DATA1/0

ABEL" 3.1

January 1989

096-0037-002

January 1989 096-0037-002

This document cbnt,ains the latest information available at the time of
preparation. Therefore, it may contain descriptions of functions not implemented
at distribution time.

“ Data I/O Corporation provides this manual "as is," without warranty of any kind,
either expressed or implied. Data I/O reserves the right to make improvements
and/or changes in this document or in the product and/or program(s) described
herein at any time. Information on these changes will be incorporated in new
editions of this publication.

Data I/O Corporation

10525 Willows Road N.E.

Redmond, Washington 98073-9746 USA
206 881-6444

Data I/O and FutureNet are registered trademarks of Data I/O Corporation.
Data I/O acknowledges the trademarks of other organizations for their respective
products or services identified in this document.

Copyright 1987, 1988, 1989 Data I/O Corporation. All rights reserved.

Table of Contents

1. Introduction

1 More About ABEL Features

1.1 Design Checking

1.2 Logic Reduction

1.3 Simulation

1.4 Functional Device Testing

1.5 Standard JEDEC Format Programmer Load File
2 System Requirements

.3 Contents of the ABEL Package
.4 Documentation

4.1 The ABEL Manual

4.2 System Specific Information
.4.3 Logic Diagrams

.5 Design Example Files

.6 Notation Conventions

1.7 Software Update Service

1.8 Field Customer Support

1.9 License Agreement and Warranty
1.9.1 License

1.9.2 Term

1.9.3 Limited Warranty

1.9.4 Limitation of Remedies

1.9.5 General

1.10 Ordering

1.
1.
1.
1.
1.
1.
1.
1
1
1
1
1
1
1

2. Installation

L I I e e e e e
1
—_ =00 I IO OO

|
(e

|
o

—
11
—
— ot

1-11
1-12
1-14
1-14
1-15
1-15
1-16
1-16
1-17
1-17
1-19

iii

Table of Contents

3. ABEL Source Files

3.1 Elements of the ABEL Source File

3.2 Examining an Example ABEL Source File
3.2.1 Purpose of the Address Decoder

3.2.2 The MODULE Statement

3.2.3 The FLAG Statement

3.2.4 The TITLE Statement

3.2.5 The DEVICE Declaration

3.2.6 PIN and NODE Declarations

3.2.7 CONSTANT Declarations

3.2.8 EQUATIONS Statements

3.2.9 Test Vectors

3.3 Processing an ABEL Source File

3.3.1 Entering the Command Line

3.3.2 New Files Created

3.4 Downloading the Programmer Load File

4. The ABEL Language Processor

1 ABEL Batch Processing
1.1 ABEL Libraries

4.
4.
4.1.2 Generated Output Files

4.1.3 Creating Your Own Batch or Command Files

4.2 PARSE

4.2.1 PARSE Listing File

4.3 TRANSFOR

4.4 REDUCE

4.4.1 Level 0 Reduction

4.4.2 Level 1 Reduction

4.4.3 Level 2 Reduction

4.44 Level 3 Reduction

4.4.5 Level 4 Reduction

4.5 FUSEMAP

4.6 SIMULATE

4.6.1 Input Files

4.6.2 SIMULATE Program Operation

4.6.3 Devices with Clock Inputs

4.6.4 SIMULATE Output File, Trace Level 0
4.6.5 SIMULATE Output File, Trace Level 1

iv

1

|
h—ai—tu—-»—nh—b—-\o\ooooooo\]\,o\[\)

1
TN ADNDNO—=O

WWWWLWWLWWLWWLWWLWWWWWWWW
1

Ahbhh&h&h?h&hk&hh&&&
i
\OOOO\A&\IN'—OO\D\OOOO\L»

Table of Contents

4.6.6 SIMULATE Output File, Trace Level 2

4.6.7 SIMULATE Output File, Trace Level 3

4.6.8 SIMULATE Output File, Trace Level 4

4.6.9 SIMULATE Output File, Trace Level 5

4.6.10 SIMULATE Output File, Two Trace Levels

4.6.11 Simulation and Designs With Buffered Outputs

4.6.12 Simulation and Unspecified Inputs

4.6.13 Simulation for Designs With Feedback

4.6.14 EZSIM - A Batch File for Re-simulation of
a Design

4.7 DOCUMENT

LNnunhunanhb bbb
WNN=OJIWN

[o N}
—_ O

oA

5. Transferring the Programmer Load File

5.1 Downloading to a Model 29 with LogicPak 5-2
5.2 Downloading to a Unisite Programmer 5-5
5.3 PROM Download (Model 29/UniPak2) 5-5

6. ABEL Utilities

TOABEL, PALASM to ABEL Converter 6-1
IFLDOC 6-2
ABELLIB, Library Manager 6-4
Library File Usage 6-5
JEDABEL, JEDEC File to Equations 6-6

9o o o
N AWK =

7. Language Elements

7.1 Basic Syntax

7.2 Valid ASCII Characters
7.3 Identifiers

7.3.1 Reserved Identifiers
7.3.2 Choosing Identifiers
7.4 Strings

7.5 Comments

7.6 Numbers

e S B N N]
I
0 IO\ AW -

Table of Contents

7.7 Special Constants

7.8 Operators, Expressions, and Equations
7.8.1 Logical Operators

7.8.2 Arithmetic Operators

7.8.3 Relational Operators

7.8.4 Assignment Operators

7.8.5 Expressions

7.8.6 Equations

7.9 Sets

7.9.1 Set Operations

7.9.2 Set Assignment and Comparison
7.9.3 Set Evaluation

7.9.4 Limitations/Restrictions on Sets

7.10 Blocks

7.11 Arguments and Argument Substitution

8. Language Structure

8.1 Basic Structure

8.2 MODULE Statement and Structure
8.3 FLAG Statement

8.4 TITLE Statement

8.5 Declarations

8.5.1 Device Declaration Statement
8.5.2 Pin Declaration Statement

8.5.3 Node Declaration Statement

8.5.4 Constant Declaration Statement

8.5.5 Macro Declaration Statement and Macro Expansion

8.5.6 ISTYPE Statement

8.5.7 LIBRARY Statement

8.6 Equations Statement

8.7 Truth Table Statement

8.7.1 Truth Table Header Syntax
8.7.2 Truth Table Format

8.7.3 Programmable Polarity Registers
8.8 State Diagrams

8.8.1 STATE_DIAGRAM Statement
8.8.2 IF-THEN-ELSE Statement

8.8.3 Chained IF-THEN-ELSE Statements

vi

7-11
7-12
7-13
7-14
7-15
7-17
7-17
7-20
7-23
7-24
7-26
7-28
7-30
7-32
7-33

I
W W W W RDNDN DN DN = = = e \O 00~ O\ W

OO0 00 00 ©0 OO0 00 OO0 OO0 O0 OO 0O OO0 OO0 OO 00 OO0 OO OO OO 00 0
[}
NA=—=OVEAANUNA”ONNBRDNO

Table of Contents

8.8.4 CASE Statement 8-36
8.8.5 GOTO Statement 8-38
8.8.6 WITH-ENDWITH Statement 8-39
8.9 Fuses Section 8-40
8.10 Test Vectors 8-42

9. Directives

9.1 @ALTERNATE Directive 9-2
9.2 @CONST (Constant) Directive 9-3
9.3 @EXIT Directive 9-4
9.4 @EXPR (Expression) Directive 9-4
9.5 @IF Directive 9-5
9.6 @IFB (If Blank) Directive 9-6
9.7 @IFDEF (If Defined) Directive 9-7
9.8 @IFIDEN (If Identical) Directive 9-8
9.9 @IFNB (If Not Blank) Directive 9-9
9.10 @IFNDEF (If Not Defined) Directive 9-10
9.11 @IFNIDEN (If Not Identical) Directive 9-11
9.12 @INCLUDE Directive 9-12
9.13 @IRP (Indefinite Repeat) Directive 9-13
9.14 @IRPC (Indefinite Repeat, Character) Directive 9-15
9.15 @MESSAGE Directive 9-16
9.16 @PAGE Directive 9-16
9.17 @RADIX Directive 9-17
9.18 @REPEAT Directive 9-18
9.19 @STANDARD Directive 9-19
10. Design Examples

10.1 6809 Memory Address Decoder 10-5
10.1.1 Design Specification 10-5
10.1.2 Design Method 10-6
10.1.3 Test Vectors 10-8
10.2 12 to 4 Multiplexer 10-9.
10.2.1 Design Specification 10-9

10.2.2 Design Method 10-10

vii

Table of Contents

10.2.3 Test Vectors

10.3 1 to 8 Demultiplexer

10.3.1 Design Specification

10.3.2 Design Method

10.3.3 Test Vectors

10.4 4-Bit Counter/Multiplexer

10.4.1 Design Specification

10.4.2 Design Method

10.4.3 Test Vectors

10.4.4 Multiple Assignments to the Same Signal
10.5 Three-State Sequencer

10.5.1 Design Specification

10.5.2 Design Method

10.5.3 Test Vectors

10.6 8-Bit Barrel Shifter

10.6.1 Design Specification

10.6.1 Design Method

10.6.3 Test Vectors

10.7 7-Segment Display Decoder

10.7.1 Design Specification

10.7.2 Design Method

10.7.3 Test Vectors

10.8 4-Bit Comparator

10.8.1 Design Specification

10.8.2 Design Method

10.8.3 Test Vectors

10.9 Bi-Directional Three-State Buffer
10.9.1 Design Specification

10.9.2 Design Method

10.10 Blackjack Machine

10.10.1 Design Specification - MUXXADD
10.10.2 Design Method - MUXADD
10.10.3 Test Vectors - MUXADD
10.10.4 Design Specification - BINBCD
10.10.5 Design Method - BINBCD
10.10.6 Test Vectors - BINBCD

10.10.7 Design Specification - BJACK
10.10.8 Design Method - BJACK
10.10.9 Test Vectors - BIACK

viii

10-11
10-13
10-13
10-14
10-15
10-17
10-17
10-19
10-21
10-24
10-27
10-27
10-27
10-29
10-31
10-31
10-32
10-34
10-36
10-36
10-36
10-39
10-40
10-41
10-42
10-45
10-46
10-46
10-47
10-49
10-52
10-53
10-54
10-56
10-56
10-57
10-61
10-61
10-64

Table of Contents

11. Design Considerations

11.1 Using State Machines 11-2
11.1.1 Use Identifiers Rather Than Numbers for States 11-3
11.1.2 "Power On" Register States 11-5

11.1.3 Designing With Programmable Polarity Outputs 11-5
11.1.4 Unsatisfied Transition Conditions,

D-TypeFlip-Flops 11-5
11.1.5 Unsatisfied Transition Conditions,

Other Flip-Flops 11-6
11.1.6 Number Adjacent States for One-Bit Changes 11-7
11.1.7 Use State Register Outputs To Identify States 11-9
11.2 Solving Timing Problems with REDUCE 11-10
11.3 Passing Arguments from the Command Line 11-13
11.4 Effect of Equation Polarity on Reduction Speed 11-17

12. Simulation

12.1 Test Vectors and Simulation 12-2
12.2 Trace Levels and Breakpoints 12-3
12.3 Debugging State Machines 12-5
12.4 Multiple Test Vector Tables 12-6
12.5 Using Macros and Directives to Create Test Vectors 12-8
12.6 Don’t Cares in Simulation 12-14
12.7 Preset and Preload Registers 12-17
12.7.1 Special Preset Considerations 12-18
12.7.2 TTL Preload 12-21
12.7.3 Supervoltage Preload 12-23
12.7.4 Preset/Reset Controlled by Product Term 12-28
12.7.5 Preset/Reset Controlled by Pin 12-30
12.7.6 Power-Up States 12-30
12.8 Asychronous Circuits 12-31

ix

Table of Contents

13. Using Features of Advanced Devices

13.1 Output Enables 13-1

13.1.1 Pin Controlled Output Enable 13-1

13.1.2 Term Controlled Output Enable 13-2

13.1.3 Configurable Output Enable 13-4

13.2 Output Macro Cell Control with ISTYPE 13-6

13.2.1 Controlling Macro Cell Polarity 13-6

13.2.2 Controlling Macro Cell Feedback Point 13-8

13.2.3 Selecting or Bypassing Device Registers 13-11
13.2.4 Controlling Register Type 13-12
13.3 Controlling Device Nodes 13-13
13.3.1 Using Node Numbers 13-13
13.3.2 Using Dot Extension Notation 13-15
13.4 More On Feedback 13-17
13.4.1 Selectable Feedback Type 13-17
13.4.2 Multiple Feedback Paths 13-19
13.4.3 The .Q Dot Extension 13-21
13.5 Using Select Multiplexers 13-23
13.6 Using Selectable Register Types 13-25
13.7 4-Bit Shifter/Counter Design 13-26
13.7.1 The F159 Logic Diagram 13-26
13.7.2 Examination of the Source File 13-28
13.7.3 Combining Equations 13-31
13.7.4 Specifying the Flip-Flop Inputs 13-31
13.7.5 Test Vectors 13-33
13.8 Using Complement Arrays 13-37
13.9 Equations for XOR PALs 13-42
13.10 JK Flip-Flop Emulations 13-42

Appendix A. Error Messages

A.1 General Error Messages
A.l1.1 Command Line Errors
A.1.2 Fatal Errors

A.1.3 Intermediate File Errors
4 Logical Errors

.5 Preprocessor Errors

6

7

Syntax Errors
Device File/Internal Errors

1
—_—

> > > >)

Table of Contents

A.2 Non-Fatal Simulation Errors
A.3 TOABEL Error Messages
A.4 TFLDOC Errors

A.4.1 Command Line Errors
A.4.2 Diagnostic Errors

A.4.3 JEDEC Input File Errors
A.5 IFLDOC Warning Messages
A.6 ABELLIB Error Messages
A.7 JEDABEL Error Messages

>>>>::>>>;:>;:>
WWNNNNNDN
DRVEARNN N RN

Appendix B. JEDEC Standard Number 3A

B.1 Introduction

B.2 Summary of Programming and Testing Fields

B.3 Special Notations and Definitions
B.3.1 Notation Conventions

B.3.2 BNF Rules and Definitions

B.4 Transitional Protocol

B.4.1 Protocol Syntax

B.4.2 Computing the Checksum

B.4.3 Disabling the Transition Checksum
B.5 Data Fields

B.5.1 General Field Syntax

B.5.2 Field Identifiers

B.6 Comment and Defintion Fields
B.6.1 Design Specification Field

B.6.2 Note Field (N)

B.6.3 Device Definition Field (D) (Obsolete)
B.6.4 Value Field (QF,QP,QV)

B.7 Device Programming Fields

B.7.1 Syntax and Overview

B.7.2 Fuse Default States

B.7.3 Fuse List Field

B.7.4 Fuse Checksum Field

B.8 Device Testing Fields

B.8.1 Syntax and Overview

B.8.2 Default Test Condition Field (X)
B.8.3 Test Vectors

] I I 1 1 1
—— OV VO I ITWND DB W

wwwwwwguwwwwwww

xi

Table of Contents

B.8.4 Pin Sequence

B.8.5 Test Conditions

B.8.6 Register Preload

B.9 Programmer/Tester Options
B.9.1 Security Fuse (G)

B.9.2 Signature Analysis Test (S,R,T)
B.9.3 Access Time (A)

B.10 Data File Example

Appendlx C. Programmable Logic Device
Information

C.1 ABEL Support for Specific Devices
C.1.1 PROM Support

C.1.2 Devices Supported by TOABEL
C.1.3 Devices Supported by IFLDOC
C.2 Specific Device Information
C.2.1 Altera and Intel EPLDs

C.2.2 AMD

C.2.3 Exel 78C800

C.2.4 Lattices GALs

C.2.5 MMI P20RA10 and P16RAS
C.2.6 MMI P32VX10 and P22RX38
C.2.7 MMI P16X4/P16A4

C.2.8 Ricoh and VTI EPALs

C.2.9 Signetics

C.2.10 F405C and F405D

C.3 Device Nodes

Appendix D. Syntax Diagrams
D.1 How to Read Syntax Diagrams

D.2 ABEL Syntax Diagrams

Appendix E. ASCII Table

Xii

wwwwtpwww
DR N

Ny N W) e

o¥e¥o¥oRoXoReKoXe
hEALLLLL L

o¥oXo¥oKeReke
\O\O\II\)O\O\O\M

(vhw}
G -

Table of Contents

List

U\-h-h-h-lh-hwwi—
— B WN =N e

10-8.

10-9.

10-10
10-11
10-12
10-13

10-14
10-15
10-16
10-17

of Figures

Logic Design Steps with ABEL
Source File Template
Block Diagram; 6809 Memory Address Decoder
Processing Flow of the Language Processor
SIMULATE Processing Flow Diagram
Trace Level 3 Simulation Output
Synchronous Feedback Circuit
Asynchronous Feedback Circuit
Cable Configuration for Transfer Between an
IBM-XT and a Data I/O Programmer
Cable Configuration for Transfer Between an
IBM-AT and a Data I/O Programmer
Sample Output File From IFLDOC
Structure of an ABEL Source File
Feedback Paths for an E0310
Pictorial State Diagram
Block Diagram: 6809 Memory Address Decoder
Simplified Block Diagram: 6809 Memory Address
Decoder
Block Diagram: 12 to 4 Multiplexer
Simplified Block Diagram: 12 to 4 Multiplexer
Block Diagram: 1 to 8 Demultiplexer
Simplified Block Diagram: Demultiplexer
Block Diagram: 4-Bit Counter With 2 Input
Multiplexer
Simplified Block Diagram: 4 -Bit Counter With
2 Input Multiplexer
State Machine Bubble Diagram
. Block Diagram: 8-Bit Barrel Shifter
. Simplified Block Diagram: 8-Bit Barrel Shifter
. Block Diagram: 7-Segment Display Decoder
. Simplified Block Diagram: 7-Segment Display
Decoder
. Block Diagram: 4-Bit Comparator
. Simplified Block Diagram: 4-bit Comparator
. Block Diagram: Bidirectional Tri-State Buffer
. Simplified Block Diagram: Tri-State Buffer

|
N bH WO W

&Ah?aww»—

10-17

10-19
10-28
10-31
10-32
10-37

10-37
10-40
10-41
10-46
10-47

xiii

Table

of Contents

10-18
10-19
11-1.
11-2.
11-3.
12-1.
12-2.
12-3.
13-1.
13-2.
13-3.
13-4.
13-5.

13-6.
13-7.
13-8.
13-9.
13-10
13-11
13-12
13-13
13-14
13-15
13-16

Xiv

. Schematic: Blackjack Machine

. Pictorial State Diagram: Blackjack Machine
D-Type Register with False Inputs
Circuit Using an Input and Its Complement
Timing Diagram for F=B & IC# !A & C
Timing Diagram Showing Test Vector Action
Internal Register of the F159
A Cross-Coupled Flip-Flop
Output Enable Controlled by Device Pin
Output Enable Controlled by Product Term
Typical Multiplexer for Output Enable Modes
Controlling Macro Cells with ISTYPE
Macro Cell, Configurable to Combinatorial
or Registered Output
Registered and Combinatorial Feedback (P16R4)
Selectable Feedback Paths (E0310)
Configurable Macro Cell (32VX10)
Location of the Q Signal in Registered Devices

. Output Macro-Cell for the E1800

. Logic Diagram of the F159 FPLS (partial)

. Flip-Flop Input Notation Examples

. Abbreviated F105 Schematic

. JK Flip-Flop Emulation Using T Flip-Flop

. T Flip-Flop Emulation Using D Flip-Flop

. JK Flip-Flop Emulation, D Flip-Flop with XOR

10-50
10-63
11-6
11-10
11-12
12-20
12-21
12-32
13-2
13-3
13-5
13-7

13-11
13-17
13-18
13-19
13-21
13-24
13-27
13-33
13-41
13-42
13-43
13-43

Table of Contents

List of Tables

Files Supplied with ABEL

Notation Conventions

Data Translation Format Codes and File Extensions
Notation Used in Simulation Output Files

Number Representation in Different Bases

Special Constant Values

Logical Operators

Arithmetic Operators

Relational Operators

Assignment Operators

Summary of Operators and Priorities

Valid Set Operations

Directives

Alternate Operator Set
. Design Examples Supplied with ABEL

. Address Ranges for the 6809 Controller
. Counter Modes
. Devices Used in the Blackjack Machine 10-52
. States of the Blackjack State Machine 10-62

1
1
AN

[| 1
1 1 1 [}
N Pt DD et bt et bt e = \O BN = O
N oo J VB W

1
NP RNONBAE W= -
SOPVF NN NN A

'-‘—"—"—'*—\O\O\I\l\l'\l\l\l\l\]-b-hi—'—‘
et
TTT
—_ N N
(=]

OO?OO
VAW -

XV

Table of Contents

Listings

3-1 Source File Describing an Address Decoder
3-2 Messages Displayed During Processing

4-1 PARSE Listing File with Errors from

M6809ERR.ABL

Corrected Source File, M6809A .ABL
Clock Inputs, Trace Level 2 Output
Trace Level 0 Output for M6809A.ABL
Test Vectors Used to Create Simulation Error
Level 1 Simulation Output, All Vectors
Level 1 Simulation Output, Single Vector
Level 2 Simulation Output, Single Vector
Trace Level 4 Simulation Output

0. Trace Level 4 Simulation Output

1. Trace Level 5 Simulation Output

2. Trace Levels 4 and 5 in the Same Output
3

4

1
LoD SeRNoUALD

Source File: Synchronous Feedback Circuit

Simulation Output, Trace Level 1:

Synchronous Feedback Circuit

4-15. Simulation Output (partial), Trace Level 2
Synchronous Feedback Circuit

4-16. Source File: Async. Feedback Circuit

4-17. Simulation Output, Trace Level 1: Asynchronous
Feedback Circuit

4-18. Simulation Output, Trace Level 2: Asynchronous
Feedback Circuit

4-19. Documentation Output for M6809A.ABL

6-1. "Source" File Generated by JEDABEL

10-1. Source File: Memory Address Decoder

10-2. Source File: 12 to 4 Multiplexer

10-3. 1 to 8 Demultiplexer

10-4. Source file: 4-bit Counter with 2 Input

10-5. Multiple Equations Sections, 4-Bit Counter

. Source File: Three-State Sequencer

Source File: 8-Bit Barrel Shifter

A-&A-&A&?&-&Abbh

Source File: 4-Bit Comparator
Source File: Tri-State Bi-Directional
. Source File: Multiplexer/Adder/Comparator

—O

XVvi

I
[,
w

AbHbDBAD
[

[|
N DB DDA RWWUW -
&AA'—OOO\]N'—O\OW\!‘J\A

-h-h&-?-h-h-hh

4-58

4-59
4-64
6-7
10-7
10-11
10-15
10-22
10-25
10-30
10-35
10-38
10-44
10-48
10-55

Table of Contents

10-12.
10-13.
11-1.
11-2.

12-3.
12-4.
12-5.
12-6.
12-17.

12-8.
12-9.

12-10.
12-11.
12-12.
12-13.
12-14.

13-1.
13-2.
13-3.
13-4.
13-5.
13-6.
13-7.

Source File: Binary to BCD Converter
Source File: State Machine (Controller)
Source File: State Machine

10-59
10-65
11-4

Device Type Passed From Command Line, Memory

Address Decoder

Source File With Multiple Test Vectors Sections
Test Vectors Described With a Macro and @IF
and @IRP Directives

PARSE Output Showing Expanded Output for a
Macro and @IF and @IRP Directives

Test Vectors Described With a Macro, @CONST
and @REPEAT Directives

PARSE Output with Expanded Output for a Macro

and @CONST, @REPEAT Directives
Assignment of Don’t Care Value (.x.) to Design
Outputs

SIMULATE Results with Outputs Specified as
Don’t Care

Test Vectors for Special Preset Conditions
Invoking the TTL Preload Function

The Illegal States Defined

Test Vectors for Illegal States

Using Test Vectors to Preload A State Machine
Controlling Reset/Preset by Product Term
Using the Input Side of the Test Vector
Controlling Macro Cells with ISTYPE

Using Node Numbers for Reset/Preset Functions
Using Dot Extensions for Reset/Preset Functions
Output Configurations for a P32VX10

A Shifter/Counter in an F159

SIMULATE Output for the Shifter/Counter
Transition Equations for a Decade Counter

11-16
12-7

12-9

12-11
12-12
12-13
12-15

12-16
12-19
12-22
12-25
12-25
12-28
12-29
12-32
13-9

13-14
13-16
13-20
13-29
13-35
13-39

xvii

Table of Contents

Xviii

Preface

Data 1/0O Device Support Policy/Liability

1.

Data I/O strives to achieve more device support
verification from semiconductor manufacturers than
any other software developer.

Every effort is made to program an adequate number
of samples according to the manufacturer-supplied
specification. We verify the device with test vectors
which we apply when programming the device.

The objective of Data I/O is to seek and obtain
verification on all devices.

Data I/O has made every attempt to ensure that the
device information (as provided by the device
manufacturer) contained in our software and
documentation is accurate and complete. However,
Data I/O assumes no liability for errors, or for any
damages, whether direct, indirect, consequential or
incidental, that result from use of documents provided
with the software, regardless of whether or not Data
I/O has been advised of the possibility of such loss or
damage.

Xxix

Preface

Technical Questions?

If you have technical questions, contact the Customer
Resource Center at the following telephone numbers:

USA
Outside Washington state 800-247-5700
Inside Washington state 206-867-6899
FAX Numbers 206-881-2215
206-882-1043
International
Data I/O Japan (03) 432-6991
Data I/O Europe +31 (0)20 6622866
Data I/O Canada 416-678-0761
Data I/O Intercontinental 206-881-6444
Bulletin Board Number 206-882-3211
(for new information on (1200/2400 baud, 8 bits,
Data I/0O products) no parity, 1 stop bit)

You may also contact the Customer Resource Center by
sending your written inquiries to:

Data I/O Corporation
Customer Resource Center

10525 Willows Road N.E.
Redmond, WA 98073-9746 USA

Sales/Service Questions?
For questions regarding sales and update service
agreements, refer to the list of telephone numbers on the
facing page.

Telephone numbers are subject to change without notice.

XX

Preface

U.S. Sales Offices

1-800-247-5700
Dept. 1000

Data |/O Corporation
10525 Willows Road N.E.
P.0.Box 97046

Beéjrxond, WA 98073-9746

International Sales Offices
and Representatives

INTERNATIONAL SALES OFFICES

EUROPE +31(0)20-622866
CANADA. (416) 678-0761
JAPAN. (03) 432-6991
INTERNATIONAL
REPRESENTATIVES

ARGENTINA

Reycom Electronica.01 701-4462
AUSTRALIA (Anltech)

Adelaide . . 08 356-7333
Brisbane ... 07275-1766
Melbourn ..03795-9011
Sydney . 02648-1711
Perth 09 277-7000
AUSTRIA

Ing. Ernst Steiner . 0222827474
BELGIUM

Simac Electronics. 022192451
BRAZIL (Slstromcs)

SaoPaulo. 011247-5588

Rio de Janeiro. . 021284-1248
CHINA (Dorado Company)

Beijing. 507
Hong Kong 770-2021
USA........... .. (206) 583-0000
DENMARK

ITT Multikomponent. 02 456645

FINLAND
Instrumentarium

Elektroniikka . 905284312
FRANCE
M.B. Electronique. 139568131

GERMANY, FEDERAL REPUBLIC OF
Instrumatic Electronic

Systems GmbH. 089 85802-0
GREECE

Eltronics Ltd.. 017249511
HONG KONG

Eurotherm (Far East) Ltd.. . . 5-546391
INDIA (Transmarketmg Prlvate Ltd)

Bombay........ 938585
Bangalore. OS 1 2 564389
ISRAEL

TelsysLtd. 03494891
ITALY (Sistrel)

Milan. 026181893
Rome. . 06 5040273
KOREA

Elcom Systems|Inc. 02 555-5222
MEXICO

Christensen. 905 595-7594
NETHERLANDS

Simac Electronics. . 040582911
NEW ZEALAND

Warburton Franki. . . . 0444-2645

NORWAY

Teleinstrument. . . . 02789460
PORTUGAL

Decada.014103420
SINGAPORE/MALAYSIA

GEA Technology. 2729412
SOUTH AFRICA

Electronic Building

Elements. 012 46-9221
SPAIN

Unitronics. . . . 01242-5204
SWEDEN

Teleinstrument. 08 380370

_?W:TZEHLAND (Instrumatlc)

........ 7231410
Geneva............... 022 360830
TAIWAN
Sertek International. 02 5010055
THAILAND
Dynamic Supply
Engineering. 023925313
UNITED KINGDOM
Microsystem Services. . . .0494 41661

XX1i

Preface

xxXii

1.

Introduction

ABEL™ is a complete logic design tool that lets you easily
describe and implement programmable logic designs in
PLDs, and PROMs. ABEL consists of a special-purpose,
high-level language that is used to describe logic designs,
and a language processor that converts logic descriptions to
programmer load files. Programmer load files contain the
information necessary to program and test programmable
logic devices. ABEL may be used with other Data I/O-
FutureNet design development tools such as:

PLDtestTM; an automatic test vector generator that
allows 100% testing of programmed logic parts

PLD-CADATT"; a program that allows integration of
PLDs into a CADAT logic simulation. CADAT can
then simulate the PLD as if it were a standard off-the-
shelf part.

PLD-Linx™; a schematic diagram interface that
converts schematic designs to ABEL source files

PROMIink™; a program that permits control of and

communication with Data I/OTM programmers by means
of a personal computer.

1-1

User’s Guide

1-2

Features of the ABEL design language are:

Universal syntax for all programmable logic types
High-level, structured design language
Flexible forms for describing logic:

Boolean Equations

Truth Tables

State Diagrams

Test Vectors for simulation and testing

Time-Saving Macros and Directives

The ABEL language processor also has many powerful

features:

m Syntax Checking

m Verification that a design can be implemented with a
chosen part

m Logic Reduction

m Design Simulation

m Automatic design documentation

m Creation of programmer load files in JEDEC and

PROM format

Introduction

Together, the ABEL design language and language
processor make it easy to design and test logic functions
that are to be implemented with programmable logic
devices. For example, you can design a three-input AND
function with the inputs A, B, and C and the output Y
using a truth table like this:

truth_table "3-input AND gate"
(LA, B, C1->Y)

[0,.X.,.X.1] ->0;
[.X., 0,.X.] ->0;
[.X.,.X., 01 ->0;
L1, 1,1 ->1;

The ".X."s in the table indicate "don’t care" conditions, and
the output Y is set to 1 only when all three inputs equal 1.
You also could have specified the output Y in terms of
simple Boolean operators and have achieved the same result.
This is done here, where "&" is the logical AND operator:

Y=A&B&C;

ABEL lets you choose the type of description that is best
suited to the logic being described, or the type of
description you feel most comfortable with. And, in most
cases, the same description can be used for many different
devices simply by changing the device specification. ABEL
enters the design process in a way that reduces errors and
saves time. You can think about designs in a logical,
functional way, describe them in that fashion, and then test
your design to see that it operates as expected, all without
worrying about which fuses should be blown or left intact.

1-3

User’s Guide

1-4

Figure 1-1 shows the logic design process and the role
ABEL takes in it. Beginning with the design concept, the
designer creates the ABEL source file required by the
language processor in order for it to generate the
programmer load file. The source file is written by you and
contains a complete description of your logic design. You
can create the source file manually be means of a text
editor (or word processor) that generates ASCII files, or you
can use PLD-Linx to convert a DASH-generated schematic
of the design to an ABEL source file.

The source file is presented to the ABEL language processor
which performs several functions to produce a programmer
load file (in JEDEC format) and design documentation.

The first ABEL function, PARSE, checks the syntax of the
source file and flags any errors. TRANSFORM converts
the logic description to an intermediate form. REDUCE
performs logic reduction, and FUSEMAP creates the
programmer load file. The programmer load file can then
be downloaded to the logic programmer to program parts,
or can be first transmitted to PLDtest, an automatic test
vector generator. The SIMULATE function tests the design
of the part against your test vectors contained in the source
file and reports any functional failure of the design. The
DOCUMENT function generates a listing of the source file,
a drawing of the logic device pin assignments, and a listing
of the programmer load file.

Introduction

DESIGN CONCEPT

Y

A

TEXT EDITOR

DASH
SCHEMATIC
CAPTURE

DASH-ABEL

Y Y

ABEL
SOURCE FILE

}b S ARSE

TRANSFORM

. REDUCE i

JEDEC
< FUSEMAP
FILE 5 e SIMULA-
} G S & 5 TION —
| SIMULATE —+—> RESULTS
PLDTEST =
TOR DOCUMENT > DESIGN
GENERA- DOCUMEN-
TION TATION
y LoGIC L

PROGRAMMER

Figure 1-1. Logic Design Steps with ABEL

1-5

User’s Guide

1.1 More About ABEL Features

1.1.1 Design Checking

The language processor checks your logic design for correct
language syntax and explicitly tells you where an error
occurs and what the error is. The language processor also
checks your design to see if it can be implemented on the
chosen device. For example, if a device input pin is used as
an output in an equation, the language processor detects and
reports the error.

1.1.2 Logic Reduction

The language processor reduces your logic design to a near
minimal form, so that you do not have to perform the
tedious task of logic reduction by traditional methods such
as Karnaugh maps. You may choose different levels of
reduction based on the design and the device.

1.1.3 Simulation

Simulation of a design is performed after a logic design has
been reduced and converted to a programmer load file. The
simulation facility uses device characteristics, a fuse map,
and test vectors to simulate the actual operation of the
device. The fuse map and test vectors used for simulation
are the same as those that will be used to program and test
the real device.

1.1.4 Functional Device Testing

1-6

If test vectors are specified in a source file, the programmer
load file created by the language processor contains these
vectors in a form that can be used to test a programmed
device with a logic programmer.

Introduction

1.1.5 Standard JEDEC Format Programmer Load File

The standard programmer load file created by the language
processor conforms with the JEDEC standard No. 3A for
data transfer to logic programmers. JEDEC format files are
used to transfer designs to the logic programmer. Other
formats for PROM programmers are supported.

1.2 System Requirements

ABEL presently runs on the following computers and
operating systems. Versions for additional systems are
under development.

