- EEEEmN

{ ! ’
S A e E I EEEEEEEEN

Xerox GLOBALVIEW

Document Interfaces Toolkit
Software Reference

VP Series Applications

XEROX

Xerox GLOBALVIEW

Document Interfaces Toolkit Software Reference

VP Series Applications
VP Series Reterence Library, Version 3.0

Xerox Corporation

Product Education and Documentation (ESCN-215)
701 South Aviation Boulevard

El Segundo, California 90245

©1986, 1988, 1990 by Xerox Corporation. All rights reserved.
Published August 1990.

Copyright protection claimed includes all forms and matters of copyrightable
material and information now allowed by statutory or judicial law or hereinafter
granted, including without limitation, material generated from the software
programs which are displayed on the screen such as icons, screen displays, looks,
and so forth.

Publication number: 610E22840

Printed in the United States of America

Xerox®, GLoBaLView®, VP®, and all Xerox product names mentioned in this
publication are trademarks of Xerox Corporation.

Sun®, Sun0S®, SunView®, SunWindows®, and SunWorkstation® are trademarks of

Sun Microsystems, Incorporated.
UNIX® is a'trademark of AT&T.

Changes are periodically made to this document. Changes, technical inaccuracies,
and typographic errors will be corrected in subsequent editions.

This book was created using the Xerox 6085 Professional Computer System.

Table of Contents

1. Document IC Library 1-1
di__intro 1-1
Document Creation 1-1

Document Enumeration 1-2

Data types 1-2

Table of DoclC Interfaces 1-3

di__abort 1-5
di__apaframe 1-6
di__apbreak 1-9
di__apchar 1-10
di__apfield 1-11
di__apfntile 1-13
di__apfstyle, di__appstyle 1-14
di__apindex 1-16
di__apnewpara 1-18
di__appfc 1-20
di__aptext 1-22
di__aptofillin 1-24
di__aptotxtink 1-25
di__clearfillin 1-27
di__cleartxtink 1-28
di__close 1-29
di__enumerate 1-30
di__enumfillin 1-34
di__enumstyle 1-35
di__enumtxtink 1-37
di__finish 1-38
di__getfieldfromname 1-40
di__getfnprops 1-41
di__open 1-43
di__rel* 1-45
di__setfnprops 1-47
di__setmode, di__getmode 1-49

DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE

TABLE OF CONTENTS

di__setpara 1-50
di__start 1-52
di__startap 1-55
di__starttext 1-57
di__textforaframe 1-58
2. Document IC Property Library 2-1
dp__intro 2-1
Break Properties 2-1

Field Properties 2-1

Font Runs 2-2

Footnote Numbering Properties 2-3

Font Properties 2-5

dp__fontdesc 2-5

Other fields in dp__fontprops 2-6

Frame Properties 2-7

Index Properties 2-9

Page Properties 2-9

Paragraph Properties 2-12

Basic Property Records 2-13

Tabs 2-14

Document Mode Properties 2-15

Font Style Properties 2-15

Paragraph Style Properties 2-16

TextFrame Properties 2-17

Color Properties 2-18

dp__*col* 2-20
dp__enumfrun 2-22
dp__get*def 2-24
3. Graphics IC Library 3-1
gi__intro 3-1
Creating Graphics 3-1

Reading Graphics 3-2

Cross References 3-2

gi__adbacht 3-5
gi__adbm 3-11
gi__adcurve 3-16
gi__adellipse 3-21
gi__adffield 3-25
gi__adline 3-28

iv DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE

TABLE OF CONTENTS

gi__adIncht 3-30
gi__adpicht 3-33
gi__adpislce 3-35
gi__adpoint 3-38
gi__adrectangle 3-40
gi__adtable 3-43
gi__adtframe 3-45
gi__adtriangle 3-47
gi__ap*btnprog 3-50
gi__btnforaframe 3-52
gi__enumbtnprog 3-53
gi__enumerate 3-55
gi__finish 3-59
gi__getgframeprops 3-61
gi__get*def 3-62
gi__relbtnprog 3-68
gi__setgframeprops 3-69
gi__startbtn, gi__finishbtn 3-71
gi__startcluster 3-73
gi__startgframe 3-75
gi__startgr 3-79
gi__startnbtn 3-80
4. Table IC Library 4-1
ti__intro 4-1
Table Building 41

Table Reading 4.2

Properties 4-2

Table Properties 4-2

Column Properties 4-4

Column Header Properties 4-5

Other Column Properties 4-8

Row Content 4-8

ti__appendrow 4-10
ti__deffont, ti__defpara 4-11
ti__enumtable 4-12
ti_finishtable 4-14
ti__get*def 4-15
ti__gettableprops 4-17
ti__maxelm 4-18

DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE

TABLE OF CONTENTS

ti__startextable 4-19

ti__starttable 4-21

5. Desktop Library 5-1
dsktp__intro 5-1

dsktp__checkuser 5-2

dsktp__copydoc 5-3

dsktp__deletedoc 5-5

dsktp__enumerate 5-6

dsktp__getaccess 5-8

dsktp__getdocprops 5-9

dsktp__getdocref 5-11

dsktp__makefolder, dsktp__deletefolder 5-13

dsktp__movedoc 5-15

6. XString Library 6-1
XString__intro 6-1

XCharset, XCharcode, XCharmake 6-3

XStrcat, XStrncat 6-5

XStrcmp, XStrncmp, XStrcasecmp, XStrncasecmp 6-6

XStrcpy, XStrncpy, XStrdup 6-8

XStrlen 6-9

XStrlexcmp, XStrnlexcmp, XStrcaselexcmp, XStrncaselexcmp 6-10

XStrchr, XStrrchr, XStrpbrk 6-12

XStrsch 6-13

XStrsep 6-14

XStrfromASC, XStrtoASC 6-15

XStrfromXCC8, XStrtoXCC8 6-16

7. Signals 7-1
getsigno 7-1

8. XNS Llbrary 8-1
XNS__intro 8-1

__Connection 8-1

__BDTprocptr 8-2

Error Handling 8-3

Header Files 8-4

Authentication2__ChangeStrongKey, __ChangeSimpleKey 8-5
Authentication2__CheckSimpleCredentials 8-7
Authentication2__CreateStrongKey, __CreateSimpleKey 8-8

vi

DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE

TABLE OF CONTENTS

Authentication2__DeleteStrongKey, __DeleteSimpleKey 8-10
Authentication2__GetStrongCredentials 8-11
Clearinghouse2__AddCroupProperty 8-13
Clearinghouse2__AddItemProperty 8-15
Clearinghouse2__AddMember, __AddSelf 8-17
Clearinghouse2__Changeltem 8-19
Clearinghouse2__CreateAlias, __DeleteAlias, __ListAliases 8-20
Clearinghouse2__CreateObject 8-22
Clearinghouse2__DeleteMember, __DeleteSelf 8-23
Clearinghouse2__DeleteObject 8-25
Clearinghouse2__DeleteProperty 8-26
Clearinghouse2__IsMember : 8-27
Clearinghouse2__ListAliasesOf 8-29
Clearinghouse2__listDomain 8-30
Clearinghouse2__ListDomainServed 8-31
Clearinghouse2__ListObjects 8-32
Clearinghouse?2__ListOrganizations 8-33
Clearinghouse2__ListProperties 8-34
Clearinghouse2__LookupObiject 8-35
Clearinghouse?2__RetrieveAddresses 8-36
Clearinghouse2__Retrieveltem 8-37
Cleringhouse2__RetrieveMembers 8-38
Filing6__Close 8-39
Filing6__Continue 8-40
Filing6__Copy 8-41
Filing6__Create 8-42
Filing6__Delete 8-44
Filing6__Find 8-45
Filing6__CetAttributes, __ChangeAttributes 8-47
Filing6__GetControls, __ChangeControls 8-49
Filing6__List 8-50
Filing6__Logoff 8-52
Filing6__Logon 8-53
Filing6__Move 8-54
Filing6__Open 8-55
Filing6__Replace 8-57
Filing6__Retrieve 8-58
Filing6__RetrieveBytes, __ReplaceBytes 8-59
Filing6__Serialize, __Deserialize 8-61
Filing6__Store 8-63

DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE Vil

TABLE OF CONTENTS

Filing6__UnifyAccessLists 8-64
Gap3__Create 8-65
Inbasket2__ChangeBodyPartsStatus 8-67
Inbasket2__ChangeMessageStatus 8-68
Inbasket2__Delete 8-69
Inbasket2__GetSize 8-70
Inbasket2__Logon, __Logoff 8-71
Inbasket2__MailCheck 8-73
Inbasket2__MailPoll 8-74
Inbasket2__RetrieveBodyParts 8-75
Inbasket2__RetrieveEnvelopes 8-76
MailTransport5__AbortRetrieval 8-78
MailTransport5__BeginPost 8-79
MailTransport5__BeginRetrieval 8-81
MailTransport5__EndPost 8-82
MailTransport5__EndRetrieval 8-83
MailTransport5__MailPoll 8-84
MailTranspoftS_PostOneBodyPart 8-85
MailTransport5__RetrieveContent 8-86
MailTransport5__RetrieveEnvelope 8-87
MailTransport5__ServerPoll 8-88
Printing3__GetPrinterProperties 8-89
Printing3__GetPrinterStatus 8-90
Printing3__GetPrintRequestStatus 8-92
Printing3__Print 8-93
Index INDEX-1

viii

DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE

1. Document IC Library

di__intro

NAME
di__intro - introductory explanation of document interchange functions
DESCRIPTION

The DoclC interface is a C-based programming tool that allows a person to create a new VP document or
read an existing one. Also, new data may be added directly to the end of an existing VP document. The
contents of an existing VP document may not be changed or deleted. But, through the use of an
intermediary file, the contents of an existing VP file may be read up to a certain point and inserted within
the intermediary file, the new data inserted, and the remainder of the VP document read. The same basic
approach may be used to delete select data from a document: An existing VP document may be read up to a
certain point and the information placed in an intermediary file. The undesired data may be skipped, and
the remaining data is read and placed in the intermediary file.

The DoclC interface provides functions that may be used to create or read any of the basic VP document
structures, such as text; fields; headings and footings; or frames of varying types.

Data is placed in a frame by the calling the DoclC interface functions that correspond to that particular
type of frame. Currently, there are only two IC interfaces available that may be used to manipulate the
contents of a frame. They are GraphicsliC and TablelC. GraphicsIC functions are used to create or read
graphics frames and button frames. TablelC functions are used to create or read tables.

Document Creation

A VP document is initially created by calling either di start() or di startap(). Both of these two functions
set up data structures for the document being created and return a handle to the newly created document.
This handle is an identifier that is passed as an argument to other DoclC interchange functions as the
means of identifying the document being manipulated.

The next step in creating a document is to add information to the document by calls to various di ap*()
functions. These functions are di apaframe(), di apbreak(), di apchar(), di apfield(), di apfntile(),
di apindex(),di apnewpara(),di appfc(),di aptext(),di aptofillin(),di apfstyle(),di appstyle(),and
di_aptotxtink().” - - - - -

With regards to di apaframe(), the function used to anchor a frame to an object in a document, the user
typically calls various GraphicsiC or TablelC functions to create the contents of a frame, and then calls
di apaframe() to append that frame and its contents to the document. With regards to di starttext(), the
user callsdi apaframe() first and then callsdi starttext() to obtain a text handle. The handle returned by
acall to di_-a-paframe() is then passed as an argument to di__starttext().

di_apfield(), di_apindex() anddi appfc() all have return values. This allows the user to recursively call
di__ap*() functions to add text and formatting information to fields, index, or PFC headers.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-1

DOCUMENT IC LIBRARY

When all the desired data has been added to a document, call di finish() to obtain a temporary reference,
or handle. Then call the Desktop Library function dsktp move() so that the resulting file may be placed
on the VP desktop. -

Document Enumeration

To enumerate the contents of an existing VP document, the first step is a call to dsktp getdocref().
dsktp getdocref() will return a handle for the specified document. Once the handle has been obtained, the
contents may be manipulated. Next call di open(). This function opens the specified document and
returns doc, a handle for the document. Next, pass the handle and a di enumprocs structure as
arguments in a call to di enumerate(). The di enumprocs structure consists of a set of call-back
procedures, where there is one call-back procedure for each of the corresponding object types that exist in
the document. Objects, in this case, are defined as anchored frames, break characters, field, footnotes,
indexes, new paragraphs, page format characters, or text.

The di enumerate() function inspects a document from beginning to end. As different types of objects are
encountered, this function calls the appropriate call-back procedure to process each particular type of
object. Each call-back procedure returns a Boolean value. A value of TRUE terminates the enumeration. If
TRUE is never returned, the enumeration continues to the end of the document.

Enumeration proceeds according to the “main flow” of text within a document. Main flow is considered to
be the sequence of text that contains page format characters and frame anchor characters. This means
that the call-back procedure, di aframeproc(), will be called not when the frame itself is reached, but
rather when the frame’s anchor character is reached.

When the enumeration is complete, di_close() should be called to free all associated data structures and
close any open file handles to the document.

Note that document creation and enumeration are totally separate activities and the functions and
handles associated with one should not be used with the other. Enumeration is a read-only operation; no
editing should be attempted while it is in progress. Likewise, enumeration should not be attempted when
creating a document.

Data types

The basic data structure of the DoclC interface is d i__tcont (text container). di tcontmay be defined as any
object that can contain text. A di tcont can be a caption, document, field, footing, heading, index,
numbering, or text. -

di_tcont is defined in DoclIC.h as follows:

typedef struct {
di tcont typetype;
union{
di caption caption;
di- doc doc;
di— field field;
di_ footing footing;
di_ heading heading;
di_ index index;
di”_numbering numbering;
di text text;
YRy
_}di__tcont;

where, all elements inside the union h are unsigned integers.

1-2

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di tcont must contain at least one new paragraph character, since the paragraph properties of text are
inherited from the preceding new paragraph character. The implementation of the DocIC interface
automatically inserts the initial new paragraph characters as required. Therefore, it is always safe to
assume they already exist. (You are free to append new paragraph characters, regardless. The
implementation ensures that duplicate new paragraph characters do not appear in the document. The new
paragraph characters inserted by the user have precedence over those inserted by the system.)

di ins is a handle to specific instances of objects within a document. Many objects in a document may be
uniquely identified and accessed viadi ins. In general, instances form the bridge between DoclC interfaces
and the interfaces that are used specifically to manipulate the contents of frames, such as GraphicsIC and
TablelC: DocIC interfaces provide an instance which may be passed to other Interchange interfaces. No

object in any document may be accessed viadi insnil.

Table of DoclIC Interfaces

The following table summarizes DoclC interfaces.

Object ;reating Beading
Function Page Function Page
Common di__enumerate
Document di start di open
di finish di__close
di abort
Text di aptext di textproc
di apchar di_reltext
di reltext
Anchored di starttext di aframeproc
Text Frame di apaframe di_textforaframe
di relcap
Anchored di setfnprops di aframeproc
Footnote di apaframe di fnpropsproc
di fntile di getfnprops
di relcap di fntileproc
Other Anchored di apaframe di__aframeproc
Frame di_relcap
break di__apbreak di_breakproc
Field di field di fieldproc
di_relfield di getfieldfromname
dp__enumfrun
Index di apindex di__indexproc
di_relindex
Newpara di apnewpara di__newparaproc
di setpara

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

Object C.reating lf{eading
Function Page Function Page
Page di appfc di pfcproc
(Footing/Heading/ di relhead di_docproc
Numbering) di relfoot
di relnum
Soft Page Break di sfbrkproc
Fill-In Order di_aptofillin di fillinproc
di clearfillin di enumfillin
Style di start di enumstyle
di styleproc di fstyleproc
di apfstyleproc di__pstyleproc
di appstyleproc
di apfstyle
di appstyle
Text Link di aptotxtink di txtinkproc
di cleartxtink di enumtxtink
Mode di setmode di__getmode

1-4

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__abort

NAME

di__abort - abort document creation
SYNOPSIS
#include “"DocIC.h”
int
di__abort(doc)
di__doc *doc;
DESCRIPTION

The di_abort() function is used to terminate the document generation process and deallocate the storage
resources allocated to the document being terminated. This function’s one argument is di__doc, the file
handle returned by an earlier call to di__start() or di__startap().

RETURN VALUE

If the call is successful, 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di__abort() will fail if one or more of the following is true:

Doc_ BadParm One of the specified arguments is invalid.
Doc_lllegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-5

DOCUMENT IC LIBRARY

di__apaframe

NAME

di__apaframe - append anchored frame

SYNOPSIS

#include "DocIC.h"”
#include "DoclCProps.h”

int
di apaframe(to, type, frame, cont, wtcap, wbcap, wlcap, wrcap, font, trustsize, ret)
“di tcont *to;
di” aframetype type;
dp frameprops *frame;

di “ins cont; /*di insnil */
dp bool wtcap; /* FALSE */

dp bool wbcap; /* FALSE */

dp bool wlcap; /* FALSE */

dp bool wrcap; /* FALSE */

dp fontprops *font; /* NULL */
dp_ bool trustsize; /* FALSE */
ret_apaframe *ret; /* Returned */

DESCRIPTION

The di__apaframe() function is used to append an anchored frame to the text container specified by
di__tcont. The resulting frame will be of a specific type and it will have specific format properties.

to is a pointer of the type di tcont. It is a structure that defines the type of object contained within it and a
handle to the object itself. di tcont consists of a union of two members, type and h. The object type is
defined by the member type. fype is of the type di tcont type. It is an enumerated variable that may be
set to one of the following values: - -

TC CAPTION

TC DOC

TC™ FIELD

TC™ FOOTING
TC™ HEADING
TC™ INDEX

TCT NUMBERING
Tc:TEXT

The h member of di__tcontis an opaque variable that is to contain a handle returned by a previous call to a
related handle generating function. It may contain one the following types:

di caption
di” doc

di- field

di_ footing

di heading
di_ index
di”_numbering
di_text

1-6

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

The user specifies the handle type and its contents. In the case of di__apaframe(), the type is to be set to
TC_ DOCand the handle is to contain the return value of either di__start() or di__startap(). Appendingan
anchored frame to a caption, text, heading, footing, or numbering container is not allowed.

The type argument is of the type di_aframetype. It is an enumerated variable that specifies the type of
anchored frame to be appended to the document container. It may be set to one of the following values:

AF CUSP Cusp Button
AF_ GRAPH Graphics
AF~ TABLE Table

AF TEXT Text

AF_ FNOTE Footnote
AF_OTHER Other type

The frame argument is a pointer of the type dp frameprops, a structure containing variables that control
the appearance, dimensions, and page numbering of the frame in question.

The cont argument is the contents to be inserted in the frame. Currently, only interfaces that support the
creation of graphic, table, text, and button frames are available.

The w*cap argument specifies the captions the frame should have.

font specifies the font properties of the frame anchor. Changing the font properties of the anchor does not
affect the appearance of the anchor, but it does affect the default properties that succeeding characters will
inherit.

trustsize is a Boolean value that controls the dimensions of the frame. If trustsize is set to TRUE, the frame
size specified in frame will be used without modification. If set to FALSE, the frame size specified in frame
will be ignored and the frame will be adjusted to fit the existing frame. This argument may only be set to
TRUE when manipulating anchored table frames.

The return information is set into the structure ret__apaframe. It contains the following members:

di insframe;

di” caption tcap;
di__caption bcap;
di __caption lcap;
di . __caption rcap;

The return information contains handles to the frame and its captions. The caption handles will be non-
NULL only if the user specifies TRUE for the corresponding w*cap parameter. The user must later release
each valid caption handle with calls to di_relcap().

frame is a pointer of type ret _apaframe. The handle contained in ret__apaframe is passed as an argument
in calls todi starttext() and gi setgframeprops(). It is not mandatory to call di starttext() after calling
di__apaframe me(). Failure tocalldi starttext() will only result in an empty text frame, except for the presence
of one new paragraph character that has default paragraph and font properties.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-7

DOCUMENT IC LIBRARY

ERRORS
di_apaframe() will fail if one or more of the following is true: '

Doc__ContainerFuII No more room to append to this container.
Doc_ DocumentFull No more room in the document.
Doc_ReadonIyDoc Document opened in ReadOnly mode.

Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.
Doc__ ObjlllegalinCont Attempted to add an object of an unsupported type to a container.
Doc_ BadParm One of the specified arguments is invalid.
Doc_ lllegalHandle The specified handle is illegal.
Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
Doc__Unimpl This function is not supported.
SEE ALSO

di__relcap(), di_starttext(), gi__setgframeprops()

1-8 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__apbreak

NAME

di__apbreak - append break character
SYNOPSIS

#include "DoclC.h"”
#include “"DocICProps.h”

int
di apbreak(to, brprops, foprops)
Tdi tcont *to;
dp breakprops *brprops;
dp_fontprops *foprops; /* NULL */

DESCRIPTION
The di__apbreak() function is used to append a page break character to the container specified by di__tcont.

Refer to di__apaframe() for a description of di__tcont. Note that heading, footing and numbering containers
may not be used.

brprops are the properties of the break character. Refer to the DocICProps section of this manual and the
VP reference manuals for more information regarding text frame properties.

foprops are the font properties of the break character. The addition of these properties will not affect the
appearance of the character itself, but will affect the properties that succeeding characters will inherit.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS
di__apbreak() will fail if one or more of the following is true:

Doc_ ContainerFull There is no more room to append to this container.
Doc_ DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.
Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc_OutOfVM Not enough virtual memory for the operation.

Doc__ ObjlllegalinCont Attempted to add an object of an unsupported type to a container.

Doc_ BadParm One of the specified arguments is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
Doc__ Unimpl This function is not supported.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-9

DOCUMENT IC LIBRARY

di__apchar

NAME

di__apchar - append character

SYNOPSIS

#include “DocIC.h”
#include “DoclCProps.h”
#include “XString.h”

int
di__apchar(to, c, foprops, num)
di tcont *to;

XChar c;

dp fontprops *foprops; /* NULL */

unsigned num; /* 1%/
DESCRIPTION

The di_apchar() function is used to append one or more instances of the text character c to the specified
di__tcont. Refer to di__apaframe() for a description of di _tcont.

The num argument specifies the number of times the character specified in ¢ will be appended to the text
container. The foprops argument specifies the font properties of the character(s).

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di__apchar() will fail if one or more of the following is true:

Doc_ContainerFuII There is no more room to append to this container.
Doc_ DocumentFull No more room in the document.
Doc__ReadonlyDoc Document opened in ReadOnly mode.

Doc__ OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.

Doc__ ObjlllegalinCont Attempted to add an object of an unsupported type to a container.

Doc_ BadParm One of the specified arguments is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc__TimeOut Inter-process communication has exceeded the maximum allowed time.
Doc__Unimpl This function is not supported.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__apfield

NAME
di__apfield - append field

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h”

int

di__apfield(to, fiprops, foprops, ret)
di__tcont *to;
dp fldprops *fiprops;

dp fontprops *foprops; /* NULL */
di "Tield *ret; /* Returned */
DESCRIPTION

The di_apfield() function is used to append a document field to the text container indicated by di__tcont.

Refer to di__apaframe() for a description of di__tcont. Note that a field may not be appended to a heading,
footing or numbering container.

di__apfield() returns a handle of type di_field. This handle is passed as an argument to other di__ap*()
functions in order to add data to the newly appended field. It cannot be specified as the di__tcont in another
call todi__apfield(). After appending data to a field, the field must be released by a call to di__relfield().

The fiprops and foprops arguments specify field and font properties, respectively. Refer to the dp__*props
section of this manual and the VP reference manuals for more information regarding font and field

properties.

