FOO_MSG;

/* globals */

char * pGlobalFoo; /* global foo table */

/* locals */

LOCAL int numFoosLost; /* count of foos lost */

/* forward declarations */

LOCAL int fooMat (list * aList, int fooBar, BOOL doFoo);
FOO_MSG fooNext (void);
STATUS fooPut (FOO_MSG inPar);

I.3.2 C Subroutine Layout

The following conventions define the standard layout for every subroutine.

Each subroutine is preceded by a C comment heading consisting of documentation

that includes the following blocks. There should be no blank lines in the heading,

but each block should be separated with a line containing a single asterisk (*) in the

first column.

■ Banner: This is the start of a C comment and consists of a slash character (/)
followed by 75 asterisks (*) across the page.

■ Title: One line containing the routine name followed by a short, one-line

description. The routine name in the title must match the declared routine

name. This line becomes the title of automatically generated reference entries

and indexes.

■ Description: A full description of what the routine does and how to use it.

■ Returns: The word RETURNS: followed by a description of the possible result

values of the subroutine. If there is no return value (as in the case of routines

declared void), enter:

RETURNS: N/A

Mention only true returns in this section—not values copied to a buffer given

as an argument.
567

VxWorks 5.4
Programmer’s Guide
■ Error Number: The word ERRNO: followed by all possible errno values

returned by the function. No description of the errno value is given, only the

errno value and only in the form of a defined constant.1

The subroutine documentation heading is terminated by the C end-of-comment

character (*/), which must appear on a single line, starting in column one.

The subroutine declaration immediately follows the subroutine heading.2 The

format of the subroutine and parameter declarations is shown in I.3.3 C Declaration
Formats, p.568.

Example I-3 Standard C Subroutine Layout:

/**
*
* fooGet - get an element from a foo
*
* This routine finds the element of a specified index in a specified
* foo. The value of the element found is copied to <pValue>.
*
* RETURNS: OK, or ERROR if the element is not found.
*
* ERRNO:
* S_fooLib_BLAH
* S_fooLib_GRONK
*/

STATUS fooGet
(
FOO foo, /* foo in which to find element */
int index, /* element to be found in foo */
int * pValue /* where to put value */
)
{
...
}

I.3.3 C Declaration Formats

Include only one declaration per line. Declarations are indented in accordance

with Indentation, p.572, and are typed at the current indentation level.

The rest of this section describes the declaration formats for variables and

subroutines.

1. A list containing the definitions of each errno is maintained and documented separately.

2. The declaration is used in the automatic generation of reference entries.
568

I

I
Coding Conventions
Variables

■ For basic type variables, the type appears first on the line and is separated from

the identifier by a tab. Complete the declaration with a meaningful one-line

comment. For example:

unsigned rootMemNBytes; /* memory for TCB and root stack */
int rootTaskId; /* root task ID */
BOOL roundRobinOn; /* boolean for round-robin mode */

■ The * and ** pointer declarators belong with the type. For example:

FOO_NODE * pFooNode; /* foo node pointer */
FOO_NODE ** ppFooNode; /* pointer to the foo node pointer */

■ Structures are formatted as follows: the keyword struct appears on the first

line with the structure tag. The opening brace appears on the next line,

followed by the elements of the structure. Each structure element is placed on

a separate line with the appropriate indentation and comment. If necessary,

the comments can extend over more than one line; see Comments, p.574, for

details. The declaration is concluded by a line containing the closing brace, the

type name, and the ending semicolon. Always define structures (and unions)

with a typedef declaration, and always include the structure tag as well as the

type name. Never use a structure (or union) definition to declare a variable

directly. The following is an example of acceptable style:

typedef struct symtab /* SYMTAB - symbol table */
 {
 OBJ_CORE objCore; /* object maintanance */
 HASH_ID nameHashId; /* hash table for names */
 SEMAPHORE symMutex; /* symbol table mutual exclusion sem */
 PART_ID symPartId; /* memory partition id for symbols */
 BOOL sameNameOk; /* symbol table name clash policy */
 int nSymbols; /* current number of symbols in table */
 } SYMTAB;

This format is used for other composite type declarations such as union and

enum.

The exception to never using a structure definition to declare a variable

directly is structure definitions that contain pointers to structures, which

effectively declare another typedef. This exception allows structures to store

pointers to related structures without requiring the inclusion of a header that

defines the type.
569

VxWorks 5.4
Programmer’s Guide
For example, the following compiles without including the header that defines

struct fooInfo (so long as the surrounding code never delves inside this

structure):

By contrast, the following cannot compile without including a header file to

define the type FOO_INFO:

Subroutines

There are two formats for subroutine declarations, depending on whether the

subroutine takes arguments.

■ For subroutines that take arguments, the subroutine return type and name

appear on the first line, the opening parenthesis on the next, followed by the

arguments to the routine, each on a separate line. The declaration is concluded

by a line containing the closing parenthesis. For example:

int lstFind
(
LIST * pList, /* list in which to search */
NODE * pNode /* pointer to node to search for */
)

■ For subroutines that take no parameters, the word void in parentheses is

required and appears on the same line as the subroutine return type and name.

For example:

STATUS fppProbe (void)

CORRECT: typedef struct tcbInfo
{
struct fooInfo * pfooInfo;
...
} TCB_INFO;

INCORRECT: typedef struct tcbInfo
{
FOO_INFO * pfooInfo;
...
} TCB_INFO;
570

I

I
Coding Conventions
I.3.4 C Code Layout

The maximum length for any line of code is 80 characters.

The rest of this section describes the conventions for the graphic layout of C code,

and covers the following elements:

■ vertical spacing
■ horizontal spacing
■ indentation
■ comments

Vertical Spacing

■ Use blank lines to make code more readable and to group logically related

sections of code together. Put a blank line before and after comment lines.

■ Do not put more than one declaration on a line. Each variable and function

argument must be declared on a separate line. Do not use comma-separated

lists to declare multiple identifiers.

■ Do not put more than one statement on a line. The only exceptions are the for
statement, where the initial, conditional, and loop statements can go on a

single line:

for (i = 0; i < count; i++)

or the switch statement if the actions are short and nearly identical (see the

switch statement format in Indentation, p.572).

The if statement is not an exception: the executed statement always goes on a

separate line from the conditional expression:

if (i > count)
i = count;

■ Braces ({ and }) and case labels always have their own line.

Horizontal Spacing

■ Put spaces around binary operators, after commas, and before an open

parenthesis. Do not put spaces around structure members and pointer

operators. Put spaces before open brackets of array subscripts; however, if a
571

VxWorks 5.4
Programmer’s Guide
subscript is only one or two characters long, the space can be omitted. For

example:

status = fooGet (foo, i + 3, &value);
foo.index
pFoo->index
fooArray [(max + min) / 2]
string[0]

■ Line up continuation lines with the part of the preceding line they continue:

a = (b + c) *
(d + e);

status = fooList (foo, a, b, c,
d, e);

if ((a == b) &&
(c == d))
...

Indentation

■ Indentation levels are every four characters (columns 1, 5, 9, 13, …).

■ The module and subroutine headings and the subroutine declarations start in

column one.

■ Indent one indentation level after:

– subroutine declarations

– conditionals (see below)

– looping constructs

– switch statements

– case labels

– structure definitions in a typedef

■ The else of a conditional has the same indentation as the corresponding if.

Thus the form of the conditional is:

if (condition)
{
statements
}

else
{
statements
}

572

I

I
Coding Conventions
The form of the conditional statement with an else if is:

if (condition)
{
statements
}

else if (condition)
{
statements
}

else
{
statements
}

■ The general form of the switch statement is:

switch (input)
{
case 'a':

...
break;

case 'b':
...
break;

default:
...
break;

}

If the actions are very short and nearly identical in all cases, an alternate form

of the switch statement is acceptable:

switch (input)
{
case 'a': x = aVar; break;
case 'b': x = bVar; break;
case 'c': x = cVar; break;
default: x = defaultVar; break;
}

■ Comments have the same indentation level as the section of code to which they

refer (see Comments, p.574).

■ Section braces ({ and }) have the same indentation as the code they enclose.
573

VxWorks 5.4
Programmer’s Guide
Comments

■ Place comments within code so that they precede the section of code to which

they refer and have the same level of indentation. Separate such comments

from the code by a single blank line.

– Begin single-line comments with the open-comment and end with the

close-comment, as in the following:

/* This is the correct format for a single-line comment */

foo = MAX_FOO;

– Begin and end multi-line comments with the open-comment and close-

comment on separate lines, and precede each line of the comment with an

asterisk (*), as in the following:

/*
* This is the correct format for a multiline comment
* in a section of code.
*/

foo = MIN_FOO;

■ Compose multi-line comments in declarations and at the end of code

statements with one or more one-line comments, opened and closed on the

same line. For example:

int foo
(
int a, /* this is the correct format for a */

/* multiline comment in a declaration */
BOOL b /* standard comment at the end of a line */
)

{
day = night; /* when necessary, a comment about a line */

/* of code can be done this way */
}

I.3.5 C Naming Conventions

The following conventions define the standards for naming modules, routines,

variables, constants, macros, types, and structure and union members. The

purpose of these conventions is uniformity and readability of code.
574

I

I
Coding Conventions
■ When creating names, remember that the code is written only once, but read

many times. Assign names that are meaningful and readable; avoid obscure

abbreviations.

■ Names of routines, variables, and structure and union members are composed

of upper- and lowercase characters and no underbars. Capitalize each “word”

except the first:

aVariableName

■ Names of defined types (defined with typedef), and constants and macros

(defined with #define), are all uppercase with underbars separating the words

in the name:

A_CONSTANT_VALUE

■ Every module has a short prefix (two to five characters). The prefix is attached

to the module name and all externally available routines, variables, constants,

macros, and typedefs. (Names not available externally do not follow this

convention.)

■ Names of routines follow the module-noun-verb rule. Start the routine name

with the module prefix, followed by the noun or object that the routine

manipulates. Conclude the name with the verb or action the routine performs:

■ Every header file defines a preprocessor symbol that prevents the file from

being included more than once. This symbol is formed from the header file

name by prefixing __INC and removing the dot (.). For example, if the header

file is called fooLib.h, the multiple inclusion guard symbol is:

__INCfooLibh

■ Pointer variable names have the prefix p for each level of indirection. For

example:

FOO_NODE * pFooNode;
FOO_NODE ** ppFooNode;
FOO_NODE *** pppFooNode;

fooLib.c module name

fooObjFind subroutine name

fooCount variable name

FOO_MAX_COUNT constant

FOO_NODE type

fooObjFind foo - object - find

sysNvRamGet system - NVRAM - get

taskSwitchHookAdd task - switch hook - add
575

VxWorks 5.4
Programmer’s Guide
I.3.6 C Style

The following conventions define additional standards of programming style:

■ Comments: Insufficiently commented code is unacceptable.

■ Numeric Constants: Use #define to define meaningful names for constants. Do

not use numeric constants in code or declarations (except for obvious uses of

small constants like 0 and 1).

■ Boolean Tests: Do not test non-booleans as you test a boolean. For example,

where x is an integer:

Similarly, do not test booleans as non-booleans. For example, where

libInstalled is declared as BOOL:

■ Private Interfaces: Private interfaces are functions and data that are internal to

an application or library and do not form part of the intended external user

interface. Place private interfaces in a header file residing in a directory named

private. End the name of the header file with an uppercase P (for private). For

example, the private function prototypes and data for the commonly used

internal functions in the library blahLib would be placed in the file

private/private/blahLibP.h.

■ Passing and Returning Structures: Always pass and return pointers to

structures. Never pass or return structures directly.

■ Return Status Values: Routines that return status values should return either

OK or ERROR (defined in vxWorks.h). The specific type of error is identified

by setting errno. Routines that do not return any values should return void.

■ Use Defined Names: Use the names defined in vxWorks.h wherever possible.

In particular, note the following definitions:

– Use TRUE and FALSE for boolean assignment.

– Use EOS for end-of-string tests.

– Use NULL for zero pointer tests.

– Use IMPORT for extern variables.

– Use LOCAL for static variables.

– Use FUNCPTR or VOIDFUNCPTR for pointer-to-function types.

CORRECT: if (x == 0)

INCORRECT: if (! x)

CORRECT: if (libInstalled)

INCORRECT: if (libInstalled == TRUE)
576

I

I
Coding Conventions
I.3.7 C Header File Layout

Header files, denoted by a .h extension, contain definitions of status codes, type

definitions, function prototypes, and other declarations that are to be used

(through #include) by one or more modules. In common with other files, header

files must have a standard file heading at the top. The conventions in this section

define the header file contents that follow the standard file heading.

Structural

The following structural conventions ensure that generic header files can be used

in as wide a range of circumstances as possible, without running into problems

associated with multiple inclusion or differences between ANSI C and C++.

■ To ensure that a header file is not included more than once, the following must

bracket all code in the header file. This follows the standard file heading, with

the #endif appearing on the last line in the file.

#ifndef _ _INCfooLibh
#define _ _INCfooLibh

...
#endif /* _ _INCfooLibh */

See I.3.5 C Naming Conventions, p.574, for the convention for naming

preprocessor symbols used to prevent multiple inclusion.

■ To ensure C++ compatibility, header files that are compiled in both a C and

C++ environment must use the following code as a nested bracket structure,

subordinate to the statements defined above:

#ifdef _ _cplusplus
extern "C" {
#endif /* _ _cplusplus */

...
#ifdef _ _cplusplus
}
#endif /* _ _cplusplus */

Order of Declaration

The following order is recommended for declarations within a header file:

(1) Statements that include other header files.

(2) Simple defines of such items as error status codes and macro definitions.
577

VxWorks 5.4
Programmer’s Guide
(3) Type definitions.

(4) Function prototype declarations.

Example I-4 Sample C Header File

The following header file demonstrates the conventions described above:

/* bootLib.h - boot support subroutine library */

/* Copyright 1984-1993 Wind River Systems, Inc. */

/*
modification history

01g,22sep92,rrr added support for c++.
01f,04jul92,jcf cleaned up.
01e,26may92,rrr the tree shuffle.
01d,04oct91,rrr passed through the ansification filter,

-changed VOID to void
-changed copyright notice

01c,05oct90,shl added ANSI function prototypes;
added copyright notice.

01b,10aug90,dnw added declaration of bootParamsErrorPrint().
01a,18jul90,dnw written.
*/

#ifndef _ _INCbootLibh
#define _ _INCbootLibh
#ifdef _ _cplusplus
extern "C" {
#endif /* _ _cplusplus */

/*
 * BOOT_PARAMS is a structure containing all the fields of the
 * VxWorks boot line. The routines in bootLib convert this structure
 * to and from the boot line ASCII string.
 */

/* defines */

#define BOOT_DEV_LEN 20 /* max chars in device name */
#define BOOT_HOST_LEN 20 /* max chars in host name */
#define BOOT_ADDR_LEN 30 /* max chars in net addr */
#define BOOT_FILE_LEN 80 /* max chars in file name */
#define BOOT_USR_LEN 20 /* max chars in user name */
#define BOOT_PASSWORD_LEN 20 /* max chars in password */
#define BOOT_OTHER_LEN 80 /* max chars in "other" field */
#define BOOT_FIELD_LEN 80 /* max chars in boot field */

/* typedefs */

typedef struct bootParams /* BOOT_PARAMS */
{
char bootDev [BOOT_DEV_LEN]; /* boot device code */
578

I

I
Coding Conventions
char hostName [BOOT_HOST_LEN]; /* name of host */
char targetName [BOOT_HOST_LEN]; /* name of target */
char ead [BOOT_ADDR_LEN]; /* ethernet internet addr */
char bad [BOOT_ADDR_LEN]; /* backplane internet addr */
char had [BOOT_ADDR_LEN]; /* host internet addr */
char gad [BOOT_ADDR_LEN]; /* gateway internet addr */
char bootFile [BOOT_FILE_LEN]; /* name of boot file */
char startupScript [BOOT_FILE_LEN]; /* name of startup script */
char usr [BOOT_USR_LEN]; /* user name */
char passwd [BOOT_PASSWORD_LEN]; /* password */
char other [BOOT_OTHER_LEN]; /* avail to application */
int procNum; /* processor number */
int flags; /* configuration flags */
} BOOT_PARAMS;

/* function declarations */

extern STATUS bootBpAnchorExtract (char * string, char ** pAnchorAdrs);
extern STATUS bootNetmaskExtract (char * string, int * pNetmask);
extern STATUS bootScanNum (char ** ppString, int * pValue, BOOL hex);
extern STATUS bootStructToString (char * paramString, BOOT_PARAMS *

pBootParams);
extern char * bootStringToStruct (char * bootString, BOOT_PARAMS *

pBootParams);
extern void bootParamsErrorPrint (char * bootString, char * pError);
extern void bootParamsPrompt (char * string);
extern void bootParamsShow (char * paramString);

#ifdef _ _cplusplus
}
#endif /* _ _cplusplus */

#endif /* _ _INCbootLibh */

I.3.8 Documentation Format Conventions for C

This section specifies the text-formatting conventions for source-code derived

documentation. The WRS tool refgen is used to generate reference entries (in

HTML format) for every module automatically. All modules must be able to

generate valid reference entries. This section is a summary of basic documentation

format issues; for a more detailed discussion, see the Tornado BSP Developer’s Kit
User’s Guide: Documentation Guidelines.