IBM®/AT/XT4P52®and MS—DOS®compatibles
vAX™/vMS'

VAX™/Unix™

Sun™

Daisy ™

Apollo/Mentor GraphicsTM
Apple®MacIntosh®II or IIx

The configuration information and installation instructions
for ABEL differ for each type of system. To install ABEL
in your particular system, refer to the System Specific
Information supplied with your ABEL package. In addition
to ABEL, you will need an editor or word processor with
which to create ABEL source files. This may be any editor
of your choice as long as it produces a standard ASCII file.

1-7

User’s Guide

For downloading programmer load files to a logic
programmer, you will need:

An RS232 port and a cable to connect to the
programmer.

Cable and programmer configuration are discussed in
Section 5 of this User’s Guide.

1.3 Contents of the ABEL Package

1-8

The ABEL software package consists of the following:

Floppy disks or magnetic tape
A manual consisting of:
User’s Guide
Language Reference
Applications Guide

Logic Diagrams

System Specific Information.

If any of the above items is missing, please contact your
FutureNet representative. Table 1-1 lists the files residing
on the disks or magnetic tape that are common to all
versions of ABEL. Additional files that accompany your
particular version are listed in the System Specific
Information.

Introduction

Table 1-1. Files Supplied with ABEL

File Name Description

ABEL Batch file for a complete ABEL run

PARSE Language parser

TRANSFOR Equation transformation program

REDUCE Equation reduction program

FUSEMAP Programmer load file generator

DOCUMENT Documentation generator

IFLDOC Program that converts JEDEC-format
files to FPLA program tables for
documentation purposes

TOABEL PALASM to ABEL Converter

SIMULATE Simulation facility

ESPRESSO Equation reduction program used by
REDUCE

ABELLIB Device library librarian

ABEL3LIB.DEV Device file library

* ABL Logic design examples

EXAMPLES.TXT Describes the logic design examples
included on the disk

JEDABEL JEDEC file to ABEL translator

ABEL3LIB.INC Library of include macros

DEVICES. TXT Data base of ABEL supported devices

FINDDEV Searches the device data base for a
specified device

EZSIM Quick simulator program

CLEANUP Removes files created by ABEL

PSF Menu system to run ABEL

1-9

User’s Guide

1.4 Documentation
1.4.1 The ABEL Manual

The ABEL manual is divided into three major sections:
User’s Guide, Language Reference, and Applications
Guide. The User’s Guide describes how to use the ABEL
language processor to create source files that contain logic
descriptions, and convert the files to programmer load files.
All processor options are described in detail and the output
files are explained. The procedure for downloading
programmer load files is also described.

The Language Reference contains a complete definition of
the ABEL design language and is intended for use as both a
quick reference and a general introduction to the ABEL
design language.

The Applications Guide presents information and examples
to help you use ABEL. Specifications, design methods, and
complete source files are given for typical programmable
logic designs. Advanced designs are also given, as well as
suggestions and tips concerning the use of ABEL.

1.4.2 System Specific Information

This document describes how to install ABEL on your
system in preparation for logic design. It also contains
information regarding supplied software and files that can
be run specifically on your system.

Introduction

1.4.3 User Notes

User notes are provided to insert the latest device
information into the manual, plus any other information
that may be useful but was not available at the time the
manual was printed.

1.4.4 Logic Diagrams

A set of device logic diagrams is provided for reference.
Logic diagrams for most supported devices are included in
the set.

1.5 Design Example Files

The ABEL manual shows complete logic designs described
with ABEL and discusses general topics that you will find
useful as you use ABEL. All the logic designs and design
features discussed in this manual are contained on the
Design Examples disk or tape you received with the ABEL
package. The design examples are listed in table 10-1.

You can process these design examples with ABEL, either
as they stand, or with your own modifications, to create
programmer load files. Many of the design examples listed
in table 10-1 are described in detail within this manual.
Design examples not described in the manual, but listed in
table 10-1, can be examined as necessary.

User’s Guide

1.6 Notation Conventions

Table 1-2 lists notation conventions used in the definitions
and syntax descriptions contained in this manual.

Table 1-2. Notation Conventions

Notation

Usage

italics

quotation
marks (*)

UPPER-CASE

lower-case

square
brackets []

ellipsis (...)

all other
punctuation

Indicates references by name to items
contained in examples, figures, listings
and tables.

Surround italicized items when the
italicized reference contains spaces.

In syntax descriptions and diagrams,
indicates a keyword that must be entered
in full. The entry may be either upper-
case, lower-case, or mixed-case.

In syntax descriptions and diagrams,
indicates that a value or name is supplied
by the user. The user-supplied value can
be entered in either upper-case, lower-
case, or mixed-case.

Surround optional entries that can be
supplied or omitted as necessary.

Indicates that the preceding item can be
repeated as necessary.

Apostrophes, exclamation points,
parentheses, quotes and commas must be
entered exactly as shown.

Introduction

An example of italics used in text:

In table 1-2, the word ellipsis refers to three periods in
a row.

An example of quotation marks used in text:

The file specification, "m6809a fus”, is incorrect
because a space separates the filename from the
extension. The correct specification is m6809a.fus.

An example of upper-case, lower-case, square brackets, and
ellipsis as used in a syntax description:

PARSE [-Iin_file] [-Aarg]...

The command, PARSE, must be entered, but it can be
entered in either upper-case, lower-case, or mixed-case.
An input file can be (but does not have to be) specified
with the -1 parameter by typing -1 in either upper-case or
lower-case followed by a file specification in place of
in_file. Arguments can be supplied following the -A
parameter. The -A parameter is typed in either upper-case
or lower-case. An argument is supplied by the user in
place of arg. As many arguments as desired can be entered,
but each requires that a new -A parameter be used. The
following would be a valid user entry:

parse -Apl6r4 -aGND

User’s Guide

1.7 Software Update Service

The first year of software update service is included with
your ABEL purchase. This service supplies you with
software updates, "bug-fixes," and application ideas. To
renew this update service, refer to the list of telephone
numbers in the Preface.

1.8 Field Customer Support

FutureNet has Product Support Engineers who can provide
you with additional assistance in using this product. The
Product Support Engineer can be reached at 800-247-5700
within the Continental U.S. For assistance at other
locations, call your nearest Data I/O Sales Office.

Introduction

1.9 License Agreement and Warranty

The user should completely and carefully read the following
terms and conditions before accepting delivery of this
product. Possession of this software product indicates the
user’s acceptance of these terms and conditions. If the user
does not agree with them, the user should promptly return
the product and the purchase price will be refunded to the
original purchaser of this product. Data I/O Corporation,
licensor, provides this set of software programs and licenses
their use. The user assumes the responsibility for the
selection of the programs to achieve the user’s intended
results, and for the installation, use, and results obtained
from said program(s).

1.9.1 License

1. The user may use the licensed program on any single
machine.

2. The user may copy the licensed program into any
machine readable or printed form for backup or
archival purposes in support of the user’s use of the
program on the single machine.

3. The user recognizes the proprietary nature of the
licensed programs and materials and agrees to preserve
and protect Data I/O Corporation’s interest therein.
All information relating to the licensed programs and
materials provided to the user shall be retained by the
user and shall not be used or disclosed except for the
purpose of meeting the user’s own internal use.

User’s Guide

1.9.2 Term

The license is effective until terminated. The user may
terminate the license at any time by destroying the licensed
program and materials together with all copies. The license
will also terminate if the user fails to comply with any term
or condition of this agreement. The user agrees upon such
termination to destroy the licensed program and materials
together with all copies in whatever form. Within 30 days
after termination, the user shall certify in writing that
through its best efforts and to the best of its knowledge all
copies, in part or in whole, of the terminated and/or
discontinued licensed programs and materials relating
thereto have been destroyed.

1.9.3 Limited Warranty

1. The ABEL Software programs are provided by Data
1/0 Corporation "AS IS" without warranty of any kind,
including but not limited to, the warranties of
merchantability and fitness for a particular purpose.
Data 1/O Corporation will not be liable to the user of
the ABEL software programs for any damages,
including lost profits, lost savings, loss of use or other
incidental or consequential damages arising out of the
use, or inability to use, the provided software
programs, even if Data I/O Corporation has been
advised of the possibility of such damages, or for any
other claims brought by any other party.

2. Some states do not allow the limitation or exclusion of
liability for incidental or consequential damages so the
above limitation or exclusion may not apply to the user.

3. Data I/O Corporation does not warrant that the func-
tions contained in the licensed program(s) will meet the
user’s requirements or that the operation of the licensed
program(s) will be uninterrupted or error free.

Introduction

Data I/O Corporation warrants the diskette (s) or
magnetic tape or cassette (s) on which the programs are
furnished, to be free from defects in materials and
workmanship under normal use for a period of ninety
(90) days from the date of shipment to the user as
evidenced by a copy of the packing slip.

1.9.4 Limitation of Remedies

Data I/O Corporation’s entire liability and the user’s
exclusive remedy shall be as follows:

1.

The replacement of any diskette (s) or magnetic tape or
cassette (s) not meeting Data I/O Corporation’s limited
warranty, and which materials are returned to Data 1/0
Corporation or an authorized Data I/O representative
with a copy of the packing slip, or

If Data I/O Corporation or a representative is unable to
deliver a replacement diskette (s), magnetic tape or
cassette (s), which is/are free of defects in materials or
workmanship, you may terminate this agreement by
returning the programs and their related materials and
your money will be refunded.

1.9.5 General

1.

The user acknowledges that the user has read this
agreement, understands it, and agrees to be bound by
its terms and conditions. The user further agrees that
it is the complete and exclusive statement of the
agreement between the user and Data I/O Corporation,
which agreement supersedes any proposal or prior

User’s Guide

agreement, whether oral or written, and any other
communications between the user and Data I/O
Corporation relating to the subject matter of this
agreement.

This license and agreement shall be governed by the
laws of the State of Washington.

The user may not sub-license, assign, or transfer the
licensed program (s) except as expressly provided in
this agreement. Any attempt to do otherwise, to sub-
license, assign or transfer any of the rights, duties or
obligations hereunder is void, except that Data I/O
Corporation may assign this license as a part of an
assignment of all software assets of its business.

The provisions of this agreement are severable and if
any one or more of such provisions are judicially
determined to be illegal or otherwise unenforceable,
whether in whole or in part, those remaining provisions
or portions of the license unaffected by such
determination shall be binding on and enforceable by
and between the licensee, user, and Data I/O
Corporation.

In the event it becomes necessary to retain the services
of an attorney to enforce any provisions of this license
agreement, the non-prevailing party to such legal
action and/or litigation agrees to pay the prevailing
party’s costs, including a reasonable attorney’s fee, and
court costs, if any.

Introduction

1.10 Ordering

To place an order for software, contact your Data I/0O
representative. Orders for shipment must include the
following:

m Description of the software (see latest Data I/O price
list or contact your sales representative for product
numbers).

m Purchase order number

m Desired method of shipment

m Quantity of each item ordered

m Shipping and billing address of firm, including zip
code

m Name of person ordering software

User’s Guide

1-20

Installation

The procedure for installing ABEL in your system
depends on the system (IBM-PC, VAX/VMS, etc.) to be
used. Refer to the System Specific Information supplied
with the ABEL package for details regarding installation
of ABEL on your particular system.

2-1

User’s Guide

2-2

3. ABEL Source Files

In order for the ABEL Language Processor to convert
logic descriptions to programmer load files, the logic
descriptions must be contained in an source file. That is,
before you can create a load file that contains the fusemap
of a particular logic design, you must create an ABEL
source file that reflects that logic design. The ABEL
source file is an ASCII text file that is written according
to the requirements of the ABEL Language Processor.
These requirements are described in detail in the
Language Reference portion of the manual.

3-1

User’s Guide

3.1 Elements of the ABEL Source File

You can write an ABEL source file using any word
processor or text editor that produces ASCII files. The
elements of the ABEL source file are shown in the
template in Figure 3-1. Figure 3-1 shows the basic
element of the ABEL source file, the module. A source
may contain any number of modules, each of which
contain a different logic description.

Figure 3-1 shows that the source file module (or complete
source file in this case) is made up of several elements.
These elements are illustrated in listing 3-1, a source file
for an address decoder that is to be placed in a P14L4.

The elements of the ABEL source file are:

MODULE STATEMENT- This names the module and
also indicates whether any dummy arguments are used.
Refer to section 8.2 for additional details.

FLAG- This can be used to control processing of the
source file by the language processor, and is optional.
Refer to section 8.3 for additional details.

TITLE- The title is optional and is used to describe the
module. The text entered will be used as a header for the
ABEL output files (see section 8.4 for additional details).

DEVICE DECLARATIONS- The device declaration
associates one or more device identifiers with specific
programmable logic devices. Refer to section 8.5.1 for
additional details.

PIN DECLARATIONS- This defines the pins of the
programmable logic device with identifiers used in the
source file. Refer to section 8.5.2 for addtional details.

ABEL Source Files

NODE DECLARATIONS- If nodes exist on the
programmable logic device, they are defined here. Refer
section 8.5.4 for additional details.

CONSTANT DECLARATIONS- Refer to section 8.5.4 for
details.

MACRO DEFINITIONS- Refer to section 8.5.5 for
details.

The above source file elements are completed as necessary
and can exist in any order, provided no symbol (identifier)
is referenced before it has been defined.

EQUATIONS- Contains the Boolean equations required to
describe the logic design. (You can also express the design
by means of truth tables or state diagram.) Refer to
section 8.6 for details on the Equations section.

TRUTH TABLE- Contains the truth tables required to
describe the logic design. (You can also express the design
by means of Boolean equations or state diagrams.) Refer
to section 8.7 for details on the Truth Table section of the
source file.

STATE DIAGRAM- Contains the state diagrams required
to describe the logic design. (You can also express the
design by means of Boolean equations or truth tables.)
Refer to section 8.8 for details on the State Diagram
section of the source file.

TEST VECTORS- Contains the optional test vectors that
you write to verify the functionality of the logic design.
Refer to section 8.9 for additional details. Test vectors
can be used in conjunction with PLDtest, which
functionally tests the programmed device.

END STATEMENT- Ends the module.

3-3

User’s Guide

3-4

"device declaration

" name DEVICE 'device type';
" device '....';
"pin and node declarations
" names PIN pin#s ;
" names NODE node #s ;
ceegenngas pin -
creregrege PiN ceeyreyengungse;
fengeegenn node ..,..,..;
"constant declarations
H,L,X =1,0,.X. ;
ceger T oeagee]
= ..
equations
" name expression ;

enable :
. = el
test_vectors ([...,...] -> ...)
"inputs outputs
| T T .1;
| I T,
S S T .1;

end

.
cesany

Figure 3-1. Source File Template

ABEL Source Files

module mé809a
title '6809 memory decode
Jean Designer FutureNet Redmond WA 24 Feb 1987!

uo9a device 'P14L4Y;
A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6;

ROM1, 10,ROM2, DRAM pin 14,15,16,17;

H,L,X =1,0,.X.;

Address = [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,X1;
equations

IDRAM = (Address <= “hDFFF);

110 = (Address >= ~hE000) & (Address <= “hE7FF);

IROM2 = (Address >= ~hF000) & (Address <= "“hF7FF);

IROM1 = (Address >= “hF800);

test_vectors (Address -> [ROM1,ROMZ2,10,DRAM])

~h0000 -> [H, H, H, L 1;
~h4000 -> [H, H, H, L 1;
~h8000 -> [H, H, H, L 1;
AhCOO0 -> [H, H, H, L1;
AhEOOO -> [H, H, L, H1I;
~hEBO0 -> [H, H, H, H1I;
~hFOO0 -> [H, L, H, H1I;
~hF800 -> [L, H, H, H1I;

-

end m680%9a

Listing 3-1. Source File Describing an Address Decoder

3-5

User’s Guide

3.2 Examining an Example ABEL Source File

As previously stated, you must write a source file that
reflects the design of the circuit to be programmed into
the programmable logic device before ABEL can generate
the required programmer load file. In order to write a
meaningful source file, you must be familiar with its
make-up and content.

D—>» ROM1

O—> ROM2

D—> 10

b——) DRAM

—\

ROM1 ROMZ%/% /0 | DRAM ~

FFFF F800 FOO0 ESP0 EQOQ 0000

Figure 3-2. Block Diagram; 6809 Memory Address Decoder

3-6

To familiarize you with the ABEL source file, the
following paragraphs provide an examination of the source
file shown in listing 3-1, which describes the address
decoder shown in the block diagram, Figure 3-2. This
source file is typical of that used with the ABEL language
processor to produce a programmer load file for
downloading to a logic programmer.

ABEL Source Files

The source file shown in listing 3-1 is typical of that used
with the language processor and does not illustrate all the
features of ABEL; nor does it show examples of source
file syntax rules. For complete source file details, refer to
the Language Reference and Applications Guide.

3.2.1 Purpose of the Address Decoder

An address decoder is a logic design problem that is easily
solved with programmable logic. In the address decoder
of Figure 3-2 the high-order six lines of an address bus
are decoded into one of four active-low outputs. The
ROMI1 output is low for addresses in the range of F800 to
FFFF; the ROM2 output is low for addresses in the range
of FO0O0 to F7FF; the 1/O output is low for addresses in
the range of E000 to EFFF; and the DRAM output is low
for addresses in the range of 0000 to DFFF. The outputs
will be applied to read-only memory, I/O ports, and
dynamic RAM within the target environment to enable
these functions when the applicable address appears on the
address bus.

3.2.2 The MODULE Statement

The MODULE statement is a required element of the
ABEL source file. It defines the beginning of the module
(since a source file may contain several modules) and must
be paired with an END statement. In listing 3-1, the
MODULE statement is module m6809a. The keyword is
module. The identifier m6809a distinguishes the module
from any others in the source file. Refer to section 8.2
for a complete description of the MODULE statement.

3-7

User’s Guide

3.2.3 The FLAG Statement

The address decoder example in listing 3-1 does not use
the FLAG statement. The source file template in Figure
3-1 shows the location of the FLAG statement when used.
Refer to section 8.3 for information on the FLAG
statement usage.

3.2.4 The TITLE Statement

The TITLE statement may be inserted in the source file to
give a title to a module. Although the title is not acted on
by the language processor, it will appear as a header in
both the programmer load file and documentation file
created by the language processor.

The TITLE statement consists of the keyword title
followed by a string, which is the desired title for the
module. The string is opened and closed by an
apostrophe. In listing 3-1, the title is:

'6809 memory decode
Jean Designer FutureNet Redmond WA 24 Feb 1987’

Refer to section 8.4 for details on the TITLE statement.

3.2.5 The DEVICE Declaration

3-8

The DEVICE declaration is used to associate the name of
the device with the type of programmable logic device
into which the logic design will be programmed. The
name of the device in listing 3-1 is U09, which is the
schematic reference in this case. The type of
programmable logic device is specified as 'PI14L4’. The
device name and device type are located on the same line
of the source file but separated by device, the keyword of
the DEVICE declaration. Refer also to section 8.5.1.

ABEL Source Files

3.2.6 PIN and NODE Declarations

In listing 3-1, the two lines immediately following the
DEVICE declaration are the PIN declarations. Two lines
are used since there is insufficent horizontal space on an
80-column display to arrange the declaration on a single
line. You can use as many lines as necessary to make the
pin declarations.

The PIN declaration associates pin identifiers used in the
module to actual pin numbers on the target programmable
logic device. The first PIN declaration statement
associates address line A15 with pin 1 of the P14L4
device, A14 with pin 2, and so on. The second PIN
declaration identifies pin 14 of the P14L4 as the ROM1
output, pin 15 as the I/O output, etc.

Attributes can also be assigned to pins, although none are
required in this memory decoder example. Refer to
section 8.5.2 for complete PIN declaration details.

There are no NODES to be declared in this example since
the P14L4 logic device contains no internal signals that are
not accessible at the external pins. Refer to section 8.5.3
for information on device nodes.

3.2.7 CONSTANT Declarations

A constant, described fully in section 8.5.4, is an
identifier that retains a constant value through a module.
CONSTANT declarations are placed with the PIN and
NODE declarations in the source file and use the = sign
for their keyword. In listing 3-1, the declaration H,L,X =
1,0,.X.; tells the language processor to substitute a logic 1
whenever an upper-case H is encountered, a logic 0
whenever an upper-case L is encountered, and a "don’t
care" value whenever an upper-case X is encountered.
The H, L, and X identifiers are used in subsequent test

3-9

User’s Guide

vectors. (.X. is a special constant used to denote a don’t
care condition. Refer to section 7.7.)

The second CONSTANT declaration equates the identifier
Address with a set consisting of Al15, Al4, Al3, Al12,
All, Al10, and ten don’t care values; i.e., AI15, A14, Al3,
Al2, All, A10, X, etc. (The X’s are used to account for
the low-order address lines, since the "equations" and "test
vectors" sections of the source file relate the constant
address to all 16 address lines.)

3.2.8 EQUATIONS Statements

The EQUATIONS statement defines the beginning of a
group of equations that specify the logic functions of a
device. The actual equations, written in high-level
Boolean equations, follow the EQUATIONS statement. In
listing 3-1, there are four equations, one for each of the
address decoder outputs. These four equations describe
the logic function of the address decoder shown in Figure
3-2. Identifiers, defined in the declaration statements, are
used in place of P14L4 pin numbers.

The first equation, /DRAM = (Address < = hDFFF);
equates the active-low DRAM output (pin 17 of the
P14L4) with the address lines set to any address equal to
or above DFFF (hex). For the sake of brevity,
hexadecimal notation is used to specify the address input
conditions. ABEL cross-references the identifier Address
back to the P14L4 pin numbers by means of the preceding
CONSTANT and PIN declaration statements. The second
equation equates pin 15 (the active-low I/O output) with
the address lines set to any address in the range of E000 to
E7FFF. Again, identifiers defined in the declaration
statements are used to simplify the equation. The third
and fourth equations are written in a similar fashion to
define the remaining two address decoder outputs.

ABEL Source Files

3.2.9 Test Vectors

Test vectors specify the expected functional operation of a
logic device by defining its outputs as a function of its
inputs. (Refer to section 8.9 for more detailed
information on test vectors.) Listing 3-1 shows a typical
set of test vectors and how they are arranged in a table.
The form of the test vector table is determined by the
header. In listing 3-1, the test vector header is

test_vectors (Address - > [ROM1,ROM2,10,DRAM])

The left side of the test vector table specifies the state of
the device inputs. Hexadecimal notation is used as a
means of simplifying the writing of the vector; all 16
address lines could be indicated individually by 1’s and 0’s
or H’s and L’s. The right side of the test vector table
specifies the state of the device outputs. The H and L
identifiers are used to indicate the expected state of each
output for the corresponding inputs.

Sufficient test vectors should be included to enable the
simulator within ABEL to test the intended function of
the design. The test vectors provided in listing 3-1 enable
testing of the design at several, but not all possible,
addresses. The test vectors are sufficient to verify the
operation of each output at its lowest address, except for
the pin 17 (DRAM) output which is tested at four
different addresses.

Some devices power up with registers set to 1, some set to
0 and some set to random value. The first test vector
should place the device in a known state. The ABEL
simulator assumes D, JK, and T registers power up to 0
and RS registers power up to 1. Some devices have
functions (enables or presets) directly connected to pins.
Be sure to include this function in the test vectors or
simulation errors may occur.

3-11

User’s Guide

3.3 Processing an ABEL Source File

Once ABEL is installed on your system as described in the
accompanying System-Specific Information, you can
process a source file to create a programmer load file and,
if you wish, download the load file to your logic
programmer. This section describes how to process a
source file and explains the different processes ABEL
executes in order to achieve the load file and
accompanying documentation. The following procedures
use the address decoder source file previously described
and shown in listing 3-1.

3.3.1 Entering the Command Line
The ABEL command line consists of
ABEL filename [parameters]

ABEL (in the command line) is a batch file (or command
script) that contains commands to run all six steps of the
language processor automatically (although each step can
be executed individually on specified files). The filename
(without the extension) specifies the input file, which is
the source file to be processed into a programmer load
file. The allowable parameters, plus a detailed description
of the ABEL batch processing, are presented in section 4
of this manual.

The source file for the address decoder is m6809a.abl and
is provided on your Design Examples disk or tape supplied
as part of the ABEL package. Since this file is provided
for you, it is not necessary for you to create this source
file. It is necessary however, for you to copy this file,
M6809A.ABL, from the examples directory to the current
directory in preparation for processing by ABEL.

ABEL Source Files

To enter the command line to process the address decoder
example, type (.abl file extension not required):

abel m6809a

If you followed the above procedure, you have started the
language processor. Listing 3-2 shows the processing
statistics for each step of the language processor’s
operation. Processing times vary between systems.

echo off
+abel m6809a

PARSE ABEL(tm) Version 3.00 Copyright(C) 1983-1987 FutureNet
module mé80%9a
PARSE complete. Time: 3 seconds

TRANSFOR ABEL(tm) Version 3.00 Copyright(C) 1983-1987 FutureNet
module mé80%9a

TRANSFOR complete. Time: 2 seconds

REDUCE ABEL(tm) Version 3.00 Copyright(C) 1983-1987 FutureNet
module mé809a

_device U0%a

REDUCE complete. Time: 3 seconds

FUSEMAP ABEL(tm) Version 3.00 Copyright(C) 1983-1987 FutureNet
module mé809a 'P14L4

_device U0%a

6 of 16 terms used

PLDMAP complete. Time: 3 seconds

SIMULATE ABEL(tm) Version 3.00 Copyright(C) 1983-1987 FutureNet
module mé809a 'P14L4

8 of 8 vectors in U0%a passed

SIMULATE complete. Time: 2 seconds

DOCUMENT ABEL(tm) Version 3.00 Copyright(C) 1983-1987 FutureNet
module mé809a

_device U09

DOCUMENT complete. Time 2 seconds

Listing 3-2. Messages Displayed During Processing

User’s Guide

3.3.2 New Files Created .

When the processing is complete, several new files are
created. These files are:

filename.ext Description

M6809A.LST Listing from PARSE, used to check
syntax

UO09.JED Programmer load file for design
transfer and input to PLDtest

M6809A.SIM Simulation output file for error
checking

M6809A.DOC Documentation file for design

M6809A.OUT Intermediate file for SIMULATE,
DOCUMENT, and PLDtest.

The name, U09, of the programmer load file is taken from
the device identifier in the source file. You may want to
look at the listing, plus the simulation (.SIM) and
documentation (.DOC) files to see what the language
processor creates. Each of these files is discussed fully in
section 4,

ABEL Source Files

3.4 Downloading the Programmer Load File

Downloading the programmer load file differs for each
system used to run ABEL, and also for the model of logic
programmer used. In general, you must set up your
system to transmit the *.JED file, via a serial I/O port, to
the programmer. The programmer must be set up to
receive the load file before the system begins transmission
of the load file. The mechanics of establishing the
communications link between the system and the
programmer depend upon your hardware. For MS-DOS
systems, PROMIink provides a convenient way to
download programmer load files to your Data I/O
programmer. Additional information on downloading
programmer load files for your particular system is
contained in the System-Specific Information provided
with the ABEL package and also in Chapter 5 of this
manual.

User’s Guide

4. The ABEL Language Processor

The ABEL language processor converts logic descriptions to
programmer load files that can be downloaded to a logic
programmer. The language processor checks your logic
description, performs logic reduction, simulates the
operation of the programmed device, and creates design
documentation. Processing an ABEL source file is a six-
step process:

1. PARSE: Reads the source file, checks for correct
syntax, expands macros, and acts on
directives.

2. TRANSFOR: Converts the description to an
intermediate form.

3. REDUCE: Performs logic reduction.

4. FUSEMAP: Creates the programmer load file.
5. SIMULATE: Simulates the function of a design.
6. DOCUMENT: Creates design documentation.

In chapter 3, you saw how the ABEL command can be used
to process a source file. The ABEL command is simply a
batch file or command script that invokes all six steps of
the language processor. You can either run the batch file to
process a design, or you can run each step of the language
processor separately. The following subsections discuss
both of these choices. Section 4.1 describes the batch file in
detail. Sections 4.2 through 4.7 describe the individual
steps of the language processor, their options, and how to
invoke them. Figure 4-1 shows the processing flow of the
language processor.

4-1

User’s Guide

Source File

—— Listing File

- parsed source text

TRANSFOR

. transformed equations

REDUCE

- reduced equations

FUSEMAP —» Programmer Load File

Simulation Output Documentation
File File

indicates batch file processing

——> indicates data flow

Figure 4-1. Processing Flow of the Language Processor

The ABEL Language Processor

4.1 ABEL Batch Processing

ABEL filename [parameters]

filename the name of an ABEL source file. The file
extension must be ".ABL" but is not entered.

parameters any of the parameters associated with the
individual steps of the language processor
(except -1, -0, and -B), as described in
sections 4-2 through 4-7. Separate parameters
with spaces.

ABEL is a batch file that contains the commands needed to
run all six steps of the language processor automatically.
The input file that you specify with filename must be a
valid source file. Any devices specified within the source
file must have the corresponding device specification file in
your library of device specification files. Refer to section
4.1.1, ABEL Libraries.

Any of the parameters associated with the six steps of the
language processor, except for -1, -O, and -B, can be
entered on the command line to control how a source file is
processed. The parameters are discussed in sections 4-2
through 4-7.

4-3

User’s Guide

4-4

If you do not specify any parameters, default values take
effect and the following actions are performed:

m A parsed listing file is created. Text included with the
@INCLUDE directive is shown. Macros, if used, are
shown expanded.

m Level 1 logic reduction is performed.

m Programmer load files are created according to the
JEDEC standard.

m Level 0 simulation (that shows only simulation errors)
is performed.

m Design documentation is created.

m Processing status, statistics and error messages are
displayed on the screen.

When any of the ABEL programs are run individually
(without being invoked by the ABEL.BAT batch file), using
of -i or -0 without a file name will cause the ABEL passes
to suppress prompting for input and output file names. This
is useful for ’piping’ program inputs and outputs.

The SIMULATE program assumes a default file extension
of .OUT for the infile file name.

If the JEDEC file contains the name of the device, the -n
flag need not be used with either SIMULATE or IFLDOC.
The device name will be included as the default at the
device prompt. To accept the default device, press return
and processing will continue.

The ABEL Language Processor

4.1.1 ABEL Libraries

Device specification files are provided in a single library
file (abel3lib.dev) that contains specifications on all
supported devices. You can obtain individual device
(*.DEYV) files from the library file as described on page 6-4.
By extracting individual device files from the library, you
can load only those files you need instead of loading the
entire library file each time you use ABEL.

When ABEL is invoked, it will attempt to find a *. DEV
device file that corresponds to each device referenced in the
source file. However, if you have included the device
library abel3lib.dev in the abel3dev directory, ABEL will
look for the device specifications in the abel3lib.dev library
if no appropriate *.DEYV file is found.

The device library file should be located in the "abel3dev"
directory on your system. Refer to the System Specific
Information provided with your ABEL package for
information on installing the device library file.

ABEL "include" files may also be contained in a library.
When ABEL requires an "include" file (a file that has been
referenced in a @INCLUDE or LIBRARY statement), it
will attempt to find the required file. If the file is not
found, ABEL will look for the library "abel3lib.inc" and try
to find the file within it.

Refer to section 5.3 for information on libraries and for

information on the library manager utility (used to add to
and delete files from "abel3lib.dev" and "abel3lib.inc").

4-5

User’s Guide

4.1.2 Generated Output Files

Five types of output files are created during execution of

ABEL:
filename.LST

device.JED

filename.SIM
filename.DOC

filename.OUT

parser listing file

programmer load files (JEDEC
format)

simulation output
design documentation
intermediate file used by

SIMULATE and DOCUMENT

CAUTION

During processing, ABEL creates several temporary
files. File with the same filename as the input source
file and extensions .TM1, .TM2, and . TM3 are
generated; and files named FUSEIN.TMP and
FUSEOUT.TMP may be generated. Any files with a
filename and extension identical to those of a
temporary file will be overwritten.

Parser Listing File.

4-6

Contains the source code, error messages, and the effect of
@INCLUDE directives. (See chapters 8 and 9 for
information on macros and directives.) A complete
description of the parser listing file is given in section 4.2.

The ABEL Language Processor

Programmer Load File.

Contains the fuse states, test vectors and other design
information as defined by the JEDEC standard. This file is
loaded into a logic programmer to program and test a
programmable logic device. (The programmer load file may
also be applied to PLDtest.) One programmer load file is
created for each device specified in the source file.
Complete specification of the JEDEC standard format is
given in appendix B.

Simulation Output File.

Output from the simulation step indicating whether
simulation was completed successfully, and if not, where
predicted and actual results differed. See section 4.6 for
more information. ’

Design Documentation File.

Contains a chip diagram, reduced logic equations and other
design information. This file is created by the
DOCUMENT step of the language processor.

Intermediate File.

The language processor creates a file named filename.OUT
that contains intermediate output data created by
FUSEMAP. This intermediate file can be used as input to
SIMULATE and DOCUMENT (see sections 4.6 and 4.7).

User’s Guide

4.1.3 Creating Your Own Batch or Command Files

The ABEL batch or command file executes all steps of the
language processor. You may find that you want to create
your own batch file that invokes only some of the steps in
the language processor. Or, you may want to run the
language processor with special parameter settings at each
step. For example, you could write a batch file that runs
PARSE, TRANSFOR, REDUCE and FUSEMAP to create a
programmer load file without generating design
documentation, and without running a simulation.

You can write your own custom batch file by following the
rules governing batch files as described in your operating
system manual. Combine the individual language processor
steps in the way that best suits your application.

4-8

The ABEL Language Processor

4.2 Parse

PARSE |[-Iin_file] [-Oout_file] [-Llistfile] [-E] [-P]
[-Aarg]l... [-Hpath] [-Ypath]

-Iin_ file

-Oout_ file

-Llistfile

-E

-P

-Aarg

-Hpath

-Ypath

ABEL source file is in in_ file

intermediate file output from the parser is
written to out_ file. The intermediate file is
used as input to TRANSFOR.

write the listing file to the file specified by
listfile (standard filename.ext format)

display expanded output resulting from macro
expansions and directives as part of the parser
listing

display expanded output resulting from macro
expansions and directives and show the
directive that added code to the source as part
of the parser listing

the argument following -A is passed to the
PARSE program to be substituted for dummy
arguments in the source file

files included in the source with the
@INCLUDE directive are located in the
directory specified by path

any device specification files needed are
found in the directory specified by path

4-9

User’s Guide

PARSE reads the source file, converts state diagrams and
truth tables to Boolean equations, translates test vectors,
expands macros, and checks for correct syntax. If any
syntax errors are found, the approximate place at which the
error occurs and the type of error are displayed on your
monitor. Error messages are also written to a listing file if
one is being created (-L). An intermediate file is written to
out_file if -0 is specified. This intermediate file provides
input to TRANSFOR.