The fill-in order of a fields cannot be set when they are appended to a document. To specify the fill-in order
of fields, use the di_a ptofillin() function.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-11

DOCUMENT IC LIBRARY

ERRORS
di_apﬁeld() will fail if one or more of the following is true:

Doc_ ContainerFull There is no more room to append to this container.
Doc_ DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.
Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.
Doc__ ObjlllegalinCont Attempted to add an object of an unsupported type to a container.
Doc__BadParm One of the specified arguments is invalid.
Doc_lllegalHandle The specified handle is illegal.
Doc_TimeOut Inter-process communication has exceeded the maximum allowed time.
Doc__Unimpl This function is not supported.

SEE ALSO

di_relfield(), di_aptofillin()

1-12 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__apfntile

NAME

di__apfntile - append footnote reference tile
SYNOPSIS

#include "DocIC.h”
#include "DoclCProps.h”

int
di apfntile(to, foprops)

T di_textto;
dp__fontprops *foprops; /* NULL */

DESCRIPTION

The di_apfntile() function is used to append a Footnote Reference Tile to the text container specified in the

di__text. argument.
The foprops argument specifies the font properties of the newly generated Footnote Reference Tile.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the

reason for the failure.
ERRORS
di__apfntile() will fail if one or more of the following is true:

Doc_ ContainerFull There is no more room to append to this container.
Doc__DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.
Doc__ObjlllegalinCont Attempted to add an object of an unsupported type to a container.
Doc_ BadParm One of the specified arguments is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc__TimeQut Inter-process communication has exceeded the maximum allowed time.

Doc__ Unimpl This function is not supported.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__

apfstyle, di__appstyle

NAME

di__apfstyle, di__appstyle - append font and paragraph style

SYNOPSIS

#include “"DocIC.h”
#include "DocICProps.h”

int

di__apfstyle(doc, props)
di__docdoc;
dp_ fstyleprops *props;

int

di__appstyle(doc, props)
~di docdoc;
dp_pstyleprops *props;

DESCRIPTION

The di apfstyle() and di__appstyle() functions are used to append respective font and paragraph style
properties to the styles in a document. Refer to the Document Editor: Basics User Guide for more
information on document styles.

There are two ways to append styles. The first way is via the styledat argument to di start(). It is used to
define the style of first the new paragraph and page format characters. The second way is via calls to
di apfstyle() and di appstyle() These two functions are used to define subsequent style definitions.
di apfstyle() and di appstyle() cannot be used to set the style of the first new paragraph and page format
characters.

The doc argument is a document handle that was returned by an earlier call to either di__start() or
di startap().

The props argument is a pointer of the type dp__fstyleprops or dp_pstyleprops, It specifies the properties
desired by the user.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di__appstyle() and di_apfstyle() will fail if one or more of the following is true:

Doc__BadParm One of the specified arguments is invalid.
Doc_lllegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

1-14

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

SEE ALSO

di__enumstyle()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-15

DOCUMENT IC LIBRARY

di__apindex

NAME

di__apindex - append index character
SYNOPSIS

#include "DocIC.h"
#include "DocICProps.h”

int

di__apindex(to, ixprops, foprops, ret)
di__tcont *to;
dp indexprops *ixprops;

dp fontprops *foprops; /* NULL */
di _index *ret; /* Returned */
DESCRIPTION

The di__apindex() function is used to append an index character to the text container specified in di__tcont.

Refer to di__apaframe() for a description of di__tcont. Note that heading, footing and numbering containers
may not be specified.

The ixprops and foprops arguments specify the respective index and font properties to be assigned to the
index.

di__apindex() returns di__index, a handle that may be used by other di_a p*() calls to add data to the index
character. The di_indeﬂ)andle must be released via relindex().

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS
di_apindex() will fail if one or more of the following is true:

Doc__ ContainerFull There is no more room to append to this container.

Doc_ DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.

Doc__ObjlllegalinCont Attempted to add an object of an unsupported type to a container.

Doc_ BadParm One of the specified arguments is invalid.

Doc_ lllegalHandle The specified handle is illegal.

Doe_TimeOut Inter-process communication has exceeded the maximum allowed time.

Doc__Unimpl This function is not supported.

1-16 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

SEE ALSO

relindex()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__apnewpara

NAME

di__apnewpara - append new paragraph characters

SYNOPSIS

#include "DocIC.h”
#include "DoclCProps.h”

int
di__apnewpara(to,prprops,foprops,num)
di tcont *to;

dp__paraprops *prprops; /* NULL */

dp fontprops *foprops; /* NULL */

unsigned num; /*1*
DESCRIPTION

The di__apnewpara() function is used to append one or more new paragraph characters to the text
container specified in the di__tcont argument. Refer to di__apaframe() for a description ofdi__tcont.

The prprops and foprops arguments specify the respective paragraph and font properties of the new
paragraph. If prprops is NULL, the new paragraph inherits the props of the previous paragraph. If foprops
is NULL, the new paragraph inherits the paragraph properties of the previous paragraph.

The num argument is a cardinal number that indicates the number of paragraph characters to be
appended.

The di tcont argument must contain at least one new paragraph character. The current implementation
of this'C interface automatically supplies the initial new paragraph character to the beginning of a new
document. Additional new paragraph characters may be added. If the user adds a new paragraph
character to the beginning of the document, only the user-supplied new paragraph character will be
present.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY.

ERRORS
di__apnewpara() will fail if one or more of the following is true:

Doc__ContainerFull There is no more room to append to this container.

Doc_ DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvMm Not enough virtual memory for the operation.

Doc__ ObjlllegalinCont Attempted to add an object of an unsupported type to a container.
Doc__BadParm One of the specified arguments is invalid.

Doc__lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.

Doc__Unimpl This function is not supported.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-19

DOCUMENT IC LIBRARY

di__appfc

NAME

di__appfc - append page format character

SYNOPSIS

#include "DocIC.h"
#include "DocICProps.h”

int
di__appfc(to, pgprops, foprops, whead, wfoot, wnum, ret)

di tcont *to;
dp pageprops *pgprops;

dp fontprops *foprops; /* NULL */
dp bool whead; /* FALSE */
dp bool wfoot; /* FALSE */
dp_ bool wnum; /* FALSE */

ret appfc *ret; /* Returned */

DESCRIPTION

The di__appfc() function is used to append a page format character to the text container specified in the
di__tcont argument. Only document, field and index containers may be used. Refer to di__apaframe() for a
description of di _tcont.

The pgprops argument specifies the format characteristics of the resulting page character. When
specifying page margin properties for the pgprops argument, the margins must be set so that at least one
inch is available for text. An inch is equivalent to 72 points. For example, (left margin+right margin+ 72
< = page width), and (top margin +bottom margin+72 < = page height).

The foprops argument specifies the font properties of the page format character.

The whead, wfoot and wnum arguments are Boolean variables that are used to specify whether or not the
resulting page format character will contain heading, footing , and/or numbering properties.

di__appfc() returns ret__appfc, a structure containing the following members:

di heading lhead;
di heading rhead;
di footing lfoot;

di footing rfoot;

di numbering num;

The heading, footing and/or numbering handles will be NULL unless the user sets whead, wfoot and/or
wnum to TRUE.

If the heading, footing and/or numbering handles are valid, the user can then apply them as text
containers in calls to other di ap*() functions. If the headers are to be the same on both left and right
pages, only Ihead should contain the heading. rhead should be left NuLL. The same rule applies to Ifoot and
rfoot.

When specifying heading, footing or numbering, note that there are no automatic positioning parameters
for information in headers and footers. The user must call the appropriate di__ap*() function to add the

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

desired text and to position it with standard text formatting, such as spaces, paragraph alignment,
leading, line height, and tabs.

Page number patterns are not recognized. To specify a page number in heading, footing, or numbering
format parameters, insert a special character at the location in which a page number is desired. Note that
the function dp__getpagedel() returns this special character.

When finished with heading, footing, and/or numbering parameters, every non-NULL parameter must be
terminated by a call to di_relhead() , di_relfoot() or di__relnum(), respectively.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS
di_appfc() will fail if one or more of the following is true:

Doc_ ContainerFull There is no more room to append to this container.

Doc_ DocumentFull No more room in the document.

Doc_ReadonIyDoc Document opened in ReadOnly mode.

Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.
Doc__ObijlllegalinCont Attempted to add an object of an unsupported type to a container.
Doc_ BadParm One of the specified arguments is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
Doc__Unimpl This function is not supported.
SEE ALSO

dp__getpagedel(), di__relhead(), di__relfoot(), di__relnum()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-21

DOCUMENT IC LIBRARY

di__aptext

NAME

di__aptext - append text

SYNOPSIS

#include "DociC.h”
#include "DoclCProps.h”
#include "XString.h”

int
di aptext(to, text, foprops)
Tdi tcont *to;
XString text;
dp__fontprops *foprops; /* NULL */

DESCRIPTION

The di__aptext() function is used to append the text string specified in the text argument to the text
container specified in the di_tcont argument. Refer to di_apafra me() for a description of di_tcont.

The resulting text will have the font properties specified in the foprops argument. If foprops is left NULL
then text will inherit the font properties of the previous paragraph.

The text argument may not contain new paragraph characters (i.e., [set: 0, code: 35B]).

Use the di__apnewpara() function to append new paragraph characters.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di__aptext() will fail if one or more of the following is true:

Doc_ContainerFuII There is no more room to append to this container.
Doc_ DocumentFull No more room in the document.
Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc__ OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.

Doc__ObjlllegalinCont Attempted to add an object of an unsupported type to a container.
Doc__BadParm One of the specified arguments is invalid.

Doc_ lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
Doc__ Unimpl This function is not supported.

1-22

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

SEE ALSO

di__apnewpara()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-23

DOCUMENT IC LIBRARY

di__aptofillin

NAME

di__aptofillin - append item to fill-in order
SYNOPSIS

#include “DoclC.h"
#include “XString.h”

int
di aptofillin{(doc, name, type)
“di docdoc;
XString name;
di_fillintype type;

DESCRIPTION

The di_aptofillin() function is used to append to the fill-in order of fields and tables. Refer to the Document
Editor: Basics User Guide for more information on fill-in orders of fields and tables. The fill-in order of
fields cannot be set once they have been appended to a document, except by calling di__aptofillin().

The doc argument is a document handle that was returned by an earlier call to either di start() or
di startap(). It contains the field or table in question. The name argument identifies the object to be added
to the fill-in order. The type argument specifies the type of object to be added to the fill-in order. The value
of type may be one of the following:

FI_FIELD /* field */
Fl__TABLE /* table */
RETURN VALUE
If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.
ERRORS

di__aptofillin() will fail if one or more of the following is true:

Doc__BadParm One of the specified arguments is invalid.

Doc_ lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di_enumfillin(), di_clearfillin()

1-24 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__aptotxtink

NAME
di__aptotxtlnk - append item to text link

SYNOPSIS
#include "DoclC.h"

int

di__aptotxtink(doc, item)
di_doc doc;
di__textlink *item;

DESCRIPTION

The di__aptotxtink() function is used to append an item to the end of the text frame link order. It may be
either an existing text frame link order or one that had been cleared via di__cleartxtink(). Refer to the
Document Editor: Basics User Guide for information on text frame link order.

The doc argument is a document handle that was returned by an earlier call to either di start() or
di__startap(). It must contain the text frame handle and may, optionally, contain the text frame link order

The item argument is a pointer of the type di__textlink. It specifies a structure whose members define the
item to be appended and the text format parameters to be assigned that item. It contains the following
members:

XString name;

int partab;

dp bool newpara;
dp bool newline;

dp_bool paratab;

The name argument is a string that identifies the text frame in question. The remaining arguments
are internal data for special case use, such as when appending data to a newly created VP document.

The recommended usage is:

1) EnablePO COMPRESSuponinvokingdi start()ordi startap().(Thiswillcausepaginatetofill
the text in Tinked text frames.) - -

2) Append all of the text in the linked-text frame to the first link-order text frame. Internal data
may be set to:

partab =1,

newpara = FALSE;
newline = FALSE;
paratab = FALSE;

3) Append the text-link to the document via a call to di__aptotxtlink().
4) Calldi_finish().

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-25

DOCUMENT IC LIBRARY

ERRORS

di_aptotxtlnk() will fail if one or more of the following is true:

Doc_ BadParm One of the specified arguments is invalid.

Doc_ lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di_enumtxtlnk(), di_cleartxtlnk()

1-26 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__clearfillin

NAME
di__clearfillin - clear fill-in order
SYNOPSIS
#include "DoclC.h"
int
di_clearfillin(doc)
di__docdoc;

DESCRIPTION

The di clearfillin() function is used to cancel the previously specified fill-in order of an entire document.
The dl':'_ clearfillin() function cancels the fill-in order previously specified. The doc argument is a
document handle that was returned by an earlier call to either di_start() or di__startap().

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the

reason for the failure.

ERRORS

di__clearﬁllin() will fail if one or more of the following is true:

Doc__BadParm One of the specified arguments is invalid.

Doc_ lllegalHandle The specified handle is illegal.

Doc__TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di__aptofillin(), di__enumfillin()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

1-27

DOCUMENT IC LIBRARY

di__cleartxtink

NAME

di__cleartxtlnk - clear text link
SYNOPSIS

#include “DocIC.h"”

int

di cleartxtink(doc)

—di__doc doc;

DESCRIPTION

The di__cleartxtlnk() function is used to clear the text frame link order of a document. This function is
usually called in preparation of setting the text link order via di__aptotxtlink().

The doc argument is a document handle that was returned by an earlier call to either di_start() or

di__startap().

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the

reason for the failure.

ERRORS

di_cleartxtlnk() will fail if one or more of the following is true:

Doc__ BadParm One of the specified arguments is invalid.

Doc_ lllegalHandle The specified handle is illegal.

Doc__ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di_aptotxtlink()

1-28

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__close

NAME

di__close - close a document

SYNOPSIS
#include “"DoclC.h"
int
di__close(docptr)
di__doc *docptr;

DESCRIPTION

The di_close() function is used to release the document handle of an enumerated document. Releasing the
document handle frees the storage space originally allocated to it and sets the handle to NULL. The doc

argument is the document handle to be terminated.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the

reason for the failure.

ERRORS

di__close() will fail if one or more of the following is true:

Doc__ BadParm One of the specified arguments is invalid.

Doc_ lllegalHandle The specified handle is illegal.

Doc__TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di__open(), di__enumerate()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__enumerate

NAME

di__enumerate - parse contents of a document
SYNOPSIS

#include “"DocIC.h"
#include “"DoclCProps.h”

int

di__enumerate(to, procs, cdat, mrgnum,ret)
di__tcont *to;
di enumprocs *procs;

void *cdat; /* NULL */
dp__bool mrgnum; /* FALSE */
dp__bool *ret; /* Returned */
CALLBACK PROCEDURE
dp bool

di _docproc(cdat, foprops, prprops, pgprops, Ihead, rhead, Ifoot, rfoot, num)

void *cdat;

dp fontprops *foprops;
dp paraprops *prprops;
dp_ pageprops *pgprops;
di “heading lhead;
di"_heading rhead;

di~ footing Ifoot;

di~ footing rfoot;
di__numbering num;

dp bool

di _aframeproc(cdat, type, font, frame, props, cont, tcap, beap, lcap, rcap)

void *cdat;

di aframetype type;
dp fontprops *font;

di “ins frame;

dp frameprops *props;
di "ins cont;

di” caption tcap;

di” caption bcap;

di” caption lcap;
di__caption rcap;

dp bool
di _breakproc(cdat, foprops, brprops)
void *cdat;

dp__fontprops *foprops;
dp__breakprops *brprops;

1-30

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

dp bool
di ~tieldproc(cdat, foprops, fiprops, field)
~void *cdat;
dp fontprops *foprops;
dp_ fldprops *fiprops;
di “tield field;

dp bool
di ~*ntileproc(cdat, foprops)
“void *cdat;
dp__fontprops *foprops;

dp bool
di _indexproc(cdat, foprops, ixprops, index)
void *cdat;

dp__fontprops *foprops;
dp indexprops *ixprops;
di ~index index;

dp__bool
di__newparaproc(cdat, foprops, prprops)
void *cdat;

dp__fontprops *foprops;
dp_paraprops *prprops;

dp__bool
di__pfcproc(cdat, foprops, pgprops, Ihead, rhead, Ifoot, rfoot, num)
void *cdat;

dp fontprops *foprops;
dp pageprops *pgprops;
di “heading lhead;

di" heading rhead;

di~ footing Ifoot;

di~ footing rfoot;
di_numbering num;

dp__bool
di__sfbrkproc(cdat, num)
void *cdat;

dp__pagenumber num;

dp bool
di ~textproc(cdat, foprops, text)
“void *cdat;
dp fontprops *foprops;
XString text;
DESCRIPTION

The di__enumerate() function is used to parse the contents of a document.

The di__tcont argument is to contain the file handle returned by an earlier call to di__open(). Refer to
di__ap-a-fra me() for a description of di__tcont.

The cdat argument is a pointer to any user-defined data that is passed to the call-back procedure(s)
specifiedinthedi__enumprocsargument.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-31

DOCUMENT IC LIBRARY

The mrgnum argument is short for “merge numbering”. It is a Boolean value that, when set to TRUE,
indicates that a page numbering pattern will be included in the heading or footing during enumeration.
Setting this value to TRUE will result in the correspondingdi numberingindi pfcproc anddi docproc to
be set to NULL. - - -

The di__enumprocs argument is a structure that contains user-defined call-back procedures for
enumerating objects in the specified file. The members of di__enumprocs are:

di docproc *doc;

di aframeproc *aframe;
di breakproc *break;

di fieldproc *field;

di fntileproc *fntile;

di_indexproc *index;
di__newparaproc *newpara;
di__pfcproc *pfc;

di sfbrkproc *sfbrk;
di__textproc *text;

Each call-back procedure specified in di enumprocs uses the properties and contents of the structure as
parameters when invoked. The storage resources allocated to the properties passed to these functions is
temporary; the user must explicitly copy any properties he or she may wish to save.

Ifdocis not NULL, di__docproc() will be called first with the first foprops, prprops, and pgprops present in
the document. If docis NULL, di__newparaproc() will be called and then di__pfcproc will be called with the
first foprops, prprops, and pgprops present in the document.

When calling di__pfcproc(), if the headers are identical on the left and right pages, only lhead will contain
the heading; rhead must remain NULL. The same rule applies to Ifoot and rfoot.

Each call-back procedure returns a Boolean value. Enumeration stops when a return value is TRUE.

Some of the call-back procedures require a text container handle as a parameter. The text container
handle may be specified recursively in calls todi enumerate() in order to extract the contents of that same
text container. For example,di fieldprocmaycalldi enumerate() with field as the text container in order
to extract the contents of the field. di enumerate() requires a text container of type di tcont. di cont
contains a union of two members: type and h. type is to be set to TC FIELD and h is to be set to the field
that was passed by a call todi__fieldproc. -

Any handle returned by a call-back procedure is read only, and is valid only during the invocation of the
call-back procedure. The handle returned is automatically released after execution of the call-back
procedure. When a NULL handle is returned, it means the corresponding object does not contain text.

The initial paragraph and page format characters in a text container are also enumerated. Thus, when
copying an existing document into a new document, avoid copying the initial paragraph and page format
characters of the existing document as you copy the remainder of its contents.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

1-32

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

ERRORS
di_enumerate() will fail if one or more of the following is true:
Doc_ BadParm One of the specified arguments is invalid.
Doc_ lllegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

di__open(), di__textforaframe(), di__close()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__enumfillin

NAME

di__enumfillin - enumerate fill-in order

SYNOPSIS
#include “"DoclC.h”

int
di enumfillin(doc, proc, cdat)
T di docdoc;
di fillinproc *proc; .
void *cdat; /* NULL */

CALLBACK PROCEDURE

dp bool
di "tillinproc(cdat, name, type)
~void *cdat;
XString name;
di_fillintype type;
DESCRIPTION

The di__enumfillin() function is used to enumerate the fill-in order of fields and tables.
The doc argument is a document handle that was returned by an earlier call to di__open() or di__startap().

The proc argument is a pointer of the type di__fillinproc(). It specifies a call-back procedure to be invoked

once for each object in the fill-in order. The arguments passed to proc specify user-defined data, the name
of the enumerated object and its type. di_fillinproc may return TRUE to halt the enumeration.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di__enumfi llin() will fail if one or more of the following is true:

Doc_ BadParm One of the specified arguments is invalid.

Doc__lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di_aptofillin(), di_clearfillin()

1-34 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__enumstyle

NAME

di__enumstyle - enumerate style
SYNOPSIS

#include "DocIC.h”
#include "DoclCProps.h”

int
di enumstyle(doc, fstyleproc, pstyleproc, cdat)
“di docdog;
di~ fstyleproc *fstyleproc;
di" pstyleproc *pstyleproc;
void *cdat; /* NULL */

CALLBACK PROCEDURE

dp bool
di “fstyleproc(cdat, props)
~void *cdat;
dp__fstyleprops *props;

dp__bool
di__pstyleproc(cdat, props)
void *cdat;
dp__pstyleprops *props;
DESCRIPTION

The di__enumstyle() function is used to enumerate all the font and paragraph style properties of a
document, such as mode, fill-in order,and text-link.

The doc argument is a document handle that was returned by an earlier call to di__open() or di__startap().
The fstyleproc and pstyleproc arguments are pointers to di_fstyleproc and di__pstyleproc, respectively.
These call-back procedures are invoked once for each object in the style.They are invoked at the onset of

di_enumstyle()’s execution, and, if either call-back procedure returns TRUE, the document enumeration
process is aborted. If FALSE is returned, the process continues until completed.

The cdat argument is user-defined data that is passed to fstyleproc and pstyleproc.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-35

DOCUMENT IC LIBRARY

ERRORS

di__enumstyle() will fail if one or more of the following is true:

Doc__BadParm One of the specified arguments is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc__ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di__apfstyle(), di__appstyle()

1-36 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__enumtxtink

NAME

di__enumtxtlnk - enumerate text link
SYNOPSIS
#include "DoclC.h”

int
di enumtxtink(doc, proc, cdat)
~di docdoc;
di_ txtlnkproc *proc;
void *cdat; /* NULL */

CALLBACK PROCEDURE
dp__bool
di__txtinkproc(item, cdat)
di textlink *item;
void *cdat;
DESCRIPTION
The di_enumtxtlnk() function is used to enumerate the link order of a text frame.
The doc argument is a document handle that was returned by an earlier call to di open() ordi__startap().

It contains the text link order and text frame in question. If the text-link order is not included,
di__txtinkproc will not be called.

The proc argument is a pointer of the type di__txtlnkproc. It contains a call-back procedure that is invoked
at the onset of di enumtxtink()’s execution, and, if it returns TRUE, the enumeration process is aborted. If
FALSE is returned, the process continues until completed.

The cdat argument is user-defined data that is passed to proc.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS
di__enumtxtlnk() will fail if one or more of the following is true:

Doc_ BadParm One of the specified arguments is invalid.
Doc_ lllegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

di__aptotxtink(), di__cleartxtink()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-37

DOCUMENT IC LIBRARY

di__finish

NAME

di__finish - finalize the document
SYNOPSIS

#include “DocIC.h"

int

di finish(doc, proc, cdat, ret)

—di_doc *doc;
di ckabortproc *proc; /* NULL*/

void *cdat; /* NULL */
ret_fc *ret; /* Returned */
CALLBACK PROCEDURE
dp bool

di ~ckabortproc(cdat)
void *cdat;

DESCRIPTION
The di_finish() function is used to finalize the document and to release the document handle, doc.
The doc argument is the file handle that was returned by an earlier call to either di__start() or di__startap().
The proc argument is a pointer of the type di__ckabortproc. It is a user-defined call-back procedure which
can be used to abort the document generation process. It is invoked at the onset of di__ finish()’s execution,
and, if di__ckabortproc returns TRUE, the document generation process is aborted. If FALSE is returned, the
process continues until completed.
The cdat argument is user-defined data that is passed to di__ckabortproc.

di__finish() returns ret_ fc, a structure comprised of the following members:

dsktp__docref ref;
di_festat stat;

The first member, dsktop__docref, is the reference handle of the newly created document. This handle
may be passed as an argument to dsktp movedoc() to place the document on the desktop or in a folder.
The second member, status, indicates the success or failure of the operation. status may one of the

following values:
FC_OK No errors were encountered.
FC__ABORT Was unable to complete the document.

