
dec~ handbook series

mDmDoma

mathematical
languages
handbook

second edition

Additional copies of this handbook may be ordered from:
Program Library, DEC, Maynard, Mass. 01754. Order code: DEC·10-KRZ8-0.

decsystermo handbook series

The material in this handbook is for information purposes and is subject
to change without notice.

Copyright © 1967,1968,1969,1970,1971,1972 by
Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

~ortran

basic

algol

NOTICE

For the reader's convenience:

1) Consecutive page numbers have been added to the top center of each page in the handbook;

these numbers have the form -nn .. - (for example -25-) and are supplied in addition to

the standard document numbers printed at the bottom center of each page.

2) The appropriate document name has been added to the top outside corner of each page of

the handbook.

3) A global index comprised of the merged and alphabetized entries of all of the indexes which

were previously part of the documents contained by the handbook is supplied at the end of

the handbook. The global index replaces the individual document indexes.

4) The entries of the global index and the Table of Contents for each document reference the

consecutive page numbers located at the top center of each page.

5) Black locator tabs are printed on the outside edge of the first ten pages of each document

in the handbook. A tab locator page on which each set of tabs is identified by the name of

the document which they represent is supplied at the front of the handbook.

-1-

FORTRAN IV
PROGRAMMER'S
REFERENCE MANUAL

The information in this document reflects the software as of

Version 26 of the FORTRAN Compi ler and Version 32 of the

run-time operating system (LI B40).

DEC-lO-AFDO-D

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

FORTRAN -2-
1st Printing March 1967
2nd Printing (Rev) November 1967
3rd Printing {Rev} September 1968
4th Printing April 1969
5th Printing June 1969
6th Printing September 1969
7th Printing (Rev) February 1970
Update Pages October 1970
Update Pages February 1971
Update Pages October 1971
Update Pages May 1972

Copyright © 1967, 1968, 1969, 1970, 1971, 1972 by Digital Equipment Corporation

The material in this manual is for informa­
tion pu rposes and is subject to change with­
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

-3- FORTRAN
CONTENTS

Page

SECTION 1 THE PDP-lO FORTRAN LANGUAGE

CHAPTER 1 INTRODUCTION TO THE FORTRAN LANGUAGE

1.1 Line Format 15

1. 1.1 Statement Number Field 15

1.1 .2 Line Continuation Field 15

1.1.3 Statement Field 16

1.1.4 Comment Line 17

1.2 Character Set 17

CHAPTER 2 CONSTANTS, VARIABLES, AND EXPRESSIONS

2.1 Constants 19

2.1.1 Integer Constants 19

2.1.2 Real Constants 19

2.1.3 Double Precision Constants 20

2.1.4 Octal Constants 20

2.1.5 Complex Constants 20

2.1.6 Logical Constants 21

2.1.7 Literal Constants 21

2.2 Variables 22

2.2.1 Scalar Variables 22

2.2.2 Array Variables 22

2.3 Expressions 24

2.3.1 Numeric Expressions 24

2.3.2 Logical Expressions 26

CHAPTER 3 THE ARITHMETIC STATEMENT

3.1 General Description 29

CHAPTER 4 CONTROL STATEMENTS

4.1 GO TO Statement 31

4.1.1 Unconditional GO TO Statements 31

4.1.2 Computed GO TO Statemeonts 32

4.1.3 Assigned GO TO Statement 32

4.2 IF Statement 32

4.2.1 Numerical IF Statements 33
4.2.2 Logical IF Statements 33

4.3 DO Statement 34

4.4 CONTINUE Statement 38

4.5 PAUSE Sftltement 38

FORTRAN -4-
CONTENTS (Cont)

Page

4.6 STOP Statement 39

4.7 END Statement 39

CHAPTER 5 DATA TRANSMISSION STATEMENTS

5.1 Nonexecutable Statements 41

5.1.1 FORMA T Statement 41

5.1.2 NAMELIST Statement 53

5.2 Data Transmission Statements 55

Input/Output Lists 56

Input/Output Records 57

PRINT Statement 57

PUNCH Statement 58

TYPE Statement 58

WRITE Statement 58

READ Statement 59

REREAD Statement 61

ACCEPT Statement 62

Device Control Statements 62-

5.4 Encode and Decode Statements 63

CHAPTER 6 SPECIFICATION STATEMENTS

6.1 Storage Specification Statements 66

6.1.1 DIMENSION Statement 66

6.1.2 COMMON Statement 68

6.1.3 EQUIVALENCE Statement 69

6.1.4 EQUIVALENCE and COMMON 70

6.2 Data Specification Statements 70

6.2.1 DATA Statement 70

6.2.2 BLOCK DATA Statement 72

6.3 Type Declaration $tatements 72

6.3.1 IMPLICIT Statement 73

CHAPTER 7 SUBPROGRAM STATEMENTS

7.1 Dummy Identifiers 75

7.2 Library Subprograms 75

7.3 Arithmetic Function Definition Statement 75

7.4 FUNCTION Subprograms 76

7.4.1 FUNCTI ON Statement 76

7.5 SUBROUTINE Subprogram 78

7.5.1 SUBROUTINE Statement 78

-5- FORTRAN
CONTENTS (Cont)

Page

7.5.2 CALL Statement 81

7.5.3 RETURN Statement 81

7.6 BLOC K DA TA Subprogram 82

7.6.1 BLOCK DATA Statement 82

7.7 EXTERNAL Statement 82

7.8 Summary of PDP-10 FORTRAN IV Statements 83

SECTION II THE RUNTIME SYSTEM

CHAPTER 8 THE FORTRAN IV LIBRARY - LlB40

8.1 The FORTRAN Operating System 89

8.1.1 FORSE. 89

8.1.2 I/O Conversion Routines 90

8.1.3 FORTRAN UUOs 91

8.2 Science Library and FORTRAN Utility Subprograms 92

8.2.1 FORTRAN IV Library Functions 92

8.2.2 FORTRAN IV Library Subroutines 96

CHAPTER 9 SUBPROGRAM CALLING SEQUENCES

9.1 Macro Subprogram Called by FORTRAN Main Programs 101

9.1.1 Call ing Sequences 101

9.1.2 Returning of Answers 102

9.1.3 Use of Accumulators 102

9.1.4 Examples of Subprogram Linkage 102

9.2 Macro Main Programs Which Reference FORTRAN
Subprograms 109

9.2.1 Call ing Sequences 109

9.2.2 Returning of Answers 109

9.2.3 Example of Subprogram Linkage 110

CHAPTER 10 ACCUMULATOR CONVENTIONS FOR MAIN PROGRAMS
AND SUBPROGRAMS

10.1 Locations 117

10.2 Accumulators 117

10.2.1 Accumu lators 0 and 1 117

10.2.2 Accumulators 2 through 15 118

10.2.3 Accumulators 16 and 17 118

10.3 UUOs 118

10.4 Subprograms Called by JSA 16, Address 118

10.5 Subprograms Called by PUSHJ 17, Address 118

10.6 Subprograms Calledby UUOs 119

FORTRAN -6-
CONTENTS (Cont)

Page
CHAPTER 11 SWITCHES AND DIAGNOSTICS

11. 1 FORTRAN Switches and Diagnost'ics 121

CHAPTER 12 FORTRAN USER PROGRAMMING

12.1 ASCII Chtlracter Set 133

12.2 PDP-10 Word Formats 134

12.3 FORTRAN Input/Output 135

12.3.1 Logical and Physical Peripheral Device Assignments 136

12.3.2 DECtape and Disk Usage 136

12.3.3 Magnetic Tape Usage 138

12.4 Random Access Programming 139

12.4.1 How to Use Random Access 140

12.4.2 Restrictions 140

12.4.3 Examples 141

12.5 PDP-10 Instruction Set 145

APPENDIX A THE SMALL FORTRAN IV COMPILER

-7- FORTRAN
ILLUSTRATIONS

Page

1-1 Typical FORTRAN Coding Form 16

2-1 Array Storage 23

4-1 Nested DO Loops 37

TABLES

2-1 Types of Resul tant Subexpressions 25

3-1 Allowed Assignment Statements 30

5-1 Magn itude of I ritema I Data 43

5-2 Numeric Field Codes 44

5-3 Device Control Statements 62

8-1 I/O Conversion Routine 90
8-2 FORTRAN UUOS 91

8-3 FORTRAN IV Library Functions 93

8-4 FORTRAN IV Library Subroutines 96

10-1 Accumulator Conventions for PDP-IO FORTRAN IV
Compiler and Subprograms 119

11-1 FORTRAN Compiler Switch Options 121
11-2 FORTRAN Compiler Diagnostics (Command Errors) 122
11-3 FORTRAN Compiler Diagnostics (Compilation Errors) 123

11-4 FORTRAN Operating System Diagnostics (Execution Errors) 128
12-1 ASCII Character Set 133
12-2 PDP-IO FORTRAN IV Standard Peripheral Devices 135

12-3 Device Table for FORTRAN IV 137

FORTRAN -8-

-9-

PREFACE

This is a reference manual describing the specific statements and features of the

FORTRAN IV language for the PDP-10. It is written for the experienced

FORTRAN programmer who is interested in writing and running FORTRAN IV pro­

grams alone or in conjunction with MACRO-lO programs in the single-user or

time-sharing environment. Familiarity with the basic concepts of FORTRAN pro­

gramming on the part of the user is assumed. PDP-10 FORTRAN IV conforms to

the requirements of the USA Standard FORTRAN.

ix

FORTRAN

FORTRAN -10-

-11- FORTRAN

INTRODUCTION TO THE FORTRAN IV SYSTEM

The FORTRAN compiler translates source programs written in the FORTRAN IV language into the machine

language of the PDP-10. This translated version of the FORTRAN program exists as a retrievable, relocatable

binary file on some storage device. All relocatable binary filenames have the extension .REL if they reside on

a directory-oriented device (disk or DECtape). Binary files may also be created by the MACRO-10 assembler

(see Chapter 9) 1 .

In order for the FORTRAN program to be processed, the linking Loader must load the relocatable binary file

into core memory. Also loaded are any relocatable binary files found in the FORTRAN library (LIB40) which

are necessary for the program's execution. Within the FORTRAN source program, the library files may be called

explicitly, such as SIN, in the statement

x = SIN(Y)

or implicitly, such as FLOUT., the floating-point to ASCII conversion routine, which is implied in the follow­

ing statements.

PRINT 3,X
3 FORMAT(1X,F4.2)

A FORTRAN main program and its FORTRAN and/or MACRO-10 subprograms may be compiled or assembled sep­

aratelyand then linked together by the linking Loader at load time. The core imag.e may then be saved on a

storage device. When saved on a directory storage device, these files have the extension .SAV in a multipro­

gramming Monitor system and .SVE in a single-user Monitor system.

The Time-Sharing Monitors act as the interface between the user and the computer so that all users are protected

from one another and appear to have system resources available to themselves. Several user programs are loaded

into core at once and the Time-Sharing Monitors schedule each program to run for a certain length of time. All

Monitors direct data flow between I/O devices and user programs, making the programs device independent, and

overlap I/O operations concurrently with computations.

In a multiprogramming system, all jobs reside in. core and the scheduler decides which of these jobs should run.

In a swapping system, jobs can exist on an external storage device (usually disk) as well as in core. The scheduler

lFor further information on the MACRO-10 assembler, see the MACRO-10 ASSEMBLER manual, DEC-10-AMZB-D.

XI

FORTRAN -12-

decides not only which job is to run but also when a job is to be swapped out onto the disk or brought back into

core.

The number of users that can be handled by a given size time-sharing configuration is further increased by using

the reentrant user-programming capability. This means that a sequence of instructions may be entered by more

than one user job at a time. Therefore, a single copy of a reentrant program may be shared by a number of users

at the same time to increase system economy. The FORTRAN compiler and operating system are both reentrant.

XII

-13-

SECTION I

The PDP-10 FORTRAN IV language

The seven chapters of this section deal with the PDP-10 FORTRAN IV language.

Included in these chapters are the language elements of FORTRAN IV and the

five categories of FORTRAN IV statements {arithmetic, control, input/output,

specification, and subprogram}.

FORTRAN

FORTRAN -14-

-15- FORTRAN

CHAPTER 1

INTRODUCTION TO THE FORTRAN LANGUAGE

The term FORTRAN IV (FORmula TRANslation) is used interchangeably to designate both the FORTRAN IV

language and the FORTRAN IV translator or compiler. The FORTRAN IV language is composed of mathematical­

form statements constructed in accordance with precisely formulated rules. FORTRAN IV programs consist of

meaningful sequences of FORTRAN statements intended to direct the computer to perform the specified operations

and computations.

The FORTRAN IV compiler is itself a computer program that examines FORTRAN IV statements and tells the com­

puter how to translate the statements into machine language. The compiler runs in a minimum of 9K of core.

The program written in FORTRAN IV language is called the source program. The resultant machine language

program is called the object program. Digital's small FORTRAN compiler, which runs in 5.5K of core, is vir­

tually identical to the larger compiler, except for differences explained in Appendix 2. Operating procedures

and diagnostic messages for both compilers are explained in the PDP-10 System Users Guide (DEC-10-NGCC-D).

1. 1 LINE FORMAT

Each line of a FORTRAN program consists of three fields: statement number field, line continuation field, and

statement Field. A typical FORTRAN program is shown in Figure 1-1.

1. 1. 1 Statement Number Field

A statement number consists of from one to Five digits in columns 1-5. Leading zeros and all blanks in this field

are ignored. Statement !lumbers may be in any order and must be unique. Any statement referenced by another

statement must have a statement number. For source programs prepared on a teletypewriter, a horizontal tab may

I be used to skip to the statement field with from 0 through 5 characters in the label field. This is the only place

a tab is not treated as a space.

1.1.2 Line Continuation Field

If a FORTRAN statement is so large that it cannot conveniently fit into one statement Field, the statement fields

of up to 19 additional lines may be used to specify the complete statemenL Any line which is not continued, or

the first line of a sequence of continued lines, must have. a blank or zero in column 6. Continuation lines must

Version 24 FORTRAN
Version 31 LIMO 1-1 October 1971

FORTRAN -16-
FORTRAN

CODE. OAn PAGE

COOING Fo.M Plt08lfM

(-CO""".",
S Stmbol,(

I~T:T~~;~~ FORTRAN STATEMENT IDENTl~ICATION

NUMet,

12 JA.5 7 8 9 1011 1213 I'" 15 1611181'202122232ot 2526272.2930 31 3233 3 .. 353637313' .. 0.' .. 2 .. 3 ,S.6.7 95O.51 S2SJ~5H6S7S.59606162616 .. 6S66616.6970n n 137,05761771791

THI S PROGRAM CA.LCULA.TE S P R loME NUMBER S FROM 14 TO 50

0.0 10 1=1 1 50 2

J = 1

4 iJ.= J+ 2

A=.J

= .I.A.

~ 1 I J

B =.A ~ L

I F .(B.) 5 1 0 5 I I I I I I I I I I I

5 I F(J .. LT .S.ORT(FLOAT (I))) GO TO 4

YPE 105 I

toQ :.ONTI NUE

1 05 FORMAT . (14 ' I S PR IME: ')

'Nn

.

.. .

123.5 6 7" 1011 12111.1S1617'1"20212223Jt2S26272n9)OJI 3M3 ' .. 151631lnUO.' .. 20.U' , 'jOjl.s2S1SlSS56S1"5960616263 ... 6S66N6I.70TI 11 1)7.",.n"'''1(
DIGITAL EQUIPMENT CORPORATION • MAVNARD, MASSACHUSETTS

100 - 12/64

Figure 1-1 Typical FORTRAN Cnding Form

have a character other than blank or zero in column 6. If a continuation line is desired when a TAB is used in

the statement number field, a digit from 1 to 9 must immediately follow the TAB.

1.1.3 Statement Field

Any FORTRAN statement, as described in later sections, may appear in the statement field (columns 7-72). Ex­

cept for alphanumeric data within a FORMAT statement, DATA statement, or literal constant, blanks (spaces)

and TABS are ignored and may be used freely for appearance purposes. Thus the following statements are equiv­

alent.

END (tab) FILE (tab) 2
END (space) FILE (space) 2
ENDFILE2

Version 24 FORTRAN
Version 31 LIMO October 1971

1-2

-17- FORTRAN
1.1.4 Comment Line

I Any line that starts with one of the characters $ * / or the letter C in column 1 is interpreted as a line of com­

ments. Comment lines are printed onto any listings requested but are otherwise ignored by the compiler. Col­

umns 2-72 may be used in any format for comment purposes. A comment line must not immediately precede a

continuation line.

I As an aid for program debugging, the letter 0 in column 1 causes the line to be interpreted as a comment unless

the /1 switch appears in the command string. (Refer to Table 11-1 for Compile Switch options.) If the /1 switch

is present, the letter 0 in column 1 is interpreted as a space and the line is compiled as a program statement.

1 .2 CHARACTER SET

The following characters are used in the FORTRAN IV language:

Version 24 FORTRAN
Version 31 LIMO

Blank 0 @

A

" 2 B

3 C

$ 4 0

% 5 E

& 6 F

7 G

8 H

9 I

* J

+ K

< l

M

> N

/ ? 0

NOTE

ASCII characters greater than Z (1328) are replaced by
the error character "t". See Chapter 12 for the internal
representation of these characters.

1-3

P

Q

R

S

T

U

V

W

X

Y

Z

February 1971

FORTRAN -18-

-19- FORTRAN

CHAPTER 2

CONSTANTS, VARIABLES, AND EXPRESSIONS

The rules for defining constants and variables and for fonning expressions are described in this chapter.

2.1 CONSTANTS

Seven types of constants are permitted in a FORTRAN IV source program: integer or fixed point, real or single­

precision floating point, double-precision floating point, octal, complex, logical, and literal.

2. 1 • 1 Integer Constants

An integer constant consists of from one to eleven decimal digits written without a decimal point. A negative

constant must be preceded by a minus sign. A positive constant may be preceded by a plus sign.

Examples: 3
+10
-528

8085

An integer constant must fall within the range _235+1 to 235_1. When used for the value ofa subscript, the

value of the integer constant is taken as modulo 218.

2. 1.2 Rea I Constants

Real constants are written as a string of decimal digits including a decimal point. A real constant may consist

of any number of digits but only the leftmost 9 digits appear in the compiled program. Real constants may be

given a decimal scale factor by appending an E followed by a signed integerconstant. The field following the

letter E must not be blank, but may be zero.

Examples: 15.
0.0

.579
-10.794

5.0E3(i.e.,5ooo.)
5.0E+3(i .e., 5000)
5.0E-3{i .e. , 0.005)

2-1

FORTRAN -20-
A real constant has precision to eight digits. The magnitude must lie approximately within the range

-38 38
O. 14 x 10 to 1. 7 x 10 • Rea I constants occupy one word of PDP-l0 storage.

2.1.3 Double Precision Constants

A double precision constant is specified by a string of decimal digits, including a decimal point, which are

followed by the letter 0 and a signed decimal scale factor. The field following the letter 0 must not be blank,

but may be zero.

Examples: 24. 671325982134DO
3.602 {i.e., 360.}
3.60-2 (i.e., .036)
3.0DO

Double precision constants have precision to 16 digits. The magnitude of a double precision constant must lie
. -38 38

approximately between 0.14 x 10 and 1.7 x 10 . Double-precision constants occupy two words of PDP-lO

storage.

2. 1 .4 Octal Constants

A number preceded bya double quote represents an octal constant. An octal constant may appear in an arith­

metic or logical expression or a DATA statement. Only the digits 0-7 may be used and only the last twelve

digits are significant. A minus sign may precede the octal number, in which case the number is negated. A

maximum of 12 octal digits are stored in each 36-bit word.

Examples: "m7
"-31563

2.1.5 Complex Constants

FORTRAN IV provides for direct operations on complex numbers. Complex constants are written as an ordered

pair of real constants separated by a comma and enclosed in parentheses.

Examples: (.70712, -.70712)
(8.763E3,2.297)

The first constant of the pair represents the real part of the complex number, and the second constant represents

the imaginary part. The real and imaginary parts may each be signed. The enclosing parentheses are part of

the constant and always appear, regardless of context. Each part is internally represented by one single­

precision floating point word. They occupy consecutive locations of PDP-10 storage.

2-2

-21- FORTRAN
FORTRAN IV arithmetic operations on complex numbers, unlike normal arithmetic operations, must be of the

form:

A±B = a 1::1:b 1+i(a2::1:b2)

A*B = (a1b('02b2)+i(a2bl+alb2)

(a 1b 1 +a2b2) +i (a2b 1-0 1b2)
AlB = 2 2 2 2

b1 +b2 b 1 +b2

where A = a 1 + ia2 , B = b1 + ib2, and i =F.

2.1.6 Logical Constants

The two logical constants, .TRUE. and .FALSE., have the internal values -1 and 0, respectively. The en­

closing periods are part of the constant and always appear.

Logical constants may be entered in DATA or input statements as signed octal integers (-1 and 0). Logical

quantities may be operated on in either arithmetic or logical statements. Only the sign is tested to determine the

truth value of a logical variable.

2. 1. 7 Li tera I Constants

A literal constant may be in either of two forms:

a. A string of alphanumeric and/or special characters enclosed in single quotes; two adjacent single
quotes within the constant are treated as one single quote.

b. A string of characters in the form

nHx 1x2 · •• xn

where x 1x2 ••• x n is the literal constant, and n is the number of characters following the H.

Literal constants may be entered in DATA statements or input statements as a string of up to 57-bit ASCII char­

acters per variable (10 characters if the variable is double-precision or complex). Literal constants may be

operated on in either arithmetic or logical statements.

NOTE

Literal constants used as subprogram arguments will have a
zero word as an end-of-string indicator.

2-3

FORTRAN
Examples:

2.2 VARIABLES

-22-
CALL SUB ('LITERAL CONSTANT')
'DONT"T'
5HDON'T
A = 'FIVE' + 42
B = (5HABCDE .AND. "376)/2

A variable is a quantity whose value may change during the execution of a program. Variables are specified

by name and type. The name of a variable consists of one or more alphanumeric characters, the first one of

which must be alphabetic. Only the first six characters are interpreted as defining the variable name. The

type of variable (integer, real, logical, double precision, or complex) may be specified explicitly by a type

declaration statement or implicitly by the IMPLICIT statement. If the variable is not specified in this manner,

then a first letter of I, J, K, L, M or N indicates a fixed point (integer) variable; any other first letter indi-

I cates a floating-point (real) variable. Variables of any type may be either scalar or array variables. When used

in a subscript or as an index to a DO Statement, the value of the integer variable is taken as modulo 218 .

2.2.1 Scalar Variables

A scalar variable represents a single quantity.

Examples: A
G2
POPULATION

2.2.2 Array Variables

An array variable represents a single element of an n dimensional array of quantities. The variable is denoted

by the array name followed by a subscript list enclosed in parentheses. The subscript li,st is a sequence of in­

teger expressions, separated by commas. The expressions may be of any form or type providing they are explicitly

changed to type integer when each is completely evaluated. Each expression represents a subscript, and the

values of the expressions determine the array element referred to. For example, the row vector A. would be
I

represented by the subscripted variable A(J}, and the element, in the second column of the first row of the square

matrix A, would be represented by A(1,2}. Arrays may have any number of dimensions.

Examples: Y(1)
STATION (K)
A (3* K+2, I, J-1)

The three arrays above (Y, STATION, and A) would have to be dimensioned by a DIMENSION, COMMON,

or type declaration statement prior to their first appearance in an executable statement or in a DATA or

NAMELIST statement. (Array dimensioning is discussed in Chapter 6).

2-4

-23- FORTRAN

l-Dimensional Array A(10}

IA(III A(211 A(311 A(4" A(511 A(SII A(711 AC8" A(911 AOOII

CONSECUTIVE STORAGE LOCATIONS

2-Dimensional Array 8(5,5}

3-Dimensional Array C(5,5,5}

51 CU,I,31
52 C(2,I,31

26 CO,I,2I 31 CCI,2,2I
27 C(2121 32 C(2221

I C(I I I I 6 C02 II II CO 3 I I
2 C(2,I,1 I 7 C(2,211 12 C(2,3,11
3 C(3,I,1) 8 C(3,2 II 13 C(3,3,11
4 C(41 II 9 C(4211 14 C(43 I)
5 C(5,I,11 10 C(5,2,11 15 C(5,3,11

I 8(1,11 6 BO,21 II B(I,31 16 B(I,41 21 B(I,51

2 B(2,11 7 B(2,21 12 8(2,31 17 B(2,41 22 B(2,51

3 B(3,11 8 B(3,21 13 B(3,31 18 B(3,41 23 B(3,51

4 B(4,11 9 B(4,21 14 B(4,31 19 B(4,41 24 B(4,51

5 B(5,11 10 B(5,21 15 B(5,31 20 B(5,41 21 B(5,51

B(3,1I IS THE THIRD STORAGE WORD IN SEQUENCE
B(3,41 IS THE EIGHTEENTH STORAGE WORD IN SEQUENCE

101 C(I,I,51 106 C(I ,2,51 III C(I,3.51 116 CO,4,51 121 CO,5.lS I
102 C(2,151 107 C(22,51 112 C(2351 117 C(2,4,51 122 C(2,5,51

76 C(I,I,41 81 CO 241 86 CO 341 91 C(l44) 96 CII 5 41 118 C(3,4,51 123 C(3,5,51

77 c(2,I,41 82 C(2,2,41 87 C(2,3!11 92 C(2/1,4 97 C(2.541 119 C(4451 124 C(4,505I

56 Cn,2,31 61 CII,3,31 66 C(I,4,31 71 C(I,5,31 98 C(3,5,41 120 C(5,4,51 125 C(5,5,51

57 C<2,2,31 62 C(2,3,31 67 CC2 431 72 CC2,5,5 99 C(4,5,41

36 CU,3,21 41 CO,4,21 46 C(l5,21 73 C(3,5,31 100 C(5,5,41

37 C(2.3.21 42 c(2~ 21 47 C(2,5,21 74 C(4,5,31
16 cn4 II 21 CO 5 I I 48 C(3,5,21 75 C(5,5,31
17 C(2,4 II 22 C(2,5,11 49 C(4,5,2I
18 C(3411 23 CC3,5,1) 50 C(5,5,21
19 C(4~ II 24 C(4.5.11
20 C(5,4,11 25 C(5,5,11

C(1,3,2} is the 36th storage word in sequence.

C(1, 1,5} is the 10lst storage word in sequence.

Figure 2-1 Array Storage

2-5

FORTRAN -24-
Arrays are stored in increasing storage locations with the first subscript varying most rapidly and the last subscript

varying least rapidly. For example, the 2-dimensional array B(I,J) is stored in the following order: B (1,1),

B (2,1)' ... , B (I, 1),B (1 ,2),B (2,2), ... ,B (I,2), ... ,B (I,J).

2.3 EXPRESSIONS

Expressions may be either numeric or logical. To evaluate an expression, the object program performs the

calculations specified by the quantities and operators within the expression.

2.3.1 Numeric Expressions

A numeric expression is a sequence of constants, variables, and function references separated by numeric

operators and parentheses in accordance with mathematical convention and the rules given below.

The numeric operators are + I -, *, /, **, denoting, respectively, addition, subtraction, multiplication,

division, and exponentiation.

In addition to the basic numeric operators, function references are also provided to facilitate the evaluati~n

of functions such as sine, cosine, and square root. A function is a subprogram which acts upon one or more

quantities, called arguments, to produce a single quantity called the function value. Function references are

denoted by the identifier, which names the function (such as SIN, COS, etc.), followed by an argument list

enclosed in parentheses:

identifier(argument, argument, ..• , argument)

At least one argument must be present. An argument may be an expression, an array identifier, a subprogram

identifier, or an alphanumeric string.

Function type is given by the type of the identifier which names the function. The type of the function is inde­

pendent of the tYpes of its arguments. (See Chapter 7, Section 7.4.1. 1.)

A numeric expression may consist of a single element (constant, variable, or function reference):

2.71828
Z(N)
TAN(THETA)

Compound numeric expressions may be formed by using numeric operations to combine basic elements:

X+3.
TOTAL/A
TAN(PI*M)
(X+3.) -(TOTAL/A) * TAN (PI*M)

2-6

-25- FORTRAN
Compound numeric expressions must be constructed according to the following rules:

a. With respect to the numeric operators +, -, *, I, any type of quantity (logical, octal, integer,
real, double precision, complex or literal) may be combined with any other f with one exception:
a complex quantity cannot be combined with a double precision quantity.

The resultant type of the combination of any two types may be found in Table 2-1. The conversions
between data types will occur as follows:

(1) A literal constant will be combined with any integer constant as an integer and with a real
or double word as a real or double word quantity. (Double word refers to both double precision
and complex:)

(2) An integer quantity (constant, variable, or function reference) combined with a real or double
word quantity results in an expression of the type real or double word respectively; e.g., an integer
variable plus a complex variable will result in a complex subexpression. The integer is converted
to floating point and then added to the real part of the complex number. The imaginary part is
unchanged.

(3) A real quantity (constant, variable, or function reference) combined with a double word quan­
tity results in an expression that is of the same type as the double word quantity.

(4) A logical or octal quantity is combined with an integer, real, or double word quantity as if
it were an integer quantity in the integer case, or a real quantity in the real or double word case
(i.e., no conversion takes place).

b. Any numeric expression may be enclosed in parentheses and considered to be a basic element.

(X+Y)/2
(ZETA)
(COS(SIN(PI*M)+X»

Table 2-1
Types of Resultant Subexpressions

Type of Quantity

Double
+,~,* ,/ Real Integer Complex

Precision

Real Real Real Complex Double
Precision

Integer Real Integer Complex Double
Precision

Complex Complex Complex Complex Not

Type of Allowed

Quantity Double Double Double Not Double
Precision Precision Precision Allowed Precision

Logical, Real Integer Complex Double
Octal, or Precision
Literal

2-7

Logical,
Octal, or

Literal

Real

Integer

Complex

Double
Precision

Logical,
Octal, or
Literal

FORTRAN -26-
c. Numeric expressions which are preceded by a + or - sign are also numeric expressions:

+x
-(Al PHA *BET A)
-SQRT(-GAMMA)

d. If the precedence of numeric operations is not given explicitly by parentheses, it is understood
to be the following (in order of decreasing precedence):

Operator

**

*and/

+and-

Explanation

numeric exponentiation

numeric multiplication and division

numeric addition and subtraction

In the case of operations of equal hierarchy, the calculation is performed from left to right.

e. No two numeric operators may appear in sequence. For instance:

x*-y

is improper. Use of parentheses yields the correct form:

x*(-Y)

By use of the foregoing rules, all permissible numeric expressions may be formed. As dh example of a typical

numeric expression using numeric operators and a function reference, the expression for one of the roots of the

general quadratic equation:

would be coded as:

(-B+SQRT(B**2-4. *A*C»/(2. *A)

2.3.2 Logical Expressions

A logical expression consists of constants, variables, function references, and arithmetic expressions, separated

by Jogical operators or relational operators. logical expressions are provided in FORTRAN IV to permit the im­

plementation of various forms of symbolic logic. Logical masks may be represented by using octal constants.

The result of a logical expression has the logical value TRUE (negative) or FALSE (positive or zero) and therefore,

only uses one word.

Version 24 FORTRAN
Version 31 LIMO 2-8

October 1971

-27- FORTRAN
2.3.2.1 Logical Operators - The logical operators, which include the enclosing periods and their definitions,

I are as follows, where P and Q are expressions:

.NOT.P

P.AND.Q

Has the value. TRUE. only if Pis .FALSE., and has the
value .FALSE. only if P is .TRUE.

Has the value. TRUE. only if P and Q are both. TRUE.,
and has the value .FALSE. if either P or Q is .FALSE.

P.OR.Q {Inclusive OR} Has the value. TRUE. if either P or Q is • TRUE. r

and has the value .FALSE. only if both P and Q are .FALSE.

P.XOR.Q

P.EQV.Q

(Exclusive OR) Has the value. TRUE. if either P or Q but not
both are .TRUE., and has the value .FALSE. otherwise.

(Equivalence) Has the value. TRUE. if P and Q are both
• TRUE. or both .FALSE., and has the value .FALSE. otherwise.

I Logical expressions are evaluated by combining the full word values of P and Q (only the high-order part if P

and Q are double precision, only the real part if P and Q are complex) using the appropriate logical operator.

The result is TRUE if it is arithmetically negative and FALSE if it is arithmetically positive or zero.

Logical operators may be used to form new variables, for example,

x = Y.AND.Z
E = E.XOR. "400000000000

2.3.2.2 Relational Operators - The relational operators are as follows:

Operator

.GT.

.GE.

. LT.

• LE.

.EQ.

.NE.

Relation

greater than

greater than or equal to

less than

less than or equal to

equal to

not equal to

The enclosing periods are part of the operator and must be present.

Mixed expressions involving integer, real, and double precision types may be combined with relationals.

I The value of such an expression will be .TRUE. (-1) or .FALSE. (0).

The relational operators .EQ. and. NE. may also be used with COMPLEX expressions. (Double word quantities

are equal if the corresponding parts are equal.)

Version 24 FORTRAN
Version 31 LIMO 2-9 October 1971

FORTRAN -28-
A logical expression may consist of a single element (constant, variable, function reference, or relation):

.TRUE.
X.GE.3.14159

Single elements may be combined through use of logical operators to form compound logical expressions, such as:

TVAL.AND.INDEX
BOOl(M). OR. K.EQ.LIMlT

Any logical expression may be enclosed in parentheses and regarded as an element:

(T .XOR. S) .AND.(R.EQV. Q)
CAll PARITY «2.GT.Y .OR.X.GE. Y).AND. NEVER)

Any logicol expression may be preceded by the unary operator. NOT. as in:

.NOT.T
· NOT.X+7.GT.Y+Z
BOOl(K).AND •• NOT. (TVAl.OR.R)

No two logical operators may appear in sequence, except in the case where • NOT. appears as the second of

two logical operators, as in the example above. Two decimal points may appear in sequence, as in the

example above, or when one belongs to an operator and the other to a constant.

When the preceEfence of operators is not given explicitly by parentheses, it is understood to be as follows (in

order of decreasing precedence):

**
* ,/
+,-
• G T. , • GE • , . l T. ,. lE. , • E Q. , • NE .
• NOT •
• AND •
• OR •
• EQV., .XOR.

For example, the logical expression

• NOT. ZETA**2+Y*MASS.GT .K-2. OR. PARITY .AND.X.EQ.Y

is interpreted as

(. NOT. «(ZET A**2)+(y*MASS». GT .(K-2»). OR. (PARITY .AND.(X .EQ. Y»

2-10

-29-

3.1 GENERAL DESCRIPTION

FORTRAN

CHAPTER 3

THE ARITHMETIC STATEMENT

One of the key features of FORTRAN IV is the ease with which arithmetic computations can be coded. Compu­

tations to be performed by FORTRAN IV are indicated by arithmetic statements, which have the general form:

A=B

where A is a variable, B is an expression, and = is a replacement operator. The arithmetic statement causes the

FORTRAN IV object program to evaluate the expression B and assign the resultant value to the variable A.

Note that the = sign signifies replacement, not equality. Thus, expressions of the form:

A=A+B and

A=A*B

are quite meaningful and indicate that the value of the variable A is to be replaced by the result of the expres­

sion to the right of the = sign.

Examples: Y=hY
P=. TRUE.
X (N)=N*ZETA(ALPHA*M/pI)+(l., -1.)

Table 3-1 indicates which type of expression may be equated to each type of variable in an arithmetic statement.

D indicates that the assignment is performed directly (no conversion of any sort is done); R indicates that only

the real part of· the variable is set to the value of the expression (the imaginary part is set to zero); C means that

the expression is converted to the type of the variable; and H means that only the high-order portion of evaluated

expression is assigned to the variable.

The expression value is made to agree in type with the assignment variable before replacement occurs. For ex­

ample, in the statement:

THET A=W*(ABET A+E)

if THETA is an integer and the expression is real, the expression value is truncated to an integer before assign­

ment to THETA.

3-1

FORTRAN -30-

Table 3-1
Allowed Assignment Statements

Expression

Variable Real Integer Complex

Real 0 C R,D

Integer C D R,C

Complex D,R,I C,R,I 0

Double D,H,l C,H,l R,D,H,l
Precision

logical D D R,D

o - Direct Replacement

C - Conversion between integer and floating point

R - Real only

- Set imaginary part to 0

H - High order only

l - Set low order part to 0

3-2

logical,
Double Octal, or

Precision literal
Constant

H,D D

H,C D

H,D,R,I D,R,I

D D,H,l

H,D D

-31- FORTRAN

CHAPTER 4

CONTROL STATEMENTS

FORTRAN compiled programs normally execute statements sequentially in the order in which they were presented

to the compiler. However, the following control statements are available to alter the normal sequence of state­

ment execution: GO TO, IF, DO, PAUSE, STOP, END, CALL, RETURN. CALL and RETURN are used to en­

ter and return from subroutines.

4.1 GO TO STATEMENT

The GO TO statement has three forms: unconditional, computed, and assigned.

4.1.1 Unconditional GO TO Statements

Unconditional GO TO statements are of the form:

GOTO n

where n is the number of an executable statement. Control is transferred to the statement numbered n. An un­

conditional GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.

4. 1.2 Computed GO TO Statements

Computed GO TO statements have the form:

where n1,n2, ... ,nk are statement numbers, and i is an integer expression.

This statement transfers control to the statement numbered n1, n2, ... , nk if i has the value 1, 2, ... , k, respec­

tively. If i exceeds the 'Size of the I ist of statement numbers or is less than one, execution wi II proceed to the

next executable statement. Any number of statement numbers may appear in the list. There is no restriction on

other uses for the integer variable i in the program.

4-1

FORTRAN -32-
In the example

GO TO (20,10,5),K

the variable K acts as a switch, causing a transfer to statement 20 if K= 1, to statement 10 if K=2, or to state­

ment 5 if K=3.

A computed GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.

4.1.3 Assigned GO TO Statement

Assigned GO TO statements have two equivalent forms:

GOTO k

and

I where k is a variable or array element and n1, n2, ••• nk are statement numbers. Any number of statement numbers

may appear in the list. Both forms of the assigned GO TO have the effect of transferring control to the statement I whose number is currently associated with the variable k. The second form of the assigned GO TO statement passes

control to the next executable statement if k is not associated with one of the statement numbers in the list. This

association is established through the use of the ASSIGN statement, the general form of which is:

ASSIGN i TO k

I where i is a statement number and k is a variable or array element. If more than one ASSIGN statement refers to

the same integer variable name, the value assigned by the last executed statement is the current value.

Examples: ASSIGN 21 TO INT ASSIGN 1000 TO INT

GO TO INT GO TO INT, (2,21,1000,310)

An assigned GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.

4.2 IF STATEMENT

IF statements have two forms in FORTRAN IV: numerical and logical.

Version 24 FORTRAN
Version 31 LIMO 4-2 October 1971

-33- FORTRAN
4.2.1 Numerical IF Statements

Numerical IF statements are of the form:

IF (expression) n1,n2,n3

where n1,n2,nJ are statement numbers. This statement transfers control to the statement numbered n1,n2,n3 if

the value of Phe num .. ic expression is less than, equal to, or greater than zero, respectively. All three state­

ment numbers must be present. The expression may not be complex.

Examples: If (£fA) 4,7,12
IF (KAPPA-L (10» 20,14,14

4.2.2 Logical IF Statements

Logical IF statements have the form:

IF (expression)S

where S is a complete statement. The expression must be logical. S may be any executable statement other than

a DO statement or another logical IF statement (see Chapter 2, Section 2.3.2). If the value of the expression is

.FALSE. (positive or zero), control passes to the next sequential statement. If value of the expression is .TRUE.

(negative), statement S is executed. After execution of S, control passes to the next sequential statement unless

S is a numerical IF statement or a GO TO statement; in these cases, control is transferred as indicated. If the

expression is • TRUE. (negative) and S is a CALL statement, control is transferred to the next sequential state­

ment upon return fram the subroutine.

Numbers are present in the logical expression:

IF (B)Y=X*SIN(Z)
W=Y**2

If the value of B is . TRUE., the statements Y=X*SIN(Z) and W=Y**2 are executed in that order. If the value of

B is .FALSE., the statement Y=X*SIN(Z) is not executed.

Examples:

Version 24 FORTRAN
Version 31 LIB40

IF (T .OR.S)X=Y+l
IF (Z.GT.X(K» CALL SWITCH (S, Y)
IF (K .EQ.INDEX) GO TO 15

NOTE

Care should be taken in testing floating point numbers
for equality in IF statements as rounding may cause
unexpected results.

4-3 February 1971

I

FORTRAN -34-

4.3 DO STATEMENT

The DO statement simplifies the coding of iterative procedures. DO statements are of the form:

where n is a statement number, i is a nonsubscripted integer variable, and m1,m2,m3 are any integer expressions.

If m3 is not specified, it is understood to be 1.

The DO statement causes the statements which follow, up to and including the statement numbered n, to be ex­

ecuted repeatedly. This group of statements is called the range of the DO statement. The integer variable i of

the DO statement is called the index. The values of m1,m2, and m3 are called, respectively, the initial, limit,

and increment values of the index.

A zero increment (m3) is not allowed. The increment m3 may be negative if m1,2:m2. If m1:::m2, the increment

m3 must be positive. The index variable can assume legal values only if (m2-mi)*m~0. (m i is the current value

of the index variable m1.)

Examples: Form

DO 101=1,5,2

DO 101=5,1,-1

DO 10 I=J,K,5

DO 101=J,K,-5

DO 10 L=I,J,-K

DO 10 L=I,J,K

J<K

J>K

Restri cti on

I:::J,K<O or I,2:J,K>O

I:::J,K>O or I,2:J,K>O

Initially, the statements of the range are executed with the initial value assigned to the index. This initial ex­

ecution is always performed, regardless of the values of the I imit and increment. After each execution of the

range, the increment value is added to the value of the index and the result is compared with the limit value.

If the value of the index is not greater than the limit value, the range is executed again using the new value

of the index. When the increment value is negative, another.execution will be performed if the new value of

the index is not less than the limit value.

After the last execution of the range, control passes to the statement immediately following the range. This

exit from the range is called the normal exit. Exit may also be accomplished by a transfer from within the range.

The range of a DO statement may include other DO statements, provided that the range of each contained DO

statement is entirely within the range of the containing DO statement. When one DO loop is completely con­

tained in another, it is said to be nested. DO loops can be nested to any depth. A transfer into the range of

a DO statement ITom outside the range is not allowed.

Version 24 FORTRAN
Version 31 LIB40 4-4 October 1971

-35- FORTRAN

More than one DO loop within a nest of DO loops can end on the same statement. This terminal statement is

considered to belong to the innermost DO loop that ends on the terminal statement. The statement label of

such a terminal statement cannot be used in any GO TO or arithmetic IF statements except those that occur

within the DO loop to which the terminal statement belongs.

Version 24 FORTRAN
Version 31 LIMO 4-40 October 1971

FORTRAN -36-

Va I id DO Loop Nest

B I A _____ _

C

Control must not pass from within loop A
or loop B into loop 0, or from loop 0 into
loop A or loop B.

Figure 4-1

-37- FORTRAN
Invalid DO Loop Nest

B

A

C

Loop C is not fully within the range of
loop B even though it is within the range
of loop A.

Nested DO Loops

Within the range of a DO statement, the index is available for use as an ordinary variable. After a transfer

from within the range, the index retains its current value and is available for use as a variable. The value of

the index variable becomes undefined when the DO loop it controls is satisfied. The values of the initial, limit,

and increment variables for the index and the index of the DO loop, may not be altered within the range of the

DO statement.

The range of a DO statement must not end with a GO TO type statement or a numerical IF stat~ment. If an

assigned GO TO statement is in the range of a DO loop, all the statements to which it may transfer must be

either in the range of the DO loop or all must be outside the range. A logical IF statement is allowed as the

last statement of the range. In this case, control is transferred as follows. The range is considered ended when,

and if, control would normally pass to the statement following the entire logical IF statement.

As an example, consider the sequences:

D05K=1,4
5 IF(X(K).GT. Y(K»Y(K) = X(K)
6 ...

Statement 5 is executed four times whether the statement Y(K) = X(K) is executed or not. Statement 6 is not ex­

ecuted until statement 5 has been executed four times.

4-5

FORTRAN
Examples: DO 22 L = 1,30

DO 45 K = 2, LIMIT ,-3
DO 7X = T,MAX,L

4.4 CONTINUE STATEMENT

The CONTINUE statement has the form:

CONTINUE

-38-

This statement is a dummy statement, used primarily as a target for transfers, particularly as the last statement in

the range of a DO statement. For example, in the sequence:

DO 7 K = START, END

IF (X {K))22, 13,7

7 CONTINUE

a pasitive value of X(K) begins another execution of the range. The CONTINUE provides a target address for

the IF .statement and ends the range of the DO statement.

4.5 PAUSE STATEMENT

The PAUSE statement enables the program to incorporate operator activity into the sequence of automatic events.

The PAUSE statement assumes one of three forms:

PAUSE
PAUSE n
PAUSE 'xxxxx'

where n is an unsigned string of six or less octal digits, and 'xx)Q(X' is a literal message.

Execution of the PAUSE statement causes the message or the octal digits, if any, to be typed on the user's tele­

typewriter. Program execution may be resumed (at the next executable FORTRAN statement) from the console

by typing "G, II followed by a carriage return. Program execution may be terminated "by typing "X," followed

by carriage return.

Example: PAUSE 167
PAUSE 'NOW IS THE TIME'

4-6

-39- FORTRAN
4.6 STOP STATEMENT

The STOP statement has the fonns:

STOP or
STOP n

where n is an unsigned string of one to five octal digits.

The STOP statement terminates the program and returns control to the monitor system. (Termination of a program

may also be accomplished by a CALL to the EXIT or DUMP subroutines.) Use of the STOP statement implies a

ca II to the EX IT subrout i ne .

4.7 END STATEMENT

The END statement has the form:

END

The END statement informs the compiler to terminate compilation and must be the physically last statement of

the program. The END statement implies a STOP statement in a main program or a RETURN statement in a sub­

routine or a function. The END statement is implied by an end-of-file.

4-7

FORTRAN -40-

41- FORTRAN

CHAPTER 5

DATA TRANSMISSION STATEMENTS

Data transmission statements are used to control the transfer of data between computer memory and either

peripheral devices or other locations in computer memory. These statements are also used to specify the format

of the output data. Data transmission statements are divided into the following four categories.

a. Nonexecutable statements that enable conversions between internal form data within core memory
and external form data (FORMAT), or specify lists of arrays and variables for input/output transfer
(NAMELIST).

b. Statements that specify transmission of data between computer memory and I/o devices: READ,
WRITE, PRINT, PUNCH, TYPE, ACCEPT.

c. Statements that control magnetic tape unit mechanisms: REWIND, BACKSPACE, END FILE,
UNLOAD, SKIP RECORD.

d. Statements that specify transmission of data between series of locations in memory: ENCODE,
DECODE.

5.1 NONEXECUTABLE STATEMENTS

The FORMAT statement enables the user to specify the form and arrangement of data on the selected external

medium. The NAME LIST statement provides for conversion and input/output transmission of data without

reference to a FORMAT statement.

5.1.1 FORMAT Statement

FORMAT statements may be used with any appropriate input/output medium or ENCODE/DECODE statement.

FORMAT statements are of the form:

where n is a statement number, and-each S is a data field specification.

FORMAT statements may be placed anywhere in the source program. Unless the FORMAT statement contains

only alphanumeric data for direct input/output transmission, it will be used in conjunction with the list of a

data transmission statement.

5-1

FORllWf -42-
Slashes are used to specify unit records, which must be one of the following:

a. A tape or disk record with a maximum length corresponding to a line buffer (135 ASCII characters).

b. A punched card with a maximum of 80 characters.

c. A printed line with a maximum of 72 characters for a Teletype ®and either 120 or 132 characters
for the line pri nter .

During transmission of data, the object program scans the designated FORMAT statement. If a specification

for a numeric field is present (see Section 5.2.1 of this chapter) and the data transmission statement contains

items remaining to be transmitted, transmission takes place accordi ng to the specifications. This process ceases

and execution of the data transmission statement is terminated as soon as a" specified items have been transmitted.

Thus, the FORMAT statement may contain specifications for more items than are specified by the data transmis­

sion statement. Conversely, the FORMAT statement may contain specifications for fewer items than are specified

by the data transmission statement.

The following types of field specifications may appear in a FORMAT statement: numeric, numeric with scale

factors, logical, alphanumeric. The FORMAT statement also provides for handling multiple record formats,

formats stored as data, carriage control, skipping characters, blank insertion, and repetition. If an input list

requires more characters than the input device supplies for a given unit record, blanks are supplied.

5.1. 1.1 Numeric Fields - Numeric field specification codes designate the type of conversion to be performed.

These codes and the corresponding internal and external forms of the numbers are listed in Table 5-2.

The conversions are specified by the forms:

1.
2.
3.
4.
5.
6.

Dw.d
Ew.d
Fw.d
Iw
Ow
Gw.d
Gw
Gw.d,Gw.d

(for real or double precision)
(for integer or logical)
(for complex)

respectively. The letter D, E, F, I, 0, or G designates the conversion type; w is an integer specifying the

field width, which may be greater than required to provide for blank columns between numbers; d is an integer

specifying the number of decimal places to the right of the decimal point or, for G conversion, the number of

significant digits. (For D, E, F, and G input, the position of the decimal point in the external field takes

precedence over the value of d in the format.)

® Teletype is a registered trademark of Teletype Corporation.

5-2

-43- FORTRAN
For example,

FORMAT (I5,FI0.2,D18.10)

could be useE! to output the line,

bbb32bbbb-17.60bb&.5962547681D+03

on the output listing.

The G format is the general format code that is used to transmit real, double precision, integer, logical, or

complex elata. The rules for input depend on the type specification of the corresponding variable in the elata

list. The form of the output conversion also depends on the individual variable except in the case of real and

double-precision elata. In these cases the form of the output conversion is a function of the magnitude of the

data being converted. The following table shows the magnitude of the external data, M, and the resulting

method of conversion.

Table 5-1
Magnitude of Internal Data

Magn itude of Data Resulting Conversion

0.1 ~ M < 1 F{w-4).d, 4x

1 < M < 10 - F{w-4).{d-l),4x
. ·

·
10d- 2 ~ M < 10d-l · F{w-4). 1, 4x

10d-l ~ M < 10d F{w-4). 0, 4x

All others Ew.d

The field width w should always be large enough to include spaces for the decimal point, sign, and exponent.

In all numeric field conversions if w is not large enough to accommodate the converted number, the excess

digits on the left will be lost; if the number is less than w spaces in length, the number is right-adjusted in the

field.

5-3

FORTRAN

Conversion
Code

0

E

F

I

0

G

-44-
T~le 5-2

Numeric Field Codes

Internal Form

Binary floating point
double "'Precision

Binary floating point

Binary floating point

Binary integer

Binary integer

One of the following:
single precision
binary floating point,
binary integer,
binary logical, or
binary complex

External Form

Decimal floating point
with 0 exponent

Decimal floating point
with E exponent

Decimal fixed point

Decimal integer

Octa I integer

Single precision
decimal floating point
integer, logical (T or
F), or complex (two
decimal floating point
numbers), depending
upon the internal form

5.1.1.2 Numeric Fields with Scale Factors - Scale factors may be specified for 0, E, F, and G conversions.

A scale factor is written nP where P is the identifying character and n is a signed or unsigned integer that

specifies the scale factor.

For F type conversions (or G type, if the external field is decimal fixed point), the scale factor specifies a

power of ten so that

. (scale factor)
external number = (Internal number)* 10

For D, E, and G (external field not decimal fixed point) conversions, the scale factor multiplies the number by

a power of ten, but the exponent is changed accordingly leaving the number unchanged except in form. For

example, if the statement:

FORMAT (F8.3,E16.5)

corresponds to the line

bb26 . 451bbbb-O . 41321 E -01

then the statement

FORMAT (-1PF8.3,2PE16.5)

5-4

-45- FORTRAN
might correspond to the line

bbb2.645bbb-41.32157E-03

In input operations, F type (and G type, if the external field is decimal fixed point) conversions are the only

types affected by scale factors.

When no scale factor is specified, it is understood to be zero. However, once a scale factor is specified, it

holds for all subsequent 0, E, F, and G type conversions within the same format unless another scale factor is

encountered. The scale factor is reset to zero by specifying a scale factor of zero. Scale factors have no

effect on I and 0 type conversions.

5. 1. 1.3 Logical Fields - Logical data can be transmitted in a manner simi lar to numeric data by use of the

specification:

Lw

where l is the control character and w is an integer specifying the field width. The data is transmitted as the

value of a logical variable in the input/output list.

If on input, the first nonblank character in the data field is T or F, the value of the logical variable will be

stored as true or false, respectively. If the entire data field is blank or empty, a value of false will be stored.

On output, w minus 1 blanks followed by T or F will be output if the value of the logical variable is true or

false, respectively.

5. 1. 1.4 Variable Fie Id Width - The 0, E, F, G, I, and 0 conversion types may appear in a FORMAT state­

ment without the specification of the field width (w) or the number of places after the decimal point (d). In

the case of input, omitting the w implies that the numeric field is delimited by any character which would

otherwise be illegal in the field, in addition to the characters -, +, ., E, 0, and blank provided they follow

the numeric field. For example, input according to the fonnat

10 FORMAT(2I,F,E,O)

might appear on the input medium as

-10,3/15.621-.0016E-10,777.

5-5

FORTRAN -46-
In this case, commas delimit the numeric fields, blanks may also be used as field delimiters. On output,

omitting the w has the following effect:

Format

D

E

F

G

I

o

Becomes

025.16

E15.7

F15.7

G 15.7 cr G25. 16

115

015

5.1. 1.5 Alphanumeric Fields - Alphanumeric data can be transmitted in a manner similar to numeric data by

use of the form Aw, where A is the control character and w is the number of characters in the field. The alpha­

numeric characters are transmitted as the value of a variable in an input/output list. The variable may be of any

type. For the sequence:

READ 5, V
5 FORMAT (A4)

causes four characters to be read and placed in memory as the value of the variable V.

Although w may have any value, the number of characters transmitted is limited by the maximum number of

characters which can be stored in the space allotted for the variable. This maximum depends upon the variable

type. Fora double precision variable the maximum is ten characters; for all other variables, the maximum is

five characters. If w exceeds the maximum, the leftmost characters are lost on input and replaced with blanks

on output. If, on input, w is less than the maximum, blanks are fi lied in to the right of the given characters

until the maximum is reached. If, on output, w is less than the maximum, the leftmost w characters are trans­

mitted to the extemal medium. Since for complex variables ec:ich word requires a separate field specification,

the maximum value for w is 5. For example,

COMPLEX C
ACCEPT 1, C

1 FORMAT (2A5)

could be used to transmit ten alphanumeric characters into complex variable C.

5.1.1.6 Alphanumeric Data Within Format Statements - Alphanumeric data may be transmitted directly into or

from the format statement by two different methods: H-conversion, or the use of single quotes.

5-6

-47- FORTRAN
In H-conversion, the alphanumeric string is specified by the form nH. H is the control character and n is the

number of characters in the string counting blanks. For example, the format in the statement below can be used

to print PROGRAM COMPLETE on the output listing.

FORMAT (17H PROGRAM COMPLETE)

The statement

FORMAT (16HPROGRAM COMPLETE)

causes ROGRAM COMPLETE to be printed.

Referring to this format in a READ statement would cause the 17 characters to be replaced with a new string

of characters.

The same effect is achieved by merely enclosing the alphanumeric data in quotes. The result is the same as in

H-conversion; on input, the characters between the quotes are replaced by input characters, and, on output,

the characters between the quotes (including blanks) are written as part of the output data. A quote character

within the data is represented by two successive quote marks. For example, referring to:

FORMAT (' DON"T')

with an output statement would cause DON'T to be printed. Referring to

FORMAT ('DON"T')

causes ON'T to be printed. The first character referenced by the FORMAT statement for output is interpreted

as a carriage control character (see 5.1.1.13). TAB characters in FORMAT statements are converted to single

blanks at runtime by the FORTRAN operating system.

5.1.1.7 Mixed Fields - An alphanumeric format field may be placed among other fields of the format. For

example, the statement:

FORMAT (I5,7H FORCE=F10.5)

can be used to output the line:

bbb22bFORCE=bb17.68901

The separating comma may be omitted after an alphanumeric format fjeld, as shown above.

5-7

FORTRAN -48-
5.1.1.S Complex Fields - Complex quantities are transmitted as two independent real quantities. The format

specification consists of two successive real specifications or one repeated real specification. For instance,

the statement:

FORMAT (2E15.4,2(FS.3,FS.5»

could be used in the transmission of three complex quantities.

5. 1. 1 .9 Repetition of Field Specifications - Repetition of a field specification may be specified by preceding

the control character D, E, F, I, 0, G, L, or A by an unsigned integer giving the number of repetitions de­

sired. For example:

FORMAT (2E 12.4 ,315)

is equivalent to:

FORMAT (E 12.4,E12.4,15,15 ,15)

5.1.1.10 Repetition of Groups - A group of field specifications may be repeated by enclosing the group in

parentheses and preceding the whole with the repetition number. For example:

FORMAT (2IS,2(E15.5,2FS.3»

is equivalent to:

F ORMAT(2IS, E 15.5 ,2FS.3,E 15.5 ,2FS .3)

5.1.1.11 Multiple Record Formats - To handle a group of input/output records where different records have

different field specifications, a slash is used to indicate a new record. For example, the statement:

FORMAT (308/15,2FS.4)

is equivalent to

FORMAT (308)

for the first record and

FORMAT (I5,2FS.4)

for the second record.

5-8

-49- FORTRAN
The separating comma may be omitted when a slash is used. When n slashes llppear at the end or beginning of

a format, n blank records may be written on output or records skipped on input. When n slashes appear in the

middle of a format, n-1 blank records are written or n-1 records skipped.

Both the slash and the closing parenthesis at the end of the format indicate the termination of a record. If the

list of an input/output statement dictates that transmission of data .is to continue after the closing parenthesis

of the format is reachetl, the format is repeated startil'lfl with that group repeat specification terminated by the

last right parenthesis « Ie I one or level zero if no level one group exists.

Thus, the statement

FORMAT (F7.2,{2(E15.5,E15A),I7)

level 0-.1 J JL level O.
level 1 level 1

causes the format

F7.2 ,2(E 15.5,E 1504) ,17

to be used on the first record, and the format

2{E 15.5 ,E15A) ,17

to be used on succeeding records.

As a further example, consider the statement

FORMAT (F7 .2/{2(E 15.5 ,E15 A) ,17»

The first record has the format

F7.2

and successive records have the format

2{E15.5 ,E15.4) ,17

5.1.1.12 Formats Stored as Data - The ASCII character string comprising a format specifi.cation may be stored

as the values of an array. Input/output statements may refer to the format by giving the array name, rather than

the statement number of a FORMAT statement. The stored format has the same form as a FORMAT statement ex­

cluding the word "FORMAT." The enclosing parentheses are included.

5-9

FORTRAN
As an example, consider the sequence:

DIMENSION SKELETON (2)
READ 1, (SKELETON(I), I = 1,2)

1 FORMAT (2M)
READ SKELETON,K,X

-50-

The first READ statement enters the ASCII string into the array SKELETON. In the second READ statement,

SKELETON is referred to as the format governing conversion of K and X.

5. 1. 1. 13 Carriage Control - The first character of each ASCII record controls the spacing of the line printer

or Teletype. This character is usually set by beginning a FORMAT statement for an ASCII record with lHa,

where a is the desired control character. The line spacing actions, listed below, occur before printing:

FORTRAN Printer Octal
Effect

Printer
Character Character Value Channel

space LF 012 Skip to next line 8
with form feed after
60 lines

0 zero LF ,LF 012 Skip a line 8

one FF 014 Form feed - go to
top of next page

+ plus Suppress skipping -
overprint the line

* asterisk DC3 023 Skip to next line 5
with no form feed

- minus LF ,LF ,LF 012 Skip two lines 8

2 two DLE 020 Space 1/2 of a page 2

3 three VT 013 Space 1/3 of a page 7

/ slash DC4 024 Space 1/6 of a page 6

. period DC2 022 Tripl,e space with a 4
form feed after every
20 lines printed

, comma DCl 021 Double space with a 3
form feed after every
30 lines printed

NOTE: Printer control characters DLE, DC1, DC2, DC3, and DC4 affect only the line printer.

Version 24 FORTRAN
Version 31 LIMO 5-10 October 1971

-51- FORTRAN
A $ (dollar sign) as a format field specification code suppresses the carriage return at the end of the Teletype or

line printer line.

5.1. 1.14 Spacing - Input and output can be made to begin at any position within a FORTRAN record by use

of the format code

Tw

where T is the control character and w is an unsigned integer constant specifying the character position in a

FORTRAN record where the transfer of data is to begin. When the output is printed, w corresponds to the {w-1)th

print position. This is because the first character of the output buffer is a carriage control character and is not

printed. It is recommended that the first field specification of the output format be lx, except where a carriage

control character is used.

Version 24 FORTRAN
Version 31 LIMO 5-10a October 1971

FORTRAN -52-

-53-
For example,

2 FORMAT (T50, 'BLACK'T30, 'WHITE')

would cause the following line to be printed

Print Position 29 Print Position 49

• WHITE

For input, the statement

1 FORMAT(T35, 'MONTH')

READ (3,1)

• BLACK

FORTRAN

cause the first 34 characters of the input data to be skipped, and the next 5 characters would replace the char­

acters M, 0, N, T, and H in storage. If an input record containing

ABCbbbXYZ

is read with the format specification

10 FORMAT (T7,A3, T1 ,A3)

then the characters XYZ and ABC are read, in that order.

5.1.1.15 Blank or Skip Fields - Blanks may be introduced into an output record or characters skipped on an

input record by use of the specification nX. The control character is Xi n is the number of blanks or characters

skipped and must be greater than zero. For example, the statement

FORMAT (5H STEPI5, lOX2HY=F7.3)

may be used to output the line

bSTEPbbb28bbbbbbbbbbY=b-3.872

5.1.2 NAMEUST Statement

The NAMELIST statement, when used in conjunction with special forms of the READ and WRITE statements,

provides a method for transmitting and converting data without using a FORMAT statement or an I/o list. The

NAMELIST statement has the form

5-11

FORTRAN -54-

where the X's are NAMELIST names, and the A's, B's, and C's are variable or array names.

Each list or variable mentioned in the NAME LIST statement is given the NAMELIST name immediately preceding

the list. Thereafter, an I/o statement may refer to an entire list by mentioning its NAMELIST name. For

example:

NAMELIST/FRED/A,B,C/MARTHA/D,E

states that A, B, and C belong to the NAMELIST name FRED, and D and E belong to MARTHA.

The use of NAME LIST statements must obey the following rules:

a. A NAMEUST name may not be longer than six characters; it must start with an alphabetic char­
acter; it must be enclosed in slashes; it must precede the list of entries to which it refers; and it must
be unique within the program.

b. A NAMELIST name may be defined only once and must be defined by a NAMELIST statement.
After a NAMELIST name has been defined, it may only appear in READ or WRITE statements. The
NAME LIST name must be defined in advance of the READ or WRITE statement.

c. A variable used in a NAME LIST statement cannot be used as a dummy argument in a subroutine
definition •

d. Any dimensioned variable contained in NAME LIST statement must have been defined in a
DIMENSION statement preceding the NAMELIST statement.

5.1.2.1 Input Data For NAMELIST Statements - When a READ statement refers to a NAME LIST name, the

first character of all input records is ignored. Records are searched until one is found with a $ or & as the

second character immediately followed by the NAMELIST name specified. Data is then converted and placed

in memory until the end of a data group is signaled by a $ or & either in the same record as the NAMELIST name,

or in any succeeding record as long as the $ or & is the second character of the record. Data items must be

separated by commas and be of the following form:

where V may be a variable name or an array name, with or without subscripts. The K's are constants which may

be integer, real, double precision, complex (written as (A, B) where A and B are real), or logical (written as

T for true and F for false). A series of J identical constants may be represented by J*K where J is an unsigned

integer and K is the repeated constant. Logical and complex constants must be equated to logical and complex

variables, respectively. The other types of constants (real, double precision, and integers) may be equated to

5-12

-55- FORTRAN
any other type cl variable (except logical or complex), and will be converted to the variable type • For

example, assume A is a two-dimensional real array, B is a one-dimensional integer array, C is an integer

variable, and that the input data is as follows:

$FRED A(7,2)=4, 8=3,6*2.8, C=3.32$
t
Column 2

A READ statement referring to the NAMELIST name FRED will result in the following: the integer 4 will be

corwerted to floating point and placed in A(7,2). The integer 3 will be placed in 8(l) and the floating point

number 2.8 will be placed ill 8(2), 8(3), ••• , 8(7). The floating point number 3.32 will be converted to the

integer 3 and placed in C.

5.1.2.2 Output Data For NAMELIST Statements - When a WRITE statement refers to a NAMELIST name, all

variables and arrays and their values belonging to the NAMELIST name will be written out, each according to

its type. The complete array is written out by columns. The output data will be written so that:

a. The fields for the data will be large enough to contain all the significant digits.

b. The output can be read by an input statement referencing the NAMELIST name.

For example, if JOE is a 2x3 array, the statement

NAMELIST/NAM 1/JOE,K 1 ,ALPHA
WRITE (u,NAM1)

generate the following form of output.

Column 2 ,
$NAMI
JOE = -6.75,

-17.8,
Kl=73.1,

• 234E-Q4,
0.0,

ALPHA=3,$

5.2 DATA TRANSMISSION STATEMENTS

68.0,
-.197E+07,

The data transmission statements accomplish input/output transfer of data that may be listed in a NAMELIST

statement or defined in a FORMAT statement. When a FORMAT statement is used to specify formats, the data

transmission statement must contain a list of the quantities to be transmitted. The data appears on the external

media in the form of records.

5-13

FORTRAN -56-
5.2. 1 Input/Output Lists

The list of an input/output statement specifies the order of transmission of the variable values. I:Nring input,

the new values of listed variables may be used in subscript or control expressions for variables appearing later

in the list. For example:

READ 13,L,A(L),B(L+1)

reads a new value of L and uses this value in the subscripts of A and B.

The transmission of array variables may be controlled by indexing similar to that used in the DO statement. The

list of controlled variables, followed by the index control, is enclosed in parentheses. For example,

READ 7, (X(K) ,K=1 ,4),A

is equivalent to:

READ 7, X(1),X(2),X(3),X(4),A

As in the DO statement, the initial, limit, and increment values may be given as integer expressions:

READ5, N, (GAIN(K),K=I,M/2,N)

The indexing may be compounded as in the following:

READ 11, «MASS(K,L),K=I,4),L=I,5)

The above statement reads in the elements of array MASS in the following order:

MASS(1, 1), MASS(2, 1), •.. ,MASS(4, I),MASS(1 ,2), ... ,MASS(4,5)

If an entire array is to be transmitted, the index ing may be omitted and only the array identifier written. The

array is transmitted in order of increasing subscripts with the first subscript varying most rapidly. Thus, the

example above could have been written:

READ 11, MASS

Entire arrays may also be designated for transmission by referring to a NAME LIST name (see description of

NAMELIST statement).

5-14

-57- FORTRAN
5.2.2 Input/Output Records

All information appearing on external media is grouped into records. The maximum amount of information in

one record and the manner of separation between records depends upon the medium. For punched cards, each

card constitutes one record; on a teletypewriter a record is one line, and so forth. The amount cl information

contained in each ASCII record is specified by the FORMAT reference and the I/O list. For magnetic tape

binary records, the amount of information is specified by the I/O list.

Each execution of an input or output st.atement initiates the transmission of a new data record. Thus, the

statement

READ 2, FIRST ,SECOND, THIRD

is not necessarily equivalentto the statements

READ 2, FIRST
READ 2, SECOND
READ 2, THIRD

since, in the second case, at least three separate records are required, whereas, the single statement

READ 2, FIRST ,SECOND, THIRD

may require one, two, three, or more records depending upon FORMAT statement 2.

If an input/output statement requests less than a full record of information, the unrequested part of the record

is lost and cannot be recovered by another input/output statement without repositioning the record.

If an input/output list requires more than one ASCII record of information, successive records are read.

5 .2. 3 PRI NT Statement

The PRJ NT statement assumes one of two forms

PRINT f, list
PRINT f

where f is a format reference.

The data is converted from internal to external form according to the designated format. If the data to be

transmitted is contained in the specified FORMAT statement, the second form of the statement is used.

5-15

FORTRAN -58-
Examples: PRINT 16, T ,(8(K) ,K=1 ,M)

PRINT F 106,SPEE D,MISS

In the second example, the format is stored in array F106;

5.2.4 PUNCH Statement

The PUNCH statement assumes one of two forms

PUNCH f, list
PUNCH f

where f is a format reference.

Conversion from internal to external data forms is specified by the format reference. If the data to be trans­

mitted is contained in the designated FORMAT statement, the second form of the statement is used.

Examples: PUNCH 12,A,B(A),C(8(A))
PUNCH 7

5 • 2.5 TV PE Statement

The TYPE statement aSsumes one of two forms

TYPE f, list
TYPE f

where f is a format reference.

This statement causes the values of the variables in the list to be read from memory and listed on the user's

teletypewriter. The data is converted from internal to external form according to the designated format. If

. the data to be transmitted is contained in the designated FORMAT statement, the second form of the statement

is used.

Examples: TYPE 14,K,(A(l),l=1,K)
TYPE FMT

5.2.6 WRITE Statement

The WRITE statement assumes one of the following forms

5-16

WRITE (u ,f) list
WRITE{u ,f)
WRITE{u,N)
WRlTE(u) list
WRlTE{uDR,f) list

-59- FORTRAN

where u is a unit designation, f is a format reference, N is a NAMELIST name, and R is a record number where

1/0 is to start.

The first form of the WRITE statement causes the values of the variables in the list to be read from memory and

written on the unit designated in ASCII form. The data is converted to external form as specified by the desig­

nated FORMAT statement.

The second form of the WRITE statement causes information to be read directly from the specified format and

written on the unit designated in ASCII form.

The third form of the WRITE statement causes the names and values of all variables and arrays belonging to the

NAMELIST name, N, to be read from memory and written on the unit designated. The data is converted to

external form according to the type of each variable and array.

The fourth form of the WRITE statement causes the values of the variables in the list to be read from memory

and written on the unit designated in binary form.

The fifth form of the WRITE statement causes the variables in the list to be written in the sp~cified record of the

file on the disk unit designated. Either a pound sign (D) or a single quote C) can be used to separate the unit

and the record. This allows a programmer to access fixed-length records directly, and el iminates the sequential

writing of data to access one or more records within the file. The file must first be defined properly by a CAll

to DEFINE FILE (see Section 12.4). Output begins when the random WRITE specifying the record to which the

writing is desired is given in the correct format.

5.2.7 READ Statement

The READ statement assumes one of the following forms:

READ f, list
READ f
READ{u 1 f) tist
READ{u ,f)
READ{u, N)
READ(u}list

READ(u#R,f) list
READ{u,f,END=C, ERR=d) list
READ{u,f,END=C) list
READ{u , f, ERR=d) list

Version 24 FORTRAN
Version 31 LIMO 5-17 February 1971

FORTRAN -60-
where f is a format reference, u is a unit designation, N is a NAMELIST name, R is d record number where I/o
is to start, C is a statement number to which control is transferred upon encountering an end-of-file, and d is

the statement number to which control is transferred upon encountering an error condition on the input data.

