
I.

EK-KA820-TM-003

KA820/KA825 .
Processor

Techni al Manual

(

(

(

t--

(

April 1987

EK-KA820-TM-003

KA820/KA825 Processor
Technical Manual

This manual is written for people who install and replace the KA825 module
in the field and for people who incorporate KA825 modules into their own
products or systems. The manual gives detailed information about mainte­
nance functions. It also tells how to customize the processor and write system
software, including exception handlers, interrupt handlers, and device driv­
ers for dedicated devices.

digital equipment corporation • maynard, massachusetts

First Edition, December 1985
Second Edition, May 1986 (
Third Edition, April 1987

Information in this manual is subject to change without notice and should not (
be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this manual.

Digital Equipment Corporation makes no representation that the intercon­
nection of its products in the manner described herein will not infringe on
existing or future patent rights, nor do the descriptions contained herein im-
ply the granting of license to make, use, or sell equipment constructed in ac- (
cordance with this description. .

© Digital Equipment Corporation 1985, 1986, 1987.
All Rights Reserved.

Printed in U.S.A.

(

The following are trademarks of Digital Equipment Corporation:

DEC ~DmDDmDTM VAX
DECnet DECUS VAXBI
DECsystem-10 DECwriter VAXELN
DECSYSTEM-20 DIBOL VMS
DECtape ULTRIX VT

UNffiUS (

M474000

(

(

(

(

(

Contents

Preface

Chapter 1

Chapter 2

Page

Xl

Introduction to the KA820 Module

1.1 KA820 Functional Sections) .1-2

1.1.1 CPU Section ... 1-2
1.1.2 VAXBI Interface Section 1-2
1.1.3 Port Controller and PCI Bus Devices Section 1-2

1.2 Customer Options ... 1-4
1.3 VAXBIOverview ... 1-4

1.3.1 VAXBI Addressing 1-5
1.3.2 VAXBI Timing and Arbitration 1-5

1.4 KA820 Module Layout ... 1-5
1.5 Power Requirements .. 1-6
1.6 Environmental Requirements 1-7

KA820 Module Detailed Description

2.1 CPU Section .. 2-2

2.1.1 lIE Chip Functions 2-2
2.1.2 M Chip, BTB, and Cache Functions 2-4

2.1.2.1 BTB (Backup Translation Buffer) 2-4
2.1.2.2 Cache 2-6
2.1.2.3 Internal Processor Registers 2-8
2.1.2.4 Serial-Line Units 2-8

2.1.3 F Chip Functions 2-9
2.1.4 Communication between the Processor Chip Set

and the VAXBI Bus 2-9
2.1.5 Control-Store Operation 2-10

2 .. 2 VAXBI Interface ... 2-11

2.2.1
2.2.2
2.2.3

VAXBI Address Space 2-11
KA820 Registers Accessible to Other VAXBI Nodes 2-13
VAXBI Transactions 2-14

2.2.3.1 KA820-lnitiated Transactions 2-16
2.2.3.2 KA820 Slave Responses 2-17
2.2.3.3 Device Interrupt Sequence 2-17

iii

Chapter 3

Chapter 4

iv

2.3 Port Controller and PCI Devices 2-19

2.3.1
2.3.2
2.3.3
2.3.4

PCI Bus Addressing 2-20
EEPROM Functions 2-21
Watch Chip Interface 2-21
RCX50 Controller Interface 2-21

Sequences and Options on Power-Up

3.1 Power-Up Sequence and Related Signals and Jumpers 3-2
3.2 Self-Test .. 3-4
3.3 Initialization ... 3-8

3.3.1 Power-Up Initialization 3-9
3.3.2 Processor Initialization 3-9
3.3.3 System Initialization 3-11

3.4 Restart and Bootstrap .. 3-14

3.4.1
3.4.2

Restart Function (Warm Start) 3-14
Bootstrap Function (Cold Start) 3-15

3.4.2.1 EEPROM and Boot RAM Bootstrap
Considerations 3-16

3.4.2.2 Software Responsibilities in the Bootstrap 3-17
3.4.2.3· Loading Secondary Control-Store Patches 3-17

3.5 Sample Multiprocessor Configuration Start Sequence 3-21

Console Functions

4.1 Console States ... 4-1
4.2 Console Entry .. 4-2

4.2.1 Halt Codes ... 4-3

4.3 Console Commands ... 4-4

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12
4.3.13
4.3.14
4.3.15
4.3.16
4:3.17
4.3.18

Change Console Baud Rate Command (BREAK»)4-6 .
Boot Command (B)4-7
Continue Command (C)4-9
Deposit and Examine Commands (D and E)4-9
Halt Command (H) 4-13
Initialize Command (1)4-13
Next Command (N)4-13
Start Command (S)4-13
Test Command (T)4-14
Test with Menu Command (TIM)4-15
Binary Load and Unload Command (X)4-15
VAXBI Forward Command (Z)4-16
Console Comment Command (D4-18
Enter Console Mode Command (CTRL/P»)4-18
Forward Next Character Command (ESC»)4-18
Stop Console Output Command (CTRL/S»)4-18
Restart Console Output Command (CTRL/Q»)4-18
Abort Command Line Command (CTRLIU»)4-19

4.4 Console Error Codes4-19
4.5 LoadingControl-Store Patches from the Console4-20

(

(

(

4.6 Logical Console Operation4-21 (

Chapter 5 Handling Exceptions and Interrupts

(
5.1 System Control Block .. 5-3
5.2 Machine-Check Exceptions, 5-5

5.2.1 Machine-Check Stack 5-7

5.2.1.1 Byte Count, (SP) 5-7
5.2.1.2 Parameter 1, (SP) + 8, MTEMPB Register 5-8
5.2.1.3 Virtual Address Register,

(SP) + C, MTEMP13 Register 5-8
5.2.1.4 Virtual Address Prime Register,

(SP) + 10, MTEMP.PSL.TEMP Register 5-8
5.2.1.5 Memory Address Register, (SP) + 14,

MTEMP9 Register 5-8
5.2.1.6 Status Word, (SP) + 18, MTEMPC Register 5-8
5.2.1.7 Program Counter at Failure, (SP) + 1C 5-11
5.2.1.8 MicroPC at Failure, (SP) + 20 (hex) 5-11
5.2.1.9 Current Program Counter, (SP) + 24 (hex) 5-11
5.2.1.10 Current Processor Status Longword,

((SP) + 28 (hex) 5-11

Chapter 6

(

(

5.3 CPU Double-Error Halt Considerations 5-11
5.4 Power-Up and Console Mode Errors 5-12

Dedicated 1/0 and Memory Devices

6.1 Serial-Line Units ... 6-2

6.1.1 Receive Control and Status Registers (ReadlWrite) 6-3

6.1.1.1 Bit (12) LP (Loopback Enable, ReadlWrite) 6-4
6.1.1.2 Bit (7) DON (Done, Read Only) 6-4
6.1.1.3 Bit (6) Interrupt Enable (ReadlWrite) 6-5

6.1.2 Receive Data Buffer Registers (Read Only) 6-5

6.1.2.1 Bit (15) ERR (Error on Received Character,
Read Only) 6-5

6.1.2.2 Bit (14) BRK (Break, Read Only) 6-5
6.1.2.3 Bits (7:0) DATA (Received Data, Read Only) 6-6

6.1.3 Transmit Control and Status Registers (ReadlWrite) 6-6

6.1.3.1 Bit (13) LP (Loopback, Write Only) 6-7
6.1.3.2 Bit (12) BRK (Break, Write Only) 6-7
6.1.3.3 Bits (11:9) Baud Rate (Write Only) 6-7
6.1.3.4 Bit (8) BRE (Baud Rate Enable, Write Only) 6-7
6.1.3.5 Bit (7) RDY (Ready, Read Only) 6-8
6.1.3.6 Bit (6) IE (Interrupt Enable, ReadlWrite) 6-8

6.1.4 Transmit Data Buffer Registers (Write Only) 6-8

6.1.4.1 Bits (11:8) of TXDB (ID Field, Write Only) 6-9
6.1.4.2 Bits (7:0) of TXDB,

(Command or Transmit Data, Write Only) 6-9
6.1.4.3 Bits (7:0) of TXDB1, 2, and 3

(Transmit Data, Write Only) 6-9

v

vi

6.2 Using the EEPROM ... 6-9
6.3 Boot RAM .. 6-11
6.4 Using the Watch Chip .. 6-11

6.4.1 Watch Chip CSR A, Address 200B 8014 6-14
6.4.2 Watch Chip CSR B, Address 200B 8016 ... -............... 6-15
6.4.3 Watch Chip CSR C, Address 200B 8018 6-15
6.4.4 Watch Chip CSR D, Address 200B 801A 6-15
6.4.5 Bootstrap Software Date and Time Responsibilities 6-16
6.4.6 Compatibility with VMS and ULTRIX 6-16

6.5 Controlling the RCX50 Controller 6-16

6.5.1

\6.5.2

6.5.3

Data Transfer Examples ' 6-18
Register RX5CSO, Address 200B 0004 6-19

6.5.2.1 RX5CSO Command Function 6-19
6.5.2.2 RX5CSO Data Transfer Status and

Maintenance Status 6-22

Register RX5CS1, Address 200B 0006 6-23

6.5.3.1 RX5CS1 Command Function, Track Register 6-23
6.5.3.2 RX5CS1 Data Transfer and

Maintenance Status Format, Error Register 6-24

6.5.4 Register RX5CS2, Address 200B 0008 6-25

6.5.4.1 RX5CS2 Data Transfer Format j Sector Register 6-25
6.5.4.2 RX5CS2 Data Transfer and

Maintenance Status Format, Current Track
Register 6-26

6.5.5 Register RX5CS3, Address 200B OOOA 6-26

6.5.5.1 RX5CS3 Data Transfer Status Format,
Current Sector Register 6-26

6.5.5.2 RX5CS3 Maintenance Status Format,
Current Status Register 6-26

6.5.6 Register RX5CS4, Address 200B OOOC 6-28

6.5.6.1 RX5CS4 Data Transfer Status,
Incorrect Track Register 6-28

6.5.6.2 RX5CS4 Maintenance Status,
System Configuration Register 6-28

6.5.7 Register RX5CS5, Address 200B OOOE 6-29
6.5.8 Register RX5EB, Empty Sector Buffer Register,

Address 200B 0010 6-30
6.5.9 Register RX5CA, Clear Address Register,

Address 200B 0012 6-30
6.5.10 Register RX5GO, Start Command Register,

Address 200B 0014 6-30
6.5.11 Register RX5FB, Fill Sector Buffer Register,

Address 200B 0016 6-31

\

(

(

(

I
\

(

(

(

(

Chapter 7 KA820 Diagnostics

7.1 Load Paths .. 7-2
7.2 Test Sequence and Repair Recommendations 7-3
7.3 EVKAA, Hard-Core Instruction Test 7-4

7.3.1 Booting EVKAA on the Primary Processor 7-4
7.3.2 EVKAA Prerequisites and Functions 7-4

7.4 Using VDS Stand-Alone 7-5

7.4.1 Booting VDS Stand-Alone on the Primary Processor 7-5
7.4.2 Booting VDS Stand-Alone on an Attached Processor 7-6
7.4.3 Help ... 7-6
7.4.4 Attaching and Selecting the KAB20 Module 7-7
7.4.5 Flags in VDS ... 7-7
7.4.6 Test Repetitions 7-B

7.5 Using VDS On-Line ... 7-9
7.6 EVKAB, VAX BasicInstruction Exerciser 7-10
7.7 EVKAC, Floating-Point Instruction Exerciser 7-11
7.B EVKAE, VAX Privileged Architecture Exerciser 7-11
7.9 EBKAX, VAX B200-Specific Cluster Exerciser 7-12
7.10 EBDAN, KAB20 Serial-Line Unit Diagnostic 7-12

Appendix A KA820 Module 1/0 Pins and Cables

A.1 Module I/O Pin Definitions A-1
A.2 Cables Related to the KAB20 A-4

Appendix B Module Installation and Access to Cables

B.1 Module Installation and Replacement B-1
B.2 Gaining Access to the Cables B-2

Appendix C Drive Load Characteristics of Off-Board Signals

C.1 Serial-Line Unit Signals C-1
C.2 PCI Bus Off-Board Signals C-1

Appendix D BIIC Registers

D.1 Device Register, DTYPE (RIW, DMW, DCLOL) D-1
D.2 VAXBI Control and Status Register;VAXBICSR : D-2
D.3 Bus Error Register, BER (W1C, DCLOC) D-5

D.3.1 Bus Error Register Hard Error Bits D-6
D.3.2 Bus Error Register Parity Mode D-B
D.3.3 Bus Error Register Soft Error Bits D-B

D.4 Error Interrupt Control Register, EINTRCSR. D-B
D.5 BCI Control and Status Register, BCICSR D-10
D.6 Receive Console Data Register, RXCD D-14

D.6.1 MFPR Instruction for the RXCD Register, D-15
D.6.2 MTPR Instruction for the RXCD Register D-15

Appendix E Port Controller Control and Status Register

vii

Appendix F Internal Processor Registers on the KA820 Module

Appendix G Register Contents at Power-Up and Boot Entry

Appendix H EEPROM Contents

Appendix I Software Boot Control Flags

Appendix J Sample Bootstrap Code

J.l EEPROM Bootstrap Dispatcher J-l
J.2 Sample RX50 Bootstrap Code J-4
J.3 Sample DU Series Bootstrap Code (MSCP Devices) J-7

Appendix K Unexpected Error Conditions

K.l ID Parity Error Interrupts Following Retry Timeout K-l
K.2 Clearing the Bus Error Register K-l
K.3 Interrupts Following Initialization K-l

Glossary

Index

Examples

3-1 System Initialization Console Output 3-12
3-2 Loading a Patch Block into the Control-Store RAM 3-19
3-3 Reading Control-Store Patches 3-20
3-4 Commands to Start an Attached Processor 3-22
4-1 Sample Console Output Following Entry to the Console Mode4-4
4-2 Representative Boot Commands4-8
4-3 Sample Console Dialog Using the D and E Commands4-12
4-4 Console Output Showing a Successful Slow Self-Test4-14
4-5 Console Output Showing a Slow Self-Test Failure4-14
4-6 Loading and Checking Control-Store Patches from the Console4-21
4-7 Logical Console Dialog Displayed on the Terminal4-21
4-8 Primary Processor Software Performs Logical Console Functions4-22
7-1 Booting EVKAA on the Primary Processor 7-4
7-2 Booting VDS Stand-Alone on the Primary Processor 7-5
7-3 Booting VDS Stand-Alone on an Attached Processor 7-6
7-4 Running VDS On-Line from the SYSMAINT Directory 7-9
7-5 Running VDS On-Line from RX50 Diskette Drive 7-10
7-6 Running EBKAX .. 7-12
7-7 Running EBDAN .. 7-13

Figures

1-1 KA820 Block Diagram ... 1-3
1-2 VAXBI Physical Address Space 1-5
1-3 KA820 Module Layout. .. 1-6
2-1 KA820 CPU Section, Block Diagram 2-3
2-2 BTB and BTB Tag Addressing 2-5
2-3 Page Table Entry Format .. ~ 2-6
2-4 Cache and Cache Tag Addressing 2-7
2-5 KA820 VAXBI Interface, Block Diagram 2-11

viii

(

(

(

(

(

(

2-6
2-7
2-8
2-9
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
4-1
5-1
6-1
6-2
6-3
6-4

6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18

6-19
6-20
6-21
A-I
A-2
A-3

A-4

A-5

A-6
A-7
D-l
D-2
D-3
D-4
D-5
D-6
E-l

I/O Address Space on the VAXBI Bus 2-12
BIlC Internal Register Addresses Used on the KA820 Module 2-14
Port Controller and PCI Devices, Block Diagram 2-19
PCI Device Address Map 2-20
BI AC LO Land BI DC LO L Sequencing 3-2
Power-Up Microcode Flow 3-5
System Initialization Sequence 3-13
Restart Parameter Block Format 3-15
Control-Store Patch Block Format 3-18
WCSL Register Format 3-19
WCSA and WCSD Register Formats 3-20
Sample Multiprocessor Configuration 3-21
Use of (ESC> with the Z Command4-17
Machine-Check Status Word Bit Layout 5-7
Receive CSR Bit Format 6-4
Receive Data Buffer Register Format 6-5
Transmit Control Status Register Format 6-6
Serial-Line Units 1, 2, and 3 Transmit Data Buffer (TXDBl, 2, 3)
Format ... 6-8
Serial-Line Unit 0 Transmit Data Buffer (TXDB) Format 6-9
Watch Chip Bit Rotation on the PCI Bus 6-12
Watch Chip CSR A Format 6-14
Watch Chip CSR B Format 6-15
Watch Chip CSR D Format 6-15
Register RX5CSO Command Function Format 6-19
Register RX5CSO Status Format 6-22
RX5CSI Command Function Format 6-23
RX5CS2 Command Function Format: Sector Register 6-25
RX5CS2 Status Format: Current Track Register 6-26
RX5CS3 Data Transfer Status Format: Current Sector Register 6-27
RX5CS3 Maintenance Status Format: Current Status Register 6-27
RX5CS4 Command Function Format: Incorrect Track Register 6-28
RX5CS4 Maintenance Status Format: System Configuration
Register .. 6-29
RX5CS5 Format: Extended Function 6-29
RX5EB Format: Empty Sector Buffer Register 6-30
RX5FB Format: Fill Sector Buffer Register 6-31
Module I/O Pins on Segment A Viewed from the Backplane A-I
Module I/O Pins on Segment B Viewed from the Backplane A-2
Module I/O Pins on Connectors Cl and C2 Viewed from the
Backplane .. A-2
Module I/O Pins on Connectors Dl and D2 Viewed from the
Backplane .. A-3
Module I/O Pins on Connectors El and E2 Viewed from the
Backplane .. A-3
A Backplane Slot Shown from the Backplane Side of the Card Cage ... A-4
Cabling for C and D Connectors A-5
Device Register (DTYPE) D-2
VAXBI Control and Status Register (VAXBICSR) D-3
Bus Error Register (BER) D-5
Error Interrupt Control Register D-9
BCI Control and Status Register D-11
RXCD Register ... D-14
Port Controller Control and Status Register E-2

ix

Tables

x

1-1
1-2
2-1
2-2
2-3
2-4
2-5
3-1
3-2

3-3
4-1
4-2
4-3
4-4

4-5
5-1
5-2
5-3
5-4
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
7-1
7-2
C-l
C-2
C-3
C-4
C-5
C-6
C-7
C-8
D-l

KA820 Module Power Requirements 1-7
Environmental Requirements 1-7 (
Time Required for Read and Write Data Transactions 2-8
Node Space Base Address Assignments 2-13
BIlC Register Functions on the KA820 Module 2-15
KA820-Initiated Transactions 2-16
KA820 Slave Responses 2-18
External Signals Affecting the Power-Up Sequence 3-3
PCM Module Jumper Configurations Affecting the
EEPROM Update Function 3-4
Slow Self-Test Checks ... 3-7
PCntl CSR Bits Related to the Console4-2
Halt Codes .. 4-3
Symbols Used in Console Command Descriptions 4-6
EEPROM Customer Option Section Addresses Accessible
with the DIE and E/E Commands4-11
Console Error Codes4-19
Interrupt Priority Levels on the KA820 Module 5-2
System Control Block Vector Assignments on the KA820 Module 5-3

(
Machine-Check Stack .. 5-6
VAXBI Event Codes: Status Word Bits (20:16) 5-10
PCI Device Addresses and Accessibility 6-1
Serial-Line Unit Registers 6-3
Setting the Baud Rate for a Serial-Line Unit 6-7
EEPROM Map .. 6-10
Watch Chip Registers ... 6-12
Watch Chip Data Interpretation 6-13
Watch Chip Date and Time Sample 6-13 (
RCX50 Controller Register Functions 6-17
Diskette Surface Selection Code Interpretation 6-20
RCX50 Function Codes 6-21
RCX50 Extended Functions 6-21
RCX50 Error Codes Available in Register RX5CSI 6-24
Diagnostic Program Categories Related to the VAX 8200 7-1
Diagnostic Programs Described in this Chapter 7-2
Serial-Line Unit Output Signal Characteristics C-l
PCI Bus Off-Board Signals C-2
Other Off-Board Signals C-3

(
Driver Output Voltages .. C-3
Driver Output Current , C-3
PCI DAL (7:0) Lines Bidirectional Voltage Levels C-4
PCI DAL (7:0) Lines Bidirectional Current Levels C-4
PCI Bus Input Signal Voltage and Current Levels C-4
Arbitration Control Codes D-4

(

(

(

Preface

This manual tells what you need to know about the KA820 processor to use
console commands for maintenance functions and to customize the processor
to suit your needs. It also gives information you need to write system software
tailored to the KA820 module, including device drivers for dedicated devices,
exception handlers, and interrupt handlers.

Intended Audience

This manual is for:

• People who install and replace the KA820 module in the field.

• Engineers and system programmers who incorporate KA820 modules into
their own products or systems.

Before You Use This Manual

You should be familiar with the basic concepts and features of VAX com­
puters, including the:

1. VAX instruction set and data types

2. VAX addressing modes

3. VAX memory management system

4. VAX process structure

You can find this information in the VAX Architecture Handbook.

Structure of This Manual

Although the organization ofthis manual is tutorial, you can use the manual
as a reference as well. It consists of seven chapters and a set of appendixes:

Chapter 1 Describes the major functions, characteristics, and compo­
nents of the KA820 module. Together with the detailed de­
scription in Chapter 2, it gives you a context for assimilating
the programming and operating information in Chapters 3
through 7.

xi

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Completes the overview begun in Chapter 1. It describes the
operation of the KA820 module as a whole and explains the
function of each part.

Defines the power-up functions and options available to you on
the KA820 module.

Describes the console functions for the KA820. Console com­
mands such as Examine and Boot help you to maintain the
system.

Gives information you need to write exception and interrupt
handling software for the KA820.

Provides programming information for the dedicated devices
on the KA820 module: serial line units, boot RAM, EEPROM,
watch chip, and RCX50 diskette controller.

Gives an overview of the diagnostic software that tests the
KA820 and tells what you need to know to run the VAX
cluster exerciser programs and the serial-line unit diagnostic
program.

Appendixes A through K contain lists and tables too lengthy to include in the
text of the manual. A glossary and an index follow the appendixes.

Related Manuals

(

(

The KA820 module is one of a family of processors, memories, and adapters (
that use the 32-bit VAXBI bus. For a technical summary of all VAXBI mod-

xii

ules, system components, and integrated circuits see the VAXBI Options
Handbook.

Other related technical manuals are the:

VAX 8200 Owner's Manual

MS8200 Memory Technical Description

DWBUA VAXBI-TO-UNIBUS Adapter Technical Description

VAX Architecture Handbook

VAX Diagnostic Supervisor User's Guide

VAX Diagnostic System User's Guide

(

(

Conventions Used

N umber bases

Your input

Uppercase

Lowercase

[]

(
(CR)

(LF)

(RET)

Spec i a 1 f')nt

You form a control character by pressing the CTRL
key and typing another key at the same time.

Most numbers in the text are expressed in decimal
form. Addresses are expressed in hexadecimal form.
Bit patterns are expressed in binary form. Numerals
for which the context does not make the number base
clear are labeled decimal, hex, or binary.

Examples show your input in red .

Command formats show literals in uppercase.

Command formats show variables in lowercase.

Command formats show optional qualifiers and
parameters enclosed in square brackets.

Carriage return.

Line feed.

Return key. Pressing (RET) on the terminal sends
(CR) (LF) to the system. Most console commands
terminate with (RET]. The (RET) key is not shown in
command examples, but you should assume that you
must press (RET) after typing a command, unless the
text indicates otherwise.

Text in this font indicates what you see on the console
terminal.

xiii

(

(

(

(

(

(

(

(

(

Chapter 1
Introduction to the KA825 Module

The KA825 module is a single-board VAX processor used in the VAX 8250 and
8350 computer systems. It performs at approximately 1.2 times the speed of
the VAX-ll/780. A set of very large scale integrated circuits on the module
implements the VAX instructions. The KA825 module communicates with
other nodes in the system on the 32-bit VAXBI bus.

An earlier version ofthis module, the KA820, ran at approximately VAX-Ill
780 speed. The KA825 is distinguished by bit 23 of the System Identification
Register being set. For the rest of this manual, the term KA820 refers to the
KA825 module; the terms VAX 8200 and VAX 8300 refer to VAX 8250 and
VAX 8350, respectively.

This introduction describes major features of the KA820 module and idE(nti­
fies the options available to you. Chapter 2 completes this overview and pro­
vides a background for the operating and programming details that follow.

In multiprocessor systems, the first processor is called the primary processor;
it is installed in VAXBI slot KIJ1. Additional processors are called attached
processors, and they can be installed in any slot in the VAXBI backplane. The
multiprocessor system can be symmetrical, where all processors share the
workload equally, or asymmetrical, where each processor is dedicated to spe­
cific functions such as I/O control or computation.

The KA820 module is designed to support three operating systems: VMS,
ULTRIX-32, and VAXELN. VMS and ULTRIX-32 are general-purpose, time­
sharing systems. VAXELN systems are dedicated, real-time systems devel­
oped under VMS. As a fourth alternative, you may prefer to develop your own
system software for the KA820 module.

The KA820 module protects the integrity of data and processes by checking
extensively for:
• Parity errors
• VAXBI transaction errors
• Unforeseen microcode conditions
• Interrupts that occur at unexpected levels
The machine-check function, which is invoked following detection of a hard­
ware error, passes control to appropriate exception-handling software. This
lets the software evaluate the situation and respond as required. In addition,
the KA820 module uses a microcode-based ASCII console and provides a
serial-line unit for the console terminal.

1-1

The KA820 module implements a self-test program in microcode. Self-test
runs automatically on power-up and in response to a console command, and it
checks the KA820 hardware thoroughly. (

1.1 KA820 Functional Sections

The KA820 module consists of three major sections:

1. CPU section

2. VAXBI interface section

3. Port controller and port controller interface (PC I) bus devices section

1.1 .1 CPU Section

Three processor chips carry out processor functions according to 40-bit
microinstructions in control store.

• lIE chip (instruction decoding and execution)

• M chip (memory management, processor registers, and four serial-line
units)

• F chip (floating-point accelerator)

Control store consists of a 15K ROM and a 1K RAM implemented in five
ROMIRAM chips and protected by parity. The RAM stores microcode patches,
making microcode changes as simple as software changes: DIGITAL distrib­
utes microcode patches along with software updates on RX50 diskettes. The
MIB bus, which connects control store and the processor chip set, is also pro­
tected by parity.

An on-board translation buffer (BTB) stores virtual-to-physical address
translation information (page-table entries) for 512 pages of memory. The
BTB backs up a mini-translation buffer (MTB) in the lIE chip that stores five
page-table entries. An'd an on-board 8K-byte data cache stores data from the
most recently accessed locations in memory. The processor chips communi­
cate with the BTB and the cache on the parity-protected 32-bit DAL bus.

1.1.2 VAXBI Interface Section

The VAXBI interface forms a second section of the KA820 module. It consists
ofthe 32-bit, parity-protected BCI bus and the bus interconnect interface chip
(BIlC). The BIlC implements the VAXBI bus protocol, including the distrib­
uted arbitration scheme and bus error checking facilities.

1.1.3 Port Controller and PCI Bus Devices Section

The port controller and dedicated PCI bus devices make up a third section of
the KA820 module. The port controller buffers the transfer of addresses and

c

data between the CPU and the PCI bus devices, as well as between the CPU (
and the VAXBI interface. "

1-2 Introduction to the KA820 Module

(

(

(

r-'" r-- SERIAL- LINE 0

:..-... EIA ~ SERIAL- LINE 1
DRIVERS

CONTROL
&

CPU CLK - RECEIVERS r-- SERIAL- LINE 2 STORE OSCILLATOR

4- r-- SERIAL- LINE 3

I
" ..

MIB <40>

'I ~ ~ V' CP

[1 II 1\
r ~ jCLK

PAL <7>'" F liE M ... CACHE .A BTB
CHIP CHIP r CHIP. CAL <11 > j

RAM RAM

" v

I I
, ~

A (..
DAL< 32>

'4 J
v

CTRL

A l\ PORT A. ..
\ ~ BCI<32> CONTROLLER PCI <16> DAL
j (3 PORTS) "-'II , 'I v

<8>DAL. 16 DAL <8>DAL

BIIC BUFFERS
BOOT EEPROM
RAM

L RCX50 INTERFACE & WATCH CHIP INTERF ACE

A ..
VAXBI BUS < 32>

" ..
MLO-383-85

Figure 1-1: KA820 Block Diagram

The EEPROM is a 16K-byte nonvolatile memory on the PCI bus. It stores
choices for KA820 optio!1s, VAX bootstrap macrocode, and a set of patches for
control-store microcode. A write-protection circuit keeps you from changing
EEPROM data by mistake. Microcode copies the bootstrap macrocode to an
8K-byte boot RAM on the PCI bus at the beginning of the boot process.

Introduction to the KA820 Module 1-3

The PCI bus also runs off the KA820 module to connect to the battery-backed­
up watch chip and the RCX50 controller for the RX50 diskette drive. The
watch chip keeps the time of year for up to 100 hours without system power, (
and the diskette controller and drive let you install software and microcode
updates.

1.2 Customer Options

The KA820 module offers a variety of options that let you customize your
computer system. Data stored in the EEPROM and signals that run off the
module to switches on the control panel define the action and characteristics

, of the KA820 module on power-up:

• Perform the slow self-test or the fast self-test on power-up.

• Restart or halt on power-up following self-test.

Restart - Ifbattery-backed-up memory has retained valid data during the
preceding power outage, and no VAXBI node is faulty, try a warm start to (.
continue the process that was executing when power failed. Ifmemory does ..
not contain valid data or a VAXBI node fails its self-test, boot the system,
loading and starting a fresh copy of the operating system.

Halt - Enter the console mode instead of beginning program execution. In
this mode, the KA820 module accepts console commands from the console
terminal. Console commands are useful when you want to perform system
maintenance functions such as installing software or running diagnostics.

• Set the default console baud rate to one of eight values ranging from 150 to
19200.

• Select the processor node that serves as a logical console for an attached
KA820 processor in a multiprocessor system.

• Enable or disable self-test on the RCX50 diskette drive controller.

1.3 VAXBI Overview

The VAXBI bus is a 32-bit synchronous bus. It joins the KA820 module to the
rest of the computer system. The important characteristics of the VAXBI bus
are its low cost, high bandwidth, moderate number of logical !!onnections,
large address space, and high data integrity.

All devices in the VAXBI system can arbitrate for control of the bus, so no
processor is dedicated specifically to controlling bus use. Distributing the ar­
bitration maximizes the multiprocessing capability of the bus and lets you
configure systems to meet a variety of needs.

Each device on the VAXBI bus is called a node. A single VAXBlbus can have
16 nodes, which can be processors, memories, and adapters. An adapter is a
node that connects other buses, communication lines, and peripheral devices
to the VAXBI bus. Each of the 16 nodes can control the VAXBI bus, and slot

1-4 Introduction to the KA820 Module

(

(

(

(

placement has no effect on the relative priority of the node. A node receives
its priority and node ID, a number from 0 to 15 (decimal), from a plug on the
VAXBI backplane slot where the node is inserted.

1.3.1 VAXBI Addressing

The VAXBI bus supports 30-bit addressing, giving 2**30 addresses (1 giga­
byte of physical address space). This address space is split equally between
memory and I/O space (512 megabytes each).

HEX
ADDRESS

0000 0000
MEMORY SPACE

512M-BYTES 1FFF FFFF
2000 0000

1/0 SPACE
512M-BYTES 3FFF FFFF

MLO-384-85

Figure 1-2: VAXBI Physical Address Space

In I/O space, each node has an 8K-byte block of addresses known as its node­
space. The first 256 bytes of each nodespace are allocated to registers on the
BIlC. In addition, each node is allocated 3.75 megabytes of node private
space. The dedicated devices on the KA820 module PCI bus use addresses in
the node private space.

1.3.2 VAXBI Timing and Arbitration

Events occur on the VAXBI bus at fixed intervals. Data is clocked onto the bus
at the leading edge of a transmit clock signal and received and latched with a
receive clock signal at the end of a bus cycle. Information processing occurs
during the cycle following the one in which data is transmitted and latched.

Bus arbitration and address and data transmissions are time multiplexed
over 32 data lines. Interrupt sequences use command transactions and can be
directed to a single processor or to several processors. Arbitration logic is dis­
tributed among all the nodes and follows a dual round-robin priority scheme.

1.4 KA820 Module Layout

Figure 1-3 shows the major components of the KA820 module. The five seg­
ments along the bottom edge ofthe module provide a total of 300 external I/O
pins to connect with the rest of the computer system. Segments A and B carry
the VAXBI bus signals.

Introduction to the KA820 Module 1-5

/

CONTROL
STORE

BOOT
RAM

OPTION MODULE SERIAL
NUMBER NUMBER NUMBER FCHIP

C B A
SEGMENT PORT .~~EN_T ___ SE_G_M--=E::..:N..:....T)

CONTROLLER VAXBI

Figure 1-3: KA820 Module Layout

BTB
RAMS

CACHE
RAMS

M CHIP

BIIC

1.5 Power Requirements

The KA820 module requires three voltages with the voltage regulation
shown in Table 1-1. The current and power columns indicate conditions at 70
degrees C (worst case). The maximum voltage ripple is 400 millivolts peak
to peak.

1-6 Introduction to the KA820 Module

(

(

(

(

c

(

(

(

Table 1-1: KA820 Module Power Requirements

Voltage Regulation Current
--
~wer

+5.0 +/-5% 9.0 amps - 45;5 watts

+12.0 +/-10% 36 milliamps 0.4 watts

-12.0 +/-10% 40 milliamps 0.5 watts

46.4 watts total

1.6 Environmental Requirements

The KA820 module requires air movement of at least 200 linear feet per min­
ute, at a maximum ambient temperature of 50 degrees C. Temperature, rela­
tive humidity, and altitude requirements depend on use of the RX50-diskette
drive with the KA820 module.

Table 1-2: Environmental Requirements

Configuration

Operation without the
RX50

Operation with the
RX50 installed and in
use

Operation with the
RX50 installed but not
in use

Allowable storage
conditions

Temperature

5-50 degrees C
(10-122 degrees F)

15-32 degrees C
(59-90 degrees F)

10-40 degrees C
(50-104 degrees F)

-40 to 66 degrees C
(-40 to 151 degrees F)

Relative
Humidity

10%-95%

20%-80%

10%-90%

10-95%

Altitude

0-2400 meters
(0-8000 feet)

0-2400 meters
(0-8000 feet)

0-2400 meters
(0-8000 feet)

0-9000 meters
(0-30000 feet)

Introduction to the KA820 Module 1"':7

(

(

(

E--

(

(

(

(

(

(

Chapter 2
KA820 Module Detailed Description

The KA820 central processor executes the full set of VAX instructions. Two
address translation buffers, a data cache, and a floating-point accelerator
help to make this processor efficient. The KA820 module can translate a vir­
tual address to its physical equivalent and access cached data in 160 nano­
seconds when there is a hit in the mini-translation buffer (MTB). When there
is a miss in the MTB but a hit in the backup translation buffer (BTB), access
to cached data requires 320 nanoseconds. In comparison, a read memory ac­
cess with misses in both translation buffers and the cache requires at least
3.84 microseconds (24 CPU bus cycles).

Three functionally distinct sections make up the KA820 module:

• CPU section

• Interface to the VAXBI bus

• Port controller and related memory and I/O devices

The CPU section consists of a three-chip processor unit, control store, the
backup translation buffer, and a cache. A 160-nanosecond CPU clock cycle,
divided into eight phases, controls timing for the CPU section.

The BIlC (bus interconnect interface chip) coordinates the transfer of infor­
mation between the KA820 module and the VAXBI bus. A separate 200-
nanosecond clock cycle controls timing for the VAXBI bus.

The port controller (pCntl) acts as a buffer and traffic director, routing ad­
dresses, control signals, and data between the BIlC and the CPU section. The
port controller communicates with the processor chips, the BTB, and the
cache on the 32-bit DAL (data and address lines) bus. It communicates with
the BIlC on the BCI bus. And it drives the 16-bit PCI, an asynchronous bus
that connects the port controller to external devices as well as devices on the
KA820 module:

• 8K-byte on-board boot RAM used to store bootstrap code during processor
initialization

• 16K-byte on-board EEPROM that provides permanent storage for boot­
strap code, control store patches, and configuration data

• RCX50 diskette controller external to the KA820 module

• Battery-backed-up watch chip ,external to the KA820 module

2-1

2.1 CPU Section

The KA820 module implements the VAX architecture in the CPU section, (
and the heart of this section is the processor chip set. The chip set consists of
three custom-made, integrated circuits:

1. liE chip (instruction/execution)

2. M chip (memory interface)

3. F chip (floating-point accelerator)

These chips carry out the VAX instruction set. Each VAX instruction involves
a sequence of steps to access and manipulate data. Microcode for each VAX
instruction controls the coordinating and sequencing of the steps. The
control-store hardware contains the microcode in an array of 40-bit words ar­
ranged as 15360 words of read-only memory (ROM) and 1024 words of
random-access memory (RAM). The RAM locations contain patches that up­
date the microcode.

The two translation buffers (BTB and MTB) and the cache supplement the
processor chip set with on-board storage that speeds execution time. The
translation buffers contain address translation information copied from main
memory. The cache holds program instructions and data, also copied from
main memory.

Figure 2-1 shows the CPU section ofthe KA820 module block diagram given
in Chapter 1.

Four buses connect the CPU components: MIB, DAL, PAL, and CAL. The
parity-protected MIB (microinstruction bus) carries microinstructions, con­
trol signals, and addresses between control store and the processor chip set.
Like the microword, it is 40 bits wide. The 32-bit DAL bus is also parity pro­
tected; it carries data and addresses among the processor chip set, the cache,
and the backup translation buffer RAMs, and from them to the rest of the
KA820 module through the port controller. The PAL bus carries address sig­
nals for the backup translation buffer tags and cache tags in the M chip. And
the CAL bus carries address signals from the M chip to the backup transla­
tion buffer and cache RAMs.