FC__DSKSP,FC__ VM, FC_ UNKNOWN The document is finished but left unpaginated.

The resulting document file is temporary. To make the file permanent, call the dsktp movedoc() function.
It will place the document on the desktop or in a folder. The document that di finish{) provides will be in
paginated form if the appropriate pagination parameters were specified in the initial call di__start() or
di startap).

1-38 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di_finish() will fail if one or more of the following is true:

Doc__BadParm One of the specified arguments is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc_TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di__start(), di__startap(), dsktp__movedoc()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-39

DOCUMENT IC LIBRARY

di__getfieldfromname

NAME

di__getfieldfromname - extract the properties of a named field
SYNOPSIS

#include “"DoclC.h"
#include "DocICProps.h”
#include “XString.h"”

int
di__getfieldfromname(doc, name, props)
di__docdoc;
XString name;
dp__fldprops *props;
DESCRIPTION
The di__getfieldfromname() function is used to search for a named field and list the properties of that field,

The di__doc argument contains a document handle that was returned by an earlier call to di_open(),
di__start() or di__startap().

The name argument is a string that specifies the name of the field from which to extract properties.

The props argument is a pointer of the type dp__fldprops. It specifies a list of the field properties to be
extracted from the named field.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS
di__getfieldfromna me() will fail if one or more of the following is true:

Doc__BadParm One of the specified arguments is invalid.
Doc_lllegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

1-40 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__getfnprops

NAME

di__getfnprops - get footnote properties

SYNOPSIS

#include "DocIC.h"
#include “DocICProps.h”

int
di__getfnprops(doc, procs, cdat)
di_doc doc;
di fnpropsproc *procs;
void *cdat; /* NULL */
CALLBACK PROCEDURE
int
di fnpropsproc(cdat, nmprops, frprops, tfprops, foprops, pattern)

void *cdat;

dp fnnumprops *nmprops;
dp frameprops *frprops;
dp tframeprops *tfprops;
dp_ fontprops *foprops;

di _text pattern;

DESCRIPTION

The di_getfn props() function is used to obtain the footnote properties of the document.

The doc argument is a document handle that was returned by an earlier call to di_open() or di__startap().

The procs argument is a pointer of the type di__fnpropsproc‘ It is a call-back procedure that is invoked
with all the footnote properties in the specified document. di__fnpropsproc does not need to call di__reltext()

to release the text handle.

The cdat argument is a pointer to user-defined data.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di__getfnprops() will fail if one or more of the following is true:

Doc_ BadParm One of the specified arguments is invalid.
Doc_IllegalHandle The specified handle is illegal.

Doc__TimeOut Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

1-41

DOCUMENT IC LIBRARY

SEE ALSO

di__setfnprops()

1-42 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__open

NAME

di__open - open a document
SYNOPSIS

#include "DocIC.h"
#include "Desktop.h”

int
di open(ref, ret)

~dsktp__docref ref;
ret_open *ret; /* Returned */

DESCRIPTION

The di__open() function is used to obtain the handle of a specific file. The returned file handle may then be
passed as an argument to di_enumerate(), a function used to extract the contents of a file.

The ref argument is the handle of the document to be opened and is of the type dsktp docref. ref is the
document reference handle returned by an earlier call to dsktp_getdocref(), dsﬁp_copydoc() or
dsktp__enumerate().

di__open() returns ret__open, a structure that contains the following members:

di__docdoc;
di__opstat status;

doc is a document handle that may be passed to di__enumerate(). status is a code whose value indicates
the success of the operation. The returned status code may be one of the following:

OoP_ OK No errors were encountered.

OP__MALFORM The Document is inconsistent internally.

OP__INCOMP The version of the Document Editor used to open a document is different than
the version used to create it.

OP__NOTLOCAL The document is not on the local workstation, so it cannot be opened.

OP__DSKSP Available disk space is insufficient to open the document.

OP_ VM Available contiguous virtual memory is insufficient to open the document.

OP_ BUSY Another process is using the file (e.g. background pagination).

OP__PASSWD The user has invalid or incorrect credentials for opening the document.
RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-43

DOCUMENT IC LIBRARY

ERRORS

di__open() will fail if one or more of the following is true:

Doc__BadParm One of the specified arguments is invalid.

Doc_ lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di__enumerate(), di_close()

1-44 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__rel*

NAME

di__relcap, di__relfield, di__relfoot, di__relhead, di__relnum, di__relindex, di__reltext - release storage
SYNOPSIS
#include "DociC.h"”

int
di__relcap(cap)
di__caption *cap;

int
di relfield(field)
—di_field *field;

int
di_relfoot(foot)
di__footing *foot;

int
di_relhead(head)
di__heading *head;

int
di_relnum(num)
di__numbering *num;

int
di_relindex(index)
di_index *index;

int
di_reltext(text)
di__text *text;
DESCRIPTION

These functions are used to terminate handles, thus releasing the resources assigned to the respective
handle. The user mustcalldi__relcap(),di__relfield(),di__relfoot(),di__relhead(),di__relnum(),di__relindex(),
or di reltext() to release the resources associated with a non-NuLL handle obtained from any di ap*()
function. -

After calling di__rel*(), the respective handle will be invalid. To help prevent the use of an invalid handle,
each di__rel*() routine removes the pointer to the respective handle and then sets the handle itself to NULL.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-45

DOCUMENT IC LIBRARY

ERRORS
di_rel*() will fail if one or more of the following is true:

Doc_ BadParm One of the specified arguments is invalid.
Doc__lllegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

1-46 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__setfnprops

NAME

di__setfnprops - set footnote properties
SYNOPSIS

#include “DocIC.h"”
#include "DocICProps.h”

int
di setfnprops(doc, nuprops, frprops, tfprops, foprops, ret)
~di docdoc;
dp fnnumprops *nuprops; /* NULL */
dp frameprops *frprops; /* NULL */
dp tframeprops *tfprops; /* NULL */
dp fontprops *foprops; /* NULL */
di _text *ret; /* Returned */

DESCRIPTION
The di__setfnprops() function is used to set the footnote properties of a document.

The doc argument is a document handle that was returned by an earlier call to either di__start() or
di_startap().

The nuprops argument is a pointer of the type dp__fnnumprops. It is a structure containing data used to
control the numbering of footnotes across documents during pagination of a book or a shared book.

The frprops argument is a pointer of the type dp frameprops. It is a structure containing data that
specifies the values of footnote frame properties, such as border thickness, number of columns to span, and
margin control.

The tfprops argument is a pointer of the type dp__tframeprops. It is a structure that specifies the text
frame properties, such as orientation and name.

The foprops argument is a pointer of the type dp__fontprops. It is a structure that specifies the font
properties to be used in the footnotes, such as font type, placement, and offset.

This functionreturnsdi__text, a handle that may be passed toother di__ap*()functions. Thedi__texthandle
must be released viadi reltext().

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-47

DOCUMENT IC LIBRARY

ERRORS

di__setfnprops() will fail if one or more of the following is true:

Doc__BadParm One of the specified arguments is invalid.

Doc_ lllegalHandle The specified handle is illegal.

Doc_TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di_getfnprops(), di_reltext()

1-48 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__setmode, di__getmode

NAME

di__setmode, di__getmode, - set or get the mode of properties for the document
SYNOPSIS

#include "DoclIC.h"
#include "DoclCProps.h”

int
di getmode(doc, props)
“di docdoc;
dp__modeprops *props;
int
di setmode(doc, props, select)
Tdi docdoc;
dp modeprops *props;
dp__modesel select;

DESCRIPTION

These two functions are used, either, to get or to set the mode properties of a document. Mode properties
are Boolean variables that, when set to TRUE, display the structure, non-printing characters, cover sheet,
and prompt fields in a document. These functions may be called at any time during the document
generation process.

The di__doc argument is the document handle that was returned by an earlier call to di__start() or
di__startap().

dp modeprops is an argument that points to a structure containing four Boolean fields that indicates the
different display characteristics of the document in question.

The dp__modesel argument is an array that is used to specify those display characteristics to be affected.
When setting mode properties, only those properties designated by TRUE selections will be changed.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS
cli__setmode() and di_getmode() will fail if one or more of the following is true:

Doc_ BadParm One of the specified arguments is invalid.
Doc_ lllegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-49

DOCUMENT IC LIBRARY

di__setpara

NAME

di__setpara - set current paragraph properties

SYNOPSIS

#include “DociC.h”
#include “DocICProps.h”

int
di setpara(to, prprops)
“di tcont *to;

dp—_'_ paraprops *prprops;

DESCRIPTION

The di__setpara() function is used to modify the paragraph properties of paragraphs in a specific text
container. This function may be called at any time. If it is called repeatedly in the same paragraph, only
the most recent call will remain in effect.

The di__tcont argument is the handle to the text container whose paragraph properties are to be modified.
The text container may be any di___tcont or document. Refer to di__apaframe() for a description of d_i__tcont.

The di paraprops argument points to a structure containing the set of paragraph properties to be
modified.

di__setpara() affects the entire current paragraph, including portions not yet appended at the time
di__setpara() is called. The property changes are also applied to all subsequent paragraphs unless the user
overrides the properties with new ones passed to di__apnewpara(), or by another call to di__setpara().

Setting text container paragraph properties will result in an error if the text container in question does
not contain at least one paragraph character. Although paragraph characters are added (as necessary)
duringcallstodi ap*(),callingdi setpara()beforecallinganydi ap*()functionwill resultinanerror. To
avoid this situation, the user may simply call di apnewpara() to ensure that the di tcont does have a
paragraph character. di ap*() functions will add a new paragraph character only if there is none already
present, thus avoiding any duplication.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di__setpara() will fail if one or more of the following is true:

Doc_ BadParm One of the specified arguments is invalid.
Doc_lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

SEE ALSO

di__apnewpa ra()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-51

DOCUMENT IC LIBRARY

di__start

NAME

di__start - begin creation of a new document

SYNOPSIS

#include "DoclC.h"”
#include "DoclCProps.h”

int

di__start(pagiops, whead, wfoot, wnum, ifoprops, iprprops, ipgprops, styledat, ret)

di pagiops pagiops;

dp bool whead;

dp bool wfoot;

dp bool wnum;

dp fontprops *ifoprops;
dp paraprops *iprprops;
dp pageprops *ipgprops;
di ~styledata *styledat;
ret_sc*ret;

CALLBACK PROCEDURE

int

/*PO COMPRESS */
/* FALSE */

/* FALSE */

/* FALSE */

/* NULL */

/* NULL */

/* NULL */

/* NULL */

/* Returned */

di styleproc(style,cdat, fstyleproc, pstyleproc)

Tdi stylestyle;
void *cdat;

di__apfstyleproc *fstyleproc;
di__appstyleproc *pstyleproc;

int
di__apfstyleproc(style,styleprops)

di__stylestyle;
dp__ fstyleprops *styleprops;

int
di__appstyleproc(style,styleprops)

di__stylestyle;
dp__pstyleprops *styleprops;

DESCRIPTION

The di start() function is called to initiate the document generation process. It is used to create an empty
document with specific format attributes, such as pagination and margin size. It then returns a file handle
that needs to be passed as an argument to related di ap*() functions. di finish() is called to terminate the
document generation process initiated by di__sta rt(). -

The pagiops argument specifies the type of pagination the finished document is to have. It may have one
of three possible values: PO__COMPRESS, PO__ SIMPLE, and PO__NONE.

PO__COMPRESS pagination provides all the outward signs of pagination, such as page format
properties, and leaves the structure of the document in an optimized form. An optimized document
occupies less disk and buffer space than an unoptimized document.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

PO__SIMPLE pagination provides the outward signs of pagination but does not leave the document in an
optimized form. Therefore, subsequent editing may be slower than it would be for documents
paginated with PO__COMPRESS. The advantage of this option over PO__COMPRESS is that this option
completes the pagmatlon process slightly faster than does PO COMPRESS

PO NONE skips the pagination process entirely, thus leaving the document in a raw form. Raw form
means that the document is neither paginated nor optimized. This may result in slow editing and
potential loss of data. This option is recommended for only very small documents. If the document is to
be more than a few pages in length, the user must specify a pagiops value other than PO__NONE to
avoid losing data.

The whead, wfoot and wnum arguments are Boolean values that,when set to TRUE, insert heading,
footing, and numbering properties into the first page format character (PFC) of the document.

The ifoprops, iprprops, and ipgprops arguments specify the initial font, paragraph, and page properties of
the document, respectively. If these arguments are left NULL, di_sta rt() will use a default set of properties.
Refer to dp__*props for more information regarding properties and their default values.

When specifying the field properties for the ipgprops argument, page margins must be set so that at least
one inch is left for text. An inch is the equivalent of 72 points. For example, (left margin+right
margin+72 < = page width), and (top margin + bottom margin+ 72 < = page height).

The styledat argument is a pointer of type di styledata. It is a structure used to call the call-back
procedure, di styleproc. The call-back procedure specifies the font and paragraph style properties of the
new document. The styledat argument applies only to the first new paragraph and page format characters
in the document. di__styledata contains the following members:

di__styleproc *styleproc;
void *cdat;

If styledat is a non-NULL value, the user-defined call-back procedure will be called before a document
handle is returned.

Another way to add font and paragraph style properties is by calls to di__apfstyle() and di__appstyle(),
Their full names are AppendFontStyle and AppendParagraphStyle, respé?tively. Note that properties for
the first new paragraph character and the page format character can be set only by the styledat
argument, not by the di__apfstyle() or the di__appstyle() functions.

di_start() sets the return information into the structure ret_sc, which contains the following members:

di docdoc;

dii heading lhead;
di_ heading rhead;
di~ footing Ifoot;

di” footing rfoot;
di”_numbering num;
di_scstat stat;

The di__doc handle returned represents the new document. The user should pass this handle to
di__ap*() functions to add information to the document. The handle is later released by a call to
di finish().

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-53

DOCUMENT IC LIBRARY

If the user releases the handle without calling a di__ap*() function, the resulting file will be a 1-page
document containing a single new paragraph and page format character, with the initial font,
paragraph, and page props as specified in ifoprops, iprprops, and ipgprops, respectively.

di__heading,di_footing,anddi__numbering are heading, footingandnumberinghandles, respectively.
They will be NULL unless the user specified whead, wfoot or wnum = TRUE. If the headings, footings
or numbering are valid, the user should call various di ap*() routines to add text and formatting
information, and then later release each handle with a call to di_relhead(), di_relfoot() or di_relnum().

statis a status code, which can have any of the following values:

SC_OK No errors were encountered.

SC__ DSKsP There is not enough disk space to perform the operation.

SC__VM There is not enough contiguous virtual memory to create.
RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di__start() will fail if one or more of the following is true:

Doc_ BadParm One of the specified arguments is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc__TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di_ finish(),di__ap*(),di__relhead(), di__relfoot(), di__relnum()

1-54

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__startap

NAME
di__startap - start appending

SYNOPSIS

#include "DocIC.h"
#include "Desktop.h”

int
di__startap(ref, pagiops, ret)
dsktp__docref ref;
di__pagiops pagiops; /* PO__COMPRESS */
ret_ startap *ret; /* Returned */
DESCRIPTION

The di__startap() function is called to acquire a file handle that may be used by other di__ap*() procedures
to append data to the end of an existing document.

The ref argument specifies the file that is to be opened. The pagiops argument specifies the type of
pagination the appended data is to have. See di__start() for information regarding the construction of the
pagiops argument.

ret_ startap is returned and it contains the following members:

di__doc doc;
di_scstat status;

doc is a file handle for the document that is to have data appended.
status indicates the success of the di__startap() call. It may have any of the following values:

SC_ OK No errors were encountered.
SC__ DSKSP There is not enough disk space to perform the operation.
SC_VM There is not enough contiguous virtual memory to create.

SC_ BUSY Another process is accessing the file.

When appending is complete, di__finish() must be called to release the doc handle. If the status returned is
not SC_OK, then the doc handle will be NULL and di_finish() should not be called.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-55

DOCUMENT IC LIBRARY

ERRORS
di__startap() will fail if one or more of the following is true:
Doc_ BadParm One of the specified arguments is invalid.
Doc_lllegalHandle The specified handle is illegal.
Doc_TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di_sta rt(), di_finish()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di__starttext

NAME
di__starttext - begin appending text

SYNOPSIS

#include “"DocIC.h”
#include “"DociCProps.h”

int
di starttext(doc, frame, props, ret)
“di docdoc;
di__insframe;
dp tframeprops *props;
di "text *ret;

DESCRIPTION

The di starttext() function is used to initiate the process of appending text to the body of an anchored text
frame. di starttext() readies an anchored text frame to accept new text, then returns an object handle
which may be passed to any other di ap*() operation. Once the data has been appended to the frame, the
user should call di_reltext() with the text handle returned by di__starttext().

The doc argument is the document handle returned by an earlier call to either di start() or di startap().
The frame argument is the frame handle returned by an earlier call to di “apaframe(). The props
argument describes the text frame properties. Refer to DocICProps for more information regarding text
frame properties.

Itis not mandatory tocalldi__starttext() after callingdi__apaframe(). Failure tocall di__starttext() will only
result in an empty text frame. The frame will be entirely empty except for the presence of one new
paragraph character that has default paragraph and font properties.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di_starttext() will fail if one or more of the following is true:

Doc_ BadParm One of the specified arguments is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di__apaframe(), di_reltext()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-57

DOCUMENT IC LIBRARY

di__textforaframe

NAME

di__textforaframe - retrieve text from an anchored frame

SYNOPSIS

#include “DoclC.h”
#include “DoclCProps.h”

int
di textforaframe(cont, props, ret)
“di inscont;
dp tframeprops *props;
di _text *ret; /* Returned */

DESCRIPTION

The di_textforaframe() function is used to extract text from an anchored frame during enumeration. The
contents of the text handle returned by this function may be enumerated by supplying the text handle as
an argument to di__enumerate(). After enumeration, call di_reltext() to release the text handle.

The cont argument is an instance of an anchored frame. This instance is supplied as an argument to the
di__aframeproc call-back procedure.

The props argument is a pointer of the type dp tframeprops. It is a structure that specifies a set of text
frame properties. Text frame properties, such as name and description, are used to identify the frame in
question. Since the text container passed from di aframeproc is not unique for each enumeration, the
instance handle alone cannot be used to identify the frame in question.

The frame to be enumerated cannot be in a document to which any object has been appended.This means
that the frame instance that is returned by a call to di aframeproc cannot be used be passed as the
container to di textforaframe(). To append an object to the frame that is returned by
di__enumerate(di_aframeproc()):

1) Enumerate the source text frame via a call todi textforaframe().

2) Initialize the frame to which the text is to be appended via a call to di starttext().

3) Enumerate the source text and append it to the target frame via a calltodi textproc(call-back).
4) Release the text handles returned via calls to di_reltext(). -

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di__textforaframe() will fail if one or more of the following is true:

Doc__BadParm One of the specified arguments is invalid.
Doc_ lllegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

1-58

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

SEE ALSO

di__enumerate(), di__reltext()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-59

DOCUMENT IC LIBRARY

1-60 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

2. Document IC Property Library

dp__intro

NAME

dp__intro - introductory explanation of Document IC properties
DESCRIPTION

This library contains functions and data types used to describe document-related properties. The
properties described below contain information that applies to all *IC interfaces.

Break Properties

The chief type in this section is dp_breakprops. It describes the properties of the page break character.
dp__breakprops contains the following member:

dp__breaktype type;

dp__breaktype may have one of the following values:

BR__NPAGE /* new page */

BR__NLPAGE /* new left page */

BR__NRPAGE /* new right page */

BR__NCOL /* new column */
Field Properties

The chief field property is dp_ fldprops. It describes the properties of a field character. dp__ fldprops
contains the following members:

dp langlang;
unsigned length;

dp bool req;

dp~ skpchaice skpif;
dp_ bool stpskp;
dp_fldchoice type;
XString fillin;
XString desc;
XString format;
XString name;
XString range;
XString skpiffld;
dp__fontruns *fillinruns;

lang is the value of dp__lang, an enumerated type used to specify the alphabet that will be used, based
upon nationality, to generate text in the date and amount fields.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-1

DOCUMENT IC PROPERTY LIBRARY

length specifies the maximum number of logical characters the field may contain.

req specifies whether the user is required to fill in the field being generated. If req is TRUE, the user will
not be able to use NEXT or SKIP to advance to the next field until this field has been given a value.

skpif specifies the conditions under which the user may press either the NEXT or SKIP button to skip
the field. stpskp specifies the conditions under which the NEXT or SKIP buttons will be disabled. skpif
may have one of the following values:

SKP EMPTY /* skip if the field is empty */
SKP™ NOTEMPTY /* skip if the field is not empty */
SKP~ NEVER /* never */

SKP__ALWAYS /* always */

type is the value of dp fldchoice, an enumerated type that specifies the kind of data to be placed in the
field. It may have one of the following values:

FLD ANY /* any */
FLD™ TEXT /* text */
FLD* AMOUNT /* amount */
FLD_DATE /* date */

FLD ANY indicates that the field may contain any characters, including frames (but not other
fields). FLD TEXT indicates that the field may contain only letters, digits, and symbols entered
from the keyboard. FLD AMOUNT indicates that the field may contain only numbers, spaces, and
the following symbols: +__*$,. (). FLD__DATE specifies that entries in the field may contain only a
date.

fillin defines the fill-in rule for this field.

If the document is set to prompt for data to go in fields upon pressing the NEXT key, desc specifies the
message that is to be displayed as the prompt.

format controls the format in which information is presented. It is affected by the value of type. For a
type of FLD TEXT, this property defines a required pattern that must be matched. For a type of
FLD AMOUNT or FLD DATE, this field controls the form in which the contents of the field will be
presented, regardless of how the user enters it. For a type of FLD__ANY, the format property will not be
used.

name is the text name to be assigned to the field. If no name is provided, the field will automatically be
named Fieldn, as in Field1, Field2, and so on.

range defines a specific range of acceptable entries. For example, if A ctnl C is specified, where ctnl is
the control character, the D field may not be set and is skipped. Refer to the Document Editor: Basics
User Guide for more information on range.

skpiffld contains the name of the field that will appear in the Field Properties sheet, Skip if field.
fillinruns is an auxiliary data structure that the user may attach to the XString that describes the fill-
in rule for the field. A font run describes the subsequence of characters within an XString that share
the same font attributes.
Font Runs
fillinruns is a pointer to dp fontruns, a structure that permits the user to associate font properties with

text. XString provides no facilities for associating font properties with text, therefore DociCProps has been
designed to permit the user to create various font information structures that point into XString

2-2) DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

structures. It is also possible to enumerate the font runs in a given XString body of text by a call to
dp enumfrun, but doing so requires that you know where the font runs are located or declare them

yourself.