The first form of the READ statement causes information to be read from cards and put in memory as values of the

variables in the list. The data is converted from external to internal form as specified by the referenced

FORMAT statement.

Example: READ 28,Zl,Z2,Z3

The second form of the READ statement is used if the data read from cards is to be transmitted directly into the

specified format.

Example: READ 10

The third form of the READ statement causes ASCII information to be read from the unit designated and stored

in memory as values of the variables in the list. The data is converted to internal form as specified by the

referenced FORMAT statement.

Example: READ(I, 15)ET A, PI

The fourth form of the READ statement causes ASCII information to be read from the unit designated and trans­

mitted directly into the specified format.

Example: READ(N,105)

The fifth form of the READ statement causes data of the form described in the discussion of input data for

NAME LIST statements to be read from the unit designated and stored in memory as values of the variables or

arrays specified.

Example: READ(2, FRED)

The sixth form of the READ statement causes binary information to be read from the unit designated and stored

in memory as values of the variables in the list.

Example: READ (M)GAI N, Z,AI

The seventh form of the READ statement causes information to be read from the specified record in a disk file

into the variables of the list. This allows random access of fixed-length records in a disk file. The file from

which records are to be read is defined by the DEANE ALE call (see Section 12.4).

5-18

Example: DOUBLE PRECISION FIL
DIMENSION A(6)
DATA FIL/'FILE.ONE'/

-61-

CALL DEANE ALE (4,30,NV,Fll, "11, "23)
READ (4#54,5)A

FORTRAN

This example reads the 54th record from FIlE.ONE on the disk area belonging to programmer [11,23] into the

list variables A(1) through A(6).

The eighth form of the READ statement causes control to be transferred if an end-of-file or error condition is

encountered on the input data. The arguments END=c and ERR=d are optional and if both are included, either

may appear first. If an end-of-file is encountered, control transfers to the statement specified by END=c. If

an END parameter is not specified, I/O on that device terminates and the program halts with an error message

to the user's TTY. If an error on input is encountered, control transfers to the statement specified by ERR=d.

If an ERR=d parameter is not specified, the program halts with an error message to the user's TTY.

Example: READ (7,7,END=888, ERR=999)A

888 (control transfers here if an end-of-file is encountered)

999 (control transfers here if an error on input is encountered)

5.2.8 REREAD Statement

The reread feature allows a FORTRAN program to reread information from the last used input file. The format

used during the reread need not correspond to the original read format, and the informatioo may be read as

many times as desired.

a. To reread from an input device, the following coding would be used:

READ (16, lOO)A

REREAD 105,A

The REREAD 105 ,A statement causes the last input device used to be reread according to format state­
mentl05. The original read format and a subsequent reread format need not be the same.

b. The reread feature cannot be used until an input from a file has been accomplished. If the feature
is used prematurely, an error message wi II be generated.

c. Information may be reread as many times as desired using either the same or a new format statement
each time.

d. The reread feature must be used with Some forethought and care since it rereads from the last input
file used, i.e.:

5-19

FORTRAN -62-
The following example will reread from the file on Device No. 10, not Device No. 16:

READ (16, 100)A

READ (10,200)B

REREAD nO,A

5.2.9 ACCE PT Statement

The ACCEPT statement assumes one of two forms

ACCE PT f, list
ACCEPT f

where f is a format reference.

This statement causes information to be input from the user's teletypewriter and put in memory as values of the

variables in the list. The data is converted to internal form as specified by the format. If the transmission of

data is directly into the designated format, the second form of the statement is used.

Examples: ACCE PT 12,ALPHA,BET A
ACCEPTZl

5.3 DEVICE CONTROL STATEMENTS

Device control statements and their corresponding effects are listed in Table 5-3.

Table 5-3
Device Control Statements

Statement Effect

BACKSPACE u Backspaces designated tape one ASCII record or one
logical binary record.

END FILE u Writes an end-of-file.

REWIND u Rewinds tape on designated unit.

SKIP RECORD u Causes skipping of one ASCII record or one logical
binary record.

UNLOAD u Rewinds and unloads the designated tape.

5-20

-63- FORTRAN

5.4 ENCODE AND DECODE STATEMENTS

ENCODE and DECODE statements transfer data, according to format specifications, from one section of user's

core to another. No peripheral equipment is involved. DECODE is used to change data in ASCII format to

data in another format. ENCODE changes data of another format into data in ASCII format.

The two statements are of the form

where

ENCODE(c,f,v),L(1)" •. ,L(N)
DECODE(c, f, v), L(1), .•• , L(N)

c the number of ASCII characters
f the format statement number
v the starting address of the ASCII record referenced
L(l), •.• ,L(N) = the list of variables.

I A slash cannot appear in the FORMAT statement referenced by an ENCODE or DECODE statement.

Example: Assume the contents of the variables to be as follows:

A(l) contains the floating-point binary number 300.45

A(2) contains the floating-point binary number 3.0

J contains the binary integer value 1.

B is a four-word array of indeterminate contents

C contains the ASCII string 12345

DO 2 J = 1,2
ENCODE (16, 10,B) J, A(J)

10 FORMAT (lX,2HA(,I1,4H) = ,F8.2)
TYPE l1,B

11 FORMAT (4A5)
2 CONTINUE

DECODE (4, 12, C) B
12 FORMAT (3Fl.0, 1X,F1.0)

TYPE 13,B
13 FORMAT (4F5.2)

END

Array B can contain 20 ASCII characters. The result of the ENCODE statement after the first iteration of the

DO loop is:

B(1)
B(2)
B(3)
B(4)

A(1)

300.4
5 '--______ ...J

Version 26 FORTRAN
Version 32 LlB40

Typed as

A(1) = 300.45

5-21 May 1972

FORTRAN
The result after the second iteration is:

8(1)
8{2)

A(2)

8(3) 1--__ 3._0 __ ---4
8(4) L-____ ----I

-64-

Typed as

A(2) = 3.0

The result of the DECODE statement is to extract the digits J, 2, and 3 from C and convert them to floating­

point binary values and store them in 8(1), 8(2), and 8(3). Then skip the next character (4) and extract the

digit 5 from C, convert it to a floating-point binary value, and store it in 8(4).

5-22

-65- FORTRAN

CHAPTER 6

SPECIACATION STATEMENTS

Specification statements allocate storage and furnish information about variables and constants to the compiler.

Specification statements may be divided into three categories, as follows:

a.. Storage specificatian statements: DIMENSION, COMMON, and EQUIVALENCE.

b. Data specification statements: DATA and BLOCK DATA.

c. Type declaration statements: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
SUBSCRIPT INTEGER, and IMPLICIT.

By extending the USA Standard in regard to specification statements, PDP-10 FORTRAN IV allows the following

statements to be used anywhere in the program, provided that the variables they specify appear in executable

statements only after the particular specification st<?ltement. The specification statement must not appear in the

range of a DO loop.

DIMENSION statement
EXTERNAL statement (described in Chapter 7)
COMMON statement
EQUIVALENCE statement
Type declaration statements
DATA statement

A sample program that incorporates these statements follows.

DOUBLE PRECISION D
DIMeNSION Y(lO), 0(5)
Y(l) = -1.0
INTEGER XX(5)
Y(2) = ABS(Y(l»
DATA XX/1,2,3,4,5
DO 10 1= 3,7

10 Y(I) = XX(I-2)
COMMON Z
Z=Y(l)*Y(2)/(Y(3} + Y(5»
END

Only IMPLICIT statements and arithmetic function definition statements (described in Chapter 7) must appear in

the program before any executable statement.

6-1

FORTRAN -66-
In addition, arrays must be dimensional before being referenced in a NAMEUST, EQUIVALENCE, or DATA

statement. DOUBLE PRECISION and COMPLEX arrays must be declared before they are dimensioned.

6.1 STORAGE SPEQACATION STATEMENTS

6. 1. 1 DIMENSION Statement

The DIMENSION statement is used to declare identifiers to be array identifiers and to specify the number and

bounds of the array subscripts. The information supplied in a DIMENSION statement is required for the alloca­

tion of memory for arrays. Any number of arrays may be declared in a single DIMENSION statement. The

DIMENSION statement has the form

where S is an array specification.

Each array variable appearing in the program must represent an element of an array declared in a DIMENSION

statement, unless the dimension information is given in a COMMON or TYPE statement. Dimension information

may appear only once for a given variable.

Each array specification gives the array identifier and the minimum and maximum values which each of its sub­

scripts may assume in the following form:

identifier{min/max, min/max, ••• ,min/max}

The minima and maxima must be integers. The minimum must not exceed the maximum. For example, the state­

ment

DIMENSION EDGE(-1/1,4/8}

specifies EDGE to be a two-dimensional array whose first subscript may vary from -1 to 1 inclusive, and the sec­

ond from 4 to 8 inclusive.

Minimum values of 1 may be omitted. For example,

NET(5, 10}

is interpreted as:

NET(1/5,1/10)

6-2

Examples:
-67-

DIMENSION FORCE(-l/1, 0/3, 2,2, -7/3)
DIMENSION PLACE (3, 3, 3), JI(2, 2/4), K(256)

Arrays may also be declared in the COMMON or type declaration statements in the same way:

COMMON X(10,4), Y,Z
INTEGER A(7, 32), B
DOUBLE PRECISION K(-2/6, 10)

FORTRAN

6.1.1.1 Adjustable Dimensions - Within either a FUNCTION or SUBROUTINE subprogram, DIMENSION and

TYPE statements may use integer variables in an array specification, provided that the array name and variable

dimensions are dummy arguments of the subprogram. The actual array name and values for the dU'!lmy variables

are given by the calling program when the subprogram is called. The variable dimensions may not be altered

within the subprogram (i .e., typing the array DOUBLE PRECISION or COMPLEX after it has been dimensioned)

and must be less than or equal to the explicit dimensions declared in the calling program.

Example: SUBROUTINE SBR(ARRAY,Ml,M2,M3,M4)
DIMENSION ARRAY (Ml/M2,M3/M4)

DO 27 L=M3, M4 .
DO 27 K=M 1",M2

.
27 ARRAY(K,L)=VALUE

END

The calling program for SBR might be:

DIMENSION Al(10,20),A2(1000,4)

CALL SBR(Al,5, 10, 10,20)

.
CALL SBR(A2, 100,250,2,4)

END

6-3

FORTRAN -68-
6.1.2 COMMON Statement

The COMMON statement causes specified variables or arrays to be stored in an area available to other programs.

By means of COMMON statements, the data of a main program and/or the data of its subprograms may share a

common storage area.

The common area may be divided into separate blocks which are identified by block names. A block is specified

as follows:

,!block identifier/identifier, identifier, ••• ,identifier

The identifier enclosed in slashes is the block name. The identifiers which follow are the names of the variables

or arrays assigned to the block and are placed in the block in the order in which they appear in the block spec­

ification. A common block may have the same name as a variable in the same program.

The COMMON statement has the general form

COMMON/8LOCKl/A,B,C/BLOCK2/D,E,F/ .••

where BLOCK1,BLOCK2, .•• are the block names, and A,B,C, ••. are the variables to be assigned to each

block. For example, the statement

COMMON~~, Y, T/C;\J, V, W,Z

indi cates that the el ements X, Y, and T are to be placed in block R in that order, and that U, V, W, and Z are

to be placed in block C.

Block entries are linked sequentially throughout the program, beginning with the first COMMON statement. For

example, the statements

COMMON/D/ALPHA~/A, B/C/S
COMMON/C~, Y~/U,V,W

have the same effect as the statement

COMMON/D/ALPHA/R/A,B,U, V, W/C/S,X, Y

One block of common storage, referred to as blank common, may be left unlabeled. Blank common is indicated

by two consecutive slashes. For example,

COMMON~~, Y//B,C,D

indicates that B, C, and D are placed in blank common. The slashes may be omitted when blank common is the

first block of the statement.

6-4

-69- FORTRAN
COMMON B,C,D

Storage allocation for blocks of the same name begins at the same location for all programs executed together.

For example, if a program contains

COMMON A, B/R~, Y, Z

as its first COMMON statement, and a subprogram has

COMMON/R/U, V, W//D,E,F

as its first COMMON statement, the quantities represented by X and U are stored in the same location. A sim­

ilar correspondence holds for A and D in blank common.

Common blocks may be any length provided that no program attempts to enlarge a given common block declared.

by a previously loaded program.

Array names appearing in COMMON statements may have dimension information appended if the arrays are not

declared in DIMENSION or type declaration statements. For example,

COMMON ALPHA, T(15, 10,5),GAMMA

specifies the dimensions of the array T while entering T in blank common. Variable dimension array identifiers

may not appear in a COMMON statement, nor may other dummy identifiers. Each array name appearing in a

COMMON statement must be dimensioned somewhere in the program containing the COMMON statement.

6.1.3 EQUIVALENCE Statement

The EQUIVALENCE statement causes more than one variable within a given program to share the same storage

location. The EQUIVALENCE statement has the form

EQUIVALENCE(V l' V 2'· ..), (Vk, Vk+1,· •.), ..•

where the V's are variable names.

The inclusion of two or more references in a parenthetical list indicates that the quantities in the list are to share

the same memory location. For example,

EQUIVALENCE(RED, BLUE)

specifies that the variables RED and BLUE are stored in the same location.

6-5

FORTRAN -70-
The relation of equivalence is transitive; e.g., the two statements,

EQUIVALENCE(A,8), (8,C)
EQUIVALENCE(A,8,C)

have the same effect.

The subscripts of alTOY variables must be integer constants.

Example: EQUIVALENCE(X,A(3), V(2, 1,4)), (8ETA(2,2),ALPHA)

6. 1.4 EQUIVALENCE and COMMON

Identifiers may appear in both COMMON and EQUIVALENCE statements provided the following rules are ob­

served.

a. No two quantities in common may be set equivalent to one another.

b. Quantities placed in a common block by means of EQUIVALENCE statements may cause the end of
the common bl.ock to be extended. For example, the statements

COMMON.I'k~, V,Z
DIMENSION A(4)
EQUIVALENCE(A, V)

causes the common bklck R to extend from X to A(4), arranged as follows:

X
V A(l)
Z A(2)

A(3)
A(4)

(same location)
(same location)

c. EQUIVALENCE statements which cause extension of the start of a common block are not allowed.
For example, the sequence

COMMON/R~, V,Z
DIMENSION A(4)
EQUIVALENCE(X ,A(3))

is not permitted, since it would require A(l) and A(2) to extend the starting location of block R.

6.2 DATA SPECIACATION STATEMENTS

The DA~A statement is used to specify initial or constant values for variables. The specified values are compiled

into the object progrom, and become the values assumed by the variables when program execution begins.

6.2.1 DATA Statement

The data to be compiled into the object program is specified in a DATA statement. The DATA statement has the

form

6-6

-71-
DATA I ist/d 1,d2 , ••• /,1 ist/dk ,dk+ 1" •• /, •••

FORTRAN

where each list is in the same form as an input/output list, and the dis are data items for each list.

Indexing may be used in a list provided the initial, limit, and increment (if any) are given as constants. Expres­

sions used as subscripts must have the form

c 1*i±C2

where c 1 and c2 are integer constants and i is the induction variable. If an entire array is to be defined, only

the array identifier need be listed. Variables in COMMON may appellr on the lists only if the DATA statement

occurs in a BLOCK DATA subprogram. (See Chapter 7, Section 7.6)

The data items following each list correspond one-to-one with the variables of the list. Each item of the data

I specifies the value given to its corresponding variable with no implied type conversion. Thus, integer variables

can only be defined numerically by integer constants, real variables by real constants, double precision variables

by double precision constants, and so forth. Refer to Section 2.1 for definitions of the various constants. Data

items may be numeric constants, alphanumeric strings, octal constants, or logical constants. For example,

I DATA ALPHA, BETA/.5, 16.E-2/

I specifies the value .5 for ALPHA and the value. 16 for BETA.

Alphanumeric data is packed into words according to the data word size in the manner of A conversion; howev~r,

excess characters are not permitted. The specification is written as nH followed by n characters or is imbedded

I in single quotes. Double precision variables must have at least six characters assigned to them in DATA state-

I

ments.

Octal data is specified by the letter 0 or the character", followed by a signed or unsigned octal integer of one

to twelve digits.

Logical constants are written as • TRUE. ,.FALSE., T, or F.

Example: DATA NOTE,K/4HFOOT, 0-7712/
DATA QUOTE/QUOTE I/

Any item of the data may be preceded by an integer followed by an asterisk. The integer indicates the number of

times the item is to be repeated. For example,

DATA(A(K) ,K=l,20)/61 E2, 19*32E1/

specifies 20 values for the array A; the value 6100 for A(1); the value 320 for A(2) throu~h A(20). To cause an

array or part of an array to be initialized to blanks, the blank areas must be specified explicitly in the DATA

statement. For example,

DATA(A(I),I=l,lO)/112345 I ,9*11/

causes the first word of A to contain 12345 in ASCII and the next nine words of the array to be blank.

Version 24 FORTRAN
Version 31 LIMO 6-7 October 1971

FORTRAN -72-
6.2.2 BLOCK DATA Statement

The BLOCK DATA statement has the form:

BLOCK DATA

This statement declares the program which follows to be a data specification subprogram. Data maybe entered

into labeled or blank common.

The first statement of the subprogram must be the BLOCK DATA statement. The subprogram may contain only the

declarative statements associated with the data being defined.

Example: BLOCK DATA
C OMMO N/R/S, Y IC/Z, w , V
DIMENSION Y(3)
COMPLEX Z
DATA Y 11 E-1 ,2*3E2/,x,Z/11.8i7DO ,(-1.41421,1.41421)1
END

Data may be entered into more than one block of common in one subprogram.

6.3 TYPE DECLARATION STATEMENTS

The type declaration statements INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, IMPLICIT, cmd

SUBSCRIPT INTEGER are used to specify the type of identifiers appearing in a program. An identifier may ap­

pear in only one type statement. Type statements may be used to give dimension specifications for arrays.

The explicit type declaration statements have the general form

type identifier, identifier, identifier •••

where type is one of the following:

INTEGER,REAL,DOUBLE PRECISION,COMPLEX,LOGICAL,
SUBSCRIPT INTEGER

In addition, for the sake of compatibility the following types have been made equivalent:

SUBSCRIPT INTEGER is equivalent to INTEGER*2
INTEGER is equivalent to INTEGER*4
REAL is equivalent to REAL*4
DOUBLE PRECISION is equivalent to REAL*8
LOGICAL is equivalent to LOGICAL* 1 and LOGICAL*4
COMPLEX is equivalent to COMPLEX*8

The listed identifiers are declared by the statement to be of the stated type. Fixed-point variables in a SUB­

SCRIPT INTEGER statement must fall between _227 and i7.

Version 24 FORTRAN
Version 31 LIB40 6-8 February 1971

-73- FORTRAN
6.3. 1 IMPLICIT Statement

The IMPLICIT statement has the form

I where type represents INTEGER, REAL, LOGICAL, COMPLEX, DOUBLE PRECISION, or one of the equivalent

types listed in Section 6.3, and a 1a2' ••• represent single alphabetic characters, each separated by commas, or

a range of characters (in alphabetic sequence) denoted by the first and last characters of the range separated by

a minus sign (e.g., (A-D)).

This statement causes any program variable which is not mentioned in a type statement, and whose first character

is one of those I isted in the IMPLICIT statement, to be classified according to the type appearing before the list

in which the character appears. As an example, the statement

IMPLICIT REAL{A-D, L, N-P)

causes all variables starting with the letters A through D,L, and N through P to be typed as real, unless they are

explicitly declared otherwise.

The initial state of the compiler is set as if the statement

IMPLICIT REAL{A-H,O-Z), INTEGER{I-N)

were at the beginning of the program. This state is in effect unless an IMPLICIT statement changes the above

interpretation; i.e., identifiers, whose types are not explicitly declared, are typed as follows.

a. Identifiers beginning with I, J, K, L, M, or N are assigned interger type.

b. Identifiers not assigned integer type are assigned real type.

If the program contains an IMPLICIT statement, this statement will override throughout the program the implicit

state initially set by the compiler. No program may contain more than one IMPLICIT declaration for the same

letter.

Version 24 FORTRAN
Version 31 LIMO 6-9 February 1971

FORTRAN -74-

-75- FORTRAN

CHAPTER 7

SUBPROGRAM STATEMENTS

FORTRAN subprograms may be either internal or external. Internal subprograms are defined and may be used

only within the program containing the definition. The arithmetic function definition statement is used to define

internal functions.

External subprograms are defined separately from {i. e., external to} the programs that call them, and are com­

plete programs which conform to all the rules of FORTRAN programs. They are compiled as closed subroutines;

i.e., they appear only once in the object program regardless of the number of times they are used. External sub­

programs are defined by means of the statements FUNCTION and SUBROUTINE.

7. 1 DUMMY IDENTIFIERS

Subprogram definition statements contain dummy identifiers, representing the arguments of the subprogram. They

are used as ordinary identifiers within the subprogram definition and indicate the sort of arguments that may ap­

pear and how the arguments are used. The dummy identifiers are replaced by the actual arguments when the sub­

program is executed.

7.2 UBRARY SUBPROGRAMS

The standard FORTRAN IV library for the PDP-10 includes built-in functions, FUNCTION subprograms, and

SUBROUTINE subprograms, listed and described in Chapter 8. Built-in functions are open subroutines; that is,

they are incorporated into the object program each time they are referred to by the source program. FUNCTION

and SUBROUTINE subprograms are closed subroutines; their names derive from the types of subprogram statements

used to defi ne them.

7.3 ARITHMETIC FUNCTION DEFINITION STATEMENT

The arithmetic function definition statement has the form:

identifier(identifier, identifier, •••)=expression

7-1

I

FORTRAN -76-
This statement defines an internal subprogram. The entire definition is contained in the single statement. The

first identifier is the name of the subprogram being defined.

Arithmetic function subprograms are single-valued functions with at least one argument. The type of the function

is determined by the type of the function identifier.

The identifiers enclosed in parentheses represent the arguments of the function. These are dummy identifiers;

they may appear only as scalar variables in the defining expression. Dummy identifiers have meaning and must

be unique only within the defining statement. Dummy identifiers must agree in order, number, and type with

the actual arguments given at execution time.

Identifiers, appearing in the defining expression, which do not represent arguments are treated as ordinary var­

iables. The defining expression may include external functions or other previously defined arithmetic statement

functions.

All arithmetic function definition statements must precede the first executable statement of the program.

Examples: SSQR(K)=K *(K+1)*(2*K+1)/6
ACO SH (X)=(EX P(X/A)+EX P(-X/A»/2

In the last example above, X is a dummy identifier and A is an ordinary identifier. At execution time, the

function is evaluated using the current value of the quantity represented by A.

7.4 FUNCTION SUBPROGRAMS

A FUNCTION subprogram is a single-valued function that may be called by using its name as a function name

in an arithmetic expression, such as FUNC(N), where FUNC is the name of the subprogram that evaluates the

correspanding function of the argument N. A FUNCTION subprogram begins with a FUNCTION statement and

ends with an END statement. It returns control to the calling program by means of one or more RETURN state­

ments.

7.4.1 FUNCTION Statement

The FUNCTION statement has the form:

FUNCTION identifier(argument ,argument, •••)

This statement declares the program which follows to be a FUNCTION subprogram. The identifier is the name of

the function being defined. This identifier must not be used as a dummy argument or appear in any nonexecutable

statement in the program other than as a scalar variable in a TYPE statement. It must appear as a scalar variable

and be assigned a value during execution of the subprogram which is the function value.

Version 24 FORTRAN
Version 31 LIMO 7-2 October 1971

-77- FORTRAN
Arguments appearing in the list enclosed in parentheses are dummy arguments representing the function argument.

The arguments must agree in number, order, and type with the actual arguments used in the call ing program.

FUNCTION subprogram arguments may be expressions, alphanumeric strings, array names, statement labels pre­

ceded by an asterisk (*) or dollar sign ($), or subprogram names.

Dummy arguments may appear in the subprogram as scalar identifiers, array identifiers, subprogram identifiers, or

an asterisk (*) or dollar sign ($), denoting statement labels in the calling program. A fundion must have at least

one dummy argument. Dummy arguments representing array names must appear within the subprogram in a

DIMENSION statement, or one of the type statements that provide dimension information. Dimensions given as

constants must equal the dimensions of the correspal'lding arrays in the calling program. In a DIMENSION state­

ment, dummy identifiers may be used to specify adjustable dimensions for array name arguments. For example, in

the statement sequence:

FUNCTION TABLE(A,M,N,B,X, Y)

DIMENSION A(M,N),B(10),C(50)

The dimensions of array A are specified by the dummies M and N, while the dimension of array B is given as a

constant. The various values given for M and N by the calling program must be those of the actual arrays which

the dummy A represents. The arrays may each be of different size but must have two dimensions. The arrays are

dimensioned in the programs that use the function.

Dummy dimensions may be given only for dummy arrays. In the example above the array C must be given abso­

lute dimensions, since C is not a dummy identifier. A dummy identifier may not appear in an EQUIVALENCE

statement in the FUNCTION subprogram.

Dummy arguments representing statement labels can be used only in connection with the RETURN statement.

When the value of the function is not required, a FUNCTION subprogram can be used as a SUBROUTINE subpro­

gram by utilizing the optional return. When the optional return appears in a FUNCTION subprogram, the value

of the function is stored on return only if RETURN or RETURN i (where i = 0) is used.

Example: FUNCTION LIST (A,$,C)

A function must not modify any arguments which appear in the FORTRAN arithmetic expression calling the func­

tion. Modification of implicit arguments from the calling program, such as variables in COMMON and DO loop

indexes, is not allowed. The only FORTRAN statements not allowed in a FUNCTION subprogram are SUBROU­

TINE, BLOCK DATA, and another FUNCTION statement.

7.4.1.1 Function Type - The type of the function is the type of identifier used to name the function. This iden­

tifier may be typed, implicitly or explicitly, in the same way as any other identifier. Alternatively, the function

7-3

FORTRAN -78-
I may be explicitly typed in the FUNCTION statement itself by preceding the word FUNCTION with one of the

types or equivalent types described in Section 6.3. For example:

INTEGER FUNCTION
REAL FU NCTI 0 N
COMPLEX FU NCTION
LOGICAL FUNCTION
DOUBLE PRECISION FUNCTION I REAL*8 FUNCTION

Thus, the statement

COMPLEX FUNCTION HPRIME(S,N)

is equivalent to the statements

Examples:

FUNCTION HPRIME(S, N)
COMPLEX HPRIME

FUNCTION MAY(RANGE,EP ,YP ,ZP)
COMPLEX FUNCTION COT(ARG)
DOUBLE PRECISION FU NCTION LIMIT(X, Y)
FUNCTION WORK (A,$,C)

7.5 SUBROUTINE SUBPROGRAMS

A SUBROUTINE subprogram may be multivalued and can be referred to only by a CALL statement. A SUBROU­

TINE subprogram begins with 0 SUBROUTINE statement and returns control to the calling program by means of

one or more RETURN statements.

7.5.1 SUBROUTINE Statement

The SUBROUTINE statement has the form:

SUBROUTINE identifier(argument ,argument, •••)

This statement declares the program which follows to be a SUBROUTINE subprogram. The first identifier is the I subroutine name. This identiAer cannot be used as a dummy argument or appear in any nonexecutable statement

in the program other than as a scalar variable in a TYPE statement. The subroutine name can, however, be used

as a scalar variable in any executable statement in the program. The arguments in the list enclosed in parenthe-

ses are dummy arguments representing the arguments of the subprogram. The dummy arguments must agree in num­

ber, order, and type with the actual arguments used by the calling program.

SUBROUTINE subprograms may have expressions, alphanumeric strings, array names, statement labels, and sub­

program names as arguments. The dummy arguments may appear as scalar, array, subprogram identifiers, or an

Version 24 FORTRAN
Version 31 LIMO 7-4 October 1971

-79- FORTRAN
asterisk (*) or dollar sign ($) denoting a statement label in the calling program. Dummy arguments representing

statement labels can be used only in connection with the RETURN statement.

Dummy identifiers which represent array names must be dimensioned within the subprogram by a DIMENSION or

type declaration statement. As in the case of a FUNCTION subprogram, either constants or dummy identifiers

Versian 24 FORTRAN
Version 31 LIMO 7-40 Oc tober 1971

FORTRAN -80-

-81- FORTRAN
may be used to specify dimensions in a DIMENSION statement. The dummy arguments must not appear in an

EQUIVALENCE or COMMON statement in the SUBROUTINE subprogram.

A SUBROUTINE subprogram may use one or more of its dummy identifiers to represent results. The subprogram

name is not used for the return of results. A SUBROUTINE subprogram need not have any argument at all.

Examples: SUBROUTINE FACTOR(COEFF, N, ROOTS)
SUBROUTINE RESIDU(NUM, N, DEN,M,RES)
SUBROUTINE SERIES
SUBROUTINE TYPE(A, $, B, *)

The only FORTRAN statements not allowed in a function subprogram are FUNCTION, BLOCK DATA, and an­

other SUBROUTINE statement.

7.5.2 CALL Statement

The CALL statement assumes one of two forms:

CALL identifier
CALL identifier (argument, argument, .•. , argument)

The CALL statement is used to transfer control to SUBROUTINE subprogram. The identifier is the subprogram

name.

The arguments may be expressions, array identifiers, alphanumeric strings, subprogram identifiers, or statement

• labels of the calling program preceded by an asterisk (*), dollar sign ($), or ampersand (&). Arguments may be

of any type, but must agree in number, order, type, and array si ze (except for adjustab Ie arrays, as discussed

under the DIMENSION statement) with the corresponding arguments in the SUBROUTINE statement of the

called subroutine. Unlike a function, a subroutine may produce more than one value and cannot be referred

to as a basic element in an expression.

I

A subroutine may use one or more of its arguments to return results to the calling program. If no arguments at all

are required, the first form is used.

Examples: CALL EXIT
CALL SWITCH(SIN,2.LE.BETA,X**4, Y)
CALL TEST(VALUE, 123,275)
CALL TYPE(A,$10,B,*20,&30)

The identifier used to name the subroutine is not assigned a type and has no relation to the types of the arguments.

Arguments which are constants or formed as expressions must not be modified by the subroutine.

7.5.3 RETURN Statement

The RETURN statement has one of two forms:

Version 24 FORTRAN
Version 31 LIMO 7-5 October 1971

FORTRAN
RETURN
RETURN i

-82-

where i is an integer constant or an interger variable. The value of i must be positive, and specifies that the

return is to the i-th argument of the referencing statement (where the i-th argument is a statement number pre­

ceded by a $ or *). If i::::O, the return is the same as with the first form of the RETURN statement.

This statement returns control from a subprogram to the calling program. Normally, the last statement executed

in a subprogram is a RETURN statement. Any number of RETURN statements may appear in a subprogram. For

purposes of debugging functions and subroutines originally written as main programs, the RETURN statement has

I been made equivalent to the STOP statement in a main program.

7.6 BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram is a data specification subprogram and is used to enter initial values into variables

in COMMON for use by FORTRAN subprograms and MACRO-10 main programs (see Chapter 9). No executable

statements may appear in a BLOCK DATA subprogram.

7.6.1 BLOCK DATA Statement

The BLOCK OAT A statement has the form:

BLOCK DATA

This statement declares the program which follows to be a data specification subprogram and it must be the first

statement of the subprogram (see Chapter 6, Section 6.2.2).

7.7 EXTERNAL STATEMENT

FUNCTION and SUBROUTINE subprogram names may be used as the actual arguments of subprograms. Such sub­

program names must be distinguished from ordinary variables by their appearance in an EXTERNAL statement.

The EXTERNAL statement has the form:

EXTERNAL identifier, identifier, ••• , identifier

This statement declares the listed identifiers to be subprogram names. Any subprogram name given as an argument

to another subprogram must have previously appeared in an external declaration in the calling program (i .e., as

an identifier in an EXTERNAL or CALL statement or as a function name in an expression).

Example:

Version 24 FORTRAN
Version 31 LIMO

EXTERNAL SIN,COS

CALL TRIGF(SIN, 1.S,ANSWER)

CALL TRIGF(COS, • 87, ANSWER)

END

7-6 February 1971

I

-83-
SUBROUTINE TRIGF(FUNC,ARG ,ANSWER)

ANSWER = FUNC(ARG)

RETURN
END

FORTRAN

To reference external variables from a MACRO-lO program by name, place the variables in named COMMON.

Use the name of the variable as the name of the COMMON block:

COMMON /A/A/B/B(13)/C/C(6,7)

7.8 SUMMARY OF PDP-10 FORTRAN IV STATEMENTS

General Form

ASSIGN ito m

CAll name (a 1 ,a2, •..)

CONTINUE

DO i m=m1,m2,m3
GO TO i

GOTOm

GOTOm, (i 1,i2,.,,)

GO TO (il'i 2,. oo),m

IF (e1)i 1,i2,i3
IF (e2)5

PAUSE

PAUSE i
PAUSE 'h'

RETURN

RETURN i

STOP

ENG

CONTROL STATEMENTS

DATA TRANSMISSION STATEMENTS

General Form

ACCEPT f

ACCEPT f,l ist

BACKSPACE unit

DECODE (n,f,v)list

END ALE unit

Version 24 FORTRAN
Version 31 LIMO

7-7

Section References

4.1.3

7.5.2

4.4

4.3

4.1.1

4.1.3

4.1.3

4.1.2

4.2.1

4.2.2

4.5

4.5

4.5

7.5.3

7.5.3

4.6

4.7

Section References

5.2.9

5.2.9

5.3

5.4

5.3

February 1971

I

I

FORTRAN
Genera I Form

ENCODE (n,f ,v}list

FORMAT (g)

PRINT f

PRINT f, list

PUNCH f

READ f

READ f, list

READ {unit, f}

READ (unit ,f}list

READ (unit}list

READ (unit ,name 1)

READ (unit #R, f}list

READ (unit ,f,END=c,ERR=d}list

READ (unit,f, END=c}list

READ (unit, f, ERR=d}1 ist

REREAD f,list

REWIND unit

SKIP RECORD unit

TYPE f

TYPEf,list

WRITE (unit ,f)

WRITE (unit ,f}list

WRITE (unit}list

WRITE (unit ,name1)

WRITE (unit #R,f}list

UNLOAD unit

-84-

SPECIFICATION STATEMENTS

General Form

BLOCK DATA

COMMON a(n 1 ,n2, ••• },b(n3,n4, ••• }, •••

COMMON /blk1/a,b/blk2/c,d/ •••

COMPLEX a(n 1,n2, ••• },b(n3 ,n4 , ••• }, •••

DATA t,u, ••• ;1<l,k2,k3, •• '/

Version 24 FORTRAN
Version 31 LIB40

v, w, • •• ;1< 4,k5 ,k6, •• ./ •••

7-8

Section References

5.4

5.1.1

5.2.3

5.2.3

5.2.4

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.8

5.3

5.3

5.2.5

5.2.5

5.2.6

5.2.6

5.2.6

5.2.6

5.2.6

5.3

Section References

6.2.2

6.1.2

6.1.2

6.3

6.2.1

February 1971

I

-85-
General Form Section References

DIMENSION a(n 1 ,n2,···) ,b(n 1 ,n2,···),···

DOUBLE PRECISION a(n1,n2 , •••),b(n3 ,n4 , ...), •••

EQUIVALENCE (a(n 1, •••),b(n2 , •••), •••), •••

(c(n3 ,···),d(n4 ,···),···),···

EXTERNAL y,z, •••

IMPLICIT type 1 (11-1 ~ , type2(13 -14) , •••

INTEGER a(n1 ,n2 , •••) ,b(n3,n4 , •••), •••

LOGICAL a(n 1,n2, •••) ,b(n3 ,n4 , •••), •••

NAMELIST /namela,b, ••• /name/c,d, •••

REAL a(n I' n2 , •••)b(n3 , n 4: •••) , •••

SUBSCRIPT INTEGER a(n 1,n2 , •••),b(n3 , •••), •••

ARITHMETIC STATEMENT FUNCTION DEFINITION

6.1.1

6.3

6.1.3

7.7

6.3.'1

6.3

6.3

5.1.2

6.3

6.3

General Form Section Reference

name(a,b, •••)=e

NOTE:

a 1,a2,·· •

a,b,c,d

blkl,blk2

c

d

e

g

'h'

are expressions

are variable names

are block names

is the statement number to which
control is transferred upon en­
countering an end-of-file

is the statement number to which
control is transferred upon en­
countering an error condition on
the input data.

is an expression

is a noncomplex expression

is a logical expression

is a format number

is a format specification

is an alphanumeric

are statement numbers

is an integer constant

7.3

are constants of the general form i*k
where k is any constant

Version 24 FORTRAN
Version 31 LIMO

are letters

7-9

FORTRAN

February 1971

FORTRAN

General Form

list

m

n1,n2 ,···

n

name

s

t,u,v,w

type l,type2' •••

unit

v

y,z

-86-

is an input/output list

is an integer variable name

are integer expressions

are dimension specifications

Secti on Reference

are the number of ASCII characters

is a subroutine or function name

are NAME LIST names

is a record number where Vo begins

is a statement (not DO or logical IF)

are variable names or input/output lists

are type specifications

is an integer variable or constant specifying
a logical device number

is the starting address of the ASCII record
referenced

are external subprogram names

7-10

-87-

SECTION II

THE RUN TIME SYSTEM

The five chapters of this section contain information on LIB40, SUBPROGRAM

calling sequences, accumulator usage, compiler switches and diagnostic messages,

and FORTRAN user programming.

FORTRAN

FORTRAN -88-

-89- FORTRAN

CHAPTER 8

LIB40

LIB40 is a single file which contains all of the programs in the FORTRAN library. It is composed of three groups

of programs:

(1) The FORTRAN Operating System.

(2) Science Library.

(3) FORTRAN Utility Subprograms.

I There are two forms of L1B40, one for the KA-l0 and the other f.or the KI-10. The KA-10 library will run on the

KI-10, but will not take advantage of the speed of the KI-10. The KI-10 library will not run on the KA-10 be­

cause of the hardware differences. Also, the library used must match the compiler used, i.e., KA-l0 compiled

code must use the KA-10 L1B40 and the KI-l0 compiled code must use the KI-10 L1B40.

8.1 THE FORTRAN OPERATING SYSTEM

The system programs in the FORTRAN Operating System act as the interface between the user's program and the

PDP-l0. All of these programs are invisible to the user's program. The FORTRAN Operating System is loaded

automatically from LIB40 and resides in the user's core area along with the user's main programs and any library

functions and subroutines that his programs reference.

8.1.1 FORSE.

FORSE. is the main program of the FORTRAN Operating System and is loaded whenever a FORTRAN main pro­

gram is in core. The primary functions of FORSE. are

a. FORMAT statement processi ng,

b. Dispatching of all UUOs, and

c. Control of I/O devices at runtime.

8.1.1.1 FORMAT Processing - FORSE. assumes that aU FORMAT statements are syntactically correct since the

syntax of each statement is checked by the compiler. FORSE. SCans the FORMAT statements and performs the

indicated I/O operations. FORSE. invokes the required conversion routine to actuallydo data cc;>nversion. The

conversion routine that is used is a function of the conversion indicated in the FORMAT statement and of the

data type of the element in the I/O list.

Version 26' FORTRAN
Version 32 L1B40

8-1 May 1972

I

I

FORTRAN -90-
8. 1.1.2 UUO Dispatching - Some UUOs are handled minimally by FORSE. (NUN, NLOUT, MTOP), but the

others are handled almost entirely within FORSE.

8.1.1.3 I/O Device Control - FORSE. executes the required carriage control of output devices that are phys­

ical listing devices (LPT, TTY) and stores the carriage control character at the beginning of each line if the out­

put is going to a retrievable medium for deferred listing. When listings are deferred, the appropriate switch in

PIP can be used to list the file and execute the required carriage control.

8.1.1.4 Additional Functions of FORSE. - FORSE. is responsible for the following:

a. Control of REREAD and ENCODE,/bECODE features.

b. Interadion with EOFTST and READ (unit,f,END=C)list to handle end-of-file testing.

c. Control of the assignment of devices to software channels.

d. Control of the handling of filenames for I/O associated with directory devices.

e. Control of the opening and closing of data files.

f. Control the handling of the functions associated with the MAGDEN, BUFFER, IBUFF, OBUFF,
DEFINE FILE, TRAPS, and RELEASE subroutines.

8.1.2 I/O Conversion Routines

The I/O conversion routines convert data from internal PDP-10 format to external format or vice versa. The

calls to these routines are implied by FORMAT and data transfer statements in the FORTRAN source program.

The routines reside as relocatable binary files in UB40. REL.

Version 26 FORTRAN
Version 32 L1B40

Table 8-1
I/O Conversion Routines

Routine Descri ption

ALPHI. Alphanumeric ASCII input conversion

ALPHO. Alphanumeric ASCII output conversion

FLIRT .* Floating point and double precision
input conversion

FLOUT. * Floating point and double precision
output conversion

INTI. Integer input conversion

INTO. Integer output conversion

LINT. Logical input conversion

LOUT. Logical output conversion

*FLlRT. cGlntains two entry points, FLIRT and DIRT.
FLOUT. contains two entry points, FLOUT and DOUBT.

8-2 May 1972

Routine

BINWR.

OCTI.

OCTO.

NMLST.

8.1.3 FORTRAN UUOs

-91-
Table 8-1 (Cont)

I/o Conversion Routines

Description

Binary 1/0

Octal input conversion

Octal output conversion

Namelist

FORTRAN

Operation codes 000 through 077 in the PDP-I0 are programmed operators, sometimes referred to as UUO's (Un­

implemented User Operators) since from a hardware point of view their function is not prespecified. Some of

these op-codes trap to the Monitor and the rest trap to the user program. FORTRAN UUO's trap to the FORTRAN

Operating System UUO Handler and are then processed.

UUO

RESET .

IN.

OUT.

DATA.

FIN.

RTB.

WTB.

MTOP.

SLIST.

INF.

OUTF.

RERED.

NLI.

Op
Code

015

016

017

020

021

022

023

024

025

026

027

030

031

Table 8-2
FORTRAN UUOs

Meaning

Resets all devices, clears tables and flags.

Initializes device for formatted input, does a LOOKUP.

Initializes device for formatted output, does an ENTER.

Converts one data element from external to internal for­
mat or vice versa depending upon whether input or out­
put is being done. Actual data transfer takes place.

Terminates data transfer statements.

Initializes device for unformatted input, similar to IN.

Initializes device for unformatted output, similar to OUT.

Performs Magtape operations, rewind, rewind and unload,
backspace, end file, skip, write blank record.

Converts entire arrays from external to internal format or
vice versa depending upon whether input or output is
being done. Actual data transfer takes place.

IFILE. Sets up input filename, similar to IN. but with
spec i fied fi I ename .

OFILE. Sets up output filename, similar to OUT. but
with spec i fi ed filename.

REREAD. Reread last record.

Namelist input.

8-3

FORTRAN

UUO
Op

Code

NLO. 032

DEC. 033

ENC. 034

-92-
Table 8-2 (Cont)
FORTRAN UUOs

Meaning

Namelist output.

DECODE.

ENCODE.

8.2 SCIENCE LIBRARY AND FORTRAN UTILITY SUBPROGRAMS

The Science Library and FORTRAN Utility Subprograms extend the capabilities of the FORTRAN language. These

subprograms are called explicitly by the user. The subprograms include the built-in FORTRAN math functions

and the user-called utility subroutines which provide optional I/O capabilities and control of and information

about the program's environment. The optional I/O capabilities and environmental control are achieved by the

subroutines from interactions with the FORTRAN Operating System.

8.2.1 FORTRAN IV Library Functions

This section contains descriptions of all standard function subprograms provided with the FORTRAN IV library for

the PDP-10. These functions are called by using the function mnemonic as a function name in an arithmetic ex-

I pression. The function mnemonics in Table 8-3 have the types specified unless their types are explicitly or im­

plicitly changed. (Refer to Section 6.3, "Type Declaration Statements" and Section 6.3.1, "IMPLICIT State­

ment. '~

Version 24 FORTRAN
Version 31 UB40 8-4 February 1971

«
CD CD
'" '" o· o·
~ ~

WN
NO-
r ."
-0
~;;o
0-1

;;0
» z

00
I

IJI

~
'<

-0

" N

I

I

,

Table 8-3
FORTRAN IV Library Functions

Function Mnemonic Definition
Number of
Arguments

Type of
Argument Function

Absolute value:
Real ABS I arg I 1 Real Real

Integer lABS I arg I 1 Integer Integer

Double precision DABS I arg I 1/2 1 Double Double

Complex to real CABS c=(x2 +y2) 1 Complex Real

Conversion:
Integer to real FLOAT * 1 Integer Real

Real to integer IFIX* Result is largest integer ~a 1 Real Integer

Double to real SNGL 1 Double Real

Real to double DBLE 1 Real Double

Integer to double DFLOAT 1 Integer Double
Complex to real

REAL 1 Complex Real
(obtain real part)
Complex to real
(obtain imaginary AI MAG 1 Complex Real

part)
Real to complex CMPLX c=Arg 1 +i *Arg2 2 Real Complex

Truncation:
Real to real AINT {s;gn of a'9 0 }

1 Real Real

Real to integer INT* largest integer. 1 Real Integer

Double to integer IDINT ~Iargl 1 Double Integer

Remaindering:
Real AMOD {'~~~;~' } 2 Real Real

Integer MOD when Arg 1 is 2 Integer Integer

Double precision DMOD divided by Arg 2 2 Double Double

Maximum Value:
AMAXO

{ Mox (A'g l' Ac92, .•• J Integer Real

AMAXI

{ ~2}
Real Real

MAX 0 Integer Integer

MAXI Real Integer

DMAXI Double Double

Minimum Value:
AMINO

{ M;n(A'9, ,A'92, .•• J Integer Real

AMINI

{ ~2}
Real Real

MINO Integer Integer

MINI Real Integer

DMINI Double Double

*These funct ions are not used on the K 1-1 0 because they are unnecessary.

External Calls

SQRT

ERROR., TRAPS

FLOAT

IFIX

FLOAT

IFIX

I
to
\AI
I

" o :;:g

i

-;.-;. .., ..,
'" '" o· o·
::I ::I

WN
NO-
r- 'TI
-0
~;c
0-1

;c
}>
Z

00
I
0-

~
'<

-.0
'-I
N

Function

Transfer of Sign:
Real
Integer
Double precision

P.ositive Difference:
Real
Integer

Exponential:
Real
Double
Complex

Logarithm:
Real

Double

Complex

Square Root:
Real
Double
Complex

Sine:
Real (radians)
Real (degrees)
Double (radians)
Complex

Cosine:
Real (radians)
Real (degrees)
Double (radians)
Complex

Mnemonic

SIGN
ISIGN
DSIGN

DIM
IDIM

EXP
DEXP
CEXP

ALOG
ALOGI0
DLOG
DLOGI0
CLOG

SQRT
DSQRT
CSQRT

SIN
SIND
DSIN
CSIN

COS
COSD
DCOS
CCOS

Table 8-3 (Cont)
FORTRAN IV Library Functions

Number of Type of
Definition Arguments Argument Function

{ Sgn(Arg2)* IArg 1 ~
2 Real Real
2 Integer Integer

2 Double Double

{ Arg 1-Min(Arg i , Arg2) }
2 Real Real

2 Integer Integer

{ eArg } 1 Real Real

1 Double Double
1 Complex Complex

loge (Arg) 1 Real Real

10910 (Arg) 1 Real Real

loge (Arg) 1 Double Double

10910 (Arg) 1 Double Double

loge (Arg) 1 Complex Complex

1/2
(Arg) 1/2 1 Real Real

(Arg) 1/2 1 Double Double

c=(x+ i y) 1 Complex Complex

1 Real Real

{ sin (Arg) } 1 Real Real

1 Double Double

1 Complex Complex

1 Real Real

(cos (Arg) } 1 Real Real
1 Double Double

1 Complex Complex

~
External Calls

~
:z

ERROR.

EXP ,SIN,COS,
ALOG, ERROR.

ERROR.
ERROR.

I

'E
I

ALOG,ATAN2,
SQRT,ERROR.

ERROR.

SQRT

SIN,SINH,COSH,
ALOG,EXP

SIN,SINH,COSH,
ALOG,EXP

«
(II (II
'" '" o· o·
~ ~

WI'.)
1'.)0-
r- "T1
-0
~.o
0-1

.0 » z

Q)
I
"I

~
'<

-0
"I
I'.)

Function Mnemonic

Hyperbolic:
Sine SINH
Cosine COSH
Tangent TANH

Arc - sine ASIN

Arc - cosine ACOS

Arc tangent
Real ATAN
Double DATAN
quotient of

two arguments ATAN2

DATAN2

Complex Conjugate CONJG

Random Number RAN

Table 8-3 (Cont)
FORTRAN IV Library Functions

Definition
Number of Type of
Arguments Argument Function

sinh (Arg) 1 Real Real
cosh (Arg) 1 Real Real
tanh (Arg) 1 Real Real

asin (Arg) 1 Real Real

acos (Arg) 1 Real Real

atan (Arg) 1 Real Real
atan (Arg) 1 Double Double

atan (Arg l Arg2) 2 Real Real

atan (Arg l Arg2) 2 Double Double

Arg=X + iY, C=X -iY 1 Complex Complex

result is a random number 1 Integer, Real
in the range of 0 to 1.0. Real,

Double,or
Complex

External Calls

.EXP,ERROR.
EXP,ERROR.
EXP

ATAN,SQRT,
ERROR.

ATAN,SQRT,
ERROR.

ATAN,ERROR. ,
TRAPS
DATAN,ERROR.

I c.c
V1
I

~

i

FORTRAN -96-
8.2.2 FORTRAN IV Library Subroutines

This section contains descriptions of all standard subroutine subprograms provided within the FORTRAN IV library

for the PDP-lO. These subprograms are closed subroutines and are called with a CALL statement.

Subroutine Name

BUFFER

CHAIN

DATE

*For explanation, see page 7-10.

Table 8-4
FORTRAN IV Library Subroutines

Effect

Allows the programmer to specify buffering for a
device at one of fifteen levels.

CALL BUFFER (unit*, in/out, number)

where in/out is 1 for input buffering only, 2 for
output buffering only, or 3 for both, and number is
the level of buffering (1 < number < 15). If number
is not specified, 2 is assumed. In calls to two en­
tries in BUFFER, IBUFF and OBUFF, the programmer
can specify a non-standard buffer size if the records
in his data files exceed standard buffer sizes set by
the Monitor. (See Table 12-1.) The programmer
cannot change buffer sizes for the disk; IBUFF
and OBUFF are designed primarily for Magtape.

CALL IBUFF (d,n,s)

where d is the device number, n is the number of
buffers, and s is the size of buffer.

Reads a segment of coding (Chain file) into core
and links it to a program already residing in core.

CALL CHAIN (type,device,file)

where type is 0 (the next Chain file is read into core
immediately above the permanent resident area) or
type is 1 (the next Chain file is read into core im­
mediately above the FORTRAN IV program which
marks the end of the removable resident). Device
is 0,1,2, ••• FORTRAN IV logical device number
(Chain files can be stored on DSK, MTA, or DTA
only) corresponding to the device where the Chain
file can be found. File is 0 for reading the next
file from the selected magnetic tape or 1,2, ••. for
the number of the magnetic tape unit where the
Chain file is located.

Places today's date as left-justified ASCII characters
into a dimensioned 2-word array.

CALL DATE (array)

where array is the 2-word array. The date is in the
form

dd-mmm-yy

8-8

Subroutine Name

DATE (cont)

DUMP

EOF 1 (unit*)

EOFC(unit*)

ERRSET

EXIT

IFILE

-97-
Table 8-4 (Cont)

FORTRAN IV Library Subroutines

Effect

where dd is a 2-digit day (if the first digit is 0, it
is converted to a blank), mmm is a 3-digit month
(e.g., MAR), and yy is a 2-digit year. The date
is stored in ASCII code, left-justified in the two
words.

Causes particl,llar portions of core to be dumped and
is referred to in the following form:

CALL DUMP (L1,U 1,F1,·· .,Ln,Un,Fn)

where L. and U. are the variable names which give
the limils of co~e memory to be dumped. Either
Lj or Ui may be upper or lower limits. Fi is a
number indicating the format in which the dump is
to be performed: O=octal, l=real, 2=integer, and
3=ASCII.

If F is not 0,1,2,3, the dump is in octal. If Fn is
missing, the last section is dumped in octal. If
Un and Fn are missing, an octal dump is made from
L to the end of the job area. If Ln, Un' and F n
are missing, the entire job area is dumped in octal.

The dump is terminated by a call to EXIT •

Skips one end-of-file terminator when found and
returns the value TRUE if an end-of-file was found
and FALSE if it was not found. Subsequent termi­
nators produce an error message.

Skips more than one end-of-file terminators when
found and returns the value TRUE if an end-of-file
was found or FALS E if it was not found.

Allows the user to control the typeout of execution­
time arithmetic error messages, ERRSET is called
with one argument in integer mode.

CALL ERRSET(N)

Typeout of each type of error message is suppressed
after N occurances of that error message. IF ERRSET
is not called, the default value of N is 2.

Returns control to the Monitor and, therefore, ter­
minates the execution of the program.

Performs LOOKUPs for files to be read from DECtape
and disk.

CALL IFILE(unit*, fi Inam)

FORTRAN

where filnam is a filename consisting of five or fewer

I ASCII characters enclosed in single quotes ('). e.g.,
CALL IFILE (12, IFILE1')

'-----------'----------'
*For explanation, see page 7-10.

Version 26 FORTRAN
Version 32 LlB40

8-9 May 1972

FORTRAN

Subroutine Name

ILL

LEGAL

MAGDEN

OFILE

PDUMP

RELEAS

SAVRAN

SETRAN

*For explanation, see page 7-10.

-98-
Table 8-4 (Cont)

FORTRAN IV Library Subroutines

Effect

Sets the ILLEG flag. If the flag is set and an illegal
character is encountered in floating-point/double­
precision input, the corresponding word is set to zero.

CALL ILL

Clears the ILLEG flag. If the flag is set and an
illegal character is encountered in floating-point/
double-precision input, the corresponding word is
set to zero.

CALL LEGAL

Allows specification of magnetic tape density and
parity.

CALL MAGDEN(unit*,density,parity)

where density is the tape density desired (200= 200
bpi,556=556 bpi, or 800=800 bpi) and parity is
the tape parity desired (O=odd, 1 =even). Even
parity-is intended for use with BCD-coded tapes
only.

Performs ENTERs for files to be written on DECtape
and disk.

CALL OFILE (unit*,filnam)

where filnam is a filename consisting of five ASCII
characters .

Is referred to in the following form:

CALL PDUMP(L1, U1,F l' ..• , Ln' Un' F n)

where the arguments are the same as those for DUMP.
PDUMP is the same as DUMP except that control
returns to the calling program aHer the dump has
been executed.

Closes out I/O on a device initialized by the
FORTRAN Operating System and returns it to the
uninitial ized state.

CALL RELEAS (unit*)

SAVRAN is called with one argument in integer mode.
SAVRAN sets its argument to the last random number
(interpreted as an integer) that has been generated
by the function RAN.

SETRAN has one argument which must be a non­
negative integer < 231. The starting value of the
function RAN is set to the value of this argument,
unless the argument is zero. In this case, RAN uses
its normal starting value.

8-10

Subroutine Name

SLITE{i)

SLITE{i, j)

SSWTCH{i,j)

TIME

-99-
Table 8-4 (Cont)

FORTRAN IV Library Subroutines

Effect

Turns sense lights on or off. i is an integer expres­
s ion. For 1 < i < 36 sense light i wi II be turned on.
If i=O, all sense lights will be turned off.

Checks the status of sense light i and sets the var­
iable j accordingly and turns off sense light i. If
i is on, j is set to 1; and if i is off, i is set to 2.

Checks the status of data switch i (O< i < 35) and sets
the variable j accordingly. If i is set down, j is
set to 1; and, if i is up, j is set to 2.

Returns the current time in its argument{s) in left­
justified ASCII characters. If TIME is called with
one argument,

CALL TIME{X)

the time is in the form

hh : mm

where hh is the hours (24-hour time) and mm is the
minutes. If a second argument is requested,

CALL TIME (X , Y)

the first argument is returned as before and the sec­
ond has the form

ss. t

where ss is the seconds and t is the tenths of a sec­
ond.

8-11

FORTRAN

FORTRAN -100-

I

-101- FORTRAN

CHAPTER 9

SUBPROGRAM CALLING SEQUENCES

This chapter describes the conventions used in writing MACRO subprograms which can be called by FORTRAN IV

programs, and FORTRAN subprograms which can be linked to MACRO main programs. The reader is assumed to

be familiar with the following texts:

MACRO-l0 Assembler (DEC-l0-AMZB-D)
Section 2.5.8 "Linking Subroutines"
Figure 7-1, "Sample Program, CLOG"

TOPS-l0 Monitor Calls (DEC-l0-MRRA-D)
Section 1.2.2 "Loading Relocatable Binary Files"

Science library and FORTRAN Utility Subprograms
(DEC-l0-SFLE-D)

How to Use This Manual - FORTRAN calling sequences

9.1 MACRO SUBPROGRAMS CALLED BY FORTRAN MAIN PROGRAMS

9. 1. 1 Ca II i ng Sequences

The FORTRAN calling sequence, in the main program, for a subroutine is

where

FORTRAN Code

CALL subprog (adr l' adr 2" ..)

subprog

adr 1, adr2 ,···

code l' code2

MACRO Code (Generated by Compiler)

JSA 16, subprog
ARG codel, adrl
ARG code2' adr2

is the name of the subprogram

are the addresses of the arguments

are the accumulator fields of the ARG instructions
which indicate the type of argument being passed
to the subprogram. These codes are as follows:

o
1
2
3

9-1

Integer argument
Unused
Real argument
Logical argument

4
5
6

7

Octal argument
Hollerith argument
Double-precision
argument
Complex argument

FORTRAN -102-
An example of a FORTRAN calling sequence for a subroutine and the MACRO-10 coding generated by the

compiler is given below.

FORTRAN Code

CAll PROG 1 (REAl,INT)

MACRO Code

JSA 16, PROG 1

ARG 02, REAL

ARG 00, INT

The MACRO code generated by the compi ler is the same for subroutines and functions; however, the FORTRAN

code is different.

9.1.2 Returning of Answers

A subroutine returns to its answers in specified locations in the main program. These locations are often given

as argument names or as variab Ie names.

A function returns its answer in accumulator 0 (if a single word result) or in accumulators 0 and 1 (if a double­

precision or complex result). A function may also return its answer in specified locations (given by argument

names in the CAll) or variable names; in any event, however, it must return an answer in accumulator 0 (or

accumulators 0 and 1).

A MACRO subprogram access COMMON by declaring as external common block names for labelled

COMMON and by declaring .COMM. as external for blank common. A common block name always refers

to the same core location as the first element following the block name in a COMMON statement. MACRO

subprograms may refer to the remainder of the variables in the common block through additive globals.

9. 1.3 Use of Accumulators

For accumulator usage, see Chapter 10, Accumulator Conventions for PDP-lO Main Programs and Subprograms.

9. 1.4 Examples of Subprogram linkage

Three examples of subprogram linkage, one of a subroutine, one of a function subprogram, and one of a

FORTRAN main program and MACRO subprogram both referencing COMMON, are given below.

9.1.4.1 Example of a Subroutine linkage - The coding of the subroutine in this example is followed by the

calling sequence.

9-2

ENTRY SUBA

SUBA: 0
MOVE 1,@0(16)
IMULI I, 12
MOVEM 1,@0(16)
JRA 16, 1(16)

FORTRAN Calling Sequence

CALL SUBA(INT)

-103-

iGET FIRST ARGUME NT
iMULTIPLY BY 10
iRETURN RESULT IN ARGUMENT
iRETURN TO MAIN PROGRAM

MACRO Code (Generated by Compiler)

JSA 16, SUBA
ARG 00, INT

FORTRAN

9. 1.4.2 Example of a Function Subprogram linkage - The coding of the function subprogram in this example

is followed by the calling sequence.

ENTRY FNC

FNC: 0
MOVE 00,@0(16)
MOVE 0I,@1(16)
IMUL 00, 01

JRA 16, 2(16)

FORTRAN Calling Sequence

X =FNC (I, 10)

iPICK UP FIRST ARGUMENT
iPICK UP SECOND ARGUMENT
iMULTIPLY BOTH ARGUMENTS
iRESULT IN ACO
iRETURN WITH ANSWER IN ACO

MACRO Code (Generated by Compiler)

JSA 16, FNC
ARG 00, I
ARG 00, CONST.

9. 1.4.3 Example of a FORTRAN Main Program and a MACRO Subprogram Both Referencing COMMON.

9-3

T F40 V013 28-NOV-69 12:24

DIMENSION A(5) , B(3 ,4) ,C(3)

1M BLOCK 0
" 0

COMMONC ~
sg

COMMON/A,! A/B/B/D/D
:z

A(2)=B(2,3)+C(3)+D

MOVE 02(D
FADR 02,B+7
FADR 02,C+2
MOVEM 02,A+1

CALL SUB2
JSA 16,SUB2

END

JSA 16,EXIT
MAIN.% RESET. 00,0

-0
JRST 1M

I
0

J.,.
COMMON

.J:"
I

C /.COMM./ 0
A /A,! 0
B /B/ 0
D /D/ 0

SUBPROGRAMS

FORSE.
JOBFF
SUB2
EXIT

SCALARS

D 0

ARRAYS

-0

~

A
B
C

MAIN.

o
o
o

ERRORS DETECTED: 0

2K CORE USED

.MAIN MACRO. V36 12:23 28-NOV-69

000000
000001
000002
000003
000004
000005

NO ERRORS DETECTED

PROGRAM BREAK IS 000006

000000
200000
202000
200000
202000
267716

SYMBOL TABLE

A
SUB2

000000 EXT
000000' INT

000000
000002
000003
000000
000000
000000

SUB2:

B
.COMM.

EXTERNAL .COMM. ,A,B,D
ENTRY SUB2
o
MOVE
MOVEM
MOVE
MOVEM
JRA
END

000000 EXT
000003' EXT

0,A+2
0,B+3
O,.COMM.
O,D
16,(16)

D

I
;GET A(3) C)

;STORE IN B(1,2) 'f
;GET C
;STORE IN D
;RETURN TO FORTRAN PROGRAM
;END

000004' EXT

"T1

~
~

003466 IS THE PROGRAM BREAK
IORTR. 000334

STORAGE MAP LOOK. 002034
MTOP. 000000

MAIN. 000140 000035 MTPZ. 002030
""T1
0

NLI. 000000 ~
MAIN. 000146 NLO. 000000 ~
.COMM. 000150 FORSE. 000203 z

A 000153 lIB. 001141

B 000160 IN. 000000

D 000174 INF. 000000
INP. 002007

• MAIN 000175 000006 INPDV • 002203
NXTCR. 001162

SUB2 000175 NXTlN. 001172
ONLY1. 002204

JOBDAT 000203 000000 OUT. 000000
OUTF. 000000

FORSE. 000203 002374 OUTT. 002013
OVFLS. 002202

BUFCA. 001624 PAKFl. 002176 I

-0 RERDV. 002501
.......

I BUFHD. 002337 0
0- en

CHINN. 001121 RERED. 000000 I

CLOS. 002002 RESET. 000000

CLOSI. 002000 RIN. 000245

CLROU. 001763 RTB. 000000

CLRSY. 001nO SESTA. 002020

DADDR. 002276 SETOU. 001755

DATA. 000000 SUST. 000000

DEPOT. 001004 STAT. 001n4
DEVIC. 0024n TCNT1. 002506

DEVNO. 002172 TCNT2. 002507

DYNDV. 002212 TEMP. 002232

DYNND. 002356 TNAM1. 002133

ENDLN. 001047 TANM2. 002132

EOFFl. 002205 TPNTR. 002505

EOFTS. 001214 TYPE. 002504

EOL. 002275 UUOH. 001234

FI. 001112 WAIT. 002024

FIN. 000000 WTB. 000000

FMTBG. 002274 XIO. 000424

FMTEN. 002273
FNCTN. 001751 ERROR. 0025n 000431

BPHSE. 002777 ALPHO. 003250

DEVER. 002667
DPRER. 002767 DDIRT 00325'2 000002

DUM~R. 003041
ENDTP. 002772 DIRT. 003252

ERROR. 002577
ILLCH. 002634 DDOUBT 003254 000002

ILLMG. 003007
ILRE D. 003025 DOUBT. 003254

ILUUO. 003051
INIER. 002654 OF URT 003256 000002

LISTB. 002737
LOGEN. 002627 FLIRT. 003256

MSNG. 002707
NMLER. 003020 OF LOUT 003260 000002

NOROM. 002720
PARER. 003034 FLOUT. 003260

QTYI 003170
REDER. 002746 DINTI 003262 000002

TBLER. 002700
UUOM 003067 INTI. 003262 I

I-'
-0
I WLKER. 002731
'-I

0

DOCTI 003264 000002 'l
I

EXIT 003230 000002 OCTI. 003264

EXIT 003230 DINTO 003266 000002
EXIT. 003231

IOADR. 003232 000014
INTO. 003266

DOCTO 003270 000002
IOADR. 003232

OCTO. 003270
DALPHI 003246 000002

DLINT 003272 000002
ALPHI. 003246

LINT. 003272
DALPHO 003250 000002

DLOUT 003274 000002
.."
0

LOUT. 003274 ;;:0
-I

DNMLST 003276 000003
~ z

DELIM. 003300 ILLEG. 003465
NMLST. 003276 LEGAL 003462

DTFMT 003301 000002 LOADER 3K CORE " 3+3K MIV< 1225 WORDS FREE 0
:;::c

TFMT. 003301 -I
sg

DBINWR 003303 000002
:z

BINDT. 003303

BINEN. 003303
BINWR. 003303
INPT. 003303

DTPFCN 003305 000002

TPFCN. 003305

DEVTB. 003307 000123
I

-0
......

003363 0 I DATTB. 00 (XI

DEVLS. 003344 I

DEVND. 003352
DEVTB. 003307
DVTOT. 000035
MBFBG. 003352
MTABF. 003353
MTACL. 003421
NEG1. 000005
NEG2. 000007
NEG3. 000003
NEG5. 000002
TABP1. 003363
TABPT. 003362

PDLST. 003432 000025

PDLST •. 003432

ILL 003457 000007

ILL 003457

-109- FORTRAN
9.2 MACRO MAIN PROGRAMS WHICH REFERENCE FORTRAN SUBPROGRAMS

9.2.1 Calling Sequences

The MACRO code which calls the FORTRAN supprogram should be the same as that produced by the

FORTRAN IV compiler when it calls a subroutine. That is:

MACRO Code

JSA 16, subprog
ARG code 1, adq
ARG code2 , adr2

where
subprog

adr1, adr2 ,·· •

code l' code2

is the name of the subprogram

are the ad~esses of the arguments

are the accumulator fields of the ARG instruction
which indicate the type of argument being passed
to the subprogram. These codes are as follows:

o Integer argument
1 Unused
2 Real argument
3 Logical argument
4 Octal argument
5 Hollerith argument
6 Double-precision argument
7 Complex argument

Both subroutines and functions are called in this manner.

9.2.2 Returning cl Answers

A FORTRAN subroutine returns its answers in specified locations in the main program. These locations may be

given as variable names in COMMON or as argument names.

A FORTRAN function returns its answer in accumulator 0, if a single word result, or in accumulators 0 and 1,

if a double-precision or complex result. A function may also return its answer in specified locations given by

argument names in the CALL, or variable names in COMMON; in any event, however, it must return an answer

in accumulator 0 (or accumulators 0 and 1).

If it is desired to reference a common block of data in both the MACRO main program and the FORTRAN sub­

program, it is necessary to set up the common area first by loading a FORTRAN BLOCK DATA program before

the MACRO main program and the FORTRAN subprogram.

9-9

FORTRAN -110-
9.2.3 Example of Subprogram linkage

The following is an example of a FORTRAN subroutine being called by a MACRO main program. Both programs

reference common data. Read and write statements have been omitted for simplification. Because the FORTRAN

operating system, FORSE., sets up I/o channels at run time, the MACRO programmer must be sure not to ini­

tialize a device on a channel that FORSE. will then try to use, unless he releases the device before FORSE. is

called. FORSE. initializes the first device encountered in the user program on software channell, the second

on channel 2, etc.

It is possible to release a device from its associated channel in a FORTRAN program by a call to the subroutine

RElEAS. Channels one through seventeen are available for I/O. If a FORTRAN user wishes to write MACRO

programs which do I/o, he may use either FORTRAN UUO's or the channel numbers less than or equal to seven­

teen but greater than the largest number used by FORSE.

The FORTRAN RESET. UUO should be the first instruction executed in any program which accesses FORTRAN

subroutines. For this reason the FORTRAN operating system, which contains the FORTRAN UUO handler

routine, must be declared external in the MACRO main program. This causes FORSE. to be loaded. In general,

any program in the FORTRAN library referenced in a MACRO program must be declared external. This results

in the searching of LIB40 by the linking loader and loading the referenced program.

9-10

BLKDTA.F4 F40 V016 22-JAN-70 15:46

1M BLOCK 0 BLOCK DATA

COMMON/ A/ A/B/B/C/C

COMMON D

DIME NSION A(5) ,B(2,3)

END

DAr. BLOCK 0

COMMON
A /A/ 0
B /B/ 0
C /C/ 0
D /.COMM./ 0

SUBPROGRAMS I
-0
I ~

JOBFF I

SCALARS

C 0
D 0

ARRAYS

A 0
B 0

DAr. ERRORS DETECTED: 0

2K CORE USED

" 0

~
~ :z

.MAIN MACRO. V40 16:05 22-JAN-70
START .MAC

000000 015000 000000 START:
000001 200000 000000
000002 202000 000000
000003 200000 000000
000004 202000 000000
000005 200040 000002
000006 202040 000005
000007 266700 000000

000010 266700 000000

NO ERRORS DETECTE D
-0
I

PROGRAM BREAK IS 000011 -N

START • MAC SYMBOL TABLE

A 000001' EXT
C 000003' EXT
START 000000' ENT

ENTRY START
EXTERNAL
RESET. 00,0
MOVE O,A
MOVEM O,B
MOVE O,C
MOVEM O,.COMM.
MOVE 1,A+2
MOVEM 1,B+5
JSA 16,ARGS
JSA 16,EXIT •

END START

ARGS
EXIT.
.COMM.

11 o
~

.COMM. ,A, B,C,ARGS,FORSE. ,EXIT. ~

000007' EXT
000010' EXT
000004' EXT

;DO FORTRAN UUO RESET, FOUND IN FORSE :z
;GET A(1)
;STORE IN B(1,1)
;GET C
;STORE IN D
;GET A(3)
; STORE IN B(2,3)
;GO TO FORTRAN SUBROUTINE ARGS
;EXIT. FORTRAN EXIT ROUTINE WHICH PRINTS
;OUT SUMMARIES AND ALSO CALLS MONITOR
;LEVEL EXIT UUO. USER HAS OPTION TO USE
;EITHER

;END

B
FORSE.

000002' EXT
000000 EXT

I
I-'
I-'
N

I

ARGS.F4 F40 V016 22-JAN-70 15:46

1M BLOCK 0 SUBROUTINE ARGS

COMMON / A! A/B/B/C/C

COMMON D

DIME NSIO N A(5), B{2, 3)

A(1)=B{1 ,1)+C+D

MOVE 02,C
FADR 02,D
FAOR 02,B
MOVEM 02,A

RETURN

JRST 2M
END

JRST 2M I

-0 ARGS% ARG 00,0
......