2.1.1 lIE Chip Functions

Four logically distinct areas make up the liE (instruction/execution) chip:

• Instruction buffer

• Microsequencer

• Execution unit

• MTB (mini-translation buffer)

The instruction buffer is a silo that holds up to two longwords of prefetched
VAX instructions. This lets the CPU execute sequences of instructions rap­
idly, without waiting for memory read cycles to fetch instructions. The hard-

2-2 KA820 Module Detailed Description

(

(

(

(

(

ware attempts to keep the instruction buffer full. When it is not full and there
is no other activity on the DAL bus that takes precedence, the instruction
buffer initiates a read function. In addition, the instruction buffer sends in­
formation.it gathers from decoding VAX instructions to the execution unit
and the F chip.

The microsequencer in the lIE chip determines the address of the next mi­
croinstruction to be executed, except at the beginning of a VAX instruction
and when the first part done (FPD) flag is set following an interrupt or excep­
tion. When a new VAX instruction is being decoded; the microaddress genera­
tor determines the entry point of the microroutine to be executed, based on
the VAX opcode,. the operand specifiers, and the current microinstruction.
The lIE chip drives the microaddress over the MIB bus during the first half of
the CPU clock cycle, and control store sends the addressed microinstruction
word on the MIB bus to the execution unit during the second half ofthe cycle.
This prefetch function assures that the execution unit never waits for a mi­
croinstruction. A new microinstruction is available at the beginning of each
l60-nanosecond CPU clock cycle.

The execution unit contains the general purpose registers (RO through Rl5),
the arithmetic and logic units, the shifter, and the data paths. It executes the
microinstructions needed to implement the macroinstructions in the instruc­
tion buffer, moving data and addresses to and from the registers and on the
DAL bus to the:

,....... -SERIAL-LINE 0

- EIA - SERIAL-LINE 1
DRIVE:RS

CONTROL
&

CPU CLK - RECEIVERS I--- SERIAL-STORE OSCILLATOR
LINE 2

- I-- SERIAL-LINE 3

L ..
MIB <40>

'II ~ ~ ~ .. CP

n (~
I\.

(~ ICLK
t::-

PAL <7» F liE M -'" CACHE -A BTB
CHIP CHIP " CHIP CAL <11 >) RAM RAM

r "
I I I f ~

A (..
DAL< 32> .. ! r ..

CTRL

POi'lT
CONTROLLER

ML 0-385-85

Figure 2 ... 1: KA820 CPU Section, Block Diagram

KA820 Module Detailed Description 2 3

• F chip

• M chip

• BTB (backup translation buffer)

• Cache

• Port controller

When the execution unit derives a virtual address to be accessed, it sends
that address to the MTB for translation to a physical address.

(

The MTB stores physical address translations for five pages of virtual mem­
ory: four data-stream pages and one instruction-stream page. The informa­
tion for each address translation is called a page table entry (PTE). Each MTB
location contains a tag and a page table entry. The tag tells whether there is a
valid page table entry (a hit) in the MTB for a given virtual address. The page
table entry includes a 21-bit page frame number identifying the 512-byte
page of physical memory to be used on references to the virtual address. On a (
hit, the MTB generates the physical address from the page table; entry and
makes the required physical address available on the DAL bus Jithout any
delay. See Section 2.1.2 for more information on address translation.

2.1.2 M Chip, BTB, and Cache Functions

The M (memory interface) chip functions complement the functions per­
formed by the liE chip; they include:

• BTB tag store

• Cache tag store

• Internal processor register (IPR) implementation

• Interrupt handling

• Memory management

• CPU clock generation

• Serial-line unit implementation

• Port controller interface

2.1.2.1 BTB (Backup Translation Buffer) - The BTB backs up the MTB with
512 page table entries (PTEs). The BTB has two sets of storage locations: tag
storage in the M chip and PTE storage in the BTB RAMs. Each BTB tag tells
whether four corresponding PTEs are valid.

The BTB RAM contains 256 PTEs for system-space pages and 256 PTEs for
process-space pages. This RAM is arranged as 128 blocks of four longwords.
Each longword contains one PTE. The M chip contains 128 BTB tags, one for
each block of four PTEs.

2-4 KA820 Module Detailed Description

(

(

(

(

(

(

When there is a miss in the MTB, the liE chip puts a 32-bit virtual address on
the DAL bus. At the same time, the IIE chip sends virtual address bits (31,
16:11) on the 7 PAL lines to identify one of the 128 BTB tags in the M chip.
Each tag consists of 14 virtual address bits (30:17) and 4 valid bits, one for
each PTE. The M chip compares the BTB tag entry with the address asserted
on the DAL bus. If the bits in the tag match bits (30:17) in the virtual ad­
dress, and the valid bit is set, there is a hit in the BTB. On the same CPU
clock cycle the M chip puts the address of the appropriate BTB RAM location
(virtual address bits (31, 16:9» on the 11-bit CAL bus, even ifthere is a BTB
miss. Virtual address bits (10:9) identify one of the four longwords in the
four-Iongword block. The BTB RAM responds by sending the PTE to the
MTB, and the MTB updates the corresponding location. On the next cycle
the MTB gets a hit on the same virtual address, converts it to a physical ad­
dress, and asserts it on the DAL bus. Therefore with an MTB miss and a BTB
hit, the address translation is delayed by one cycle. Figure 2-2 shows the re­
lation of the tags to the BTB.

VIRTUAL ADDRESS

DALbi ts 131130 COMPARE WITH TAG BITS 171116 91 VAll o

PAL--'I A < 31,16: 11 >

SSTAG ADORE
ARRAY

CAL--I A< 31,16:9>

ADORE SS BTB

I "\
I ./

I
I

16 BYTE BTB BLOCK

\
(

30

Y I TAG BIT
PARITY PAl'T

*
128 BTB TAGS IN M CHIP

TAG ADDRESS BITS 17 P v1 v2 v3 v4 p

~

512 BTB ENTRIES IN RAMs

PTE 1 4 VALID
BITS

PTE 2

PTE 3

PTE 4

MLO-386-85

Figure 2-2: BTB and BTB Tag Addressing

KA820 Module Detailed Description 2-5

If a reference to a virtual address misses in the MTB, the BTB mayor may not
yield a hit. The MTB will be updated when there is a hit in the BTB. If there is (/
a miss in the BTB as well, the KA820 module begins a BTB fill cycle, perform-

V(VALlD)

ing a longword read transaction to the appropriate page table in VAXBI mem-
ory. The CPU then updates both the BTB and the MTB with a new page table
entry. Since the four PTEs associated with one BTB tag identify contiguous
pages in virtual memory, a change in the 14-bit address stored in the tag in­
validates the other three PTEs, in the same block, that were not accessed.

Figure 2-3 shows the format for each page table entry.

3130 272625 21 20 o

l J I I I I
I

PROT(PROTECTION CODE)

M (MODIFY)

RESERVED TO DIGITAL

PFN (PAGE FRAME NUMBER, PHYSICAL ADDRESS BITS <29:9»

MLO·387·85

Figure 2-3: Page Table Entry Format

c

See the VAX Architecture Handbook for an explanation of memory man-
agement. (

2.1.2.2 Cache - The cache RAM stores copies of data from main memory
and, like main memory, uses physical addresses to access the data. The cache
operation resembles the BTB operation, and the cache tag store is also imple­
mented in the M chip.

The cache consists of an 8K-byte array, divided into 128 blocks of 4 octawords
(161ongwords or 64 bytes) each. The cache tag store contains 128 tags: one for
each 4-octaword block of data. Each tag includes: . . (--

• 16 bits of a physical address (bits (28:13» with a parity bit

• 4 valid bits with a parity bit; the four valid bits apply to the four octawords
within a block of cache data

Figure 2-4 shows the cache and cache tag addressing scheme.

When the lIE chip begins a reference to a physical memory location, it puts
the entire physical address on the DAL bus. At the same time it asserts 7
address bits (12:6) on the PAL bus to identify one of the 128 cache tag loca­
tions in the M chip. The M chip compares the tag entry with the address as­
serted on the DAL bus. If the addresses match, and the valid bit is set, and
physical address bit (29) is 0 (not I/O space), there is a hit in the cache. This
means that the data in the corresponding location in the cache is valid.

2-6 KA820 Module Detailed Description

(

(

c

(

(

(

PHYSICAL ADDRESS

DAL BIT SI28 COMPARE WITH TAG SiTS I 112 21
VAll

TAG BIT
D

PAL--I
ADDRESS
ARRAY

CAL--I

A< 12:6 >

TAG

A <12:2>

I '\
I ,.I

I
I

~ I PARITY PARIT Y

(

128 CACHE TAGS IN M CHIP

28 TAG ADDRESS BITS 13 P v1 v2 ~3 v4 v5

'----~

2048 CACHE DATA LONGWORDS
IN RAMs

OCTAWORD #1 4 VALID
BITS

ADDRES SCACHE OCTAWORD #2

OCTAWORD#3
64 BYTE
CACHE BLOCK OCTAWORD #4

M LO-387 A-8S

Figure 2-4: Cache and Cache Tag Addressing

On .the same CPU clock cycle the M chip puts the address of the appropriate
cache RAM location (physical address bits (12:2») on the ll-bit CAL bus,
even ifthere is a miss. On a read transaction, the cache data is asserted on the
DAL bus for use by the liE chip. On a write transaction, new data is written
both to the cache and to the corresponding location in main memory.

On a cache miss (read transaction only) the KA820 module begins a cache fill
cycle, reading an octaword from main memory to update the cache. The CPU
first reads the longword that was missed in the cache, completing the refer­
ence requested by the lIE chip. The CPU contiriues the cache fill cycle by read­
ing the remaining three longwords in the given octaword block. The address
in the tag entry will change to reflect the address of the new data, and the
valid bits will show that the other three octawords in the 64-byte cache block
are now invalid.

KA820 M.odule Detailed Description 2-7

Note that a write transaction with a cache miss does not involve updating the
cache.

Table 2-1 shows the number of CPU clock cycles and the time required for
data access with hits and misses in the MTB, the BTB, and the cache, when
there is no other activity on the VAXBI bus.

Table 2-1: Time Required for Read and Write Data Transactions

Read CPU Clock
or Cycles to Transaction Time
Write MTB BTB Cache FreeDAL Longword Octaword

Read Hit Hit 1 160ns

Read Miss Hit Hit 2 320ns

Read Miss Miss Hit 12+ 1.92/Ls+

Read Hit Miss 13+ 2.08/Ls+

Read Miss Hit Miss 14+ 2.24 /Ls+

Read Miss Miss Miss 24+ 3.84/Ls+

Write Hit 1or4 160ns 640ns

Write Miss Hit 2 or 5 320ns 800ns

Write Miss Miss 12+ or 15+ 1.92/Ls+ 2.4 /Ls+

If another devi~e on the VAXBI bus writes data to a memory location that is
cached by the KA820 module, the cached data becomes obsolete. To deal with
this condition, the BIlC monitors the VAXBI bus for write transactions initi­
ated by other devices. When a write transaction occurs, the BIle forwards the
address to the port controller, which in turn forwards it to the M chip. If the
cache contains data for the address in question, the M chip changes the tag to
mark all four octawords invalid.

2.1.2.3 Internal Processor Registers - In addition to tag storage, the M chip
contains 26 of the internal processor registers (IPRs). The microcode uses
these registers for temporary storage during the execution of long and com­
plex VAX instructions. Appendix F lists the IPRs, their addresses, and their
bit configurations. Note that privileged user software can read and write the
IPRs with MFPR and MTPR instructions.

2.1.2.4 Serial-Line Units - The four RS423-compatible serial-line units on
the M chip connect terminals and modems directly to the KA820 processor.
Signal lines from the serial-line units are converted to the standard RS232
format off the module. You can set the baud rate of each serial-line unit sepa­
rately by writing to the appropriate TXCS Register. In addition, you can
change the baud rate on serial-line unit 0, when the primary processor is in
the console mode, by pressing the [BREAK] key on the console terminal. Avail-

2-8 KA820 Module Detailed Description

(

(

(

(

(

(

(

(

able baud rates range from 150 to 19200 (see Chapters 4 and 6 for details). You
can change the default baud rate for serial-line unit 0 by writing a location in
the EEPROM (see Table 4-4).

The serial-line units are not buffered. Each serial~line unit interrupts the
CPU each time it sends or receives a character.

Serial-line units are available only on the primary processor.

2.1.3 F Chip Functions

The F chip, a floating-point accelerator, increases the arithmetic efficiency of
the KA820 module by speeding up execution of the integer and floating-point
arithmetic instructions:

• ADD(F,D,G)

• CMP(F,D,G)

• CVTL(F,D,G)

• DIV(F,D,G,L)

• EDIV

• EMOD(F,D,G,H)

• EMUL

• INDEX

• MUL(2,3)(F,D,G,H,L)

• POLY(F,D,G,H)

• SUB(F,D,G)

The F chip operates in parallel with the lIE chip. The lIE chip makes deci­
sions concerning the instruction being executed, while the F chip makes
calculations.

The MIB bus feeds the F chip with VAX opcodes from the lIE chip and microin­
structions from control store. The DAL bus carries operand data for the F chip
to and from memory or to and from the general purpose registers (GPRs) on
the lIE chip. Operation of the F chip is transparent to users.

2.1.4 Communication Between the Processor Chip Set and the
VAXBI Bus

The processor chip set communicates with the VAXBI bus through the port
controller and the backplane interconnect interface chip (BIIC). When the
KA820 module accesses a memory location or an I/O location, the lIE chip
sends the address to the port controller on the DAL bus. Then the M chip
asserts the CMISS (cache miss) signal to indicate that a memory reference is
required. Four command lines transmit the required transaction type from
the M chip to the port controller.

KA820 Module Detailed Description 2-9

On a read transaction with a cache miss, the port controller initiates a read
on the VAXBI bus. At the same time it stalls the DAL bus until it retrieves
the data and can send the data to the lIE chip and the cache. The port control­
ler includes a 4-longword data silo that buffers data during the transfer proc­
ess. When the VAXBI memory responds to the read command by sending four
longwords in four consecutive VAXBI cycles, the port controller stores them
in the data silo until it can transfer them. The requested longword goes to the
lIE chip and the entire octaword goes to the cache.

On a write transaction to memory, the port controller stores the data to be
written in the silo until the BIIC can send it on the VAXBI bus, freeing the
processor chip set to continue processing.

2.1.5 Control-Store Operation

Control store on the KA820 module provides microcode for three sets of
functions:

• VAX instruction execution control

• KA820 module initialization, bootstrapping, and console functions

• KA820 self-test

c·

(

Five custom-made ROMIRAM chips make up the control-store hardware. Al­
together they contain 15360 40-bit locations in ROM, 1024 40-bit locations in
RAM, and 160 14-bit locations in contents-addressable memory (CAM). The

-15K ROM contains an initial version ofthe microcode. The lK RAM lets you (
add patches that change the microcode without replacing the control-store
chips. The CAM locations contain the addresses of ROM words that begin
sequences of microword patches in RAM.

During the first half of each CPU clock cycle the lIE chip puts a 14-bit address
on the microinstruction bus (MIB). If the current microwQrd comes from the
control-store ROM, the address is asserted onMIB (13:0).In the second half
of each CPU clock cycle, control store checks for a match in the CAM and puts
the addressed microword on the MIB bus. If there is no match in the CAM, E-·
this microword is used for the next microinstruction. However, if the CAM
does find a match, it signals the liE chip to abort the current microinstruction
fetch cycle. The lIE chip then readdresses control store to read from the patch
RAM, leaving address bits (9:0) unchanged and asserting ones on bits
(14:10). The lIE chip continues to read microinstructions from the RAM un-
til it reaches the end of the patch sequence. The last instruction in a patch
sequence causes ajump back to a ROM location for the next microinstruction.

The KA820 module loads patches into the patch RAM in two sets: primary
patches and secondary patches. Microcode in the control-store ROM loads the
primary patches from the EEPROM at the beginning of the power-up initiali-
zation sequence. The primary patches· modify basic microroutines that are
necessary to continue. the processor initialization sequence. They may in·
volve such functions as self-test, console implementation, and loading the
bootstrap code. Secondary patches are not essential tothe initialization proc- (
ess. The macrocode in the primary bootstrap program loads these patches. -

2-10 KA820 Module Detailed Description

(

2.2

c

(

(

The 1024 patch RAM locations are mapped against all 15360 ROM locations.
Each RAM location can patch any of 15 ROM locations, all of which use the
same ten low-order address bits « 9:0») on the MIB bus. The RAM cannot con­
tain patches for two ROM locations for which these ten address bits match.
For example, if ROM location 35C (hex) has been patched, another patch can­
not be written for ROM location B5C (hex) without overwriting the patch for
location 35C.

VAXBI Interface

The BIlC (backplane interconnect interface chip) mediates all VAXBI trans­
actions in which the KA820 module participates by implementing the VAXBI
protocol and sending and receiving commands, addresses, and data. It com­
municates with the port controller on the BCI bus, allowing the port control­
ler to act as a buffer between the BIlC and the processor chip set. Figure 2-5
shows the VAXBI interface portion of the KA820 module block diagram given
in Chapter 1.

A II.

DAL< 32>

'4 ! '"

.I. II.

BCI <32>
,

PORT
j CONTROLLER

'II ,

BIIC

A ~

VAXBI BUS <32>
, '"

MLO-388-85

Figure 2-5: KA820 VAXBI Interface, Block Diagram

The BIlC also contains a set of control and status registers. The software
uses them to handle device interrupts, interprocessor interrupts, and error
conditions.

2.2.1 VAXBI Address Space

VAXBI address space is divided into two major sections: memory space and
I/O space. Physical addresses with bit (29) set refer to I/O space; addresses
with bit (29) clear refer to memory space. The following map shows the allo­
cation of I/O address space among the VAXBI nodes.

KA820 Module Detailed Description 2-11

HEX
ADDRESS

0000 0000
MEMORY SPACE 1FFF FFFF

2000 0000
NODESPACE (SEE TABLE 2-2) 2001 FFFF

2002 0000
RESERVED TO DIGITAL 2007 FFFF

2008 0000
KA820 BIIC INTERNAL REGISTERS

(SEE FIGURE 2-7) 2008 OOFC
2008 0200

RXCD REGISTER

2008 0204
RESERVED TO DIGITAL 2008 FFFF

2009 0000
BOOT RAM

(SEE FIGURE 2-9) 2009 1FFF
2009 2000

RESERVED TO DIGITAL 2009 7FFF
2009 8000

EEPROM
(SEE FIGURE 2-9) 2009 FFFF

200A 0000
RESERVED TO DIGITAL 200A FFFF

200B 0000
RCX50

(SEE FIGURE 2-9) 200B 0017

RESERVED TO DIGITAL 200B 0020
200B 8000

WATCH CHIP
(SEE FIGURE 2-9)

200B 807F

RESERVED TO DIGITAL 200B 8080
203F FFFF

WINDOW SPACE 2040 0000

(SEE THE VAXBI OPTIONS HANDBOOK)
207F FFFF

RESERVED TO DIGITAL 2080 0000
3FFF FFFF

M LO-389A-85

Figure 2-6: 1/0 Address Space on the VAXBI Bus

The first 128K-bytes are allocated to the 16 VAXBI nodes, so that 8K-bytes
are available to each node. The nodespace for the KA820 module depends on
the node ID plug inserted in the backplane at its slot. The primary processor
uses slot K1Jl. In addition, each node is allocated 3.75 megabytes for node
private space, ranging from address 20040000 to 203F FFFF (hex). Each
node can use this space to address its own registers and devices. The KA820
module implements PCI bus device addresses and one set of BIlC register

2-12 KA820 Module Detailed Description

(

(

(

E

(

(

(

(

(

(

addresses (not accessible to software)in the portion of this space ranging from
address 20080000 to 200B 807E. When a node generates a reference to an
address in the node private space, it is a local reference (loopback transac­
tion), confined to that node. No corresponding VAXBI transaction takes place.
No node can access another node's private space.

2.2.2 KA820 Registers Accessible to Other VAXBI Nodes

The KA820 module implements the addresses for the RXCD Register and the
BIIC internal registers in the VAXBI nodespace and in the node private
space. However, software should access these registers only through the
VAXBI nodespace. Software access to the RXCD Register and the BIIC inter­
nal registers through node private space will produce errors.

Note that when you use console commands, you can access the RXCD Regis­
ter and the BIIC internal registers on the primary processor through their
node private space addresses as well as through their VAXBI nodespace ad­
dresses. Figure 2-7 shows the BIIC internal registers and the two sets of cor­
responding addresses. Under the heading VAXBI nodespace address, bb
stands for the nodespace base address of the VAXBI slot used. Table 2-2
shows the nodespace base address for each node.

Table 2-2: Node Space Base Address Assignments

Node

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Address

20000000
20002000
20004000
20006000
20008000
2000 AOOO
2000 COOO
2000 EOOO
20010000
20012000
20014000
20016000
20018000
2001 AOOO
2001 COOO
2001 EOOO

Table 2-3 gives a brief description of the BIIC registers as they are used on
the KA820 module. See Appendix D for the bit functions and configurations
of relevant registers.

As the map in Figure 2-7 shows, the KA820 module leaves many of the regis­
ters and addresses in the BIIC unused. The RXCD Register, at address bb +
200 and 2008 0200 is implemented in the port controller, not the BIIC (see
Chapter 4 and Appendix D for more information). Note that software should
not access address 2008 0200.

KA820 Module Detailed Description 2-13

VAXBINODESPACE
HEX ADDRESS

bb+OO

bb+04

bb+08

bb+OC

bb+ 10

bb+ 14

bb+ 18

bb+1C

bb+20

bb+24

bb+28

bb+2C

bb+30

bb+34
bb+3C

bb+40

bb+44
bb+EC

bb+FO
through
bb+FC

31 2423 1615 0807

DEVICE REGISTER (DTVPE)

VAXBI CONTROL AND STATUS REGISTER (VAXBICSR)

BUS ERROR REGISTER (BER)

ERROR INTERRUPT CONTROL (EINTRCSR)

INTERRUPT DESTINATION REGISTER (INTRDES)

IP INTERRUPT MASK REGISTER (UNUSED)

FORCE IPINTR/STOP DESTINATION REGISTER (UNUSED)

FORCE IPINTR/STOP SOURCE REGISTER (UNUSED)

STARTING ADDRESS (UNUSED)

ENDING ADDRESS (UNUSED)

Bel CONTROL REGISTER (BCICSR)

WRITE STATUS REGISTER (UNUSED)

FORCE IPINTR/STOP COMMAND REGISTER (FIPSCMD)

(UNUSED)

USER INTERFACE INTERRUPT CONTROL REGISTER (UINTRCSR)

(UNUSED)

4 GENERAL PURPOSE REGISTERS (UNUSED)

NODE PRIVATE

00 SPACE ADDRESS

2008 0000

2008 0004

2008 0008

2008 OOOC

2008 0010

2008 0014

2008 0018

2008 001C

2008 0020

2008 0024

2008 0028

2008 002C

2008 0030

2008 0034
2008 003C

2008 0040

2008 0044
2008 OOEC

2008 OOFO
through

2008 OOFC

MLO-390-85

Figure 2-7: BIIG Internal Register Addresses Used on the KA820
Module (2008 0000 to 2008 0200 not accessible to software)

2.2.3 VAXBI Transactions

KA820 module microcode initiates transactions on the VAXBI bus to imple­
ment steps in VAX instructions and to respond to conditions and events on the
bus. When the KA820 module responds as a slave to VAXBI transactions ini­
tiated by other nodes, VAX instructions and microcode are not involved; cir­
cuits in the BIlC and the port controller generate slave responses.

Each VAXBI transaction involves a sequence of three kinds of cycles:

1. Command! Address cycle

2. Embedded arbitration cycle

3. Data cycle

2-14 KA820 Module Detailed Description

(

(

(

(

Table 2-3: BIle Register Functions on the KA820 Module

(Node
Private VAXBI
Space Nodespace Register
Address Address Name Function

200B 0000 bb+O DTYPE DTYPE defines this n04e as a K.AB20.
Software can read it, but should not
write it except when loading second!U'Y
patches (as described in Chapter 3).

200B 0004 bb+4 VAXBICSR Initialization software should load . .

200B QOOC bb+C EINTRCSR these registers to enable the KAB20's
200B OOlO bo+10 JNTRDES BIIC to interrupt the KAB20 when it

detects VAXBI errors.

200B OOOB bb+B BER When the BIIC on the KAB20 inter-
rupts the KAB20, the BE:a. contains

(
error information. Software should
read and write this register whenever
a VAXBI error interrupt or machine
check occurs.

200B 0014 bb+14 IPINTRMSK These four registers are designed for
200B 001B bb+18 IPDES transmission of Vl\.xBI IPINTR and
200B 001C bb+1C IPINTRSRC VAXBI STOP transactions. However,
200B 0030 bb+30 FIPSCMD system software can ignore these

registers because theKAB20 module

C
supplies inter;naJ processor registers
(!pm and BISTOPHor these functions.

200B 0020 bb+20 SADR System software should ignore these
200B 0024 bb+24 EADR registers.

200B 002B bb+2B BCICSR Microcode loads this register a:n.d
system software should not change it.

200B 0040 bb+40 UINTRCSR System software should nQrmally
ignore this register, since the KAB20

(is not normally an 110 device.

200B 002C bb+2C WSTAT These five registers are unused and
200B OOFO bb+FO GPRO sYl3tem software should ignore them.
200B 00F4 bb+F4 GPR1
200B OOFB bb+FB GPR2
200B OOFC bb+FC GPR3

During the first cycle of a.VAXBI transaction the master node sends a com-
mand code on VAXBI lines I (3:0) and a ~hive address on VAXBI line.s D
(31:0). If the command specifies a read or write function, the 32-bit field con-
tains a physical address. On an interrupt, the master sends its interruptpri-
ority level and a destination mask to the slave during the commandladp,ress
cycle.

(
During the embedded arbitration cycle (the second cycle in all VAXBI trans-
actions), other nodes contend for cpntrol of the bus following the current

~- transaction.

KAB20 Module Detailed Description 2-15

One or more data cycles complete the transaction. During a data cycle the
function ofthe 32-bit field depends on the transaction type. For example, the
master sends data to the slave on a write. The slave sends data to the master (
on a read.

In all VAXBI transactions the slave returns one off our confirmation codes on
VAXBI lines CNF (2:0):

ACK

NOACK

RETRY

STALL

Transaction acknowledged.

No node has been selected.

Busy, try later.

Need more time, wait till data is ready.

The port controller monitors activity on.the VAXBI bus. When an error oc­
curs, the port controller interrupts the CPU. Microcode then initiates a trap
and jumps to an error-handling microroutine. It stores machine-state infor- Co
mation on the machine-check stack in memory, making the information
available to exception-handling software. The software can evaluate the data
on the stack and take appropriate action.

2.2.3.1 KA820-lnitiated Transactions - Table 2-4 shows what transactions
the KA820 module can initiate, together with corresponding data lengths.

Table 2-4: KA820-Initiated Transactions (
VAXBI Transaction Initiated Data Length

Command Function Longword Octaword

RCI Read with cache intent I/O space or Cache fill
BTBfill

IRCI Interlock read with cache intent Memory and/or Cache fill
I/O space

WCI Write with cache intent Memory only Memory only ~-
UWMCI Unlock write mask with cache Memory and/or None

intent I/O space

WMCI Write mask with cache intent I/O space or None
memory

STOP Stop Not applicable Not
applicable

IPINTR Interprocessorinterrupt Not applicable Not
applicable

INTR Interrupt Not applicable Not
applicable

IDENT Identify interrupting node Longword None

(

2-16 KA820 Module Detailed Description

(

(

r

(

(

Write mask transactions involve a read-modify-write sequence, unless the
mask is all ones, because a portion of the data in the target location must
remain unchanged. The port controller changes a WMCI transaction with a
mask of all ones to a WCI transaction.

When the KA820 module performs an IRCI transaction, the slave normally
sets a lock that remains set until the KA820 module issues a UWMCI com­
mand to the same address. The KA820 module issues an IRCI/UWMCI trans­
action pair as part of each of the seven VAX interlocked instructions:

ADAWI

BBCCI

BBSSI

INSQHI

INSQTI

REMQHI

REMQTI

The KA820 module can initiate a STOP transaction but cannot respond to
one. STOP is generally used for diagnostic functions. See the VAXBIOptions
Handbook for more information.

As the VAXBI master, the KA820 module can interrupt another processor
with either an INTR or IPINTR transaction. However, KA820 modules in a
multiprocessor system normally communicate with each other by writing
data in the RXCD Registers.

2.2.3.2 KA820 Slave Responses - Table 2-5 shows VAXBI transactions and
the confirmation codes with which the KA820 module responds to each.

As a safety feature the RXCD lock is not set unless the interlock read transac­
tion is completed successfully. But the RXCD is unlocked by an unlock write
transaction, even if the transaction is not completed successfully.

The KA820 module can respond to both the interrupt and interprocessor in­
terrupt transactions.

2.2.3.3 Device Interrupt Sequence - When a VAXBI node (typically an I/O
device) needs to interrupt the KA820 module, it arbitrates for control of the
VAXBI bus according to its node number. When the node gains control of the
VAXBI bus, it initiates an INTR transaction, sending its interrupt priority
level on VAXBI lines D < 19: 16) and the decoded ID ofthe target processor on
VAXBI lines D (15:0).

The KA820 module compares its own decoded ID with the one sent by the
interrupting node and returns an ACK confirmation two cycles later if there
is a match (NO ACK otherwise).

KA820 Module Detailed Description 2-17

Table 2-5: KA820 Slave Responses

KA820 Response
VAXBI Transaction Received on BICNF

Command Description (2:0) L

READ or Read or read with cache intent to a BIIC ACK
RCI internal register or RXCD

WRITE or Write or write with cache intent to a BIIC ACK
WCI internal register or RXCD

mCI Interlock read with cache intent to RXCD ACK
(with RXCD unlocked)

mCI Interlock read with cache intent to RXCD RETRY
(with RXCD locked)

UWMCI Unlock write mask with cache intent to RXCD ACK
(with RXCD unlocked)

UWMCI Unlock write mask with cache intent to RXCD ACK
(with RXCD locked)

INTR Interrupt ACK

IDENT Identify interrupting node ACK

IPINTR Interprocessorinterrupt ACK

STOP Stop NOACK

INVAL Invalidate ACK

BDCST Broadcast NOACK

On a match, the KA820 module also sets one of four interrupt pending flags
in the port controller, corresponding to the interrupt level of the transaction.
The port controller then forwards the states of these flags (note that more
than one may be set) to the M chip. The M chip compares the interrupt level of
the highest flag with the priority of the process the KA820 moduie is cur-

(

(

(

rently executing. When the priority of the current process drops below that of (
the highest-priority pending interrupt, microcode initiates an IDENT trans- ~--

action to identify the interrupting node. The BIle on the KA820 module then
arbitrates for control of the VAXBI bus, and eventually the KA820 module
becomes bus master.

As bus master, the KA820 module asserts the IDENT command code on
VAXBI lines I (3:0) and the level of the highest pending interrupt on VAXBI
lines D (19:16) during the command/address cycle. The second cycle of
IDENT allows arbitration for control of the VAXBI bus-for the next transac­
tion. The master asserts its decoded ID on the bus during the third cycle.

Then, on the fourth cycle, IDENT arbitration takes place. If several nodes
have interrupts pending at the level indicated,each asserts its decoded ID
(used here as an interrupt sublevel) on VAXBI lines D (31:16). The arbitrat­
ing node with the lowest ID (highest priority) wins the arbitration. This node
returns its vector on the next cycle. If the winning node cannot respond imme- (

2-18 KA820 Module Detailed Description

(

2.3

c

(-

diately, it sends a STALL confirmation on VAXBI lines CNF (2:0> until it can
send its vector as read data. KA820 microcode uses this vector to find the
interrupt service routine for the interrupting node.

Interrupting nodes that lose an arbitration must start again, regenerating
interrupt transactions. The winning node must also interrupt again if it fails
to receive an ACK confirmation from the KA820 module in response to its
vector.

If the port controller detects a VAXBI error condition, it interrupts the M
chip. The M chip then initiates a microtrap to jump to error-handling micro­
code (see Chapter 5 for details).

Port Controller and PCI Devices

The three ports of the port controller (BCI port, DAL port, and PCI port) make
it central to the operation of the KA820 module. The BCI port connects the
port controller to the VAXBI bus through the BIlC. The DAL port connects
the port controller to the CPU. And the PCI port connects the port controller
to the 8K-byte boot RAM, a 16K-byte EEPROM, a watch chip, and an RCX50
diskette controller. The timing for each of the three ports is separate: the BCI
bus runs synchronously with the VAXBI clock cycle; the DAL bus runs on the
CPU clock cycle; and the PCI bus is asynchronous. The port controller keeps
the timing independent by buffering control signals, addresses, and data.

Three gate array chips make up the port controller: two data path chips and a
control chip. Figure 2-8 is a portion of the KA820 block diagram given in
Chapter 1; it shows the port controller and the devices that sit on the PCI bus.

A to.

DAL< 32> .. !
,.

PORT A ~ to.

CONTROLLER
'(

PCI <16> DAL)
(3 PORTS) I\. , ,.

<8>DAL 16DAL <8>DAL

BUFFERS
BOOT EEPROM
RAM

L RCX50 INTERFACE & WATCH CHIP INTERF Ace
MLO·291 A·85

Figure 2-8: Port Controller and PCI Devices, Block Diagram

KA820 Module Detailed Description 2-19

A 32-bit control and status register (PCntl CSR) and the 4-longword data silo
contribute to the central function of the port controller. The data silo buffers
octaword transfers on the VAXBl bus. The PCntl CSR contains status infor- (
mation for use by the microcode and software, control bits accessible to the
CPU, and control signals from the control panel. The status bits tell when an
interrupt is pending, when VAXBl transaction errors occur, and whether the
KA820 module has passed self-test. See Appendix E for details. The PCntl
CSR is located in the KA820 node private space at address 2008 8000 (hex); it
is inaccessible to other nodes on the VAXBl bus.

2.3.1 PCI Bus Addressing

Devices attached to the PCl bus have I/O addresses in the KA820 node pri­
vate space. They are accessible only to the KA820 CPU, through the DAL
port on the port controller. Other nodes on the VAXBl cannot read or write to
these devices. Figure 2-9 is a map showing PCl device addresses.

HEX
ADDRESS

2009 0000
BOOT RAM
(8K·BYTES)

2009 3FFC

(UNUSED; THESE ADDRESSES ACCESS
THE BOOT RAM)

2009 8000
EEPROM

(16K·BYTES)
2009 FFFE

RESERVED TO DIGITAL

200B 0000

RCX50 REGISTERS

200B 0016

(

"

(

"

(UNUSED; THESE ADDRESSES ACCESS
THE RCX50 REGISTERS)

E---
~

200B 8000

WATCH CHIP REGISTERS

200B 80lE

MLO-391-85

Figure 2-9: PCI Device Address Map

The 16 bits of the PCl bus are multiplexed for addresses and data, but address
bit 0 is unused. This means that all PCl devices are accessed on word bounda­
ries. However, software can access the packet buffer with all data types. The
EEPROM, RCX50 controller, and watch chip are byte-oriented devices. They
are accessible only with byte-length or word-length instructions on word
boundaries. When word-length instructions are used, data in the high-order (
byte is undefined.

2-20 KA820 Module Detailed Description

(

(

2.3.2 EEPROM Functions

The EEPROM (electrically erasable programmable read-only memory) on
the PCI bus contains SK-bytes of information defining options, the physical
configuration, primary microcode patches, and VAX boot code. The data in
the EEPROM remains valid when power goes down, so that on power-up the
microcode can initialize the KAS20 and boot the system according to the re­
quirements of the configuration and the user.

DIGITAL distributes updates for the EEPROM together with software and
microcode patches on diskettes. You can use the EEPROM Utility to load the
update data into the EEPROM (see the VAX 8200 Owner's Manual for
details). You can read and write 24 EEPROM locations with console DIE and
EIE commands (see Chapter 4). In addition, you can use kernel mode software
instructions to access any EEPROM location by using the EEPROM node pri­
vate space address. You can also read and write EEPROM data with the
EEPROM Utility (see the VAX 8200 Owner's Manual for details. The KAS20
module protects the EEPROM, so that you cannot inadvertently write in it.

2.3.3 Watch Chip Interface

The eight low-order PCI bus lines and several control lines run from the
KAS20 module, through the backplane, to the watch chip. The watch chip lets
the KAS20 module keep time through a power outage or system shutdown
that lasts up to 100 hours. The KAS20 module stores a 32-bit time value in
the TODR (Time of Day Register) in the M chip, but the TODR loses this value
when the power goes down. The watch chip maintains the time after power is
removed because a battery keeps it going for up to 100 hours.

Three S-bit control and status registers on the watch chip are accessible to
software, providing control that lets software write the time in the watch chip
registers during installation. Then, in normal operation, software reads the
watch chip to set the time in the TO DR following a bootstrap operation.
Because the watch chip stores time information in units of seconds, min­
utes, hours, days, and months, the operating system must convert this data to
a 32-bit format before updating the TODR Register.

2.3.4 RCX50 Controller Interface

Like the watch chip, the RCX50 diskette controller is located off the KAS20
module, and the low-order eight lines in the PCI bus run off the module to
connect to the controller through the backplane. This device is normally used
to load software updates and microcode patch distributions from DIGITAL.
However, some system configurations do not use the RCX50 controller.

The RCX50 controller contains control and status registers and a buffer capa­
ble of storing data for one 512-byte sector on the diskette. Software can trans­
fer commands, addresses, and data to or from the RCX50 controller in
byte-length register-to-register moves (see Chapter 6 for more information).

KA820 Module Detailed Description 2-21

(

(

(

E--

(

(

(

(

Chapter 3
Sequences and Options on Power-Up

On power-up the KA820 processor tests and initializes itself and then initial­
izes the rest of the computer system. Initialization leaves the hardware in a
well-defined state (see Appendix G), ready for any of several courses of action.
You can define in advance what action the processor takes during self-test
and after initialization by choosing from a variety of options. Each option cor­
responds to a combination of inputs to the module I/O pins. In the VAX 8200
system the inputs come from switch settings on the control panel and jumper
connections on an auxiliary module.

The power-up options include:

• Slow self-test - Test the functions ofthe KA820 module. In case offailure,
report faults on the console terminal and enter console mode (if enabled).
Complete the test in 10 seconds.

• Fast self-test - Quickly test the critical functions of the KA820 module.
Enter console mode (if enabled) on failure. Complete the test in 0.25 second.