The data structures described here are used to mark font runs. A font run is defined as consecutive text
characters sharing the same font. The members of dp fontruns describe an array of font runs and an

integer value that specifies the length of the array. dp___fontruns contains the following members:

unsigned short length;
dp__run *runs;

dp__fontruns points to dp__run, which is a structure containing an array of runs. dp__run is called to

specify the beginning of a font run. dp__run contains the following members:

dp fontprops props;
unsigned index;

props is the field describing the font used in the font run. index is the offset, specified in bytes, of
the desired text within an array. A run is specified as the byte offset from the beginning of the byte

array, as defined by index, to the byte after the byte run. For example:

XString = "ABCDEFGH”

(2* 8 = 16 bytes)

fontprops of ABC is font1
fontprops of DE is font2
fontprops of FGH is font3

thus:
length will be 3
runs[0].props will be fontl
runs[0].index will be 6
runs{1].props will be font2
runs[1].index will be 10
runs(2].props will be font3

runs{2].index will be 16

Footnote Numbering Properties

dp numctrl numctrl;
dp_ bool resteachpage;
dp_ bool deferframes;
dp_ bool rulingline;
dp_ bool split;

dp rulelen rulelen;
dp_indexrep indexrep;
dp_ lang letters;

dp_ replesent digits;
unsigned int otherrule ;
XString continuation ;

-- 3 characters (from 1 to 6)

-- 2 characters (from 7 to 10)

-- 3 characters (from 11 to 16)

The chief type in this section is the dp__fanumprops, which describes the properties that affect numbering
withina footnote. dp__fnnumprops contains the following members:

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

XString continued ;

numctrl is the value of dp numctrl, an enumerated type that controls footnote numbering across
documents during pagination of a book or shared book. dp_numctrl may have one of the following
values:

/* restart */
/* continue */

NC_REST
NC__CONT

resteachpage is a Boolean value that determines whether the numbering of footnotes is to be set back
to 1 for each new page or if footnote numbering is to continue in numeric sequence for all the pages in
the document.

deferframes specifies whether the the body of text accompanying each footnote is to be placed on the
same page as the corresponding footnote, or deferred so that all the footnote text bodies are placed at
the end of the document.

rulingline specifies whether a ruling line is to be created.

split specifies whether split footnotes are to be created.

rulelen specifies the length of the ruling line. This option is enabled when the value of of rulingline is
set to TRUE.

indexrep specifies the type of reference symbol to be used. It contains the following members and may
have the corresponding values:

IR INTEGER /* integer */
IR~ UPLETTER /* upper case letter */
IR~ LOWLETTER /* lower case letter */
IR_DAGGERS /* daggers */

letters specifies the alphabet to be used, based upon nationality. It may have one of the following
values:

LANG USE /* USEnglish */

LANG UKE /* UKEnglish */
LANG FRN /* French */

LANG GMN /* German */

LANG SWD /* Swedish */

LANG ITA /* Italian */

LANG DUT /* Dutch */

LANG DAN /* Danish */

LANG NOR /* Norwegian */
LANG FIN /* Finnish */

LANG SPN I* Spanish */

LANG POR /* Portuguese */
LANG™ JPN /* Japanese */

LANG FRCAN /* FrenchCanadian */
LANG_ENCAN /* EnglishCanadian */

digits specifies the manner in which numbers are displayed, based upon the respective numbering
system. It may have the following value:

RP__AsCil /* ASCII */

2-4

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

Font Properties

dp__fontprops is the chief type with respect to fonts. dp__fontprops contains the following members:

dp fontdescfontdesc;
unsigned udlines;

dp bool stkout;

dp place place;

dp bool tobedel;

dp~ bool revised;

dp width width;
XString stylename;

dp fontelmarr ntrelm;
dp bool tranpare;

dp color txtcol;
dp_color hicol;

The section titled dp__fontdesc describes the fontdesc field; the section titled dp__props describes the

other fields ina dp__fontprops.

dp__fontdesc

dp__fontdesc contains the following members:

dp family family;

dp dvariant dvariant;
dp_ weight weight;
unsigned short size;

family specifies the font that is to be used. It may have one of the following values:

FMY CENT
FMY™ FRUT
FMY TITAN
FMY™ PICA
FMY TROJAN
FMY~ VINTAGE
FMY™ ELITE
FMY LETTER
FMY MASTER
FMY™ CUBIC
FMY ROMAN
FMY™ SCIENT
FMY™ GOTHIC
FMY™ BOLD
FMY™ OCRB
FMY™ SPOKES
FMY~ XEROX
FMY™ CENTTHIN
FMY~ SCIENTTHIN
FMY™ HELV
FMY HELVCOND
FMY™ OPTIMA
FMY ™ TIMES
FMY™ BASK
FMY™ SPARTAN
FMY BODONI

/* century (also, classic)*/
/* frutiger (also, modern) */
/* titan */

/* pica*/

/* trojan */

/* vintage */

/* elite */

/* letter gothic */

/* master */

/* cubic*/

/* roman */

/* scientific */

/* gothic */

/* bold */

/* ocrB */

/* spokesman */

/* xerox logo */

/* century thin */

/* scientific thin */

/* helvetica */

/* helvetica condensed */
/* optima */

/* times */

/* baskerville */

/* spartan */

/* bodoni */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

2-5

DOCUMENT IC PROPERTY LIBRARY

FMY PALATINO
FMY CALEDONIA
FMY™ MEMPHIS
FMY™ EXCELSIOR
FMY~ OLYMPIAN
FMY~ UNIVERS
FMY™ UNIVERSCOND
FMY™ TREND
FMY™ BOXPS
FMY™ TERMINAL
FMY™ OCRA
FMY™ LOGO1
FMY™ LOGO2
FMY™ LOGO3
FMY GENEVA2
FMY™ TIMES2
FMY™ SQUARE3
FMY™ COURIER
FMY™ FUTURA
FMY™ PRESTIGE
FMY™ ALLGOTHIC
FMY__SCHBOOK

/* palatino */

/* caledonia */

/* memphis */

/* excelsior */

/* olympian */

/* univers */

/* univers condensed */
/* trend */

/* boxPS */

/* terminal */

/* ocrA */

/* logo1 */

/* logo2 */

/* logo3 */

/* geneva2 */

/* times2 */

/* square3 */

/* courier */

/* futura */

/* prestige */

/* alLetterGothic */
/* century school book */

dvariant specifies the manner in which numeric characters are displayed, such as roman or italic.
It may have one of the following values:

DV__ ROMAN
DV__ITALIC

/* roman */
/* italic */

weight specifies the intensity at which characters are displayed. It may have one of the following

values:

WT__MEDIUM
WT__BOLD

/* medium */
/* bold */

size is the size of the font. This value may be anywhere within the range of 0 to 1023, inclusive.

Other fields in dp__fontprops

udlines specifies the number of times that the character is to be underlined. Acceptable values range

between 0 to 2, inclusive.

stkout specifies whether or not the character is to be struck horizontally through the middle.

place specifies the position of the character relative to the line. It may have one of the following

values:

PL NULL
PL™ SUB

PL™ SUBSUB
PL™ SUBSUP
PL™ SUP

PL~ SUPSUB
PL__SUPSUP

/* null */

/* subscript */

/* sub subscript */

/* sub superscript */
/* superscript */

/* super subscript */
/* super superscript */

tobedel indicates that text has been marked for deletion in the Redlining mode.

2-6

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

revised indicates text that was typed while Redlining was enabled but was left unfinalized.

width specifies the spacing between characters in the Japanese character set. It may have one of the
following values:

WD PROP /* proportional */
WD~ QUARTER /* quarter */

WD~ THIRD /* third */

WD~ HALF /* half */

WD~ THREEQUART /* three quarter */
WD FULL r* full */

Normal spacing is achieved by specifying WD__PROP.
stylename is a text string that specifies the name of the style sheet.
ntrelm specifies the neutral elements of a style property.

dp__fontelmarr controls subtle aspects of the text appearance. dp__fontelmarr is an array of dp__bool
and may contain the following elements:

FE FAMILY /* family */

FET DSGNVAR /* design variant */
FE_ WEIGHT /* weight */

FE PSIZE /* point size */

FE_ UDLINES /* nunderlines */
FE STKOUT /* strikeout */

F "PLACE /* placement */
FE TOBEDEL /* to be deleted */
FE_ REVISED /* revised */

FE_ WIDTH /* width */

FE_ TXTCOL /* text color */
FE__HLCOL /* highlight color */

An example of an array declaration is:
typedefdp_booldp_fontelmarr[FE__ HLCOL + 1];

The size of the preceding array is 12 (FE_HLCOL = 11) +1), where FE__FAMILY is the first
element and has a value of 0.

tranpare is a Boolean value that specifies whether the text will be displayed as a solid object or, if the
text is placed over another object, the object in the background will show through the text.

txtcol and hlcol specify the color attributes of a text string. txtcol indicates the color of text which isn't
highlighted. hlcol indicates the color of text which is highlighted. Any valid color may be specified.

Frame Properties

The chief type in this section is dp__frameprops. It specifies the properties to be attributed to an anchored
frame. dp frameprops contains the following members:

dp borderstyle bdstyle;
unsigned bdthick;

dp framedims frdims;
dp bool fxw;
dp__boolfxh;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-7

DOCUMENT IC PROPERTY LIBRARY

dp spanspan;

dp~ valignment valign;
dp_halignment halign;
unsigned short tmgn;
unsigned short bmgn;
unsigned short Imgn;
unsigned short rmgn;
dp pagenumber pnum;
dp bool tranpare;

dp_ color bdcol;
dp_color bgcol;

bdstyle specifies the display characteristics of the lines comprising the frame border. It may have one
of the following values:

BDS INVISIBLE /* invisible */
BDS SOLID /* solid */
BDS DASHED /* dashed */
BDS BROKEN /* broken */
BDS DOTTED /* dotted */
BDS__DOUBLE /* double */

bdthick specifies the thickness of the frame border. This value is specified as an integer in units of
points. A point is 1/72 inch.

bdthick is affected by the value of bdstyle. If bdstyle is set to BDS__DOUBLE, then bdthick may range
from between 3 to 18, inclusive, in multiples of 3 points. The remaining values of bdstyles may have a
bdthick value ranging from 1 to 6 points, inclusive.

frdims specifies the height and width of the frame. These dimensions are also in units of points, where
one point is equivalent to 1/72 inch. dp__framedims contains the following members:

unsigned w;
unsigned h;

w is the width of the frame along the x axis. y is the height of the frame along the y axis.
fxw and fxh are Boolean values that, when set to TRUE, indicate whether the frame will expand when
necessary and the direction of expansion. fxw permits expansion in a horizontal direction along the x

axis. fxh permits expansion in a vertical direction along the y axis.

span specifies the amount of space the frame may occupy with respect to the page. dp__span may have
one of the following values:

SP_FULCOLUMN /* full column */
SP__FULPAGE /* full page */

valign and halign are the valuesof dp__valignmentand dp__halignment, respectively. They are used to
control the alignment of the frame relative to the top and bottom edges of the page.

dp__valignment may have one of the following values:

VA_TOP I* top */
VA _BOTTOM /* bottom */
VA _FLOATING /* floating */

2-8

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

dp__halignment can have any of the following values:

HA _LEFT /* left */
HA__CENTERED /* centered */
HA _RIGHT /* right */

tmgn, bmgn, Imgn, and rmgn are the margins of the frame, expressed as points. One point is the
equivalent of 1/72 inch.

pnum indicates the page number where the corresponding anchored frame resides. dp__pagenumber
contains the following members:

unsigned relpn;
unsigned dispn;

relpn is the page number of the document, relative to the first page which resides at the start of the
document. dispn is the property of the page format character which controls the display of page
numbers.

Index Properties

The chief type in this section is dp__indexprops. It describes the properties of the Index option.
dp__indexprops contains the following members:

dp indexhdl sphdl;
dp~ bool useclass;
dp _ bool usealter;
XString class;
XString alter;

sphdl is the value of dp__indexhd|, an enumerated type that specifies the special handling that the
index is to receive. This has the same effect as the Special Handling field in the Index Object Property
Sheet. sphdl may have one of the following values:

IDX__UNIT /* index as a unit */
IDX__IGNORE /* ignore */
IDX__CLASSIFY /* classify alike */

useclass is a Boolean value that indicates whether or not a classification is to be used. This has the
same effect as the Use Classification field in the Index Object Property Sheet. A value of TRUE
indicates that a classification is desired.

usealter is a Boolean value that specifies whether or not an alternate is to be used. This has the same
effect as the Use Alternate Term field in the Index Object Property Sheet.

Page Properties

The chief type in this section is dp__pageprops, a structure that describes the various properties to be
associated with a VP document page. dp__pageprops contains the following members:

/* layout properties */
dp pagedimsdims;
unsigned short tmgn;
unsigned short bmgn;
unsigned short Imgn;
unsigned short rmgn;
dp__pagesidestpagside;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-9

DOCUMENT IC PROPERTY LIBRARY

unsigned bindwidth;

/* column structure properties */
unsigned ncol;
dp bool bicol;
dp bool uneqcol;
unsigned short colsp;
dp colwidths *colwidths;
dp_coldirct coldirct;

/* heading & footing properties */
dp hdfttype hdfttype;
dp~ bool hdthispage;
dp_ bool hdsamepage;
dp_ bool ftthispage;
dp _ bool ftsamepage;
dp™_ horpos hdpos;
dp horpos ftpos;

/* page numbering properties */
dp pntype pagnumtype;
dp~ verpos vnum;
dp horpos hnum;
unsigned stpagnum;

dims is the value of dp__pagedims, a structure that specifies the width and height of a document page
in units of 1/72 inch. dp__pagedims contains the following members:

unsigned short w;
unsigned short h;

tmgn, bmgn, Imgn, and rmgn are integers that specify the page margins in units of 1/72 inch.
stpagside is the value of dp pageside, an enumerated type that specifies whether or not the first, or

starting, page of the document should be on the left-hand side or the right-hand side. dp__pageside
may have one of the following values:

PS_NIL /* nil */
PS_LEFT r* left */
PS__RIGHT /* right *

PS NIL indicates that there is no difference between the left- and right-hand sides of a document.

bindwidth is the additional amount of space to remain on the left edge of the completed document to
account for the space necessary during book binding.

ncol, blcol, uneqcol, and colsp determine column structure. ncol is an integer that specifies the
number of columns per page. A maximum of 50 columns may be specified. blcol is a Boolean value that
specifies whether the length of the column will be equal to the length of the page. uneqcol is a Boolean
value that specifies whether the columns may have varying widths. colsp is the amount of space
between columns, specified in units of 1/72 inch.

colwidths is a pointer to dp__colwidths, a structure that specifies the width of each column in a
document. It contains the following members:

unsigned length;
dp__colwidth *widths;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

length is an integer that specifies the number of columns. widths is a pointer to dp__colwidth, an
integer that specifies the width of each column. The value of widths is specified in units of 1/72
inch. dp__colwidth contains the following member:

unsigned short w;

coldirct is the value of dp__coldirct, an enumerated type that specifies the direction of each column. It
may have one of the following values:

CD_LR /* left to right */
CD_RL /* right to left */

hdfttype is the value of dp__hdfttype, an enumerated type that specifies how headings and footings in
the PFC are to be propagated across pages. It may have one of the following values:

HFT_NONE /* none */
HFT_CONT /* continue */
HFT_RESET /* reset */

The preceding are the same as those shown for Page Numbering in the Page Format Property
Sheet and they accept the same values.

hdthispage is a Boolean value that determines whether the header is to be displayed on the current
page or on the succeeding page. Page headers are enabled when a numbering pattern has been toggled
in the PFC so that it is active and it's set to appear in the top margin. When the numbering pattern is
active but set to appear on the bottom margin, hdthispage will have no effect.

ftthispage acts like hdthispage with respect to footers. See the previous paragraph.

hdsamepage is a Boolean value that determines whether the headers used on both the left and right
pages will be identical.

ftsamepage acts like hdsamepage with respect to footers. See the previous paragraph.

hdpos and ftpos control the horizontal positioning of headers and footers, respectively. They may have
one of the following values:

HP LEFT /* left */

HP™ RIGHT /* right */

HP™ CENTERED /* centered */
HP:OUTER /* outer of page */

pagnumtype is the value of dp pntype, an enumerated type that specifies the the type of
PageNumbering to be used. It may have one of the following values:

PNT NONE /* none */

PNT~ CONTNUM /* continue only page number */
PNT~ CONTNUMANDPAT /* continue number and pattern */
PNT_RESTART /* restart */

vnum and hnum are the values of dp__verpos and dp__horpos, respectively. They control the vertical
and horizontal positioning of PageNumbering in the document. vnum may have one of the following

values:
VP_TOP /* top edge */
VP__BOTTOM /* bottom edge */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-11

DOCUMENT IC PROPERTY LIBRARY

hnum may have one of the following values:

HP LEFT /* left edge*/

HP™ RIGHT /* right edge*/

HP™ CENTERED /* center of page*/

HP:OUTER /* left edge on left pages and right edge on right pages*/

stpagnum is an integer value that specifies the page number to be assigned the starting page. All
succeeding pages will incremented accordingly.

Informat, and Inloc are currently not implemented.

Paragraph Properties

The chief type in this section is dp paraprops. It is a structure that specifies the properties of paragraphs
in the document It contains the following members:

dp basprops basprops;
dp_ tabstops tabstops;
XString stylename;
dp__paraelmarr ntrelm;

basprops is the value of dp basprops, a structure that specifies the standard properties associated
with every paragraph, such as justification, indentation, and language. These are the same properties
that appear on the Paragraph property sheet. Refer to the section titled dp__*intro for more
information ondp__basprops.

tabstops is the value of dp tabstops, a structure that specifies the tab stops associated with
paragraphs. These are the same properties that appear on the Tab Settings property sheet. Refer to
sections titled Basic Property Records and Tabs for more information on dp__tabstops.

stylename is a text string that specifies the style name of paragraph property.

ntrelm is the value of dp__paraelmarr, an array of dp__bool that describes basic, or default, paragraph
style properties. It is declared as follows:

typedef dp__booldp_paraelmarr[PE__TABSTOPS + 1];

Individual elements may be assigned the following values:

PE PRELEAD /* pre leading */

PE~ POSLEAD /* post leading */

PE~ LINDENT /* leftindent */

PE RINDENT /* right indent */

PE” LNH /* line height */

PE~ PARALIGN /* para alignment */
PE JUST /* justified */

PE HYPH /* hyphenated */

PE~ KPNEXT /* keep with next para */
PE" LANG /* language */

PE- STRSUC /* streak succession */

PE- DEFTABLEAD
PE_ DEFTABJUST
PE- DEFTABOFFSET
PE- DEFTABALIGN
PE__TABSTOPS

/* default tab stop dot leader */
/* default tab stop justified */
/* default tab stop offset */

/* default tab stop alignment */
/* tab stops*/

2-12

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

Basic Property Records
dp__basprops contains the following members:

unsigned short prelead;
unsigned short poslead;
unsigned short lindent;
unsigned short rindent;
unsigned short Inh;

dp paralign paralign;
dp bool just;

dp bool hyph;

dp bool kpnext;

dp langlang;

dp strsucstrsuc;

dp deftabsp deftabsp;
dp_tabalign deftabal;

prelead and postlead are integers that specify the amount of space that is to precede and follow
the paragraph, respectively. These values are specified in units of points, where 1 point is the
equivalent to 1/72 inch.

lindent and rindent are integers that specify the amount of space that is to comprise the margins
on the left and right sides of the paragraph, respectively. These values are specified in units of
points, where 1 point is the equivalent to 1/72 inch.

Inh is an integer that specifies the height of lines comprising a paragraph. These values are
specified in units of points, where 1 point is the equivalent to 1/72 inch.

paralign is the value of dp__paralign, an enumerated type that specifies how the paragraph is to be
aligned relative to the containing text column or text block. It may have one of the following

values:
PA__LEFT /* left */
PA_CENTER /* center */
PA__RIGHT /* right */

just is a Boolean value that specifies whether the lines of text in paragraphs will be stretched to
make the left and right edges consistently even. That is, the line will be justified. A value of FALSE
will result in a ragged right edge.

hyph is a Boolean value that specifies whether words on the right side of a line that are too long to
fit entirely on the one line should be hyphenated to facilitate justification. If justification is not
enabled, this property will be ignored.

kpnext is a Boolean value that specifies whether, during pagination, the current paragraph is to
be kept on the same page as the following paragraph.

lang is the value of dp lang, an enumerated type that specifies the type of text characters that
will be used in the paragraphs. The specified language is used in formatting decimal tabs,
hyphenation, spell checking, and so. It may have one of the following values:

LANG USE /* USEnglish */
LANG UKE /* UKEnglish */
LANG FRN /* French */
LANG~ GMN /* German */
LANG:SWD /* Swedish */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-13

DOCUMENT IC PROPERTY LIBRARY

Tabs

LANG ITA /* Italian */

LANG™ DUT /* Dutch */

LANG DAN /* Danish */

LANG NOR /* Norwegian */
LANG FIN /* Finnish */

LANG SPN /* Spanish */

LANG POR /* Portuguese */
LANG JPN /* Japanese */

LANG FRCAN /* FrenchCanadian */
LANG _ENCAN /* EnglishCanadian */

strsuc is the value of of the type dp__strsuc, an enumerated type that specifies whether text
characters should be generated within paragraphs from left to right (e.g. English) or right to left
(e.g. Hebrew). dp__strsuc may have one of the following values:

SS_LR /* left to right */
SS_RL /* right to left */

deftabsp is the value of of the type dp__deftabsp, an unsigned number that specifies the default
number of spaces between tab stops. The value is specified in units of points, where there 1 point is
equal to 1/72 of an inch.

deftabal is the value of of the type dp tabalign, an enumerated type that specifies the manner in
which tabs are aligned relative to the Teft paragraph margin, the center of the paragraph, the right
paragraph margin, or points. A point is the equivalent of 1/72 of an inch. dp tabalign may have
one of the following values: -

TSA LEFT /* left */
TSA™ CENTER /* center */
TSA™ RIGHT /* right */
TSA__DECIMAL /* decimal */

dp__tabstop is an array of structures whose members specify the tab settings of the current paragraph.
It contains the following members:

dp bool dotld;

dp bool eqsp;

dp taboffset offset;
dp_tabalign align;

dotld is a Boolean value that specifies whether the tab will have leader dots.
eqsp is a Boolean value that specifies whether tabs will be equally spaced.

offset is the value of of the type dp taboffset, an unsigned number that specifies the location of
each tab stop, relative to the margin.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

align is the value of the type dp tabalign, an enumerated type that specifies the manner in which
tabs are aligned relative to the left paragraph margin, the center of the paragraph, the right
paragraph margin, or points. A point is the equivalent of 1/72 of an inch. dp tabalign may have
one of the following values: -

TSA LEFT /* left */
TSA™ CENTER /* center */
TSA™ RIGHT /* right */
TSA___DECIMAL /* decimal */

An array of tabstops used to create or modify an object in a document must be sorted by increasing
order of offsets. An offset that is equal to the previous one is ignored. During enumeration,
tabstop arrays passed to the user will always be sorted in this manner. The maximum number of
tabstops that may be set in a paragraph is 100.

