dlifgliltlall

VAX-11 COBOL-74
Language
Reference Manual
Order No. AA-C985A-TE

VAXII

January 1979

This document is intended primarily for reference use. It describes the VAX-11
COBOL-74 language.

VAX-11 COBOL-74
Language
Reference Manual
Order No. AA-C985A-TE

OPERATING SYSTEM AND VERSION: VAX/VMS V01.5
SOFTWARE VERSION: VAX-11 COBOL-74 V04

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license, and
may only be used or copied it in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1979 Digital Equipment Corporation

The postage-paid READER’S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC FOCAL
DECnet IAS
DECsystem-10 MASSBUS
DECSYSTEM-20 PDP
DECtape RSX
DECUS UNIBUS
DIBOL VAX

DIGITAL VMS

5/79-14

Contents

Page
Preface ix
Acknowledgments Ix
Chapter 1 Overview of the COBOL Language
1.1 COBOL Language Elements 1-1
1.1.1 COBOL Character Set 1-2
1.1.2 COBOL Words 1-2
1.1.2.1 User-Defined Words. 1-2
1.1.2.2 Reserved Words. 1-2
1.1.3 Literalso 1-4
1.1.3.1 Numeric Literals 1-4
1.1.3.2 Alphanumeric Literals. 1-5
1.1.4 Separators. S 1-5
1.1.4.1 Spaceo 1-5
1.1.4.2 Comma and Semicolon 1-5
1.1.4.3 Left and Right Parentheses 1-6
1.1.4.4 Quotation Marks 1-6
1.1.4.5 Horizontal Tab 1-6
1.1.5 Format Punctuation 1-6
1.2 Meta-Language Elements I 1-6
1.2.1 Underline 1-6
1.2.2 Bracketsand Braces 1-6
1.23 TheEllipsis 1-7
1.3 Source Reference Format. 1-7
1.3.1 Conventional Reference Format. 1-7
1.3.1.1 Reference Format Areas 1-7
1.3.1.2 Continuationof Lines 1-8
1.3.1.3 Blank Lines. 1-9
1.3.1.4 Comment Lines. 1-9
1.3.1.5 Short Lines and Tab Characters 1-9
1.3.2 Terminal Reference Format. 1-10
1.4 Language Organization. 1-10
14.1 Division Header 1-10
1.4.2 Section Header "1-11
1.4.3 Paragraph, Paragraph Header, Paragraph-Name. 1-11
1.4.4 Data Division Entries 1-12
1.45 Declarativeso 1-12
1.5 Sample Format Entry Page. 1-13
Chapter 2 Identification Division
2.1 PROGRAM-ID Paragraph 2-2
2.2 DATE-COMPILED Paragraph 2-3

i

Chapter 3 Environment Division

Chapter 4

3.1

3.2

CONFIGURATION SECTION 3-2
3.1.1 SOURCE-COMPUTER Paragraph 3-2
3.1.2 OBJECT-COMPUTER Paragraph 3-3
3.1.3 SPECIAL-NAMES Paragraph IR 3-4
INPUT-OUTPUT SECTION 3-6
3.2.1 FILE-CONTROL Paragraph 3-8
3.2.2 I-O-CONTROL Paragraph. 3-14

Data Division

4.1

4.2

4.3

File Description - Complete Entry Skeleton 4-4

4.1.1 BLOCK CONTAINS Clause 4-5

412 CODE-SET Clause 4-7

4.1.3 DATA RECORDS Clause 4-8

414 LABEL RECORDS Clause 4-9

415 LINAGEClause 4-10
416 RECORD CONTAINS Clause 4-13
417 VALUEOFID Clause 4-14
Data Description Concepts 4-15
4.2.1 Physical Aspectsofa File 4-15
422 Record Concepts. 4-15
4.2.3 Record Description. 4-15
424 Classesof Data 4-17
4.2.5 Selection of Numeric Character Representation 4-17
42.6 Algebraic Signs 4-17
4.2.7 Standard Alignment Rules 4-18
4.2.8 Item Alignment for Increased Object-Code Efficiency 4-18
Data Description - Complete Entry Skeleton 4-19
431 BLANK WHEN ZERO Clause 4-22
4.3.2 Data-Name or FILLER Clause 4-23
433 JUSTIFIED Clause 4-24
434 Level-Number. 4-25
435 OCCURS Clause. v v v .. 4-26
436 PICTUREClause 4-29
437 REDEFINES Clause. 4-38
438 RENAMES Clause. 4-40
439 SIGN Clause 4-42
4.3.10 SYNCHRONIZED Clause 4-44
43.11 USAGEClause 4-46
4312 VALUE Clause 4-49

Chapter 5 Procedure Division

iy

5.1

5.2
5.3

General Description 5-1
5.1.1 Declarativeso 5-1
5.1.2 Procedures. 5-1
Procedure Division Header 5-2
Procedure Division Body 5-3

5.4 Statements and Sentences 5-3

5.4.1 Conditional Statement 5-4

5.4.2 Conditional Sentence. 5-4

5.4.3 Compiler-Directing Statement 5-4

5.4.4 Compiler-Directing Sentence 5-4

5.4.5 Imperative Statement 5-5

5.4.6 Imperative Sentence 5-5

5.4.7 Statement Categories 5-5

5.4.8 Uniqueness of Reference 5-6
5.4.8.1 Qualification 5-7

5.4.8.2 Subscripting 5-8

5483 Indexing, 5-9

5.4.8.4 Internal Formats of Subscripts, Index-Names and

Index-Data- Items. 5-9
5485 Identifier. 5-10
5.4.8.6 Condition-Name 5-10

5.4.9 Explicit and Implicit Specifications. 5-11
5.4.9.1 Explicit and Implicit Procedure Division References. . 5-11

5.4.9.2 Explicit and Implicit Transfers of Control 5-11
5.4.9.3 Explicit and Implicit Attributes 5-12
5.5 Arithmetic Expressions. 5-12
5.5.1 Arithmetic Operators. 5-13
5.5.2 Formation and Evaluation Rules 5-13
5.6 Conditional Expressions 5-14
5.6.1 Simple Conditions 5-15
5.6.2 Relation Condition. 5-15
5.6.3 Comparison of Numeric Operands 5-16
5.6.4 Comparison of Alphanumeric Operands 5-16