• Auto Start - Attempt to restart (warm start) the processor so that it con­
tinues executing the process that was running when the power failed. In
systems with battery backup for memory, memory retains power for up to
10 minutes. If the contents of memory remain valid, the warm start suc­
ceeds. If the contents of memory are no longer valid, the warm start fails.
Bootstrap (cold start) the system.

• Halt after initialization and enter console mode.

• Enable or disable the console.

• Use the physical console (serial"line unit 0) or the logical console (another
VAXBI node).

• Enable or disable writing to the EEPROM.

The KA820 microcode follows a sequence of steps for each of these options.

One other option you can specify in the EEPROM affects the efficiency and
behavior of the KA820 module after power-up, when it is running macro-level
software or console functions. You can preset the default baud rate for the
console serial-line unit. See Chapters 4 and 6 of this manual and the
VAX 8200 Owner's Manual for information on selecting the console baud rate
and writing to the EEPROM.

3-1

A typical system with a single KA820 processor might be set up to take the
steps listed here on power-up:

1. Perform a slow self-test.

2. Initialize the KA820 processor and the rest of the computer system.

3. Attempt to restarUhe software that was running before the power failure.

4. Bootstrap the system if the restart attempt fails, loading the operating
system from a disk drive.

3.1 Power-Up Sequence and Related Signals "and Jumpers

The KA820 power-up sequence occurs when the BI DC LO Land BI AC LO L
signals are cycled from true to false. The de assertion ofBI DC LO L indicates
that power to the VAXBI backplane is steady. BI AC LO L is deasserted next
to indicate that dc power will remain steady for at least 4.2 milliseconds. Fig-
ure 3-1 shows the sequential relation of these two signals. (

BI AC LO L

BI DC LO L

CONTINUE
INITIALIZATION

SEQUENCE

BEGIN
INITIALIZATION

SEQUENCE

MLO-392-85

Figure 3-1: BI AC LO Land BI DC LO L Sequencing

A Restart push button on the control panel lets you simulate the power-down!
power-up sequence to boot the system without actually removing power. See
the VAXBI Options Handbook for more complete power sequence informa­
tion.

Table 3-1 shows the external signals that implement the power-up options.

Table 3-2 lists the PCM module jumper configurations that affect the EE­
PROM update function. These jumpers control the external signal PNL ENB
WT EEPROM H, listed in Table 3-1.

3-2 Sequences and Options on Power-Up

(

(--- .

Table 3-1: External Signals Mfecting the Power-Up Sequence

(
Accessible Standard Sources

External Module to Software on the VAX
Signal 1/0 Pin As 8200 System If True If False

BISTFL- D55 PCntlCSR Jumpers WI, W2, Perform self- Perform slow
fast self-test bit (27) W30nthePCM test on powtJr- self-test on

module up-jumper power-up-
W2toW3 jumperW2to

WI

PNLRSTRT D51 PCntlCSR Control-panel lower Enable an Halton
HLTH- bit (31) key switch- automatic power-up-
RESTART Update/Haltl Auto restart or lower key

Start bootstrap on switch is in
power-up- the Halt
lower key position; this
switch is in signal is false
the Auto Start by default on
position attached

processors

PNLCNSL D53 PCntl CSR Control-panel upper Enable the Disable the
ENBH....:. bit (29) key switch- console - console -

(console enable Standbyl Enable/ upper key upper key
Secure switch is in switch is in

the Enable the Secure
position position; this

signal is false
by default on
attached
processors

PNENBWT D50 Control-panel lower Enable writes Disable writes
EEPROMH- key switch- to the to the
EEPROM write Update/ Halt/ Auto EEPROM- EEPROM-
enable Start and jumpers lower key lower key

(W4, W5, W6, WC switch is in switch is in
on the PCM module the Update the Auto Start

position or Halt
position; this
signal is false
by default on
attached
processors

BIRESETL- B54 PCntlCSR PRIM circuit on the Imitate power-
reset system bit (28) PCMmodule, up and

control-panel perform self-

I
Restart push button test and

~ initialization
sequence

BIDCLOL- B9 PRIM circuit on the Power has dc power to
dcpowerlow PCMmodule failed; stop the backplane

processing is steady;
begin self-test
when BI DC
LOL becomes
false

BIACLOL- B40 PRIM circuit on the Power is Incoming
acpowerlow PCMmodule failing, save power is

state steady;
proceed with
self-test and
initialization
when BI AC
LOL becomes
false

(

Sequences and Options on Power-Up 3-3

Table 3-2: PCM Module Jumper Configurations Mfecting the
EEPROM Update Function

Jumper Use

W4 to W6 Normal
position

W4toW5 Enable
position

W4 to W7 Secure
position

Action

Drive PNL ENB WT EEPROM H high or low according to
the lower key switch on the control panel

Enable writes to the EEPROM, overriding the control
panel

Disable writes to the EEPROM, overriding the control
panel

Note that in computer systems where two or more KA820 modules are in­
serted in a VAXBI backplane, the control-panel functions and the console
functions on serial-line unit 0 are available only for the primary processor
placed in VAXBI slot KIJ1. The external signal enabling the physical console
function is PNL CNSL LOG H (module 1/0 pin D52). The PCM module drives
this signal false on the primary processor to enable the control-panel and con­
sole functions on the KA820 module in slot KIJ1. On attached processors
PNL CNSL LOG H is true, enabling the logical console function. .

Figure 3-2 shows the sequence of events and options on power-up. The re­
mainder of this chapter describes these sequences in detail.

NOTE

(

(

In Figure 3-2, W/C refers to the state of the warm start (restart-in- (
progress) and cold start (bootstrap-in-progress) flags handled by
microcode. I cmd, T cmd, and N cmd refer to the Initialize, Test, and
Next commands (see Chapter 4).

3.2 Self-Test

Self-test is the first step in the KA820 power-up sequence. It consists of micro­
code that checks major KA820 functions. If self-test is successful, microcode
indicates success by lighting two yellow light-emitting diodes (LEDs) on the
module and printing messages on the console. Self-test then passes control to
the initialization and restart routines. If self-test detects an error, it fails to
light the yellow LEDs and enters console mode. (The red LEDs are lit when
the processor is in console mode, regardless of the self-test result.) The red
FAULT LED on the control panel lights during self-test and remains lit if any
VAXBI node fails self-test.

Self-test begins when the BI DC LO L signal becomes false, in response to any
of five events:

1. Normal power-up.

2. An operator pushes the Restart button on the control panel, simulating
power-up.

3. Console T command.

3-4 Sequences and Options on Power-Up

(

I COMMAND

N COMMAND

SLOW SELF-TEST

PROCESSOR
INITIALIZATION

CTRUP COMMAND

SEND ASCII # TO
CONSOLE SET DEFAULT
OPTIONS FROM EEPROM,
INIT CAM, RAM,
LOAD PATCHES,

SEND ASCII # TO CON­
SOLE, POWER-UP INI­
TIALIZATION, PROCES­
SOR INITIALIZATION,
SYSTEM INITIALIZATION

SET WARM FLAG

YES

LOAD PC FROM RPB,
START

ERROR HALT

MLO-393-85

Figure 3-2: Power-Up Microcode Flow

Sequences and Options on Power-Up 3-5

4. Software sets the Reset bit (PCntl CSR bit (28».

5. The KA820 module or another node sets the Node Reset (NRST) bit
(VAXBI CSR bit (10».

BI DC LO L in turn:

• Sets the Broke bit (BIle CSR bit (12». This bit makes the self-test status of
the KA820 module available to other nodes on the VAXBI bus.

• Clears the Self-Test-Pass bit (PCntl CSR bit (25». When clear, this bit
drives the wired-OR signal BI BAD L, which lights the red FAULT light on
the control panel. When set, this bit drives the two yellow LEDs on the
module and clears the Broke bit.

• Sets the hardware-fault-state bit (HFSB). This bit lights the two red LEDs
on the module.

Microcode then waits for the de assertion of BI AC LO L before proceeding. .
When BI AC LO L becomes false, microcode performs the following functions: (

1. Set the console serial-line unit baud rate.

2. Send (CR) (LF) to the console.

3. Send a # character to the console, indicating that self-test has begun.

4. Calculate a checksum on the control-store patches stored in the EE­
PROM.

5. Compare the stored checksum with the calculated checksum. If the com­
parison fails, print the error code ?4A on the console terminal and halt.

6. Initialize the control-store CAM and RAM.

7. Load and check primary control-store patches from the EEPROM into
the control-store RAM. On failure, print the error code ?4A on the console
terminal and halt.

8. Enable control-store patches.

9. Check the operation of the console serial-line unit for all baud rates in
loopback mode (see Chapter 4).

10. Clear the hardware-fault-state bit and turn off the red LEDs on the mod­
ule.

11. Read the EEPROM and set defaults according to the options specified
there:

F chip enable or disable

BTB enable or disable

Cache enable or disable

RCX50 self-test enable or disable

3-6 Sequences and Options on Power-Up

t--

(

(

(-

I

(

Then the self-test microcode branches according to the state of the BI STF bit,
port controller CSR bit (27).

If BI STF L is true, fast self-test is already complete.

If BI STF L is false (the normal condition) or microcode is executing a
console T command, slow self-test continues, performing a comprehen­
sive check of the KA820 module.

Thirteen sections make up the slow portion of self-test. On the successful com­
pletion of each section, microcode sends an uppercase ASCII character (A
through N, skipping L), corresponding to the hardware tested, to the console
terminal. If microcode detects an error, it passes control to the console micro­
code. Table 3-3 lists the slow self-test functions and the corresponding char­
acters displayed on the console terminal.

Table 3-3: Slow Self-Test Checks

Test Code Hardware Tested

Control-store test A Control store, primary patches,
MIB bus, liE chip

lIE chip internals test B lIE chip

DAL interface test C Interface of lIE and M chips and
interconnecting DAL bus

M chip internals test D M chip, and DAL, PAL, and CAL
buses

BTB array test; disable or enable BTB E BTB array, and DAL, CAL, and
according to data in EEPROM; skip PAL buses
test if BTB is disabled

Cache array test; disable or enable F Cache,and DAL, CAL, and PAL
cache according to data in EEPROM; buses
skip test if cache is disabled

lIE chip and M chip interaction test; G lIE chip, M chip
skip test if BTB or cache is disabled

Port-controller CSR test H Port controller

EEPROM test I EEPROM, EEPROM boot code,
port controller, PCI bus

Boot RAM test J Boot RAM, port controller, PCI
bus

F chip test; disable or enable F chip K F chip and interconnecting DAL
according to data in EEPROM; skip bus
test if F chip or cache is disabled

RCX50 controller test; skip test if M RCX50 controller, interface
RCX50 is disabled driver circuitry, port controller,

PCI bus, cable

BIIC test N BIIC, port controller, BCI bus

Sequences and Options on Power-Up 3-7

If a device is disabled, self-test skips the corresponding test and prints a dot (.)
on the console terminal in place of the letter.

After successful completion of either the fast self-test or the slow self-test, the
microcode:

1. Sends another ASCII # character to the console
2. Sends (CR)(LF) to the console
3. Clears the Broke bit (VAXBI CSR bit (12»
4. Sets the Self-Test-Pass bit (PCnt! CSR bit (25», which lights the yellow

LEDs on the module to indicate success
5. Passes control to the power-up initialization microcode

The following example shows console output irtdicating a successful slow self­
test.

II
IIABCDEFGHIJK.MNII

The # characters mark the beginning and end of self-test.

If any KA820 module componertt is missing or disabled, self-test skips the
corresponding test and prints a dot instead. For example, if the BTB is not
enabled, the console output for successful self-test is # ABCD.FGHIJK.MN #.

The next example shows console output indicating a self-test failure.

II
tlABCDE
?40
}})

This shows that test F failed and there is a fault in the cache array or a re­
lated bus. ?40 is a console error message indicating that self-test failed on
power-up (see Chapter 4 for a list of console error codes). The three greater­
than signs, »), make up the console prompt symbol.

The following example shows console output on a successful fast self-test.

II
till

NOTE

Occasionally, on power-up, the console may print a few random
characters before printing the self-test.

Note that in multiprocessor computer systems, attached KA820 processors in
VAXBI slots other than slot K1J1 will automatically execute the slow self­
test when BI DC LO Land BI AC LO L are cycled, unless the BI STF L signal
is asserted on the VAXBI bus. However, attached processors will not report
self-test status on the console. You can check the LEDs on these KA820 mod­
ules to determine self-test status, and software can read the Broke bit for each
module.

3.3 Initialization

Initialization microcode takes control of the KA820 processor at the end of
self-test. Initialization occurs in three phases:

3,....8 Sequences and Options on Power-Up

(

(-

(

E-

(

(

(-

1. Power-up initialization

2. Processor initialization

3. System initialization

At the end of this sequence the processor and main memory are ready to begin
executing VAX instructions and restart or bootstrap the operating system.

3.3.1 Power-Up Initialization

Power-up initialization microcode performs five steps:

1. Load the power-up halt code 03 in the Argument Pointer (AP).

2. Clear the restart-in-progress and bootstrap-in-progress flags in the M
chip.

3. Clear the Busy bit in the RXCD Register in the port controller.

4. Read the control-store patch revision number and CPU revision number
from the EEPROM and load them into the VAXBI Device Register
(DTYPE) in the BIIC (see Appendix D).

5. Load the BCI Control and Status Register in the BIle, setting seven bits:

Bit (3), RTOEVEN

Bit (4), PNXTEN

Bit (5), IPINTREN-

Bit (6), INTREN

Bit (8), UCSREN

Bit (9), WINVALEN

Bit (10), INVALEN

This setting prepares the KA820 module for VAXBI transactions. See Ap­
pendix D for an explanation of these bit functions.

3.3.2 Processor Initialization

Processor initialization puts the KA820 processor in a known state, ready to
execute VAX instructions. The KA820 module must be initialized after an
error halt before it resumes processing. Microcode performs this step auto­
maticallyon power-up (or simulated power-up), after a console T command,
and in response to a console I command.

Processor initialization involves 24 steps:

1. Turn off test mode features.

2. Load the value 041F 0000 (hex) in the Processor Status Longword (PSL)
(see the VAX Architecture Handbook for details).

Sequences and Options on Power-Up 3-9

3. Clear the Map Enable Register (MAPEN).

4. Enable memory-management microcode traps.

5. Clear the MTB and BTB tags.

6. Ensure that the hardware-fault-state bit (HFSB) is clear.

7. Halt prefetching of VAX instructions.

B. Ensure that the M chip refresh function is working.

9. Load the POLR Register with 0400 0000 (hex), setting the AST level
(ASTLVL) to 4 (see Appendix F and the VAX Architecture Handbook for
details).

10. Set the Interval Clock Control/Status Register (ICCS) to:

Turn off the interval timer.

Disable interval timer interrupts.

Clear the interval timer error bit.

11. Turn on the Time of Day Register (TODR).

12. Clear software interrupts.

13. Clear the Software Interrupt Summary Register (SISR).

(

(

14. Clear the Receive Interrupt Enable bit and the Transmit Interrupt En- (
able bit for serial-line units 0, 1, 2, and 3. "

15. Clear pending interrupts at levels 14, 15, and 16 in the ISTATUS
Register.

16. Clear the P1LR Register, disabling the performance monitor enable
(PME) function.

17. Clear the first part done (FPD) restart code in the M chip. The FPD code
tells whether the processor has been interrupted in the middle of a long (
instruction. \--

lB. Clear the machine-check frame in the MTEMP Registers in the M chip.

19. Invalidate the BTB by clearing the tags in the M chip.

20. Invalidate the cache by clearing the tags in the M chip.

21. In the PCnt! CSR:

• Clear the CRD (cQrrected read data) interrupt bit, bit (0).

• Clear the CRD interrupt enable bit, bit" (2), to disable CRD interrupts.

• Clear the IP (interprocessor) interrupt bit, bit (3).

• Clear the write-wrong-parity bits, bits (15) and (23).

• Clear the console-interrupt bit, bit (OB).

3-10 Sequences and Options on Power-Up

(

(

(

(--

(
\

• Clear the remote-console-interrupt bit, bit (10), to disable RXCD
interrupts.

• Unlock the VAXBI event code by clearing bit (22).

• Clear the Run bit, turning off the RUN light on the control panel, bit
(24).

22. Load (or reload) the BCI Control and Status Register as explained in Sec­
tion 3.3.1, step 5.

23. Load the Device Register (DTYPE) from the EEPROM.

24. Copy the bootstrap section of the EEPROM to the boot RAM, starting at
location 2009 0000 (hex) in the boot RAM.

3.3.3 System Initialization

KA820 microcode initializes the computer system to prepare for restarting
the operating system and user programs (or the VAX Diagnostic Supervisor)
or for bootstrapping the system. The processor performs this function under
four conditions:

1. As part of the power-up ~nd simulated power-up sequences

2. In response to a console B command

3. In response to a console T command

4. In response to a console TIM command

Every node on the VAXBI bus tests itself when the BI AC LO Land BI DC LO
L signals are cycled from true to false.

The KA820 processor initializes the system by polling each VAXBI node,
reading the Device Register, to determine which slots are occupied and which
ones contain memory nodes. Ifbits (15:0) are set to FFFF or 0000 (hex), the
node is initializing or Broken. Microcode waits for a ten-second timer to ex­
pire before declaring any node faulty. Ifbits < 14:8) in the Device Register are
zeros, the device is a VAXBI memory node.

If a slot contains a VAXBI memory node, the KA820 microcode reads the
VAXBI Memory Control and Status Register to find the amount of memory on
the node and determine whether the node passed its own self-test (the Broke
bit should be clear). Bits <28:18) indicate the memory size in 256K-byte in­
crements. From this value the microcode calculates the starting and ending
addresses of this memory node and loads them in the Starting and Ending
Address Registers in the node's BIlC. The routine adds the memory size to
the maximum memory count (initially zero). It then initializes the BCI Con­
trol and Status Register of this memory node by setting bit < 8) (UCSREN)
and bit < 13) (STOPEN).

If a slot contains a nonmemory node, KA820 microcode reads the VAXBI Con­
trol and Status Register, checking the Broke bit to see if the node has passed
its own self-test.

Sequences and Options on Power-Up 3-11

If any VAXBI node has its Broke bit set, the KA820 module does not attempt a
warm start sequence. However, the processor may be capable of performing
the bootstrap function. (' -

If slow self-test is enabled, microcode prints a node number and a space on the
console after finishing with each node that has passed self-test. If a VAXBI
slot contains a node with the Broke bit set, microcode prints a minus sign in
fr<;mt of the corresponding node number on the console. If a slot with an ID
plug inserted in the backplane is empty, the microcode prints a dot on the
console, instead of a node number, in the position corresponding to the ID
number for that slot. Microcode also prints a dot if it cannot read the VAX-
BIeSR for the node (this can happen if the BIle fails its self-test and turns off
its driver circuits). Note that iffast self-test is enabled, microcode suppresses
this console output.

When the microcode has examined all the nodes on the VAXBlbus, the value
stored in the maximum memory count represents the size of VAXBI memory.
System initialization microcode prints thisyalue on the console terminal on ('_
the line following the VAXBI node status information, before passing control .
to the bootstrap microcode. Figure 3-3 shows the sequence of events in the
system initialization process.

Example 3-1 shows console output for initialization of a particular system.

o 1 2 . . -5 B
00400000

Example 3-1: System Initialization Console Output

This console message indicates that:

Nodes 0, 1,2, and B are good.

Node 5 is faulty.

(

VAXBI slots with node ID plugs 3, 4, ~, 7, 8, 9, A, e, D, E, and F
are empty, or the nodes do not respond when microcode reads the
~nro~. ~
The maximum usable VAXBI memory address is 0040 0000 (hex). This
indicates that there are four megabytes of physical memory.

When the microcode finishes the system initialization sequence, it branches,
depending on the settings of the control-panel switches,as shown in Figure
3-2. If the lower key switch is in the Auto Start position, control passes to the
restart microcode. Otherwise the KA820 module enters console mode. The
console may be enabled or disabled, according to the position ofthe upper key
switch.

Appendix G lists the contents of the processor registers when the KA820 mod­
ule ente.rs console mode after power-up.

3-12 Sequences and Options on Power-Up

c

(

(

START AT VAXBI
NODEO
LOAD TIMEOUT
CONSTANT FROM
EEPROM

DEVICE TYPE OF
0000 or FFFF (HEX)

READ VAXBI
NODE DEVICE
REGISTER NONEXISTENT VAXBI

L-T-r-----r---r---' NODE

READ MEMORY CSR
FOR SIZE AND
BROKE BIT
UPDATE MAXIMUM
MEMORY COUNT
LOAD BIIC START/END
ADDRESS REGISTERS
INITIALIZE BCICSR

DECREMENT TIME­
OUT REGISTER

NO

READ BCICSR
TO GET BROKE
BIT FOR NODE

IF SLOW SELF-TEST
PRINT"n "ON
CONSOLE (n = NODE
NUMBER)

PRINT "-n "ON
CONSOLE (n = NODE
NUMBER)

INCREMENT
VAXBI NODE
NUMBER

PRINT <CR><LF>
ON CONSOLE
PRINT MAXIMUM
MEMORY ADDRESS
PRINT <CR><LF>
ON CONSOLE

<END>

PRINT". "
ON CONSOLE

MLO-394-85

Figure 3-3: System Initialization Sequence

Sequences and Options on Power-Up 3-13

3.4 Restart and Bootstrap

KA820 microcode tries to restart (warm start) the software after initializa- (
tion, if the RSTRTIHALT bit (PCntl CSR bit (31»)is clear (the lower key
switch is in the Auto Start position), in response to four kinds of events:

1. Power-up.

2. The processor executes a VAX HALT instruction~

3. The processor halts when it detects a machine-check error.

4. Software writes a 1 to the Reset bit (PCntl CSR bit (28»).

If the restart attempt fails, the microcode tries to bootstrap (cold start) the
system. If the bootstrap attempt fails, the KA820 processor halts. The micro­
code makes only one warm start attempt and only one cold start attempt.
Internal flags that indicate whether a restart or a bootstrap attempt is al­
ready in progress keep the processor from looping continuously.

See Appendix G for the contents of the processor registers when the KA820
module begins executing VAX macrocode.

3.4.1 Restart Function (Warm Start)

The KA820 microcode does not try to warm-start the system if any VAXBI
node has its Broke bit set, since the faulty node might have failed following

(

the power failure and might contain data structures or hardware critical to (
the process that was running.

The warm start function consists of nine steps:

1. Check the restart-in-progress and bootstrap-in-progress flags in the M
chip. If either flag is set, the warm start fails.

2. Set the restart-in-progress flag. Although microcode sets this bit, software
should clear it by writing OF03 to the TXDB Register (IPR 23) after a suc­
cessful warm start.

3. Search main memory for a valid restart parameter block (RPB). The oper­
ating system writes the RPB when BI AC LO indicates that power is fail­
ing. The RPB lets microcode restart the software where it left off, if the
memory is backed up by a battery. If microcode fails to find a valid RPB,
the warm start fails. Figure 3-4 shows the four longwords that make up
the RPB.

4. If a valid RPB is found, check the software restart-in-progress flag at RPB
+ C (hex). The warm start fails if the flag is set. Note that restart software
should set this flag as soon as possible in the restart sequence. If the warm
start is successful, software should clear this flag before passing control to
the interrupted process.

5. Load the Stack Pointer (SP) with the physical address ofRPB + 200 (hex).

3-14 Sequences and Options on Power-Up

~--

(

(

(

~----

(

RPB + 0 PHYSICAL ADDRESS OF THE RPB, MUST BE PAGE ALIGNED

RPB+4 PHYSICAL ADDRESS OF THE RESTART ROUTINE, CANNOT BE 0

RPB+8 CHECKSUM OF THE FIRST 31 LONGWORDS OF THE RESTART ROUTINE

RPB+C SOFTWARE RESTART-IN-PROGRESS FLAG, BIT <0>

MLO-395-85

Figure 3-4: Restart Parameter Block Format

6. Load the Argument Pointer (AP) with the halt code (see Chapter 4) de-
scribing the reason for the warm start.

7. Execute the processor initialization routine listed in Section 3.3.2.

8. Turn on the control-panel RUN light.

9. Start the processor at the address found in the second longword of the
RPB.

When the microcode searches for a valid RPB (step 3), it begins by looking for
a page of memory that contains its own address as the first longword. The
search for this page begins at address 0000 0200 and continues through the
end of memory ..

If the search yields apage that contains its own address as the first longword,
microcode checks the second longword of the page. If it contains a valid ad­
dress that is not 0, this is the address of the restart routine. If the second
longword is an invalid address or 0, microcode resumes the search for a page
that contains its own address as the first longword.

Microcode then reads the first 31 (decimal) longwords of the restart routine
and calculates a 32-bit unsigned sum of the contents. If the sum matches the
third longword ofthe page, microcode has found a valid RPB. Otherwise, the
search continues.

If the search for a valid RPB fails, microcode tries to bootstrap (cold start) the
system.

3.4.2 Bootstrap Function (Cold Start)

The KA820 module tries to bootstrap the system if a warm start attempt fails
or if an operator types the B command on the console. Note that unlike the
warm start attempt, the bootstrap attempt will occur even if one of the
VAXBI nodes has its Broke bit set.

The bootstrap algorithm involves six steps:

1. Check the bootstrap-in-progress flag in the M chip. If the flag is set, the
bootstrap fails. The KA820 processor remains halted and control passes to
the console microcode.

Sequences and Options on Power-Up 3-15

2. Set the bootstrap-in-progress flag in the M chip, to prevent looping contin­
uously.

3. Find a 64K-byte block of good memory that is page aligned. Note that this
search leaves the locations that get checked in an unpredictable condition.
If the search fails, the bootstrap fails.

4. Load the general purpose registers as follows:

R3 - Boot device. In response to a B (ddxn) command from the con­
sole, microcode loads R3 with (ddxn). This is the boot device identi­
fier, where dd indicates the device type, x is a hexadecimal digit
identifying the VAXBI node to which the device is attached, and n is
a hexadecimal digit identifying the device unit number. If the de­
fault device is used to bootstrap the system, microcode loads R3 with
zeros. Note that this boot device identifier is not necessarily the de­
vice type code used by the VMS operating system.

R5 ...;.... Boot parameter. Microcode loads R5 with a boot parameter
(boot control flag) in response to a BIR5:(data) command from the
console (see Chapter 4 and Appendix I).

R10 - Halt PC. On a bootstrap following power-up, R10 is unpredict­
able.

Rll - Halt PSL. On a bootstrap following power-up, Rll is unpre­
dictable.

AP - Halt code. See Table 4-2 in Chapter 4 for details.

SP - Starting address of the primary bootstrap (200 (hex) bytes past
the start of good memory).

Microcode leaves the other general registers untouched.

5. Turn on the RUN light on the control panel.

6. Start executing bootstrap macrocode beginning at physical address
20090104 (hex) in the boot RAM. The code in the boot RAM loads a boot
block which brings in the primary bootstrap routine (generally VMB)
from the boot device into main memory, beginning at the second page of
the 64K-byte block of good memory. The boot device containing the pri­
mary bootstrap may be a local mass-storage device, such as an RX50 disk­
ette. The primary bootstrap then loads a secondary bootstrap, which in
turn brings in the operating system or the VAX Diagnostic Supervisor.

3.4.2.1 EEPROM and Boot RAM Bootstrap Considerations - At bootstrap time
the boot RAM contains information that lets the KA820 module load the op­
erating system from any of up to ten devices. Microcode copies this informa­
tion from the EEPROM to the boot RAM as step 24 of the processor
initialization sequence.

3-16 Sequences and Options on Power-Up

(

(

(

(

(---

(

Ten device designations in the form (ddxn) and ten corresponding boot code
addresses occupy EEPROM space beginning at location 2009 8040. The first
device listed is the default bootstrap device. The last nine designations iden­
tify bootstrap devices that you can select as arguments to the console boot
command in the form B (ddxn). The address corresponding to each device
designation points to macrocode in the boot RAM that loads the boot block
from that device. Chapter 4 of this manual and the VAX 8200 Owner's Man­
ual explain how to change the bootstrap information in the EEPROM. Appen­
dix H shows the contents of the EEPROM in detail.

3.4.2.2 Software ResPQnsibilities in the Bootstrap - In addition to loading and
starting the operating system, standard bootstrap software is responsible for
several other functions:

• Loading the secondary control-store patches into the control-store RAM
(before turning on memory management). Section 3.4.2.3 explains this
procedure.

• Loading microcode for other VAXBI nodes.

• Checking main memory for all single-bit and double-bit errors, mapping
out pages that contain errors.

• Clearing the hardware restart-in-progress and bootstrap-in-progress flags
by writing OF03 and then OF04 (hex) to the TXDB Register with the MTPR
instruction.

• Reading the time in the watch chip, calculating the corresponding 32-bit
time value, and loading this.value into the TODR Register.

• Clearing the software restart-in-progress flag, RPB + C, bit (0).

3.4.2.3 Loading Secondary Control-Store Patches - Bootstrap software can
load secondary control-store patches in one block and then read the patches
back to make sure there are no errors. The secondary patches normally over­
write the primary patches loaded into control store from the EEPROM on
power-up. The KA820 processor makes three internal registers available to
software for handling control-store patches: WCSL, WCSA, and WCSD.
The software can use MTPR and MFPR instructions to write and read;these
registers.

First the bootstrap software should write the entire block of secondary
patches into contiguous physical locations in main memory in the format
shown in Figure 3-5.

The patch for each control-store word requires seven bytes: five bytes for the
microword and two bytes identifying the ROM address that the patch is re­
placing. The bit order shown in Figure 3-5 is irregull\lr, but it must be fol­
lowed exactly. In addition to the seven bytes for each patch, the block requires
a 7 -byte header telling the number of patches in the block, the CAM address
to be associated with the beginning of the block, and a checksum.

The number of patches must be an unsigned number in the range of 0 to 3FC
(hex).

Sequences and Options on Power-Up 3-17

55 4847 4039 3231 2423 1615 87 o

NUMBER OF CAM CHECKSUM OF PATCHES
PATCHES ADDRESS

PATCH 1 :C 0 ROM 40-BIT MICROWORD PATCH
ADDRESS <16:9, 8:0, 39, 17:38>

: <0:13>

PATCH 2 :C 0 ROM 40-BIT MICROWORD PATCH
I ADDRESS

PATCH 3 C 0 ROM 40-BIT MICROWORD PATCH
ADDRESS

•

PATCH n-1 C 0 ROM 40-BIT MICROWORD PATCH
ADDRESS

PATCH n C 0, ROM 40-BIT MICROWORD PATCH
ADDRESS

ZERO PADDED TO LONGWORD BOUNDARY

Figure 3-5: Control-Store Patch Block Format

ADDRESS

BASE OF
BLOCK

BASE +7

BASE+14

BASE+21

MLO-396-85

The CAM address is a number in the range of 0 to 9F (hex) that indicates the
CAM location that will contain the ROM address corresponding to the first
patch.

(

(

(

The checksum stored in the header, when added to the unsigned longword (.. __ .
sum of the rest of the patch block, must equal 6969 6969 (hex): t-

patch-block-sum + checksum = 6969 6969

You can calculate the number of longwords (X) to be summed according this
formula:

X = «number-of-patches + 1) * 7 + 3) 14

The letter C shown in bit 55 in each patch in Figure 3-5 tells whether the
CAM should be loaded with the ROM address being patched. A 1 means load
the CAM. Note that the CAM should be loaded only for the first patch in a
sequence. See Section 2.1.5 in Chapter 2 for an explanation of control store
and the CAM function.

After bootstrap software loads the block of patches into main memory, it can
load the whole block into the control-store RAM with one MTPR instruction, (.
as shown in Example 3-2.

3-18 Sequences and Options on Power-Up

(

(

(

(

WCSL = 2E ; Identify the WCSL address.

MTPR {patch-block-base}, WCSL ; Load the entire patch block.

Example 3-2: Loading a Patch Block into the Control-Store RAM

This instruction loads the physical address ofthe base ofthe patch block into
the WCSL Register. Figure 3-6 shows the WCSL Register format.

WCSL IPR #2E

31 o

PHYSICAL ADDRESS OF THE BLOCK OF PATCHES

MLO-397-85

Figure 3-6: WCSL Register Format

Microcode executes this MTPR instruction by reading main memory, begin­
ning at the patch-block base address. It calculates a checksum, compares this
with the stored checksum, and loads the entire block into the control-store
RAM, if the checksums agree. If the checksums do not agree, microcode does
not load the patches. Software can check the condition codes in the Processor
Status Longword (PSL) to determine whether the patch load has succeeded.

Condition codes on a successful patch load:

N (- patch-block base address is less than 0
Z (- patch-block base address equals 0
V (- 0 = success
C (-C

Condition codes on a patch-load failure:

N (- patch-block base address is less than 0
Z (- patch-block base address equals 0
V (-1 = failure
C (-C

Next the bootstrap software should check the accuracy of the patches loaded
by reading them back from the control-store RAM. The WCSA and WCSD
registers let the software look into the control-store RAM. The software can
compare the data read against the patch block in memory. Figure 3-7 shows
the formats for WCSA and WCSD.

Sequences and Options on Power-Up 3-19

WCSA IPR #2c

31 2221 870

x ADDRESS BITS<0:13> I DATA BITS <16:9> I

WCSD IPR #2D

31 232221 ° I DATA BITS <8:0> II
t

DATA BITS <17:38>

<39>
MLO-398-85

Figure 3-7: WCSA and WCSD Register Formats

To read a control-store RAM location the bootstrap software should write the
WCSA Register with an MTPR instruction. Bits (21:8) ofthe longword must
contain the address (0:13) of the control-store ROM location being patched
(note that the normal bit order is reversed). Other bits in the longword do not
matter. Next the software should use an MFPR instruction to read the WCSD
Register to retrieve microword bits (8:0, 39, 17 :38). The software should then
use another MFPR instruction to the WCSA Register to retrieve microword
bits (16:9). Example 3-3 shows this sequence.

WCSA = 2C
WCSD = 2D

MTPR #00172400, WCSA

MFPRWCSD, Rl

MFPR WCSA, R2

; Identify the WCSA address.
; Identify the WCSD address.

; Get the patch for ROM
; address 93A (hex)
; (bits are reversed).
; Read bits < 8:0, 39,
; 17:38).
; Read bits (16:9).

Example 3-3: Reading Control-Store Patches

Note that the software must execute these three instructions in the order
shown to read each control-store patch. No interrupt,s or exceptions are al-
lowed in this sequence. .

Control-store ROM addresses range from 0000 to 3BFF (hex). RAM addresses
range from 3COO to 3FFB (hex). Addresses 3FFC to 3FFF (hex) refer to the
diagnostic CAM Match Register and should not be used.

When the software reads a control-store ROM address that has been patched,
the microcode returns the microword stored in the patch RAM, not the origi­
nal ROM microword. After loading and checking secondary patches, software

3-20 Sequences and Options on Power-Up

(

(

(

(

(

t--

(

should set bit (16) in the Device Register and bit (8) in the System Identifi­
cation Register.

3.5 Sample Multiprocessor Configuration Start Sequence

In a multiprocessor VAXBI computer system only one KA820 module (the
processor in VAXBI slot KIJ1) attempts to restart or bootstrap the system
when BI DC LO Land BI AC LO L are cycled or when an operator types the B
command on the console terminal. Figure 3-8 shows a specific multiprocessor
configuration.

CONSOLE
TERMINAL

A

,

(SLOT K1J1)
A

KA820

I

I
MEMORY

AUTO START
CONSOLE ENABLE
CONSOLE IS ON
SERIAL-LINE UNIT 0

VAXBI

I
DISK

B

KA820

I

I
C

KA820

T HAL
CON SOLE ENABLED

ICAL CONSOLE IS
ru<BI SLOT K1J1

LOG
IN V.

~

,.
HALT
CONS
LOGIC

OLE ENABLED
AL CONSOLE IS
BI SLOT K1J1 IN VAX

MLO-399-85

Figure 3-8: Sample Multiprocessor Configuration

In this configuration processor A is the primary processor. Band C are at­
tached processors. On power-up all three KA820 processors perform selfctest,
power-up initialization, processor initialization, and system initialization se­
quences. Each processor polls the VAXBI bus, sizing memory and loading
starting and ending addresses in the memory BIlCs.

The primary processor then tries to restart the software. If this fails, it tries to
bootstrap the system.

The attached processors enter the console mode automatically. Microcode in
each attached processor reads the logical console byte in the EEPROM and
sends the following 3 lines of characters to the RXCD Register of the primary
processor (the logical console).

?03
PC = xxxxxxxx

}}}

Sequences and Options on Power-Up 3-21

An attached processor waits a maximum of one second for the primary proces­
sor to read each character and then sends the next character. If the primary
processor is not in the forwarding console mode or running software that
reads its RXCD Register, the characters sent from an attached processor are
ignored and unavailable to the console operator. If you enter the console mode
on the primary processor and then use the console Z command (see Section
4.3.12 in Chapter 4) the console terminal will display characters as it receives
them from the attached processor you have accessed. If you wait until the
attached processor has finished sending characters before using the console Z
command, the console terminal will display only), the last character sent in
the console prompt, »).

If the primary processor succeeds in restarting or booting, software running
in the primary processor can respond to the prompts from the attached proc­
essors and start them. The primary processor should send console commands
to the RXCD Registers in the attached processors to set up their internal reg­
isters, load their secondary control-store patches, and start the processors
running.

Example 3- 4 shows a sequence of console commands that might be used to
start an attached processor.

HCR)

D/I (address) (data) (CR)

S (address)(CR)

! Initialize the attached
! processor.

Set up internal processor
registers.

! Start the attached processor , . . runmng.

Example 3- 4: Commands to Start an Attach ed Processor

See Chapter 4 for an explanation of these console commands.

3- 22 Sequences and Options on Power-Up

(

(

(

..
(

(

(

(----

(

Chapter 4
Console Functions

4.1

KA820 microcode emulates the control-panel lights and paddle switches of
older computer systems with an ASCII console. The KA820 console functions
are compatible with those of other VAX consoles; they let you:

• Start and stop the processor.

• Examine and deposit data in registers and in memory.

• Test the hardware with the self-test microcode and macrodiagnostic
programs.

• Bootstrap the system.

• Single step through VAX macrocode.

• Run stand-alone programs without using the operating system.

The KA820 console lets you perform these functions from a terminal or an­
other KA820 processor on the VAXBI bus (logical console). You can also load
blocks of data through the console from an automatic load device. The console
terminal or automatic load device must be connected directly to serial-line
unit 0 on the primary processor installed in VAXBI slot KIJ1.