All parameters are optional. If the -I and/or -O parameters
are omitted (no file specified), you will be prompted for the
input and/or output file names.

Consider the following example command line (with default
file extensions named):

parse -aP14L.4 -aGND -im6809a.abl -om6809a.tm
-Im6809a.lst -e

This command (entered on a single line to the operating
system) invokes PARSE to process the source file
m6809a.abl which contains the logic description for the
address decoder described in section 3. The output is
written to the file, m6809a.tm1l, and a listing file named
m6809a.lst is created. Expanded output is shown in the
listing because the -E parameter is included. Two
arguments, P14L.4, and GND, are passed to the processor
for argument substitution.

Note that the command can be entered in lower-case
characters and that the parameters can be specified in any
order. Each parameter is discussed in detail below.

The ABEL Language Processor

-1 : Specify Input File

Use -I to specify the file containing your source file. If no
input file is specified, the input is assumed to come from
your standard input device (usually the keyboard).

: Specify Output File

Use -O to specify the name of the output file. If no output
file is specified, output will go to your standard output
device (usually the monitor). The output file contains the
parsed source code and is used as input to the TRANSFOR
processor (section 4.3).

: Create a Listing File

.o

-L indicates that a listing file is to be created. The file
containing the listing is specified directly after the -L
parameter. A listing file contains the parsed source code
with error messages (if there are any) and with macro
expansions and inclusion of code due to directives if the -E
parameter was specified. If the -P parameter is specified,
the listing also shows the directive that caused the inclusion
of code. If -L is not used, no listing file will be created.

Write Expanded Output

The -E parameter causes the parsed and expanded source
code to be written to the listing file. Text included by
macros and directives is shown. If -E is not specified, the
listing contains the source file as it was before processing
plus error messages: expanded text is not shown. If no
listing file is specified (the -L parameter is omitted),
expanded output will be displayed at your terminal.

4-11

User’s Guide

-P : Display Expanded Output

In addition to the listing information provided by -E, -P
lists the directives that caused code to be added to the
source. If the -L parameter is not included to produce a
listing file, the directive and the expanded output will be
displayed at your terminal.

-A : Pass Arguments to Source

The -A parameter lets you pass arguments to a source file.
These arguments are substituted for dummy arguments in
the source. As many arguments as are needed can be
specified, but each argument must be preceded by the -A
parameter. Argument substitution is discussed further in
chapter 7.

-H : Specify Path for Included Files

The @INCLUDE directive, described in chapter 9, lets you
include source text from one file in another source file. By
default, the included file is assumed to be in the default
directory; -H allows you to override that default value and
explicitly specify where included files are to be found.
Specify a drive and path immediately after -H. For
example, the following specifies that include files are to be
found in the directory named examples:

-H/examples

See your operating system manual for more information
about path and drive specifications.

The ABEL Language Processor

-Y : Specify Path for Device Specification Files

The language processor uses device specification files in
conjunction with your source file to properly process a
design. The -Y parameter lets you specify which drive and
directory contains the device files. Specify a path
immediately after -Y.

For example,
-Y/devices

indicates that device specification files are in a system
subdirectory, /devices. If -Y is not used, device files are
assumed to be in the default directory. See your operating
system manual for more information about path and drive
specifications.

4.2.1 PARSE Listing File

Listing 4-1 shows a listing file created by the PARSE step
of the language processor. This listing was created by
running PARSE on an altered version of the M6809A.ABL
source file described in section 3. Syntax errors were
introduced into the M6809A.ABL source file to create the
file M6809ERR.ABL, also provided with the design
examples. M6809ERR.ABL contains two syntax errors.

The first error is a missing semicolon in the equation:
IDRAM = (Address < = “hDFFF)

The second error is a missing left parenthesis in the truth
table header:

test__vectors Address -> [ROM1,ROM2,I0,DRAM])

User’s Guide

These two errors are displayed at your monitor and shown
in the listing file. The approximate places at which the
error occur are indicated by circumflexes. The type of
error is also indicated.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

module mé80%err
title '6809 memory decode
Jean Designer FutureNet Redmond WA

uo9 device 'Pl4L4!';
A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6;
ROM1,10,ROM2,DRAM pin 14,15,16,17;

IDRAM = (Address <= "“hDFFF)

A

? Syntax error: ';' expected

0016
0017
0018
0019
0020
0021

1ROM2

IROM1 (Address >= “hF800);

? Syntax error: '(' expected

0022
0023
0024
0025
0026
0027
0028
0029
0030

~h0000 -> [H, H, H, L
~h4000 -> [H, H, H, L
~h8000 ->[H, H, H, L
~“hCOO0 -> [H, H, H, L
“hEOOO -> [H, H, L, H
~hEBOO -> [H, H, H, H
“hFOO0 ->[H, L, H, H
~hF800 ->[L, H, H, H
end m680%err

et bt b b e L
TR TR IR

24 Feb 1987!

H,LX =1,0,.X;
Address = [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,X];
equations

110 = (Address >= “hE0O00) & (Address <= "“hE7FF);

(Address >= “hF000) & (Address <= “hF7FF);

test_vectors Address -> [ROM1,ROM2,I10,DRAM])
A

Listing 4-1. PARSE Listing File with Errors from

M6809ERR.ABL

The ABEL Language Processor

Listing 4-2 shows the corrected source file with the proper
semicolon and left parenthesis added.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
00N
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030

module mé809a

end m6809a

title '6809 memory decode
Jean Designer FutureNet Redmond WA 24 Feb 1987!
uo%a device 'P14L4';
A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6;
ROM1, 10,ROM2, DRAM pin 14,15,16,17;
H,L,X =1,0,.X.;
Address = [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,XI;
equations
IDRAM = (Address <= "“hDFFF);
110 = (Address >= “hEO0Q) & (Address <= “hE7FF);
IROM2 = (Address >= "“hF000) & (Address <= "“hF7FF);
IROM1 = (Address >= "“hF800);
test_vectors (Address -> [ROM1,ROM2,10,DRAM])
~h0000 -> [H, H, H, L1;
~h4000 -> [H, H, H, L1;
~h8000 -> [H, H, H, L1;
~hCO00 -> [H, H, H, L1;
~hEOOO -> [H, H, L, HI;
~hE8OO -> [H, H, H, HI;
~hFOO0 -> [H, L, H, HI;
~hF800 -> [L, H, H, HI;

Listing 4-2. Corrected Source File, M6809A.ABL

4-15

User’s Guide

4.3 TRANSFOR

TRANSFOR [-Iin_file] [-Oout_ file]

-Iin_ file in_ file is an intermediate output file created

by PARSE.

-Oout_ file output from TRANSFOR is written to

out_ file

TRANSFOR reads the equations generated by PARSE and
manipulates them to:

1.

2.

Replace sets with equivalent equations without sets.

Replace all operators with equivalent operations using
only NOTs, ANDs, ORs and XORs.

OR together equations that cause multiple assignments
to the same identifier.

Perform logic reduction based on the following rules:

Rule Description

A&l = A A AND 1 =A
A&O0O =0 A AND O =0
A#1 =1 AOR 1 =1
A#0 = A AORO =A
AS1 =1'A A XOR 1 = NOT A
A$SO0 = A A XOR 0 =A
AlS1 = A A XNOR 1 =A
AlS0 = A AXNORO =NOTA

The ABEL Language Processor

The transformed equations can then be reduced by the
REDUCE program. The file specifications given for
in_file and out_ file must be valid file specifications per
your operating system. (Note that you can assign any legal
file extension to the input and output file names.)

Example:
TRANSFOR -im6809a -om6809a.tm?2

This command transforms the parsed source code contained
in m6809a.tm1 (created by PARSE) and creates an output
file named m6809a.tm2. (If you do not assign a file
extension to the output file name, TRANSFOR will assign
"tm2" as the file extension.

User’s Guide

4.4 REDUCE

REDUCE [-Tin_file] [-Oout_file] [-Rn]

-Iin_ file in_ file is an intermediate file created by
TRANSFOR.

-Oout_file output from REDUCE is written to out_ file

-Rn n=0,1, 2,3, or 4, indicating the level of
reduction to be performed (default = 1):

n=0 : no reduction

n=1 : simple reduction

n=2 : simple and PRESTO reduction

n=3 : simple and PRESTO reduction by pin
n=4 : simple and ESPRESSO reduction

REDUCE reduces your logic description so that fewer
product terms are used in the programmable logic device.
REDUCE reduces the Boolean equations in in_ file and
writes the reduced equations to the file specified by
out_file. The equations in in_ file must be in the form
produced by TRANSFOR. If in_ file is not specified, the
input is assumed to come from your standard input device
(usually your keyboard). If out_file is not specified the
output is written to your standard output device (usually
your monitor).

You may choose one of five levels of reduction: 0, 1, 2, 3,
or 4. If you do not explicitly choose a reduction level with
-R, level one reduction is performed.

When using exclusive-OR parts, such as P20X8, P20X4,

etc., and exclusive-OR conditions are encountered in the
input file to REDUCE, REDUCE will leave the exclusive-

4-18

The ABEL Language Processor

OR operator intact for that output. If more than one
exclusive -OR condition is encountered for one output,
only the first will utilize the exclusive-OR operator; others
will be converted to multiple ANDs and ORs.

If a T-type flip-flop is being emulated in a D-type
registered device, all exclusive-OR operators for that
output will be expanded to multiple ANDs and ORs.

4.4.1 Level 0 Reduction.
No reduction is performed for level 0 reduction. The
transformed equations are checked for valid outputs for the
specified device and written to the output file.

4.4.2 Level 1 Reduction.
If you choose level 1 reduction (-R1), the logic equations

are expanded to a sum of products form and then reduced
according to the following basic rules of Boolean algebra:

Rule Description

0 =1 NOT 0 = 1

1 =0 NOT 1 = 0
A&0 =0 A AND 0 = 0
A&l = A A AND 1 = A
A#0 = A AORO = A
A#1 =1 AOR 1 = 1
A#A = A AOR A = A
A&A = A A AND A = A
A&'A =0 A AND (NOTA) = 0
A#!A =1 A OR (NOT A) = 1

Level 1 reduction is the default if no level is explicitly
chosen with the -R parameter.

User’s Guide

4.4.3 Level 2 Reduction.

Level 2 reduction should be used whenever the number of
product terms used to implement a function is near to or
more than the number of product terms available in the
device. If you choose level 2 reduction (-r2), both level 1
and PRESTO logic reduction are performed.

The following command line performs simple and PRESTO
reduction on the transformed equations contained in
m6809a.tm2 (created by TRANSFOR) and writes the
reduced equations to the file named m6809a.tm3. (Note
that you can assign any legal file extension to the input and
output file names.)

REDUCE -r2 -im6809a.tm2 -om6809a.tm3

4.4.4 Level 3 Reduction.

Level 3 reduction reduces logic associated with each pin in
a device on a pin-by-pin basis. There are two major
advantages to pin reduction. First, reduction by pin is
faster than normal PRESTO reduction. Second, this type of
reduction is well-suited to PALs which do not share terms
among the outputs.

As mentioned, reduce levels 2 and 3 utilize the PRESTO
method. PRESTO is a logic reduction technique that
reduces the number of inputs and product terms. In the
PRESTO method, two functions are formed. The functions
are designated F and FDC and are tabular representations
of the original equations. During the operation of ABEL, F
and FDC are identical at the beginning of term
minimization.

4-20

The ABEL Language Processor

PRESTO tries to eliminate each input literal for each
product term by temporarily omitting it from F and
checking to see if the result is still covered by FDC. If
covered, the literal term is deleted from F. After all input
literals have been processed, all output literals are similarly
processed, only the literal is temporarily omitted from FDC
and then checked for coverage by F. If all output literals
are eliminated from a given term, the term is removed.
The process is repeated until F stabilizes and represents the
minimized function.

4.4.5 Level 4 Reduction.

Level 4 reduction uses the ESPRESSO reduction method.
Espresso is a heuristic reduction algorithm developed at the
University of California, Berkeley. ESPRESSO’s main
advantage over PRESTO is its speed, which makes it the
best choice for large designs. In some cases, it will also
produce better reduction than PRESTO.

4-21

User’s Guide

4.5 FUSEMAP

4-22

FUSEMAP

-Iin_ file
-Oout_ file

-Jpath

-Cn

-Dn

[-Iin_file] [-Oout_file] [-Jpath] [-Cn]
[-Dn] [-Kq]

intermediate file created by REDUCE.

intermediate output from FUSEMAP is
written to out_ file

drive and path specification for programmer
load file output

checksum parameter. n can be:
0 omit STX, ETX, and transmission
checksum from the programmer load file

1 include STX, ETX, and a dummy
transmission checksum in the load file

2 include full STX, ETX, and transmission
checksum (default)

programmer load file format specification,
where n can be either 0, indicating a standard
JEDEC format programmer load file, or any
of the microprocessor formats defined in table
4-1. JEDEC format is the default.

unused fuses in an FPLA OR array will be
disconnected or left connected according to
the value of q

leave unused fuses connected (default)

disconnect unused fuses

The ABEL Language Processor

FUSEMAP processes the output of REDUCE and creates:

m an intermediate output file (*.out) for input to
SIMULATE and DOCUMENT.

m programmer load files that are loaded into a logic
programmer to program and test devices.

One programmer load file is created for each device
specified in the original source file. A load file contains
fuse states for programming the device and test vectors to
test it once it has been programmed. FUSEMAP creates a
JEDEC format load file unless you specify a different
format with the -D parameter.

The filename of each load file is the name of the device for
which the file contains a fuse map. The file extension is
"JED" for JEDEC format programmer load files and ".Pxx"
for all other load file formats, where xx corresponds to the
number specified with the -D parameter. The load file is
written to the path specified by Jpath:, or to the default
path if no drive is specified.

Example:

FUSEMAP -im6809a -om6809a.out
This command invokes FUSEMAP. The file m6809a.tm3
(output of REDUCE) is read, one programmer load file
(U09.JED) is created for device U09 in the source file (see

listing 4-2 for naming of the programable logic device), and
the output file m6809a.out is created.

4-23

User’s Guide

If multiple devices are named in a source file, then multiple
programmer load files will be created by FUSEMAP. For
example, if a source file has three devices named
DEVICEI], DEVICE2, and DEVICE3, FUSEMAP would
create the programmer load files:

DEVICEL.JED
DEVICE2.JED
DEVICE3.JED

Each file is a programmer load file (conforming with the
JEDEC standard) that describes the logic and test functions
to be programmed into the device. These files can be
processed by PLDtest to generate a full set of device test
vectors.

: Specify drive and path for programmer load file output

The -J parameter allows you to indicate where the
programmer load file is written. Specify the desired drive
and/or path after -J.

: Checksum parameter

Normally, STX is placed at the beginning of the
programmer load file and ETX and a checksum are placed
at the end of the file in accordance with the JEDEC
standard. The -C parameter allows you to control whether
and how STX, ETX, and the checksum are written. -C0
omits the STX, ETX, and checksum from the programmer
load file. -C1 causes STX and ETX to be written to the
programmer load file as usual, but writes a dummy
checksum, 0000, thereby disabling checksum checking. -C2
is the default and causes the full STX, ETX, and valid
checksum to be written.

4-24

The ABEL Language Processor

-D

: Specify Programmer Load File Format

The -D parameter specifies the format of the programmer
load file. -DO is the default and indicates that the
programmer load file is to be in the JEDEC format. Other
formats can be specified by following -D with the
appropriate microprocessor format code (-d83, for
example). Supported microprocessor formats, their codes,
and the file extension given to the programmer load files
are given in table 4-1.

NOTE: Non-JEDEC programmer load file formats do not
contain test vectors, even if test vectors were specified in
the source file.

: Unused Fuses parameter

Unused fuses in an IFL or FPLA OR array can either be
left connected or disconnected. Leaving unused fuses
connected allows the addition of logic functions to the
device, alteration of an existing design in the device, and
may improve programming yield. However, some speed
and power improvements are achieved by disconnecting all
unused fuses. Disconnecting the fuses prevents any future
modifications to the device.

The -K parameter lets you specify what to do with unused
fuses. -Ky leaves the fuses connected. -Kn disconnects

unused fuses. If -K is not specified, the unused fuses are
left connected. '

4-25

User’s Guide

Table 4-1. Data Translation Format Codes and File

Extensions
Format Code Extension
Motorola Exorciser 82 P82
Intel Intellec 8/MDS 83 P83
Motorola Exormax 87 P87
Intel MCS-86 Hexadecimal Object 88 .P88

4-26

The ABEL Language Processor

4.6 SIMULATE

SIMULATE [-Iin_file] [-Oout_file] [-Tn] [-Ndevicel]

-Iin_ file

-Oout_ file

-Tn

-Ndevice

-Bnl,n2[,n3]

-Xn

-Zn

-Wn,n,n..n

[-Bn1,n2[,n3]] [-Xn] [-Zn] [-Wn,n..n] [-Un]

infile is either an intermediate output file
created by FUSEMAP or a programmer load
file in JEDEC format

simulation output file

n is the simulation trace level, where the trace
levels are:

: show errors only

: show output and test vectors

: show output and test vectors, all steps

: show complete device internals

: show waveform on specified pins

: show logic levels on specified pins
default is trace level 0, errors always shown.

nNdHWwWwN-—O

industry part number for device; for
simulation performed independently of ABEL.

set breakpoints nl and n2 between which a
new trace level n3 is in effect. nl and n2 are

inclusive.

set the logical value used for ".X." in load file
test vectors. n can be 1,0,H,L. Default is 0.

set the logical value used for ".Z." in load file
test vectors. n can be 1,0,H,L. Default is 1.

specify which device pins to "watch" during
simulation with trace levels 3, 4, and 5.

4-27

User’s Guide

1
-

-Un specify whether registers in a registered
device are to be set to 0 or 1 at power on.

If the -I and/or -O parameters are omitted (no file
specified), <filename>.OUT is the default input file and
you will be prompted for the output file names. Also, if
the device part number (-Ndevice) is not specified, you will
be prompted. Refer also to section "Input Files" in this
section.

The output created by SIMULATE is written to the file
specified with the -O parameter, or to the standard output
device if no output file is given. The contents of this file
will vary depending on the trace level set with the -T
parameter. See the examples on the following pages for
more information on the simulation output.

Set Trace Level

-T determines the level of information that is provided by
SIMULATE. The trace level can be 0, 1, 2, 3, 4, or 5.
Errors are listed regardless of the trace level. By choosing
the appropriate trace level, you can see only the final
outputs for registered devices, or the outputs before and
after the clock pulse.

Level 0 shows the final output (after the outputs have
stabilized) and test vectors for errors only.

Trace level 1 shows final output (not the output for each
simulate iteration) and test vectors for the device.

Trace level 2 shows the outputs after each iteration of the
simulator and the test vectors. For registered parts, the
outputs are shown before and after each clock pulse. For
designs with feedback, the outputs are shown for each
iteration until the outputs stabilize.

4-28

The ABEL Language Processor

Trace level 3 shows the internal nodes and the device
outputs for each iteration plus the test vectors. Use level 3
for the most help with determining where and why
simulation errors occur.

Trace level 4 shows the output level that appears on each
specified device pin during the simulation process. The
output pin voltages are shown as a waveform in the output
file that contains a trace for each pin. Each trace
represents the logic high and logic low output levels for
each test vector. If no input or output pins are specified by
means of the -W parameter, the first 14 outputs will appear
in the output file by default.

Trace level 5 is similar to trace level 4 except that the
waveform is replaced by H, L, and Z for logic high, logic
low, and high-impedance state.

-N : Specify a device type to be used for simulation

If a programmer load file is used for simulation input
rather than FUSEMAP output, no device-specific
information is available. (If the programmer load file was
generated by ABEL or GATES, the SIMULATE program
can extract the device type from a string in the file header.)
-N specifies the device associated with the load file, and
the device information is read from the appropriate device
specification file on the distribution disk. The device must
be supported by ABEL, and is specified by an industry part
number following -N.

Example:
simulate -iU09.jed -om6809a.sim -nP14L4
The above example invokes the simulator with the file

named U09.jed as input, m6809a.sim as the output file, and
P14L4.DEY as the device specification file. If P14L4.DEV

4-29

User’s Guide

cannot be found, an error message is issued.

NOTE: -N and JEDEC files cannot be used to simulate
PROMs.

-Bnl,n2[,n3] : Set breakpoints

It may be useful, particularly in large designs, to view
simulation output for only some of the test vectors. -B
allows this type of selective tracing. A beginning and an
ending breakpoint must be specified. A breakpoint is
specified with the number of the test vector at which the
break is to occur. The new trace level is set at the
beginning break point. The trace level is returned to its
original value after the ending breakpoint.

NOTE: On some versions of MS-DOS, the use of commas
to separate breakpoint values will cause an error. If this
occurs, periods may be substituted.
The new trace level can be specified explicitly with n3. If
the new trace level is not specified, the trace level between
breakpoints will be one level higher than before the break
occurred.
Example:

simulate -im6809a.out -om6809a.sim -B5,8,3
This invokes the simulator with the default trace level 0.
At the fifth test vector, the trace level is set to 3 and
remains there until after vector 8§, when the trace level is
reset to level 0.
Example:

simulate -t1 -im6809a.out -om6809a.sim -b5,8

4-30

The ABEL Language Processor

In this case, the breakpoints are again vectors 5 and 8. But
the initial trace level is set to level 1 by the -T parameter
and no new trace level is specified with the breakpoints.
Thus, the new trace level between vectors 5 and 8
(inclusive) is level 2 (one level higher than 1).

-X and -Z : Set values for "don’t care" and "high impedance"

Don’t care and high impedance values encountered in test
vectors must be given some value during simulation. The
-X and -Z parameters allow you to override the default
values. As a default, anytime a ".X." is encountered in a
test vector the logical value L is substituted for it. As a
default, H is substituted for a ".Z." value. You can specify
default values of 0, 1, L, or H for ".X." or ".Z.". The
default values are substituted only when ".X." or ".Z." are
inputs to a design or outputs that are fed back as inputs.
Outputs that are not fed back are shown in simulation
output as they exist in the source file, with ".X."s and ".Z."s
intact.

The simulator checks the design with a single voltage level
for the don’t care inputs, while the target circuit may place
other levels of the input during actual operations. For
complete simulation, it is recommended that you run the
SIMULATE operation with the don’t-cares set to 0 (flag-
XO0), and then again with them set to 1 (flag-X1). Refer
also to Don’t Cares in Simulation located in chapter 12.

-Un : Set Register Power-Up State

The power-up state of all registers in a device can be set by
means of the -U flag. -Uh sets all registers to 1, while -Ul
sets all registers to 0. If no -U parameter is specified,
registers are set to the default state specified in the device
file.

4-31

User’s Guide

-Wn,n..n,....: Specify which device pins to "watch" during
simulation with trace levels 3, 4, and 5

When trace level 3, 4, or 5 is specified, the -W parameters
may be used to specify the device pins to be "watched"
during the simulation process. Each specified pin number
is separated by a comma when using the -W parameter; or a
range of pins can be specified by separating the pin
numbers with an ellipsis.

Example:
simulate -t4 -im6809a.out -om6809a.sim -w1..6,14..17

The above example invokes the simulator with the file
named m6809a.out as the input file and m6809a.sim as the
output file, with device pins 1 through 6 and 14 through 17
specified for inclusion in the output file. The order in
which the pin numbers are entered on the command line
determines the order of the data (by pin number) in the
output file. For example, to list pin 1 through 6 in the
reverse order, enter:

-w6..1,14..17

on the command line. Also, although the device pin
numbers are entered on the command line, the listing from
the output file indicates the pins by their identifiers named
in the pin declarations of the ABEL source file.

You can also insert a blank column in the trace level 4 and
5 printouts by entering any number greater than the
number of pins and nodes in the particular device (such as
999) as a -w parameter. For example, to insert a blank
column between pins 1 and 14, enter:

-w6..1,999,14..17

4-32

The ABEL Language Processor

4.6.1 Input Files

SIMULATE uses design and device information to simulate
the operation of a programmable device. SIMULATE can
use either the design information created by FUSEMAP or
any programmer load file conforming with the JEDEC
standard to simulate the operation of PALs, FPLAs, and
FPLSs. FUSEMAP intermediate file output must be used to
simulate PROMs.

SIMULATE does not execute Boolean equations or apply
inputs to ABEL truth tables or state diagrams; it simulates
the operation of a device as though it were already
programmed with the information contained in the input
file. If a programmer load file is used as the input to
SIMULATE, part number information must be provided by
using the -N parameter. If the output file from FUSEMAP
(specified with -O at invocation of FUSEMAP) is used for
simulation, the part number information is already available
and -N is not needed.

Furthermore, if a programmer load file is used as input to
SIMULATE, the operation of the one device associated
with that load file will be simulated. If the output from
FUSEMATP is used as input, the operation of all devices
initially specified in the source file will be simulated.

4-33

User’s Guide

4.6.2 SIMULATE Program Operation

Figure 4-2 shows a flow diagram that depicts SIMULATE
operation when evaluating the inputs to the output.
SIMULATE gets the first test vector and performs any
setup of internal registers (within the PLD) that results
from the vector applied to the inputs. SIMULATE then
calculates the product terms that result from the test vector,
the OR outputs that result from the product terms, any
macrocell outputs that result from the OR outputs, and then
any feedback functions. As indicated in figure 4-2, the
results of the SIMULATE calculations are written to the

* SIM file whenever trace level 2 or trace level 3 are
specified.

The outputs of devices with feedback cannot always be
determined by one evaluation of the input-to-output
function, but may require several successive evaluations
until the outputs stabilize. This is further explained in
section 4.6.11 and the asynchronous feedback circuit.
SIMULATE uses an iterative method to compute the
outputs. After the feedback paths have been calculated,
SIMULATE checks to see if any changes have occured with
the device since the product terms were last calculated. If
changes have occured due to feedback functions, the
calculations are again repeated. This iterative process
continues until no changes are detected, or until 20
iterations have taken place. If 20 iterations take place, the
design is determined to he unstable and an error is reported.
More detailed information on simulating devices with
feedback is presented in section 4.6.11.

4-34

The ABEL Language Processor

GETVECTOR

|

SETUP INTERNAL
REGISTERS

[

NO

20

ITERATIONS

YET?

YES

REPORT
ERROR

I

CALCULATE
PRODUCT TERMS

|

CALCULATE
OR OUTPUTS

|

CALCULATE
MACRO CELLS

|

CALCULATE
FDBK. FUNCTIONS

TRACELEVEL
2AND 3
OUTPUT

ANY
CHANGE
N PRODUCT
TERMS?

NO

TRACELEVEL 1
OuTPUT

Figure 4-2. SIMULATE Processing Flow Diagram

4-35

User’s Guide

4.6.3 Devices with Clock Inputs

Since devices with registered outputs must be clocked
before the outputs reflect any change in inputs, a clock
pulse must be specified as one of the inputs in the test
vectors for such devices. A clock input is indicated by a C
in the test vector for a low-high-low pulse, and a K for a
high-low-high pulse. The clock input in the test vector
causes SIMULATE to evaluate the inputs to the outputs
prior to the first clock pulse transition (low-to-high or
high-to-low depending on the polarity of the clock signal).
The evaluation consists of the iterative steps described in
section 4.6.2. The inputs to outputs are then evaluated with
the clock input at its active state, and then again with the
clock input at its inactive state.

When running SIMULATE with trace levels 2 or 3,
simulation data will be written to the *.SIM file for all three
evaluations. That is, internal test vectors are generated to
evaluate the design before the first clock transition, after
the first clock transition, and after the second clock
transition, thus effectively expanding the number of test
vectors. An example of SIMULATE output for a device
with a clock input, and using a single test vector, is shown
in listing 4-3. This output was generated by the command
simulate regfb -b1,1,2 -w14 which invokes SIMULATE
with test vector 1, trace level 2, and output pin 14 of the
source file regfb.abl.

In listing 4-3, the clock input is represented by the C on
the Vector In line. On the four subsequent Device In lines,
the C input goes from O to 1 and back to 0 to provide one
complete clock pulse. (Note that the first two Device
In/Device Out lines of the listing are identical. This is a
result of SIMULATE evaluating the outputs against the
inputs twice to insure that the first evaluation did not alter
functions internal to the the device, and thus affect the
outputs. See section 4.6.2.)

4-36

The ABEL Language Processor

Simulate ABEL(tm) 3.xx

Operation of the simulator on devices with feedback
FutureNet 24 Feb 1987

File:'regfb.out' Module:'regfb' Device:'FB2' Part:'P16R4!

Vector 1

Vector In [CO111..... [R]
Device In [00111000000011111000]
Device Out [........... ZHHHHHZZ.]
Device In [00111000000011111000]
Device Out [......c.... ZHHHHHZZ.]
Device In [101110000000111110001
Device Out [....vvucnn. ZHHHHHZ2Z.]
Device In [001110000000111110001]
Device Out [.....cc.... ZHHHHHZZ.]
Vector Out [....cccuennn HH......]

4 out of 4 vectors passed.

Listing 4-3. Clock Inputs Shown in Trace Level 2 Output

4-37

User’s Guide

4.6.4 SIMULATE Output File, Trace Level 0

4-38

Listing 4-4 shows the output of SIMULATE created during
processing of M6809A.ABL (listing 4-2), with pointers to
the various parts of the output. For the purposes of this
description, one of the test vectors was changed to produce
an error, and simulation was run at trace level 0 (only errors
are shown). Listing 4-5 shows the test vectors used to
create the simulation error, in which the fourth vector has
been changed. If the original test vectors shown in listing
4-2 were used, no simulation errors would occur.

The simulation output for trace level 0 lists the number of
the vector that failed, the name and number of the failed
output, and the nature of the failure. In this example,
vector 4 failed at pin 14 (ROM1) which produced an
active-high output instead of an active-low as expected by
the test vector.

Simulate ABEL(tm) 3.xx

6809 memory decode
Jean Designer FutureNet Redmond WA 24 Feb 1987

File:'m5809er.out' Module:'mé809er' Device:'U0%er' Part:'P14L4!

Vector 4
ROM1 14, 'H' found 'L' expected

7 out of 8 vectors passed.

Listing 4-4. Trace Level 0 Output for M6809A.ABL

The ABEL Language Processor

test_vectors (Address -> [ROM1,ROM2,10,DRAM])
~h0000
~h4000
~h8000
~hC000
~hEOOO
~hE8B00
~hF000
~hF800

~

1

~

1

~

~
~
~

~
-~ =
~

~
~
~

-

1 1

oo

VVVVVVVV

[R e N N

rDTxTxTxTrrxTIxT>XT
-

H, H
H, H
H, H
H, H
H, L
H, H
L, H
H, H

~
T xTxXTXTrrre
—
-

~

1 1

Listing 4-5. Test Vectors Used to Create Simulation Error

4.6.5 SIMULATE Output File, Trace Level 1

Listing 4-6 shows a trace level 1 simulation output for the
same the same source file (including the incorrect vector)
that produced listing 4-4. Another example of trace level 1
output is shown in listing 4-7. Listing 4-7 was created
using the command simulate add5 -b5,5,1 -w19 to produce
an output for test vector 5 while "watching" output pin 19
of the F159 device.

The trace level 1 output shows the actual signal outputs and
the test vectors used to perform the simulation. The actual
output associated with each test vector is shown on one line
followed by the input portion of the test vector, Vector In,
on the next line. The output portion of the test vector; i.e.,
the expected output of the device appears on the Vector Out
line below the actual output.

4-39

User’s Guide

Simulate ABEL(tm) 3.xx

6809 memory decode
File:'m580%9a.out!' Module:'mé809a' Device:'U0%a' Part:'P14L4!

Vector 1

Vector In [000000.......c000u.s]
Device Out [....ccvunnnn. HHHL...]
Vector Out [.....ccevennn HHHL...]
Vector 2

Vector In [010000..............]
Device Out [..oveucnennns HHHL...]
Vector Out [....ccvuueenn HHHL...]
Vector 3

Vector In [100000.......000cute]
Device Out [.vuecaccunnnn HHHL...]
Vector Out [.....ccevennnn HHHL...]
Vector 4

Vector In [110000.....c.00u0uue-]
Device Out [....ccvenenns HHHL...]
Vector Out [.....ccccnenen LHHL...]
Vector 4

ROM1 14, 'H' found 'L' expected

Vector 5

Vector In [111000.......c0ccu.s]
Device Out [.....cvcunnns HLHH...]
Vector Out [..c.ceenvecnns HLHH...]
Vector 6

Vector In [111010.....cccveunn.]
Device OUt [..ivcncennans HHHH...]
Vector Out [...cccveurnns HHHH...]
Vector 7

Vector In [111100.....cc0nuenes]
Device Out [.....cvvnnnns HHLH...]
Vector Out [.....cucvnen. HHLH...]
Vector 8

Vector In [111110....cccvuen...]
Device Out [.......ccuuee LHHH...]
Vector Out [.......ccnne. LHHH...]

7 out of 8 vectors passed.

Listing 4-6. Level 1 Simulation Output, All Vectors

4-40

The ABEL Language Processor

Simulate ABEL(tm) 3.xx
5-bit ripple adder

File:'add5S.out' Module:'ADD5' Device:'BJ2A' Part:'F159!

Vector 5

Vector In [CO0001T....0 . cuecieerennecancacccnnncnncnnnccannnnns]
Device Out [..... ZLLL. .HLLLLHHH.LLLLLLLL .o ae s ns LLLLLLLLLHHHLHLL]
Vector Out [.....ceuennn I 1

10 out of 10 vectors passed.

Listing 4-7. Level 1 Simulation Output, Single Vector

4-41

User’s Guide

4.6.6 SIMULATE Output File, Trace Level 2

Trace level 2 provides information similar to that described
for level 1, except that level 2 output shows the device
inputs and outputs for each iteration of the simulator
(described in section 4.6.2). Listing 4-8 shows the level 2
output for the same source file used to generate listing 4-7.
The command used to the produce listing 4-8 is simulate
add5 -b5,5,2 -w19. Note that the output is expanded over
that shown in listing 4-7 to show each interation of the
simulate operation (see also section 4.6.11) that takes place
to stabilize the device output at pin 19.

Simulate ABEL(tm) 3.xx
5-bit ripple adder

File:'add5.out' Module:'ADD5' Device:'BJ2A' Part:!'F159!