5.6.5 Comparisons Involving Index-Names and/or Index Data Items . 5-17
5.6.6 Class Condition 5-18
5.6.7 Condition-Name Condition (Conditional Variable). 5-18
5.6.8 Switch-Status Condition 5-19
5.6.9 Sign Condition. 5-19
5.6.10 Complex Conditions 5-19
5.6.11 Negated Simple Conditions. 5-20
5.6.12 Combined and Negated Combined Conditions. 5-20
5.6.13 Abbreviated Combined Condition Relations 5-21
5.6.14 Condition Evaluation Rules. 5-22

5.7 Common Phrases and General Rules for Statement Formats 5-23
5,71 ROUNDED Phrase. 5-23
572 SIZE ERROR Phrase 5-24
5.7.3 CORRESPONDING Phrase 5-24
5.7.4 Arithmetic Statements 5-25
5.7.5 Multiple Results in Arithmetic Statements 5-25
5.7.6 Overlapping Operands 5-26
5.7.7 Incompatible Data. 5-26
58 ACCEPT Statement 5-27
5.9 ADD Statement L. 5-29
510 ALTER Statement. 5-31

5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44

CALL Statement 5-32

CLOSE Statement (Sequential) 5-34
CLOSE Statement (Indexed & Relative) 5-39
COMPUTE Statement. 5-40
DELETE Statement (Indexed & Relative) 5-41
DISPLAY Statement. 5-43
DIVIDE Statement 5-44
EXIT Statement. o 5-47
GO TO Statement. e 5-48
IF Statemento 5-49
INSPECT Statement 5-51
MOVE Statement 5-58
MULTIPLY Statement. 5-62
OPEN Statement (Sequential) 5-64
OPEN Statement (Indexed & Relative) 5-68
PERFORM Statement 5-71
READ Statement (Sequential) 5-80
READ Statement (Relative) 5-83
READ Statement (Indexed) 5-87
REWRITE Statement (Sequential) 5-91
REWRITE Statement (Relative) 5-93
REWRITE Statement (Indexed) 5-95
SEARCH Statement. 5-98
SET Statement e 5-103
START Statement (Relative). 5-105
START Statement (Indexed) 5-107
STOP Statement 5-109
STRING Statement 5-110
SUBTRACT Statement 5-113
UNSTRING Statement 5-115
USE Statemento 5-119
WRITE Statement (Sequential) 5-121
WRITE Statement (Relative). 5-125
WRITE Statement (Indexed) 5-128

Chapter 6 The Library Module

Appendix A Reserved Words

Appendix B Character Sets

Appendix C File Status Key Values

Glossary

Index

Figures

vl

VARYING Phrase for PERFORM with One Condition. 5-75
VARYING Phrase for PERFORM with Two Conditions 5-76
VARYING Phrase for PERFORM with Three Conditions. 5-77
Format 1 SEARCH with Two WHEN Phrases. 5-102

Tables

3-1 Access Modes and File Organization 3-7
3-2 Possible Combinations of Status Keys1and 2. 3-11
4-1 Classes and Categories of Elementary and Group Data Items. 4-17
4-2 Types of Editing by Data Category 4-33
4-3 Editing with Sign-Control Symbols 4-34
4-4 PICTURE Character Precedence Table 4-317
5-1 Symbol Combinations in Arithmetic Expressions 5-14
5-2 Combinations of Conditions, Logical Operators, and Parentheses5-21
5-3 Relationship of CLOSE Statement Formats to File Categories 5-35
5-4 Permissible MOVE Statements. 5-61
5-5 Permissible Input-Output Statements for Sequential Files 5-65
5-6 Permissible Input-Output Statements for Indexed and Relative Files . .5-69
5-7 Permissible Operand Combinations in the SET Statement 5-104
B-1 Character Sets. B-2
C-1 Sequential I/O File Status Key Values C-1
C-2 Relative and Indexed I/O File Status Key Values C-2

Commercial Engineering Publications typeset this manual using DIGITAL’s
TMS-11 System.

955ALL

Vil

Preface

This reference manual describes the COBOL language as implemented in
VAX-11 COBOL-74 for the VAX-11 system. It adheres to the 1974 ANSI
standard. Furthermore, the text of this manual is based on American
National Standard Programming Language COBOL, ANSI Document
X3.23-1974.

You should have a working knowledge of the COBOL language before using
this book, which is a reference document; it is not a tutorial guide for begin-
ning COBOL programmers.

Chapter 1 contains an overview of the COBOL language. Chapters 2 through 5
detail the four COBOL divisions. A discussion of the Library module appears
in Chapter 6. Appendixes A, B, and C contain the COBOL reserved word list,
character set tables, and FILE STATUS codes.

Frequent references to the VAX-11 COBOL-74 User’s Guide (User’s Guide)
appear in the text. The User’s Guide and the VAX-11 SORT User’s Guide
contain additional information about the compiler, the runtime system, error
messages, and utility programs.

Acknowledgments

COBOL is an industry language. It is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed by
any contributor or by the committee in connection therewith.

The authors and copyright holders of the copyrighted material used herein
are: FLOW-MATIC (trademark of Sperry Rand Corporation), programming
for the Univac (R) I and II, Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation; IBM Commercial Translator Form No.
F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole or in part,
in the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

Ix

Chapter 1
Overview of the COBOL Language

This chapter contains general information about the language and structure
of COBOL source programs. It describes the elements of COBOL and its
meta-language, reference formats, and language organization. A sample for-
mat entry concludes the chapter and introduces the source language state-
ments discussed in later chapters.

1.1 COBOL Language Elements
The COBOL language consists of the following components:
¢ Divisions
¢ Sections
e Paragraphs
¢ Sentences
¢ Clauses
e Statements
¢ Entries
e Words

e Characters

There are four divisions in COBOL programs: the Identification Division,
the Environment Division, the Data Division, and the Procedure Division.
Each division can contain sections, which in turn can contain paragraphs.
Each paragraph can contain one or more sentences, clauses, statements, or
entries.

The basic building blocks of these COBOL components include the COBOL
character set, character-strings, COBOL words, separators/punctuation and
literals.