For attached processors in multiprocessor systems, RXCD Registers function
like serial-line unit 0, passing commands and responses between the console
microcode and the VAXBI bus. See Section 4.6 for a discussion of logical con­
sole operation in multiprocessor systems.

Console States

The KA820 console is always in one of three states when power is on:

1. Program I/O mode (the processor is running VAX macrocode)

2. Console mode (the processor is halted with the console enabled)

3. Processor is halted with the console disabled

In the program I/O mode, the console terminal acts like a conventional VAX
system terminal. Microcode passes all characters, with the exception of
CTRLIP, from the terminal or RXCD Register through to the software. When

4-1

you type (CTRUP J on the console terminal (or another processor in the VAXBI
backplane sends CTRLIP to the RXCD Register) and the console is enabled,
the processor halts and enters the console mode. (

In the console mode, characters typed on the console terminal are interpreted
as commands or parts of commands. The console mode includes two states:
local and forwarding.

• In the local console mode, microcode on the KA820 module connected to the
console terminal interprets the console commands.

• In the forwarding console mode, microcode on the KA820 module sends
console commands to an attached processor in another slot on the VAXBI
bus, and the attached processor interprets the commands.

You can return control to the local console mode by typing (CTRUP J. You can
return the processor from the local console mode to the program I/O mode
with the commands to Start, Continue, or Boot. The N command returns the
processor to program I/O mode for one VAX instruction and then passes con- (.
trol back to the console mode.

When the processor is halted and the console is disabled, neither VAX macro­
code nor microcode takes any observable action. In a standard VAX 8200 sys­
tem you can enable the console mode by rotating the upper key switch on the
control panel to the Enable position. Bit (29) in the PCntl CSR is a read-only
bit that reflects the position of the upper key switch. See Table 3-1 in Chapter
3 for a list of the switches, corresponding module I/O pins, and PCntl CSR
bits. Table 4-1 lists four PCntl CSR bits related to the console. See Appendix ("-
E for a complete description of this register. .

Table 4-1: PCntl CSR Bits Related to the Console

Module 110 Pin PCnt} CSR Bit Function

D51
D52
D53

4.2 Console Entry

(31)
(30)
(29)
(lO)

RestartIHalt power-up option bit
PhysicallLogical console selection bit
Console secure/enable selection bit
RXCD logical console interrupt enable
control bit, set or cleared by software

The KA820 module enters the console mode in response to any of the follow­
ing conditions:

1. From program I/O mode with the console enabled (PNL CNSL ENE H on
module I/O pin D53 is true)

• You type (CTRUP J on the console terminal, halting the primary processor;
or

4-2 Console Functions

~-.

(

(

(

(-" -

-(

• The logical console for an attached processor sends CTRLIP to the at­
tached processor's RXCD Register. The logical console function on the
attached processor is enabled. PNL CNSL LOG H, module I/O pin D52,
is true; PNL CNSL ENB H, module I/O pin D53, is true; and CNSL
INTR ENBL, PCntl CSR bit (10), is set; or

• A VAX error halt occurs or a VAX HALT instruction is executed in ker­
nel mode. The lower key switch is in the Halt or Update position (PCntl
CSR bit (31) is 1). Or the switch is in the Auto Start position (PCntl
CSR bit (31) is 0) and a bootstrap attempt fails.

2. From power-up with the console enabled

• Self-test fails.

• Power-up initialization microcode detects a hardware error.

• The lower key switch is in the Update or Halt position (PCntl CSR bit
(31) is 1).

• The lower key switch is in the Auto Start position (PCntl CSR bit (31)
is 0) and a bootstrap attempt fails.

4.2.1 Halt Codes

When the processor halts and enters the console mode, the microcode displays
a halt code on the console terminal, followed by the contents of the Program
Counter (PC) and the console prompt, ») .. Microcode also deposits the halt
code in the Argument Pointer (AP) for use by software, if and when the sys­
tem is restarted or booted. Table 4-2 lists the halt codes and their meanings.

Table 4-2: Halt Codes

Halt
Code Meaning

?01 Self-test completed successfully.

?02

?03

?04

?05

?06

?07

Console halt: The processor received a CTRL/P or N command from the
enabled console source. This could be serial-line unit 0 or a VAXBI node
acting as the logical console. The console is enabled.

Power-fail restart.

Interrupt stack not valid: The processor tried to save state on the inter­
rupt stack and found the stack invalid or inaccessible.

CPU double-error halt: The processor tried to report a machine-check
error to the operating system and a second machine-check occurred.

HALT instruction executed: The processor executed a VAX HALT instruc­
tion while in kernel mode .

./

Invalid System Control Block (SCB) vector: The vector has bits (1:0) both
set.

(Continued on next page)

Console Functions 4-3

. ,:."

Table 4-2: Halt Codes (Cont.)

Halt
Code Meaning

?08 No user-writeable control store (WCS): Software tried to use WCS by
setting the value 2 in bits (1:0) of a system control block (SCB) vector.
However, there is no user WCS on the KA820.

?OA CHM from interrupt stack: The processor executed a change mode in­
struction when the interrupt stack bit, bit (26), was set in the Processor
Status Longword (PSL).

?OC System control block (SCB) read error: A hard memory error occurred
when the processor tried to read an exception or interrupt vector.

Example 4-1 shows a sample console message following entry to the console
mode.

?02

}}}
PC = 00000200

Example 4-1: Sample Console Output Following Entry to the
Console Mode

This message says that a CTRLIP command stopped the processor with the
program counter pointing to address 0000 0200 (hex).

4.3 Console Commands

The following characters have special meaning for the KA820 console micro­
code.

• (BREAK) - Increment the console baud rate

• B-Boot

• C - Continue

• D - Deposit

• E-Examine

• H-Halt

• I - Initialize the processor

• N -Next

• S - Start

• T-Test

• TIM - Test with menu

4-4 Console Functions

(

(

~--

t
\

(

(

(

(,

• X - Binary load and unload

• Z - VAXBI forward

• I-Comment

• (ESC) - Forward the next character without interpreting it.

• (CTRLIP)- Halt and enter console mode

• (CTRLlS) - Stop console output

• (CTRLlQ) - Restart console output

• (CTRLIU) - Abort the current command line and the current command

You can use these commands only when the KA820 module is in the console
mode and the console is enabled. Type (CTRUP) on the console terminal to enter
the console mode. The Z, (ESC), and (BREAK) commands are new with the
KA820 console. However, some console commands used on other VAX proces­
sors are not implemented on the KA820 module; they include:

• F-Find

• U - Unjam

• L-Load

• M - Microstep

• R-Repeat

• S-Set

• @

• (BACKSPACE)

• (DELETE)

Although specific rules apply to each console command, the following guide­
lines hold for all console commands:

1. You must abbreviate all commands (except TIM) to the fIrst character.
This character should immediately follow the console prompt, »).

2. Console microcode ignores all invalid, unrecognized, and unsupported
commands, echoing them with the beep (bell) character on the terminal.

3. Console microcode parses all commands as you type them, ignoring in­
valid characters and echoing them with beep on the terminal.

4. Console microcode takes no action on a command line until you termi­
nate it with a carriage return. Carriage return is echoed as carriage re­
turn and line feed. (CTRL/P) , (CTRL/S) , (CTRL/Q), (CTRLIU),
(BREAK) ,. and (ESC) are exceptions; microcode responds to these com­
mands without waiting for a carriage return.

Console Functions 4-5

5. You can enter commands with uppercase or lowercase characters. The
console echoes your input in the case you use, but it always responds in
uppercase.

6. You must use one space to separate the parts of a command. Multiple
spaces and tabs are invalid, and the console microcode echoes them with
beep.

7. ConsDle microcode interprets all numbers in commands and responses as
hexadecimal values: addresses, data, and counts.

8. You can type valid qualifiers immediately following any part of the com­
mand: command character, address, data, or count.

9. You must abbreviate the symbolic address PSL to P.

10. Console microcode does not check the ranges for addresses or data. Values
that are too small are extended on the left with zeros. Values that are too
big are truncated.

11. You can abort any console command by typing (CTRUP] or [CTRUU].

Table 4-3: Symbols Used in Console Command Descriptions

Symbol

{count}

{address}

{data}

{qualifier}

Meaning

An expression enclosed in square brackets is optional.

Angle brackets enclose category names, such as <address) or
< qualifier).

An 8-digit hexadecimal count. You can omit leading zeros.

An address argument. You can omit leading zeros. The comm.and
descriptions explain what address types are valid for each com­
mand.

A numeric argument. You can omit leading zeros.

A command modifier. The command descriptions identify valid
qualifiers for each command.

(RET] Carriage return. Use [RET] to terminate each command except
control character commands, < ESC), and < BREAK).

4.3.1 Change Console Baud Rate Command « BREAK»

{BREAK}

With the KA820 microcode in the console mode, you can set the baud rate for
serial-line unit 0 by pressing the (BREAK] key on the console terminal. Micro­
code makes eight baud rates available:

150 baud
300 baud
600 baud

4-6 Console Functions

(

(

(--

(

(

(

(

E-'

(

1200 baud
2400 baud
4800 baud
9600 baud

19200 baud

Each time you press [BREAK), the console microcode briefly lights the control­
panel RUN light (PNL RUN LED L, module I/O pin D49), increments the
baud rate to the next higher speed, and in the new baud rate prints on the
console terminal:

{CR}(LF>
}}}

If these characters do not appear or they are garbled on the terminal, the
KA820 module is not matched to the baud rate for your terminal. Keep typ­
ing [BREAK) till you find the right speed and the console prompt symbol is un­
garbled. DIGITAL ships the KA820 module with the default baud rate for
serial-line unit 0 set at 1200. The default baud rate used on power-up is set
according to data stored in byte 6 in the EEPROM customer option space (see
Table 4-4). Four other considerations apply to use of the [BREAK) key:

1. When the console microcode detects (BREAK), it aborts the current com­
mand line and stops parsing or executing any command in progress.

2. Microcode sets the transmit and receive baud rates to the same value.

3. Changing the baud rate by pressing [BREAK) does not change the default
baud rate stored in the EEPROM. The console will go back to the default
baud rate after a power-downlpower-up sequence.

4. You cannot forward (BREAK) to another processor with the Z command.

4.3.2 Boot Command (B)

B[{qualifier>l [(ddxn}l [RET)

The B command lets you boot the system. In response to this command, micro­
code loads and starts the software, taking the following steps:

1. Initialize the KA820 processor. This includes loading bootstrap code from
the EEPROM into the boot RAM.

2. Load General Purpose Register R3 with the boot device specification
<ddxn). The boot code in the boot RAM compares the device specification
with ten possible values in the EEPROM. If there is no match, microcode
prints ?44 on the console terminal.

3. Load General Purpose Register R5 with the data (specified in the com­
mand qualifier) to be passed to the bootstrap software.

4. Initialize the system, polling the VAXBI bus and sizing memory.

5. Search for a 64K-byte block of good memory.

Console Functions 4-7

6. Invalidate the cache.

7. Start executing the VAX bootstrap code in the boot RAM if microcode has
found a 64K-byte block of good memory.

The qualifier for the B command is optional. It takes the form:

1R5:(data)

where (data) is a 32-bit value (boot parameter) to be passed to the bootstrap
software. Appendix I lists the software boot control flags used by the VMB
primary bootstrap code and the VMS operating system. Microcode loads the
data into R5. If you do not specify a qualifier, microcode loads R5 with O.

The boot device specification is optional as well. It takes the form:

(ddxn)

where

dd

x

n

identifies the boot device type.

identifies the VAXBI node number to which the boot device
is attached.

identifies the unit number of the boot device.

If you specify the boot device, you must use all four characters. Microcode
loads the ASCII equivalent of these characters in R3. Note that this format
is not the same as the device specification format for the VMS operating
system.

(

If you do not specify the boot device, microcode loads 0 into R3 and selects the (
default boot device. This is the first of ten devices identified in the EEPROM \
beginning at location 2009 8180.

If microcode finds a 64K-byte block of good memory, it adds 200 (hex) to the
address ofthe first page ofthe block and loads this value in the Stack Pointer
(SP). It then transfers control to VAX bootstrap code in the boot RAM at
address 2009 0104.

If microcode cannot find a 64K-byte block of good memory, it sends the error
message ?43 to the console terminal and prompts for the next command.
Example 4-2 shows two successful B commands and one failure.

)} >B
o ... 4 5 F

00200000

»>B/R5:10 DU51
o ... 4 5 F
00200000

4-8 Console Functions

! Boot using the default device.
! Nodes 0, 4, 5, and Fare
! present on the VAXBI bus.
! System memory size in hex:
! two megabytes.
! Microcode loads R3 with 0 and R5
! with o.
! Boot using device DU51.
! VAXBI node configuration.
! System memory size in hex.
! Microcode loads 4455 3531 (hex),
! the ASCII equivalent of DU51,

into R3, and loads 10 (hex)
into R5 (specifying the VAX
Diagnostic Supervisor).

(

(

(

})}B
o ... 4 5 F
00200000

?43

PC : 2009017F

})}

! Boot using the default device.
! VAXBI node configuration.
! System memory size in hex.
! Microcode loads R3 with 0 and R5
! withO.
! Microcode fails to find a
! 64K-byte block of good memory.
! Halted at this location. The
! processor has not started
! executing bootstrap code
! from the EEPROM.
! Console prompt.

Example 4-2: Representative Boot Commands

4.3.3 Continue Command (C)

C(RET]

The C command lets you continue executing software at the point where it
has been stopped. In response to this command, microcode passes control to
VAX macrocode. Instruction execution begins at the address specified in the
Program Counter. Continue microcode invalidates the cache but it does not
initialize the processor before starting instruction execution.

4.3.4 Deposit and Examine Commands (0 and E)

D[{qualifiers)] {address}[{qualifiers}] {data}[{qualifiers)](RET]

E[{qualifiers}] [(address)] [(qualifiers}](RET]

The D and E commands let you write and read data in memory and registers
almost anywhere in the computer system (exceptions include the VAXBI node
private spaces on other nodes).

The KA820 microcode divides address space into six categories:

1. Physical addresses
2. Virtual addresses
3. Internal processor register addresses
4. General purpose register addresses
5. EEPROM customer options addresses
6. M chip internal registers

In response to the D command, microcode deposits the data in the address
specified. You must specify an address and some data with the D command; if
you omit either, microcode displays the error message ?44 on the terminal.

In response to the E command, console microcode reads the contents of the
address you specify. The console terminal displays a character describing the
address space (P, I, G, E, or M), the address, and the data. The address argu­
ment is optional in the E command.

Console Functions 4-9

The D and E commands take the same qualifiers (except that the D command
does not take the 1M qualifier). You can type the qualifiers in any order and in
any of the positions shown in the command format. Each qualifier specifies a (
data size or an address space.

Data size qualifiers:

IB - The data size is byte.

IW - The data size is word.

fL - The data size is longword.

Address space qualifiers:

IP - The address space is physical memory. You can use size qualifiers
IB, IW, or fL.

N - The address space is virtual memory. If memory mapping is not en-
abled, the microcode treats the address as physical. When you exam- .
ine a virtual memory location (EN) and memory mapping is enabled, (
microcode displays the physical address corresponding to the virtual
address you request. You can use the size qualifiers IB, IW, or fL.

II - The address space is the set of internal processor registers (IPRs) ac­
cessible to software with MTPR and MFPR instructions. See Appen­
dix F. The size is longword, and the microcode ignores any size
qualifier specified.

IG - The address space is the set of general purpose registers RO - R15. (
The size is longword, and the microcode ignores any size qualifier
specified. The address you specify must be in the range 0 to F (hex).

IE - The address space is the customer option section of the EEPROM (see
Table 4-4). The size is byte, and the microcode ignores any size quali­
fier specified. If you use the /W or fL qualifier with the E/E command,
the console terminal will display 2 or 4 bytes, but only the low order
byte is valid. You can write data in 24 (decimal) EEPROM locations if
the lower key switch on the control panel is in the Update position ~ ___ _
(PNL ENB WT EEPROM H, at module I/O pin D50, is true). The ad-
dress you specify must be in the range 0 to 17 (hex). If the address is
out of range or the lower key switch is not pointing to Update (PNL
ENB WT EEPROM H, at module I/O pin D50, is false), the microcode
displays the error message ?47 on the terminal.

When you write data in the EEPROM, microcode waits for 10 millisec­
onds following each D command to allow the EEPROM to load the
data. Note that you can examine these EEPROM locations even when
the lower key switch is not in the Update position (when PNL ENB
WT EEPROM H, at module I/O pin D50, is false). Table 4-4 shows the
EEPROM customer option section addresses accessible with the DIE
and EIE commands.

4-10 Console Functions

(

(

~---

(

Table 4-4: EEPROM Customer Option Section Addresses
Accessible with the DIE and EIE Commands

Address Function

0-2 Reserved to DIGITAL

3

4

5

6

7

8-17

1M

RCX50 self-test enable

Logical console node ID

Reserved to DIGITAL

Default console baud rate

F chip disable
BTB disable

Cache disable

Unused

Implementation

Bit (4) (0 = enable, 1 = disable)
Bit (3) must be 1
Bits (7:5;2:2) must be 0

Bits (3:0) identify the VAXEI node
number of the logical console

Bits (7:4) must be zero

Bits (7:0) = 30 - 150 baud
31 - 300 baud
32 - 600 baud
33 - 1200 baud
34 - 2400 baud
35 - 4800 baud
36 - 9600 baud
37 - 19200 baud

Bit (0) (1 = disable, 0 = enable)
Bit (1) (1 = disable, 0 = enable,

must be zero)
Bit (2) (1 = disable, 0 = enable)
Bits (7:4) must be zero

16 bytes

The address space is the set of 64 CPU
internal registers in the M chip. The
size is longword, and the microcode ig­
nores any size qualifier specified. You
can use the ElM command following a
double-error halt to read the contents
ofthe stack stored in the M chip regis­
ters. Table 5-3 in Chapter 5 lists the
contents of the M chip registers that
contain useful information on a CPU
double-error halt. You cannot examine
M chip register IF (hex). This is the
Processor Status Longword Tempo­
rary Register. If you try, the console
will respond with the error message
?45. The 1M qualifier is available only
with the E (examine) command. It is
not available in combination with the
D (deposit) command, and you cannot
write data in the M chip registers.

Console Functions 4-11

The qualifiers for the D and E commands are optional. The default address
space is physical, the data size is longword, and the default address is 0 under
three conditipns:

1. After processor initialization
2. After entry into console mode
3. After execution of an N command

Otherwise the address space and data size used in the last D or E command
are the defaults, and the default address is the last address plus the last data
size used in a D or E command.

You can use the symbolic address P to deposit or examine data in the Pro­
cessor Status Longword (PSL). The size is longword, and the microcode ig­
nores any size qualifier specified. Following a D command to the PSL, the
default address is set to the PSL for a subsequent E command. Depositing
data in the PSL may leave the processor in an unpredictable state when it
returns to program I/O mode. Example 4-3 shows D and E commands in con-
sole dialog. (

NOTES

The default console baud rate is initially set to 1200.

Do not change byte 7; bits (2:0) of byte 7 should always be O.

»)D/ L/ P 5050 35353535

»)E/ L/ P 5050

P 00005050

»)E
P 00005054

»)D/ W/P 5054 0607

»)E/ B/ P

P 00005056

»)E/ L/ V 0204

P 00030404

»)E/ (; 2

(; 00000002

»)E/ E 6

P 2009817C
) » D/ E 6 32

»)

35353535

00FF00FF

FF

6%%%9

00050005

33

Deposit 35353535 (hex) at
physical address 0000 5050.

Examine the longword at address
00005050.

Physical address 0000 5050
contains the data 35353535
(hex).

Examine the next location.

Deposit 0607 (hex) at address
00005054.

Examine the byte at physical
address 0000 5056.

Examine the longword at virtual
! address 0000 0204.
! The physical address is
! 00030404.

Examine General Purpose
Register R2 .

Examine byte 6 in the customer
options section of the EEPROM.

Set the default console
baud rate to 600. The lower
key switch must be in the
Update position.

Example 4-3: Sample Console Dialog Using the D and E Commands

4-12 Console Functions

(

(

(

(

4.3.5 Halt Command (H)

The H command has no effect on the processor. When the KA820 module is in
console mode, it is a lready halted. When the processor is running in program
I/O mode, CTRLlP halts the processor. The console H command merely
provides compatibility with other VAX consoles. In response to the H com­
mand, console microcode prints the contents of the Program Counter on the
terminal:

» >H
PC = <addt'ess>

>>>

4.3.6 Initialize Command (I)

I(RET)

The I command lets you put the processor in a known state, ready to execute
VAX instructions. In response to this command, the microcode performs the
processor initialization sequence described in Section 3.3.2 in Chapter 3. It
does not initialize the computer system, and no other VAXBI node is affected.

4.3.7 Next Command (N)

N(RET)

The N command lets you step through VAX macrocode one instruction at a
time. In response to this command, console microcode executes the VAX in­
struction at the address currently contained in the Program Counter. Execu­
tion then stops and the console displays:

?1It2
PC = < add t'ess >

>>>

The PC displayed is the address of the next VAX instruction.

4.3.8 Start Command (S)

S [<addt'ess>][RET)

The S command lets you start program execution from the console, beginning
where you choose. The KA820 module begins executing VAX instructions at
the address you specify. The address argument is optional. If you omit it, the
Program Counter identifies the default starting address.

The S command is equivalent to a D command followed by a C command,
where the D command deposits an address in the Program Counter. Start mi­
crocode invalidates the cache, but it does not initialize the processor before
starting instruction execution.

Console Functions 4-13

4.3.9 Test Command (T)

T[RET] I

The T command lets you test the KA820 module from the console. In response
to this command, console microcode executes the slow self-test described in
Chapter 3, Section 3.2. The configuration of jumpers on the PCM module has
no effect on the tests executed. First, microcode sets the VAXBI RESET bit,
bit < 28) in the PCntl CSR Register, to start a power-down/power-up sequence.
This forces the control-store microaddress to 0000.

Before executing the slow self-test, the processor loads primary control-store
patches from the EEPROM and sets the default baud rate on serial-line unit
O. If the KA820 module passes the slow self-test, the microcode prints #ABC­
DEFGHIJK.MN # on the terminal and performs power-up initialization, pro­
cessor initialization, and system initialization. Self-test prints a dot instead
of a letter to indicate a missing or disabled KA820 module component. If the
KA820 module fails the slow self-test, the microcode prints only letters cor­
responding to the tests passed.

Example 4-4 shows the console output in response to a T command, when the
KA820 module passes the slow self test.

)})T
II
IIABCDEFG HIJK .MNII
o . .. 4 5 . .
00200000
?01

PC = 22222222
)})

.. .. . F

! Self-test passed.

Example 4-4: Console Output Showing a Successful Slow Self-Test

In this example VAXBI nodes 0, 4, 5, and F are installed and have passed self­
test. VAXBI memory contains 200000 (hex) bytes. The program counter
points to address 22222222.

Example 4-5 shows console output when the processor fails the slow self-test.

»}T
II
IIABC
?40

)})
PC 22222222

Example 4-5: Console Output Showing a Slow Self-Test Failure

In this example test D fails, indicating an error in the M chip (see Table 3- 3 in
Chapter 3). The error code ?40 confirms the self-test failure.

4-14 Console Functions

(

(

(

(

(

(

4.3.10 Test with Menu Command (TIM)

T/MIRET)

The TIM command lets you boot software from a device designated in the
EEPROM. The ASCII code for this device is loaded at address 2009 C008.

Typing the TIM command is equivalent to typing BIR5:11. The microcode
does not perform a power-downlpower-up sequence or self-test. Instead, the
microcode:

1. Loads General Purpose Register R3 with O.

2. Loads General Purpose Register R5 with 11 (hex).

3. Performs system initialization.

4. Searches for a page-altgned 64K-byte block of good memory.

5. Passes control to the VAX boot code in the boot RAM at physical address
2009 0104 (hex).

4.3.11 Binary Load and Unload Command (X)

X[{qualifier)] (address) {count}IRET){checksum}

The X command allows an automatic load device to communicate with the
console microcode. This command can be used in the DIGITAL manufactur­
ing process, but it is not suitable for use by an operator using a keyboard.
In response to the X command, console microcode reads or writes the number
of bytes you specify at the address you specify. The address space is always
physical.

The optional IP qualifier makes the· KA820 console compatible with other
VAX consoles.

Bit (31) of the count is a load or unload signal. Ifbit (31) is clear, microcode
loads data from serial-line unit 0 into memory. If bit (31) is set, microcode
reads data from memory and sends it to serial-line unit O. The remaining bits
in the count tell how many bytes to load or unload.

The checksum following the carriage return is an 8-bit command checksum
that includes the ASCII value of the carriage return. If the sum of the com­
mand characters plus the command checksum equals zero, the console issues
a prompt symbol and sends or receives data. If the command checksum is not
zero, the console issues the error message ?48 and an input prompt. The com­
mand checksum feature lets you escape from inadvertent entry into the bi­
nary load mode from the console terminal.

On a binary load command the console microcode accepts the number of bytes
specified in the count plus an additional byte containing the data checksum.
The console loads all characters, including CTRLIP, CTRLlS, and CTRL/Q,
without interpreting them. If the 8-bit sum of the data plus the data check­
sum is not zero, the microcode responds with the ?48 error message.

Console Functions 4-15

On a binary unload command the console microcode sends the number of
bytes specified in the count plus an 8-bit data checksum that the automatic
load device can use to verify the data it receives. The console responds to (
CTRLIP, CTRL/S, and CTRLlQ commands from serial-line unit 0 during the
unload function.

4.3.12 VAXBI Forward Command (Z)

Z (node-number}[RET)

The Z command lets you forward characters from the console terminal con­
nected to serial-line unit 0 on the primary processor (VAXBI slot K1J1) to an
attached processor on the VAXBI bus. The node-number argument is a hex­
adecimal character (0 - F) that identifies the attached processor.

In response to the Z command, the console microcode enters the forwarding
console mode and sends all characters typed at the console terminal (except
[CTRUP) and [ESC) to the RXCD Register on the node you select. The selected
node echoes all console commands by writing to the RXCD Register in the
primary processor.

Console microcode on the primary processor may find that the remote node's
RXCD Register is busy for more than one second. In this case, the primary
processor overwrites the character in the remote node's RXCD Register by
writing first with the Busy bit off and then with the Busy bit on. The two
write functions generate -a new interrupt on the remote node. This procedure
ensures that a remote processor will respond to a CTRLIP command, even ifit
is hung.

In multiprocessor systems, the primary processor serves as the logical con­
sole for attached processors. The physical/logical console selection signal
(CNSL LOG, PCntl CSR bit (30» is 0 by default on the primary processor,
selecting serial-line unit 0 as the physical console source. In attached proces­
sors, the CNSL LOG signal is 1 by default, enabling another processor to
serve as the logical console. The EEPROM in each attached processor con­
tains the node number (ID) of the processor that can serve as the logical con­
sole (byte 4 of the customer option section of the EEPROM).

You can exit from the forwarding console mode to the local console mode by
typing [CTRUP) on the console terminal. To send aCTRLIP command to an at­
tached processor you must type [ESC) first. (ESC) unconditionally forwards
the next character to the attached processor, even a (CTRL/P) com­
mand or another (ESC) character. When you type [ESC) [CTRUP), the
microcode forwards CTRLIP, halting the attached processor. The attached
processor then enters the console mode, ready to accept other console com­
mands. Figure 4-1 shows the function-of the (ESC) command in combination
with the Z command. Notice that after forwarding a character, microcode
checks for the presence of a character in its own RXCD Register.

4-16 Console Functions

(

(

(

(
"--

(

~--

-{

(NEXT
CHARACTER
ISA
LITERAL)

GET ANOTHER
CHARACTER
(EVEN CTR LIP)

Z COMMAND IN
CONSOLE MODE
ENTER
FORWARDING
CONSOLE MODE

GET A
CHARACTER

FORWARD THE
CHARACTER

IS
THERE A

CHARACTER
IN THE LOCAL

RXCD
REGISTER

NO

YES

TERMINATE
FORWARDING
ENTER LOCAL
CONSOLE MODE

PRINTTHE
CHARACTER

MLO-400-85

Figure 4-1: Use of (ESC) with the Z Command

Console Functions 4-17

4.3.13 Console Comment Command (I)

! [(comment chal'acters ... }l(RET)

You can enter comments in your console dialog if you use the comment com­
mand. Console microcode echoes the characters typed after the exclamation
point, but takes no action. This is handy if you plan to save the console output
displayed on a hard-copy terminal.

4.3.14 Enter Console Mode Command « CTRLlP»

{CTRL/P}

You can halt the processor and enter the console mode by typing [CTRUP), if the
console is enabled (PCntl CSR bit (29) is 1). The processor responds by dis­
playing the halt code ?02, the contents of the program counter, and the con­
sole prompt symbol on the terminal. See Sections 4.3.15 and 4.6 for
information on sending a CTRLlP command to an attached processor.

4.3.15 Forward Next Character Command «ESC»

{ESC}

(ESC) works in combination with the Z command. When the console is in
forwarding console mode and you type (CTRUP) on the console terminal, the
microcode normally terminates the forwarding console mode and enters the
local console mode. You can prevent this response by preceding the CTRL/P
command with the (ESC) command. (ESC) forces the console microcode to
forward the following character without interpreting it.

4.3.16 Stop Console Output Command « CTRLlS»

{CTRL/S}

(

(

You can stop the flow of console output to the console terminal by typing C._.
(CTRUS). In response to CTRL/S, console microcode also discards all input I;
characters except CTRLlp, CTRL/Q, and CTRL/U. It echoes each discarded
character with beep.

4.3.17 Restart Console Output Command « CTRLlQ»

{CTRL/Q}

You can allow the stopped flow of console output to resume by typing
[CTRua).

4-18 Console Functions

(

.. ~.

(

E-. --

(

4.3.18 Abort Command Line Command « CTRL/U»

<CTRL/U}

If you make a mistake in a command line, you can start again by typing
(CTRUU) before you press .the carriage return. Console microcode then ignores
the entire line and displays a fresh prompt symbol.

4.4 Console Error Codes

When the console microcode tries and fails to execute a function, it displays
an error code on the console terminal. Like the halt codes, each console
error code begins with a question mark. Table 4-5 lists these codes and their
meanings.

Table 4-5: Console Error Codes

Console
Error
Code

?40

?41

?42

?43

?44

?45

?46

?47

?48

?4A

?4B

?4C

Meaning

Self-test failure.

BI AC LO L timeout: BI AC LO L not deasserted within 10 seconds
of power-up.

A warm start or bootstrap attempt has failed because the
bootstrap-in-progress flag is already set.

Microcode cannot find a 64K-byte block of good memory while
trying to bootstrap the system.

Unrecognized console command or boot device specification.

Memory reference not allowed. A console D, E, or S command
required a memory reference, and a translation-not-valid fault or
access violation occurred.

Invalid access to an internal processor register.

Invalid access to the EEPROM. Either the address specified bya
DIE or EIE command is outside the valid range of 0 to 17 (hex), or
writing to the EEPROM is inhibited (PNL ENB WT EEPROM H,
110 module pin D50 is false). Microcode detects the second case
with an automatic read-after-write check to the location accessed.

Incorrect checksum of command or data in an X command.

Error while loading primary control-store patches from the
EEPROM.

Checksum error in a boot program in the EEPROM.

Hardware error. This may be an MIB or DAL parity error or a
VAXBI error. Or it may result from reference to nonexistent
memory or a nonexistent device.

Console Functions 4-19

4.5 Loading Control-Store Patches from the Console

In normal KA820 module operation microcode loads primary control-store
patches from the EEPROM before beginning self-test, and bootstrap software
loads secondary patches from a bootstrap device . Section 3.4.2.3 of Chapter 3
explains how to write software that loads control-store patches by manipulat­
ing the internal processor registers WCSL, WCSA, and WCSD. However, you
can also use the console to manipulate these registers and load control-store
patches. This process requires three steps:

1. Write the block of patches to main memory, using the console D or X com­
mand, according to the format shown in Figure 3-5. The block must in­
clude the number of patches, the beginning CAM address, and a
checksum, as shown there.

2. Load the block of patches into the control-store RAM by depositing the
main-memory starting address of the block in the WCS::'" Register (lPR
2E). The address must be physical.

3. Check the loaded patches by reading them back from control store. For
each microword patch:

• Deposit the address, bits (0:13) of the patched control-store ROM loca­
tion, in the WCSA Register (IPR 2C), bits (21:8).

• Examine the WCSD Register (IPR 2D) to retrieve microword bits (8:0,
39,17:38), in that order.

(

• Examine the WCSA Register to retrieve microword bits (16:9) in the (
first byte.

Figure 3-7 in Chapter 3 shows the bit configuration of the WCSA and WCSD
registers. Example 4-6 shows the console output during a control-store patch
load sequence.

} } } D/P F000 43214321
}} } D/P F004 87658765

) }} DI I 2E F000

} } } D/I 2C 0033F800

}} } Ell 2D

I 0000002D EE93001F

4-20 Console Functions

! Deposit a block of control-store
! patches in main memory.

! Transfer the entire block of
! patches from main memory to the
! control-store RAM, by writing
! to the WCSL Register.

! Start the 3-command sequence to
! examine the patch for ROM
! address 07F3, by writing the
! address (inverted) in bits
! (21:8) of the WCSA Register.

Examine microword bits
(8:0,39,17:38), by reading
the WCSD Register.

(

(

(

») Ell 2C

I 0000002C 0033F81E

») D/I 2C 000BF800

»)

Examine microword bits (16:9), by
reading the WCSA Register.

! Examine the next patch.

Example 4-6: Loading and Checking Control-Store Patches from
the Console

4.6 Logical Console Operation

In a multiprocessor system the primary processor can store and forward con­
sole commands for attached processors from the console mode and from the
program I/O mode. With the primary processor in the local console mode, you
begin the logical console session by typing the Z command.

In Example 4-7 the attached processor (node 4) is initially running in the
program I/O mode, executing software. The operator halts program execution
in the attached processor, invalidates a BTB entry in the attached processor,
restarts the attached processor, and returns to local console mode.

») Z 4

))) (ESC) (CTRUP)

?02
PC = 00000700

») D/I 3A 00109800

») C

) } }I(CTRUP)

! Enter forwarding console
! mode arid send subsequent
! commands to node 4.

! Halt the node·4 processor.
! The attached processor halts
! at physical address 0000 0700.

Invalidate a BTB entry in
the attached processor.
See Appendix F.

! Restart the attached processor
! where it left off.

! Return to local console
! mode on the primary processor.

Example 4-7: Logical Console Dialog Displayed on the Terminal

When software executing on the primary processor performs the same logical
console functions, the Z and < ESC) commands are unnecessary. Example 4-8
shows the sequence of commands that the software should send, one charac­
ter at a time, to the attached processor's RXCD Register, using MTPR
instructions.

Console Functions 4-21

{CTRL/P}

D/1 3A 00109800{RET}

C{RET>

! The CTRL/P character halts
! the attached processor.

! Invalidate a BTB entr~ in
! the attached processor.

! Restart the attached processor
! where it left off.

Example 4-8: Primary Processor Software Performs Logical
Console Functions

Software can access the RXCD Register on the attached processor at address
bb + 200, where bb is the base address of the node.

In response to the CTRLIP command, console microcode in the attached proc­
essor echoes the command and sends

?02
PC = 00000700

}}}

to the RXCD Register on the primary processor. In response to the DII com­
mand, console microcode in the attached processor merely echoes the com­
mand and sends the prompt symbol. Software in the primary processor must
wait till it receives the console prompt before sending the next command.

I

4--22 Console Functions

(

(

(

t----

l

(

(

(

E-----·

(

Chapter 5
Handling Exceptions and Interrupts

The KA820 processor implements exceptions and interrupts according to
VAX architecture specifications (see the VAX Architecture Handbook). Some
exceptions and interrupts are specific to the KA820 processor and systems
that use the VAXBI bus, while others are standard on all VAX processors.
KA820 microcode, or another node on the VAXBI bus, or software can signal
an event that requires attention, by generating an exception vector or an in­
terrupt vector. The vector identifies a memory location containing a pointer.
The pointer in turn locates a software service routine that can handle the
event requiring attention. The microcode deals with any exception immedi­
ately by transferring control to an appropriate exception handler, but it de­
fers each interrupt until the priority level of the current process drops below
the priority level of the interrupt.

An exception occurs synchronously with respect to the process currently run­
ning; it often results from a condition caused by execution of a specific VAX
instruction. Exceptions are generally repeatable, so that if a program gener­
ating an exception is run again, the exception occurs again at exactly the
same point.

Traps, faults, and aborts are the three kinds of exceptions:

1. A trap exception occurs at the end of a VAX instruction, leaving the regis­
ters and memory in a consistent state. Integer-overflow is an example.

2. A fault exception occurs during execution of a VAX instruction, but it also
leaves the registers and memory in a consistent state. Translation-not­
valid is an example.

3. An abort exception occurs during execution of a VAX instruction in re­
sponse to a serious system failure, leaving the registers and memory in an
unpredictable state. Machine check is an example. Most exceptions leave
the interrupt priority level at IPL O. Machine-check and kernel-stack-not­
valid exceptions, however, require the highest priority (they require im­
mediate attention with no interruptions) and therefore raise the IPL to IF
(hex).

An interrupt occurs asynchronously with respect to the process currently
running. Completion of an I/O function and power failure are examples of
events that interrupt normal process execution. Microcode assigns an inter­
rupt priority level for each interrupt vector. Software generated interrupts
use the lowest 15 interrupt priority levels (1 to F hex). Hardware and micro-

5-1

code generated interrupts take the high interrupt priority levels (10 to IF
hex). VAXBI nodes can use four interrupt levels (BI INTR4 to BI INTR7), cor-
responding to IPL 14 to IPL 17. Table 5-1 lists the types of interrupts and (
exceptions and the corresponding interrupt priority levels.