Document Mode Properties

Mode properties affect the auxiliary menus of a VP document. The key mode property isdp__modeprops. It
contains the following members:

dp bool strct;
dp_ bool nonprint;
dp _bool cover;
dp_bool prompt;

strct, nonprint, cover, and prompt are Boolean values that specify the manner in which the document
will be displayed. If set to TRUE, the document will display structure and non-printing characters, the
cover sheet, and prompt fields, respectively.

dp__modesel specifies the dp__modeelm of a document to be manipulated. dp__modesel is an array of
dp__bool and is declared as follows:

typedefdp__bool dp__modesel[ME__ PROMPT + 1];

dp__modeelm is an enumerated type that may have one of the following values:

ME__ STRCT /* structure showing */
ME__NONPRINT /* non printing showing */
ME_ COVE /* cover sheet showing */
ME__PROMPT /* prompt fields */

Font Style Properties

The chief type in this section is dp__fstyleprops, a structure that specifies font style properties.
dp__fstyleprops contains the following members:

dp fontprops props;
XString desc;

unsigned short softpos;
unsigned short stylepos;

props and desc are the properties of the font style.
softpos is the position of the SoftKey used to invoke the stylesheet. stylepos is the position at which

the stylesheet propertysheet is to appear on the Style Softkey Assignment Sheet. Please refer to the
figure on the following page for more information on StyleSheet and Style SoftKey.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-15

DOCUMENT IC PROPERTY LIBRARY

Paragraph Style Properties

The chief type in this section is dp__pstyleprops, a structure whose members specify the paragraph style
properties. dp__pstyleprops contains the following members:

dp paraprops props;
XString desc;

unsigned short softpos;
unsigned short stylepos;

props and desc are the properties of the paragraph style.

softpos is the position of the SoftKey used to invoke the StyleSheet. stylepos is the position of the
propertysheet of stylesheet. Please refer to the figure on the following page for more information on
StyleSheet and Style SoftKey.

2-16 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

i Apply Style Changes

Show Style Soft Key Assignments | O1F

Stylesheet of Blank ‘/

RULE TYPE RULE NAME DESCRIPTION +
CHARACTER Font3 Description of Font 3 E
Font 2 Description of Font 2
Font1 Description of Font1
Font 0 Description of Font 0
PARAGRAPH Parad Description of Para 0
Para 2 Description of Para 2
Para1 Description of Para 1
-] = -«

StyleSheet position from up to down corresponds to 0, 1, 2...
For example. Both the stylepos of Font 3 and Para 0 are 0.
Both the stylepos of Font 1 and Para 1 are 2.

tvle Soft Key Assignments

MORE

Style SoftKey position from left to right of 1st row corresponds to 1, 2...6, 7.
2nd row corresponds to 8,9...13, 14. 3rd row...
For example. softpos of Font 1 is 9. softpo of Font 2 is 17. softpos of Para 0 is 33.

Position of StyleSheet and Style SoftKey

TextFrame Properties

The chief type in this section is dp__tframeprops, a structure whose members specify the text frame
properties. dp__tframeprops contains the following members:

XString name;
unsigned innermargin;
dp orientorientation;
dp_ bool lastlinejust;
dp_bool autohyphen;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-17

DOCUMENT IC PROPERTY LIBRARY

name is a text string that specifies the name of the text frame. innermargin is an unsigned number
that specifies the amount of space to be allocated for the inner margin of all four edges of the frame.
innermargin is specified in units of micas.

orientation is the value of dp__orient, an enumerated type that specifies the manner in which text is
placed in the frame. Text may flow either horizontally (e.g., English) or vertically (e.g., Japanese).
dp__orientcan have any of the following values:

OR__HOR /* horizontal */
OR_VER /* vertical */

Only Japanese text may flow vertically.

lastlinejust is a Boolean value that, when set to TRUE, is used to specify whether the last line of text in
linked text frames is to be justified.

autohyphen is a Boolean value that, when set to TRUE, is used to specify whether the last line of text
in linked text frames is to be automatically hyphenated.

Color Properties

The chief type in this section is the dp__color, which describes the color properties. dp__color contains the

following members:
inty; *0<=y< = 10000*
inte; /*-10000 < = e < = 10000 */
ints; /*-10000 < = s < = 10000 */

The color is specified the combination of y, e and s, for example, black is specified as {0, 0, 0} and white
is specified as {10000, 0, 0}. Refer to the Xerox Color Encoding Standard for more details.

dp colorname is the name of the well known color which may have one of the following values:

CL WHITE /* white */

CL™ BLACK /* black */

CL™ PINK /* pink */

CL™ RED /* red *

CL™ LGREEN /* light green */

CL™ GREEN /* green */

CL™ LBLUE /* light blue */

CL™ BLUE /* blue */

CL~ YELLOW /* yellow */

CL” GOLD /* gold */

CL~ LORANGE /* light orange */

CL~ ORANGE /* orange */

CL™ VIOLET /* violet */

CL~ PURPLE /* purple */

CL” TAN /* tan */

CL” BROWN /* brown */

CL™ LGRAY /* light gray */

CL™ MGRAY /* medium gray */
CL™ DGRAY /* dark gray */

CL™ PGYELLOW /* pale green yellow */
CL™ LBYELLOW /* ight brilliant yellow */
CL™ MYELLOW /* moderate yellow */
CL™ SYELLOW /* strong yellow */
CL__PYELLOW /* pale yellow */

2-18

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

CL BYELLOW
CL™ MOYELLOW
CL™ SOYELLOW
CL™ LOYELLOW
CL™ DOYELLOW
CL™ LGYELLOW
CL™ GYELLOW
CL™ POYELLOW
CL™ SORANGE
CL~ MORANGE
CL~ SRORANGE
CL~ MRORANGE
CL™ DRORANGE
CL™ VSRED

CL™ BRED

CL™ MRED

CL™ DAPRED
CL™ SRED

CL™ MPRED
CL™ SPRED

CL™ DRED

CL~ DEPRED
CL™ VPRED

CL~ LYELLOW
CL™ MYPINK
CL™ PPPINK

CL™ DAPPINK
CL™ LPPINK

CL™ DEPPINK
CL™ MPPINK
CL™ GPPINK
CL™ PPINK

CL™ LRPURPLE
CL~ VRPURPLE
CL™ MRPURPLE
CL™ SRPURPLE
CL™ DVIOLET
CL™ MVIOLET
CL™ SVIOLET
CL™ DAPBLUE
CL™ VPPBLUE
CL™ LPBLUE
CL™ SBLUE

CL™ DEBLUE
CL™ DEPBLUE
CL™ VLBLUE
CL™ BBLUE

CL™ DSBLUE
CL™ DABLUE
CL™ VPBLUE
CL™ VBLUE

CL™ DVBLUE
CL™ MBLUE

CL~ VLGBLUE
CL™ BGBLUE
CL™ SGBLUE
CL:VGBLUE

/* brilliant yellow */

/* moderate orange yellow */
/* strong orange yellow */
/* light orange yellow */

/* deep orange yellow */

/* light greenish yellow */
/* grayish yellow */

/* pale orange yellow */

/* strong orange */

/* moderate orange */

/* strong reddish orange */
/* moderate reddish orange */
/* dark reddish orange */

/* very strong red */

/* brilliant red */

/* moderate red */

/* dark purplish red */

/* strong red */

/* moderate purplish red */
/* strong purplish red */

/* dark red */

/* deep purplish red */

/* vivid purplish red */

/* light yellow */

/* moderate yellow pink */
/* pale purplish pink */

/* dark purplish pink */

/* light purplish pink */

/* deep purplish pink */

/* moderate purplish pink */
/* grayish purplish pink */
/* pale pink */

/* light reddish purple */

/* vivid reddish purple */

/* moderate reddish purple */
/* strong reddish purple */
/* deep violet */

/* moderate violet */

/* strong violet */

/* dark purplish blue */

/* very pale purplish blue */
/* light purplish blue */

/* strong blue */

/* deep blue */

/* deep purplish blue */

/* very light blue */

/* brilliant blue */

/* deep strong blue */

/* dark blue */

/* very pale blue */

/* vivid blue */

/* deep vivid blue */

/* moderate blue */

/* very light greenish blue */
/* brilliant greenish blue */
/* strong greenish blue */
/* vivid greenish blue */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

CL DGBLUE
CL™ VLGREEN
CL™ MBGREEN
CL~ SBGREEN
CL™ DEBGREEN
CL™ DABGREEN
CL™ VPYGREEN
CL™ MGREEN
CL™ DGREEN
CL™ BYGREEN
CL™ VYGREEN
CL™ SYGREEN
CL™ DYGREEN
CL™ VPGREEN
CL™ PYGREEN
CL™ MBROWN
CL™ MRBROWN
CL™ YWHITE
CL™ YGRAY
CL~ PWHITE
CL™ BWHITE
CL™ LBGRAY
CL™ BGRAY
CL™ DBGRAY
CL™ BBLACK
CL™ VLGRAY
CL__VDGRAY

/* deep greenish blue */

/* very light green */

/* moderate bluish green */
/* strong bluish green */

/* deep bluish green */

/* dark bluish green */

/* very pale yellow green */
/* moderate green */

/* deep green */

/* brilliant yellow green */
/* vivid yellow green */

/* strong yellow green */

/* deep yellow green */

/* very pale green */

/* pale yellow green */

/* moderate brown */

/* moderate reddish brown */
/* yellowish white */

/* yellowish gray */

/* purplish white */

/* bluish white */

/* light bluish gray */

/* bluish gray */

/* dark blueish gray */

/* bluish black */

/* very light gray */

/* very dark gray */

2-20

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

dp__*col*

NAME

dp__colfromname, dp__namefromcol, dp__wkcolfromcol - color property

SYNOPSIS

#include "DoclCProps.h”

int
dp__colfromname(name, ret)
dp__colorname name;
ret _wkcolfromname *ret; /* Returned */

int
dp__namefromcol(color, ret)
dp color *color;
ret namefromwhkcol *ret; /* Returned */

int
dp__wkcolfromcol(color, ret)
dp__color *color;
ret_wkcolfromcol *ret; /* Returned */

DESCRIPTION

The dp colfromname() function is used to retrieve the integer equivalent of a well known color. The name
argument is an integer value that specifies the name of the color. This function returns ret, a structure
whose one member, dp__color, is an array of three integers that specifies the desired color. ret may then
be passed as an argument to those functions that require color information.

The dp namefromcol() function is used to retrieve the name of a color by supplying the data that defines
the well known color. The color argument is a pointer to a structure whose three members define the color
in question. This function returns ret, a structure containing the name of the color.

Thedp wkcolfromcol() function is used to retrieve a well known color from color. The color argument is a
pointer to dp color, a structure whose three members define that color. This function returns ret, a

structure whose one member, dp color, contains the integer data defining the well known color .

dp__color contains the following members:

inty; /*0<=y<=10000*
inte; /*-10000 < = e < = 10000 */
ints; /*-10000 < = s < = 10000 */

color is specified as a combination of y, e and s. The number to color relationship is defined by the BWS
framework. It is recommended that the user does not set the y, e, and s values directly. For example,
black is specified as {0, 0, 0} and white is specified as {10000, 0, 0}. Note that dp color may also be
aliased by using dp_yes. -

Refer todp intro at the beginning of this section for more information regarding colors.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-21

DOCUMENT IC PROPERTY LIBRARY

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

dp__*col() will fail if one or more of the following are true:
Doc_ BadParm One of the arguments specified is invalid.
Doc_ lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.

2-22 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

dp__enumfrun

NAME

dp__enumfrun - enumerate font run
SYNOPSIS

#include "DoclCProps.h”
#include "XString.h”

int
dp enumfrun(r, runs, proc, cdat,ret)
TXString r; :
dp fontruns *runs;
dp frunproc *proc;
void *cdat; /* NULL */
dp__bool *ret; /* Returned */

CALLBACK PROCEDURE
dp__bool
dp__frunproc(r, props, cdat)
XStringr;
dp fontprops *props;
void *cdat;
DESCRIPTION
A font run is a way in which to associate font properties with text. The dp__enumfrun() function is used to
enumerate user-defined fill-in runs, as defined in dp__fldprops. This is achieved by creating font
information structures that point into associated XString structures.

The r argument is the text string to be enumerated. It is the value of the fillin argument to dp__fldprops.

The runs argument is a pointer to dp fontruns, a structure whose members contain font properties and an
index. It is the value of the fillinruns argument to dp__fldprops.

The proc argument is a pointer to dp frunproc, a user-defined callback procedure. Its usage is defined by
the user. -

The cdat argument is user-defined data that is supplied to, and used by, dp__frunproc . Its usage is also
defined by the user.

Ifdp__frunproc() returns TRUE, the enumeration stops and ret returns TRUE.
RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-23

DOCUMENT IC PROPERTY LIBRARY

ERRORS

dp_enumfrun() will fail if one or more of the following are true:
Doc_ BadParm One of the arguments specified is invalid.
Doc__lllegalHandle The specified handle is illegal.

Doc__TimeOut Inter-process communication has exceeded the maximum allowed time.

2-24 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

dp__get*def

NAME

dp__get*def - get default values of properties

SYNOPSIS
#include "DocICProps.h”

int
dp__getbreakdef(props)
dp__breakprops *props;

int
dp__getfielddef(props)
dp__fldprops *props;

int
dp__getfnnumdef(props)
dp__fnnumprops *props;

int
dp__getfontdef(props)
dp__fontprops *props;

int
dp__getfontdescdef(desc)
dp__fontdesc *desc;

int
dp__getrundef(run)
dp__run *run;

int
dp__getframedef(props)
dp__frameprops *props;

int
dp__getindexdef(props)
dp__indexprops *props;

int
dp__getpagedef(props)
dp__pageprops *props;

int
dp getcolwidthdef(width)
“dp__colwidth *width;

int

dp__getparadef(props)
dp__paraprops *props;

int

dp__getbaspropsdef(props)

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Returned */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

2-25

DOCUMENT IC PROPERTY LIBRARY

dp__basprops *props; /* Returned */
int
dp__gettabstopdef(stop)

dp__tabstop *stop; /* Returned */
int
dp__getmodedef(props)

dp__modeprops *props; /* Returned */
int
dp__getfontstyledef(props)

dp__ fstyleprops *props; /* Returned */
int
dp__getparastyledef(props)

dp__pstyleprops *props; /* Returned */
int
dp__gettframedef(props)

dp__tframeprops *props; /* Returned */
int
dp__getfontelmarralltrue(ret)

dp_fontelmarr ret; /* Returned */
int
dp__getparaelmarralltrue(ret)

dp__paraelmarr ret; /* Returned */
int
dp__getpagedel (ret)

ret_getpagedel *ret; /* Returned */
int
dp__gettoc(ret)

ret_gettoc *ret; /* Returned */

DESCRIPTION

The dp__get*def() functions are used to obtain declared constants so that property structures may be
initialized with neutral property values. A part of the information is obtained from the system defined
data.

Before calling one of these functioris, the user must declare a structure of the appropriate type and pass its
address to the dp__get*def() function.

dp__getbreakdef() gets the following default values for page break properties:

dp__breaktype type; /* BR__NPAGE (new page) */

2-26 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

dp__getfielddef() gets the following default values for field properties:

dp langlang; /* LANG USE (USEnglish) */
unsigned length; /*0* =

dp boolreq; /* FALSE */

dp skpchoice skpif; /* SKP NEVER */
dp bool stpskp; /* FALSE */

dp fldchoice type; /*FLD ANY */
XString fill-in; /* NULL*/
XString desc; /* NULL */
XString format; /* NULL */
XString name; /* NULL */
XString range; /* NULL */
XString skpiffld; /* NULL */
dp__fontruns *fillinruns; /* NULL */

dp__getfnnumdef() gets the following default values for footnote numbering properties:

dp numctrl numctrl; /* NC REST (restart) */
dp bool resteachpage; /* FALSE */

dp bool deferframes; /* FALSE */

dp_ bool rulingline; /* FALSE */

dp bool split; /* FALSE */

dp rulelen rulelen; /*RL ONETHIRD */
dp indexrep indexrep; /* IR T INTEGER */

dp lang letters; /* LANG USE (USEnglish) */
dp replesent digits; /*RP ASCIl */
unsigned int otherrule ; /* 1487/

XString continuation ; /* NULL */

XString continued ; /* NULL */

dp__getfontdef() gets the following default values for font properties:

dp fontdescfontdesc;

unsigned udlines; /*0*/

dp bool stkout; /* FALSE */

dp place place; /*PL NULL*
dp bool tobedel; /* FALSE */

dp bool revised; /* FALSE */
dp_ width width; /* WD PROP (proportional) */
XString stylename; /* NULL*/

dp fontelmarr ntrelm; /* all TRUE */
dp~ bool tranpare; /* TRUE */

dp_ color txtcol; /*0,0,0*/
dp_color hicol; /* 10000, 0, 0 */

dp__getfontdescdef() gets the following default values for font description:

dp family family; /* FMY FRUT (modern) */
dp dvariant dvariant; /* DV ROMAN */

dp weight weight; /* WT _ MEDIUM */
unsigned short size; /* 12 %

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-27

DOCUMENT IC PROPERTY LIBRARY

dp__getrundef() gets the following default values for font run:

dp fontprops props;
unsigned index;

I*0*

dp__getframedef() gets the following default values anchored frame properties:

dp borderstyle bdstyle;
unsigned bdthick;

dp framedims frdims;
dp bool fxw;

dp bool fxh;

dp spanspan;

dp_ valignment valign;
dp halignment halign;
unsigned short tmgn;
unsigned short bmgn;
unsigned short Imgn;
unsigned short rmgn;
dp pagenumber pnum;
dp bool tranpare;

dp color bdcol;
dp_color bgcol;

/* BDS SOLID */
2%

/*72,72%

/* TRUE */

/* TRUE */

/*SP FULCOLUMN (full column) */
/* VA~ FLOATING */
/* HA~ CENTERED */
/*18 %

/* 18 */

/*0*/

/*0*/

/*1,1%

/* FALSE */
/*0,0,0*/

/* 10000, 0, 0 */

dp__getindexdef() gets the following default values for index properties:

dp indexhdl sphdi;
dp bool useclass;
dp bool usealter;
XString class;
XString alter;

/*IDX UNIT (index as a unit) */
/* FALSE */
/* FALSE */
/* NULL */
/* NULL */

dp__getpagedef() gets the following default values for page properties:

dp pagedimsdims;
unsigned short tmgn;
unsigned short bmgn;
unsigned short Imgn;
unsigned short rmgn;

dp pageside stpagside;
unsigned bindwidth;
unsigned ncol;

dp bool blcol;

dp bool uneqcol;
unsigned short colsp;

dp colwidths *colwidths;
dp_ coldirct coldirct;

dp hdfttype hdfttype;
dp_bool hdthispage;
dp bool hdsamepage;
dp bool ftthispage;

dp bool ftsamepage;
dp__horpos hdpos;
dp_horpos ftpos;

dp pntype pagnumtype;
dp_ verpos vnum;
dp__horpos hnum;

/* 842, 595 */
[*72%/

[*72%/

[*72 %/

[*72%/

/*PS LEFT*/

1* 0%

/*1*/

/* FALSE */

/* FALSE */

/* 18 */

/* NULL */

/*CD LR (lefttoright) */
/* HFT CONT (continue) */
/* TRUE */

/* TRUE */

/* TRUE */

/* TRUE */

/* HP CENTERED */
/*HP~ CENTERED */
/*PNT NONE */
/*VP "TOP*/

/* HP:RIGHT*/

2-28

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

unsigned stpagnum;

dp__getcolwidthdef() gets the following default value of column width property:

unsigned short w;

dp__getparadef() gets the following default values for paragraph properties:

dp basprops basprops;

dp tabstops tabstops;
XString stylename;
dp__paraelmarr ntrelm;

dp__getbaspropsdef() gets the following default values for basic properties:

unsigned short prelead;
unsigned short poslead;
unsigned short lindent;
unsigned short rindent;
unsigned short Inh;

dp paralign paralign;
dp~ bool just;

dp~ bool hyph;

dp_ bool kpnext;
dp_langlang;

dp strsucstrsuc;

dp deftabsp deftabsp;
dp_tabalign deftabal;

1

/*0*

/* 0, NULL */
/* NULL */

/*0*/
/*0*/

/*0*/

/*0*/

/*12 %/

/*PA LEFT*/

/* FALSE */

/* FALSE */

/* FALSE */

/* LANG USE (USEnglish) */
/*SS LR {left toright) */
/*187%/

/* TSA__LEFT*/

dp__gettabstopdef() gets the following default values for tab stop:

dp bool dotid;

dp bool eqsp;

dp taboffset offset;
dp_tabalign align;

dp__getmodedef() gets the following default values for mode properties:

dp bool strct;
dp_ bool nonprint;
dp bool cover;
dp_bool prompt;

dp__getfontstyledef() gets the following default values for font style properties:

dp fontprops props;
XString desc;
unsigned short softpos;

unsigned short stylepos;

dp__getparastyledef() gets the following default values for paragraph style properties:

dp paraprops props;
XString desc;
unsigned short softpos;

unsigned short stylepos;

/* FALSE */

/* FALSE */
1*0*/

/* TSA__LEFT*/

/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */

/* NULL */
0
0/

/* NULL */
0/
0

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

dp__gettframedef() gets the following default values for text frame properties:

XString name; /* NULL */

XString description; /* NULL */

unsigned innermargin; /*141 %/

dp orient orientation; /* OR HOR (horizontal) */
dp_ bool lastlinejust; /* FALSE */

dp_bool autohyphen; /* FALSE */

dp__getfontelmarralltrue() initializes all font elements properties to TRUE.
dp__getparaelmarralltrue() initializes all paragraph elements properties to TRUE.
dp__getpagedel() gets the XCCS code of the page number delimiter.
dp__gettoc() gets the XCCS code of the table of contents characters.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

dp_get*def() will fail if one or more of the following are true:
Doc_ BadParm One of the arguments specified is invalid.
Doc_ lllegalHandle The specified handle is illegal..

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.

2-30 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

3. Graphics IC Library

gi__intro

NAME

gi__intro - introductory explanation of graphics functions
DESCRIPTION

The functions in this section provide utilities for the creation and enumeration of anchored graphics,
nested graphics, and CUSP button frames. The majority of these functions use Document IC Definitions
and Document IC Property Definitions. Therefore, in addition to a familiarity with the Document Editor,
you should also be familiar with these two sections of this manual before proceeding to use Graphics IC
functions.

Creating Graphics

Graphics creation is initiated by a call to gi startgr(). This function creates a frame in a document and
returns an object called a handle. The resulting frame is a container in which may be placed graphics data,
thus it is called a graphics container. A graphics container is defined as an object that can contain graphic
objects and may be one of three basic types: an anchored graphics frame, a nested graphics frame, or a
CUSP button within a graphics frame. The type of container it becomes is dependent upon the gi start*()
function that is called next, such as gi startnbtn() or gi startcluster(). Once a specific type of graphics
container has been created, various gi _ad*() functions may be called to add graphic objects, such as curves,
rectangles, bitmap graphics, and text frames

The handle is an opaque type that identifies the graphics frame in which will be placed graphics data and
is, therefore, passed as an argument to the gi__ad*() functions.

A nested frame is a frame that is placed within a larger frame. Nested frames may be one of several types,
such as non-anchored graphics frames, CUSP buttons, or graphics clusters. gi startgframe(),
gi startnbtn(), or gi startcluster() are called to create the corresponding nested frame. Each procedure
takes a graphics container as an argument, and returns another graphics handle. The resulting handle is
then passed as an argument to other gi__ad*() functions.

When everything has been added to a graphics container, the final step is a call to the respective
gi finish*() routine. These routines are gi finishgr(), gi finishnbtn(), gi finishgframe(), or
gi_finishcluster(). gi__finishgr() returns a graphics instance which can then be passed to di__apaframe().

The typical scenario for creating a document with a floating graphics frame nested within an anchored
graphics frame is as follows:

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE ' 3-1

GRAPHICS IC LIBRARY

1. Calldi__create() to obtain a document handle (doc).
2. Callgi__startgr(doc) to get an anchored frame handle (h).
3. Callgi__ad*(h)toadd graphics to the anchored frame.
4. Callgi_startgframe(h) to get a handle for a nested graphics frame (gfh).
5. Callgi__ad(gfh) to add graphics to the nested frame.
6. Callgi__finishgframe(gfh) to finish the nested frame.
7. Callgi_ finishgr(h) to complete the anchored frame and obtain an object of type di_ins.
8. Calldi__apaframe(h).
9. Calldi__finish(&doc).
Reading Graphics

There are also GraphicsIC functions that read the contents and properties of a graphics frame. The
gi enumerate() function is called to retrieve the contents or properties of a frame. It requires a graphics
container and a set of user-defined call-back procedures as arguments. There is one call-back procedure
for each type of object. Object types are defined as bar chart, bitmap frame, CUSP button, cluster, curve,
ellipse, form field, graphics frame, line, line chart, pie chart, pie slice, point, rectangle, text, and triangle.

gi enumerate() reads the contents of the graphics container, calling the appropriate procedure for each
object type encountered. If a call-back procedure is not supplied for a particular type of object and that type
of object is encountered during enumeration, that object will be ignored. Since call-back procedures are
user-defined, they may be used to stop enumeration based upon a user-specified set of conditions.