1-1

1-2

1.1.1 COBOL Character Set

The basic and indivisible unit of the COBOL language is the character. Indi-
vidual characters combine to form character-strings of one or more contiguous
characters, and separators, which are punctuation character-strings. The
character set for character-strings and separators includes the letters
A through Z, digits, and special characters. The complete COBOL character
set appears in Appendix B.

For nonnumeric literals, comment entries, and comment lines, the character
set is expanded to include the entire computer character set except for some
special characters (such as the carriage return) that control I/0 devices. The
computer character set and its subsets appear in Appendix B.

NOTE:

If special characters, other than commas and semicolons, ap-
pear in general formats, you must use them in your source
program as well.

1.1.2 COBOL Words

A COBOL word is a character-string of not more than 30 ASCII characters.
There are two classes of words: user-defined words and reserved words. A
COBOL word can belong to one and only one of these classes.

1.1.2.1 User-Defined Words — COBOL words that you must supply to satisfy
the format of a clause or statement. User-defined words consist of characters
selected from the set A through Z, the digits 0 through 9, and the hyphen (-).
A hyphen can neither begin nor end a user-defined word.

There are 12 types of user-defined words:

condition-name paragraph-name
data-name program-name
file-name record-name
index-name section-name
level-number segment-number
mnemonic-name text-name

Each of these types is defined in the glossary.

1.1.2.2 Reserved Words — A specific list of COBOL words that you can use
only as specified in the general formats. Do not use a reserved word as a user-
defined word. (See Appendix A for a complete list of COBOL reserved words.)

There are six types of reserved words:

1. Key words - Words that you must use in a particular format. Key words
are upper case and underlined in general formats. Consider the following
example,.

COMPUTE identifier-1 [ROUNDED] [, identifier-2 [ROUNDED]] ...
= arithmetic-expression [; ON SIZE ERROR imperative-statement]

In this case, COMPUTE, ROUNDED, SIZE, and ERROR are key words.

Overview of the COBOL Language

2. Optional Words - Words you can use or omit without altering the seman-
tics of the COBOL program. Optional words are upper case, but not under-
lined, in general formats. In the previous example, the word ON is an
optional word.

3. Connectives - There are three types of connectives:

a. Qualifier connectives - associate a data-name, a condition-name,
or a text-name with its qualifiers: OF, IN. (See Section 5.4.8.1,
Qualification.)

b. Series connectives - link two or more consecutive operands: separa-
tor comma or separator semicolon.

c. Logical connectives - express the following four conditions: AND,
OR, AND NOT, OR NOT.

4. Special Registers - Compiler-generated storage areas, such as LINAGE-
COUNTER, that are named and referred to by reserved words. (See Sec-
tion 4.1.5, LINAGE Clause.)

5. Figurative Constants - Words that name and refer to specific constant
values generated by the compiler. The singular and plural forms of figura-
tive constants are equivalent, and you can use them interchangeably. Do
not put quotation marks around figurative constants.

Reserved words and their figurative constant values follow:

ZERO Represents the wvalue ‘0, or one or more of the character
ZEROS ‘0’, depending on context.

ZEROES

SPACE Represents one or more of the character space from the computer char-
SPACES acter set.

HIGH-VALUE Represents one or more of the character that has the highest ordinal
HIGH-VALUES position in the computer character set (hex 7F).

LOW-VALUE Represents one or more of the character that has the lowest ordinal
LOW-VALUES position in the computer character set (hex 00).

QUOTE Represents one or more of the character ‘.
QUOTES
ALL literal Represents one or more repetitions of the string of characters comprising

the literal. The literal must be either an alphanumeric literal or a figura-
tive constant other than ALL literal. When a figurative constant is used,
the word ALL is redundant and serves only to enhance readability.

When a figurative constant represents a string of one or more characters,
the compiler determines the string’s length from context according to the
following rules:

a. When a figurative constant is associated with another data item (for
example, when the figurative constant is moved to or compared with
another data item), the string of characters that the figurative con-
stant represents is repeated character by character to the right (or
truncated on the right in the case of ALL literal) until the size of the
resultant string equals the size of the associated data item. This is
done prior to and independent of the application of any JUSTIFIED
clause specified for the data item. (See Section 4.3.3, JUSTIFIED
Clause.)

Overview of the COBOL Language 1-3

1-4

b. When a figurative constant is not associated with another data item
(for example, when the figurative constant appears in a DISPLAY,
STRING, UNSTRING or STOP statement), the length of the string is

one character.

You can use a figurative constant wherever a literal appears in a format.
Whenever the literal is restricted to numeric characters, however, use only
the ZERO (ZEROS, ZEROES) figurative constant.

6. Special-Character Words - The arithmetic operators + (addition),

- (subtraction), * (multiplication), / (division), ** (exponentiation), and
relation characters < (less than), > (greater than), and = (equal to). You
must use these words where they appear in general formats even though
they are not underlined.

1.1.3 Literals

A literal is a character-string whose value is determined by the ordered set of
characters of which it is composed. There are two types of literals: numeric
and alphanumeric (alphanumeric is sometimes referred to as "nonnumeric").

NOTE:
A figurative constant can also serve as a literal.

1.1.3.1 Numeric Literal — A character-string of 1 to 20 characters selected
from the digits 0 through 9, the plus sign, the minus sign, and the decimal
point.

The value of a numeric literal is the algebraic quantity represented by the
characters in the literal. The size of the literal equals the number of digits
specified, including leading zeros, if any. Every numeric literal is category
numeric. (See Section 4.3.6, PICTURE Clause.)

The rules for forming numeric literals are:

1. A numeric literal must contain at least one digit and not more than 18
digits.

2. A numeric literal must not contain more than one sign character. If a sign
is used, it must appear as the leftmost character of the literal. If the literal
has no sign, its value is positive.

3. A numeric literal must not contain more than one decimal point. The
decimal point is treated as an assumed decimal point and can appear
anywhere within the literal except as the rightmost character. If the literal
contains no decimal point, it is an integer. (The word "integer" appearing
in a general format represents a non-zero, positive numeric literal with no
decimal point.)

4. The compiler treats a numeric literal enclosed in quotation marks as an
alphanumeric literal.

Overview of the COBOL Languagé

1.1.3.2 Alphanumeric Literal — A character-string of 1 to 127 allowable char-
acters from the computer character set. It is delimited on both ends by quota-
tion marks.