Vector 5

Vector In [CO000T....0 . cuccuuencnrencacencsonnannnsancansnnnns]
Device In [0000010000000000000000000000000000000000000001111000]1
Device Out [..... ZLLL. .LLLLLLLLLLLLLELL . enanns LLLLLLLLLHHHHLLL]
Device In [00000100000000000000000000000000000000000000011110001
Device Out [..... 4 8 S T I I I O I LLLLLLLLLHHHHLLL]
Device In [10000100000100001110000000000000000000000000011110001
Device Out [..... ZLLL. HLLLLHHH. LLLLLLLL .. ovenas LLLLLLLLLHHHHLLL]
Device In [10000100000100001110000000000000000000000000011101001
Device Out [..... ZLLL. .HLLLLHHH.LLLLLLLL .. saanas LLLLLLLLLHHHLHLL]
Device In [10000100000100001110000000000000000000000000011101001
Device Out [..... ZLLL. .HLLLLHHH.LLLLLLLL .. eeenns LLLLLLLLLHHHLHLL]
Device In [00000100000100001110000000000000000000000000011101001
Device Out [..... Z2LLL. .HLLLLHHH.LLLLLLLL .. ooaaas LLLLLLLLLHHHLHLL]
Vector Out [.....cccuun.. I 1

10 out of 10 vectors passed.

Listing 4-8. Level 2 Simulation Output, Single Vector

4-42

The ABEL Language Processor

4.6.7 SIMULATE Output File, Trace Level 3

Trace level 3 simulation provides all trace level 2
information, plus internal device information such as OR-
gate outputs, register outputs, and the final outputs.
Figure 4-3 shows one section of a trace level 3 listing with
pointers to its various parts and a section of the
corresponding logic diagram. Only a portion of the trace
level 3 simulation output is shown since level 3 output files
can be quite large.

Fuse and node numbers shown on the table are numbers
assigned by FutureNet to the fuses in the device and are
shown in the Logic Diagrams provided with the ABEL
package. The OR-gate and register outputs shown in the
simulation output are internal signals not available as pin
outputs that can be very useful for debugging designs.

The large size of trace level 3 simulation files is due not
only to the complete listing of all device internals, but also
due to expanded test vectors caused by clock inputs (see
section 4.6.3), and the numerous iterations of the simulator
required to stabilize the outputs of some designs (see section
4.6.11). Trace level 3 may be used with a breakpoint to
specify a limited number of test vectors, and the -W
argument to limit the number of outputs included in the
simulation output file.

In figure 4-3, the product term line shows the state of 33
product terms. This is because a F159 is used in this
example, and the input array has 33 possible terms. (Refer
to the F159 logic diagram included with your Logic
Diagram Package as part of the ABEL product for details
on the F159.) The product terms line is followed by the
states of various nodes, input pins, and product terms that
exist for indicated states on the product terms line.

Table 4-2 defines the notation used in the simulation output
files to identify product terms and nodes.

4-43

User’s Guide

Table 4-2. Notation Used in Simulation Output Files

Notation Description

Current Nodes

OE Output enable

AR Asynchronous Reset

SR Synchronous Reset

AP Asynchronous Preset

SP Synchronous Preset

LD Register Load

cK Register Clock

FC Flip/Flop Mode control (F159 or P32vX10)
OR Normal output OR gate

IN1 First input to a Flip/Flop ("J")
IN2 Second input to a Flip/Flop ("K")

OR Node Types

PTnnnn One or more product term, PAL or FPLS
(nnnn = First Fuse)

LOW Always logic level 0

HIGH Always logic level 1

Pin nn Input from pin

Node nn Input or feedback from a internal node

Pin nn & nn The AND of two pins

Pin nn # nn The OR of two pins

PROM nn Bit nn of a prom output

4-44

The ABEL Language Processor

Notation

Table 4-2. (continued)

Description

PRODUCT Term Display

Pin nn

Pin nn

nn & nn

PTnnnnn
PTnnnnn

PTnnnnn

PTnnnnn

PTnnnnn

PTnnnnn

[y

(1]

0 &1

[TTFFTT
[TT $ FT

[TT # FT

rT&n

[T-FF-T

]

[TTTTTFTFTTTFFFFTTF]

[TFFFFFFTTF

]

Logic level 1 from a pin or
node

Logic level 0 from a pin or
node

Logic level O from a pin or
node

Multiple product terms

XOR of two groups of product
terms

OR of two groups of product
terms

AND of product term and
inverted pin (P20RA10)
Shared product terms

('-' term not connected)

Multiple line display of large OR

4-45

User’s Guide

4-46

(LOGIC TERMS) (CONTROL TERMS)
P R L D

0—=
1

U0

\'* 1

TN= P
| J
(n)
1 - K JACK
Vector 1
Vector In [CI1111....0.ceciienrennrnnnannrnnelArieccnncncnans]

PT input[101¢ 1010 0101 0101 0101 0101 1001 010

HIGH [T 1 EN=H
Node 23 [0] AR=L
Node 22 [1 1 AP=L
Node 26 [0] LD=L
Pin 110 1 CK=L
PT 2058 [F 1 FC=L
PT 0 [--=----e-mmmeccmeecann]
[-------- 1 IN1=L
PT 0 [r------mmemememoomnnees 1
[--------] IN2=L Q=L Pin19=H Vec=.

Figure 4-3. Trace Level 3 Simulation Output

The ABEL Language Processor

4.6.8 SIMULATE Output File, Trace Level 4

Trace level 4 provides a waveform representation of the
inputs and/or outputs of the device for each of the
specified test vectors. The -B flag (breakpoints) can be
used to specify vectors to be used and the -W flag can be
used to specify which inputs and outputs are to appear in
the output file. Up to 14 pins can be specified as long as
no blank columns are inserted (by means of the "999" in the
-w parameter) in the output. If no -W is used, SIMULATE
automatically generates the signals appearing at the first 14
output pins.

Listing 4-9 shows the waveform generated by running the
same souce file used in listings 4-4 and 4-6 (address
decoder, m6809a.abl). The command simulate m6809a -t4
-w1..6,999,17 was used to generate a trace level 4
waveform of pins 1 through 6, and 17 of the address
decoder. Each of the specified pins is shown with the logic
high and low levels for each of the eight test vectors.

Simulate ABEL(tm) 3.xx
6809 memory decode

File:'m680%a.out' Module:'m6809a! Device:'U09a' Part:'P14L4!

-
-
-
-
-
-
X>» 00

High
Level
Vo001 | I_ Logic
vooo2 |_ |
V0003 |1
V0004 |
vooos |
V0006 |
V0007 |
V0008 |
8 out of 8 v

|
|
I
|
I
ectors passed.

Listing 4-9. Trace Level 4 Simulation Output

4-47

User’s Guide

Listing 4-10 shows another example of trace level 4. The
waveform was generated by simulating the same souce file
used in listings 4-7 and 4-8 (add5.abl). The command
simulate shiftent -b14,30,4 -w1..5,999,12..15 was used to
generate a waveform of the signals appearing at pins 1
through 5, and 12 through 15 for test vectors 14 through 30.

Simulate ABEL(tm) 3.xx
universal counter / shift register
File:'shiftent.out! Module:'shiftcent! Device:'IFL4' Part:'F159!

wkik Shift Left wkrk

c J

L K I I I F F F F

k b 1 2 3 o 1 2 3
Vool |- |_ | ‘ _ o _|]
voors |- | | |- | -l |
V0016 |- -
voo17 |- |- _
Vo018 |- | | | l o | I
Voot |- I I I I I

dwdkd Count up *Hkwk

L aXy)
=~
—
—

V0020
V0021
V0022
V0023
V0024
V0025
V0026
V0027
V0028
V0029
Vo030 |- | | |
36 out of 36 vectors passed.

Listing 4-10. Trace Level 4 Simulation OQutput

4-48

The ABEL Language Processor

4.6.9 SIMULATE Output File, Trace Level 5

Trace level 5 is similar to level 4 except that instead of a
pictoral waveform representation of the specified pins, the
signal levels are represented by H, L, and Z for logic high,
logic low, and high-impedance state. Since the output
produced by trace level 5 is more compact that that of trace
level 4, it allows specification of more device pins than
trace level 4.

Listing 4-11 shows the level 5 output for the same
shifter/counter shown in Listing 4-10. The command used
to generate this report is simulate shiftcnt -b14,30,5
-wl1..9,11,999,12..15,999,16..21. Note that more pins can
be shown with level 5 than can with level 4. Also, pins that
do not have declared signal names are name simply by their
pin numbers and a "P" prefix, such as for pins 6 through 9
and 16 through 19.

4-49

User’s Guide

ABEL(tm) 3.xx

Simulate

universal counter / shift register

File:'shiftcnt.out! Module:'shiftcnt! Device:'IFL4' Part:'F159!

***** Count Up and Shift Left *¥¥¥*

*kkkk Shift right dekkekk

Pin Numbers

Hhkkk Shift left *hkrw

Pin Identifiers

PPPPP

PPPP

w o
N O
— O
«—
- N
= 0

w M
w o
w e
w o

o w
oo
o
on
© 0
—-M
-
—
Do
O — X

kkk Count up Kkkkk

PPPPP

PPPP

w o
N o
- O
— &
— N
«— 0

w M
w N
w
wo

O w
oo
o
on
oo
—M
- O
——
i =)
QO - X

4 rXrTXTTXrTXTXTXTITrTxT XTI
00000000000
NNNNRNNNNNNRN
NNNNNNNNNNRN
NNNNNNNNNNN
NNNNNNNNNNRN

EXTXTXTITTIIT XTI
rrrrddddxTr>@x
rrddTrXrrTrdaxTxd
T X JdXJdJTXrJdx JdX

0000000000 O
NNNNNNNNNNRN
NNNNNNNNNNRN
NNNNNNNNNNN
NNNNNNNNNNRN
—O0O000O0O0OO0O00OO0O
0OCO0O0O0OO0O000O0O0O0O0O

36 out of 36 vectors passed.

Listing 4-11. Trace Level 5 Simulation Output

4-50

The ABEL Language Processor

4.6.10 SIMULATE Output File, Two Trace Levels

As shown in the preceding examples, you can use -b
(breakpoints) to change trace levels at specific test vectors.
In many of the preceding examples, the default trace level 0
was used to a certain test vector, such as in section 4.6.8
where trace level 5 was invoked at test vector 14. Listing
4-12 shows the result of changing from level 4 to level 5 at
vector 5. The command used to generate this listing is
simulate m6809a -t4 -b5,8,5 -w1..6,999,14..17.

Simulate ABEL(tm) 3.xx

6809 memory decode
Jean Designer Data 1/0 Corp Redmond WA 24 Feb 1984

File:'mb80%9a.out' Module:'mé809a' Device:'U09a' Part:'P14L4!

R R D
A A A A A (o} o} R
1 1 1 1 1 1 M I M A
5 4 3 2 1 0 1 2 M
vooor || | | || I T T
voooz |- T| | | | | R
vooos | 2| | || N
vooos | 1| || I
R RD
AAAAAA O OR
111111 MIMA
543210 102M
Vo005 111000 HLHH
Vo006 111010 HHHH
V0007 111100 HHLH
Vo008 111110 LHHH
8 out of 8 vectors passed.

Listing 4-12. Trace Levels 4 and 5 in the Same Output File

4-51

User’s Guide

4.6.11 Simulation and Designs With Buffered Outputs

When a design with 3-state buffered outputs is simulated
with trace levels 4 and/or 5, the states of the outputs are
reported as H, L, 1, 0, Z, or X, depending on the test
vectors used, whether or not the pin is bidirectional, and
whether the output buffer is enabled or not.

With Simulation trace level 5, device pins that are output-
only, or are bidirectional and configured as outputs, the
output will be reported as follows (in order of significance):

if the buffer is enabled, the active state (H or L) of the
output (that results from the levels applied at the input
pins by the input test vector)

or

if the buffer is not enabled, the same value (1, 0, Z, or
X) applied to that output by the input test vector

or

Z if the output is not enabled and no 1 or O is applied
to that output by the input test vector.

4.6.12 Simulation and Unspecified Inputs

4-52

When the input test vector does not specify a logic level to
be applied to a particular input, or set of inputs, simulation
uses the default value assigned by the -X parameter. Using
don’t cares (X’s) in the input test vector can cause the
input(s) to be unspecified.

—

The ABEL Language Processor

4.6.13 Simulation for Designs With Feedback

Logic designs containing feedback present a unique
simulation problem because the current output on one or
more gates in the design depends on the outputs of other
gates. Thus, determining the outputs of a design with
feedback is not a simple input-to-output determination.
Propagation delays, the number of gates in the feedback
path, and, in synchronous feedback circuits, clock inputs
must be taken into account. When an input to the design
changes, the outputs may not assume their new state
(stabilize) immediately. Synchronous circuits must be
clocked before the outputs reflect changes in the inputs.

SIMULATE determines the final outputs of feedback
circuits through iteration, calculating and monitoring the
outputs until they stabilize or are clocked out to give the
final outputs. (If outputs do not stabilize after 20
iterations, an error message is given.) The iterations, final
outputs and the states of the internal register are provided
in the simulation output file depending on the trace level
you choose to simulate under. Figure 4-4 shows a simple
synchronous circuit with feedback. One clock pulse is
required after the inputs change to cause a corresponding
change in the outputs. The source file describing this
circuit and the simulation output for trace levels 1 and 2 are
shown in listings 4-13 through 4-15.

Trace level 1 output shows the test vectors and the final
outputs after the clock pulse. Trace level 2 shows the test
vectors and the value of the cutputs before and after the
clock. Trace level 3 results in a large simulation output file.
If you wish to examine the trace level output for this
circuit, you can run ABEL on "regfb.abl" with trace level 3
and examine the "regfb.sim" file.

4-53

User’s Guide

4-54

INIT ———{ a =
DI D %

CLK > G—l OE
D2 F2
D3 { }

Figure 4-4. Synchronous Feedback Circuit

module regfb
title 'Operation of the simulator on devices with feedback
FutureNet 24 Feb 1987

FB2 device 'P16R4!;

clk,OE pin 1,11;

INIT,D1,D2,D3 pin 2,3,4,5,;

F1,F2 pin 14,13;
equations

IF1 := D1 & INIT;

IF2 =D2 & !F1;

ENABLE F2 = D3;

test_vectors (fclk,o0E,INIT,D1,D2,D03]1 -> [F1, F21)
[.c., 0, 0,11, 17 ->101 11;
t.c., 1, 0,0,0, 01 -> [.2.,.2.];
r.c., 1, 1,1, 1, 1 ->1.2.,01;
ro,o0 0,0,0,0 ->10,.2.1;

end regfb

Listing 4-13. Source File: Synchronous Feedback Circuit

The ABEL Language Processor

Simulate ABEL(tm) 3.xx

Operation of the simulator on devices with feedback
FutureNet 24 Feb 1987

File:'regfb.out' Module:'regfb' Device:'FB2' Part:'P16R4!

Vector 1

Vector In [CO111..... [0]
Device Out [........... ZHHHHHZZ.]
Vector Out [............ HH......]
Vector 2

Vector In [C0000..... | IR]
Device Out [........... 22222222.]
Vector Out [............ 22......]
Vector 3

Vector In [C1111..... Torennenn.]
Device Out [........... 21222222.]
Vector Out [............ LZ...... 1
Vector 4

Vector In [00000..... [0]
Device Out [........... ZZLHHHZ2Z.]
Vector Out [.....cc..u.. A R]

4 out of 4 vectors passed.

Listing 4-14. Simulation Qutput, Trace Level 1:
Synchronous Feedback Circuit

4-55

User’s Guide

Simulate ABEL(tm) 3.xx

Operation of the simulator on devices with feedback
FutureNet 24 Feb 1987

File:'regfb.out' Module:'regfb' Device:'FB2' Part:'P16R4!

Vector 1

Vector In [CO111..... []
Device In [001110000000111110001
Device OUt [..vcvacanns ZHHHHHZZ.]
Device In [00111000000011111000]
Device Out [.evcaennan- ZHHHHHZZ.]
Device In [10111000000011111000]
Device Out [........... ZHHHHHZ2Z.]
Device In [00111000000011111000]
Device Out [...cevannn. ZHHHHHZZ.]
Vector Out [............ HH......]
Vector 4

Vector In [00000..... Oveeeennes]
Device In [00000000000000111000]
Device Out [........... 2ZLHHHZZ.]
Device In [00000000000000111000]
Device Out [........... 2ZLHHHZ2Z.]
Vector Out [............ 2l......]

4 out of 4 vectors passed.

Listing 4-15. Simulation Output (partial), Trace Level 2:
Synchronous Feedback Circuit

4-56

The ABEL Language Processor

As a second feedback example, figure 4-5 shows an
asynchronous circuit that requires more than one simulation
iteration before the outputs stabilize. Listing 4-16 shows
the source file describing the circuit and listings 4-17 and
4-18 shows the simulation output for trace levels 1 through
3. Trace level 0 output is not shown since there are no
simulation errors in this design and level zero only reports
errors.

Trace level 1 shows the final outputs after they have
stabilized, and also the test vectors. Trace level 2 shows the
output values at the different iterations as the outputs
stabilize, as well as the final outputs and the test vectors.
Notice that for the inputs provided in vector 2, three
iterations are needed before the outputs stabilize. Vector 1
requires only one iteration to provide stable outputs. Trace
level 3 output is not shown but can be generated by running
ABEL with "feedback.abl" to generate the "feedback.sim"
file shown in listing 4-12,

o D
N

Figure 4-5. Asynchronous Feedback Circuit

4-57

User’s Guide

4-58

module feedback
title
'Operation of the simulator on devices with feedback

FB1 device 'P16HD8';

D1,02,03 pin 1,2,3;
F1,F2,F3 pin 13,14,15;

equations
F1 =D1;
F2 =D2 & F1;
F3 =D3 & F2;

test_vectors ([D1,D2,D03] -> [F1,F2,F31)
[o,0,0 ->10, 0, 0];
t1,1, 171 ->101,11
end feedback

Listing 4-16. Source File: Asynchronous Feedback Circuit

Simulate ABEL(tm) 3.xx

Operation of the simulator on devices with feedback

File:'feedback.out' Module:!feedback! Device:'FB1' Part:'P16HD8!

Vector 1

Vector In [000.................]
Device Out [........... LLLLLLLL.]
Vector Out [............ LLL.....]
Vector 2

Vector In [MM1.iieiinivnnnnnns]
Device Out [......cucune LHHHLLLL.]
Vector Out [............ HHH.]

2 out of 2 vectors passed.

Listing 4-17. Simulation Qutput, Trace Level 1:
Asynchronous Feedback Circuit

The ABEL Language Processor

Simulate ABEL(tm) 3.xx

Operation of the simulator on devices with feedback
FutureNet 24 Feb 1987

File:'feedback.out' Module:'feedback' Device:'FB1!
Part:'P16HD8!

Vector 1

Vector In [000......ccccueuuunnn]
Device In [00000000000000000000]1
Device Out [........... LLLLLLLL.]
Device In [00000000000000000000]1
Device OUt [......uueen LLLLLLLL.]
Vector Out [......cc.... LLL.....]
Vector 2

Vector In [MM11..eceierncnnnnns]
Device In [11100000000010000000]
Device Out [........... LHLLLLLL.]
Device In [111000000000110000001]
Device Out [.....eceunn LHHLLLLL.]
Device In [111000000000111000001
Device Out [........... LHHHLLLL.]
Device In [11100000000011100000]1
Device Out [........... LHHHLLLL.]
Vector Out [....ccveeunn HHH.....]

2 out of 2 vectors passed.

Listing 4-18. Simulation Output, Trace Level 2:
Asynchronous Feedback Circuit

4-59

User’s Guide

4.6.14 EZSIM - A Batch File for Re-Simulation of a Design

4-60

EZSIM is a batch file that invokes PARSE, TRANSFOR,
and SIMULATE only; and omits REDUCE and FUSEMAP.
EZSIM allows for simulation on a design that has previously
been run through ABEL and further testing is required by
changing the test vectors in the source file. Since only the
test vectors in the source file are being changed, there is no
need to perform the REDUCE and FUSEMAP operations.

EZSIM takes the test vectors from the *.TM2 file generated
by TRANSFOR and the fuse information from the *.JED
file, generated during a previous run of FUSEMAP, to run
SIMULATE on the design. Performing simulation with
EZSIM is faster than rerunning ABEL on the design and
allows you to alter test vectors in the source file and run
SIMULATE again with no time lost to REDUCE and
FUSEMAP.

The ABEL Language Processor

4.7 DOCUMENT

DOCUMENT [-Iin_ file] [-Oout_file]l [-V] [-Fn] [-G] [-S]

“Tin_file

-Oout_ file
-V

-Fn

-G
-Gn

-Qxyz

[-Qwxyz]...

infile is an intermediate output file from
FUSEMAP

design documentation file
list the test vectors
list the fuse map and/or terms

n=0 list the fuse map and the device
utilization information

n=1 list only the device utilization information
n=2 brief fuse map

list the default chip diagram
n=0 : DIP diagram
n=1 : PLCC package diagram

list the symbol table

select equations to be listed, where w, X, v,
and z can be any combination of the
following:

: list original equations

: list transformed equations

: list reduced equations

: create the output file in PALASM format

WN=O

4-61

User’s Guide

4-62

DOCUMENT creates design documentation from
information provided by previous steps of the language
processor. The documentation is written to the file
specified by the -O parameter or to the standard output
device in the event that no output file is specified. If the
-I and/or -O parameters are omitted (no file specified), you
will be prompted for the input and/or output file names.

The design documentation contains the following
information for each device in the source file if the
appropriate parameter is set:

Symbol table constant, pin, node, module and macro
identifiers listed alphabetically.

Reduced

equations equations produced by REDUCE.
Transformed

equations equations produced by TRANSFOR.

Equations original equations from the source file
and equations generated by PARSE from
truth tables and state diagrams.

Test vectors test vectors described as inputs and
outputs, taken from the PARSE
intermediate output file.

Fuse map graphical representation of the fuse states

from the programmer load file.
Chip Diagram a diagram showing the device pinouts and

the identifiers assigned to each pin.

If no parameters are supplied in the DOCUMENT
invocation, no documentation listing will be generated.

The ABEL Language Processor

-Q : List Equations Parameter

The -Q parameter controls which equations, if any, appear
in the documentation output file. Up to three numbers (0,
1, or 2) can be specified following -Q, or the -Q flag can
be repeated with a different number for each type of
equations listing desired. For example, both "-q02" and "-q0
-q2" cause the original and reduced equations to be
included as part of the documentation output file.

: List Fuse Map and Terms Utilization

The -F parameter controls the listing of fuse maps and
terms. -FO lists a complete fuse map, the number of terms
used, and the utilization of each term with respect to the
outputs (utilization report). -F1 lists only the number of
terms used and the utilization report. -F2 or -F lists an
abbreviated fuse map, where fuse rows that have all their
fuses intact are not shown. -F2 eliminates showing many
rows of intact fuses in devices where only a small portion
of the product terms are used in the design.

Listing 4-19 shows output from DOCUMENT. This output
was created by processing the source file, M6809A.ABL
(listing 4-2) using the parameters -V, -F, -G, -S, and -Q2.
The listing contains a symbol table, the reduced equations, a
chip diagram, a fuse map, and the test vectors. In the fuse
map, intact connections are shown as "X"s, and blown fuses
(no connection) are shown as dashes. The test vector inputs
are shown on the left side of the "->" symbol; outputs
appear on the right side.

4-63

User’s Guide

Page 1

ABEL(tm) Version 3.00 - Document Generator 18-Sep-87 12:34PM
6809 memory decode

Jean Designer FutureNet Redmond WA 24 Feb 1987

Symbol list for Module mé809a

A10 Pin 6 pos, com

A1 Pin 5 pos, com

A12 Pin 4 pos, com

A13 Pin 3 pos, com

A4 Pin 2 pos, com

A15 Pin 1 pos, com

Address ([A15,A14,A13,A12,A11,A10, .X., .X., .X.,
Koy Xa, Xy Xe, WX, XL, W XADD)

DRAM Pin 17 neg, com

H 1

10 Pin 15 neg, com

L 0

ROM1 Pin 14 neg, com

ROM2 Pin 16 neg, com

U0%a device P14L4

X (.X.)

m680%a Module Name

Page 2

ABEL(tm) Version 3.00 - Document Generator 18-Sep-87 12:34PM

6809 memory decode
Jean Designer FutureNet Corp Redmond WA 24 Feb 1987
Equations for Module mé80%a

Device U0%a

- Reduced Equations:
DRAM = I(IA13 # 1A14 # 1A15);
10 = 1(1A11 & 1A12 & A13 & A14 & A15);

ROM2

TOIATT & A12 & A13 & A4 & A15);

ROM1

T(A11 & A12 & A13 & A14 & A15);

Listing 4-19. Documentation Output for M6809A.ABL
(continued on next page)

4-64

The ABEL Language Processor

Page 3

ABEL(tm) Version 3.00 - Document Generator
6809 memory decode

Jean Designer

Chip diagram for Module m&80%9a

Device U0%a

A15
Al4
A3
A12
A1

A10

GND

19
18

& O WN

17
16
15
14
13

VO R N o wun

12

18-Sep-87 12:34PM

FutureNet Redmond WA 24 Feb 1987

Vee

DRAM
ROM2
10

ROM1

Listing 4-19. Continued.

4-65

User’s Guide

Page 4
ABEL(tm) Version 3.00 - Document Generator 18-Sep-87 12:34PM
6809 memory decode

Jean Designer
Fuse Map for Module m6809a

Device U09a

4-66

0:
28:
56:
84:

112:
140:
168:
196:
224:
252:
280:
308:
336:
364:
392:
420:

FutureNet Redmond WA 24 Feb 1987

XXXXXXXXXX XXXXXKXXXX XXXXXXXX

X-X-X---X-
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
X-X-X----X
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
X-X-X---X-
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

...X..--.. c e ...

XXXXXXXXXX XXXXXXXX
XXXXXXXXXX XXXXXXXX
XXXXXXXXXX XXXXXXXX
....X
XXXXXXXXXX XXXXXXXX
XXXXXXXXXX XXXXXXXX
XXXXXXXXXX XXXXXXXX
..X......... ceecmme.-
XXXXXXXXXX XXXXXXXX
XXXXXXXXXX XXXXXXXX
XXXXXXXXXX XXXXXXXX

Listing 4-19. Continued.

The ABEL Language Processor

Page 5

ABEL(tm) Version 3.00 - Document Generator 18-Sep-87 12:34PM

6809 memory decode
Jean Designer FutureNet Redmond WA 24 Feb 1987
for Module m5809a

Device U09a

Device Type: P14L4 Terms Used: 6 out of 16
Terms
Pin # | Name | Used | Max | Term Type | Pin Type
1 A15 -- -- --- Input
2 A4 -- -- --- Input
3 A13 -- -- --- Input
4 A12 -- -- .- Input
5 A1 -- -- .- Input
6 A10 -- -- .- Input
7 -- -- .- Input
8 -- -- --- Input
9 -- -- --- Input
10 GND -- -- - GND
1" -- -- --- Input
12 -- -- --- Input
13 -- -- --- Input
14 ROM1 1 4 Normal Output
15 10 1 4 Normal Output
16 ROM2 1 4 Normal Output
17 DRAM 3 4 Normal Output
18 -- -- -- Input
19 -- -- --- Input
20 Vece -- -- .- vce

Listing 4-19. Continued.

4-67

User’s Guide

4-68

Page 6

ABEL(tm) Version 3.00 - Document Generator

6809 memory decode
Jean Designer FutureNet
Test Vectors for Module mé809a

Device U09a

[0000 00-- === === ===
[0100 00-- === === ===
[1000 00-- === -==- ----
[1100 00-- === === ===
[1110 00-- === === =---
[1110 10-- ===+ === ===
(1111 00-- === === =on-
(1111 10-- === =sen =on-

O~NOVIESWN =

end of module m680%9a

18-Sep-87 12:34PM

Redmond WA 24 Feb 1987
O -HHH L---1;
e -HHH L---1;
O -HHH L---1;
[-HHH L---1;
[---- -een oeee -HLH H---1;
[-=mn wmen eeee -HHH H---1;
[-=en wemn eeee -HHL H---1;
[--mn mree eee -LHH H---1;

Listing 4-19. (continued)

5. Transferring the Programmer Load File

When you have completed the processing of an ABEL
source file, a file named filename.JED will exist in your
working directory. This file is the programmer load file,
and contains the data necessary for a logic programmer to
program a logic device with your design. Transferring the
programmer load file amounts to downloading it from your
system to the logic programmer over an RS232-compatible
communications link. Data I/O’s PROMlink, version 2.0 or
greater, can be used to transfer programmer load files from
MS-DOS systems. IF PROMlink is used, refer to the
PROMIink manual for details.

5-1

User’s Guide

5.1 Downloading to a Model 29 with LogicPak

5-2

The following steps are necessary to transfer a programmer
load file from an IBM PC/XT/AT (or compatible) to a Data
I/0 Model 29 programmer with a LogicPak installed. If
you are operating with a system other than an IBM
PC/XT/AT or compatible, refer to the System Specific
Information provided with your ABEL package for
variations in the downloading procedure.

1.

Connect the cable (see Figures 5-1 and 5-2) to the
COML1: port on the IBM PC and to the serial interface
of the Model 29.

Configure the Model 29 for 4800 baud with no parity
(see the Model 29 manual). Parity should be set with
the power off.

Configure the IBM PC for 4800 baud (9600 baud could
also be used) with no parity by issuing the following
command at the DOS prompt on the PC:

MODE COM1:4800,n,8

Enter the family code and pinout code of the device to
be programmed into the Model 29 as follows:

VERIFY RAM DEVICE START XXXX
where XXXX is the 4-digit family and pinout code. A
list of these codes may be found in the LogicPak

manual or on the Data I/O Wallchart of Programmable
Devices.

Prepare the Model 29 to receive the load file. Enter
the following at the 29:

SELECT E B START

Transferring the Programmer Load File

The Model 29 will display a stationary action symbol.
6. At the PC, execute the command:
COPY d:filename.ext COMI1:

where d is the drive specification, and filename and ext
are the filename and extension of the programmer load
file. The load file extension is ".JED". The Model 29
action symbol should rotate when the file is being
transferred.

7. When the transfer is complete, the Model 29 will
display the fuse checksum signifying that the
programmer load file is now resident in programmer
memory.

IBM Programmer:
25-Pin Female 25-Pin Male

1 1

6

20:’

NOTE: The 25-pin male connector is also known as DB25P, the
female is a DB25S.

Figure 5-1. Cable Configuration for Transfer Between an
IBM-XT and a Data I/O Programmer

5-3

User’s Guide

IBM: 9-pin Programmer: 25-pin
Female Male
2 2
3 3
4
5 ;
s
7
5

Figure 5-2. Cable Configuration for Transfer Between an
IBM-AT and a Data I/O Programmer

Transferring the Programmer Load File

5.2 Downloading to a UniSite™ Universal

Programmer

Refer to Chapter 2 of your UniSite Operator’s Manual for a
complete sample procedure.

5.3 PROM Download (Model 29/UniPak2)

Unless you are using PROMlink, the following steps are
necessary to transfer a programmer load file from the IBM
PC to a DATA I/0O Model 29 programmer with a UniPak2:

1.

Connect the cable (see Figure 5-1) to the COMI1: port
on the IBM PC and to the serial interface of the Model
29.

Configure the Model 29 for 4800 baud with no parity
(see the Model 29 manual). Parity should be set with
the power off.

Configure the IBM PC for 4800 baud with no parity by
issuing the following command at the DOS prompt on
the PC:

MODE COM1:4800,n,8
Select the microprocessor transfer format of the load
file. A list of supported microprocessor formats may
be found in in table 4-1. For example, the code for
the Motorola Exorciser format is 82. To select this
format enter the following at the 29:

SELECT 8 2 START START

5-5

User’s Guide

5-6

Prepare the Model 29 to receive the load file. Enter
the following at the 29:

COPY PORT RAM START
The Model 29 will display a stationary action symbol.
At the PC, execute the command:

COPY d:filename.ext COMLI:
where d is the drive specification, and filename and ext
are the filename and extension of the programmer load
file. The load file extension for PROMs is .Pxx where
xx is the format code (see table 4-1). The Model 29
action symbol should rotate when the file is being

transferred.

When the transfer is complete, the Model 29 will
display the the fuse RAM sumcheck.

6. ABEL Utilities

This section describes the utilities provided in addition to
the ABEL software.

6.1 TOABEL, PALASM to ABEL Converter

TOABEL -linfile -Ooutfile

[-Tin_ file] PALASM input file

[-Oout_ file] ABEL output file

TOABEL is a conversion utility that you can use to convert
PALASM (version 1.0 only) logic descriptions to ABEL
logic descriptions. TOABEL creates an ABEL source file
that can be processed normally with the ABEL language
processor. This means that the design can be reduced,
simulated (if test vectors are supplied), documented and
loaded into a logic programmer just as with any other
ABEL source file. Note that test vectors for devices with
programmable inputs and outputs (i.e., P16L8) may require
editing because TOABEL cannot determine whether a pin is
an input or an output.

User’s Guide

6.2 IFLDOC

6-2

IFLDOC [-Iin_ file] [-Oout_file] [-Ndevice_ typel

-Iin_ file JEDEC-format input is in in_ file

-Oout_ file output in a Signetics program table
format is written to out_file

-Ndevice__type device_type indicates the type of device
described by in_ file

IFLDOC is a conversion program that converts JEDEC-
format files to listing files in a format similar to Signetic
Program Logic tables. The listing file created is for
documentation purposes only; it will not drive any device
programmer.

JEDEC-format input contained in in_ file is converted to
the Signetics-like form and written to out_ file. The device
type described by the JEDEC file must be explicitly
specified with the -N parameter. If in_file and out_ file
are not specified, input and output are received and sent
from the standard input and output devices. A device type
must be specified; there is no default value. (If the
programmer load file was generated by ABEL or GATES,
the IFLDOC program can extract the device type from a
string in the file header.)

For devices with programmable flip-flop types, IFLDOC
assumes that the flip-flops are J-K flip-flops unless the Fc
line is programmed and the individual FF mode is set to A.
(Refer to IFL logic diagrams for the function and
placement of these lines.)