Layout

To work with refgen, the documentation in source modules must be laid out

following a few simple principles. The file sample.c in
579

VxWorks 5.4
Programmer’s Guide
installDir/target/unsupported/tools/mangen provides an example and more

information.

Lines of text should fill out the full line length (assume about 75 characters); do not

start every sentence on a new line.

Format Commands

Documentation in source modules can be formatted with UNIX nroff/troff
formatting commands, including the standard man macros and several WRS

extensions to the man macros. Some examples are described in the sections below.

Such commands should be used sparingly.

Any macro (or “dot command”) must appear on a line by itself, and the dot (.)

must be the first character on the logical line (in the case of subroutines, this is

column 3, because subroutine comment sections begin each line with an asterisk

plus a space character).

Special Elements

■ Parameters: When referring to a parameter in text, surround the name with

the angle brackets, < and >. For example, if the routine getName() had the

following declaration:

void getName
(
int tid, /* task ID */
char * pTname /* task name */
)

You might write something like the following:

This routine gets the name associated with a specified task ID and copies
it to <pTname>.

■ Subroutines: Include parentheses with all subroutine names, even those

generally construed as shell commands. Do not put a space between the

parentheses or after the name (unlike the WRS convention for code):

CORRECT: taskSpawn()

INCORRECT: taskSpawn (), taskSpawn(), taskSpawn
580

I

I
Coding Conventions
Note that there is one major exception to this rule. In the subroutine title, do

not include the parentheses in the name of the subroutine being defined:

Avoid using a library, driver, or routine name as the first word in a sentence,

but if you must, do not capitalize it.

■ Terminal Keys: Enter the names of terminal keys in all uppercase, as in TAB or

ESC. Prefix the names of control characters with CTRL+; for example, CTRL+C.

■ References to Publications: References to chapters of publications should take

the form Title: Chapter. For example, you might say:

For more information, see the VxWorks Programmer’s Guide: I/O System.

References to documentation volumes should be set off in italics. For general

cases, use the .I macro. However, in SEE ALSO sections, use the .pG and .tG
macros for the VxWorks Programmer’s Guide and Tornado User’s Guide,

respectively.

■ Section-Number Cross-References: Do not use the UNIX parentheses-plus-

number scheme to cross-reference the documentation sections for libraries and

routines:

CORRECT: /***
*
* xxxFunc - do such and such

INCORRECT: /***
*
* xxxFunc() - do such and such

CORRECT: sysLib, vxTas()

INCORRECT: sysLib(1), vxTas(2)

Table I-1 Format of Special Elements

Component Input Output (mangen + troff)

library in title sysLib.c sysLib

library in text sysLib (same)

subroutine in title sysMemTop sysMemTop()

subroutine in text sysMemTop() (same)

subroutine parameter <ptid> (same)
581

VxWorks 5.4
Programmer’s Guide
Formatting Displays

■ Code: Use the .CS and .CE macros for displays of code or terminal

input/output. Introduce the display with the .CS macro; end the display with

.CE. Indent such displays by four spaces from the left margin. For example:

* .CS
* struct stat statStruct;
* fd = open ("file", READ);
* status = ioctl (fd, FIOFSTATGET, &statStruct);
* .CE

■ Board Diagrams: Use the .bS and .bE macros to display board diagrams under

the BOARD LAYOUT heading in the target.nr module for a BSP. Introduce the

display with the .bS macro; end the display with .bE.

■ Tables: Tables built with tbl are easy as long as you stick to basics, which

suffice in almost all cases. Tables always start with the .TS macro and end with

a .TE. The .TS should be followed immediately by a line of options terminated

by a semicolon (;); then by one or more lines of column specification

commands followed by a dot (.). For more details on table commands, refer

to any UNIX documentation on tbl. The following is a basic example:

.TS
center; tab(|);
lf3 lf3
l l.
Command | Op Code
_
INQUIRY | (0x12)

terminal key TAB, ESC, CTRL+C (same)

publication .I "Tornado User’s Guide" Tornado User’s Guide

VxWorks Programmer’s
Guide in SEE ALSO

.pG "Configuration" VxWorks Programmer’s Guide:
Configuration

Tornado User’s Guide in

SEE ALSO
.tG "Cross-Development" Tornado User’s Guide: Shell

emphasis \f2must\fP must

Table I-1 Format of Special Elements

Component Input Output (mangen + troff)
582

I

I
Coding Conventions
REQUEST SENSE | (0x03)
TEST UNIT READY | (0x00)
.TE

General stylistic considerations are as follows:

– Redefine the tab character using the tab option; keyboard tabs cannot be

used by tbl tables. Typically the pipe character (|) is used.

– Center small tables on the page.

– Expand wide tables to the current line length.

– Make column headings bold.

– Separate column headings from the table body with a single line.

– Align columns visually.

Do not use .CS/.CE to build tables. This markup is reserved for code examples.

■ Lists: List items are easily created using the standard man macro .IP. Do not

use the .CS/.CE macros to build lists. The following is a basic example:

.IP "FIODISKFORMAT"
Formats the entire disk with appropriate hardware track and
sector marks.
.IP "FIODISKINIT"
Initializes a DOS file system on the disk volume.
583

VxWorks 5.4
Programmer’s Guide
584

Index
Numerics
24-bit addressing (PowerPC) 499

64-bit support (MIPS R4000) 488

68000, 68K, see MC680x0

80386, see x86

80486, see x86

80960, see i960

A
a.out utilities

MC680x0 387

x86 439

abort character (target shell) (CTRL+C) 121, 372–

373

changing default 372

tty option 119

ADDED_C++FLAGS 362

ADDED_CFLAGS 362

ADDED_MODULES 362

address(es), memory

gprel (MIPS) 485

probing ASI space (SPARC) 405

Advanced Programmable Interrupt Controllers

(APIC) (x86) 476–478

I/O APIC unit 476

local APICs 477

timer functions 477

Advanced RISC Machines, see ARM

advertising (VxMP option) 257

AIO, see asynchronous I/O

aio_cancel() 110

AIO_CLUST_MAX 111

aio_error() 110

AIO_IO_PRIO_DFLT 111

AIO_IO_STACK_DFLT 111

AIO_IO_TASKS_DFLT 111

aio_read() 110

aio_return() 110

aiocb, freeing 112

aio_suspend() 110

testing completion 115

AIO_TASK_PRIORITY 111

AIO_TASK_STACK_SIZE 111

aio_write() 110

aiocb 111

see also control block (AIO)
585

NOTE: Index entries of the form “see also bootLib(1)” refer to the module’s reference entry in the VxWorks
Reference Manual or the equivalent entry in the Tornado Online Manuals.

VxWorks 5.4
Programmer’s Guide
aioPxLib 110

aioPxLibInit() 110

aioShow() 110

aioSysDrv 111

aioSysInit() 111

ANSI C

buffered I/O 106–108

function prototypes 325

header files 326

libraries 13

-ansi compiler option (VxSim) 536

aoutToBin tool (MC680x0) 387

aoutToBinDec tool (x86) 440

applic compiler option

ARM 510

i960 419

MC680x0 385

PowerPC 494

SPARC 401

VxSim 537

x86 433

application modules 325–337

see also loadLib(1); unldLib(1)

building

ARM 508–511

i960 417–419

MC680x0 383–385

MIPS 479–482

PowerPC 491–494

SPARC 399–401

VxSim 535–540

x86 431–434

compiling 330–334

C 332–333

C++ 334

CPU type, defining 330–331

group numbers 336

linking 334

VxSim, to 538–539

loader 376–377

loading 335–336

make variables 359–362

makefiles

include files, using 363

module IDs 336

symbol table, target 376–377

see also symLib(1)

unloader 376–377

unloading 336

architecture-specific development

see also specific target architectures
ARM 507–529

compiler invocations 332–333

CPU type, defining 330–331

i960 417–429

MC680x0 383–398

MIPS 479–490

PowerPC 491–505

SPARC/SPARClite 399–415

VxSim, simulated target 531–561

x86 431–478

archive file attribute (dosFs) 194

ARM 507–529

ARM state 519

assembler pseudo operations 512

byte order 519

caches 522–524

MMU functions, working with 525

compiler environment, configuring 508

compiler options 509

CPU type, defining 508

debugging 515

commands, CrossWind 513

exceptions, handling 520

floating-point support 522

GNU compiler options 512

interface differences, VxWorks 514–518

interrupts, handling 516, 520

loader, target-resident 510–511

memory layout, VxWorks 528

MMU 524–527

cache functions, working with 525

processor modes 519

routines, architecture-specific

cpsr() 515

psrShow() 515

Thumb state 519

virtual memory 524–527

arpShow() 379

arptabShow() 379
586

IX

Index
asynchronous I/O (POSIX) 109–117

code examples 113–117

completion, determining 115

control block 111–112

drivers 111

initializing 110–111

constants 111

multiple requests, submitting 112

routines 110–111

return values 113

status, getting 113

ATA/IDE hard disks (x86) 471–474

booting from 457, 459

dosFs file systems, mounting 461

ATA_RAW structure 473

ATA_RESOURCE structure 474

ATA0_CONFIG 471

ATA0_INT_LVL 471

ATA0_INT_VEC 471

ataDevCreate() (x86) 472

ataDrv() (x86) 471–472, 474

ataRawio() (x86) 473–474

ataResources[] table (x86) 471, 474

ataShow() (x86) 473

ataTypes[] table (x86) 473

B
backplane network, see shared-memory networks

backspace character, see delete character

bALib (SPARC) 402

bcopyDoubles() (SPARC) 402

bd() (i960) 422

bdall() (i960) 422

bfillDoubles() (SPARC) 402

bh()
i960 422

x86 438–439

binary semaphores 49–52

BLK_DEV 160

see also block devices; direct-access devices

fields 162

block address translation (BAT) registers

(PowerPC) 495

block devices 127–138, 140, 158–173, 177

see also BLK_DEV; direct-access devices; disks;

SCSI devices; SEQ_DEV; sequential

devices

adding 145

drivers 143, 158–173

and file systems 127, 175

implementing 158–173

interface conventions 158

naming 97

RAM disks 128–129

SCSI devices 129–138

board support packages (BSP) 15, 310–313

see also BSP Porting Kit; sysALib(1); sysLib(1)

documentation 312

header file (config.h) 339

initialization modules 312

make variables 359–362

parameter variables 361

serial driver 312

system library 311

virtual memory mapping 312

x86 451–478

boards, see target board

boot ROMs

compression 365, 368

ROM-resident system images 347

SCSI booting 203

boot sector (dosFs) 178

boot utilities (x86)

DOS utilities 451, 452–455

chkdsk 453

mkboot 453, 454, 463

vxcopy 453, 454

vxload 454–455

vxsys 453, 454

VxWorks utilities

mkbootAta() 455–456, 463

mkbootFd() 455–457, 463

mkbootTffs() 463

bootable applications 364–368

size of 365

booting

networks, initializing 320

SCSI devices, from 203–204
587

VxWorks 5.4
Programmer’s Guide
startup scripts 322

x86

ATA/IDE hard disks, from 457, 459

boot disks, building 451–455

diskettes, from 457

dosFs file systems, mounting 460–462

flash file systems, from 457, 460

mount points 457

PC targets 451–460

PCMCIA PC cards, from 457, 459

bootrom 351

bootrom.hex 203

bootrom_res 347, 351

bootrom_res_high 347

bootrom_uncmp 351

x86 465

bootrom_uncmp.hex 366

branch cache (MC68060) 391

BRANCH_CACHE 387, 391

breakpoints

i960 422

x86 438–439

bss segment 314

buffers

linear 12

see also bALib(1); bLib(1)

SPARC 402

ring 12

see also rngLib(1)

built-in functions 333

byte order

ARM 519

i960 425

PowerPC 499

shared-memory objects (VxMP option) 256

x86 441

bzeroDoubles() (SPARC) 402

C
-c compiler option 332

ARM 510

i960 419

MC680x0 385

MIPS 482

PowerPC 494

SPARC 401

VxSim 537

x86 433

c() (SPARC) 402

C++ support 11, 227–254

see also Booch Components; Iostreams;

Tools.h++; Wind Foundation Classes;

Wrapper Class library; cplusLib(1)

code examples

basic implementation 240

template instantiation 235

wrapper class bindings 252

compiling application modules 230, 334

complex numbers 240

configuring 231

CrossWind (Tornado) 229

exception handling 237–239

initializing 321

Iostreams 239

munching 232, 334

Standard Template library (STL) 239

static constructors 233–234

static destructors 233–234

strings 240

symbols from C, referencing 229

template instantiation 234–236

WindSh (Tornado) 228

C++_COMPILER 360

C++_WARNINGS 360

C++FLAGS 360

cache

see also data cache; instruction cache;

cacheLib(1)

ARM 522–524

branch (MC68060) 391

coherency 155–158

copyback mode 155

PowerPC 496

writethrough mode 155

initializing 314

locking

MC68040 390

MC68060 391
588

IX

Index
SPARClite 412

MC680x0 389–392

microSPARC 402

MIPS 483

PowerPC 500

SPARClite 402, 412

CACHE_DMA_FLUSH 157

CACHE_DMA_INVALIDATE 157

CACHE_DMA_PHYS_TO_VIRT 157

CACHE_DMA_VIRT_TO_PHYS 157

CACHE_INH_IMPRECISE 391

CACHE_INH_PRECISE 391

cacheClear() (MC68040) 390

cacheDmaMalloc() 157

cacheFlush() 156

cacheInvalidate() 156

MC68040 390

cacheLib
ARM 515

DMA buffer alignment (x86) 462

cacheLock()
ARM 515

MC68040 390

MC68060 391

cacheMb930Lib (SPARClite) 402

cacheMb930LockAuto() (SPARClite) 412

cacheMicroSparcLib (microSPARC) 402

cacheR3kLib (MIPS) 483

cacheR4kLib (MIPS) 483

cacheStoreBufDisable() (MC68060) 391

cacheStoreBufEnable() (MC68060) 391

cacheUnlock()
ARM 515

MC68040 390

MC68060 391

CC_COMPILER 360

CC_DEFINES 361

CC_INCLUDE 360

CC_OPTIM 360

CC_WARNINGS 360

cc386 compiler option (x86) 433

ccarch compiler (C++) 334

ccarm compiler option (ARM) 509

cchppa compiler option (VxSim/HP-UX) 536

ccmips compiler (MIPS) 482

ccsimpc compiler option (VxSim/Windows) 536

ccsimso compiler option (VxSim/Solaris) 536

CD-ROM devices 221

CD-ROM file systems 130, 222

cdromFs file systems 9, 221

cdromFsLib 221

CFLAGS 331, 360

character devices 140, 142–144

see also drivers

adding 145

naming 97

characters, control (CTRL+x)

target shell 371

tty 120–121

checkStack() 86

ARM 517

MC680x0 389

chkdsk utility (x86) 453

client-server communications 78–79

CLOCK_REALTIME 92

clocks

see also system clock; clockLib(1)