The value of an alphanumeric literal in the object program is the value of the
character-string itself, except that: (1) the delimiting quotation marks are
excluded, and (2) each embedded pair of contiguous quotation marks repre-
sents a single quotation mark character; all other punctuation characters are
part of the value of the alphanumeric literal and are not separators. Alpha-
numeric literals are category alphanumeric. (See Section 4.3.6, PICTURE
Clause.)

The rules for forming alphanumeric literals are:

1. An alphanumeric literal must contain a space or left parenthesis immedi-
ately before the opening quotation mark.

2. An alphanumeric literal must contain a separator (space, comma, semicol-
on, or right parenthesis) or terminator (period) immediately after the clos-
ing quotation mark.

3. To represent a single quotation mark character within an alphanumeric
literal, use two contiguous quotation marks.

1.1.4 Separators

A separator is a string of one or more of the punctuation characters described
in this section. The rules for forming separators follow:

1.1.4.1 Space

1. Where a space is used as a separator, more than one space can be used.

2. A space can immediately precede any separator except the closing quota-
tion mark. Before a closing quotation mark, the space is considered part of
an alphanumeric literal rather than a separator.

NOTE:

Section 1.3, Source Reference Formats, describes the only
exception to the first two rules.

3. A space can immediately follow any separator except the opening quota-
tion mark. After an opening quotation mark, the space is considered part
of an alphanumeric literal rather than a separator.

1.1.4.2 Comma and Semicolon — The comma and semicolon function as
separators only when they are immediately followed by a space. Insert these
separators only where explicitly permitted by the general formats, by format
punctuation rules, by statement and sentence structure definitions, or by
reference format rules.

Overview of the COBOL Language 1-5

1.1.4.3 Left and Right Parentheses — Left and right parentheses are separa-
tors only when used in balanced pairs.

1.1.4.4 Quotation Marks — Quotation marks used in balanced pairs delimit
alphanumeric literals. (See Section 1.1.3.2, Alphanumeric Literals.)

1.1.4.5 Horizontal Tab — The horizontal tab character vertically aligns state-
ments or clauses on successive lines of the source program listing. It adheres to
the same rules that govern the space character. The compiler, upon en-
countering a tab character, generates one or more space characters consistent
with the tab character position in the source line. (See Sections 1.3, Source
Reference Formats.)

1.1.5 Format Punctuation

The comma, semicolon, and period appear in some formats. The comma and
semicolon are optional and interchangeable. The period, however, is manda-
tory: Supply a period wherever one is shown in a general format. You must
also specify a period to terminate a paragraph.

1.2 Meta-Language Elements

1-6

Meta-language elements describe the allowable use of language elements.
They appear in formats but are not coded into source language statements.

1.2.1 Underline

Underlined, upper-case words denote reserved key words. The absence of an
underline in an upper case word denotes an optional word.

1.2.2 Brackets and Braces

Brackets, [], enclose an optional portion of a general format. When they
enclose vertically stacked entries, brackets indicate that you can, at your
option, select one of the enclosed entries. Braces, {}, surrounding vertically
stacked entries indicate that you must choose one of the enclosed entries.

In the following example, brackets indicate that the entire clause is optional.
If you use the clause, you must select either SYNCHRONIZED or SYNC. You
can select either LEFT or RIGHT (or neither).

{SYNCHRONIZED} [LEFT '
SYNC RIGHT

NOTE:

In the general format for a clause, choices that are vertically
stacked between brackets indicate that you have the option of
overriding a default condition. The default condition is always
described in the general rules for the clause.

Overview of the COBOL Language

1.2.3 The Ellipsis

The ellipsis (...) indicates that you can repeat the item preceding it. This item
is usually enclosed in brackets or braces. Consider the following example.

[SAME (RECORD] AREA FOR file-name-1 {file-name-2} ...]...

The ellipsis following the outside brackets indicates that you can repeat the
entire clause. The other ellipsis allows you to repeat the item in braces.

1.3 Source Reference Format

The compiler provides two formats for coding your source programs: conven-
tional and terminal. The former is based on the traditional, 80-column
punched card format. The latter is a DEC-specified format that shortens a
source line by using horizontal tabs and carriage returns; the terminal format
works well when you use a text editor from an on-line terminal.

NOTE:

The compiler assumes terminal format as a default, but you
can use either format. (The User’s Guide discusses format
selection.)

Use the reformatting program (REFORMAT) to change a terminal format
program to conventional format for ease in transporting the source program
to other COBOL compilers. (The User’s Guide discusses the REFORMAT
utility.)

NOTE:

The rules for spacing presented in this discussion of reference
. formats take precedence over all other spacing rules.

1.3.1 Conventional Reference Format

The conventional reference format provides rules for coding your source pro-
gram on 80-column punched cards. These rules are described in the following
sections. :

1.3.1.1 Reference Format Areas

1. Sequence Number Area - Character positions 1 through 6. Reserved for
source line sequence numbers that enable you to locate and edit source
lines in your program. The compiler ignores the contents of this field.

2. Continuation/Comment Indicator Area - Character position 7. Contains a
character that directs the compiler to process the source line in one of the
following ways:

Overview of the COBOL Language 1-7

001010
001020
001030~
Q01040
001050
001060~
001070
001080
001090
001100
001110
001120
001130

01

01

Character Source line processed as

blank () Default - The compiler processes the line as normal
COBOL text.

hyphen (-) Continuation line - The compiler processes the line as a continuation of
the previous source line. (See Section 1.3.1.2, Continuation of Lines.)

asterisk (:*) Comment line - The compiler transfers the contents of this line, as is, to
the source listing and does not check syntax. (See Section 1.3.1.4, Comment
Lines.)

slash (/) Comment line - The compiler treats the line as if it were a comment line,
except that it advances the source listing to the top of the next page before
printing the line.

Area A - Character positions 8 through 11. Contains division headers,
section headers, paragraph headers, paragraph-names, level-indicators,
and certain level numbers.

Area B - Character positions 12 through 72. Contains all other COBOL
text.

Identification Field - Character positions 73 through 80. Contains source
program documentation that has no effect on compilation.

1.3.1.2 Continuation of Lines

1.

Divide a multi-line sentence or entry by continuing in Area B of the next
line.