OUTPUT (Fr)

ABEL Utilities

L
OR

;NEXT STATE

STATE (Ps)}

9876543210; 543210

5'43210;765'43210

OPTION(P/E):

1 PRESENT

INPUTS (Im)

if12.jed

described by if12.jed is an F82s5105. The output file

ifldoc -Iif12.jed -Oifl2.tab -nf82s105

Input file:

format data contained in ifl2.jed to a program table format
written to ifl2.tab . The -N parameter specifies that the

This command invokes IFLDOC to convert the JEDEC-
device

resulting from this command is shown in Figure 6-1.

Example:

H
H

|

----LLLL

'

H!

| === eH ==aa-a-H
I I

i - -LLL L

'
a
000000006000 00C
1TO000000000000000
1TO000000000000000
TTO000000000000000
1 1000000000000 00 0
1 1000000000000 00O

e - - - H

CEX XTI AIT000030006050500
1T000000000000000
L 10000000000 00000
1000000000000 000
1000000000000 000
1000000000000 000
1000000000000 000
1000000000000 000
looooo0000000000
1000000000000 000
1000000000000 000
1ooooo0000000000O
1ocooo00000000000
1000000000000 000D
1000000000000 000
loocoo0o00000000000

6-3

Figure 6-1. Sample Output File From IFLDOC

User’s Guide

6.3 ABELLIB, Library Manager

6-4

ABELLIB [library] [command] { files }

ABELLIB is used to maintain the ABEL library files. The
device library (abel3lib.dev) is a single file that contains all
specifications for all devices currently supported by the
ABEL software package. The "include" library (abel3lib.inc)
is a single file that contains text files that may be included
in an ABEL source file via the LIBRARY statement.

The ABELLIB library manager is useful in cases where disk
space is at a premium. This program allows you to extract
individual device files and/or edit the libraries so that
unused device files or "include" files are eliminated from
the libraries.

With ABELLIB, you can add, delete, replace, and extract
files from a library as well as list its contents. The
command flags available are:

-a add files to the library

-d delete files from the library
-e extract files from the library
-1 list the contents of the library

When using ABELLIB, you must specify the full path and
file name of the library file to be examined and modified,
unless the file is in your current directory.

The default library file name is abel3lib.dev. If you do not
specify a library name on the command line, this file is
referenced by ABELLIB. If no commands are specified on
the command line, you will be prompted for the function
desired.

ABEL Utilities

The suggested procedure to extract device specifications
from a library into one or more individual device (*.DEV)
files is:

1.

Make the directory that contains the library the current
directory. For MS-DOS systems, use the command:

cd c:\dataio\lib3

Create a device file, such as one for the P16R8, with
the following command:

abellib abel3lib.dev -e pl6r8.dev

where abel3lib.dev is the name of the library and pl16r8
is the name of the new device file.

Repeat step 2 as necessary to extract the desired
devices from the library. Newly created *.DEYV files
will be contained in the current directory.

The suggested procedure to create a device library that
contains only those device you will use is:

1.

Make the directory that contains the device files the
current directory.

Create a device library, such as one named newlib, with
the following command:

abellib newlib.dev -a pl16r8.dev

where pl6r8 is the name of the device file to be placed
in the library.

Repeat step 2 as necessary to add the desired device

files to the library. The newly created library will be
contained in the current directory.

6-5

User’s Guide

4. Since ABEL looks for "abel3lib.dev" for device
specifications, you must rename any existing ’
"abel3lib.dev" library file, then rename your new
library "abel3lib.dev." For example, MS-DOS users can
use the commands:

ren abel3lib.dev oldlib.dev
ren newlib.dev abel3lib.dev

to ensure that ABEL accesses the newly created library.

6.4 Library File Usage

6-6

When an external file is required to process your ABEL
design, such as a device or "include" file, ABEL will first
search for the required file, and then if it is not found, will
attempt to find the file in a library. This search will be
repeated for each of the following directories, and in the
listed order:

a. The current directory

b. The directory indicated in the ABEL3DEV
environment variable

¢. Directories indicated in the PATH environment
variable

ABEL Utilities

6.5 JEDABEL, JEDEC File to Equations
Converter

JEDABEL [-Iinfile] [-Ndevice] [-Ooutfile]

-Infile * JED file in JEDEC Standard 3A format
-Ndevice device number (P14L4, P16L3, etc.)

-Ooutfile output file name; you can use .ABL as the file
extension in preparation for ABEL processing.

-Mmapfile map output file name; the default file
extension is .MAP.

JEDABEL allows you to convert the fuse information in a
standard JEDEC file to a set of equations that reflect the
design contained in the file. This utility may be used when
a previously designed part is to be updated or modified and
no ABEL source file exists that was used to create the part.
Since the JEDEC file contains no signal name information,
the equations generated by JEDABEL use the device pin
numbers for names of the inputs and outputs. JEDABEL
also produces a detailed report that helps you to determine
the precise configuration of the programmed device. Any
equations file generated by JEDABEL will require some
editing in order to achieve a working ABEL source file.
However, the basis for the source file is provided. Listing
6-1 shows a "source" file generated by JEDABEL from the
file UOSA.JED. (This file U0O9A.JED is created by running
M6809A.ABL on ABEL.) You can compare the equations
in listing 6-1 with the original equations shown back in
listing 4-2. While the equations in each listing are in a
different form, the designs expressed by the equations are
the same. Running the source file shown in listing 6-1
through ABEL will result in a fusemap in the JEDEC file
functionally equivalent to that contained in U09A.JED.

6-7

User’s Guide

module _u0%a

"Created by JEDABEL Ver 1.00 on Thu Oct 01 16:31:51 1987

title

'ABEL(tm) Version 3.00 FutureNet/Data 1/0 Corp.

P14L4

Created on: 01-Oct-87 11:17 AM
6809 memory decode

Jean Designer

u09a device 'P14l4!;

"Pin Declarations
PINO1,
PINOS,
PINO9,
PIN13,
PIN17,

PINO2,
PINOG,
PIN10,
PIN14,
PIN1S,

"Node Declarations

PINO3,
PINO7,
PIN11,
PIN1S,
PIN19,

FutureNet Corp Redmond WA

PINO4
PINO8
PIN12
PIN16
PIN20

PIN14,PIN15,PIN16,PIN17 IsType 'Neg';
PIN14,PIN15,PIN16,PIN17 IsType 'Com';

"Feedback nodes

X,2,C,P = .X., .Z., .C.,
EQUATIONS
IPIN14 = (PINO2 & PINOT &
IPIN15 = (PINO2 & PINOT &
IPIN16 = (PINO2 & PINOT &
IPIN17 = (IPINO3 # IPINO2 #

TEST_VECTORS
(LPINO1,PINO2,PINO3,PINO4,PINOS,PINOG] -> [PIN14,PIN1S,PIN16,PIN17])
(0,0,0,0,0,01->£1,1,1,01;

END

6-8

Listing 6-1.

[,1,0,
(1,0,0,0
£1 1,0,0,
(.1.1.0
1,1,1,0,
1,1,1,1,
,1,1,1,

.p-;

PINO3
PINO3
PINO3

IPINO1

,01->11,1,0,1
,01->10,1,1,1

JEDEC file for:

24 Feb 1987!

Pin 1,
Pin 5,
Pin 9,1
Pin 13,1
Pin 17,1

& PINO4
& IPINO4
& PINO4
);

0,0,01->1,1,1,01;
,0,0,0,01->1,1,1,01;
0,01->11,1,1,0;
,0,01->[1,0,1,11;
1,01->01,1,1,1;
0

1

—

.
.
.
’

O ONMNO N
YR TEYRY

& PINO5S);
& IPINO5);
& IPINOS);

"Source" File Generated by JEDABEL

7. Language Elements

This section describes the various elements of the ABEL
design language. These language elements are combined
according to the structure described in section 3 to create
ABEL logic descriptions. Each element is presented on the
following pages. The organization is from the most basic to
the most complex topics.

7.1 Basic Syntax

Each line in an ABEL source file must conform with the
following syntax rules and restrictions:

1.

2.

A line may be up to 131 characters long.

Lines are ended by a line feed character (hex 0A), by a
vertical tab (hex OB), or by a form feed (hex 0C).
Carriage returns in a line will be ignored, thus
accommodating common end-of-line sequences, such
as carriage return/line feed. On most computers, an
input line is ended simply by pressing the RETURN or
ENTER key.

Keywords, identifiers, and numbers must be separated
from each other by at least one space. Exceptions to
this rule are in lists of identifiers separated by commas,
in expressions where identifiers or numbers are
separated by operators, or in places where parentheses
provide the separation.

7-1

Language Reference

Spaces cannot be imbedded in the middle of keywords,
numbers, operators or identifiers. Spaces can appear in
strings, comments, blocks and actual arguments. For
example, if the keyword MODULE is entered as
"MOD ULE", it will be interpreted as two identifiers,
MOD and ULE. Similarly, if you enter "102 05"
(instead of 10205), it will be interpreted as two
numbers, 102 and 5.

Keywords (words defined as part of the language and
that have specific uses) can be typed in either upper-
case or lower-case with no difference in effect.

Identifiers (user-supplied names and labels) can be
typed in either upper-case, lower-case, or mixed- case,
but are case-sensitive: the identifier output, typed in
all lower-case letters, is not the same as the identifier
Output with an upper-case "O".

7.2 Valid ASCIl Characters

All upper-case and lower-case alphabetic characters and
most other characters on common keyboards are valid.
Valid characters are listed or shown below.

a-z (lower-case alphabet)

A - Z (upper-case alphabet)
0-9 (digits)

space

tab

'@ # $? + & * () -

Language Elements

7.3 Identifiers

Identifiers are names that identify devices, device pins or
nodes, sets, input or output signals, constants, macros, and
dummy arguments. All of these items are defined later in
section 8. The rules and restrictions for identifiers are the
same regardless of what the identifier describes.

The rules governing identifiers are:

1.

Identifiers must begin with an alphabetic character or
with an underscore.

Identifiers may be up to 31 characters long. Anything
longer than 31 characters is considered an error and is
flagged by the language processor.

Other than the first character (see rule 1), identifiers
may contain upper-case and lower-case alphabetic
characters, digits and underscores.

Spaces cannot be used in an identifier. Use
underscores to provide separation between words.

Identifiers are case-sensitive: upper-case letters and
lower-case letters are not the same.

Some valid identifiers are:
HELLO hello

_KSinput P_h
This_is_a long_identifier

Note the use of underscores to separate words. Note also
that lower-case letters are not the same as upper-case

letters. Thus hello is a different identifier than HELLO.
Use different cases to make your source file easy to read.

7-3

Language Reference

Some invalid identifiers are:

7 Does not begin with a letter or underscore

$4 Does not begin with a letter or underscore
HEL.LO Contains a period
b6 kj Contains a space

Note that the last of these invalid identifiers will be seen by
the language processor as two identifiers, b6 and kj.

7.3.1 Reserved Identifiers

Keywords, listed below, are reserved identifiers that are
part of the ABEL Design Language, and cannot be used to
name devices, pins, nodes, constants, sets, macros or signals.
When a keyword is used, it refers only to the function of
that keyword. If a keyword is used in the wrong context,
an error is flagged by the language processor. Note that
WHEN is new to this version of software, and existing
ABEL source files should be checked for inadvertent use of

this keyword.

CASE
DEVICE
ELSE
ENABLE
END
ENDCASE
ENDWITH
EQUATIONS
FLAG

7-4

FUSES
GOTO

IF

IN
ISTYPE
LIBRARY
MACRO
MODULE
NODE

PIN
STATE
STATE_DIAGRAM
TEST VECTORS
THEN

TITLE
TRUTH_TABLE
WHEN

WITH

Language Elements

7.3.2 Choosing Identifiers

The right choice in identifiers can make a source file easy
to read and understand. This is especially important in an
environment where more than one person may work on the
same project, or where one designer will take up another’s
earlier work. The following suggestions are given to help
make logic descriptions self-explanatory, thus eliminating
the need for extensive documentation.

Choose identifiers that match the function of that
which they describe. For example, the pin to be used
as the carry-in on an adder could be named Carry_ In.
For a simple OR gate, the two input pins might be
given the identifiers IN1 and IN2, and the output
might be named OR.

Avoid large numbers of similar identifiers. For

example, do not name the outputs of a 16 bit adder:
ADDER_OUTPUT_BIT_|
ADDER_OUTPUT_BIT_ 2

and so on. Such grouping of names makes the source

file difficult to read.

Use underscores to separate words in your identifier.
THIS_IS AN _IDENTIFIER is much easier to read
than THISISANIDENTIFIER.

Mixed-case identifiers can help make your source file
readable; for example, Carryln

7-5

Language Reference

7.4 Strings

7-6

Strings are series of ASCII characters enclosed by single
quotes (apostrophes). Strings are used in the TITLE,
MODULE and FLAG statements, and in pin, node, and
attribute declarations. Spaces are allowed in strings.
Valid strings:

*Hello’
> Text with a space in front’

9

*The preceding line is an empty string’
’Punctuation? is even allowed !’

A single quote can be included in a string by preceding it
with a backslash, "\".

’It\’s easy to use ABEL’
is the string, " It’s easy to use ABEL".

Backslashes can be put in a string by using two of them in
succession.

’He\\she can use backslashes in a string’
becomes the string:
"He\she can use backslashes in a string"

NOTE: Back-quotes (‘) are also accepted as string delimiters
and can be used interchangeably with the forward quote ().

Language Elements

7.5 Comments

Comments are another way to make a source file easy to
understand. Comments explain what is not readily apparent
from the source code itself. Comments do not affect the
meaning of the code.

A comment begins with a double quotation mark, ", and
ends with either another double quotation mark or the end
of line, whichever comes first. The text of the comment
follows the opening quotation mark.

Comments cannot be imbedded within keywords.

Valid comments (shown in boldface):

MODULE Basic_Logic; "gives the module a name
TITLE ABEL design example: simple gates’; "title

"declaration section"
IC4 device ’P10L8’; "declare 1C4 to be a P10LS8
IC5 "decoder PAL" device "P10HS8’;

Note that the information inside single quotation marks
(apostrophes) is not a comment but is part of the statement.

7-17

Language Reference

7.6 Numbers

7-8

All operations in ABEL involving numeric values are done
with 32-bit accuracy. Thus, valid numeric values fall in
the range 0 to 232 _'|. Numbers are represented in any of
five forms. The four most common forms represent
numbers in different bases. The fifth form uses alphabetic
characters to represent a numeric value.

When one of the four bases other than the default base is
chosen to represent a number, the base used is indicated by
a symbol preceding the number. Table 7-1 gives the four
bases supported by ABEL and their accompanying symbols.
The base symbols can be typed in upper-case or lower-case.

When a number is specified and is not preceded by a base
symbol, it is assumed to be in the default base numbering
system. The normal default base is base 10, so numbers are
represented in decimal form unless preceded by a symbol
indicating that another base is to be used.

For special applications, the default base can be changed.
See "@RADIX," in chapter 9 for more information.

Language Elements

Table 7-1. Number Representation in Different Bases

Base Name Base Symbol
binary 2 b
octal 8 ~0
decimal 10 ~d
hexadecimal 16 “h

Here are some examples of valid number specifications.

The default base is base ten.

Specification Decimal
Value
75 75
~h75 117
~b101 5
~ol17 15
~hOF 15

The circumflex, "*", must be entered as a character from
the keyboard. It does not represent a control key sequence

as in some other popular software.

Numbers may also be specified by alphabetic characters. In
this case, the numeric ASCII code of the letter is used as
the numeric value. For example, the character "a" is

7-9

Language Reference

decimal 97, and hexadecimal 61 in ASCII coding. The
decimal value 97 would be used if "a" were specified as a
number.

Sequences of alphabetic characters are first converted to
their binary ASCII values, and then are concatenated to
form numbers (usually large). Some examples of numbers
specified with characters are given below:

Specification Hex Value Decimal Value
a’ ~h61 97
b’ ~h62 98
’abe’ ~h616263 6382203

Language Elements

7.7 Special Constants

Constant, non-changing values can be used in ABEL logic
descriptions. Constant values are used in assignment
statements, truth tables and test vectors and are sometimes
assigned to an identifier that then denotes that value
throughout a module (see "Declarations," section 8.5, and
"Module Statement," section 8.2). Constant values may be
either numeric or one of the non-numeric special constant
values. The special values are listed in table 7-2.

Table 7-2. Special Constant Values

Value Description

.C. clocked input (low-high-low transition)
.F. floating input or output signal

K. clocked input (high-low-high transition)
.P. register preload

.SVn. n = 2 through 9. Drive the input to super
voltage 2 through 9.

X. don’t care condition

test input or output for high impedance

When one of the special constants is used, it must be
entered as shown in table 7-2 with surrounding periods.
The periods indicate that a special constant is being used;
without the periods, .C. would appear to be an identifier
named C. Special constants can be entered in either upper-
case or lower-case.

7-11

Language Reference

7.8

Operators, Expressions, and Equations

Items such as constants and signal names can be brought
together in expressions. Expressions combine, compare or
perform operations on the items they include to produce a
single result. The operations to be performed (addition and
logical AND are just two examples) are indicated by
operators within the expression.

ABEL operators are divided into four basic types: logical,
arithmetic, relational, and assignment. Each of these types
is discussed separately below, followed by a description of
how they are combined into expressions. Following the
descriptions is a summary of all the operators and the rules
governing them, and finally an explanation of how
equations utilize expressions.

Language Elements

7.8.1 Logical Operators

Logical operators are used in Boolean expressions. ABEL
incorporates the standard logical operators used in most
logic designs; these operators are listed in table 7-3.
Logical operations involving operands of more than one bit
are performed bit by bit. Thus, 2 minus 4 equals 6. For
alternate operators, refer to the @ALTERNATE Directive
section in this Language Reference manual.

Table 7-3. Logical Operators

Operator Example Description
! 1A NOT: ones complement
& A&B AND
A#B OR
$ AS$B XOR: exclusive OR
1$ AI$SB XNOR: exclusive NOR

Language Reference

7.8.2 Arithmetic Operators

Arithmetic operators define arithmetic relationships
between items in an expression. The shift operators are
included in this class because each left shift of one bit is
equivalent to multiplication by 2 and a right shift of one bit
is the same as division by 2. Table 7-4 lists the arithmetic
operators.

Note that a minus sign has a different significance
depending on its usage. When used with one operand, it
indicates that the twos complement of the operand is to be
formed. When the minus sign is found between two
operands, the twos complements of the second operand is
added to the first.

Table 7-4. Arithmetic Operators

Operator Example Description
- -A twos complement
- A-B subtraction
+ A+B addition
* A*B multiplication
/ A/B unsigned integer division
% A%B modulus: remainder from /
<< A << B shift A left by B bits
>> A>>B shift A right by B bits

Language Elements

Division is unsigned integer division: the result of division
is a positive integer. The remainder of a division can be
obtained by using the modulus operator, "%". The shift
operators perform logical unsigned shifts. Zeros are shifted
in from the left during right shifts and in from the right
during left shifts.

7.8.3 Relational Operators
Relational operators are used to compare two items in an
expression. Expressions formed with relational operators

produce a Boolean true or false value. Table 7-5 lists the
relational operators.

Table 7-5. Relational Operators

Operator Example Description

== A == equal

= A!=B not equal

< A<B less than

<= A<=B less than or equal

> A >B greater than

> = A>=B greater than or equal

All relational operations are unsigned. For example, the
expression -1 > 4 is true since the twos complement of 1 is
1111, which is 15 in unsigned binary, and 15 is greater than
4. For the purpose of this example, a four-bit
representation was assumed; in actual use,-1, the twos
complement of 1, is 32 bits all set to 1.

Language Reference

Some examples of relational operators in expressions follow:

Expression Value
2 == false
21=3 true
3<5 true
-1>2 true

The logical values, true and false, are represented internally
by numbers. Logical true is -1 in twos complement: all 32
bits are set to 1. Logical false is 0 in twos complement so
all 32 bits are set to 0. This implies that an expression
producing a true or false value (a relational expression) can
be used anywhere a number or numeric expression could be
used and -1 or 0 will be substituted in the expression
depending on the logical result.

For example:
A=DS$B==0C),
means that:
A will equal the complement of D if B equals C

A will equal D if B does not equal C.

Language Elements

7.8.4 Assignment Operators

Assignment operators are a special class of operators used in
equations rather than in expressions. Equations assign the
value of an expression to output signals. See section 7.8.6
for a complete discussion of equations. There are two
assignment operators, unclocked and clocked. Unclocked or
immediate assignment occurs without any delay as soon as
the equation is evaluated. Clocked assignment occurs at the
next clock pulse from the clock associated with the output.
Table 7-6 shows the assignment operators.

Table 7-6. Assignment Operators

Operator Description

Unclocked assignment (combinatorial outputs)

Clocked assignment (registered outputs)

7.8.5 Expressions

Expressions are combinations of identifiers and operators
that produce one result when evaluated. Any logical,
arithmetic or relational operators may be used in
expressions.

Expressions are evaluated according to the particular
operators involved. Some operators take precedence over
others, and their operation will be performed first. Each
operator has been assigned a priority that determines the
order of evaluation. Priority 1 is the highest priority, and
priority 4 is the lowest.

Table 7-7 summarizes the logical, arithmetic and relational
operators, presented in groups according to their priority.

Language Reference

Table 7-7. Summary of Operators and Priorities

Priority Operator Description
1 - negate, twos complement
1 ! NOT, ones complement
2 & AND
2 << shift left
2 >> shift right
2 * multiply
2 / unsigned division
2 % modulus, remainder from /
3 + add
3 - subtract
3 # OR
3 $ XOR: exclusive OR
3 1$ XNOR: exclusive NOR
4 == equal
4 1= not equal
4 < less than
4 <= less than or equal
4 > greater than
4 > = greater than or equal

When operations of the same priority exist in the same
expression, they are performed in the order found from left
to right in that expression. Parentheses may be used as in
normal mathematics to change the order of evaluation, with
the operation in the innermost set of parentheses performed
first. Some examples of valid expressions are given on the
following page. Note how the order of operations and the
use of parentheses affect the evaluated result.

Language Elements

Expression Result Comments

2%3/2 3 operators with same priority
2%¥3 /2 3 spaces are OK

2 *(3/2) 2 fraction is truncated
2+3%4 14

2#4%2 4

2#(482) 6

2 == "HA 0 false

14 == "HE -1 true

Language Reference

7.8.6 Equations

7-20

[WHEN condition THEN][!]... [ENABLE] element
= expression; [ELSE equation]
or
[WHEN condition THEN][!]... [ENABLE] element
:= expression; [ELSE equation]

condition any valid expression

element an identifier naming a signal or set of signals,
or an actual set, to which the value of
expression will be assigned

expression any valid expression

= and := unclocked and clocked assignment operators

Equations assign the value of an expression to a signal or set
of signals in a logic description. The identifier and
expression must follow the rules already established for
those elements.

Equations use the two assignment operators "=" (unclocked)
and ":=" (clocked) described in section 7.8.4.

The keyword, ENABLE, is used to enable tri-state output
buffers. The identifier must be a tri-state type output, and
the value assignment applies only to the buffer enable
rather than to the signal itself.

The complement operator, "!", can be used to express
negative logic. The complement operator precedes the
signal name and implies that the expression on the right of
the equation is to be complemented before it is assigned to
the signal. Use of the complement operator on the left side
of equations is provided as an option; equations for negative

Language Elements

logic parts can just as easily be expressed by complementing
the expression on the right side of the equation.

Examples of equations:

X =A & B; " unclocked assignment to X
ENABLE Y = C # D; "Y is enabled if C or D is true
Y:=A & B; " clocked assignment to Y
A=B & C#D; "same as A = (B & C # D);

WHEN B THEN A=B; ELSE A=C;

Multiple Assignments to the Same Identifier

When an identifier appears on the left side of more than
one equation, the expressions being assigned to the
identifier are first ORed together and then the assignment
is made. If the identifier on the left side of the equation is
complemented, the complement is performed after all the
expressions have been ORed.

7-21

Language Reference

-

Examples:
Equations Equivalent
Found Equation
A = B;
A =C; A=B#C,
A = B;
A=C&D; A=B#(C&D);
A =B;
A =1C; A =B #!C;
'A = B;
A =C; A=!B=#CQC)
A =B;
A =1C; A =IC #!B;
A = B;
1A = C;
A = !D;
A = IE; A=!D#!E#!B#C)

Note that when the complement operator appears on the left
side of multiple assignment equations, the right-hand sides
are ORed first and then the complement is applied.

7-22

Language Elements

7.9 Sets

A set is a collection of signals and constants that is operated
on as one unit. Any operation applied to a set is applied to
each element in the set. Sets simplify ABEL logic
descriptions and test vectors by allowing groups of signals
to be referenced with one name.

For example, the outputs BO-B7 of an eight-bit multiplexer
could be collected into the set named MULTOUT. The
three selection lines might be collected in the set, SELECT.
The multiplexer could then be defined in terms of
MULTOUT and SELECT rather than being defined by all
the input and output bits individually specified.

A set is represented by a list of constants and signals
separated by commas, or the range operator (..), and
surrounded by square brackets. For example:

Sample Set Description

[B0,B1,B2,B3,B4,B5,B6,B7] outputs (MULTOUT)
[S0,S1,S2] select lines (SELECT)

The above sets could also be expressed by using the range
operator; for example:

[BO..B7]

[S0..S2]

Identifiers, used to delimit a range, must have compatible
names; they must begin with the same alphabetical prefix
and have a numerical suffix. Range identifiers can also
delimit a decrementing range or a range which appears as
one element of a larger set; for example:

[A7..A0] decrementing range
[.X.,.X.,.X.,.X.,.X.,A10..A7] range within a larger set

7-23

Language Reference

Note that for set specifications the square brackets do not
denote optional items. The brackets are required to delimit
the set. Note also that ABEL sets are not mathematical sets.

7.9.1 Set Operations

Most operators can be applied to sets. In general, this
means that the operation is performed on each element of
the set, sometimes individually and sometimes according to
the rules of Boolean algebra. Table 7-8 lists the operators
that may be used with sets. Appendix F describes how
these operators are applied to sets.

For operations involving two or more sets, the sets must
have the same number of elements. The expression,
"[a,b]+[c,d,e]", is invalid because the sets have different
numbers of elements.

Some examples of set usage are given here.
The Boolean equation,

Chip_Sel = A15 & 'A14 & Al3;
represents an address decoder where A15, A14 and A13 are
the three high-order bits of a 16-bit address. The decoder
can easily be implemented with set operations. First, a
constant set that holds the address lines is defined so that
the set can be referenced by name. This definition is done
in the constant declaration section of a module (described in
chapter 8).
The declaration is:

Addr = [A15,A14,A13];

which declares the constant set Addr. The equation,

7-24

Language Elements

Chip_ Sel = Addr == [1,0,1];
is functionally equivalent to:
Chip_Sel = Al15 & 'Al14 & Al3;

If Addr is equal to [1,0,1], meaning that A15 =1, A14=0
and Al3 =1, then Chip_Sel is set to true. Note that the set
equation could also have been written as:

Chip_Sel = Addr == 5;
because 101 binary equals 5 decimal.

In the example above, a special set with the high-order bits
of the 16-bit address was declared and used in the set
operation. The full address could have been used and the
same function arrived at in other ways, as shown below.

Example 1:

" declare some constants in declaration section

Addr =[al5..a0]; X = .X;

"simplify notation for don’t care constant

Chip_Sel = Addr == [1,0,1,X,X, X, X, X,X,X,X,X,X,X,X];

Example 2:

" declare some constants in declaration section
Addr =[al5..a0]; X =.X_;
Chip_Sel = (Addr >= “HA000) & (Addr <= “HBFFF);

Both of the solutions presented in these final two examples
are functionally equivalent to the original Boolean equation
and to the first solution in which only the high order bits
are specified as elements of the set (Addr = [al5, al4, al3]).

7-25

Language Reference

7.9.2 Set Assignment and Comparison

Values and sets of values can be assigned and compared to a
set. For example,

sigset = [1,1,0] & [0,1,1];
results in sigset being assigned the value, [0,1,0].

Numbers in any representation can be assigned or compared
to a set. The preceding set equation could have been
written as

sigset = 6 & 3;

When numbers are used for set assignment or comparison,
the number is converted to its binary representation and the
following two rules apply:

1. If the number of significant bits in the binary
representation of a number is greater than the number
of elements in a set, the bits are truncated on the left.

2. If the number of significant bits in the binary
representation of a number is less than the number of
elements in a set, the number is padded on the left
with leading zeroes.

Thus, the following two assignments are equivalent:

[a,b] = ~B101011;
[a,b] = ~Bl1;

And so are these two:

[d,c] = “BOI;
[d,c] = ~BI;

7-26

Language Elements

The set assignment,

[a,b]=c & d;

is the same as the two assignments:

a=c&d;
b=c&d;
Table 7-8. Valid Set Operations
Operator Example Description
= A=5 assignment
= A: =[1,0,1] clocked assignment
! 1A NOT: ones complement
& A&B AND
A#B OR
$ AS$B XOR: exclusive OR
15 Al$ B XNOR: exclusive NOR
- -A negate, twos complement
- A-B subtraction
+ A+B addition
== A == equal
= Al!=B not equal
< A<B less than
<= A<=B less than or equal
> A>B greater than
>= A >=B greater than or equal

7-27

Language Reference

7.9.3 Set Evaluation

7-28

How each operator will act when used with sets depends
upon the types of its arguments.

When a set is written out:
[a, b, c, d]

"a" is the MOST significant bit and "d" is the LEAST
significant bit.

The result, when most operators are applied to a set, will be
another set. Note that the result of the relational operators
(==, !=, >, >=, <, <=) is a value: TRUE (all one’s) or FALSE
(all zero’s), which will be truncated to as many bits as are
needed. The width of the result is determined by the
context of the relational operator, not by the width of the
arguments. See examples below.

The different contexts of the AND (&) operator and the
semantics of each usage are described below.

SIGNAL & SIGNAL example:a & b

This is the most straightforward usage. The expression is
TRUE if both signals are TRUE.

SIGNAL & NUMBER example: a & 4
The number will be converted to binary and the least
significant bit will be used, so this becomes a & 0, which

will be reduced to simply 0, or FALSE.

SIGNAL & SET example: a & [x, vy, z]

Language Elements

The signal will be distributed over the elements of the set to
become [a & x,a & ¥, a & z]

SET & SET example: [a, b] & [Xx, ¥]

The sets will be bit-wise ANDed resulting in: [a & x, b &
y]. An error will be displayed if the set widths do not
match.

SET & NUMBER example: [a, b,c] & 5

The number will be converted to binary and truncated or
padded with zeros as needed to match the width of the set.
The sequence of transformations will be:

[a, b, c] & [1,0, 1]
=[a&1l,b&0,c& 1]
=[a, 0, c]

NUMBER & NUMBER example: 9 & 5
The number will be converted to binary and the least
significant bit will be used, so this becomes 1 & 1, which
will be reduced to simply 1, or TRUE.
Some example equations:

select = [al5..a0] == “H80FF

select (signal) will be TRUE when the 16-bit address bus
has the hex value 80FF.

[sell, sel0] = [a3..a0] > 2

Both sell and sel2 will be true when the value of the four
"a" lines (taken as a binary number) are greater than 2.
Note that the width of the "sel" set and the "a" set are
different. The "2" will be expanded to four bits (of binary)
to match the size of the "a" set. The result of the

7-29

Language Reference

comparison (which will be all ones or all zeros) will then be
truncated to two bits to match the size of the "sel" set.

[out3..out0] = [in3..in0] & enable

If enable is TRUE, then the values on "in0" through "in3"
will be seen on the "out0" through "out3" outputs. If enable
is FALSE, then the outputs will all be FALSE.

7.9.4 Limitations/Restrictions on Sets

Since the widths of expression arguments are determined
from context, there are some cases where the results are not
as you might expect. For example let’s define a count as a
3-bit set:

count = [a,b,c]

Then the following expression has a width of one:
9 & (count == 0)

It will be expanded as follows:
9&(la&lb&lc)
l1&la&b&le

There are also cases where an operator may not be
commutative and associative because the results of its
evaluation depend upon the context. Consider the
following two equations. In the first, the constant "1" will
be converted to a set; in the second, the "1" will be treated
as a single bit.

7-30

Language Elements

xI,yl]=[a,b] & 1 & d [x2,y2] =1 & d & [a, b]
=(a,b]& 1)&d (1 & d) & [a, b]

=([a, b] & [0, 1]) & d = d &[a,b]
=(a&0, b& 1) &d = [d, a] & [d, b]
=[0, b] &d = [d&a, d&Db]
= [0, b] & [b, d]

= [0&d,b&d]

= [0, b & d]

x1=0 x2=a&d
yl=b&d yv2=b &d

If you are unsure about the interpretation of an equation,
try the following hints:

1. Fully parenthesize your equation. Most errors are
simply caused by ignoring the precedence rules in
table 5.1.

2. Write out numbers as sets of 1s and Os instead of
as decimal numbers. If the width is not what you
expected, you will get an error message.

The following restriction applies to sets:

Because set assignment is applied to all elements of a set,
sets with mixed combinational and registered outputs cannot
be used on the left side of an equation. Assignments are
either clocked (combinational) or unclocked (registered)
according to the assignment operator used (= or :=) and a
clocked assignment to a combinational output or an
unclocked assignment to a registered output constitutes an
error and will be flagged by the language processor.

7-31

Language Reference

7.10 Blocks

Blocks are sections of ASCII text enclosed in braces, "{" and
"}". Blocks are used in macros and directives. The text
contained in a block can be all on one line or can span
many lines. Some examples of blocks follow.

{ this is a block }
{

this is also a block, and it
spans more than one line.

}

{A=B#C;
D =[0, 11 +[1, O];
}

Blocks can be nested within other blocks, as shown below,
where the block { D = A } is nested within a larger block:

{A=BS$C;
{D=A;}
E=C;

}

Blocks and nesting of blocks can be useful in macros and
when used with directives. (See "Macro Declarations" in
Chapter 8, and "Directives" in Chapter 9.)

If either a right or left brace is needed as a character in a

block but does not denote the start or end of a nested block,
it is preceded by a backslash. Thus,

{(\(\}}

is the block containing the characters " { } ", with the spaces
included.

7-32

Language Elements

7.11 Arguments and Argument Substitution

Variable values can be used in macros, modules and
directives. These values are called the arguments of the
construct that uses them. In ABEL, a distinction must be
made between two types of arguments: actual and dummy.
Their definitions are given here.

dummy an identifier that is used to indicate
argument where an actual argument is to be
substituted in the macro, module, or
directive.
actual the argument (value) used in the macro,
argument directive or module. The actual argument

is substituted for the dummy argument.
An actual argument can be any text,
including identifiers, numbers, strings,
operators, sets, or any other element of
ABEL.