Table 5-1: Interrupt Priority Levels on the KA820 Module

Interrupt
Priority
Level (hex)

IF

IE

ID to IB

lA

19 and 18

17

16

15

14

13 to 10

F to 1

Interrupt or Exception Source Type

Software
Machine-check exception
Kernel-stack-not-valid exception
Power-up microcode

BI AC LO L becomes true

Not used

Corrected read data (CRD)

Not used

BIINTR7

BIINTR6
ICCS Interval Timer

BIINTR5

BIINTR4
RXCD
IPINTR
RCX50
Serial-line unit 0
Serial-line unit 1
Serial-line unit 2
Serial-line unit 3

Not used

Software interrupt levels 15 to 1 (decimal)

In cases where two or more interrupts occur at the same level, priority follows
the order shown in Table 5-1. For example, BI INTR4 and serial-line unit 0
both use IPL 14, but BI INTR4 takes precedence. When microcode responds to
an interrupt, it sets the IPL shown in the table to block subsequent interrupts
at or below that level until the handler for the interrupt is finished.

NOTE

Software can mask interrupts by writing a value specifying an in­
terrupt level to the Interrupt Priority Level Register (IPR 12 hex)
with the MTPR instruction. Interrupts with levels at or below the

5-2 Handling Exceptions and Interrupts

(

(

(--

(

(

~

(

(---

(

value written are masked. The value IF (hex) masks all interrupts
with the exception of interrupts for the RXCD Register and serial­
line unit O. Microcode reschedules the RXCD Register and serial­
line unit 0 interrupts at IPL 14.

Operating system software includes routines that handle exceptions and in­
terrupts. If you do not use a standard operating system, you must supply your
own exception and interrupt condition handlers.

5.1 System Control Block

KA820 microcode and system software cooperate to maintain the system con­
trol block, a structure made up of two or more pages of vectors, each begin­
ning on a page boundary. The System Control Block Base Register (IPR 11
hex) points to the first vector in the block, vector O. The vectors in the system
control block are offsets from the base address.

Microcode on the KA820 module defines the first half page of vectors (0 to FC
hex). Software defines the vectors from 100 to 3FFC (hex). The VMS operat­
ing system software for the KA820 module assigns the vectors from 100 to
1FC (hex) to native VAXBI devices, by node number, leaving vectors 200
through 3FFC (hex) available for I/O controllers and devices. Table 5-2 lists
the vector assignments in the system control block. A dash (-) means that
microcode leaves the interrupt priority level unchanged.

Table 5-2: System Control Block Vector Assignments on the KA820
Module

Interrupt
Exception Priority

Vector or Level
(hex) Function Interrupt (hex)

0 UNIBUS or VAXBI passive release Interrupt 14 to 27

4 Machine-check abort Exception IF

8 Kernel-stack-not-valid abort Exception IF

C Power fail Interrupt IE

10 Reserved or privileged instruction fault Exception

14 XFC instruction fault (customer reserved Exception
instruction; user microcode is not sup-
ported on the KA820)

18 Reserved operand fault or abort Exception

lC Reserved addressing mode fault Exception

20 Access-control-violation fault Exception

24 Translation-not-valid fault Exception

28 Trace-pending fault Exception

2C Breakpoint fault Exception

(Continued on next page)

Handling Exceptions and Interrupts 5-3

Table 5-2: System Control Block Vector Assignments on the KA820
Module (Cont.)

Interrupt (
Exception PrIority

Vector or Level
(hex) Function Interrupt (hex)

30 Reserved to DIGITAL

34 Arithmetic trap or fault Exception

38,3C Reserved to DIGITAL

40 CHMK instruction trap (change mode to Exception
kernel)

44 CHME instruction trap (change mode to Exception
executive)

48 CHMS instruction trap (change mode to Exception
supervisor)

(4C CHMU instruction trap (change mode to Exception
user)

50 VAXBI bus error Interrupt 14

54 Corrected read data (CRD) Enterrupt lA

58 RXCD Interrupt 14

5C to 7C Reserved to DIGITAL

80 Interprocessorinterrupt Interrupt 14 (
84 to BC Software interrupt Interrupt 1 to F

CO Interval timer Interrupt 16

C4 Reserved to DIGITAL Interrupt 14

C8 Serial-line unit 1 receive Interrupt 14

CC Serial-line unit 1 transmit Interrupt 14

DO Serial-line unit 2 receive Interrupt 14
E--D4 Serial-line unit 2 transmit Interrupt 14

D8 Serial-line unit 2 receive Interrupt 14

DC Serial-line unit 3 transmit Interrupt 14

EO to EC Reserved to DIGITAL

FO RCX50 interface Interrupt 14

F4 Reserved to DIGIT~

F8 Console terminal receive Interrupt 14

FC Console terminal transmit Interrupt 14

100 to 3FFC Vectors are defined and loaded by software Interrupt 14 to 17

(

5-4 Handling Exceptions and Interrupts

(
5.2

(

(

(

NOTES

KA820 microcode checks the values of interrupt vectors coming
from the VAXBI bus. It remaps to vector 50 any vector in the range
of 4 to 4C (hex) received from another VAXBI node. In this way the
processor detects invalid vectors from VAXBI nodes; VAXBI node
interrupt vectors should be 100 or above.

The KA820 module uses vector 0 for the passive release function.
When microcode responds to a VAXBI interrupt with an IDE NT
transaction, the interrupting node can reply with vector 0 if the con­
dition requiring the interrupt has passed. In addition, microcode
generates vector 0 ifthere is a NO ACK confirmation in response to
a KA820-generated IDENT transaction. System software must.sup­
ply condition handling macrocode corresponding to vector 0, but
little action is required. The condition handler can simply add 1
to a counter and return to the interrupted process with an REI
instruction.

Machine-Check Exceptions

The KA820 module responds to nine kinds of hardware and microcode related
errors as machine-check conditions:

l. BTB tag parity errors

2. Cache tag parity errors

3. BTB data parity errors

4. Cache data parity errors

5. VAXBI node or transaction errors

6. MIB bus parity errors

7. Unforeseen microcode situations

8. Interrupts with unexpected interrupt priority levels

9. Port controller timeout

When KA820 microcode discovers a machine-check error condition, it imme­
diately aborts the current process and raises the interrupt priority level to 1F
(hex) to mask all interrupts. Microcode then takes the following action:

1. Set the hardware-fault state flag to prevent the microcode from detecting
other errors until it has dealt with this one. The hardware-fault state flag
lights the two red LEDs on the module. Note that this flag is inaccessible
to software.

2. Set the machine-check condition flag. If the flag is already set, this is a
double error. Microcode halts the processor and enters the console mode (if
enabled).

Handling Exceptions and Interrupts 5-5

3. Push on the stack error information from internal registers in the M chip.
The information is then available to the software.

4. Clear the hardware-fault state flag and turn off the two red LEDs on the
module.

5. Pass control to the machine-check exception condition handler at the ad-
dress specified by vector 4.

The condition handler must evaluate the information on the stack and then
either attempt to recover from the error or halt the processor. If there is any
chance of producing catastrophic results, such as corrupting the data base or
producing wrong answers, software should execute the HALT instruction. If
the condition handler does try to recover, it should take the following steps:

1. Restore the machine state as required.

2. Write (any value will do) to the MCESR Register (IPR 26 hex) to clear the
machine-check condition flag. If the condition handler performs this in- (
struction too soon, occurrence of a second machine-check error will cause
the microcode and the condition handler to loop, unable to halt in response
to the double error.

Table 5-3: Machine-Check Stack

Location
in Memory
(hex) Data Available

(SP)

(SP) + 8

(SP) + C

Byte count on stack

Parameter 1

Virtual Address
Register contents

Corresponding M
Chip Internal
Register

MTEMPB Register

MTEMP13 Register

(SP) + 10 Virtual Address Prime MTEMP.PSL.TEMP

(SP) + 14

(SP) + 18

(SP) + 1C

(SP) + 20

(SP) + 24

(SP) + 28

Register contents

Memory Address
Register contents

Status word

PC at failure

Microcode PC at
failure

Current PC

Current PSL

5-6 Handling Exceptions and Interrupts

Register

MTEMP9 Register

MTEMPC Register

MTEMPF Register

MTEMP10 Register

Appropriate
Console
Examine
Command
Following CPU
Double-Error
Halt

none

EIMB

ElM 13

none

ElM 9

EIMC

EIMF

ElM 10

E/GF

EP

(

(

(

(

(

(--

(

313029 23222120 16151413 5 4 3 2 1 0

I I I I I I I I I I II 11 I
RESERVED TO
DIGITAL

VAX CAN'T RETRY

RESERVED TO DIGITAL

VAXBIERROR

WRITE MEMORY

VAXBI EVENT CODE

RESERVED TO DIGITAL

BTB OR CACHE DATA PARITY ERROR

RESERVED TO DIGITAL

BTB TAG PARITY ERROR

MTB MISS

CACHE TAG PARITY ERROR

PORT CONTROLLER DETECTED ERROR

MEMORY ADDRESS REGISTER LOCK

MLO-402-85

Figure 5-1: Machine-Check Status Word Bit Layout

3. Execute an REI (Return from Exception or Interrupt) instruction to give
control back to the process that was interrupted. Note that if the machine­
check exception indicates an MIB bus parity error, the REI instruction mi­
crocode may be unable to identify the process to which control should
return.

4. Check and clear all VAXBI node Bus Error Registers.

5.2.1 Machine-Check Stack

Machine-check microcode pushes eleven longwords on the stack. Eight of
these are copies of internal registers in the M chip. This information serves as
a snapshot of the machine state at the time of error detection.

5.2.1.1 Byte Count, (SP) - This is the first entry on the machine-check stack.
It tells how many bytes are on the stack for this error (20 hex). Note, however,
that the current PC and current PSL are not included in this byte count, even
though they are pushed on the stack.

Handling Exceptions and Interrupts 5-7

5.2.1.2 Parameter 1, (SP) + 8, MTEMPB Register - On detection of a BTB tag
parity error or cache tag parity error, microcode loads the parameter 1
longword with the corresponding tag. (

5.2.1.3 Virtual Address Register, (SP) + C, MTEMP13 Register - This points to
a virtual address that may be related to the machine-check error.

5.2.1.4 Virtual Address Prime Register, (SP) + 10, MTEMP.PSl. TEMP Register­
Like the Virtual Address Register, this points to a virtual address that may
be related to the machine-check error. This information is unavailable follow­
ing a CPU double-error halt.

5.2.1.5 Memory Address Register, (SP) + 14, MTEMP9 Register - This points to
a physical address that may be related to the machine-check error.

5.2.1.6 Status Word, (SP) + 18, MTEMPC Register - The machine-check status
word often contains the most useful error information available to condition
handler software. The hardware copies bits (22:16, 14) from the correspond­
ing bits in the PCntl CSR. Figure 5-1 shows the bit configuration.

• Bit (30) VAX Can't Retry (VCR) - Microcode sets or clears this flag to tell
the exception condition handler whether to restart the VAX instruction
that the saved program counter ((SP) + lC) points to. Microcode clears the
VCR flag at the beginning of each instruction and at the resumption of
each interrupted instruction when the first-part-done (FPD) flag is set in
the processor status longword. Microcode sets the VCR flag in response to
any of three conditions:

Reference to an address in I/O space

A successful write transaction to memory

A successful write transaction to a general purpose register

The VCR flag may be incorrect for cache data parity errors and BTB data
parity errors, for some VAXBI errors, and for errors that occur with the
FPD flag set. You can retry an instruction associated with a VAXBI error if
accurate address information is available on the stack. Note, however, that
when a machine-check exception occurs on a write transaction to memory,
the address information saved on the stack is invalid.

If the exception condition handler decides not to retry the failing VAX in­
struction, it can take one of two steps:

Log out the current process if the failing instruction belongs to a proc­
ess running in the user mode or the supervisor mode.

Execute a HALT instruction if the failing instruction belongs to a proc­
ess running in the executive mode or the kernel mode.

The execution of HALT may trigger a restart (warm start).

5-8 Handling Exceptions and Interrupts

(

c

(

(

(

(

• Bit (22) VAXBIError - When the port controller detects a VAXBI error, it
sets this flag, locking the write-memory flag, bit (21), and the VAXBI
event code, bits (20:16). Therefore, whenever status word bit (22) is set,
bits (21:16) are valid and pertinent. Mter handling the error, the excep­
tion condition handler should clear bit (22) in the PCntl CSR to unlock the
write-memory flag and VAXBI event code bits, PCntl CSR bits (21:16).

• Bit (21) Write Memory - The port controller sets this flag when the
KA820 module writes to memory. If status word bits (22) and (21) are
both set, the machine-check condition is the result of a VAXBI write­
memory error.

• Bits (20:16) VAXBI Event Code - When status word bit (22) is set, these
five bits form a code that defines the VAXBI transaction that preceded de­
tection of the error. The Memory Address Register points to the physical
address that failed, unless the KA820 module was performing a write
transaction on the VAXBI bus.

When bit (22) is clear, the VAXBI event code is not useful·error informa­
tion, because it reflects whatever is happening on the VAXBI bus at the
moment. Table 5-4 lists the 32 VAXBI event codes and their meanings.

• Bit (14) BTB or Cache Data Parity Error - When microcode reads the
cache or BTB, the port controller checks the parity of the data. If the port
controller detects an error, it sets status word bit (14). No other informa­
tion describing cache and BTB data parity errors is available.

• Bit (12) Port Controller Timeout Error - The port controller starts a
timer when it receives a command from the CPU to perform a VAXBI
transaction. If the transaction has not been completed 12.8 milliseconds
later, the port controller sets this bit.

• Bit (4) BTB Tag Parity Error - The microcode has detected a parity error
while reading a BTB tag entry.

• Bit (3) MTB Miss .,...- A miss in the MTB has caused the microcode to read
the BTB. This information is useful to self-test microcode.

• Bit (2) Cache Tag Parity Error - The microcode has detected a parity er­
ror while reading a cache tag entry.

• Bit (1) Port Controller Detected Error - When this flag is set, it indicates
that the port controller detected the error that produced the machine-check
condition. Status word bits (22:16) and bit (14), copied from the cor­
responding bits in the PCntl CSR, are valid and pertinent.

• Bit (0) Memory Address Register Locked - When the Memory Address
Register is locked, status word bits (22:1) are valid. The contents of the
Memory Address Register are not valid, however, unless bit (21) is Clear,
indicating that the error did not occur during a memory write transaction.

Handling Exceptions and Interrupts· 5-9

Table 5-4: VAXBI Event Codes: Status Word Bits (20:16)

Code
(hex)

o
1
2
3

4
5
6
7
8
9

A
B
C
D
E
F
10
11
12
13
14
15
16
17
18

19

lA

IB

lC

Event

No event (NEV)
Master Port Transaction Complete (MCP)
ACK received for Slave Read Data (AKRSD)
Bus Timeout (BTO); the VAXBI Error bit is set (status word bit

(22»)
Self-Test Passed (STP)
RETRY CNF Received for Master Port Command (RCR)
Internal Register Written (ffiW)
Advanced RETRY CNF Received (ARCR)
NO ACK or Illegal CNF Received for INTR command (NICI)
NO ACK or Illegal CNF Received for Force-Bit IPINTRISTOP

Command (NICIPS)
ACK CNF Received for Error Vector (AKRE)
IDENT ARB Lost (IAL)
External Vector Selected - Level 4 (EVS4)
External Vector Selected - Level 5 (EVS5)
External Vector Selected - Level 6 (EVS6)
External Vector Selected - Level 7 (EVS7)
Stall Timeout on Slave Transaction (STO)
Bad Parity Received During Slave Transaction (BPS)
Illegal CNF received for slave data (lCRSD)
Bus Busy Error (BBE)
ACK CNF Received for Non-Error Vector at Level 4 (AKRNE4)
ACK CNF Received for Non-Error Vector at Level 5 (AKRNE5)
ACK CNF Received for Non-Error Vector at Level 6 (AKRNE6)
ACK CNF Received for Non-Error Vector at Level 7 (AKRNE7)
Read Data Substitute or RESERVED Status Code Received

(RDSR). The KA820 module has attempted a VAXBI memory
read transaction and failed. The responding memory node has
returned data with two or more wrong bits, because the error is
uncorrectable. VAXBI Error, status word bit (22), is set.

Illegal CNF Received for Master Port Command (lCRMC). The
KA820 module has received an illegal confirmation code in
response to a VAXBI command. VAXBI Error, status word bit
(22), is set.

NO ACK CNF Received for Master Port Command (NCRMC). The
KA820 module has received a NO ACK response to a command.
Reference to a nonexistent memory location or an invalid 110
space may have caused the error. VAXBI Error, status word bit
(22), is set.

Bad Parity Received (BPR). This gives advance indication that a
master or slave parity error has occured.

Illegal CNF Received by Master Port for Data Cycle (ICRMD). The
KA820 module has received an illegal confirmation code in
response to a VAXBI command. VAXBI Error, status word bit
(22), is set.

(Continued on next page)

5-10 Handling Exceptions and Interrupts

(

(

(

E--

(

(

5.3

(

Table 5-4: VAXBI Event Codes: Status Word Bits (20:16) (Cont.)

Code
(hex)

ID

IE

IF

Event

Retry Timeout (RTO). The KA820 module has retried a transaction
4096 times consecutively without success. VAXBI Error, status
word bit (22), is set.

Bad Parity Received During Master Port Transaction (BPM). While
it was the VAXBI master, the KA820 module detected bad parity
on the bus. VAXBI Error, status word bit (22), is set.

Master Transmit Check Error (MTCE). The KA820 module was the
only driver on the VAXBI bus when it detected data on the bus
that did not match the data sent. VAXBI Error, status word bit
(22), is set.

5.2.1.7 Program Counter at Failure, (SP) + 1 C - Microcode saves the contents
of the program counter here at the moment when it detects a machine­
check error. This address may point to the middle of a partially executed
instruction.

5.2.1.8 MicroPC at Failure, (SP) + 20 (hex) - This identifies the address of the
next microinstruction at the time of error detection. This information is not
useful on a memory write transaction error.

5.2.1.9 Current Program Counter, (SP) + 24 (hex) - This longword points to
the beginning of the VAX instruction that was executing at the time of the
failure. If the software performs an REI instruction to retry the instruction
that failed, program execution resumes at this address.

5.2.1.10 Current Processor Status Longword, (SP) + 28 (hex) - The PSL is use­
ful to the condition handler because it defines the status of the process that
was executing at the time of the machine check. The first part done flag
(FPD), bit (27), may be especially relevant.

If the FPD flag is clear, repeating the instruction should produce the correct
result. If the FPD flag is set, execution can resume in the middle of the in­
struction, since microcode has packed up the partially executed instruction.
However, if the exception results from an MIB parity error, the microcode
state is incomplete, and execution of the instruction may produce another
error, regardless of the state of the FPD flag.

CPU Double-Error Halt Considerations

When microcode responds to an error condition, it sets the machine-check
condition flag. If another machine-check error occurs before a macrocode
machine-check handler resets this flag with an MTPR to MCESR instruction,
then machine-check microcode transfers control to the CPU double-error halt
handling microcode. The KA820 module then enters the console mode (if en­
abled), displays the CPU double-error halt code (?05), and leaves the control­
panel RUN light off.

Handling Exceptions and Interrupts 5-11

Microcode does not push error information on the stack for a CPU double er­
ror, and any information on the stack may be invalid. However, the console
Examine command gives you access to most of the same information, in case (
you want to analyze the error.

Use the console command:

») E/M (M chip address)

to read parameter 1, the Virtual Address Register, the Memory Address Reg­
ister, the status word, the Program Counter at failure, and the micro-PC at
failure in the M chip registers. Table 5-3 lists the appropriate console Exam­
ine commands.

Use the console command:

») E/C; F

to read the current Program Counter.

Use the console command:

») E P

to read the current Processor Status Longword.

When you no longer need to save the failing machine state, you can further
isolate a hardware error by running self-test.

5.4 Power-Up and Console Mode Errors

An error that normally causes a machine-check exception can occur while the
KA820 module is performing power-up or console functions. For example,
system initialization microcode may detect an invalid confirmation code on
the VAXBI bus as a response to a KA820 command. A memory node may re­
spond with read data substitute (RDS) instead of the data required in a con­
sole examine command. Or the console operator can cause an error by trying
to examine a nonexistent memory location.

(

(

Since there may be no condition handling software and no system control (
block set up in memory, microcode cannot deal with these errors in the nor-
mal way. Microcode sets an internal error-state flag in such situations, to pre-
vent the machine-check exception microcode from taking control. Whenever
this flag is set, control passes to the console microcode, which attempts to
display an error message (generally ?4C) on the console terminal.

5-12 Handling Exceptions and Interrupts

(

(

(

~---

(

Chapter 6
Dedicated 1/0 and Memory Devices

The KA820 module incorporates four dedicated I/O devices and two dedicated
memory devices on the module, and it connects directly to two off-module I/O
devices. This chapter tells what you need to know about each device to write
driver software that controls it.

Four serial-line units implemented with four UARTS (UARTO, 1,2,3) in the
M chip make the KA820 module directly accessible to terminals and modems.
U sing the serial-line units you can connect up to four terminals directly to the
KA820 module without using a VAXBI slot for a communications device.
UARTO, on serial-line unit 0, connects to the console device (normally a hard­
copy terminal).

ThePCI bus connects the port controller with two on-board devices: the
EEPROM and boot RAM; and it runs off the module to connect with the watch
chip and the RCX50 diskette controller. Addresses for these devices lie within
the VAXBI node private space. They are accessible only to the local KA820
module, so other VAXBI nodes cannot read or write them.

The PCI bus is a 16-bit asynchronous bus that multiplexes data and ad­
dresses. Although the bus carries data on all 16 bits, only bits (14:1) are
available for addresses. Address bit < 0) is unused. Data in the EEPROM,
RCX50 controller, and watch chip is accessible one byte at a time. Data in the
boot RAM is accessible with any standard VAX instruction length. Table 6-1
shows the range of addresses assigned to each PCI bus device.

Table 6-1:

Address
(hex)

2009 0000
to
2009 1FFE

2009 8000
to
2009 FFFE

200B OOXX

200B 80XX

PCI Device Addresses and Accessibility

Data Length for
Device Access

Boot RAM Longword oriented
on longword boundaries
(read or write masked)

EEPROM Byte oriented on
word boundaries

RCX50 controller Byte oriented on
word boundaries

Watch chip Byte oriented on
word boundaries

Appropriate
Move
Instructions

MOVB,MOVW,
MOVL,MOVQ,
MOVO,MOVC

MOVB,MOVW

MOVB,MOVW

MOVB,MOVW

6-1

The byte-oriented devices (EEPROM, watch chip, and RCX50 controller) use
only even addresses. For example, the first four bytes for each device are ac­
cessible at offsets 0, 2, 4, and 6 from the base address. All read and write
transfers occur on word boundaries. Software must use either byte-length in­
structions, such as MOVB, or word-length instructions, such as MOVW, to
read and write the byte-oriented devices. However, for byte-length instruc­
tions, the autoincrement and autodecrement addressing modes will not work
properly, because they access each byte location twice. Word-length instruc­
tions move two bytes of data, but only the low byte is valid. When address bit
0) is 1, valid data is in byte 2 on the DAL bus; when address bit 0) is 0,
valid data is in byte ° on the DAL bus. Microcode realigns the DAL data to
ensure that the valid data is in the low byte. Autoincrement and autodecre­
ment addressing modes work properly for word-length instructions, access­
ing even locations on the byte-oriented devices. However, the upper byte in
each transfer is invalid.

Microcode moves data to and from the boot RAM in longwords, but it masks
the data according to the instruction. Therefore, data transfer instructions
can use any data length at any address, and microcode implementing the in­
structions moves only the data specified to or from the address specified.

NOTE

Serial-line units, the RCX50 controller, and the watch chip are ac­
cessible only to the KA820 module used as the primary processor.

6.1 Serial-Line Units

Each of the four serial-line units is implemented in a UART in the M chip,
and each UART makes four privileged processor registers available to soft­
ware:

Receive CSR

Receive data buffer

Transmit CSR

Transmit data buffer

The serial-line units are full duplex, so they can transmit and receive data
simultaneously. When interrupts are enabled, character transfer occurs one
byte at a time, and each serial-line unit interrupts the processor at IPL 14
(hex) every time it receives or transmits a character.

To service an interrupt, interrupt handling microcode passes control to a soft­
ware device driver identified by a vector in the system control block. Software
can read and write the UART registers with MFPR and MTPR instructions.
Table 6-2 lists the IPR addresses and functions of the four registers for each
of the four serial-line units.

6-2 Dedicated I/O and Memory Devices

(

/

(
" ..

Table 6-2: Serial-Line Unit Registers

IPR /I Serial-Line 8CB
(hex) Register Function Unit Vector

20 RXCS Console Receive CSR UARTO F8

21 RXDB Console Receive Data Buffer UARTO

22 TXCS Console Transmit CSR UARTO FC

23 TXDB Console Transmit Data Buffer UARTO

50 RXCS1 Serial-Line Unit 1 Receive CSR UART1 C8

51 RXDB1 Serial-Line Unit 1 UART1
Receive Data Buffer

52 TXCS1 Serial-Line Unit 1 UART1 CC
Transmit CSR

(53 TSDB1 Serial-Line Unit 1 UART1
Transmit Data Buffer

54 RXCS2 Serial-Line Unit 2 UART2 DO
Receive CSR

55 RXDB2 Serial-Line Unit 2 UART2
Receive Data Buffer

56 TXCS2 Serial-Line Unit 2 UART2 D4
Transmit CSR

/
I
", 57 TXDB2 Serial-Line Unit 2 UART2

Transmit Data Buffer

58 RXCS3 Serial-Line Unit 3 UART3 D8
Receive CSR

59 RXDB3 Serial-Line Unit 3 UART3
Receive Data Buffer

(5A TXCS3 Serial-Line Unit 3 UART3 DC
Transmit CSR

5B TXDB3 Serial-Line Unit 3 UART3
Transmit Data Buffer

6.1.1 Receive Control and Status Registers (Read/Write)

RXCS IPR 20 Vector F8

RXCSI IPR 50 Vector C8

RXCS2 IPR 54 Vector DO

RXCS3 IPR 58 Vector D8

(
'-

Dedicated I/O and Memory Devices 6-3

I

Software can control two serial-line unit functions by writing to the RXCS
Registers:

1. Enable or disable receive interrupts from the serial-line unit.

2. Enable or disable the diagnostic loopback function on the serial-line unit.

Software can check three serial-line unit functions by reading these reg­
isters:

1. Check whether a character has been received in the receive data buffer of
the serial-line unit.

2. Check whether receive interrupts are enabled or disabled for the serial­
line unit.

3. Check whether the loopback function is enabled or disabled for the serial­
line unit.

31 131211 8 7 6 5 o

I I II I I
RESERVED TO DIGITAL

LP

RESERVED TO DIGITAL

DON

IE

RESERVED TO DIGITAL

MLO·403-85

Figure 6-1: Receive CSR Bit Format

6.1.1.1 Bit (12) LP (Loop back Enable, Read/Write) - Diagnostic software can
set this bit by writing 1 to it as an aid in testing the serial-line unit. The
loopback function changes the input so that it arrives at the receive data
buffer from the loopback bus instead of the external serial line.

Software must also set the loopback bit in one of the four transmit CSRs to
make use of the loopback function. All four serial-line units can have RXCS
loopback bits set at once.

Power-up initialization microcode clear~ the loopback bit.

6.1.1.2 Bit (7) DON (Done, Read Only) - The serial-line unit sets this bit
when it finishes receiving a character in the receive data buffer. If the inter­
rupt enable bit is set, DON interrupts the CPU at IPL 14 (hex).

6-4 Dedicated 110 and Memory Devices

(

(

c--

l

(

(

(

(----

When software responds to the interrupt by reading the associated Receive
Data Buffer Register with an MFPR instruction, MFPR microcode clears the
DON bit.

Power-up initialization microcode clears the DON bit.

6.1.1.3 Bit (6) Interrupt Enable (Read/Write) - Software can set (write 1) or
clear (write 0) this bit to enable or disable receive interrupts.

Power-up initialization microcode clears the interrupt enable bit. Microcode
sets the bit for serial-line unit 0 when entering console mode.

6.1.2 Receive Data Buffer Registers (Read Only)

RXDBIPR21

RXDB1IPR51

RXDB2IPR55

RXDB3IPR59

Receive Data Buffer Registers provide eight data bits (enough for one charac­
ter) and two status bits. Power-up initialization microcode clears the regis­
ters. After software reads an RXDB register with an MFPR instruction,
microcode clears the register automatically.

31 16151413 8 7 o

I I I I I I
RESERVED TO DIGITAL

ERR

BRK

RESERVED TO DIGITAL

DATA

MLO·404-85

Figure 6-2: Receive Data Buffer Register Format

6.1.2.1 Bit (15) ERR (Error on Received Character, Read Only) - Hardware
sets this bit when it detects an overrun or framing error in the received data.

6.1.2.2 Bit (14) BRK (Break, Read Only) - Hardware sets this bit when it de­
tects the 0 state on the serial line for longer than the transmission time for
one character at the current baud rate.

Dedicated I/O and Memory Devices 6-5

6.1.2.3 Bits (7:0) DATA (Received Data, Read Only) - The serial-line unit
stores received data in this field.

6.1.3 Transmit Control and Status Registers (Read/Write)

TXCS IPR 22 Vector FC

TXCSI IPR 52 Vector CC

TXCS2 IPR 56 Vector D4

TXCS3 IPR 5A Vector DC

Software can write to these registers with MTPR instructions to:

1. Enable or disable the loopback function.

2. Start or end transmission of a break.

3. Change the baud rate for the serial-line unit.

4. Enable or disable transmit interrupts from the serial-line unit.

Software can check two serial-line unit functions by reading these registers
with MFPR instructions:

1. Check whether the serial-line unit has finished transmitting a character.

2. Check whether transmit interrupts are enabled.

31 14131211 9 8 7 6 5 o

I I I I I I I I I
RESERVED TO DIGITAL

LP

BRK

BAUD RATE

BAUD RATE ENABLE

RDY

IE

RESERVED TO DIGITAL

MLO-405-85

Figure 6-3: Transmit Control Status Register Format

6-6 Dedicated I/O and Memory Devices

(

(

(

(

(

(

(

(

(

6.1.3.1 Bit (13) LP (Loopback, Write Only) - Diagnostic software sets this bit
by writing 1 to it as an aid in testing the serial-line unit. The loopback func­
tion changes the serial-line unit output from the external line to the Receive
Data Buffer. The loopback bit in one ofthe four serial-line unit receive CSRs
must be set to complete the loop. Software should not set the Transmit Loop­
back bit for more than one serial-line unit at one time.

Power-up initialization microcode clears the Transmit Loopback bit.

6.1.3.2 Bit (12) BRK (Break, Write Only) - Software can start transmitting a
break by writing 1 to this bit. The serial-line unit transmits the break signal
for at least the transmission time of one character and continues to transmit
break until software writes the bit with O.

Power-up initialization microcode clears the Break bit.

6.1.3.3 Bits (11:9) Baud Rate (Write Only) - Power-up initialization micro­
code sets the transmit and receive baud rate for serial-line units 1,2, and 3 to
1200. It sets the baud rate for serial-line unit 0, the console line, to the baud
rate specified in the EEPROM (see Table 4-4 in Chapter 4).

Software or the console operator can set a new baud rate for sending and
receiving data by writing a 3-bit value in bits (11:9) and at the same time
writing 1 to bit (8), the baud rate enable bit. Table 6-3 shows the value cor­
responding to each available baud rate.

6.1.3.4 Bit (8) BRE (Baud Rate Enable, Write Only) - Software should write
this bit with 1 when it sets the baud rate for a serial-line unit.

Table 6-3: Setting the Baud Rate for a Serial-Line Unit

Binary Value in Transmit CSR
Bits (11:9) Baud Rate (Decimal)

000 150

001 300

010 600

011 1200

100 2400

101 4800

110 9600

111 19200

Dedicated I/O and Memory Devices 6-7

6.1.3.5 Bit (7) ROY (Ready, Read Only) - A serial-line unit sets this bit when
it is ready to transmit a character. This happens when the transmit data
buffer field is empty and can accept another character for transmission. If the (
interrupt enable bit is also set, the serial-line unit interrupts the processor at
IPL 14 (hex).

When RDY is 0, the serial-line unit is still in the process of transmitting a
character.

6.1.3.6 Bit (6) IE (Interrupt Enable, Read/Write) - Software can enable or dis­
able transmit interrupts by writing 1 or 0 to this bit.

Power-up initialization microcode clears the interrupt enable bit to disable
transmit interrupts. Microcode sets the bit for serial-line unit 0 when enter­
ing console mode.

6.1.4 Transmit Data Buffer Registers (Write Only)

TXDB IPR23

TXDB1 IPE 53

TXDB2 IPE 57

TXDB3 IPE 5B

Software can transmit data on any ofthe four serial-line units, one byte at a

(

time, by writing data in the low order byte ofthe Transmit Data Buffer Regis- c-
ter, when the IE and RDY bits in the corresponding TXCS Register are set.

The Transmit Data Buffer Register for serial-line unit 0, the console line, dif-
fers from the other Transmit Data Buffer Registers because it includes an
extra 4-bit field to indicate whether the information in the low byte is data or
a console command.

Figure 6-4 shows the format for the Transmit Data Buffer Registers for
serial-line units 1, 2, and 3.

31 o

RESERVED TO DIGITAL

DATA

MLO-406-85

Figure 6-4: Serial-line Units 1, 2, and 3 Transmit Data Buffer
(TXDB1, 2, 3) Format •

6-8 Dedicated 110 and Memory Devices

(~--.

(

(

(

(-

Figure 6-5 shows the format for the Transmit Data Buffer Register for serial­
line unit O.

31 12 11 8 7 0

I I I 1
RESERVED TO DIGITAL I
ID

DATA

MLO-407-85

Figure 6-5: Serial-line Unit 0 Transmit Data Buffer ITXDB) Format

6.1.4.1 Bits (11:8) of TXDB (10 Field, Write Only) - Software must write F
(hex) to this field when it uSeS this register to send a command to the console
microcode. When software writes 0 to this field, serial-line unit 0 transmits
the data in the low byte on the serial line.

6.1.4.2 Bits (7:0) of TXDB, (Command or Transmit Data, Write Only) - When
the accompanying ID field is 0, hardware transmits the data that software
writes in bits <7:0) on serial-line unit o.
When the ID field is F (hex), console microcode interprets the data in bits
<7:0) as follows:

2 = Restart the system.

3 = Clear the (warm) restart-in-progress flag in the M chip.

4 = Clear the (cold) bootstrap-in-progress flag in the M chip.

Bootstrap code and restart routines should write 0000 OF03 and then
0000 OF04 (hex) to TXDB to clear the restart-in-progress and bootstrap-in­
progress flags in the M chip.

Software can restart the processor by writing 0000 OF02 (hex) to TXDB. In
response, microcode sets the BI RESET bit (PCntl CSR bit (28», initiating a
power-downlpower-up sequence. The action of the KA820 module depends on
the setting of the lower key switch on the control panel (external signal PNL
RSTRT HLT H on module I/O pin D51).

6.1.4.3 Bits (7:0) of TXDB1, 2, and 3 (Transmit Data, Write Only) - The serial­
line transmits the character that software writes in the low byte.

6.2 . Using the EEPROM

The EEPROM on the KA820 module is a 16K-byte, electrically-erasable, pro­
grammable, read-only memory implemented in two integrated circuits. You
can change the data in the EEPROM, yet the data remains valid when the
power is off. EEPROM data defines:

Dedicated I/O and Memory Devices 6-9

1. Customer choices for KA820 module options

2. VAX bootstrap macro code that processor initialization microcode copies (
into the boot RAM (this macrocode then loads a primary bootstrap routine
into main memory from one of up to ten boot devices)

3. Primary patches that power-up microcode loads into the control­
store RAM

Table 6-4: EEPROM Map

Location

First SK-Byte EEPROM Chip

2009 8000 to 2009 8002

20098004 to 2009 812E

20098130 to 2009 813E

2009 8140 to 2009 8156

20098158

2009 8160 to 2009 816C

2009 8168 to 2009 816E

20098170 to 2009 8174

20098176

2009 8178 to 2009 817C

2009817E

20098180 to 2009 81FE

2009 8200 to 2009 87FE

2009 8AOO to 2009 BFFE

Second SK-Byte EEPROM Chip

2009 COOO to 2009 COAE

2009 COBO to 2009 FFFE

Data

Constants used in the EEPROM test

Reserved to DIGITAL

8 bytes reserved for users

Miscellaneous constants and reserved
locations

VAXBI self-test timeout constant

Reserved to DIGITAL

VAXBI device type data

Unused

RCX50 self-test disable

Console data

F chip, BTB, and Cache disable

Reserved to DIGITAL

Boot dispatcher

Control-store patches and related data

Descriptors for ten boot devices

Boot code

Appendix H lists the EEPROM contents at the bit level.

You can use any ofthree methods to read and write data in the EEPROM, one
byte at a time:

1. Privileged software can refer to the EEPROM through node private space
addresses using instructions such as MOVB.

2. EEPROM Utility.

3. Console commands DIE and E/E.

6-10 Dedicated I/O and Memory Devices

(

(

(

(

Read access to EEPROM locations is unrestricted with methods 1 and 2. How­
ever, you cannot write data to the EEPROM unless the signal PNL ENB WT
EEPROM H on module 1/0 pin D50 is true (normally determined by the lower
key switch on the control panel).

On a write transfer, the EEPROM latches the address and data and then per­
forms a 10-millisecond update cycle. If you develop software that writes data
in the EEPROM, use a software timer to ensure that the intervals between
write transfers exceed 10 milliseconds.

The EEPROM options available with the DIE and EIE console commands
occupy part ofthe first EEPROM chip. They include:

RCX50 controller self-test enable and disable

Console logical node ID selection

Console baud rate selection

See Table 4-4 in Chapter 4 for information on console access to these options.
See the VAX 8200 Owner's Manual for an introduction to the EEPROM
Utility.

Writing data to the EEPROM of an attached processor requires special proce­
dures:

1. Load into main memory VAX code that writes the EEPROM.

2. Cause the attached processor to execute the VAX code that you have
loaded in main memory.

WARNING

Do not use the Z command or the RXCD Registers to write data to
the EEPROM of an attached processor.

6.3 Boot RAM

(--- The boot RAM is an 8K-byte memory dedicated to bootstrap functions. At
boot time the CPU loads boot code from the EEPROM into the boot RAM and
then executes the boot code directly from the boot RAM.

6.4 Using the Watch Chip

The battery-backed-up watch chip keeps the time of year when power is re­
moved from the computer system. On power-up, software can read the time
from the watch chip and set the Time of Day Register (TO DR), unless the
power outage has exceeded the limits of the battery. Notice that the TODR
stores time in a 32-bit format and increments the time every 10 milliseconds.
The watch chip, in contrast, stores time in units of seconds, minutes, hours,
days, months, and years and updates the time every second.