POSIX 92

system 30, 322

VxSim 544

close() 98, 101, 150, 196, 213

fd, freeing obsolete 196

non-file-system drivers 144

closedir() 193

clusters (dosFs) 177

files, in 180

size, specifying 185

subdirectories, in 180

code

see also application modules; code examples;

object code; source code

C layout 571–574

conventions 563–579

interrupt service, see interrupt service routines

pure 40

shared 39

write protecting 292

code examples

asynchronous I/O (POSIX) 113–117

C++
589

VxWorks 5.4
Programmer’s Guide
basic implementation 240

template instantiation 235

wrapper classes, using 252

contiguous files (dosFs) 200, 201

data cache coherency 156

address translation driver 157

dosFs file system file attributes, setting 194

drivers 141

makefiles

sample (mv147) 357

skeleton for application modules 363

message queues

attributes, examining (POSIX) 76–77

checking for waiting message

(POSIX) 72–75

POSIX 69–71

shared (VxMP option) 265

Wind 67

mutual exclusion 50–51

partitions

system (VxMP option) 271

user-created (VxMP option) 273

SCSI devices, configuring 134–138

select facility, implementing 153–155

semaphores

binary 50–51

named 63

recursive 55

shared (VxMP option) 261

unnamed (POSIX) 60

tape devices, configuring 136–137, 218

tasks

deleting safely 29

round-robin time slice (POSIX) 36

scheduling (POSIX) 35

setting priorities (POSIX) 33–34

synchronization 51–52

virtual memory (VxVMI option)

private 296

write protecting 304

watchdog timers

creating and setting 91

COFF utilities

ARM 510–511

tools 518

i960 420, 424

coffArmToBin tool (ARM) 518

coffHex960 tool (i960) 424

coffHexArm tool (ARM) 518

coffToBin tool (i960) 424

COMMAND_8042 466

compiler environment

see also GNU ToolKit User’s Guide
ARM 508–511

i960 417–419

MC680x0 383–385

MIPS 479–482

PowerPC 491–494

SPARC 399–401

VxSim 535–540

x86 431–434

compiler options 332–333

see also specific compiler options
-c 332

-D_GNU_TOOL (PowerPC) 333

-DCPU 333

-DVX_IGNORE_GNU_LIBS (i960) 333

-fno-builtin 333

-fno-defer-pop 333

-fno-for-scope 333

-G 0 (MIPS) 333

-I 333

-m68040 (MC68040) 333

-mcpu= (MIPS) 333

-mips3 (MIPS) 333

-mno-486 (x86) 333

-msparclite (SPARClite) 333

-nostdinc 333

-O 333

-O2 333

compiling

application modules 330–334

C 332–333

C++ 230, 334

make variables 359

complete command (ARM) 513

compress tool 368

compression, boot ROM 365, 368

config.h 339–343

VxSim 541
590

IX

Index
CONFIG_ALL 338, 362

configAll.h 339–343

see also configuration

configuration 309–350

see also config.h; configAll.h; configuration

header files

alternatives 344–350

C++ support 231

disks (dosFs) 183–189

reconfiguring 187

sector values 185–186

showing current configuration 189

standard configurations 186–187

volume configuration 183–189

module (usrConfig.c) 343

option dependencies 346

options (INCLUDE constants) 340–343

project facility for, using 310

SCSI devices 129–138

shared-memory objects (VxMP option) 279–

286

signals 84

tape devices 218

virtual memory 290–292

VxSim for networking 552

VxVMI option 290–292

Wind Foundation Classes 232

configuration header files 338–343

see also INCLUDE constants

console devices 318

CONSOLE_BAUD_RATE 318

CONSOLE_TTY 318

contexts

task 20

creating 26

floating-point (SPARC) 410

switching (x86) 447

virtual memory (VxVMI option) 293–295

CONTIG_MAX 201

contiguous files

dosFs file systems 200–201

code examples 200, 201

rt11Fs file systems 205

fragmented disk space, reclaiming 208

control block (AIO) 111–112

fields 112

control characters (CTRL+x)

target shell 371

tty 120–121

conventions

C

code, layout of 571–574

documentation 579–583

file headings 566–567

header files 577–579

module headings 565–567

naming 574–575

programming style 576

routines 567–568, 570

variables, declaring 569–570

coding 563–579

device naming 97–98

documentation 17–18

file headings 564

file naming 97–98

task names 26

copyback mode, data cache 155

counters

performance-monitoring (Pentium) 446

timestamp (Pentium) 446

counting semaphores 56, 59

cplusCtors() 233

cplusCtorsLink() 233

cplusDtors() 233

cplusDtorsLink() 234

cplusStratShow() 233

cplusXtorSet() 233

cpsr() (ARM) 515

CPU preprocessor variable, see -DCPU
CPU type, defining 330, 331

ARM 508

i960 418

MC680x0 384

MIPS 480

PowerPC 492

SPARC 400

VxSim 535

x86 432

crashes during initialization 291

creat() 98, 102
591

VxWorks 5.4
Programmer’s Guide
cret()
ARM 514

SPARC 403

cross-development 325–368

commands 330

cross-endianness (ARM) 522

CTRL+C (abort) 121, 371–373

tty option 119

CTRL+D (end-of-file) 120

CTRL+H (delete) 120, 371

CTRL+Q (resume) 120, 371

CTRL+S (suspend) 120, 371

CTRL+U (delete line) 120, 371

CTRL+X (reboot) 120, 371

VxSim 533

customer services (WRS) 16

D
d() (i960) 424

-D_GNU_TOOL compiler option (PowerPC) 333,

493

-D_REENTRANT compiler option (VxSim) 537

daemons

network tNetTask 44

remote login tRlogind 44

RPC tPortmapd 45

target agent tWdbTask 44

telnet tTelnetd 44

data cache

see also cache; cacheLib(1)

coherency 155–158

code examples 156–158

device drivers 155–158

copyback mode 155

disabling for interprocessor

communication 302–303

flushing 156

invalidating 156

shared-memory objects (VxMP option) 279

writethrough mode 155

data structures, shared 45–46

data transfer rates (x86) 470

DATA_8042 466

datagrams 81

see also sockets; UDP

dbgArchLib
ARM 515

SPARC 404

dbgInit()
abort facility 372

dbgLib
ARM 515

MIPS 483

SPARC 402–404

-DCPU compiler option 333

ARM 509

i960 419

MC680x0 385

MIPS 481

PowerPC 493

SPARC 400

VxSim 536

x86 433

debugging

ARM commands 513

error status values 36–38

SCSI configuration 135

SPARC routines 402–404

target shell 371

virtual memory (VxVMI option) 306–307

VxGDB 494

VxSim, using 553–554

DEFAULT_BOOT_LINE 458

delayed tasks 21

delayed-suspended tasks 21

delete character (CTRL+H) 120, 371

delete-line character (CTRL+U) 120, 371

demangling (C++) 228

DEV_HDR 144

development environment 337

development tools, see tools, development

device descriptor 144

device header 144

device list 144

devices 96–98, 118–138, 144–146

see also block devices; character devices; drivers

and specific device types
adding 145–146
592

IX

Index
block 127–138, 140, 158–173, 177

character 140, 142–144

creating 143

NFS 125

non-NFS 126

pipes 122

RAM 128

default 97

descriptors 144

dosFs 98

and I/O system 144–146

lists 144

naming 97–98

network 124–127

NFS 98, 124–126

non-block, see character

non-NFS 98, 126–127

pipes 122–123

pseudo-memory 123–124

pty (pseudo-terminal) 118–122

RAM disk 128–129

SCSI 129–138

selecting, see select facility

serial I/O 118, 312

sockets 139

tty 312

tty (terminal) 118–122

direct-access devices 158–173

disks, changing 197

drivers

creating devices 161–163

initialization routine 160–161

installing 160

I/O control 166–167

reading blocks 163–164

ready status change 169

resetting devices 167

status, checking device 168

write protection 168

writing blocks 165

initializing

for dosFs 182–183

for rawFs 211–212

for rt11Fs 206

RAM disks 128–129

disassembler (x86) 439

diskette drivers (x86) 468–471

disks

see also block devices; dosFs file systems; rawFs

file systems; rt11Fs file systems

changing

and device drivers 169

dosFs file systems 196–201

rawFs file systems 213–215

rt11Fs file systems 208–209

clusters (dosFs) 177

files, in 180

size, specifying 185

subdirectories, in 180

configuring

standard formats (dosFs) 186–187

volumes (dosFs) 183–189

and file systems 175

initialized, using (dosFs) 188

mounting volumes 190, 212

organization

dosFs file systems 176–181

rawFs file systems 210

rt11Fs file systems 205

RAM 128–129

reconfiguring (dosFs) 187

sectors 177

synchronizing 198–199, 214–215

unmounting volumes 196, 213

displaying system information 306, 378

DMA devices 290

buffer alignment (x86) 462

documentation

conventions 17–18

C format 579–583

online reference pages (on host) 17, 312

DOS_ATTR_ARCHIVE 194

DOS_ATTR_DIRECTORY 194

DOS_ATTR_HIDDEN 193

DOS_ATTR_RDONLY 193

DOS_ATTR_SYSTEM 193

DOS_ATTR_VOL_LABEL 194

DOS_OPT_AUTOSYNC 184, 199

DOS_OPT_CHANGENOWARN 184, 198

DOS_OPT_EXPORT 184, 185
593

VxWorks 5.4
Programmer’s Guide
DOS_OPT_LONGNAMES 184, 185

DOS_OPT_LOWERCASE 184, 185

DOS_VOL_CONFIG 179, 183–186

fields 183–186

DOS_VOL_DESC 187

dosFs file systems 8, 130, 176–204

see also dosFsLib(1)

auto-sync mode 199

boot sector 178

booting from, with SCSI 203–204

clusters 177

files, in 180

size, specifying 185

subdirectories, in 180

configuring

disk volume 183–189

showing current configuration 189

standard formats 186–187

contiguous files 200–201

code examples 200, 201

devices, naming 98

directory structure 191–193, 195–196

disk changes 196–201

ready-change mechanism 197

unmounting volumes 196

without notification 198

disk organization 176–181

disk volume 183–189

configuration 183–189

accessing information about 189

changing 187–188

label 181

mounting 190

FAT tables 186

file attributes 193–195

setting (code example) 194

file I/O 190

files 180

initialized disks, using 188

initializing 181, 319

and ioctl() requests 202–203

open(), creating files with 101

opening an entire volume 190–191

raw mode 190–191

reconfiguring 187

root directory 179, 181

subdirectories 180, 191–193

synchronizing volumes 198–199

auto-sync mode 199

timestamp 195–196

UNIX-compatible file names, using 199

volume label 181

dosFsConfigGet() 189

dosFsConfigInit() 183

dosFsConfigShow() 189, 201

dosFsDateSet() 195

dosFsDateTimeInstall() 195

dosFsDevInit() 132, 179, 182, 187, 319

dosFsDrvNum global variable 181

dosFsInit() 181, 319

dosFsLib
file truncation 103

dosFsMkfs() 182

dosFsMkfsOptionsSet() 183

dosFsReadyChange() 197

dosFsTimeSet() 195

dosFsVolUnmount() 196

and interrupt handlers 196

dosvc_options 184

dosvc_secPerClust 185

dosvc_secPerFat 186

driver number 143

driver table 143

drivers 96–98, 118–138, 140–144

see also devices and specific driver types
APICs (x86) 476–478

asynchronous I/O 111

ATA/IDE hard disks (x86) 471–474

block device 143, 158–173

character 142–144

code example 141

console (x86) 466

data cache coherency 155–158

diskette (x86) 468–471

and file systems 175

installing 143–145, 318, 319

interrupt service routine limitations 88

keyboard (x86) 466

libraries, support 173–174

line printer (x86) 475–476
594

IX

Index
memory 123–124

network (x86) 467–468

NFS 124–126

non-NFS network 126–127

pipe 122–123

RAM disk 128–129

SCSI 129–138

serial 312

tty 312

tty (terminal) 118–122

VGA (x86) 466

-DRW_MULTI_THREAD compiler option

(VxSim) 537

-DVX_IGNORE_GNU_LIBS compiler option

(i960) 333

DWARF debug information (PowerPC) 494

E
-e _romInit entry point option 367

eax() (x86) 435

ebp() (x86) 435

ebx() (x86) 435

ecx() (x86) 435

edi() (x86) 435

edit mode (target shell) 371

edx() (x86) 435

eflags() (x86) 435

EISA bus (x86) 447

elcShow() (x86) 467

ELF utilities

MIPS 484

PowerPC 498

SPARC/SPARClite 406

elfHex tool

MIPS 484

PowerPC 498

SPARC 406

elfToBin tool

MIPS 484

PowerPC 498

SPARC 406

elfXsyms tool

MIPS 484

PowerPC 498

SPARC 406

VxSim HP-UX 540

VxSim Solaris 540

eltShow() (x86) 468

encryption

login password 374

end-of-file character (CTRL+D) 120

eneShow() (x86) 468

entry point 313

bootable applications 364

ROM-based VxWorks 349, 367

environment variables, VxWorks 337

displaying for tasks 378

UNIX

CONFIG_ALL 338

TGT_DIR 338

$WIND_BASE 338

Windows 338

envShow() 378

EPROM support (x86) 465

__errno() 36

errno 36–38, 88

and task contexts 37

example 37

return values 37–38

error status values 36–38

ESCAPE key 371

esi() (x86) 435

esmcShow() (x86) 468

esp() (x86) 435

exception handling 38–39

see also signals; excLib(1); sigLib(1)

ARM 520

C++ 237–239

floating-point (SPARC) 411–412

simulation 412

initializing 319

and interrupts 88–89

machine check (Pentium) 445

MC68060 and integer instructions 388

MIPS 486

signal handlers 39

task tExcTask 43

x86 444–445
595

VxWorks 5.4
Programmer’s Guide
exception stack frames (ESF)

SPARC 408

x86 445

exception vector table (VxVMI option) 292

excInit() 319

excTask() 319

abort facility 372

SPARC 411

excVecInit() 315

exit() 28, 29

extern "C" (C++) 229

EXTRA_DEFINE 362

EXTRA_INCLUDE 362

F
fast interrupts (FIQ) (ARM) 521

FAT tables (dosFs) 178–179, 186

fd table 147

fd, see file descriptors

FD_CLR 104

FD_INT_LVL 469

FD_INT_VEC 469

FD_ISSET 104

FD_RAW[] (x86) 471

FD_SET 104

FD_ZERO 104

fdDevCreate() (x86) 469

fdDrv() (x86) 468

fdopen() 107

fdprintf() 109

fdRawio() (x86) 471

fdTypes[] (x86) 469–471

FIFO

message queues, Wind 66

POSIX 32

file allocation table, see FAT tables

file descriptors (fd) 99–108, 146–158

see also files; ioLib(1)

and device drivers 146

freeing obsolete

dosFs file systems 196

rawFs file systems 213

and I/O system 147

pending on, see select facility

standard input/output/error 99, 108

redirecting global assignments of 100

file pointers (fp) 107

file systems 8–10, 175–221

alternative 10

drivers 175

and block devices 175

CD-ROM, see cdromFs file systems

DOS, see dosFs file systems

flash, see flash file systems

and RAM disks 128

raw disk, see rawFs file systems

RT-11, see rt11Fs file systems

SCSI sequential, see tapeFs file systems

tape devices, see tapeFs file systems

files

attributes 193–195

flags (dosFs) 193–194

read-only (dosFs) 193

subdirectory flag 194

volume label (dosFs) 194

closing 101

example 150

configuration header 338–343

contiguous

dosFs file systems 200–201

rt11Fs file systems 205

creating 102

deleting 102

dosFs file systems 180

exporting to remote machines 124

I/O

and dosFs file systems 190

and rawFs file systems 212

and rt11Fs file systems 207

and tapeFs file systems 219

and I/O system 96–98, 146–150

naming 97–98

and NFS 124

opening 100–101

example 147–150

reading from 102

example 150–151

remote machines, on 124
596

IX

Index
timestamp 195–196

truncation 103

see also dosFsLib(1)

writing to 102

FIOATTRIBSET 194

FIOBAUDRATE
tyLib, supported by 121

FIOBLKSIZEGET 218

FIOBLKSIZESET 218

FIOCANCEL
tyLib, supported by 121

FIOCONTIG 200

FIODISKCHANGE 197, 208, 214

FIODISKFORMAT 182, 206, 212

FIODISKINIT 178, 182, 188, 206

FIOFLUSH 219

pipeDrv, supported by 123

tyLib, supported by 121

FIOFSTATGET
nfsDrv, supported by 126

FIOGETNAME
nfsDrv, supported by 126

pipeDrv, supported by 123

tyLib, supported by 122

FIOGETOPTIONS
tyLib, supported by 122

FIOLABELGET 181

FIOLABELSET 181

fioLib 108

FIOMKDIR 191

FIONMSGS
pipeDrv, supported by 123

FIONREAD
nfsDrv, supported by 126

pipeDrv, supported by 123

tyLib, supported by 122

FIONWRITE
tyLib, supported by 122

FIOREADDIR 127

nfsDrv, supported by 126

FIORMDIR 192

FIOSEEK 212

memDrv, supported by 124

nfsDrv, supported by 126

FIOSELECT 152

FIOSETOPTIONS
tty options 119

tyLib, supported by 122

FIOSQUEEZE 208

FIOSYNC 127, 215, 219

nfsDrv, supported by 126

FIOTRUNC 201

FIOUNMOUNT 196, 213

FIOUNSELECT 152

FIOWHERE
memDrv, supported by 124

nfsDrv, supported by 126

flags, see compiler options

flash file systems (x86)