Dummy arguments are specified in macro declarations and
in the bodies of macros, modules and directives. The
dummy argument is preceded by a question mark in the
places where an actual argument is to be substituted. The
question mark distinguishes the dummy arguments from
other ABEL identifiers occurring in the source file.

Take for example, the following macro declaration
arguments (macros are discussed fully in Chapter 8 and an
example of usage is presented in the design example file
MACRO.ABL):

OR_EM MACRO (a,b,c) { 7a# ?b # ¢ };
This defines a macro named OR__EM that is the logical OR

of three arguments. These arguments are represented in the
definition of the macro by the dummy arguments, a, b, and

7-33

Language Reference

7-34

c. In the body of the macro, which is surrounded by
braces, the dummy arguments are preceded by question
marks to indicate that an actual argument will be
substituted.

The equation:
D = OR_EM (x,y,z&1);

invokes the OR__EM macro with the actual arguments, X, y,
and z&1. This results in the equation:

D=x#y#z&l;

Spaces (blanks) are significant in actual arguments. Actual
arguments are substituted exactly as they appear. Note that
in the example above, the actual argument z&1 contains no
spaces in the equation referring to OR__EM, and that in the
expanded equation the argument appears again without
spaces. Had the argument been specified as "z & 1" (note
the spaces), the resulting equation would have contained
those spaces. For example, the equation,

D =OR_EM (x,y,z & 1)
results in the equation:
D=x#y#z&I;

Argument substitution occurs before the source file is
checked for syntactic or logical correctness. This means
that the code is checked for correctness with the actual
arguments in place. Thus, if an actual argument violates a
syntactic or logical rule, the parser will detect and report
the error.

Language Elements

In review:

- Dummy arguments are place holders for actual
arguments.

- A question mark preceding the dummy argument
indicates that an actual argument is to be substituted.

- Actual arguments replace dummy arguments before the
source file is checked for correctness.

- Spaces are significant in actual arguments.
Further discussion and examples of argument usage are

given in the Applications Guide, in the explanations of
modules and macros in Chapter 8, and also in Chapter 9.

7-35

Language Reference

7-36

8. Language Structure

This section describes the structure of a complete ABEL
design description. The language elements described in
chapter 7 are combined within the proper structures to
define Boolean equations, state machines and truth tables.
The device or devices being described must be indicated
and initial declarations must be made. Definitions of
expected output from simulation of the device may also be
made.

8.1 Basic Structure

ABEL source files can be broken into independent parts
called modules. Each module contains one or more
complete logic descriptions. At the simplest level, an input
file to the ABEL language processor consists of only one
module; at the most complex level, an indefinite number of
modules may be combined into one source file and
processed at the same time.

Every module consists of several different sections, each
with its own unique function. These sections are:

Declarations of devices, pins, nodes, constants,
attributes, and macros

Boolean logic equations

Truth tables

State diagrams

Explicit fuse declarations

Test vectors

8-1

Language Reference

Some or all of these parts of a module may exist for any
given application. Declarations must always be made.
Figure 8-1 shows the structure of an ABEL source file.
Because a source file is a collection of one or more modules,
each with its own beginning and end, different source files
can be combined to form complete system designs in one
source file.

1st Module Start
Flags
Title
Declarations
Constant Declarations
Macro Definitions
Device Declarations
Pin and Node Assignments
Attribute Declarations
Library References
Boolean Equations
Truth Tables
State Diagrams
Fuse Declarations
Test Vectors
1st Module End
2nd Module Start

2nd Module End

Figure 8-1. Structure of an ABEL Source File

8-2

Language Structure

8.2 MODULE Statement and Structure

MODULE modname [(dummy_arg [, dummy_arg] ...) |
[FLAG statement]...
[TITLE statement |

declarations

[EQUATIONS |.

.o

[TRUTH_TABLE] ...
[STATE DIAGRAM |...
[TEST_VECTORS |...

END [modname] [5]

modname
dummy arg

FLAG

TITLE

declarations

EQUATIONS
TRUTH_TABLE
STATE DIAGRAM
FUSES

TEST _VECTORS

a valid identifier naming the module
a dummy argument

defines processing parameters to be
passed to the language processor

defines the title of the module
declarations section of the module in
which pin, node, device, attribute,
and constant declarations are made
Boolean logic equations section
truth table specification

state machine specification

explicit fuse declarations

specification of simulation test
vectors

8-3

Language Reference

The module statement defines the beginning of a module
and must be paired with an END statement that defines the
module’s end.

Each module in a source file should have a unique name.
The module contains the different declarations, equations,
truth tables, state diagrams and simulation tables necessary
to complete the logic description(s). The following three
rules apply to module structure:

1. If the FLAG statement is used, it must be the first
keyword used after the MODULE statement.

2. If the TITLE statement is used, it must be the first
keyword used after the FLAG statement (if one exists).
If FLAG is not used, the TITLE statement must be the
first keyword used after the MODULE statement.

3. One declarations section must exist in a module. All
other sections can occur in the module as many times
as needed and in any order.

The optional dummy arguments in the module statement
allow the actual arguments to be passed to the module when
it is processed by the language processor. The dummy
argument provides a name to refer to within the module.
Anywhere in the module where a dummy argument is
found preceded by a "?", the actual argument value will be
substituted by the parser.

For example:
MODULE MY_EXAMPLE (A,B)
C=7B+?A

END

8-4

Language Structure

In the module named MY_EXAMPLE, C will take on the
value of "A + B" where A and B contain actual arguments
passed to the module when the language processor is
invoked. For further information about dummy arguments,
see section 7.11.

8-5

Language Reference

8.3 FLAG Statement

FLAG parameter|[, parameter]...

parameter a string containing valid command line
parameters, excepting -1, -O, -N, and all
PARSE parameters

The FLAG statement provides an alternate method of
defining processing parameters that affect the way in which
the source file is processed by the language processor.
These parameters are normally passed from the command
line or from a batch file when the language processor is
invoked. FLAG allows the explicit statement of processing
parameters directly in the source file. Parameters entered
from the command line override parameters specified with
the FLAG statement. PARSE parameters, and the -1, -O,
and -N parameters are not allowed. Complete information
on command line parameters is contained in Chapter 9.

FLAG is useful when a source file requires a specific type
or level of processing for that processing to be successful.
For example, a design may be large or complex enough that
it will generate too many product terms for the specified
device unless the PRESTO reduction algorithm is used in
the reduction step of the processing. You might also want
to simulate the design at trace level 3. This is done with
the following command:

flag ’-r2,-t3’

Language Structure

8.4 TITLE Statement

TITLE string

The title statement is used to give a module a title that will
appear as a header in both the programmer load file and
documentation file created by the language processor. The
title is specified in the string following the keyword,
TITLE.

Use of the title statement is optional

If asterisks are found in the title string, they will not appear
in the programmer load file header in order to conform
with the JEDEC standard.

An example of a title statement that spans three lines and
describes the logic design follows:

module m6809a

title ’6809 memory decode

Jean Designer

Data I/O Corp Redmond WA 23 Jan 1987’

8-7

Language Reference

8.5 Declarations

8-8

The declarations section of a module specifies the device
being described and the correspondence between the names
used in a module and the pins and nodes of the device.
Constants, attributes, and macros are also defined in the
declarations section. Declarations stay in effect only in the
module in which they are defined. Each module must have
its own declarations section. There are six types of
declaration statements:

Attribute
Constant
Device
Library
Macro
Node

Pin

The syntax and use of each of these types is presented in
the subsections that follow.

Language Structure

8.5.1 Device Declaration Statement

device_id [, device_ id]... DEVICE real device ;

device id an identifier used in a module for
references to a device

real device a string describing the industry part
number of the real device represented
by device id

The device declaration statement associates device names
used in a module with actual programmable logic devices on
which designs are implemented. The device name used in
the logic description is specified with device id. Device
identifiers used in device declarations should be valid file
names since JEDEC files are created by appending the
extension ".JED" to the identifier. The industry part
number of the programmable logic device is indicated by
the string, real device.

These are the only devices that can be specified by
real device.

The ending semicolon is required.

The following example specifies two device names, ul4 and
ul5, that represent F159 IFLs:

ul4, ul5 device ’F159° ;

8-9

Language Reference

8.5.2 Pin Declaration Statement
[!Ipin_id [, [!lpin_id[... PIN [IN device id]
pin#[="attr[,attr]...’] [,pin#[="attr],attr]...’]]...

pin_id an identifier used to refer to a pin
throughout a module

device_id a declared device name identifier indicating
the device associated with these pins

pin # the pin number on the real device
attr a string that specifies pin attributes for

devices with programmable pins. Valid
strings are:

pos positive polarity

neg negative polarity

reg registered signal

reg_d D-type register

reg_g G-type (clock enabled) register
reg_jk JK -type register

reg_rs RS-type register

reg t T-type register

reg_ jkd JK /D controllable register
com combinational signal

latch latch input pin

feed pin feedback from pin
feed reg feedback from register
feed or feedback from OR-gate

The pin declaration statement indicates the correspondence
between identifiers used in a module and the pins on a real
device. The declaration can also specify pin attributes for
devices with programmable pin characteristics.

Language Structure

When lists of pin__ids and pin #s are used in one pin
declaration statement, there is a one-to-one correspondence
between the identifiers and numbers given. There must be
one pin number associated with each identifier listed.

When more than one device is declared in one module, the
optional IN portion of the pin declaration must be used so
that the pins are associated with the proper device. A
device declaration must be made before the pin
declarations. The ending semicolon is required. An
example of a simple pin declaration follows:

1Clock, Reset, S1 PIN IN U12 12,15,3 ;

This pin declaration assigns the pin names, Clock, to pin 12
of device Ul2, Reset to pin 15, and Sl to pin 3.

The use of the "I’ operator in pin declarations indicates that
the pin is active-low, and will be automatically negated
when processed by the language processor.

The pin attribute, attr, specifies pin attributes. Attributes
can be defined in this way or with the ISTYPE statement.
The ISTYPE statement and attributes are discussed in
section 8.5.6. The pin declaration,

FO pin 13 = ’neg, reg’;
specifies that equations for FO, which corresponds to pin

13, should be optimized for a negative polarity registered
output.

8-11

Language Reference

8.5.3 Node Declaration Statement
[!Inode_id [,[!Inode_id]... NODE [IN device_id] node#
[= ’attr],attr]... ’][,node#[= ’attr],attr]...’]]...

node id an identifier used for reference to a node in
a logic design

device _id a declared device name identifier indicating
the device associated with these nodes

node # the node number on the real device
attr a string that specifies node attributes for

devices with programmable nodes. Valid
strings are:

pos positive polarity

neg negative polarity

reg registered signal

reg_d D-type register

reg g G-type (clock enabled) register
reg_ jk JK -type register

reg_rs RS-type register

reg_t T-type register

reg _jkd JK /D controllable register
com combinational signal

latch latch input pin

feed_pin feedback from pin
feed_reg feedback from register
feed_or feedback from OR-gate

fuse single fuse node
pin pin controlled node
eqn array controlled node

The node declaration statement indicates the correspon-
dence between identifiers used in a module and the internal
nodes of a real device. Nodes are "pseudo-pins™ internal

8-12

Language Structure

signals that are not accessible on the device’s external pins,
but that are needed to program otherwise inaccessible fuses.
The device nodes supported by ABEL are listed in appendix
C. The declaration can also specify node attributes for
devices with programmable node characteristics.

When lists of node__ids and node #s are used in one node
declaration statement, there is a one-to-one correspondence
between the identifiers and numbers given. There must be
one node number associated with each identifier listed.

When more than one device is declared in one module, the
optional IN portion of the node declaration must be used so
that the nodes are associated with the proper device.

A device declaration must be made before the node
declarations. The ending semicolon is required. The
following example declares three nodes A, B, and C in the
device U15.

A, B, C NODE IN Ul5 21,22,23 ;

The node attribute string, attr, specifies node attributes.
Attributes can be defined in this way or with the ISTYPE
statement. The ISTYPE statement and attributes are
discussed in section 8.5.6.

The node declaration,
B NODE 22 = ’pos,com’ ;

specifies that node 22 has positive polarity and is a
combinational node.

If shorthand notation is used to refer to internal device
nodes, it is not necessary to declare the node in a
declaration statement. For examples of shorthand notation
of nodes, refer to Chapter 13. Appendix C lists the
shorthand notation for all supported nodes.

Language Reference

8.5.4 Constant Declaration Statement

id [, id]... = expr [, expr]... ;

id an identifier naming a constant to be used
within a module

expr an expression defining the constant value

The constant declaration statement defines constants to be
used within a module. A constant is an identifier that
retains a constant value throughout a module.

The identifiers listed on the left side of the equals sign in
the constant declaration statement are assigned the values
listed on the right side of the equals sign.

There is a one-to-one correspondence between the
identifiers and the expressions listed and there must be one
expression for each identifier.

The ending semicolon is required.

Constants are useful when a value must be used many times
throughout a module and especially when the value is used
many times but might need to be changed during the logic
design process. Rather than changing the value throughout
the module, the value can be changed once in the
declaration of the constant.

Language Structure

Constant declarations may not be self-referencing; for
example:

X=X

will cause errors, as will the declarations

b;
a

a
b=

£}

Some examples of valid constant declarations follow:

ABC =3 * 17, " ABC is assigned the value 51

Y ="B¢’; "Y =+ H4263 ;

X = X " X means ’don’t care’

ADDR =[1,0,15]; " ADDR is a set with 3 elements
A,B,C = 5,[1,0],6; " 3 constants declared here

D pin 6; " see next line

E =[5*7,D] " signal names can be included

G =[1,2]H3.4]; " set operations are legal
A=B&C; " operations on identifiers are valid
A =[!B,C]; " set and identifiers on right

Language Reference

8.5.5 Macro Declaration Statement and Macro Expansion

macro_id MACRO | (dummy_arg
[,dummy arg]...) | block ;

macro__id an identifier naming the macro
dummy arg a dummy argument
block a block (see chapter 7)

The macro declaration statement defines a macro. Macros
are used to include ABEL code in a source file without
typing or copying the code everywhere it is needed. A
macro is defined once in the declarations section of a
module and then used anywhere within the module as
frequently as needed. Macros can be used only within the
module in which they are declared.

Wherever the macro__id occurs, the text in the block
associated with that macro will be substituted. With the
exception of dummy arguments, all text in the block
(including spaces, end-of-lines, etc.) is substituted exactly
as it appears in the block.

When debugging your source file, you can use the -E and
-P flags to examine macro statements. The -E parameter
causes the parsed and expanded source code to be written to
the listing file (or to the display if the -L flag is omitted).
In addition to the listing information provided by the -E
flag, the -P flag lists the directives that caused code to be
added to the source.

The dummy arguments used in the declaration of the macro
allow different actual arguments to be used in the macro
each time it is invoked in the module. Within the macro,

Language Structure

dummy arguments are preceded by a "?" to indicate that an
actual argument will be substituted for the dummy by the
ABEL parser. This is best shown by example.

The equation,

NAND3 MACRO (A,B,C) { /(?7A & B & 7C) } ;
declares a macro named NAND3 with the dummy
arguments A, B and C. The macro defines a three-input
NAND gate. When the macro identifier occurs in the
source, actual arguments for A, B and C will be supplied.
For example, the equation,

D = NAND3 (Clock,Hello,Busy) ;
brings the text in the block associated with NAND3 into the
code, with Clock substituted for ?A, Hello for ?B and Busy
for ?C. This results in:

D = !(Clock & Hello & Busy) ;
which is the three-input NAND.

The macro NANDS3 has been specified by a Boolean

equation, but it could have been specified using another

ABEL construct, such as the truth table shown here:
NAND3 MACRO (A,B,C,Y)

{ TRUTH_TABLE ([?A,?B,?C] -> ?Y)

Language Reference

In this case, the line,
NAND3 (Clock,Hello,Busy,D)
causes the text,

TRUTH_TABLE ([Clock,Hello,Busy] -> D)
[0,X,X.]->1;
[.X.,0,X.]->1;
[X.,.X,0]->1;
[1,1,1]->0;

to be substituted into the code. This text is a truth table
definition of D, specified as the function of three inputs,
Clock, Hello and Busy. This is the same function as that
given by the Boolean equation, above. The truth table
format is discussed in section 8.7.

Other examples of macros:

A macro { W=S1 &s2 &s3;};
"macro w/no dummy args

B MACRO (d) {!7d } ; "macro w 1 dummy argument
and when they occur in logic descriptions:

A
X =W + B (inp) ;
Y = W + B()C ; "note the blank actual argument

resulting in:

"note leading space from block in A
W=S1&8S2&8S3;

X=W+!inp;

Y=W+!C;

Language Structure

Circular macro references (when a macro refers to itself
within its own definition) cause the PARSE program to
terminate abnormally with errors. This error can often be
detected by examining the PARSE listing file. If errors
appear after the first use of a macro, and the errors cannot
be easily explained otherwise, check for a circular macro

reference.

8.5.6 ISTYPE Statement

signal [,signal]... ISTYPE [IN device_id] ’attr [,attr]...’;

signal a pin or node identifier

device _id a declared device name identifier indicating
the device associated with these nodes

attr pos
neg
reg
reg_d
reg_g
reg_ jk
reg_rs
reg_t
reg_ jkd
com
latch
feed_pin
feed reg
feed or
pin
eqn
fuse
share

positive polarity

negative polarity
registered signal

D-type register

G-type (clock enabled) register
JK -type register

RS-type register

T-type register

JK/D controllable register
combinational signal

latch input signal
feedback from pin
feedback from register
feedback from OR-gate
select node from pin
select node from equation
select node from fuse
product term sharing

Language Reference

The ISTYPE statement defines attributes or characteristics
of pins and nodes for devices with programmable
characteristics. The attributes are used to form correct
logic for the device and to optimize equations for the
device. If no attributres are defined for a device with
programmable characteristics the device defaults are
applied. If attributes are defined for a device without
programmable characteristics, an error is reported by the
language processor. An example of ISTYPE statement
usage is presented in the design example file
ALTERA.ABL.

When more than one signal is listed on the left side of the
ISTYPE statements, the attributes listed on the right side of
the ISTYPE statement are applied to those signals.

When more than one device is declared in one module, the
optional IN DEVICE id portion of the ISTYPE must be
used so the signals (pins or nodes) are associated with the
correct device. A device declaration must be made before
the ISTYPE statement appears in the source file.
Declarations of the pin and node names used in the ISTYPE
statement must be made before the ISTYPE statement.

An example of the ISTYPE statement follows:

FO, A istype ’neg, latch’ ;
This declaration statement defines F 0 and A as negative
polarity latches. Both F 0 and A had to have been defined

previously in the module.

Definitions of each of the attributes follows:

8-20

Language Structure

Pos (Positive Polarity)

Pos indicates that the associated input or output has positive
polarity. The device will be programmed to reflect this
condition and any equations associated with this signal will
be optimized for that polarity. Pos may be entered in
upper-, lower-, or mixed-case letters.

Neg (Negative Polarity)

Neg indicates that the associated input or output has
negative polarity. The device will be programmed to reflect
this condition and any equations associated with this signal
will be optimized for negative polarity. Neg may be
entered in upper-, lower-, or mixed-case letters.

Reg (Registered Signal)

Reg indicates that the associated input or output is
registered rather than combinational. The device will be
programmed for this condition, and the signal will change
on application of the clock.

Reg_(type) (Registered Type)

This attribute indicates the type of register to use for a
signal that has programmable register types. The device
will be programmed for the indicated register type.

Com (Combinational Signal)

Com indicates that the associated input or output is a

combinational or combinatorial signal. The device will be
programmed for this condition.

8-21

Language Reference

Latch

The latch attribute indicates that the associated input or
output is latched. Latches have an enable line and operate
as follows:

1. If the enable is high, the input signal to the latch is
passed through to the output.

2. If the enable is low, the last value present on the input
line before the high-to-low transition of the enable is
held on the output line.

Feed_pin, Feed reg, and Feed_or
(Feedback Specifications)

Some available devices allow definition of the internal
feedback paths. Feedback can occur trom the output pin,
the output of an internal register, or from the OR-gate
output, as shown in figure 8-2.

The feed pin, feed_reg, or feed or attributes specify
which feedback path to use: from the pin, the register
output, or the OR-gate, respectively. Only one of the
feedback attributes can be in effect at any given time; if
more than one feedback attribute is specified for the same
signal, the last attribute specified takes effect. Also,
feedback attributes are valid only for devices with feedback
paths that can be defined by the user. Feedback attributes
are valid only for outputs. The attribute may be specified
in upper-, lower-, or mixed- case characters.

8§-22

TN

Language Structure

OUTPUT
OE SELECT
° o — O
SP LDO»—./ 02
1/0
1
[]
. D Q o —03
[]
CK — a - 04
PRODUCT]
TERMS AR

® R R | FEEDBACK PATH
SELECTION

Fl 2| F3

FEEDBACK

=Y

Fq. feedback from OR-gate; selected by Feed__or
Fo, feedback from register; selected by Feed__reg
F3. feedback from output pin; selected by Feed__pin

Figure 8-2. Feedback Paths for an E0310

Pin, Eqn, or Fuse
(selectable node type)

Some devices allow internal device features, such as output

enables or clocks to be configured in one of several ways.

The Pin, Eqn, and Fuse attributes specify which type of

feature is desired for the indicated node. For example.
QO0.0e istype pin

specifies that the output enable is pin controlled.

8-23

Language Reference

8.5.7 LIBRARY Statement

LIBRARY ’name’

Name a string that specifies the name of file, excluding
the file extension

The LIBRARY statement causes the contents of the
indicated file to be inserted in the ABEL source file. The
insertion begins at the point where the LIBRARY statement
is located.

The file extension of ’.inc’ is appended to the name
specified, and the resulting file name is searched for. If no
file is found, ABEL will attempt to find the file in the
abel3lib.inc library file. Refer to sections 6.3 and 6.4 for
more information on libraries.

8-24

TN

Language Structure

8.6 Equations Statement

EQUATIONS [IN device_id |

device id a previously declared device identifier
that indicates the device associated with
these equations

The equations statement defines the beginning of a group of
equations associated with a device. Equations specify logic
functions with Boolean algebra.

The equations statement is followed by the equations
associated with the device indicated by the device
identifier. In modules with only one device, the device
identifier is optional; in all other cases it must be specified
so that the equations will be applied toward the correct
device.

The equations following the equation statement are any
valid ABEL equations as described in section 2.8.6.

A sample equations section follows:
EQUATIONS IN IC13
A=B& C#A;

[W,Y]=3;
F=B==C;

8-25

Language Reference

8.7 Truth Table Statement

Truth tables are another way to describe logic designs with
ABEL and may be used in lieu of, or in addition to,
Boolean equations and state diagrams. Truth tables specify
outputs as functions of different input combinations in a
tabular form. A truth table is specified with a header
describing the format of the table and with the table itself.

8.7.1 Truth Table Header Syntax
TRUTH_TABLE [IN device id] (inputs -> outputs)
or
TRUTH_TABLE [IN device_id] (inputs :> reg_ outs)

or

TRUTH_TABLE [IN device_id] (inputs :> reg_ outs ->
outputs)

device_id an identifier naming the device associated
with the truth table

inputs the inputs to the logic function

outputs the outputs from the logic function

reg _outs the registered (clocked) outputs

-> indicates the input to output function for

combinational outputs.

> indicates the input to output function for
registered outputs.

8-26

T

Language Structure

The truth table header can have one of the three forms
shown above, depending on whether the device has
registered or combinational outputs or both.

In all three forms, the device identifier is required when
more than one device is declared in a module. An example
of truth table usage is presented in the design example file
LED7.ABL.

The inputs and outputs (both registered and combinational)
of a truth table are either single signals, or, more
frequently, sets of signals. If only one signal is used as
either the input or output, its name is specified. Sets of
signals used as inputs or outputs are specified in the normal
set notation with the signals surrounded by square brackets
and separated by commas (see section 7.9).

The syntax shown in the first form defines the format of a
truth table with simple combinational outputs. The values
of the inputs determine the values of the outputs.

The second form describes a format for a truth table with
registered outputs. The symbol ":>" preceding the outputs
distinguishes these outputs from the combinational ones.
Again the values of the inputs determine the values of the
outputs, but now the outputs are registered or clocked: they
will contain the new value (as determined by the inputs)
after the next clock pulse.

The third form is more complex, defining a table with both
combinational and registered outputs. It is important in this
format to make sure the different specification characters
"->" and ":>" are used for the different types of outputs.

Examples of headers along with their accompanying truth
tables are given after the format of the table is discussed.

8-27

Language Reference

8.7.2 Truth Table Format

The actual truth table (as opposed to the header) is
specified according to the form described within the
parentheses in the header. The truth table is a list of input
combinations and resulting outputs. All or some of the
possible input combinations may be listed.

As an example, the following truth table defines an
exclusive-OR function with two inputs (A and B), one
enable (en), and one output (C):

TRUTH_TABLE IN IC16 ([en,A,B] -> C)

[0,.X.,.X.] -> .X.; " don’t care w/ enable off
[1,0,0]1->0;

[1,0,11->1
[1,1,0]->1
[,1,11->0

b
>

bl

All values specified in the table must be constants, either
declared, numeric, or the special constant, ".X.". Each line
of the table (each input/output listing) must end with a
semicolon.

Whereas the header defines the names of the inputs and
outputs, the table defines the values of inputs and the
resulting output values.

The following example shows a truth table description of a
simple state machine with four states and one output. The
current state is described by signals A and B, which are put
into a set. The next state is described by the registered
outputs C and D, which are also collected into a set. The
single combinational output is signal E. The machine
simply counts through the different states, driving the
output E low when A equals 1 and B equals 0.

8-28

TN

Language Structure

TRUTH_TABLE IN IC17 ([A,B] :> [C,D] -> E)

0>1->1;
1>2->0;
2>3->1;
35>0->1;

Note that the input and output combinations are specified
by a single constant value rather than by set notation. This
is equivalent to:

[0,0] > [0,1] -> 1 ;
[0,11:>[1,0] -> 0 ;
[1,0] > [1,1] -> 1 ;
[1,11:>[0,0] -> 1 ;

8.7.3 Programmable Polarity Registers

When using state diagrams and truth tables for
programmable polarity devices, the default polarity used by
ABEL (if no polarity is specified via the ISTYPE statement)
is now negative, rather than positive. Existing ABEL source
files that assume positive polarity for these devices may
require the addition of an ISTYPE statement to force
positive polarity. See example LED1.ABL.

8-29

Language Reference

8.8 State Diagrams

An alternative to describing logic with Boolean equations L
and truth tables is to use a state diagram. The state diagram
easily describes the operation of a sequential state machine
implemented with programmable logic.

The specification of a state diagram requires the use of the
STATE__DIAGRAM construct, which defines the state
machine, and the IF-THEN-ELSE, CASE, and GOTO
statements which determine the operation of the state
machine.

The STATE__DIAGRAM construct is discussed first, and
then the syntaxes of the IF-THEN-ELSE, CASE, and
GOTO statements are presented.

Syntax of the WITH-ENDWITH statement, which permits

the specification of equations in terms of transitions, is also
presented.

8-30

Language Structure

8.8.1 STATE_ DIAGRAM Statement

STATE DIAGRAM [IN device id] state_reg

[-> state_out]

[STATE state_exp : [equation]

device id

state_reg

state_out

state_ exp

equation

trans_ stmt

[equation]

.

trans_stmt ...]

an identifier specifying the associated device

an identifier or set of identifiers specifying
the signals that determine the current state of
the machine.

an identifier or set of identifiers that
determine the next state of the machine (for
designs with external registers)

an expression giving the current state

a valid equation that defines the state machine
outputs

an IF-THEN-ELSE, CASE or GOTO
statement, optionally followed by
WITH_ENDWITH transition equations.

The STATE__DIAGRAM construct defines a state machine
associated with a device in a module. The state machine
starts in one of the states indicated by state _exp. The
equations listed after that state exp are evaluated, and the
transition statement (trans_ stmt) is evaluated after the next
clock, causing the machine to advance to the next state.

8-31

Language Reference

Equations associated with a state are optional. Each state
must have a transition statement. If none of the transition
conditions for a state is met, the next state is undefined.
(For some devices, undefined state transitions cause a
transition to the cleared register state.) As many states as
are needed can be specified.

When there is more than one device declared in a module,
the "IN device id" section is required.

Following is an example of a simple state machine that
advances from one state to the next, setting the output to
the current state, and then starting over again. Note that
the states do not need to be specified in any particular
order. Note also that state 2 is identified by an expression
rather than by a constant. The state register is composed of
the signals a and b.

state__diagram in ul5 [a,b]

state 3 ty=3;
goto O ;
state 1 ty=1;
goto 2 ;
state 0 :y=0;
goto 1 ;
state 1 +1 :y=2;
goto 3 ;

The next state diagram specifies a more complex state
machine where the state_ reg is specified with a constant set
containing the signals a and b. Assuming that the state
machine starts in state 1 (a = 0,b = 1), the sequence of states
will be 1,4,2,3,2,4, 1,4,2,3.2.4, 1...

8§-32

TN

Language Structure

current_state = [a, b] "constant declaration
STATE_DIAGRAM current_ state
state 1: w=1;
y=1;GOTO4;
state 2 : IF y==3 THEN 3
ELSE 4 ;
state 3:w=2;
y=w,
GOTO 2 ;
state 4 : y=3;
CASE w==

ENDCASE ;

Figure 8-3 shows the pictorial state diagram for this same
state machine.

Figure 8-3. Pictorial State Diagram

8-33

Language Reference

8.8.2 IF-THEN-ELSE Statement

IF expression THEN state_exp [ELSE state _exp] ;
expression any valid expression

state _exp an expression identifying the next state,
optionally followed by WITH_ENDWITH
transition equations.

The IF-THEN-ELSE statement is an easy way to describe
the progression from one state to another in a state
machine. The expression following the IF keyword is
evaluated, and if the result is true, the machine goes to the
state indicated by the state__exp following the THEN
keyword. If the result of the expression is false, the
machine advances to the state indicated by the ELSE
keyword.

Any number of IF statements may be used in a given state,
and the use of the ELSE clause is optional.

Examples:
if A==B then 2 ; "if A equals B goto state 2

if x-y then j else k; "if x-y is not 0 goto j, else goto k
if A then b*c; "if A is true (non-zero) goto state b¥*c

8-34

=

Language Structure

8.8.3 Chained IF-THEN-ELSE Statements

IF expression THEN state expression
ELSE
IF expression THEN state_expression
ELSE
IF expression THEN state_expression
ELSE state_expression ;

Additional IF-THEN-ELSE statements can be chained to
the ELSE clause of an IF-THEN-ELSE statement. Any
number of IF-THEN-ELSE statements can be chained, but
the final statement must end with a semicolon. An example
of chained IF-THEN-ELSE statements follows:

if a then 1
else
if b then 2
else
if ¢ then 3
else 0 ;

Often, chains of mutually exclusive IF-THEN-ELSE
statements can be more clearly expressed with a CASE
statement. The chained IF-THEN-ELSE statement is
intended for situations (such as the preceding example)
where the conditions are not mutually exclusive.

See section 8.8.1 for examples of IF-THEN-ELSE usage as
they are used in a state diagram.

8-35

Language Reference

8.8.4 CASE Statement

CASE [expression : state__exp; |
[expression : state _exp;]
[expression : state__exp; |

ENDCASE ;

expression any valid ABEL expression

state__exp an expression identifying the next state,
optionally followed by WITH-ENDWITH
transition equations.

The CASE statement is an easy way to indicate the
transitions of a state machine when there are multiple
possible conditions that affect the state transitions.

The expressions contained within the CASE-ENDCASE
keywords must be mutually exclusive, meaning that only
one of the expressions can be true at any given time. If two
or more expressions within the same CASE statement are
true, the resulting equations are undefined.

The state machine will advance to the state indicated by the
state__exp following the expression that produces a true
value. If no expression is true, the result is undefined, and
the resulting action depends on the device being used. (For
devices with D flip-flops, the next state will be the cleared
register state.) For this reason, you should be sure to cover
all possible conditions in the CASE statement expressions.
If the expression produces a numeric rather than a logical
value, 0 is false, and any non-zero value is true.

8-36

Language Structure

endcase ;

More CASE statement examples are presented in section
8.8.1.

8-37

Language Reference

8.8.5 GOTO Statement

GOTO state exp ;

state_exp an expression identifying the next state,
optionally followed by WITH_ENDWITH
transition equations.

The GOTO statement causes an unconditional transition to
the state indicated by state__exp.

Example:

GOTO 0; "goto state 0
GOTO x+y ; "goto the state x +y

8-38

Language Structure

8.8.6 WITH-ENDWITH Statement

transition_stmt state__exp WITH equation

[equation]

ENDWITH ;
transition _stmt IF, ELSE, or CASE statement

state__exp the next state

equation an equation for state machine outputs

The WITH-ENDWITH statement, when used in conjunction
with the IF-THEN or CASE statement, allows output
equations to be written in terms of transitions; for example:

state 5: IF a == 1 then 1

WITHx:=1;
y:=0;
ENDWITH;
ELSE 2 WITH
x:=0;
yi=1;
ENDWITH ;

8-39

Language Reference

8.9

8-40

Fuses Section

FUSES [IN device_id]
fuse_number = fuse value ;
or

fuse_number_set = fuse value ;

device id identifier specifying associated
device
fuse_number fuse number obtained from logic

diagram of device

fuse _number_set set of fuse numbers contained in
square brackets

fuse_value number indicating state of fuse(s)

The FUSES section of the source file provides a means for
explicitly declaring the state of any fuse in the associated
device. For example:

FUSES

3552 =1
[3478...3491] = ~Hff;

See also examples ORXOR.ABL and CNT10ROM.

Fuse values appearing on the right side of the = symbol can
be any number. In the case of only a single fuse number

Language Structure

being specified on the left side of the = symbol, the least
significant (LSB) bit of the fuse value is assigned to the
fuse; a 0 indicates a fuse intact, and a 1 indicates a fuse
blown. In the case of multiple fuse numbers, the fuse value
is expanded to a binary number and truncated or given
leading zeros to obtain fuse values for each fuse number.

When fuse states are specified using the FUSES-section
syntax, the resulting fuse values supercede the fuse values
obtained through the use of equations, truth tables and state
diagrams, and will effect device simulation accordingly.
While a high number of fuses can be specified in the
FUSES section (typically over 2,000) there is some limit.
The maximum number of fuses you can specify varies but
is well beyond what is practical when using the FUSES
section.