Break a word or numeric literal from one line to the next by placing a
hyphen (-) in character position 7 of the continuation line; the first non-
blank character that you enter in Area B will become the next character of
the continued word or numeric literal.

Break an alphanumeric literal from one line to the next by placing a
hyphen in character position 7 of the continuation line. Put a quotation
mark before the first character of the continuation literal. The literal can
begin anywhere in Area B of the continuation line.

Consider the following example:

CONTINUATION-NUMERIC.,

02

NUMERIC-LITERAL PIC 9(18) VALUE IS 12345678912345

6789,
CONTINUATION-ALPHANUMERIC.

02

ALPHANUMERIC-LITERAL PIC X(26) VALUE IS "ABCDEFGHIJKLM

"NOPQRSTUVMWXYZ" o

PROCEDURE DIVISION,

CONTINUATION-SENTENCE.

IF NUMERIC-LITERAL NOT EQUAL TO ALPHANUMERIC-LITERAL

GO TO END-PROGRAM
ELSE GO TO CONTINUATION-SENTENCE.

END-PROGRAM.

STOP RUN,

1-8 Overview of the COBOL Language

Source lines 001010 through 001030 show how to continue a numeric literal;
lines 001040 through 001060 show line continuation for an alphanumeric
literal. Finally, source lines 001090 through 001110 contain a sentence that
continues for three lines.

1.3.1.3 Blank Lines — Include blank lines (character positions 7 through 72
blank) anywhere in a source program except immediately before a continua-
tion line.

1.3.1.4 Comment Lines — Include comment lines (an asterisk in character
position 7) anywhere in a source program except before the Identification
Division. Successive comment lines must also contain asterisks in character
position 7.

You can use any character from the computer character set to write a com-
ment line. Begin your comments in Area A or Area B. The compiler repro-
duces comment lines on the source listing for documentation purposes.

NOTE:

The slash character (/) and asterisk (*) produce the same
results, except that the slash directs the compiler to advance
the source listing to the top of the next page before printing the
comment entry.

1.3.1.5 Short Lines and Tab Characters — If you use a medium other than
punched cards, you can shorten conventional format source lines: Either ter-
minate the line with a carriage return, insert tab characters within the line to
replace space characters, or use a combination of the two.

The compiler treats a carriage return character as a redefinition of character
position 72. When you use a tab character, the compiler generates the re-
quired number of space characters consistent with the tab character position
on the line. Tab stops are set in the compiler at character positions 7, 8, 12,
20, 28, 36, 44, 52, 60, 68, and 73.

Consider the following example, in which stands for the carriage return
character and stands for the tab character.

Shortened conventional source line

000130 01 TAB FILE-A. RET)

000140 02 DATA-FIELD-A. @€

0001350 03 DESCRIPTION-A TAB PIC X(Z20). RET)
000160 03 DESCRIPTION-B (@B PIC X(20)., @7
000170 (B A 03 DESCRIPTION-C (A8 PIC X(20)., RET

Overview of the COBOL Language 1-9

Source line as interpreted by the compiler

000130 01 FILE-A.

000140 02 DATA-FIELD-A.

000150 03 DESCRIPTION-A PIC X(20),
000160 03 DESCRIPTION-B PIC X(20),
000170 03 DESCRIPTION-C PIC X(20),

1.3.2 Terminal Reference Format

Terminal reference format is the compiler’s default format. It is easy to use
with a computer terminal and is less time and space consuming than its
conventional counterpart. This format eliminates the sequence number and
identification fields and combines the indicator field with Area A.

The terminal reference format for a source line follows:

Character Position Contents
1 through 4 Area A
5 through 65 Area B
NOTE:

Place continuation line (-), comment line (*), and skip-to-top-
of-page (/) indicator characters in character position 1.

In terminal format, Area A and Area B contain the same kinds of source
entries as their conventional format counterparts. (See Section 1.3.1.1) Simi-
larly, tab characters cause the compiler to generate a number of spaces con-
sistent with the tab character position on the line. Tab stops are set to charac-
ter positions 5, 13, 21, 29, 37, 45, 53, 61, and 66.

1.4 Language Organization

1-10

Each division, section, and paragraph in a COBOL program contains headers
followed by source text. The following sections describe both the organization
of these headers and their reference format positions.

1.4.1 Division Header

A division header indicates the beginning of a division. It is a specific combi-
nation of words followed by a period. Division headers, in their order of
appearance, are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

Overview of the COBOL Language

A division header must start in Area A. No non-comment text can appear
between it and the following section header, paragraph header, or paragraph-
name, except for the key word DECLARATIVES (followed by a period and a
space), which can appear after the Procedure Division header.

1.4.2 Section Header

A section header indicates the beginning of a section in the Environment,
Data, and Procedure Divisions. In the Environment and Data Divisions, a
section header contains reserved words followed by the word SECTION (fol-
lowed by a period and a space). In the Procedure Division, a section header
contains a user-defined word followed by the word SECTION (and an op-
tional segment-number) followed by a period and a space. The permissible
section headers are:

In the Environment Division

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division
user-name SECTION [segment-number].

The section header must start in Area A. No text can appear between it and
the following paragraph header or paragraph-name except for the USE sen-
tence in the Procedure Division.

1.4.3 Paragraph, Paragraph Header, Paragraph-Name

Paragraphs begin with paragraph headers (reserved words) or paragraph-
names (user-defined words), depending on the division. In the Identification
and Environment Divisions, a paragraph consists of a paragraph header (fol-
lowed by a period) and zero, one, or more entries. In the Procedure Division, a
paragraph consists of a paragraph-name (followed by a period) and zero, one,
or more entries. Data Division entries follow a different format. (See Section
1.4.4, Data Division Entries.) '

The permissible paragraph headers are:
In the Identification Division

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

Overview of the COBOL Language 1-11

1-12

In the Environment Division

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
[-0-CONTROL.

A paragraph header or paragraph-name starts in Area A. The first sentence of
a paragraph begins either on the same line or in Area B of the next non-blank
line that is not a comment line. Successive sentences or entries begin either on
the same line as the previous one or in Area B of the next non-blank line that
is not a comment line. (See Section 1.3.1.2, Continuation of Lines.)