booting from 457, 460

floating-point support

ARM 522

contexts, task (SPARC) 410

emulation library (SPARClite) 413

exceptions (SPARC) 411–412

i960 423

initializing 320

interrupt service routine limitations 88

math coprocessor, restoring (SPARC) 404

MC680x0 393–396

MIPS 483–484, 485

PowerPC 501

SPARC 404, 405, 410–412

SPARClite 404, 405, 410–412, 413

task options 27

x86 434

software emulation 448

floatInit() 320

flow-control characters (CTRL+Q and S) 120, 371

-fno-builtin compiler option 333

ARM 509

i960 419

MC680x0 385

PowerPC 493

SPARC 401

VxSim 537

x86 433

-fno-defer-pop compiler option 333

VxSim 537

x86 433
597

VxWorks 5.4
Programmer’s Guide
-fno-exceptions compiler option (C++) 237

-fno-for-scope compiler option 333

PowerPC 493

-fno-implicit-templates compiler option 234

-fno-rtti compiler option (C++) 239

fopen() 107

fppArchLib 88

SPARC 404

fppFsrDefault global variable (SPARC) 410

fread() 107

Free Software Foundation (FSF) 329

see also GNU ToolKit User’s Guide
free() 88

-frepo compiler option 235

fsrShow() (SPARC) 404

fstat() 193, 194

FTP (File Transfer Protocol)

network devices for, creating 126

ftruncate() 103, 201

_func_vxMemProbeHook global variable 517

-funroll-loops compiler option (MIPS) 482

-fvolatile compiler option

VxSim 537

x86 433

-fvolatile compiler option (i960) 419

fwrite() 107

G
-G 0 compiler option (MIPS) 333, 482, 485

-g compiler option

VxSim 537

GDB, see VxGDB

-gdwarf compiler option (PowerPC) 494

General Public License (GNU) 329

getc() 107

Global Descriptor Table (GDT) (x86) 443

global variables 40–41

x86 architecture-specific 434–435, 463–464

GNU ToolKit 329

see also compiler environment; GNU ToolKit
User’s Guide

General Public License 329

linker 334

gp-relative addressing (MIPS gprel) 485

GRAPH_ADAPTER 467

guarded mode, cache (PowerPC) 496

H
hardware

initializing 315

interrupts, see interrupt service routines

hashLibInit() 376

hbreak command (ARM) 513

header files 325–329

see also configuration header files; INCLUDE
constants

ANSI 326

function prototypes 325

CPU type, defining 330

hiding internal details 328

internal VxWorks 327

nested 326

private 328

searching for 326

heartbeat, shared-memory 286

troubleshooting, for 287

hex tool (MC680x0) 387

HEX_FLAGS 361

hexDec tool (x86) 440

HI macros (PowerPC) 497

HIADJ macros (PowerPC) 497

hidden files (dosFs) 193

hooks, task 31

routines callable by 31

host shell (WindSh)

i960 limits on d() 424

target shell, differences from 374–376

host utilities

ARM 518

i960 424

MC680x0 387

MIPS 484

PowerPC 498

SPARC/SPARClite 406

VxSim 540

x86 439
598

IX

Index
hostShow() 379

htonl()
shared-memory objects (VxMP option) 257

I
-I compiler option 326, 333

ARM 509

i960 419

MC680x0 385

MIPS 481

PowerPC 493

SPARC 400

VxSim 537

x86 433

i386/i486, see x86

i960 417–429

see also i960CA; i960JX; i960KA/i960KB

<symbol_lcb> 425

breakpoints 422

byte order 425

COFF tools 424

compiler environment, configuring 418

compiler options 418–419

CPU type, defining 418

d(), using 424

floating-point support 423

interface differences, VxWorks 421–424

interrupt handling, VMEbus 425

intLevelSet(), parameter change for 422

loader, target-resident 420

and malloc() 422

math routines 423

and memLib 422

memory layout, VxWorks 426–429

ROM-based VxWorks 422

routines, handling unresolved 423

sysInit(), using 422

system image, linking VxWorks 356

i960CA

see also i960

memory layout, VxWorks 427

i960JX

see also i960

memory layout, VxWorks 428

i960KA/i960KB

see also i960

memory layout, VxWorks 429

IACK

and MIPS 486, 487

and SPARC 408

IBM PC, see x86

IDE hard disks, see ATA/IDE hard disks

ifShow() 379

INCLUDE constants 340–343

see also specific constants
include files

see also header files

configuration headers 337

make facility 358

SCSI devices 129

INCLUDE_ANSI_ESC_SEQUENCE 466

INCLUDE_ANSI_STDIO 106

INCLUDE_ATA 471

INCLUDE_CACHE_ENABLE 279

INCLUDE_CDROMFS 130, 222

INCLUDE_CPLUS 231, 321

INCLUDE_CPLUS_COMPLEX 240

INCLUDE_CPLUS_COMPLEX_IO 240

INCLUDE_CPLUS_IOSTREAMS 239

INCLUDE_CPLUS_IOSTREAMS_FULL 231

INCLUDE_CPLUS_MIN 321

INCLUDE_CPLUS_STL 239

INCLUDE_CPLUS_STRING 240

INCLUDE_CPLUS_STRING_IO 240

INCLUDE_CPLUS_TOOLS 254

INCLUDE_CPLUS_VXW 251

INCLUDE_DEBUG 371

INCLUDE_DOSFS 130, 181, 319

INCLUDE_EXC_HANDLING 319

INCLUDE_EXC_TASK 319

INCLUDE_FD 468

INCLUDE_FLOATING_POINT 320

INCLUDE_HW_FP 320, 395

INCLUDE_INSTRUMENTATION 321

INCLUDE_IO_SYSTEM 318

INCLUDE_LOADER 376

INCLUDE_LOGGING 319

INCLUDE_LPT 475
599

VxWorks 5.4
Programmer’s Guide
INCLUDE_MEM_SHOW 378

INCLUDE_MMU_BASIC 290, 321, 442, 484

INCLUDE_MMU_FULL 290, 321, 484

INCLUDE_MODULE_MANAGER 378

INCLUDE_MSG_Q_SHOW 264, 378

INCLUDE_NET_INIT 320

INCLUDE_NET_SHOW 378

INCLUDE_NET_SYM_TBL 376

INCLUDE_NFS 125

INCLUDE_NTPASSFS 534

INCLUDE_PASSFS 534

INCLUDE_PC_CONSOLE 466

INCLUDE_PCI 443

INCLUDE_PIPE 319

INCLUDE_POSIX_AIO 110

INCLUDE_POSIX_AIO_SYSDRV 110, 111

INCLUDE_POSIX_MEM 93

INCLUDE_POSIX_MQ 68

INCLUDE_POSIX_MQ_SHOW 78, 378

INCLUDE_POSIX_SCHED 33

INCLUDE_POSIX_SEM 58

INCLUDE_POSIX_SEM_SHOW 378

INCLUDE_POSIX_SIGNALS 84

INCLUDE_PROTECT_TEXT 290, 321

INCLUDE_PROTECT_VEC_TABLE 290, 321

INCLUDE_RAWFS 211, 319

INCLUDE_RLOGIN 373

INCLUDE_RT11FS 205, 319

INCLUDE_SCSI 129, 203

INCLUDE_SCSI_BOOT 130, 131, 203

INCLUDE_SCSI_DMA 130

INCLUDE_SCSI2 129

INCLUDE_SECURITY 374

INCLUDE_SEM_SHOW 260, 378

INCLUDE_SHELL 370

INCLUDE_SIGNALS 84, 319

INCLUDE_SM_OBJ 279, 283, 321

INCLUDE_SPY 320

INCLUDE_STANDALONE_SYM_TBL 376

INCLUDE_STARTUP_SCRIPT 322

INCLUDE_STDIO 319

INCLUDE_STDIO_SHOW 378

INCLUDE_SW_FP 320, 434, 448

INCLUDE_SYM_TBL 376

INCLUDE_TAPEFS 130, 216

INCLUDE_TASK_HOOKS_SHOW 378

INCLUDE_TASK_SHOW 378

INCLUDE_TELNET 373

INCLUDE_TIMEX 320

INCLUDE_TTY_DEV 318

INCLUDE_UNLOADER 376

INCLUDE_WATCHDOGS_SHOW 378

INCLUDE_WDB 322

inetstatShow() 379

initialization 313–324

see also usrConfig(1)

asynchronous I/O (POSIX) 110–111

board support package 312

C++ support 321

cache 314

dosFs file systems 181, 319

drivers 318

exception handling facilities 319

floating-point support 320

hardware 315

interrupt vectors 314

I/O system 318

kernel 315–316

logging 319

memory pool 316

MMU support 321

multitasking environment 315–316

network 320

pipes 319

rawFs file systems 211, 319

rt11Fs file systems 205, 319

SCSI interface 132

sequence of events, VxWorks 313

ROM-based 349–350

summary 322–324

sequential devices 217–218

shared-memory objects (VxMP option) 280–

284, 285, 321

standard I/O 319

sysInit() 313

system clock 317

tapeFs file systems 216

target agent 322

usrInit() 314–316

usrRoot() 317–322
600

IX

Index
vector tables (SPARC) 407

virtual memory (VxVMI option) 294, 321

WindView 321

installation

drivers 143–145, 318, 319

VxSim optional product 545–552

installUlipSolaris script (VxSim) 546

instantiation, template (C++) 234–236

intALib (ARM) 515

intArchLib
ARM 516

MIPS 483

SPARC 404

intConnect() 85

MIPS 486

intCount() 85

intDisable()
ARM 516

MIPS 487

integers

64-bit (MIPS R4000) 488

Intel 80386, see x86

Intel 80486, see x86

Intel 80960, see i960

intEnable()
ARM 516

MIPS 487

intEnt() (x86) 444

interleaving (x86) 470

interprocessor communication 289–307

Interrupt Descriptor Table (IDT) (x86) 444

interrupt handling

see also interrupt service routines; interrupts;

intArchLib(1); intLib(1)

application code, connecting to 85–86

callable routines 85

disks, changing

ready-change mechanism 197, 209, 214

unmounting volumes 196, 213

and exceptions 88–89

hardware, see interrupt service routines

pipes, using 123

SPARC 407–410

stacks 86

VMEbus

i960 425

MIPS 487

SPARC 410

interrupt latency 46

interrupt levels 89

interrupt masking 89

interrupt service routines (ISR) 85–90

see also interrupt handling; interrupts;

intArchLib(1); intLib(1)

limitations 87–88

logging 88

see also logLib(1)

and message queues 90

and pipes 90

routines callable from 87

and semaphores 90

shared-memory objects (VxMP option),

working with 278

and signals 82, 90

interrupt stacks 86

MC680x0 388

MIPS 486

x86 444

interrupt vector table, see Interrupt Descriptor Table

interrupts

ARM 520

locking 46

MIPS 486–487

routines, supporting 487

shared-memory objects (VxMP option) 280

SPARC 408–410

task-level code, communicating to 90

thrashing 317

vectored

initializing 314

MIPS 487

SPARC 409–410

VMEbus 86

VxSim

Solaris and HP-UX 541–543

Windows 543

x86 444–445

intertask communications 6, 45–84
601

VxWorks 5.4
Programmer’s Guide
see also message queues; pipes; semaphores;

shared-memory objects; signals;

sockets; tasks; taskLib(1)

network 80–81

intExit() (x86) 444

intLevelSet() 85

i960 422

MIPS 483, 487

SPARC 404

intLibInit() (ARM) 516

intLock() 85

ARM 515

MIPS 487

SPARC 404

intLockLevelGet() (ARM) 516

intLockLevelSet() 89, 316

ARM 516

intUninitVecSet() (ARM) 516

intUnlock() 85

ARM 515

MIPS 487

intVecBaseGet() 85

ARM 516

intVecBaseSet() 85, 314

ARM 516

MIPS 483, 487

intVecGet() 85

ARM 516

intVecSet() 85

ARM 516

MIPS 486

I/O system 7, 95–174

asynchronous I/O 109–117

see also asynchronous I/O; aioPxLib
basic I/O 98–106

see also ioLib(1)

buffered I/O 106–108

control functions, see ioctl()
and devices 144–146

differences between VxWorks and host

system 139

driver writers 8

see also iosLib(1); tyLib(1)

and files 146–150

formatted I/O 108

see also ansiStdio(1); fioLib(1)

implementing 140–174

initializing 318

redirection 100

serial devices 118, 312

standard input/output/error 99, 318

standard I/O 106–108

initializing 319

ioApicBase global variable (x86) 476

ioApicIntLock() 477

ioctl() 99, 103

dosFs file system support 202–203

line printers (x86) 476

memory drivers 124

NFS client devices 125

non-NFS devices 127

pipes 123

raw file system support 215

rt11Fs file system support 209

tapeFs file system support 220–221

tty
functions 121

options 119

ioGlobalStdSet() 100, 318

ioMmuMicroSparcLib (microSPARC) 404

iosDevAdd() 145, 206

iosDrvInstall() 143, 181, 217

iosInit() 318

Iostreams (C++) 239

ioTaskStdSet() 100

ipstatShow() 379

ISA/EISA bus (x86) 447

ISR, see interrupt service routines

ISR_STACK_SIZE 389

K
kernel 6

see also Wind facilities

excluding facilities 344

execution, start of 314

gprel addressing (MIPS) 485

initializing 315–316

and multitasking 20
602

IX

Index
POSIX and Wind features, comparison of 20

message queues 77–78

scheduling 32–33

semaphores 59

priority levels 23

registers, reserved

MIPS 485

SPARC 407

kernelInit() 315–316

kernelTimeSlice() 22, 24

keyboard drivers (x86) 466

keyboard shortcuts

target shell 371

tty characters 120

kill() 82, 83

killing

target shell, see abort character

tasks 28

L
l() (x86) 439

latency

interrupt locks 46

preemptive locks 47

ld() 335–336

LD_SEND_MODULES facility 335

ldarch linker 334

flags 355

LDFLAGS 361

LIB_EXTRA 362

libraries

ANSI C 13

driver support 173–174

floating-point emulation (SPARClite) 413

general utility 11–13

hardware interface 15

line editor (target shell) 371

line mode (tty devices) 119

line printer drivers (x86) 475–476

linked lists 13

see also lstLib(1)

linking

application modules 334

dynamic (VxSim) 538

partial (VxSim) 539

static 334

VxSim 539

system image, VxWorks 355–356

flags 355–356

object modules, additional 356

lio_listio() 110

load command (debugger) 335–336

loader, module 376–377

loadSymTbl() 377

LOAPIC_BASE (x86) 477

loApicInit()
l/O APICs, using with 476

local APICs, using with 477

loApicShow() 477

local objects 255

LOCAL_MEM_LOCAL_ADRS 349

ARM 528

i960 426

MC680x0 397

MIPS 489

PowerPC 504

SPARC 413

x86 449

locking

cache

MC68040 390

MC68060 391

SPARClite 412

interrupts 46

page (POSIX) 93

semaphores 58

spin-lock mechanism (VxMP option) 277–278

target shell access 373

task preemptive locks 25, 47

logging facilities 12, 109

see also logLib(1)

initializing 319

and interrupt service routines 88

task tLogTask 43

login

password, encrypting 374

remote

daemon tRlogind 44
603

VxWorks 5.4
Programmer’s Guide
security 374

shell, accessing target 373

logInit() 319

loginUserAdd() 374

logLib 109

logTask() 319

long long
i960 425

MC680x0 388

MIPS 488

SPARC 407

x86 447

LPT_GETSTATUS 476

LPT_INT_LVL 475

LPT_INT_VEC 475

LPT_SETCONTROL 476

lptAutofeed() (x86) 475

lptDevCreate() (x86) 475

lptDrv() (x86) 475

lptResource[] (x86) 475

lptShow() (x86) 476

M
-m4650 compiler option (MIPS R4650) 481

M68000 family, see MC680x0

-m68040 compiler option (MC68040) 333

-m68881 compiler option 395

MACH_EXTRA 356, 362

machine-check exceptions 445

make command (UNIX)