I MOVEM 15, TEMP.
......

-'
\III

I
w MOVEM 16, TEMP.+1

JRST 1M
2M MOVE 15, TEMP.

MOVE 16, TEMP.+1
JRA 16,0(16)

COMMON
A /A! 0
B /B/ 0
C /C/ 0
D /.COMM./ 0

SCALARS

ARGS 17
C 0 ."

0
D 0 ~

~

ARRAYS

A 0
B 0

ARGS ERRORS DETECTE D: 0
2K CORE USED

003471 IS THE LOW SEGMENT BREAK

.MAIN STORAGE MAP 16:06 22-JAN-70

STARTING ADDRESS 000155 PROG .MAIN FILE START

DAT. 000140 000015

-0 DAT. 000140 A 000140
I .COMM. 000154
~

.MAIN 000155 000011

START 000155

ARGS 000166 000020

ARGS 000174

JOB DA T 000206 000000

FORSE. 000206 002374

BUFCA. 001627 BUFHD. 002342
CLOS!. 002003 CLROU. 001766
DATA. 000000 DEPOT. 001007
DYNDV. 002215 DYNND. 002361
EOFTS. 001217 EOL. 002300
FMTBG. 002277 FMTEN. 002276
lIB. 001144 IN. 000000
INPDV. 002206 IORTR. 000337
MTPZ. 002033 NLI. 000000
NXTLN. 001175 ONLY1. 002207
OUTT. 002016 OVFLS. 002205

B 000145

CHINN. 001124
CLRSY. 001773
DEVIC. 002502
ENDLN. 001052
FI. 001115
FNCTN. 001754
INF. 000000
LOOK. 002037
NLO. 000000
OUT. 000000
PAKFL. 002201

C

CLOS.
DADDR.
DEVNO.
EOFFL.
FIN.
FORSE.
INP.
MTOP.
NXTCR.
OUTF.
RERDV.

000153

002005
002301
002175
002210
000000
000206
002012
000000
001165
000000
002504

-" o
::::c
--f

~
:z

I
~
~
.J::o

I

RERED. 000000 RESET. 000000 RIN. 000250 RTB. 000000
SESTA. 002023 SETOU. 001760 SLIST. 000000 STAT. 001777
TCNTl. 002511 TCNT2. 002512 TEMP. 002235 TNAM1. 002136
TNAM2. 002135 TPNTR. 002510 TYPE. 002507 UUOH. 001237
WAIT. 002027 WTB. 000000 XIO. 000427

ERROR. 002602 000431

BPHSE. 003002 DEVER. 002672 DPRER. 002772 DUMER. 003044
ENDTP. 002775 ERROR. 002602 ILLCH. 002637 ILLMG. 003012
ILRED. 003030 ILUUO. 003054 INIER. 002657 LISTB. 002742
LOGEN. 002532 MSNG. 002712 NMLER. 003023 NOROM. 002723
PARER. 003037 QTY1 003173 REDER. 002751 TBLER. 002703
UUOM 003072 WLKER. 002734

EXIT 003233 000002

EXIT 003233 EXIT. 003234

IOADR. 003235 000014
I

-0
I--'
I--' I IOADR. 003235 I.J1 ...

01 I

DALPHI 003251 000002

ALPHI. 003251

DALPHO 003253 000002

ALPHO. 003253

DDIRT 003255 000002

DIRT. 003255

DDOUBT 003257 000002

DOUBT. 003257

DFLIRT 003261 000002

FLIRT. 003261
"T1

DFLOUT 003263 000002 a
::::0
-I

FLOUT. 003263 S!
DINTI 003265 000002

:z

INTI. 003265

DOCTI 003267 000002

OCTI. 003267

" DINTO 003271 000002 0
:::c
......-i

INTO. 003271 :::c
J>
:z

DOCTO 003273 000002

OCTO. 003273

DLINT 003275 000002

LINT. 003275

DLOUT 003277 000002

LOUT. 003277

DNMLST 003301 000003

DELIM. 003303 NMLST. 003301

DTFMT 003304 000002

TFMT. 003304 I
~

-0
I DBINWR 003306 000002

~
(j)

0- I

BINDT. 003306 BINEN. 003306 BINWR. 003306 INPT. 003306

DTPFCN 003310 000002

TPFCN. 003310

DEVTB. 003312 000123

DATTB. 003366 DEVLS. 003347 DEVND. 003355 DEVTB. 003312

DVTOT. 000035 MBFBG. 003355 MTABF. 003356 MTACL. 003424

NEG1. 000005 NEG2. 000007 NEG3. 000003 NEG5. 000002

TABP1. 003366 TABPT. 003365

PDLST. 003435 000025

PDLST. 003435

ILL 003462 000007

ILL 003462 ILLEG. 003470 LEGAL 003465

LOADER 3K CORE
3+3K MAX. 1222 WORDS FREE

-117-

10.1 LOCATIONS

FORTRAN

CHAPTER 10

ACCUMULATOR CONVENTIONS FOR
MAIN PROGRAMS AND SUBPROGRAMS

Locations specified in the calling sequence for a FORTRAN subprogram may be either required locations or

defined locations. A required location is a memory location whose address, is specified in the calling sequence

for a subprogram. For example, X is a required location in the calling sequence

JSA 16, SQRT
ARG X

A defined location is a memory location whose address is specified in the definition of a calling sequence. The

location does not appear in the calling sequence. For example in the calling sequence

MOVEI 16, MEMORY
PUSHJ 17, DFAS.O

MEMORY is required, and ACO, AC1, and AC2 are defined by DFAS.O.

10.2 ACCUMULATORS

10.2.1 Accumulators 0 and 1

When used for subprograms called by JSA, accumulators 0 and 1 may be used at any time without restoring their

original contents. These accumulators cannot be required locations. A FORTRAN function returns its answer in

accumulator 0 (if a single word result) or in accumulators 0 and 1 (if a double-precision or complex result). A

function may also return its answer in specified locations (given by argument names in the CALL) or variable

names; in any event, an answer must be returned either in accumulator 0 or in accumulators 0 and 1.

When used for subprograms called by PUSHJ 17, adr, accumulators 0 and 1 may have their contents destroyed.

Some subprograms by their definition return an argument in accumulator 0 or 1.

10-1

FORTRAN -118-
10.2.2 Accumulators 2 Through 15

AccumulatGrs 2 through 15 must not be destroyed by FORTRAN functions, but may be destroyed by FORTRAN

subroutines. (Presently subroutines must preserve the contents of accumulator 15.) The contents of these accu­

mulators must not be destroyed by subprograms called by PUSHJ unless the definition of the subroutines requires

it.

10.2.3 Accumulators 16 and 17

Accumulator 16 should be used only for JSA-JRA subprogram calls unless the definition of the subprogram se­

quence requires otherwise. The contents of accumulator 16 may be destroyed by subprograms called by PUSHJ

17, adr.

Accumulator 17 must be used only for pushdown list operations.

10.3 UUOS

User UUO's are not considered subprograms and may not change any locations except those required for input

and the contents of accumulators 0 or 1.

10.4 SUBPROGRAMS CALLED BY JSA 16, ADDRESS

The calling sequence is

JSA 16, address
ARG adrl
ARG adr2

ARG adrN

where each ARG adrN corresponds to one argument of the subprogram.

There mayor may not be arguments. If there are arguments, they must be in accumulators 2 through 15. Sub­

routines called with the FORTRAN CALL statement may, by definition, return an argument in accumulator 0 or

1. Subprograms that are FORTRAN functions (such as SIN or SQRT) may destroy the contents of accumulators 0

and 1. Results are returned in accumulator 0 for single word results and accumulators 0 and 1 for double word

results.

10.5 SUBPROGRAMS CALLED BY PUSHJ 17, ADDRESS

See section 10.2. In addition, three consecutive accumulators are required for double-precision addition, sub­

traction, multiplication, and division operations. The contents of the third accumulator may be destroyed. The

10-2

-119- FORTRAN
"to memory" modes also leave the answer .in the defined accumulators. The two arguments of the double-precision

operation cannot be in the same accumulators. Complex addition, subtraction, multiplication, and division op­

erations do not destroy locations except those required for the answer and accumulator 16. The two arguments of

the complex operation must not be in the same accumulator.

10.6 SUBPROGRAMS CALLED BY UUOS

Subprograms called by UUO's may change the contents of accumulators 0 and 1 only.

Subprogram
Called

By:
Accumulators

0, 1

2-15

16
Reserved for
JSA-JRA
Operations
(except as not-
ed for PUSHJ)

17
Reserved for
Pushdown
List Opera-
tions

Table 10-1
Accumulator Conventions for

PDP-10 FORTRAN IV Compiler and Subprograms

JSA PUSHJ

Functions Subroutines

1) May be destroyed. 1) May be destroyed. 1) May be destroyed.
2) May not be used to 2) May not be used 2) May be used to

pass arguments. to pass arguments. pass arguments if
3) A result must be 3) Results must not the subprogram is

returned in 0 or be returned. defined with an
o and 1. argument in 0 or

o and 1.
3) Results may be re-

turned if the sub-
program is so de-
fined.

1) Must be preserved. 1) May be destroyed. 1) Must be preserved
2) Arguments may be 2) Arguments may be' unless the defini-

passed. passed. tion of subprogram
3) Results may be re- 3) Results must not forces results to

turned if required be returned. be returned.
by cal ling se- 2) Arguments may be
quence. passed.

3) Results may be re-
turned if the sub-
program is so de-
fined •

1) Must be preserved. 1) Must be preserved. 1) Is destroyed.
2) May not be used 2) May not be used 2) Used for argument

to pass arguments. to pass arguments. address.
3) Results must not be 3) Results must not 3) Results must not be

returned. be returned. returned.

1) Must be preserved. 1) Must be preserved. 1) Must be preserved.
2) May not be used 2) May not be used 2) May not be used

to pass arguments. to pass arguments. to pass arguments.
3) Results must not be 3) Results must not 3) Results must not be

returned. be returned. returned.

10-3

UUO

1) May be destroyed.
2) May be used to pass

arguments except as
defined.

3) Results must not be
returned.

1) Must be preserved.
2) Arguments may be

passed.
3) Results must not be

returned.

1) Must be preserved.
2) May not be used to

pass arguments.
3) Results must not be

returned.

1) Must be preserved.,
2) May not be used to

pass arguments.
3) Results must not be

returned.

FORTRAN -120-

I

-121- FORTRAN

CHAPTER 11

SWITCHES AND DIAGNOSTICS

11.1 FORTRAN SWITCHES AND DIAGNOSTICS

Switch

E

M

N

S

Table 11-1
FORTRAN Compiler Switch Options

Advance magnetic tape reel by one file.

Backspace magnetic tape reel by one file.

Meaning

Generate a CREF-type cross-reference listing. (DSK:CREF. TMP assumed if no list-dev
specified)

Complement: Do not produce cross-reference information (standard procedure) •

Print an octal listing of the binary program produced by the compiler in addition to the
symbolic listing output.

Complement: Do not produce octal I isting{standard procedure}.

Translate the letter D in column 1 as a space and treat the line as a normal FORTRAN
statement.

Complement: Translate the letter D in column 1 as a comment character and treat the
line as a comment {standard procedure}.

Include MACRO coding in the output listing.

Complement: Eliminate the MACRO coding from the output listing {standard procedure}.

Suppress output of error messages on the Teletype.

Complement: Output error messages on TTY {standard procedure}.

If the compiler is running on the KA-10, produce code for execution on the KI-lO and
vice-versa.

Skip to the logical end of the magnetic tape reel.

Rewind the magnetic tape reel.

Zero the DECtape directory.

tSwitches A through C and T, W, and Z must immediately follow the device name or filename.ext to which
the individual switch applies.

Version 26 FORTRAN
Version 32 lIB40 11-1 May 1972

I

I

FORTRAN -122-
Table 11-2

FORTRAN Compiler Diagnostics
(Command Errors)

Message

?BINARY OUTPUT ERROR dev:filename.ext

?CANNOT FIND dev:filename.ext

?DEVICE INPUT ERROR for command string

IMPROPER 10 FOR DEVICE dev:

ILLEGAL MEMORY REFERENCE AT loc
COMPILATION TERMINATED

?INPUT DATA ERROR dev:filename.ext

?x IS A BAD SWITC H

?x IS AN ILLEGAL CHARACTER

?dev: IS NOT AVAILABLE

LINKAGE ERROR

?LINKAGE ERROR FOR dev:filename

?LISTING OUTPUT ERROR

?NO ROOM FOR filename.ext

?NO FILE NAMED filename.ext

?NOT ENOUGH CORE FOR LINKAGE

?SYNT AX ERROR IN COMMAND STRING

?X SWITCH ILLEGAL AFTER LEFT ARROW

?X SWITCH ILLEGAL AFTER FIRST STANDARD
FILE

?X SWITCH, NO LISTING FILE

?INSUFFICIENT CORE - COMPILATION
TERMINATED

Version 24 FORTRAN
Version 31 LIB40

Meaning

An output error has occurred on the device specified for
the binary program output.

Filename.ext cannot be found on this device.

Device error occurred while attempting to read Monitor
command fi Ie.

An input device is specified for output (or vice versa) or
an illegal data mode was specified (e.g., binary output
to TTY).

An illegal memory reference has occurred and compila­
tion has stopped. The current output files wi II be closed
and the next source files read.

A read error has occurred on the source device.

This specified switch is not recognizable.

A character in a command string typein is not recogniz­
able (e.g., FORM-FEED).

Either the device does not exist or it has been assigned
to another job.

Input device error while doing Dump Mode I/o, or not
enough core was available to execute the newly loaded
program.

Specified dev:filename appears in a I Monitor command
string, but cannot be run for some reason.

An output error has occurred on the device specified for
the listing output.

The directory on dev: DTAn is full and cannot accept
filename.ext as a new file, or a protection failure oc­
curred for a DSK output file.

An illegal filename has been used.

Not enough core available to load (with dump mode I/O)
the program specified in a ! Monitor command string.

A syntax error has been detected in a command string
typein (e.g., the "'has been omitted).

Cannot change machine type with a file or clear source
directory.

Cannot clear directory after start of compilation (Batch
Mode).

A CREF listing requires a listing file.

The compiler has insufficient table space to compile the
program.

11-2 February 1971

I

-123 FORTRAN
Table 11-2 (Cont)

FORTRAN Compiler Diagnostics
(Command Errors)

Message Meaning

WORK STACK OVERFLOW AT loc The pushdown list used by the compi I er for mach ine
COMPILATION TERMINATED language subroutine calls has overflowed. Compilation

has stopped. The current output files will be closed
and the next source fjl e read.

Table 11-3
FORTRAN Compiler Diagnostics

(Compil ation Errors)

Message

1-1 DUPLICATED DUMMY VARIABLE IN
ARGUMENT STRING

1-2 ARRAY NAME ALREADY IN USE

1-3 ATTEMPT TO REDEFINE VARIABLE
TYPE

1-4 NOT A VARIABLE FORMAT ARRAY

1-5 NAME ALREADY USED AS NAMELIST
NAME

1-6 DUPLICATED NAMELIST NAME

1-7 A NAME APPEARS 1WICE IN AN
EXTERNAL STATEMENT

1-8 ARGUMENT TYPE DOESN'T AGREE
WITH FUNCTION SPEC

1-9 THIS FUNCTION REQUIRES MORE
ARGUMENTS

1-10 SUBPROGRAM NAME ALREADY IN
USE

1-11 DUMMY ARGUMENT IN DATA
STATEMENT

Version 24 FORTRAN
Version 31 LIB40

Meaning

A dummy variable (identifier) may appear only once in
anyone argument set representing the arguments of a
subprogram. (See Section 7.3)

Any attempt to re-dimension a variable or redefine a
scalar as an array is illegal. (See Section 6.1.1)

Once a variable has been defined as either complex,
double precision, integer, logical, or real it may not
be defined again. (See Section 2.2,6.3)

The variable which contains the FORMAT specification
read-in at object time must be a dimensioned variable,
i . e., an array (see Sec ti on 5. 1 . 1) or a subprogram ar­
gument was used as a NAMELIST name with the subpro­
gram (see Section 5.1.2).

After a NAMELIST name has been defined, it may ap­
pear only in READ or WRITE statements and may not be
defined again. (See Section 5.1 .2)

A NAMELIST name has already been used as a scalar
array or global dummy argument. (See Section 5.1 .2)

A subprogram name has been declared EXTERNAL more
than once. (See Section 7.7)

The actual arguments for a function do not agree in
type with the dummy arguments in the specification of
the function.

Not enough arguments were supplied for a function.

A subprogram name has appeared in another statement
as a scalar or array variable, arithmetic function state­
ment name, or COMMON block name. (See Section
7.5)

Dummy arguments may not appear in DATA statements.
(See Section 6.2.1)

11-3 October 1971

I

FORTRAN -124-
Table 11-3 (Cont)

FORTRAN Compiler Diagnostics
(Compilation Errors)

Message

1-12 NOT A SCALAR OR ARRAY

1-13 ILLEGAL USE OF DUMMY ARGUMENT

1-14 ILLEGAL DO LOOP PARAMETER

1-15 I/o VARIABLES MUST BE SCALARS OR
ARRAYS

1-16 A CONFLICT EXISTS WITH A COMMON
DECLARA nON

S-1 ILLEGAL NAME OR DELIMITER OR
KEY CHARACTER

S-2 STATEMENT KEYWORD NOT
RECOGNIZED

S-3 ILLEGAL FIELD SPECIFICA nON

S-4 SCALAR VARIABLE - MAY NOT BE
SUBSCRIPTED

S-5 ILLEGAL TYPE SPECIFICA nON

S-6 ARGUMENT IS NOT SINGLE LETTER

S-7 'NAMELIST' NOT FOLLOWED BY"/"

S-8 ILLEGAL CHARACTER IN LABEL

Version 24 FORTRAN
Version 31 LIB40

Meaning

The variabl e defining the starting address for an
ENCODE/DECODE statement must be a scalar or an
array. (See Section 5.4)

The I/o unit name of a READ/WRITE statement is not
a scalar or array. (See Sections 5.2.6, 5.2.7)

An attempt to ASSIGN a label number to a variable that
is not a scalar or array. (See Section 2.2)

An attempt to GO TO through 0 variable that is not a
scalar or array. (See Section 4.1)

Dummy arguments may be used with functions or subpro­
grams only. (See Sections 7.4. I, 7.5.1)

The DO index must be a non-subscripted int':lger variable
while the initial, limit, and increment values of the in­
dex must be an integer expression - the index may not
be zero. (See Section 4.3)

Referencing data in an I/o statement other than scalars
or arrays is illegal. (See Section 5.2)

The function name used was previously declared a scalar
variable in a COMMON statement.

A variable name doesn't start with an alphabetic charac­
ter, or a delimiter such as the left parenthesis that be­
gins a format is missing, or a key character such as the
letter D in BLOCK DATA is missing.

A statement keyword such as ERASE was not recognized,
possibly due to misspelling (e.g., ERASC 16).

The field width or decimal specification in a FORMAT
statement must be integer. The number of Hollerith
characters in an H specification must be equal to the
number specified. (See Sections 5.1 .1 .1, 5.1.1.6)

An undimensioned variable (a scalar variable) is being
illegally subscripted (see Section 2.2.1) or a scalar
variable is subscripted in an ENCODE/DECODE state­
ment (see Section 5.4) .

The type of constant specified is illegal or misspelled.
(See Section 2.1)

Arguments in parentheses must be single letters in
IMPLICIT statement. (See Section 6.3.1)

The first character following NAMELIST must be /.
(See Section 5.1 .2)

A non-numeric character was detected in the label field
of the statement, possibly because tabs or spaces are
missing.

11-4 October 1971

-125 FORTRAN
Table 11-3 (Cont)

FORTRAN Compiler Diagnostics
(Compilation Errors)

Message

S-9 MISSING COMMA OR SLASH IN
SPECIFICATION STATEMENT

S-10 ILLEGAL ARITHMETIC "IF" -
TOO MANY LABELS

S-11 A NUMBER WAS EXPECTED

S-12 IMPLICIT TYPE RANGE OVERLAPS
PREVIOUS SPECIFICATION

S-13 ATTEMPT TO USE AN ARRAY OR
FUNCTION NAME AS A SCALAR

S-14 ARRAY NOT SUBSCRIPTED

S-15 ILLEGAL USE OF AN ARITHMETIC
FUNCTION NAME

S-16 MULTIPLE RElURN ILLEGAL
WITHOUT STATEMENT LABEL ARG

S-17 INCORRECT PAREN COUNT OR
MISSING IMPLIED DO INDEX

S-18 INVALID INDEX IN DO-LOOP OR
IMPLIED DO-LOOP

S-19 EQUIVALENCE REQUIRES TWO OR
MORE ELEMENTS

S-20 ILLEGAL DEFINITION OF AN
ARITHMETIC STATEMENT FUNCTION

S-21 MISSING COMMA IN INPUT/OUTPUT
LIST

S-22 STATEMENT CONTINUES PAST
RECOGNIZED END POINT

S-23 ILLEGAL COMPLEX CONSTANT

Version 24 FORTRAN
Version 31 L1B40

Meaning

A specification statement (see Section 7.8) requires a
comma or slash and it is missing.

An arithmetic "IF" statement must have no more or less
than three statement labels to transfer to. Special op­
timization will occur if two of the labels are the same,
or one or more labels refer to the next statement.

Only arrays which are subprogram arguments can have
adjustable dimensions. (See Section 6.1.1.1)

An implicit type range encompasses a character that has
already been given an implicit type.

Variables may be either scalar or array but not both.
Variables appearing in a DIMENSION statement must
be subscripted when used. (See Section 2.2) Function
names must be followed by at least one argument enclosed
in parentheses (See Section 7.4).

See S-13

Arithmetic function definition statement name is being
used without arguments (i.e., as a scalar) in an arithme­
tic expression. (See Section 7.3)

A dollar sign ($) or an asterisk (*) must have appeared in
the argument list of this subprogram to represent the po­
sition of a statement label argument in the call •

The number of left and right parentheses does not match,
or an undefined index variable was used in defining a
DO loop (see Section 5.2.1), or the number of implied
DO loops and the number of matching parentheses dif­
fer in a DATA statement. (See Section 6.2.1)

The index of a DO statement must be a non-subscripted
integer variable and must not be zero. (See Section
4.3) The index is not used as a subscript in a DATA list.
(See Section 6.2.1)

The EQUIVALENCE statement must have more than one
argument because it causes variables to share the same
location. (See Section 6.1.3)

The statement function continues past its recognized end
point.

An input/output list continues past its recognized end
paint.

A statement other than those mentioned above continued
past its recognized end point.

The parentheses of the complex constant enclose a logical,
Hollerith, or complex constant.

11-5 October 1971

FORTRAN -126-

0-1

0-2

0-3

I 0-4

A-I

A-2

A-4

I A-5

M-l

M-2

M-3

M-4

M-5

M-6

M-7

Table 11-3 (Cont)
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message

BLOCK DATA NOT SEPARATE PRO­
GRAM

SUBROUTINE IS NOT A SEPARATE
PROGRAM

STATEMENT OUT OF PLACE

EXECUTABLE STATEMENTS ILLEGAL
IN BLOCK DATA

MINIMUM VALUE EXCEEDS MAXIMUM
VALUE

ATTEMPT TO ENTER A VARIABLE INTO
COMMON TWICE

ATTEMPT TO EQUNALENCE A SUB­
PROGRAM NAME OR DUMMY
ARGUMENT

NOT A CONSTANT OR DUMMY
ARGUMENT

CAUTION ** COMMON VARIABLE
PASSED AS ARGUMENT

TOO MANY SUBSCRIPTS

WRONG NUMBER OF SUBSCRIPTS

CONSTANT OVERFLOW

ILLEGAL 'IF' ARGUMENT

ILLEGAL CONVERSION IMPLIED

LABEL OU T OF RANG E OR ARRAY
TOO LARGE

UNTERMINATED HOLLERITH STRING

Meaning

Block Data must exist as a separate program. (See
Sections 6.2.2, 7.6)

A subroutine following a main pragram or another sub­
routine subprogram may have no statement between it
and the preceding·programs END statement and must be­
gin with a SUBROUTINE statement. The previous pro­
gram must have been terminated properly. (See Section
7.5)

The IMPLICIT specification statement and any arithmetic
function definition statement must appear before any ex­
ecutable statement. (See Chapter 6)

Block DATA statements cannot contain executable
statements .

Minimum value of an array exceeds the maximum value
speCified. (See Section 6.1.1)

A variable name may appear in COMMON statement
only once. (See Section 6.1.2)

An identifier defined as a subprogram name cannot ap­
pear in EQUN ALENCE statements in the defining pro­
gram. Dummy argument identifiers of a subprogram may
not appear in EQUNALENCE statements in that subpro­
gram. (See Secti ons 6. 1 .3, 7.1)

Only constant and dummy arguments may be used as ar­
guments in dimension statements. (See Section 7.4.1)

The variable may be mul tiply defined in the call ed sub­
program. (See Sections 7.4.1, 7.5.1)

An array variabl e appears with more subscripts than
specified. (See Sections 2.2.2, 6.1.1)

An array variable appears with too few subscripts. (See
Sections 2.2.2, 6.1.1)

Too many significant digits in the formation of a con­
stant or the exponent is too large. (See Section 2.1)

Logical IF or DO statement adjacent to a logical IF
statement, or illegal expression within a logical IF
statement. (See Sections 4.2.2, 4.3)

Attempt to mix double precision and complex data in
the same expression. (See Section 2.3.1)

Illegal statement label (See Section 1.1.1) or array size
is greater than 2 18_1 •

A missing single quote or fewer than n characters follow­
ing an "nH II specification. (See Section 5.1 .1 .6)

Version 24 FORTRAN
Version 31 LIB40 11-6 October 1971

-127- FORTRAN
Table 11-3 (Cont)

FORTRAN Compiler Diagnostics
(Compilation Errors)

Message

M-S SYSTEM ERROR - NO MORE SPACE
FOR RECURSIVE STORAGE

M-9 TOO MUCH.DATA - WRONG ARRAY
SIZE OR LITERAL TOO LONG

M-10 ILLEGAL DO LOOP CLOSE

M-ll MORE DATA NEEDED - LITERAL TOO
SHORT OR TYPE CONVERSION EXPECTED

M-12 NON-INTEGER PARAMETER IN 'DO'
STATEMENT

M-13 NON-INTEGER SUBSCRIPT

M-14 ILLEGAL COMPARISON OF COMPLEX
VARIABLES

M-15 TOO MANY CONTINUATION CARDS

M-16 NON-INTEGER I/o UNIT OR
CHARACTER COUNT

M-17 SYSTEM ERROR-ROLL OUT OF RANGE

M-1S SYSTEM ERROR - NO MORE SPACE
FOR RECURSNE CALLS

I M-19 ILLEGAL USE OF STATEMENT LABEL

M-20 ILLEGAL RECURSNE CALL

EXCESSNE COUNT

OPEN DO LOOPS

UNDEFINED LABELS

Version 26 FORTRAN
Version 32 LlB40

Meaning

The compiler's work roll is too small to hold the parts of
all the subexpressions this statement implies. Break this
statement or reassemble the compiler with a larger work­
roll parameter (WORLEN=150S at present).

The list of DATA constants defines more words than the
list of DATA variables specifies. This may be due to an
array of the wrong size in the list of DATA variables, or
definition of an integer, real ,or logical DATA variable
wi th a Holl erith constant of more than five characters.

III egal statement terminating a DO loop. (See Section
4.3)

The list of DATA constants defines fewer words than the
list of DATA variables specifies. This may be due to a
double precision or complex DATA variable defined
with a Hollerith constant of less than six characters, or
a double precision DATA variable defined with a real
constant.

DO statement parameters must be integers. (See Section
4.3)

Array subscripts must be integer constants, variables, or
expressi ons • (See Section 4.3)

The only comparison allowed of complex variables is
.NE. or .EQ. (See Sections 2.2,2.3)

More than 19 continuation cards'~ (See Section 1.1.2)

The I/o unit variable of a READ/WRITE statement, or
the character count variable of an ENCODE/DECODE
statement, is not an integer variabl e. (See Sections
5.2.6,5.2.7,5.4)

Compiler error. Report this message and its circumstances
via a Software Troubl e Report.

The compiler's exit roll is too small to hold the return
addresses for all the recursive subroutine calls this state­
ment requi res to be compi! ed . Break up the statement or
reassemble the compiler with Q larger exit roll parameter
(EXLEN1=201S at present).

A GO TO or IF statement transfers to itself.

The statement function called itself. Recursive calls are
illegal in the FORTRAN language.

The number specified is greater than the maximum pos­
sibl e number of characters in a statement.

The list of statements are specified in DO statements
but not defined.

The list of labels that do not appear in the label field.

11-7 May 1972

I

FORTRAN -128-
Table 11-3 (Cont)

FORTRAN Compiler Diagnostics
(Compilation Errors)

Message Meaning

MUL TIPL Y DEFINED LABELS The list of labels that appeared more than once in the
label field.

ALLOCA TION ERRORS The list of EQUNALENCEd COMMON variables which
have attempted to extend the beginning of a COMMON
block.

Table 11-4
FORTRAN Operating System Diagnostics

(Execution Errors)

Message

?BLOCK TOO LARGE OR QUOTA
EXCEEDED ON dev

?CANNOT ACCESS FORTR.SHR­
GETSEG ERROR CODE xx

?dev: NOT AVAILABLE

?DEVICE NUMBER n IS ILLEGAL

?DEVICE NUMBER n MUST BE DSK FOR
RANDOM ACCESS

?DIRECT ACCESS DEVICE NUMBER n IS
ILLEGAL

ENCODE - DECODE ERROR

END OF FILE ON dev:

?END OF TAPE ON dev:

?FILE NAME filename.ext NOT ON
DEVICE dev:

?ILLEGAL CHARACTER, x, IN FORMAT

?ILLEGAL CHARACTER, x, IN INPUT STRING

?ILLEGAL MAGNETIC TAPE OPERATION,
TAPE dev:

?ILLEGAL PHYSICAL RECORD COUNT,
TAPE dev:

?ILLEGAL USER UUO uuu AT USER loc

?INPUT DEVICE ERROR ON dev:

Version 26 FORTRAN
Version 32 LlB40

Meaning

The user's program attempted to add blocks to a
random access file, which caused the block to be
too large or caused him to exceed his disk quota.

An error occurred when a GETSEG UUO was issued to
access FORTR.SHR. The codes are listed in Appendix E
of the TOPS-l0 Monitor Calls manual.

FORSE. tried to initialize a device which either does not
exist or has been assigned to another job.

A nonexistent device number was selected.

The device for random access operations must be disk.

Only devices 1 through 17 can be used for random
access.

The character count in an ENCODE or DECODE state­
ment was incorrect.

A premature end-of-file has occurred on an input device.

The end of tape marker has been sensed during input or
output

Filename.ext cannot be found in the directory of the
specified device.

The illegal character x is not valid for a FORMAT
statement.

The illegal character x is not valid for this type of input.

An attempt was made to skip a record after performing
output on a magnetic taFe.

FORSE. has encountered an inconsistency in the physical
record count on a magnetic tape.

An illegal user UUO to FORSE. was encountered at
location loc.

A data transmission error has been detected in the input
from a device.

11-8 May 1972

-129- FORTRAN
Table 11-4 (Cont)

FORTRAN Operating System Diagnostics
(Execution Errors)

. Message

?LlBRARY (FORTR.SHR) AND USER PROGRAM
VERSION NUMBERS ARE DIFFERENT

?MORE THAN 15 DEVICES REQUESTED

?NAMELIST SYNTAX ERROR

?NO ROOM FOR FILE filename.ext ON
DEVICE dev:

?NOT ENOUGH CORE FOR BUFFERS

program name NOT LOADED

?OUTPUT DEVICE ERROR ON dev:

I ?OUTPUT FIELD WIDTH OVERFLOW

?PARITY ERROR ON dev:

?REREAD EXECUTED BEFORE FIRST READ

?TAPE RECORD TOO SHORT ON UNIT n

?dev: WRITE PROTECTED

WARNING! / IS ILLEGAL IN ENCODE­
DECODE, END OF FORMAT ASSUMED

Meaning

The user's executable program is using an obsolete ver­
sion of the library. The program should be recompiled
so that the correct version of the library is used.

Too many devices have been requested.

Improper mode of I/O (octal or Hollerith), incorrect
variable name.

There is no room for the file in the directory of the
named device.

Either a call to BUFFER or a random access operation
tried to set up a buffer ring when not enough core was
available.

A dummy routine was loaded instead of the real one.
Generally, this error occurs when a loaded program is
patched to include a call to a library program whicn
was not called by the original program at load time.

A data transmission error has been detected during out­
put to a device.

A field overflowed on output and was filled with
asterisks.

A parity error has been detected.

A reread was attempted before initializing the first in­
put device.

The data list is too long on a binary tape READ opera­
tion.

The device is WRITE locked.

A slash was used in the FORMAT statement referenced
by an ENCODE or DECODE statement. Since slashes
are illegal in these stateme{'lts, the operating system
assumes that the slash is the end of the format.

The following messages are typed twice, when the error occurs, and in a final summary. When the error

occurs, the PC value is appended to the message. When the message appears in the final summary, the number

of times that the error occurred in the program is appended to the message.

?ACOS OF ARG > 1.0 IN MAGNITUDE

?ASIN OF ARG > 1.0 IN MAGNITUDE

?AHEMPT TO TAKE LOG OF NEGATIVE ARG

?ATTEMPT TO TAKE SQRT OF NEGATIVE ARG

?FLOATING DIVIDE CHECK

?FLOATING OVERFLOW

?FLOATING UNDERFLOW

?INTEGER DIVIDE CHECK

?INTEGER OVERFLOW

Version 26 FORTRAN
Version 32 L1B40 11-9 May 1972

FORTRAN

Message

-130-
Table 11-4 (Cont.)

FORTRAN Operating System Diagnostics
(Execution Errors)

Meaning

The following messages are issued when a LOOKUP, ENTER, or RENAME UUO error occurs. The number in

parentheses indicates the error code. Refer to Appendix E in the TOPS-10 Monitor Calls manual.

?(O) ILLEGAL FILENAME WAS NOT FOUND FILE xx ON DEVICE yy

?(1) NO DIRECTORY FOR PROJECT -PROGRAMMER NUMBER FILE xx ON DEVICE yy

?(2) PROTECTION FAILURE FILE xx ON DEVICE yy

?(3) FILE WAS BEING MODIFIED FILE xx ON DEVICE yy

?(4) RENAME FILE NAME ALREADY EXISTS FILE xx ON DEVICE yy

?(5) ILLEGAL SEQUENCE OF UUOS FILE xx ON DEVICE yy

?(6) BAD UFD OR BAD RIB FILE xx ON DEVICE yy

?(7) NOT A SAV FILE FILE xx ON DEVICE yy

?(10) NOT ENOUGH CORE FILE xx ON DEVICE yy

?(11) DEVICE NOT AVAILABLE FILE xx ON DEVICE yy

?(12) NO SUCH DEVICE FILE xx ON DEVICE yy

?(13) NOT TWO RELOC REG. CAPABILITY FILE xx ON DEVICE yy

?(14) NO ROOM OR QUOTA EXCEEDED FILE xx ON DEVICE yy

?(15) WRITE LOCK ERROR FILE xx ON DEVICE yy

1(16) NOT ENOUGH MONITOR SPACE FILE xx ON DEVICE yy

?(17) PARTIAL ALLOCATION ONLY FILE xx ON DEVICE yy

?(20) BLOCK NOT FREE ON ALLOCATION FILE xx ON DEVICE yy

NOTE

With the exception of the messages ILLEGAL USER UUO
uuu AT USER loe and ENCODE/DECODE ERROR, all
messages are followed by a second message

LAST FORTRAN I/O AT USER LOC adr

Several arithmetic error conditions can oecur during execution time.

a. Overflow - An attempt was made to create either a positive number greater than the largest repre­
sentable positive number or a negative number greater in magnitude than the most negative representable
number (in the appropriate mode).

Example: For I an integer,

377777777777 < I < 400000000000 (oc to I)

b. Underflow - An attempt was made to create either a positive non-zero number smaller than the
smallest representable positive non-zero number or a negative number smaller in magnitude than the
negative number whose magnitude is the smallest representable.

Version 24 FORTRAN
Version 31 L1B40 11-10 October 1971

I

-131-

Example: For X a real non-zero number,

777400000000 < X < 000400000000

c. Divide Check - An attempt was made to divide by zero.

FORTRAN

d. Improper Arguments for LIB40 math routines - For example, an attempt was made to find the arc
sine of an argument greater than 1.0.

When overflow, underflow, or divide check errors occur in the user's FORTRAN program, the Monitor calls the

LIMO routine OVTRAP. This routine replaces the resulting numbers, if the numbers are floating point, with

either zero in the case of underflow or ± the largest representable number in the cases of overflow and divide

check. OVTRAP does not affect numbers in integer mode.

Overflow, underflow, and divide check errors occurring in LIB40 math routines are handled differently from

when they occur in the user's program: only if the final answer from a routine is in error is an error condition

considered to exist. If the answer is floating point, it is set to the appropriate value as for user program errors.

Integer answers are handled in various ways. (See the Science Library and FORTRAN Utility Subprograms,

DEC-10-SFLE-D .)

When an error condition occurs in a user program or in a final answer from a LIB40 math routine, an error mes­

sage is typed. Presently there are eight distinct error messages.

Error Message No.

2

3

4

5

6

7

8

final

Error Message

INTEGER OVERFLOW PC=nnnnnn

INTEGER DNIDE CHECK PC=nnnnnn

FLOATING OVERFLOW PC=nnnnnn

FLOATING UNDERFLOW PC=nnnnnn

FLOATING DNIDE CHECK PC=nnnnnn

ATTEMPT TO TAKE SQRT OF NEGATNE ARG

ACOS OF ARG > 1.0 IN MAGNITUDE

ASIN OF ARG > 1 .0 IN MAGNITUDE

1 ? FA TAL I/o ERROR

NOTE

nnnnnn = location at which the error occurred.

After two typeouts of a particular error message, further typeout of that error message is suppressed. At the end

of execution, a summary listing the actual number of times each error message occurred is typed out. If the user

wishes to penn it more than two typeouts for each error message, he may do so by calling the routine ERRSET at

the beginning of the executable part of his main program. ERRSET accepts one argument in integer mode. This

argument is the number of typeouts that are pennitted for each error message before suppression occurs. This

routine is used to obtain the PC information which would otherwise be lost. AI tematively, because of the slow­

Version 24 FORTRAN
Version 31 LIB40 11-11 October 1971

FORTRAN -132-
ness of the Teletype output, the user may wish to suppress typeout of the messages entirely. This can be clone by

call-ing ERRSET with an argument of zero. Suppression of typeout can also be accomplished during execution by

typing to on the Teletype._

Error messages and the summary are output to the Teletype (or the output device when running BATCH), regard­

I ess of the device assignments that have been made.

The treatment of overflow, underflow, and divide check errors in MACRO program.s (those that are loaded with

OVTRAP) can, to a certain extent, be manipulated by the user. (See OVTRAP in the Science Library and

FORTRAN Utility Subprogram manual.)

Version 24 FORTRAN
Version 31 LlB40 11-12 October 1971

12. 1 ASCII CHARACTER SET

SIX BIT Character ASCII
7-Bitt

00 Space 040
01 I 041
02 II 042
03 # 043
04 $ 044
05 % 045
06 & 046
07 I 047

10 (050
11) 051
12 * 052
13 + 053
14 , 054
15 - 055
16 056
17 / 057

20 0 060
21 1 061
22 2 062
23 3 063
24 4 064
25 5 065
26 6 066
27 7 067

30 8 070
31 9 071
32 : 072
33 ; 073
34 < 074
35 = 075
36 > 076
37 ? 077

-133-

Table 12-1
ASCII Character Set

SIX BIT Character

40 @
41 A
42 B
43 C
44 D
45 E
46 F
47 G

50 H
51 I
52 J
53 K
54 L
55 M
56 N
57 0

60 P
61 Q
62 R
63 S
64 T
65 U
66 V
67 W

70 X
71 Y
72 Z
73 [

74 \
75]
76 t
77 -

ASCII
7-Bitt

100
101
102
103
104
105
106
107

110
111
112
113
114
115
116
117

120
121
122
123
124
125
126
127

130
131
132
133
134
135
136
137

tFORTRAN IV also accepts the following control codes in 7-bit ASCII:

Horizontal Tab 011 Carriage Return
Line Feed 012 Form Feed

12-1

FORTRAN

CHAPTER 12

FORTRAN USER PROGRAMMING

Character ASCII
7-Bitt

\ 140
a 141
b 142
c 143
d 144
e 145
f 146
g 147

h 150
i 151
i 152
k 153
I 154
m 155
n 156
0 157

P 160
q 161
r 162
s 163
t 164
u 165
v 166
w 167

x 170
y 171
z 172
{ 173
I 174
} 175
~ 176

Delete 177

015
014

I

FORTRAN -134-

12.2 PDP-l0 WORD FORMATS

BASIC INSTRUCTIONS

INSTRUWON CODE Y
(I~CLUDING MODE!

"
IN-OUT INSTRUCTIONS

DEVICE CODE Y

"
PC WORD

i FLAGS [000001 PC I I I I t

0 12:'3 \718 "

BLT POINTER [XWO]

sou ReE ADDRESS DESTINATION ADDRESS

1718 "
BLKI/8LKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD {IOWD]

- WORD COUNT I ADDRESS - 1

l5

BYTE POI NTER

POSITION P SIZE S y

" 11 II 1314 1718 "
BYTE STORAGE

~ SBITS- ---4--- - P BITS

I BYTE I NEXT BYTE

35-P-S -j 35-P 35-P+1 "
FIXED POINT OPERANDS

BINARY NUMBER (TWOS COYPLEMENTI

01 II

FLOATING POINT OPERANDS

so~ EXCESS 128 EXPONENT FRACTION (TWOS COMPLEMENTI
1- (ONES CO,-,Pl[M(NT)

o , B '" II

LOW ORDER WORD IN DOUBLE LENGTH FLOATING POINT OPERANDS

lOW ORDER HALF OF FRACTION I TWOS COMPLEMENT I

o , a 9 JI

12-2

-135- FORTRAN
12.3 FORTRAN INPUT/OUTPUT

In addition to the arithmetic functions, the PDP-10 FORTRAN IV library (LIB40) contains several subprograms

which control FORTRAN IV I/O operations at runtime. The I/O subprograms are compatible with the PDP-10

Monitors.

In general FORTRAN IV I/O is done with double buffering unless the user has either specified otherwise through

calls to IBUFF and OBUFF or is doing random access I/O to the disk. In these cases, single buffers are used.

The standard buffer sizes for the devices normally available to the user are given in Table 12-2. Note that the

devices and buffer sizes are determined by the Monitor and may be changed by a particular installation. Also a

user may specify buffer sizes for magtape operations through the use of IBUFF and OBUFF.

The logically first device in a FORTRAN program is initialized on software I/O channel one, the second on

software I/O channel two, and so forth. Software I/O channel 0 is reserved for error message and summary

output. The SIXBIT name of the device that is initialized on channel N can be found in a dynamic device table

at location DYNDV. + N. A device may be initialized for input and output on the same I/O channel. Devices

are initialized only once and are released through either the CALL [SIXBIT/EXIT/I executed at the end of every

FORTRAN program or the LIMO subroutine RELEAS.

Table 12-2
PDP-10 FORTRAN IV Standard Peripheral Devices

Name Mnemonic Input/Output Buffer Size
Operation

Formatted Unformatted In Words

Card Punch CDP Yes Yes 26 WRITE

Card Reader CDR Yes Yes 28 READ

Disk
(includes disk DSK Yes Yes 128 READjWRITE
packs and drums)

DECtapes DTA Yes Yes 127 READjWRITE

Line Printer LPT Yes No 26 WRITE

Magtape MTA Yes Yes 128 READjWRITE

Plotter PLT Yes Yes 36 WRITE

Paper Tape Punch PTP Yes Yes 33 WRITE

Paper Tape Reader PTR Yes Yes 33 READ

Pseudo Teletype PTY Yes No 17 READjWRITE

Teletype - User TTY Yes No 17 READjWRITE

Teletype - Console CTY Yes No 17 READjWRITE

12-3

FORTRAN -136-
12.3.1 Logical and Physical Peripheral Device Assignments

Logical and physical device assignments are controlled by either the user at runtime or,a table called DEVTB.

The first entry in DEVTB. is the length of the table. Each entry after the first is a sixbit ASCII device name.

The position in the table of the device name corresponds to the FORTRAN logical number for that device. For

example, in Table 12-3, magnetic tape 0 is the 16th entry in DEVTB. Therefore, the statement

WRITE (16, 13)A

refers to magnetic tape O. The last five entries in DEYTB. correspond to the special FORTRAN statements READ,

ACCEPT, PRINT, PUNCH, and TYPE. Any device assignments may be changed by reassembling DEYTB.

If the user gives the Monitor command

ASSIGN DSK 16

prior to the running of his program, a file named FOR16.DAT would be written on the disk. Similarly, the

Monitor command

ASSIGN LPT 16

causes output to go to the line printer.

12.3.2 DECtape and Disk Usage

12.3.2.1 Binary Mode - In binary. mode, each block contains 127 data words, the first of which is a record

control word of the form:

where w is the word count specifying the number of FORTRAN data words in the block-{126 for a full block) and

n is 0 in all but the last block of a logical record, in which case n is the number of blocks in the logical record.

A logical record contains all the data corresponding to one READ or WRITE statement, that is, the maximum num­

ber of logical records per disk/DECtape block is one.

12.3.2.2 ASOI Mode - In ASCII mode, blocks are packed with as many full lines (a line is a unit record as

specified by a format statement) as possible. lines always begin with a new word. If a line terminates in the

middle of a word, the word is filled out with null characters and the next line begins with the next word. Lines

are not split across blocks. Such a file is created by FORTRAN during output or by PIP with the A switch.

FORTRAN input files must be in this format.

12-4

-137- FORTRAN
Table 12-3

Device Table for FORTRAN IV

TITLE DEVTB V.017
SUBTTL 1-APR-69

ENTRY DEVTB., DEVND., DEVLS., DVTOT.
ENTRY MTABF., MBFBG., TABPT ., TABP1.
ENTRY MTACL. ,DATIB., NEG 1. ,NEG2., NEG3., NEGS.
P=17

DEVTB.: EXP DEVND.-. ;NO. OF ENTRIES
;LOGICAL# /FILENAMEjbEVICE

SIXBn .DSK. ; 1 FOR01. DAT DISC
CDRPOS: SIXBn .CDR. ; 2 FOR02. DAT CARD READER
LPTPOS: SIXBn .LPT. ; 3 FOR03.DAT LINE PRINTER

SIXBn .CTY. ; 4 FOR04. DAT CONSOLE TELETYPE
HYPOS: SIXBn .TTY. ; S FOROS.DAT USER TELETYPE

SIXBn .PTR. ; 6 FOR06. DAT PAPER TAPE READER
PTPPOS: SIXBn .PTP. ; 7 FOR07.DAT PAPER TAPE PUNCH

SIXBn .DIS. ; 8 FOR08. DAT DISPLAY
SIXBn . DTA 1. ; 9 FOR09.DAT DECTAPE
SIXBn .DTA2. ; 10 FOR10.DAT
SIXBn .DTA3. ; 11 FOR1I. DAT
SIXBlT .DTA4. ; 12 FOR12.DAT
SIXBn .DTAS. ; 13 FOR13.DAT
SIXBn .DTA6. ; 14 FOR14.DAT
SIXBn .DTA7. ; lS FOR1S.DAT
SIXBn .MTAO. ; 16 FOR16.DAT MAGNETIC TAPE
SIXBn .MTA1. ; 17 FOR17.DAT
SIX BIT .MTA2. ; 18 FOR18.DAT
SIXBn . FORTR. ; 19 FORTR.DAT ASSIGNABLE DEVICE, FORTR

SIXBn .DSKO. ; 20 FOR20.DAT DISK
SIXBn . DSK 1. ; 21 FOR21. DAT
SIX BIT .DSK2. ; 22 FOR22.DAT
SIXBn .DSK3. ; 23 FOR23.DAT
SIXBn .DSK4. ; 24 FOR24. DAT
SIXBn .DEV1. ; 2S FOR2S. DAT ASSIGNABLE DEVICES
SIX BIT .DEV2. ; 26 FOR26. DAT
SIXBn .DEV3. ; 27 FOR27. DAT
SIX BIT .DEV4. ; 28 FOR28. DAT

DEVLS.: SIXBn .DEVS. ; 29 FOR29.DAT V.006
SIXBn .REREAD. -6 REREAD
SIXBn .CDR. -S READ
SIX BIT .TTY. -4 ACCEPT
SIXBn .LPT. -3 PRINT
SIX BIT .PTP. -2 PUNCH

DEVND.: SIX BIT .TTY. -1 TYPE

12.3.2.3 File Names - File names may be declared for DECtapes or the disk through the use of the library sub­

programs IFILE and OALE. In order to make an entry of the file name ALEl on unit u, the following statement

could be used:

12-S

I
FORTRAN -138-

CALL OALE (u,'FILE1')

Similarly, the following statements might be used to open the file, RALPH, for reading:

RALPH=5HRALPH
CALL IFILE(u,RALPH)

After writing a file, the END FILE u statement must be given in order to close the current file and allow for

reading or writing another file or for reading or rewriting the same file. If no call to IFILE or OFILE has been

given before the execution of a READ or WRITE referencing DECtape or the disk the file name FORnn.DAT is

assumed where nn is the FORTRAN logical number used in the I/O statement that references device nn.

The FORTRAN programmer can make logical assignments such that each device has its own unique file as intend­

ed, but each can be on the DSK. In order to use the devices available, the programmer can make assignments

at run time and assign the DSK to those not available.

For example, the FORTRAN logical device numbers, e.g., 1 = DSK, 2 = CDR, 3 = LPT, are used in the file

name. The written file names are FOR01.DAT, FOR02.DAT, etc. The same is true for READ. For example, a

WRITE (3, 1) A, S, C, in the FORTRAN program generates the file name FOR03.DAT on the DSK if the DSK has

been assigned LPT or 3 prior to running the program. (Note: REREAD rereads from the file belonging to the de­

vice last referenced in a READ statement, not FOR-6. DAT, as usual.) The programmer must, of course, realize

his own mistake in assigning the DSK as the TTY in the case that FORSE tries to type out error messages or

PAUSE messages.

More than one DSK File may be accessed, without making logical assignments at runtime, by using logical de­

vice numbers 1, and 20 through 24 in the FORTRAN program. Logical device number 19 refers to logical device

FORTR which must be assigned at runtime and accesses file name FORTR.DAT to maintain compatibility with the

past system of default file name FORTR.DAT. In all cases when the operating system fails to find a file specified,

an attempt will be made to read from file FORTR.DAT as before.

The magnetic tape operation REWIND is simulated on DECtape or the disk; a REWIND closes the file and clears

the filename. A call to IFILE or OFILE should be made after a REWIND to open the file and preserve the file­

name, if desired. A program which uses READ, WRITE, END FILE, and REWIND for magnetic tape need only

have the logical device number changed a- assigned to a DECtape or disk at runtime in a-der to perfa-m the

proper input/output sequences on DECtape or the disk.

12.3.3 Magnetic Tape Usage

Magnetic tape and disk/DECtape I/O are different in the following ways. When a READ is issued, a record is

read in for both magnetictape and disk. If a WRITE is then issued, the next sequential record is written on

Version 26 FORTRAN
Version 32 L1B40

12-6 May 1972

-139- FORTRAN
magnetic tape but not on disk. When one or more READs have been executed on a disk file and a WRITE is

issued, the next record is written. Unless records are written past the existing end-of-file, that end-of-file is

not changed, i. e., the fi lei s not truncated.

12.3.3.1 Binary Mode - The format of binary data on magnetic tape is similar to that for DECtape except that

the physical record size depends on the magnetic tape buffer size assigned in the Time-Sharing Monitor or by

IBUFF/OBUFF (see Section 8.2.2). Normally, the buffer size is set at either 129 or 257 words so that either

128 or 256 word records are written (containing a control word and 127 or 255 FORTRAN data words).

The first word, control word, of each block in a binary record contains information used by the operating sys­

tem. The left half of the first word contains the word count for that block. The right half of the first word con­

tains a null character except for the last block in a logical record. In this case, the right half of the first word

contains the number of blocks in the logical record.

12.3.3.2 ASCII Mode - The format for ASCII data is the same as that used on DECtape.

12.3.3.3 Backspacing and Skip,ping Records - Both the BACKSPACE u and SKIP RECORD u statements are ex­

ecuted on a logical basis for binary records and on a line basis for ASCII records.

a. Binary Mode - Both BACKSPACE and SKIP RECORD space magnetic tape physically over one (1)
logical record; i.e., the result of one WRITE (u) statement.

b. ASCII Mode - ASCII records are packed, that is WRITE (u, f) statements do not cause physical writ­
ing on the tape until the output buffers are full or a BACKSPACE, END FILE, or REWIND command is
executed by the program. BACKSPACE and SKIP RECORD on ASCII record space over one (1) line.

c. BACKSPACE and SKIP RECORD following WRITE ASCII commands.

(1) BACKSPACE closes the tape, writes 2 EOF's {tapemark} and backspaces over the last line.

(2) SKIP RECORD cannot be used during a WRITE operation. This is an input function only.

12.4 RANDOM ACCESS PROGRAMMING

In random access programming, data is obtained from {or placed into} storage, where the time required for this

access is independent of the location of the data most recentlyobtained from {or placed into} storage. Random

access programming allows a programmer to access any record within a file with a single READ or WRITE state­

ment independent of the location of the previously accessed record within that file. For example, a program­

mer may read or write only the 10th record in a file if he wishes. Random I/O is desirable when only a few

records in a large file are to be accessed, or when a file is to be read or wirtten in a non-sequential manner, as

in a sort.

Version 24 FORTRAN
Version 31 LIMO 12-7 February 1971

I

I

I

I
I

I

FORTRAN -140-
Random access applies only to data files on the disk with fixed-length record sizes. Any fixed-length record

file (formatted or unformatted) which has been written on the disk with FORTRAN or with PIP using the A switch

may be read or rewritten non-sequentially.

12.4.1 How to Use Random Access

A programmer may directly access fixed-length records in a disk file by defining the structure of the file with a

CALL DEFINE FILE and then specifying the record he wishes to access with a READ or WRITE statement. The

file from which records are to be accessed is defined as follows:

where

CALL DEFINE FILE (U,S,V,F,PJ,PG)

U = the unit number expressed as an integer. The number must refer to the disk. The numbers
from 1 to 10 are availabl e unl ess a particular installation decides to change this range.

S = the size of the records within the file expressed as an integer. The size is specified by the
number of characters per record for formatted records, and the number of words per record
for unformatted records. The size of the records must be constant within the file and may
be from 1 to 132 characters in formatted records, or one word to any size limited by core in
unformatted records.

V = the associated integer variable. Contains any integer value. The record number which
would be accessed next if I/o were to continue sequentially is returned as an integer in
the associated variable after each random read or write. The associated variable may be
used in the I/O statements as part of the integer expression which defines the record num­
ber.

F = the filename and extension. This may be zero, in which case s'fandard default names are
used.

PJ = the project number in octal of the disk area being accessed.

PG = the programmer number in octal of the disk area being accessed. The project-programmer
numbers may be zero, in which case the user's disk area is accessed. Note that the writ­
ing on another user's disk area is restricted by the monitor.

I/o begins when the random WRITE or READ is specified in the correct format. (See Sections 5.2.6 and 5.2.7.)

12.4.2 Restrictions

A number of restrictions are imposed in random access programming:

a. A logical unit may not be used for sequential and then random I/O in the same program unless an
intervening CALL to RELEASE is issued. For example, if sequential I/o is done to unit 3 then random
I/o to unit 3 is illegal and will fail.

b. If the name of a file to be accessed randomly is specified in a DATA statement or is read in at run­
time, the user must use a full 6-character filename and a 3-character extension.

c. Mixed formatted and unformatted files are not accessible randomly.

d. Before random I/o is performed through a READ or WRITE statement, the file must be properly defined
through a CALL to DEFINE FILE.

e. All FORTRAN data files must be created by FORTRAN or PIP with the A switch.

Version 24 FORTRAN
Version 31 LIMO 12-8 February 1971

I

-141- FORTRAN
f. The records within the file must be of a fixed length.

g. Random access is used for disk files only.

h. Access to files is controlled by the file protection scheme in effect at each installation. (Refer to
the TImesharing Monitors Manual for a discussion of file access privileges.)

i. CALLs to IFILE or OFILE open flIes for sequential I/O. They must not be issued for units to be used
for random I/O. If it is desired to open a file for sequential I/o on a unit that has been used for random
I/O, a CALL to RELEASE must be issued before a CALL to IFILE or OFILE.

12.4.3 Examples

Example 1:

Assume a standard FORTRAN program, the purpose of which is to read the Kth record in a file and ignore

all other records. A section of the program might be as follows:

DO 10 I = I. K
ICII READ (1.1) A.R.C
I FORMAT (3A5)

If K is a large number, time is wasted in obtaining the Kth record using sequential I/O. Now consider

a program written to perform the same function using random access:

FORty,AT (3A 5)

Note that the default filename FOR01.DAT and the user's project-programmer number are used in both

examples.

Example 2:

Consider a program the purpose of which is to change the contents of the Kth record within the file

FOROl • OAT on the user's disk area. Using sequential I/O, the code might be as follows:

DO ICII 1=1. K-I
REA D (I. I) A. B. C

10 \>,1 RITE (2. I) A. B. C
REA D (I. I) A. B. C
WRITE (2.1) D.E.F
DO 20 I=K+I.NEND
RF:A D (i. I) A. B. C

?CII WRITE (2.1) A.B.C
FORfY,AT (3A5)

Version 24 FORTRAN
Version 31 LIB40 12-9 February 1971

FORTRAN -142-
There would be two files on the disk, FO RO 1. OAT and FOR02.DAT, which are identical except for the

Kth record. The code that accomplishes the same result using random access is:

lo.lRITE (1#1<,1) D,E,F
FOR(v.AT (3AS)

A new file is not created; the old file remains with the Kth record changed.

Example 3:

The following code creates a new file for random output by first writing K blank records and then up­

dating the fi Ie in non-sequential output:

Example 4:

C 40 SPACES PER RECORD USERS
C NEED NO WORR~ AROUT CARRIAGE
C RETURNS AND LINE FEED~.

DIMENSION A(8), 8(8)
DO 10 1=1,1<

lin W RITE (I, I) A

CALL DEFINE FILE (2,4fi1,N,'FOR01.DAT',0,0)
N=3
DO 2111 1::: I,S

20 WRITE (2#N*8,2) B
I FORMAT (8AS)
P FORMAT (4IS,2AS,FlfiI,3)

Read a 1000 record file, the records of which are 27 characters long, backwards. The file is named

FOR01.DAT and resides on the user's disk area. The following program creates a disk file and then reads

it backwards. (Note that the same unit number may not be used for both sequential and random I/o in the

same program):

12-10

Example 5:

-143-

DIMENSION ACt-)
CALL DEFINE FILE C2.27.NV.'FOR01.DAT'.0.0)
DO 1(11 1=1. 111100

1 III \O!R I TE C 1 • 1) I
Rn!IND C 1)
FORMAT C'THIS IS RECORD NUMBER'. IS)
NV=100?
DO 20 1=1.1000

20 READ C2#NV-2.2) A
? FORMATC5A5.A2)

END

FORTRAN

Use random WRITES to change every 7th record, beginning with record 10, in the file named DATA on

the user's disk area. The file contains 100 records, each of which is 35 characters long.

Example 6:

DIMENSION LIST(7)
CALL DEFINE FILEC5.35.NV.'DATA'.0.0)
DO 10 1= 10 .100.7

10 WRITE C5#1.5) LIST
5 FORMAT C2A5.5I5)

END

Read one-word binary records, starting with record 26 and ending with record 7, from fi Ie FOR07. OAT.

The following program creates a 50-record file of the numbers from 1 to 50, reads the file backwards,

and types the contents of the record it read, NP, along with the contents of the associated variable,

NY. Note that FORTRAN binary output creates files with a maximum of one record per disk block •

• TY AINTST
C BINARY RANDOM ACCESS TEST
C

DOUBLE PRECISION FIL
DATA FIL /'FOR07.DAT'/
CALL DEFINE FILE C2.1.NV.FIL.0.0)
DO 7 1=1.50
WRITEC7 >I

7 CONTINUE
END FILE (7)

NV=28
DO 2 1=1.20
READC2#NV-2)NP
WRITEC5.5)NP.NV

2 CONTINUE
5 FORMATC' NP= '.13.' NV= '.13)

END

12-11

FORTRAN -144-

RUN OSI< BINTST

NP= 2f, NV= 27
NP= 25 NV= 2f,
NP= 24 NV= 25
NP= 23 NV= 24
NP= 22 NV= 23
NP= 21 NV= 22
NP= 20 NV= 21
NP= 19 NV= 20
NP= 18 NV= 19
NP= 17 NV= 18
NP= 16 NV= 17
NP= 15 NV= 1 f,
NP= 1 L! NV= 15
NP= 13 NV= 1 L!
NP= 12 NV= 13
NP= 1 1 NV= 12
NP= 10 NV= 1 1
NP= 9 NV= 10
NP= 8 NV= 9
NP= 7 NV= 8

Revision 2 FORTRAN 12-12 February 1971

-145-
12.5 PDP-10 INSTRUCTION SET

Movl~Negative 1--------.
e Magnitude I to AC

e Swapped f- Immediate to AC

I
no effect 1 to Memory

Ha { Right} {Right} Ones to Self
If word Left to Left Zeros

Extend sign

Block Transfer

EXCHange AC and memory

use present pOinter} d f loaD Byte into AC

Increment pointer an DePosit Byte in memory

Increment Byte Pointer

PUSH down} { -
POP up and Jump

Zeros
Ones

SETto Ac
Memory
Complement of Ac
Complement of Memory

AND } I :ith Complement of Ac I
inclusive OR with Complement of Memory f-

Complements of Both

lAC

to AC Immediate
Memory
Both

eXclusive OR ------------'
Inclusive OR I
EQuiValence

SKIP if memory}
JUMP if AC ----------,

Add One to } {memory and SkiP} "f
Subtract One from AC and Jump It-

\
Immediate } ""

Compare Ac " h M and skip If AC-Wit emory

never
Less
Equal
Less or Equal
Always
Greater
Greater or Equal
Not equal

" {POSitiVe Add One to Both halves of AC and Jump If N " egahve

ADD
SUBtract
MULtiply

FORTRAN

Integer MULtiply ~I-
DIVide Immediate
Integer DIVide to Memory

Floating AdD I rand Round I: Both

Floating SuBtract Long
Floating MultiPly to Memory
Floating DiVide to Both

Floating SCale

Double Floating Negate

Un normalized Floating Add

Arithmetic SHift I {-
Logical SHift C b" d
ROTate om me

Jump

to SubRoutine
and Save Pc
and Save Ac
and Restore Ac
if Find First One
on Flag and CLear it
on OVerflow (JFCL 10,)
on CaRrY 0 (JFCL 4,)
on CaRrY 1 (JFCL 2,)
on CaRrY (JFCL 6,)
on Floating OVerflow (JFCL I,)
and ReSTore
and ReSTore Flags (JRST 2,)
and ENable PI channel (JRST 12,)

HALT (JRST 4,)

eXeCuTe

DATA}

BlocK :{tln
Out

CONditions "
" d Sk" "f I all masked bits Zero
In an Ip I \ some masked bit One

I
with Direct mask II No modification 1 I never

T with Swapped mask set masked bits to Zeros d k" if all masked bits Equal 0
est AC Right with E set masked bits to Ones an s Ip if Not all masked bits equal 0

Left with E Complement masked bits Always

12-13

FORTRAN -146-

-147- FORTRAN

APPENDIX A

THE SMALL FORTRAN IV COMPILER

This compiler runs in 5.5K of core, and to the user, is identical to the large compiler, with the exception of the

following language differences. Operating procedures are given in the Systems User's Guide (DEC-10-NGCC-D).

Language Differences

The IMPLICIT, DATA, and NAMELIST statements are not recognized; constant strings are not collapsed (for ex­

ample, A=5*3 will not be treated as A=15).

A-l

-149-
DEC-lO-KJ ZE-D

BASIC
CONVERSATIONAL LANGUAGE MANUAL

This manual reflects the software as of version 17 A.

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

-150-
1st Printing December 1968
2nd Printing (Rev) M.ay 1969
3rd Printing September 1969
4th Printing (Rev) January 1970
5th Printing (Rev) September 1970
6th Printing (Rev) August 1971
7th Printing (Rev) February 1972
Update Pages May 1972

Copyright © 1968, 1969, 1970, 1971, 1972 by Digital Equipment Corporation

The material in this manual is for informa­
tional purposes and is subject to change
without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, M.assachusetts:

DEC
FlIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

-151- BASIC

CONTENTS

Page

CHAPTER 1 INTRODUCTION

1.1 Example of a Basic Program 159

1.2 Discussion of the Program 160

1.3 Fundamental Concepts of Basic 163

1.3.1 Arithmetic Operations 163

1.3.2 Mathematical Functions 164

1.3.3 Numbers 165

1.3.4 Variables 165

1.3.5 Relational Symbols 166

1.4 Summary 166

1.4.1 LET Statement 166

1.4.2 READ and DATA Statements 167

1.4.3 PRINT Statement 168

l.4.4 GO TO Statement 169

1.4.5 IF - THEN Statement 169

1.4.6 ON - GO TO Statement 169

1.4.7 END Statement 170

CHAPTER 2 LOOPS

2.1 FOR and N EXT Statements 172

2.2 Nested Loops 174

CHAPTER 3 LISTS AND TABL~S

3.1 The Dimension Statement (DIM) 176

3.2 Example 177

3.3 Summary 178

3.3.1 The DIM Statement 178

CHAPTER 4 HOW TO RUN BASIC

4.1 Gain ing Access to BASIC 179

4.2 Entering the Program 181

4.3 Executing the Program 182

4.4 Correcting the Program 182

4.5 Interrupting the Execution of the Program 182

4.6 Leaving the Computer 183

4.7 Example of BASIC Run 183

4.8 Errors and Debugging 185

BASIC -152-

CONTENTS (Cont)

Page

4.8.1 Example of Finding and Correcting Errors 185

CHAPTER 5 FUNCTIONS AN 0 SUBROUTINES

5.1 Functions 189

5.1.1 The Integer Function (lNT) 189

5.1.2 The Random Number Generating Function (RND) 190

5.1.3 The RANDOMIZE Statement 191

5.1.4 The Sign Function (SGN) 192

5.1.5 The Define User Function (DEF) and
Function End Statement (FNEND) 192

5.2 Subroutines 193

5.2.1 GOSUB and RETURN Statements 193

5.2.2 Example 194

CHAPTER 6 MORE SOPHISTICATED TECHNIQUES

6.1 More About the PRINT Statement 197

6.2 INPUT Statement 200

6.3 STOP Statement 201

6.4 Remarks Statement (REM) 201

6.5 RESTORE Statement 202

6.6 CHAIN Statement 202

6.7 MARGI N Statement 204

6.8 PAGE Statement 204

6.9 NOPAGE Statement 205

CHAPTER 7 VECTORS AN 0 MA TRI CES

7.1 MA T Instruction Conventions 208

7.2 MAT C = ZER, MAT C = CON, MAT C = ION 208

7.3 MAT PRINT A, B, C 209
7.4 MAT INPUT V and the NUM Function 210

7.5 MAT B =A 211

7.6 MAT C = A + Band MAT C = A - B 211

7.7 MAT C = A*B 211

7.8 MAT C = TRN(A) 211

7.9 MAT C = (K) * A 211

7.10 MAT C = INV(A) and the DET Function 212

7.11 Example of Matrix Programs 212

-153- BASIC

CONTENTS (Cont)

Page

7.12 Simulation of N-Dimensional Arrays 213

CHAPTER 8 ALPHANUMERIC INFORMATION (STRINGS)

8.1 Reading alid Printing Strings 215

8.2 String Conventions 216

8.3 Numeric and String Data Blocks 217

8.4 The Change Statement 217

8.5 String Concatenation 221

8.6 String Manipulation Functions 221

8.6.1 The LEN Function 221

8.6.2 The ASC and CHR$ Functions 222

8.6.3 The VAL and STR$ Functions 223

8.6.4 The LEFT$, RIGHT$, and MID$ Functions 224

8.6.5 The SPACE$ Function 225

8.6.6 The INSTR Function 226

CHAPTER 9 EDIT AND CONTROL 229

CHAPTER 10 DATA FILE CAPABILITY

10.1 Types of Data Files 233

10.1.1 Sequential Access Files 233

10.1.2 Random Access Files 235

10.2 The FILE and FILES Statements 236

10.3 The SCRATCH and RESTORE Statements 238

10.4 The READ and INPUT Statements 239

10.5 The WRITE and PRINT Statements 241

10.5.1 WRITE and PRINT Statements for Sequential
Access Files 241

10.5.2 WRITE and PRINT Statements for Random Access Files 243

10.6 The SET Statement and the LOC and LOF Functions 243

10.7 The QUOTE, QUOTE ALL, NOQUOTE, and
NOQUOTE ALL Statements 245

10.8 The MARGIN and MARGIN ALL Statements 247

10.9 The PAGE, PAGE ALL, NOPAGE, and NOPAGE ALL
Statements 248

10.10 The IF END Statement 250

CHAPTER 11 FORMATTED OUTPUT

11. 1 The USING Statements 253

BASIC

11.2

11.2.1

11.2.1.1

11.2.1.2

11.2.2

11.2.3

11.2.4

-154-

CONTENTS (Cont)

Image Specifications

Numeric Image Spec ifications

Integer Image Specifications

Decimal Image Specifications

Edited Numeric Image Specification

String Image Specifications

Printing Characters

APPENDIX A SUMMARY OF BASIC STATEMENTS

A.l

A.2

A.3

A.4

A.5

Elementary BASIC Statements

Advanced BASIC Statements

Matrix Instructions

Data Fi Ie Statements

Functions

APPENDIX B BASIC DIAGNOSTIC MESSAGES

APPENDIX C TAPE AND KEY COMMANDS

C.l

C.2

C.3
C.4
C.5

KEY and TAPE Modes

Preparing an Input Tape In Local Mode

Saving an Existing Pragram on Tape

Inputting to BASIC from the Reader

Listing an Input Tape

Page

255

256
256
257

258
260
262

263

264

265

265

267

280
280

281

282
282

-155- BASIC

ILLUSTRATION

Page

C-1 L T33B Teletype 279

TABLES

8-1 ASCII Nlmbers and Equivalent Characters 218

9-1 Commands for Editing BASIC Programs 229

B-1 Command Errar Messages 269

B-2 Compilation Error Messages 270

B-3 Execution Error Messages 272

BASIC -156-

-157- BASIC

PREFACE

WHY BAS IC? BAS IC is a probl em-solving language that is easy to I earn and conversational, and has

wide application in the scientific, business, and educational communities. It can be used to solve

both simple and complex mathematical problems from the user's Teletype®and is particularly suited for

time-sharing •

In writing a computer program, it is necessary to use a language or vocabulary that the computer

recognizes. Many computer languages are currently in use, but BASIC is one of the simplest of these

because of the small number of clearly understandable and readily learned commands that are required,

its easy application in solving problems, and its practicality in an evolving educational environment.