1.4.4 Data Division Entries

There are two types of Data Division entries: those that begin with a level-
number (called "data-description-entries") and those that begin with a level
indicator. The only level indicator is FD (File Description).

Following every level indicator or level-number are (in order): a space, its
associated name, and a sequence of independent descriptive clauses. Each
clause except the last ends with a separator semicolon or a separator space;
the last clause ends with a period followed by a space.

Choose level-numbers from the set of values 1 through 49, 66, 77, and 88.
Write the level-numbers 1 through 9 either as a single digit or as a zero
followed by a significant digit. For level-numbers 01, 66, or 77, the entry
begins in Area A with the level-number followed by a space; the entry ends in
Area B with its associated record-name and descriptive information.

The FD level indicator entry begins in Area A with the level indicator followed
by at least one space; the entry continues in Area B with a file-name and
descriptive information.

You can maintain the same format for successive data-description-entries, or
you can indent according to level-number. When you indent, begin each new
level-number anywhere in Area A or Area B, and end anywhere within Area B.
Indentation does not affect the magnitude of the level-number. Note that your
output listing will be indented only if the input is indented.

1.4.5 Declaratives

The key words DECLARATIVES and END DECLARATIVES precede and
follow, respectively, the declaratives portion of the Procedure Division.
Each must appear on a line by itself, starting in Area A and ending with a
terminator period.

Overview of the COBOL Language

1.5 Sample Format Entry Page

The following page is a model of the entries that comprise the bulk of this
manual. Each COBOL division begins a new chapter, and each entry begins
on a new page.

Entry-Name
n.n.n Entry-Name

Function

Describes the function or effect of the entry.

General Format

A general format shows the specific arrangement of elements in
the entry. Formats are numbered if you can use more than one
specific arrangement. You must write all clauses (mandatory
and optional) in the sequence shown in these general formats.
Only in certain cases can clauses appear in sequences other
than those shown; these exceptions are stated explicitly in the
rules that follow the general format.

Syntax Rules

Syntax rules tell you how to order words or elements to form larger elements,
such as sentences, clauses, or statements. They also impose restrictions on
individual words or elements.

General Rules

General rules define or clarify the meaning (or relationship of meanings) of an
element or a set of elements. They define the semantics of the entry and the
entry’s effect on program execution or compilation.

Examples

(If required)

Division Name

Overview of the COBOL Language 1-13

Chapter 2
Identification Division

Function

The Identification Division marks the beginning of a COBOL program. It also
identifies a program and its source listing.

General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.
* [AUTHOR. [(comment-entry] ...]
* INSTALLATION. [comment-entry] ...]
* [DATE-WRITTEN. [comment-entry] ...]
[DATE-COMPILED. [comment-entry] ...]

* [SECURITY. [comment-entry] ...]

* These paragraphs are not described in individual entries; they follow the same format as the
DATE-COMPILED paragraph and are for documentation only.

Syntax Rules

1. The Identification Division must be the first entry in a COBOL program.

2. The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

3. The PROGRAM-ID paragraph must immediately follow the Identification
Division header.

General Rules

1. The comment-entry can consist of any combination of characters from the
computer character set.

2. Comment-entries can span several lines. However, do not continue a
comment-entry by using a hyphen in the continuation indicator area.

2-1

PROGRAM-ID

2.1 PROGRAM-ID Paragraph

Function

The PROGRAM-ID paragraph identifies the program.

General Format

PROGRAM-ID. program-name.

Syntax Rule

The program-name must contain 1 to 15 characters from the set A through 7
and 0 through 9. Do not use the hyphen.

General Rules

1. The PROGRAM-ID paragraph must be present in every program and
must contain a program-name.

Program-name is a user-defined word that identities a COBOL program.
The program-name identifies the object program entry point.

Program-names cannot exceed 15 characters in length.

AR B A

The first eleven characters of the program-name must not duplicate the
first eleven characters of the program-name in any other program in the
linked image.

2-2 Identification Division

DATE-COMPILED

2.2 DATE-COMPILED Paragraph

Function

The DATE-COMPILED paragraph causes the compiler to display the compi-
lation date on the source program listing in the Identification Division.

General Format

DATE-COMPILED. [comment-entry] ...

Syntax Rules

1. The comment-entry can consist of any combination of characters from the
computer character set.

2. Comment-entries can span several lines. However, do not continue a
comment-entry by using a hyphen in the continuation indicator area.

General Rules

1. During program compilation, the paragraph-name DATE-COMPILED
causes the current date to be inserted on a subsequent line of the program
listing. If a DATE-COMPILED paragraph is present, it is replaced durlng '
compilation with a paragraph of the form:

DATE-COMPILED. comment-entry.
current-date

2. All listings produced during compilation contain the compilation date in
the header line of each page regardless of the presence or absence of the
DATE-COMPILED paragraph.

Identification Division 2-3

Chapter 3
Environment Division

Function

The Environment Division provides a standard method for describing the
program’s hardware environment. It enables you to specify both (1) the com-
piling and object computers, and (2) information about input-output control.

General Format

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. source-computer-entry]

(OBJECT-COMPUTER. object-computer-entry]

[SPECIAL-NAMES. special—names—entry]]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry} ...

[I-O-CONTROL. input—output—control—entry]]

Syntax Rules

1. The Environment Division must follow the Identification Division in every
COBOL program.

2. The Environment Division must begin with the reserved words
ENVIRONMENT DIVISION followed by a period and a space.

3-1

SOURCE-COMPUTER

3.1 CONFIGURATION SECTION

The Configuration Section can consist of three paragraphs: SOURCE-
COMPUTER, OBJECT-COMPUTER, AND SPECIAL-NAMES.

3.1.1 SOURCE-COMPUTER Paragraph
Function

The SOURCE-COMPUTER paragraph specifies the computer on which the
source program is to be compiled.

General Format

SOURCE-COMPUTER. VAX-11.

General Rules

This paragraph is for documentation purposes only.

3-2 Environment Division

OBJECT-COMPUTER

3.1.2 OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER paragraph specifies the computer on which the
object program is to be executed.

General Format

WORDS
OBJECT-COMPUTER. VAX-11 |, MEMORY SIZE integer { CHARACTERS
MODULES

[, PROGRAM COLLATING SEQUENCE IS alphabet-name]

[, SEGMENT-LIMIT IS segment-number].