MIPS 480

PowerPC 492

x86 452

make facility (GNU) 352–354

Makefile (VxWorks) 352

linking system images 355

VxSim 541

makefiles 357–364

bootable applications, modifying for 364

code examples

sample (mv147) 357

skeleton for application modules 363

creating 357, 363

include files 358

rebuilding VxWorks 352–354

SIO drivers 364

variables, include file 359–362

BSP parameters, for 361

compiling, for 359

customizing run-time, for 362

makeSymTbl tool 366

malloc() 316

i960 422

interrupt service routine limitations 88

mangling (C++) 228

-mapcs-32 compiler option (ARM) 512

-mapcs-frame compiler option (ARM) 512

-mapcs-leaf-frame compiler option (ARM) 512

-marm compiler option (ARM) 512

math routines

see also floating-point support; mathALib(1)

i960 423

MC680x0 393–395

MIPS 483–484

SPARC 405

SPARClite 405

x86 434

mathHardInit() 320

MC680x0 395

mathSoftInit() 320

MAX_AIO_SYS_TASKS 111

MAX_LIO_CALLS 110, 111

mbufShow() 379

MC68040

see also MC680x0

cache 390

locking, unimplemented 390

modes 393

floating-point support 393–396

MMU 392

MC68060

see also MC680x0

buffer, FIFO 391

cache 391

branch 391

cache-inhibited precise mode 391

locking

branch 392
604

IX

Index
data and instruction 391

modes 393

floating-point support 393–396

integer instructions, emulated 388

MMU 393

address tables, searching 393

superscalar pipeline 389

MC680x0 383–398

see also MC68040; MC68LC040; MC68060

a.out tools 387

architecture-specific development 383–398

cache 389–392

branch (MC68060) 391

compiler environment, configuring 384

compiler options 384

CPU type, defining 384

floating-point support 393–396

interface differences, VxWorks 386–387

interrupt stacks 388

long long 388

MC68881/MC68882 coprocessors, using 395

memory layout, VxWorks 396–398

MMU 392–393

routines, architecture-specific

cacheStoreBufDisable() 391

cacheStoreBufEnable() 391

vxSSDisable() 389

vxSSEnable() 389

virtual memory 392–393

MC68LC040

see also MC680x0

floating-point support 396

-msoft-float compiler option 385

-mca compiler option (i960) 419

-mcpu compiler option

ARM 509

MIPS 481

PowerPC 493

-mcpu= compiler option (MIPS) 333

MEM_BLOCK_CHECK 276

memAddToPool() 316

memDesc.c 312

memDrv 118, 123–124

memLib (i960) 422

memory

see also memory pool; shared-memory objects;

virtual memory; memLib(1);

memPartLib(1)

allocation 12, 316

availability of, determining 316

driver 123–124

layout

ARM 528

i960 426–429

i960CA 427

i960JX 428

i960KA/i960KB 429

MC680x0 396–398

microSPARC 415

MIPS 488–490

PowerPC 504–505

SPARC/SPARClite 413–415

x86 448–450

lower memory 449

upper memory 450

loading, required for 377

locking (POSIX) 93

see also mmanPxLib(1)

paging (POSIX) 93

pool 40–41

pseudo-I/O devices 123–124

segmentation (x86) 441–443

shared-memory objects (VxMP option) 255–

287

start of, see LOCAL_MEM_LOCAL_ADRS
swapping (POSIX) 93

virtual 289–307

write protecting 292, 304–306

memory management unit, see MMU

memory pool

adding to 316

initializing 316

memory type range register (MTRR) 445

memPartLib 316

memPartOptionsSet() 276

memPartShow() 378

memPartSmCreate() 273

memShow() 378

message logging, see logging facilities

message queues 65–79
605

VxWorks 5.4
Programmer’s Guide
see also msgQLib(1)

client-server example 79

displaying attributes 78

and interrupt service routines 90

POSIX 68–78

see also mqPxLib(1)

attributes 75–77

code examples

attributes, examining 76–77

checking for waiting message 72–75

communicating by message

queue 69–71

notifying tasks 71–75

unlinking 69

Wind facilities, differences from 77–78

priority setting 67

shared (VxMP option) 263–268

code example 265

creating 264

local message queues, differences

from 264

Wind 66–67

code example 67

creating 66

deleting 66

receiving messages 66

sending messages 66

timing out 66

waiting tasks 66

-mfp32 compiler option (MIPS R4000, R4650) 481

-mgp32 compiler option (MIPS R4000, R4650) 481

microSPARC

see also SPARC/SPARClite

cache 402

I/O MMU 404

memory layout, VxWorks 415

MIPS 479–490

cache, initializing 483

compiler environment, configuring 480

compiler options 480–482

CPU type, defining 480

ELF tools 484

floating-point support 483–484, 485

gprel addressing 485

interface differences, VxWorks 482–484

interrupts 483, 486–487

routines, supporting 487

VMEbus 487

long long 488

math routines 483–484

memory layout, VxWorks 488–490

MMU, unsupported 484

registers, reserved 485

ROM-resident images 347

routine parameters, displaying 483

64-bit support (R4000) 488

stack traces 483

task traces 483

tasks, spawning 484

virtual memory mapping 488

and VxGDB 482, 483

-mips3 compiler option (MIPS R4000, R4650) 333,

481

-mka compiler option (i960) 419

-mkb compiler option (i960) 419

mkboot utility (x86) 453, 454, 463

mkbootAta() (x86) 455–457, 463

mkbootFd() (x86) 455–457, 463

mkbootTffs() (x86) 463

mlock() 93

mlockall() 93

mmanPxLib 93

MMU

see also virtual memory - VxVMI option;

vmLib(1)

address tables, searching (MC68060) 393

ARM 524–527

initializing 321

MC680x0 392–393

cache-inhibited imprecise mode 393

cache-inhibited non-serialized mode 393

states, architecture-specific 387

MIPS 484

PowerPC 495–497, 500

shared-memory objects (VxMP option) 282

using programmatically 293–307

x86 442–443

mmuALib (ARM) 517

mmuPhysDesc[] table (x86) 442

mmuReadId() (ARM) 517
606

IX

Index
-mno-486 compiler option (x86) 333, 433

-mno-sched-prolog (ARM) 509

model-specific register (MSR) (Pentium) 446

modules

see also application modules; tasks

optional (INCLUDE constants) 340–343

moduleShow() 378

mount points (x86) 457

mounting volumes

dosFs file systems 190

rawFs file systems 212

rt11Fs file systems 207

tapeFs file systems 171, 219

-mpentium compiler option (VxSim) 536

mpShow() 477

mq_close() 68, 69

mq_getattr() 68, 75

mq_notify() 68, 71–75

mq_open() 68

mq_receive() 68, 69

mq_send() 68

mq_setattr() 68, 75

mq_unlink() 68, 69

mqPxLib 68

mqPxLibInit() 68

mRouteShow() 379

-msdata compiler option (PowerPC) 494

MS-DOS

boot disks, building (x86) 452–453

file systems, see dosFs file systems

interleaving (x86) 470

msgQCreate() 66

msgQDelete() 66

msgQReceive() 66

msgQSend() 66

msgQShow() 264, 378

msgQSmCreate() 264

-msingle-float compiler option (MIPS R4650) 481

-msoft-float compiler option

MC680x0 385, 395

MIPS 482, 486

SPARC 401

-msparclite compiler option (SPARClite) 333, 401,

413

-mstrict-align compiler option (i960) 419

-mthumb compiler option (ARM) 512

-mthumb-interwork compiler option (ARM) 512

MTIOCTOP 220

-mtpcs-frame compiler option (ARM) 513

-mtpcs-leaf-frame compiler option (ARM) 513

MTWEOF 219

multitasking 6, 20–21, 39

see also taskLib(1)

example 42

munching (C++) 232, 334

munlock() 93

munlockall() 93

mutual exclusion 46–47

see also semLib(1)

code example 50–51

counting semaphores 56

interrupt locks 46

preemptive locks 47

and reentrancy 41

Wind semaphores 52–56

binary 50–51

deletion safety 54

priority inheritance 54

priority inversion 53

recursive use 55

N
name database (VxMP option) 257–258

adding objects 258

displaying 258

name mangling, see mangling

named semaphores (POSIX) 57

using 61–64

nanosleep() 30

using 92

netDevCreate() 126

netDrv 118, 126

netLibInit() 320

netPoolShow() 379

netShowInit() 379

netStackDataPoolShow() 379

netStackSysPoolShow() 379

network devices 124–127
607

VxWorks 5.4
Programmer’s Guide
see also FTP; NFS; RSH

NFS 124–126

non-NFS 126–127

Network File System, see NFS

network task tNetTask 44

networks

drivers (x86) 467–468

excluding from VxWorks 345

initializing 320

intertask communications 80–81

show routines 379

transparency 124

NFS (Network File System)

see also nfsDrv(1); nfsLib(1)

authentication parameters 125

devices 124–126

creating 125

naming 98

open(), creating with 101

ioctl, using 125

transparency 124

nfsAuthUnixPrompt() 125

nfsAuthUnixSet() 125

nfsDrv 118, 124

nfsMount() 125

non-block devices, see character devices

-nostdinc compiler option 326, 333

ARM 510

i960 419

MC680x0 385

MIPS 482

PowerPC 493

SPARC 401

VxSim 536

x86 433

-nostdlib compiler option (VxSim) 537

ntohl()
shared-memory objects (VxMP option) 257

NUM_DOSFS_FILES 181

NUM_RAWFS_FILES 211

NUM_RT11FS_FILES 205

NUM_TTY 318

O
-O compiler option 333

i960 419

MC680x0 385

PowerPC 493

x86 433

O_NONBLOCK 75

-O0 compiler option (MIPS) 482

-O2 compiler option 333

ARM 509

MIPS 481

SPARC 401

VxSim 536

O_CREAT 62

O_EXCL 62

O_NONBLOCK 68

object ID (VxMP option) 257

online documentation

reference pages (on host) 17, 312

open() 98, 100, 191, 219

example 147

files asynchronously, accessing 110

files with, creating 101

opendir() 193

operating system 19–93

OPT_7_BIT 119

OPT_ABORT 119

OPT_CRMOD 119

OPT_ECHO 119

OPT_LINE 119

OPT_MON_TRAP 119

OPT_RAW 119

OPT_TANDEM 119

OPT_TERMINAL 119, 318

optimizing, see performance monitoring

optional VxWorks features (INCLUDE
constants) 340–343

optional VxWorks products

VxMP shared-memory objects 255–287

VxSim 15

VxVMI virtual memory 290–307

Wind Foundation Classes 250–254
608

IX

Index
P
page locking 93

see also mmanPxLib(1)

page states (VxVMI option) 294

paging 93

passFs (VxSim) 534

password encryption

login 374

pause() 83

PC, see x86

PC_KBD_TYPE 466

PC_XT_83_KBD 466

PC104 bus (x86) 447

pc386/pc486 support (x86) 462

PCCARD_RESOURCE 475

pccardMkfs() 462

pccardMount()
mounting file systems from PC cards 461

PCI bus (x86) 447

PCMCIA PC cards (x86)

booting from 457, 459

dosFs file systems, mounting 461

pended tasks 21

pended-suspended tasks 21

Pentium, see x86

pentiumMsrGet() 445

pentiumMsrSet() 445

performance monitoring 13–14

see also spyLib(1); timexLib(1)

tools for, including 320

x86 counters 446

PHYS_MEM_DESC 291, 312

see also sysPhysMemDesc[]
pipeDevCreate() 80, 319

pipeDrv 118, 122

pipeDrv() 319

pipes 79–80, 122–123

see also pipeDrv(1)

creating 122

initializing 319

interrupt handling 123

interrupt service routines 90

ioctl requests 123

select(), using with 80

polling

shared-memory objects (VxMP option) 280

ports 15

see also sysALib(1); sysLib(1)

POSIX 6

asynchronous I/O 110–117

routines 110–111

clocks 92

see also clockLib(1)

file truncation 103

and kernel 20

memory-locking interface 93

message queues 68–78

see also message queues; mqPxLib(1)

page locking 93

see also mmanPxLib(1)

paging 93

priority numbering 32

scheduling 32–36

see also scheduling; schedPxLib(1)

semaphores 57–64

see also semaphores; semPxLib(1)

signal functions 83–84

see also signals; sigLib(1)

routines 83

swapping 93

task priority, setting 33–34

code example 33–34

timers 92

see also timerLib(1)

Wind features, differences from 20

message queues 77–78

scheduling 32–33

semaphores 59

posixPriorityNumbering global variable 32

PowerPC 491–505

architecture-specific development 491–505

byte order 499

cache 500

modes 496

compiler environment, configuring 492

compiler options 493–494

CPU type, defining 492

ELF tools 498

floating-point support 501
609

VxWorks 5.4
Programmer’s Guide
GDB, compiling modules for 494

HI and HIADJ macros 497

interface differences, VxWorks 495–498

memory layout, VxWorks 504–505

memory mapping

block address translation registers 495

memory page, by 496

MMU 495–497, 500

operating mode 499

registers, using 499–500

ROM-resident images 347

shared-memory objects (VxMP option) 502–

503

small data area 494

24-bit addressing 499

underscores, handling 494

virtual memory 495–497

PPP (Point-to-Point Protocol)

installing for VxSim/Solaris2 547–549

preemptive locks 25, 47

preemptive priority scheduling 23, 35

printErr() 109

printErrno() 38

printf() 108

priority

inheritance 54

inversion 53

message queues 67

numbering 32

preemptive, scheduling 23, 35

scheduling parameters 35–36

task, setting

POSIX 33–34

Wind 23

privilege protection (x86) 441

processes (POSIX) 32

psrShow()
ARM 515

SPARC 404

pty devices 118–122

see also ptyDrv(1)

ptyDrv 118

pure code 40

putc() 107

Q
queued signals 83–84

queues

see also message queues

ordering (FIFO vs. priority) 57–66

semaphore wait 57

R
-r linker option 334

-R option (TSFS) 224

R3000, see MIPS

R4000, see MIPS

R4650, see MIPS

raise() 83

RAM disks 128–129

see also ramDrv(1)

RAM_HIGH_ADRS 349, 361

RAM_LOW_ADRS 349, 361

entry point 313

ramDevCreate() 128

ramDrv 118, 123

raw mode

dosFs file systems 190

rt11Fs file systems 207

tty devices 119

rawFs file systems 209–215

see also rawFsLib(1)

disk changes 213–215

ready-change mechanism 213

unmounting volumes 213

without notification 214

disk organization 210

disk volume, mounting 212

fd, freeing obsolete 213

file I/O 212

initializing 211, 319

and ioctl() requests 215

and rt11Fs file systems 207–208

synchronizing disks 214–215

rawFsDevInit() 211, 319

rawFsDrvNum global variable 211

rawFsInit() 211, 320
610

IX

Index
rawFsLib 209

rawFsReadyChange() 214

rawFsVolUnmount() 213

interrupt handling 213

read() 99, 102

example 150

readdir() 193

read-only files (dosFs) 193

ready tasks 21

ready-change mechanism

dosFs file systems 197

rawFs file systems 213

rt11Fs file systems 208

reboot character (CTRL+X) 120, 371

VxSim 533

rebuilding VxWorks image 352–354

redirection 100

redTable[] table (x86) 476

reentrancy 39–42

reference pages

developing 579

online 17

refgen tool (WRS) 579

registers

gp (MIPS) 485

PowerPC 499–500

reserved

MIPS 485

SPARC 407

64-bit (MIPS R4000) 488

x86 445–446

routines for 435

remote login

daemon tRlogind 44

security 374

shell, accessing target 373

remove() 98, 102, 192

non-file-system drivers 144

reserved registers

MIPS 485

SPARC 407

restart character (target shell) (CTRL+C) 121, 372–

373

changing default 372

tty option 119

resume character (CTRL+Q) 120, 371

rewinddir() 193

ring buffers 12, 88, 90

see also rngLib(1)

rlogin (UNIX) 373

ROM

applications in 367–368

monitor trap (CTRL+X) 120, 371

VxWorks in 346–350, 367–368

and i960 422

ROM cards (x86) 465

ROM_LDFLAGS 361

ROM_SIZE 361, 368

ROM_TEXT_ADRS 361

romInit() 349, 422

romInit.o 367

romInit.s 312

romStart() 349, 422

root directory (dosFs) 179, 181

root task tUsrRoot 43

round-robin scheduling 23–24, 35–36

code example 36

routeShow() 379

routestatShow() 379

routines

conventions

C layout 567–568, 570

documentation 580

naming 575

RPC (Remote Procedure Calls) 81

daemon tPortmapd 45

excluding from VxWorks 345

RSH (Remote Shell protocol)

network devices for, creating 126

rt11Fs file systems 9, 204–210

see also rt11FsLib(1)

contiguous files 205

fragmented disk space, reclaiming 208

disk changes 208–209

ready-change mechanism 208

without notification 209

disk organization 205

disk volume, mounting 207

file I/O 207

initializing 205, 319
611

VxWorks 5.4
Programmer’s Guide
and ioctl() requests 209

open(), creating files with 101

raw mode 207–208

rt11FsDevInit() 132, 206, 319

rt11FsDrvNum global variable 205

rt11FsInit() 205, 320

rt11FsLib 205

rt11FsReadyChange() 208

Run-Time Type Information (RTTI) 239

-RW option (TSFS) 224

S
s() (SPARC) 402

scalability 2, 344–346

VxWorks features 340–343

scanf() 109

SCHED_FIFO 35

sched_get_priority_max() 33, 35

sched_get_priority_min() 33, 35

sched_getparam() 33

sched_getscheduler() 33, 35

SCHED_RR 35

sched_rr_get_interval() 33, 35–36

sched_setparam() 33, 34

sched_setscheduler() 33, 34

sched_yield() 33

schedPxLib 32, 33

scheduling 22–25

POSIX 32–36

see also schedPxLib(1)

algorithms 32

code example 35

FIFO 32, 35

policy, displaying current 35

preemptive priority 35

priority limits 35–36

priority numbering 32

round-robin 35–36

code example 36

routines 33

time slicing 35–36

Wind facilities, differences from 32–33

Wind

preemptive locks 25, 47

preemptive priority 23

round-robin 23–24

scripts, startup 322

SCSI devices 129–138

see also scsiLib(1)