BASIC is similar to other programming languages in many respects; and is aimed at facilitating com­

munication between the user and the computer in a time-sharing system. As with most programming

languages, BASIC is divided into two sections:

a. Elementary statements that the user must know to write simple programs, and

b. Advanced techniques needed to efficiently organize complicated problems.

As a BAS IC user, you type in a computational procedure as a seri es of numbered statements by using

common English syntax and familiar mathematical notation. You can solve almost any problem by

spending an hour or so learning the necessary elementary commands. After becoming more experienced,

you can add the advanced techniques needed to perform more intricate manipulations and to express

your problem more efficiently and concisely. Once you have entered your statements via the Teletype,

simply type in RUN or RUNNH. These commands initiate the execution of your program and return

your results almost instantaneausly.

SPECIAL FEATURES OF BASIC - BASIC incorporates the following special features:

a. Matrix Computations - A special set of 13 commands designed exclusively for per­
forming matrix computations.

®Teletype is the registered trademark of Teletype Corporation.

ix

BASIC -158-
b. Alphanumeric Information Handling - Single alphabetic or alphanumeric strings or

vectors can be read, printed, and defined in LET and IF ••• THEN statements.
Individual characters within these strings can be easily accessed by the user. Con­
version can be performed between characters and their ASCII equivalents. Tests can
be made for alphabetic order.

c. Program Contral and Storage Facilities - Programs or data files can be stored on or
retrieved from various devices (disk, DECtape, card reader, card punch, high­
speed paper-tape reader, high-speed paper-tape punch and I ine printer). The user
can also input programs or data files from the low-speed Teletype paper-tape reader,
and output them to the low-speed Teletype paper-tape punch.

d. Pragrom Editing Facilities - An existing program or data file can be edited by adding
or deleting lines, by renaming it, or by resequencing the line numbers. The user
can combine two programs ot data files into one and request either a listing of all
or part of it on the Teletype or a listing of all of it on the high-speed line printer.

e. Formatting of Output - Controlled formatting of Teletype output includes tabbing,
spacing, and printing columnar headings.

f. Documentation and Debugging Aids - Documenting programs by the insertion of
remarks within procedures enables recall of needed information at some later date
and is invaluable in situations in which the program is shared by other users. De­
bugging of programs is aided by the typeaut of meaningful diagnostic messages
which pinpaint syntactical and logical errors detected during execution.

x

CHAPTER 1

INTRODUCTION

-159- BASIC

This chapter introduces the user to PDP-10 BASIC and to its restrictions and characteristics. The best

introduction lies in beginning with a BAS IC program and discussing each step completely.

1.1 EXAMPLE OF A BASIC PROGRAM

The following example is a complete BASIC program, named LINEAR, that can be used to solve a sys­

tem of two simul taneous linear equations in two variabl es

ax +by = c

dx+ey=f

and then used to solve two different systems, each differing from the above system only in the constants

c and f. If ae - bd is not equal to 0, this system can be solved to find that

ce - bf x=---
ae - bd

and
af - cd

y = ae - bd

Hae - bd =0, there is either no solution or there are many, but there is no unique solution. Study

this example carefully and then read the commentary and explanation. (In most cases the purpose of

each line in the program is self-evident.)

10 READ A,R,D,E)
15 LET G=A*E-B*D)
20 IF' G=0 THEN 65)
30 READ C,F')
37 LET X=<C*E-B*F')/G)
42 LET Y=(A*F'-C*D)/G~
55 PRINT X,y)
60 GO TO 30)
65 PRINT "NO UNIQUE SOLUTION'~
70 DATA 1,2,4)
R0 DATA 2,-7,5)
85 DATA 1,3,4,-7)
%l END)

1-1

BASIC -160-
NOTE

All statements are terminated by pressing the RETURN
key (represented in this text by the symbol)). The
RETURN key echoes as a carriage return, line feed.

1.2 DISCUSSION OF THE PROGRAM

Each line of the program begins with a line number of 1 to 5 digits that serves to identify the line as a

statement. A program is made up of statements. Line numbers serve to specify the order in which

these statements are to be performed. Before the program is run, BASIC sorts out and edits the program,

putting the statements into the orders specified by their line numbers; thus, the program statements can

be typed in any order, as long as each statement is prefixed with a line number indicating its proper

sequence in the order of execution. Each statement starts after its line number with an English word

which denotes the type of statement. Unlike statements, commands are not preceded by line numbers

and are executed immediately after they are typed in. (Refer to Chapter 9 for a further description of

commands.) Spaces and tabs have no significance in BASIC programs or commanes, except in messages

which are printed out, as in line number 65 above. Thus, spaces or tabs may, but need not be, used

to modify a program and make it more readable.

With this preface, the above example can be followed through step-by-step.

The first statement, 10, is a READ statement and must be accompanied by one or mare DATA statements.

When the computer encounters a READ statement while executing a program, it causes the variables

listed after the READ to be given values according to the next available numbers in the DATA state­

ments. In this example, we read A.in statement 10 and assign the value 1 to it from statement 70 and,

similarly, with Band 2, and with D and 4. At this point, the available data in statement 70 has been

exhausted, but there is more in statement 80, and we pick up from it the value 2 to be assigned to E.

Next, in statement 15, which is a LET statement, a formula is to be evaluated. [The asterisk (*) is

used to denote mul tiplication.J In this statement, we compute the value of AE - BD, and call the

result G. In general, a LET statement directs the computer to set a variable equal to the formula on

the right side of the equal sign.

20 IF G=0 THfN 65

If G is equal to zero, the system has no unique solution. Therefore, we next ask, in line 20, if G is

equal to zero.

1-2

-161- BASIC
65 PRINT "NO UNIQUE SOLUTION"
70 DATA 1#2#4
80 DATA 2#-7#5
85 DATA 1#3#4#-7
90 END

If the computer discovers a "yes" answer to the question, it is directed to go to line 65, where it prints

NO UNIQUE SOLUTION. Since DATA statements are not executable statements, the computer then

goes to line 90 which tells it to END the program.

If the answer is "no" to the question "Is G equal to zero?", the computer goes to line 30. The com­

puter is now directed to read the next two entries, -7 and 5, from the DATA statements (both are in

statement 80) and to assign them to C and F, respectively. The computer is now ready ta solve the

system

x+2y=-7
4x +2y = 5

37 LET X=CC*E-8*F)/G
42 L~T Y=CA*F-C*D)/G

In statements 37 and 42, we instruct the computer to compute the value of X and Y according to the

formulas provided, using parentheses to indicate that C*E - 8*F is calculated before the result is

divided by G.

55 PFnNT X#Y
60 GO TO 30

The computer prints the two values X and Y in line 55. Having done this, it moves on to line 60 where

it is reverted to line 30. With additional numbers in the DATA statements, the computer is told in

line 30 to take the next one and assign it to C, and the one after that to F. Thus,

x +2y = 1
4x+2y=3

As before, it finds the solutions in 37 and 42, prints them out in 55, and then is directed in 60 to re­

vert to 30.

In line 30, the computer reads two more values, 4 and -7, which it finds in line 85. It then proceeds

to solve the system

x+2y=4
4x +2y =-7

1-3

BASIC -162-
and print out the solutions. Since there are no more pairs of numbers in the DATA statement available

for C and F, the computer prints OUT OF DATA IN 30 and stops.

If line number 55 (PRINT X, Y) had been omitted, the computer would have solved the three systems

and then told us when it was out of data. If we had omitted line 20, and G were equal to zero, the

computer would print DIVISION BY ZERO IN 37 and DIVISION BY ZERO IN 42. Had we omitted

statement 60 (GO TO 30), the computer would have solved the first system, printed out the val ues of

X and Y, and then gone to line 65, where it would be directed to print NO UNIQUE SOLUTION.

The particular choice of line numbers is arbitrary as long as the statements are numbered in the order

the machine is to follow. We would normally number the statements 10, 20, 30, ••• , 130, so that

later we can insert additional statements. Thus, if we find that we have omitted two statements

between those numbered 40 and 50, we can give them any two numbers between 40 and 50 -- say 44

and 46 • Regarding DATA statements, we need only put the numbers in the order that we want them

read (the first for A, the second for B, the third for D, the fourth for E, the fifth for C ,the sixth for

F, the seventh for the next C, etc.). In place of the three statements numbered 70, 80, and 85, we

could have written the statement:

or, more naturally,

70 DATA 1~2~4~2
75 DATA -7~5

fWJ DATA I ~3
85 DATA 4~-7

to indicate that the coefficients appear in the first data statement and the various pairs of right-hand

constants appear in the subsequent statements.

The program and the resulting run is shown below as it appears on the Teletype.

I~ READ A~8~D~F
15 LET G=A*E-8*D
20 IF' G=0 THEN 65
30 READ C~F"
37 LET X=CC*E-A*F")/G
.iI2 LET Y= C A *F" -C *D) IG
55 PRINT X~Y
60 GO TO 30
65 PRINT "NO UNIQUE SOLUTION"
70 DATA 1.2.4
80 DATA 2.-7.5
85 DATA 1.3~4.-7

90 END
RUN

(continued on next page)

1-4

LINEAR

4
0.666667

-3.66667
OtTT Of' DATA
TIME: 0.10

II :03

-5.50000
0.166667
3.f'3333

IN 30
SECS.

-163-
19-0CT-69

NOTE

Remember to terminate all statements by pressing the
REruRN key.

BASIC

After typing the program, we type the command RUN and press the RETURN key to direct the computer

to execute the program. Note that the computer, before printing out the answers, printed the name

LINEAR which we gave to the problem (refer to Paragraph 4.1) and the time and date of the computa­

tion. The message OUT OF DATA IN 30, may be ignored here. However, in some instances, it indi­

cates an error in the program. The TIME message, printed out at the end of execution, indicates the

compile and execute time used by the program; this time is slightly dependent upon other jobs being

processed by the computer and consequently will not be exactly the same each time the same program

is run.

1.3 FUNDAMENTAL CONCEPTS OF BASIC

BAS IC can perform many operations such as adding, subtracting, mul tiplying, dividing, extracting

square roots, raising a number to a power, and finding the sine of an angl e measured in radtans.

1 .3.1 Arithmetic Operations

The computer performs its primary function (that of computation) by evaluating formulas similar to those

used in standard mathematical calculation, with the exception that all BASIC formulas must be written

on a single line. The following operators can be used to write a formula.

Operator

+
+

*
I
t

**

Example

A+B
+A
A -'B
-A
A *B
AlB
X t2
X *'*2

add B to A
A itself

Meaning

subtract B from A
make A negative
multiply B by A
divide A by B
find X2 {the symbols t and ** have
find X2 the same meaning .

If we type A + B * C t D, the computer first raises C to the power D, multiplies this result by B, and

then adds the resulting product to A. We must use parentheses to indicate any other order. For

1-5

BASIC -164-
exampl e, if it is the product of Band C that we want raised to the power D, we must write

A + (B * C) f D; or if we want to multiply A + B by C to the power D, we write (A + B) * C f D. We

could add A to B, multiply their sum by C, and raise the product to the power D by writing

«A + B) * C) f D. The order of precedence is summarized in the following rules.

a. The formula inside parentheses is evaluated before the parenthesized quantity is
used in computations.

b. Normally two operators cannot be contiguous. However the operators + and -
can follow the operators *, /, **, or f (e.g., *-). In such a case, the +or
- takes precedence over its leading *, /, **, or f. Otherwise:

c. In the absence of parentheses in a formula, ** and f take precedence over *
and /, which take precedence over + and -.

d. In the absence of parentheses in a formula whose only operators Qre * and /,
BAS IC performs the operations from I eft to right, in the order that they are
read.

e. In the absence of parentheses in a formula whose only operators are + and -,
BAS IC performs the operations from I eft to right, in the order that they are
read.

The rul es tell us that the computer, faced wi th A - B - C, (as usual) subtrocts B from A, and then C

from their difference; faced with AIB/C, it divides A by B, and that quotient by C. Given A f B f C,

the computer raises the number A to the power B and takes the resulting number and raises it to the

power C. If there is any question about the precedence, put in more parentheses to eliminate possible

ambiguiti es.

1.3.2 Mathematical Functions

In addition to these five arithmetic operations, BASIC can evaluate certain mathematical functions.

These functions are given special three-letter English names.

Function

SIN
COS
TAN
COT
ATN
EXP

I LOG

(X)
(X)
(X)
(X)
(X)
(X)
(X), or LN(X),

or LOGE(X)
ABS (X) I SQR (X) or SQRT(X)
CLOG (X) or LOGIO(X)

Interpretation

Find the sine of X
Find the cosine of X
Find the tangent of X
Find the cotangent of X
Find the arctangent of X X
Find e raised to the X power (e)

{
X interpreted as
an angl e measured
in radians

Find the natural logarithm of X (log to the base e) {X. t ted
In erpre

Find the absolute v.olue of X (I X I) as a
Find the square root of X (-v'X) number
Find the common logarithm of X (log to the base 10)

Five other functions are also available in BASIC: INT, RND, SGN, NUM, and DET; these are

reserved for explanation in Chapters 5 and 7. In place of X, we may substitute any formula or any

number in parentheses following any of these functions. For example, we may ask the computer to find

Version 17A BASIC 1-6 May 1972

-165- BASIC
~ 4 + X3 by writing SQR (4 + X t 3), or the arctangent of 3X _2eX + 8 by writing

ATN (3 * X - 2 * EXP (X) + 8). If the above value of~) 17 is needed, the two-line program can be

written:

I~ PRINT(S/6)t17
2~ END

and the computer finds the decimal form of this number and prints it out.

1.3.3 Numbers

A number may be positive or negative and it may contain up to eight digits, but it must be expressed

in decimal form (i .e., 2, -3.675, 12345678, -.98765432, and 483.4156). The following are not

numbers in BASIC: 14/3 and SQR(7). The computer can find the decimal expansion of 14/3 or SQR(7),

but we may not include either in a list of DATA. We gain further flexibility by using the letter E,

which stands for: times ten to the power. Thus, we may write .0012345678 as . 12345678E-2 or

12345678E-1O or 1234.5678E-6. We do not write E7 as a number, but write 1E7 to indicate that it is

1 that is multiplied by ll.

1.3.4 Variables

A simple (i.e., unsubscripted) numeric variable in BASIC is denoted by any letter or by any letter

followed by a single digit. (Refer to Chapter 3 for a discussion of subscripted numeric variables and to

Chapter 8 for a discussion of subscripted and unsubscripted string variables.) Thus, the computer inter­

prets E7 as a variable, along with A, X, N5, 10, and 01. A numeric variable in BASIC stands for a

number, usually one that is not known to the programmer at the time the program is written. Variables

are given or assigned values by LET and READ statements. The value so assigned does not change until

the next time a LET or READ statement is encountered with a value for that variable. However, all

numeric variables are set equal to 0 before a RUN. Consequently, it is only necessary to assign a value

to a numeric variable when a value other than 0 is required.

Although the computer does little in the way of correcting during computation, it sometimes helps if an

absolute value hasn't been indicated. For example, if you ask for the square root of -7 or the logarithm

of -5, the computer gives the square root of 7 along with an error message stating that you have asked

for the square root of a negative number, or it gives the logarithm of 5 along with the error message

that you have asked for the logarithm of a negative number.

1-7

I

BASIC -166-
, .3.5 Relational Symbols

Six other mathematical symbols of relation are used in IF-THEN statements where it is necessary to

compare values. An example of the use of these relation symbols was given in the sample program

LINEAR.

Any of the following six standard relations may be used:

Symbol Example Meaning

A =B A is equal to B
< A <B A is less than B
<= A <=B A is I ess than or equal to B
> A >B A is greater than B
>= A >=B A is greater than or equal to B
<> A <>B A is not equal to B

Note that while BASIC outputs its answers with only six places of accuracy, variables and formulas

may have values accurate to more than six places. If it is desired that result X be checked to only

N places, the function

INT

should be used.

1.4 SUMMARY

Several elementary BASIC statements have been introduced in our discussions. In describing each of

these statements, a I ine number is assumed, and brackets are used to denote a general type. For

example, [variable] refers to any variable.

1.4.1 LET Statement

The LET statement is used when computations must be performed. This command is not of algebraic

equality, but a command to the computer to perform the indicated computations and assign the answer

to a certain variable. Each LET statement is of the form:

LET [variable] = [formula]
or

[variable] = [formula]

Generally, several variables may be assigned the same value by a single LET statement. Examples of

assigning a value to a single variable are given in the following two statements:

IVI~l LFT X=X+J
P59 W7=(W-X.t3)*(Z-A/(A-~)-J7)

Version 17A BASIC 1-8 May 1972

-167-
Examples of assigning a value to more than one variable are given in the following statements:

50 X=Y3=AC3,1)=1

90

1.4.2 READ and DATA Statements

The variables X, Y3, and A{3,1) ore
assigned the value 1.

The variables Wand Z are assigned the
value 3X-4X2

BASIC

READ and DATA statements are used to enter information into the computer. We use a READ statement

to assign to the listed variables those values which are obtained from a DATA statement. Neither

statement is used without the other. A READ statement causes the variables listed in it to be given in

order, the next availabl e numbers in the collection of DA TA statements. Before the program is run,

the computer takes all of the DATA statements in the order they appear and creates a large data block.

Each time a READ statement is encountered anywhere in the program, the data block supplies the next

available numberor numbers. If the data block runs out of data, the program is assumed to be finished

and we get an OUT OF DATA message.

Since we have to read in data before we can work with it, READ statements normally occur near the

beginning of a program. The location of DATA statements is arbitrary, as long as they occur in the

correct order. A common practice is to collect alt DATA statements and place them just before the

END statement.

Each READ statement is of the form:

READ [sequence of variables]

Each DATA statement is of the form:

DATA [sequence of numbers]

150 READ X,Y,Z,XI,Y2,Q9
330 DATA 'h2,1.7
340 DATA 6.734E-3,-174.321,3.1415927

234 READ 8CK)
263 DATA 2,3,5,7,9,11,10,8,6,4

10 READ RCI,J)
440 DATA -3,5,-9,2.37,2.9876,-437.234E-5
450 DATA 2.765, 5.5576, 2.3789E2

Remember that numbers, not formulas, are put in a DATA statement, and that 15/7 and SQR(3) are

formulas. Refer 10 Chapter 3 for a discussion of the subscripted variables.

1-9

BASIC -168-
1.4.3 PRINT Statement

The common uses of the PRIN T statement are:

a. to print out the results of !Ome computations

b. to print out verbatim a message inc luded in the program

c. a combination of the two

d. to skip a line.

The following are examples of a type a.:

100 PRINT XISQR(X)
135 PRINT XIYIZI B*B-4*A*CI EXP(A-B)

The first example prints X, and a few spaces to the right, the square root of X. The second prints

five different numbers:

2 A-B
X, V, Z, B , -4AC, and e

The computer computes the two formulas and prints up to five numbers per line in this format.

The following are exampl es of type b.:

100 PRINT "NO UNIQUE SOLUTION"
430 PRINT "X VALUEOII "SINE"I "RESOLUTION"
500 PRINT XI~ID

Line 100 prints the sample statement, and line 430 prints the three labels with spaces between them.

The labels in 430 automatically line up with the three numbers called for in PRINT statemept 500.

The following is an example of type c.:

150 PRINT OITHE VALlIE 01' X IS" X
30 PRINT OITHE SQUARE ROOl 01''' X OIlS" SQIHX)

If the first has computed the value of X to be 3, it prints out: THE VALUE OF X IS 3. If the second

has computed the value of X to be 625, it prints out: THE SQUARE ROOT OF 625 IS 25.

The following is an example of type d.:

250 PRINT

The computer advances the paper one line when it encounters this command.

1-10

-169- BASIC
1 .4.4 GO TO Statement

The GO TO statement is used when we want the computer to unconditionally transfer to some statement

other than the next sequential statement. In the LINEAR probl em, we direct the computer to go

through the some process for different values of C and F with a GO TO statement. This statement is in

the form of GO TO [line number] •

150 GO TO 75

1.4.5 IF - THEN Statement

The IF - THEN statement is used to transfer conditionally from the sequential order of statements

according to the truth of some relation. It is sometimes called a conditional GO TO statement. Each

IF - THEN statement is of the form:

I IF [formula] [relation] [formula], THEN Wne number]

The comma preceding THEN is optional and can be omitted.

I

The following are two examples of this statement:

40
20

IF SIN(X)<=M THEN 80
IF G=0 .. THEN 65

The tirst asks if the sine of X is less than or equal to M, and skips to line 80 if so. The second asks

if G is equal to 0, and skips to line 65 if so. In each case, if the answer to the question is no, the

computer goes to the next line.

1 .4.6 0 N - GO TO Statement

The IF - THEN statement allows a two-woy fork in a program; the ON - GO TO statement allows a

many-way switch. The ON - GO TO statement has the form:

I ON [formula], GO TO [line number], [line numberl, ••• [line number]

The comma preceding the GO TO can be omitted. For example:

80 ON X GO TO 100 .. 200 .. 150

This condition causes the following to occur:

If X = 1, the progrom goes to line 100,
If X = 2, the program goes to line 200,
If X = 3, the program goes to line 150

Version 17 BASIC 1-11 August 1971

BASIC -170-
In other words, any formula may occur in place of X, and the instruction may contain any number of

line numbers, as long as it fits on a single line. The value of the formula is computed and its integer

part is taken. If this is 1, the program transfers to the line whose number is first on the list; if its

integer part is 2, the program transfers to the line whose number is the second one, etc. If the integer

part of the formula is below 1, or larger than the number of line numbers listed, an error message is

printed. To increase the Similarity between the ON - GO TO and IF - THEN instructions, the instruc­

tion

75 I~ X~5 TH£N 200

may also be written as:

75 I~ X>5 GO TO 200

Conversely, THEN may be used in an ON - GO TO statement.

1.4.7 END Statement

Every program must have an END statement, and it must be the statement with the highest line number

in the program.

999 END

1-12

CHAPTER 2

LOOPS

-171- BASIC

We are frequently interested in writing a program in which one or more portions are executed a number I of times, usually with slight variations each time. To write a program in such a way that the portions

of the program to be repeated are written iust once, we use loops. A loop is a block of instructions

that the computer executes .repeatedly until a specified terminal condition is met.

I The use of loops is illustrated and explained by using two versions of a program that performs the

simple task of printing out the positive integers 1 through 100 together with the square root of

each. The first version, which does not use a loop, is 101 statements long and reads

10 PRINT I~SQR(I)

2~ PRINT 2~SQR(2)
30 PRINT 3~SQR(3)
990 PRINT 99~SQR(99)
1000 PRINT 100~SQR(100)

1010 END

The second version, which uses one type of loop, obtains the same results with far fewer instruc­

tions (5 instead of 101):

10 LET X=I
20 PRINT X~SQR(X)
30 LE:T X=X+I
40 IF' X<=100 THEN 20
50 END

Statement 10 gives the value of 1 to X and initializes the loop. In line 20, both 1 and its square root

are printed. Then, in line 30, X is increased by 1, to a value of 2. Line 40 asks whether X is less

than or equal to 100; an affirmative answer directs the computer back to line 20, where it prints 2

.and ,[2and goes to 30. Again, X is increased by 1, this time to 3, and at 40 it goes back to 20.

This process is repeated -- line 20 (print 3 and ...rf), line 30 (X = 4), line 40 (since 4 < 100, go back

to line 20), etc. -- until the loop has been traversed 100 times. Then, after it has printed 100 and its

square root, X becomes 101. The computer now receives a negative answer to the question in line 40

(X is greater than 100, not less than or equal to it), does not return to 20 but moves on to line 50, and

ends the program. All loops contain fo.ur characteristics:

Version 17A BASIC 2-1 May 1972

BASIC -172-
a. initialization (line 10)

b. the body (I ine 20)

c. modification (line 30)

d. an exit test (I ine 40)

2.1 FOR AND NEXT STATEMENTS

BASIC provides two statements to specify a loop: the FOR statement and the NEXT statement.

10 FeR X=1 TO teJeJ
20 PkINT X,S0R(X)
30 NF)<.T x
50 FND

In line 10, X is set equal to 1, and a test is executed, like that of line 40 above. Line 30 carries

out two tasks: X is increased by 1, and control transfers back to the test in line 10. There the test

is carried out to determine whether to execute the body of the loop again or to go on to the state­

ment following line 30. Thus, lines 10 and 30 take the place of lines 10, 30, and 40 in the pre­

vious program.

Note that the value of X is increased by 1 each time BASIC goes through the loop. If we want a

different increase, e.g., 5, we could specify it by writing the following:

10 FOR X;! TO 100 STEP ~

and then the value of X on the first time through the loop would be 1, on the second time 6, on

the third 11, and on the last time 96. The step of 5 which would take X beyond 100 to 101 causes

control to transfer to line 50, which ends the program. The STEP may be positive, negative, or

zero. We could have caused the original results to be printed in reverse order by writing line 10

as follows:

10 FOR X=100 TO 1 STFP-1

In the absence of a STEP instruction, a step-size of +1 is assumed.

The word BY may be substituted for the word STEP; FOR TO BY and FOR TO STEP statements are com­

pletely equivalent.

More complicated FOR statements are allowed. The initial value, the final value, and the step-size

may all be formulas of any complexity. For example, we could write the following:

Version 17A BASIC 2-2 May 1972

-173- BASIC
For a positive or zero step-size, the loop continues as long as the control variable is less than or equal

to the final value. For a negative step-size, the loop continues as long as the control variable is

greater than or equal to the final value.

If the initial value is greater than the final value (less than the final value for negative step-size),

the body of the loop is not performed at all, but the computer immediately passes to the statement

following the NEXT. The following program for adding up the first n integers gives the correct result

o when n is O.

10 RFAD N
2121 LET S=0
3121 FOR K=l TO N
40 LET S=S+K
50 NEXT R
60 PR INT S
7121 GO TO 1121
~ DATA 3111211121
99 END

In the following description of the instructions used to specify a loop, a line number is assumed and

brackets are used to denote a general type.

A FOR statement has one of two forms:

[nUmeric]
FOR variabl e = [formula] TO [formula] STEP [formula]

or

[nUmeric]
FOR variable = [formula] TO [formula] BY [formula]

Most commonly, the expressions are integers and the STEP or BY is omitted. In the latter case a step­

size of +1 is assumed. The accompanying NEXT statement is simple in form, but the variable must be

precisely the same one as that following FOR in the FOR statement. Its form is as follows:

NEXT [variable]

I Note that for each FOR statement there is one and only one NEXT statement,

examples of FOR and NEXT statements are:

and vice versa. Some

I

30 FOfi X=0 TO 3 STEP D
80 NEXT X

120 FOR X4=(17+COS(Z»/3 TO 3* SQR(10) BY 1/4
235 NEXT X4

24121 FOR X=R TO 3 STEP -1
456
5(A(~

505

Version 17A BASIC

FOk J=-3 TO 12 HY 2
NF.XT J
NEXT X

2-3 May 1972

BASIC -174-
Line 120 specifies that the successive values of X4 are .25 apart, in increasing order. Line 240 speci­

fies that the successive values of X will be 8, 7, 6, 5, 4, 3. Line 456 specifies that J will take on

values -3, -1, 1, 3, 5, 7, 9, and 11. If the initial, final, or step-size index values are given as

formulas, these formulas are evaluated only upon entering the FOR statement; therefore, if after this

evaluation we change the value of a v!lriable in one of these formulas, we do not affect the index

value.

The control variable can be changed in the body of the loop; it should be noted that the exit test

always uses the latest value of this variable.

I The following difficulty can occur with loops, both FOR-NEXT loops and loops explicitly written with

LET and IF statements (as in the example on page 2-1). The calculation of the index values (initial,

final, and step-size) is subiect to precision limitations inherent in the computer. These values are

represented in the computer as binary numbers. When the values are integer, they can be represented

exactly in binary; however, it is not always possible to represent decimal values exactly in binary

when they contain a fractional part. For example, a loop of the form:

40 FOR X=0 TO 10 STEP 0.1
95 NEXT X

executes 100 times instead of 101 times because the internal value for 0.1 is not exactly 0.1 After

the hundredth execution of the loop, X is not exactly equal to 10, it is slightly larger than 10, so the

loop stops. Whenever possible, it is advisable to use indices that have integer values because. then

the loop will always execute the correct number of times.

2.2 NES TED LOOPS

Nested loops Ooops within loops) can be expressed with FOR and NEXT statements. They must be

nested and not crossed as the following skeleton examples illustrate:

Allowed Allowed Not Allowed

~FORX FORX ~FORX FORY ~FORV FORY
[NEXTY FORZ NEXT X

NEXT X LNEXTZ NEXTY

CFORW
NEXTW
NEXTY

CFORZ
NEXTZ
NEXTX

Version 17A BASIC 2-4 May 1972

-175- BASIC

CHAPTER 3

LISTS AND TABLES

In addition to the ordinary variables used by BASIC, variables can be used to designate the elements·

of a list or a table. Many occasions arise where a list or a table of numbers is used over and over,

and, since it is inconvenient to use a separate variable for each number, BASIC allows the program­

mer to designate the name of a list or table by a single letter.

Lists are used when we might ordinarily use a single subscript, as in writing the coefficients of a

polynomial (aO' aI' a2 , ••• , an). Tables are used when a double subscript is to be used, as in writing

the elements of a matrix (b .•). The variables used in BASIC consist of a single letter, which is the I" .
name of the I ist or tabl e, followed by the subscript in parentheses. Thus,

A(O), A(1), A(2), •.• , A(N)

represents the coefficients of a polynomial, and

B(1 ,1), B(1 ,2), ••• , B(N,N)

represents the elements of a matrix. (Refer to Chapter 8 for a discussion of string variables.)

The single Ifltter denoting a list or a table name may also be used without confusion to denote a simple

variable. However, the same letter may not be used to denote both a list and a table in the same pro­

gram because BASIC recognizes Q list as a special kind of table having only one column. The form of

the subscript is flexible: A list item B(I + K) may be used, or a table item Q(A(3,7), B-C) may be

used. The value of the subscript must not be less than zero.

We can enter the list A(O), A(I), ••• , A(lO) into a program by the following lines:

10 FOR 1=0 TO 10
20 READ A (I)
30 NEXT I
40 DATA 0,2,3,-5,2.2,4,-9,123,4,-4,3

3-1

BASIC -176-
3.1 THE DIMENSION STATEMENT (DIM)

BASIC automatically reserves room for any list or table with subscripts of 10 or fewer. However, if we

want larger subscripts, we must use a DIM statement. This statement indicates to the computer that

the specified space is to be allowed for the list or table. For example, the instruction

HI DIM ActS)

reserves 16 spaces for list A (A{O), A(1), A(2), ••• , A(15». The instruction

213 DIM Y(10~15)

reserves 176 spaces for matrix Y (10 + 1 rows * 15 + 1 columns). Space may be reserved for more than

one list and/or table with a single DIM statement by separating the entries with commas, as shown in

the following example:

313 DIM A(100)~B(20~30)~C(2S)

A DIM state!"ent is not e~ecuted; therefore, it may appear on any line before the END statement.

However, the best place to put it is at the beginning so that it is not forgotten. If we enter a table

with a subscript greater than 10, without a DIM statement, BASIC gives an error message, telling us

that we have a subscript error. This condition can be rectified by entering a DIM statement with a

line number less than the line number of the END statement.

A DIM statement is normally used to reserve additional space, but in a long program that requires many

small tables, it may be used to reserve less space for tables in order to have more space for the pro­

gram. When in doubt, declare a larger dimension than you expect to use, but not one so large that

there is no room for the program. For example, if we want a list of 15 numbers entered, we may write

the following:

10 DIM A(2S)
213 READ N
313 fOR 1=1 TO N
40 READ A(I)
50 NEXT I
613 DATA 15
70 DATA 2~3~5~7~11~13~17~19~23~29~31~37~41~43~47

Statements 20 and 60 could have been eliminated by writing 30 as FOR I = 1 TO 15 but the program as

typed allows for the lengthening of the list by changing only statement 60, as long as the list does not

exceed 25 and there is sufficient data.

3-2

-177- BASIC
We could enter a 3-by-5 table into a program by writing the following:

10 FOR 1=1 TO 3
20 FOR J=1 TO 5
30 READ B<I~J)
40 NEXT J
50 NEXT I
60 DATA 2~3~-5~-9~2
70 DATA 4~-7~3~4~-2
80 DATA 3~-3~5~1~8

Again, we may enter a table with no DIM statement: BASIC then handles all the entries from B{O,O) to

B(10,10).

3.2 EXAMPLE

Below are the statements and run of a problem which uses both a list and a table. The program com­

putes the total sales of five salesmen, all of whom sell the same three products. The list, P, gives the

price per item of the three products and the table, S, tells how many items of each product each man

sold. Product 1 sells for $1.25 per item, product 2, for $4.30 per item, and product 3, for $2.50 per

item; also, salesman 1 sold 40 items of the first product, 10 of the second, 35 of the third, and so on.

The program reads in the price list in lines 40 through 80, using data in lines 910 through 930. The

same program could be used again, modifying only line 900 if the prices change, and only lines 910

through 930 to enter the sales in another month. This sample program does not need a DIM statement,

because the computer automatically reserves enough space to allow all subscripts to run from 0 to 10.

NOTE

Since spaces are ignored, statements may be indented for
visual identity of the various loops within the program.

10 FOR 1=1 TO 3
20 READ P(I)
30 NEXT I
40 FOR 1=1 TO 3
50 FOR J=1 TO 5
~ READ S(I~J)

70 NEXT J
80 NEXT I
~ FOR J=1 TO 5
100 LET S=0
110 FOR 1=1 TO 3
120 LET S=S+P(I)*S(I~J)
130 NEXT 1
140 PRINT "TOTAL SALES FOR SALESMAN"J~"$"S
150 NEXT J
900 DATA 1.25~4.30~2.50

910 DATA 40~20~37~29~42
~0 DATA 10~16~3~21~8
930 DATA 35~47~29~16~33
999 END

(continued on next page)

3-3

BASIC -178-
RUN
SALES1 11 :06 20-0CT-69
TOTAL SALES FOR SALESMAN $ 180.500
TOTAL SALES FOF< SALEStvlAN 2 $ 211.300
TOTAL SALES FOR SALESMAN 3 $ 131.650
TOTAL SALES FOR SALESMAN 4 $ 166.500
TOTAL SALES FOR SALESMAN 5 $ 169.400
TIME: 0.16 SECS.

3.3 SUMMARY

Because the number of simple variable names is limited, BASIC allows a programmer to use lists and

tables to increase the number of problems that can be programmed easily and concisely. A single

letter is used for the name of the list or table, anc;l the subscript that follows is enclosed in parentheses.

The subscripts may be explicitly stated or may be any legal expression.

lists and tables are called subscripted variables, and simple variables are called unsubscripted variables.

Usually, you can use a subscripted variable anywhere that you use an unsubscripted variabl e.

However, the variable mentioned immediately after FOR in the FOR statement and after NEXT in the

NEXT statement must be an unsubscripted variable. The initial, terminal, and step values may be any

I egal expression.

3.3.1 The DIM Statement

To enter a list or a table with a subscript greater than 10, a DIM statement is used to retain sufficient

space, as in the following examples:

20 DIM H(35)
35 DIM Q(5~ 25)

The first example enables us to enter list H with 36 items (H(O) , H(1), ••• , H(35». The second reserves

space for a table of 156 items (5 + 1 rows * 25 + 1 columns).

3-4

-179- BASIC

CHAPTER 4

HOW TO RUN BASIC

After learning how to write a BASIC program, we must learn how to gain access to BASIC via the

Teletype so that we can type in a program and have the computer solve it. Steps required to commun­

icate with the monitor must first be performed. These steps are fully explained in the PDP-10 Reference

Handbook and the TOPS-lO Operating System Commands manual.

4.1 GAINING ACCESS TO BASIC

Once the monitor has responded with a period to indicate that it is ready to receive a monitor com­

mand, type in the following command:

.R BAS Ie

This command establishes contact with the BASIC CUSP (Commonly Used System Program). BASIC

responds with the following:

NEW OR OLD--

Type in:

NEW

if you are going to create a new program. BASIC responds with the following:

NEW F" ILE NAME--

Type in the name of your new program. If you want to work with a previously created program that

you $CIved on a storage device, type in the following:

OLD

4-1

I

BASIC -180-
BASIC then asks for the name of the old program, as follows:

OLD FILE NAME--

Respond by typing in the name of your old file. If your old file is stored on a device other than the

disk, you must type in the device name as in the following example:

OLD FILE NAME--DTA6:SAMPLE

BASIC retrieves the file named SAMPLE from DECtape 6 and replaces the current contents of user core

with the file SAMPLE. The disk may be specified as the device on which the old program is stored,

but this is not necessary because the disk is the device used when no device is specified. For example,

the following statements are equivalent:

OLD FILE NAME--DSK:TESTI
OLD FILE NA~E--TEST 1

Device names are as follows:

DSK
DTAO through DTA7
TTY
TTYO through TTYl77
LPT
M TAO through M TA7
PTP
PTR
COP
CDR
SYS

the disk
DECtapes number 0 through 7
your Tel etype
Teletypes number 0 through 177
the line printer
magnetic tapes number 0 through 7
the high-speed paper-tape punch

-the high-speed paper-tape reader
the card punch
the card reader
the system device where system programs are stored

Not all installations have all of these devices; if you specify a device that does not exist or that is not

available for your use, BASIC returns an error message. Also, while it is possible to store a file on

the card punch, for example, the file cannot be retrieved from this device but must be retrieved from

the card reader. If you specify for OLD a device that can only do output, an error message will be

retumed.

Program names can be any combination of letters and digits up to and including six characters in length.

In addition to specifying a program name, you may also specify an extension. The extension follows

the name_and is separated from it by a period. An extension is any combination of letters and digits

up to and including three characters in length. In previous chapters we have used program names such

as LINEAR and SALES1. If you recall an old program from storage, you must use exactly the same

name and extension you assigned to it when it was raved.

I You can also type the name of your file {and the device on which it is located} on the same line as

the NEW or OLD command. In this case, BASIC will not ask for the name of-the file. For example:

Version 17A BASIC 4-2 May 1972

I
I\E~} TEST

-181- BASIC

OLD DT~6:S~"'PLE

The NEW OR OLD -- request con be answered not only by NEW or OLD, but also by any other com­

mand (refer to Chapter 9 for a description of the commands) or statement. If NEW OR OLD -- is

answered by a NEW, OLD, or RENAME command, the current device, filename, and extension are

established by the arguments specified with the command; if a device is not specified explicitly, the

disk is assumed; if a filename is specified without an extension, the extension BAS is assumed; it is

illegal 10 specify an extension without specifying a filename.

If NEW OR OLD -- is answered by anything other than a NEW, OLD, or RENAME command, the cur­

rent device, filename, and extension are established as DSK, NONAME, and BAS, respectively. For

example, the following sequence creates a disk file called NONAME.BAS •

• R BAS Ie
NEW OR OLD -- 5 PRINT "TESTING"
10 END
SAVE

A new current device, filename, and extension are established whenever a NEW, OLD, or RENAME

command is given.

4.2 ENTERING THE PROGRAM

After you type in your filename (whether it is old or new), BASIC responds with the following:

READY

You can begin to type in your program. Make sure that each line begins with a line number contain­

ing no more than five digits and containing no spaces or'nondigitcharacters. Also, be sure 10 start

at the beginning of the Teletype line for each new line. Press the RETURN key upon completion of

each line.

If, in tne process of typing a statement, you make a typing error and notice it before you terminate

the line, you can correct it by pressing the RUBOUT key once for each character 10 be erased, going

backward until the character in error is reached. Then continue typing, beginning with the character

in error. The following' is an example of this correcting process:

10 PRNIT\TIN\INT 2#3

Version 17A BASIC

NOTE

The RUBOUT key echoes as a backslash (\), followed by
the deleted characters and a second backslash.

4-3 May 1972

BASIC -182-
4.3 EXECUTING THE PROGRAM

After typing the complete program (do not forget to end with an END statement), type RUN or RUNNH,

followed by the RETURN key. BASIC types the name of the program, the time of day, the current date

(unless RUNNH is specified), and then it analyzes the program. If the program can be run, BASIC

executes it and, via PRINT statements, types out any results that were requested. The typeout of re­

sui ts does not guarantee that the program is correct (the results could be wrong), but it does indicate

that no grammatical errors exist (e.g., missing line numbers, misspell ed words, or illegal syntax). If

errors of this type do exist, BASIC types a messoge (or several messages) to you. A list of these diag­

nostic messages, with their meanings, is given in Appendix B.

4.4 CORRECTING THE PROGRAM

If you receive an error message typeout informing you, for example, that line 60 is in error, the line

can be corrected by typing in a new line 60 to replace the erroneous one. If the statement on line 110

is to be eliminated from your program, it is accomplished by typing the following:

110

If you wish to insert a statement between lines 60 and 70, type a line number between 60 and 70 (e.g.,

65), followed by the statement.

4.5 INTERRUPTING THE EXECUTION OF THE PROGRAM

If the results being typed out seem to be incorrect and you want to stop the execution of your program,

type to (hold down CTRl key and at the same time type 0) to suppress the typeout, or type tC twice,

as indicated in the following example:

TC
TC

(Stops ex~cution of your program, and
Retums control to Monitor

If you typed tC, the monitor responds with a period and waits for you to type a monitor command. If

you wish to reinitialize, type either of the following:

.START or .REENTER

BASIC responds with the following:

READY

whereupon you can modify or add statements and/or type RUN. If you wish to continue at the point

where you interrupted the execution, type the following:

.CONT

4-4

-183- BASIC
4.6 LEAVING THE COMPUTER

When you wish to leave the computer, type the BYE or GOODBYE command.

If the system monitor is a 4-Series monitor, it responds with the message:

CONFIRM:

Then, if you simply want to get off the machine, type the following:

K)

Neither data files created by WRITE # or PRINT # statements nor files that were SAVEd, REPLACEd,

or COPIed on the disk are deleted by this procedure. Other options available following the typeout

of CONFIRM: are listed for you if you respond to the CONFIRM: message with a carriage return

(RETURN key) only. The monitor then lists all options available, along with the response required to

request each option.

If the system monitor is a 5-Series monitor, it responds to the BYE or GOODBYE command by logging

you off the system completely, unless your files stored on the disk toke up so much room that you are

over the logged-out quota set by the system administrator. In that case, the following message is

typed out (n and m are the appropriate integers):

DSK LOGGED OUT QUOTA n EXCEEDED BY m BLOCKS
CONfIRM:

If you then type

H)

instructions for deleting files at logout time are typed on your Teletype.

4.7 EXAMPLE OF BASIC RUN

The following is a simple example of the use of BASIC under a timesharing monitor:

.tC

.LOGIN
JOB 7 5S0318A TTY34

GO TO MONITOR LEVEL
REQUEST LOGIN
MONITOR TYPES OUT YOUR ASSIGNED
JOB NUMBER, THE CURRENT VERSION
NUMBER OF THE MONITOR, AND YOUR
TELETYPE NUMBER

MONITOR REQUESTS YOUR PROJECT­
PROGRAMMER NUMBER; TYPE IT IN

(continued on next page)

4-5

BASIC -184-
PASSWORD: MONITOR R~QUESTS YOUR PASSWORD;

TYPE IT IN; IT WILL NOT EC HO BACK

0927 29-0CT-69 WED MONITOR TYPES OUT THE TIME OF
DAY, THE CURRENT DATE, THE DAY OF
THE WEEK, AND A PERIOD

.R BAS IC INSTRUCT MONITOR TO BRING BASIC
INTO CORE AND START ITS EXECUTION

NEW OR OlD--NEW BASIC ASKS WHETHER NEW OR OLD
PROGRAM IS TO BE RUN

NEW rILE NAME--SA[v:PlE BASIC ASKS FOR NEW FILENAME

READY BASIC IS NOW READY TO RECEIVE
STATEMENTS

10 rOR N=1 TO 7 TYPE IN STATEMENTS

20 PRINT N# SQR(N)

30 NEXT N

40 PR I NT "DONE"

50 END

RUN RUN PROGRAM

SAfY'PlE 1 1 : 14 29-0CT-69

2 1 .41421

3 1.73205

4 2

5 2.23607

6 2.44949

7 2.64575

DONE

TIME: 0.20 SECS.

READY

tC

.KJOB II'

JOB 7# USER [27# 20] lOGGED OFF TTY34 0930 29-0CT-69

SAVED All 1 rILE (5 DISK BLOCKS)

RUNTIME 0 MIN# 01 SEC

4-6

-185- BASIC
4.8 ERRORS AND DEBUGGING

Occasionally, the first run of a new problem is free of errors and gives the correct answers, but, more

commonl y , . errors are present and have to be corrected. Errors are of two types: errors of form (gram­

matical errors) which prevent the running of the program, and logical errors in the program which cause

the computer to produce wrong answers or no answers at all •

Errors ofform cause error messages to be printed, and the various types of error messages are listed and

explained in Appendix B. Logical errors are more difficult to uncover, particularly when the program

gives answers which seem to be nearly correct. In either case, after the errors are discovered, they

can be corrected by changing lines, by inserting new lines, or by deleting lines from the program. As

indicated previously, a line is changed by typing it correctly with the same line number; a line is in­

serted by typing it with a line number between those of two existing lines; and a line is deleted by

typing its line number and pressing the REnJRN key. Note that you can insert a line only if the orig­

inal line numbers are not consecutive integers. For this reason, most programmers begin by using

arbitrary line numbers that are multiples of five or ten.

These corrections can be made either before or after a run. Since BASIC sorts out lines and arranges

them in order, a line may be retyped out of sequence. Simply retype the offending line with its orig­

inal line number.

4.8.1 Example of Finding and Correcting Errors

We can best illustrate the process offinding the errors (bugs) in a program and correcting (debugging)

them by an example. Consider the problem of finding that value of X between 0 and 3 for which the

sine of X is a maximum, and ask the machine to print out this value of X and the value of its sine.

Although we know that tr/2 is the correct value, we use the computer to test successive values of X

from 0 to 3, first using intervals of .1; then of .01, and finally of .001. Thus, we ask the computer

to find the sine of 0, of .1, of .2, of .3 ... , of 2.8, of 2.9, and of 3, and to determine which of

these 31 values is the largest. It does so by testing SIN(O) and SIN(.l) to see which is larger, and

calling the larger of these two numbers M. It then picks the larger of M and SIN (.2) and calls it M.

This number is checked against SIN (.3) • Each time a larger value of M is found, the value of X is

"remembered" in XO. When it finishes, M will have been assigned to the largest value. It then repeats

the search, this time checking the 301 numbers 0, .01, .02, .03, ••• ,2.98,2.99, and 3, finding

the sine of each, and checking to see which has the largest sine. At the end of each of these three

searches, we want the computer to print three numbers: the value XO which has the largest sine, the

sine of that number, and the interval of search.

4-7

BASIC -186-
Before goi~ 10 the Teletype, we write a program sucfi as the following:

1I1J READ D
20 LET X0=0
30 FOR X=0 TO 3 STEP D
~ IF SINeX)<=M THEN 100
50 LET X0=X
60 LET M=SINeX0)
70 PRINT X0~X~D
80 NEXT X0
90 GO TO 20
100 DATA .1~.01~.001
110 END

The following is a list of the entire sequence on the Teletype with explanatory comments on the right

side:

NEW OR OLD--NEW
NEW FILE NAME--MAXSIN
READY
10 READ 0
20 LWR X0=0
30 FOR X=0 TO STEP 3 0
~ IF SINE\E\<X)<=M THEN 100
50 LET X0=X
60 LET M=SIN<X>

I 70 PRINT XO~)<'#D
80 NEXT T\T\X0
90 GO TO 20
20 LET X0=0
100 DATA .1~.01#."01

110 END
RUN

~XSIN 11 :35 20-0CT-69

ILLEGAL VAR IABLE IN 70
NEXT WITHOUT FOR IN 80
FOR WITHOUT NEXT IN 30
TIME: 0.05 SECS.
READY

70 PRINT X0~X,D
~ IF SIN ex) <=M THEN B0
80 NEXT X
RUN

~XSIN II :36 20-0CT-69

" .1 0.1 0.1
0.2 0.2 0. I
0.3 tetC

.REEN
READY

20
RUN

MAXS IN II :37 20-0CT-69

Version 17A BASIC 4-8

Note the use of the RUBOUT key
(echoes as a \) to erase a character
in line 40 (which should have started
IF S IN (X), etc.) and in line 80.

We discover that LET was mistyped
in line 20, and we correct it after
90.

After receiving the first error mes­
sage, we inspect line 70 and find
that we used XO for a variabl e in­
stead of XO. The next two error
lI'Iessages relate to lines 30 and 80
having mixed variables. These are
corrected by changing line 80.

Both of these changes are made by
retyping lines 70 and 80. In looking
over the program, we also discover
that the IF - THEN statement in 40
directed the computer to a DATA
statement and not to line 80 where
it should go. This is obviously in­
correct. We are having every value
of X printed, so we direct the
machine to cease operations by
typing tC twice even while it is
running. We notice that SIN{O) is
compared with M on the first time

(continued on next page)

May 1972

-187-
UNDE~INED LINE NUMBER 20 IN 90
TIME: 0.03 SECS.

90 GO TO 10
RUN

MAXSIN 11 : 43 20-0CT-69

0.1 0.1 001
0.2 0.2 0.1
0.3 tC tC

• REEN
READY

70
85 PRINT X01MID
5 PRINT "X VALUE"I"SIN"IRESOLUTION"
RUN

MAXS IN 11 : 44

ILLEGAL VARIABLE IN 5
TIME: 0.08 SECS.
READY

20-0CT-69

5 PRINT "X VALUE"I"SIN"I"RESOLUTION"
RUN

MAXSIN
X VALUE
1.60

1 1 : 47
SINE

0.999574
1 .57 1 •
1.57099 1.

OUT O~ DATA IN 10
TIME: 0.96 SECS.
READY

LIST

MAXSIN 11:48 20-0CT-69

20-0CT-69
RESOLUTION

0.1
0.01
0.001

5 PRINT "X VALUE"I"SINE"I"RESOLUTION"
10 READ D
30 ~OR X=0 TO 3 STEP D
40 I~ SINCX)<=M THEN 80
50 LET X0=X
60 LET M=SINCX)
80 NEXT X
85 PRINT X01MID
90 GO TO 10
100 DATA .11 .01,.001
110 END

BASIC
through the loop, but we had assign­
ed a value to XO but not to M.
However, we recall that all variabl es
are set equal to zero before a RUN;
therefore, line 20 is unnecessary.

Line 90, of course, sent us back to
line 20 to repeat the operation and
not back to line 10 to pick up a
new value for D. We retype line 90
and then type RUN again •

We are abaut to print out the same
table as before. Each time that it
goes through the loop, it is printing
out XO, the current value of X, and
the interval size.

We rectify this condition by moving
the PRIN T statement outside the loop.
Typing 70 deletes that line, and
line 85 is outside of the loop. We
also realize that we want M printed,
not X. We also decide to put in
headings for the columns by a
PRINT statement.

There is an error in our PRINT state­
ment: no left quotation mark for the
third item.

Retype line 5, with all of the re­
quired quotation marks.

These are the desired results. Of
the 31 numbers (0, .1, .2, .3, ••• ,
2.8, 2.9, 3), it is 1 .6 which has
the largest sine, namely .999574;
this is true for finer subdivisions.

Having changed so many parts of the
program, we ask for a I ist of the cor­
rected program.

READY
SAVE The program is saved for tater use.
READY

4-9

BASIC -188-
A PRINT statement could have been inserted to check on the machine computations. For example, if

M were checked, we could have inserted 65 PRINT M, and seen the values.

4-10

-189- BASIC

CHAPTER 5

FUNCTIONS AND SUBROUTINES

5.1 FUNCTIONS

Occasionally, you may want to calculate a function, for example, the square of a number. Instead

of writing a small program to calculate this function, BASIC provides 14 functions as part of the

language, 9 of which are described in Chapter 1. Three of the remaining functions are described here,

and the last two are described in Chapter 7.

The desired function is called by a three-letter name. The value to be used is expressed explicitly or

implicitly in parentheses and follows the function name. The expression enclosed in parentheses is

the argument of the function, and it is evaluated and used as indicated by the function name. For

example:

15 LET B=SQRC4+Xt3)

indicates that the expression (4 + X t3) is to be evaluated and then the square root taken.

5.1 .1 The Integer Function (INT)

The INT function appears in algebraic notation as [Xl and returns the greatest integer of X that is less

thon or equal to X. For example:

INT (2.35) = 2
INT (-2.35) = -3
INT (12) = 12

One use of this function is to round numbers to the nearest integer by asking for INT (X + .5). For

example:

INT (2.9 +.5) = INT (3.4) =3

rounds 2.9 to 3. Another use is to round to any specific number of decimal places. For example:

INT (X * 10 t 2 + .5) / 10 t 2

5-1

BASIC -190-
rounds X correct to two decimal places and

INT (X * 10 t 0 + .5) /10 t 0

rounds X correct to 0 decimal places.

5.1.2 The Random Number Generating Function (RND)

The RND function produces random numbers between 0 and 1. This function is used to simulate events

that happen in a somewhat random way. RND does not need an argument.

If we want the first 20 random numbers, we can write the program shown below and get 20 six-digit

decimals.

10 FOR l=1 TO 20
20 PRINT RND~
30 NEXT L
40 END
RUN

RANDOM

0.406533
0.863199
0.863199
5.00548F-2

13:24

0.88445
0.880238
0.891931
0.393226

20-0CT-69

0.681969
0.638311
0.628126
0.680219

NOTE

0.939462
0.602898
0.613262
0.632246

This is a sample run of random numbers. The format of the
PRINT statement is discussed in Chapter 6.

RUN

RANDOM

0.406533
0.863799

13:25

0.88445

20-0CT-69

0.681969 0.939462

0.2~3358

0.990032
0.303211
0.668218

0.253358

A second RUN gives exactly the same random numbers as the first RUN; this is done to facilitate the

debugging of programs. If we want 20 random one-digit integers, we could change line 20 to read as

follows:

20 PRINT INT CI0*RND)i
RUN

5-2

We would obtain the following:

RANDOM

4
8
5
o

13:26

8
8
8
3

-191-

20-0CT-69

6
6
6
6

9
6
6
6

BASIC

2
9
3
6

To vary the type of random numbers (20 random numbers ranging fl'C)m 1 to 9, incl usive), change line

20 as follows:

20 PRINT INTC9*RND +J)J
RUN

RANDOM 13:28 20-0CT-69

48793 8 8 6 6 966 3 4 7 6 7

To obtain random numbers which are integers from 5 .to 24, inclusive, change line 20 to the following:

20 PRINT INTC20*RND +5)J
RUN

RANDOM 13:30 20-0CT-69

13 22 18 23 1.0 22 22 17 17 24 16 22 17 17 II 6
12 18 17 18

If random numbers are to be chosen from the A integers of which 8 is the small est, call for

INT (A *RND-+9).

5.1.3 The RANDOMIZE Statement

As noted when we ran the first program of this chapter twice, we got the same numbers in the same

oraer each time. However, we get a different set with the RANDOMIZE statement, as in the follow­

ing program:

5 RANDOMIZE
10 fOR L=I TO 20
20 PRINT INTCI0*RND)J
30 NEXT L
40 END
RUN

RNDNOS 13:32 20-0CT-69

942 66384 9 8 6 5 B 6 2 6 0

RUN

RNDNOS 13:33 20-0CT-69

4 6 660 5 3 84.0 8 o 5 8 0

5-3

BASIC -192-
RANDOMIZE (RANDOM) resets the numbers in a random way. For example, if this is the first instruc­

tion in a program using random numbers, then repeated RUNs of the program produce different resul ts.

If the instruction is absent, then the official list of random numben is obtained in the usual order. It

is suggested that a simulated model should be debugged without this instruction so that one always ob­

tains the same random nurmers in test runs. After the program is debugged, and before starting produc­

tion runs, you insert the following:

RANDOM

5.1.4 The Sign Function (SGN)

The SGN function is one which assigns the value 1 to any positive number, 0 to zero, and -1 to any

negative number. Thus, SGN (7.23) = 1, SGN (0) = 0, and SGN (- .2387) = -1. For example, the

following statement:

transfers to 100 if X < 0, to 200 if X = 0, and to 300 if X >0.

5.1.5 The Define User Function (DEF) and Function End Statement (FNEND)

In addition to the 14 functions BASIC provides, you may define up to 26 functions of your own with the

DEF statement. The name of the defined function must be three letters, the first two of which are FN,

e.g., FNA, FNB, ••• , FNZ. Each DEF statement introduces a single function. For example, if you

repeatedly use the function e _X2 + 5, intraduce the function by the following:

30 DEF FNE(X)=EXP(-Xt2)+5

and call for various values of the function by FNE (.1), FNE (3.45), FNE (A+2), etc. This statement

saves a great deal of time when you need values of the function for a number of different values of

the variable.

The DEF statement may occur anywhere in the program, and the expression to the right of the equal

sign may be any formula that fits on one line. It may include any combination of other functions,

such as those defined by different DEF statements; it also can involve other variables besides those de­

noting the argument of the function.

As in the following example each defined function may have zero, one, two, or more numeric

variables; string variables (refer to Chapter 8) are not allowed:

10 DEF FNB(XIY)=3*X*Y-Yt3
105 DEF fNC(XIYIZIW)=fNB(XIY)/FNB(ZIW)
530 DEF fNA=3.1416*Rt2

5-4

-193- BASIC
In the definition of FNA, the current value of R is used when FNA occurs. Similarly, if FNR is de-

fined by the following:

70 DEf fNRCX)=SORC2+LOGCX)-EXPCY*Z):CX+$INC2*Z»)

you can ask for FNR(2.7), and give new values to Y and Z before the next use of FNR.

The method of having multiple line DEFs is illustrated by the "max" function shown below. Using this

method, the possibility of using IF ••• THEN as part of the definttion is a great help as shown in the

following example:

10 DEf fNMCX~Y)
20 LET fNM=X
30 If Y<=X THEN 50
40 LET fNM=Y
50 fNEND

The absence of the equals sign (=) in line 10 indicates that this is a multiple line DEF. In line 50,

FNENO termiAliltes the definition. The ~essian FNM, witneut an Gll'gument, serves as a temporary

varic:Jb~e fer the COR'IfMIt.neA eM the fytllCticm val..,.. 1'he fetlewi", ~e defines N-fGctorial:

1~ ~r fNfCN)
20 LI!:T fNf=1
38 f0fi 1<=1 T0 N
48 LET fNf=l<*fNf
50 !\tEXT I<
6fJ fNEND

Any variable which is not an argument of FN _ in a DEF loop has its current value in the program.

Multiple line DEFs may not be nested and there must not be a transfer from inside the DEF to outside

its range, or vice versa. GOSUB and RElURN statements (refer to Section 5.2) are not allowed in

multiple line DEFs.

5.2 Sua'ROUTlNfS

When you have Q pIIOCeGwre that is to ~e foIlGwec;l in several p*es in YOt:lr pregt'em, the procedure

may be written as a subroutine. A su~l'Outine is a self-contained program which is incorporated into

the main program at specified points. A subroutine differs from other control techniques in that the

computer remembers where it was before it entered the subroutine, and it returns to the appropriate

place in the matn program after executing the subroutine.

5.2.1 GOSU8 and RfTUftN Statements

Two new statements, GOSUB and RETURN, are required with subroutines. The subroutine is entered

with a GOSUB statement which can appear at any place in the main program except within a multiple

5-5

BASIC -194-
line DEF. The GOSUB statement is similcr to a GO TO statement; however, with a GOSUB statement,

the computer remembers where it was prior to the transfer. Following is an example of the GOSUB

statement:

90 GOSUS 210

where 210 is the line number of the first statement in the subroutine. The last line in the subroutine is

a RETURN statement which directs the computer to the statement following the GOSUB from which it

transferred. For example:

350 RETURN

retums to the next highest line number greater than the GOSUB call.

Subroutines may appear anywhere in the main program except within the range of a multiple line DEF.

Care should be taken to make certain that the computer enters a subroutine only through a GOSUB

statement and exits via a RETURN statement.

5 .2 .2 Exampl e

A progrom for determining the greatest common divisor {GCD} of three integers, using the Euclidean

Algorithm, illustrates the use of a subroutine. The first two numbers are selected in lines 30 and 40,

and their GCD is determined in the subroutine, lines 200 through 310. The GCD just found is called

X in line 60; the third number is called Y, in line 70; and the subroutine is entered from line 80 to

find the GCD of these two numbers. Th is number is, of course, the greatest common divisor of the

three given numbers and is printed out with them in line 90.

A GOSUB inside a subroutine to perform another subroutine is called a nested GOSUB. It is necessary

to exit from a subroutine only with a RETURN statement. You may have several RETURNs in the sub­

routine, as long as exactly one of them will be used.

10 PR INT "A". "S". "C". "GCD"
20 READ A. S. C
30 LET X=A
40 LET Y=B
50 GOSUS 200
60 LET X=G
70 LET Y=C
80 GOSUB 200
90 PRINT A.B.C.G
100 GO TO 20
110 DATA 60.90.120
120 DATA 38456.64872.98765
130 DATA 32.384.72
200 LET Q=INT<X/Y>

{continued on next page}

5-6

-195-
210 LET R=X-Q*Y
220 IF R=0 THEN 300
230 LET X=Y
240 LET Y=R
250 GO TO 200
300 LET G=Y
310 RETURN
320 END
RUN

GCD3NO

A

60
38456
32

13:38

B

90
64872
384

OUT OF" DATA IN 20

5-7

20-0CT-69

c

120
98765
72

r,co

30
1
8

BASIC

BASIC -196-

-197- BASIC

CHAPTER 6
MORE SOPHISTICATED TECHNIQUES

The preceding chapters have covered the essential elements of BASIC. At this point, you are in a

position to write BASIC programs and to input these programs to the computer via your Teletype. The

commands and techniques discussed so far are sufficient for most programs. This chapter and remaining

ones are for a programmer who wishes to perform more intricate manipulations a.,d to express programs

in a more sophisticated manner.

6.1 MORE ABOUT THE PRINT STATEMENT

The PRINT statement permits a greater flexibility for the more advanced programmer who wishes to

have a different format for his output. BASIC normally outputs items from PRINT statements in the forms

described in this chapter*. Numeric items are printed in the format:

Snn ••• nb l"-.,..JL L one space

numeric value

sign: space if positive; - if negative

String items (refer to Chapter 8) are printed exactly as they appear but without the enclosing quotes.

The Teletype line is divided into zones of 14 spaces each. A comma in a PRINT statement is a signal

to the Telel}lpe to move to the next print zone on the current line or, if necessary, to the beginning of

the first print zone of the next line. A semicolon in a PRINT statement causes no motion of the

Teletype. <PA> (page) in a PRINT statement moves the Teletype to the beginning of the first print

I zone of the first line on the next page of output. Commas, semicolons, and <PA> delimiters can·

appear in PRINT statements without intervening data items. Each delimiter causes Teletype movement

as previously described. For example, PRINT A"B causes the value of A to be printed in the first zone,

*This chapter describes the noquote mode of output. The user can explicitly change the mode to quote
mode by using a QUOTE statement. Refer to Chapter 10 for the description of quote and noquote
modes and their associated statements.

Version 17 BASIC 6-1 August 1971

BASIC -198-I the Teletype to be moved to the third zone, and the value of B to be printed in the third zone. If two

items in a PRINT statement are clearly distinct, the separating commas, semicolons, or <PA> delimiters

can be omitted and the items are treated as though they were separated by one semicolon.

When you type in the following program:

10 fOR 1=1 TO 15
20 PRINT I
30 NEXT I
40 END

the Teletype prints 1 at the beginning of a line, 2 at the beginning of the next line, and, fina"y, 15

on the fifteenth line. But, by changing line 20 to read as follows:

20 PRINT I I

the numbers are printed in the zones, readihg as follows:

I
6
11

2
7
12

3
8
13

4
9
14

5
10
15

If you want the numbers printed in this fashion, but compressed, change line 20 by replacing the

comma with a semico~on as in the following example:

20 PR INT lJ

The following results are printed:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

The end of a PRINT statement signals a new line, unless a comma or semicolon is the last symbol. Thus,

the following instruction:

~ PRINT XI Y

prints two numbers and then retums to the next line, while the instruction:

50 PRINT XI Y ..

prints these two values and does not return. The next number to be printed appears in the third zone,

after the values of X and Y in the first two zones.

5 ince the end of a PRINT statement signals a new line,

250 PRINT

Version 17 BASIC 6-2 August 1971

-199-
causes the Teletype to advance the paper one line, to put a blank line for vertical spacing of your

results, or to complete a partially filled line.

50 F'OR M=1 TO N
110 F'OR J=0 TO M
120 PRINT B(M~J)J
130 NEXT J
140 PRINT
150 NEXT M

BASIC

This program prints B(1,O) and next to it B{1,l). Without line 140, the Teletype would go on printing

B(2,O), 11(2,1), and B(2,2) on the same line, and then B(3,O), B(3,l), etc. After the Teletype prints

the B(1,l) value cOrTesponding to M = 1, line 140 directs it to start a new line; after printing the value

of B(2,2) cOrTesponding to M = 2, line 1.40 directs it to start another new line, etc.

The following instructions:

50 PR INT "T IME-" J "SHAR" J "ING";
51 PR I NT " ON"; " THE "J "PDP -10"

cause the printing of the following:

TIME-SHARING ON THE PDP-10

(The items enclosed in quotes in statements 50 and 51 are strings.)

The following instructions:

10 N=5
20 PR INT "END OF' PAGE" N <PA>
30 PRINT "ITEM"~~··NO. ORDERED"~~"TOTAL PRICE"-

cause the printing of

END OF' PA GE 5

followed by a form-feed to position the Teletype paper at the top of a new page, where the following

is printed:

ITEM NO. ORDERED TOTAL PRICE

Formatting of output can be controlled even further by means of the TAB function, in the form TAB(n),

where n is the desired print position. TAB can contain any numeric formula as its argument. The value

of the numeric formula is computed and then truncated to an integer. This integer is treated modulo

the current output right margin. Setting the output right margin is described in Section 6.7. For

example, if the output right morgin is 72, which is the default margin, a value in the range 0 through

71 is obtained. The first print position on the line is column O. Thus, TAB(17) causes the Teletype to

6-3

BASIC -200-
move to column 17 (unless it has alreody passed this position, in which case the TAB is ignored). For

example, inserting the following line in a loop

55 PRINT XJ TAB(12)J YJ TAB(27)JZ

causes the X values to start in column 0, the Y values in column 12, and the Z values in column 27.

The following rules are used to interpret the printed resul ts:

a. If a number is an integer, the decimal point is not printed. If the integer contains
more than eight digits, it is printed in the fonnat as follows.

sn .nnnnnEsp, IrE (Expo""") followed by the ~9" of the .,.,..,"', ,
followed by p (power of 10)

next five digits

first digit

sign: space if positive; - if negative

For example, 32,437,580,259 is written as 3.24376E+10.

b. For any decimal number, no more than six significant digits are printed.

c. For a number less than 0.1, the E notation is used, unless the entire significant
part of the number can be printed as a 6-digit decimal number. Thus, 0.03456
indicates that the number is exactly .0345600000, while 3.456ooE-2 indicates
that the number has been rounded to .0345600.

d. Trailing zeros after the decimal point are not printed.

The following program, in which powers of 2 are printed out, demonstrates how numbers are printed.

10 F"OR N=-5 TO 30
20 PRINT 2tNJ
30 NEXT N
40 END

POWERS I 1 : 54 20-0CT-69

0.03125 0.0625 0.125 0.25 0.5
512 1024 2048 4096 8192 16384
524288 1048576 2097152 4194304
67108864 1.324218E+8 2.68435E+8

6.2 INPUT STATEMENT

1 2 4 8 16 32 64 128 256
32768 65536 131072 262144

8388608 16777216 33554432
5.36871E+8 1.07374E+9

At times, during the running of a program, it is desirable to have data entered. This is particularly

true when one person writes the program and soves it on the storage device as a library program (refer

to SAVE command, Chapter 9), and other persons use the program and supply their own data. Data

may be entered by an INPUT statement, which acts as a READ but accepts numbers of alphanumeric

data from the Teletype keyboard. For example, to supply values for X and Y into a program, type the

following:

6-4

-201- BASIC
4121 INPUT x .. Y

prior to the first statement which uses either of these numbers. When BASIC encounters this statement,

it types a question mark. The user types two numbers, separated by a comma, and presses the RETURN

key, and BASIC continues the program. No number can be longer than 8 digits.

Frequently, an INPUT statement is combined with a PRINT statement to make sure that the user knows

what the question mark is asking for. You might type in the following statement:

2121 PRINT "YOUR VALUES Or XIYI AND Z ARE"J
3121 INPUT X .. YIZ

and BASIC types out the following:

YOUR VALUE Or X .. YI AND Z ARE?

Without the semicolon at the end of line 20, the question mark would have been printed on the next

line. Data entered via an INPUT statement is not saved with the program. Therefore, INPUT should

be used only when small amounts of data are to be entered, or when necessary during the running of

the program.

6.3 STOPSTATEMENT

S TOP is equivalent to GO TO xxxxx, where xxxxx is the line number of the END statement in the pro­

gram. For example, the following two program portions are exactly equivalent:

25121 GO TO 999 25121 STOP
34121 GO TO 999 34121 STOP
999 END 999 END

6.4 REMARKS STATEMENT (REM)

REM provides a means for inserting explanatory remarks in the program. BASIC completely ignores the

remainder of that line, allowing you to follow the REM with directions for using the program, with

identifications of the parts of a long program, or with any other information. Although what follows

REM is ignored, its line number may be used in a GO TO or IF-THEN 'statement as in the following:

1121121 REM INSERT IN LINES 9121121-998. THE rIRST
11121 REM NUMBER IS N .. THE NUMBER Or POINTS. THEN
12121 REM THE DATA POINTS THEMSELVES ARE ENTERED .. BY

2121121 REM THIS IS A SUBROUTINE rOR SOLVING EQUATIONS

3121121 RETURN

52121 GOSUB 2121121

6-5

BASIC -202-
A second method for adding comments to a program consists of placing an apostrophe (') at the end of I the line, and following it by a remark. Everything following the apostrophe is ignored. This method

cannot be used in an image statement. Image statements are described in Chapter 11. Apostrophes

within string constants are not treated as remark characters.

6.5 RESTORE STATEMENT

The RESTORE statement permits READing the data in the DATA statements of a program more than once.

Whenever RESTORE is encountered in a program, BASIC restores the data block pointer to the first num­

ber. A subsequent READ statement then starts reading the data all over again. However, if the desired

data is preceded by code numbers or parameters, superfluous READ statements should be used to pass

over these numbers. As an exampr e, the following program portion reads the data, restores the data

block to its original state, and reads the data again. Note the use of line 570 (READ X) to pass over

the value of N, which is already known.