Dedicated I/O and Memory Devices 6-11

The watch chip stores time, status, and control information in 8-bit registers.
The PCl bus rotates watch chip register addresses and data in a way that is
not transparent to software, as shown in Figure 6-7. (

ADDRESS AND DATA
AT THE WATCH CHIP

ADDRESS AND DATA
SEEN BY SOFTWARE

BIT NUMBER 7 6 5 4 3 2 1 0

MLO-409-85

Figure 6-6: Watch Chip Bit Rotation on the PCI Bus

You can access the watch chip registers on word boundaries with MOVB or
MOVW instructions, and the data will always be offset one bit to the left.
Hardware implicitly multiplies read data by 2 and divides write data by 2.

Table 6-5: Watch Chip Registers

Address

200B 8000

200B 8002

200B 8004

200B 8006

200B 8008

200B 800A

200B 800e

200B 800E

200B 0810

200B 8012

200B 8014

200B 8016

200B 8018

200B 801A

200B 801e to 200B 807E

6-12 Dedicated I/O and Memory Devices

Function

Seconds

Reserved to DIGITAL

Minutes

Reserved to DIGITAL

Hours

Reserved to DIGITAL

Reserved to DIGITAL

Day of the month

Month

Year

eSR A ~ BUSY bit

eSR B - OFF bit

eSR e - Reserved to DIGITAL

eSR D - VALID bit

50 bytes RAM reserved to DIGITAL

(

(

c--

(

(

(

(

Software should therefore divide read data by 2 and multiply data to be
written by 2, as shown in Tables 6-5 and 6-6. Table 6-5 lists the watch chip
registers.

Table 6-6 shows the ranges of values possible for each of the date and time
registers as stored in the watch chip and as read or written by software.

Table 6-6: Watch Chip Data Interpretation

Hex Range
Decimal Hex Range Seen by

Address Units Range at Chip Software

200B 8000 Seconds 0-59 00-3B 00-76

200B 8004 Minutes 0-59 00-3B 00-76

200B 8008 Hours 0-23 00-17 00-2E

200B 800E Day of the 1- 31 01-1F 02-2E
month

200B 0810 Month 1-12 01-0C 02-18

200B 8012 Year 0-99 00-63 00-C6

Table 6-7 shows how your software should interpret a specific date and time
read from the watch chip.

Table 6-7: Watch Chip Date and Time Sample

Watch Chip Output Data Read by Software
Time Binary Hex Binary Hex

21 seconds 00010101 15 00101010 2A

58 minutes 00111010 3A 01110100 74

5 hours 00000101 05 00001010 OA

15th day 00001111 OF 00011110 1E

February 00000010 02 00000100 04

82ndyear 01010010 52 10100100 A4

The control and status registers on the watch chip let software:

1. Check the validity of the date and time registers

2. Set the time

3. Stop and start the chip.

Dedicated lIOand Memory Devices 6-13

In the control and status register descriptions that follow, the bit formats
show the register data already rotated, as the software reads and writes it.
For example, a bit shown as bit 0 is really bit 7 on the watch chip. (

6.4.1 Watch Chip CSR A, Address 2008 8014

765 1 0

~I I II
MUST BE ZERO I
MUST BE ONE

MUST BE ZERO

BUSY

MLO-41 0-85

Figure 6-7: Watch Chip CSR A Format

• Bit <0), BUSY (Read only)-

BUSY = 1: The watch chip is busy with an update cycle;
date and time registers are undefined.

BUSY = 0: The watch chip is not busy;
date and time registers are valid.

Software should check BUSY before reading the date and time registers.

The watch chip sets BUSY for 2 milliseconds every second. If software
finds BUSY set, it should try again in 2 milliseconds.

If BUSY is cleared, software has at least 244 microseconds to read the date
and time registers before the next update cycle. Reading the registers
should take less than 40 microseconds.

• Bits <7:1), Miscellaneous setup bits (Read/write) - Software must write
these bits as shown in Figure 6-8 before it sets the time in the watch chip.

6-14 Dedicated I/O and Memory Devices

(

(

(

(

(

(

(

(

6.4.2 Watch Chip CSR B, Address 200B 8016

7 432 1 0

I I J I I I
MUST BE ZERO I
MUST BE ONE

MUST BE ONE

MUST BE ZERO

OFF

MLO-411-85

Figure 6-8: Watch Chip CSR B Format

• Bit (0), OFF (Read/write) - Software must stop the watch chip by setting
OFF before it loads the date and time registers.

Software can start the watch chip after setting the time by clearing OFF.

• Bits (7:1), Miscellaneous setup bits (Read/write) - Software must write
these bits as shown in Figure 6-9, when it sets or clears the OFF bit_

6.4.3 Watch Chip CSR C, Address 200B 8018

This register is reserved to DIGITAL.

6.4.4 Watch Chip CSRD, Address 200B 801 A

READ AS ZEROS

VALID

MLO-412-85

Figure 6-9: Watch Chip CSR D Format

• Bit (0), VALID (Read only) - The VALID bit tells whether the time repre­
sented in the watch chip registers is correct_ If the battery backup voltage
falls below the required level, a sensing circuit clears the VALID bit.

VALID = 1: Watch chip registers are valid.

VALID = 0: Watch chip registers are invalid.

The watch chip sets VALID to 1 after software reads CSR D_ Therefore,
when software reads VALID as 0, it should immediately update the date
and time registers in the watch chip_ The state of the VALID bit will other­
wise be misleading_

Dedicated I/O and Memory Devices 6-15

6.4.5 Bootstrap Software Date and Time ResponsibiUties

Bootstrap software should take the following steps concerning date and time. ("

1. Determine whether the value in the TODR is cor,rect. If the value is cor­
rect, skip the remaining five steps. If it is incorrect, go to step 2. Note that
if you set the initial value to a high number, any lower value must be
Wrong.

2. Read the VALID bit in the watch chip CSR D to determine whether the
contents of the watch chip are correct.

3. If VALID is 1, read the BUSY bit in CSR A. If VALID is 0, go to step 6.

4. If BUSY is 0, read the watch chip date and time. registers, convert the time
to the 32-bit format, and set the TODR.

5. If BUSY is 1, wait until it is 0 and then go to step 4.

6. If VALID is 0, prompt the operator for the date and time, convert the date C
and time to the 32-bit format, and load this value in the TODR. Then con- "
vert the date and time to the watch chip register formats and load the
watch chip as follows:

- Write OD (hex) to CSR B to stop the watch chip.

- Initialize CSR A by writing 40 (hex). (See Figure 6-8.)

- Start the watch chip by writing OC (hex) to CSR B. (See Figure 6-9.) (
- Write the date and time in the appropriate registers. ,

6.4.6 Compatibility with VMS and ULTRIX

If you write your own system software, you may want your use of the watch
chip to be compatible with that of VMS and ULTRIX-32. These operating sys­
tems always set the year in the watch chip to 1982 (software saves the current
year in a location on disk). If the current year is a leap year, the Day and
Month registers in the watch chip will be ahead by one day, beginning in E---
March.

VMS and ULTRIX reset the date and time in the watch chip the first time the
system is bootstrapped, following 1 January, resetting the Year Register from
1983 to 1982.

NOTE

VMS uses local standard time; ULTRIXc32 uses Greenwich mean
time.

6.5 Controlling the RCX50 Controller

The RCX50 controller enables software to read and write diskette data one
byte at a time. The controller provides random access to the 800 512-byte

6-16 Dedicated I/O and Memory Devices

(

C

C-

~--

(

blocks of data on one side of each diskette. The data side of a diskette contains
80 tracks, and each track contains 10 sectors. Each sector stores 512 bytes of
data. Software accesses the data within each sector sequentially, however,
beginning with the first byte.

Software communicates with the RCX50controller by writing and reading
ten 8,1::)it registers. Some of the registers have several functions. For example,
when software writes to Register RX5CSO, it defines the command function.
When software reads Register RX5CSO, it checks the completion and error
status of the last command executed.

After the RCX50 controller performs the requested function, it interrupts the
processor if interrupts are enabled. Software should ensure that bit (7 >
(RXIE) ill the port controller CSR is set.

Consider Register RX5CS4 as another example. Following a data transfer
command in which a see~ error occurs, Register RX5CS4 contains the num,
ber of the incorrect track. Following a maintenance command sucll as restore
drive, Register RX5CS4 contains system configuration data indicating what
disks are available and which ones are double sided. Unlike data in the watch
chip registers, RCX50 controller register data is not rotated during data
transfers. Table 6-8 lists the registers and their uses.

Table 6-8: RCX5Q C()ntroller Register Functions

Command
orData

Address Transfer
(hex) Register Function

200B 0004 RX5CSO Write to load
device and
function select
codes

200B 0006 RX5CSl Write to load
track number

200B 0008 RX5CS2 Write to load
sector number

200B OOOA RX5CS3

200B OOOC RX5CS4

200B OOOE RX5CS5 Write to load
extended
function code

Status Status
Following a Following a
Data Transfer Maintenance
Command Command

Contains Contains
command command
completion and completion ~nd
error information error informatioll

Contains error Contains error
message message

Contains current Contains c:urrent
track number tr.ack number

Contains current Contains current
sector number status on unit

and volume

Contains Contains system
incorrect track configuration
number data

(Continued on next page)

Dedicated I/O and Memory Devices 6-17

Table 6-8: RCX50 Controller Register Functions (Cont.)

Command Status Status
or Data Following a Following a

Address Transfer Data Transfer Maintenance
(hex) Register Function Command Command

200B 0010 RX5EB Read data buffer

200B 0012 RX5CA Read to clear
data buffer
address

200B 0014 RX6GO Read to start

200B 0016 RX5FB Write data buffer

6.5.1 Data Transfer Examples

Examples of command sequences that write and read data on a diskette may
help to clarify standard uses of these registers.

Write data example:

1. Read Register RX5CA to set the data buffer address to O.

2. Load Register RX5FB, one byte at a time, with the 512 bytes of data to be
stored.

3. Load Register RX5CSO to select

drive 0, disk 1, side 0

the write sector function code (111 binary)

the normal motor timeout option (0) (see Section 6.5.2.1)

4. Load Register RX5CS1 with 23 (hex), the track to be written.

5. Load Register RX5CS2 with 5 (hex), the sector to be written.

6. Read Register RX5GO to start executing the write sector command.

The controller writes the data stored in the data buffer to the disk, moving
the 512 bytes previously written to Register RX5FB to the track and sec­
tor selected.

·7. When the RCX50 controller interrupts the CPU (vector FO), read Register
RX5CSO to check command completion status. The DONE bit should be
set, and the ERROR bit should be clear.

Read data example:

1. Read Register RX5CA to set the data buffer address to O.

2. Load Register RX5CSO to select

drive 0, disk 0, side 0

the read sector function code (100 binary)

the normal motor timeout option (0)

6-18 Dedicated I/O and Memory Devices

(

(

(

f--

(

(

(--

3. Load Register RX5CS1 with 1A (hex), the track to be read.

4. Load Register RX5CS2 with 7 (hex), the sector to be read.

5. Read Register RX5GO to start executing the read sector command. The
controller copies 512 bytes from the track and sector selected into the data
buffer.

6. When the RCX50 controller interrupts the CPU, read Register RX5CSO to
check the command completion status.

7. If the DONE bit is set and the ERROR bit is clear in Register RX5CSO,
read Register RX5EB 512 times to move the requested data from the data
buffer to main memory.

8. Note that the KA825 is capable of servicing an interrupt and clearing the
interrupt pending bit in the PCtrl before the RCX50 controller de asserts
INTRQA. This results in the interrupt pending bit being reset in the
PCtrI. When writing RCX50 drivers, handle this occurrence either by
clearing the interrupt pending bit in the PCtrl by macro code, or by ignor­
ing RX interrupts when the RX5CSO DONE bit is not set.

6.5.2 Register RX5CSO, Address 2008 0004

RX5CSO is central to control of the RCX50 controller. It has two formats: com­
mand function format and status format (data transfer status and mainte­
nance status).

6.5.2.1 RX5CSO Command Function - When software writes to this register,
the RCX50 interprets the information as a command, according to the format
shown.

7 654 3 2 1 0

III IIII II
MUST BE ZERO I
FUNCTION CODE BIT 2

FUNCTION CODE BIT 1

FUNCTION CODE BIT 0

EXTENDED MOTOR TIMEOUT

DRIVE SELECT

DISK SELECT

SIDE SELECT (MUST BE ZERO)

MLO-413-85

Figure 6-10: Register RX5CSO Command Function Format

• Bit (0), Reserved to DIGITAL, must be zero.

• Bits (2: 1>, Drive, and Disk Select - This field selects the surface to read or
write, as shown in Table 6-9.

Dedicated I/O and Memory Devices 6-19

Table 6-9: Diskette Surface Selecti()n Code Interpretation

Bit 2 Bit 1 Bit 0
Unit Diskette Drive Disk Side
Number Surface Select Select Select

unit 0 drive 0 0 0 0
disk 0
side 0

unit 1 drive 0 0 1 0
disk 1
side 0

unit 2 drive 1 1 0 0
disk 0
side 0

unit 3 drive 1 1 1 0
disk 1
side 0

NOTES

Standard configurations incorporating the KA820 module provide
one disk drive that uses single-sided diskettes. Side 0 is the data
side.

The unit numbers shown in Table 6-9 refer to unit number used in
the RX5CS3 Current Status Register. These unit numbers do not
refer to VMS unit numbers.

• Bit (3), Extended Motor Timeout - Following completion of a disk access
command, the spindle normally stops rotating in 3 seconds. You can extend
the rotation for 30 seconds by writing 1 to bit (3). This function is useful
when you perform a sequence of data transfers to or from the diskette.

• Bits (6:4), Function Code

The RCX50 controller executes eight major functions (,fable 6-10).

• Read Status Function (000) - The RCX50 controller responds to this main­
tenance function by showing in Registers RX5CSO through RX5CS4 the
status of the track selected in RX5CS2 on the diskette surface selected by
RX5CSO bits (2:0). RX5CS3 contains the volume changed status, gener­
ally the most useful status information. The read status function resets all
volume changed information.

• Maintenance Mode Function (001) - System start-up software and diag­
nostic software can use this maintenance function to test the RCX50 con­
troller. Registers RX5CSO through RX5CS4 show the status of the
controller following completion of the test.

6-20 Dedicated I/O and Memory Devices

(

(

(

(

/

(

(

(

Table 6-10: RC'X50 Function Codes

Binary Function
Code in RX5CSO Corresponding
Bits (6:4) Function Register Status

000 Read status Maintenance status

001 Maintenance mode Maintenance status

010 Restore drive Maintenance status

011 RCX50 initialize Maintenance status

100 Read sector Data transfer status

101 Extended function Data transfer status

110 Read addr~ss Data transfer status

111 Write sector Data transfer status

• RCX50 Restore Drive Function (010) - The RCX50 seeks track 0 on the
specified diskette surface in .response to this maintep.ance function. Regis­
ters RX5CSO through RX5CS4 show the maintenance status.

• RCX50 Initialize Function (011) - The RCX50 restores the drive, checks
the drive status, and tests the controller in response to this maintenance
function. Registers RX5CSO through RX5CS4 show the maintenance
status.

• Read Sector Function (100) - The RCX50 reads the sector specified in
RX5CS2 in the track specified in RX5CS1 in response to this data transfer
function. It stores the 512 bytes read in the data buffer and shows data
transfer status in Registers RX5CSO through RX5CS4.

• Extend Function (101) - The RCX50 looks in Register RX5CS5 for the code
defining the type of data transfer function required. Six extended functions
are available.

Table 6-11: RCX50 Extended Functions'

Extended
Function
Code
(hex)

o

.1

2

3

Function

Read with retries, up to 10 times.

Write a sector with a qeleted data mark in the sector header .

Used for nonnative diskettes: report format parameters of the
unit specified by Register RX5CSO bits (2:0) in Registers
RX5CS1, RX5CS2, RX5CS3, and RX5CS4.

Used for nonnative diskettes: set format parameters specified
in Registers RX5CS1, RX5CS2, RX5CS3, and RX5CS4.

(Continued on next page)

Dedicated I/O and Memory Devices 6-21

Table 6-11: RCX50 Extended Functions (Cont.)

Extended
Function
Code
(hex) Function

4

5

Report the RCX50 controller version number in RX5CS2.

Read a sector and compare it with the contents of the data
buffer. You should load the data buffer with the appropriate
values before starting this function.

• Read Address Function (110) - The RCX50 reads the first header found at
the current track location on the diskette surface selected by RX5CSO bits
(2:0) in response to this data transfer function. The controller sequen­
tially transfers six bytes to Register RX5EB:

Track address

Side address

Sector address

Sector length

HeaderCRC 1

HeaderCRC 2

(

C

• Write Sector Function (111) - The RCX50 writes the contents of the 512- C·
byte data buffer to the track and sector selected by Registers RX5CS1 and
RX5CS2 on the diskette surface selected by RX5CSO bits (2:0) in response
to this data transfer function.

6.5.2.2 RX5CSO Data Transfer Status and Maintenance Status - Following com­
pletion of a data transfer function or maintenance function, the RX5CSO Reg­
ister has the following format.

7 6 5 4 321 0

I I I I I I I I I
ERROR I
FUNCTION CODE BIT 2

FUNCTION CODE BIT 1

FUNCTION CODE BIT 0

DONE

DRIVE SELECT

DISK SELECT

SIDE SELECT

MLO-414-85

Figure 6-11: Register RX5CSO Status Format

6-22 Dedicated 110 and Memory Devices

f--

(

(

(

(---

(

• Bits (6:4,2:0) - The functions of bits (6:4,2:0) correspond to the functions
of these bits in the command function format listed in Section 6.5.2.1.

• Bit (3), DONE (Read only)

0= busy

1 = done

When the DONE bit is set, the RCX50 controller is not busy; all registers
are therefore accessible to the CPU.

If the RCX50 controller is busy executing a command, software should not
try to read this register or any other RCX50 controller register. When it is
busy, the controller responds to any read request to any register with a null
byte in which bit (3) is o.

• Bit (7), ERROR (Read only)

0= no error

1 = error

When the ERROR bit is set, it means that an error occurred during execu­
tion of the last command. Software can read the error code in Register
RX5CSI as an aid in defining the cause of the error.

6.5.3 Register RX5CS1, Address 2008 0006

RX5CSI uses two formats: a command function format (Track Register) and a
status format (Error Register).

6.5.3.1 RX5CS1 Command Function, Track Register - Software should load
RX5CSI with the target track number for disk access. Valid track numbers
range from 00 to 4F (hex).

7 654 321 0

~ 111 I I I I I
0 J
TRACK BIT 6

TRACK BIT 5

TRACK BIT 4

TRACK BIT 3

TRACK BIT2

TRACK BIT 1

TRACK BITO

MLO-415-85

Figure 6-12: RX5CS1 Command Function Format

Dedicated 110 and Memory Devices 6-23

6.S.3.2 RXSCS1 Data Transfer and Maintenance Status Format, Error Register -
When the ERROR bit in Register RX5CSO is set, Register RX5CSl contains (/
an error code defining the error that occurred when the RCX50 executed the
last function.

Table 6-12: RCX50 Error Codes Available in Register RX5CSI

Error
Code
(hex)

00

08

10

18

20

28

30

38

40

48

50

58

60

68

70

78

80

88

90

98

AO

A8

BO

B8

Error

No error

Drive 0 track 00 sensor failure

Drive 1 track 00 sensor failure

Both drives failed to respond; system has no drives

Tried to access a track greater than 4F (hex)

Drive fails to seek home

Data record not found; data mark (DAM) not found within 43
(decimal) bytes following ID

ID record not found

Command timeout

Selected side is not a match

Selected unit is not ready

Disk is not installed correctly

IDCRC

Seek error

Data required (DRQ) does not appear within 32 microseconds

Soft ID read error

DataCRC

Lost data; 8051 chip did not respond to dl;ita required (DRQ) within
23 microseconds

Tried to access an unavailable unit

Drive not ready during write

Drive not ready during read

No match for the specified sector

Unit write protected on a write command

Tried to access a sector numbered 0 or greater than A (hex)

(Continued on next page)

6-24 Dedicated I/O and Memory Devices

(

(

(

c

(

(---

Table 6-12: RCX50 Error Codes Available in Register RX5CSI (Cont.)

Error
Code
(hex)

co

C8

DO

D8

EO

E8

EC

FO

F4

F8

FC

Error

Maintenance status only - the low-order 4 bits of the RAM failed
to pass the memory test

Maintenance status only - the high-order 4 bits of the RAM failed
to pass the memory test

Maintenance status only - no index pulse was detected

Maintenance status only - drive speed is not within limits

Maintenance status only - bad format or a blank disk

Maintenance status only - stepping error

Tried to set unsupported diskette parameters

Maintenance status only - phase-locked loop (PLL) frequency is
not within the limits

Tried to read a sector with a deleted data mark

Maintenance status only - data buffer is bad

Tried to write a non-RCX50 diskette

6.5.4 Register RX5CS2, Address 2008 0008

Register RX5CS2 performs two functions and provides two corresponding
formats. RX5CS2 is the Sector Register on a data transfer, and it shows the
current track following execution of a function.

6.S.4.1 RXSCS2 Data Transfer Format, Sector Register - Before transferring
data to or from a diskette, software should load RX5CS2 with the target sec­
tor number. The valid range is 01 to OA (hex).

765 4 321 0

I I I I II I I I
0 I
0

0

0

SECTOR BIT 3

SECTOR BIT2

SECTOR BIT 1

SECTOR BITO

MLO-416-85

Figure 6-13: RX5CS2 Command Function Format: Sector Register

Dedicated I/O and Memory Devices 6-25

6.5.4.2 RX5CS2 Data Transfer and Maintenance Status Format, Current Track
Register - Following a data transfer function or maintenance function
RX5CS2 shows the track number used in the command. (

765 4 3 2 1 0

I I I I I I I f 1
0 I
TRACK BIT 6

TRACK BIT 5

TRACK BIT 4

TRACK BIT 3

TRACK BIT 2

TRACK BIT 1

TRACK BIT 0 (
MLO-417-85

Figure 6-14: RX5CS2 Status Format: Current Track Register

6.5.5 Register RXSCS3, Address 200B OOOA

Register RX5CS3 provides two status formats. It identifies the current sector (
following a data transfer function, and it gives the current RCX50 controller
status following a maintenance command.

6.5.5.1 RX5CS3 Data Transfer Status Format, Current Sector Register - Follow­
ing a data transfer function RX5CS3 shows the current sector number.

6.5.5.2 RX5CS3 Maintenance Status Format, Current Status Register - The
first four bits of RX5CS3 show the status of the unit specified by Register (
RX5CSO (see Table 6-9 and Figure 6-11). \--

During controller initialization, bits < 3:0) show the status of drive 0, disk o.
Bits <7:4) show the volume status, updated since the last read status com-
mand. These bits are affected only by the read status command. The volume
numbers (3-0) correspond to the unit numbers shown in Table 6-9.

You should not normally place diskettes in the diskette drive during initiali­
zation. However, the controller tests for diskette presence and sets the corres­
ponding VOlume Changed bit if it detects a diskette.

Interrupts related to the VOlume Changed bits are enabled following the first
read status command after initialization.

6-26 Dedicated I/O and Memory Devices

(

(

(

765 4 321 a

II I I I I I I I
a J
a
a
a
SECTOR BIT 3

SECTOR BIT 2

SECTOR BIT 1

SECTOR BITO

MLO-418-85

Figure 6-15: RX5CS3 Data Transfer Status Format:
Current Sector Register

7 654 321 a

I I I I II I I I
VOLUME 3 CHANGED I
VOLUME 2 CHANGED

VOLUME 1 CHANGED

VOLUME a CHANGED

UNIT n WRITE PROTECTED

UNIT n READY

UNIT n DOUBLE SIDED

UNIT n AVAILABLE

MLO-419-85

Figure 6-16: RX5CS3 Maintenance Status Format:
Current Status Register

• Bit (0), Unit n Available (wheren is specified in RX5CSO)

o = not available

1 = available

• Bit (1), Unit n Double Sided (where n is specified in RX5CSO)

o = single sided

1 = double sided

Dedicated I/O and Memory Devices 6-27

- Bit (2), Unit n Ready (where n is specified in RX5CSO)

0= not ready

1 = ready

- Bit (3), Unit n Write Protected (where n is specified in RX5CSO)

o = not write protected

1 = write protected

-For all Volume Changed bits (7,6,5,4)

o = The ready signal has not changed since the last read status
command

1 = The ready signal has changed since the last read status command

6.5.6 Register RXSCS4, Address 2008 OOOC

Register RX5CS4 provides two formats. The data transfer status gives the
incorrect track number, followingra seek error. The maintenance status gives
the system configuration.

6.5.6.1 RX5CS4 Data Transfer Status, Incorrect Track Register - If a seek error
occurs when the RCX50 is executing a command, RX5CS4 yields the track
number to which the read/write head actually moved. If no seek error occurs,
the register contains all zeros.

765 432 1 0

II I III J 1 J
0 I
INCORRECT TRACK BIT 6

INCORRECT TRACK BIT 5

INCORRECT TRACK BIT 4

INCORRECT TRACK BIT 3

INCORRECT TRACK BIT 2

INCORRECT TRACK BIT 1

INCORRECT TRACK BIT 0

ML0-420-85

Figure 6-17: RX5CS4 Command Function Format:
Incorrect Track Register

6.5.6.2 RX5CS4 Maintenance Status, System Configuration Register -
RX5CS4 summarizes the diskette drive configuration. Four bit pairs make
up the register format. Each bit pair shows the status of one diskette (vol­
ume). The initialization function updates RX5CS4 with the current system
configurat~on.

6-28 Dedicated I/O and Memory Devices

(

(

(

(

c

(

E---

7 654 3 2 1 0

I I I I I I I I I
DISK 3 DOUBLE SIDED I
DISK 3 AVAILABLE

DISK 2 DOUBLE SIDED

DISK 2 AVAILABLE

DISK 1 DOUBLE SIDED

DISK 1 AVAILABLE

PISK 0 DOUBLE SIDED

DISK 0 AVAILABLE

MLO·421·85

Figure 6-18: RX5CS4 Maintenance Status Format:
System Configuration Register

• For all Available bits (6,4,2,0): 0 = the diskette is not present

1 = the diskette is present

• For all Double Sided bits (7,5,3, 1): 0 = single sided

1 = double sided

NOTE

RX50 supported diskettes are single sided.

6.5.7 Register RX5CS5, Address 2008 OOOE

Software should load Register RX5CS5 with an extended function code when
it loads 101 (binary) in bits (6:4) of Register RX5CSO. Table 6-11 lists the
codes and their meanings.

7 654 3 2 1 0

I I I I I I I I I
EXTENDED FUNCTION CODE BIT 7 J
EXTENDED FUNCTION CODE BIT 6

EXTENDED FUNCTION CODE BIT 5

EXTENDED FUNCTION CODE BIT 4

EXTENDED FUNCTION CODE BIT 3

EXTENDED FUNCTION CODE BIT 2

EXTENDED FUNCTION CODE BIT 1

EXTENDED FUNCTION CODE BIT 0

MLO·422·85

Figure 6-19: RX5CS5 Format: Extended Function

Dedicated I/O and Memory Devices 6-29

6.5.8 Register RXSEB, Empty Sector Buffer Register,
Address 200B 0010

Register RX5EB gives software read access to the 512-byte data buffer on the
RCX50 controller, one byte at a time. To read data from a diskette, software
should first execute the read sector command and set the address of the data
buffer to 0 (see the read data example in Section 6.5.1).

7 6 S 4 321 0

II I I I I I I I
DATA BIT 7 I
DATA BIT 6

DATA BITS

DATA BIT4

DATA BIT 3

DATA BIT2

DATA BIT 1

DATABITO

MLO-423-85

Figure 6-20: RX5EB Format: Empty Sector Buffer Register

Each time software reads Register RX5EB, the controller increments the ad­
dress of the data buffer location being examined. Software must keep track of
the location associated with each byte it reads, since the controller does not
supply address information.

6.5.9 Register RXSCA, Clear Address Register,
Address 200B 0012

Software sets the address in the data buffer to 0 when it accesses (reads or
writes) Register RX5CA.

6.5.10 Register RXSGO, Start Command Register,
Address 200B 0014

When software reads or writes Register RX5GO, the controller executes the
function specified in Registers RX5CSP through RX5CS5. This should be the
last step software performs in carrying out any RCX50 command. The con­
troller interrupts the CPU when it finishes executing the command. Software
should then read the RX5CSO Register to check the command status.

6-30 Dedicated 110 and Memory Devices

(

(

(

(

(

(

6.5.11 Register RX5FB, Fill Sector Buffer Register,
Address 200B 0016

Register RX5FB gives software write access to the 512-byte data buffer on the
RCX50 controller, one byte at a time.

7 6 5 4 3 2 1 0

I I I I I I I I I
DATA BIT7 J
DATA BIT6

DATA BIT 5

DATA BIT4

DATA BIT 3

DATA BIT2

DATA BIT 1

DATA BITO

MLO-424-85

Figure 6-21: RX5FB Format: Fill Sector Buffer Register

Each time software writes to the register, the controller increments the ad­
dress of the data buffer location being written (see the write data example in
Section 6.5_1)_ Software must keep track of the location accessed with each
write transfer, since the controller does not supply address information_ Be­
fore writing data, software should read Register RX5CA to set the data buffer
address to O.

Dedicated I/O and Memory Devices 6-31

(

(

(,

E--

(,

(

c

(

E-

(

Chapter 7
KA820 Diagnostics

The optional VAX 8200 system diagnostic package includes programs that
test all KA820 functions. Self-test is available to and appropriate for all
users. You can order the full VAX diagnostics package through your local
DIGITAL Field Service office. These programs provide more complete fault
isolation than self-test, but they require detailed knowledge of the VAX 8200
hardware. The standard VAX diagnostic programs explained in this chapter
are available if you buy a diagnostic license; they are appropriate only for
DIGITAL Field Service engineers and OEM customers who maintain their
own systems.

Table 7-1: Diagnostic Program Categories Related to the VAX 8200

Program Intended Run-time
Category User Environment Area Tested Reference

Self-test All customers Console KA820 Chapter 3 of
and DIGITAL hardware this manual
Field Service

Separate DIGITAL VAX VAX-generic This Chapter
Cluster Field Service Diagnostic andKA820-
Exerciser and Licensed Supervisor, specific
Programs customers levels 4,3, functions

and 2

Serial-Line DIGITAL VAX KA820 This Chapter
Unit Test Field Service Diagnostic Serial-Line

and licensed Supervisor Units
customers Leve12R

The macrodiagnostic programs described here require a variety of run-time
environments (diagnostic program levels), because they test a wide range of
functions, using a building-block approach.

Level 4 -

Level 3 -

Programs that run without the VMS operating system
(stand-alone) and without the VAX Diagnostic Supervisor,
VDS

VDS-based programs that run without VMS (stand-alone)

7-1

7.1

Level 2 - VDS-based programs that can run either with VMS (on­
line) or without VMS (stand-alone)

Level2R - VDS-based programs that run only with VMS (on-line)

Refer to the VAX Diagnostic System User's Guide for a general description of
the VAX diagnostic system and an introduction to VDS. The VAX Diagnostic
System User's Guide offers instructions for building the diagnostic directory
(SYSMAINT) and installing and updating the VAX diagnostic software.

Table 7-2 offers an overvi~w of the programs described in this chapter.

Table 7-2: Diagnostic Programs Described in this Chapter

Program Run-time
Code Program Name Environment Hardware Tested

EVKAA VAX-generic cluster Level 4 (stand-alone, VAX instruction set
exerciser: hardcore boot and run from used byVDS
instruction test the console)

EVKAB VAX-generic cluster Level 2 (on-line or Basic VAX instruc-
exerciser: basic stand-alone) tion set, non-
instruction exerciser privileged

EVKAC VAX-generic cluster Level 2 (on-line or Floating-point VAX
exerciser: floating- stand-alone) instruction set,
point instruction nonprivileged
exerciser

EVKAE VAX-generic cluster Level 3 (stand-alone) Privileged VAX
exerciser: privileged instruction set
architecture exer-
ciser

EBKAX KA820-specific Level 3 (stand-alone) KA820 CPU, RX50
cluster exerciser drive and RCX50

controller, serial-line
units, watch chip,
boot RAM, multipro-
cessor functions

EBDAN Serial-line unit Level2R (on-line Serial-line units 1, 2,
diagnostic program only) and 3

Load Paths

You can use two kinds ofload paths for loading diagnostic programs into main
memory:

1. Load from the maintenance system disk, the operating system disk, or
other mass storage medium.

2. Load from RX50 diskettes distributed by DIGITAL.

7-2 KA820 Diagnostics

(

(

(

(-

(

(

I .
\

(

7.2

If a hardware failure prevents you from loading diagnostics from the mainte­
nance system disk or another disk attached to a VAXBI node, you can try
loading diagnostics another way. If two or three of the load paths are faulty,
the fault is probably on the KA820 module and should be reflected in the
results of the self-test program. Use the console T command to run self-test.
The red and yellow light-emitting diodes (LEDs) on the KA820 module should
also help you to identify the problem (see Chapters 3 and 4).

Test Sequence and Repair Recommendations

The KA820 module and the VAX 8200 system are designed to make r-epair
easy and straightforward. If you suspect a hardware failure, you can try to
identify the failing module before calling DIGITAL Field Service.

1. Check the light-emitting diodes (LEDs) on the modules in the VAXBI back­
plane. If a yellow LED is off, the indicated module is faulty. The KA820
module also provides red LEDs, which indicate a fault when lit, unless the
CPU is in the console mode.

2. If the LEDs look right, run self-test by typing {CTRLlP] and then T on the
console terminal. See Chapter 3 for an explanation of self-test on the
KA820 module.

3. If self-test reveals no fault, and you suspect a fault on the KA820 module,
boot EVKAA, the VAX Hard-Core Instruction Test, from a diskette in the
RX50 drive (see Section 7.3).

4. If EVKAA runs without error, boot VDS (EBSAA) stand-alone from the
maintenance system disk (see Section 7.4).

5. If you cannot boot VDS from the maintenance system disk or another de­
vice connected to a VAXBI node, boot it from the RX50 diskette (secondary
load path).

6. When you see the VDS prompt, DS>, run level 2 or 3 diagnostic programs
to test the area of the system you think is faulty. If you suspect the KA820
module, run the remaining cluster exerciser programs in the following
order:

EVKAB
EVKAC
EVKAE
EBKAX

See Sections 7.6 through 7.9.

7. If the cluster exerciser programs do not reveal an error and you suspect·a
problem with the serial-line units,

Boot VMS
Run VDS on-line
Run the serial-line unit test, EBDAN (see Section 7.10).

KA820 Diagnostics 7-3

7.3 EVKAA, Hard-Core Instruction Test

The Hard-Core Instruction Test checks the set of instructions required to boot (
and run VDS.

Fifteen tests, arranged in a building block sequence, make up the Hard-Core
Instruction Test. The program proceeds from a check of instructions that ma­
nipulate the PSL through tests of the INSQUE and REMQUE instructions
and console transmitter functions.

7.3.1 Booting EVKAA on the Primary Processor

Boot and run EVKAA on the primary processor by typing the console com­
mands shown in Example 7-1.

(CTRUP]

}» I
»}

}}} B CSAl

! Halt the primary processor.
! Initialize the primary processor.
! Insert the appropriate diskette
! in the RX50 drive .
! Boot and run EVKAA.

Example 7-1: Booting EVKAA on the Primary Processor

Console microcode loads and starts the program in the first good 64K-byte
section of main memory at the base address plus 200 (hex). EVKAA then runs
continuously, making a complete pass every 0.2 seconds, unless it finds a
hardware error. After the first pass and subsequently after every 10 passes,
the program sounds a beep on the console terminal and prints a message:

EVKAA Vx.X PASS nnn(X) DONE!

If EVKAA finds a hardware error, it prints a message on the console terminal
and halts, forcing the KA820 module to return to the console mode.

??? ERROR TEST Hnn . SUBTEST Hnn (instruction-code) failed
(one-line description of failure)
EXPECTED DATA - xxxxxxxx
RECEIVED DATA - xxxxxxxx
?I/IG

PC =xxxxxxxx
» }

if EVKAA finds a hardware fault, call DIGITAL Field service to repair the
fault. If you must repair the system yourself, replace the KA820 module (see
Appendix B), since the KA820 module is the unit most likely to be at fault if
EVKAA fails. Then check the repair by running the full set of diagnostic pro­
grams that test the KA820 module .

7.3.2 EVKAA Prerequisites and Functions

The KA820 processor must meet the following conditions before EVKAA can
run:

1. The load path from the RX50 diskette drive must be functional.

2. At least 64K-bytes of main memory, aligned on a page, must be valid.

7 -4 KA820 Diagnostics

(

(

(

(

3. The following instructions must be functional:

BEQL
BISPSW
INCL
MOVW
XORL3

BICL2
BRW
MFPR
MOVZBL

BICPSW
CLRL
MOVL
MTPR

4. Three addressing modes must also be valid:

(PC)+
D (PC)
R

7.4 Using VDS Stand-Alone

BISL
HALT
MOVPSL
TSTL

You should be able to boot VDS (EBSAA) on any KA820 processor in the
VAX 8200 system if EVKAA runs without errors on that processor. VDS re-

(quires 512K-bytes of memory.

(

7.4.1 Booting VDS Stand-Alone on the Primary Processor

Boot VDS on the primary processor from the maintenance system disk by
typing the commands shown in Example 7-2 on the console terminal. VDS
identifies itself before prompting for operator input.

©llilli
»} I
») B/R5 :10 (ddxn)

. . 2 3 4
xxxxxxxx

. . F

! Halt the primary processor.
! Initialize the primary processor.
! Boot and run VDS from a device
! where <ddxn) identifies the boot
! device type, adapter node number,
! and boot device unit number (see
! Section 4.3 .2 in Chapter 4).
! List of nodes found .
! Size of VAXBI memory.

VAX DIAGNOSTIC SOFTWARE
PROPERT't' OF

DIGITAL EQUIPMENT CORPORATION

CONFIDENTIAL AND PROPRIETARY

Use Authorized Only Pursuant to a Valid Right-to-Use License

COPYRIGHT, DIGITAL EQUIPMENT CORPORATION, 1985. ALL RIGHTS
RESERVED.