Similarly, gi_enumbtnprog() accepts a set of user-defined call-back procedures to enumerate the contents
of a CUSP button.

Cross References

The following pages contain charts that should be used to facilitate the selection and application of gi *()
functions. The charts are organized by category, or type of frame. When applicable, each category shows
the types of objects that may be placed within the corresponding frame. The columns to the right of the
categories list the functions that may be called to create an object or enumerate it.

Page numbers for each function may be found in either the table of contents or index.

3-2

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

Category of Anchored Graphics and Anchored Button Frames

Category Creating Reading
Function Name: Function Name:
Common di__apaframe di enumerate

di_aframeproc

Anchored Graphics gi_ startgr gi__getgframeprops
Frame

gi_ finishgr

gi_ setgframeprops

Anchored Button gi_ startbtn gi_ btnforaframe
Frame

gi_ finishbtn gi__enumbtnprog

gi__relbtnprog

gi__apchartobtnprog

gi__apnparatobtnprog

gi__aptexttobtnprog

Category of Graphic Objects and Related Functions

Cat _ Creating Reading
ategory Objects - -
Function Name: Function Name:
Common gi__enumerate
Point gi__adpoint gi__ pointproc
Line gi_adline gi_lineproc
Curve gi__adcurve gi__curveproc
Primitive el T adell ——
Objects ipse] gi_ade lpge gi_ ellipseproc
Rectangle gi__adrectangle gi__rectangleproc
Triangle gi__adtriangle gi_triangleproc
Pie Slice gi_pislceﬂ gi__pislceproc

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-3

GRAPHICS IC LIBRARY

Category of Graphic Objects and Related Functions

Cate Creating Reading
gory Objects , ;
Function Name: Function Name:
Bitmap Frame gi__adbm gi__bmproc

Frame Text Frame gi__adtframe gi__tframeproc
Form Field gi_ adffield gi__ffieldproc

Nested gi_startgframe gi__frameproc

Graphics Frame
gi_ finishgframe
Nested Table gi _adtable gi__tableproc
Nested Button gi startnbtn gi buttonproc
Frame — —
gi finishnbtn gi__enumbtnprog
gi__relbtnprog
gi__apchartobtnprog
gi__apnparatobtnprog
gi__aptexttobtnprog
Bar Chart gi__adbacht gi__bachtproc
Chart - .

Line Chart gi__adincht gi__Inchtproc

Pie Chart gi__adpicht gi_ pichtproc

gi_ finishcht
gi__startcluster gi__ clusterproc
Others Cluster

gi_finishcluster

3-4

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi__adbacht

NAME
gi__adbacht - add bar chart

SYNOPSIS
#include “"DocIC.h"

#include “DoclCProps.h”
#include “GraphicsiC.h”

int
gi adbacht(h, box, props, data, wchild, ret)
T gi handleh;
gi box *box; /* NULL */
gi bachtprops *props; /* NULL */
gi chtdat *data;
dp bool wchild; /* FALSE */
gi _handle *ret; /* Returned */
DESCRIPTION

The gi__adbacht() function is used to add a bar chart to a graphics container. This function draws a bar
chart based on the properties specified by gi__bachtprops.

The h argument is the graphics container handle returned by an earlier call to gi__startgr(),
gi__startgframe(), gi__startbtn(), gi__startnbtn(), or gi__startcluster().

The box argument is a pointer of the type gi box. It’s two members, place and dims specify the origin of
the bar chart and its size, relative to the graphics container.

gi__place place;
gi__dims dims;

gi__place contains two integer variables x and y. These two variables indicate the grid location of the box
origin. gi__dims contains two integer variables w and h. These two variables indicate the width and height
of the frame with respect to the box origin. Both place and dims are specified in units of micas.

A {0, 0} grid location indicates the upper-left corner of the frame. Increasing the value of x causes the
placement location to shift towards the right. Increasing the value of y causes the placement location to
shift downwards. It is illegal to specify negative w and h values

box.dims defines the size of the bar chart. Increasing the value of w causes the frame to grow towards the
right. Increasing the value of h causes the frame to grow in a downward direction.

The props argument is a pointer of the type gi bachtprops. It is a structure whose members specify the
properties the resulting bar chart is to have. gi:bachtprops contains the following members:

double units;
unsigned div;

gi barscale scale;
dp colorsclcol;
gi__balayoutlayout;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-5

GRAPHICS IC LIBRARY

gi baspacing spacing;
gi baorient orient;
dp bool key;

dp bool bafloat;

dp bool mirror;

gi chtapps *apps;
dp_ bool joined;

units, div, scale, sclcol, layout, spacing, orient, key, bafloat and mirror control some aspect of the bar
chart’s appearance. These members accept the same values as their counterparts in the bar chart
property sheet.

units is a positive real number value that specifies the interval at which numeric indicators are placed
on the scale. For example, a value of 2.5 means that all the numbers accompanying the scale will be
divisible by 2.5. Therefore, only the numbers 2.5, 5.0, 7.5, etc. will be displayed.

div is a whole number between 0 and 65,535 that specifies the number of hash marks, or divisions,
that are to occur between each numeric indicator on the scale.

scale is of the type gi__barscale. It is an enumerated variable that specifies the gauge to be used when
displaying the bar chart. It may have one of the following values:

BS STICK /* single tick */
BS DTICK /* double tick */
BS DGRID /* double grid */
BS__OGRID /* open grid */

scleol is a structure of the type dp__color. It specifies the color to be used in drawing the bar chart scale.

layout is of the type gi balayout. It is an enumerated variable that defines how the components
comprising each bar in the chart is to be placed with respect to the other components. layout may have
one of the following values:

BL__ STACKED /* place each component on top of the other component(s) */
BL__GROUPED /* place components next to each other */

spacing is of the type gi__baspacing It is an enumerated variable that defines the separation between
bar chart elements. It may have one of the following values:

BSP MERGED /* merged */

BSP~ JOINED /* joined */

BSP™ QUARTER /* quarter spacing */

BSP~ HALF /* half spacing */

BSP~ THREEQUART /* three-quarter spacing */
BSP_ BRIDGED /* bridged */

orient is of the type gi baorient. It is an enumerated variable that defines the direction in which the
bar chart data is to be drawn. The data may be drawn from the bottom of the frame to the top, or from
the left edge of the frame to the right. orient may have one of the following values:

BO_VER /* vertical */
BO'_HQR /* horizontal */

bafloat is currently not supported.

3-6

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

mirror is currently not supported.

apps is a pointer of the type gi chtapps. It is a structure that specifies the visual properties of the bars
in the bar chart. It is used to define the color of the lines, the fill patterns, the color of the filled bars,
ete. It contains the following members:

unsigned length;
gi__chtapp *values;

where, gi_chtapp contains the following members:

gi__gray gray;

gi textures txrs;
dp color txrcol;
dp~ color shdcol;
dp__color Incol;

gray is of the type gi gray an enumerate type that specifies the amount of black, or saturation,
to make varying shades of the color gray. It may have one of the following values:

GRY NONE
GRY GRAY25
GRY™ GRAY50
GRY GRAY75
GRY:BLACK

The number following the respective GRY__GRAY* indicates the percentage of saturation.
For example,

GRY NONE
GRY GRAY25
GRY GRAY50
GRY GRAY75
GRY_BLACK

txrs is of the type gi textures. It is a structure that defines the direction in which the fill
patterns are drawn in the resulting bars. It may have one of the following values:

dp bool vertical
dp_ bool horizontal
dp_bool nwse

dp bool swne
dp_bool polkadot

txreol, shdcol, and Incol are the respective colors of the fill pattern, the shading, and the lines
used to draw each bar in the bar chart. shdcol is only available when gray is set to
GRY__BLACK.

joined is a Boolean value that specifies whether the elements of the bar chart are to be merged as one
with the bar chart, or if they are to remain separate graphic elements. If joined is FALSE, each

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-7

GRAPHICS IC LIBRARY

graphics element, such as rectangles and lines, will be independent of the bar chart and may be
manipulated accordingly.

data is a pointer of the type gi chtdat. It is a structure whose members define the common data of the
chart. It contains the following members:

XString title;

gi datasetdatset;
dp lang lang;

gi datsource datsou;
gi labels *collabl;

gi labels *rowlabl;
gi__datvalues *values;

title is of the type XString and is used to specify the name of the bar chart.

dataset is of the type gi dataset. It is a structure that specifies the axis at which bar titles are to be
drawn. It may have one of the following values:

DAS_COLUMN /* column */
DAS_ROW /* row */

lang is of the type dp lang, an enumerated variable that defines the language to be used in writing
bar chart text. It may have one of fifteen values, suchas LANG USEor LANG JPN. Refer to the section
in Document IC Property Definitions, titled Basic Property Records. under the heading of lang for a
description of acceptable values.

datsou is of the type gi__datsource, a structure that specifies the source that is to supply the data used
to draw the individual bars of the bar chart. It contains the following members:

enum {
DTS PsS, /* datain chart property */
DTS__DOC /* data in document */

}type;

union {
gi tblfillin fillin; /* effective when type is DTS PS */
gitblcontdoc; /* effective when type is DTS DOC */
}ur -

fillin is of the type gi__tblfillin and may have one of the following values:
TFO BYROW /* by row */
TFO__BYCOL /* by column */

gi__tblcont contains the following members:

XString name;
gi__sousubset subset;

gi__sousubset contains the following members:

gi elmrange colrange;
gi elmrangerowrange;

3-8

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi__elmrange contains the following members:

unsigned first;
unsigned last;

The Document Editor may use two types of data from two different sources. One type and source of
data is that from the chart property. The other is data from within a document. DTS PS specifies
that the source data for drawing bar charts is in the chart. DTS DOC specifies that that the source
data for drawing the bars is in a table frame in the same document. If DTS DOC is specified, name
must also be specified. When data is supplied from a chart property, gi__da_tsou rce should be set as
follows:

gi datsource datasource;

datasource.type = DTS__PS;
datasource.u.fillin = TFO_BYROW (or TFO__BYCOL);

When table data in a document is used as the source, gi__datsource should be set as follows:
gi__datsource datasource;

datasource.type = DTS DOG;
datasource.u.doc.name = (XString)tablename;
datasource.u.doc.subset.colrange.first = 0;
datasource.u.doc.subset.colrange.last = 0;
datasource.u.doc.subset.rowrange.first = 0;
datasource.u.doc.subset.rowrange.last = 0;

collabl and rowlabl are both pointers to gi labels, a structure that specifies respective column and row
bar titles. gi__labels contains the following members:

unsigned length;
XString (*values); /* array of XString */

values is a pointer of the type gi__datvalues, a structure that specifies the values of text strings and
numbers in the bar chart. It contains the following members:

enum {
RS STRING,
RS__ NUMERIC
}format;
union {
gi strowcont string; /* effective when formatis RS STRING */
gi__numrowcont numeric;/* effective when format is RS__NUMERIC */

Yur
gi__strowcont contains the following members:

unsigned length;
gi__strow *strow; /* array of gi__strow */

gi__numrowcont contains the following members:

unsigned length;
gi numrow *numrow; /*arrayofgi numrow*/

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-9

GRAPHICS IC LIBRARY

strow is a pointer of the type gi strow, a structure that contains an array of XString and its
length.It represents the string data that is to be filled in the row. It contains the following
members:

unsigned length;
XString *values; /* array of XString */

numrow is a pointer of the type gi__numrow. It is a structure that contains an array of double
and its length. It represents the numeric data to be filled in the row. It contains the following
members:

unsigned length;
double *values; /* array of double */

The data types RS__STRING or RS__NUMERIC are used as switches to select the elements of types, string
or numeric. -

wchild is a Boolean that, when set to TRUE, will cause a handle to the graphics elements in the bar chart to
be returned in ret. After which, graphic elements may be added to the handle. When set to FALSE, ret will
contain a NULL value and the Document Editor will rebuild the bar chart from the information contained in
gi_ chtdat. If a handle is returned, gi__finishcht() must be called to release it when done.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi__adbacht() will fail if one or more of the following are true:

Doc DocumentFull No more room in the document.

Doc__ReadonlyDoc Document opened in ReadOnly mode.

Doc__ OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.

Doc__BadParm One of the arguments specified is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

gi__finishcht()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi__adbm

NAME
gi_ adbm - add bitmap

SYNOPSIS
#include “DociC.h”

#include “DoclCProps.h”
#include “GraphicsiC.h"

int
gi adbm(h, box, bmprops, frprops, wtcap, wbcap, wlcap, wrcap, ret)
Tgi handleh;
gi_ box *box; /* NULL */
gi _bmprops *bmprops; /* NULL */
gi_frameprops *frprops; /* NULL */
dp bool wtcap; /* FALSE */
dp bool whcap; /* FALSE */
dp_ bool wlcap; /* FALSE */
dp bool wrcap; /* FALSE */
ret_adbm *ret; /* Returned */
DESCRIPTION

The gi__adbm() function is used to add a bitmap graphic to the graphics container.

The h argument is the graphics container handle returned by an earlier call to gi__startgr(),
gi__startgframe(), gi__startbtn(), gi__startnbtn(), or gi__startcluster().

The box argument is a pointer of the type gi__box. Its two members, place and dims. specify the origin of
the area in which the bit map will be placed and its size, relative to the graphics container (including
caption area). Refer to gi__adffield() for a description of gi__box.

The bmprops argument is a pointer of the type gi bmprops. It is a structure whose members control
visual aspects of the bit map graphic. It contains the following members:

int xoffset;

int yoffset;

XString prntfile;

gi bmdisp dispsou;

gi bmscalprops scalprops;
dp bool remotefile;
dp_color bitcol;

xoffset and yoffset have no affect on the outcome of a call to gi__adbm().

prntfile is the full path name, or source, of the bitmap object to be printed. It is the means by which a
different bitmap file may be accessed during the printing of the finished document than that being
accessed when displaying the document. The value of this parameter is usually the same as the
display source.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-11

GRAPHICS IC LIBRARY

The source
internal to

for the bitmap object to be placed in a document may be in one of two locations: either
the file (e.g., the bits are copied into the document), or in a file on the desktop (e.g., a

pointer to the bits is inserted into the document). dispsou is of the type gi__bmdisp. It is a structure
that specifies the display source of the bitmap object and whether the bitmap object is to be inserted or
pointed to. gi__bmdisp contains the following members:

enum {
BM

INTERNAL,

BM_FILE
} type;

union {
gi

bmdat *bm; /* effective when type is BM INTERNAL */

XS$tring name; /* effective when type is BM_FILE */

Yu;

The physical aspects of the actual bitmap object is described by the structure gi__bmdat. gi__bmdat
contains the following members:

gi rational xscl;

gi rational yscl;

unsigned xdims; /* # of bits wide */

unsigned ydims; /* # of bits tall */

unsigned bpl; /* Bits Per Line = ((xdim + 15)/16) * 16 */
char *bitdata;

xscl and yscl are of the type gi rational. It is a structure that specifies the scale at which to
display the bitmap object in both x and y axis direction. gi__rational contains the following
members:

intnum;
unsigned den;

num and den are abbreviations of numerator and denominator, respectively. These two
values are used to perform unit conversions from points to meters by specifying the
resolution of the bitmap data. The base conversion involves converting dots per inch (dpi)
into units of meters. For example, the desktop has a resolution of 72 dpi, therefore, for
bitmap data created on the desktop, as one inch is equal to 0.0254 meters and there are
720,000 points in 254 meters, xscl and yscl should be set to {254, 720000}. If the bitmap
data is created by a scanner, the resolution should be set to correspond to the resolution of
the scanner. For example, if the scanner has a resolution of 200 dpi, then set xscl and yscl
to {250, 200000}. If the resolution of the scanner is 300 dpi, then the correct values would
be {254, 300000}.

xdims and ydims are unsigned integers that specify the x and y axis dimensions of the bitmap
object in units of bits.

bpl

is the real bitmap data per line. bpl must have a word boundary. For example:

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

24 bits
oo SR >
~ AR EEEEEEEENEMN]: 10101010101010101010101000000000 AAAAH, AAOOH,
C L | | HE B E R EBEEEN 01010101010101010101010 100000000 5555H, 5500H,
B A A EEREEEEEDEER 10101010101010101010101000000000 AAAAH, AAOOH,
 JH HEE EEREEEEENE 01010101010101010101010100000000 5555H, 5500H,
3 B B B B EE B EEREDR 10101010101010101010101000000000 AAAAH, AAOOH,
2 A E R EEEEEEEN 01010101010101010101010100000000 5555H, 5500H,
"A A B E R EEEENEERENER 10101010101010101010101000000000 AAAAH, AAOOH,
M A EEEEEEEEER) 01010101010101010101010100000000 5555H, 5500H,
‘"I B EEEEEEREER 10101010101010101010101000000000 AAAAH, AAOOH,
Sl B B E B E R EEEEN 01010101010101010101010100000000 5555H, 5500H,
IMEA R EEEREEENEE N 10101010101010101010101000000000 AAAAH, AAOOH,
IR E R EEEEEEE] 01010101010101010101010100000000 5555H, 5500H,
‘A B EEEEEREEDERENR) 10101010101010101010101000000000 AAAAH, AAOOH,
(A AR EEEEEENR) 10101010101010101010101000000000 5555H, 5500H,
"B A EEEEEEEEE 01010101010101010101010100000000 AAAAH, AAOOH,
‘TN EEREEEEEEEDE 10101010101010101010101000000000 5555H, 5500H,
" EEEEEEENEN 01010101010101010101010100000000 AAAAH, AAOOH,
Bl B E E EEEEEEREDRN 10101010101010101010101000000000 5555H, 5500H,
‘"R EEEREEEEEEEE 01010101010101010101010100000000 AAAAH, AAOOH,
Sl B B E EBEBEEEEE B M 10101010101010101010101000000000 5555H, 5500H,
3 B B B B B BB R B EBE BEE 01010101010101010101010100000000 AAAAH, AADOH,
T IR E R EEEEEEE : 01010101010101010101010100000000 5555H, 5500H,
A A B E A ENENEENENENE 10101010101010101010101000000000 AAAAH, AAOOH,
+v HHEBEEEEEENEN, "1 01010101010101010101010100000000 5555H, 5500H,
7T P >
32 bits
xdims = 24
ydims = 24
bpl = 32
bitdata =
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H, ...

bitdata is a pointer to to the bitmap data. The size of the bitmap data is to be equal to (xdims

* bpl).

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

3-13

GRAPHICS IC LIBRARY

scalprops is a structure of the type gi__bmscalprops. It is used to specify the manner in which the
bitmap is displayed. gi__bmscalprops contains the following members:

enum {
BMS PRNTRES,
BMS™ FIXED,
BMS_AUTOMATIC
} type;
union {
unsigned res; /* effective when type is BMS PRNTRES*/
gi scalfix fixed; /* effective when type is BMS~ FIXED */
enum { /* effective when type is BMS~ AUTOMATIC */
SHP SIMILAR, -
SHP™ FILLUP
} shape;
Yu;

gi__scalfix contains the following members:

enum {
HAL CENTER,
HAL™ RIGHT,
HAL™ LEFT
} halign;

enum {
VAL CENTER,
VAL~ BOTTOM,
VAL~ TOP
} valign;

unsigned percent;

scalprops permits the user to specify one of three bitmap scaling modes: BMS__PRNTRES,BMS__ FIXED or
BMS__AUTOMATIC.

BMS_ PRNTRES causes the bitmap object to be printed at the resolution specified in the res
argument.

BMS__ FIXED requires the user to control the bitmap’s alignment (via halign and valign parameters)
and scaling (via xscl and yscl). The printing of the bitmap object is also affected by the value of the
percent argument. (See percent below.)

BMS AUTOMATIC, with shape = SHP SIMILAR, results in the bitmap object being enlarged or
reduced to fit just inside the bitmap frame until either the vertical or horizontal edge of the bitmap
object touches the graphic frame’s edge. The aspect ratio of the bitmap object is maintained. This is
usually the default mode. BMS AUTOMATIC, with shape = SHP FILLUP, results in the bitmap
object being scaled to fit the entire graphic frame. The aspect ratio is not maintained.

If BMS__PRNTRES or BMS__ FIXED is selected, SHP_SIMILAR and SHP__FILLUP will be ignored.

The percent parameter allows the user to shrink or magnify the bitmap object, while maintaining its
aspect ratio. A percent value of 100 means that the bitmap should be displayed and printed the same
size as the original. A value of 50 means that the bitmap is shrunk to one-half both vertically and
horizontally. percent must be an integer ranging from 1 to 1000, inclusive. This parameter is only
available when the value of type is set to BMS__PRINTRES.

The value of res specifies the resolution to be used in printing the bitmap object. It is usually set to the
same resolution as the printer on which the bitmap object is to be printed. Standard values are 72, 75,

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

150, 200, and 300. Other values may be specified. Values are specified in units of dots-per-inch (dpi).
This parameter is only available when the value of type is set to BMS__ PRINTRES.

The remotefile parameter is used to specify whether the prntfile is in a file or on the desktop.

The bitcol parameter is a structure of the type dp__color. Its members describe the color of the dots.
Refer todp__col* for more information.

The frprops argument is a pointer of the type gi frameprops. It is a structure that defines the common
properties of the graphics frame. Refer to the description of frprops in gi__startgframe() for more
information.

w*cap arguments are Boolean values that specify whether or not the frame is to have captions. If a value
of TRUE is specified for a w*cap argument. the respective *cap return value will be non-NULL. These
caption arguments are used to set the top, bottom, left, and right captions, respectively. Related DoclC
functions may then be used to add text to each caption. Note that each caption must eventually be freed by
acallto di__re!ca p().

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi__adbm() will fail if one or more of the following are true:
Doc_ DocumentFull ~ No more room in the document.
Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.

Doc_ BadParm One of the arguments specified is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

dp__namefromcol(), dp__wkcolfromcol(), gi__startgframe()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-15

GRAPHICS IC LIBRARY

gi__adcurve

NAME

gi_ adcurve - add curve

SYNOPSIS

#include "GraphicsiC.h"

int
gi__adcurve(h, box, props)
gi__handle h;
gi__box *box; /* NULL */
gi__curveprops *props; /* NULL */
DESCRIPTION

The gi_adcurve() function is used to add a curve of a specific size and shape to a graphics frame.

The h argument is the graphics frame handle returned by an earlier call to gi_sta rtgframe(), gi_startbtn(),
gi__startnbtn. gi__startgr(), or gi__startcluster().

The box argument is a pointer of the type gi__box. It’s two members, place and dims specify the origin
of the object and its size, relative to the frame.

gi__place place;
gi__dimsdims;

gi__place contains two integer variables x and y. These two variables indicate the grid location of the box
origin. gi__dims contains two integer variables w and h. These two variables indicate the width and height
of the box with respect to the box origin. Both place and dims are specified in units of micas.

A {0, 0} grid location indicates the upper left corner of a frame. Increasing the value of x causes the
placement location to shift towards the right. Increasing the value of y causes the placement location to
shift downwards. It is illegal to specify negative w and h values, therefore an object’s dims.place must
always correspond to the upper left corner of a box. It is legal to specify negative x and y values.

box.dims defines the area in which may be placed graphic objects. Increasing the value of w causes the
frame to grow towards the right. Increasing the value of h causes the frame to grow in a downward
direction.