100 READ N
110 fOR 1=1 TO N
120 READ X ·
200 NEXT 1 ·
560 RESTORE
570 READ X
580 fOR 1=1 TO N
590 READ X ·
700 DATA
710 DATA

6.6 CHAIN STATEMENT

The CHAIN statement provides a means for one program to call another program SO that programs can

be written separately and executed together in a chain. The CHAIN statement has one of the forms:

CHAIN [alphabetic string]
or CHAIN [alphabetic string], [numeric formula]

The alphabetic string is either: a} the name of the program being chained to, in the form

device:filename .ext (optionally enclosed in quotes), or b} a string variable* that has as its value the

name of the program being chained to, in the form device:filename.ext. The device and the extension

*A string variable is a variable that is used to store an alphabetic string. A string variable is composed
of a I etter and a dollar sign ($) or a letter, a number, and a dollar sign ($), e.g., A$ or B2$. String
variables are described in Chapter 8.

Version 17 BASIC 6-6 August 1971

-203- BASIC
can be omitted, but the filename must be present. If the de\i ce is omitted, DSK: is assumed; if the

extension is omitted, .BAS is assumed.

The numeric formula specifies a line number in the program being chained to; its value is truncated to

an integer.

A few examples of the CHAIN statement are:

CHAIN A$
CHAIN B2$, N*EXPM')
CHAIN PTR:MAIN, 50

When BASIC encounters a CHAIN statement in a program, it stops execution of that program, retrieves

the program named in the CHAIN statement from the specified device, compiles the chained program,

and begins execution either at the line number specified in the CHAIN statement or at the beginning

of the program if no line number was specified. Only the heading of the first program in the chain is

printed, and the TIME: message is printed only after the last program in the chain has been executed.

Error messages for the programs in the chain, excluding the first program, have the name of the program

appended. For example:

OV[RFLOW IN 1100 IN TEST4.BAK

indicates that an overflow error occurred in line 1100 in the chained program TES T4 .BAK. Programs

that run individually, or the first program in a chain will not have the program name appended.

The following is an example of program chaining.

LIST

PROG3 12:05 25-.)AN-71

10 PRINT 10
11 STOP
20 PRINT 20
21 [NO

R[ADY
SAVE
N[W
N[W rILENAM[PROG2
R[ADY
10 INPUT N
20 CHAIN PROG3, N
30 [NO
RUNNH
110

10
TIM[: 0.02 S[CS

6-7

BASIC -204-
6.7 MARGIN STATEMENT

Normally, the right margin for output to the Teletype is 72 characters. The MARGIN statement allows

the user to specify a right margin of 1 to 132 characters. This margin becomes effective on the first

new line of output after the MARG IN statement, and remains in effect until the next time the margin

is set by a MARGIN statement or until the end of the program's execution, whichever is sooner. At

the end of program execution, the output margin is reset to 72 characters.

The form of the margin statement is:

MARGIN [numeric formula]

The numeric formula is a numeric constant, variable, or expression that specifies the right margin; it

is truncated to an integer before the margin is set. Some examples of the MARGIN statement are:

MARGIN
MARGIN

75
132*N

The right margin for input from the Teletype is not affected by MARGIN statements; it is always 142

characters. lines of input that are longer than 142 characters will result in error messages.

The monitor, as well as BASIC, considers the normal Teletype output margin to be 72 characters.

Therefore, when a margin greater than 72 characters is needed, the monitor command SET TTY WIDTH

must be used in addition to the BASIC MARGIN statement. Otherwise, the monitor will output a lead­

ing carriageretum-line feed if an attempt is made to output a seventy-third character on a line.

Before the program is run, the user must twice press the CTRL and C keys simultaneously (two CONTROl­

C's) and then type:

SET TTY WIDTH 132
REENTER

to reenter BASIC. The monitor will not output its carriage retum-line feed until after the 132nd

character on a line; consequently, BASIC can control the margin as the MARGIN statements specify

without interference from the monitor. The SET TTY WIDTH monitor command is implemented in 5.02

and later monitors.

6.8 PAGE STATEMENT

Normally, output to the Teletype is not divided into pages. The PAGE statement allows the user to

set a page size of any positive number of lines. This page size remains in effect until the page size is

set again by a PAGE statement, or until the Teletype is set back into nopage mode by a NOPAGE

statement (described in Section 6.9), or until the end of the program's execution. At the end of pro­

gram execution, the Tel etype is reset to nopage made.

Version 17 BASIC 6-8 August 1971

-205- BASIC
The form of the PAGE statement is:

PAGE [numeric formula]

The numeric formula specifies the page size; it is truncated to an integer before the page size is set.

When a PAGE statement is executed, BASIC ends the current output line (if necessary), outputs a form­

feed to position the Teletype paper at the top of the next page, and starts counting lines beginning

with the next line of output. As soon as a new poge is necessary, a form-feed is output. Whenever a

PRINT statement containing <PA> is executed, the line count for the Teletype page is set back to zero.

6.9 NOPAGE STATEMENT

The NOPAGE statement sets the Teletype back to nopage mode (i .e., the output to the Teletype is no

longer automatically divided into pages). The NOPAGE statement need only be used to change the

mode back from page mode (set by a PAGE statement) because the default is nopage mode for all

Tel etype output. The form of the statement is:

NO PAGE

The NOPAGE statement has no effect on the execution of <PA> delimiters in PRINT statements; they

are executed as usual.

6-9

BASIC -206-

-207- BASIC

CHAPTER 7

VECTORS AND MATRICES

Operations on lists and tables occur frequently; therefore, a special set of 13 instructions for matrix

computations, all of which are identified by the starting word MAT, is used. These instructions are

not necessary and can be replaced by combinations of other BASIC instructions, but use of the MAT in­

structions resul ts in shorter programs that run much faster.

The MAT instructions are as follows:

MAT READ a, b, c

MATc =ZER

MATc =CON

MATc = ION

MAT PRINT a, b, c

MAT INPUT v

MATb=a

MATc=a+b

MATc=a-b

MATc=a*b

MAT c = TRN(a)

MAT c = (k) * a

MAT c = INV (a)

Read the three matrices, their dimensions
having been previously specified.

Fill out c with zeros.

Fi II out c wi th ones.

Set up c as an identity matrix.

Print the three matrices. (Semicolons can
be used immediately following any matrix
which you wish to have printed in a close­
ly packed format.)

Call for the input of a vector.

Set the matrix b equal to the matrix a.

Add the two matrices a and b.

Subtract the matrix b from the matrix a.

Multiply the matrix a by the matrix b.

Transpose the matrix a.

Multiply the matrix a by the number k. The
number, which must be in a parentheses, may
also be given by a formula.

Invert the matrix a.

7-1

BASIC -208-
7.1 MAT INSTRUCTION CONVENTIONS

The following convention has been adopted for MAT instructions: while every vec:tor has a component

O~ and every matrix has a row 0 and a column 0, the MAT instructions ignore these. Thus, if we have

a matrix of dimension M-by-N in a MAT instruction, the rows are numbered 1,2, ••• , M, and the

columns 1,2, ... , N.

If a numeric array is referenced in a MAT statement other than MAT INPUT BASIC sets up the array

as a matrix with two dimensions unless the user has specifically declared in a DIM statement that the

array is a vector.

The DIM statement may simply indicate what the maximum dimension is to be. Thus, if we write the

following:

DIM M(20,35)

M may have up to 20 rows and up to 35 columns. This statement is written to reserve enough Space for

the matrix; consequently, the only concern at this point is that the dimensions declared are large

enough to accommodate the matrix. However, in the absence of DIM statements, all vectors may have

up to 10 components and matrices up to 10 rows and 10 columns. This is to say that in the absence of

DIM statements, this much space is automatically reserved for vectors and matrices on their appear­

ance in the program. The actual dimension of a matrix may be determined either when it is first set

up (by a DIM statement) or when it is computed. Thus the following

10 DIM M(20,7)

50 MAT READ M

reads a 20-by-7 matrix for M, while the following:

50 MAT READ M(17,30)

reads a 17-by-30 matrix for M, provided sufficient space has been saved for it by writing

10 DIM M(20,35)

7.2 MAT C = ZER, MAT C = CON, MAT C =IDN

The following three instructions:

MAT M =ZER
MATM=CON
MATM=IDN

(sets up matrix M with all components equal to zero)
(sets up matrix M with all components equal to one)
(sets up matrix M as an identity matrix)

7-2

-209- BASIC
act like MAT READ as far as the dimension of the resulting matrix is concerned. For example,

MAT M = CON (7,3)

sets up a 7-by-3 matrix with 1 in every component, while in the following:

MAT M =CON

sets up a matrix, with ones in every component, and a 1 O-by-l 0 dimension (unless previously given

other dimensions). It should be noted, however, that these instructions have no effect on row and

column zero. Thus, the following instructions:

10 DIM M(2011)
20 MAT READ M(113)
35 MAT M=CON
10 MAT M=ZERCI511)

nnt reGd in a 7-by-3 matrix for M. lhen they set up a 7-by-3 matrix of all 15 for M (the actual

~ ... hawi,. IDeen set up as 7-by-3 in line 2t). Next they set lIP M ell a 15-by-7 all-zero matrix.

(Nete that altt.eush this is larger than the previous M, it il within the limits set in 10.) An error mes­

SClf:Je results because of line 90. The limit set in line 10 is (20 + 1) x (7 + 1) = 168 components, and in

90 we are calling for (16 + 1) x (10 + 1) = 187 components. Thus, although the zero rows and columns

are ignored in MAT instructions, they playa role in determining dimension limits. For example,

wo.Jld not yield an error message.

Perhaps it should be noted that an instruction such as MAT READ M(2,2) which sets up a matrix and

which, as previously mentioned, igneres the zero row and column, does, however, affect the zero row

GIfMI .IIHIIII'I. -n.e r_imeneioning which may ... implicit in an inttruetien causes the relocation of some

numMrs; tfterefore, they may not appear subseEtuentty in the same "lace. ,""us, even if we have fint

LET M(1,O) = M(2,0) = 1, and then MAT READ M(2,2), the values of M(l ,0) and M(2,O) now are O.

Thus when using MAT instructions, it is best not to use row and column zero.

7.3 MAT PRINT A, B, C

The fot1owing instruction:

MAT PRINT A, B; C

7-3

BASIC -210-
causes the three matrices 10 be printed with A and C in the normal format (i .e., with five camponents

10 a line and each new row starting on a new line) and B closely packed.

Veclors may be used in place of matrices, as long as the obove rules are observed. Since a vector like

V(I) is treated" as a col umn vector by BAS IC, a row veclor has 10 be introduced as a matrix that has

only one row, namely row 1. Thus,

DIM X(7), Y(O,S)

introduces a 7-component column veclor and a 5-component row vector.

If V is a vector, then

MAT PRINT V

prints the veclor V as a column veclor.

MAT PRINT V,

prints Vasa row vector, five numbers to the line, while

MAT PRINT Vi

prints V as a row vector, closely packed.

7.4 MAT INPUT V AND lliE NUM FUNCTION

The following instruction:

MAT INPUT V

calls for the input of a vector. The number of camponents in the veclor need not be specified. Nor­

mally, the input is limited by its having to be typed on olie line. However, by ending the line of

input with an ampersand (&) before the carriage return, the machine asks for more input on the next

line. There must be at least one data item preceding the ampersand on the line or an error message

will be issued. Note that, although the number of components need not be specified, if we wish to

input more than 10 numbers, we must save sufficient space with a DIM statement. After the input,

the function NUM equals the number of components, and V(1), V(2), ••• , V(NUM) become the num­

bers that are input, allowing variable length input. For example,

5 LET S=0
10 MAT INPUT V
20 LET N=NUM
30 IF" N=0 THEN 99
40 FOR 1=1 TO N
45 LET S=S+V(I)
50 NEXT I
60 PRINT S/N
10 GO TO 5
99 END

7-4

-211- BASIC
allows the user to type in sets of numbers, wbich are averaged. The program takes advantage of the

fact that zero nunibers may be input, and it uses this as a signal to stop. Thus, the user can stop by

simply pushing RETURN on an input request. If an ampersand is used, it need only be preceded by a

comma when the item immediately preceding it is an unquoted string.

7.S MAT B =A

This instruction sets up B to be the same as A and, in doing so, dimensions B to be the same as A, pro­

vided that sufficient space has been saved for B.

7 .6 MAT C = A + B AND MAT C = A - B

For these instructions to be legal, A and B must have the same dimensions, and enough space must be

saved for C. These statements cause C to assume the same dimensions as A and B. Instructions such as

MAT A = A:!: B are legal; the indicated operation is performed and the answer stored in A. Only a

single arithmetic operation is allowed; therefore, MAT D = A + B - C is illegal but may be achieved

with two MAT instructions.

7.7 MAT C = A * B

For this instruction to be legal, it is necessary that the number of columns in A be equal to the number

of rows in B. For example, if matrix A has dimension L-by-M and matrix B has dimension M-by-N,

then C = A * B has di mension L -by-N. It shoul d be noted that wh iI e MAT A = A + B may be legal,

MA T A = A * B is self-destructive because, in multiplying two matrices, we destroy companenls which

would be needed to complete the computation. MAT B = A * A is, of course, legal provided that A

is a "square" matrix.

7.8 MAT C = TRN(A)

This instruction lets C be the transpose of the matrix A. Thus, if matrix A is an M-by-N matrix, C is

an N-by-M matrix. The instruction MAT C = TRN (C) is legal.

7.9 MATC =(K) *A

This instruction allows C to be the matrix A multiplied by the number K (i .e., each companent of A

is multiplied by K to form the components of C). The number K, which must be in parentheses, may

be replaced by a formula • MAT A = (K) * A is legal.

7-5

BASIC -212-
7.10 MAT C = INV(A) AND THE DET FUNCTION

This instruction allows C to be the inverse of A. (A must be a "square" matrix.) The function DET is

available after the execution of the inversion, and it will equal the determinant of A. Consequently,

the user can obtain the determinant of a matrix by inverting the matrix and then noting what value

DET has. If the determinant of a matrix is zero, the matrix is singular and its inverse is meaningless.

When an attempt is made to invert a matrix whose determinant is nearly zero, the warning message

NEARLY SINGULAR MATRIX INVERTED IN nn

is printed, DET is set equal to zero, and the program execution continues.

7.11 EXAMPLES 0 F MATRIX PROG RAMS

The first example r-ecJds in A and B in line 30 and, in so doing, sets up the correct dimensions. Then,

in line 40, A + A is computed and the answer is called C. This automatically dimensions C to be the

SElme .. A. Note that the data in line 90 resul ts in A being 2-by-3 and in B being 3-by-3. Both

MAT P«tI\IT fierme.ts EIre illustrated, Clndone method of labeling a ITIGtrix print is shown.

10 BIM A(20.20). B(20.20). CC20.20)
20 READ M.N
30 MAT READ ACM.N).BCN.N)
40 MAT C=A+A
50 MAT PRINT CJ
60 MAT C=A*B
70 PR INT
75 PR I NT "A *8 =" •
80 MAT PR INT C
90 DATA 2.3
91 DATA 1.2.3
~ DATA 4.5.6
~ DATA 1.0.-1
94 DATA 0.-1.-1
95 DATA -1.0.0
99 END
RUN

fllATRIX 08:31 09-MAR-71

246

8 10 12

A*B=

-2 -2 -3

-2 -5 -9

TIME: 0.13 SECS.

7-6

-213- BASIC
The second example inverts an n-by-n Hilbert matrix:

1 1/2 1/3 • l/n
1;2 1/3 1/4. 1/n + 1
1/3 1/4 1/5. l/n +2

. .
1/n 1/n + 1 1/n +2 l;2n-l

Ordinary BASIC inftructions are used to set up the matrix in lines 50 to 90. Note that this occurs after

correct dimensions have been declared. A single instruction then results in the computation of the in­

verse, and one more instruction prints it. Because the function DET is available after an inversion,

it is taken advantage of in line 130, and is used to print the value of the determinant of A. In this

example, we have supplied 4 for N in the DATA statement and have made a run for this case:

5 REM THIS PROGRAM INVERTS AN N-BY-N HILBERT MATRIX
10 DIM A(20,20), 8(20,20)
20 READ N
30 MAT A=CON(N,N)
~ fOR 1=1 TO N
~ fOR J=l TO N
70 LET A(I,J)=I/(I+J-l)
80 NEXT J
90 NEXT I
100 MAT B=INV(A)
115 PK INT "INV(A)="
120 MAT PRINT 8
125 PRINT
130 PR INT "DETERMINANT Of A=" DET
190 DATA 4
199 END
RUN

HILMAT

INV(A)=

16.0001
-120.001
240.003

-140.002

13: 52

-120.001
1200.01

-2700.03
1680.02

DETERMINANT Of A=1.65342E-7

20-0CT-69

240.003
-2 7r~0 .!13
6480.08

-4200.05

-140.002
1680.02

-4200.05
2800.03

A 20-by-20 matrix is inverted in about 0.5 seconds. However, the reader is warned that beyond

n = 7, the Hilbert matrix cannot be inverted because of severe round-off errors.

7.12 SIMULATION OF N-DIMENSIONAL ARRAYS

Although it is not possible to create n-dimensional arrays in BASIC, the method outlined below does

simulate them. The example is of a three-dimensional array, but it has been written in such a way

7-7

BASIC -214-
that it could be easily changed 10 four dimensions or higher. We use the fact that functions can have

any number of variabl es, and we set up a 1-10-1 correspondence between the components of the array

and the components of a veclor which equals the product of the dimensions of the array. For example,

if the array has dimensions 2, 3, 5, then the vector has 30 components. A multiple line DEF could be

used in place of the simple DEF in line 30 if the user wished 10 include error messages. The printout

is in the form of two 3-by-5 matrices.

10 DIM V(1000)
20 MAT READ D(3)
30 D-EF FNA(I#J#K)=(I-l)*D(2)+(J-l»*D(3)+K
50 FOR 1=1 TO D C1)
55 FOR J=1 TO D(2)
60 FOR K=1 TO D(3)
80 LET V(FNA(I#J#K»=I+2*J+Kt2
90 PRINT V(FNA(I#J#K»#
100 NEXT K
110 NEXT J
112 PRINT
115 PRINT
120 NEXT I
900 DATA 2#3#5
999 END
RUN

3ARRAY 08:07 27-0CT-69
4 7 12 19 28
6 9 14 21 30
8 11 16 23 32

5 8 13 20 29
7 1(1) 15 22 31
9 12 17 24 33

7-8

-2l5- BASIC

CHAPTER 8

ALPHANUMERIC INFORMATION (STRINGS)

In previous chapters, we have dealt only with numerical information. However, BASIC also processes

alphanumeric information in the form of strings. A string is a sequence of characters, each of which is

a letter, a digit, a space, or some other character. A string, however, cannot contain a character

I that is a line terminator (i .e., a line feed, form feed, or vertical tab), or a carriage return.

String constants are normally enclosed in quotes (e.g., "TOTAL VALUE"). In some cases in some

statements, the quotes can be omitted. Where this is allowed, it is explicitfy stated in the description

of the particular type of statement found elsewhere in this manual.

Variables may be introduced for simple strings and string vectors, but not for string matrices. Any

simple variable, followed by a dollar sign ($), stands for a string; e.g., A$ and C7$. A vector vari­

able, followed by $, denotes a list of strings; e.g., V$(n) or A2$(n), where n is the nth string in the

list. For exampl e, V$(7) is the seventh string in the list V.

8.1 READING AND PRINTING STRINGS

Strings may be read and printed. For example:

10 READ A$, 8$, C$
20 PRINT C$J 8$J A$
30 DATA ING,SHAR,TIME-
40 END

causes TIME-SHARING to be printed. The effect of the semicolon in the PRINT statement is consistent

with that discussed in Chapter 6; i.e., it causes output of the alphanumeric items in a close-packed

form. Commas, <PA> delimiters, and TABs may be used as in any other PRIN T statement. The loop:

70 FOR 1=1 TO 12
80 READ M$CI>
90 NEXT I

reads a list of 12 strings.

Version 17A BASIC 8-1 May 1972

BASIC -216-
In place of the READ and PRINT, corresponding -MAT instructions may be used for lists. For example,

MAT PRINT M$; causes the members of the list to be printed without spaces between them. We may

also use INPUT or MAT INPUT. After a MAT INPUT, the function NUM equals the number of strings

inputted. When using the MAT INPUT statement, you can continue inputting strings on the next line

by typing an ampersand (&) on the current line immediately before pressing the RETURN key. A comma

must precede the ampersand if the string immediately before the ampersand is unquoted. If the string

is unquoted and a comma does not separate the string from the ampersand, the ampersand will be

treated as part of the string. Thus, either MARY,& or "MARY"& is legal input.

As usual, lists are assumed to have no mare than 10 elements; otherwise, a DIM statement is required.

The following statement:

10 DIM MS(20)

saves space for 20 strings in the M$ list.

In the DATA statements, numbers and strings may be intermixed. Numbers are assigned only to numer­

ical variables, and strings only to string variables. Strings in DATA statements are recognized by the

fact that they start wi th a letter. If they do not, they must be enclosed in quotes. The same require­

ment holds for a string containing a comma. For example:

I The only convention on INPUT and MAT INPUT is that a string containing a comma must be enClosed

in quotes. The following example shows the correct format for a response to a MAT INPUT:

I

MR. JONES, "146 MAIN ST., MAYNARD, MASS."

8.2 STRING CONVENTIONS

In every method of inputting string information into a program (DATA, INPUT, MAT INPUT, etc.),

leading blanks are ignored unless the string, including the blanks, is enclosed in quotes. String con­

stants (which must be enclosed in quotes) or string variables may ocCur in LET and IF-THEN statements.

The following two examples are self-explanatory:

10
20

Version 17A BASIC

LET YS="YES"
IF A7$="YES" THEN -200

8-2 May 1972

I

-217- BASIC
The relation "<" is interpreted as "earlier in alphabetic order. II The other relational symbols work In

a similar manner. In any comparison, trailing blanks in a string are ignored, as in the following:

"YES" = "YES "

We illustrate these possibilities by the following program, which reads a list of strings and alphabetizes

them:

10 DIM LS(50)
20 READ N
30 MAT READ LSCN)
~ FOR 1=1 TO N
50 FOR J=1 TO N-I
60 IF LSCJ) < LSCJ+l) THEN 100
70 LET AS=LSCJ)
80 LET LSCJ)=LSCJ+I)
90 LET LSCJ+l)=AS
100 NEXT J
110 NEXT I
120 MAT PRINT LS
900 DATA 5#ONE#TWO#THREE#FOUR#FIVE
999 END

Omitting the $ signs in this program serves to read a list of numbers and to print them in increasing

order.

A rather common use is illustrated by the following:

330
340
350
360

PRINT "DO YOU WISH TO CONTINUE""
INPUT AS
IF AS="YES" THEN 10
STOP

8.3 NUMERIC AND STRING DATA BLOCKS

Numeric and string data are kept in two separate blocks, and these act independently of each other.

The RES TORE statement resets both the data pointenfor the numerical data and string data back to the

beginning of their blocks. RES TORE· resets the pointer only for the numerical data and RES TORE $

only for the string data.

8.4 THE CHANGE STATEMENT

In BASIC, it is very easy to obtain the individual digits in a number by using the function INT. One

way to obtain the individual chcracters in a string is with the instruction CHANGE. The use of

CHANGE is best illustrated with the following examples.

Venion 17A BASIC 8-3 May 1972

BASIC
5
10
15
20
25
35
~
45
RUN

CHANGE

DIM A(65)
READ A$
CHANGE A$ TO A
FOR 1=0 TO A(0)
PRINT A(I)J
NEXT I

-218-

DATA ABCDEFGHIJKLMNOPQRSTUVWXYZ
END

13:55 20-0CT-69

26 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89 90

In line 15, the instruction CHANGE A$ TO A has caused the vector A to have as its zero component

the number of characters in the string A$ and, also, to have certain numbers in the other components.

These numbers are the American Standc:rd Code for Information Interchange (ASCII) numbers for the

characters appearing in the string (e.g., A(1) is 65 - the ASCII number for A).

Table 8-1 lists the ASCII numbers for printing and nonprinting characters. Note that the nonprinting

characters are shown in the table as codes containing two or three letters. These codes are not output;

the actual meaning of the ASCII number is output (e.g., 7 causes the bell to ring, it does not print

BEL) •

Table 8-1
ASCII Numbers and Equivalent Characters

ASCII ASCII
Decimal Character Meaning Decimal Character Meaning
Number Number

0 NUL Null 14 SO Shift out
1 SOH S tart of head;' 15 SI Shift in
2 STX Starl 16 OLE Data link escape
3 ETX End ot text 17 DCl Device control 1
4 EOT End of transmission 18 DC2 Device control 2
5 ENQ Enquiry 19 DC3 Device control 3
6 ACK Acknowledge 20 DC4 Device control 4
7 BEL Bell 21 NAK Negative acknowledgement
8 BS Backspace 22 SYN Synchronous idle
9 HT Horizontal tab 23 ETB End of transmission block

10 LF Line feed 24 CAN Cancel
11 VT Vertical fQb 25 EM End of medium
12 FF Form feed 26 SUB Substitute
13 CR Carriage return 27 ESC Escape

Note: Recall that line feed (LF), form feed (FF), vertical tab (YT), and carriage return (CR) are
illegal in strings.

(continued on next page)

Version 17A BASIC 8-4 lv1ay 1972

-219- BASIC
Table 8-1 (Cont)

ASCII Numbers and Equivalent Characters

-

1
ASCII ASCII

Decimal Character Meaning Decima! Character Meaning

Number Number

28 FS Fil e separc:tor 72 H I Upper case H

29 GS Group separato! 73 I Upper case I

30 RS Record separa tor 74 J Upper case J
31 US Unit separator 75 K Upper case K

32 SP Space or blank 76 L Upper case L

33 ! Exclamation mark 77 M Upper case M

34 " Quotation mork 78 N Upper case N

35 # N1Jmber sign 79 0 Upper case 0

36 $ Dollar sign 80 P Upper case P I
37

I
% Perc~nt sign 81 Q Upper case Q

38 & ! AmFer-;and 82 R Upper case R

39 I Apostrophe 83 S I Upper ca:;e 5

40 (Left parenthesis 84 T Upper case T

I 41) Righ t par~nthesis 85 U Upper cast} U

42 * I Asterisk 86

I
V Upper case V

I
43 +- PllJs sign 87 iN Upper case W

I
44 , Comma I 88 X Upper case X

45 .- Minu:i sign 0' hyphen 89 I
y

I
Upp~r <~ase Y

46 Period or decimal paint 90 Z Upper case Z

47 I Slash 91 [Left square bracket
I

48 0 Zero 92 \ I Back slash

49 1 One 93] Right square bracket

I 50 2 Two 94 " or t Circumflex or up arrow

51 3 Three 95 ~'or Back arrow or underscore

I 52 4 I Four 96
.-

Grave accent

I
I

53 5 Five 97 a Lower case a
I 54 6 Six 98 b Lower case b

55 7 Seven 99

I
c Lower case c

.56 8 Eight 100 d Lower case d

57 9 Nine 101 i e Lower case e

58 : Colon 102 f I Lower case f

59 ; I Semicolon 103

i

9 Lower case 9

60 < Left angle bracket 104 h Lower case h

61 = Equal sign 105 j Lower case i

62 > ,<ight angle bracket 106 I i Lower case i I

63 ? Question mark 107 k Lower case k

64
I

(~ At sign 108 I Lower case I

65 A Upper case A 109 m Lower case m

66 B Upper case B 110 n Lower case n

67 C Upper case C 111 0 lower case 0

68 D Upper case D 112 p lower case p

69 E Upper case E

~3
q lower case q

70 F Upper case F 114 r Lower case r

71 G Upper case G 115 s lower case s

(continued on next page)

Version 17 BASIC 8-5 August 1971

BASIC -220-
Tabl e 8-1 (Cont)

ASCII Numbers and Equivalent Characters

ASCII ASCII
Decimal Character Meaning Decimal Character Meaning
Number Number

116 t Lower case t 122 z Lower case z
117 u Lower case u 123 { Left brace
118 v Lower case v 124 I Vertical line
119 w Lower case w 125 } Right brace
120 x Lower case x 126 ,... Tilde
121 y Lower case y 127 DEL Delete

The other use of CHANGE is illustrated by the following:

10 fOR 1=0 TO 5
15 READ ACI)
20 NEXT I
25 DATA 5,65,66,67,68,69
30 CHANGE A TO A$
35 PRINT A$
40 END

This program prints ABCDE because the numbers 65 through 69 are the code numbers for A through E.

Before CHANGE is used in the veclor-to.,.string direction, we must give the number of characters

which are 10 be in the string as the zero component of the vec'lor. In line 15, A(O) is read 'as 5. The

following is a flnal example:

5 DIM V(128)
10 PRINT "WHAT DO YOU WANT THE VECTOR V TO BE";
20 MAT INPUT V
30 LET V(0)=NUM
35 If NUM=0 THEN 70
40 CHANGE V TO A$
50 PRINT A$
60 GO TO 10
70 END
RUN

EXAMPLE 13:59 20-0CT-69

WHAT DO YOU WANT THE V TO 8E-1- 4ih45,60,45,89;90
C-<-YZ
WHAT DO YOU WANT THE VECTOR V TO 8E? 33,34,35,36,37 .. 38 .. 39· .. 40 .. 41 .. 42 &
1 43 .. 44 .. 45 .. 46,47,48,49 .. 50
'''#$%&'C)*+ .. -./012
WHAT DO YOU WANT THE VECTOR V TO BE?
TIME: 0.10 SECS.

8-6

-221- BASIC
Note that in this example we have used the availability of the function NUM after a MAT INPUT to

find the number of characters in the string which is to resul t from line 40.

8.5 STRING CONCATENATION

Strings can be concatenated by means of the plus sign operator (+). The plus sign can be used to con­

catenate string formulas wherever a string formula is legal, with the exception that information cannot

be stored by means of LET or CHANGE statements in concatenated string variables. That is, concate­

nated string variables cannot appear to the left of the equal sign in a LET statement or as the right­

hand argument in a CHANGE statement. For example, LET A$=B$+C$ is legal, but LET A$+B$=C$ is

not; and similarly, CHANGE A$+B$ TO X is legal, but CHANGE X TO A$+B$ is not. An example

of string concatenation is:

10 INPUT A$
20 CHAIN A$+"i",AIN.PRG"
30 END
RUNI\:H

?DTA4 :

The program causes chaining to DTA4:MAIN .PRG, which is the program MAIN .PRG on DECtape

drive 4.

8.6 STRING MANIPULATION FUNCTIONS

A number of functions have been impl emented that perform manipulations on strings. These functions

are LEN, ASC, CHR$, VAL, STR$, LEFT$, RIGHT$, MID$, SPACE$, and INSTR. Functions that

return strings have names that end in a dollar sign ($); those functions that return numbers have names

that do not end in a dollar sign.

8.6.1 The LEN Function

The LEN function returns the number of characters in a string. It has the form:

LEN (string formula)

Version 17 BASIC 8-7 August 1971

BASIC
examples:

10
20
30
Jl0
RUNNH
20

10
20
30

-222-

READ A$.. B$
PR INT LEN(A$+B$+"AROUND")
DATA "UP .. " .. "DOWN .. AND ..
END

IF LEN (A$)<>0 THEN 30
PRINT "A$ IS A NULL STRING"
END

8.6.2 The fISC andCHR$ Functions

The fISC and CHR$ functions perform conversion of /lSCII numbers in the same manner as tlTe CHANGE

statement. The fISC function converts one character to its flScn decimal equivalent, and the CHR$,

function converts an flScn decimal number to its equivalent character.

The fISC function has the form:

fISC (argument)

The argument can be either one character or the two- or three-letter code that represents a nonprinting

character (refer to Table 8-1 for these codes). fISC returns the equivalent flSCII d~imal number for

the character.

The CHR$ function has the form:

CHR$ (numeric formula)

The value of the numeric formula is truncated to an integer that must be in the range 0 through 127

I and cannot be the numbers 10 through 13. If the integer is less than 0 or greater than 127 or one of

the numbers 10 through 13, an error message is issued. This integer is then interpreted as an ASCII

decimal number that is converted to its eql:livalent character (refer to Table 8-1 for the ASCII numbers

and the equivalent characters).

An example of the fISC and CHR$ functions follows.

5 FOR T=ASCCA) TO ASC(A)+3
10 PRINT "THIS IS TEST" + CHR$CT>

This is the beginning of a FOR loop that successively prints:

Version 17A BASIC 8-8 May 1972

-223- BASIC
THIS IS TEST A

THIS IS TEST B

THIS IS TEST C

TI'IIS IS TEST 0

8.6.3 The VAL and STR$ Functions

The VAL and S TR$ functions perform conversions from numbers to strings and strings to numbers. The

form of the VAL funetion is:

VAL (string formula)

The string formula must look like a number; if it does not, an error message is issued. VAL returns the

actual number that the string represents. The VAL function does not return the ASCII value of the

number that the string represents, it returns the number. For example, VAL {"25"} returns the number

25. The 25 that is the argument to VAL is a string, the 25 that VAL returns is a number.

If the string argument represents a number that is greater than about 1 .7E38 in magnitude or non-zero,

but less than about 1.4E-39 in magnitude, the appropriate overflow or underflow message is issued and

the value returned is about 1 .7E38, about -1.7E38, or zero, whichever is appropriate.

Example:

10 INPUT A$
20 PRINT VAL (A$>*2

100 END
RUNNH

12.4611121
4.92222

The S TR$ function returns the string representation {as a number} of its argument. The form of S TR$ is:

S TR$ (numeric formula)

The stril'lg that is returned is in the form in which numbers are output in BAS IC (see Section 6. I). For

example, PRINTSTR$ (1.76111124) prints the string 1.76111.

Version 17 BASIC 8-9 August 1971

BASIC -224-
Examples:

10 A=2561
20 R$=STR$(A)
30 PRINT B$
40 END
RUNNH

2561

10 A=25
20 B$=STf<5(A)
30 CHANGE !::lS TO X

40 PRINT X(0) ; X <I); X(2)

50 END
Rl.lNNH

2 50 53

8.6.4 The LEFT$, RIGH T$, and MID$ Functions

The LEFT$, RIGH T$, and MID$ functions return substrings of their string arguments.
. .

The LEFT$ function returns a substring of a specified number of characters starting with the leftmost

character of its string argument. The LEFT$ function has the form:

LEFT$ (string formula, numeric formula)

The value of the numeric formula is truncated to an integer that specifies the number of characters in

the substring. If the specified number of characters is greater than the length of the string argument,

the entire string is returned. If the specified number of characters is less than or equal to zero, an

error message is issued. For example,

10 PRINT LEFT$("THIS IS A TESr"l7)

prints the substring

THIS IS

The RIGHT$ function returns a substring of specified length ending at the rightmost character of its

string argument. The form of the RIGHT$ function is:

RIGHT$ (string formula, numeric formula)

The value of the numeric formula is truncated to an integer that specifies the number of characters in

the substring to be returned. If the number of characters is greater than the length of the string argu­

ment, the entire string is returned. If the specified number of characters is less than or equal to zero,

an error message is issued. For example,

Version 17 BASIC 8-10 August 1971

-225- BASIC
5 A$="HEkE AND THERE"
10 PRINT HIGHT$(A$,S)

prints the substring

THERE

The MID$ function returns a substring of its string argument starting a specified number of characters

from the leftmost character of the string argument. The number of characters in the substring can also

be specified. The form of the MID$ function is:

MID$ {string formula, numeric formula-I, numeric formula-2}

The second numeric formula, which is truncated to an integer that specifies the number of characters

in the substring, is optional and can be omitted. If this argument is omitted, the substring includes all

the remaining characters in the string argument. The first numeric formula is truncated to an integer

that specifies the leftmost character at which the substring is to start. MID$ returns a null string if the

first numeric formula when truncated to an integer is greater than the number of characters in the

string argument; if it is less than or equal to zero, an error message is issued. If the number of charac­

ters in the substring is specified o,y the second numeric formula} and is greater than the number of

characters in the string argument beginning at the specified character, MID$ returns the string argu­

ment starting at the specified character. If the number of characters is less than or equal to zero, an

error message is issued.

Examples:

10 PRINT MID$ ("TOTAL OUTPUT IN MARCH",17)

RUNNH

MARCH

10 PRINT MID$ ("ABCDEF'",3,1>

RUNNH

C

8.6.5 The S PACES Function

The SPACES function returns a string of spaces. The form of the SPACES function is:

SPACES {numeric formula}

Version 17 BASIC 8-11 August 1971

BASIC -226-
The value of the numeric formula is truncated to an integer that specifies the number of spaces in the

string to be returned. If the integer is less than or equal to zero or greater than 132, an error message

is issued.

Example:

10 A$=B$="HERE"
20 FOR T=l TO 3
30 PRINT A$; SPACE$(T); 8$

RUNNH

HERE HERE
HERE HERE
HERE HERE

8.6.6 The INS TR Function

The INSTR function searches for a specified substring within a string and returns the position of the firsl

character of that substring within the strfng. The positions are numbered from the leftmost character

in the string. The user can optional-Iy specify that the search for the substring begin at a character

position other than the first. The form of the INS TR function is:

INS TR (numeric formula, string formula-1, string formula-2)

The numeric formula, which is truncated 10 an integer that specifies the starting character position, is

optional and can be omitted. If the numeric argument is omitted, the 'search begins at the first charac­

ter position. The first string argument is the string searched; the second string argument is the sub­

string searched for. If the value of the numeric formula (if specified) is greater than the number of

characters in the string or if the substring cannot be found in the string, INSTR returns a value of

zero. If the val-ue of the numeric formula is 1 ess than or equal 10 zero, an error message is issued.

If the second string argument is a null string, INS TR returns the character position at which the search

started, unl ess that position is past the last character in the string. In that case, INS TR returns a

value of zero.

Version 17 BASIC 8-12 August 1971

-227- BASIC
Examples:

IV! PRINT INSTR ("ABCDCEF''', "C")

RUNNH

3

10 PRINT INSTR (4,"ABCDCEF", "C")

RUNNH

5

Note that if the second string argument occurs more than once within that part of the first string argu­

menT that is searched, the first occurrence found is used.

Version 17 BASIC 8-13 August 1971

BASIC -228-

I

-229- BASIC

CHAPTER 9

EDIT AND CONTROL

Several commands for editing B~IC programs and for controlling their execution enable the user to

perform such operations as:

a. deleting lines

b. listing the program

c. changing or resequencing line numbers with set increments

d. saving programs on various storage devices (disk, DEClape, card punch, etc.)

e. calling in programs from storage devices

f. deleting programs on disk or DEC tape

These commands are summarized in Table 9-1:

Command

BYE

CATALOG device:

COpy device:filename.ext
> device:filename.ext

Version 17A BASIC

Table 9-1
Commands for Editing B~IC Programs

Action

Exits from BASIC and partiall logs out. Refe-r to Section 4.6.

lists on the Teletype the names and extensions of the user's
files on either the disk or DEC tape or the system programs
on the system device SYS. If device is omitted, disk is
assumed. The colon following the device is optional.

The file specified by the first argument is copied to the de­
vice specified by the second argument and given the name
specifi ed in the second argument. If device is omitted,
DSK: is assumed. If the device is not disk or DECtape, the
filename and extension can be omitted. If the filename is
omitted, the extension must also be omitted. If the device
is either disk or DECtape, the filename must be specified;
however, the extension can be omitted and the extension
.B~ will be assumed. The file need not have line numbers
to be acceptable to COPY. The program currently in core
is not disturbed by the COPY command.

(continued on next page)

9-1 May 1972

BASIC

Command

DELETE n

DELETE n-m t

GOODBYE

KEY

LENGTH

LIST t

LIST n

LIST n-m

LISTNH t }
LISTNH n
LISTNH n-m

LISTREVERSE

LISTN HREVERSE

NEW filename.ext

OLD dev:fi lename. ext

QUEUE filename .ext
/UNSAVE/nCOPIES
/LIMITm

-230-
Table 9-1 (Cont)

Commands for Editing BASIC Programs

Action

Deletes line number n and the contents of the line from user
core.

Deletes lines numbered n through m from user core.

Equival ent to BYE.

Sets BASIC to accept Keyboard mode input from the user's
Teletype (refer to Appendix C). If neither KEY nor TAPE
was specified, KEY is assumed.

Prints approximate length of source program (expressed as the
number of characters) •

lists program with heading.

lists line number n of the program, with heading.

lists program with heading, from line number n through m.

Same as LIST, but with heading suppressed.

lists program in reverse order, with heading.

Same as LIS TREVERSE, but with heading suppressed.

The user must specify the filename explicitly; if this is
not done on the same line as the NEW command, BASIC
outputs a prompting message in which it asks for the name.
The file currently in user core is then deleted and the
new program name is established as the current name.

The user must specify the filename explicitly; if this is
not done on the same line as the OLD command, BASIC
outputs a prompting message in which it asks for the name.
BASIC then replaces the fi Ie currently in user core with
the existing program of that name from the storage device.
That program name is established as the current name. The
file must have line numbers.

Causes the specified file to be output from the disk to the
line printer when the line printer is available. The line
printer does not have to be available when the QUEUE com­
mand is given. The file currently in core is not affected by
the QUEUE command. If the extension is omitted, .BAS is
assumed. The three optional switches, /UNSAVE,
/nCOPIES, and /LIMlTm can be in any order. UNSAVE and
LIMIT can be abbreviated to as little as one letter and the
word COpy can be omitted entirely. The /UNSAVE switch
causes the file to be deleted from the di$k after it is printed;

t LIST, L1STNH and DelETE commands can be given more than one argument; arguments are
separated by commas. An example is as follows:

LIST n,m-I,k

Version 17A BASIC 9-2 May 1972

Command

QUEUE filename.ext
/UNSAVE/nCOPIES
/LlMITm (cont)

RENAME fi lename

REPLACE dev:filename.ext

RESEQUENCE n

RESEQUENCE n"k

RESEQUENCE n,f,k

RUN

RUN n

RUNNH

RUNNH n

SAVE device:filename.ext

SCRATCH

SYSTEM

TAPE

UNSAVE dev:filename .ext I
dev:filename.ext, •••

-231-
Table 9-1 (Cont)

Commands for Editing BASIC Programs

Action

BASIC

normally I the file is saved. The /nCOPIES switch causes n
copies of the file to be printed to a maximum of 63 copies;
normally, one copy is printed. The /LlMITm switchspeci­
fies the number of I ine-printer pages to be printed; normally I
200 is the maximum number of pages that can be printed.
The values specified by nand m must be integers. More
than one file and its associated switches can be specified
in the QUEUE command. Arguments must be separated by
commas.

Changes name of program currently in user core.

Replaces an existing file of the specified name on the speci­
fied device with the file currently in user core. If the de­
vice is DSK or DECtape, the old file must be present on the
device or an error message wi II be issued. The default
assumpti ons are the same as those described for SAVE.

Changes line numbers to n, n + 10, .•••

Changes line numbers to n, n+k, ••••
Commas are necessary as argument del imiters.

Changes lihe numbers from line f upward to n, n+k,
f must not be greater than n.

Compiles and executes the entire program currently in core.

Compiles the entire program currently in core and begins
execution at line number n.

Same as RUN, but with heading suppressed.

Same as RUN n, but with heading suppressed.

Saves on the specified device the file currently in user core.
If device: is omitted, DSK: is assumed. If .ext is omitted,
• BAS is assumed. The extension cannot be specified if the
filename is omitted. If filename.ext is omitted, the current
filename and extension are used. Note that the SAVE com­
mand does not overwrite an existing file of the same name
(use REPLACE instead).

Deletes all program statements from user core.

Exits to Monitor.

Sets BASIC to accept input from the paper-tape reader
attached to the user's Teletype'(refer to Appendix C).

Deletes from each device specified each file indicated by
filename.ext. The default assumptions are the same as
those described for SAVE. When more than one argument is
specified, they must be separated by commas.

(continued on next page)

9-3

BASIC -232-
Table -9-1 (Cont)

Commands for Editing BASIC Programs

Command Action

WEAVE dev:filename.ext Reads program statements from the file indicated by
filename • ext on the specified device. The file must have
line numbers, and existing statements in user core are re-
placed by new statements having same line numbers.

tC To stop a running program and enter Monitor level, type tC
twice.

to To suppress output (typeout), type to.

Any command root can be abbreviated to its first three letters. For example, LISN HREV is
the same as LISTN HREVERSE.

"---

9-4

-233- BASIC

CHAPTER 10

DATA FILE CAPABILITY

The data file capability allows a program to write information into and read information from data files

that are on the disk.

Nine input/output channels are reserved for handling data files from a program. A data file must be

assigned to a channel before it can be referenced in the program. At any given time, a program can

have one and only one file on each channel and one and only one channel assigned to each file. Con-

I sequently, a maximum of nine files can be open simultaneously. However, because .it is possible for

a program to change or establish file/channel assignments while it is running, there is no limit to the

number of data files that can be referenced in one program.

10.1 TYPES OF DATA FILES

I There are two types of data files acceptable to BASIC: sequential access files and random access files.

10.1.1 Sequential Access Files

Sequential access files are those files that contain information that must be read or written sequentially,

one item after another, from the beginning of the file. A sequential access file is either in write mode

or read mode, but cannot be in both modes at the same time. When read mode is established, reading

starts at the beginning of the file. When write mode is established, the file is erased and writing starts

at the beginning of the file.

An important distinction to note about sequential access files is that they can be listed in readable form

on the user's Teletype or the line printer. Sequential access files consist of lines that contain data

items. A sequential access file is either a line-numbered file or a nonline-numbered file, depending

upon whether or not its lines begin with line numbers. Line-numbered files are like BASIC programs in

that they can be manipulated by any of the commands described in Chapter 9 (e.g., OLD, LIST,

DELETE) except the RUN(NH) and CHAIN commands. Nonline-numbered files cannot be handled by

any of the commands that expect a file to have line numbers; they can only be manipulated by the

Version 17 BASIC 10-1 August 1971

BASIC -234-
COPY, QUEUE, and UNSAVE commands. They can be listed on the user's Teletype by means of the

COpy command; for example:

COpy TEST4 > TTY:

Sequential access files do not necessarily have to be created by a program; they can be created at the

editing level in BASIC. Line-numbered files can be created or modifi",d just as a BASIC program is

creaTed or modified. Nonline-numbered files can be created at the Teletype and then transferred to a

storage d~vice sllch as the disk by mt'ons of the COpy command. The following conventions must be

observed wr.en dealing with a sequentiot (lCCeSS file at the editing level:

o. In line-numbered files, each lin.;. number must be fo!lowed immediately by at
leos! one space, a tab, or the letter O.

b. A! ine can contain any number of daTU items separated from one another by 01'
least one :;pace, a comma, or a tab. However, the line must not be longer than
142 characters (counting the line number and its following delimiter, but not
the carriage return and line feed that t'Jrminate the line). it is not necessary
to have a space, comma J (X lah after the last dato Hem on the line. Note th::lt
blanks and tabs are not ignored in q data file as they are in a program.

c. A (~ata item b any numeric constant (refer to Section 1.3.3) or string constant
(refe.' to Ch:lf}ter 8). Numeric constants must not contain blanks or tabs. If a
string is to contain a blank, <:';.r"m(l, O! tab, the user mus~ enclose the string
in :lU?tes; otherwise it wil i 'be read as more than one data item by the statements
that i'ead data.

Section lOA ,:;onlains <:m example of the use of a line-numbered data file created at the editing level.

Section 10.5.1 contains an exomple of a program that creates both a line-numberec! data file and a

nonline-rlUmberec data file <Jnd shows wha~ these files look like when they are copied to the Teletype.

I Because it requires execution time for a program to read and write line numbers in a data file, a

nonline-numbered dato file should be used in preference to a line-numbered data file unless the user

specifically wishes to edit j'he data file with commands such as DELETE.

Another distinction between sequential uccess files is whether the file is a pure data file or a text file.

A pure data fi Ie is used primari Iy for the storage of datu. A text fi Ie contains data that is probably

destined for output to the line printer, because it is 0 report, a financial statement, or the like. The

user must follow siightly different procedures in his program depending on the type of file he wishes to

hondle. For example, a string that contains a blank must be enclosed in quotes when it' is written into

Q pure dotll file, otherwise it wrll be seen os more than one string when data is read from the file.

However, such a string should not be enclosed in quotes when it is written into a text file because text

files are not normally read back into a program, and the superfluous quotes would spoil the appearance

of the file when it is printed. The procedures to follow when handling each type of file are explained

in Sections 10.5.1 and 10.7.

Version 17A BASIC 10-2 May 1972

-235- BASIC
10.1.2 Random Access, Files

Random access files are data files that are not necessarily read or written sequentially. The user can

read items from or write items into a random access file without having the items follow one after the

other. The items in a random access file are not recorded in a form suitable for listing, and therefore

cannot be output to the user's Teletype or the line printer. Random access files cannot be handled by

any of the BASIC commands other than COPY, QUEUE, and UNSAVE. A random access file can be

copied to the disk, DECtape, or magnetic tape, but not to any other device (Teletype, paper-tape

punch, card punch, or line printer). Copying a random access file to a device other than disk, DEC­

tape I or magnetic tape wi II cause errors to be intrrx;luced into the fi Ie. If the system program PIP is

used to transfer a random access file to disk, DECtape, or magnetic tape, the file must be transferred

in bina!)' mode" Refer to the PIP manual for more information.

Random acces~ file>, unlike sequential access files, do not distinguish between read mode and write

mode. The user can read and write any item in tI random access fj I~ at any time by first setting a
po:nter to that item. A random access file contains either string data or numeric data, but not both.

Each data item in a modom access file takes up the same amount of storage space, called a record,

on the disk. BASIC must know the record size for the random access file in order to correctly move

the pointer for that fi Ie from one data item to another. The record size for a random access numeric

file is set by BASIC because the storage space required for a number in such a file is always the same.

The storage space required for a string, however, is dependent upon the number of characters in the

string. Thus, for a random access string file the user must specify the number of characters in the

longest string in the file so that BASIC can set the record size accordingly. This specification takes

place when the file is assigned to a channel. Refer to the description of the FILES and FILE statements

in Section 10.2. When creating a new random access string file, if the user specifies too few charac­

ters an error message is issued when a string too long to fit into a record is written. If'too many

characters are specified for a record 1 the strings wi II a"lways fit, but space wi II be wasted on the disk.

When he is dealing with an existing file, the user does not have to specify a record size. If he does

specify a record size for an existing file, the record size must match that with which the file was

written.

BASIC processes random access files more quickly than it processes sequential access files. Consequent­

Iy, if the user wishes to read or write large amounts of data in sequential order, but does not require

that the data be in listable form, he should consider using a random access file to take advantage of its

speed. A random access fi Ie can easi Iy be read or written in sequential order.

Version 17 BASIC 10-3 August 1971

BASIC -236-
10.2 THE FILE AND FILES STATEMENTS

The FILE and FILES statements perform identical functions. They both assign a file to a channel and

establish the type of the file (sequential, random access string, or random access numeric). The

difference between FILE and FILES is that FILE is an executable statement while FILES is not. Before

executioh of the program begins, BASIC collects all of the FILES statements in the program, makes the

channel assignments, and sets the fi:e types as they were declared in the FILES statements. The FILES

statements are not used again during that execution of the program. GO TO and GOSUB statements

to FILES statements work just as they do to REM statements; i.e., executi on wi II transfer to the first

I executable statement following the FILES statement. The FILE statement, on the other hand, .assigns

channels and establishes file types during program execution, thereby allowing the user to change

file/channel assignments during the running of his program.

The FILE and FILES statements accept filename arguments of the form:

filenm.ext type

where filenm and .ext are the filename and extension of the file in the form described in Chapter 4.

The filename must be specified, but the extension can be omitted. If the extension is omitted, • BAS

is assumed. Type can be a percent sign (%); a dollar sign ($) optionally followed by one, two, or

three digits; or omitted. If type is omitted, the file is assumed to be a sequential access file. If a

percent sign is specified, the file is assumed to be a random access numeric file. A dollar sign option­

ally followed by a one- to three-digit number indicates a random access string file. The number follow­

iog the dollar sign specifies the number of characters in the longest string that the file will contain.

A maximum of 132 characters and a minimum of one character can be specified. If the number is

omitted from the dollar sign type and the file does not presently exist, a default length of 34 characters

is established. If the number is omitted from the dollar sign type and the file does exist, the length

with which the file was previously written is established.

The FILES statement has the form:

FILES filenm .ext type, filenm • ext type, ••• filenm .ext type

where the arguments can be separated by a comma or a semicolon. Channels are assigned consecutively

to the arguments of all the FILES statements in the program. If an argument is omitted, the channel for

the missing argument is skipped. For example, if a program contains only these FILES statements:

10 FILES II AllB
20 FILES CIDI

30 FILES E

file A wi II be assigned to channel 3, file B to channel 5, file C to channel 6, file D to channel 7, and

file E to channel 9.

Version 17 BASIC 10-4 August 1971

I

-237- BASIC
The FILE statement has the form:

FILE arg 1, arg2, ••• argn

where the arguments can be separated by a comma or a semicolon. At least one argument must be

present in a FILE statement. Each argument that assigns a sequential access file to a channel is of the

form:

IN, string formula
or IN: string formula

Each argument that assigns a random access file to a channel is of the form:

:N, string formula
or :N: string formula

N is a digit from 1 to 9 specifying the channel, and the string formu·la is of the form:

filenm. ext type

Note that the channel specifier for a random access file is preceded by a colon (:) while the channel

specifier for a sequential access file is preceded by a number sign (#). This is true of all data file

statements and functions that include channel specifiers. Some data file statements and functions do

not require the number sign or colon to be specified explicitly, but default to one or the other. See

the description of the various statements and functions in the following sections for details. An attempt

to reference a file with a channel specifier of the wrong type causes an error message.

The FILE statement does not permit the enclosing quotes to be omitted when its string formula argument

is a constant. This is because a statement of the form FILE: 1, B$ would cause an ambiguity. The B$

could be taken as a variable (B$) or as a random access string file named B.

Before the FilE statement assigns a file to a channel, it checks to see if a file already exists on th(:lt

channel; if so, the old file is closed and removed from the channel before the new file is assigned.

The type of the old file is immaterial; it is permissible, for example, to close an old sequential access

file on a channel and then open a random access file on that channel. Any file open on a channel at

the end of program execution or whenever BASIC is reentered is automatically closed and removed from

that channel.

Examples of FILES and FILE statements are:

10
20
30

Version 17 BASIC

FILE #1, "ONEDAT": #4,"OUTDAT"
FILE #9: "CHKDAT.4", :4 .. B$+"%"
FILES FOUR.OUT$.. MAIN.8JJ; PROG$16

10-5 August 1971

I

BASIC -238-
10.3 THE SCRATCH AND RESTORE STATEMENTS

The SCRATC H statement has the form:

SCRATCH argl, arg2, ••• argn

The RESTORE statement has the form:

RESTO RE arg 1, arg2, ••• argn

where the arguments can be separated by a comma or a semicolon. An argument is of the form:

For sequential access files:
IN

For random access files:

:N

where N is a digit from 1 through 9 specifying the channel. If neither a number sign nor a colon is

present in front of the N, the number sign is assumed. At least one argument must be present in a

SCRATCH or RESTORE statement.

Scratching a sequential access file erases it and sets it in write mode. Writing will start tit the begin­

ning of the file. Referencing a sequential access file with a statement that does input (READ, INPUT,

or IF END, described in Sections 10.4 and 10.10) while it is in write mode results in a fatal error.

I Scratching a random access file simply erases it and sets the pointer for the file to the first record in

the file.

Restoring a sequential access file sets the file in read mode. Reading will start at the beginning of the

file. Referencing a sequential access file with a statement that does output (WRITE or PRINT, described

in Section 10.5) while it is in read mode results in a fatal error. When a sequential access file is

opened by a FILES or FILE statement and the file exists at that time, it is automatically set in read

mode; it is not necessary to restore it. It is only necessary to restore a sequential access file if it has

been set in write mode and the user wishes to set it to read mode in the same program.

I Restoring a random access file simply sets the pointer for the file to the first record in the file. When

a random access file is opened on a channel by a FILE or FILES statement, its pointer is automatically

set to point to the first record of the file.

I

I

Examples of the SCRATCH and RESTORE statements are:

10
20
80
90

Version 17 BASIC

SCRATCH #4, :2, #3,
SCRATCH #1, 2, 3, 4
RESTORE :2 $9, 1
RESTORE I, 2, 3, 7

10-6 August 1971

I

I

-239- BASIC
10.4 THE READ AND INPUT STATEMENTS

The READ and INPUT statements read data items from files. The READ statement has the following

forms:

For sequential access files:
READ IN, variable, variable, ••• variable

For random access files:
READ :N, variable, variable, ••• variable

The INPUT statement has the following forms:

For sequential access files:
INPUT IN, variable, variable, ••. variable

For random access files:
INPUT :N, variable, variable, ••• variable

N is a digit from 1 through 9 specifying the channel. At least one variable must be present in each

READ or INPUT statement. The delimiter following N can be a comma or a colon. The variables are

separated from one another by a comma or semi colon.

The variables in a READ or INPUT statement for a sequential access file can be string or numeric or a

I mixture of both. The variables in a READ or INPUT statemel'lt for a random access file can be string

or numeric, but not both, because a given random access file cannot contain both string and numeric

data items.

READ and INPUT statements for sequential access files differ from one another in the following way.

The READ statement expects each line of data in the file to begin with a line number, which it then

skips. That is, the line number is not treated as data. If a line number is not present, an error mes­

sage is issued. The INPUT statement, on the other hand, does not expect a line number on each line

of data. If one is present, it is read as data. It is illegal to use both INPUT and READ statements to

read from the same sequential access file unless the file has been restored between the two types of

statements. An attempt to mix READ and INPUT statements for sequential access files results in a fatal

error message.

Examples of the READ and INPUT statements for sequential access files are:

10 READ #21 ACI)I LI B$
30 READ #61 Z$
105 INPUT 641 BCK)
120 INPUT #71 W$I IV;

I READ and INPUT statements for random access fi les are completely equivalent. They both begin read­

ing at the item that the pointer for the file spedfies, and continue reading sequentially until all of

Version 17 BASIC 10-7 August 1971

BASIC -240-
the variables have been filled. It is legal to use both READ and INPUT statements to input from the

same random access file.

If the user attempts to read beyond the last item in either a sequential access or a random access file,

a fatal error message is issued. In a random access file, it is possible to have items that have not been

written but that are within the file (because some subsequent item has been written). If such an item

is in a numeric file and is read, a value of zero is input. If such an item is in a string file, a string

containing no characters is returned.

Examples of READ and INPUT statements for random access files are:

20 READ :21 AI 8(1)1 CJ F2
50 READ :41 F$I G$(8)
210 INPUT :11 Q(2)
240 INPUT :5: NIl N2; N3

The following example shows a sequential access file being created at the editing level and then read

by a program.

NF.~J

NEW FILE NAME--TEST2

READY
HI "LANTHANIDE SEfHES"
20 LAICEIPRINDIPMISMIEUIGDITBIDYIHOlfR
25 TMIYBILUI57171
SAVE

READY
OLD
OLD FILE NAME--TABLE

READY
LISNH
I DIM A$(15)
5 FILES TES'T2
12 READ H 118$
15 FOR X=I TO IS
20 READ HIIA$(X)
25 NEXT X
30 READ HIINIIN2
35 PRINT "THIS IS THE ";B$
Li0 PR INT
42 PRINT "ELEMENT"I "ATOMIC NUMBER"
44 PR INT
45 FOR Y=I TO IS
50 PRINT A$(Y)IN1-1+ Y
55 NEXT Y
100 END

Version 17 BASIC 10-8

The user types in and then
SAVEs the data file
"TEST2".

The old file "TABLE" is re­
trieved and listed.

(continued on next page)

August 1971

-241-
READY
RUN

TABLE 13:31 15-JUL-70

THIS IS THE LANTHANIDE SEklES

ELEMENT ATOMIC NUMBER

LA 57
CE 58
PR 59
M> 60
PM 61
SM 62
EU 63
GO 64
TB 65
DY 66
HO 67
ER 68
TM 69
VB 70
LU 71

TIME: 0.18 SECS.
READY

An example of reading from a random access file is given in Section 10.6.

10.5 THE WRITE AND PRINT STATEMENTS

The WRITE and PRINT statements write data items into files.

10.5.1 WRITE and PRINT Statements for Sequential Access Files

The WRITE and PRINT statements for sequential access files have the following forms:

WRITE 'N, list of formulas and delimiters
PRINT 'N, list of formulas and delimiters

BASIC

where N is the channel specifier. The delimiter following N can be a comma or a colon; it can be

omitted if the list is omitted. The formulas in the list can be string or numeric or both. The TAB

function can be used. The delimiters can be commas, semicolons, or <PA> delimiters; they have the

same meanings that they have in the PRINT statement for the Teletype (refer to Chapter 6).

WRITE and PRINT stotements for sequential access files differ from one another in the following way.

The WRITE stotement begins each line of output with a line number followed by a tab. The first line

in the file is numbered 1000 and subsequent line numbers are incremented by 10. The PRINT statement,

on the other hand, does not begin lines with line numbers. It is illegal to use both WRITE and PRINT

10-9

BASIC -242-
statements to write to the same sequential access file unless the file has been erased (by means of the

SCRATCH command) between the two types of statement. An attempt to mix WRITE and PRINT state­

ments results in a fatal error message.

Files created by WRITE statements are normally read by READ statements. Files created by PRINT

statements are normally read by INPUT statements.

Examples of the WRITE and PRINT statements for sequential access files are:

50 WRIT[#2~ SQRCA)+[XPCG); QCI)
75 PRINT #7~ cPA> BCI)~~CCI)~~OCI)
110 WR IT[#3

The normal mode of output for WRITE and PRINT statements for sequential access data files is noquote

mode. In noquote mode, strings are not enclosed in quotes even if they contain characters that the

READ and INPUT statements see as delimiters. Also, strings are concatenated if they are output with

a semicolon separating them. Noquote mode is the mode used when writing a text file (refer to

Section 10.1.1 for a description of text files and pure data files). Noquote is the default mode; a

sequential access file is automatically set in noquote mode when it is assigned to a channel by a FILE

or FILES statement. However, noquote mode is not suitable when writing pure data files because the

integrity of the data is not maintained. In order to write a pure data file, the file must be set in quote

mode. ,This can be done by the QUOTE or QUOTE All statement, both of which are described in

Section .10.7. When a file is in quote mode, BASIC accepts WRITE and PRINT statements that are in

the usual form, but it makes whatever small changes that are necessary to the formatting in order to

preserve the integrity of the data items. Refer to Section 10.7 for details about the changes that are

made.

An example of the actions performed by the WRITE and PRINT statements follows.

10 rIL[S A~ 8
20 SCRATCH #1~2
30 WRIT[#1~ IJ 2~ TAB(70)~ 3
4I?J PR INT #2 ~ "A"; 4
50 [NO

RUNNH

TIM[: 0.02 S[CS.

R[AOY

COpy A > TTY:

01000 1 2
01010 3

10-10

(continued on next page)

-243-
READY
COPY B > TTY:

A 4

READY

10.5.2 WRITE and PRINT Statements for Random Access Files

The WRITE and PRINT statements for random access files have the forms:

WRITE :N, formula, formula, ••• formula
PRINT :N, formula, formula, ••• formula

BASIC

where N is the channel specifier. The del imiter following the channel specifier can be a comma or a

colon. At least one formula must be present in each statement. The formulas are separated from one

another by a comma or semi colon. In a given statement, all of the formulas must be string or all of

them must be numeric because a random access file is either string or numeric but not both.

WRITE and PRINT statements for random access files are exactly equivalent; they both begin writing

into the record that the pointer for the file specifies, and continue writing sequentially until all of

their arguments have been written. It is legal to use both WRITE and PRINT statements to write to the

same random access file.

Examples of WRITE and PRINT statements for random access files are:

25 WRITE :2, N, LI M
35 PRINT :4: A$, B$+Q$(I>

An example of writing to a random access file is shown below in Section 10.6.

10.6 THE SET STATEMENT AND THE LOC AND LOF FUNCTIONS

The SET statement has the form:

SET arg 1, arg2, ••• argn

where the arguments can be separated by commas or semicolons. Each argument has the form:

:N, numeric formula
or :N: numeric formula

where N is the channel specifier. The colon preceding the channel specifier can be omitted because

SET is only used for random access files; the colon is therefore redundant. Each SET statement must

have at least one argument. When a SET statement is executed, the pointer for the file on the speci­

fied channel is moved so that it points to the item in the file that is specified by the numeric formula,

which has been truncated to an integer. If the numeric formula after truncation is less than or equal to

Version 17 BASIC 10-11 August 1971

BASIC -244-
zero, an error message is issued. The items in the file are numbered sequentially; the first item in the

file is 1, the second 2, and so forth. The next statement in the program that reads from or writes to

the random access file will read or write the item to which the pointer was set, provided that the

pointer has not been moved again by a subsequent SET statement or another statement.

Examples of SET statements are:

55 SET :3# 100# :4# 150
85 SET :1#IJ :4#215

An example of a program using the SET statement follows.

10 FILES TEST4%
20 FOR T=1 TO 10
30 WRITE :1# T
40 NEXT T (
50 FOR T=1 TO 10 BY 2
60 SET :1# T
70 READ :1# X
00 PRINT X
90 NEXT T
100 END

RlINNH

1
3
5
7
9

TIME: 0.01 SEeS.

Two functions, LOC and LOF, return information about random access files. LOC returns the number

of the record to which the pointer for the file currently points, and LOF returns the number of the

last record in the file.

The forms of LOC are:

LOC(N)
LOC(:N)

The forms of LOF are:

LOF(N)
LOF(:N)

where N is the channel specifier. An error message is issued if a random access file is not assigned to

the specified channel when the functiOR is executed.

Version 17 BASIC 10-12 August 1971

-245- BASIC
An example of these functions is:

10 IF' LOC (2) <=LOF' (2) THEN 30
20 PRINT "F'INISHED F'ILE ON CHANNEL 2"

10.7 THE QUOTE, QUOTE ALL, NOQUOTE, AND NOQUOTE ALL STATEMENTS

As was discussed in Section 10.5.1, the default mode for output to sequential access data files or to

the TELETYPE is noquote mode. The QUOTE and QUOTE ALL statements allow the user to change the

mode of the Teletype and sequential access tiles to quote mode. Quote mode changes the way thot

the data items are written into the files or onto the Teletype. In quote mode, strings are enclosed in

I double quotes by BASIC if they contain blanks, tabs, or commas; a leading blank is output immediately

before strings and negative numbers; and a double quote character cannot be output by the user. If such"

an attempt is made to output a double quote character, an error message is issued. Also a data item

cannot be longer than the maximum amount of space available on a new line. If an attempt is made to

output a data item longer than this, a fatal error message results. In noquote mode, the data item

would be split across two or more lines. These modifications to the normal formatting are sufficient to

insure that the integrity of the data is maintained, as was discussed in Section 10.5.1.

The opposite of quote mode is noquote mode, which can be set by the NOQUOTE and NOQUOTE ALL

statements. Noquote mode is the default mode for th~ Teletype and sequential access files. Whenever

a sequential access file is assigned to a channel by a FILES or a FILE statement, it is automatically set

in noquote mode. NOQUOTE and NOQUOTE ALL statements are only necessary if the user wishes to

change a file from quote to noquote mode.

When creating a pure data file, in addition to setting the file in quote mode, it is good practice to

separate the formulas in the WRITE or PRINT statements with semicolons to pack the data items close

together. Although separating the formulas with commas is permissible, it will waste space on the

disk.

The form of the QUOTE statement is:

QUOTE arg 1, arg2, ... argn

where each argument has the form:

IN
or N

where N is the channel specifier. If an argument is omitteCl, the Teletype is specitied; for example,

30 QUOTE # 1# 4

refers to the Teletype and the files on channels 1 and 4.

Version 17A BASIC 10-13 May 1972

BASIC -246-
Since QUOTE is assumed to have at least one argument, the statement

50 QUOTE

specifies the Teletype.

The form of the QUOTE ALL statement is:

QUOTE ALL

QUOTE ALL refers to channels 1 through 9, but not to the Teletype.

When a channel is referenced in a QUOTE or QUOTE ALL statement and that channel has a sequential

access file currently assigned to it, output to the file is done in quote mode. If a sequential access

file is not presently assigned to the channel, nothing is done and no error message is returned.

The form of the NOQUOTE statement is the same as that of the QUOTE statement, except that the

word NOQUOTE is substituted for the word QUOTE. Examples of NOQUOTE statements are:

10 NOQUOTE #7,,2
20 NOQUOTE

The first example specifies the files on channels 7 and 2 and the Teletype. The second example speci­

fjes the Teletype.

The form of the NOQUOTE ALL statement is:

NOQUOTE ALL

When a channel is referenced by a NOQUOTE or NOQUOTE ALL statement and that channel has a

sequential access file currently assigned to it, output to the file will be written in noquote mode. If

a sequential access fj Ie is not presently assigned to the channel, nothing is done and no error message

is returned.

The use of the QUOTE ALL or NOQUOTE ALL statement is a convenient way to set all sequential

access files currently assigned to channels into the appropriate mode, since the statements will not

I return error messages about or affect unassigned channels or the Teletype, and will not damage any of

the random access files currently assigned to channels.

Quote or noquote mode can be set even if the file is in read mode because these modes have no effect

on input. They will affect the output if the file is subsequently put into write mode.

If the mode is changed from quote to noquote or vice versa, the change takes effect immediately.

Version 17 BASIC 10-14 August 1971

-247-
10.8 THE MARGIN AND MARGIN ALL STATEMENTS

BASIC

Normally, the right output margin for the Teletype and sequential access files is 72 characters.

I Whenever a sequential access file is assigned to a channel by a FILES or a FILE statement, the file':.

output margin is automatically set to 72 characters. At the beginning of and also at the end of program

I execution, the Teletype output margin is set to 72 characters. There is no margin in a random access

file.

The MARGIN and MARGIN ALL statements allow the user to set the right output margin for the Tele­

type or any sequential access file from 1 to 132 characters. 1 The form of the MARGIN statement is:

MARGIN arg 1, arg2, ••• argn

where each argument has the form:

'N, numeric formula

The arguments can be separated by commas or semicolons. N is the channel specifier. The numeric

formula specifies the margin size; it is truncated to an integer. Either a comma or a colon can be used

to separate the channel number from the margin size.

If only the margin size is present in the argument, that argument refers to the Teletype. For example:

35 MARGIN 75, $8:132

sets a margin of 75 characters for the Teletype and a margin of 132 characters for the file on channel

8.

The form of the MARGIN ALL statement is:

MARGIN ALL numeric formula

This statement sets the sequential access files on channels 1 through 9 to the margin specified by the

numeric formula, the value of which is truncated to an integer before the margin is set. The Teletype

is not affected by the MARGIN ALL statement. Examples of the MARGIN ALL statement are:

60 MARGIN ALL 132
65 MARGIN ALL N*ABS<K<I»

I Neither the MARGIN nor MARGIN ALL statement has any effect on random access files or on chan­

nels that have no files assigned to them. Consequently, the MARGIN ALL statement is a convenient

way to set a margin for all sequential access files currently assigned to channels.

11The monitor command SET TTY WIDTH must be used in addition to the BASIC MARGIN statement if
the user wishes to set the output margin for the Teletype to any size greater than 72 characters. Refer
to Section 6.7 for details.

Version 17 BASIC 10-15 August 1971

BASIC -248-
The margins set by the MARGIN and MARGIN ALL statements apply only to output. The margin for

input lines for both the Teletype and sequential access files is not affected by these statements; it is

I always 142 characters. An attempt to input a line longer than 142 characters results in an error

message.

A margin set by a MARGIN or MARGIN ALL statement takes effect as soon as a new line of output is

begun for the Teletype or the sequential access file.