booting from 203–204

ROM size, adjusting 131

configuring 129–138

code examples 134–138

options 132–134

constants 129

initializing support 132

libraries, supporting 131–132

SCSI bus ID

changing 138

configuring 130

SCSI-1 vs. SCSI-2 130–132, 138

tagged command queuing 133

troubleshooting 138

VxWorks image size, effecting 130

wide data transfers 134

SCSI_AUTO_CONFIG 130

SCSI_OPTIONS structure 132

scsi1Lib 131

scsi2Lib 131

scsiBlkDevCreate() 132

scsiCommonLib 131

scsiDirectLib 131

scsiLib 118, 131

scsiPhysDevCreate() 132, 203

scsiSeqDevCreate() 217

scsiSeqLib 131

scsiTargetOptionsSet() 133

security 374

TSFS 224

SEL_WAKEUP_LIST 152

SEL_WAKEUP_NODE 152

select facility 104–106

see also selectLib(1)

code example 105–106

implementing 152–155

code example 153–155

macros 104

select() 104–105
612

IX

Index
implementing 152–155

and pipes 80

selectLib.h 104

selNodeAdd() 152

selNodeDelete() 152

selWakeup() 152

selWakeupAll() 152

selWakeupListInit() 152

selWakeupType() 152

sem_close() 59, 63

SEM_DELETE_SAFE 55

sem_destroy() 59

sem_getvalue() 59

sem_init() 59, 60

SEM_INVERSION_SAFE 54

sem_open() 59, 61

sem_post() 59

sem_trywait() 59

sem_unlink() 59, 63

sem_wait() 59

semaphores 47–64

see also semLib(1)

counting 59

example 56

deleting 49, 59

and drivers 143

giving and taking 49–50, 58

and interrupt service routines 90, 88

locking 58

POSIX 57–64

see also semPxLib(1)

named 57, 61–64

code example 63

unnamed 57, 58, 59–61

code example 60

Wind facilities, differences from 59

posting 58

recursive 55

code example 55

shared (VxMP option) 259–263

code example 261

creating 260

displaying information about 260

local semaphores, differences from 260

synchronization 47, 56

code example 51–52

unlocking 58

waiting 58

Wind 47–57

binary 49–52

code example 50–51

control 48–49

counting 56

mutual exclusion 50–51, 52–56

queuing 57

synchronization 51–52

timing out 57

semBCreate() 48

semBSmCreate() (VxMP option) 260

semCCreate() 48

semCSmCreate() (VxMP option) 260

semDelete() 48

shared semaphores (VxMP option) 260

semFlush() 48, 53

semGive() 48

semInfo() 260

semMCreate() 48

semPxLib 58

semPxLibInit() 59

semShow() 260, 378

semTake() 48

SEQ_DEV 160, 217

see also sequential devices

fields 162

sequential devices 158–173

see also block devices; SEQ_DEV; tape devices;

tapeFs file systems

drivers

creating devices 161–163

erasing tapes 173

file marks, writing 169

initializing 160–161

installing 160

I/O control 166–167

loading/unloading 171

physical block limits, polling for 171

reading blocks 164–165

ready status change 169

releasing tape device access 170

reserving tape device access 170
613

VxWorks 5.4
Programmer’s Guide
resetting devices 167

spacing tape media 172–173

status, checking device 168

tape volumes, mounting 171

tapes, rewinding 170

write protection 168

writing blocks 166

initializing for tapeFs 217–218

serial drivers 118, 312

set output-radix command (ARM) 513

set print static-members command (ARM) 513

shared code 39

shared data structures 45–46

shared message queues (VxMP option) 263–268

code example 265

creating 264

displaying queue status 264

local message queues, differences from 264

shared semaphores (VxMP option) 259–263

code example 261

creating 260

displaying information about 260

local semaphores, differences from 260

shared-memory allocator (VxMP option) 268–276

shared-memory anchor

shared-memory objects, configuring (VxMP

option) 279–280

shared-memory networks

shared-memory objects, working with 279

VxSim 559–561

shared-memory objects (VxMP option) 10, 255–287

see also msgQSmLib(1); semSmLib(1);

smMemLib(1); smNameLib(1);

smObjLib(1); smObjShow(1)

advertising 257

anchor, configuring shared-memory 279–280

cacheability 279, 282

configuring 279–286

constants 283

multiprocessor system 284

displaying number of used objects 283

heartbeat 286

troubleshooting, for 287

initializing 280–284, 285, 321

interrupt latency 278

interrupt service routines 278

interrupts

bus 280

mailbox 280

limitations 278–279

locking (spin-lock mechanism) 277–278

memory

allocating 268–276

running out of 278

memory layout 281

message queues, shared 263–268

see also shared message queues

code example 265

name database 257–258

object ID 257

partitions 268–276

routines 270

side effects 276

system 268–273

code example 271

user-created 269, 273–276

code example 273

polling 280

PowerPC support 502–503

semaphores, shared 259–263

see also shared semaphores (VxMP option)

code example 261

shared-memory networks, working with 279

shared-memory pool 280

shared-memory region 280

single- and multiprocessors, using with 256

system requirements 277

troubleshooting 286

types 258

shared-memory pool

address, defining (VxMP option) 280

shared-memory region (VxMP option) 280

shell task (tshell) 370

shell, see host shell; target shell

shellInit() 370

shellLock() 373

show input-radix command (ARM) 513

show output-radix command (ARM) 513

show routines 377–379

x86-specific 467
614

IX

Index
show() 62, 78, 378

sigaction() 82, 83

sigaddset() 83

sigblock() 82, 83

sigdelset() 83

sigemptyset() 83

sigfillset() 83

sigInit() 82, 319

sigismember() 83

SIGKILL command (VxSim) 534

sigmask() 83

signal handlers 82

signal() 83

signals 81–84

see also sigLib(1)

configuring 84

and interrupt service routines 82, 90

POSIX 83–84

queued 83–84

routines 83

signal handlers 82

UNIX BSD 82

routines 83

sigpending() 83

sigprocmask() 82, 83

sigqueue() 83–84

sigqueueInit() 84

sigsetmask() 82, 83

sigsuspend() 83

sigtimedwait() 84

sigvec() 82, 83

sigwaitinfo() 84

simulator, see VxSim

single-stepping (SPARC) 402–403

SIO driver makefile 364

68000, 68K, see MC680x0

64-bit support (MIPS R4000) 488

SLIP (Serial Line Internet Protocol)

installing for VxSim/HP-UX 549–551

SM_ANCHOR_ADRS 280

SM_INT_BUS 280

SM_INT_MAILBOX 280

SM_INT_NONE 280

SM_INT_TYPE 280

SM_OBJ_MAX_MEM_PART 283

SM_OBJ_MAX_MSG_Q 283

SM_OBJ_MAX_NAME 283

SM_OBJ_MAX_SEM 283

SM_OBJ_MAX_TASK 283

SM_OBJ_MAX_TRIES 278

SM_OBJ_MEM_SIZE 283

SM_OFF_BOARD 503

SM_TAS_HARD 277, 503

SM_TAS_TYPE 277, 503

small computer system interface, see SCSI devices

smCpuInfoGet() (VxMP option) 280

smIfVerbose global variable (VxMP) 287

smMemAddToPool() (VxMP option) 270

smMemCalloc() (VxMP option) 270

smMemFindMax() (VxMP option) 270

smMemFree() (VxMP option) 270

smMemMalloc() (VxMP option) 270

smMemOptionsSet() (VxMP option) 270, 276

smMemRealloc() (VxMP option) 270

smMemShow() (VxMP option) 270

smNameAdd() (VxMP option) 258

smNameFind() (VxMP option) 258

smNameFindByValue() (VxMP option) 258

smNameRemove() (VxMP option) 258

smNameShow() (VxMP option) 258

smObjAttach() (VxMP option) 285

smObjInit() (VxMP option) 285

smObjSetup() (VxMP option) 285

smObjShow() (VxMP option) 283

troubleshooting, for 287

smObjTimeoutLogEnable() (VxMP option) 287

so() (SPARC) 403

socket() 139

sockets 80–81

as I/O device 139

TSFS 223

source code (VxWorks)

customizing 354

SPARC/SPARClite 399–415

see also microSPARC

ASI addresses, probing 405

buffer manipulation, linear 402

cache 402

microSPARC 402

SPARClite 412
615

VxWorks 5.4
Programmer’s Guide
compiler environment, configuring 400

compiler options 400–401

CPU type, defining 400

debugging 402–404

ELF tools 406

floating-point support 404, 410–412

emulation library (SPARClite) 413

I/O MMU 404

interface differences, VxWorks 401–406

interrupt handling 407–410

VMEbus 410

long long 407

math routines 405

memory layout, VxWorks 413–415

microSPARC 402, 404, 415

operating mode 407

reserved registers 407

routines, architecture-specific 405

bcopyDoubles() 402

bfillDoubles() 402

bzeroDoubles() 402

cacheMb930LockAuto() 412

fsrShow() 404

psrShow() 404

single-stepping 402–403

SPARClite enhancements 412–413

stack pointer, using the 412

task traces 403–404

test-and-set instructions 405

traps, enabling 407

vector table, initializing the 407

SPARCmon 412

spawning tasks 25–26, 42

spin-lock mechanism (VxMP option) 277–278

interrupt latency 278

sprintf() 108

spy utility 13, 320

see also spyLib(1)

sscanf() 108

stack traces (MIPS) 483

stacks

interrupt 86

no fill 27

STANDALONE flag 366

standalone VxWorks systems 366

STANDALONE_NET 366

standard file headings 564

standard I/O 99, 106–108

see also ansiStdio(1)

initializing 319

omitting 108

standard input/output/error 318

buffered I/O 108

Standard Template library (STL) 239

startup

see also initialization

entry point 313

ROM-based 367

scripts 322

VxWorks, sequence of events 313–324

ROM-based 349–350

stat() 193, 194

static linking 334

VxSim 539

STATUS_8042 466

_ _STDC_ _ 325

stdioShow() 378

step command (ARM) 514

strings, formatting 12

see also ansiStdio(1); fioLib(1)

subdirectories (dosFs) 180, 191–193

file attributes 194

subroutines, see routines

superscalar pipeline (MC68060) 389

suspended tasks 21

swapping 93

symbol table

creating VxWorks system 356

group numbers, module 336

standalone systems, in VxWorks 366

target shell 376–377

see also symLib(1)

symLibInit() 376

SYMMETRIC_IO_MODE (x86)

I/O APICs 476

local APICs 477

symTblCreate() 376

synchronization (task) 47

code example 51–52

counting semaphores, using 56
616

IX

Index
semaphores 51–52

synchronizing disks

dosFs file systems 198–199

auto-sync mode 199

rawFs file systems 214–215

sysALib.s 312

entry point 313

sysBusIntAck() (MIPS) 487

sysClkConnect() 317

sysClkRateSet() 317

sysCodeSelector global variable (x86) 462

sysCoprocessor global variable (x86) 435

sysCpuProbe() (x86) 437, 438

sysDelay() (x86) 438

sysFdBuf global variable (x86) 464

sysFdBufSize global variable (x86) 464

sysGDT[] table (x86) 435, 443

sysHwInit() 315

sysHwInit2() 317

sysInByte() (x86) 437

sysInit() 313

i960 422

sysInLong() (x86) 437

sysInLongString() (x86) 438

sysIntDisable() 86

sysIntDisablePIC() (x86) 438

sysIntEnable() 86

sysIntEnablePIC() (x86) 438

sysIntIdtType global variable (x86) 435, 444

sysIntVecSetEnt() (x86) 462

sysIntVecSetExit() (x86) 462

sysInWord() (x86) 437

sysInWordString() (x86) 438

sysLib.c 311

VxSim 541

sysMemTop() 316

sysOutByte() (x86) 438

sysOutLong() (x86) 438

sysOutLongString() (x86) 438

sysOutWord() (x86) 438

sysOutWordString() (x86) 438

sysPhysMemDesc[] 291, 293, 312

MC68040 390

MIPS 484

page states 291

PowerPC 496, 500

shared-memory objects (VxMP option) 282

virtual memory mapping 291

x86 442

sysProcessor global variable (x86) 435

sysScsiInit() 132

sysSerial.c 312

sysStrayIntCount global variable (x86) 464

system clock 30, 322

initializing 317

system files (dosFs) 193

system image 309

boot ROM

compressed 351

ROM-resident 347

uncompressed 351

building 351–357

downloading 313

excluding facilities 344–346

VxWorks 351

linking 355–356

ROMmed 351

standalone 351

x86 BSPs 463

system information, displaying 306, 377–379

system library 311

system modules, see system image

system tasks 43–45

sysVectorIRQ0 global variable (x86) 435, 444

sysWarmAtaCtrl global variable (x86) 464

sysWarmAtaDrive global variable (x86) 464

sysWarmFdDrive global variable (x86) 464

sysWarmFdType global variable (x86) 464

sysWarmTffsDrive global variable (x86) 464

sysWarmType global variable (x86) 464

T
T_SM_BLOCK 258

T_SM_MSG_Q 258

T_SM_PART_ID 258

T_SM_SEM_B 258

T_SM_SEM_C 258

tape devices
617

VxWorks 5.4
Programmer’s Guide
see also sequential devices; tapeFs file systems

changing 219

configuring 218

code example 136–137, 218

SCSI, supporting 130

volumes

mounting 171, 219

unmounting 219

TAPE_CONFIG 217

tapeFs file systems 130, 216–221

see also tapeFsLib(1)

configuring devices

code example 136–137, 218

file I/O 219

fixed block size transfers 218

initializing 216

and ioctl() requests 220–221

operating modes 219

tape changes 219

tape organization 216

tape volumes 171, 219

variable block size transfers 218

tapeFsDevInit() 217

tapeFsDrvNum global variable 217

tapeFsInit() 216

tapeFsVolUnmount() 219

target agent 14

initializing 322

task (tWdbTask) 14, 44

target board

see also board support packages; sysALib(1);

sysLib(1)

configuration header for 339

Target Server File System (TSFS) 222–225

error handling 224

file access permissions 224

sockets, working with 223

Windows hosts, using on 225

target shell 369–379

see also dbgLib(1); shellLib(1); symLib(1);

usrLib(1)

aborting (CTRL+C) 121, 372–373

changing default 372

tty option 119

accessing from host 373

banner, sign-on 370

control characters (CTRL+x) 371

creating 370

debugging 371

host shell, differences from 374–376

line editing 371

loader, defining module 376–377

locking access 373

remote login 373

restarting 372–373

symbol table, defining 376–377

task tShell 44

unloader, defining module 376–377

using 371

target.nr 312

TARGET_DIR 361

target-specific development

see also architecture-specific development;

specific target architectures
ARM 507–529

i960 417–429

MC680x0 383–398

MIPS 479–490

PowerPC 491–505

SPARC/SPARClite 399–415

VxSim, simulated target 531–561

x86 431–478

task control blocks (TCB) 20, 28, 31, 42, 87

taskActivate() 26

taskArchLib (MIPS) 484

taskCreateHookAdd() 31

taskCreateHookDelete() 31

taskCreateHookShow() 378

taskDelay() 30

taskDelete() 28, 29

taskDeleteHookAdd() 31

taskDeleteHookDelete() 31

taskDeleteHookShow() 378

taskIdListGet() 28

taskIdSelf() 27

taskIdVerify() 27

taskInfoGet() 28

taskInit() 26

taskIsReady() 28

taskIsSuspended() 28
618

IX

Index
taskLock() 22

taskName() 27

taskNameToId() 27

taskOptionsGet() 27

taskOptionsSet() 27

taskPriorityGet() 28

taskPrioritySet() 22, 23

taskRegsGet() 28

taskRegsSet() 28

taskRestart() 30

taskResume() 30

tasks 20–45

blocked 25

communicating at interrupt level 123

contexts 20

creating 26

floating-point (SPARC) 410

switching (x86) 447

control blocks 20, 28, 31, 42, 87

creating 25–26

delayed 21

delayed-suspended 21

delaying 20, 21, 30, 90–91

deleting safely 28–29

code example 29

semaphores, using 54

displaying information about 28

environment variables, displaying 378

error status values 36–38

see also errnoLib(1)

exception handling 38–39

see also signals; sigLib(1); excLib(1)

tExcTask 43

executing 30

hooks 31

see also taskHookLib(1)

extending with 31–32

IDs 26

interrupt level, communicating at 90

logging (tLogTask) 43

names 26

automatic 26

network (tNetTask) 44

option parameters 27

pended 21

pended-suspended 21

priority, setting

POSIX 33–34

code example 33–34

Wind 23

ready 21

remote login (tRlogind, tRlogInTask,

tRlogOutTask) 44

root (tUsrRoot) 43

RPC server (tPortmapd) 45

scheduling

POSIX 32–36

preemptive locks 25, 47

preemptive priority 23, 35

round-robin 23–24, 35–36

Wind 22–25

shared code 39

shell (tshell) 370

and signals 39, 81–84

spawning 25–26, 42

states 21

suspended 21

suspending and resuming 30

synchronization 47

code example 51–52

counting semaphores, using 56

system 43–45

target agent (tWdbTask) 14, 44

target shell (tShell) 44

telnet (tTelnetd, tTelnetInTask,

tTelnetOutTask) 44

variables 41–42

see also taskVarLib(1)