The PC/MS-DOS versions have a limit of 15 fuses per
statement (e.g. FUSES[1000..1015] = 0;).

8-41

Language Reference

8.10 Test Vectors

TEST_VECTORS [IN device_id] [note] (inputs ->

outputs)

[invalues -> outvalues;]

.

.

device id

note

inputs

outputs

invalues

outvalues

an identifier indicating the device associated
with this table

a string used to describe the test vectors
identifier or set of identifiers specifying the
names of the input signals to the device, or

feedback output signals

identifier or set of identifiers specifying the
output signals from the device

input value or set of input values

output value or set of output values resulting
from the given inputs

Test vectors specify the expected functional operation of a
logic device by explicitly defining the device outputs as
functions of the inputs. Test vectors are used for
simulation of an internal model of the device and functional
testing of the real programmed device.

8-42

Language Structure

A special simulation utility, SIMULATE, is provided as
part of the ABEL software package. SIMULATE simulates
the operation of the device model by applying the inputs
specified in the test vectors to the fuse states created by the
language processor. SIMULATE is discussed further in
chapter 4.

Functional testing of the real device is performed by a logic
programmer after a device has been programmed. This can
be done because the test vectors become part of the
programmer load file that is loaded into the logic
programmer,

Test vectors are written for each different device in the
module, so that the different characteristics of each device
can be taken into account separately during simulation.

Test vectors for a device are specified in a table. The table
consists of a header and the vectors themselves. The header
indicates that test vectors are to follow and defines the
format of the table. The vectors specify the input-to-
output function.

The form of the test vectors is determined by the header.
Each vector is specified in the format described within the
parentheses in the header statement. An optional note
string can be specified in the header. This note string is
often used to describe what the vectors test, and is included
as output in the simulation output file, the document output
file, and the JEDEC programmer load file.

The table lists input combinations and their resulting
outputs. All or some of the possible input combinations can
be listed.

All values specified in the table must be constants, either
declared, numeric or the special constant, ".X.". Each line
of the table (each input/output listing) must end with a
semicolon.

8-43

Language Reference

Following is a simple test vectors table:

TEST_VECTORS

([A,B] -> [C, D])
[0,01 -> 11,1 ;
e, -> 1,0 ;
1,01 -> 10,11 ;
1,1 -> (0,01 ;

The following test vector table is equivalent to the table
specified above because values for sets can be specified
with numeric constants.

TEST_VECTORS
([A,B] -> [C,D])

-> 3 H
-> 2 H
-> ‘]

.>0;

W N - O

If the signal identifiers used in the test vector header were
declared as active-low in the declaration section, then
constant values specified in the test vectors will be inverted
accordingly.

8-44

9. Directives

Directives provide many options that can affect the contents
of a source file when it is processed. Sections of ABEL
source code can be included conditionally, code can be
brought into a source file from another file, and messages
can be printed during the processing of a source file.

Directives are for the designer who understands the basics
of ABEL and who wants to use more complex structures.
Table 9-1 lists the available directives, which are described
in detail in later subsections. Examples of directive usage
to create test vectors are given in chapter 12.

Some of the directives take arguments that are used to
determine conditions. When this is the case, the argument
can be an actual argument, or it can be a dummy argument
preceded by a question mark. The rules applying to actual
and dummy arguments are presented in section 7.11.

When debugging your source file, you can use the -E and
-P flags to examine statements. The -E parameter causes
the parsed and expanded source code to be written to the
listing file (or to the display if the -L flag is omitted). Text
included by directives is written (or displayed). In addition
to the listing information provided by the -E flag, the -P
flag lists the directives that caused code to be added to the
source file.

Table 9-1. Directives

@ALTERNATE @IFDEF @INCLUDE @RADIX
@CONST @IFIDEN @IRP @REPEAT
@EXPR @IFNB @IRPC @STANDARD
@EXIT @IFNDEF @MESSAGE

@IF @IFNIDEN @PAGE

@IFB

9-1

Language Reference

9.1 @ALTERNATE Directive

9-2

@ALTERNATE

@ALTERNATE brings an alternate set of operators into
effect that duplicate the normal ABEL operators. This is
for users who feel more comfortable with the alternate set
because of their familiarity with operators used in other
languages.

The alternate operators remain in effect until the
@STANDARD directive is issued or the end of the
module is reached.

The alternate operator set is listed in table 9-2.

Table 9-2. Alternate Operator Set

ABEL Operator Alternate Operator Description

! / NOT
& * AND
+ OR

$ T4+ XOR
1'% D* XNOR

Note that the use of the alternate operator set precludes
use of the ABEL addition, multiplication and division
operators because they represent the OR, AND and NOT
logical operators in the alternate set.

Directives

9.2 @CONST (Constant) Directive

@CONST id = expression ;
id a valid identifier

expression a valid expression

@CONST allows new constant declarations to be made in a
source file outside the normal (and required) declarations
section.

The @CONST directive is intended to be used inside
macros so that they can define their own internal
constants. Constants defined with @CONST override any
previous constant declarations. Declaring an identifier as
a constant in this manner constitutes an error if the
identifier was used earlier in the source file as something
other than a constant (i.e., a macro, pin, device).

Example:

@CONST count = count + 1;

9-3

Language Reference

9.3 @EXIT Directive

@EXIT

The @EXIT directive causes PARSE to abort processing
of the source file with error bits set. (Error bits allow the
operating system to determine that a processing error has
occurred.)

9.4 @EXPR (Expression) Directive

9-4

@EXPR [block] expression ;
block a block

expression a valid expression

@EXPR evaluates the given expression, and converts it to
a string of digits in the default base numbering system.
This string and the block are then inserted into the source
file at the point at which the @EXPR directive occurs.
The expression must produce a valid number.

Example:
@expr {ABC} "B11 ;

Assuming that the default base is base ten, this example
causes the text ABC3 to be inserted into the source file.

Directives

9.5 @IF Directive
@IF expression block
expression a valid expression that produces a

numeric value

block a valid block of text as described in
section 2

@IF is used to include sections of ABEL source code
based on the value resulting from an expression. If the
expression is non-zero (logical true), the block of code is
included as part of the source.

Dummy argument substitution is valid in the expression.

Example:

@IF(A>17){C=DS$F;)

9-5

Language Reference

9.6 @IFB (If Blank) Directive

9-6

@I1FB (arg) block

arg either an actual argument or a dummy
argument preceded by a "?"

block a valid block of text

@IFB includes the text contained within the block if the
argument is blank (has 0 characters).

Examples:

@IFB ()
{ text here will be included
with the rest of the source file.

}

@IFB (hello)
{ this text will not be included }

@IFB (?A)
{ this text will be included if no value is substituted
for A. }

Directives

9.7 @IFDEF (If Defined) Directive

@IFDEF id block
id an identifier
block a valid block of text
@IFDEF includes the text contained within the block if
the identifier is defined.
Examples:
A pin 5 ;

@ifdef A { Base = “hE000 ; }
"the above assignment is made because A was defined

9-7

Language Reference

9.8 @IFIDEN (If Identical) Directive

9-8

@IFIDEN (argl,arg2) block

argl,2 either an actual argument, or a dummy
argument name preceded by a "?"

block a valid block of text
The text in the block is included in the source file if argl
and arg2 are identical.
Example:
@ifiden (?A,abcd) { 7A device "P16R4’; }

A device declaration for a P16R4 is made if the actual
argument substituted for A is identical to abed.

Directives

9.9 @IFNB (If Not Blank) Directive

@IFNB (arg) block

arg arg either an actual argument, or a dummy
argument name preceded by a "?"

block a valid block of text

@IFNB includes the text contained within the block if the
argument is not blank, meaning that it has more than 0
characters.

Examples:

@IFNB ()

{ ABEL source here will not be included
with the rest of the source file.

}

@IFNB (hello)

{ this text will be included)

@IFNB (?A)

{ this text will be included if a value is
substituted for A}

9-9

Language Reference

9.10 @IFNDEF (If Not Defined) Directive

@IFNDEF id block
id an identifier

block a valid block of text

@IFNDEF includes the text contained within the block if
the identifier is undefined. Thus, if no declaration (pin,
node, device, macro or constant) has been made for the
identifier, the text in the block will be inserted into the
source file.

Example:

@ifndef A{Base="hE000;}
"if A is not defined, the block is inserted in the text

Directives

9.11 @IFNIDEN (If Not ldentical) Directive

@IFNIDEN (argl,arg2) block
argl,2 either an actual argument, or a dummy
argument name preceded by a "?"
block a valid block of text
The text in the block is included in the source file if argl
and arg2 are not identical.
Example:
@ifniden (?A,abcd) { ?A device "P16R8’;)}

A device declaration for a P16R8 is made if the actual
argument substituted for A is not identical to abcd.

9-11

Language Reference

9.12 @INCLUDE Directive
@INCLUDE filespec

filespec a string specifying the name of a file, where
the specification follows the rules of the
operating system being used

@INCLUDE causes the contents of the file identified by
the file specification to be placed in the ABEL source file.
The inclusion will begin at the location of the
@INCLUDE directive. The file specification can include
an explicit drive or path specification that indicates where
the file is to be found. If no drive or path specification is
given, the file is expected to be on either the default drive
or path, or on the drive or path specified by the -H
parameter.

Example:

@INCLUDE ’macros.abl’ "file specification

Directives

9.13 @IRP (Indefinite Repeat) Directive

@IRP dummy_arg (arg [,argl...) block
dummy_arg a dummy argument

arg either an actual argument, or a dummy
argument name preceded by a "?"

block a block of text

@IRP causes the block to be repeated in the source file n
times, where n equals the number of arguments contained
in the parentheses. Each time the block is repeated, the
dummy argument takes on the value of the next successive
argument.

For example:

@IRP A (1, ~"HOA,0)

{B="?A;
}

results in:
B=1;
B = "HOA ;
B=0;

which is inserted into the source file at the location of the
@IRP directive. Multiple assignments to the same
identifier cause an implicit OR to occur (see section 2.8.6).

Language Reference

Note that if the directive is specified like this:

@IRP A (1,"HOA,0)
{(B="A;)

the resulting text would be:
B=1;B="HOA;B=0;
The text appears all on one line because the block in the

@IRP definition contains no end-of-lines. Remember
that end-of-lines and spaces are significant in blocks.

VAN

Directives

9.14 @IRPC (Indefinite Repeat, Character)
irective

@IRPC dummy_arg (arg) block

dummy arg a dummy argument

arg either an actual argument, or a dummy
argument name preceded by a "?"

block a block

@IRPC causes the block to be repeated in the source file n
times, where n equals the number of characters contained
in arg. Each time the block is repeated, the dummy
argument takes on the value of the next successive
character.

For example:

@IRPC A (Cat)

{B="A:
}

results in:
B=C;
B=a;
B=t;

bl

which is inserted into the source file at the location of the
@IRPC directive.

Language Reference

9.15 @MESSAGE Directive

@MESSAGE

string string any valid string

@MESSAGE prints a message specified in string at the
terminal. This can be used to monitor the progress of the
PARSE step of the language processor.

Example:

@message ’Includes completed’

9.16 @PAGE Directive
@PAGE

Send a form feed to the parser listing file. If no listing is
being created, @PAGE has no effect.

Directives

9.17 @RADIX Directive

@RADIX expr ;

expr a valid expression that produces the number 2, 8,
10 or 16 to indicate a new default base
numbering.

@RADIX is used to change the default base numbering
system. The normal default is base 10 (decimal). This
directive is useful when many numbers need to be
specified in a base other than 10, say base 2. The
@RADIX directive can be issued and all numbers that do
not have their base explicitly stated are assumed to be in
the new base, in this case, base 2. (See section 7.6.)

The newly specified default base stays in effect until
another @RADIX directive is issued or until the end of
the module is reached.

When the default base is set to 16, all numbers in that base
that begin with an alphabetic character must begin with
leading zeroes.

Examples:
@radix 2 ; "change default base to binary
@radix 11011/11 + 1 ; "change back to decimal

Language Reference

9.18 @REPEAT Directive

-
£ \\

@REPEAT expr block
expr a valid expression that produces a number
block a block

@REPEAT causes the block to be repeated n times, where
n is specified by the constant expression.

The following use of the repeat directive,
@repeat 5 {H,}

results in the text "H,H,H,H,H," being inserted into the
source file. The @REPEAT directive is useful in
generating long truth tables and sets of test vectors.
Examples of @REPEAT usage can be found in the \
Applications Guide.

Directives

9.19 @STANDARD Directive

@STANDARD

@STANDARD switches the operators in effect back to the
ABEL standard operators from the alternate set. The
alternate set is chosen with the @ALTERNATE directive.

Language Reference

9-20

10. Design Examples

The logic designs and design features discussed in the
following sections are contained on the Design Examples
disk or tape you received with the ABEL package; and are
listed in table 10-1.

You can process these design examples with ABEL, either
as they stand, or with your own modifications, to create
programmer load files. Many of the design examples listed
in table 10-1 are described in detail within this manual, and
the section reference is given for these design examples.
Design examples not described in the manual, but listed in
table 10-1, can be examined as the need arises.

Table 10-1 lists the design examples alphabetically by
filename of the ABEL source file and contains columns for:

m THE NAME OF THE SOURCE FILE. The source file
uses the .ABL file extension (e.g., ADDS5 is
ADDS5.ABL). The ABEL batch file requires that the
file extension not be entered for the source file. The
command line for any of individual programs defaults
to .ABL for a source file extension.

m PROGRAMMABLE LOGIC DEVICE TYPE. The type
of programmable logic device type used in the design
example is listed to assist you in locating meaningful
design examples.

m SECTION REFERENCE. Where applicable, a
reference to a specific section in this manual is given
that provides some detailed information.

m TYPE OF EXAMPLE. A brief description of the
design example.

10-1

Applications Guide

Table 10-1. Design Examples Supplied with ABEL

Section
Filename Device Refer-
(*.ABL) Type ence. Type of Example
ADD5 F159 4.6 Simulation trace levels
ALARM P16R4 N/A Macros (state diagram)

BARREL P20R8 10.6 Sets
BCD7PAL P16L8 N/A PALASM example for

TOABEL

BCD7ROM RAS5P8 10.7 Truth table

BGATES P12H6 N/A ABEL version of PALASM
basic gates

BGEQN F100 N/A @repeat directive used
w/equations

BINBCD P16L8 10.10 Truth table

BJACK P16R6 10.10 State machine

BUFFER F153 10.9 Three-state output control

COMP4A F153 10.8 Relational operators

COUNT4 PI6R4 10.4 Equations

COUNT4A P16R4 10.4 Multiple equations for one
output

DECADE F105 13.5 Transition equations
complement array

DEMOI1800 EI1800 Macro cell control

DMUXITS8 P16L8 10.3 Sets

FEEDBACK PI6R4 4.6 Simulator example

FPLS F157 N/A Logic sequencer features
GALS 16U8 Selection of GAL models
GATES PI2H6 N/A PALASM example for

: TOABEL

LCUCROM RAS8P8 N/A Macros, compiler directives
MACROCEL EO0310 13.2 Output macro cells

M6809A P14L4 10.1 Sets, relational operators

M6809B P14L4 12.5 Macros with test vectors

M6809C P14L4 12.5 Macros with test vectors

M6809D P16L8 11.3 Device type from command
line

10-2

Design Examples

Table 1-1. (cont.)

Filename Device
(*.ABL) Type

Section

Refer-
ence.

Type of Example

M6809ER P14L4

M6809ERR Pl14L4
MUXADD P22V10
MUX12T4 P14H4

OCTAL P20X8
REGFB P16R4
SHIFT40 32R16

TIISHOT PI9RS
TRAFFIC F167
SEQUENCE PIl6R4
SHIFTCNT F159

4.6

4.2
10.10
10.2
N/A
4.6
N/A
N/A
N/A
10.5
13.2

Demonstrates simulation
error

Demonstrates syntax error
Ripple adder

Sets

Exclusive OR equations
Simulator example

84-pin PAL example

Input registers

State machine RS flip/flops
State Diagram

Controls JK & D flip-flops

*This table represents a partial list of design examples available at the time
of printing. To verify the design examples provided on your ABEL disk or
tape, use the operating system to print the file named EXAMPLES.TXT.

10-3

Applications Guide

The following logic design examples are believed to be
representative of typical programmable logic applications.
These serve to illustrate significant ABEL features. Use
them to learn more about ABEL and to start designing with
ABEL. We encourage you to use these examples directly by
modifying them to suit your needs, or by incorporating
them into larger system designs.

The titles of the designs indicate the logic design problem
being solved, the major features of ABEL used to solve the
problem, and the type of programmable logic device used.
Each design has accompanying block diagrams and source
file listings.

All the examples presented in this section are included on
your ABEL distribution disk or tape. Additional examples
not explained here are also included. A list and brief
description of all examples distributed with ABEL can be
found in the file named EXAMPLES.TXT on your
distribution disk or tape; and also in table 1-1. You can use
the operating system to display the list of design examples
contained in EXAMPLES.TXT.

10-4

Design Examples

10.1 6309 Memory Address Decoder

(Equations P14L4)

Address decoding is a typical application of programmable
logic devices, and the following describes the ABEL
implementation of such a design.

- I
A4 —)

A13 —]

Al —

A2 —f

A10 S

D—> ROM1
~ Pp—> ROMm2
' b——-» 10

 b—> oRam

ROM1 ROMZ%

I/0 | DRAM \

FFFF F800 FOO0 E800

EQOO 0000

Figure 10-1. Block Diagram: 6809 Memory Address Decoder

10.1.1 Design Specification

Figure 10-1 shows the block diagram for this design and a
continuous block of memory divided into sections
containing dynamic RAM (DRAM), 1/O (I0), and two
sections of ROM (ROM1 and ROM?2). The purpose of this

decoder is to monitor the 6
sixteen-bit address bus and
memory based on the value

high-order bits (415-A410) of a
select the correct section of
of these address bits. To

perform this function, a simple decoder with six inputs and
four outputs is designed with a P14L4 PAL.

10-5

App

lications Guide

Table 10-2 shows the address ranges associated with each
section of memory. These address ranges can also be seen
in figure 10-1.

Table 10-2. Address Ranges for the 6809 Controller

Memory Section Address Range (hex)
DRAM 0000-DFFF
I/0 EO000-E7FF
ROM2 FO000-F7FF
ROMI1 F800-FFFF

10.1.2 Design Method

10-6

Figure 10-2 shows a simplified block diagram for the
address decoder. The address decoder is implemented with
simple Boolean equations employing both relational and
logical operators as shown in listing 10-1. A significant
amount of simplification is achieved by grouping the
address bits into a set named Address. The lower-order ten
address bits that are not used for the address decode are
given "don’t care" values in the address set. In this way, the
designer indicates that the address in the overall design
(that beyond the decoder) contains sixteen bits, but that bits
0-9 do not affect the decode of that address. This is
opposed to simply defining the set as

Address = [A15,A14,A13,A12,A11,A10]

which ignores the existence of the lower-order bits.
Specifying all 16 address lines as members of the address set
also allows full 16-bit comparisons of the address value
against the ranges shown in table 10-2.

Design Examples

module mé809%a
title '6809 memory decode
Jean Designer Data 1/0 Redmond WA 24 Feb 1987!

UG%a device 'Pl4L4’;
A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6;

ROM1, 10,ROM2, DRAM pin 14,15,16,17;

H,L,X =1,0,.X.;

Address = [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,X]1;
equations

IDRAM = (Address <= “hDFFF);

110 = (Address >= “hEQ00) & (Address <= “hE7FF);

IROM2 = (Address >= “hF000) & (Address <= “hF7FF);
IROM1 = (Address >= "“hF800);

test_vectors (Address -> [ROM1,ROM2,10,DRAM])

~h0000 -> [H, H, H, L1I;
Ah4000 -> [H, H, H, L1;
~h8000 -> [H, H, H, L1I;
AhCOOO -> [H, H, H, L1;
~hEOOO -> [H, H, L, H1I;
~hESOO -> [H, H, H, H1I;
~hFO00 -> [H, L, H, HI;
~hF800 -> [L, H, H, HI;

end m680%a

Listing 10-1. Source File: 6809 Memory Address Decoder

10-7

Applications Guide

Address —»

Figure 10-2. Simplified Block Diagram: 6809 Memory
Address Decoder

10.1.3 Test Vectors

In this design, the test vectors are a straightforward listing
of the values that must appear on the output lines for
specific address values. The address values are specified in
hexadecimal notation.

10-8

Design Examples

10.2 12 to 4 Multiplexer
Equations/P14H4)

Following is a description of a 12-input to 4-output
multiplexer implemented with one Boolean equation.

10.2.1 Design Specification

Figure 10-3 shows the block diagram for this design. The
multiplexer selects one of three sets of four inputs and
routes that set to the outputs. The inputs are a0-a3, b0-b3,
and c0-c3. The outputs are y0-y3. The routing of inputs to
outputs is straightforward: a0 or b0 or c0 is routed to the
output y0, al or bl or cl is routed to the output yI, and so
on with the remaining outputs.

0 —3
al —3pt
82—
a3 —3

b — el VO
bl —>f I
b2 —3t = o —>V2

b3 —» >3

cQ) —>i .
cl —»f
c2 —>»f
c3 —>»

Figure 10-3. Block Diagram: 12 to 4 Multiplexer

10-9

Applications Guide

10.2.2 Design Method

Figure 10-4 shows a block diagram for the same
multiplexer after sets have been used to group the signals.
All of the inputs have been grouped into the sets a, b, and
¢; the outputs and select lines are grouped into the sets, y
and select, respectively. This grouping of signals into sets
takes place in the declaration section of the source file
listed in listing 10-2.

a —p
b — = —> Y

cC—>

1

select

Figure 10-4. Simplified Block Diagram: 12 to 4 Multiplexer

Once the sets have been declared, specification of the
design is made by means of the following four equations
that use WHILE-THEN statements.

when (select == 0) then y = a;
when (select == 1) then y = b;
when (select == 2) then y = ¢;
when (select == 3) then y = ¢c;

10-10

Design Examples

The relational expression inside the parentheses produces an
expression that evaluates to true or false value depending on
the values of s/ and s0. In the first equation, this
expression is then ANDed with the set a which contains the
four bits, a0-a3, and could be written as

y = (select == 0) & a

Assume that select is equal to 0 (sl = 0 and sO = 0) so that a
true value is produced. The true is then ANDed with the
set a on a bit by bit basis, which in effect sets the product
term to a. If select were not equal to 0, the relational
expression inside the parentheses would produce a false
value, which when ANDed with anything, would give all
zeroes. The other product terms in the equation work in
the same manner. Because select takes on only one value at
a time, only one of the product terms passes the value of an
input set along to the output set; the others contribute 0 bits
to the ORs.

10.2.3 Test Vectors

The test vectors for this design are specified in terms of the
input, output and select sets. Note that the values for a set
can be specified by decimal numbers and by other sets.

The constants H and L used in the test vectors were
declared as four bit sets containing all ones or all zeroes.

10-11

Applications Guide

module _mux12té4
title '12 to 4 multiplexer 11 Nov 1987
Charles Olivier & Dave Pellerin Data I/0 Corp.

mux12t4 device 'P14H4*;
a0,al,a2,a3 pin 1,2,3,4;
b0,b1,b2,b3 pin 5,6,7,8;
c0,c1,c2,c3 pin 9,11,12,13;
s1,s0 pin 18,19;
y0,y1,¥2,y3 pin 14,15,16,17;
H = 1,1,1,11;
L = [0,0,0,01;
X = Xep
select = [s1, s01;
y = ly3,y2,y1,y01;
a = [a3,a2,a1,a01;
b = [b3,b2,b1,b01;
c = [c3,c2,c1,c0];
equations
when (select == 0) then y = a;
when (select == 1) then y = b;
when (select == 2) theny = c;
when (select == 3) theny = ¢c;
test_vectors
([select, a, b, ¢l ->vy)
[0 , 1, X, X1 ->1; vselect =0,
[0 ,10, H, LI -> 10;
[0 , 5, H, L1 ->5;
[, H, 3, H1 -> 3; “select = 1,
[,10, 7, H1 -> 7;
4] , L,15, L1 -> 15;
[2 , L, L, 8 -> 8; "“select = 2,
2 , H, H, 91 ->9;
[2 , L, L, 11 ->1;
3 , H, H, 01 -> 0; “select = 3,
3 , L, L, 91 ->09;
3 , H, L, 01 ->0;

end _mux12té

10-12

Listing 10-2. Source File: 12 to

Redmond WA'

gates lines a to output

gates lines b to output

gates lines c to output

gates lines ¢ to output

4 Multiplexer

Design Examples

10.3 1 to 8 Demultiplexer
(Equations/P16L8)

Following is the design for a simple one line to eight line
demultiplexer with an enable. The design is implemented
with Boolean equations and a P16L8 PAL.

data —»

0 —>

s1 —»

s2 —»|

Figure 10-5. Block Diagram: 1 to 8 Demultiplexer

10.3.1 Design Specification

Figure 10-5 shows a block diagram for a one line to eight
line demultiplexer with active low outputs, a one bit input,
three select lines and an enable. The demultiplexer routes
the input named data to one of the eight output lines, y0-
y7, according to the value present on the select lines, sO0-s2.
Because the outputs are inverted, they show the inverse of
the input line. The select lines carry a three bit binary
number whose value ranges from 0 to 7, thus selecting one

10-13

Applications Guide

of the outputs. enb is an enable line. When enb is low (0),
the outputs go to high impedance. When enb is high, the
outputs are determined by the demultiplexing function.

data —) o ;l
select —3| . D—3> outputs
enb — L]

Figure 10-6. Simplified Block Diagram: Demultiplexer

10.3.2 Design Method

Figure 10-6 shows a simplified block diagram of the
demultiplexer. The select lines and outputs are collected
into sets named select and outputs to simplify the Boolean
equations with which the demultiplexing function is
described. The ABEL description of this logic is shown in
listing 10-3. Each output is determined by ANDing the
data line with a relational expression that checks for
equivalence between the select lines and one of the eight
possible select values. Because select can have only one
value at any given time, only one of the outputs is selected
for an AND with the data value. The selected output shows
the inverse of the data line.

The enable function is implemented with a separate
equation using the set outputs along with the ENABLE
keyword. Thus the equation,

enable outputs = enb ;

assigns the enables on each of the output lines to the input,
enb.

10-14

N

Design Examples

10.3.3 Test Vectors

The test vectors for this design first select each of the
outputs with the data input and enable high, then they
select each of the outputs with the data input low and the
enable high. Finally, the enable is checked by setting it
low; all the outputs go to high impedance.

10-15

Applications Guide

module dmux1t8
title '1 to 8 line demultiplexer
Mark Kuenster FurureNet Division, Data 1/0 Corp. 19 Nov 1987!

DM1 device 'P16L8';
y0,y1,¥2,Y3,¥4,y5,¥6,y7 pin 12,13,14,15,16,17,18,19;
s0,s1,s2,data, enb pin 1,2,3,4,5;

H,L,2 = 1,0,.2.;
select = [s2, s1, s01;
outputs = ly7, y6, y5, v4, ¥3, y2, y1, ¥01;
equations
1y0 = (select == 0) & data;
Iyl = (select == 1) & data;
ly2 = (select == 2) & data;
ly3 = (select == 3) & data;
lyh = (select == 4) & data;
ly5 = (select == 5) & data;
ly6 = (select == 6) & data;
1y7 = (select == 7) & data;

enable outputs = enb;

test_vectors 'Test the demuliplexer with a high input!'
(lenb,select,datal -> [y7,y6,y5,y4,y3,y2,y1,y01)

[H, O ,H 1->1[H H, H, H, H, H, H, L]; "Select yO
[H, 1 ,H 1->1[H H, H, H, H, H, L, H]; "Select y1
LH, 2 ,H 1->TH H, H, H, H, L, H, H]; "Select y2
[H, 3 ,H 1->1[H H, H, H, L, H, H, H]; "Select y3
[LH, &4 ,H 1 ->1[H H, H, L, H, H, H, H]; "sSelect y4
[H, 5 ,H 1->1[H H, L, H, H, H, H, HI; "Select y5
[H, 6 ,H 1->I[H L, H, H, H, H, H, H]; "Select yb
[H, 7 ,H 1->1IL, H, H, H, H, H, H, H]; "Select y7
tL, O ,H1->12,2,2,2,2,2,2, 21;

test_vectors 'Test the demuliplexer with a low input!
([enb,select,datal -> [y7,y6,Y5,y4,yY3,y2,y1,y0]

[H, O ,L 1->1[H H, H, H, H, H, H, H]; "Select yO0
[H, 1 ,L 1->1IH, H, H, H, H, H, H, H]; "“Select y1
[H, 2 ,L 1->I[H, H, H, H, H, H, H, H]; "Select y2
[H, 3 ,L 1->1[H H, H, H, H, H, H, H]; "Select y3
LH, 4 ,L 1->TIH, H, H, H, H, H, H, H]; "Select y&
[H, 5 ,L 1 ->([H, H, H, H, H, H, H, H]; "Select y5
LH, 6 ,L 1->T[H H, H, H, H, H, H, HI; "Select yb6
[H, 7 ,L 1->1[H H, H, H, H, H, H, H]; "Select y7
tL, 0 ,L1->102,2,2,2,2,2,12,12);
end dmux1t8

Listing 10-3. 1 to 8 Demultiplexer

10-16

Design Examples

10.4 4-Bit Counter {Multlplexer
(Equations/P16R4

Following is a design for a 4-bit synchronous counter
implemented with a P16R4. Counter features include
carry-in and carry-out, 2 input multiplexing and a hold
state. The counter is described by Boolean equations.

B3 B2 B1 B0 A3 A2 A1 AD

bidy Ll

0—>

Cl—>

Figure 10-7. Block Diagram: 4-Bit Counter With 2 Input
Multiplexer

10.4.1 Design Specification

Figure 10-7 shows the counter and its signals. The outputs,
00, Q1, Q2, and Q3 show the current count, with Q0 being
the low-order bit and Q3 being the high-order bit. The
counter has four different modes of operation: hold, load A,
load B, and increment. The modes are selected by the
inputs, 10 and I1, as indicated in table 10-3. In the hold
mode, the current count is retained regardless of clocking.
When in load A mode, the counter loads the values on A0-
A3 on the next clock pulse. Similarly, the BO-B3 inputs are
loaded into the counter on the next clock pulse when the
mode is load B. In increment mode, the count is increased

10-17

Applications Guide

by the value on the carry-in line CI on a clock pulse. If
the count overflows from 15 (hex F) to 0, the carry-out line
CO, goes to 1. The output control, OC, enables the outputs
when low (OC =0) and forces the outputs to high impedance
when high (OC= 1).

Table 10-3. Counter Modes

Mode 11 10 Description
Hold 0 0 count remains unchanged
Load A 0 1 load A0-A3 into the count
registers
Load B 1 0 load B0-B3 into the count
registers
Increment 1 1 increment the count by 1 on

clock pulse

The carry-in and carry-out lines operate such that two or
more of the counters can be chained together to form a
wider counter. To do this, the carry-out of one counter is
connected to the carry in of the next counter. Thus, when
the first counter counts to 16, it is cleared to 0 and its
carry-out bit is one, causing the next counter’s increment to
be one.

10-18

Design Examples

Input B Input A

Output

Figure 10-8. Simplified Block Diagram: 4 -Bit Counter
With 2 Input Multiplexer

10.4.2 Design Method

The counter is described with Boolean equations. Figure
10-8 shows the simplified block diagram corresponding to
the ABEL implementation of the counter design. Listing
10-4 shows the source file.

The design is simplified by grouping the input bits, output
bits and mode selectors into sets, so that they can be
referenced by name. The inputs 40-A43 are assigned to the
set InputA, the inputs BO-B3 to the set InputB, the outputs
Q0-Q3 and CO to the set Output, and the mode selectors 10
and /! to the set Mode.

Notation in the source file can be further simplified by
some simple constant assignments. H represents a 1, L
represents a 0, X represents the special constant .X., and so
on. The four possible modes are also assigned as constants:
Hold=0, LoadA=1, LoadB=2, and Incr=3. These

10-19

Applications Guide

assignments correspond to the decimal equivalent of the two
bit binary number formed of II and 10, as already shown in
table 10-2. Note also that this two bit binary number is the |
set Mode.

Thus, in the equations section of the source file, the set
Mode is compared to the different possible modes -- by
name. Take for example, the expression:
Mode==LoadA
~ This is equivalent to:
[11,10]==1
And this is equivalent to:
(I1==0) & (10 ==1)
which can be written as:
1 & I0
This means "if 11 is low and I0 is high." By using sets and
constant assignments, the source file becomes more
meaningful. The expression, Mode==LoadA, can be
read as, "if the mode is LoadA."
The equations section of the source file simply describes the

Boolean equations for a 4-bit adder with carry-in, carry-
out and multiplexed load.

10-20

Design Examples

10.4.3 Test Vectors

The advantages of set notation become even more apparent
in the test vectors section of the source file. In the test
vectors section, it is necessary to show the required output
for various given inputs. Rather than listing the outputs
and inputs bit by bit, advantage is taken of sets, constants,
and hexadecimal notation to simplify the vectors.

For example, because Load A was assigned the constant
value, 1, the name, Load A, can be used directly in the test
vectors as a value for Mode. Thus, it is unnecessary to
remember that Mode is made up of II and /2 and that
LoadA corresponds to 11=0, 10=1.

The test vectors shown in listing 10-4 test for proper
loading of InputA and InputB, for increments after loads,
for hold states, for correct operation of the carry-out, and
for normal increment mode. Refer to the comments beside
the test vectors for examples of each type of test.

The PAL 16R4 and many other devices have a dedicated
output enable pin. This pin must be held at the proper
level (0 or 1) to observe the outputs. The test vectors in
listing 10-4 include the output enable pin (OC).