3-16

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

Frame

The props argument is a pointer of the type gi__curveprops. It is a structure that defines the the
appearance and shape of the curve. gi_curveprops contains the following members:

gi brush brsh;

gi InendInenw;
gi InendInese;
gi. Inedhd Inhnw;
gi Inedhd Inhse;
gi_place plnw;

g| " place plapx;
g| pIace plse;
gi place plpek;

dp bool eccentric;
unsigned eccentricity;
dp__bool fixangle;

brsh is of the type gi brush. It specifies the type of line used to draw the brush, such as solid or dashed,
and the brush color. Refer to the description of gi startgframe() for general information regarding
brsh. The exception to the description of brsh in gi startgframe() is with regards to the stylebrush
member. The two parameters that may not be specified are STB__INVISIBLE and STB__ DOUBLE. The
remaining parameters will result in curves having the appearances as shown below:

Not ‘~~ v, Not I GRS
Allowed (N . Allowed "
INVISIBLE SOLID DASHED DOTTED DOUBLE BROKEN

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-17

GRAPHICS IC LIBRARY

Inenw and Inese are enumerated variables that describe the appearance of the end points of the curve.
Each end point may have one of the following values:

LE FLUSH /* flush */

LET SQUARE /* square */
LET ROUND /* round */
LE:ARROW /* arrowhead*/

Inenw defines the end that is painted first and Inese defines the end that is painted last. The curve is
always traced in a clockwise direction, as shown in the figure below). -

N SE__,NW
NW
SE NW NW SE

SE
SE NW

_/ NW/.\
SE NW SE

Defining Line Curves
If either Inenw or Inese is assigned a value of LE__ARROW, then the value of Inhnw and/or Inhse
specifies the type of arrowhead to be placed at the endpoint(s) of the curve. Note that Inhnw specifies
the type of arrowhead for Inenw and Inhse specifies the type of arrowhead for Inese.

Inhnw and/or Inhse may have one of the following values:

LEH NONE /* none */
LEH™ H1 /*h1*/
LEH™ H2 /*h2 */
LEH__H3 I*h3*/

LEH__H1 is the finest point;LEH__H3 is the most blunt, as shown in the figure below. If Inenw and/or
Inese is not assigned a value of [TE'_ARROW, then Inhnw and/or Inhse should be left LEH__NONE.

The pl* parameters define the curve by specifying its end points, apex, and peak. These points are
relative to the frame defined by the box argument, not the frame itself. Curves are traced in a
clockwise direction, therefore, be sure that the NW endpoint appears before the SE endpoint when
tracing a curve. The figure below illustrates the four pl* points used to define two different curves; the
triangle marks the apex, the square marks the peak, and the circles mark the endpoints.

Another way to define a curve is by specifying the curve’s endpoints, apex and eccentricity.
eccentricity is a fraction used to specify the swell of a curve, as shown below.

3-18

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

—_— h1

—_— h2
—> 3
Types of Arrowheads

A
Defining Curves
The fraction is derived by the following equation:
a
NW

apex / /
peak /

SE

Defining Eccentricity
eccentricity = b/(a + b) * 65535

The eccentricity argument is a Boolean value that, when set to TRUE, indicates that eccentricity is to
be used rather than pl* points.

The fixangle parameter is a Boolean value that, when set to TRUE, indicates that the curve is to
maintain its shape when grown or shrunk.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-19

GRAPHICS IC LIBRARY

ERRORS
gi_adcurve() will fail if one or more of the following are true:

Doc_DocumentFuII No more room in the document.
Doc__ReadonlyDoc Document opened in ReadOnly mode.

Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc__ OutOfvM Not enough virtual memory for the operation.

Doc__BadParm One of the arguments specified is invalid.

Doc__lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

gi__startgframe()

3-20 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi__adellipse

NAME
gi__adellipse - add ellipse

SYNOPSIS

#include “GraphicsiC.h”

int
gi__adellipse(h, box, props)
gi__handle h;
gi__box *box; /* NULL */
gi__ellipseprops *props; /* NULL */
DESCRIPTION

The gi__adellipse() function is used to add an ellipse to a graphics container.

The h argument is the graphics container handle returned by an earlier call to gi__startgframe(),

gi__startgr(), gi__startbtn(), gi__startnbtn(), or gi_startcluster().

The box argument is a pointer of the type gi box. It’s two members, place and dims. specify the origin of
the box in which the ellipse will be placed and the area of the ellipse, relative to the graphics frame. Refer

to gi__adcurve() for a description of gi__box.

The ellipse will be placed in the resulting box such that the extreme edges of the ellipse touch the
respective edge of the box, therefore, the size of the box determines the size of the ellipse. For example,

Frame

The props argument is a pointer of the type gi__ellipseprops. It is a structure whose members define the

appearance of the ellipse. Its members are:

gi__brush brsh;
gi__shading shade;
dp__bool fixshape;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

3-21

GRAPHICS IC LIBRARY

brsh is a structure that defines the visual qualities of the lines used in tracing the border of the ellipse.
It contains the following members:

unsigned wth;
gi__stlbrush stylebrush;
dp__color brushcolor;

wth is the width of lines, specified in units of micas. The standard brush widths may have one of
the following value:

GSLW1 /* 1 width for Graphics Single Line */
GSL W2 /* 2 width for Graphics Single Line */
GSLW3 /* 3 width for Graphics Single Line */
GSLwW4 /* 4 width for Graphics Single Line */
GSL W5 /* 5 width for Graphics Single Line */
GSLWe6 /* 6 width for Graphics Single Line */

Each value corresponds to 35, 71, 106, 141, 176, and 212 micas, respectively. Non-standard
brush widths will result in an error.

stylebrush defines how the lines are to be drawn, such as solid or dashed. It may have one of the

following values:
STB INVISIBLE /* invisible */
STB~ SOLID /* solid */
STB~ DASHED /* dashed */
STB~ DOTTED /* dotted */
STB~ DOUBLE /* double */
STB___BROKEN /* broken */

The wth of STB__DOUBLE borders is 3 times the usual width because it consists of two lines
separated by a gap equal to the width of the line. In this case, the brush widths may have one of the
following values:

GDL W1 /* 1 width for Graphics Double Line */
GDL W2 /* 2 width for Graphics Double Line */
GDLW3 /* 3 width for Graphics Double Line */
GDLW4 /* 4 width for Graphics Double Line */
GDL WS /* 5 width for Graphics Double Line */
GDL W6 /* 6 width for Graphics Double Line */

Each value corresponds to 106, 212, 318, 423, 529, and 635 micas, respectively. The following
are examples of brush styles:

e mreeees - =
|
I T . L.

INVISIBLE SOLID DASHED DOTTED DOUBLE BROKEN

3-22 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

brushcolor specifies the color to be used to display the lines that make up the edges of the graphic
object. The value of color may be any color that is a member of dp__color.

shade is a structure of type gi_shading. It is used to define the appearance of the ellipse’s interior. Its
members are:

gi graygray;

gi textures txrs;
dp color txrcol;
dp_color shdcol;

gray is of the type gi__gray, an enumerated variable that specifies the percentage of black, or
saturation, to be used in making varying shades of the color gray. Refer to gi__adbacht() for a chart
illustrating the available shades.

txrs is a structure of type gi textures. It specifies the direction in which the texture is drawn in the
ellipse or the type of texture that is to be placed in the ellipse. For example, textures may be placed in
an ellipse with a horizontal, vertical, or diagonal orientation. Also, a type of texture that may be
placed in the ellipse is a polka dot pattern. gi__textures has the following members:

dp bool vertical;

dp bool horizontal;

dp bool nwse;

dp bool swne;

dp_bool polkadot;

Each variable is a Boolean value. The resulting texture will be the AND of the variables . That is,
each variable that is set to TRUE will be placed as a texture in the graphic object.

txrcol is a structure of type dp color. Its members define the color that is to be used in drawing the
texture, or foreground, of the ellipse’s interior.

shdcol is a structure of type dp__color. Its members define the color to be used when drawing the
background in the ellipse’s interior. This parameter is enabled only when the value of gray is
GRY__BLACK. If the value of gray is any other value, shdcol is set to GRY__BLACK.

fixshape is a Boolean value that, when set to TRUE, indicates that the aspect ratio of a graphic object will
remain intact when the user grows or shrinks the ellipse. A value of FALSE indicates that the aspect ratio
of the ellipse will change freely.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-23

GRAPHICS IC LIBRARY

ERRORS
gi__adellipse() will fail if one or more of the following are true:
Doc_ DocumentFull No more room in the document.
Doc__ReadonlyDoc Document opened in ReadOnly mode.
Doc_OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.
Doc__BadParm One of the arguments specified is invalid.
Doc__lllegalHandle The specified handle is illegal.
Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO
gi__adbacht()

3-24 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi__adffield

NAME
gi__ adffield - add form field

SYNOPSIS

#include "DocIC.h”
#incdude "DoclCProps.h”
#include "GraphicsiC.h"

int

gi__adffield(h, box, fiprops, frprops, tfprops, paprops, foprops, wfield, wtcap, wbcap, wicap, wrcap, ret)
gi handleh;
gi box *box; /* NULL */
dp fldprops *fldprops; /* NULL */
gi ~frameprops *frprops; /* NULL */
gi tframeprops *tfprops; /* NULL */
dp paraprops *paprops; /* NULL */
dp fontprops *foprops; /* NULL */
dp bool wfield; /* FALSE */
dp bool wtcap; /* FALSE */
dp_ bool whcap; /* FALSE */
dp_ bool wicap; /* FALSE */
dp bool wrcap; /* FALSE */
ret_adffield *ret; /* Returned */

DESCRIPTION

The gi_adffield() function is used to add a form field to a graphics frame.

The h argument is the graphics container handle returned by an earlier call to gi__startgframe(),
gi__startgr(), gi__startbtn(), gi__startnbtn(), or gi__startcluster().

The box argument is a pointer of the type gi__box. It’s two members, place and dims. specify the origin of
the frame and its size, relative to the graphics container.

gi__place place;
gi__dimsdims;

gi place contains two integer variables x and y. These two variables indicate the grid location of the
box origin (including the caption). gi dims contains two integer variables w and h. These two
variables indicate the width and height of the frame with respect to the box origin. Both place and
dims are specified in units of micas.

A {0, 0} grid location indicates the upper-left corner of the graphics container. Increasing the value of x
causes the placement location to shift towards the right. Increasing the value of y causes the

placement location to shift downwards. It is illegal to specify negative w and h values

box.dims defines the size of the frame. Increasing the value of w causes the frame to grow towards the
right. Increasing the value of h causes the frame to grow in a downward direction.

Refer to gi__startgframe() for a description of the box, *frprops, and w*cap arguments.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-25

GRAPHICS IC LIBRARY

The fldprops argument is a pointer of the type dp fldprops. It is a structure whose members define the
properties to be attributed to the resulting field. The members specify font properties, language, format,
and soon. dp__fldprops has the following members:

dp langlang;
unsigned length;

dp boolreq;
dpskpchoice skpif;
dp_ bool stpskp;

dp fldchoice type;
XString fill-in;
XString desc;
XString format;
XString name;
XString range;
XString skpiffld;
dp__fontruns *fillinruns;

Refer to Field Properties in the section dp__intro for a description of each parameter.

The tfprops argument is a pointer of the type gi tframeprops. It is a structure whose members describe
the properties of the text field and contains the following members:

dp__bool expr;
dp__bool expb;
dp__tframeprops props;

expr and expb are abbreviations for expand right and expand bottom, respectively. They are Boolean
values. When both expr and expb are TRUE, the width and height can be changed according to the size of
the text included.

The props argument is a pointer of the type dp tframeprops. It is a structure whose members define the
inner margin and orientation of the text within the frame, as well as the type of line justification and auto-
hyphenation options. It contains the following members:

XString name;

XString description;
unsigned innerMargin;
dp orient orientation;
dp bool lastLinelustify;
dp_bool autoHyphenate;

Refer to Text Properties indp intro for a more thorough description.

The paprops and foprops arguments are pointers todp paraprops and dp__fontprops, respectively. They
define the paragraph and font properties to be attributed to the resulting text field. See Paragraph
Properties and Font Properties in the section dp__intro for a more complete description.

The wfield argument is a Boolean value that, when set to TRUE, causes di adfield to return a handle to a
field. The handle may then be passed as an argument to other text field manipulation functions. The
w*cap arguments are Boolean values that specify if captions are desired along the top, bottom, left, or
right edges of the text field.

3-26 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

This function sets the return information into the structure ret__adffield, which contains the following
members:

di field field;

di~ caption tcap;
di" caption bcap;
di" caption Icap;
di_caption rcap;

When wfield is set to TRUE, gi__adffield() will returndi__field, a handle that may be used by other text field
manipulation functions. This field handle must eventually be freed by a call to di__relfield(). Information
may be added to this field by making calls to the respective gi__ad*() functions.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi__adffield() will fail if one or more of the following are true:
Doc_ DocumentFull No more room in the document.
Doc_ReadonlyDoc Document opened in ReadOnly mode.
Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc__ OutOfvM Not enough virtual memory for the operation.
Doc__BadParm One of the arguments specified is invalid.
Doc_ lllegalHandle The specified handle is illegal.
Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO
di relfield()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-27

GRAPHICS IC LIBRARY

gi__adline

NAME

gi__adline - add line
SYNOPSIS

#include "GraphicsiC.h”

int
gi adline(h, box, props)
Tgi handleh;
gi_ box *box; /* NULL */
gi_lineprops *props; /* NULL */
DESCRIPTION

The gi_adline() function is used to add a line to a graphics container.

The h argument is the graphics container handle returned by an earlier call to gi startgframe(),
gi_startgr(), gi__startbtn(), gi__startnbtn(), gi__startcluster(), gi__adpicht(), gi_adlncht(T,or gi__adbacht().

The box argument is a pointer of the type gi__box. Refer to gi__adcurve() for a description of gi__box.

The props argument is a pointer of the type gi lineprops. It is a structure whose members define the
appearance and direction of the line. It contains the following members:

gi brush brsh;

gi InendInenw;
gi Inend Inese;
gi Inedhd Inhnw;
gi_ Inedhd Inhse;
gi Indirctdirct;
dp_ bool fixangle;

Refer to gi__adcurve() for a description of the members of gi__lineprops.
RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

3-28 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

ERRORS
gi__adline() will fail if one or more of the following are true:
Doc_ DocumentFull No more room in the document.
Doc_ ReadonlyDoc Document opened in ReadOnly mode.
Doc_ OutOfDiskSpace Not enough disk space for the operation.
Doc_ OutOfvM Not enough virtual memory for the operation.
Doc_ BadParm One of the arguments specified is invalid.

Doc_ lllegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi__adcurve(), gi__adellipse()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

3-29

GRAPHICS IC LIBRARY

gi__adincht

NAME

gi__adlncht - add line chart

SYNOPSIS

#include "DocICProps.h”
#include "GraphicsiC.h”

int
gi adincht(h, box, props, data, wchild, ret)
Tgi handleh;
gi box *box; /* NULL */
gi_ Inchtprops *props; /* NULL */
gi chtdat *data;
dp bool wchild; /* FALSE */
gi _handle *ret; /* Returned */
DESCRIPTION

The gi__adIncht() function is used to add a line chart to a specified graphics container.

Refer to gi__adbacht() for a description of the h and box arguments.

The props argument is a pointer of the type gi__Inchtprops. It is a structure whose members specify the
properties of the resulting line chart. gi__Inchtprops contains the following members:

double xunits;
double yunits;
double xmax;

double xmin;

double ymax;
double ymin;
unsigned xdiv;
unsigned ydiv;

gi axtype xaxtype;
gi axtype yaxtype;
girotation axorient;
dp bool key;

dp_ colorscalcol;

gi _Inchtapps *apps;
dp_ bool joined;

xunits, yunits, xmax, xmin, ymax, ymin, xdiv, ydiv, axorient, key and scalcol have the same range of
values as their counterparts in the line chart property sheet.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

xaxtype and yaxtype are of the type gi axtype, an enumerated variable that specifies the gauge, or

grid increments, to be used in generating the line chart. It may have one of the following values:

AXT NONE /* none */

AXT SPLAIN /* single plane */
AXT™ STICK /* single tick */
AXT DPLAIN /* double plane */
AXT DTICK /* double tick */
AXT_DFULL /* double full */

axorient is of the type gi_rotation, an enumerated variable that specifies the orientation with which
the chart and all its elements are to be inserted within the document. It may have one of the following

values:
RT___NORMAL /* normal */
RT__90 /* rotate 90 */
RT_1 80 /* rotate 180 */
RT__270 /* rotate 270 */

key is a Boolean value that, when set to TRUE, displays the explanatory notes in the line chart

scleol is of the type dp__color. It is a structure that specifies the color to be used in drawing the line
chart scale.

apps is of the type gi Inchtapps. It is a structure that specifies the visual attributes of the lines used to
draw the elements of the line chart itself, such as point size, fill pattern and brush. It contains the
following members:

unsigned length;
gi__Inchtapp *values;

values is a pointer to an array of gi Inchtapp. It is a structure that contains the following
members:

unsigned psize;

gi ptfill pfill;

gi ptstyle pstyle;
dp color pcolor;

gi ~curvetype ctype;
gi brush cbrush;

ctype is a structure of the type, gi__curvetype. It may have one of the following values:

CUT STRAIGHT /* straight */

CUT™ SPLINE /* spline */

CUT BESTFIT /* best fit straight */
CUT__EXP /* exponential */

pfill and pstyle are of the type gi__ptfill and gi__ptstyle, respectively. They are described in
gi__adpoint().

joined is a Boolean value that specifies whether the elements of the line chart are to merged as one
with the line chart, or if they are to remain separate graphic elements. If joined is FALSE, each
graphics element, such as rectangles and lines, will be independent of the line chart and may be
manipulated accordingly.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-31

GRAPHICS IC LIBRARY

data is a pointer of the type gi__chtdat. See gi__adbacht() for a description of gi__chtdat.

wechild is a Boolean that, when set to TRUE, will cause a handle to the line chart to be returned in ret. After
which, graphic elements may be added to the handle. When set to FALSE, ret will contain a NULL value and
the document editor will build the line chart from the information contained in gi chtdat. If a handle is
returned, gi__finishcht() must be called to release it when done. -

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS
gi_adlncht() will fail if one or more of the following are true:

Doc_ DocumentFull ~ No more room in the document.
Doc_ ReadonlyDoc Document opened in ReadOnly mode.
Doc__ OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.

Doc__BadParm One of the arguments specified is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc__TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

gi_adpoint(), gi__adbacht(), gi_finishcht()

3-32 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi__adpicht

NAME
gi__adpicht - add pie chart

SYNOPSIS

#include "DoclCProps.h”
#include “GraphicsiC.h”

int
gi adpicht(h, box, props, data, wchild, ret)
Tgi handleh;
gi box *box; /* NULL */
gi pichtprops *props; /* NULL */
gi chtdat *data;
dp_ bool wchild; /* FALSE */
gi _handle *ret; /* Returned */
DESCRIPTION

The gi__adpicht() function is used to add a pie chart to a specified graphics container.
See gi__adbacht() for a description of the h and box arguments.

The props argument is a pointer of the type gi__pichtprops. It is a structure whose members specify the
properties of the resulting pie chart. gi_pichtprops contains the following members:

unsigned wth;

gi piestyle style;
gi chtapps *apps;
dp_ bool joined;

wth is the width of lines, specified in units of micas. The standard brush widths may have one of the

following value:
GSL W1 /* 1 width for Graphics Single Line */
GSLW2 /* 2 width for Graphics Single Line */
GSLW3 /* 3 width for Graphics Single Line */
GSLwWa /* 4 width for Graphics Single Line */
GSLWS5 /* 5 width for Graphics Single Line */
GSL W6 /* 6 width for Graphics Single Line */

Each value corresponds to 35, 71, 106, 141, 176, and 212 micas, respectively. Non-standard brush
widths will result in an error.

style is a structure of the type gi__piestyle. Its members define how the pieces of the pie chart are to be
placed with respect to the other pieces. It has the following members:

PIS__ADJOIN /* adjoining */
PIS__SEPARAT /* separated */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-33

GRAPHICS IC LIBRARY

apps is of the type gi chtapps. It is a structure that specifies the visual attributes of the lines used to
draw the elements of the pie chart itself, such as fill pattern and shading color. It contains the
following members:

unsigned length;
gi__chtapp *values;

values is a pointer to an array of gi__chtapp. It is a structure that contains the following members:

gi__gray gray;

gi textures txrs;
dp color txrcol;
dp colorshdcol;
dp bool tranpare;
dp_color Incol;

joined is a Boolean value that specifies whether the elements of the pie chart (e.g., pie slices and text
frames) are to merged as one with the pie chart, or if they are to remain separate graphic elements. If
joined is FALSE, each graphics element will remain independent of the line chart and may be
manipulated accordingly.

data is a pointer of the type gi__chtdat. Refer to gi__adbacht() for details.

wchild is a Boolean that, when set to TRUE, will cause a handle to the pie chart to be returned in ret. After
which, graphic elements may be added to the handle. When set to FALSE, ret will contain a NULL value and
the document editor will build the pie chart from the information contained in gi chtdat. If a handle is
returned, gi__finishcht() must be called to release it when done. -

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS
gi__adpicht() will fail if one or more of the following are true:
Doc_ DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc__ OutOfDiskSpace Not enough disk space for the operation.
Doc_OutOfVM Not enough virtual memory for the operation.
Doc_ BadParm One of the arguments specified is invalid.
Doc__lllegalHandle The specified handle is illegal.

Doc_TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

gi__adbacht(), gi__finishcht()

3-34 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi__adpisice

NAME

gi__adpislce - add pie slice
SYNOPSIS

#include "GraphicsiC.h"”

int
gi__adpislce(h, box, props)
gi__handle h;
gi__box *box; /* NULL */
gi__pislceprops *props; /* NULL */
DESCRIPTION

The gi__adpislce() function is used to place a pie slice in a graphics container.

The h argument is the graphics container handle returned by an earlier call to gi__startgframe(),
gi_startgr(), gi__startbtn(), gi__startnbtn(), gi__startcluster(), or gi__adpicht().

The box argument is a pointer of the type gi__box. Refer to gi__adcurve() for a description of gi__box.