Although the right margin can be set to any number between 1 and 132 characters, the margin for lines

output by WRITE statements must be at least 7 characters to allow for the line number and its following

tab. If the margin is less than 7 characters for a line-numbered fj Ie, an error message is issued by the

first WRITE statement referencing the file.

10.9 THE PAGE, PAGE ALL, NOPAGE, AND NOPAGE ALL STATEMENTS

Normally, output to the Teletype or to sequential access files is not divided into pages; that is, it is

I in nopage mode. Whenever a sequential access file is assigned to a channel by a FILES or a FILE

statement, it is automatically set in nopage mode. At the beginning and also at the end of program

execution, the Teletype is set to nopage mode. The PAGE and PAGE ALL statements allow the user

to set a page size of any positive number of lines for the Teletype and sequential access files. The

NOPAGE and NOPAGE ALL statements allow the user to set the Teletype and sequential access files

I to nopage mode. Nopage and page modes are meaningless for random access files.

The form of the PAGE statement is:

PAGE argl, arg2, •.• argn

where each argument has the form:

UN, numeric formula

The arguments can be separated by commas or semicolons. N is the channel specifier. The numeric

formula is truncated to an integer and used to specify the page size. Either a comma or a colon can

be used to separate the channel number from the page size.

If only a page size is present in an argument, that argument refers to the Teletype; for example:

40 PAGE #1, 66; 50, #7:62

sets the files on channels 1 and 7 to page sizes of 66 and 62 lines respectively, and the Teletype to a

page size of 50 lines.

Version 17 BASIC 10-16 August 1971

-249- BASIC
The form of the PAGE ALL statement is:

PAGE ALL numeric formula

This statement sets the sequential access files on channels 1 through 9 to a page size specified by the

numeric formula; however, the Teletype is not affected. The value of the numeric formula is truncated

to an integer before the page size is set. An example of the PAGE ALL statement is:

~ PAGE ALL Q(2)*8

I Neither the PAGE nor PAGE ALL statement has any effect on random access files or on channels that

have no files assigned to them. Consequently, the PAGE ALL statement is a convenient way to set a

page size for all of the sequential access files currently assigned to channels. If a PAGE or PAGE ALL

statement specifies a page size of zero or less than zero, an error message is issued.

When a PAGE or PAGE ALL statement is executed for a sequential access file that is in write mode or

for the Teletype, BASIC ends the current line of output (if necessary), outputs a leading form feed,

and starts counting lines beginning with the next line output. Subsequently, whenever a new page

becomes necessary, a form feed is output and the line count is set back to zero. Execution of a <PA>

delimiter sets the line count to zero. PAGE and PAGE ALL statements can be executed for sequential

access files in read mode; in this case, the leading. form feed is not output. A page size remains in

effect until another PAGE or PAGE ALL statement changes it, until a NO PAGE or NOPAGE ALL

statement is executed for that file or the Teletype, or until the end of program execution. Setting the

page size for the Teletype is further described in Chapter 6.

The form of the NOPAGE statement is:

NO PAGE argl, arg2, ••• argn

where each argument has the form:

IN
or N

where N is the channel specifier. If an argument is omitted, the Teletype is specified; for example:

10 NOPAGE #311 2

refers to the Teletype and the files on channels 2 and 3.

Since the NO PAGE statement is assumed to have at least one argument, the statement

70 NOPAGE

refers to the Teletype.

Version 17 BASIC 10-17 August 1971

BASIC -250-
The form of the NOPAGE ALL statement is:

NOPAGE ALL

The NOPAGE ALL statement sets all of the sequential access files on channels 1 through 9 in nopage

mode I but does not affect the Tel etype .

Like the PAGE and PAGE ALL statements, NOPAGE and NOPAGE ALL statements have no effect on

channels that have random access files or no files assigned to them. Consequently I the NO PAGE ALL

statement is a convenient way to set all of the sequential access files currently assigned to channels

into nopage mode.

10.10 THE IF END STATEMENT

The IF EN0 statement allows the user to determine whether or not there is any data left in a file

between the current position in the file and the end of the file.

The statement forms are;

For sequential access HIes:
{GO Toi

IF END N'LTHEN J'ine number

For random access files:
[GO TO"\ .

IF END :N, lTHEN Jllne number

where N is the channel spedfier. The line number mu;;t (efe'< to a line in the program and must follow

the wles for line numbers discussed in Chapter 1. Either THEN or GO TO must bl'! used in the state­

I men!. The comma preceding THEN or GO TO is optional.

The IF END statement will execute for a sequential access file only if the file is in read mode; an error

message will be issued if the file is in write mode or if if does not exist. The IF END statement will

always execute for a random access file that exists because such a file does not distinguish between

read and write modes. For the purposes of the IF END statement, the end of a random access file is

considered to be just beyond the final record in the fi Ie. The LOC and LOF functions described in

Section 10.6 can also be used to determine whether or not there is any data between the current pointer

position in a random access file and the end of the file.

IIf an IF END statement is executed for a sequential access file that is in read mode but that has not yet

been referenced by a READ or INPUT statement, the IF END statement will assume that the file does

not have line numbers. Thus, if an IF END statement is executed for a line-numbered file that has not

been referenced by a READ statement, the IF END statement will treat line numbers as data items and

Version 17 BASIC 10-18 August 1971

-251- BASIC I will erroneously report that there is data in the file if only line numbers remain in the file. As soon

as a. READ or INPUT statement is executed for a file, the IF END statement correctly interprets the

kind of fi Ie (line-numbered or nonline-numbered) and can distinguish between line numbers and data.

The following example shows how the IF END statement works for sequential access files.

10 FILES TEST
20 SCRATCH #1
30 FOR X=l TO 5
40 READ A
50 WRITE II ~ A
60 NEXT X
10 RESTORE #1
80 FOR 1=1 TO I TO 10
90 PR I NT tt I =2; I ~
100 IF END '1 THEN 110
110 READ #I~ B<I>
120 PRINT B(I>
130· NEXT I
140 PRINT ttFAILEDtt
150 STOP
160 DATA -1~-2~-3~-4~-5~-6~-1~-8~-9~-10
110 END

RUNNH

I = I -I
I = 2 -2
I = 3 -3
I = 4 -4
I = 5 -5
I = 6

TIME: 0.10 SEeS.

I If the final record written into a random access file is record number 1804, for example, the IF END

statement will cause a transfer when it is executed only if the pointer for that file has a value of 1805

or greater at that time.

Version 17 BASIC 10-19 August 1971

BASIC -252-

CHAPTER 11

FORMATTED OUTPUT

-253- BASIC

The user who wishes to control the format of his output more than is permitted by the PRINT, PRINT',

and WRITE' statements described in Chapters 6 and 10 can use the statements described in this chapter.

These statements are PRINT USING, PRINT USING', and WRITE USING'. They all use a special

formatting string, called an image, to format their output.

11.1 THE USING STATEMENTS

The PRINT USING statement allows formatting of string and numeric output to the Teletype. The forms

of the PRINT USING statement are:

PRINT USING line number, list
PRINT USING string formula, list

The PRINT USING' and WRITE USING' statements allow formatting of output to data files.

PRINT USING' formats output to data files without line numbers; WRITE USING' formats output to

line-numbered data files. The forms of the PRINT USING' statement are:

PRINT USING 'N, line number, list
PRINT USING 'N, string formula, list
PRINT 'N, USING line number, list
PRINT 'N, USING string formula, list

The forms of the WRITE USING' statement are:

WRITE USING 'N, line number, list
WRITE USING 'N, string formula, list
WRITE 'N, USING line number, list
WRITE 'N, USING string formula, list

N is a digit from 1 through 9 that specifies the channel that the file is on. The comma following N can

be omitted in the forms in which N precedes the word USING. The list has the form:

formula delimiter formula delimiter ••• formula

Version 17 BASIC 11-1 August 1971

BASIC -254-
The formulas are either string or numeric and the delimiters are commas or semicolons. At least one

formula must be present in the list.

The USING statements output each formula in their lists under the control of an image that specifies

the format. The image is a string of characters that describe the form of the output (integer, decimal,

string, etc.) and the placement of the output on the output line. If the USING statement contains a

line number as its argument, the image is on the line specified by that line number. Such a line is

called an image statement and has the form:

line number: string formula

The string formula in an image statement is not enclosed in quotes. For example:

10 PRIN°j USING 20. A
20 : THE ANSWER IS #11##

Image statements cannot be terminated by the apostrophe remarks indicator because an apostrophe can

be used as a format control character in an image.

If the USING statement contains a string formula as its argument, the image is the value of the string

formula. If the string formula is a string constant, it must be enclosed in quotes. An example of the

image in the USING statement is:

10 PR INT US ING "THE ANSWER IS #11##". A

When a USING statement is executed, BASIC begins a new line of output, and the first argument in

the USING statement is output into the first specification in the image. If there are more arguments

in the USING statement than specifications in the image, a new output line is begun and the specifi­

cations in the image are used again. USING statements always write complete lines. The current

margin set for the Teletype or the data file referenced does not affect USING statements; however,

an attempt to create a line longer than 132 characters results in an error message. Quote and nequote

modes do not affect USING statements; USING statements ignore both modes.

The WRITE USING' statement performs the same functions as the PRINT USING' statement except that­

WRITE USING' places a line number and a tab at the beginning of each line. Neither the line num­

ber nor the tab are specified in the image. WRITE USING' statements must be used for files that have

line numbers, and PRINT USING' statements must be used for files that do not have line numbers. If

an attempt is made to use a WRITE' or WRITE USING' statement for a file that was previously written

by PRINT' or PRINT USING' statements, an error message will be issued unless an intervening

SCRATCH' statement erased the file. Similarly, an attempt to use PRINT' or PRINT USING' state­

ments for a file that was previously referenced by WRITE' or WRITE USING' statements results in an

error message unless an intervening SCRATCH' statement erased the file.

Version 17 BASIC 11-2 August 1971

-255-
An example of PRINT USING' and WRITE USING' is shown below.

10
20
30
40
50
60
70
80
RUNNH

TIME:

READY

~ILE:S TE:STl, TE:ST2
SCRATCH #1, #2
A$ = "THE: INDE:X IS IN"
~OR T = 1 TO 3
PRINT USING 61, A$, T
WRITE USING 62, AS, T
NEXT T
END

0.01 SECS.

COpy TESTI > TTY:
THE: INDEX IS 1
THE INDEX IS 2
THE INDEX IS 3

RE:ADY
COpy TEST2 > TTY:
1000 THE INDEX IS 1
1010 THE: INDEX IS 2
1020 THE INDEX IS 3

RE:ADY

11.2 IMAGE SPECIFICATIONS

BASIC

An image is a string that contains format characters and printing characters. The format characters

form specifications that describe how the values of the arguments of the USING statement will be

arranged on an output line. More than one specification can be present in an image, but to avoid

ambiguities when outputting numbers, the user should separate numeric specifications by string specifi­

cations, printing characters, or spaces. Note that spaces are printing characters and, therefore, as

many spaces as are inserted between specifications will be inserted between the output items. That is,

if two spaces separate a numeric specification from the preceding specification, two spaces will sepa­

rate the numbers that are output according to these specifications. If numeric specifications are not

separated from one another, ambiguities will generally exist and BASIC will make arbitrary decisions

about the specifications. In general, it will accept as much of the speciflcations as it can, stopping

when a character is seen that clearly delimits a specification because it considers that it has reached

the end of the specification. String specifications need not be separated from one another because

they are not ambiguous. Printing characters are output exactly as they appear in the image.

Image specifications can be divided into three major kinds:

a. Numeric image specifications

b. Edited numeric image specifications

c. String image specifications

Version 17 BASIC 11-3 August 1971

BASIC -256-
11.2.1 Numeric Image Specifications

Numeric image specifications are used to describe the formats of integer and decimal numbers. Format

characters within the image specification indicate the digits, sign, decimal point, and exponent of the

number. Numbers in BASIC normally contain eight significant digits, and never contain more than

nine significant digits. If a numeric image specification would cause a number to be output with more

than nine significant digits, zeroes are substituted for all digits after the ninth. The format characters

in all numeric image specifications must be contiguous.

The format characters used in numeric image specifications are:

, (number sign)
• (decimal point)
t t ttl (four up-arrows)

I Number signs in the specification indicate the digits in the number and a minus sign if the number

is negative. At least two number signs must be present at the beginning of the image specification;

on isolated number sign is treated as a printing character. A number sign is written in the image

specification for each digit in the number to be output plus one additional number sign to indicate

I a minus sign if the number to be output is negative. For example, to output a negative four-digit

integer, at least five number signs should be written in the image specification; a non-negative

number containing four digits requires only four number signs.

11.2.1.1 Integer Image Specifications - Numbers can be output as integers by means of an image

specification containing only number signs. As stated above, an additional number sign must be in-I cluded in the image specification for a minus sign if the number is negative. If the number is positive

or zero, no sign is output; if the number is negative, a minus sign is output. If insufficient characters

are present in the image specification, an ampersand (~ is placed in the first position of the output

field and the field is widened to the right to accommadate the number. If the image specification

I

I

width is larger thon necessary to accommodate the number, the number is right;ustified in the output

field. The number to be output is truncated to an integer if it is not an integer. An example showing

integer image specifications follows.

10
20
30
AI0
50
60

RUNNH

READ A"B"C"D"E
DATA 25.6" -14.7" 4" -9.1" 41876.3
PRINT USING """ ","" A" B" C
AS ="",,,"
PRINT USING AS" D" E
END

25 -14
4
-9

& _41876

10n some Teletypes, the circumflex (") is used instead of the up-arrow (t).

Version 17A BASIC 11-4 May 1972

-257- BASIC
11.2.1.2 Decimal Image Specifications - Decimal image specifications must contain number signs, as

in integer image specifications, and a single decimal point. Optionally, the user can include four

up-arrows (t t t t) at the end of a decimal specification to indicate that the number is to be output with

an explicit exponent. A number output under control of a decimal image specification always contains

an explicit decimal point.

When four up-arrows are present in the image specification, an explicit exponent is output in the form

E±nn. The sign of the exponent is always output, a plus sign for positive or zero exponents, a minus

sign for negative exponents (e.g., E-/-01).

The decimal point in the image specification causes the decimal point to be fixed in the output field.

Thus number signs that precede the decimal point in the image specification reserve space in the output

field for the digits before the decimal point and a minus sign if the number is negative. At least one

digit is always output before the decimal point, even if the digit is zero. The number signs that follow

the decimal point in the image specification reserve space for the digits after the decimal point in the

output field.

Ilf the number is to be output with an explicit exponent, a position must be reserved for the sign of the

number even if the number is positive (a space is output for the sign of a positive number). When the

number with the e~ponent is output all of the positions before the decimal point in the output field are

used and the exponent is adiusted accordingly. If the number is not to be output with an explicit

exponent, and more spaces are reserved before the decimal point than are necessary, the number is

right-justified in the output field and leading spaces are appended. If insufficient spaces are reserved

I before the decimal point, an ampersand (~ is placed in the first position of the output field and the

field is widened to the right to accommodate the number.

Whether or not the number is output with an explicit exponent, as many digits are output following

the decimal point as there are number signs following the decimal point in the image specification.

The number is rounded or trailing zeros are added if necessary.

An example of the use of decimal image specifications follow$.

10 READ A,B,C,D,E,F
20 :111'." II. 1'.,",
30 PRINT USING 20, A,B,C,D,E,F
40 DATA 100.256, 3.6, 19.11112
50 DATA -4.6, 3, 0.01256
60 PRINT
70 PRINT USING 80, 100.2, 14
80 :N#N.'ttt' NIN.'T"
90 END

RUNNH

100.26
-4.60

10.0E+01

Version 17A BASIC

4. % 19.1111
3. 0.0126

14.E+00

11-5 May 1972

BASIC -258-
11.2.2 Edited Numeric Image Specification

For those users who wish to output numbers in a form suitable for accounting reports, payrolls, and the

like, additional format characters can be included in numeric image specifications to cause the numbers

to be edited. The format characters used for edited numeric specifications are:

*
$

Comma

(comma)
(minus sign)
(asterisk)
(dollar sign)

One or more commas in the integer part of a numeric image specification causes the digits in the out­

put number to be grouped into hundreds, thousands, etc., and separated by commas (e.g., 1,000,000).

The commas, however, cannot be in the first two places in the specification. Only one comma need

be present in the image specification for the number to be output with commas in the required places,

but a pound sign or a comma must be present in the image specification to reserve space for each comma

to be output. For example, to print the number 1,365,072, the image specification must contain one

I comma and at least eight pound signs and/or commas. It is useful, however, to position commas in the

specification where they will appear when they are output, e.g., ",'",1111. A comma that is not

part of a numeric image specification is treated as a printing character.

I

I

Example:

10
20
30
40
50

RUNNH

PRINT USING" ####I###"IIE4.o1E51IE6
PRINT
PRINT USING 401 -141516.8
:1111#111111.1
END

101000
1001000

&11000 .. 000

-1411516.8

Trailing Minus Sign

A trailing minus sign in a numeric image specification causes the number to have its sign printed at

its end, rather than at its beginning (e.g., 27-). A trailing minus sign in a number is often used in a

report to indicate a debit. When a trailing minus sign is present in the image specification, a position

need not be saved at the beginning of the image specification for the sign of the number, since the

minus sign reserves a place for the sign. When the trailing minus sign is present in the image specifi­

cation and the output number is positive or zero, the sign field on output is blank. A minus sign that

does not end a numeric image specirlcation is treated as a printing character.

Version 17A BASIC 11-6 May 1972

Example:

-259-

10 PRINT USING "###-",10,-14,137.8
20 PR INT
30 PRINT USING 40, -141516.8, -14
40 :##,#####.#- ##.,t"-
50 END

RUNNH

10
14-

137

141,516.8- 14.E+00-

leading Asterisk

BASIC

If a numeric image specification begins with two or more asterisks instead of number signs, the number

is output with leading asterisks filling any unused positions in the output field. leading asterisks are

often used when printing checks or in any application that requires that the numbers be protected (i .e.,

so that no additional digits can be added).

Within an image specification, an asterisk can replace one or all of the number signs. In image speci­

fications with leading asterisks, negative numbers can be output only if there is a trailing minus sign

in the image specification. If a trailing minus sign is not present in the image specification and an

attempt is made to output a negative number, an error message will be issued. Thus, an additional

position need not be saved for a leading sign. Four up-arrows cannot be present in an image specifi­

cation that contains leading asterisks. Thus, numbers with explicit exponents cannot be output with

leading asterisks. An isolated asterisk in an image is treated as a printing character.

An example showing image specifications with leading asterisks follows.

10 A$="***.**"
20 READ X,Y,Z,W,U
25 DATA 13.56, 4.577, 3.1, 19.612, 100.50
30 PRINT USING A$, X,Y,Z,W,U
35 PRINT
40 PRINT USING "*****,*** **##-", 1E6,-lE3
50 END

RUNNH

*13.56
**4.58
**3.10
*19.61
100.50

Version 17 BASIC 11-7 August 1971

BASIC -260-
Floating Dollar Sign

If a numeric image specification begins with two or more dollar signs instead of number signs, the num­

ber is output with a floating dollar sign. That is, a dollar sign is always output in the position immedi­

ately preceding the first digit of the number, even if there are fewer digits in the number than there

positions specified in the image specification. This capability is often used to protect checks so that

there are never any spaces left between the dollar sign and the number.

The dollar sign can replace any or all of the number signs in the image specification (i.e., $$$$.$$ is

exactly the same as $$## .11#). An additional position at the beginning of the image specification must

be indicated to save a place for the dollar sign in the output field.

When the floating dollar sign is used in the image specification, negative numbers can be output only

if there is a trailing minus sign. If a trailing minus sign is not present in the image specification and

an attempt is made to output a negative number, an error message is issued. Thus, a space need not be

reserved for a leading sign in the output field. Four up-arrows cannot be present in a numeric image

specification that contains dollar signs. Thus, numbers with explicit exponents cannot be output with

floating dollar signs. An isolated dollar sign in an image is treated as a printing character.

An example showing floating dollar sign specifications follows. Note that the image in line 10 con­

tains a decimal numeric image specification that is preceded by a dollar sign. This single dollar sign

is treated as a printing character and, as shown in the example, is fixed in the output field .•

10 :$$$$.$$ $####.##
20 READ A~B~C
25 DATA 100.43~ 19.678~ 0.97
30 PRINT USING 10~ A~A~8~8~C~C
35 PRINT
40 PRINT USING "$$~1~1"11000
50 END

RUNNH

$10~.43 $ 100.43
$19.68 $ 19.68
$0.97 $ 0.97

$1100~

11.2.3 String Image Specifications

The string image specifications allow the user to right-justify, left-justify, or center strings in the

output field. In addition, the user can specify an image that causes the width of the output field to be

extended if the string is larger than the image specifies. The format characters used for string output

are:

Version 17 BASIC 11-8 August 1971

(apostrophe)
C (center)
l (left-justify)
R (right-justify)
E (extend)

-261- BASIC

A string image specification contains one apostrophe (') and as many of the format characters C, l, R,

or E as are necessary to output the string. The apostrophe is counted with the format characters when

BASIC determines the length of the output field. The format characters cannot be mixed within an

image specification. If the image specification contains only the apostrophe, only the first character

in the string is output. The characters in a string image specification must be contiguous.

C Format Character

C format characters following the apostrophe in a string image specification cause the string to be

centered in the output field. If a string cannot be exactly centered (e.g., a two-character string in a

three-character field), it wi II be off-center one character position to the left. If the string to be out­

put is longer than the image specification, the string is left-justified in the output field and the right­

most characters that overflow are truncated.

l Format Character

l format characters following the apostrophe in a string image specification cause the string to be left­

justified in the output field. If the string to be output is longer than the image specification, the string

is left-justified in the field and the rightmost characters that overflow are truncated.

R Format Character

R format characters following the apostrophe in a string image specification cause the string to be

right-justified in the output field. If the string to be output is longer than the image specification, the

string is left-justified in the field and the rightmost characters that overflow are truncated.

E Format Character

E format characters following the apostrophe in a string image specification cause the string to be left­

justified in the output field. If the string to be output is longer than the image specification, the out­

put field is widened (extended) to the right to accommodate all the characters in the string.

The following example shows the use of string image specifications.

Version 17 BASIC 11-9 August 1971

BASIC
100
110
120
130
140
150

RUNNH

?ABCD
ABCD
?ABCDEF
ABCDE
?A

A
?STOP

-262-
: • CCCC • EEEE • LLLL • kkkk
INPUT A$
IF A$="STOP" GO TO 150
PRINT USING 1001 AIAIAIAIA$
GO TO 110
END

ABCD ABCD ABCD A

ABCDEF ABCDE ABCDE A

A A A A

Note that the last three fields in the second line printed are displaced one position because of the field

extension necessary in the second field of the line.

11.2.4 Printing Characters

All characters in an image that are not format control characters are printing characters. Printing

characters are output exactly as they appear in the image. Format control characters only appear as

part of image specifications; if a character used as a format control character (e.g., $, E, *) does

not appear as part of an image specification, it is treated as a printing character. If the USING

statement does not use all of the specifications in an image, the printing characters following the un­

used specifications are not printed. Similarly, if the USING statement uses the specifications in an

image more than once, the printing characters in the image will be output as many times as the image

is used. An example showing the use of printing characters in images follows.

10 :A=### AND THE SQUARE ROOT OF A=##
20 A=25
25 PRINT USING 101 AI SQRCA>
30 END

RllNNH

A= 25 AND THE SQUARE ROOT OF A= 5

Version 17 BASIC 11-10 August 1971

I

-263- BASIC

APPENDIX A

SUMMARY OF BASIC STATEMENTS

A.l ELEMENTARY BASIC STATEMENTS

The following subset of the BASIC command repertoire includes the most commonly used commands and

is sufficient for solving most problems.

DATA (data list]

READ (sequence of variables]

PRINT [sequence of formulas and
format control characters]

LET (variable] = (formula] or
(variable] = (formula]

GO TO (line number]

IF (formula] (relation] [formula],

(THEN) • GO TO [line number]

CnumericJ FOR • bl = (formula 1] TO varia e
[formula2] STEP (formula3]

NEXT ~~~i,~
or

fnumericl
FOR lYoriabl!J = [formula 1] TO

[formulaZJ BY [formula3]

NEXT fnu~ericl
Lvarlabl!l

Version 17 BASIC

DATA statements are used to supply one or more
numbers or alphanumeric strings to be accessed by
READ statements. READ statements, in tum, assign
the next available data, numeric or string as appro­
priate, in the DATA statement to the variables
listed.

Types the values of the specified formulas, which
may be separated by format control characters. If
two formulas are not separated by one or more for­
mat control characters, they are treated as though
they were separated by a semicolon.

Assigns the value of the formula to the specified
variable.

Transfers control to the line number specified and
continues execution from that point.

If the stated relationship is true, then transfers con­
trol to the line number specified; if not, continues
in sequence. The comma preceding THEN and GO
TO is optional.

Used for looping repetitively through a series of
steps. The FOR statement initializes the variable
to the value of formula 1 and then performs the fol­
lowing steps until the NEXT statement is encountered.
The NEXT statement increments the variable by the
value of formula3. (If omitted, the increment value
is assumed to be + 1.) The resu Itant value is then
compared to the value of formula2. If variable
<formula2' control is sent back to the step following
ffie FOR statement and the sequence of steps is re­
peated; eventually, when variable >formula~, con­
trol continues in sequence at the step follOWing
NEXT.

A-I August 1971

I
BASIC

ON [x] , (~H~~O) [line number1,]

[line number2'] •••• [line numbern]

DIM [variable] {subscript}

END

A.2 ADVANCED BASIC STATEMENTS

GOSUB [line number]

[line numberl

or

Subroutine

INPUT [variable{s}]

STOP

REM

RESTORE

CHANGE !string !~rmulaJ
L numeric vector

TO

I numer~~ vecto~
~ring variableJ

CHAIN [string formula]
CHAIN [string formula] ,
[numeric formula]

MARGIN [numeric formula]

PAGE [numeric formula]

NOPAGE

QUOTE

NOQUOTE

Version 17 BASIC

RETURN

-264-
If the integer portion of x = 1, transfers control to
line number1' if x = 2, to line number2' etc. [x]
may be a formula. The comma preceding GO TO
and THEN is optional.

Enables the user to enter a table or array with a
subscript greater than 10 {i.e., more than 10 items}.

Last statement to be executed in the program, and
must be present.

Simplifies the execution of a subroutine at several
different points in the program by providing an auto­
matic RETURN from the subroutine to the next se­
quential statement following the appropriate GOSUB
{the GOSUB which sent control to the subroutine}.

Causes typeout of a ? to the user and waits for user
to respond by typing the value{s} of the variable{s}.

Equivalent to GO TO [line number of END state­
ment] •

Permits typing of remarks within the program. The
insertion of short comments following any BASIC
statement {except an image statement} is accom­
plished by preceding such comments with an apos­
trophe (I).

Sets pointer back to beginning of string of DATA
values.

Changes a string formula to a numeric vector, or
changes a numeric vector to a string variable.

Stops execution of the current program and begins
execution of the new program at the beginning or
at the specified line.

Sets the Teletype to the specified output margin.

Output to the Teletype is divided into pages of the
specified length.

Output to the Teletype is not divided into pages.

The Teletype is set to quote mode {see Chapter 10}.

The Teletype is set to noquote mode {see Chapter 10}.

A-2 August 1971

I [
line number J

PRINT USING or
string formula ,

[sequence of formulasl

A.3 MATRIX INSTRUCTIONS

-265- BASIC

Types the values of the formulas in the format de­
termined by the image specified by the line number
or string formula.

NOTE

The word "vector" may be substituted for the word
"matrix" in the following explanations.

MAT READ a, b, c

MAT c = ZER

MAT c = CON

MAT c = ION

MAT PRINT a, b, c

MAT INPUT v

MAT b = a

MAT c = a + b

MAT c = a - b

MAT c = a * b

MAT c = TRN(a)

MAT c = (k) * a

MAT c = INV(a)

Read the three matrices, their dimensions having
been previously specified.

Fi II out c with zeros.

Fill out c with ones.

Set up c as an identity matrix.

Print the three matrices.

Input a vector.

Set matrix b = matrix a.

Add the two matrices, a and b.

Subtract matrix b from matrix a.

Multiply matrix a by matrix b.

Transpose matrix a.

Multiply matrix a by the number k. (k, which
must be in parentheses, may also be given by a
numeric formula.)

Invert matrix a.

(Refer to Section A.5 for the special matrix functions NUM and DET.)

A.4 DATA FILE STATEMENTS

FILE [sequence of [channel specifier]
[fi lename argumentsl]

FILES [sequence of fi lename argumentsl

SCRATCH [sequence of channel
specifiersl

RESTORE [sequence of channel
specifiersJ

Version 17 BASIC

Assigns files to channels during program execution.

Assigns files to channels before program execution
begins.

Erases a sequential access file and puts it in write
mode; or erases a random access file and sets the
record pointer to the begi nni ng of the file.

Puts a sequential access file in read mode or sets
the record pointer for a random access file to the
beginning of the file.

A-3 August 1971

BASIC
WRITE [channel specifier]

[sequence of formulasl

READ [channel specifier]
[sequence of variables]

PRINT [channel specifierl
[sequence offonnulasl

INPUT [channel specifier]
[sequence of variablesl

IF END [channel specifierl ,
[THEN 1 . l GO TO J [line numberl

MARGIN [sequence of [channel
specifier] [numeric formulall

MARGIN ALL [numeric formula]

PAGE [sequence of [channel
specifier] [numeric formula]]

PAGE ALL [numeric formula]

NOPAGE [sequence of channel
specifiers]

NOPAGE ALL

QUOTE [sequence of channel
specifiersl

QUOTE ALL

NOQUOTE [sequence of channel
specifiersl

NOQUOTE ALL

SET [sequence of [channel specifierl
[numeric formula]]

PRINT [channel specifier] , USING

[
line number J [sequence of

• or , formu lasl
string formula

or
PRINT USING [channel specifierl , rline number 1 [sequence of
Lstring formul~ , formulasl

Version 17 BASIC

-266-
Causes data to be output to a file on the specified
channel. Used for sequential access files with line
numbers, or for random access files.

Causes data to be input from a file on the specified
channel. Used for sequential access files with line
numbers or for random access files.

Causes data to be output to a file on the specified
channel. Used for sequential access files without
line numbers or for random access files.

Causes data to be input from a file on the specified
channel. Used for sequential access files without
line numbers or for random access files.

Determines whether or not there is data in a file
between the current position and the end of the file.
The comma preceding THEN or GO TO is optional.

Sets the specified output margins for the sequential
access files on the specified channels.

Sets the specified output margin for the sequential
access fi les on channels 1 through 9.

Sets the specified output page sizes for the sequential
access files on the specified channels.

Sets the specified output page size for the sequential
access files on channels 1 through 9.

Output to the sequential access files on the spec­
ified channels is not divided into pages.

Output to the sequential access files on channels
1 through 9 is not divided into pages.

Puts the sequential access files on the specified
channels into quote mode (see Chapter 10).

Puts the sequential access files on channels 1
through 9 into quote mode (see Chapter 10).

Puts the sequential access files on the specified
channels into noquote mode (see Chapter 10).

Puts the sequential access files on channels 1
through 9 into noquote mode (see Chapter 10).

Moves the record pointers for random access files.

Causes data to be output to a sequential access file
without line numbers on the specified channel.
The data is output in the format determined by the
image specified by the line number or string for­
mula. In the first form, the comma following the
channel specifier can be omitted.

A-4 August 1971

I

I

WRITE [channel specifierl, USING

~ine number J [sequence of
• or , formulas]

string formula
or

WRITE USING [channel specifierl,

[
ine number J [sequence of

or ' formulasl
string formula

A.5 FUNCTIONS

-267- BASIC
Causes data to be output to a I ine-numbered se­
quential access file on the specified channel. The
data is output in the format determined by the image
specified by the line number or string formula. In
the first form, the comma following the channel
specifier can be omitted.

In addition to the common arithmetic operators of addition (+), subtraction (-), multiplication (*),

division (/), and exponentiation (t or **), BASIC includes the following elementary numeric functions:

SIN (numeric formula) COT (numeric formula) LOG, or LN, or LOGE (numeric formula)

COS (numeric formula) ATN (numeric formula) ABS (numeric formula)

TAN (numeric formula) EXP (numeric formula) SQR or SQRT (numeric formula)

CLOG or LOG10 (numeric formula)

Some advanced numeric functions include the following:

INT (numeric formula)

RND

SGN (numeric formula)

Finds the greatest integer not greater than its argu­
ment.

Generates random numbers between 0 and 1. The
same set of random numbers can be generated re­
peatedly for purposes of program testing and debug­
ging. The statement

RANDOMIZE

can be used to cause the generation of new sets of
random numbers.

Assigns a va lue of 1 if its argument is positive, 0
if its argument is 0, or -1 if its argument is negative.

Two functions used with matrix computations are as follows:

NUM

DET

Two functions for use with random access files are:

LOC (channel specifier)

LOF (channel specifier)

Equals number of components following an INPUT.

Equals the determinant of a matrix after inversion.

Returns the number of the current record in the file
on the specified channel.

Returns the number of the last record in the file on
the specified channel.

Version 17A BASIC A-5 May 1972

BASIC -268-
Functions for manipulating strings are!

ASC (one character or a 2- or
3-letter code)

CHR$ (numeric formula)

INSTR (numeric formula, string
formula, string formula)

or
INSTR (string formula, string

formula)

LEFT$ (string formula, numeric
formula)

LEN (string formula)

MID$ (string formula, numeric
formula, numeric formula)

or
MID~ (string formula, numeric

formula)

RIGHT$ (string formula, numeric
formula)

SPACES (numeric formula)

STRS (numeric formula)

VAL (string formula)

Returns the decimal ASCII code for its argument.
The two- or three-letter codes are listed in Table
8-1.

The opposite function to ASC. The argument is
truncated to an integer that is interpreted as an
ASCII decimal number; a one-character string is
returned.

Searches for the second string within the first string
argument. In the first form, the search starts at the
character position specified by the numeric formula,
truncated to an integer. In the second form, the
search starts at the beginning of the string. Returns
zero if the substring not found; returns the position
of the first character in the substring if it is found.

Returns a substring of the string formula, starting
from the left. The substring contains the number of
characters specified by the numeric formula trun­
cated to an integer.

Returns the number of characters in its argument.

Returns a substring of the string formula, starting at
the character position specified by the first numeric
formula truncated to an integer. In the first form,
the substring contains the number of characters
specified by the second numeric formula truncated
to an integer. In the second form, the substring
continues to the end of the string.

Returns a substring of the string formula, starting
from the right, containing the number of characters
specified by the numeric formula truncated to an
integer.

Returns a string of the number of spaces specified
by the numeric formula truncated to an integer.

Returns a string representation of its argument.

The opposite function to STRS. Returns the number
that the string argument represents.

The user can also define his own functions by use of the DEFine statement. For example,

[line numberJ DEF FNC(x) = SIN (x) + TAN(x) - 10

where x is a dummy variable. (Define the user function FNC as the formula SIN(x) + TAN(x) - 10.)

Version 17 BASIC

NOTE

DEFine statements may be extended onto more than one
line; all other statements are restricted to a single line
(refer to Section 5.1.5).

A-6 August 1971

-269- BASIC

APPENDIX B

BASIC DIAGNOSTIC MESSAGES

Most messages typed out by BASIC are self-explanatory. BASIC diagnostic messages are divided into

three categories and listed in the three tables below:

a • Command errors i n Tab I e B-1

b. Compilation errors in Table B-2

c. Execution errors in Table B-3

Table B-1
Command Error Messages

Message

?CANNOT OUTPUT filenm.ext

?CATALOG DEVICE MUST BE DISK OR
DECtape

?COMMAND ERROR (YOU MAY NOT OVER­
WRITE LINES OR CHANGE THE ORDER)

?COMMAND ERROR (LINE NUMBERS MAY
NOT EXCEED 99999)

"?DELETE COMMAND MUST SPECIFY WHICH
LINES TO DELETE

?DUPLICATE FILENAME, REPLACE OR
RENAME

1

?FILE NOT FOUND

?LINE TOO LONG

?MISSING LINE NUMBER FOLLOWING
LINE nn*

?NO SUCH DEVICE

Explanation

A COPY, SAVE, or REPLACE command could not
enter a file to output it. The actual name of the
file is typed, not filenm.ext.

A device other than disk or DECtape was specified
in a CATALOG command.

The given RESEQUENCE command would have
changed the order of lines in the file. The com­
mand is ignored.

The given RESEQUENCE command is not executed
for that reason.

A DELETE command has no arguments.

User tried to SAVE a fi Ie that already exists.

A file that was requested did not exist.

A line of input is greater than 142 characters, not
counting the terminating carriage return, line feed.

During a WEAVE or OLD command, a line without
a line number was found in the file. The line is
thrown away.

The device is not available.

*If the current program was called by a CHAIN statement, the name of the current program is appended
to the error message.

B-1

BASIC -270-
Table B-1 (Cont)

Command Error Messages

Message Explanation

?QUOTA EXCEEDED ON OUTPUT DEVICE All of the space allowed on the output device has
been used; no more can be output to this device un-
less some of the user's files are deleted from it.

?UNSAVE DEVICE MUST BE DISK OR A device other than disk or DECtape was specified
DECtape in an U NSA VE command.

?WHAT? Catchall command error.

?mm IN LINE nn During a RESEQUENCE command, line nn was found
to contain undefined line number mm.

Table B-2
Compilation Error Messages

Message

?BAD DATA INTO LINE n

?DAT A IS NOT IN CORRECT FORM

?END IS NOT LAST IN nn

?EOF IN LINE nn

?FAILURE ON ENTRY IN LINE nn

?FILE filenm.ext ON MORE THAN ONE
CHANNEL IN nn

?FILE NEVER ESTABLISHED-REFERENCED
IN LINE nn

?FILE NOT FOUND BY RESTORE COMMAND
IN LINE nn

?FILE RECORD LENGTH OR TYPE DOES NOT
MATCH IN nn

?FNEND BEFORE DEF IN nn

?FNEND BEFORE NEXT IN nn

?FOR WITHOUT NEXT IN nn

?GOSUB WITHIN DEF IN nn

?FUNCTiON DEFINED TWICE IN nn

?ILLEGAL CHARACTER IN nn

Explanation

Input data is not incorrect form.

Incorrect number or stri ng data in: DATA statement,
TTY INPUT, or TTY MAT INPUT. Following an
INPUT error, the user is invited to retype the line.

An attempt was made to read data from a file after
a II data had been read.

Channel is not available for SCRATCH command.

The user tried to establish the same file on more
than one channel. The actual filename and exten­
sion are typed, not fi lenm. ext.

File was not referenced in a FILES command.

File was never written.

An existing random access file does not match the
type or record length specified for it in a FILES
statement.

FNEND occurs, but not in a function DEF.

A FOR occurred in a DEF, but its NEXT did not.

A GOSUB statement is within a multiple line DEF.

A meaningless character; e.g., DIM# (1).

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all compilation error messages. For example, NO DATA IN TEST .BAK.

B-2

I

-271- BASIC
Table B-2

Compilation &ror Messages

Message

?BAD DATA INTO LI NE n

?CHANNEL SPEC I F I ER NOT I N CORRECT
FORM IN LINE nn

?DATA IS NOT IN CORRECT FORM

?END IS NOT LAST IN nn

?EOF IN LINE nn

?FAILURE ON ENTRY IN LINE nn

?FILE filenm.ext ON MORE THAN ONE
CHANNEL IN LINE nn

?FNEND BEFORE DEF IN LINE nn

?FNEND BEFORE NEXT IN LINE nn

?FOR WITHOUT NEXT IN LINE nn

?GOSUB WITHIN DEF IN LINE nn

?FUNCTION DEFINED TWICE IN LINE nn

?ILLEGAL ARGUMENT FOR ASC FUNCTION

IN LINE nn

?ILLEGAL CHARACTER IN LINE nn

?ILLEGAL CONSTANT IN LINE nn

?ILLEGAL FORMAT IN LINE nn

?ILLEGAL FORMULA IN LINE nn

?ILLEGAL INSTRUCTION IN LINE nn

?ILLEGAL LINE REFERENCE IN LINE nn

?ILLEGAL LINE REFERENCE mm IN LINE nn

?ILLEGAL RELATION IN LINE nn

?ILLEGAL VARIABLE IN LINE nn

Explanation

I nput data is not in correct form.

The channel specifier in a file-handling state­
ment is not in the correct form.

Incorrect number or string data in a DATA state­
ment.

An attempt was made to read data from a file after
all data had been read.

Channel is not available for SCRATCH command.

The user tried to establish the same file on more
than one channel. The actual filename and exten­
sion are typed, no t fiI enm • ext.

FNEND occurs, but not in a function DEF.

A FOR occurred in a DEF, but its NEXT did not.

A GOSUB statement is within a multiple line DEF.

A meaningless character; e.g., DIM' (1).

Catchall for other syntax errors.

Syntax error in arithmetic formula.

The first three non-blank, non-tab charact..-s of
the statement do not match the first three charac­
ters of any legal statement.

BASIC syntax required an integer, but user typed
something else; e.g., GO TO A.

In line nn, line mm was referred to illegally
because:

a. Line mm is a REM
b. The first character in line mm is an

apostrophe (').
c. One of the lines nn or mm is inside

a function; the other is not inside that
function.

Incorrect IF relation.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to a" compilation error messages. For example, NO DATA IN TEST.BAK.

Version 17A BASIC B-3 May 1972

BASIC -272-
Table B-2 (Cont)

Compilation Error Messages

Message

?OUT OF ROOM

?RETURN WITHIN DEF IN nn

?STRING RECORD LENGTH> 132
OR < 1 IN nn

?STRING VECTOR IS 2-DIM ARRAY

?SYSTEM ERROR

?TOO MANY FILES

?UNDEFINED FUNCTION--FNx

?UNDEFINED LINE NUMBER mm IN nn

?USE VECTOR, NOT ARRAY IN nn

?VARIABLE DIMENSIONED TWICE IN nn

?VECTOR CANNOT BE ARRAY IN nn

Explanation

Cannot get more core to make room for:

a. More compilation space.
b. Maximum space for all the vectors

and arrays.
c. Space to store another string during

execution.

A RETURN statement is within a multiple line DEF.

The length of a record in a string random access file
was specified as greater than 132 or less than 1.

The user managed to do this error despite many other
checks.

An I/o error, or the UU 0 mechanism drops a bit,
or someth i ng s i mil ar to those errors.

A maximum of nine files can be open at one time
in a program.

The actual function name, not FNx, is typed.

In line nn, mm is used as a line number. Line num­
ber mm does not exi st.

A variable previously defined as a two-dimensional
array is now used in MAT input or CHANGE.

A variable previously used in a MAT INPUT or
CHANGE statement is now defined as a 2-dimen­
sional array in a DIM statement.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all compilation error messages. For example, NO DATAl N TEST. BAK.

Table B-3
Execution Error Messages

Message Explanation

ABSOLUTE VALUE RAISED TO POWER IN nn

?ATTEMPT TO OUTPUT A NEGATIVE NUMBER A USING statement attempted to output a negative
TO A $ OR * FIELD IN nn number to a floating dollar sign or leading asterisk

field that did not end in a minus sign.

?CHARACTER POSITION < = 0 IN nn A character position less than or equal to zero was
specified in an INSTR or MIDS function.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST.BAK.

B-4

-273- BASIC
Table 8-2 (Cont)

Compilation Error Messages

Message Explanation

?UNDEFINED LINE NUMBER mm IN LINE nn In line nn, mm is used as a line number. Line num-
ber mm does not exist.

?USE VECTOR, NOT ARRAY IN LINE nn A variable previously deRned as a two-dimensional
array is now used in MAT input or CHANGE.

?VARIABLE DIMENSIONED 'TWICE IN LINE nn

?VECTOR CANNOT BE ARRAY IN LINE nn A variable previously used in a MAT INPUT or
CHANGE statement is now deRned as a 2-dimen-
sional array in a DIM statement.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended 10 all compi I ation error messages. for example, NO DATA IN TEST.BAK.

Table B-3
Execution Error Messages

Message Explanation

%ABSOLUTE VALUE RAISED TO POWER IN
LINE nn

?A TTEMPT TO OUTPUT A NEGATIVE NUMBER A USING statement attempted 10 output a negative
TO A $ OR * FIELD IN LINE nn number 10 a floating dollar sign or leading asterisk

Reid that did not end in a minus sign.

?ATTEMPT TO OUTPUT A NUMBER TO A A USING statement attempted to output a
STRING FIELD OR A STRING TO A NUMERIC number to a string field or a string to a
FIELD IN LINE nn numeric field.

?ATTEMPT TO READ' OR INPUT' FROM A An attempt was made to read from a file that
FILE WHICH DOES NOT EXIST IN LINE nn does not exist on the user's disk area.

?ATTEMPT TO READ' OR INPUT' FROM A An attemfet was made to read from a sequential
FILE WHICH IS IN WRITE' OR PRINT' MODE access fi e that is not in read mode.
IN LINE nn

?ATTEMPT TO WRITE A LINE NUMBER
>99,999 IN LINE nn

?ATTEMPT TO WRITE' OR PRINT' TO A An attempt was made to write to a sequential
FILE WHICH HAS NOT BEEN SCRATCH'ED access file that is not in write mode.
IN LINE nn

?ATTEMPT TO WRITE' OR PRINT' TO A An attempt was made to write to a sequential
FILE WHICH IS IN READ' OR INPUT' access file that is not in write mode.
MODE IN LINE nn
?CHR$ ARGUMENT OUT OF BOUNDS IN The argument 10 the CHR$ function was less than
LINE nn zero or greater than 127.

?DATA FILE LINE TOO LONG IN LINE nn An attempt has been made 10 read from a data til e
a line which is greater than 142 characters long.

?DIMENSION ERROR IN LINE nn

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended 10 all execution error messages. for example, LOG OF ZERO IN 20 IN TEST.BAK.

Version 17A BASIC 8-5 May 1972

BASIC -274-
Table B-3 (Gmt)

Execution Error Messages

Message

%DIVISION BY ZERO IN LINE nn

?EXPONENT REQUESTED FOR * OR $ FIELD
IN LINE nn

?FILE IS NOT RANDOM ACCESS IN LINE nn

?FILE NEVER ESTABLISHED -- REFERENCED
IN LINE nn

?FILE NOT FOUND BY RESTORE COMMAND
IN LINE nn

?FILE filenm.ext ON MORE THAN ONE
CHANNEL IN LINE nn

?FILE NOT IN CORRECT FORM IN LINE nn

?FILE RECORD LENGTH OR TYPE DOES NOT
MATCH IN LINE nn

?IF END ASKED FOR UNREADABLE FILE IN
LINE nn

?ILLEGAL CHARACTER IN STRING IN LINE nn

?ILLEGAL CHARACTER SEEN IN LINE nn

?ILLEGAL FILENAME IN LINE nn

?ILLEGAL LINE REFERENCE IN RUN (NH) OR
CHAIN

?IMPOSSIBLE VECTOR LENGTH IN LINE nn

?INPUT DATA NOT IN CORRECT FORM -­
RETYPE LINE

?INSTR ARGUMENT OUT OF BOUNDS IN
LINE nn

Explanation

t

The user tried to establish the same file on more than
one channel. The actual filename and extension are
typed, not filenm.ext.

A data error has been detected in a string random
access fi Ie.

An existing random access file does match the type
or record length specified for it in a FILE statement.

An attempt has been made to write onto a data file
a string containing an embedded line terminator or
quote.

An attempt has been made to create an illegal char­
acter in a CHANGE statement.

The string argument is not in the correct form. If
the argument is variable, check that it has been
defined.

The line at which execution is to begin is inside a
multiline DEF.

In a CHANGE (to string) statement, the zero elemen
of the number vector was negative or exceeded its
maximum dimension.

tAn OVERR.OW error message means that an attempt has been made to create a number larger in mag­
nitude than the largest number representable in the computer (approximately 1.7E+ 38); when this
occurs, the largest representable number is returned (with the correct sign) and execution continues.
An UNDERFLOW error message means that an attempt has been made to create a nonzero number
smaller in magnitude than the smallest representable positive number (approximately 1 .4E-39); in this
case, zero is returned and execution continues. Division by zero is considered overflow; the largest
representable positive number is returned.

NOTE: If the cU"rent program was called by a CHAIN statement, the name of the cU"rent program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST .BAK.

Venion 17A BASIC B-6 May 1972

I

-275- BASIC
Table B-3 (Cont)

Execution &ror Messages

Message

?LEFT$ ARGUMENT OUT OF BOUNDS IN
LINE nn

?LINE NUMBER OUT OF BOUNDS IN LINE
nn

%LOG OF NEGATIVE NUMBER IN LINE nn

%LOG OF ZERO IN LINE nn

?MARGIN OUT OF BOUNDS IN LINE nn

?MARGIN TOO SMALL IN LINE nn

?MID$ ARGUMEN-T OUT OF BOUNDS IN
LINE nn

?MIXED RANDOM & SEQUENTIAL ACCESS
IN LINE nn

?MIXED READ' /I NPUrH IN LINE nn

?MIXED WRITE' /PRINrH IN LINE nn

%SINGULAR MATRIX INVERTED IN LINE nn

?NEGATIVE STRING LENGTH IN LINE nn

?NO FIELDS IN IMAGE IN LINE nn

?NO ROOM FOR STRING IN LINE nn

?NO SUCH LINE IN RUN (NH) OR CHAIN

?NOT ENOUGH INPUT -- ADD MORE

Explanation

The line number argument is less than zero or greater
than 99,999. The RUN (NH) commands return a
?WHAT? message in this situation.

A MARGIN or MARGIN ALL statement specified a
margin greater than 132 characters or less than 1
character.

A WRITE' statement referenced a file that has a
margin of fewer than seven characters.

A random access statement or function referenced
a sequential access file, or vice versa.

An attempt was made to reference a file with both
a READ' and an INPUT' statement without an inter­
vening RESTORf# statement.

An attempt was made to reference a file with both
a WRITE' and a PRINrH statement without an inter­
vening SCRATCH' statement.

In a MID$, LEFT$, or RIGHT$ function, a negative
number of characters was specified for a substring.

An image contains neither string nor numeric fields.

In a CHANGE A$ TO A, the number of characters
in A$ exceeds the maximum size of A. A DI M
statement appropriately increasing the size of A
will cover this.

The specified line does not exist in the program.

?ON EVALUATED OUT OF RANGE IN LINE nn The value of the ON index was < 1 or >the number
of branches.

?OUT OF DATA IN LINE nn

?OUTPUT ITEM TOO LONG FOR LINE IN
LINE nn

In quote mode, an attempt was made to write a
string or number that is too long to fit on one line.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN LINE 20 IN TEST .BAK.

Version 17A BASIC B-7 May 1972

BASIC .. 276-
Table B-3 (Cont)

Execution &ror Messages

Message

?OUTPUT LINE> 132 CHARACTERS IN
LINE nn

?OUTPUT STRING LENGTH> RECORD
LENGTH IN LINE nn

O/oOVERFLOW IN LINE nn

%OVERFLOW IN EXP IN LINE nn

Explanation

A line of output created by a USING statement
is greater than 132 characters.

An attempt has been made to output to a random
access file a string which is too long to fit in one
record.

t

An exponent greater than 88.028 has been specified
for the EXP function. An answer of the largest rep­
resentable number is returned and execution con­
tinues. t

?PAGE LENGTH OUT OF BOUNDS IN LINE nn A PAGE or PAGE ALL statement specified a page
length of less than one line.

?QUOTA EXCEEDED OR BLOCK NO. TOO
LARGE 0 N OUTPUT DEVICE

?RETURN BEFORE GOSUB IN LINE nn

?RIGHT$ ARGUMENT OUT OF BOUNDS IN
LINE nn

?SET ARGUMENT OUT OF BOUNDS IN
LINE nn

?SPACE$ ARGUMENT OUT OF BOUNDS IN
LINE nn

%SQRT OF NEGATIVE NUMBER IN LINE nn

?STRING FORMULA> 132 CHARACTERS IN
LINE nn

?STRING RECORD LENGTH> 132 OR < 1 IN
LINE nn

Normally, this indicates that all of the space
allowed on the output device has been used; no
more can be output to this device unless some of
the user's fi les are deleted from it. It may also
mean that the block number is too large for the
output device.

The user attempted to set the value of the pointer
to zero or to a negative number.

The SPACE$ function was requested to retum a
string that was less than or equal to zero or greater
than 132 characters.

A string formula contains more than 132 characters.

The record length for a string random access file
was specified as less than one or greater than 132
characters •

tAn OVERFLOW error message means that an attempt has been made to create a number larger in mag­
nitude than the largest number representable in the computer (approximately 1.7E + 38); when this
occurs, the largest representable number is retumed (with the correct sign) and execution continues.
An UNDERFLOW error message means that an attempt has been made to create a nonzero number
smaller in magnitude than the smallest representable positive number (approximately 1 .4E - 39); in
this case, zero is retumed and execution continues. Division by zero is considered overflow; the
largest representable positive number is returned.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST.BAK.

Version 17 BASIC B-8 February 1972

-277- BASIC
Table B-3 (Cont)

Executian Error Messages

Message

?SUBROUTINE OR FUNCTION CALLS ITSELF
IN LINE nn

%TAN OF Pl/2 OR COTAN OF ZERO IN LINE
nn

?TOO MANY ELEMENTS -- RElYPE LINE

%UNDERFLOW IN EXP IN LINE nn

%UNDERFLOW IN LINE nn

?VAL ARGUMENT NOT IN CORRECT FORM
IN LINE nn

%ZERO TO A NEGATIVE POWER IN LINE nn

Explanation

FNA is defined in terms of FNB which is defined
in terms of FNA, or a similar situation with FUNC­
TIONS or GOSUBS.

An exponent less than -88.028 has been specified
for the EXP function. An answer of zero is returned
and the execution continues. t

t
The string argument to the VAL function does not
represent a legal number.

tAn OVERFLOW error message means that an attempt has been made to create a number larger in mag­
nitude than the largest number representable in the computer (approximately 1.7E + 38); when this
occurs, the largest representable number is returned (with the correct sign) and execution continues.
An UNDERFLOW error message means that an attempt has been made to create a nonzero number
smaller in magnitude than the smallest representable positive number (approximately 1 .4E - 39); in
this case, zero is returned and execution continues. Division by zero is considered overflow; the
largest representable positive number is returned.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST.BAK.

Version 17 BASIC B-9 February 1972

BASIC -278-

-279- BASIC

APPENDIX C

TAPE AND KEY COMMANDS

The TAPE and KEY commands are designed for user Teletypes with attached paper-tape readers; for

example, the LT33B shown in Figure C-l.

B. Sp,

Figure C-l LT33B Teletype

C-l

BASIC -280-
C.l KEY AND TAPE MODES

KEY mode is produced by typing the KEY command to BASIC. In this mode, the user types input to

BASIC on the keyboard in the normal manner. KEY mode is also the default mode.

TAPE mode is produced by typing the TAPE command to BASIC. The user initiates this mode whenever

he wants to input from the paper tape reader while the Teletype is in LINE mode.

C.2 PREPARING AN INPUT TAPE IN LOCAL MODE

The following procedure should be followed for preparing an input tape.

Step Procedure

1 Tum the Teletype control to LOCAL (see Figure C-1).

2 Feed blank tape into the punch.

3 Depress the LOCK "ON" control.

4 Generate the leader tape by doing the following:

a • Depress the SPAC E bar severa I ti mes.
b. Depress the RETURN key once.
c. Depress the LINE FEED key once.

5 Type on the keyboard the commands and statements to be punched on the
tape.

a. At the end of each line, type both the RETURN and LINE
FEED keys.

b. If an incorrect character is typed, do the following:

(1) Depress the BACKSPACE control
(2) Depress the RUBOUT key.
(3) Type the correct character.

c. A TAB is received correctly when typed, even though the
Teletype typewheel moves only one pasition to the right
when TAB is typed.

d. Any normal input to BASIC can be punched on the tape.
A typical example is as follows:

NEW
TEST4
5 PRINT ''THIS IS A TEST"
10 END
LIS
RUNNH

6 Generate a trailer tape by doing the following:

a. Depress the SPACE bar several times.
b. Depress the RETURN key once.
c. Depress the LINE FEED key once.

C-2

-281- BASIC
Step Procedure

7 Depress the UNLOCK control.

S Remove the tape from the punch.

9 Depress the CT RL and T keys s i mu Ita neousl y •

C.3 SAVING AN EXISTING PROGRAM ON TAPE

The following procedure should be performed to save an existing program on tape.

Procedure

Turn the Teletype control to LINE.

2 Depress the LOCK "ON" control.

3 Generate a leader tape by doing the following:

a. Depress the SPACE bar several times.
b. Depress the RETURN key once.

4 Turn the Teletype control to LOCAL.

5 Depress the UNLOCK control.

6 Depress the CTRL and T keys simultaneously.

7 Tum the Teletype control to LINE.

S Type the LISTNH command, but do not depress the RETURN key.

9 Depress the LOCK "ON" control.

10 Depress the RETURN key.

11 Wait until the program has been listed and the READY message has been
typed.

NOTE

The tape will contain not only your program but also an
extra line at the end with the READY message on it.
This is not important. Since READY is not a legal com­
mand, it will simply produce a WHAT? error message
when the tape is input to BASIC, and then it wi II be
ignored.

12 Generate a trailer tape by doing the following:

a. Depress the SPACE bar several times.
b. Depress the RETURN key once.

13 Turn the Teletype control to LOCAL.

14 Depress the UNLOCK control.

15 Remove the tape from the punch.

16 Depress the CTRL and T keys simultaneously.

17 Turn the Teletype control to LINE; now you are back in BASIC.

C-3

BASIC -282-
Step Procedure

18 To stop the tape output while the program is being listed, do the following:

a. Depress the U NL OC K control.
b. Depress the CTRL and T keys simultaneously.
c. Twice depress the CTRL and C keys simultaneously.
d. Type REEN.
e. Depress the RETURN key.

C.4 INPUTTING TO BASIC FROM THE READER

The following procedure should be followed for inputting to BASIC from the reader.

Step Procedure

1 Turn the Teletype control to LINE.

2 With the reader control on STOP (see Figure C-l), position the tape on the
sprocket wheel and close the tape retainer cover.

3 Type the command TAPE to BASIC.

4 Depress the RETURN key.

S When BASIC answers READY, set the reader control to START.

6 When the tape has been read in, set the reader control to STOP.

7 Type KEY.

S Depress the RETURN key.

9 Depress the LINE FEED key. (The Key mode is now restored.)

10 To stop the tape input while it is in progress, do the following:

a. Switch the reader control to STOP.
b. Twice depress the CTRL and C keys simultaneously.
c. Type REEN.
d. Depress RETURN.
e. Depress LINE FEED.
f. Type KEY.
g. Depress RETURN.
h. Depress LINE FEED.

NOTE

Do not type on the keyboard without first
stopping the tape.

C.S LISTING AN INPUT TAPE

An input tape is listed in the following manner:

Step Procedure

Turn the Teletype control to LOCAL. (In LOCAL mode the tape is not in­
putted to the computer.)

C-4

-283-
Prec

2 Set the reader te STOP.

3 ~t the tape in the reader.

4 Set the reader to START. (The contents of the tape is then printed on the
COl'llOt..)

C-5

BASIC

BASIC -284-

-285- DEC-IO-KAZB-D

ALGOL
PROGRAMMER'S REFERENCE MANUAL

This manual reflects version 2A of the ALGOL

System.

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

-286-
I st Edition September 1971

2nd Edition December 1971

Update Pages May 1972

Copyright © 1971, 1972 by Digital Equipment Corporation

The material in this manual is for informa­
tional purposes and is subject to change
without notice_

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

-287- ALGOL

CONTENTS

Page

CHAPTER 1 INTRODUCTION

1.1 Geneml 293

1.2 DECsystem-l0 ALGOL 293

1.3 The ALGOL Compiler 294

1.3.1 Compiler Extensions 294

1.3.2 Compiler Restrictions 295

1.4 The ALGOL Operating Environment 295

1.5 Terminology 295

CHAPTER 2 PROGRAM STRUCTURE

2.1 Basic Symbols 297

2.2 Compound Symbols 298

2.3 Delimiter Words 298

2.4 Use of Spacing and Commentary 300

CHAPTER 3 IDENTIFIERS AND DECLARATIONS

3.1 Identifiers 301

3.2 Scalar Declarations 302

CHAPTER 4 CONSTANTS

4.1 Numeric Constants 305

4.1.1 Integer Constants 305

4.1.2 Real Constants 305

4.1.3 Long Real Constants 306

4.2 Octal and Boolean Constants 306

4.3 ASCII Constants 307

4.4 String Constants 307

CHAPTER 5 EXPRESSIONS

5.1 Arithmetic Expressions 309

5.1.1 Identifiers and Constants 310

5.1.2 Special Functions 310

5.2 Boolean Expressions 312

5.2.1 Boolean Operators 312

5.2.2 Arithmetic Conditions 313

5.3 Integer and Boolean Conversions 313

ALGOL 288

CONTENTS (Cent)

Page

CHAPTER 6 STATEMENTS AND ASSIGNMENTS

6.1 Statements 315

6.2 Assignments 315

6.3 Multiple Assignments 316

6.4 Evaluation of Expressions 316

6.5 Compound Statements 317

CHAPTER 7 CONTROL TRANSFERS, LABELS, AND
CONDITIONAL STATEMENTS

7.1 Labels 319

7.2 Unconditional Control Transfers 319

7.3 Conditional Statements 320

CHAPTER 8 FOR AND WHILE STATEMENTS

8. 1 FOR Statements 321

8.1.1 STEP-UNTIL Element 322

8.1.2 WHILE Element 322

8.2 WHILE Statement 323

8.3 General Notes 323

CHAPTER 9 ARRAYS

9.1 General 325

9.2 Array Declarations 325

9.3 Array Elements 326

CHAPTER 10 BLOCK STRUCruRE

10.1 General 327

10.2 Arrays with Dynamic Bounds 329

CHAPTER 11 PROCEDURES

11.1 Parameters Called By "Value" 331

11.2 Parameters Called By" Name" 331

11.3 Procedure Headings 333

11.4 Procedure Bodies 333

11.5 Procedure Calls 335

11.6 Advanced Use of Procedures 336

11.6.1 Jensen's Device 336

11.6.2 Recursion 337

289 ALGOL

CONTENTS (Cont)

Page

11.7 Layout of Declarations Within Blocks 338

11.1 forw.rcllWerenc. 339

11.' L Prec 3otO
11.10 A t Me ef C ry 341

11.10.1 Call1l,, .. t Af_ END 341

11.10.2 C WIth", Procedure HeatUngs 341

CHArTB 12 SWITCHES

12.1 GanelUl 343
12.2 Switch Declarations 343

12.3 Use of Switches 343

CHAPTER 13 STR! NGS

13.1 GeneltJl 345

13.2 String Expressions and Assignments 345

13.3 Byte Strings 345

13.4 Byte Subscripting 346
13.5 String Comparisons 347

13.6 Library Procedures 347

13.6.1 Concatenation 347

13.6.2 Byte String Copying 349

13.6.3 New Byte Strings 350

CHAPTER 14 CONDITIONAL EXPRESSIONS AND STATEMENTS

14.1 Geneml 351

14.2 Conditional Operands 351

14.3 Conditional Statements 352

14.4 Designational Expressions 353

CHAPTER 15 OWN VARIABLES

15.1 General 355

15.2 Own Arrays 355

CHAPTER 16 DATA TRANSMISSION

16. 1 GeneltJl 357

16.2 Allocation of Peripheral Devices 357

16.2.1 Devi ce Modes 358

16.2.2 Buffering 359

ALGOL 290

CONTENTS (Cont)

Page

16.3 Selecting Input/Output Channels 359

16.4 File Devices 360

16.5 Releasing Devices 360

16.6 Basic Input/Output Procedures 361

16.6. 1 Byte Processing Procedures 361

16.6.2 String Output 361

16.6.3 Miscellaneous Symbol Procedures 362

16.6.4 Numeric and String Procedures 363

16.6.4.1 Numeric Input Data 363

16.6.4.2 Numeric Output Data 364

16.6.4.3 Octal Input/Output 365

16.7 Default Input/Output 365

16.8 Logical Input/Output 365

16.9 Special Operations 366

16.10 I/O Channel Status 366

16.11 Transferring Fi les 367

CHAPTER 17 THE DECsystem-lO OPERATING ENVIRONMENT

17.1 Mathematical Procedures 369

17.2 String Procedure 370

17.3 Utility Procedures 370

17.3.1 Array Dimension Procedures 370

17.3.2 Minima and Maxima Procedures 371

17.3.3 Field Manipulations 371

17.4 Data Transmission Procedures 371

17.5 FORTRAN Interface Procedures 372

17.5.1 FORTRAN Input/Output 372

CHAPTER 18 RUNNING AND DEBUGGING PROGRAMS

18. 1 Compilation of ALGOL Programs 373

18.1.1 Compilation of Free-Standing Procedures 375

18.2 Loading ALGOL Programs 375

18.3 Rum ing ALGOL Programs 376

18.4 Conc ise Command Language 376

18.5 Run-Time Diagnostics and Debugging 376

18.5.1 Facilities to Aid in Program Debugging 376

18.5.1.1 Checking 376

18.5.1.2
18.5.1.3

291

CONTENTS (Cont)

Control I ing listing of the Source Program

Setting line N umbers in listings

CHAPTER 19 TECHNICAL NOTES

2-1
2-.2
2-3
5-1
5-2
5-3
II-I

16-1

TABLES

DECsystem-IO ALGOL Symbols

Compound Symbols

Delimiter Words Used in DECsystem-IO ALGOL

Operator Precedence

Function of Boolean Operators

Boolean Expressions

Parameters in a Procedure Call

Standard Device Names

Page

377

377

297

298

299

309
312
314
332

358

ALGOL

ALGOL -292-

CHAPTER 1

INTRODUCTION

1.1 GENERAL

-293- ALGOL

DECsystem-10 ALGOL is an implementation of ALGOL-60; ALGOL is an abbreviation of ALGOrithmic

Language, and 1960 is the year it was defined. The authoritative definition of ALGOL-60 is contain­

ed in the "Revised Report on the Algorithmic Language ALGOL-60", 1 hereafter referred to as the

"Revised Report". This report leaves a number of ALGOL-60 features undefined, notably input/output,

and permits the implementer of the language some latitude in interpreting other features. Many of

these features have been discussed extensively since the publication of the Revised Report; some have

been given rigorous interpretations in various versions of ALGOL and the proposed ALGOL-68
2

Language.

Where there is need for interpretation in the Revised Report, such interpretations as seem reasonable

have been made in light of current ALGOL opinion. Where no guidelines exist, ALGOL-68 is used as

a basis. These points are discussed in Chapter 19.

1.2 DECsystem-10 ALGOL

The purpose of this manual is to teach the use of DECsystem-10 ALGOL. The maooal is written both

for the user who is familiar with ALGOL implementations and for the user who has no knowledge of

ALGOL but is reasonably fluent in a high-level scientific programming language such as FORTRAN IV.

This manual is!!2! a primer in high-level languages.3

l"Revised Report on the Algorithmic Language ALGOL-60" , Backus et al., Communications of the
ACM, 1963, vol. 6, no. 1, pp. 1-17.

2"Report on the Algorithmic Language ALGOL-68" , A. Van Wiingaarden (Editor), B. M. Mailloux,
J. E. L Peck, and C. H. A. Koster, Mathematisch Centrum, Amsterdam, MR101, October 1969.

3A Primer of ALGOL-60Programming, E. W. Difkstra, Academic Press, London, 1962.

1-1

I
I

I

ALGOL -294-
Readers not thoroughly familiar with ALGOL shauld read the entire manual. Readers already familiar

with ALGOL-60 shauld read all chapters except Chapters 5,6,7,8,9, 10, 11, 12, and 14, which

need be referred to only briefly.

1.3 THE ALGOL COMPILER

The DECsystem-l0 ALGOL Compiler is that part of the DECsystem-l0 ALGOL System that reads pro­

grams written in DECsystem-l0 ALGOL and converts them into a form (relocatable binory) that is

acceptable to the DECsystem-l0 Linking Loader. The compiler is also responsible for finding errors in

the user's source program and reporting them to the user.

Slight constraints are impased on the way the user writes his program. These constraints, made to gain

the most desirable feature of a single-pass compiler, concem the order in which the user declares the

identifiers in the program and the use of forward declarations under certain special circumstances.

Such a compiler can process ALGOL pEOgrams rapidly and does not require the use of any backing

store. The minor restrictions impased will not normally affect the user.

1 .3.1 Compiler Extensions

The following ALGOL-60 extensions are allowed by the compiler:

a. A LONG REAL type, equivalent to FORTRAN's double precision, is added that
gives the user power to handle double-precision real numbers.

b. An EXTERNAL procedure facility allows the user to compile procedures separately
from the main program.

c. A WHILE statement, and an abbreviated form of the FOR statement, allow the
user greater flexibility of iteration.

d. A new type STRING allows the user to manipulate strings of various size bytes.
In addition, the user can individually manipulate the bytes within a string by
means of a byte subscripting facility.

e. An integer remainder function is provided.

f. Assignments are permitted within expressions.

g. Delimiter words may be represented in either reserved word format (upper case) or
as non-reserved words enclosed in single quotes (primes).

The compiler, as supplied, uses reserved word delimiters. A version using non-reserved delimiter

I words enclosed in primes can be produced by means of the /Q compiler switch. Refer to Chapter 18.

Version 2 ALGOL 1-2 December 1971

-295- ALGOL
1 .3.2 Compi ler Restri ctions

If the user is unfamiliar with any of the following terminology, he should refer to the Revised Report

I and to Paragraph 1.5.

The compiler imposes the following restrictions on ALGOL-60:

a. Numeric labels are not permitted.

b. All formal parameters must be specified.

c. Identifiers are restricted to 64 characters in length.

d. Some minor restrictions are made in the ordering of declarations.

e. Forward references for procedures and labels must be given under certain circum­
stances.

1.4 THE ALGOL OPERATING ENVIRONMENT

Programs compiled by the ALGOL compiler are run in a special operating environment that provides

special services, including input/output facilities for the object program.

The ALGOL operating environment consists of:

a. The ALGOL Library, known as ALGLIB - a set of routi nes, some of whi ch are
incorporated into the user's program by the linking loader.

b. The ALGOL Object TIme System, known as ALGOTS - responsible for organizing
the smooth running of the program and providing services such as core manage­
ment, peripheral device allocation, and fault monitoring in case the program
encounters an error condition at run time.

Refer to Chapters 17 and 18 for a description of ALGLIB and ALGOTS.

1.5 TERMINOLOGY

Some of the following words, used in this manual, may be new to the reader. Many have a FORTRAN

equivalent; where such an equivalent exists, it is enclosed in parentheses.

Delimiter Word - a single, English language word that is an inherent part of the
structure of the ALGOL language. Such words cannot normally be used for other
purposes. Example: BEGIN IFARRAY.

Identifier - a name, established by user declaration, that represents some quantity
within a program.

Label (Statement Number) - an identifier used to mark a certain statement in a program.
Control of program execution can be transf8rred to the statement following the label.
A numeric label (not available in DECsystem-l0 ALGOL) is similar to a FORTRAN
statement number.