10-21

Applications Guide

module counté

title '4-bit counter with 2 input mux
based on an example by Birkner/Coli in the MMI PAL Handbook

Dan Burrier & Mike McGee

P7022

device 'P16R4!;

ctk,oc,co,11,10,CI

AO,A1,A2,A3,B0,81,B2,B3

03,02,Q1,00
H,L,X,Z,C

InputA
InputB
Output
Mode

Hold,LoadA,LoadB, Incr

equations
10

a1

1Q2

1Q3

1Co

pin

1,11,12,13,18,19;
pin 2,3,4,5,6,7,8,9;

19 Nov 1987

pin 14,15,16,17;

:= (Mode==Hold) &
(Mode==LoadA) &
(Mode==LoadB) &
(Mode==Incr) &
(Mode==Incr) &

:= (Mode==Hold) &
(Mode==LoadA) &
(Mode==LoadB) &
(Mode==Incr) &
(Mode==Incr) &
(Mode==Incr) &

:= (Mode==Hold) &
(Mode==LoadA) &
(Mode==LoadB) &

(Mode==Incr
(Mode==Incr
(Mode==Incr
(Mode==Incr

:= (Mode==Hold

(Mode==LoadA)

)

&
&
&
&
&
&

(Mode==LoadB) &
(Mode==Incr) &
(Mode==Incr) &
(Mode==Incr) &
(Mode==Incr) &
(Mode==Incr) & CI & Q0 & Q1 &

1,0, .X
[A3,A2,A1,A01;
[83,82,B1,B01;
[c0,03,02,a1,Q0];
[1,101;
0,1,2,3;

1Q0
1A0
B0
ICI &
CI &

a1
1A1
1B1
ICI &
100 &
CI &

1Q2
1A2
1B2
ICI
1Q0
a1

CI

RO RO RO RO

103
1A3
1B3
ICI &
100 &
a1 &
102 &

esel.,.C.;

121
191
Q0 & Q1 ;

Q2
1Q2
102
Q0 & a1 &

103
1Q3
1Q3
1Q3

= ICI # 1Q0 # 1Q1 # 1Q2 # 103 ;

FutureNet Division, Data 1/0 Corp.!'

" define Modes

"Hold if

"Hold if
"Hold if

“"Hold if
"Hold if
"Hold if
Q ;

"Hold if
"Hold if
"Hold if
"Hold if
Q2 & Q3

no carry

no carry
Qo0=L

no carry
Q0=L
Q1=L

I

Listing 10-4. Source file: 4-bit Counter with 2 Input Mux
(continued on next page)

10-22

Design Examples

adpage
test_vectors

' test Load A and B!
InputB,CI] -> Output)

([Clk,OC, Mode, InputA,
[C, L, LoadA, "hO , *hF X
[C, L, LoadB, *~hO , “hF ,L
[C, L, LoadA, "“h1 , *h7 ,X
[C, L, LoadB, "h1 , *h7 ,X
[C, L, LoadA, "*h2 , "hB ,X
[C, L, LoadB, *“h2 , "“hB ,X
[C, L, LoadA, "h4 , “hD ,X
[C, L, LoadB, “h4 , “hD ,X
[C, L, LoadA, "“h8 , "hE ,X
[C, L, LoadB, "“h8 , "heE ,X
[C, L, LoadA, "hO , "“hF ,X
[C, L, LoadB, "“hO , *hF ,L
test_vectors ' test increment'
(IClk,0C, Mode, InputA, InputB,CI
[C, L, LoadB, X , “h1 ,X
[c, L, Inmcr, X , X LH
[C, L, LoadB, X , "h3 /X
[c, L, Inecr, X , X ,H
[C, L, LoadA, "*h7 , X X
[c, L, Incr, X , X LH
[C, L, LoadA, *hF , X ,L
[c, L, Incr, X , X ,H
[C, L, LoadB, X , "“hC ,X
[c, L, Iner, X , X ,H
[C, L, ,Hld, X , X ,H

test_vectors

(Iclk,oc,

[c,
tc
[c
[c,
[c
[c
L

end counté

' test carry!

Mode,
Incr ,
Incr ,
Incr ,
Incr ,
Incr ,
Incr ,
Hold ,

InputA, InputB

X,

R

X X X X X X

X

X X X X X X

—

’

& =" s s~

XTrrxTxxxO

]

e e e et b e e e e b

->
->
->

~h0;
~hF;
“h1;
~h7;
“h2;
“hB;
“h4;
“hD;
“h8;
“hE;
~h0;
~hF;

->
->
->
->
->
->
->
->
->

-> Output)
-> *h1;
-> ~h2;
-> ~h3;
-> "hé4;
-> ~h7;
-> ~h8;
-> ~hF;
-> ~h0;
-> ~hC;
-> ~hD;
-> ~hD;

->
->
->
->
->
->
->

Output)
“hE;
“h1F;
“ho;
“h1;
“h1;
“h2;

“"roll over

“carry out
"roll over

"no carry in

-> X,z2,2,2,21;

Listing 10-4. (continued)

10-23

Applications Guide

10.4.4 Multiple Assignments to the Same Signal

When a signal (output pin or node) name appears on the left
side of more than one equation, the two equations are ORed
together to produce an equation that fully describes the
logic function. You can use this ORing of equations to split
a design description into functional pieces, each of which
describes a distinct part of the design; these individual
pieces are ORed together to describe the whole design.

Listing 10-5 shows the same 4-bit counter with 2-input
multiplexer, but described by two separate equations
sections. (Equations sections are begun by the keyword
EQUATIONS.) The first equations section describes the
multiplexing function, and the second describes the count
function. Notice, however, that both groups of equations
are written for the same outputs, Q0-Q3. The multiplexing
equations for Q0 are ORed with the count equations for Q0,
and together they describe the total function for that
output. The same operation is performed for the other
outputs to completely describe the design.

This is the same 4-bit counter described in section 10.4, but
in that section the count and multiplexing functions are
described together in one equations section. The function
of each counter is identical, and the same equations are
produced regardless of the method of description chosen.

10-24

Design Examples

module countéa

title '4-bit counter with 2 input mux

19 Nov 1987

based on an example by Birkner/Coli in the MMI PAL Handbook

Dan Burrier & Mike McGee

P7022A device 'P16R4!;

clk,oc,co,11,10,CI

FutureNet Division, Data I/0 Corp.!'

pin 1,11,12,13,18,19;
A0,A1,A2,A3,B0,B1,B2,83 pin 2,3,4,5,6,7,8,9;

Q3,02,Q1,Q0 pin 14,15,16,17;
H,L,X,2,C =1,0, .X.,.2.,.C.;
InputA = [A3,A2,A1,A0]1;
InputB = [B3,B2,B1,B0];
Output = [C0,Q3,02,Q1,Q0];
Mode = [I11,101;
Hold,LoadA,LoadB,Incr = 0,1,2,3; " define Modes
equations " input multiplexer
1Q0 := (Mode==Hold) & !Q0
(Mode==LoadA) & !AO
(Mode==LoadB) & !BO;
Q1 := (Mode==Hold) & !Q1
(Mode==LoadA) & !A1
(Mode==LoadB) & !B1;
1Q2 := (Mode==Hold) & !1Q2
(Mode==LoadA) & A2
(Mode==LoadB) & !B2;
1Q3 := (Mode==Hold) & !1Q3
(Mode==LoadA) & !A3
(Mode==LoadB) & !B3;
" 4 bit counter
1Q0 := (Mode==Incr) & !CI & !Q0 "Hold if no carry
(Mode==Incr) & CI & QO ;
1Q1 := (Mode==Incr) & ICI & !'Q1 "Hold if no carry
(Mode==Incr) & !Q0 & !Q1 "Hold if QO=L
(Mode==Incr) & CI & Q0 & Q1 ;
1Q2 := (Mode==Incr) & ICI & !Q2 "Hold if no carry
(Mode==Incr) & 'Q0 & Q2 "Hold if QO=L
(Mode==Incr) & !'Q1 & Q2 "Hold if Q1=L
(Mode==Incr) & CI & Q0 & Q1 & Q2 ;

Listing 10-5. Multiple Equations Sections, 4-Bit Counter

(continued on next page)

10-25

Applications Guide

dpage
123 := (Mode==Incr) & ICI & !Q3 "Hold if no carry
(Mode==Incr) & !Q0 & !Q3 "Hold if QO=L
(Mode==Incr) & !Q1 & !Q3 "Hold if Q1=L
(Mode==Incr) & 102 & 1Q3 "Hold if Q2=L
(Mode==Incr) & CI & Q0 & Q1 & Q@2 & Q3 ;
1Co = ICI # 1Q0 # 'Q1 # 1Q2 # 103 ;

test_vectors ' test Load A and B'

([Clk,0C, Mode, InputA, InputB,CI 1 -> Output)
[C, L, Loada, ~hO , “hF ,X 1 -> ~hO;
[C, L, Loadd, ~hO , ~hF ,L 1 -> *hF;
[C, L, LoadA, ~h1 , *h7 ,X 1 -> ~h1;
[C, L, LoadB, ~h1 , *h7 X 1 -> *h7;
[C, L, LoadA, ~h2 , ”~hB X 1 -> *h2;
[C, L, LoadB, ~h2 , “hB ,X 1 -> *hB;
[C, L, LoadA, ~h4 , “hD ,X 1 -> “h4;
[C, L, LoadB, ~h4 , ~hD ,X 1 -> ~hD;
[C, L, LoadA, ~h8 , “hE ,X 1 -> "h8;
[C, L, LoadB, ~h8 , “hE ,X 1 -> "hE;
[C, L, LoadA, ~hO , ~hF ,X 1 -> “hO;
[C, L, LoadB, ~hO , "~hF ,L 1 -> “~hF;
test_vectors ' test increment'
([Clk,0C, Mode, InputA, InputB,CI 1 -> Output)
[C, L, LoadB, X , ~h1 ,X 1 ->*h1;
[c, L, Incr, X , X LH 1->"h2;
[C, L, Loadd, X , ”~h3 X 1 -> *h3;
[C, L, Incr, X , X ,H 1 ->7"h4;
[C, L, LoadA, *h7 , X X 1 -> *h7;
[c,L,Inmcr, X , X ,H 1->"h8;
[C, L, LoadA, *hF , X ,L 1 -> “hF;
[c, L, Incr, X , X ,L,H 1 ->"h0; "roll over
[C, L, LoadB, X , “hC ,X 1 -> *hC;
[C, L, Incr, X , X ,H 1->"hD;
[C,L, Hold, X , X ,H 1 ->"hD;
test_vectors ! test carry'
(IClk,0C, Mode, InputA, InputB,CI 1 -> Output)
[C, L, Incr, X , X ,H 1 ->"hE;
[C, L, Incr, X , X ,H 1 ->"hlF; "carry out
[Cc, L, Incr, X , X ,H 1->"h0; "roll over
[c, L, Incr, X , X ,H 1->"h1;
[c,L, Inecr, X , X ,L 1->"h1; no carry in
[c,L,Imcr, X , X ,L,H 1->"h2;
[L,H Hold, X , X X 1 ->10X,2,2,2,21;
end countéa

Listing 10-5. (continued)

10-26

Design Examples

10.5 Three-State Sequencer
State Diagram/16R4)

The following design is a simple sequencer that
demonstrates the use of ABEL state diagrams. The design is
implemented in a P16R4 device. There is no exact limit on
number of State Diagram states that can be processed by
ABEL, but depends on the number of transitions and the
path of the transitions. For example, a 64 state counter uses
fewer terms (and smaller equations) than a 63 state counter.
For larger counter designs, use the syntax CountA:= CountA + 1
to create a counter rather than using a state machine. See
also example COUNT116.ABL for further information on
counter implementation.

10.5.1 Design Specification

Figure 10-9 shows the sequencer design, with a bubble
diagram showing the transitions and desired outputs. The
state machine starts in state A and remains in that state
until the ’start’ input becomes high. It then sequences from
state A to state B, from state B to state C, and back to state
A. It remains in state A until the ’start’ input is high again.
If the ’reset’ input is high, the state machine returns to state
A at the next clock cycle. If this reset to state A occurs
during state B, an ’abort’ synchronous output goes high, and
remains high until the machine is again started.

During states B and C, asynchronous outputs in_B’ and
‘in__C’ become high to indicate the current state. Activation

of the ’hold’ input will cause the machine to hold in state B
or C until 'hold’ is no longer high, or 'reset’ becomes high.

10.5.2 Design Method

The sequencer is described by using a STATE_ DIAGRAM
section in the ABEL source file. Listing 10-6 shows the

10-27

Applications Guide

ABEL source file for the sequencer. In the source file, the
design is given a title, the device type is specified, and pin ,
declarations are made. The FLAG statement is used to \
select level 3. reduction. Constants are declared to simplify

the state diagram notation. The two state registers are

grouped into a set called ’sreg’. The three states A, B, and C
are declared with appropriate values specified for each.

default withabort=0

reset withabort: =1

hold & lreset
withabort: =0 |

default
withabort: =0
default withabort=0

start & Ireset
withabort: =0

hold & lreset
with abort: =0

Figure 10-9. State Machine Bubble Diagram

State values have been chosen for this design that allow the
use of register preload to ensure that the machine starts in
state A. For larger state machines with more state bits,
careful numbering of states can dramatically reduce the
logic required to implement the design. Using constant
declarations to specify state values saves time when later
changes to these values are made.

The state diagram begins with the STATE_ DIAGRAM
statement that names the set of signals to be used for the

10-28

Design Examples

state register. The set to be used is 'sreg’.

Within the STATE DIAGRAM, IF-THEN-ELSE
statements are used to indicate the transitions between
states, and the input conditions that cause each transition.
In addition, equations are written in each state that indicate
the outputs required for each state or transition.

For example, state A reads:

State A:
in_B=0;
in_ C=0;

if (start & 'reset) then B with abort := 0;
else A with abort := abort;

This means that if the machine is in state A and ’start’ is
high, but ’reset’ is low, then the machine will advance to
state B, but in any other input condition the machine will
remain in state A.

The equations for in_B and in_C indicate the those outputs
should remain low while the machine is in state A, while
the equations for ’abort’, specified with the 'with’ keyword,
indicate that ’abort’ should go low if the machine transitions
to state B, but should remain at it’s previous value if the
machine stays in state A.

10.5.3 Test Vectors

The specification of the test vectors for this design is
similar to other synchronous designs. The first vector is a
preload vector, to put the machine into a known state (state
A), and the following vectors excercise the functions of the
machine. The A, B, and C constants are used in the vectors
to indicate the value of the current state, improving the
readability of the vectors.

10-29

Applications Guide

module sequence flag '-r3!
title 'State machine example D. B. Pellerin - FutureNet';
di device 'plér4!;
ql,q0 pin 14,15;
clock, enab,start,hold, reset pin 1,11,4,2,3;
abort pin 17;
inB,in C pin 12,13;
sreg = [q1,901;
A = 0; B=1; C = 2; "State Values
state_diagram sreg;
State A: " Hold in state A until start is active
inB =0;
inC =0;

IF (start & !reset) THEN B WITH abort := 0;
ELSE A WITH abort := abort;

State B: " Advance to state C unless reset
inB=1; " or hold is active. Turn on abort
inC =0; " indicator if reset.

IF (reset) THEN A WITH abort := 1;
ELSE IF (hold) THEN B WITH abort := 0;
ELSE C WITH abort := 0;

State C: " Go back to A unless hold is active
inB =0; " Reset overrides hold.
inC=1;

IF Chold & Ireset) THEN C WITH abort := O0;
ELSE A WITH abort := 0;

test_vectors([clock,enab,start,reset, hold] ->[sreg,abort, in_B,in_Cl)

{.p., 0, 0, 0, 01> A, O , O, 01;
.., O, O, 0, 01> A, O, 0, 01;
[.., O, 1,0, 01> 8, 0, 1, 01;
r.., 0, 0, 0, 01> c, 0 , 0, 11;
[.ec., 0, 1, 0, 01> A, O , O, 01;
fwe., 0, 1,0, 01>@ 8, 0, 1, 01I;
[.c., 0, O, 1, 01->@ A, 1, 0, 01;
[.we., O, O, 0, 01> A, 1, 0, 01;
[we., 0O, 1, 0, 01> 8, 0, 1, 01;
[ew., O, O, 0, 12>t B, 0, 1, 01;
(.., 0, 0, 0, 11> B, 0 , 1, 01;
[.., 0, O, 0, 01>Cc, O, 0, 11;

end

Listing 10-6. Source File: Three-State Sequencer

10-30

Design Examples

10.6 8-Bit Barrel Shifter
(Equations/P20R8)

This design for an 8-bit barrel shifter includes a shift
amount selector, an output control, and a device enable.
The design is specified with one Boolean equation for a
P20RS.

D7 D6 D5 D4 D3 D2 D1 DO

o

Q7 Q6 Q5 04 Q3 Q@2 Q1 Q0

Figure 10-10. Block Diagram: 8-Bit Barrel Shifter

10.6.1 Design Specification

Figure 10-10 shows a block diagram for the barrel shifter.
The shifter has eight inputs (D0-D7), eight outputs (Q0-
Q7), three select lines (10-12), a clock (Clk), an output
control (OC), and an enable (E). On each clock pulse when
E is high, the outputs show the inputs shifted by n bits to
the right, where n is specified by the select lines. The bit
shifted out of the barrel shifter on the right is shifted in on
the left, actually performing a rotate. When E is low, the
shifter outputs are preset to 1.

10-31

Applications Guide

The output control, when high, sets all outputs to high
impedance, without affecting the shift. This means that if
a shift is selected while the output control is high, the shift
still occurs, but it is not seen at the outputs. If the OC is
then set low, the shifted data will appear on the outputs.

Input

Sel ——

Output

Figure 10-11. Simplified Block Diagram: 8-Bit Barrel

Shifter

10.6.2 Design Method

Figure 10-11 and listing 10-7 show the simplified block
diagram and the source file listing for this design. Pins are
assigned so that the shifter outputs are associated with the
registered outputs on the PAL. The inputs, outputs, and
select lines are then assigned to sets to simplify notation.

One Boolean equation is used to describe the entire function
of the barrel shifter. The equation is expressed in sum of
products form and assigns a value to the output set. Each
product in the equation corresponds to one of the possible
shifts and defines the outputs for that shift. Thus, the

product term,

10-32

I

Design Examples

(Sel == 0) & ![D7,D6,D5,D4,D3,D2,D1,D0]

defines that for a shift of 0, the inputs are transferred
without a shift directly to the outputs. Similarly, the
product term,

(Sel == 5) & ![D4,D3,D2,D1,D0,D7,D6,D5]

defines that for a shift of 5, output Q7 gets the value of
input D4, Q6 gets the value of D3, and so on, corresponding
to the correct shift of 5 places. Notice that the low-order
input bits have been "wrapped around," shifted out of the
right side and into the left side.

Sel can have only one value at a time, thus only one of the
"Sel == " relational statements can be true at a given time,
and only one of the product terms contributes to the sum of
products. The OR of all the product terms is ANDed with
the enable E so that when FE is low, all the outputs are
preset to 1.

Both the output set on the left side of the equation and the
inputs on the right side of the equation are expressed as
negative logic, which, in effect, gives active high logic.
This is done to compensate for the P20R8’s inverted
outputs. The inverse of the inputs is available on the
device.

10-33

Applications Guide

10.6.3 Test Vectors

The test vectors are written to check the shift, enable and
output control functions of the barrel shifter. To test the
shift function, OC is set low, E is set high, the clock is
applied and different Sel values are chosen. The shift is
first tested with one input bit set high and the rest of the
inputs set low. Then, as a further test, one input bit is set
low and the remaining inputs are set high. In both cases,
the bits are shifted through one full cycle plus one
additional shift so that the wrap-around shift from Q0 to
Q7 is tested.

The preset is tested by setting E low; all inputs should go
high. The output control is tested by setting OC high; all
outputs should go to high impedance. The single Z in the
last test vector expands to cover all outputs. That is, the Z
becomes [2,72,72,7,7Z,7Z,7.,7] to cover all eight outputs.

10-34

Design Examples

module barrel
title '8-bit barrel shifter
Gerrit Barrere Data 1/0 Corp Redmond WA 17 Oct 1987!

P7095 device 'P20R8';

D7,06,D5,04,D03,02,D1,D0 Pin 2,3,4,5,6,7,8,9;
Q7,Q6,05,Q4,03,02,01,00 Pin 15,16,17,18,19,20,21,22;
clk,0Cc,E, 12,11,10 Pin 1,13,23,10,11,14;
Input = [D7,D6,D5,D4,D3,D2,D01,D0];
Output = [Q7,Q6,05,Q4,03,02,01,Q0];
Sel = [12,11,10]1;
H,L,C,2 =1,0,.C.,.2.;
equations

Enable Output = !0C;

0utput := E & ((Sel == 0) & ! [D7,D6,D5,D4,D3,D2,D1,D0]
(sel == 1) & ![D0,D7,D6,D5,D4,D3,D2,D1]
(Sel == 2) & ![D1,D0,D7,D6,D5,D4,D3,D2]
(Sel == 3) & ![D2,D1,D0,D7,D6,D5,D4,D3]
(Sel == 4) & 1[D3,02,D01,D0,D7,D6,D5,D4]
(Sel == 5) & ![D4,D3,02,D1,D0,D7,D6,D5]
(Sel == 6) & ![D5,D4,D3,D2,D1,D0,D7,D6]
(Sel == 7) & ![D6,D5,D4,D3,02,01,D0,071) ;

test_vectors

([Clk,0C, E, Sel, Input] -> Output)
[c, L, H, 0, “b100000001 -> ~b10000000; " shift 0
[c, L, H, 1, "b10000000] -> "“b01000000; " shift 1
[c, L, H 2, *“b10000000]1 -> “b00100000; " shift 2
[c, L, H, 3, "b10000000] -> ~b00010000; " shift 3
[c, L, H, 4, "b100000001 -> ~b00001000; " shift 4
[c, L, H, 5, "b10000000] -> “b00000100; " shift 5
[c, L, H, 6, "b10000000]1 -> “b00000010; " shift 6
[c, L, H, 7, "b10000000] -> ~b0O00O0001; " Shift 7
[c, L, H 0, "b011111111 -> “b01111111; " Shift O
[c, L, H, 1, 011111111 -> *b10111111; " shift 1
[c, L, H 3, 011111111 -> ~b11101111; " shift 3
[c, L, H, 7, 7011111111 -> ~b11111110; " Shift 7
[c, L, H 1, "b00000001] -> ~b10000000; " Shift 1/Wrap
[c, L, H 1, *b111111101 -> ~b01111111; " shift 1/Wrap
[c, L,L, 0, "b00000000]1 -> “b11111111; " Preset
[C, H, H, 0, "b00000000]1 -> Z; " Test High 2

Listing 10-7. Source File: 8-Bit Barrel Shifter

10-35

Applications Guide

10.7 7-Segment Display Decoder
(Trut Table/ A5P38)

This display decoder decodes a four-bit binary number to
display the decimal equivalent on a seven segment LED
display. The design incorporates a truth table.

10.7.1 Design Specification

Figure 10-12 shows a block diagram for the design of a 7-
segment display decoder and a drawing of the display with
each of the seven segments labeled to correspond to the
decoder outputs. To light up any one of the segments, the
corresponding line must be driven low. Four input lines
D0-D3 are decoded to drive the correct output lines. The
outputs are named a, b, ¢, d, e, f, and g corresponding to
the display segments. All outputs are active low. An
enable, ena, is provided. When ena is low, the decoder is
enabled; when ena is high, all outputs are driven to high
impedance.

10.7.2 Design Method

Figure 10-13 and listing 10-8 show the simplified block
diagram and the source file for the ABEL implementation
of the display decoder. The FLAG statement is used to
make sure that the programmer load file is in the Motorola
Exorciser format. The binary inputs and the decoded
outputs are grouped into the sets bcd and led to simplify
notation. The constants ON and OFF are declared so that
the design can be described in terms of turning a segment
on or off. To turn a segment on, the appropriate line must
be driven low, thus we declare ON as 0 and OFF as 1.

10-36

Design Examples

ena

Figure 10-12. Block Diagram: 7-Segment Display Decoder

ena

led

Figure 10-13. Simplified Block Diagram: 7-Segment
Display Decoder

The design is described in two sections, an equations section
and a truth table section. The decoding function is
described with a truth table that specifies the outputs

10-37

Applications Guide

module bcd7rom flag *-d82’
title 'seven segment display decoder 16 Mar 1987
Walter Bright FutureNet Division Data 1/0 Corp Redmond WA®

" a
" --- BCD- to-seven-segment decoder similar to the 7449
" fl g lb
" --- segment identification
" el d |c
" .
ué device 'RASP8';

D3,b2,D1,D0 pin 10,11,12,13;
a,b,c,d,e,f,g pin 1,2,3,4,5,6,7;

ena pin 15;

bed = [D3,D2,D1,D01;

led = [a,b,c,d,e,f,9];

ON,OFF =0,1; " for common anode LEDs
L,H,X,2 =0,1,.X.,.2.;

truth_table (bcd -> led)

" a b c d e f g
-> [ON, ON, ON, ON, ON, ON, OFF1;
-> [OFF, ON, ON, OFF, OFF, OFF, OFF]1;
-> [ON, ON, OFF, ON, ON, OFF, ONl;
-> [ON, ON, ON, ON, OFF, OFF, ON];
-> [OFF, ON, ON, OFF, OFF, ON, ONIl;
-> [ON, OFF, ON, ON, OFF, ON, ON];
-> [ON, OFF, ON, ON, ON, ON, ONl;
-> [ON, ON, ON, OFF, OFF, OFF, OFF];
-> [ON, ON, ON, ON, ON, ON, ONI;
-> [ON, ON, ON, ON, OFF, ON, ONI;

VO NONVIEARWNN-=0O

test_vectors ([ena,bcd]l -> led)

" a c d e f g
L,11 -> [OFF, , ON, OFF, OFF, OFF, OFF1;
[L,21 -> [ON, , OFF, ON, ON, OFF, ONl;
[L,3] -> [ON, ON, OFF, OFF, ONI;
[L,41 -> [OFF, , ON, OFF, OFF, ON, ON];
[L,51 -> [ON, ON, OFF, ON, ONI;
[L,61 -> [ON, , ON, ON, ON, ON, ONI;
[L,77 -> [ON, , ON, OFF, OFF, OFF, OFF];

oo
~N22227 0222827
=)

z

[L,8 -> [ON, ON, ON, ON, ON, ON, ON];
[L,91 -> [ON, ON, ON, ON, OFF, ON, ONI;
[L,01 -> [ON, ON, ON, ON, ON, ON, OFF];
M5 ->t 2, 2, 2, 2, 2, 2%, 2;

end becd7rom

Listing 10-8. Source File: 7-Segment Display Decoder

10-38

Design Examples

required for each combination of inputs. The truth table
header names the inputs and outputs. In this example, the
inputs are contained in the set named bcd and the outputs
are in led. The body of the truth table defines the input to
output function. Because the design decodes a number to a
seven segment display, values for bcd are expressed as
decimal numbers, and values for led are expressed with the
constants ON and OFF that were defined in the declarations
section of the source file. This makes the truth table easy
to read and understand; the incoming value is a number and
the outputs are on and off signals to the LED.

The input and output values could have just as easily been
described in another form. Take for example the line in
the truth table:

5 -> [ON, OFF, ON , ON, OFF, ON, ON]
This could have been written in the equivalent form:
[0,1,0,1]->36

In this second form, 5 was simply expressed as a set
containing binary values, and the LED set was converted to
decimal. (Remember that ON was defined as 0 and OFF
was defined as 1.) Either of the two forms is valid, but the
first is more appropriate for this design. The first form can
be read as, "the number five turns on the first segment,
turns off the second, . . ." whereas the second form cannot
be so easily translated into terms meaningful for this design.

10.7.3 Test Vectors

The test vectors for this design test the decoder outputs for
the ten valid combinations of input bits. The enable is also
tested by setting ena high for the different combinations.
All outputs should be at high impedance whenever ena is
high,

10-39

Applications Guide

10.8 4-Bit Comparator
(Macros, Equations/F153)

This is a design for a 4-bit comparator that provides an
output for "equal to", "less than", "not equal to", and "greater
than", as well as intermediate outputs. The design is
implemented with Boolean equations.

Figure 10-14. Block Diagram: 4-Bit Comparator

10-40

Design Examples

10.8.1 Design Specification

The comparator, as shown in figure 10-14, compares the
values of two four-bit inputs (40-43 and B0-B3) and
determines whether A is equal to, not equal to, less than, or
greater than B. The result of the comparison is shown on
the output lines, A EQ B, A_GT_B, A_NE_B, and

A LT B.

l—» A_EQ_B

—> A_GT_B
—>» A_NE_B

—> A_LT_B

Figure 10-15. Simplified Block Diagram: 4-bit
Comparator

10-41

Applications Guide

10.8.2 Design Method

Figure 10-15 and listing 10-9 show the simplified block
diagram and source file listing for the comparator. The
inputs A0-A43 and B0O-B3 are grouped into the sets 4 and B.
YES and NO are defined as 1 and 0, to be used in the test
vectors.

The equations section of the source file contains the
following equations:

A _EQ B = A==B;

A_NE_B =!A == B);

A_GT B = A>B;

A_LT B =!(A > B) # (A == B));

You could also use the following equations for the design of

this comparator, however, many more product terms are
used in the FPLA:

A EQ B = A ==B;
A_NE B = A!l=B;
A_GT B = A>B;
A LT B = A<B;

10-42

Design Examples

The first set of equations takes advantage of product term
sharing within the target FPLA, while the latter set
requires a different set of product terms for.each equation.
For example, the equation

A NE B = (A == B);
uses the same 16 product terms as the equation
A _EQ B = A ==B;

thereby reducing the number of product terms. In a similar
manner, the equation

A LT B =!(A > B) # (A == B));
uses the same product terms as equations

A_EQ B
A_GT_B = A>B;

b

whereas the equation

A LT B = A<B;
in the second set of equations requires the use of additional
product terms. Sharing product terms in devices that allow

this type of design architecture can serve to fit designs into
smaller and less expensive logic devices.

10-43

Applications Guide

module _comp4a flag '-r4'
title '4-bit look-ahead comparator 16 Nov 1987
Steve Weil & Gary Thomas FutureNet Division, Data 1/0 Corp.'

compba device 'F153';

A3,A2,A1,A0 pin 1,2,3,
B3,82,81,B0 pin 5,6,7,

A
; B

[A3,A2,A1,A0];
[83,82,81,B0]1;

-

4
8

nau

A_NE_B,A_EQ B,A GT B,A LT B pin 14,15,16,17;
No,Yes = 0,1;

equations
A_EQ B

"
>
1]
n
o

-

ANEB = I(A == B);

AGT B

"
>
v
od

~

ALTB

1((A > B) # (A == B));

test_vectors ‘'test for A = B!
(LA, Bl -> [AEQB, AGT B, A_LT_B, A_NE_B])

[0,0 ->[Yes , No , No , No 1;
1,1 ->[Yes , No , No , No 1;
[2,2) ->[Yes , No , No , No 1;
[5,51 >[Yes , No , No , No J;
[88 ->[Yes , No , No , No 1I1;
[10,101 -> [Yes , No , No , No 1I;
{15,151 -> [Yes , No , No , No 1;

test_vectors ‘'test for A > B!
(LA, Bl -> [AEQB, AGT B, ALT B, A_NE_B])

[1,0 ->[No , Yes , No , Yes 1I;
[2,1 ->[No , Yes , No , Yes 1;
[4,31 > No , Yes , No , Yes 1;
[8 71 ->[No , Yes , No , Yes 1;
[15,141 -> { No , Yes , No , Yes 1;
[6,21 ->[No , Yes , No , Yes 1;
[5, 001 ->f No , Yes , No , Yes 1;

test_vectors ‘'test for A < B!
(LA, Bl -> [AEQB, AGT B, A_LT B, A_NE_B])
[3,91 > No , No , Yes , Yes 1;

[14,151 -> [No , No , Yes , Yes 1;
[7,8 ->[No , No , Yes , Yes 1;
[3,4 ->[No , No , Yes , Yes 1;
(2,8 ->[No , No , Yes , Yes 1;

end _compka
Listing 10-9. Source File: 4-Bit Comparator

10-44

Design Examples

10.8.3 Test Vectors

Three separate test vectors sections are written to test
three of the four possible conditions. (The fourth and
untested condition of NOT EQUAL TO is simply the
inverse of EQUAL TO.) Each test vectors table
includes a test vector message that helps make output
from the documentation generator (DOCUMENT) and
the simulator (SIMULATE) easier to read. The three
tested conditions are not mutually exclusive, so one or
more of them can be met by a given A and B. In the
test vectors table, the constants YES and NO are used
rather than 1 and 0, just for ease of reading. YES and
NO are declared in the declaration section of the source
file.

10-45

Applications Guide

10.9 Bi-Directional Three-State Buffer
(F153)

A four-bit bidirectional buffer with 3-state outputs is
presented here. The design is implemented in an F153
FPLA with bidirectional inputs/outputs and programmable
output polarity. Simple Boolean equations are used to
describe the function.

10.9.1 Design Specification

Figure 10-16 shows a block diagram for this four-bit
buffer. Signals A0-A3 and B0-B3 function both as inputs
and outputs depending on the value on the select lines, SO-
S1. When the select value (the value on the select lines) is
1, A0-A3 are enabled as outputs. When the select value is
2, BO-B3 are enabled as outputs. (The choice of 1 and 2 for
select values is arbitrary.) For any other values of the select
lines, both the A and B outputs are at high impedance.
Output polarity for this design is positive.

S1 S0

B3 B2 B1 B0 A3 A2 A1 AD

Figure 10-16. Block Diagram: Bidirectional Tri-State
Buffer

10-46

Design Examples

Select

)

B A

Figure 10-17. Simplified Block Diagram: Tri-State Buffer

10.9.2 Design Method

A simplified block diagram for the buffer is shown in
figure 10-17. The A and B inputs/outputs are grouped into
two sets, A and B. The select lines are grouped into the
select set. Listing 10-10 shows the source file that describes
the design.

High-impedance and don’t-care values are declared to
simplify notation in the source file. The equations section
describes the full function of the design. What appear to be
unresolvable equations are written for A and B, with both
sets appearing as inputs and outputs. The enable equations,
however, enable only one set at a time as outputs; the other
set functions as inputs to the buffer.

Test vectors are written to test the buffer when either set is
selected as the output set and for the case when neither is
selected. The test vectors are written in terms of the
previously declared sets so that the element values do not
need to be listed separately.

10-47

Applications Guide

module tsbuffer

title 'bi-directional three state buffer 8 Nov 1987
Brenda French & Mary Bailey FutureNet Division, Data 1/0 Corp!

TSB1 device 'F153!';
$1,S0 Pin 1,2; Select = [S1,S01;
A3,A2,A1,A0 Pin 12,13,14,15; A = [A3,A2,A1,A0];
B3,B2,B1,B0 Pin 16,17,18,19; B = [B3,B2,B1,B0]1;
X,2 = <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>