The props argument is a pointer to gi__pislceprops. It is a structure whose members define the appearance
of the pie slice. gi__pislceprops contains the following members:

gi brush brsh;

gi shading shade;
gi place center;
gi place start;

gi place stop;
dp_ bool fixshape;

brsh is of the type gi brush. It specifies the visual qualities of the lines used to draw the pie slice, such
as solid or dashed lines, and their color. Refer to the description of gi startgframe() for general
information regarding brsh. The exception to the description of brsh in gi startgframe() is with
regards to the stylebrush member. The only two parameters that may be specified are STB INVISIBLE
and STB__SOLID. -

shade is a structure of type gi__shading. It is used to define the appearance of the pie slice’s interior. Its
members are:

gi graygray;

gi textures txrs;
dp color txrcol;
dp_color shdcol;

gray is of the type gi gray, an enumerated variable that specifies the percentage of black, or
saturation, to be used In making varying shades of the color gray. Refer to gi__adbacht() for a chart
illustrating the available shades.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-35

GRAPHICS IC LIBRARY

txrs is a structure of type gi textures. It specifies the direction in which the texture is drawn in the pie
slice or the type of texture that is to be placed in the pie slice. For example, textures may be drawn in a
pie slice with a horizontal, vertical, or diagonal orientation. Also, a type of texture that may be placed
in the pie slice is a polka dot pattern. gi__textures has the following members:

dp bool vertical;
dp_ bool horizontal;
dp_ bool nwse;

dp_ bool swne;
dp_bool polkadot;

Each variable is a Boolean value. The resulting texture will be the AND of the variables . That is,
each variable that is set to TRUE will be placed as a texture in the graphic object.

txreol is a structure of type dp__color. Its members define the color that is to be used in drawing the
texture, or foreground, of the pie slice’s interior.

shdcol is a structure of type dp__color. Its members define the color to be used when drawing the
background of the pie slice’s interior.

center, start, and stop are values of the structure, gi place. These values define the placement of the pie
slice in box. The membersof gi__place are:

intx;
inty;

x and y are integers that define an x and y axis location in box. Therefore, all grid locations are
relative to box.place. center is the tip of the pie slice, or, if the pie were whole it could be considered
the center of the pie. start and stop are the beginning and ending points on the edge, or circumference,
of the pie slice. The arc of a pie slice goes from start to stop in a clockwise direction. center, start, and
stop are all specified in units of micas. As shown below:

t
stop center

start

fixshape is a Boolean value that, when set to TRUE, indicates that the aspect ratio of a pie slice will remain
intact when the user grows or shrinks it. A value of FALSE indicates that the aspect ratio of the pie slice
will change freely. The value of this argument is always to be set to TRUE when adding pie slices.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

3-36 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

ERRORS
gi__adpislce() will fail if one or more of the following are true:
Doc_ DocumentFull No more room in the document.
Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc_OutOfVM Not enough virtual memory for the operation.

Doc__BadParm One of the arguments specified is invalid.

Doc_ lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

gi__adcurve(), gi__adbacht()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

3-37

GRAPHICS IC LIBRARY

gi__adpoint

NAME
gi__adpoint - add point

SYNOPSIS

#include "GraphicsiC.h”

int
gi__adpoint(h, box, props)
gi__handle h;
gi__box *box; /* NULL */
gi__pointprops *props; /* NULL */
DESCRIPTION

The gi__adpoint() function is used to add a point of a specific size and shape to a graphies container.

The h argument is the graphics container handle returned by an earlier call to gi__startgframe(),
gi_startgr(), gi__startbtn(), gi__startnbtn(), gi__startcluster(), or gi__adincht().

The box argument is a pointer of the type gi__box. Refer togi__adcurve() for a general descriptionofgi__box.
Note that the value of box.dims may be arbitrary because a point does not have dimensions, and so the
value entered will be ignored.

The props argument is a pointer to gi__pointprops. It is a structure whose members define the appearance
of the point. gi__pointprops contains the following members:

unsigned wth;

gi ptstylestyle;
gi _ptfill fill;
dp__color color;

wth is the width of lines, specified in units of micas. The standard brush widths may have one of the

following value:
GSL W1 /* 1 width for Graphics Single Line */
GSLW2 /* 2 width for Graphics Single Line */
GSLW3 /* 3 width for Graphics Single Line */
GSLwa /* 4 width for Graphics Single Line */
GSLWS5 /* 5 width for Graphics Single Line */
GSL W6 /* 6 width for Graphics Single Line */

Each value corresponds to 35, 71, 106, 141, 176, and 212 micas, respectively. Non-standard brush
widths will result in an error.

3-38 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

style is of the type gi__ptstyle. It is an enumerated variable that specifies the shape of the point. It may
have one of the following values:

PTS ROUND /* round */
PTS™ SQUARE /* square */
PTS TRIANGLE /* triangle */
PTS CROSS /* cross */
PTS INVISIBLE /* invisible */

PTS__INVISIBLE may only be specified when placing a point in a line chart. This value is illegal in
every other type of container.

fill is a structure of type gi__ptfill. It specifies if the point is to be drawn as a solid fill object or as an
outline object with no fill. One of two values may be specified:PTF__SOLID or PTF__ HOLLOW.

color is a structure of type dp color. Its members are integers that specify a color that was obtained by
a color extraction function, such as dp__colfromname().

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi_adpoint() will fail if one or more of the following are true:
Doc__ DocumentFull No more room in the document.
Doc_ReadonIyDoc Document opened in ReadOnly mode.
Doc_ OutOfDiskSpace Not enough disk space for the operation.
Doc_ OutOfvM Not enough virtual memory for the operation.
Doc__BadParm One of the arguments specified is invalid.
Doc_lllegalHandle The specified handle is illegal.

Doc_TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

dp__colfromname(), gi__adcurve()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-39

GRAPHICS IC LIBRARY

gi__adrectangle

NAME

gi_ adrectangle - add rectangle
SYNOPSIS
#include “GraphicsiC.h"”

int
gi__adrectangle(h, box, props)
gi__handleh;
gi box *box; /* NULL */

gi__rectangleprops *props; /* NULL */
DESCRIPTION
The gi__adrectangle() function is used to add a rectangle of a specific size and shape to a graphics container.

The h argument is the graphics container handle returned by an earlier call to gi__startgr(),
gi__startgframe(), gi__cluster(), gi__startnbtn(), gi__startbtn(), gi__adbacht(), or gi__adInch().

The box argument is a pointer of type gi__box. It defines the size of the rectangle. Refer to gi__adcurve() for
a description of gi__box.

The props argument is a pointer of the type gi__rectangleprops. It is a structure whose members define the
appearance of the rectangle. Its members are:

gi__brush brsh;
gi__shading shade;
dp__bool fixshape;

brsh is a structure that defines the visual qualities of the lines used in tracing the border of the
rectangle. It contains the following members:

unsigned wth;
gi__stlbrush stylebrush;
dp__color brushcolor;

wth is the width of lines, specified in units of micas. The standard brush widths may have one of
the following value:

GSLW1 /* 1 width for Graphics Single Line */
GSL W2 /* 2 width for Graphics Single Line */
GSLW3 /* 3 width for Graphics Single Line */
GSLW4 /* 4 width for Graphics Single Line */
GSLWS5 /* 5 width for Graphics Single Line */
GSLW6 /* 6 width for Graphics Single Line */

Each value corresponds to 35, 71, 106, 141, 176, and 212 micas, respectively. Non-standard
brush widths will result in an error.

3-40 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

stylebrush defines how the lines are drawn, such as solid or dashed. It may have one of the
following values:

STB INVISIBLE /* invisible */
STB~ SOLID /* solid */
STB~ DASHED /* dashed */
STB~ DOTTED /* dotted */
STB~ DOUBLE /* double */
STB__BROKEN /* broken */

The value of wth is affected by the stylebrush specified. For example, the wth of STB_ DOUBLE
borders is 3 times the usual width because it consists of two lines separated by a gap equal to the
width of the line.

brushcolor specifies the color to be used to display the lines that make up the edges of the graphic
object. The value of color may be any color that is a member of dp__color.

shade is a structure of type gi__shading. It is used to define the appearance of the rectangle’s interior.
Its members are:

gi__gray gray;

gi textures txrs;
dp color txrcol;
dp_color shdcol;

gray is of the type gi gray, an enumerated variable that specifies the percentage of black, or
saturation, to be used in making varying shades of the color gray. If stylebrush is set to
STB INVISIBLE, then gray may not be set to GRY NONE, otherwise the rectangle will become
invisible. Refer to gi__adbacht() for a chart illustrating the available shades.

txrs is a structure of type gi textures. It specifies the direction in which the texture is drawn in the
rectangle or the type of texture that is to be placed in the rectangle. For example, textures may be
placed in an rectangle with a horizontal, vertical, or diagonal orientation. Also, a type of texture
that may be placed in the rectangle is a polka dot pattern. gi__textures has the following members:

dp bool vertical;
dp bool horizontal;
dp bool nwse;

dp bool swne;
dp_bool polkadot;

Each variable is a Boolean value. The resulting texture will be the AND of the variables .
That is, each variable that is set to TRUE will be placed as a texture in the graphic object.

txrcol is a structure of type dp__color. Its members define the color that is to be used in drawing the
texture, or foreground, of the rectangle’s interior.

shdcol is a structure of type dp__color. Its members define the color to be used when drawing the
background in the rectangle’s interior. This parameter is enabled only when the value of gray is
GRY_GRAY. Ifthe value of gray is any other value, shdcol is set to black{0, 0, 0}.

fixshape is a Boolean value that, when set to TRUE, indicates that the aspect ratio of the rectangle will
remain intact when the user grows or shrinks it. A value of FALSE indicates that the aspect ratio of the
rectangle will change freely.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-41

GRAPHICS IC LIBRARY

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi_adrecta ngle() will fail if one or more of the following are true:
Doc_ DocumentFull No more room in the document.
Doc_ ReadonlyDoc Document opened in ReadOnly mode.
Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.

Doc_ BadParm One of the arguments specified is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc__ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

gi__adcurve(), gi__adbacht()

3-42 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi__adtable

NAME

gi__adtable - add table

SYNOPSIS

#include "DoclCProps.h”
#include " GraphicsiC.h"

int
gi adtable(h, box, table, frprops, fixwidth, fixheight, wtcap, wbcap, wlcap, wrcap, ret)
Tgi handleh;
gi_ box *box; /* NULL */
di”_ins table; /* NULL */
gi frameprops *frprops; /* NULL */
dp bool fixwidth; /* FALSE */
dp bool fixheight; /* FALSE */
dp bool wtcap; /* FALSE */
dp bool wbcap; /* FALSE */
dp~ bool wicap; /* FALSE */
dp_ bool wrcap; /* FALSE */
ret_adtable *ret; /* Returned */
DESCRIPTION

The gi_adtable() function is used to add a table frame into a graphics container.

The h argument is the graphics container handle returned by an earlier call to gi__startgr(),
gi_startgframe(), gi__startbtn(), gi__startnbtn(), or gi__startcluster().

Refer to the description of box in gi__adffield() for more information on box. Refer to gi_ sta rtgframe() fora
description of the *frprops, and w*cap arguments.

The table argument is of the type di ins. It is an opaque variable that contains the table handle that was
returned by an earlier call to ti_finf;ﬁtable().

fixwidth and fixheight are Boolean values that indicate whether the width and/or height of a table frame
is to remain static.

The gi_adtable() function sets the return information into the structure ret_adtable, which contains the
following members:

di caption tcap;
di" caption bcap;
di" caption Icap;

di_caption rcap;

The *cap arguments are each of the type di caption, an opaque variable that contains a caption
handle for the top, bottom, left, and right edges of the table frame, respectively. These handles may
then be passed to various di_ap*() functions to append captions to the table.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-43

GRAPHICS IC LIBRARY

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi_adtable() will fail if one or more of the following are true:
Doc_ DocumentFull No more room in the document.
Doc_ ReadonlyDoc Document opened in ReadOnly mode.
Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.

Doc_ BadParm One of the arguments specified is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

ti_finishtable(), gi__adffield(), gi__startgframe()

3-44 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi__adtframe

NAME

gi_ adtframe - add text frame
SYNOPSIS

#include "DocICProps.h”
#include ”GraphicsiC.h"

int
gi adtframe(h, box, frprops, tfprops, wtext, wtcap, wbcap, wicap, wrcap, ret)
“gi handleh;
gi box *box; /* NULL */
gi frameprops *frprops; /* NULL */
gi tframeprops *tfprops; /* NULL */
dp bool wtext; /* FALSE */
dp bool wtcap; /* FALSE */
dp bool wbcap; /* FALSE */
dp bool wlcap; /* FALSE */
dp~ bool wrcap; /* FALSE */
ret_adtframe *ret; /* Returned */
DESCRIPTION

The gi__adtframe() function is used to add a text frame to a specified graphics container.

The h argument is the graphics container handle returned by an earlier call to gi startgr(),
gi__startgframe(), gi__startbtn(), gi__startnbtn(), gi__startcluster(), gi__adbacht(), gi_adlnchm, gi__adpicht().

Refer to the description of box in gi__adffield for more information on box. Refer to gi__startgframe() for a
description of the *frprops and w*cap arguments. Refer to gi__adffield() for a description of tfprops.

The wtext argument is a Boolean value that specifies whether or not the frame is to have text. If a value of
TRUE is specified, the text variable in the return value will be non-NULL. DocIC functions may then be used
to add the text. Note the text must eventually be freed by a call to di_reltext().

The gi_adtframe() function sets the return information into the structure ret_adtframe, which contains
the following members:

di texttext;

di caption tcap;
di" caption bcap;
di__caption lcap;

di__captionrcap;
Refer to gi__adffield() for a description of *cap.
RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-45

GRAPHICS IC LIBRARY

ERRORS

gi__adtfra me() will fail if one or more of the following are true:
Doc_DocumentFuII No more room in the document.
Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.

Doc__BadParm One of the arguments specified is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

gi__adffield(), gi__startgframe(), di__reltext()

3-46 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi__adtriangle

NAME

gi__adtriangle - add triangle

SYNOPSIS

#include " GraphicsiC.h”

int
gi__adtriangle(h, box, props)
gi__handle h;
gi__box *box; /* NULL */
gi__triangleprops *props; /* NULL */
DESCRIPTION

The gi__adtriangle() function is used to add a triangle of a specific size to a graphics container.

The h argument is the graphics container handle returned by an earlier call to gi__startgr(),
gi_ startgframe(), gi__startbtn(), gi__startnbtn(), or gi_startcluster().

The box argument is a pointer of the type gi__box. Its two members, place and dims. specify the origin of
the area in which the triangle will be placed and its size, relative to the graphics container. Refer to
gi__adcurve() for a description of gi__box.

The props argument is a pointer to gi_triangleprops, a structure whose members define the appearance
of the triangle. It contains the following members:

gi

brush brsh;

gi_shading shade;
gi__place p1;
gi__place p2;

gi

place p3;

dp_ bool fixshape;

brsh is a structure that defines the visual qualities of the lines used in tracing the border of the
triangle. It contains the following members:

unsigned wth;
gi__stlbrush stylebrush;
dp__color brushcolor;

wth is the width of lines, specified in units of micas. The standard brush widths may have one of
the following value:

GSL W1 /* 1 width for Graphics Single Line */
GSLW2 /* 2 width for Graphics Single Line */
GSLW3 /* 3 width for Graphics Single Line */
GSL W4 /* 4 width for Graphics Single Line */
GSL W5 /* 5 width for Graphics Single Line */
GSLW6 /* 6 width for Graphics Single Line */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-47

GRAPHICS IC LIBRARY

Each value corresponds to 35, 71, 106, 141, 176, and 212 micas, respectively. Non-standard
brush widths will result in an error.

stylebrush defines how the lines are drawn, such as solid or dashed. It may have one of the

following values:
STB INVISIBLE / * invisible */
STB~ SOLID / * solid */
STB~ DASHED / * dashed */
STB~ DOTTED / * dotted */
STB~ DOUBLE / * double */
STB:BROKEN / * broken */

The value of wth is affected by the stylebrush specified. For example, the wth of STB__ DOUBLE
borders is 3 times the usual width because it consists of two lines separated by a gap equal to the
width of the line.

brushcolor specifies the color to be used to display the lines that make up the edges of the graphic
object. The value of color may be any color that is a member of dp__color.

shade is a structure of type gi__shading. It is used to define the appearance of the triangle’s interior. Its
members are:

gi graygray;

gi_textures txrs;
dp color txrcol;
dp__color shdcol;

gray is of the type gi gray, an enumerated variable that specifies the percentage of black, or
saturation, to be used in making varying shades of the color gray. If stylebrush is set
STB INVISIBLE, then gray may not be set to GRY NONE, otherwise the triangle will become
invisible. Refer to gi__adbacht() for a chart illustrating the available shades.

txrs is a structure of type gi textures. It specifies the direction in which the texture is drawn in the
triangle or the type of texture that is to be placed in the triangle. For example, textures may be
placed in an triangle with a horizontal, vertical, or diagonal orientation. Also, a type of texture
that may be placed in the triangle is a polka dot pattern. gi__textures has the following members:

dp bool vertical;
dp bool horizontal;
dp bool nwse;

dp~ bool swne;
dp_bool polkadot;

Each variable is a Boolean value. The resulting texture will be the AND of the variables .
That is, each variable that is set to TRUE will be placed as a texture in the graphic object.

txreol is a structure of type dp__color. Its members define the color that is to be used in drawing the
texture, or foreground, of the triangle’s interior.

shdcol is a structure of type dp__color. Its members define the color to be used when drawing the
background in the triangle’s interior. This parameter is enabled only when the value of gray is
GRY_ BLACK. If the value of gray is any other value, shdcol is set to black {0, 0, 0}.

P1, p2, and p3 are of the type gi__place. As mentioned in the description of box, gi__place is a structure
that contains two integer members, x and y. When adding a triangle, these three members specify the

3-48 - DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

the x and y grid location for each of the three points of the triangle. p1, p2, and p3 are specified in
units of micas.

fixshape is a Boolean value that, when set to TRUE, indicates that the aspect ratio of a triangle will remain
intact when the user grows or shrinks it. A value of FALSE indicates that the aspect ratio of the triangle
will change freely.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.
ERRORS
gi__adtriangle() will fail if one or more of the following are true:
Doc__ DocumentFull No more room in the document.
Doc_ ReadonlyDoc Document opened in ReadOnly mode.
Doc__OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.

Doc_ BadParm One of the arguments specified is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

gi__adcurve(), gi__adbacht()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-49

GRAPHICS IC LIBRARY

gi__ap*btnprog

NAME
gi__apchartobtnprog, gi__apnparatobtnprog, gi__aptexttobtnprog - add to a CUSP button

SYNOPSIS

#include "DocICProps.h”
#include "GraphicsiC.h”
#include “XString.h”

int
gi__apchartobtnprog(to, char, foprops, num)
gi buttonprog to;

XChar char;
dp fontprops *foprops; /* NULL */
unsigned num; /1%

int

gi__apnparatobtnprog(to, paprops, foprops, num)

gi__buttonprog to;

dp paraprops *paprops; /* NULL */
dp fontprops *foprops; /* NULL */
unsigned num; 1*1*

int

gi aptexttobtnprog(to, text, foprops)

T gi buttonprog to;

XString text;
dp__fontprops *foprops; /* NULL */

DESCRIPTION

The following functions allow the user to add textual information to a CUSP button program.

gi__apchartobtnprog() is used to add a character to the button program.

gi__apnparatobtnprog() adds a new paragraph character with specified properties to the button program.

gi__aptexttobtnprog() adds a string with specified properties to button program.

For all three functions:

to is the button handle returned by an earlier call to gi__startbtn() or gi__startnbtn().

char and text are the respective character and text strings to be inserted in the button program.

Refer to dp__paraprops and dp__fontprops in dp__props for a description of foprops and paprops.

num is the number of copies of the character or new paragraph characters to be added.

3-50

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi__ap*btnprog() will fail if one or more of the following are true:
Doc__ DocumentFull No more room in the document.
Doc_ ReadonlyDoc Document opened in ReadOnly mode.
Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc_ OutOfvM Not enough virtual memory for the operation.

Doc_ BadParm One of the arguments specified is invalid.

Doc_ lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

gi_startbtn(), gi__startnbtn()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-51

GRAPHICS IC LIBRARY

gi__btnforaframe

NAME

gi_ btnforaframe - button info for anchored frame

SYNOPSIS

#include “"DocIC.h"
#include "GraphicsiC.h"
#include "“XString.h"”

int
gi btnforaframe(aframe, props, gridprops, ret)
“di insaframe;
XString *props;
gi gridprops *gridprops;
gi__buttonprog *ret; /* Returned */

DESCRIPTION

The gi btnforaframe() function is used to extract the properties of a button in an anchored CUSP button
frame during enumeration. The button handle that is returned, gi buttonprog, is a text object that points
to CUSP programming code. It may be passed as an argument to enumbtnprog() to enumerate the text
within the button.

The aframe argument is of the type di__ins, an enumerated variable that contains the handle of the frame
in question. It was obtained by an earlier call to one of the di__enumerate() call-back procedures
(di__aframeproc()).

The props argument is a pointer of the type XString. It is a return value in which the properties of a
button are returned.

The gridprops argument is a pointer of the type gi__gridprops. It is a return value in which the grid
properties of an anchored button are returned. '

The ret argument is a pointer of the type gi buttonprog, a handle to the button program object that
contains the text contents of the anchored CUSP button.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi_btnforaframe() will fail if one or more of the following are true:

Doc_ BadParm One of the arguments specified is invalid.

Doc_lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.
SEE ALSO

di__enumerate(), gi__enumbtnprog()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi__enumbtnprog

NAME

gi__enumgbtnprog - enumerate button program
SYNOPSIS

#include “GraphicsiC.h”

int

gi__enumbtnprog(prog, procs, cdat. ret)

gi__buttonprog prog;
gi btnenumprocs *procs;

void *cdat; /* NULL */
dp__bool *ret; /* Returned */
DESCRIPTION

The gi__enumbtnprog() function is used to enumerate the properties and text contents of a CUSP button.
prog is a variable of the type gi__buttonprog. Refer to gi__startnbtn() for a description of gi__buttonprog.

procs is a pointer of the type gi__btnenumprocs, a user-supplied structure containing the user’s call-back
procedures. gi__btnenumprocs contains the following members:

di newparaproc *newpara;
di__textproc *text;

newpara is a pointer of the type di__newparaproc, a call-back procedure that is called when a new
paragraph character is encountered in the text.

text is a pointer of the type di__textproc, a call-back procedure that is called whenever a substring of
text is encountered. The whole substring is passed as a parameter. Therefore, di__textproc may be
called repeatedly, once for each substring of text having the same properties.

cdat is passed to each call-back procedure during enumeration.

ret will be true if gi__enumbtnprog() encounters an object it does not recognize, or an object for which a
call-back procedure was not supplied.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.
ERRORS ,
gi__enumbtnprog() will fail if one or more of the following are true:
Doc_ BadParm One of the arguments specified is invalid.
Doc_lllegalHandle The specified handle is illegal.

Doc_ TimeOut Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-53

GRAPHICS IC LIBRARY

SEE ALSO

gi__btnforaframe(), gi__enumerate()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi__enumerate

gi__enumerate - reading graphics
SYNOPSIS

#include "DocIC.h”
#include “GraphicsiC.h”

int

gi enumerate(gcont, procs, cdat. ret)
di__insgcont;
gi enumprocs *procs;

void *cdat; /* NULL */
dp__bool *ret; /* Returned */

CALLBACK PROCEDURE

dp bool
gi ~ bachtproc(cdat, box, props, data, chart)
“void *cdat;
gi box *box;
gi bachtprops *props;
gi chtdat *data;
di_ins chart;
dp bool
gi _ bmproc(cdat, box, bmprops, frprops)
~void *cdat;
gi box *box;
gi_ _bmprops *bmprops;

gi__frameprops *frprops;

dp bool
gi ~ buttonproc(cdat, gcont, box, name, gridprops, frprops, prog)
~void *cdat;
di insgcont;
gi_ box *box;

X$tring name;

gi gridprops *gridprops;
gi_ frameprops *frprops;
gi__buttonprog prog;

dp__bool
gi__clusterproc(cdat, gcont, box)
void *cdat;

di__ins gcont;
gi__box *box;

dp__bool
gi__curveproc(cdat, box, props)
void *cdat;

gi__box *box;
gi__curveprops *props;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

dp bool
gi ~ellipseproc(cdat, box, props)
~void *cdat;
gi box *box;
gi__ellipseprops *props;

dp bool
gi ~tfieldproc(cdat, box, fiprops, frprops, tfprops, paprops, foprops, cont)
“void *cdat;
gi box *box;
dp fldprops *fiprops;
gi _frameprops *frprops;
gitframeprops *tfprops;
dp paraprops *paprops;
dp_ fontprops *foprops;
di "tield cont;

dp bool
gi ~frameproc(cd<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>