(continued on next page)

Version 2 ALGOL 1-3 December 1971

ALGOL

I

-296-
Procedure (Subroutine, Function) - part of a program, which may be invoked by "calling".
In general, parameters are suppli ed as arguments and a result may be returned.

Parameter (Fonnal Parameter - Dummy Variable I Actual Parameter - Argument) See
Procedure. - A Formal Parameter is an identifier used within the procedure that repre­
sents the argument supplied when the procedure is called.

1-4 December 1971

I

-297- ALGOL

CHAPTER 2

PROGRAM STRUCTURE

2.1 BASIC SYMBOLS

DECsystem-l0 ALGOL programs consist of a sequence of symbols from the DECsystem-10 ASCII

character set. The meaning of individual characters, given in Table 2-1, is much the same as in other

high-level languages.

Symbol

A-Z

a-z

0-9

+

-
*
/
t

()

[]

,

.
;

Table 2-1
DECsystem-l0 ALGOL Symbols

Meaning or Use

Used to construct identifiers and delimiter words.

Lower case letters; are treated as upper case letters except when they
appear in string constants and ASOI constants.

Decimal digits; used to construct numeric constants and identifiers.

Arithmetic addition operator.

Arithmetic subtraction operator.

Arithmetic multiplication operator.

Arithmetic division operator.

Arithmetic exponentiation operator.

Parentheses; used in arithmetic expressions and to enclose parameters
in procedure specifications and calls.

Square brackets; used to enclose subscript bounds in array declarations,
and array subscript lists.

Comma; general separator, placed between array subscripts, procedure
parameters, items in switch lists, etc.

Decimal point; used in numeric constants and byte subscripting. Also,
used as a readability symbol in identifiers.

Semicolon; used to terminate statements.

(continued on next page)

2-1 December 1971

ALGOL

Synmol

. .
= ,
< >
& @

I

II

I

" $..

-298-
Taltle 2-1 (Cent)

DECsystem-10 ALGOL Sy s

Meani .. or u..

Colon; ueed 10 inellcute labell, .,.. I.,.."" lower,..1IouncIs in
CII'I'CI'/ declarations.

Equality; used In c:withmetlc aM stri .. cornpart

NN '.,.
t... ,
Introduces exponent in floati.,..-polnt .,...

PrI , or 11 .. 1. Gfuote; usetI .. enclOle c1allllll_ when the nett-reserv" ~ 1 hIHeft II

o,.ni", anti cleli .. strl".

Collllllleftt.

IntnMluc. 8ft ectal COI'IINllt.

IntnMluces an ASOI OOI'IItant.

Alte."...lv ... := (refw to Taltl. 2-2) •

2.2 COMPOUND SYMiOLS

Compeund sy_11 conaIst of two adfacent c ..,*11. Arrt interveni". spaces or talK do not tJlfect

their use. The compound symbols are thown in T_le 2-2.

SyMtoI u..e

:= A.i.,......t

<= L_th.nor

>= Greatw then or .. val 10

2.3 DalMiTER WORDS

Certain upper-case letter combinations are reserved as part of the structure of the longuage and may

!lQ! be used as identifiers unless the compiler Uled is a version accepting delimiter words in single

I quotes. Such on option is selected by using a special switch option (refer to Chapter 18). It is allUmed

Version 2 ALGOL 2-2 December 1971

-299-
throughout this manuel that the standard method of delimiterwonl rwpJ8sentation is used, that is,
For example, the delimiter word

8€GIN

ALGOL

will always ~ in the- text of this manual ~ shown -"ove and cannot be used as an identifier ina

PfOI"G"'. If the alternative methN of r.,.... tatlonis wed, it would appecr.

'BEGIN'

9!:G IN

could Ite identifier. T 2-3 contal .. a list of all the delimiter words used in the language.

T 2-3
DeliMl .. w..w U in Dec.,n.-W ALGOL

Rel.,..._ WoN a..- a'IC:e

AND 5.2.1
Aw..y ,
tEGIN 10
BOOlEAN 5.2
CHECKOFF 18
CHlCKON 18
COMMENT 2.<4-
DlV 5.1
DO • !lSI 7.3
!ND 10
[QV 5.2.1
EXTE L 11.9
FALSE <4-.2
FOR • FOrNlAMJ 11.8

I GO 7.2
GOTO 7.2
If 7.3
IMP 5.2.1
INTEGER 3.2
LAla 11
LINE 18
L1STOFF 18
LISTON 18
LONG 3.2

(continued on next page)

Version 2A ALGOL 2-3 May 1972

ALGal -300-
Table 2-3 (Cont)

Delimiter Words Used in DECsystem-l0 ALGOL

Reserved Word Chapter Reference

NOT 5.2.1
OR 5.2.1
OWN 15
PROCEDURE 11
REAL 3.2
REM 5.1
STEP 8
STRING 13
SWITCH 12
THEN 7.3
TRUE 4
UNTIL 8
VALUE 11
WHILE 8

2.4 USE OF SPACING AND COMMENTARY

The readability of ALGOL programs can be enhanced greatly by the judicious use of spacing, tab for­

matti ng, and commentary. Spaces, tabs, and form feeds (page throws) may be used freely ina source

program subject to the following constraints:

a. Spaces, tabs, line feed, or form feed characters may not appear within delimiter
words.

b. Where two delimiter words are adjacent, or where an identifier follows a delimiter
word, they must be separated by one or more spaces and/or tabs.

c. Spaces, tabs etc., are significant within string constants.

d. Where the carriage return, line feed at the end of a line of source is to be ignored,
I a control-back arrow character should be inserted immediately before the carriage

return.

Comments are introclJced by either the word COMMENT or the symbol I (available in DECsystem-l0

ALGOL, but not necessarily in other implementations of ALGOL). Such a comment may appear any-

I where in a program; the comment text is terminated by a semicolon. Refer to Section 11.10 for

additional means to add comments to a program.

Version 2 ALGOL 2-4 December 1971

-301- ALGOL

CHAPTER 3

IDENTIFIERS AND DECLARATIONS

3.1 IDENTIFIERS

An identifier must begin with an upper-case letter and optionally be followed by one or more upper­

case letters and/or decimal digits. An Identifier may not contain more than 64 charact

NOTES

1. Unlike FORTRAN, there is no implied type attach­
ed to an identifier.

2. All identifiers in a program <_capt labels) have to
be "declared", that is, the we to which they are
to be put must be specified, usually beIOre they are
used.

The following are Identifiers:

I

ALPHA

P~3

~KS

HOUSEHOLDERTRIDIAGONALIZATION

The following are not identifiers:

~

BOOLEAN

ONCE AGAIN

does not begin with letter

unless the non-reserved word delimiter repre­
sentation 'is used

space not allowed

3-1

ALGOL -302-
DECsystem-l0 ALGOL also permits the use of a decimal point as a "readability symbol" in the alpha­

betic portion of identifiers. These readability symbols can appear between two alphabetic characters

of an identifier and are ignored by the compiler. Thus:

ONCE .AGA IN

and

PI.BY.TWO

have exactly the same effect as

ONCEAGAIN

and

PIBYTWO

respectively.

Note that

ALPHA3.5

and

BETA.22

are not identifiers, since the decimal point does not appear between two alphabetic characters.

3.2 SCALAR DECLARATIONS

A declaration reserves an identifier to represent a particular quantity used in a program. Such

declarations are mandatory in ALGOL. At any particular point during program execution, the form of

the variable or quantity associated with the identifier depends on the type of variable. The type of

variable is controll-ecl by the type of identifier which represents it.

There are five scalar variables, that is, variables which contain a single value:

a. Integer
b. Real
c. Long Real
d. Boolean
e. String

Integer, real, and long real variables are capable of holding numerical values of the appropriate type

(and only of that type). The range of values is as follows: integer: -34,359,738,368 through

34,359,738,367; real and long real: approximately -1.7&38 through 1.7&38; values less than approx­

imately 1 .4&-39 in magnitude are represented by zero.

3-2

-303- ALGOL
Boolean variables (similar to FORTRAN's logical variables) can hold a Boolean quantity, which is

I usually one of the states TRUE or FALSE but, in general, can be any pattern of 36 bits.

String variables are somewhat more complicated. A full discu.ion of their properties is presented in

I Chapter 13. At this point, it is sufficient to say that strirv variables are really pointen to byte strings.

All of the chove variables can be declared for use by preceding a list of the identifien to be used by

the appropriate delimiter word for their type. Throughout this manual, a "list of items" consists of

those items arranged sequentially and separated by commas.

Examples:

LONG REAL DOUBLE~PIQ~ELEPHANTJ

BOOLEAN ISITREALLYTRUEJ

3-3 December 1971

ALGOL -304-

CHAPTER 4

CONSTANTS

4.1 NUMERIC CONSTANTS

There are three forms of num.ic constants:

a. Integer constants
b. Real constants
c • long Real constants

4.1.1 Integer Constants

-305- ALGOL

Integer constants consist of a number of adjacent decimal digits, uiect 10 the constraint that the

number represented must be in the range 0 through 34 ,359 ,738 ,367 •

Examples:

3

24

NOTE

Any preceding sign that appean in the pragium is not
considered part of the constant.

9276541

4.1.2 Real Constants

Real constants consist of a decimal number (containing either an integral part or a fractional part, or

both) followed by an optional exponent. If the decimal number is unity, it may be omitted. The ex­

ponent consists of either the & or @ symbol followed by an optionally signed integer. This has the

effect of multiplying the decimal number by the power of ten specified in the exponent. If no decimal

number appears, a value of unity is assumed.

4-1

ALGOL -306-
The range of real constants is approximately 1.4&-39 to 1.7&38; numben less than 1.4&-39 are repre­

sented by zero. Real numben are stored to a significance of approximately eight and one-half decimal

digits.

Examples:

Representation Value

3.141592653589793 3.14159265
.0001 0.0001
4.37&5 437000.0
5&-3 0.005
&-6 0.000001

4.1,3 Long Real Constants

Long real constants are used to represent numeric quantities to approximately twice the precision

available with real numben: about seventeen decimal digits. Long real constants are formed by

writing a real constant in floating-point form, but replacing the & or @ by && or @g).

The range of long real·constants is the same as that of real constants, except numben below approxi­

mately 3.0&&-30 can only be represented to single precision due to hardware considerations.

Examples:

Representation Value

3.14159265358979323846&&0 3.1415926535897932
12&&-3 0.012

4.2 OCTAL AND BOOLEAN CONSTANTS

Octal cOnstants consist of the symbol % followed by a number of octal digits. Up to twelve significant

digits may appear Oeading zeros are ignored); theSe digits are right justified.

Examples:

%177177777774

%0470

Octal constants may only be used in Boolean expressions.

Boolean constants consist of the words TRUE and FALSE. Th. are equivalent to the octal constants

%777777777 m and %000000000000, respectively.

4-2

-307- ALGOL
4.3 ASCII CONSTANTS

Up to five ASOI symbols can be packed right justified to give an integer-type constant. The format is

a dollar sign ($), followed by up to five ASCI symbols enclosed within a delimiting symbol pair. The

leading delimiter symbol immediately follows the $, and may be a readable character or an invisible

one such as a space. Thus, the user can generate a single ASCI character constant by placing one

space on each side of it, and preceding the triplet by a dollar sign.

Examples:

Text Octal Value

$A 00000o 000101
$/01234/ 160713 516674

4.4 STRING CONSTANTS

String constants allow the user to store any reasonable length string of ASCII characters within a pro­

gram. The length of such a constant is restricted only by the amount of core storage available to the

user for the execution of the program. String constants may be used, typically, to output a message

during the execution of the program.

The string of symbols is enclosed within quotes ("). There are restrictions on the symbols that may

appear within the string.

a. []; and " may not appear alone.

b. [and] may appear if they are properly paired.

c. Single occurrences of []; and" are represented by [[]];; and "",
respectively.

Note that [[and]] are stored as such in the byte string generated by the compiler. ;; and "" are

stored as a single; or ", respectively.

Square brackets are used to enclose symbols that have a specific effect when the string is output.

These are discussed in Paragraph 16.6.2.

Examples:

"ABCDEfGHJJKLMNOPQRSTUVWXYZ"

"REMEMBER THAT SPACES ETC. ARE SIGNIF"ICANT"

"(P5ClINPUT DATA:(5Cl"

...... A[[I]] := ~.1;.;"""

4-3

ALGOL -308-

CHAPTER 5

EXPRESSIONS

5.1 ARITHMETIC EXPRESSIONS

-309- ALGOL

DECsystem-l0 ALGOL arithmetic expressions are written in a form similar to that used in FORTRAN and

many other high-level scientific computer languages. The usual algebraic rules conceming precedence

of operators and brackets are followed (see Table 5-1).

Operator

parentheses
exponentiation

Table 5-1
Operator Precedence

multiplication and division
addition and subtraction

Priority
(decreasing)

1
2
3
4

There are two additional operators, DIY and REM, that indicate integer division and remainder,

respectively. They have the same precedence as ordinary division. Within the precedence scheme,

the order of evaluation is always from left to right. For example:

XtYtZ means (Xty)tz

and

I DIV J REM J< means (I DIV J) REM I<

Unlike FORTRAN, when ordinary division of one integer by another is performed, the real result is

not rounded to an integer value.

NOTE

The operator REM is normally not available in other
ALGOL implementations.

5-1

I

ALGOL -310-
The difference between the various types of division is clarified by the following examples:

7/4 yields a result of 1.75, whereas

7 DIY 4 yields a result of 1, and

7 REM 4 yields a result of 3

The interpretation of integer division for negative integers follows:

Let M, N > 0, then

-M DIV N = M DIV C-N) = -(M DIV N)

-M DIV (-N> = M DIV N

The integer remainder operator, REM, is defined so that for all integral M,N:

M REM N = M - N*(M DIV N)

5.1.1 Identifiers and Constants

Arithmetic expressions consist of operands, that is, identifiers and constants, of the three types,

integer, real and long real, together with the arithmetic operands + - * / DIY REM and t and

parentheses where necessary.

Identifiers are used to represent variables whose values are used when they appear in some calculation.

Since automatic conversion takes place as necessary when an expression is evaluated, the user may

freely mix the three different types of identifiers and constants.

Integer quantities may have more precision than can be represented in a real variable. The user must

beware of possible loss of significance in integral quantities used in mixed type expressions.

5.1.2 Special Functions

Three special functions are provided for use in arithmetic expressions. The first is the transfer function,

ENTlER, which converts a real or long real quantity into an integer quantity defined as the largest

integer value not exceeding the argument.

Thus

ENT J ER C 3 .5) = 3

and

ENTJER(-3.S) = -4

5-2 December 1971

-311- ALGOL
The special function ABS yields the absolute value (arso known as the modulus) of its argument. The

argument may be any integer, real, or long real quantity; the result is always of the same type as the

argument.

Thus

ASS C -3 .5) = 3.5

and

ASSC -3) = 3

The special function SIGN is the signum function whose argument can be integer, real, or long real.

The result is always integral, being minus one or zero or plus one, depending on whether the argument

is negative, zero, or greater than zero, respectively.

Thus

SIGN(-3.S) = -1

SIGN(0) = 0

SIGN(3.5) =

NOTE

ENTIER, ABS, and SIGN are not reserved words. They
may be used for other purposes ina program.

Examples of simple arithmetic expressions follow:

x

1+3

x*y/z

P+Q/R

X2 + Y

XJ-4

J + ENT IER 0<-2)

SIGNCENTIERCJ/K) + 1)

(X + Y) t (- I>

5-3

ALGOL -312-
5.2 BOOLEAN EXPRESSIONS

Boolean expressions involve Boolean identifiers, Boolean and octal constants, arithmetic conditions,

and Boolean operators interspersed. in an order similar to that of arithmetic expressions.

5.2.1 Boolean Operators

There are five Boolean operators arranged in decreasing order of precedence.

a. NOT (unary operator)
b. AND
c. OR
d. IMP (implication)
e. EQV (equivalence)

NOT is a unary operator that complements a Boolean quantity in the same way that a unary minus sign

negates an arithmetic quantity in an arithmetic expression. In this case, it changes FALSE to TRUE,

and vi ce versa.

Table 5-2 gives the result of A OP B where OP stands for one of the Boolean operators AND, OR,

IMP, or EQV, for all values of A and B.

Table 5-2
Function of Boolean Operators

A FALSE TRUE
B FALSE TRUE FALSE TRUE
AANDB FALSE FALSE FALSE TRUE
AORB FALSE TRUE TRUE TRUE
A IMP B TRUE TRUE FALSE TRUE
A EQVB TRUE FALSE FALSE TRUE

In addition, the following theorems hold true:

A IMP B is equivalent to NOT A OR B,

A EQV B is equivalent to A AND B OR NOT A AND NOT B.

Actually, Boolean variables may have a value consisting of any pattern of bits, rather than be confined

to the values TRUE and FALSE. The logical operations operate on a bit-by-bit basis according to the

preceding rules.

5-4

-313- ALGOL
The actual test employed to determine the truth of a Boolean expression such as

BAND C

is to evaluate it and regard it as true if its value is nonzero, i.e., at least one bit is set, otherwise it

is false.

This is particularly important when octal constants are used in Boolean expressions. For example, if

the user wishes to test a particular bit in a Boolean variable, an appropriate octal constant can be

used, for example:

BAND %1

is a Boolean expression that is true if and only if the bottom Oeast significant) bit of B is a one.

5.2.2 Arithmetic Conditions

Arithmetic conditions are used as operands in Boolean expressions. They consist of two arithmetic ex­

pressions coupled with a comparator. The comparator, which decides the particular type of test to be

performed on the two expressions, is one of the following:

< less than

<= I ess than or equal to

equals

> greater than

>= greater than or equal to ,
not equal to

Such an arithmetic condition can be regarded as true or false according to whether the condition speci­

fied by the comparator is met when the arithmetic expressions on each side of it are evaluated. The

resulting condition may form part of a Boolean expression.

The following examples of Boolean expressions, shown in Table 5-3, also involve arithmetic conditions.

5.3 INTEGER AND BOOLEAN CONVERSIONS

An integer quantity can be converted to a Boolean quantity by means of the dummy function BOOL.

Similarly, the dummy function INT converts a Boolean quantity to an integer quantity.

5-5

AlGOl.

Expression

NOTI
lAND NOT C
A ORlAND C
IS EQVX<Y
X+Y<Z AND I OR P=Q

-314-
Tabt.5-3

1001 ... Expr

NOTI

MeanI",

lAND (NOT C)
A OletAN) C)
I EQV OC<Y)
«(X+Y)<Z) AND I) OR (P=Q)

I The vet ... ,-.II.)' t_ fuM i, unc : the functtON are inclUlllelll for,tie eorr.etne.~

"-a,

1001.(1)

INT(I)

INT(~

NOT!

N, feature I, net Senerafty ..,.11 ... 1ft .ther ALGOI.-60
impiementatkNw •

lOOL and INT en net....., ... wenIJ. they c.t IN fOr other purpoMI by lfeel_l", them as

quired. How.., ... , Itti. fN'CICtlce should 1M CiNOI ... since it could I_to conMlon.

Version 2A ALGOL 5-6 May 1972

-315- ALGOL

CHAPTER 6

STATEMENTS AND ASSIGNMENTS

6.1 STA TEMENTS

The statement is the basic operational unit in ALGOL-60. It describes an operation 10 be performed at

run time, such as an assignment.

6.2 ASSIGNMENTS

Assignments convey the value produced by the execution of an expression 10 a destination variable of

the appropriate type. This is dane by writing the destination identifier, followed first by the symbols

: and = and then by the expression 10 be eval uated • Thus

X := Y + Z

causes the result of the addition of the values cOntained in the variables Y and Z 10 be placed in the

variable X.

When an assignment is made 10 a variable type differing from that of the result of the expression, a

type conversion is performed. Integer, real and long real expressions may be assigned 10 variables of

any of these three types, but not 10 any other types. Boolean and string expressions can only be

assigned 10 a variable of their own type.

If a real or long real value is assigned 10 an integer type variable, a rounding process occurs.

I : = X

results in an integral value equal 10

ENT IER (X + 0.5)

being assigned to I.

When an integer expression is assigned 10 a real or long real variable, a conversion 10 that type is

performed. Real 10 long real conversion simply consists of zeroing the low-order precision word of

6-1

ALGOL -316-
the long real result after assignment of the real result to the high-order part of the long real variable.

Long real to real assignments truncate the low-order part of the long real expression, after appropriate

rounding.

6.3 MULTIPLE ASSIGNMENTS

A value may be assigned simultaneausly to several variables of the same type by a multiple assignment.

This takes a form such CIS

P := R := S := X + Y - Z

where the result of adding Y to X and subtracting Z is assigned to P, R, and S simultaneously.

All identifiers on the left-hand side of a multiple assignment!!!!!! be of the same type. If the user

wishes to assign a value to two or more different types of variables, the "assignment within expression"

(embedded assignment) feature must be used, CIS below.

A parenthesized assignment may be substituted for any operand in an expression. For example,

X := <Y := P+Q)/Z

This causes the embedded assignment to be made after the inner expression P+Q is evaluated. Where a

type conversion is performed CIS part of an embedded assignment, the operand type is the same CIS that

assigned to the vCl'lable in the embedded assignment. Thus

X := (I := 3.4)

sets I equal to 3 and X equal to 3.0.

6.4 EVALUATION OF EXPRESSIONS

All expressions in DECsystem-l0 ALGOL are evaluated observing the normal algebraic rules of prece­

dence, including bracketing.

Within the precedence structure, expressions are always evaluated from left to right. For example, if

X is a scalar, and F a function procedure (see Chapter 11) that alters X,

X := X+F"

may have a different effect than

X := F+X

6-2

-317- ALGOL
This is known as a "side effect" •

Consider also:

A[IJ := CI := 1+1>

The subscript I is always evaluated before I is incremented, as it is to the left of the embedded assign­

ment, within the statement. Thus the above expression is equivalent to

J := IJ I := 1+1J A[Jl := 1

The user can always predict the order of evaluation of an expression and can count on such things as

X := CP := P+Q)/CP+R)

being evaluated correctly, thus giving the same result as

P : = P+Q

X := P/CP+R>J

6.S COMPOUND STATEMENTS

A compound statement consists of a number of statements, preceded by BEGIN, separated by semi­

colons, and terminated by END. ALGOL statements, unlike those in FORTRAN, are termlnoted by

a semicolon not by the end of a line of text.

For example:

BEGIN

I := 3J J := 4J

I< := I + JJ

X := I<

END

is a compound statement. Semicolons do not have to appear after the BEGIN or before the END;

BEGIN and END act as a type of bracket.

The usefulness of compound statements will become apparent in later chapters.

6-3

ALGOl -318-

-319- ALGOL

CHAPTER 7

CONTROL TRANSFERS, LABELS, AND CONDITIONAL
STATEMENTS

7.1 LABaS

A label is a method of marking a place in a program so that control can be transferred to that point

f.rom elsewhere in the program.

DECsystem-10 ALGOL uses identifiers as labels. These identifiers are placed before statements and are

followed by a colon. I\Umeric labels ore permitted in the Revised Report, but are not implemented in

DECsysfem-10 ALGOL. Most implementcrtions of ALGOL-60 do not allow integer labels.

For example:

COMP: X := X + y

is a statement labeled by COMP.

More thon one label can be attached to a statement if required; thus,

LAB 1: LAB2: Y : = 0

7.2 UNCONDITIONAL CONTROL TRANSFERS

A transfer of control, or "lump", to a statement in a program is effected by a GOTO statement. This

statement consists of the word GOTO followed by the name of the label attached to the relevant state-

I ment. The two words GO TO can be used instead of the word GOTO in any statement where GOTO

can be used. Thus:

BEGIN INTEGER IIJI~J

LAB : I: = J : = 3 J

~ : = I + JJ

GOTO LAB

END

Is an example of a somewhat tedious program. Clearly, to write any reasonable program, it is neces­

sary to be able to jump conditionally.

Version 2A ALGOL 7-1 May 1972

ALGOL -320-
7.3 CONDITIONAL STATEMENTS

Conditional statements provide a method to make the execution of either a statement or a compound

statement dependent on some condition in the program, such as the value of a variable. The simplest

form of a conditional statement is

IF' B THEN 5

where B is some Boolean expression, and S is a statement. For example:

IF' X < riJ THEN I : = I + 1

Here, X < 0 is the Boolean expression and I := I + 1 is the statement which is obeyed if and only if the

Boolean condition is true, that is, if X is negative.

A more general form of a conditional statement is

IF' B THEN 51 EL5E 52

In this case, the statement S1 is obeyed if and only if the Boolean expression B is true, and S2 is obeyed

I if an only if it is false. In order to eliminate the "dangling ELSE ambiguity" (a construction in which

an ELSE could be paired with either of two THENs, S1 must not be a conditional, FOR, or WHILE

statement which ends in an ELSE clause. (Refer to Chapter 14 for more complete information.)

A control transfer, a type of statement, can appear in a conditional statement. Thus:

BEGIN INTEGER I.J

I : = riJ;

LAB : I: = I + 1 J

IF' I < 100 THEN GOTO LAB

END
is a simple way of counting to one hundred. /llv)re sophisticated methods are shown in Chapter 14.

Version 2A ALGOL 7-2 May 1972

I

-32l- ALGOL

CHAPTER 8

FOR AND WHILE STATEMENTS

8.1 FOR STATEMENTS

The FOR statement enables the user to iterate a portion of the program in a fashion similar to, but more

sophisticated than, FORTRAN's DO loop.

The general format is

fOR V := fORLIST DO S

where V is Q variable ana S is a statement (compound or otherwise).

FORLIST can consist of any number of FOR elements (separated by commas). A FOR element takes one

G)f the fellowiflJ ferms:

a. An expression:

E

b. A STEP-UNTIL element taking the form:

El STEP E2 UNTIL E3

c. A WHILE element taking the form:

E WHILE B

where B is some Boolean expression.

Any numeer of FOR elements may appear in a FOR statement; they are executed serially. CDnsider the

_Hewins examples:

fOR J := 1,2,5 STEP 5 UNTIL 20 DO •••••

Version 2 ALGOL B-1 December 1971

ALGOL -322-
8.1 .1 STEP-UNTIL Element

This particular form deserves closer inspection, because it is not quite as simple as it appears. For

example, consider

~OR I := I 5TEP I UNTIL N DO 5

The statement S is obeyed with I taking an initial value of 1, and being incremented by I until the final

value N is achieved. The question is, "Is the I after the STEP recalculated during each tum around

the loop, or does it have a constant value equal to the initial value of I?"

The answer is slightly more complicated. Consider the general case

~OR V := EI 5TEP E2 UNTIL E3 DO 5

This is defined to have exactly the same effect as

V := EIJ

Ll: I~ CV - E3>.5IGNCE2> > 0 THEN GOTO L2J

5J

V : = V + E2 J

GOTO L1 J

12:

Clearly, the value of I following the STEP in the previous example is evaluated, if necessary, twice

during each tum around the loop, once in the sign test at L 1, and again to update V. ALGOL allows

the user to modi fy V, E1, E2, and E3 freely throughout the loop, and takes account of all these

changes in the evaluation of the loop.

8.1.2 WHILE Element

NOTE

PDP-10 ALGOL allows the user the abbreviated form

FOR V := E1 UNTIL E3 DO S

instead of

FOR V := E1 STEP 1 UNTIL E3 DO S

A FOR statement with a single WHILE element takes the form

~OR V := E WHILE B DO 5

8-2

-323- ALGOL
This is interpreted as follows:

LI: IF NOT B THEN GOTO L2J

V := EJ

5J

GOTO LI J

L2 :

Once again, the complexity of the loop may be affected by changing Vand E within the loop.

8.2 WHILE STATEMENT

The WHILE statement is an enhancement of ALGOL-60 provided in DECsystem-l0 ALGOL. It takes

the general form

WHILE B DO S

and is interpreted as follows:

L1 : IF NOT B THEN GOTO L2J

SJ

GOTO LI J

L2:

8.3 GENERAL NOTES

1. Within a FOR statement of any kind, the user can change the controlling variable
or any other variable appearing within the action of the loop. Such changes pre­
dictably affect the execution of the loop by the rules given above.

2. On exit from a FOR statement either by jumping out of the loop or by exhausting
the FOR elements, the controlling variable has a well-defined value equal to
the last assigned value of the .controlling variable. This may not be true of other
ALGOL-60 implementations.

8-3

ALGOL -324-

CHAPTER 9

ARRAYS

9.1 GENERAL

-325- ALGOL

Arrays are essentially collections of variables of the same type, allowing the user 10 address them

individually by means of a common name and a unique subscript or subscripts. In the simplest case, an

array is a veclor and is known as a one-dimensional array. A matrix is a two-dimensional array, etc.

There is no limit 10 the number of subscripts allowed, other than those imposed by the ability of the

computer 10 slore the array.

9.2 ARRAY DEa.ARATlONS

Arrays may be of type integer, real, long real, Boolean, or string. They are declared in a similar

fashion to scalar variables, except the size of the array must be stated. For each subscript that the

array possesses, a lower and an upper bound, called the "bound pair" for that subscript, must be given.

For example, 10 declare two one-dimensional integer arrays A and B with lower bound 1 and upper

bound 5:

INTEGER ARRAY A,B[I:Sl

Note that the lower and upper bounds are enclosed in square brackets and separated by a colon.

When there are two or more subscripts, the declararion is similar, and the bound pairs are separated by

commas. Thus

LONG REAL ARRAY PIQIR[-S:2,0:10l

declares three real arrays, P, Q and R, with the first subscript bounded by -5 and 2 and the second

subscript bounded by 0 and 10.

It is possible 10 declare arrays of different sizes in the same statement provided they are of the same

type:

9-1

I

ALGOL -326-
/'.Iote also that in the case of real arrays, the REAL may be omitted in the declaration, and is assumed

by default, thus:

ARRAY A[I :103 .. B .. C[I :10 .. 1 :123

The baunds in an array need not be static, as in the examples abave. In general, they may be any

arithmetic expressions, which are evaluated 10 give an integral value for the individual baund pairs.

The use of such dynamic array declarations will become apparent later.

9.3 ARRAyaEMENTS

An individual element of an array can be referred 10 by following the name of the array by a list of

subscripts in square brackets. The number of subscripts must be identical 10 the number in the array

declaration. Thus, a typical element of A used in the last declaration might be

A[5 3 or A [93 or generally, A [I 3

where I is some integer expression or, in general, any expression whatsoever, with the limitation that

its value when used as a subscript and evaluated as an integer is in the range 1 through 10, the baunds

of the array A.

As an example of the use of arrays, consider th-e declaration

REAL ARRAY D .. E .. F [1:10 .. 1:103

and suppose that it was required 10 set F equal 10 the matrix product of D and E:

FOR 1:= UNTIL 10 DO

FOR J:= UNTIL 10 DO

BEGIN X:= 0J

FOR K := I UNTIL 10 DO X := X + DtI .. Kl*E[K .. J3J

F£I .. JJ := X

END

/'.Iote that X is used to accumulate the inner product of the multiplication for all values of I and J.

It would be very inefficient not to use such a variable, because F would otherwise be needlessly in­

volved in the inner loop of the computation.

Also, note that an element of an array of a particular type may be used anywhere that a scalar variable

of the same type may be used, even in such places as the controlling variable in a FOR statement.

9-2 December 1971

-327- ALGOL

CHAPTER 10

BLOCK STRUCTURE

10.1 GENERAL

ALGOL program structure is somewhat mare complicated than other high-level languages, such as

FORTRAN. An ALGOL program consists of a number of "blocks" arranged hierarchically; a block con­

sists of the words BEGIN and END enclosing declarations and (optionally) statements.

Thus:

BEGIN

BEGIN

END

BEGIN

BEGIN

END

END

END

is an ALGOL program, assuming appropriate declarations and statements in the blocks.

The block structure offers the user many interesting features not available in non-block structured

languages. For instance, the user may declare an identifier that appears to conflict with another

identifier in an enclosing block. Thus:

BEGIN INTEGER IJ

BEGIN INTEGER II

END

END

10-1

ALGOL -328-
In fact, there is no conflict as there are two different Is. The only I that statements in the outer block

can "see" is the one in the outer block. Similarly, any statements in the inner block will always use

the I in that block. Such a declaration in an inner block is known as a "local" variable; it takes

precedence over declarations occurring at an outer or more "global" level. In general, all variables

can be "seen" from any point in a program that is either in the same block as the declaration or in a

block that is enclosed by the block in which the declaration of the variable occurred. Note that a

more local variable is always taken in preference to a relatively global variable. Consider the follow­

ing example:

BEGIN INTEGER I.oJJ

[lJ

BEGIN INTEGER J.oK

[2J

ENDJ

BEGIN INTEGER hK

£3 J

END

END

Any statements occurring at point [1] can see the declarations of I and J, which are local, but cannot

see the declarations of J and K in the first inner block, or the declarations of I and K in the second

inner block. At [2], the local variables J and K can be seen, as can the global variable I in the outer

block. The global variable J is not seen because the local variable J takes precedence over it; the

variables I and K in the second inner block are not seen at all. A similar situation occurs at [3];

here both local variables I and K, as well as the global variable J, are seen.

Note that the "scope" of a variable is the se.t of all places in a program where it can be seen and

therefore used. This term will be used frequently throughout this text.

In general, it is more efficient to use local variables in preference to global ones. This statement is

also true of most ALGOL-60 implementations. Where a non-local variable is used frequently, it is

advisable to assign its value to a local variable and use that in preference. For example:

10-2

-329- ALGOL
BEGIN INTEGER IJ

I : = •••••

BEGIN INTEGER II;

II := I J

I I •••••

END

END

Here, in the inner block, a local variable II is used, and assigned the value of the global variable I

fOr use throughout the local block.

10.2 ARRAYS WITH DYNAMIC BOUNDS

The concept of the scope of a variable can be applied most usefully to arrays. In DfCsystem-l0

ALGOL, all arrays are constructed at execution time, that is, no fixed space is reserved for them by

the compiler, irrespective of whether their bounds are static or dynamic. 'MIen a declaration of an

array is encountered within a block, the space required to construct it is obtained and the array is laid

out. 'MIen the end of the block enclosing the array is reached, that is, the array variable is no longer

within scope, the space utilized by the array is recovered and can be used later for other arrays.

Consider the case of a problem in which the size of an array to be used in a calculation is dependent

on the data to be processed. The programmer has the choice of making the array I"arge enough to cope

with the worst case (in many languages he does not have any choice at all) or constructing the array

with dynamic bounds to suit the size required by the particular data. The first method has the disad­

vantage of wasting space on many occasions; the latter method only has the minor disadvantage of the

overhead needed to construct the array. Such overhead is very small compared to the running time of

most programs; therefOre, the second method is more desirable.

10-3

I

ALGOL -330-
Consider the following example:

BEGIN INTEGER NJ

L: N : = •••••

BEGIN ARRAY A[1:Nll:N1J

ENDS

GOTO L

END

A value for N is calculated in this example, possibly dependent on some data read into the program,

and used to declare the array A, which is used to process the data in the inner block. When the end

of the inner block is reached, the space used by A is recovered and control passes to L, where another

value for N is calculated, and the process repeated.

10-4 December 1971

CHAPTER 11
PROCEDURES

-331- ALGOL

Procedures are similar in concept to the FORTRAN subroutine, although more sophisticated and general

in their possible applications.

A "procedure" is a portion of an ALGOL program that is given a name to identify it and can be

"called" from any part of a program which is in the scope of the body of the procedure. A procedure

can execute a number of statements, or it can return a value if it is a function procedure. In addition,

it may or may not have parameters.

In DECsystem-10 ALGOL, a proceckJre can be one of the following types: integer, real, long real,

Boolean or string, or it may be typeless. The formal parameters of a procedure, known as "dummy

variables" in FORTRAN, can be one of the foilowil1J types: integer, real, 10l1J real, Boolean or string,

as scalars, arrays or procedures, or label. There are seventeen different types of parameters. In

addition, all of these parameters may appear in two different mades, neither of which is the some as

FORTRAN IS method of handlil1J parameters.

11.1 PARAMETERS CALLED BY "VALUE"

Calling parameters by "value" is the most common ai'1c:I, with the exception of arrays, the most efficient

way to pass a parameter to a procedure. The value of the expression presented in a procedure call,

known as the actual parameter, is evaluated on entry to the procedure and assigned to a formal param­

eter within the procedure. This formal parameter acts exoctly as if it were a local variable of the pro ...

cedure which Is initialized with the value of the actual parameter supplied in the call to the procedure.

I
Since, in the case of arrays or strings, a new copy of the array or string is made, this type of param­

eter-passing for arrays and strings (if they are very long) should be avoided unless it is specifically

required.

11.2 PARAMETERS CALLED BY "NAME"

Calling parameters by "name" is a very sophisticated method of passing a parameter to an ALGOL pro­

cedure. Whenever the formal parameter asrociated with the actual parameter in a procedure body

Version 2A ALGOL 11-1 May 1972

ALGOL -332-
appears in the body of the procedure, the actual parameter is re-evaluated as if it appeared in the

procedure body at that point. For example, if the actual parameter were an array element such as

A[Il

it would be re-evaluated using the value of I available each time the formal parameter is used, not the

value of I at the time the procedure body is entered.

Table 11-1 shows the different types of formal parameters, together with valid actual parameters that

can be substituted in a procedure call.

Formal Parameter Type

~} Real
Long Real

Boolean

String

Label

Switch

Integer Array

Real Array (or Array)

Long Real Array

Boolean Array

String Array

Procedure

Integer Procedw. }
Real Procedure
Long Real Procedure

Boolean Procedure

Stri ng Procedure

Table 11-1
Parameters in a Procedure Call

Permissible Actual Parameter

Any arithmetic expression

Any Boolean expression

Any string expression (refer 10 Chapter 13)

A label or switch element (refer 10 Chapter 12 and
Paragraph 14.4)

A switch

An array of type integer*

An array of type real *

An array of type long real *

An array of type Boolean

An array of type string

A non-type procedure

A procedure of type integer, real, or long real

A procedure of type Boolean

A procedure of type string

*In the case where the array parameter is called by value, any arithmetic type
(integer, real, or long real) erray is allowed as an actual parameter. A type
conversion takes place during the copying process.

11-2

I

-333- ALGOL
11.3 PROCEDURE HEADINGS

Procedure headings identify the type of procedure and the number and type of its parameters. They

precede the body of the procedure.

A procedure heading consists of:

a • The type of procedure (omi tted I n the case of typel ess procedures).

b. The word PROCEDURE followed by the name of the procedure.

c. A semicolon if the procedure has no parameters; otherwise

d. A list of the formal parameters, enclosed in parentheses, and followed by a semi­
colon.

e. Specifications of the formal parameters. Omitting formal parameter specifications,
this looks like

LONG REAL PROCEDURE LRJ

BOOLEAN PROCEDURE BOOLCON CI.J.K).

PROCEDURE CALCCTHETA.X)J

I The formal parameter specification that follows consists of a list of descriptions of the formal param­

eters, appearing in any order, and a value specification if any of the parameters are to be called by

value. (Ifthls is omitted, the parameters, by default, will be called by name.) For example, the

specification of the formal parameters for' the second example above might be:

meaning that all three formal parameters are of type integer (scalars), and I and J are to be called by

value, while K is to be called by name. A typical formal parameter specification for the third ex­

ample might be:

REAL PROCEDURE THETAJ ARRAY XI

NOTE

The value specifications, where they appear, must precede
the formal parameter specifications.

11.4 PROCEDURE BODIES

The body of a procedure is that part that follows the procedure heading. It consists of a single state­

ment, a compound statement, or a block. In the last-mentioned case, there may be declarations of

local variables within the block, and also other blocks or procedures. CDnsider the following examples

of realistic procedures:

11-3 December 1971

ALGOL -334-
a. A real procedure, squareroot, to calculate the square root of a real quantity. The

first parameter Is the Cll"gurnent; the second Is a label that is used as an escape if
the argument is found to be negative. The result of the procedure Is the square
root of the argument. t-.bte how the result of the calculation is assigned to the
procedure by placing the name of the procedure on the left-hand side of an
";gnment.

REAL PROCEDURE SQUAREROOT(X,L)I

VALUE XI REAL XJ LABEL LJ

BEGIN REAL Y,ZJ

IF X < 0 THEN GOTO LJ

Y := (1 + X)/2J

IT: Z := (X/Y + Y>/2J

IF ABS(Z - Y) < 1&-6 THEN GOTO OKJ

Y := ZI GOTO ITJ

OK: SQUAREROOT := Z

END

The previous example uses the Newton-Rapheson method of finding the square
root of a number: taking an Initial approximation (1 + X)/2 and Iterating until
the difference between successive approximations is less than 1&-6. Although
this is a very simple procedure, it is more enlightening with the aid of some
commentary. The DECsystem-l0 ALGOL alternative method of commentary
(refer to Chapter 2) is used for brevity:

REAL PROCEDURE SQUAREROOT(X,L)J

VALUE XJ REAL XJ LABEL LJ

BEGIN ! CALCULATES THE VALUE OF SQRTeX)

USING THE NEWTON-RAPHESON METHOD.

L IS USED FOR AN ESCAPE IF X < 0J

REAL Y,ZJ

IF X < 0 THEN GOTO LJ EXIT IF X < 01

Y := (I+X)/21 FIRST APPROXIMATIONJ

IT:

Z := (X/Y + Y)/2J ITERATEJ

IF ABsez-y) < 1&-6

THEN GOTO OKJ TEST FOR CONVERGENCEJ

Y := ZI GOTO ITJ OTHERWISE CONTINUEI

(continued on next page)

11-4

-335-
OJ< :

SQUAREROOT := ZJ F' I NAL RESULT J

END

b. This function evaluates the sum of the values of any real procedure G over the
integen 1 ••••• N, where N is also a parameter of the procedure.

REAL PROCEDURE SUM(G~N)J

VALUE NJ REAL PROCEDURE GJ INTEGER NJ

BEGIN INTEGER IJ REAL XJ

X : = 0J

F'OR I r= I UNTIL N DO X := X + G(N)J

SUM := X

END

Notice in this example how the formal parameter G is invoked so that the actual
procedure that is substituted for G is called.

11 .5 PROCEDURE CALLS

ALGOL

In the preceding example, the procedure G was "called". Since G is a function procedure, it is only

necessary for its name 10 appear in an expression for the procedure 10 be entered with the actual

parameten specified substituted for the formal parameten.

The procedure squareroot can be carled in a similar way, for example:

P := SQUAREROOTCZ + 0.5)

causes the square root of Z + 0.510 be calculated.

An example of the use of the procedure sum can be used 10 calculate the sums of the square roots of

the fint J integen, with the result squared, as follows:

X := SUMCSQUAREROOT~J)t2J

11-5

ALGOL -336-
Here is a further example of a procedure and its cans:

BEGIN

COMMENT THIS PROCEDURE PERFORMS THE MATRIX

MULTIPLICATION OF BAND C AND PUTS THE RESULT

IN A. THE ARRAYS ARE ASSUMED TO BE SQUARE

AND OF BOUNDS l:N.l:NJ

FOR I := UNTIL N DO

FOR J := UNTIL N DG

BEGIN X := 0;

FOR K := 1 UNTIL N DO X := X +

B[I,Kl*C [K.JlJ

A[I.Jl := X

END

END

A typical call for this procedure might be

I
or

I ~TR IXMULT<E,F,F, N) J

I Since the arrays are called by name, a call such as MATRIXMULT(E,E,F,N); would give rather interest­

ing results.

This call could be made to work by calling B and C by value. However, this would increase the over­

head of the procedure considerably.

11.6 ADVANCED USE OF PROCEDURES

11.6.1 Jensen's Device

This method of using a procedure exploits the power and flexibility of the call-by-name concept.

Consider the following example:

11-6 December 1971

-337- ALGOL
REAL PROCEDURE SUMCI,N,X)J VALUE NJ INTEGER I,NJ REAL XJ

BEGIN REAL VJ

V := 0J

FOR I := 1 UNTIL N DO V := V + XJ

SUM := V

END

On the surface, the procedure appears to calculate the value-of N*X. However, consider the call

Z := SUMCJI10,A[J)J

and remember that J and A[J] are parameters called by name. Since I and consequently J take new

values, each X in the loop is evaluated as a particular value of A[J], using the value of J just assign­

ed. Hence the above call calculates

A[l) + A[2) + ••••• + A[10].

Similarly, the call

calculates the (I,J)th inner product of A and 8.

11.6.2 Recursion

ALGOL procedures have the inherent ability of recursion, that is, they may call themselves, directly

or indirectly, to any reasonable depth. (The only restriction is the amount of core storage available

to the object program.)

An often-quoted and very inefficient method of calculating the factorial function of a sma" positive

integer N is:

INTEGER PROCEDURE FACTORIALCN)J VALUE NJ INTEGER NJ

IF N = 1 THEN FACTORIAL := 1

ELSE FACTORIAL := N*FACTORIALCN-l)J

Note that this procedure has only a single statement, but no local variables. Therefore, it can be

written in a very compact form. A call such as

J := FACTORIAL(6)J

11-7

ALGOL -338-
causes the procedure 10 be entered with N equal 10 6. The call 10 FACTORIAL inside FACTORIAL

enters the procedure a second time with N equal 10 5, but this N is different from the one 10 the pre­

vious N, which retains its value of 6, as it is slored in a different space. In this particular case,

FACTORIAL is entered six times, the last time with N equal 10 1.

11.7 LAYOUT OF DECLARATIONS WITHIN BLOCKS

Declarations must always be made at the head of a block, before any assignments, procedure calls,

I etc., in the following order: 1) scalan and arrays and 2) procedures and switches (see Chapter 12).

Any procedure baclies that occur in a block should follow the declarations at the head of the block,

although this is only enforced when necessary. Consider the following example:

BEGIN

PROCEDURE P(X)J VALUE XJ REAL XJ

BEGIN INTEGER JJ

.....
J := IJ

·
ENDJ

INTEGER I J

ThE! assignment of I 10 J within the body of P utilizes the I that is declared following the body of P,

rather than some global I. However, the compiler has not yet seen this I and, therefore, cannot take

any rational action. In a case such as this, the use,r must declare I before the body of P:

BEGIN INTEGER IJ

PROCEDURE P(X)J VALUE XJ REAL XJ

BEGIN INTEGER JJ

·
J := IJ

·
ENDJ

If the user neglects 10 declare I before P, the compiler can easily detect the condition, because either

I is unknown at the time of the assignment 10 J, or else there is a mare global I available, whereupon

an error message will occur when the declaration of I is found following the body of P.

Venion 2A ALGOL 11-8 May 19n

I

-339- ALGOL
11.8 FORWARD REFERENCES

Although most ALGOL-60 compilers operate in two or more passes, the DECsystem-10 ALGOL compiler

operates in one pass. CDnsequently, it has to make some minor restrictions to ALGOL-60 in order not

to restrict the user in other ways.

A folWan:! reference for a procedure has to be given when a procedure is called (either directly, or in­

directly, by passing its name as an actual parameter in a procedure call) before its body is encountered

by the compiler. In most cases the user can avoid this situation by a minor re-ordering of the program.

tbwever, in rare cases like the following, where procedure P co"s procedure Q, and vice versa, a

folWard reference, as shown, must be given.

BEGIN

FORWARD REAL PROCEDURE QI

PROCEDURE P(X)I VALUE XJ REAL XI

BEGIN REAL YI

·
Y := Q(X)J

·
ENOl

REAL PROCEDURE Q(Z)J VALUE ZJ REAL ZI

BEGIN REAL F I

.....
F := P(Z)J

·
ENDJ

In general, a folWard reference consists of the word FORWARD, followed by the type of the procedure

I (omitted if the procedure is typeless), the word PROCEDURE, and the name of the procedure.

For example:

I FORWARD LONG REAL PROCEDURE INTEGRATE

or

FORWARD PROCEDURE PROBLEM

Version 2A ALGOL 11-9 May 1972

I

ALGOL -340-
I'bte that the forward reference must occur in the same block as the procedure body 10 which it refers.

A forward reference has 10 be given for a label in the following very rare case:

a. The label is used as an actual parameter in a procedure call, and has not yet
appeared in the program.

b. A variable of identical nome has appeared in the program and is in the scope of
the procedure call.

For example:

BEGIN REAL LJ

.....
BEGIN FORWARD LJ

.....
PCL)J

.....
La
ENDJ

.....
In this case, a forward reference for L must be given.

11 .9 EXTERNAL PROCEDURES

If it Is required 10 compile a procedure Independently of a program (see Paragraph 18.1.1), an

EXTERNAL declaration must be mode in the program instead of the procedure. The form of this

Is the same as that of a FORWARD declaration, but with the word FORWARD replaced by EXTERNAL.

lWexG,....:

EXTE"NAL INTEGER PROCEDUkE CALC

Such an EXTERNAL declaration can be mode in any block within the program, and has the same scope

as if the procedure appeared at that point.

Version 2A ALGOL 11-10 May 1972

-341-
11.10 ADDITIONAL METHODS OF COMMENTARY

ALGOL

Two further ways of writing commentary are available to the user in addition to COMMENT and I

described in Section 2.4.

11.10.1 Comment After END

Following the delimiter word END, the user may add commentary, tenninated by a semicolon, with the

following restrictions:

1. The commentary may only contain letters and digits.

2. If the reserved delimiter word mode of compilation is employed, any words
appearing in the comment may not be delimiter words.

For example:

END OF PROC INVERTJ

11.10.2 Comments Within Procedure Headings

This method of commentary allows the user to comment fonnol parameters in a procedure heading. This

is done by enclosing the commentary, which may consist of letters only, between the symbols) and :(

and omitting the comma on the left of the formal parameter. This cannot apply to the first formal

parameter.

The example in Section 11.6.1 can thus be rewritten:

REAL PROCEDURE SUMCI) COUNT:CN) INCREMENT:CX)J

In a similar foshion, a call to such a procedure can be commented. The following example uses the

can to SUM in Section 11.6.1:

Z:=SUMCK) COUNTER:CM) CROSS PRODUCT: CA[!.Kl*B[K.Jl)J

Version 2 ALGOL 11-11 December 1971

ALGOL -342-

CHAPTER 12

SWITCHES

12.1 GENERAL

-343- ALGOL

Switches enable the user to jump to one of a number of labels, depending on the value of an arithmetic

expression. In addition, they provide an automatic detection when such an expression is out of range

for the switch.

12.2 SWITCH DECLARATIONS

A switch declaration takes the form of the word SWITCH followed by (a) the name of the switch, (b)

an assignment (:=), and (c) a list of labels, called switch elements, all of which must be in the scope

of the switch declaration. For example:

A switch name must follow the usual rules of scope with regard to its use and, therefore, must not

conflict with any local variable of the same nome.

In addition to the example above, a switch element itself may be one of the labels in the switch

declaration.

12.3 USE OF SWITCHES

A jump to a particular label in a switch declaration is made by following the word GOTO with the

name of the switch and an arithmetic expression in square brackets. Thus:

6010 SW[I]

This causes control to pass to the 1'th label in the switch declaration, unless I is negative or zero, or is

larger than the number of switches in the switch declaration. In either case, there is no transfer of

control. If the expression in square brackets is not integral, it is evaluated and rounded as usual.

12-1

ALGOL -344-
Consider the following more complicated example:

SWITCH SW := LAB,Ll,L2,OK,STOPJ

SWITCH TW := L3,SW[Jl,L4;

ooTO TW[J lJ

If I has the value 3, a jump to L4 occurs. If I has the value 2 and J has the value 1, a jump to LAB

occurs, via SW.

Wore sophisticated switch elements are described in Chapter 14.

12-2

CHAPTER 13
STRINGS

13.1 GENERAL

-345- ALGOL

In DECsystem-10 ALGOL, the concept of a string has been considerably extended from the somewhat

limited feature of AlGOl-60.

A string is a type of variable that may be scalar, array, or procedure. For example:

STRING SIT;

STRING ARRAY SA[1:10l;

STRING PROCEDURE SeX); VALUE XI REAL XI

13.2 STRING EXPRESSIONS AND ASSIGNMENTS

I String expressions are limited to a single string variable, a string procedure call, or string constant;

there ore no string operators other than the comparison operators described in Paragraph 13.5. Such a

string expression can only be assigned to another string variable. For example:

S := TJ

SA [I 1 : = SA [3 1 J

SA[2l := BeZ);

T := "ABCDEfGHIJKLMNOPQRSTUVWXYZ";

13.3 BYTE STRINGS

The function of a string variable is to "possess" (or point to) a byte string. Byte strings are merely

strings of bytes of some particular byte size, between one and thirty-six bits. Byte strings can be

handled very efficiently by DECsystem-10 hardware. They form a flexible storage medium for strings

of bits, characters, or any useful quantity.

Version 2 ALGOL 13-1 December 1971

ALGOL -346-
String constants are a particular example of byte strings. They have a byte size of seven and consist

of the ASCI characters of the string constant pack.ed end-Io-end.

Byte strings can be of any reasonable length; in fact, the permissible length is sufficient 10 allow a

string of one bit bytes 10 stretch throughout the entire DECsystem-10 core storage. When a string

variable possesses a byte string, the length of the byte string, and the size of the bytes in it, are stored

in the string variable.

When one string is assigned 10 another, for example:

5 := TJ

where Sand T are both string variables, S also possesses the byte string that T possessed prior 10 the

assignment. Note that possession of a byte string is not a monopoly: several string variables can

possess the same byte string and operate on It independently. It is important 10 remember that the

assignment of one string variable 10 another does not invalve making a copy of the byte string that the

first string variables possesses.

When a string constant is assigned 10 a string variable, for example,

5 : = "ABeD" J

the effect is as if an anonymous string variable had already possessed the byte string and assignment of

this anonymous byte string were made 10 S.

13.4 BYTE SUBSCRIPTING

String variables would not be very useful if it were not possible 10 access the individual bytes of a byte

string possessed by a string variable. This is done by means of "byte subscripting" the string variable.

A byte subscript consists of a decimal point, followed by a subscript in square brackets, for example:

5. [I]

This notation means the 1'th byte in the byte string that is possessed by the string variable S. I may,

of course, be any expression, and is evaluated in exactly the same way as an array subscript.

A byte-subscripted string variable may appear on the left-hand or right-hand side of an assignment.

When it is on the right-hand side, or generally appears as an operand in an arithmetic expression, it

yields an integral value equal 10 the value of the particular byte in the byte string. For example,

J := 5.[1]

sets J equal 10 the value of the 1'th byte in the byte string possessed by the string variable S.

13-2

-347- ALGOL
When a byte-subscripted string variable appean on the left-hand side of an assignment, it causes the

value of the expression on the right-hand side of the assignment {rounded to an integer if necessary,

and truncated If it is too large for the particular byte size} to be stored as the new value of the partic­

ular byte addressed. For example,

S.[I(] 1= J

causes the K'th byte in the byte string possessed by the string variable S to be set to the value of J.

When a string variable is a particular element of a string array, byte subscripting follows the usual

array s..mscripts. Thus, assumi~th~le declarations at the start of this chapter, the user can write such

things as

SA[J].[J+I] := 5,[1<-1] + 1

I Note that string constants but not string functions may be byte subscripted.

13.5 STRING COMPARISONS

Two byte strings can be compared with each other using the usual comparison operaton. Thus the user

can write

I~ 5 < T THEN GOTO L

where S and T are string variables, string constants, or calls to a string procedure. The comparison is

performed by comparing the byte strings that the string variables possess; byte by byte; the "lesser"

string being the one with the fint lower value byte, working from left to right. Thus "ABCD" is less

than "ABCE" , and "ABCD" is less than "ABCDE".

13.6 LIBRARY PROCEDURES

Refer to Chapter 17 for a detailed description of the DECsystem-10 ALGOL Library.

13.6.1 Concatenation

Strings can be concatenated to form chains, rings, or trees of string variables by forging a ligk between

one string variable and another. This process is independent of any byte string possessed by the string

v-ariables involved.

Whenever two strings are linked together, the byte subscripting of the fint extends to the second.

I A link between two unattached strings can be made by a call to the procedure LINK or LlNKR

{join to the right}. Thus, if S and T are strings,

I LINKCS,T) J

Venion 2A ALGOL 13-3 May 19n

ALGOL -348-
forges a link from S to T. If the assignments

S := "ABeD'" T := "EF'GH"J

are also made, then S. [5] is now the same as T. [1].

A further string, for example, U, can be added to the chain by the user of LlNKR, thus

LINKRCS .. U)J

or

LI N KR C T .. ll) ;

and also

LINKCT .. U);

The difference between LINK and LlNKR is that LINK ioins the second string to the first replacing

any existing link, LlNKR attaches the second string to the end of the existing chain.

While only one link can be forged between any pair of strings, more than one string can be linked to

another. Thus

LINKCS .. U)' LINK CT .. U)J

causes Sand T to be linked independently to U.

Some simple examples of the kind of structures that can be generated are:

a. A ring:

LINKCS .. T> ;
LINKCT .. U);
LINKCU .. S > J

b. A figure six:

LINKCS.T) ;
LINKCT .. U>,
LINKCU .. T) J

c. A circle with two stems:

LINKCS .. T >;
LINKCT .. U>J
LINKCU .. T) ;
LINKCV .. U> ;

A link may be removed from a string by omitting the second parameter in LINK or lINKR. Thus

LINKCS>

removes the link between S and T.

Version 2A ALGOL 13-4 May 1972

-349- ALGOL
The string procedure TAIL enables the user to move along a structure of strings. Its first parameter is a

string that is taken as the head of the structure. The second parameter is integral and specifies the

number of links to be skipped in the chain. Thus in example b. above,

V := TAILCS .. 1 >I

sets V to be the same as T, and

W := TAIL CS .. 2)

sets W to be the same as U.

If the second parameter is zero, or greater than or equal to the number of non-repetitive links in the

structure, the result is the string at the bottom of the chain; in this case U, as it links to T, which has

already been encountered while searching down the chain S - T - U.

The length of any byte string (excluding any possessed by concatenated strings) is yielded by the integer

procedure LENGTH, that takes a string as its only parameter.

Thus:

I := LENGTHCS)J

sets I equal to the number of bytes in the byte string possessed by S.

13.6.2 Byte String Copying

A new byte string can be generated from an existing byte string by means of the string procedure COPY.

COpy may have one, two, or three parameters.

a. If there is only one parameter, for example,

STRING S .. T,

T := "ABCD",

S := COPYCT>I

a new byte string is generated, identical to that possessed by T, and assigned to
the stri ng vari ab I e S. If any stri ngs are concatenated with T, the byte stri ngs
possessed by these string variables are also copied into the new byte string.

b. If there are two parameters, for exampl e,

S := COPYCT .. M)J

where M is some arithmetic expression, the 1st through Mth bytes of the byte
stri ng possessed by Tare copi ed •

13-5

ALGOL 350-
c. If there are three parameters, for exampl e,

the Mth through Nth bytes of the byte string possessed by T are copied.

13.6.3 New Byte Strings

A new byte string can be generated by means of the string procedure NEWSTRING. This procedure has

two parameters: the number of bytes required in the new string and the byte size required. Thus

~ := NEWSTRING (100~7)J

causes a byte string consisting of 100 7-bit bytes to be generated and possessed by S. All of the bytes

in the byte string are preset to a value of zero.

A dynamically-created byte string (i .e., one produced by the COPY or NEWSTRING procedure) can

be deleted and the space utilized by it retrieved. This is accomplished by means of the proceclure

DELETE, which takes as its single parameter the string which possesses the byte string. For example:

causes the byte string in the previous example to be deleted.

Version 2 ALGOL 13-6 December 1971

I

-351- ALGOL

CHAPTER 14

CONDITIONAL EXPRESSIONS AND STATEMENTS

14.1 GENERAL

ALGOL-60 allows great flexibility in the construction of expressions and conditions.

Consider, for example, if a user wanted to set a variable I equal to 0 or 1 according to the value of a

Boolean variable 8, he could write:

I := 0J

IF 8 THEN I := II

Also, consider the case where a user wants to perform some action, depending on the value of 8:

IF 8 THEN XI := YI IF NOT B THEN X2 := YI

14.2 CONDITIONAL OPERANDS

ALGOL-60 allows the user to substitute a conditional operand for any operand in an expression by the

use of a construction involving IF ••••• THEN ••••• ELSE.

For instance, the first example above can be rewritten

I := IF B THEN 0 ELSE II

o early , this is more compact and of great use in cases such as:

J := J + (IF K < 1 THEN I-K ELSE K-I);

Note that the conditional operand must be bracketed. It may be unbracketed only when it forms the

complete expression itself.

In general, a conditional operand may replace an operand in any arithmetic or Boolean expression. It

may also be used in place of a label as the element in a switch list, for example:

SWITCH SW := LI. IF B THEN L2 ELSE L3. L4;

14-1 December 1971

ALGOL -352-
It is also permitted, of course, in an array subscript (and also in a byte subscript), for example:

X := A[I, IF L = 0 THEN J ELSE J+IJ;

Since a conditional operand may replace any operand in an expression, it may also replace operands

in conditional expressions. Consider the following example:

IF IF 8 THEN 81 ELSE 82 THEN I := I + 1;

This looks complicated but is really quite simple if brackets are inserted for clarity. Thus:

IF (IF 8 THEN 81 ELSE 82) THEN I := I + 1;

14.3 CONDITIONAL STATEMENTS

The reader was introduced to conditional statements of the farm

IF B THEN SI ELSE S2

I in Chapter 7. The full power of this type of statement can now be demonstrated.

First, S 1 and S2 can be compound statements or blocks. For example:

IF I < 0 THEN

8EGIN I := -I; 8 := FALSE

END ELSE

8EGIN := I + 1; GOTO L2

END

Second, the whole structure of the IF ••••• THEN ••••• ElSE statement can be mode more powerful

by using conditional statements within themselves. For example:

IF X < 0 THEN X := 0 ELSE IF 8 THEN GOTO L;

This is equivalent to the simple sequence of statements:

IF NOT X < 0 THEN GOTO Ll;

X := 0; GOTO L2J

Ll: IF NOT 8 THEN GOTO L2;

GOTO LJ

L2:

Oearly the former method of expression is both briefer and more elegant.

Version 2A ALGOL 14-2 May 1972

-353- ALGOL
Conditional statements take the general form

IF 8 THEN SI ELSE S2

where Sl and S2 may themselves be conditional statements with the provision that if there is ambiguity,

bracketing using BEGIN and END must be used to remove it. Consider the following illegal example:

IF B THEN IF X = 0 THEN Y := Z ELSE P := QJ

This could be int.-preteci as

IF 8 THEN BEGIN IF X = 0 THEN Y := Z END ELSE P := QJ

or

Ir 8 THEN BEGIN IF X = 0 THEN Y := Z ELSE P := Q ENDJ

The fint case is interpreted as:

IF NOT B THEN GOTO LIJ

IF NOT X = 0 THEN GOTO L2J

Y := ZJ GOTO L2J

LII P : = QJ

L2:

The second case is interpreted as:

IF NOT B THEN GOTO L2J

IF NOT X = 0 THEN GOTO LIJ

Y := ZJ GOTO L2J

L1 : P:= QJ

L2:

ALGOL-60 forbids such ambiguities by forbidding the sequence THEN IF ••••• THEN ••••• ELSE.

14.4 DESIGNATIONAL EXPRESSIONS

A designatlonal expression is something that acts as an argument in a GOTO statement, either directly

or indirectly, via a formal procedure parameter of type label. It may simply be a label or a switch

element. Thus the following are designational expressions:

L

IF B THEN LI ELSE L2

IF X < 0 THEN SW[ll ELSE IF X+Y >= Z THEN TW[Jl ELSE L

Version 2A ALGOL 14-3 May 1972

ALGOL -354-
These designational expressions would be used in the following manner:

GOTO U
GOTO IF B THEN Ll ELSE L2;

I GOTO IF X < 0 THEN SW[Il ELSE IF X+Y >= Z THEN TW[Jl ~LSE LJ

Version 2A ALGOL 14-4 May 1972

CHAPTER 15

OWN VARIABLES

15.1 GENERAL

-355- ALGOL

I Own variables are a special kind of ALGOL variable, and may be of type integer, real, long real,

Boolean or string, either scalar or array. They have the following properties:

a. Although they follow the normal scope rules, they are not recursive, the same
copy of each variable being used in all occurrences of a procedure or block.

b. The values they contain when control passes out of a block are retained and
are still available when the block is re-entered.

c. They are initialized to zero before execution of the program. (FALSE in the
case of Boolean own variables.) OWN STRINGS are initialized to possess no
byte string.

Own variables are declared by writing the usual declaration with the word OWN preceding it. For

example:

OWN INTEGER I,J,~J

OWN REAL ARRAY THETA[l:M]

15.2 OWN ARRAYS

Own arrays are implemented in a completely dynomic fashion in DECsystem-10 ALGOL. The

declaration proceeds according to the following rules.

a. If this is the first time the array is declared, .space is obtained and then the array
laid out. If the array has been laid out before, proceed to Step b.

b. The bouncH are examined to see if they are identical to those of the previous con­
struction of this array. If they are the same, the array is left unaltered; otherwise,
proceed to Step c.

c. A new array is constructed and those elements that it has in common, if any, with
the old array are copi ed into it; the remei ni ng et ements are zeroed. The 0 I d array
is then deleted and the space used by it is recovered for future use.

15-1 December 1971

ALGOL -356-
For example, if an own array A is declared as follows:

OWN REAL ARRAY AL[l:M.M:N]J

where M = 2 and N = 5 the first time, and M = 1 and N = 4 the second time, the elements [1,2],

[1,3] and [1,4] are copied over, and the remaining elements of the new array are zeroed.

15-2

-357- ALGOL

CHAPTER 16

DATA TRANSMISSION

16.1 GENERAL

Data transmission encompasses the input and output of data between the user's program and peripheral

devices, such as disk, DECtape, magnetic tape, card reader, card punch, and line printer. The

I DECsystem-l0 ALGOL object-time system, in conjunction with the ALGOL library, provides the user

with a set of basic procedures for handling data from most DECsystem-l0 devices in a uniform fashion.

The user may also perform input/output operations with virtual peripherals that manifest themselves as

byte strings in the user's program.

All peripheral devices that the user requires are under his control completely and can be allocated or

released at any time throughout the execution of the program. The user can handle up to sixteen de­

vices simultaneously (seventeen, if one of them is the terminal attached to his job), any number of

which may be file devices (disk, DECtape) and have an independent file open.

16.2 ALLOCATION OF PERIPHERAL DEVICES

Peripheral devices are allocated to the user's program by calls to the library procedures INPUT or

OUTPUT. A call to one of these procedures usually has two parameters. The first is the channel num­

ber, an integer in the range 0 to 15, on which the device is to operate. Only one device at a time

may be operated on a channel; a channel provides either input or output facilities, except in the case

of a terminal, where the input and output functions are performed simultaneously on the same channel.

The second parameter is either a string or a string constant. The text contained in the string is the

logical name of the device to be allocated to this channel.

The DECsystem-l0 Users Handbook should be consulted for an explanation of what constitutes a logical

device name. In the simplest case, it may be the actual name of the peripheral device. The device

names shown in Table 16-1 are recognized as standard.

16-1 December 1971

ALGOL

Device Name

DSK
DTA
MTA
CDR
COP
LPT
PTR
PTP
PLT
TTY

-358-
Table 16-1

Standard Devi ce Names

Peripheral

Disk
DEOape
Magnetl c tape
Card reader
Card punch
Li ne pri nter
Paper-tape reader
Paper-tape punch
Plotter
Terminal

For example, to allocate the card reader for use as an input device on channel 5, the user would use

the statem«lt

INPUTCS COR ..)I

or, if S were a string possessing a bite string that had the characters CDR in it,

INPUTCS .. S >I

Similarly, if the disk were to be used os an output device on channel 9:

OUTPUT C 9 0SI< ..) I

"bte that with the exception of terminals, all devices are allocateclto operate in one direction only;

thus, if the user wants input and output from the disk, he must use two separate channels.

Terminals are always allocated bidirectionally, irrespective of whether the user uses INPUT or OUTPUT.

For example,

INPUTC0 TTY ..)J

allocates the user's terminal for input and output on channel O.

16.2.1 Device Mldes

"brmally, a device is allocated in ASCI mode, that is, when the user reads a character from the de­

vice it is a 7-bit byte representing readable text, such as a stored source program or data. To allocate

the device in a different mode, a third parameter is specified in the call to the INPUT or OUTPUT pro­

cedure. Thus, to allocate a disk to channel 9 in image binary mode (the mode used for the storage of

binary data on a disk), the user can use

OOTPUTC9 0SI< ll)1

16-2

-359- ALGOL
The DECsystem-10 Assembly Language Handbook should be consulted for a full explanation of the

different modes used with peripheral devices. The INPUT and OUTPUT procedures allow the user to

allocate any standard peripheral device in any buffered mode.

16.2.2 Buffering

The INPUT and OUTPUT procedures normally allocate two buffers for each allocated device; terminals

are allocated two buffers for input and two for output. The user may desire to use either one or more

I than one buffer for a device. For example, in a non-compute bound job that uses a lot of disk trans­

fers at odd intervals, four or even eight buffers may be desirable to increase the speed of execution of

the program.

The number of buffers to be used can be controlled by odding a fourth parameter to the procedure call •

Thus, to allocate a disk on channel 14 in mode 0 with eight buffers, the call is

Note that the mode must always be specified in this case, otherwise there would be an ambiguity in

the third parameter.

16.3 SELECTING INPUT/OUTPUT CHANNELS

Before a user uses a device to transfer data, assuming that the device has already been allocated to

some channel, the appropriate input or output channel must be "selected" for use as the input or out­

put channel. All data input and output always occurs on the currently selected input channel and out­

put channel, respectively. The user may change the selection of channels at any time, switching from

one channel to another without loss of data, irrespective of whether complete lines {or records} of data

have been read or not. In fact, the DECsystem-10 input/output system does not assume any structure

I in the data: all input and output channels are regarded as pipelines through which the user pulls or

pushes data.

To select an input channel, a call to the procedure SELECTINPUT must be made. This has one param­

eter, which is the channel number. Thus

SELECT INPUT (5) J

causes input channel 5 to be sel ected.

Similarly, the procedure SELECTOUTPUT is used to select an output channel.

16-3 December 1971

ALGOL -360-
16.4 FILE DEVICES

Some peripheral devices, such as disk and DECtape, require the opening of a specifically named file

before any input or output operations can be performed.

The opening of this file is performed by means of the procedure OPENFILE, which is called after the

device has been allocated to a channel. The procedure call has two parameters: the channel number

on which the device has been allocated and a string variable possessing a byte string or a string con­

stant, the text of which is the name of the file.

The user can also specify a protection and/or project-programmer number of a file by means of optional

third and fourth Boolean or integer parameters. For example, to open a tile with protection <177> on

disk area [11 ,50J the user could write

OPENF'ILE (9,"TEST .DAT··,%177,%000011000050)J

When a user has finished with a file, it should be closed. A file is closed by using the procedure

CLOSEFILE, with a parameter that is the channel number on which the file is open. Thus,

CLOSEF'ILE(9)J

closes the til e that is open on channel 9.

The user may also rename or delete existing files: if a file is already open, use of OPENFILE causes

the file to be renamed with the new name supplied. Thus the sequence

OPENF'ILE (5,"TESTl.DAT")J

OPENF'ILE (5,"TEST2.DAT")J

causes the file with name TESTl.DAT to be renamed TEST2.DAT.

If ·he string containing the new name is null, the original file is deleted. Thus,

OPENF'ILE C5,"TEST3.DAT");

OPENF'ILE (5,);

causes the tile TEST3.DAT to be deleted.