context switching 42

taskSafe() 28, 29

taskShow() 378

taskSpawn() 26

taskSRInit() (MIPS) 484, 487

taskStatusString() 28

taskSuspend() 30

taskSwitchHookAdd() 31

taskSwitchHookDelete() 31

taskSwitchHookShow() 378

taskTcb() 28

taskUnlock() 22
619

VxWorks 5.4
Programmer’s Guide
taskUnsafe() 29

taskVarAdd() 41

taskVarDelete() 41

taskVarGet() 41

taskVarSet() 41

TBR, see Trap Base Register

TCP (Transmission Control Protocol) 80

technical support (WRS) 16

telnet 373

daemon tTelnetd 44

terminal characters, see control characters

TFFS drives (x86)

dosFs file systems, mounting 462

TGT_DIR 338

thrashing 317

Thumb state (ARM) 519

interrupts, handling 521

tickAnnounce() 322

time slicing 24, 35–36

timeout

message queues 66

semaphores 57

timers

see also timerLib(1)

code execution 13

see also timexLib(1)

local APIC (x86) 477

message queues, for (Wind) 66

POSIX 92

semaphores, for (Wind) 57

subroutine execution 320

watchdog 90–91

see also wdLib(1)

code examples 91

timestamp 195–196

counter (Pentium) 446

tools, development 330

host

C++ support 228

target 11

see also target shell

Tools.h++ (C++) 254

training classes (WRS) 16

Trap Base Register (SPARC) 407

traps, enabling (SPARC) 407

troubleshooting

SCSI devices 138

shared-memory objects (VxMP option) 286

truncation of files 103

tt()
ARM 514

MIPS 483

SPARC 403–404

tty devices 118–122, 312

see also tyLib(1)

control characters (CTRL+x) 120–121

and ioctl() requests 121

line mode, selecting 119

options 119

raw mode 119

X-on/X-off 119

ttyDevCreate() 318

ttyDrv 118–122, 312

ttyDrv() 318

tuning, see performance monitoring

24-bit addressing (PowerPC) 499

tyAbortSet() 121, 372

tyBackspaceSet() 121

tyDeleteLineSet() 121

tyEOFSet() 121

tyMonitorTrapSet() 121

U
UDP (User Datagram Protocol) 80

ULIP

debugging, system mode (Solaris) 554

installing

VxSim/Solaris2, for 546

VxSim/Windows, for 551

ultraShow() (x86) 467

#undef 344

unld() 336

unloader, module 376–377

unloading, see application modules; unldLib(1)

unnamed semaphores (POSIX) 57, 58, 59–61

-Ur compiler option (C++) 231

USER_B_CACHE_ENABLE 392

USER_D_CACHE_ENABLE 500
620

IX

Index
ARM 523

MC68040 390

USER_D_CACHE_MODE
MC68040 390

USER_D_MMU_ENABLE 495

USER_I_CACHE_ENABLE 500

ARM 523

MC68040 390

USER_I_CACHE_MODE
MC68040 390

USER_I_MMU_ENABLE 495

usrAtaConfig() (x86) 457

mounting file systems from ATA/IDE

disks 461

usrClock() 322

usrConfig.c 343

usrDepend.c 346

usrFdConfig() (x86) 457

mounting file systems from diskette 461

usrInit() 314–316

usrKernelInit() 315

usrLib
ARM 517

usrMmuInit() 294, 321

usrNetInit() 320

usrPcmciaConfig() 457

usrRoot() 233, 317–322

bootable applications, creating 364

usrScsiConfig() 132

usrSmObjInit() (VxMP option) 279, 280, 285, 321

usrTffsConfig() 457

mounting file systems from TFFS drives 462

USS floating-point emulation library 413

utilities, see COFF utilities; ELF utilities; host utilities

V
valloc() (VxVMI option) 295

variables

global 40–41

x86 architecture-specific 434–435, 463–

464

static data 40–41

task 41–42

uninitialized 314

vector tables

exception, write-protecting 292

initializing (SPARC) 407

vectored interrupts

MIPS 487

SPARC 409–410

VGA drivers (x86) 466

virtual circuit protocol, see TCP

virtual memory 10, 289–307

ARM 524–527

configuration 290–292

mapping 291–292

aliasing 295

MIPS 488

MC680x0 392–393

PowerPC 495–497

VxVMI option 10, 290–307

ARM 524–527

configuration 290–292

contexts 293–295

debugging 306–307

global 293

initializing 294, 321

MC680x0 392–393

page states 294

private 295–302

code example 296

restrictions 307

vector table protection 321

write protecting 292, 304–306

code example 304

VIRTUAL_WIRE_MODE (x86) 477

VM_CONTEXT 293

VM_PAGE_SIZE 290

VM_STATE_CACHEABLE constants 294

MC68040 392

PowerPC 496

VM_STATE_GUARDED 496

VM_STATE_GUARDED_NOT 496

VM_STATE_MASK_CACHEABLE 295

VM_STATE_MASK_VALID 295

VM_STATE_MASK_WRITABLE 295

VM_STATE_MEM_COHERENCY 496

VM_STATE_MEM_COHERENCY_NOT 496
621

VxWorks 5.4
Programmer’s Guide
VM_STATE_VALID 294

VM_STATE_VALID_NOT 294

VM_STATE_WRITABLE 294

VM_STATE_WRITABLE_NOT 294

vmContextCreate() (VxVMI option) 295

vmContextShow() (VxVMI option) 306

vmCurrentSet() (VxVMI option) 295

VME_VECTORED 487

VMEbus interrupt handling 86

i960 425

MIPS 487

SPARC 410

vmGlobalInfoGet() (VxVMI option) 295

vmGlobalMap() (VxVMI option) 293, 307

vmGlobalMapInit() (VxVMI option) 294

vmLib (ARM) 517

vmMap() (VxVMI option) 295, 307

vmStateSet() (VxVMI option) 295, 303, 304

volume label (dosFs) 181

adding 181

file attribute 194

volumes, see disks; tape devices

VX_FP_TASK 27

i960 423

SPARC 410

VX_NO_STACK_FILL 27

VX_PRIVATE_ENV 27

VX_UNBREAKABLE 27, 370

vxALib
ARM 517

SPARC 405

vxcopy utility (x86) 453, 454

vxencrypt 374

VxGDB

and MIPS 482, 483

PowerPC 494

vxLib
ARM 517

SPARC 405

vxload utility (x86) 454–455

vxMemProbe()
ARM 517

x86 439

vxMemProbeAsi() (SPARC) 405

VxMP, see shared-memory objects (VxMP option)

VxSim 15, 531–561

BSP differences 541

built-in product 532–534

clocks

Solaris and HP-UX 544

Windows 545

compiler environment, configuring 535

compiler options 535–538

CPU type, defining 535

debugging, system mode 534

exiting 533

file systems 534

interrupts

Solaris and HP-UX 541–543

Windows 543

linking applications to 538–539

dynamically 538

partial (for multiple object files) 539

statically 539

multiple simulators, running 553

networking facilities 545–561

configuring for 552

debugging, system mode 553–554

installing 545–552

PPP (Solaris 2) 547–549

SLIP (HP-UX) 549–551

ULIP (Solaris 2) 546

ULIP (Windows) 551

IP addressing 555

processor numbers, choosing 556

remote access 557

shared memory (UNIX) 559–561

object module formats 537

optional product 532

rebooting 533

SIGKILL, using 534

starting 533

unsupported features 540

vxsize command 365

vxSSDisable() (MC68060) 389

vxSSEnable() (MC68060) 389

vxsys utility (x86) 453, 454

vxTas()
ARM 517

SPARC 405
622

IX

Index
VxVMI (option) 290–307

see also virtual memory - VxVMI option;

vmLib(1)

VxWorks

customer services 16

optional products

VxMP 255–287

VxSim 15

VxVMI 290–307

Wind Foundation Classes 250–254

overview 1–18

rebuilding 352–354

scalable features (INCLUDE constants) 340–

343, 344–346

simulator (VxSim) 15, 531–561

and Tornado 2

vxWorks 351

VxWorks features 344–346

vxWorks.h 325

vxWorks.res_rom 351

vxWorks.res_rom_nosym 351, 367

vxWorks.res_rom_nosym_res_low 347

vxWorks.res_rom_res_low 347

vxWorks.st 351, 366

vxWorks.st_rom 351, 367

vxWorks.sym symbol table 357, 377

vxWorks_boot.st (x86) 465

vxWorks_low (x86) 463

vxWorks_rom 351

VxWorks-timeout command (ARM) 513

W
WAIT_FOREVER 57

-Wall compiler option (VxSim) 537

watch command (ARM) 513

watchdog timers 90–91

see also wdLib(1)

code examples

creating a timer 91

wrapper classes, using 252

WDB_POOL_SIZE
i960 426

MIPS 489

SPARC 413

x86 448

wdbConfig() 322

wdCancel() 91

wdCreate() 90, 91

wdDelete() 91

wdShow() 378

wdStart() 90, 91

WIMG (PowerPC) 500

Wind facilities 20

message queues 66–67

POSIX, differences from 20

message queues 77–78

scheduling 32–33

semaphores 59

scheduling 22–25

semaphores 47–57

Wind Foundation Classes (option) 11, 250–254

see also Booch Components; C++ support;

Iostreams; Tools.h++; Wrapper Class

library; cplusLib(1)

code examples

wrapper class bindings 252

configuring 232

Tools.h++ 254

VxWorks Wrapper Class library 251–254

wind kernel, see kernel

$WIND_BASE 338

WIND_UID 225

WindView

initializing 321

workQPanic 89

Wrapper Class library (C++) 251–254

code example 252

header files 251

write protection 292, 304–306

and device drivers 168

write() 99, 102, 123

writethrough mode, cache 155

MC68040 393

PowerPC 496
623

VxWorks 5.4
Programmer’s Guide
X
x86 431–476

a.out tools 439

board support packages 451–478

booting

ATA/IDE hard disks, from 457, 459

boot disks, building 451–457

diskettes, from 457

dosFs file systems, mounting 460–462

flash file systems, from 457, 460

PC targets 451–460

PCMCIA PC cards, from 457, 459

breakpoints 438–439

BSP support, third party 462

byte order 441

compiler environment, configuring 432

compiler options 432–434

configuring

Pentium BSP 463

PentiumPro BSP 463–465

context switching 447

counters

performance-monitoring 446

timestamp 446

CPU type, defining 432

data transfer rates, diskette 470

DMA buffer alignment 462

drivers

APICs 476–478

ATA/IDE hard disks 471–474

console 466

diskette 468–471

keyboard 466

line printer 475–476

network 467–468

VGA 466

EPROM support 465

exception handling 444–445

machine-check exception 445

fdTypes[] 469–471

floating-point support 434

software emulation 448

Global Descriptor Table (GDT) 443

global variables 434–435, 463–464

interface differences, VxWorks 434–440

interrupts 444–445

I/O mapped devices 441

ISA/EISA bus 447

long long 447

math routines 434

memory

layout, VxWorks 448–450

mapped devices 441

segmentation 441–443

MMU 442–443

network boards in hardware, configuring 468

operating mode 441

PC compatibility 447, 451

PC104 bus 447

pc386/pc486 support 462

PCI bus 447

performance-monitoring counter 446

privilege protection 441

registers 445–446

memory type range register (MTRR) 445

model-specific register (MSR) 446

reading values, routines for 435

ROM card support 465

routines, architecture-specific 435–438

eax() 435

ebp() 435

ebx() 435

ecx() 435

edi() 435

edx() 435

eflags() 435

elcShow() 467

eltShow() 468

eneShow() 468

esi() 435

esmcShow() 468

esp() 435

Pentium-related (pentiumXxx()) 436–437

sysCpuProbe() 437, 438

sysDelay() 438

sysInByte() 437

sysInLong() 437

sysInLongString() 438

sysIntDisablePIC() 438
624

IX

Index
sysIntEnablePIC() 438

sysInWord() 437

sysInWordString() 438

sysOutByte() 438

sysOutLong() 438

sysOutLongString() 438

sysOutWord() 438

sysOutWordString() 438

ultraShow() 467

system images, VxWorks 463

timestamp counter 446

VME-specific conditions 443

xsym tool 357

MC680x0 387

xsymc tool (i960) 424

xsymcArm tool (ARM) 518

xsymDec tool (x86) 440

Y
yacc (UNIX) 370
625

	1
	Overview
	1.1� Introduction
	1.2� Getting Started with the Tornado Development System
	1.3� VxWorks: A Partner in the Real-time Development Cycle
	1.4� VxWorks Facilities: An Overview
	Multitasking and Intertask Communications
	POSIX Interfaces
	I/O System
	Local File Systems
	Virtual Memory (Including VxVMI Option)
	Shared-Memory Objects (VxMP Option)
	Target-Resident Tools
	C++ Development (including Wind Foundation Classes Option)
	Utility Libraries
	Performance Evaluation
	Target Agent
	Board Support Packages (BSPs)
	VxWorks Simulator

	1.5� Customer Services
	1.6� Documentation Conventions

	2
	Basic OS
	2.1� Introduction
	2.2� Wind Features and POSIX Features
	2.3� Tasks
	2.3.1� Multitasking
	2.3.2� Task State Transition
	2.3.3� Wind Task Scheduling
	Preemptive Priority Scheduling
	Round-Robin Scheduling
	Preemption Locks

	2.3.4� Tasking Control
	Task Creation and Activation
	Task Names and IDs
	Task Options
	Task Information
	Task Deletion and Deletion Safety
	Task Control

	2.3.5� Tasking Extensions
	2.3.6� POSIX Scheduling Interface
	Differences Between POSIX and Wind Scheduling
	Getting and Setting POSIX Task Priorities
	Getting and Displaying the Current Scheduling Policy
	Getting Scheduling Parameters: Priority Limits and Time Slice

	2.3.7� Task Error Status: errno
	Layered Definitions of errno
	A Separate errno Value for Each Task
	Error Return Convention
	Assignment of Error Status Values

	2.3.8� Task Exception Handling
	2.3.9� Shared Code and Reentrancy
	Dynamic Stack Variables
	Guarded Global and Static Variables
	Task Variables
	Multiple Tasks with the Same Main Routine

	2.3.10� VxWorks System Tasks

	2.4� Intertask Communications
	2.4.1� Shared Data Structures
	2.4.2� Mutual Exclusion
	Interrupt Locks and Latency
	Preemptive Locks and Latency

	2.4.3� Semaphores
	Semaphore Control
	Binary Semaphores
	Mutual-Exclusion Semaphores
	Counting Semaphores
	Special Semaphore Options
	POSIX �Semaphores

	2.4.4� Message Queues
	Wind Message Queues
	POSIX Message Queues
	Comparison of POSIX and Wind Message Queues
	Displaying Message Queue Attributes
	Servers and Clients with Message Queues

	2.4.5� Pipes
	2.4.6� Network Intertask Communication
	Sockets
	Remote Procedure Calls (RPC)

	2.4.7� Signals
	Basic Signal Routines
	POSIX Queued Signals
	Signal Configuration

	2.5� Interrupt Service Code
	2.5.1� Connecting Application Code to Interrupts
	2.5.2� Interrupt Stack
	2.5.3� Special Limitations of ISRs
	2.5.4� Exceptions at Interrupt Level
	2.5.5� Reserving High Interrupt Levels
	2.5.6� Additional Restrictions for ISRs at High Interrupt Levels
	2.5.7� Interrupt-to-Task Communication

	2.6� Watchdog Timers
	2.7� POSIX Clocks and Timers
	2.8� POSIX Memory-Locking Interface

	3
	I/O System
	3.1� Introduction
	3.2� Files, Devices, and Drivers
	3.2.1� File Names and the Default Device

	3.3� Basic I/O
	3.3.1� File Descriptors
	3.3.2� Standard Input, Standard Output, and Standard Error
	Global Redirection
	Task-Specific Redirection

	3.3.3� Open and Close
	3.3.4� Create and Remove
	3.3.5� Read and Write
	3.3.6� File Truncation
	3.3.7� I/O Control
	3.3.8� Pending on Multiple File Descriptors: The Select Facility

	3.4� Buffered I/O: Stdio
	3.4.1� Using Stdio
	3.4.2� Standard Input, Standard Output, and Standard Error

	3.5� Other Formatted I/O
	3.5.1� Special Cases: printf(�), sprintf(�), and sscanf(�)
	3.5.2� Additional Routines: printErr(�) and fdprintf(�)
	3.5.3� Message Logging