General Rule

This paragraph is for documentation purposes only.

Environment Division 3-3

SPECIAL-NAMES

3.1.3 SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph associates compiler features with user-
specified mnemonic-names; it also associates alphabet-names (specified in
the OBJECT-COMPUTER paragraph) with character sets and/or collating
sequences.

General Format

[SPECIAL—NAMES.

CARD-READER

PAPER-TAPE-READER

{CONSOLE IS mnemonic-name
LINE-PRINTER

PAPER-TAPE-PUNCH

[SWITCH integer-1
{(L\I STATUS IS condition-name-1 [,QFF STATUS IS condition-name—m}

OFF STATUS IS condition-name-2 [,ON STATUS IS condition-name-1]

NATIVE
alphabet-name IS }

STANDARD-1
[CURRENCY SIGN IS literal |

[DECIMAL-POINT IS COMMAL.]

34

Syntax Rules

1. You must use the SPECIAL-NAMES paragraph if your program in-
cludes mnemonic-names, condition-names, alphabet-names, the
DECIMAL-POINT clause, or the CURRENCY SIGN clause.

2. Integer-1 represents any integer from 1 to 16.

General Rules

1. The names CARD-READER, PAPER-TAPE-READER, and CONSOLE
refer to input devices. To transfer data from these devices, you can use the
mnemonic-names assigned to them with the ACCEPT statement in the
Procedure Division.

2. The names CONSOLE, LINE-PRINTER, and PAPER-TAPE-PUNCH
refer to output devices. To transfer data to these devices, you can use the
mnemonic-names assigned to them with the DISPLAY statement in the
Procedure Division.

Environment Division

SPECIAL-NAMES

Continued

. The name SWITCH refers to a logical switch to which the operator can
assign a value at run-time. Chapter 2 of the User’s Guide discusses the
procedure for setting program switches.

. The condition-name assigned to the ON or OFF STATUS of a switch can
be used in a conditional expression. (See Section 5.6.8, Switch-Status
Condition.)

. The alphabet-name clause relates a name to a collating sequence and/or
a character code set. An alphabet-name referenced in the PROGRAM
COLLATING SEQUENCE clause specifies a collating sequence. An
alphabet-name referenced in a CODE-SET clause in a file-description-
entry specifies a character code set. (See Section 4.1.2, CODE-SET
Clause.)

a. If the STANDARD-1 phrase is specified, the character code set or
collating sequence identified is that defined in the American National
Standard Code for Information Interchange, X3.4-1968.

b. Since the native character code set of your system is equivalent to the
ASCII code, specification of the NATIVE phrase is equivalent to speci-
fication of the STANDARD-1 phrase.

. The literal that appears in the CURRENCY SIGN IS literal clause is used
in the PICTURE clause to represent the currency symbol. Use a single
character for the literal. Do not use any of the following characters:

a. Digits 0 through 9
b. Alphabetic characters A,B,C,D,L,P,R,S,V,X,Z or the space

c. Special characters *, +, -, , (comma), . (period), ; (semicolon), (,), ", /,
or =

If this clause is not present, you can only use the currency sign ($) in the
PICTURE clause.

. The DECIMAL-POINT IS COMMA clause exchanges the function of
the comma and period in the PICTURE character-string and in numeric
literals.

Environment Division 3-5

3.2

3-6

INPUT-OUTPUT SECTION

The Input-Output Section consists of two paragraphs that describe the infor-
mation needed to control the transmission and handling of data between
external media and the program. This section allows COBOL programs to
access records stored in various file organizations.

The file organizations supported by the compiler, and the access methods
available for processing them, are introduced below. Refer to the User’s Guide
for a more complete discussion of these topics.

File Organizations
The compiler supports three file organizations:

e Sequential
¢ Relative
¢ Indexed

Sequential files consist of records positioned one after the other in the order in
which they were originally written. Each record (except the last) has another
record following it. The location of a record is fixed in relation to the records
that precede and succeed it. Sequential files can be processed only in a serial
fashion. That is, to access a record in the middle of the file, the program must
access all the records preceding it.

Relative files, restricted to disk storage devices, consist of successively
numbered records. Each record is assigned a number relative to its position in
the file. Thus, the first record in a file occupies the first position and receives a
relative record number of 1, the second record occupies the second position
and receives a relative record number of 2, and so on. An individual record in
a relative file can be accessed directly (by specifying its relative record num-
ber) or serially, like sequential files.

Indexed files, like relative files, are restricted to disk storage devices. They
consist of records and a primary key index (and optionally one or more alter-
nate key indexes) used to process the records sequentially by key or randomly
by key. A key is a data item in each record of the file.

Access Modes

File organization determines the access modes that can be used to retrieve
and store records in the file. Though file organization is fixed when the file is
created (and cannot be changed later), the access mode is not fixed (except for
sequential files) until a program opens the file. Therefore, different programs
can use different access methods for the same file.

The compiler supports three access modes:

¢ Sequential
¢ Random
* Dynamic

Environment Division

In the sequential access mode, the program accesses records serially. The
first record must be accessed before the second, the second before the third,

and so on.

In the random access mode, the program accesses records individually by a
random record number or a data key.

Dynamic access allows you to choose at will between sequential or random

access.

Table 3-1 lists the allowable combinations of file organizations and access

modes.

Table 3-1: Access Modes and File Organizations

Access Mode

File Organization Sequential Random Dynamic
Sequential Yes No No
Rela'tive Yes Yes Yes
Indexed Yes Yes Yes

The User's Guide further discusses the

access modes and file organizations.

Environment Division 3-7

FILE-CONTROL

3.2.1 FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and specifies other file-
related information.

General Format

FILE-CONTROL. {ﬁle-control-entry}

Format 1 — Sequential File-Control-Entry
SELECT [OPTIONAL] file-name

ASSIGN TO literal-1

AREA]

, RESERVE integer-1 [
AREAS

[, ORGANIZATION IS SEQUENTIAL]
[, ACCESS MODE IS SEQUENTIAL]

[, FILE STATUS IS data-name-4] .