16.5 RELEASING DEVICES

The procedure RELEASE is used to release a device from a channel. Thus,

RELEASE (5) J

16-4

-361- ALGOL
releases the device allocated to channel 5. If the device is a file device, and a file is still open on

the device, it is automatically closed. Releasing a device on a channel causes a channel to become

free; if this channel is currently selected for input or output operations, it is deselected.

If an attempt is made to allocate a device to a channel that already has a device allocated, the allo­

cated device is first released and, if a file is open on it, it is closed before releasing the device.

If a user termi'lates his program without releasing devices on channels, they are automatically released.

16.6 BASIC INPUT/OUTPUT PROCEDURES

16.6.1 Byte Processing Procedures

The following procedures may be used with any device to handle bytes of any standard size (1 to 36

bits). However, because they are normally used with devices supplying or receiving ASCII bytes, they

are "symbo I II ori ented •

a. INSYMBOL(S); - (where S is usually some integer variable) causes the next byte
to be read from the currently selected input channel and stored in S.

b. OUTSYMBOL(J); - (where J is usually some integer expression) causes the value
of J to be output as a byte to the currently selected output channel. If J is too
large for the byte size of the device in use, it is truncated to size.

c. NEXTSYMBOL(S)i - acts in exactly the same way as INSYMBOL except that
the byte pointer for the input channel is not advanced to the next available
byte. This gives the user a look-ahead facility of one byte.

d. SKIPSYMBOL; - causes the next byte from the selected input channel to be
read and ignored.

e. BREAKOUTPUT; - causes all bytes in the buffer of a device to be sent immedi­
ately to it. This procedure is normally used to conduct a question-and-answer
dialogue on a terminal, with the question and answer on the same line. Nor­
mally, a block of data is sent to a device only when the buffer is full (the
exception being the terminal, where a break is sent at the end of each line).

16.6.2 String Output

A byte_string may have its contents transferred to the currently selected output channel by means of

the procedure WRITE, whose single parameter is either a string constant or a string variable that

possesses the string to be output. For example:

WRITECS)I

or

WRITE("THE MOON IS MADE OF' GREEN CHEESE")J

16-5

I

ALGOL -362-
With exceptions explained in the following paragraphs, all of the bytes in the string are output literal-

ly, with the exception, of course, of the quotes in a string constant, which are not in fact stored in

the byte string at all. The important thing to remember is that, unlike some other ALGOL implemen­

tations, spaces and other non-printing symbols in byte strings are meaningful.

Special editing characters are permitted within square brackets within the text of a byte string. These

have a .eci.I function:

P

CorN

T
S

I!S

Page throw

New line (C stands for carriage retum, line feed)

TCIIb

Space

Break output

Any combination of these characters, with optional repetition counts preceding them, can appear with­

in square brackets in a byte string and are output as their special interpretation demands. for example:

WR ITE C"ABeD [P2C 5S lEF'GH") J

causes the following to be output:

a. the symbols ABCD followed by a page throw
b. two new lines and five spaces
c. the symbols EFGH.

In orcler to output the symbols

[J " or ;

they must appear in the form

[[]J ""or;;

respectively. Thus

WRITEC .. • .. ·ACCIll := 3JJ· .. • ..)J

causes the text

"A [I) : = 3J"

to be output.

16.6.3 Miscellaneous Symbol Procedures

The procedures SPACE, TAB, PAGE, and NEWLINE cause the appropriate number of spaces, tabs,

page throws, or new lines to be output, depending on their single parameter, which is an integer ex­

pression. If the parameter is omitted a value of one is assumed. Thus

Version 2A ALGOL 16-6 May 1972

-363- ALGOL
SPACEC')J

causes Ave spaces to be OUtput, whereas

SPACEI

...
SPACECI)J

causes one space to be OUtput.

16.6.4 Numeric and String Procedures

Numeric procedures are used to read and print numeric quantities. They will nonnally be used with a

device that is operating in ASOI mode. They are capable of processing integ .. , real, or long real

quantities in Axed-point and floating-point representations.

16.6.4.1 Numeric Input Data - Numeric data for input can be represented in any format that would

be acceptable as a numeric constant in a program, irrespective of the type of variable involved. When

a number is read, an automatic type conversion is performed, giving a result of the same type as if an

assignment of the data represented as a constant in the program had been executed.

There is a minor restriction in that no spaces, tabs, or other non-printing symbols may appear in such

numeric data except between the exponent sign (& or @ for real, && or @@ for long real) and the

exponent. Otherwise, any symbol that is not itself a part of a numeric quantity may act as a terminator

for such a quantity. It is strongly recommended that spaces, tabs, or new lines be used as separalon.

For example:

3.~ -9.6 1.36 -52

o I ~.9

Note that in reading a numeric quantity, the terminating symbol, that is, the Ant symbol that is not

part of the number, is lost.

DECsystem-l0 ALGOL also allows the user to input floating-point data written in FORTRAN format,

that is, using E for & or @, and 0 for && or @@. Note, however, that no other special effects

inherent in FORTRAN formatting are introduced.

I The procedure READ is used to input numeric data and also strings. This proceclJre may have CJRY oom­

her of parameten, of type integer, real, long real, Boolean, or string.

Venion 2 ALGOL 16-7 December 1971

ALGOL -364-
The effect is as follows:

a. For integer, real and long real variables, a number is read and converted to the
type appropriate to the parameter and then assigned to the variable.

b. For Boolean, a number is read as if for an integer variable, and assigned to the
variable.

c. For a string variable, the data text is scanned until a quote (") is found, and the
text following this up to but not including the next free quote is read in and a
byte string generated, which is then possessed by the string variable.

If the sequence 1111 is found, a single II is stored, and reading of the string continues.

16.6.4.2 Numeric Output Data - Numeric data is output by means of the procedure PRINT. This

procedure may have one, two, or three parameters, the first of which is the variable to be printed.

I This variable may be an integer, real, long real, or Boolean. The second and third parameters

determine the format to be used and are integer expressions. If they are omitted, they are assumed to

be zero. The effect of the various combinations of the format integers, M and N, is as follows:

M>O, N >0:

M>O, N =0:

M =0, N >0:

Fixed-point printing, M places before the decimal
point, N places after. A sign, space if positive,
- if negative appears before the number. Zeros
before the decimal point are replaced by spaces and
the sign moved up to the number.

This format always outputs M+N+2 symbols.

The same as the preceding except that (a) no frac­
tional part appears, and (b) the decimal point is
suppressed.

This format always outputs M+1 symbols.

Floating-point format, consisting of a sign, a decimal
digit, a decimal point, N more decimal digits, and an
exponent consisting of & for real, && for long real
followed by the exponent sign and a two-digit exponent,
zero suppressed from the I eft.

This format outputs N+7 symbols for real and N+8 sym­
bols for long real quantities.

If only two parameters appear, format M,O Is assumed for integer variables, Clnd format O,N for real

and long real quantities, where M and N are, respectively, the values of the second parameter.

If only one parameter appears, the format is interpreted as 0,0 which assumes standard printing modes

of 11,0 for integer quantities, 0,9 for real quantities, and 0,17 for long real qyantities.

Version 2 ALGOL 16-8 December 1971

-365- ALGOL
If the user requests more digits to be printed than are significant in real or long real numbers, the

appropriate number of zeros follow a properly rounded printing of the number to the maximum precision

available.

16.6.4.3 Octal Input/Output - The procedures READOCTAL and PRINTOCTAL, respectively, allow

the user to input and output quantities in octal format.

On input, for single precision variables, up to 12 octal digits are read, preceded by the symbol %, the

terminator being any non-numeric symbol. For long real variables, two such octal numbers must be

I presented for input, each preceded by the symbol %.

On output, 12 octal digits, preceded by the symbol %, are printed for single precision variables. For

long real variables, two quantities each with 12 octal digits are printed, with a space separating them.

The foregoing procedures have one scalar parameter which may be of type integer, real, long real or

Boolean.

16.7 DEFAU. T INPUT/OUTPUT

If the user does not select any input or output channels, input and output occur via an "invisible"

channel from and to the user's terminal. Thus, for simple programs where the user wishes to input a

few numbers and print a few results, he simply uses READ, types in the data on line through his

terminal, and gets back the results from PRINT.

16.8 LOGICAL INPUT/OUTPUT

In addition to the 16 channels used to communicate with peripheral devices, an additional 16 channels,

numbered from 16 to 31, are provided. These are input or output channels that use byte strings as a

means of storage.

By means of the procedures INPUT or OUTPUT, the user can attach a channel to a byte string possessed

by a string variable, and can read and write bytes from and to this byte string, either to or from a

peri pheral devi ce, or to and from another byte string.

INPUT(20 .. S)J

or

OUTPUT(20 .. S)J

cause the byte string possessed by the string variable S to be used as logical channel 20; this channel

may subsequently be sel ected for input or output, as appropria te.

Version 2 ALGOL 16-9 December 1971

ALGOL -366-
The user is still free, of course, to manipulate the indiviciJal bytes within the byte string by means of

the byte-subscripting facilities available. Such facilities enable the user to read a file from a

peripheral device into a string, process it in any way whatsoever, and output it again.

16.9 SPECIAL OPERATIONS

These procedures are used on channels assigned to magnetic lapes. They consist of the procedures

BACKSPACE, ENDFILE and REWIND, each having one parameter, i.e., the channel number on which

the operation is to be performed.

Since there is no implicit structure on a magnetic tape, these procedures enable the user to build up

formats in any way he chooses.

16.10 I/O CHANNEL STAruS

The status of any input or output channel can be determined at any time by means of the Boolean pro­

cedure IOCHAN, which takes as its single parameter an integer quantity which is the channel number.

The status returned is bit coded as follows:

Bit

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Value

0/04000OO
%200000
%100000
%040000
%020000
%010000
%004000
%002000
%001000
%000400
%000200
%000100
%000040
%000020
%000010
%000004
%000002
%000001

Meaning if Set

Device is physical (i .e., not logical)
Directory device
Terminal device
ASCII mode
Magnetic tape
Plotter
Set for default TTY on channel -1
Spare
Device can do input
Device is initialized for input
File is open for input
End of file encountered
Input ok status
Device can do output
Device is initialized for output
File is open for output
Device quota (exceeded)
Output status ok

Some of these bits are of I ittle use to the user, but, for example, if a device is allocated, and the user

does not know whether or not it is a file device, he can use IOCHAN to determine this. The bits of

particular use to the user are the input and output end-of-file (note that end-of-file on output is a

logical status indicating that, for example, a disk quota is exceeded or a DECtape is full, or in the

case of a logical device, the byte string is full).

Version 2 ALGOL 16-10 December 1971

-367- ALGOL
When IOCHAN is used, the end-of-file flags are always cleared, if set, sa that the user may proceed

to read a magnetic tape aft'er an end-of-file marker is found.

The following example shows how the user would handle an unknown device whose name is given to the

program via the user's terminal:

BEGIN

END

STRING DEVICE~ FILEJ INTEGER CHANNELJ
WRITE ("CHANNEL NO: ")J BREAK.OUTPUTJ
READ (CHANNEL>;
WRITE ("[C1DEVICE NAME: ")J BREAK.OUTPUTJ
READ (DEVICE)J
OUTPUT (CHANNEL~ DEVICE);
IF IOCHAN (CHANNEL> AND %200000 THEN

BEGIN
WRITE {"[C1FILE NAME: ")J BREAK.OUTPUT;
READ (FILE);
OPENFILE {CHANNEL~ FILE>

ENDJ

16. 11 TRANSFERRING FILES

I Once a device has been allocated to an input or an output channel, a complete file of information

may be transferred between them automatically by calling the parameter-less procedure TRANSFILE.

This procedure copies bytes from one device to another from the currently selected input channel to

the currently selected output channel, until an end-of-file status is raised on either the input or out­

put channel. When this occurs, the channels are examined to see if a true file (disk or DECtope) is

open on them and, if so, the files are closed. The devices are not released or otherwise disturbed.

Version 2 ALGOL 16-11 December 1971

ALGOL -368-

I

-369- ALGOL

CHAPTER 17
THE DECsystem-10 OPERATING ENVIRONMENT

The operating environment of DECsystem-l0 ALGOL programs consists of those procecUf8S in the

DECsystem-l0 ALGOL Library required by the user', proSJ'Om, and the DECsystem-10 ALGOL Object

Time System.

The fonner are those procedures detailed in Chapters 13 ancI16, together with those described below.

These procedures can be thought of as existing in a block surrounding the user's program, and, there­

fore, are avail abl e when call ed • Thei r names, however, are in no sense reserved as are words such as

BEGIN.

Note also that these procedures are only present in the user's program when required. They are loaded

by the DECsystem-l0 Linking Loader when so directed by the DECsystem-l0 ALGOL Compiler. The

user is not required to take any action to include these procedures, other than make a call to them.

A complete list of library procedures is given below.

17.1 MA THEMA TICAL PROCEDURES

The following procedures all have one argument, of real type, and yield a real type result.

Procedure Name

SIN
COS
ARCTAN
SQRT
EXP
LN
TAN
ARCSIN
ARCCOS
SINH
COSH
TANH

Function

Sine
Cosine
Arctangent
Square root
Exponential
Logarithm (to base e)
Tangent
Arcsine
Arccosine
Sinh
Cosh
Tanh

The following procedures all have one argument, of long real type, and yield a long real type result.

Note that they are formed by adding an L before the equivalent single precision procedure.

17-1 December 1971

ALGOL
Procedure Name

LSIN
LCOS
LARCTAN
LSQRT
LEXP
LLN

17.2 STRING PROCEDURE

-370-
Function

Sine
Cosine
Arctangent
Square root
Exponential
Logarithm (to bale .)

I For details of the procedures LINK, LlNKR, TAIL, LENGTH. COPY, NEWSTRING and DELETE, see

Paragraph 13.6.

17.3 UTILITY PROCEDURES

17.3.1 Array Dimension Procedures

The integer procedure DIM, which takes as its parameter the name of an array of any type, yields a

result that is the number of dimensions of the array. This is mast useful when the user passes an array

as a parameter and wishes to check if it is, for example, a matrix.

lhe integer procedures LB and UB also take as first parameters the name of an array; their second

parameter is the subscript number. The result is the lower or upper bound, respectively, of the sub­

script specified by the second parameter. The following procedure uses these to clear real matrices.

PROCEDURE ZEROCA)I ARRAY AI

BEGIN

INTEGER 1,..11

IF DIMCA) = 2 THEN

BEGIN

L 1 : = LB C A, 1> J U 1 : = UB C A , 1> I

L2 := LBCA,2)J U2 t= UBCA,2)1

FOR I := Ll UNTIL Ul DO

FOR ..I := L2 UNTIL U2 DO A£I,..I] := 0

END

END

Version 2A ALGOL 17-2 tvfay 1972

-371- ALGOL
17.3.2 Minima and Maxima Procedures

I The integer procedures IMIN and IMAX, the real procedures RMIN and RMAX, and the 'ong rea' pro­

cedures LMIN and LMAX are UIed, respectively, to determine the minimum or maximum of a number

of arguments of the appropriate type. These procedures normally accept up to ten parameters (this

figure may be easily changed by altering a parameter in the ALGOL Library).

For exampfe:

I := IMINCJ,K)J

X := RMAXC¥+Z,RMINC¥-Z,Q»J

17.3.3 Field Manipulations

The procedures GFIELD and SFlaD enable the user to manipulate a field within any integer, real,

long real, Boolean or string variable. The integer parameters I and J specify a byte of length J bits

whose leftmost bit is the 1'th bit (counting from zero at the left-hand side). The byte specified may

be from 1 to 36 bits in length and may be at any position in the variable.

For single word variables (integer, real, Boolean), I may range from 0 to 35, with the constraint

1+ J <= 36. For double word variables Oong real and string), I may range from 0 to 71, with the

constraint I + J <= 72.

The integer procedure GFIELD uses I and J as the second and third parameters; the first parameter is

the variable. The result is the value of the byte (right justified) specified by I, J.

Thus

gives the value of the byte consisting of bits 3 through 7 of A.

The procedure SFIELD sets a byte specified by the second and third parameters I, J to the value speci­

fied by the fourth parameter, of type integer. Thus

ZelOS the byte specified in the first .ample.

17.4 DA TA TRANSMISSION PROCEDURES

For details of these procedures refer to OIapter 16.

17-3 December 1971

ALGOL -372-
17.5 FORTRAN INTERFACE PROCEDURES 1

FORTRAN subroutines may be incorporated in ALGOL object programs by loading these subroutines

with the ALGOL main program (and any other separate ALGOL procedures).

Such FORTRAN subroutines should be specified by an EXTERNAL declaration in the ALGOL program

and can be called by the appropriate use of one of the ALGOL library procedures:

CALL, lCALL, RCALL, DCALL, or LCALL

which are used, respectively, to call nontype, integer, real, long real (double precision), and Boolean

(logical) subroutines.

The first parameter in these procedures calls must be the name of the FORTRAN subroutine. Subsequent

parameters are taken as the arguments to the procedures.

CALL is used as a single statement, for example:

is equivalent ro

CALL FORT (X,V>

in a FORTRAN program.

lCALL etc. must appear in the appropriate context in an expression, thus

P : = Q + ICALL(Z)

NOTE

The parameters of CALL, ICALL, etc., are restricted to
integer, real, long real, or Boolean expressions or vari­
ables; arrays are not permitted.

17.5.1 FORTRAN Input/Output

If FORTRAN input/output is to be used in any FORTRAN subroutine in an ALGOL object program, the

ALGOL library procedure

F"ORT 10

must first be called. Failure to do this will result in a routine error message.

The user is advised that the simultaneous use of ALGOL and FORTRAN input/output may result in

failure of the object program.

1These features will appear in Version 3 of ALGOL.

Version 2A ALGOL 17-4 May 1972

-373- ALGOL

CHAPTER 18

RUNNING AND DEBUGGING PROGRAMS

18.1 COMPILATION OF ALGOL PROGRAMS

DECsystem-l0 ALGOL programs are compiled by the ALGOL compiler under the standard DECsystem-l0

timesharing monitor. The compiler is called by typing

R ALGOL

at monitor command level.

The DECsystem-l0 ALGOL Compiler responds by typing an asterisk on the user's terminal. The user

then types a command string to the compiler, specifying the source file{s) from which the program is to

be compiled, and the output files for listing and output of relocatable binary. The command string

takes the form:

I OUTPUT-FILE, LlSTING-FILE=SOURCE-FILES

followed by a carriage-return (ALHAODE cannot be used to terminate a command string).

A file takes one of the forms

DEVICE:FILE-NAME.FILE-EXTENSION

or

DEVICE:FILE. NAME

for directory devices (disk and DECtape)

or

FILE-NAME. FILE-EXTENSION

FILE-NAME

where DSK is assumed to be a default device.

Version 2A ALGOL 18-1 May 1972

I

ALGOL -374-
In the case of non-directory devices, the format is simply

DEVICE:

In CClSes where no FILE-EXTENSIONS are specified, the standard defaults REL for the relocatable

binary output file, LST for the listing file, and ALG for the source file are assumed.

SOURCE-FILES

consists of one file or a list of files separated by commas. If a DEVICE is specified for the first file,

and not for succeeding files, the second and following files are taken from the same device as the

first.

Example:

[read source from DSK:EULER.ALG, write relocatable binary on DSK:EULER.REL, and listing on the

user's terminal] •

MTA0:~DSK:SIM26~SIM26~PARAM.TST

[reod source from DSK:SIM26.ALG, DSK:PARAM. TST, write relocatable binary on device MTAO,

and listing on file DSK:SIM26.LST].

Certain switches may be set by the user in the command string. These are:

nO (where n is an unsigned decimal integer). Set the dynamic
storage region (ca"ed the "heap'? to n words. A" input/output
buffers, dynamically-created strings, and own arrays are
allocated in the heap; hence, this area must be sufficiently
large to accommodate a" such items. The default size of the
heap is 512 words.

E line numbers are in columns 73 through 80 of the source pro-
gram.

L List the source program (default cose).

N Error messages are not printed on the user's terminal.

Q Delimiter words are in quotes.

S Suppress Ii sti ng of the source program.

These switches are set by preceding them with a / after a file, for example:

PROD, PRO 0/1 OOOD .. PRODl/L, PROD2/S

causes file PROD1.ALG to be compiled with listing, file PROD2.ALG to be compiled without listing,

and causes the size of the heap to be set to 1000 words.

Version 2 ALGOL 18-2 December 1971

-375- ALGOL
The ALGOL compiler reports all source program errars both on the user's terminal and in the listing

device (if it is other than the terminal). After compiling a program, the compiler returns with another

asterisk, whereupon the user may compile another program, or type tc to return to monitor level.

18.1.1 Compilation of Free-Standing Procedures

DECsystem-l0 ALGOL allows the user to compile procedures independent of programs that call them.

Such procedures may either follow the main program in the source file (but may not appear before it),

or may be in an independent source file either singly or together. The user uses exactly the same

process to compile such files.

If the user requires to call those procedures from the main ALGOL program, the appropriate EXTERNAL

declarations must be made (refer to Paragraph 11.9).

18.2 LOADING ALGOL PROGRAMS

ALGOL programs are loaded by means of the DECsystem-l0 Linking Loader in exactly the same VfCY as

programs generated by MACRO-I0 and FORTRAN (for details, refer to the DECsystem-l0 Assembly

Language Handbook).

The loader automatically causes all procedures required from the ALGOL Library (ALGLIB) to be incor­

porated into the user's program.

For example, consider the source file MAIN.ALG which contains the ALGOL main program and

the files SUB1.ALG and SUB2.ALG which contain free-standing procedures.

The user may compile these files to give one relocatable binary file by typing the following command

string to the ALGOL compiler,

and loading the resulting program by giving the command string

t"AIN$

to the loader. Alternatively, the three source files can be compiled independently by typing three

command strings to the ALGOL compiler, for example:

MAIN .. MAIN"MAIN

Version 2A ALGOL 18-3 May 1972

ALGOL -376-
and giving the loader the command string

MAIN .. SUBI .. SUB2$

After a program has been loaded, it may be executed.

18.3 RUNNING ALGOL PROGRAMS

ALGOL programs are executed by typing the console command

START

or any of its valid abbreviations. If the program executes successfully, it finishes by printing the exe­

cution time statistics (core store used and execution and elapsed times) on the user's terminal, and

retums to monitor command level.

18.4 CONCISE COMMAND LANGUAGE

The concise command language (CCL) features in the DECsystem-l0 monitor may be used to facilitate

the compilation and execution of ALGOL programs. They are used in exactly the same way as for

programs written in DECsystem-l0 FORTRAN. For details, refer to the DECsystem-l0 Users Handbook.

18.5 RUN-TIME DIAGNOSTICS AND DEBUGGING

When an elTOr occurs during the execution of a user's ALGOL program, control is passed to the ALGOL

ObJect Time System which monitors the elTOr on the user's terminal. A concise description of the error

is given, together with information on the location.

Full details of the debugging system will be documented when they are available.

18.5.1 Facilities to Aid in Program Debugging

18.5.1.1 Checking - The directive

CHECKON 1

when placed anywhere in a user's program causes all array subscripts from this point onward in the pro­

gram to be checked at Nn-time for being in range. The directive

CHECKOFF 1

nullifies this action. Note that use of this facility causes the generated program to be slightly larger,

and to Nn slower.

Version 2 ALGOL 18-4 December 1971

-377-
NOTE

Most inexplicable errors arising during the execution of an
ALGOL program are caused by an array subscript being out
of range. Whenever such elTOrs occur, the program should
be recompiled with the array bound check feature on, and
rerun.

ALGOL

18.5.1.2 Controlling Listing of the Source Program - Normally, a listing of the source program is

output with the object program during compilation. The user can suppre. this listing entirely by means

of the /S compiler switch. However, if the user wishes to suppre. only part ofthe listing and then

continue listing, he can control the listing from within his program by means of the statements

LIST OFF
LISTON

The LISTOFF statement causes listing to be suppressed from the point in the program where L1STOFF

was encountered to either the end of the program or until a LISTON statement is encountered. The

LISTON statement causes listing to continue after it had been suppressed by a L1STOFFstatement.

The LISTON and LISTOFF statements have no effect if the /S switch is included in the compiler com­

mand stri ng.

18.5.1.3 Setting Line Numbers in Listings - Ordinarily, the lines in the listing file are numbered

sequentially starting at 1 and incrementing by 1. The user can, however, change the line numbers by

placing sequence numbers in columns 73 through 80 of the source program and compiling with the IE
switch. Another way in which the user can change the line numbers is by means of the LINE statement.

The statement

LINE n

causes the next line number to be set to n, which is a decimal integer. The line numbers that follow

are incremented by 1 until either another LINE statement is encountered or the program terminates.

Version 2 ALGOL 18-5 December 1971

AlGOl -318-

I

CHAPTER 19

TECHNICAL NOTES

-379- ALGOL

These notes concern the authors' particular interpretation of the "Revised Report on the Algorithmic

Language ALGOl-60" and its implementation.

a. At all times, strict left-to-right evaluation of statements is employed. Section
3.4.6 of the Revised Report has been construed by some experts to mean that
left-to-right evaluation of expressions is not required. However, there are un­
doubtedly many AlGOl-60 programs in existence that rely on this feature.

b. Section 4.3.5 of the Revised Report requires that a GOTO Statement with a
designational expression which is a switch with a subscript out of range be
regarded as a dummy statement. Neither DECsystem-10 ALGOL nor any
other ALGOL-60 implementations, to the knowledge of the authors, follow
this rule if there is a side-effect involved in the evaluation of the subscript.

19-1 December 1971

ALGOL -380-

-381- INDEX
INDEX

A format (FORTRAN), 46
ABS (ALGOL), 311
ABS (BASIC), 164, 267
Absolute value (BASIC) 164, 267
ACCEPT statement (FORTRAN), 41, 62, 83
Access to BASIC (BASIC), 179
Accunulator (FORTRAN), 117

conventions, 117
Adjustable dimensions (FORTRAN), 67
ALGOL-60 (ALGOL), 293, 315, 319
ALGOL-68 (ALGOL), 293
Alphanuneric fields (FORTRAN), 46
ALPHI. (FORTRAN) 90
ALPHO. (FORTRAN), 90
American Standard Code for Information

Interchan~e (ASCII) (BASIC), 218
AND (ALGOL), 312
Apostrophe (BASIC)

format character, 261
remarks indicator, 202

ARCCOS (ALGOL), 369
ARCSIN (ALGOL), 369
ARCTAN (ALGOL), 369
Argument, definition (FORTRAN), 24
Arithmetic conditions (ALGOL), 313
Arithmetic error conditions (FORTRAN), 130
Arithmetic function definition statement

(FORTRAN), 75, 85
Arithmetic operations (BASIC), 163
Arithmetic operations on complex numbers

(FORTRAN), 21
Arithmetic statement (FORTRAN), 29
Array dimensioning (FORTRAN), 22, 66
Array elements (ALGOL), 326
Arrays (ALGOL), 325
Arrays, OWN (ALGOL), 355
Array variables (FORTRAN), 22
ASC function (BASIC), 222, 268
ASCII character set (FORTRAN), 133
ASCII constants (ALGOL), 307
ASCII mode (FORTRAN)

DECtape, 136
disk, 136
magnetic tape, 139

ASCII numbers 18ASIC) , 218
Assigned GO TO statement (FORTRAN), 32, 83
Assignments (ALGOL), 294, 315
ASSIGN statement (FORTRAN), 32, 83
ATN (BASIC), 164, 267

BACKSPACE, (ALGOL), 366
BACKSPACE statement (FORTRAN), 41, 62, 83
BEGIN (ALGOL), 317, 327
Binary mode (FORTRAN)

DECtape, 136
disk, 136
magnetic tape, 139

BINWR. (FORTRAN), 91
Blank common (FORTRAN), 68
Blank fields (FORTRAN), 53
Blank records (FORTRAN), 49
BLOCK DATA statement (FORTRAN), 72,

82,84
BLOCK DATA subprogram (FORTRAN), 82
Block identifier (FORTRAN), 68
Block name (FORTRAN), 68
Block st ructure (ALGOL), 327
BOOLEAN (ALGOL), 302
Boolean constants (ALGOL) 306
Boolean conversions (ALGOL) 313
Boolean expressions (ALGOL), 312, 313
Boolean operators (ALGOL), 312
Boolean variables (ALGOL), 303
Brackets (ALGOL), 307, 325
BREAK OUTPUT (ALGOL), 361
Buffer (FORTRAN), 135

sizes, 135
Buffering (ALGOL), 359
BUFFER subroutine (FORTRAN), 96
Bugs (BASIC), 185
BY (BASIC), 172
BYE (BASIC), 183, 229
Byte manipulations (ALGOL), 371
Byte processing (ALGOL), 361
Byte string copying (ALGOL), 349
Byte strings (ALGOL), 345
Bvte subscripting (ALGOL), 346

+ C (BASIC), 182, 232
C format character (BASIC) 261
CALL statement (FORTRANt 81, 83
Carriage control (FORTRAN), 47, 50
CATALOG (BASIC), 229
CHAIN (BASIC), 202, 264
Chain files (fORTRAN), 96
CHAIN subroutine (FORTRAN), 96
CHANGE (BASIC), 217, 267
Channels (ALGOL), 359, 366
Channel status (ALGOL), 366
Character set (FORTRAN), 17, 133
Checking array subscripts (ALGOL), 376
CHECKOFF (ALGOL), 376
CHECKON (ALGOL), 376
CHR$ function (BASIC), 222, 268
CLOG (BASIC), 164, 267
Closed subroutine (FORTRAN), 75
CLOSEFILE (ALGOL), 360
Coding form (FORTRAN), 16
Comma (BASIC)

in image specification, 258
in PRINT statement, 197

COMMENT (ALGOL), 300
Commentary (ALGOL), 300, 341
Comment line (FORTRAN), 17
Common block (FORTRAN), 68

INDEX -382-
COMMON statement (FORTRAN), 68, 70, 84
Common storage (FORTRAN), 68
Compiler commands (ALGOL), 373
Compiler diagnostics (FORTRAN)

command errors, 122
compilation errors, 123

Compiler extensions (ALGOL), 294
Compiler rest rictions (ALGOL), 295
Compiler switches (ALGOL), 374
Compiler switches (FORTRAN), 121
COMPLEX (type declaration statement)

(FORTRAN), 72, 84
Complex constants (FORTRAN), 20
Complex fields (FORTRAN), 48
Complex subexpression (FORTRAN), 25
Compound expressions (FORTRAN)

logical, 28
numeric, 25

Compound statements (ALGOL), 317
Compound symbols (ALGOL), 298
Computed GO TO state ment (FORTRAN)

31, 83
Concatenate (ALGOL), 347
Concatenation operator (+) (BASIC), 221
Conditional expressions (ALGOL), 351
Conditional GO TO (BASIC), see IF-THEN
Conditional statements (ALGOL), 370
Constants (ALGOL), 305, 306, 307, 310
Constants (BASIC), see numbers
Constants (FORTRAN)

complex, 20
double precision, 20
integer, 19
literal, 21
logical, 21
octal, 20
real, 19

CONTINUE statement (FORTRAN), 38, 83
Control commands (BASIC), 229
Control I ing I isting of the source program

(ALGOL), 377
Control statements (FORTRAN), 31, 83

CALL, 81
CONTINUE, 38
DO, 34
END, 39
GO TO, 31
IF,
PAUSE, 38
RETURN, 81
STOP, 39

Control transfers (ALGOL), 319
COPIES switch (QUEUE) (BASIC), 230
COpy (ALGOL), 349
COpy (BASIC), 229
Correcting a BAS IC program (BASIC), 181, 182
COS (ALGOL), 369
COS (BASIC), 164, 267
COSH (ALGOL), 369
COT (BASIC), 164, 267

o format (FORTRAN), 42, 46
Data (ALGOL), 363, 364
DATA (BASIC), 160, 167, 216, 263
Data block (BASIC), 166, 217
Date file capability (BASIC), 233, 265
Data record (FORTRAN), 57
DATA statement (FORTRAN), 70 84
Data specificotion statements (FORTRAN), 65

DATA, 70, 84
BLOCK DATA, 72, 82, 84

Data soecificotion subprogram (FORTRAN), 72
Data transmission (ALGOL), 357
Data transmission statements (FORTRAN) 41 83

ACCEPT, 62 ' ,
DECODE, 63
ENCODE, 63
PRINT, 57
PUNCH, 58
READ, 60
REREAD, 61
TYPE, 58
WRITE, 58

DATA. UUO (FORTRAN), 91
DA TE subroutine (FORTRAN), 96
Debugging (ALGOL), 376
Debugging (BASIC), 185
Decimal image specification (BASIC), 257
Declarations (ALGOL), 302
DECODE statement (FORTRAN), 63, 83
DECtape usage (FORTRAN), 136
DEC. UUO (FORTRAN), 92
DEF (BASIC), 192, 268
Default I/O (ALGOL), 365
Defined function (BASIC), 192, 268
Defined locations (FORTRAN), 117
DEFINE FILE (FORTRAN), 59, 140
DELETE (ALGOL), 350
DELETE (BASIC), 230
Deleting files (ALGOL), 360
Delimiter word (ALGOL), 294, 295, 298
Designational Expressions (ALGOL), 353
DET (BASIC), 216, 267
Device allocotion (ALGOL), 357
Device assignments (FORTRAN), 136
Device control statements (FORTRAN), 62, 83 34

BACKSPACE, 62 '
END FILE, 62
REWIND, 62
SKIP RECORD, 62
UNLOAD, 62

Device modes (ALGOL), 358
Device names (BASIC), 180
Devices (ALGOL), 357
Device table (FORTRAN), 137
DEVTB. (FORTRAN), 136
Diagnostic messages (BASIC), 269
Diagnostic messages (FORTRAN)

command, 122
compilation, 123
execution, 128

-383- INDEX

DIM (BASIC), 176, 178, 208, 264
Dimensioning (BASIC), 176, 178,208, 209
DIMENSION statement (FORTRAN), 66, 84

adjustable dimension, 67
DIRT. (FORTRAN), 90
Disk usage (FORTRAN), 136
DIV (ALGOL), 309
DO (ALGOL), 321
DO loops (F ORTRAN), 34
DO statement (FORTRAN), 34, 83
DOUBLE PRECISION (type declaration statement)

(FORTRAN), 72, 85
Double precision constants (FORTRAN), 20
Double word (FORTRAN), 25, 27
DOUBT. (FORTRAN), 90
Dummyarguments (FORTRAN), 76, 77
Dummy identifiers (FORTRAN), 75, 76
Dummy statement (ALGOL), 379
DUMP (FORTRAN), 97
Dynamic bounds (ALGOL), 329

E format (FORTRAN), 42, 46
E format character (BASIC), 261
EDIT commands (BASIC), 229
Edited numeric image specifications (BASIC), 258
Editing characters (ALGOL), 362
ELSE (ALGOL), 320
ENCODE statement (FORTRAN), 63, 84
ENC. UUO (FORTRAN), 92
END (ALGOL), 317, 327
END (BASIC), 161, 170, 264
ENDFILE (ALGOL), 366
END FILE statement (FORTRAN), 62
End-Of-File (ALGOL), 366
END statemert (FORTRAN), 39
Entering a BASIC program (BASIC), 181, 183
ENTlER (ALGOL) 310
EOFl slbroutine (FORTRAN), 97
EOFC s1broutine (FORTRAN), 97
EQUIVALENCE statement (FORTRAN), 69
EQV (ALGOL), 312
Errors (BASIC)

grammatical, 184
logical, 184

ERRSET subroutine (FORTRAN), 97
Executing a BASIC program (BASIC), 182
EXIT slbroutine (FORTRAN), 97
EXP (ALGOL), 369
EXP (BASIC),164, 267
Exponents (ALGOL), 305, 363
Expressions (ALGOL), 316
Expressions (FORTRAN), 24

logical, 26
numeric, 24

Extensions (filename) (BASIC), 180
EXTERNAL (ALGOL), 340
EXTERNAL statement (FORTRAN), 82, 85
External slbprograms (FORTRAN), 75

F format (FORTRAN), 42, 46
FALSE (ALGOL), 306
Fault monitoring (ALGOL), 295, 377
Field delimiters (FORTRAN), 46
Field manipulations (ALGOL), 371
Field specifications (FORTRAN), 42
Field width (FORTRAN), 42, 46
FILE (BASIC), 236, 265
File deletion (ALGOL), 360
File devices (ALGOL), 360
Filename (BASIC), 180
File names (ALGOL), 360
File protection (ALGOL), 360
FILES (BASIC), 236, 265
FIN. UUO (FORTRAN), 91
FLIRT. (FORTRAN), 90
Floating dollar sign (BASIC), 260
FLOUT. (FORTRAN), 90
FNEND (BASIC), 192
FOR (BASIC), 172, 263
FOR & WHILE statements (ALGOL), 321, 322
Formal parameters (ALGOL), 295, 296, 331
Format characters (BASIC), 255
Formats stored as data (FORTRAN), 49
FORMA T statement (FORTRAN), 41

alphanumeric fields, 46
blank fields, 53
camplex fields, 48
logical fields, 45
mixed fields, 47
multiple records, 48
numeric fields, 42
variable field width, 45

FORSE. (FORTRAN), 89
format processing, 89
I/O device cantrol, 90
UUO dispatching, 90

FORTRAN operating system, 89
FORSE., 89
FORTRAN UUO's, 91
I/O conversion routines 90

FORTRAN program and MACRO sib program
linkage, e>Camp-le FORTRAN), 103

FORTRAN UUO's (FORTRAN), 91
Forward references (ALGOL), 295, 339
Function, definition (FORTRAN), 24
Function identifier (FORTRAN), 24, 76
FUNCTION statement (FORTRAN), 76
FUNCTION subprograms (FORTRAN), 76
Function subp~rom linlcage e"lmple

(FORTRAN), 103
Function type, 24, 77
Function value (FORTRAN), 24

G format (FORTRAN), 42, 46
GFIELD (ALGOL), 371
GLOBAL (ALGOL), 328
GO (ALGOL), 299. 319

INDEX

GOODBYE (BASIC), 183, 230
GOSUB (BASIC), 193, 264
GOTO (ALGOL), 299, 319
GO TO (BASIC), 161, 169, 263
GO TO statement (FORTRAN)

assigned, 32, 83
computed, 31, 83
unconditional, 31, 83

H conversion (FORTRAN), 46, 47
Hierarchy (FORTRAN)

of logical operators, 27
of numeric operators, 26, 28
of relational operators, 27

Hilbert matrix (BASIC), 213

I format (FORTRAN), 42, 46
IBUFF (FORTRAN), 96
Identifier (ALGOL), 295,296,301,310
Identity matrix (BASIC), 208, 265
IF (ALGOL), 320
IF END (BASIC), 250, 266
IFILE subroutine (FORTRAN), 97
IF statement (FORTRAN)

logical, 33, 83
numerical, 33, 83

IF-THEN (BASIC), 160, 169, 216, 217, 263
ILL subroutine (FORTRAN), 98
Image specifications (BASIC), 255
Image statement (BASIC), 254
IMAX (ALGOL), 371
IMIN (ALGOL), 371
IMP (ALGOL), 312
IMPLICIT statement (FORTRAN), 73, 85
INF. UUO (FORTRAN), 91
INPUT (ALGOL), 358
INPUT (BASIC), 200, 264

data file, 239, 266
Input data (ALGOL), 363
Input/output channels (ALGOL), 359
Input/output channels (BASIC), 233
I nput tape (BAS IC) , 280

listing an, 282
Inputting from pafer tape reader (BASIC), 282
INSTR function (BASIC), 226, 268
Instruction set (FORTRAN), 145
INSYMBOL (ALGOL), 361
INT (BASIC), 189, 267
INT~GER (ALGOL), 302, 305
Integer constants (ALGOL), 305
Integer constants (FORTRAN), 19, 70
Integer conversions (ALGOL), 313
Integer function (BASIC), 189, 267
Integer image specification (BASIC), 256
Integer remainder (ALGOL), 294

-384-

INTEGER (type declaration statement) (FORTRAN),
72, 85

Internal subprograms (FORTRAN), 75
Interrupting execution of a BASIC program

(BASIC), 182

INTI. (FORTRAN), 90
INTO. (FORTRAN), 90
IN. UUO (FORTRAN), 91
10CHAN (ALGOL), 366
I/O channel status (ALGOL), 366
I/O conversion routines (FORTRAN), 90
I/O list (FORTRAN), 56
I/O records (FORTRAN), 57

Jensen's device (ALGOL), 336

KEY (BASIC), 230, 279
KEY mode (BASIC), 280

L format (FORTRAN), 45
L format character (BASIC), 261
LABEL (ALGOL), 331
Label (ALGOL), 295, 319
LARCTAN (ALGOL), 369
LCOS (ALGOL), 369
Leading asterisk (BASIC), 259
Leaving the computer (BASIC), 183
LEFT$ function (BASIC), 224, 268
LEGAL subroutine (FORTRAN), 98
LEN function (BASIC), 221, 268
LENGTH (ALGOL), 349
LENGTH (BASIC), 230
LET (BASIC), 160, 166, 263
LEXP (ALGOL), 369
LlB40 (FORTRAN), 89
library (ALGOL), 295, 369
library functions (FORTRAN), 92
library procedures (ALGOL), 347
library subprograms (FORTRAN), 75, 92
library subroutines (FORTRAN), 96
LIMIT switch (QUEUE) (BASIC), 230
LINE (ALGOL), 3n
line continuation field (FORTRAN), 15
line format (FORTRAN), 15
line-numbered file (BASIC), 233
line numbers (BASIC), 160, 162,181
line numbers in listings (ALGOL), 3n
line spacing (FORTRAN), 50
LIN K (ALGOL), 347
linking Loader (ALGOL), 294, 375
LlNKR (ALGOL), 347
LINT. (FORTRAN), 90
LIST (BASIC), 230
listing the source program (ALGOL), 3n
LlSTOFF (ALGOL), 3n
LISTON (ALGOL), 3n
LIST REVERSE (BASIC), 230
lists (BASIC), 175, 178
literal constants (FORTRAN), 21
LLN (ALGOL), 369
LMIN (ALGOL), 371
LN (ALGOL), 369
LN (BASIC), 164, 267
Loading procedures (ALGOL), 375

Local (ALGOL), 328
Locations (FORTRAN)

defined, 117
required, 117

LOC function (BASIC), 243, 267
LOF function (BASIC), 243, 267
LOG (BASIC), 164, 267
LOGE (BASIC), 164, 267
Logical constants (FORTRAN), 21
Logical expressions (FORTRAN) 26
Logical fields (FORTRAN), 45
Logical IF statement (FORTRAN), 33, 83
Logical I/O (ALGOL), 365
Logical operators (FORTRAN), 27, 28
LOGICAL (type declaration statement)

(FORTRAN), 72, 85
LOG1~ (BASIC), 164, 267
LONG REAL (ALGOL), 294, 302, 306
Long real constants (ALGOL), 306
Loops (BASI C), 171

nested, 174
Loops, DO (FORTRAN), 34
LOUT. (FORTRAN), 90
LSIN (ALGOL), 369
LSQRT (ALGOL) 370
LT" 33B Teletype (BASIC), 279

MACRO main programs (FORTRAN), 110
MACRO subprogRlms (FORTRAN), 101
MAGDEN subroutine (FORTRAN), 98
t-Aagnetic tape usage (FORTRAN), 138
t-Aagnitude (FORTRAN)

of double-precision canstants, 20
of integer constants, 19
of real constants, 19

MARGIN (BASIC), 204, 247, 264, 266
MARGIN ALL (BASIC), 247, 266
t-Aathematical functions (BASIC), 164, 267
t-Aathematical procedures, (ALGOL), 369
t-Aatrices (BASIC), 207

MAT B =A, 211,265
MAT C = A + B, 211, 265
MAT C = A - B, 211, 265
MAT C = A * B, 211, 265
MAT C = CON, 208, 265
MAT C = ION, 208, 265
MAT C = INV(A), 212, 265
MAT C = (K) * A, 211, 265
MAT C = TRN(A), 211, 265
MA T C = ZER, 208, 265
MAT INPUT, 210, 216, 265
MAT PRINT, 209, 216, 265
MA TREAD, 207, 216,265

t-Aatrix (ALGOL), 325
MID$ function (BASIC), 224, 268
Mixed fields (FORTRAN), 47
Mode (ALGOL), 358
MTOP. UUO (FORTRAN), 91
Multiple record formats (FORTRAN), 48

termination of, 49

-385- INDEX

Name (ALGOL), 331
NAMELIST statement (FORTRAN), 41, 53, 85

input data, 54
output data, 55

Natural logarithm (BASIC), 164, 267
N-dimensional arrays, simulation of (BASIC), 213
Nested DO loops (FORTRAN), 34, 37
Nested loops (BASIC) 174
NEW (BASIC), 179, 230
NEWLINE (ALGOL), 362
NEWSTRING (ALGOL), 350
Newton-Rapheson (ALGOL), 334
NEXT (BASIC), 172, 173, 263
NEXTSYMBOL (ALGOL), 361
NLI. UUO (FORTRAN), 91
NLO. UUO (FORTRAN), 92
NMLST. (FORTRAN), 91
Non-executable statements (FORTRAN)

FORMA T statement, 41
NAMELIST statement, 53

Nonline-numberedfiles (BASIC), 233
NOPAGE (BASIC), 204, 248, 264, 266
NOPAGE ALL (BASIC), 248, 264
NOQUOTE (BASIC), 245, 264, 266
NOQUOTE ALL (BASIC), 245, 266
Normal exit of a DO statement (FORTRAN), 34
NOT (ALGOL), 312
NUM (BASIC), 210, 216, 267
Numbers (BASIC), 165
Numeric constants (ALGOL), 305
Numeric expressions (FORTRAN), 24
Numeric fields (FORTRAN), 42

repetition of, 48
repitition of groups, 48

Numeric IF statement (FORTRAN), 33, 83
Numeric image specificotions (BASIC), 256
Numeric labels (ALGOL), 295
Numeric operations (FORTRAN), 26
Numeric operators (FORTRAN), 24
Numeric procedures (ALGOL), 363

to (BASIC), 182, 232
o format (FORTRAN), 42, 46
Object Time System (ALGOL), 369, 376
OBUFF (FORTRAN), 96
Octal constants (ALGOL), 306
Octal constants (FORTRAN), 20
Octal I/O (ALGOL), 365
OCTI. (FORTRAN), 91
OCTO. (FORTRAN), 91
OFILE subroutine (FORTRAN), 98
OLD (BASIC), 179, 230
ON - GO TO (BASIC), 169, 264
OPEN FILE (ALGOL), 360
Open subroutine (FORTRAN), 75
Operating environment (ALGOL), 295
Operating system diagnostics (FORTRAN), 128
Operators (FORTRAN)

logical, 27
numeric, 24
priorities of, 28
relational, 27

INDEX -386-

OR (ALGOL), 312
OUTF. UUO (FORTRAN), 91
OUTPUT (ALGOL), 357
Output data (ALGOL), 364
OUTSYMBOL (ALGOL), 361
OUT. UUO (FORTRAN), 91
OWN arroys (ALGOL), 355
OWN variables (ALGOL), 355

<PA> delimiter (BASIC), 197
PAGE (ALGOL), 362
PAGE (BASIC), 204, 248, 264, 266
PAGE ALL (BASIC), 248,266
Parameter (ALGOL), 296, 331
PAUSE statement (FORTRAN), 38, 83
PDUMP subroutine (FORTRAN), 98
Peripherals (ALGOL), 357
Prec ision (FORTRAN)

of double-prec ision constants, 20
of real constants, 19

PRINT (ALGOL), 364, 365
PRINT (BASIC), 161, 168, 197, 215, 216, 241,

243, 263, 266
PRINTOCTAL (ALGOL), 365
PRINT statement (FORTRAN), 57, 84
PRINT USING (BASIC), 253, 265, 266
Printing characters in images (BASIC), 262
Priorities of operators (FORTRAN), 26, 28
PROCEDURE (ALGOL), 296
Procedure bodies (ALGOL), 333
Procedure call parameters (ALGOL), 332
Procedure calls (ALGOL), 335
Procedure headings (ALGOL), 333
Procedures (ALGOLL 331
Procedures, advanced (ALGOL), 336
Program names (BASIC), 180
Protection (ALGOL), 360
PUNCH statement (FORTRAN), 58, 84
Pure data file (BASIC), 234

QUEUE (BASIC), 230
QUOTE (BASIC), 245, 264, 266
QUOTE ALL (BASIC), 245, 266

R format character (BASIC), 261
Random access fi les (BASIC), 235
Random access of records (FORTRAN), 139

READ, 60, 84
WRITE, 59, 84

Random numbers (BASIC), 190, 267
RANDOMIZE (BASIC), 191, 267
Range of a DO statement (FORTRAN), 37
READ (ALGOL), 363
READ (BASIC), 160, 167, 215, 216, 239,

263, 266
READ OCTAL (ALGOL), 365
READ statement (FORTRAN), 59, 84

Reading and printing strings (BASIC), 215
REAL (ALGOL), 302, 305
Real constants (ALGOL) 305
Real constants (FORTRAN), 19
REAL (type declaration statement) (FORTRAN),

72, 85
Record size for random access files (BASIC), 235
Recursion (ALGOL), 337
Relational operators (FORTRAN), 27
Relational symbols (BASIC), 166
RELEASE (ALGOL), 360
RELEASE subroutine (FORTRAN), 98
Relocatable binary (ALGOL), 294
REM (ALGOL), 309
REM (BASIC), 201, 264
Rename (ALGOL), 360
RENAME (BASIC), 231
Repetition (FORTRAN)

of field specifications, 48
of groups, 48

REPLACE (BASIC), 231
Replacement operator (FORTRAN), 29
Required locations (FORTRAN), 117
REREAD statement (FORTRAN), 61, 84
RERED. UUO (FORTRAN), 91
RESEQUENCE (BASIC), 231
Reserved words (ALGOL), 299
RESET. UUO (FORTRAN), 91
RESTORE (BASIC), 202, 217, 264

data file, 248, 265
RETURN (BASIC), 193 264
RETURN statement (FORTRAN), 81, 83
Revised report (ALGOL), 293, 379
REWIN D (ALGOL), 366
REWIND statement (FORTRAN), 62, 84
RIGHT$ function (BASIC), 224, 268
RMAX (ALGOL), 371 .
RMIN (ALGOL), 371
RND (BASIC), 190, 267
RTB. UUO (FORTRAN), 91
RUBOUT key (BASIC), 180, 185
RUN (BASIC), 163, 182, 231
RUNNH (BASIC), 163, 182, 231

SAVE (BASIC), 186, 231
SA VRAN subroutine (FORTRAN), 98
Scalar (ALGOL), 302
Scalar variables (FORTRAN), 22
Scale factor (FORTRAN), 19, 20, 44
Scope (ALGOL), 328
SCRATCH (BASIC), 231

data file, 238, 265
Select (ALGOL), 359
SELECTIN PUT (ALGOL), 359
SELECTOUTPUT (ALGOL), 359
Sem icolon (ALGOL), 3.17
Semicolons (in PRINT) (BASIC), 197
Separators (ALGOL), 297
Sequential access files (BASIC), 233

-387- INDEX

SET (BASIC) , 243, 266
SETRAN subroutine (FORTRAN), 98
Setting line numbers in listings (ALGOL), 377
SFIELD (ALGOL),371
SGN (BASIC), 192, 267
Side-effect (ALGOL), 379
SIGN (ALGOL), 311
Sign function (BASIC), 192, 267
SIN (ALGOL), 369
SIN (~SIC), 164, 267
Single-~ compiler (ALGOL), 294
SINH (ALGOL), 369
SKIP RECORD statement (FORTRAN), 62, 84
SKIPSYMBOL (ALGOL), 361
SLIST. UUO (FORTRAN), 91
SLITE subroutine (FORTRAN), 99
SLITET subroutine (FORTRAN), 99
SPACE (ALGOL), 362
Spacing (ALGOL), 300·
Spacing (FORTRAN), 51
Spaces (BASIC), 160
SPACE$function (BASIC), 225, 268
Specification statements (FORTRAN), 65, 84

data specification, 70
storage specification, 66
type declaration, 72

SQR (BASIC), 164, 267
SQRT (ALGOL), 369
SQRT (BASIC), 164, 267
SSWITCH subroutine (FORTRAN), 99
Statement field (FORTRAN), 16
Statement number field (FORTRAN), 15
Statement numbers (FORTRAN), 16
Statements (ALGOL), 315
Statements (BASIC), 160
STEP (BASIC) 172, 174
STEP-UNTIL (ALGOL), 322
STOP (BASIC), 201,264
STOP statement (FORTRAN), 39, 83
Storage specification stotemenls (FORTRAN), 66

COMMON 68
DIMENSION 66
EQUIVALENCE, 69

Stored formats (FORTRAN), 49
STRING (ALGOL),. 303
String comparisons (ALGOL), 347
String concatenation (BASIC), 221
String constants (ALGOL), 307
String constants (BASIC), 215
String conventions (BASIC), 216
String image specifications (BASIC), 261
String manipulation functions (BASIC), 221, 268

AS<:! 222, 268
CHIq, 222, 268
INSTR, 226, 268
LEFT$, 224, 268
LEN, 221, 268
MID$, 224, 268
RJGHT$, 224, 268
SPACE$, 225, 268
STR$, 223, 268
VAL, 223, 268

String output (ALGOL), 361
String procedures (ALGOL), 363
String variables (ALGOL), 303
Strings (ALGOL), 294, 345, 346, 347, 361
Strings (BASIC), 199, 215
SI'rings, byte (ALGOL), 345, 349
String vectors (BASIC), 215
Subscripting, byte (ALGOL), 346
SUBSCRIPT INTEGER (type declaration

statement) (FORTRAN), 72, 85
Subprogram calling sequences (FORTRAN),

101
Subprogram linkage example (FORTRAN), 102
Subroutine linkage example (FORTRAN), 102
Subroutines (BASIC), 193

nested, 194
SUBROUTINE statement (FORTRAN), 78
Subroutine subprograms (FORTRAN) 78

CALL statement, 81
RETURN statement, 81
SUBROUTINE statement, 78

Subscripts (BASIC), 175, 178
SwitQ,8S (ALGOL), 351
Symbolic logic (FORTRAN), 26
Symbol procedures (ALGOL), 362
Symbols (ALGOL), 297

campo un d, 298
SYS (BASIC), 180, 229
SYSTEM (BASIC), 231

T format (FORTRAN), 51
TAB (ALGOL), 392
TAB (BASIC), 199
Tab, horizontal (FORTRAN), 15
Tables (BASIC), 175, 178
Tabs (BASIC),]60
TAIL (ALGOL), 348
TAN (ALGOL), 369
TAN (BASIC), 164, 267
TANH (ALGOL), 369
TAPE (BAS IC) , 231, 280
TAPE (BASIC), 280
'rermination of a program (FORTRAN), 39
Terminology (ALGOL), 295
Text data file (BASIC), 234
TIME subroutine (FORTRAN), 99
Trailing minus sign (BASIC), 258
TRANSFILE (ALGOL), 367
TRUE (ALGOL), 306
Type conversion (ALGOL), 310
Type declaration statements (FORTRAN), 72,84
TYPE statement (FORTRAN), 58, 84

Unconditional GO TO statement (FORTRAN),
31, 83

Unit records (FORTRAN), 42
UNLOAD statement (FORTRAN), 62, 84
UNSAVE (BASIC), 231
UNSAVE switch (QUEUE) (BASIC), 230
UNTIL (ALGOL), 322

INDEX

VAL function (BASIC), 223, 268
VALUE (ALGOL), 331
Variable field width (FORTRAN), 45
Variables (BASIC)

alphanumeric, 215
numeric, 165
subscripted, 17!j

Variables (FORTRAN)
amlY, 22
scalar, 22

Veclors (BASIC), 207

WEAVE (BASIC), 232
WHILE (ALGOL), 294, 322, 323
While element (ALGOL), 323
Word fonnat (FORTRAN), 134
WRITE (ALGOL), 361
WRITE (BASIC), 241, 243, 266
WRITE statement (FORTRAN), 58, 84
WRITE USING (BASIC), 253, 267
WTB. WO (FORTRAN), 91

X fonnat (FORTRAN), 53

-388-

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

READER'S COMMENTS
DEC system-l 0
MATHEMATICAL LANGUAGES HANDBOOK
DEC~lO-KRZB-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publi­
cations. To do this effectively we need user feedback: your critical evaluation of this document. Please give
specific page and line references when appropriate.

ERRORS NOTED IN THIS PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT OF THIS PUBLICATION:

DEC also strives to keep its customers informed about current DEC software and publications. Thus, the follow­
ing periodically distributed publications are available upon request. Please check the publication(s) desired.

o PDP-tO User's Bookshelf, a bibliography of current programming documents.

o Program Library Price List, a list of available software documents and programs.

Name __ ___ Date

Organization __ _

Please describe your position __ _

Street __ __

City ____________________________ _ State ______________________ Zip Code ______ _

- - - - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UN ITED STATES

Postage will be paid by:

~DmDDmD
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts .01754

FIRST CLASS
PERMIT NO. 33

MAYNARD. MASS.

DIGITAL EQUIPMENT CORPORATION ~D~DD~D WORLD-WIDE SALES AND SERVICE

MAIN OFFICE AND PLANT
1<f6 MaIn Sireer. Maynllrd, M8ss8chusells USA 01754· Telephone From Metropollfen BoslOn 646-8600. Elsewhere (617J-891-5'"

TWX; llo-341.Q212 Cable_ DIGITAL MAYN Telex: 94-86

NORTHEAST
REGIONAL OFFICE
275 Wyman Street, Wallham. Meuachueelts 021504
Telephone (617}£90-0320/onJ TWX, 710-324-6919

WALTHAM
15 Lunda Street. Waltham. Massachusetts 02154
Telephone· (6rn-89I·'0~ TWX, 710-32 .. -6919
CAMBRIDGE/BOSTON
899 MaIO Street. Cambridge, Massachuset:s 02139
Telephone (617)·"91·61~ TWX 710-320-1167
ROCHESTER
1~ AlIens Creek Road, Rochester. New York 1-4616
Telephone (716}-461.1700 TWX 710-253-3078
CONNECTICUT
240 Pomeroy Ave Mpflden_ COM 06450
Telephone (203)-237·84-41 7466 TWX 710.461·005-4

MID-ATLANTIC - SOUTHEAST
REGIONAL OFFICE
U S Aoute I. Princeton. New Jersey IJl540
Telephone (603)-"52·29«1 TWX 510-685-2338
NEW YORK
9S Cedar Lane, Englewood New Jersey 07631
Telephone (201)·871.-4984 (212)·59<C-6955. (212)-7J6-04017
TWX, 710-991·9nl
NEW JERSEY
1259 Route 46, Parsippany, New Jersey 0705<1
Telephone (201)-335-3300 TWX 710-987-8319
PRINCETON
U,S, Route 1
Princeton. New Jersey 06540
Telephone (609) .. 52·2Q.i() TWX 510·685-2338

LONG ISLAND
I Huntington Quadrangle
SUite 1507 Huntington StaUon. New York 11746
Telephone (516}-694-4131. (212)-895-8005
PHILADELPHIA
Station Square Three. Paoli, Pennsylvania 19301
Telephone (215}647·4900/""'0 Talax' 510-668-8395
WASHINGTON
Execullve Building
6811 Kenilworth Ave. Riverdale Maryland 20&40
Telephone. (3)I}-779·lfDJ/7S2-8797 TWX 710,826-9662
DURHAM/CHAPEL HIli
2704 Chapel Hill Boulevard
Durham. North Carolina 27707
Telephone (919)-.cag..3347 TWX 510-927·0912
ORlANDO
Suite 13). 7001 lake Ellenor Drive. Orlando. florida 32809
Telephone (3)5}-8S1-+t50 TWX 61Q..8S0.018)
ATLANTA
2815 Clearvlew Place. Suite 100.
Atlanta, Georgia 30340
Telephone: (40-4H51-37341373613736 TWX· 810-757-422:)

EUROPEAN HEADQUARTERS
DIgital EqUipment Corporation International Europe
81 Route de rAlre
1211 Geneva 26, SWitzerland
Telephone 427950 Telex 22 683

FRANCE
Equipment Digital SA R.L

PARIS
:J2.7 Rue de Charenton. 7S Perls 12 frence
Telephone 344-76-07 Telex 21m

GRENOBLE
10 rue Auguste Revier. F-38 Grenoble. france
Telephone (76) ~ 87 32 Telax :J2. 882 f (Code 212)

GERMANY
Digital Equipment GmbH

MUNICH
8 Muenchen 13, WaUenstelnpletl 2
Telephone: 081 1-35031 Telex: 52 226
COLOGNE
5 Koeln. Blsmarcketr8S8e 7.
Telephone. 0221·522181 Telex 888-2269
Telegram flip Chip Koeln

FRANKFURT
6078 Neu·lsenburg 2
Am forsthaus Gravenbruch 5-7
Telephone 06102·55:26 Telex "'·76-82
HANNOVER
3 Hannover. Podblelsklstr.s.e 102
Telephone ()511-69-70-95 Telex 922·952

AUStRIA
Digital Equipment Corporation Gee m b H
VIENNA
Marlahilferetraese 138. llSO Vienna IS. Au.trla
Telephone; 8S 51 86

UNITED KINGDOM
Digital Equipment Co. ltd

UK HEADQUARTERS
Arkwright Road. ReadIng. Bertes
Telephone 0734-583555 Telex 84327

READING
The Evening Post Building. Tessa Aoad
Audlng. Berks

BIRMINGHAM
29/31. BIrmingham Aoad. Sullon Coldfleld. Warwick.
Telephone (CXK4) 21·355 5501 Telex 337060

MANCHESTER
13 Upper Precinct. Walkden. Manchelter M2B 5AZ
Telephone 061-790-8-411 Telex 668666
LONDON
Bilton Houu. Uxbrldile Aoad. Eflling. London W.5.
Telephone 01-579·2334 T.lex 22371

EDINBURGH
Shiel House. Cralg.hlll. lIvlng.ton,
West Lothlen. Scotland
Telephone: 32705 / Telex. 727113

NETHERLANDS
THE HAGUE
Digital Equipment N .V.
Sir Winston Churchilllaan 370
RljSwljkJThe Hague. Nether land.
Telephone: 070-995-160 Te lex: S2:533

BELGIUM
BRUSSELS
Digital Equipment N VIS A
108 Aue D'Arlon
10<C0 Brussels. Belgium
Telephone: 02-139256 Telex: 25297

UNITED STATES
MID-ATLANTIC - SOUTHEAST (cooL)
KNOXVILLE
6311 Kingston Pike, Suite 21E
KnOXVille. Tennessee 31919
Telephone. (615)-588-6571 TWX 81().S8,3..0123

CENTRAL
REGIONAL OFFICE:
1850 frontage Aoad, Northbrook. illinois 60062
Telephone (312)-498-2500 TWX. 910-686-0655

PITTSBURGH
400 Penn Center Boulevard
Pittsburgh. Pennsylvania 15235
Telephone' (412)-2<C3-9404 TWX 710·797·3657

CHICAGO
1850 frontage AOAd Northbrook. illinOIS 60062
Telephone (312)--196·2500 TWX 910-68&0655

ANN ARBOR
230 Huron View Boulevard, Ann Arbor. Michigan -48103
Telephone. (313)·761-IISO TWX 810-22J..6053

INDIANAPOLIS
21 Beachway Dnve - Suite G
Indianapolis, Indiana 46224
Telephone (317)-243-8341 TWX 810-3041·3436

MINNEAPOLIS
Suile III fll3) Cedar Avenue South.
Minneapolis, Minnesota 55420
Telephone (612}-854-6S62·:}-<c·5 TWX. 910-576-2818

CLEVELAND
Park HIli Bldg. 35104 Euclid Ave
WIlloughby_ Ohio"-'1()9.-4
Telephone (216)·946·8484 TWX 810-"27-2006

ST LOUIS
Suite 110. 115 Progre .. Pky Maryland Heights,
MISSOUri 63043
Telephone (3'''}-878-4310 TWX, 910-764·0831

DAYTON
3101 Kettering Blvd _ Dayton. Ohio -454~
Telephone (513)·299·7377 TWX 810"59·1676

MILWAUKEE
8531 W. Capllol Drive, Milwaukee, Wisconsin 53222
Telephone (.. 1 ..)-463·9110 TWX· 910-262·1199

DALLAS
88S5 North Stemmons freeway
Dallas. Texas 752 .. 7
Telephone (214)-638--1880 TWX 910-861-4000

HOUSTON
3-417 Milam Street_ Suite A Houston. Texas 77002
Telephone (713)·52 .. ·2961 TWX 910·881+1651

INTERNATIONAL
SWEDEN
Digital Equipment Akuebolag

STOCKHOLM
Vretenvagen 2. S-171 54 Solna. Sweden
Telephone: 98 1390 Telex: 170 SO
Cable DIgital Stockholm

NORWAY
Dlgllal EqUipment

OSLO
clo Firma Service
Waldenmarthranesgate 84-B-86
Oslo I Norway
Telephone 371985.3702 30 Telex 166 43

DENMARK
Digital EquIpment Corporation

COPENHAGEN
Veaterbrogade HO. 1620 Copenhagen V

SWITZERLAND
Digital EqUipment Corporation S A

GENEVA
81 Aoute de rAI,e
1211 Geneva 26, SWllzerland
Telephone 427950 Telex 22 683
ZURICH
Scheuchzerstrasse 21
CH-8)06 Zunch. SWitzerland
Telephone 01;60 3S 66 Telex 56059

ITALY
Digital Equipment 5 p.A.

MIlAN
Corso Gartbaldl 49. 20121 Milano, Italy
Telephone 812 7<48 69-4!54 Telex 33615

SPAIN
MADRID
Alaio Ingenleros S.A. Enrlgue larreta 12. Madr id 16
Telephone 21535 43/ Telex: 27249

BARCELONA
Atalo Ingenleros S,A., Ganduxer 76. Barcelona 6
Telephone 221 4-4 66
Digital EquIpment Corporation TId.

AUSTRALIA
Digital Equipment Austrslls Pty. ltd.

SYDNEY
POBox <$1. Crowa Neat
N S W Auatralla :l)6S
Telephone; G-2S66 Telex AA207iIJ
Cable DIgital. Sydney

MELBOURNE
60 Park Street, Soulh Melbourne. Victoria. 3205
Telephone 696-142 Telex A.M0616

PERTH
643 Murrey Street
West Perth, Western Australia 6Ol5
Telephone. 214-993 Telex AA921«J

BRISBANE
1:J:J Mer lvale Street. South SrlsbaM
Queensland, Australia ",01
Telephone 44-4-()047 Telex: AA..a616

ADELAIDE
6 Montro .. Avenue
Norwood, South Australia 5067
Telephone 831-339 Telex AAB2825

CENTRAL (cooL)
NEW ORLEANS
3100 Aldgelake Onve. Suite 108
Metalne. louIsiana 70002
Telephone 504-837-0257

WEST
REGIONAL OFFICE
310 Soquel Way, Sunnyvale, California 9«)86
Telephone (408)·735-9200
ANAHEIM
801 E Ball Road, Anaheim. California 92805
Telephon •. (7'''')-77&-6932/8730 TWX: 91().59'·1189
WEST LOS ANGELES
1510 Cotner Avenue. Los Angel ••. Callforna 90025
Telephone. {'2'3)-479-3791/431e TWX: 910-342.fJ999
SAN DIEGO
3444 Hancock Street
San Diego. Callforn" 92110
Telephone (7'.).298-0591,0593 TWX 910-335-1nl
SAN FRANCISCO
1400 Terra Sell.
Mountain Vie California 9«)4()

Telephone (415}964-6200 TWX 910-37~1266
PALO ALTO
560 San Antonio Rd Palo Alto. California 94306
Telephone (""5)·969-6200 TWX 910·373-1266
OAKLAND
7850 Edgewater Drtve
Oakland, California 94621
Telephone (iI'S)·6:)S.S453/78:J) TWX, 910-366-7238
ALBUQUERQUE
6:1>3 Indian School Road, N E
Albuquerque. N M 87110
Tele~hone· (505)-296·541115428 TWX 910-9ED-061 "
DENVER
2315 Soulh Colorado Blvd. Suite #5
Denver. Colorado 80222
Telephone (303)·757·33321756-16561758-1659
TWX; 910-931·2650
SEATTLE
I~t l:JJth N E. Bellevue. Wuhlngton 9EDlS
Telephone (206)~/4SS-54()04 TWX 91~2:JJ6
SALT LAKE CITY
431 South 3rd East. Sail Lake City. Uteh SCI 11
Telephone (8)I}-:):28..9638 TWX 910-925-5834
PHOENIX
43S8 Eest Broadway Road
Phoenix. Arizona 85040
Telephone (602) 268-30488 TWX: 910-95{)..4t691
PORTLAND
Suite 168
5319 S.W. Cenyon Court. Portland. Ore 97221
Telephon.: (503) 297·3761/3765

NEW ZEALAND
Digital Equipment Corporation ltd.
AUCKLAND
Hilton House OJ Queen Street, Box 201 A.
Auckland, New Zeeland
Telephone 75-533

CANADA
Digital Equipment 01 Canada. ltd

CANADIAN HEADQUARTERS
150 Rosamond Street Carleton Piece. Ontario
Telephone (613}2S7·2615 TWX 610.561-1651

onAWA
120 Holland Street. Ottawa 3. Ontario KIV OX7
TelephoM (613)-n5-2193 TWX 610·562·8907

TORONTO
230 lakeshore Aoad East. Port Credit. Ontario
Telephone (.. ,6)·27 ,2 .. , TWX 610· .. 92·<4306

MONTREAL
9675 Cote de Ltesse Road
Dorval, Quebec. Canada 760
Telephone 51"636·9393 TWX 610·"22," ' 2"

EDMONTON
5531 • 100 Street
Edmonton, Alberta. Canade
Telephone (<C03)·4304·9333 TWX 610-831·22-48

VANCOlNER
DI9itai Equipment of Canada. ltd
2210 Wesl 12th Avenue
Vancouver 9. British Columbia. Canada
Telephone: (604)-136-5616 TWX,610-929-2006

ARGENTINA
BUENOS AIRES
Coasln SA
VlHey del PI no 4071. Buenos Aires
Telephone 52-3185 Telex 012-2284

VENEZUELA
CARACAS
Coasln SA (Saln only)
Apartado 50939
Salana Grande No 1, Caracas
Telephone 72·9637 Cable INSTAUVEN

CHILE
SANTIAGO
COllSin Chile ltda (sales only)
Cuilia 1-4588. Correa 15. Sanllago
Telephone 396713 Cable COACHIL

JAPAN
TOKYO
Alkei Trading Co . Ltd (sales only)
Konto-Kalkan Bidil
No. 18-1". Nlehl.himbashi I-chome
Mlnato-Ku. Tokyo, Japan
Telephone 5915246 Telex, 781-4208
Digital Equipment Corporation International
Kowa Building No 17. Second floor
2-7 Nishi-Atebu I·Chome
Mlnato·Ku. Tokyo, Japan
Telephone 404-58904"6 Telex: TK-&l28

PHILIPPINES
Stanford Computer Corporation
PO Box 1(108
.. 16 Daamerlnaa St • Manila
Telephone"9-68-96 Telex 7 .. 2-0352

INDIA
H.S. Sonawela Mg Director (Sales Only)
HINDITRON SERVICES PUT lTD
fEJ/ A Nepean Sea Road
Bombey, Indle

dec~ handbook series