DIAGNOSTIC SUPE~VISOR . ZZ-EBSAA-8.1 6 MAR 1985 13:22:45

DS) ! VDS prompt symbol.

Example 7-2: Booting VDS Stand-Alone on the Primary Processor

NOTE

The VAX diagnostic software should be permanently installed in
the SYSMAINT directory.

KA820 Diagnostics 7-5

If the VDS bootstrap fails, boot VDS through the secondary load path, using
an RX50 diskette. Insert the appropriate diskette in the RX50 drive and type:

» > B CSAl

on the console terminal.

7.4.2 Booting VDS Stand-Alone on an Attached Processor

If you want to test an attached KA820 processor in a VAX 8200 system, you
must first boot VDS on the primary processor using console commands, then
boot VDS on the attached processor using the VDS BOOT n command, and
then run diagnostic programs.

(CTRUP]

>)) 1
>)) B/R5=10 <dxn>
. . 2 3 4
xxxxxxxx

! Halt the primary processor.
! Initialize the primary processor.
! Boot VDS on the primary processor.

. . F ! Nodes found.
! Size of VAXBI memory.

VAX DIAGNOSTIC SOFT WARE
PROPERH OF

DIGITAL EQUIPMENT CORPORATION

CONFIDENTIAL AND PROPRIETARY

Use Authorized Only Pursuant to a Vali d Right-to-Use License

COPYRIGHT. DIGITAL EQUIPMENT CORPORATION. 1985. ALL RIGHTS
RESERVED .

DIAGNOSTIC SUPER VI SOR . ZZ-EBSAA-8.1 6 AUG 1985 14:22:45

DS> BOOT n

DS> RUN < exxxx >

! Boot VDS on the attached processor
! at node n.

! Run diagnostic program (exxxx>

Example 7-3: Booting VDS Stand-Alone on an Attached Processor

7.4.3 Help

VDS provides a help feature that gives information on diagnostic programs
and VDS commands. Examples:

• HELP

• HELP DEVICE KA820

• HELP SET FLAGS

• HELPEVKAB

7-6 KA820 Diagnostics

(

(

(

(

(

(

(

(

7.4.4 Attaching and Selecting the KA820 Module

You must attach and select the KA820 module before running level 2, 2R, or 3
diagnostic programs to test it. You can attach all devices in the system by
running the auto sizer in the default mode in response to the DS> prompt.

DS) RUN EVSBA

The autosizer identifies all native DIGITAL devices on the system and passes
this information to VDS.

Or, you can attach and select the KA820 module specifically, using the follow­
ing command format in response to the DS> prompt:

DS) ATTACH KA820 HUB KAn msiz id rx0 rxl

where:

n
msiz
id
rxO
rxl

is the KA820 node ID (hex) (for error message print out)
is the size of memory in kilobytes (decimal)
is the CPU's node ID (hex)
is Y or N (Is scratch diskette present in RX50 drive O?)
is Y or N (Is scratch diskette present in RX50 drive I?)

DS) SELECT KAn

If you attach an external wrap connector on the back panel of the main cabi­
net for serial-line unit 1, 2, or 3, attach and select each wrapped serial-line
unit as follows:

DS) ATTACH SLU KAn TCx0 extlp rate

where:

TCAO is serial-line unit 1
TCBO is serial-line unit 2
TCCO is serial-line unit 3
n is the KA820 node ID
extlp is Y or N (Is an external wrap connector provided?)
rate is the desired baud rate (150 to 19200)

DS) SELECT TCx0

7.4.5 Flags in VDS

The functions ofVDS command flags are consistent across all diagnostic pro­
grams, but the functions of event flags vary with each diagnostic program.

You can set command flags with the SET FLAGS command, according to the
following format:

DS) SET FLAGS (arg-list>

where (arg-list> identifies the command flags to be set (for example, SET
FLAGS OPERATOR, QUICK). The SHOW FLAGS command lets you see the
status of each VDS flag.

KA820 Diagnostics 7-7

Some diagnostic programs use event flags . You can set event flags with the
SET EVENT command, according to the following format :

DS} SET EVENT (arg-list)

where (arg-list) identifies the event flags to be set (for example, SET EVENT
1,3,4). The SHOW EVENT command lets you see the status of each event
flag.

7.4.6 Test Repetitions

Each diagnostic program that runs with VDS normally completes one pass.
You can stop it by typing (CTRUC). If the program finds an error, it prints an
error message, aborts the failing subtest, and continues with the next subtest
or test, unless the HALT flag is set. If the error is severe, the test or program
may be aborted, returning control to VDS.

If you want to run a specific test or set of tests, instead ofrunning the tests in
the default section, use the /TEST qualifier with the RUN command: (

DS) RUN (exxxx}/TEST=(first}[: (last)]

where (exxxx) is the program code and (first) and (last) are decimal test
numbers.

You can specify a program section to execute by using the /SECTION quali­
fier with the RUN command:

DS} RUN (exxxx}/SECTION=(section-name)

You can specify how many times a program runs by using the /PASSES quali­
fier with the RUN command:

DS} RUN (exxxx}/PASSES=(count)

where (count) indicates the number of passes (decimal) to run.

Use a pass count of 0 to run a program continuously. If you do this, the
program will run until you type (CTRUC) or a failure occurs with the HALT flag
set.

NOTE

You can replace the RUN command with the combination of LOAD
and START, where START takes the same parameters as RUN. Af­
ter loading a program with LOAD, you can type SHOW TESTS, ask­
ing VDS to list the test names and numbers on the terminal.

7 -8 KA820 Diagnostics

(

(

(

(

(

(

(

7.5 Using VDS On-line

Before you run any level2R diagnostic programs you must run VDS on-line,
under the VMS operating system. Then run the program you require . Exam­
ple 7-4 shows the procedure for running VDS on-line from the SYSMAINT
directory and then running EVKAB. Example 7-5 shows the procedure for
running VDS on-line from the RX50 diskette drive (the secondary load path)
and then running EVKAB. VDS identifies itself before prompting for opera­
tor input. In either case you must begin by logging in to the field service
account.

Uset'narne: FIELD
Password: SERVICE

$ SHOW DEFAIJL T
SYS$SYSROOT:[SYSMAINTl
$ RUN EBSAA ! Load and start VDS.

VAX DIAGNOSTIC SOFTWARE
PROPERT',' OF

DIGITAL EQUIPMENT CORPORATION

CONFIDENTIAL AND PROPRIETARY

Use Authorized Only Pursuant to a Valid Right-to -Us e License

COPYRIGHT. DIGITAL EQUIPMENT CORPORATION. 1985 . ALL RIGHTS
RESERVED.

DIAGNOSTIC SUPERVISOR. ZZ-EBSAA-8.1 6 SEP 1985 12: 42 :45

DS) SHOW LOAD

DUA0:[SYSMAINTl

! Identify the default load device
! and directory.

DS) ATTACH KA820 HUB KA2 2048 2 Y N

DS) SELECT KA2
DS) LOAD EVKAB
DS) SHOW TESTS

Test 1: BRB
· Test 2: BRW
· Test 3: BBC

· Test 161 : EDITPC
DS) START

! Attach the KA820. Insert
! a scratch diskette in RX50
! unit O.
! Select the KA820 at node 2.
! Load the EVKAB diagnostic.
! List the EVKAB tests.

! Run EVKAB.

Example 7-4: Running VDS On-Line from the SYSMAINT
Directory

KA820 Diagnostics 7-9

Use rname: FI ELD
Password: SERVICE
$ MOUNT/OVERRIDE=ID CSA1 :
$ SET DEFAULT CSA1 : [SYSMAINTl
$ RUN EBSAA ! Load and start VDS.

VAX DIAGNOSTIC SOFTWARE
PROPERTY OF

DIGITAL EQUIPMENT CORPORATION
CONFIDENTIAL AND PROPRIETARY

Use Authorized Only Pursuant to a Valid Right-to-Use License

COPYRIGHT, DIGITAL EQ UIPMENT CORPORATION, 1985. ALL RIGHTS
RESERVED.

DIAGNOSTIC SUPERVISOR. ZZ-EBSAA-8.1 6 OCT 1985 23:17:25

DS } ATTACH KA820 HUB KA2 2048 2 Y N
DS } SELECT KA2

DS} RUN EVKAB

! Attach the KA820.
! Select the KA820 module
! at node 2.
! Run the EVKAB diagnostic.

Example 7-5: Running VDS On-line from RX50 Diskette Drive

NOTE

You cannot run VDS on an attached processor on-line, and you can­
not run the auto sizer on-line.

7.6 EVKAB, VAX Basic Instruction Exerciser

You can run EVKAB (level 2) either stand-alone or on-line. With VDS run­
ning and the KA820 module attached and selected (see Section 7.4.4), run
EVKAB as follows. In response to the DS> prompt, type:

DS} RUN EVKAB ! Run the VAX basic instruction
! exerciser.

Run EVKAA before running EVKAB to assure a systematic test of the
KA820 module.

(

(

EVKAB tests most of the nonprivileged VAX instruction set, except for the (
floating point instructions. It consists of 161 tests, each of which checks exe-
cution of a specific VAX instruction.

Both EVKAB and EVKAC respond to the command flags; they also respond
to event flags 1 through 6, with the following functions:

1. Disable messages relating to the floating-point accelerator.

2. Disable interrupts from the interval timer.

3. Enable interrupts from the interval timer while page faulting is enabled.

4. Enable the continuation of a subtest after error detection (normally the
program aborts a subtest when it detects an error).

7-10 KA820 Diagnostics

(

(

5. Disable execution of the DIVP instruction while the interval timer is
interrupting.

6. Prompt for tests to be executed ifthe OPERATOR flag is set. Begin testing
by typing (CR) twice after selecting the tests you want.

7.7 EVKAC, Floating-Point Instruction Exerciser

7.8

You can run EVKAC (level 2) either stand-alone or on-line; VDS must be run­
ning, and the KA820 module must be attached and selected (see Section
7.4.4). In response to the DS) prompt, type:

DS) RUN EVKAC ! Run the VAX floating·point
! instruction exerciser.

Run EVKAA and EVKAB before running EVKAC to assure a systematic
test of the KA820 module.

EVKAC consists of 98 tests, each of which tests a floating-point instruction.

EVKAC responds to the command flags and to event flags 1 through 6, as
explained in Section 7.6.

EVKAE, VAX Privileged Architecture Exerciser

EVKAE (level 3) runs only in the stand-alone mode; VDS must be running
without VMS, and the KA820 module must be attached and selected (see
Section 7.4.4). In response to the DS) prompt, type:

DS) RUN EVKAE ! Run the VAX privileged
! architecture exerciser.

Run EVKAA, EVKAB, and EVKAC before running EVKAE to assure a sys­
tematic test of the KA820 module.

EVKAE consists of 12 tests grouped in 8 sections:

• DEFAULT

• ME~MGT

• EXCEPTIONS

• PROCESS

• REGISTERS

• CHANGE_MODE

• TIMER

• CONTEXT

KA820 Diagnostics 7 -11

7.9 EBKAX, VAX 8200-Specific Cluster Exerciser

EBKAX (level 3) runs only in the stand-alone mode; VDS must be running (
without VMS, and the KA820 module must be attached and selected (see
Section 7.4.4)

EBKAX tests the portions of the KA820 module not specified by the VAX
architecture, including the serial-line units . You can expand the test of serial­
line unit 1, 2, or 3 by attaching a wrap connector to the plug for that serial­
line unit on the rear of the main unit. However, you cannot use a wrap
connector on serial-line unit 0 when you run EBKAX, because the console
terminal requires that line for communication with the KA820 module and
with VDS.

If you use wrap connectors, use the serial-line unit specific ATIACH and
SELECT commands for each wrapped serial-line unit as follows:

DS) ATTACH SLU KAn TCx0 extlp rate

where:

TCAO
TCBO
TCCO
n
extlp
rate

DS) SELECT TCx0
DS) RUN EBKAX

is serial-line unit 1
is serial-line unit 2
is serial-line unit 3
is the KA820 node ID
is Y or N (Is an external wrap connector provided?)
is the desired baud rate (150 to 19200)

! Run the KA820-specific cluster
! exerciser.

Example 7- 6: Running E BKAX

Run EVKAA, EVKAB, EVKAC, and EVKAE before running EBKAX to as­
sure a systematic test of the KA820 module .

EBKAX consists of 57 tests grouped in three sections:

• DEFAULT

• MANUAL INTERVENTION

• MEMORY

7.10 EBDAN, KA820 Serial-Line Unit Diagnostic

EBDAN (level 2R) runs only in the on-line mode, with the VAX Diagnostic
Supervisor running under VMS. You must attach both the KA820 module
and the serial-line units to be tested, and then select the serial line units to be
tested. First attach the KA820 module as explained in Section 7.5. Then load
EBDAN, the serial-line unit diagnostic. Then attach and select each serial­
line unit to be tested. And then start the test . The following example shows
the attaching, selecting, and testing of serial-line unit 1.

7- 12 KA820 Diagnostics

(

(

(

(

(

DS) ATTACH KA820 HUB 2 2048 2 Y N
DS) LOAD EBDAN

DS) ATTACH SLU
DEVICE LINK? KA2

DEVICE NAME? TCA0
SERIAL-LINE UNIT EXTERNALLY WRAPPED? Y
BAUD RATE? 1200
DS) SELECT TCA0

DS) START

! Attach the KA820 module.
! Load the serial-line unit
! diagnostic.
! Attach a serial-line unit.
! The serial-line unit to be
! tested is on the KA820

module at node 2.
Serial-line unit 1.
Connect a loopback connector.
Use baud rate 1200.
Select serial-line unit 1 for

! testing.
! RunEBDAN.

Example 7-7: Running EBDAN

Run the cluster exerciser programs before running EBDAN to ensure a thor­
ough test of the serial-line units.

EBDAN consists of three tests:

• Per line internal data loopback test

• Per line external data loopback test

• Multiple line externalloopback test

If you do not select a specific test with the START command, EBDAN exe­
cutes the tests according to the information you have provided with the
ATTACH and SELECT commands.

KA820 Diagnostics 7-13

(

(

(

t--_· -

(

(

(---

(

Appendix A
KA820 Module 1/0 Pins and Cables

A.1 Module I/O Pin Definitions

The KA820 module contains 300· module I/O pins along one edge. These pins
are arranged in five segments (A, B, C, D, E). Each segment contains 60 pins,
30 on each side of the module.

As you look at the card cage from the backplane side, with the cam at the top,
pins corresponding to segments A through E appear from top to bottom. Seg­
ments A and B carry the VAXBI signals. Segments C, D, and E carry module­
specific signals.

Each of the segments C, D, and E supplies signals to two 30-pin connectors.
For purposes of cable positioning, refer to the left connector for segment C as
CI and the right connector as C2. Connectors DI, D2, EI, and E2 are identi­
fied similarly.

Segment C carries signals for the four serial-line units. Only connector C2 is
used. Segment D carries PCI bus signals and signals that go to the control
panel and the PCM module. Segment E carries only the performance monitor
enable signal on connector E2.

Figures A-I through A-5 show the module I/O pin segments from the back­
plane side of the card cage.

GN046 - - 16 BI 031 L GNO 31 - - 01 BI 029 L
47 - - 17 BI 030 L 32 - - 02 BI 028 L

GNO 03 - - 18 GNO 33 - - 48
GN049 - - 19 GNO 34 - - 04 BI 027 L
GN050 - - 20 BI 026 L 35 - - 05 BI 025 L

51 - - 21 BI 022 L GN036 - - 06 BI 023 L

52 - - 22 BI 020 L 37 - - 07 BI 021 L
GN053 - - 23 BI 018 L GN038 - - 08 BI 019 L

54 - - 24 BI 017 L 39 - - 09 BI 015 L
GN055 - - 25 BI 014 L GNO 40 - - 10 BI 024 L

BI SPARE L 56 - - 26 BI 012 L 41 - - 11 BI 013 L
GNO 57 - . - 27 BI 010 L GN042 - - 12 BI 011 L
+5V58 - - 28 +5 V +5 V43 - - 13 +5 V
GN059 - 29 +5 V +5 V44 - - 14 BI 007 L

BI 003 L 60 - 30 BI 016 L BI 008 L 45 - - 15 BI 006 L

MLO-425-85

Figure A-I: Module I/O Pins on Segment A Viewed from the
Backplane

A-l

BI D05 L 46 - - 16 BI D04 L BI D02 L 31 - - 01 BI DOO L (
BIID3 H 47 - - 17 BI D01 L GND32 - - 02 BI PO L

GND 48 - - 18 BI12 L BIID2 H 33 - - 03 BI11 L

BIID1 H 49 - - 19 BIIO L GND34 - - 04 BI CNF2 L

+12 V 50 - - 20 BI CNF1 L BIIDO H 35 - - 05BI BSY L

BI BAD L 51 - - 21 BI D09 L BI STF L 36 - - 06 BI NOARB L

GND 52 - - 22 BI CNFO L -12 V 37 - - 07 BI13 L

08 - - 23 38 - - 53

BI RESET L 54 - - 24 39 - - 09 BI DCLO L

GND 55 - - 25 BI ECL VCC H BI ACLO L 40 - - 10 GND

GND 56 - - 26 BI TIME H BI TIME L 41 - - 11 GND

GND 57 - - 27 BI PHASE H BI PHASE L 42 - - 12 GND

GND13 - - 28GND GND43 - - 58GND

59 - - 29GND GND44 - - 14

60 - - 30 45 - - 15

MLO-426-85

Figure A-2: Module 1/0 Pins on Segment B Viewed from the (
Backplane

46 • • 16 GND 31 • • 01
47 • • 17 UART3 TX L 32 • • 02
48 • • 18 UART3 RCV RTN 33 • • 03
49 • • 19 UART3 RCV L 34 • • 04
50 • • 20 35 • • 05GND
51 • • 21 36 • • 06 UART1 TX L (
52 • • 22 37 • • 07 UART1 RCV RTN
53 • C • 23 GND 38 • C • 08 UART1 RCV L
54 • 1 • 24 UART2 TX L 39 • 2 • 09
55 • • 25 UART2 RCV RTN 40 • • 10
56 • • 26 UART2 RCV L 41 • • 11
57 • • 27 42 • • 12GND
58 • • 28 43 • • 13 UARTOTX L
59 • • 29 44 • • 14 UARTO RCV RTN
60 • • 30 EXT ENB APT 45 • • 15 UARTO RCV L E--

MLO-427-85

Figure A-3: Module 1/0 Pins on Connectors Cl and C2 Viewed from
the Backplane

l

A-2 KA820 Module I/O Pins and Cables

(RX INTRA L 46 • • 16 GND BDALO L 31 • • 01 GND
RX INTRB L 47 • • 17 GND BDAL1 L 32 • • 02GND

WATCHIP DS H 48 • • 18 GND BDAL2 L 33 • • 03GND
PNL RUN LED L 49 • • 19 GND BDAL3 L 34 • • 04GND

PNL ENB WT EEPROM H 50 • • 20GND BDAL4 L 35 • • 05GND
PNL RSTRT HLT H 51 • • 21 GND BDAL5 L 36 • • 06GND
PNL CNSL LOG H 52 • D • 22GND BDAL6 L 37 • D • 07GND
PNL CNSL ENB H 53 • • 23GND BDAL7 L 38 • 2 • 08GND

BUF CPU FAULT L 54 • • 24GND BAS L 39 • • 09GND
BI STF L 55 • • 25GND BDS L 40 • • 10 GND
BI BADL 56 • • 26GND BWRITE L 41 • • 11 GND
KA820 L 57 • • 27GND BRPLY L 42 • • 12 GND

RESERVED 58 • • 28GND BMDEN L 43 • • 13 GND
SPARE 3 59 • • 29GND BSDEN L 44 • • 14GND
SPARE 4 60 • • 30GND SSX L 45 • • 15 GND

(MLO-428-85

Figure A-4: Module 1/0 Pins on Connectors Dl and D2 Viewed
from the Backplane

46 • • 16 31 • • 01 BUF PME OUT H
47 • • 17 32 • • 02 (48 • • 18 33 • • 03
49 • • 19 34 • • 04
50 • • 20 35 • • 05
51 • • 21 36 • • 06
52 • E • 22 37 • E • 07
53 • • 23 38 • 2 • 08
54 • • 24 39 • • 09
55 • • 25 40 • • 10
56 • • 26 41 • • 11

~-, ' 57 • • 27 42 • • 12
59 • • 28 43 • • 13
58 • • 29 44 • • 14
59 • • 30 45 • • 15

MLO-429-85

Figure A-5: Module 1/0 Pins on Connectors El and E2 Viewed from
the Backplane

('--

KA820 Module I/O Pins and Cables A-3

Figure A-6 shows the backplane slots viewed from the bottom side of the
VAXBI module card cage.

A

B ..
C

D

E

/ "" 1 2

MLO·430A·85

(

(

Figure A-6: A Backplane Slot Shown from the Backplane Side of C
the Card Cage

A.2 Cables Related to the KA820

Two sets of cables run from the C and D connectors on slot KIJl of the VAXBI
card cage. See Appendix B for instructions on how to gain access to the cables.

Four cylindrical cables extend from the C2 connector at slot KIJl to four sep-
arate serial-line unit connectors on the 10CP CI/O connector panel) as shown E--
in Figure A-7. The 10CP connectors convert the serial lines from EIA RS423
to EIA RS232.

Two flat 30-wire ribbon cables extend from the D connectors at slot KIJl to
the JIPl and J2P2 connectors on the PCM module in the KK810 control
panel assembly, as shown in Figure A-7. These cables carry the PCI bus sig­
nals from the KA820 module to the watch chip on the PCM module and then
out to the optional RCX50 controller.

A-4 KA820 Module 110 Pins and Cables

(

(

(-

TOJ1&J2
PCM MODULE

TO I/O
PANEL

MLO-431-85

Figure A-7: Cabling for C and n Connectors

In a multiprocessor system, only the KA820 module in slot KIJl uses these
cables. The other KA820 modules do not require cables.

KA820 Module I/O Pins and Cables A-5

(

(

(i

E--

(

(

c

Appendix B
Module Installation and Access to Cables

B.1 Module Installation and Replacement

DIGITAL Field Service engineers install and repair the VAX 8200 system.
However, if you determine that a KA820 module in the system is faulty, you
can replace it as follows:

1. Turn off power to the VAX 8200 system by rotating the upper key switch
counterclockwise to the vertical position.

2. Switch the circuit breaker on the bottom panel at the rear of the main
unit to the off position.

3. Pull out the stabilizer bar at the bottom of the cabinet. See the VAX 8200
System Owner's Manual for illustrations.

4. Remove the back panel with an Allen wrench (5/32 inch).

5. Release the locking mechanism on the slide and push out the processor
drawer from the rear of the main unit.

6. Remove the 14 screws from the panel that covers the top of the drawer,
and remove the panel.

7. Attach a ground strap from your wrist to the system ground to avoid
damaging the module.

8. If the faulty KA820 module is the primary processor, lift the first black
handle on the right side of the module cage. This releases the module in
the first slot, K1J1.

If the faulty KA820 module is an attached processor, lift the black handle
for the corresponding VAXBI slot.

9. Remove the module in the exposed slot by lifting it clear.

10. Insert the new KA820 module in the same slot, with the component side
of the module to the right.

11. Close the black handle over the new KA820 module.

12. Replace the metal panel on the drawer, and insert and tighten the 14
screws that hold it.

B-1

13. Slide the processor drawer back into the cabinet.

14. Push the stabilizer bar back inside the cabinet.

B.2 Gaining Access to the Cables

You can gain access to the cables that supply the KA820 module in slot K1J1
as follows:

1. Turn off power to the VAX 8200 system by rotating the upper key switch
counterclockwise to the vertical position.

2. Switch the circuit breaker on the bottom panel at the rear of the main unit
to the off position.

3. Pull out the stabilizer bar at the bottom of the cabinet. See the VAX 8200
System Owner's Manual for illustrations.

4. Remove the back panel with an Allen wrench (5/32 inch).

5. Release the locking mechanism on the slide and push out the processor
drawer from the rear of the main unit.

6. Pull the latches on the drawer sides and raise the drawer to the vertical
position.

7. Remove the bottom panel of the processor drawer to expose the bottom of
the VAXBI module cage and the cables that supply the KA820 module in
slot K1J1.

8. When you are ready to close the main unit, replace the bottom panel,
lower the drawer to the horizontal position, and push it back inside the
main unit.

9. Push the stabilizer bar back inside the cabinet.

B-2 Module Installation and Access to Cables

(

(

(

(

(

(

(-

(

Appendix C
Drive Load Characteristics of Off-Board Signals

C.1 Serial-Line Unit Signals

The DART drivers and receivers for the KA820 serial-line units provide EIA
RS423 electrical characteristics. These signals are converted to the RS232
standard by connectors on the back panel. Table C-l shows the electrical
characteristics of the output signals.

Table C-l: Serial-Line Unit Output Signal Characteristics

Output
Characteristics

Voltage low

Voltage high

Minimum

-5.0

5.0

Maximum

-6.0

6.0

Units

Volts

Volts

C.2 PCI Bus Off-Board Signals

Eighteen PCI signals are buffered and run offthe KA820 module to the watch
chip and the RCX50 controller. The PCI signal names change as they leave
the module, to conform to the signal names used by the RCX50 controller. The
buffer circuits are low-power Schottky devices.

Table C-2lists the module I/O pin numbers and and names of the PCI signals.
Table C-3 lists the pin numbers and names of other signals that run off the
KA820 module. Tables C-4 through C-8 list the electrical characteristics of
these off-board signals.

C-l

Table C-2: PCI Bus Off-board Signals

Type of Signal
On-board Signal External at 110 Driver/ Module
Name Signal Name Connection Receiver 110 Pin

PCIDAL 7:0H BDAL 7:0H Tristate, 8307 D38:D31
bidirectional

PCIDASL BDSL Driver output LS244 D40

RXCSL SSXL Driver output LS244 D45

RXDALOL BMDENL Driver output LS244 D43

RXDALIL BSDENL Driver output LS244 D44

PCIREADH BWRITEL Driver output LS244 D41

PCIALE H BASL Driver output LS244 D39

RTCDSH WATCHIP DS H Driver output LS244 D48

BUF RX INTRA L RXINTRAL TTL input LS244 D46 (
BUF RX INTRB L RXINTRBL TTL input LS244 D47

PCIREADYL BRPLYL T'I'L input with 7417 D42
470 ohm pull-up

(

(

C-2 Drive Load Characteristics of Off-Board Signals

Table C-3: Other Off-board Signals

(
Type of Signal

On-board Signal External at I/O Driver/ Module
Name Signal Name Connection Receiver I/O Pin

PMEOUTH BUFPEM Driver output LS244 El
OUTH

BUFBISTFL BISTFL Driver output LS244 D55

ENBAPTL EXTENBAPT Driver output LS244 C45
L

CNSLLOGH PNLCNSL Driver output LS244 D52
LOGH

ENB WT EEPROM PNLENBWT Driver output LS244 D50
H EEPROMH

(
CNSLENBH PNLCNSL Driver output LS244 D53

ENBH

RSTRTHLTH PNLRSTRT Driver output LS244 D51
HLTH

RUNL PNLRUN OC driver, 7417 D49
LEDL 2000-ohrn

pull-up

BIBADH BIBADL OC driver, LS38 D56

(no pull-up

Table C-4: Driver Output Voltages

Output
Voltage Output Minimum Typical Maximum
Level Current Voltage Voltage Voltage Units

Voh loh = - 3rnA 2.4 3.4 Volts

E- Voh loh = -15 rnA 2.0 Volts

Vol 101 12 rnA 0.25 0.4 Volts

Vol 101 24 rnA 0.35 0.5 Volts

Table C-5: Driver Output Current

Output
Current Output Minimum Maximum
Level Voltage Current Current Units

Isc (short Vcc = 5.5 V -40 -225 rnA
circuit)

loh Vo =2.7V -15 rnA

(101 Vo = 0.4 V 24 rnA

Drive Load Characteristics of Off-Board Signals C-3

Table C-6: PCI DAL (7:0) Lines Bidirectional Voltage Levels

Output (Voltage Minimum Maximum
Level Output Current Voltage Voltage Units

Voh loh = - 5rnA 2.7 Volts

Voh loh = -10 rnA 2.4 Volts

Vol 101 20 rnA 0.4 Volts

Vol 101 48 rnA 0.5 Volts

Table C-7: PCI DAL (7:0) Lines Bidirectional Current Levels

Output Current Output Minimum Maximum
Level Voltage Current Current Units

Ise (short circuit) -25 -150 rnA (
lozh (tristate) Vo = 4.0V 200 rnA

lozl Vo = 0.4 V -200 rnA

Table C-8: PCI Bus Input Signal Voltage and Current Levels

Input Signal Levels Minimum Maximum Units

Vih 2.0 Volts (
Vil 0.8 Volts

Iih at Vi = 2.7 V 20.0 uA

Iil at Vil = 0.4 V -10.2 uA

E--

(

C-4 Drive Load Characteristics of Off-Board Signals

(

(

(

Appendix 0
Bile Registers

System software can program the BIlC registers on the KA820 module to con­
trol processor participation in transactions and to handle interrupts on the
VAXBI bus. Each BIlC register has a node space address (bb + offset, where
bb is the node base address) and a node private space address (2008 0000 +
offset). The BIlC does not support the lock function, so it treats IRCI and
UWMCI commands like RCI and WCI commands (see Tables 2-4 and 2-5 in
Chapter 2 for lists of VAXBI commands used by the KA820 module).

The register bit descriptions that follow use a code to define read, write, and
functional characteristics:

DCLOC Cleared following a successful self-test following the de assertion of
BIDC LOL.

DCLOL Loaded on the deassertion of BI DC LO L.

DCLOS Set following a successful self-test following the deassertion of BI
DCLOL.

DMW

DS

RO

Writeable in diagnostic mode.

Disable selection: when an enable bit of this type is cleared, the
BIlC suppresses the appropriate BCI SEL Land BCI SC 2:0 L as­
sertion and inhibits any KA820 module response to transactions
corresponding to the cleared enable bit.

Read-only.

RIW ReadlWrite.

SC Special case: the operation is defined in the detailed description.

WIC Write one to clear. You cannot set a WIC bit.

D.1 Device Register, DTYPE (R/W, DMW, DCLOL)

Processor initialization microcode loads this register; system software should
set bit 16 after loading secondary patches.

D-l

31

I
CPU REVISION I
CODE

MICROCODE PATCH
REVISION

2726

I

SECONDARY PATCH REVISION

DEVICE TYPE

171615 a

I I I

MLO-432-85

Figure D-l: Device Register (DTYPE)

Node private space address 20080000

N odespace address bb + 00

CPU Revision Code Loaded by processor initialization microcode.
Bits (31:27)

Microcode Patch Loaded by processor initialization microcode.
Revision
Bits (26:17)

Secondary Patch When bit (16) is set, secondary patches are
Revision not needed, or they are needed and have been
Bit (16) loaded. When bit (16) is clear, secondary

patches are needed but have not been loaded.
Processor initialization microcode writes this
bit according to data in location 2009 816C in
the EEPROM.

Code that loads secondary patches should set
bit (16) at the same time.

Device Type Loaded by processor initialization microcode.
Bits (15:0) The Device Type field identifies the VAXBI

node by type. The KA820 module should have
0105 (hex) in Device Type field.

0.2 VAXBI Control and Status Register, VAXBICSR

Processor initialization microcode writes this register to clear the Broke
bit following a successful self-test. System software should set the Hard and
Soft Error Interrupt Enable bits following initialization to enable error
interrupts.

D-2 BIle Registers

(

(

(

t

(

(

(

(

(

31 2423 16151413121110 9 8 7 654 3

I I I I I I I II 01 I I I I
VAXBI
INTERFACE
REVISION

BIIC TYPE

HES

SES

INIT

BROKE

STS

NRST

RESERVED TO DIGITAL.

UWP

HEIE

SEIE

ARB

NODE ID

MLO-433-85

Figure D-2: VAXBI Control and Status Register (VAXBICSR)

Node private space address: 20080004

Nodespace address: bb + 04

VAXBI Interface
Revision (RO)
Bits <31:24)

VAXBI Interface
Type (RO)
Bits <23:16)

HES(RO)
Bit (15)

SES(RO)
Bit (14)

INIT (W1C, DCLOS)
Bit (13)

This field identifies the revision level ofthe BIlC.

The type of VAXBI interface chip (BIlC) used on
this node. This field is read as 00000001 (binary) in
this implementation.

Hard Error Summary. When set! HES indicates
that one or more of the hard error bits (except TPF)
in the Bus Error Register are set.

Soft Error Summary. When set, SES indicates that
one or more of the soft error bits in the Bus Error
Register are set.

INIT Bit. INIT is not used by the KA820 module.

BIle Registers D-3

o

I

BROKE (WIC, DCLOS) Broke bit. Broke indicates that the KA820 module
Bit (12) has not successfully completed its self-test. Micro-

code clears Broke following successful completion (
of self-test.

STS (RIW; DCLOS) Self-Test Status bit. STS shows the result of the
Bit (11) BIlC internal self-test. This bit is set to 1 if self-test

passes, and it directly enables the BIlC VAXBI
driver circuits. Since this is a normal RIW bit, it
can be altered by a write command directed at this
register.

NRST(SC) Node Reset. Writing 1 to this bit forces the initia-
Bit (10) tion of the BIlC self-test, as well as assertion of

BCI DC LO L, which initiates self-test on the rest
ofthe KA820 module. Read commands return 0 for
NRST. The BIlC clears STS when it sets NRST, to
allow proper recording of the self-test results.

(UWP (WIC, DCLOC) Unlock Write Pending bit. UWP indicates that
Bit (15) this KA820 module has completed an IRCI trans-

action, but has not issued a subsequent UWMCI
transaction. If the KA820 module performs a
UWMCI transaction when the UWP bit is not set,
the ISE bit in the Bus Error Register will be set,
and the BIlC will complete the UWMCI transac-
tion in the normal manner.

HE IE (RIW, DCLOC) Hard Error Interrupt Enable bit. System software (
Bit (6) normally sets HEIE to enable an error interrupt

when HES is asserted.

SEIE (RIW, DCLOC) Soft Error Interrupt Enable bit. System software
Bit (6) normally sets SEIE to enable an error interrupt

when SES is asserted.

ARB (RIW, DCLOC) Arbitration Control bits. ARB determines the
Bits (5:4) mode of arbitration to be used by the KA820 mod- (

ule, as follows:

Table D-l: Arbitration Control Codes

Bit 5 Bit 4 Arbitration Scheme

0 0 Dual round-robin arbitration

0 1 Fixed-high priority (reserved)

1 0 Fixed-low priority (reserved)

1 1 Disable arbitration (reserved)

System software normally writes Os in these bits.

(

D-4 BIle Registers

(

(

(

(

NODEID
(RO, DMW, DCLOL)
Bits (3:0)

Node Identification field. The BIIC loads the Node
ID field from the BCI I (3:0) H lines during the
last cycle in which BCI DC LO L is asserted. Node
ID reflects the encoded node ID plug that is
plugged into the VAXBI backplane at the slot used
by this KA820 module.

Node 2 is the normal node ID assigned to the
VAX 8200 priniary processor, according to DIGI­
TAL convention.

0.3 Bus Error Register, BER (W1C, DClOC)

31 30292827262524232221 20191817 1615 43210

10 1 I I I I I I I I I I I I I I I
0

I I I I I

NMR I
MTCE

CTE

MPE

ISE

TDF

IVE

CPE

SPE

RDS

RTO

STO

BTO

NEX

ICE

I NPE

CRD

IPE

UPEN

RESERVED TO DIGITAL

MLO-434-85

Figure D-3: Bus Error Register (BER)

When the BIIC detects an error, it sets the appropriate Bus Error Register
(BER) bit and generates an interrupt, if enabled. Software can read this regis­
ter to determine the cause of the error when it services a VAXBI error inter­
rupt. System software should set the Hard and Soft Error Interrupt Enable
bits of each VAXBI node in the system by setting bits (6) and (7) in the VAX­
BICSR of each node.

Bile Registers D-5

System software must clear the error bits in the BER after reading the
register. After clearing the appropriate bit, software should reread the BER (
to determine whether another bit has been set in the meantime. Alterna-
tively, it can read the Hard and Soft Error Summary bits in the appropriate
VAXBICSR to determine if another error bit has been set. Bits (31:16) indi-
cate hard errors; bits (2:0) indicate soft errors.

During initialization, system software can clear all error bits by writing
3FFF 0007 (hex) to the BER of each VAXBl node.

Node private space address: 20080008

Nodespace address: bb + 08

0.3.1 Bus Error Register Hard Error Bits

NMR (WIC, DCLOC)
Bit (30)

MTCE (WIC, DCLOC)
Bit (29)

CTE (WIC, DCLOC)
Bit (28)

NO ACK to Multi-Responder Command Received.
NMR is set if the KA820 module receives a NO
ACK command confirmation for an INVAL, INTR,
IPINTR, STOp, BDCST, or RESERVED command.

Master Transmit Check Error. During the cycles of
a transaction in which the KA820 module is the
only source of data on the VAXBI D, I and P lines,
the BIlC verifies that the transmitted data
matches the data received from the VAXBI bus. If
there is no match, the BIlC sets MTCE. The BIlC
does not perform this check on the assertion of the
encoded ID on the I lines during the embedded
ARB cycle.

Control Transmit Error. The BIlC sets CTE when
there is an assertion of the NO ARB, BSY, or the
CNF (2:0) control lines, and the BIlC detects the
de asserted state. Note that the assertion ofBl NO

(

(

ARB L during a burst mode transaction is not (
checked.

MPE (WIC, DCLOC)
Bit (27)

ISE (WIC, DCLOC)
Bit (26)

TDF (WIC, DCLOC)
Bit (25)

D-6 BlIC Registers

Master Parity Error. The BIIC sets MPE during a
master transaction if it detects a parity error on
the bus during a data cycle of a transaction that
has an ACK confirmation on the CNF (2:0) lines.

Interlock Sequence Error. The BIlC sets ISE if the
KA820 module successfully completes a UWMCI
transaction when the Unlock Write Pending
(UWP) bit in the VAXBICSR is not set.

Transmitter During Fault. The BIlC sets TDF if
the BIlC is driving the BI D and I lines (only the I
lines during the embedded ARB cycle) during a cy­
cle with a parity error.