Format 2 - Relative File-Control-Entry

SELECT file-name

ASSIGN TO literal-1
AREA
; RESERVE integer-1
AREAS

; ORGANIZATION IS~ RELATIVE _
SEQUENTIAL [, RELATIVE KEY IS data-name-1]

; ACCESS MODE IS RANDOM
RELATIVE KEY IS data-name-1
DYNAMIC

[; FILE STATUS IS data-name-4 | .

(continued on next page)

3-8 Environment Division

FILE-CONTROL

Continued

Format 3 - Indexed File-Control-Entry

SELECT file-name

ASSIGN TO literal-1

AREA
; RESERVE integer-1
AREAS

L

; ORGANIZATION IS INDEXED

i SEQUENTIAL
; ACCESS MODE IS {RANDOM }

DYNAMIC

; RECORD KEY IS data-name-2
[; ALTERNATE RECORD KEY IS data-name—B[WITH DUPLICATES]]...

[; FILE STATUS IS data-name-4] .

Syntax Rules

All Formats

1. Specify the SELECT clause first in the file control entry. Clauses following
the SELECT clause can appear in any order.

2. You must name each file described in a Data Division file-description-
entry once and only once as file-name in the FILE-CONTROL paragraph.
Each file specified in the file control paragraph must have a corresponding
file-description-entry in the Data Division.

3. Literal-1 must be an alphanumeric literal.

4. If you do not specify the ACCESS MODE IS clause, the compiler éssumes
sequential access as a default.

5. You can qualify data-name-1, data-name-2, data-name-3, and data-
name-4.

6. Data-name-4 must-be defined in the Working-Storage Section of the Data
Division as a 2-character alphanumeric data item.

Format 1
7. Specify the OPTIONAL phrase only for input files that need not be pres-
ent whenever the object program is executed.

8. If you do not specify the ORGANIZATION IS SEQUENTIAL clause, the
compiler assumes sequential organization as a default.

Environment Division 3-9

FILE-CONTROL

Continued

3-10

Format 2
9. Specify the RELATIVE KEY phrase for a file if it will be referenced in a
START statement.

10. Data-name-1 must not be defined in a record-description-entry associated
with file-name.

11. The data item referenced by data-name-1 must be defined as an unsigned
integer.

Format 3

12. The data items referenced by data-name-2 and data-name-3 must each be
defined as alphanumeric data items in a record-description-entry associ-
ated with that file-name.

13. Neither data-name-2 nor data-name-3 can describe a variable-sized item.

14.Data-name-3 cannot reference an item whose leftmost character position
corresponds to the leftmost character position of an item referenced by
data-name-2 or by any other data-name-3 associated with this file.

General Rules

All Formats

1. The ASSIGN clause specifies the default file specification of the file refer-
enced by file-name. Literal-1 must be a file specification in command-
string format. (See Section 4.1.7, VALUE OF ID Clause).

2. The ORGANIZATION clause specifies the logical organization of data in a
file. The file organization is established at the time a file is created. Once
established, the file organization cannot be changed.

3. If you specify the FILE STATUS clause, a value is placed into the
2-character data item (data-name-4) during the execution of a
CLOSE, DELETE, OPEN, READ, REWRITE, START, or WRITE state-
ment and before the execution of any applicable USE procedure. This
value indicates the result of any input-output operation.

The leftmost character position of the FILE STATUS data item is known
as Status Key 1. It is set to one of the following values upon completion of
an input-output operation:

0 = Successful Completion
1 = At End

2 = Invalid Key

3 = Permanent Error

9 = DEC-Defined

Environment Division

FILE-CONTROL

Continued

The rightmost character position is known as Status Key 2. It further
describes the results of the input-output operation. This character will
contain one of the following values:

= No Further Information
Sequence Error
Duplicate Key

= No Record Found
= Boundary Violation
= Allocation Failure
= Buffer Failure

0
1
2
3
4
5
6
7 = No File Found

8 = Close Error

9 = Close Reel Error

Possible combinations of Status Keys 1 and 2 are shown in Table 3-2.
Appendix C contains a complete listing of the File Status Keys and a
description of each.

Table 3-2: Possible Combinations of Status Keys 1 and 2

Status Key 2

CLOSE
Status No Further | Sequence| Duplicate | No Record | Boundary | Allocation | Buffer | NoFile | CLOSE REEL
Key 1 Info. Error Key Found Violation Failure Failure | Found Error Error
(0) (1) (2) (3) (4) (3) (6) (7) (8) (9)
Successful
Completion X X(***)
(0)
At
End X
(1)
Invalid
Key X(**r) X(**) X(*‘) X(**)
(2)
Permanent
Error X X(*)
(3)
DEC- .
Defined X(!) X(! X(t) X X X X X
(9)

* Valid for sequentially organized files only.
Valid for indexed and relative files only.

* %k

*** Valid for indexed files only.

! File locked by another process.

11 Record locked by another process.

1! No sequential READ previous to a REWRITE or DELETE operation.

Environment Division 3-11

FILE-CONTROL

Continued

3-12

Format 1

4. The RESERVE clause specifies the number of input-output areas allo-
cated for sequential files. This number equals the value of integer-1,
which cannot be greater than 127. If the RESERVE clause is not specified,
the number of input-output areas is determined by the Record Manage-
ment Services (RMS) default.

5. Sequential files are accessed by predecessor/successor record relationships
established by the execution of WRITE statements when the file is created
or extended.

Format 2

6. The RESERVE clause specifies the number of input-output areas allo-
cated for relative files. This number equals the value of integer-1, which
cannot be greater than 127. If the RESERVE clause is not specified, the
number of input-output areas is determined by the Record Management
Services (RMS) default.

7. When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization. This sequence follows the order
of ascending relative record numbers of existing records in the file.

8. If the access mode is random, the value of the RELATIVE KEY data item
indicates the record to be accessed.

9. When the access mode is dynamic, records in the file can be accessed
sequentially and/or randomly.

10. Relative record numbers uniquely identify all records stored in a relative
file. The relative record number of a given record specifies the logical
ordinal position of the record in the file. The first logical record has a
relative record number of one (1), and subsequent logical records have
relative record numbers of 2, 3, 4,

11. The data item specified by data-name-1 is used to communicate a relative
record number between the program and Record Management Services.

Format 3

12 The RESERVE clause specifies the number of input-output areas allo-
cated for indexed files. Thi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>