	3.6� Asynchronous Input/Output
	3.6.1� The POSIX AIO Routines
	3.6.2� AIO Control Block
	3.6.3� Using AIO
	AIO with Periodic Checks for Completion
	Alternatives for Testing AIO Completion

	3.7� Devices in VxWorks
	3.7.1� Serial I/O Devices (Terminal and Pseudo-Terminal Devices)
	Tty Options
	Raw Mode and Line Mode
	Tty Special Characters
	I/O Control Functions

	3.7.2� Pipe Devices
	Creating Pipes
	Writing to Pipes from ISRs
	I/O Control Functions

	3.7.3� Pseudo Memory Devices
	Installing the Memory Driver
	I/O Control Functions

	3.7.4� Network File System (NFS) Devices
	Mounting a Remote NFS File System from VxWorks
	I/O Control Functions for NFS Clients

	3.7.5� Non-NFS Network Devices
	Creating Network Devices
	I/O Control Functions

	3.7.6� Block Devices
	File Systems
	RAM Disk Drivers
	SCSI Drivers

	3.7.7� Sockets

	3.8� Differences Between VxWorks and Host System I/O
	3.9� Internal Structure
	3.9.1� Drivers
	The Driver Table and Installing Drivers
	Example of Installing a Driver

	3.9.2� Devices
	The Device List and Adding Devices
	Example of Adding Devices

	3.9.3� File Descriptors
	The Fd Table
	Example of Opening a File
	Example of Reading Data from the File
	Example of Closing a File
	Implementing select(�)
	Cache �Coherency

	3.9.4� Block Devices
	General Implementation
	Low-Level Driver Initialization Routine
	Device Creation Routine
	Read Routine (Direct-Access Devices)
	Read Routine (Sequential Devices)
	Write Routine (Direct-Access Devices)
	Write Routine (Sequential Devices)
	I/O Control Routine
	Device-Reset Routine
	Status-Check Routine
	Write-Protected Media
	Change in Ready Status
	Write-File-Marks Routine (Sequential Devices)
	Rewind Routine (Sequential Devices)
	Reserve Routine (Sequential Devices)
	Release Routine (Sequential Devices)
	Read-Block-Limits Routine (Sequential Devices)
	Load/Unload Routine (Sequential Devices)
	Space Routine (Sequential Devices)
	Erase Routine (Sequential Devices)

	3.9.5� Driver Support Libraries

	4
	Local File Systems
	4.1� Introduction
	4.2� MS-DOS-Compatible File System: dosFs
	4.2.1� Disk Organization
	Clusters
	Boot Sector
	File Allocation Table
	Root Directory
	Subdirectories
	Files
	Volume Label

	4.2.2� Initializing the dosFs File System
	4.2.3� Initializing a Device for Use with dosFs
	4.2.4� Volume Configuration
	DOS_VOL_CONFIG Fields
	Calculating Configuration Values
	Standard Disk Configurations

	4.2.5� Changes In Volume Configuration
	4.2.6� Using an Already Initialized Disk
	4.2.7� Accessing Volume Configuration Information
	4.2.8� Mounting Volumes
	4.2.9� File I/O
	4.2.10� Opening the Whole Device (Raw Mode)
	4.2.11� Creating Subdirectories
	4.2.12� Removing Subdirectories
	4.2.13� Directory Entries
	4.2.14� Reading Directory Entries
	4.2.15� File Attributes
	4.2.16� File Date and Time
	4.2.17� Changing Disks
	Unmounting Volumes
	Announcing Disk Changes with Ready-Change
	Disks with No Change Notification
	Synchronizing Volumes
	Auto-Sync Mode

	4.2.18� Long Name Support
	4.2.19� Contiguous File Support
	4.2.20� I/O Control Functions Supported by dosFsLib
	4.2.21� Booting from a Local dosFs File System Using SCSI

	4.3� RT-11-Compatible File System: rt11Fs
	4.3.1� Disk Organization
	4.3.2� Initializing the rt11Fs File System
	4.3.3� Initializing a Device for Use with rt11Fs
	4.3.4� Mounting Volumes
	4.3.5� File I/O
	4.3.6� Opening the Whole Device (Raw Mode)
	4.3.7� Reclaiming Fragmented Free Disk Space
	4.3.8� Changing Disks
	Announcing Disk Changes with Ready-Change
	Disks with No Change Notification

	4.3.9� I/O Control Functions Supported by rt11FsLib

	4.4� Raw File System: rawFs
	4.4.1� Disk Organization
	4.4.2� Initializing the rawFs File System
	4.4.3� Initializing a Device for Use with the rawFs File System
	4.4.4� Mounting Volumes
	4.4.5� File I/O
	4.4.6� Changing Disks
	Unmounting Volumes
	Announcing Disk Changes with Ready-Change
	Disks with No Change Notification
	Synchronizing Volumes

	4.4.7� I/O Control Functions Supported by rawFsLib

	4.5� Tape File System: tapeFs
	4.5.1� Tape Organization
	4.5.2� Using the tapeFs File System
	Initializing the tapeFs File System
	Initializing a Device for Use with the tapeFs File System
	Mounting Volumes
	Modes of Operation
	File I/O
	Changing Tapes
	I/O Control Functions Supported by tapeFsLib

	4.6� CD-ROM File System: cdromFs
	4.7� The Target Server File System: TSFS
	How It Works
	Security Considerations

	5
	C++ Development
	5.1� Introduction
	5.2� C++ Development Under Tornado
	5.2.1� Tools Support
	WindSh
	Debugger

	5.2.2� Programming Issues
	Making C++ Entry Points Accessible to C Code

	5.2.3� Compiling C++ Applications
	5.2.4� Configuration Constants
	5.2.5� Munching C++ Application Modules
	5.2.6� Static Constructors and Destructors
	Calling Static Constructors and Destructors Interactively
	Constructors and Destructors in System Startup and Shutdown

	5.2.7� Template Instantiation

	5.3� C++ Language and Library Support
	5.3.1� Language Features
	Exception Handling
	Run-Time Type Information (RTTI)

	5.3.2� Standard Template Library (STL)
	Iostream Library
	String and Complex Number Classes

	5.4� Example
	5.5� Wind Foundation Classes
	5.5.1� VxWorks Wrapper Class Library
	5.5.2� Tools.h++ Library

	6
	Shared-Memory Objects
	6.1� Introduction
	6.2� Using Shared-Memory Objects
	6.2.1� Name Database
	6.2.2� Shared Semaphores
	6.2.3� Shared Message Queues
	6.2.4� Shared-Memory Allocator
	Shared-Memory System Partition
	User-Created Partitions
	Using the Shared-Memory System Partition
	Using User-Created Partitions
	Side Effects of Shared-Memory Partition Options

	6.3� Internal Considerations
	6.3.1� System Requirements
	6.3.2� Spin-lock Mechanism
	6.3.3� Interrupt Latency
	6.3.4� Restrictions
	6.3.5� Cache Coherency

	6.4� Configuration
	6.4.1� Shared-Memory Objects and Shared-Memory Network Driver
	6.4.2� Shared-Memory Region
	6.4.3� Initializing the Shared-Memory Objects Package
	6.4.4� Configuration Example
	6.4.5� Initialization Steps

	6.5� Troubleshooting
	6.5.1� Configuration Problems
	6.5.2� Troubleshooting Techniques

	7
	Virtual Memory Interface
	7.1� Introduction
	7.2� Basic Virtual Memory Support
	7.3� Virtual Memory Configuration
	7.4� General Use
	7.5� Using the MMU Programmatically
	7.5.1� Virtual Memory Contexts
	Global Virtual Memory
	Initialization
	Page States

	7.5.2� Private Virtual Memory
	7.5.3� Noncacheable Memory
	7.5.4� Nonwritable Memory
	7.5.5� Troubleshooting
	7.5.6� Precautions

	8
	Configuration and Build
	8.1� Introduction
	8.2� The Board Support Package (BSP)
	The System Library
	Virtual Memory Mapping
	The Serial Driver
	BSP Initialization Modules
	BSP Documentation

	8.3� VxWorks Initialization Timeline
	The VxWorks Entry Point: sysInit(�)
	The Initial Routine: usrInit(�)
	Initializing the Kernel
	Initializing the Memory Pool
	The Initial Task: usrRoot(�)
	The System Clock Routine: usrClock(�)
	Initialization Summary

	8.4� Building, Loading, and Unloading Application Modules
	8.4.1� Using �VxWorks Header Files
	 VxWorks Header File: vxWorks.h
	Other �VxWorks Header Files
	ANSI Header Files
	The -I Compiler Flag
	 VxWorks Nested Header Files
	Internal Header Files
	 VxWorks Private Header Files

	8.4.2� Compiling Application Modules
	The GNU Tools
	Cross-Development Commands
	Defining the CPU Type
	Compiling C Modules
	Compiling C++ Modules

	8.4.3� Static Linking (Optional)
	8.4.4� Downloading an Application Module
	8.4.5� Module IDs and Group Numbers
	8.4.6� Unloading Modules

	8.5� Configuring VxWorks
	8.5.1� The Environment Variables
	8.5.2� The Configuration Header Files
	The Global Configuration Header File: configAll.h
	The BSP-specific Configuration Header File: config.h
	Selection of Optional Features

	8.5.3� The Configuration Module: usrConfig.c

	8.6� Alternative VxWorks Configurations
	8.6.1� Scaling Down VxWorks
	Excluding Kernel Facilities
	Excluding Network Facilities
	Option Dependencies

	8.6.2� Executing VxWorks from ROM
	8.6.3� Initialization Sequence for ROM-Based VxWorks

	8.7� Building a �VxWorks System Image
	8.7.1� Available VxWorks Images
	8.7.2� Rebuilding �VxWorks with make
	Making on UNIX Hosts
	Making on Windows Hosts

	8.7.3� Including Customized �VxWorks Code
	8.7.4� Linking the System Modules
	8.7.5� Creating the System Symbol Table Module

	8.8� Makefiles for BSPs and Applications
	8.8.1� Make Variables
	Variables for Compilation Options
	Variables for BSP Parameters
	Variables for Customizing the Run-Time

	8.8.2� Using Makefile Include Files for Application Modules
	8.8.3� Makefile for SIO Drivers

	8.9� Creating Bootable Applications
	8.9.1� Creating a Standalone �VxWorks System with a Built-in Symbol Table
	8.9.2� Creating a �VxWorks System in ROM
	General Procedures
	Boot ROM Compression

	9
	Target Shell
	9.1� Introduction
	9.2� Target-Resident Shell
	9.2.1� Creating the Target Shell
	9.2.2� Using the Target Shell
	9.2.3� Debugging with the Target Shell
	9.2.4� Aborting the Target Shell
	9.2.5� Remote Login to the Target Shell
	Remote Login From Host: telnet and rlogin
	Remote Login Security

	9.2.6� Summary of Target and Host�Shell Differences

	9.3� Other Target-Resident Facilities
	9.3.1� Target Symbol Table, Module Loader, and Module Unloader
	9.3.2� Show Routines

	Appendices
	A
	Motorola MC680x0
	A.1� Introduction
	A.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C or C++ Modules

	A.3� Interface Variations
	CPU-Specific Interfaces
	a.out-Specific Tools

	A.4� Architecture Considerations
	MC68060 Unimplemented Integer Instructions
	Double-word Integers: long long
	Interrupt Stack
	MC68060 Superscalar Pipeline
	Caches
	Memory Management Unit
	Floating-Point Support
	Memory Layout

	B
	Sun SPARC, SPARClite
	B.1� Introduction
	B.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C or C++ Modules

	B.3� Interface Variations
	a.out-Specific Tools for SPARC and SPARClite

	B.4� Architecture Considerations
	Reserved Registers
	Processor Mode
	Vector Table Initialization
	Double-word Integers: long long
	Interrupt Handling
	Floating-Point Support
	Stack Pointer Usage
	SPARClite �Overview
	Memory Layout

	C
	Intel i960
	C.1� Introduction
	C.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C or C++ Modules
	Boot Loader Changes

	C.3� Interface Variations
	Initialization
	Data Breakpoint Routine bh(�)
	Parameter Change for intLevelSet(�)
	Results Change for memLib
	Math Routines
	Adding in Unresolved Routines
	Floating-Point Task Option: VX_FP_TASK
	COFF-Specific Tools For i960
	Limitation on d(�) in WindSh

	C.4� Architecture Considerations
	Byte Order
	Double-word Integers: long long
	VMEbus Interrupt Handling
	Memory Layout

	D
	Intel x86
	D.1� Introduction
	D.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C and C++ Modules

	D.3� Interface Variations
	Supported Routines in mathALib
	Architecture-Specific Global Variables
	Architecture-Specific Routines
	a.out-Specific Tools for x86

	D.4� Architecture Considerations
	Operating Mode, Privilege Protection, and Byte Order
	Memory Segmentation
	I/O Mapped Devices
	Memory Mapped Devices
	Memory Considerations for VME
	Interrupts and Exceptions
	Registers
	Counters
	Double-word Integers: long long
	Context Switching
	ISA/EISA Bus
	PC104 Bus
	PCI Bus
	Software Floating-Point Emulation
	VxWorks Memory Layout

	D.5� Board Support Packages
	Boot Considerations for PC Targets
	Mounting a DOS File System
	DMA Buffer Alignment and cacheLib
	Support for Third-Party BSPs
	VxWorks Images
	BSP-Specific Global Variables for 386 and 486
	Configuring the Pentium BSP
	Configuring the PentiumPro BSP
	ROM Card and EPROM Support
	Device Drivers

	E
	MIPS R3000, R4000, R4650
	E.1� Introduction
	E.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C or C++ Modules

	E.3� Interface Variations
	cacheR3kLib and cacheR4kLib
	dbgLib
	intArchLib
	mathALib
	taskArchLib
	MMU Support
	ELF-specific Tools

	E.4� Architecture Considerations
	Gprel Addressing
	Reserved Registers
	Floating-Point Support
	Interrupts
	Virtual Memory Mapping
	64-bit Support (R4000 Targets Only)
	Memory Layout

	F
	PowerPC
	F.1� Introduction
	F.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C and C++ Modules
	Compiling Modules for GDB
	Unsupported Features

	F.3� Interface Changes
	Memory Management Unit
	HI and HIADJ Macros
	ELF-Specific Tools

	F.4� Architecture Considerations
	Processor Mode
	24-bit Addressing
	Byte Order
	PowerPC Register Usage
	Caches
	Memory Management Unit
	Floating-Point Support
	VxMP Support for Motorola PowerPC Boards
	Memory Layout

	G
	ARM
	G.1� Introduction
	G.2� Building Applications
	Defining the CPU Type
	Configuring the GNU ToolKit Environment
	Compiling C and C++ Modules
	Boot Loader Changes

	G.3� Toolchain Information
	Assembler Pseudo Operations
	Additional ARM Compiler Options
	CrossWind and GDB

	G.4� Interface Variations
	Restrictions on cret(�) and �tt(�)
	cacheLib
	dbgLib
	dbgArchLib
	intALib
	intArchLib
	mmuALib
	usrLib
	vmLib
	vxALib
	vxLib
	COFF-Specific Tools For ARM

	G.5� Architecture Considerations
	Processor Mode and Byte Order
	ARM/Thumb State
	Interrupts and Exceptions
	Floating-Point Support
	Caches
	Memory Management Unit
	Memory Layout

	H
	VxSim
	H.1� Introduction
	H.2� The Built-in Simulator
	Installation and Configuration
	Starting VxSim
	Rebooting VxSim
	Exiting VxSim
	System-Mode Debugging
	File Systems

	H.3� Building Applications
	Defining the CPU Type
	The Toolkit Environment
	Compiling C and C++ Modules
	Linking an Application to VxSim
	Architecture-Specific Tools

	H.4� Architecture Considerations
	Supported Configurations
	The BSP Directory
	Interrupts
	Clock and Timing Issues

	H.5� VxSim Networking Component
	Installing VxSim Network Drivers
	Configuring VxSim for Networking
	Running Multiple Simulators
	System Mode Debugging
	IP Addressing
	Choosing Processor Numbers for Distinct Devices
	Setting Up Remote Access
	Setting up the Shared Memory Network (UNIX only)

	I
	Coding Conventions
	I.1� Introduction
	I.2� File Heading
	I.3� C Coding Conventions
	I.3.1� C Module Layout
	I.3.2� C Subroutine Layout
	I.3.3� C Declaration Formats
	Variables
	Subroutines

	I.3.4� C Code Layout
	Vertical Spacing
	Horizontal Spacing
	Indentation
	Comments

	I.3.5� C Naming Conventions
	I.3.6� C Style
	I.3.7� C Header File Layout
	Structural
	Order of Declaration

	I.3.8� Documentation Format Conventions for C
	Layout
	Format Commands
	Special Elements
	Formatting Displays

	Index