(

(

(

E--

IVE (W1C, DCLOC)
Bit (24)

CPE (W1C, DCLOC)
Bit (23)

SPE (W1C, DCLOC)
Bit (22)

RDS (W1C, DCLOC)
Bit (21)

RTO (W1C, DCLOC)
Bit (20)

STO (W1C, DCLOC)
Bit (19)

BTO (W1C, DCLOC)
Bit (18)

NEX (W1C, DCLOC)
Bit (17)

The BIlC also sets TDF during slave transactions
if it detects a parity error on read data that it
transmits. Software that reads this register should
interpret a set TDF without a set MPE, CPE, or
IPE as an indication that the BIlC has detected a
parity error on its own transmitted read data.

TDF is not set for parity errors that occur during
loopback transactions.

IDENT Vector Error. The BIlC sets IVE if it re­
ceives anything but an ACK confirmation from a
master issuing IDE NT after the KA820 module
has sent out an interrupt vector. This can occur
only when the KA820 module is used as an I/O con·
troller and generates an interrupt.

Command Parity Error. The BIlC sets CPE when
it detects a parity error during a command/address
cycle. The error can occur during a VAXBI transac­
tion or a loopback transaction.

Slave Parity Error. The BIlC sets SPE when it de­
tects a parity error during a data cycle of a write
transaction directed at the RXCD Register or any
of the BIlG registers on the KA820 module.

Read Data Substitute. The BnC sets RDS if it re­
ceives a Read Data Substitute or RESERVED sta­
tus code during a read-type or IDE NT (for vector
status) transaction. The BIlC logic also requires a
successful parity check for the data cycle that con­
tains the RDS code, before it sets RDS. RDS gets
set even if the transaction is aborted some time af­
ter the receipt of the RDS or RESERVED code.

RETRY Timeout. The BIlC sets RTO if the KA820
module receives 4096 consecutive RETRY re­
sponses from the slave for the same transaction.

STALL Timeout. Not used on the KA820 module.

Bus Timeout. The BIlC sets BTO if it is unable to
start any pending transaction (there may be sev­
eral that are pending) before 4096 cycles have
elapsed.

Nonexistent Address. The BIlC sets NEX when it
receives a NO ACK response for a read-type or
write-type command sent by the KA820 module.
Note that this bit is set only if the master transmit
check of the command/address cycle is successful.

BIle Registers D-7

ICE (WIC, DCLOC)
Bit (16)

The BIIC does not set NEX for NO ACK responses
to other commands.

Illegal Confirmation Error. The BIIC sets ICE
when it receives a reserved or illegal CNF (2:0)
code during a transaction. This bit can be set dur­
ing either master or slave transactions. Note that
NO ACK is not considered an illegal response for
command confirmation.

0.3.2 Bus Error Register Parity Mode

UPEN(RO)
Bit (3)

User Parity Enabled. UPEN indicates the parity
mode (source of parity generation). When UPEN is
0, the BIIC is generating parity. When UPEN is 1,
the port controller is generating parity. UPEN is
normally O.

0.3.3 Bus Error Register Soft Error Bits

IPE (WIC, DCLOC)
Bit (2)

CRD (WIC, DCLOC)
Bit (1)

NPE (WIC, DCLOC)
Bit (0)

ID Parity Error. The BIIC sets IPE when it detects
a parity error on the encoded ID asserted when the
KA820 module is the VAXBI master, during an
embedded arbitration cycle. This error condition
also sets the TDF bit, except during loopback
transactions.

Corrected Read Data. The BIIC has received a cor­
rected read data status code during a read transac­
tion. The BIIC sets CRD even if the transaction is
aborted after the BIIC receives the CRD status
code.

Null Bus Parity Error. The BIIC has detected odd
parity on the VAXBI bus in the second cycle of a
two-cycle sequence during which BI NO ARB L
and BI BSY L were not asserted.

0.4 Error Interrupt Control Register, EINTRCSR

When the BIIC on the KA820 module detects an error on the VAXBI bus, it
normally interrupts the processor. System software can use the Error Inter­
rupt Control Register to control this function.

Node private space address: 2008 OOOC

N odespace address: bb + OC

System software should load the Error Interrupt Control Register to control
interrupts from the BIIC following detection of a VAXBI error or the setting
of the INTR FORCE bit in this register. The BIIC interrupts the KA820 CPU,

D-8 BIle Registers

(

(

(

E---

(

(

(

(-----

I
RESERVED
TO DIGITAL

INTRAB

INTRC

if the INTR FORCE bit or any of the Bus Error Register bits is set, and the
error interrupt enable bits in the VAXBI Control and Status Register are set.

31 25242322212019 16151413 2 1 0

0
II 10 1 I I I 0 I I 0 I

RESERVED TO DIGITAL

INTR SENT

INTR FORCE

LEVEL

RESERVED TO DIGITAL

VECTOR

RESERVED TO DIGITAL

MLO·435-85

Figure D-4: Error Interrupt Control Register

INTRAB
(WIC, DCLOC, SC)
Bit (24)

INTRC
(WIC, DCLOC, SC)
Bit (23)

INTRSENT
(WIC, DCLOC, SC)
Bit (21)

Interrupt Abort. The BIlC sets this status bit if an
INTR command sent under the control of this reg­
ister is aborted (a NO ACK or illegal confirmation
code is received). System software should reset IN­
TRAB after reading it. INTRAB has no effect on
the ability of the BIlC to send or respond to further
INTR or IDENT transactions.

Interrupt Complete. The BIlC sets INTRC when
the BIlC has successfully transmitted the vector
for an error interrupt or when an INTR command
sent under the control of this register has been
aborted. Removal of the error interrupt request
automatically clears this bit. When set, INTRC in­
hibits the generation of new error interrupts by
the BIlC.

Interrupt Sent. The BIlC sets INTR SENT when it
has sent an INTR command and it expects an
IDENT command to follow. The BIlC clears INTR
SENT during an IDENT command following the
detection of a level and master ID match. This al­
lows the KA820 module to resend the interrupt re-

Bile Registers D-9

quest if it loses the interrupt arbitration or if it
wins but the vector transmission fails. If the
KA820 module deasserts the error interrupt re- (
quest, the BIIC clears the INTR SENT bit.

INTRFORCE
(RIW, DCLOC)
Bit (20)

LEVEL (7:4)
(RIW, DCLOC)
Bits (19:16)

Force Interrupt. System software can set INTR
FORCE to force an error interrupt request when
no error has been detected.

Level (7:4). System software can set the Level
field to define the level at which the BIIC trans­
mits interrupt commands.

The Level field also helps determine whether this
control register will respond to IDENT commands.
If any level bits of a received IDENT cpmmand
match the Level field in this register and there is a
match in the destination mask, the BIIC will arbi-
trate for the IDENT. This lets you program the (
BIIC to respond to IDENT commands that match .

VECTOR
(RIW, DCLOC)
Bits (13:2)

the level exactly, or to IDENT commands that
match the level on a greater-than-or-equal-to
basis.

The BIIC does not transmit an error interrupt re­
quest if none of the Level bits is set.

Vector. The BIIC uses the vector in this field dur­
ing error interrupt sequences. It transmits the vec­
tor when this node wins an IDENT arbitration
cycle on an IDENT transaction that matches the
conditions in the Error Interrupt Control Register.
The KA820 module uses the Vector field only when
it functions as an 110 controller.

0.5 BCI Control and Status Register, BCICSR

Processor initialization microcode loads the BCI Control and Status Register,
and software should leave it unchanged.

Node private space address: 2008 0028

Nodespace address: bb + 28

BURSTEN
(RIW, DCLOC, NA)
Bit (17)

D-IO BIle Registers

. Burst Enable. When BURSTEN is set, the BIIC as­
serts BI NO ARB L continuously after the next
successful arbitration, until the BURSTEN bit is
reset _or the BCI MAB L signal is asserted. The as­
sertion of BCI MAB L does not reset the BUR­
STEN bit. It merely clears the burst mode state in
the BIIC that is holding BI NO ARB L. Unless a
subsequent transaction clears this bit, the next

(

0--

(

(

(

(-

(

31

I 0

RESERVED
TO DIGITAL

BURSTEN

IPINTR STOP FORCE

MSEN

BDCSTEN

STOPEN

RESEN

IDENTEN

INVALEN

WINVALEN

UCSREN

BICSREN

INTREN

IPINTREN

PNXTEN

RTOEVEN

RESERVED TO DIGITAL

successful arbitration causes the BIIC to again as­
sert BI NO ARB L continuously. Note that loop­
back transactions must not use the burst mode.

181716151413121110987 654 3 2 o

I I II I I II I I I 1.1 I I I
0 I

MLO-436-85

Figure D-5: Bel Control and Status Register

IPINTR/STOP FORCE
(RIW, DCLOC, SC, NA)
Bit (16)

IP Interrupt/Stop Force. When IPINTR/STOP
FORCE is set, it forces the BIIC to arbitrate for the
bus and transmit an IPINTR command or STOP
command, using the IPINTR Destination Register
for the destination field. The BIlC clears the
IPINTR/STOP FORCE bit when it transmits the
IPINTR command, regardless of whether the
transaction is completed successfully. Software
can monitor the EV (4:0) lines to determine
whether the transaction is completed normally.

BIle Registers D-ll

MSEN Multicast Space Enable. When MSEN is set,
(RIW, DCLOC, DS) the BIIC asserts BCI SEL L and the appropriate (Bit (15) BCI SC (2:0) code following receipt of a read-type

or write-type command directed at broadcast
space. This bit is normally left cleared, so the
KA820 module does not respond to multicast space
commands.

BDCSTEN BDCST Enable. When BDCSTEN is set, the BIIC
(RIW, DCLOC, DS) asserts BCI SEL L and the appropriate BCI SC
Bit (14) (2:0) code following receipt of a BDCST command.

This bit is normally left cleared, so the KA820
module does not respond to BDCST commands.

STOPEN STOP Enable. The KA820 module does not re-
(RIW, DCLOC, DS) spond to the STOP command; this bit should re-
Bit (13) main cleared.

RESEN RESERVED Enable. When RESEN is set, the (
(RIW, DCLOC, SC) BIIC asserts BCI SEL L and the appropriate BCI
Bit (12) SC (2:0) code following receipt of a RESERVED

command code. RESEN is normally clear.

IDENTEN IDENT Enable. When IDENTEN is set, the BIIC
(RIW, DCLOC, SC) asserts BCI SEL L and the appropriate BCI SC
Bit (11) (2:0) code following receipt of an IDENT com-

mand. This bit affects only the output of SEL and
(the IDENT SC code. Therefore, the BIIC always

participates in IDENT transactions that select
this node, even if IDENTEN is cleared.

INVALEN INVAL Enable. When INVALEN is set, the BIIC
(RIW, DCLOC, DS) asserts BCI SEL L and the appropriate BCI SC
Bit (10) (2:0) code following receipt of an INVAL com-

mand. Processor initialization microcode sets IN-
VALEN to enable the port controller to forward t---VAXBI invalidate transactions to the cache tag ar-
rayon the M chip.

WINVALEN Write Invalidate Enable. When WINVALEN is
(RIW, DCLOC, SC) set, the BIIC asserts BCI SEL L and the appropri-
Bit (9) ate BCI SC (2:0) code following receipt of a write-

type command for which the address is not in I/O
space. Processor initialization microcode sets
WINVALEN to enable the BIIC to forward VAXBI
write addresses to the port controller, so it, in turn,
can send invalidate requests to the cache tag array
in the M chip.

UCSREN User CSR Space Enable. When set, this bit causes
(RIW, DCLOC, DS) the BIIC to assert BCI SEL L and the appropriate
Bit (8) BCI SC (2:0) code following receipt of a read-type (

"

D-12 BIle Registers

(

(

(

(-----

(

BICSREN
(RIW, DCLOC, SC)
Bit (7)

INTREN
(RIW, DCLOC, DS)
Bit (6)

IPINTREN
(RIW, DCLOC, SC)
Bit (5)

PNXTEN
(RIW, DCLOC, NA)
Bit (4)

or write-type command directed at the RXCD Reg­
ister on the KA820 module. Processor initializa­
tion microcode sets UCSREN to enable VAXBI
access to the RXCD Register.

BIIC CSR Space Enable. When BICSREN is set,
the BIIC asserts BCI SEL L and the appropriate
BCI SC (2:0) code following receipt of a read-type
or write-type command to its BIIC CSR space (the
first 256 bytes of this node's node space). Processor
initialization microcode sets BICSREN to enable
VAXBI access to the BIIC CSR space on the KA820
module.

INTR Enable. When INTREN is set, the BIIC as­
serts BCI SEL L and the appropriate BCI SC (2:0)
code following receipt of an INTR command. Proc­
essor initialization microcode sets INTREN.

IPINTR Enable. When IPINTREN is set, the BIIC
asserts BCI SEL L and the appropriate BCI SC
(2:0) code following receipt of an IPINTR com­
mand that matches the IPINTR Mask Register.

However, IPINTREN enables only the IPINTR
SEL/SC code. The state of IPINTREN does not de­
termine whether the KA820 module receives IP­
INTR commands. Software should clear the
IPINTR Mask Register to disable receipt of IP­
INTR commands. Processor initialization micro­
code sets IPINTREN.

Pipeline NXT Enable. When PNXTEN is set, the
BIIC asserts BCI NXT L for an extra cycle (one
more than the number of longwords transferred)
during write-type transactions. This extra BCI
NXT L cycle occurs after the last NXT L cycle for
write data, and is used to increment the write-silo
address counter to the address of the command!
address data for the next transaction. Processor
initialization microcode sets PNXTEN when it
sets the pipeline enable bit in the port controller
CSR, to enable the pipeline mode for memory
write transactions, increasing the efficiency of the
processor.

NOTE

If ENBL PIPE (PCntl CSR bit (13» is set, PNX­
TEN must be set as well. If ENBL PIPE is clear,
PNXTEN must be clear.

BIle Registers D-13

RTOEVEN
(RIW, DCLOC, NA)
Bit (3)

When RTOEVEN is set, the BIlC asserts the RE­
TRY Timeout (RTO) Event code instead of the RE­
TRY CNF Received for Master Port Command
(RCR) Event code following the occurrence of a RE­
TRY timeout. If RTOEVEN is cleared, the BIlC
will not assert the RTO EV code in place of the
RCR EV code following a retry timeout. However,
the RTO bit in the BER will be set, and the BIlC
will generate an error interrupt if error interrupts
are enabled. Processor initialization microcode
sets RTOEVEN.

0.6 Receive Console Data Register, RXCD

The KA820 module receives data from other processors in the RXCD Regis­
ter, one byte at a time. This register is implemented in the port controller, not
in the BIlC.

31

I a
RESERVED I TO DIGITAL

BUSY

RESERVED TO DIGITAL

SENDER NODE ID

DATA

N ode private space
address:

Nodespace address:

BUSY
Bit (15)

SENDER NODE ID
Bit (11:8)

DATA
Bits (7:0)

D-14 BIle Registers

161514 1211

I I a I

Figure D-6: RXCD Register

20080200

bb + 200

8 7 a

I I

MLO-437-85

Busy bit. The receiving (local) KA820 module
changes BUSY from 1 to 0 after reading the RXCD
Register. The sending processor changes BUSY
from 0 to 1 when it writes data in the RXCD
Register.

Identifies the sender's node number.

Data received. In communications between the
consoles of two processors, the data is an ASCII
character.

(

(

(

(

(

(

(

E--

0.6.1 MFPR Instruction for the RXeD Register

Software can read the RXCD Register on the local KA820 module with an
MFPR instruction.

If the BUSY bit is cleared, no character has been received. The MFPR
instruction signals this condition by setting the V bit in the PSL.

If the BUSY bit is set, a character has been received. The MFPR instruction
reads the Data and Sender Node ID fields and clears the BUSY bit to indicate
that the RXCD Register is free to rec,:eive another character. The MFPR
instruction signals this condition by clearing the V bit in the PSL.

0.6.2 MTPR Instru~tion for the RXeD Register

Software can write the RXCD Register on a remote processor on the VAXBI
bus with an MTPR instruction.

If the BUSY bit is set, no data is transferred. The MTPR instruction signals
this condition by setting the V bit in the PSL. .

If the Busy bit is cleared, the MTPR writes the Data and Sender Node ID
fields in the remote RXCD Register and sets the BUSY bit to indicate that
new data is in the register. The MTPR instruction signals this condition by
clearing the V bit in the PSL.

BIle Registers D-15

(

(

(

(!

(

(

(

E--_ ..

(

Appendix E
Port Controller Control and Status Register

The port controller CSR performs three functions that are central to opera­
tion of the KA820 module:

1. Provides a read-only interface between the module and the control panel
that lets software and microcode examine switch positions and off-module
signals.

2. Enables software control of some module functions.

3. Stores module and VAXBI bus status information.

This register is accessible in the node private address space at address
20088000. No other node on the VAXBI bus can read or write it.

When a VAXBI error occurs, machine-check microcode copies bits (22:16, 14)
to the MTEMPC Register in the M chip and to the status word on the stack at
SP + 18, where they are available to exception handler software (see Section
5.2 and Table 5-3 in Chapter 5).

RSTRTHLT
Bit (31)

CNSLLOG
Bit (30)

(RO)
Auto Start/Halt Power-up Option Bit

1 = Halt
o = Auto Start
Related signal name:
Module I/O pin:

PNL RSTRT HLT H
D51

RSTRT HLT shows the position of the lower key
switch on the control panel. Microcode checks the
status of this bit to determine whether to restart
(warm or cold) or go to console mode at power-up and
following an error halt condition.

RSTRT HLT is 1 on all KA820 attached processors,
since the signal from the control panel switch runs
only to the primary processor.

(RO)
PhysicallLogical Console Selection Bit

1 = Logical
0= Physical
Related signal name:
Module I/O pin:

PNL CNSL LOG H
D52

E-l

31302928272625242322212019181716151413121110987 654 3210

II II II II I It I II I I I 1111111111111111
RSTRT HLT I I CRDINTR

CNSL LOG CLR CRD INTR

CNSL ENB CRD INT ENBL

BI RESET IP INTR

BISTF CLRIPINTR

ENB APT RXIRQ

SELF·TEST PASS CLR RX IRQ

RUN

WWPE

EVENT LOCK

WRITE MEM

EVNT4

EVNT 3

EVNT2

EVNT 1

EVNTO

RXIE

CNSL INTR

CLR CNSL !NTR

CNSL INTR ENBL

RESERVED TO DIGITAL

TIMEOUT

ENB PIPE

PARITY ERR H

WWPO

MLO-438-85

Figure E-l: Port Controller Control and Status Register

CNSLENB
Bit (29)

BIRESET
Bit (28)

Microcode reads this bit to determine the console
source. The physical console is serial-line unit 0,
which is normally attached to a terminal. The logical
console is another processor on the VAXBI bus.

(RO)
Console SecurelEnabled Selection Bit

I = Console Enabled ° = Console Secure
Related signal name:
Module I/O pin:

PNL CNSL ENB H
D53

CNSL ENB shows the position of the upper key
switch on the control panel. Microcode checks this
bit when the console sends CTRLlp, to determine
whether console functions are enabled.

CNSt ENB is Ion all KA820 attached processors,
since the signal from the upper key switch on the con­
trol panel runs only to the primary processor.

(RIW)
System Reset Control Bit

E-2 Port Controller Control and Status Register

c

(

(

E---

(

(

(

(

BISTF
Bit (27)

ENBAPT
Bit (26)

SELF-TEST PASS
Bit (25)

Related signal name:
Module I/O pin:

BI RESET L
D54

Software can-completely reset the VAX 8200 system,
iiiciuding VAXBI memory, by setting BI RESErt.
Setting this bIt simulates a power-up sequence by cy­
cHng the BI At LO Land Bt DO LO L signals. Writ­
ing 0 clears the bit, but this has no useful effect,
because whenever it is set, the resulting BI DC LO L
signal clears it.

(RO)
Self-Test Fast/Slow Selection Bit

1 == Slow Self-Test
o = Fast Self-Test
Related signal name:
Module I/O pin:

BISTFL
D55

Microcode reads this bit to determine whether to run
the slow self-test or the fast self-test.

(RO)
APT Connection Status Bit

1 = APT line not connected
o = APT line connected
Related signal name: EXT ENB APTL

C45 Module I/O pin:

Software can read this bit to determine whether an
APT line is connected to serial-line unit o. APT (Au­
tomated Product Test) is a testing system used by
DIGITAL manufacturing.

(ReadlWrite by microcode)
Self-Test Status Bit

1 = Successful self4est
o = Failed self-test

Self-test microcode writes 1 to this bit at the end of a
successful self-test, either at power-up or from the
console T (Test) command. The BI DC LO L signal
clears the Self-Test Status bit at power-up.

When the Self-Test Status bit is cleared, the KA820
module asserts the BI BAD L signal on module I/O
pin D51 and it turns off the two yellow self-test·
passed LEDs on the module.

When the Self-Test Status bit is set, the KA820 mod­
ule deasserts BI BAD L and turns on the two yellow
self-test-passed LEDs on the module.

Port Controller Control and Status Register . E-3

RUN
Bit (24)

WWPE
Bit (23)

EVENT LOCK
Bit (22)

(RIW)
Program Mode Run Bit

Related signal name:
Module I/O pin:

PNL RUN LED L
D49

Microcode sets this bit to indicate that it is in the pro­
gram I/O mode; microcode clears the bit when chang­
ing to console mode.

The console microcode toggles this bit each time it
recognizes a (BREAK) character on serial-line unit
o. This is an aid in troubleshooting a dead console ter­
minal. When RUN L toggles, the Run light on the
control panel flashes on and off to indicate that the
CPU recognizes the characters typed on the console
terminal. If the control-panel Run light flashes and

(

the terminal is dead, it indicates that the problem is C·
in the output path to the console terminal or in the
terminal itself.

(RIW)
Write Wrong Parity, Even Bytes.

1 = Force wrong parity generation and disable
parity checking of even data bytes on the
DAL bus

o = Normal parity generation and parity checking C
of the even bytes on the DAL bus

Self-test microcode and diagnostic software can set
WWPE to force wrong parity on the even bytes of the
DAL bus to, in turn, force wrong parity on either the
cache or BTB parity RAMs on write operations. This
function also prevents the port controller from de­
tecting a cache or BTB parity error on even bytes.

Microcode and diagnostic software can clear WWPE (
to resume normal parity operation and checking of
even bytes ofthe cache and BTB parity RAMs. Note
that bit (15) performs an equivalent function for
odd bytes.

(ReadlWrite 1 to Clear)
Event Code Error Bit

1 = Event code is locked
o = Event code is unlocked

The port controller sets this bit when it detects an er­
ror condition on the Event lines from the BIlC. Once
Event Lock is set, bits (21:16) are latched and no

. longer reflect the state of the BIlC Event lines.
(

E-4 Port Controller Control and Status Register

(

(

(

(--

(

WRITE MEMORY
Bit (21)

EVENT4-0
Bits (20:16)

Software can clear the bit and unlock the latched bits
(21:16) by writing 1 to Event Lock. Writing 0 to
Event Lock has no effect.

(RO)
Memory Write Transaction Status Bit

1 = Error in Write Operation
0= Error in Nonwrite Operation

The port controller sets this bit during memory write
transactions, two cycles after the BIlC asserts RAK
(Request Acknowledge). Write Memory remains set
as long as memory write transactions continue. Any
other type of VAXBI transaction clears the bit. If the
BIlC signals the occurrence of a VAXBI error condi­
tion, the port controller latches Write Memory with
the event code bits when it sets Event Lock.

Write Memory lets software determine when an er­
ror is associated with a pipe lined VAXBI memory
write transaction, since errors may go undetected
until the port controller begins a subsequent
transaction.

(RO)
VAXBI Transaction Event Code Bits.

The port controller checks these bits for error codes.
If it finds an error code, it latches bits (20:16) and
Write Memory, sets Event Lock, and invokes ma­
chine check microcode.

Event codes (hex) latched by the port controller:

3 Bus Timeout (BTO)

18 Read Data Substitute or RESERVED
Status Code Received (RDSR)

19 Illegal CNF Received for Master Port
Command GCRMC) Command

lA NO ACK CNF Received for Master Port
Command (NCRMC)

lC Illegal CNF Received by Master Port for
Data Cycle GCRMD)

ID Retry Timeout (RTO)

IE Bad Parity Received During Master Port
Transaction (BPM)

IF Master Transmit Check Error (MTCE)

Port Controller Control and Status Register E-5

WWPO
Bit (15)

PARITY ERROR
Bit (14)

ENBLPIPE
Bit (13)

After the machine-check exception handler deals
with the error, it should write 1 to PCnt! CSR bit
(22) to clear Event Lock and release the latch on bits
(20:16) and Write Memory. SeeTable5~4inChapter
5 for a full list of the event codes.

(RfW)
Write Wrong Parity, Odd Bytes.

1 ~ Force wrong parity generation and disable par­
ity checking of the odd bytes on the DAL bus

o = Normal parity generation and parity checking
of the odd bytes on the DAL bus

Self-test microcode and diagnostic software can set
WWPO to force wrong parity on the odd bytes of the
DAL bus to, in turn, force wrong parity on either the
cache or BTB parity RAMs on write operations. This
function also prevents the port controller from de­
tecting a cache or BTB parity error on odd bytes.

Microcode and diagnostic software can clear WWPO
to resume normal parity operation and checking of
odd bytes on the cache and BTB parity RAMs. Note
that PCntl CSR bit (23) performs an equivalent
function for even bytes.

(ReadlWrite 1 to clear)
Parity Error Status Bit

1 = Parity error detected by the port controller
0= No parity error detected

Cleared by BI DC LO L

The port controller sets this bit when it detects a par­
ity errOr on data read from the cache RAMs or BTB

(

(

(

RAMs. The port controller asserts the PCNTL ER- L
ROR L signal at the same time to notify the M chip of ~--
the error.

(RfW)
Enable VAXBI Pipeline Mode Control Bit

1 = Enable pipeline mode
o = Disable pipeline mode

Cleared by BI DC LO L

Pipeline mode lets the port controller post the next
VAXBI transaction to the BIIC without waiting until
the current transaction is completed and confirma­
tion is received.

l
E-6 Port Controller Control and Status Register

(

(

(

TIMEOUT
Bit (12)

Reserved to
DIGITAL
Bit (11)

CNSL INTR ENBL
Bit (10)

CLEARCNSL
INTR
Bit (9)

However, to aid error recovery, the port controller
disables pipelining during write transactions to I/O
space, regardless of the state of this bit. This lets
microcode make sure that the transaction is com­
pleted, or an error is detected, before it starts the
next transaction.

NOTE

IfENBL PIPE is set, PNXTEN (BCI Control Register
bit (4») must be set as well. If ENBL PIPE is clear,
PNXTEN must be clear.

(ReadiWrite 1 to Clear)
Port Controller Timeout Bit

1 = Port controller timeout error
o = No port controller timeout error

Cleared by BI DC LO L

The port controller starts a timer when it receives a
command from the CPU to perform a VAXBI transac­
tion. If the transaction has not been completed 12~8
milliseconds later, the port controller sets this bit
and asserts the PCNTL ERROR L signal to notify the
M chip of the error.

(RfW)
RXCD Logical Console Interrupt Enable Control Bit

1 = Enable interrupts from the RXCD Register
o = Disable interrupts from the RXCD Register

Cleared by BI DC LO L

Processor initialization microcode sets this bit fol­
lowing self-test to enable interrupts from the RXCD
Register. With this bit set, an interrupt occurs when
the BUSY bit in the RXCD Register is set.

Software can disable RXCD Register interrupts by
writing 0 to this bit.

(Write Only)
Clear RXCD Console Interrupt Bit

Interrupt handling microcode writes 1 to this bit to
clear PCntl CSR bit (8), CNSL INTR.

Port Controller Control and Status Register E-7

CNSLINTR
Bit (8)

RXIE
Bit (7)

CLRRXIRQ
Bit (6)

RXffiQ
Bit (5)

(RO)
RXCD Console Interrupt Bit

1 = RXCD interrupt pending
o = No RXCD interrupt pending

The port controller sets this bit when the logical con-
sole is enabled and the RXCD BUSY bit changes
from 0 to 1, indicating that new data is in the
register.

(RIW)
RCX50 Interrupt Enable Bit

1 = RCX50 interrupt enabled
o = RCX50 interrupt disabled

Cleared by BI DC LO L

Software can enable or disable interrupts from the
RCX50 controller by setting or clearing this bit. You
must set RXIE before performing RX50 I/O
functions.

(Write Only)
Clear RCX50 Interrupt Request Bit

Interrupt handling microcode writes 1 to this bit to
clear the RCX50 interrupt request bit, PCntl CSR bit
(5), after reading it.

(RO)
RCX50 Interrupt Request Bit

1 = RCX50 interrupt request pending
0= NO RCX50 interrupt request pending

Cleared by BI DC LO L
Cleared by writing 1 to PCntl CSR bit (6)

The port controller sets RX ffiQ whenever it receives
RX INTRA or RX INTRB pulses from the RCX50
controller. RX INTRA signals the completion of each
operation, and RX INTRB signals a change in the
RX50 drive status.

The port controller ORs RX IRQ with IP lNTR and BI
INTR4 to produce BI INTR4 at IPL14. Therefore in­
terrupt handling microcode reads RX ffiQ, when it
responds to a BI INTR4 request, to determine if the
request is coming from the RCX50 controller. Micro­
code clears RX ffiQ after reading it, by writing 1 to
PCntl CSR bit (6).

E-8 Port Controller Control and Status Register

(

(

(

E--

(

(

(

(

CLEAR IP INTR
Bit (4)

IPINTR
Bit (3)

CRD INTR ENBL
Bit (2)

CLEAR CRD INTR
Bit (1)

CRDINTR
Bit (0)

(Write Only)
Clear Interprocessor Interrupt Request Bit

Interrupt handling microcode writes 1 to this bit to
clear the IP INTR bit, PCnt! CSR bit (3).

(RO)
Interprocessor Interrupt Request Bit

1 = Interprocessor interrupt request pending
o = No interprocessor interrupt request pending

Cleared by BI DC LO L
Cleared by writing 1 to PCnt! CSR bit (4)

The port controller sets this bit when it receives an IP
INTR request from the VAXBI bus. The port control­
ler ORs IP INTR with RX IRQ and BI INTR4 at IPL
14. Interrupt handling microcode clears IP INTR as
it handles interrupt requests, by writing 1 to PCnH
CSR bit (4).

(RIW)
Corrected Read Data Interrupt Enable Control Bit

1 = CRD interrupt enabled
o = CRD interrupt disabled

Cleared by BI DC LO L

The BIlC on the KA820 module generates a cor­
rected read data interrupt when a single-bit error oc­
curs in the VAXBI memory array and the memory
has corrected the data. Error logging software uses
this information to keep track of soft errors.

(Write Only)
Clear CRD Interrupt Bit

Interrupt handling microcode writes 1 to this bit to
clear the CRD INTR bit, PCnt! CSR bit (0).

(RO)
CRD Interrupt Bit

Cleared by writing 1 to PCnt! CSR bit (1).

The port controller sets CRD INTR when the BIlC in­
dicates that it has received corrected read data and
CRD INTR ENBL (PCnt! CSR bit (2» is set. Inter­
rupt handling microcode clears the bit by writing 1 to
PCntl CSR bit (1).

Port Controller Control and Status Register E-9

(

c

(

C--

Appendix F
Internal Processor Registers on the KA820 Module

You can use the console Ell command or macrocode MTPR and MFPR instruc-
tions to access these registers.

The following table lists the IPRs and their addresses.

(IPR
Address
(hex) Mnemonic Name

0 KSP Kernel Stack Pointer
1 ESP Executive Stack Pointer
2 SSP Supervisor Stack Pointer
3 USP User Stack Pointer
4 ISP Interrupt Stack Pointer
8 POBR PO Base Register

(9 POLR PO Length Register
A PIBR PI Base Register
B PILR PI Length Register
C SBR System Base Register
D SLR System Length Register

10 PCBB Process Control Block Base
11 SCBB System Control Block Base
12 IPLR Interrupt Priority Level Register
13 ASTLVL Asynchronous System Trap Level

(
14 SIRR Software Interrupt Request Register
15 SISR Software Interrupt Summary Register
16 IPIR Interprocessor Interrupt Register
18 ICCS Interval Clock Control Register
19 NICR Next Interval Count Register
lA ICR Interval Count Register
IB TO DR Time of Day Counter Register
20 RXCS Console Transmit Buffer
21 RXDB Console Receive Data Buffer
22 TXCS Console Transmit CSR
23 TXDB Console Transmit Data Buffer
24 TBDR Translation Buffer Disable Register
25 CA.DR Cache Disable Register
26 MCESR Machine Check Error Summary Register
28 ACCS Floating-Point Accelerator CSR
2C WCSA Writeable Control Store Address Register
2D WCSD Writeable Control Store Data Register

(2E WCSL Writeable Control Store Load Register
\

(Continued on next page)

F-l

READ

WRITE

IPR
Address
(hex) Mnemonic Name

38 MAPEN
39 TBIA
3A TBIS
3D PMR
3E SID
3F TBCHK
50 RXCS1
51 RXDB1
52 TXCS1
53 TXDB1
54 RXCS2
55 RXDB2
56 TXCS2
57 TXDB2
58 RXCS3
59 RXDB3
5A TXCS3
5B TXDB3
5C RXCD
5D CACHEX
5E BINID
5F BISTOP

Memory Management Enable Register
Translation Buffer Invalidate All Register
Translation Buffer Invalidate Single Register
Performance Monitor Enable Register
System Identification Register
Translation Buffer Check Register
Serial-Line Unit 1 Receive CSR
Serial-Line Unit 1 Receive Data Buffer
Serial-Line Unit 1 Transmit CSR
Serial-Line Unit 1 Transmit Data Buffer
Serial-Line Unit 2 Receive CSR
Serial-Line Unit 2 Receive Data Buffer
Serial-Line Unit 2 Transmit CSR
Serial-Line Unit 2 Transmit Data Buffer
Serial-Line Unit 3 Receive CSR
Serial-Line Unit 3 Receive Data Buffer
Serial-Line Unit 3 Transmit CSR
Serial-Line Unit 3 Transmit Data Buffer
Receive Console Data Register
Cache Invalidate Register
VAXBI Node ID Register
VAXBI Stop Register

As you examine the formats of these registers, keep the following three con­
ventions in mind:

o on read

o on write

x

Read as zero.

= Software must supply zeros.
Microcode does not force zeros or check for errors.
These bits are read back as written.

= Ignored on write.

Hex Dec. Name Format

00 O. KSP Kernel Stack Pointer

3130292827262524232221201918171615141312111098765 4 321 0

KSP

KSP

MLO-439-85

F -2 Internal Processor Registers on the KA820 Module

(

(

(

E---

Hex Dec. Name Format

(
01 1. ESP Executive Stack Pointer

3130292827262524232221201918171615141312111098765432 1 0

READ ESP

WRITE ESP

MLO-440-85

02 2. SSP Supervisor Stack Pointer

(
313029282726252423222120191817161514131211109876543210

READ SSP

WRITE SSP

M LO-441-85

(
03 3. USP User Stack Pointer

3130292827262524232221201918171615141312111098765432 1 0

READ USP

(WRITE USP

MLO-442-85

04 4. ISP Interrupt Stack Pointer

3130292827262524232221201918171615141312111098765432 10

READ ISP

WRITE ISP

MLO-443-85

(

Internal Processor Registers on the KA820 Module F-3

Hex Dec. Name Format

08 8. POBR PO Base Register

31302928272625242322212019181716151413121110987 6 P 4 3 2 1 0

READ ~ll __ 0~1~ ______________________ P_0_B_R ______________________ ~1_0~OI

WRITE 'LX __ X~I~ _______________________ PO_B_R ______________________ ~(_X~XI

READ

WRITE

READ

WRITE

09 9. POLR

MLO-444-85

POBR contains the virtual address of the begin­
ning of the PO page table.

PO Length Register

31 30.292827 262524232221 20 19 18 17 16 15 14 13 12 11 10 9 8 7 654 321 0

10 a a a

Ix x x x
I

OA 10.

01 t 10 . 01

ASTLVL

xl t Ix xl
ASTLVL

P1BR

POLR

POLR

MLO-445-85

POLR tells the size of the PO page table in
longwords. ASTLVL stands for asynchronous sys­
tem trap level.

PI Base Register

3130292827262524232221201918171615141312111098765432 1 0

P1BR

P1BR

MLO-446-B5

F -4 Internal Processor Registers on the KA820 Module

(

(

(

E--

(

(

(

c

READ

WRITE

Hex Dec. Name

OB 11. P1LR

Format

P1BR contains the virtual address of the page ta­
ble entry for the next unused page of PI space. Ini­
tially this address is 40000000.

Pi Length Register

31302928272625242322212019181716151413121110 9 8 7 654 321 0

10 00000 000

Ix x x x x x x x x

OC 12. SBR

01

xl

P1LR

P1LR

MLO-447·85

P1LR tells the number of nonexistent page table
entries in PI space.

System Base Register

313029282726252423222120191817161514131211109 876 5 4 3 2 1 0

READ 10 01 SBRPHYSICALADDRESS 10 oJ

WRlrE '~x __ x~I~ ______________ S_B_R_P_H_Y_S_I_CA __ L_A_D_D_R_E_S_S ________________ ~I_x~xl

READ

WRITE

on 13. SLR

MLO-448-85

SBR contains the physical base address of the sys­
tem page table.

System Length Register

3130292827262524232221201918171615141312111098765 4 3.2 1 0

10 o 0 0 0 0 0 0 0 01 SLR

Ix x x x x x x x x xl SLR

Internal Processor Registers on the KA820 Module F-5

READ

Hex Dec. Name

10 16. PCBB

Format

SLR tells the size of the system page table in
longwords.

Process Control Block Base

3130292827262524232221201918171615141312111098765432 1 0

PCBB PHYSICAL ADDRESS

WRITE Llo __ o~I~ _______________ P_C_B_B_P_H_Y_S_IC_A_L_A_D_D_R __ ES_S ________________ ~I~o~ol

READ

11 17. SCBB

MLO-450-85

PCBB contains the physical address of the process
control block.

System Control Block Base

3130292827262524232221201918171615141312111098765432 1 0

SCBB PHYSICAL ADDRESS

W RITE Llo_o~I~ ________ SC_B_B __ PH_Y_S_I_C_A_L_A_D_D_R_E_S_S _____ L.I 0_0.,..-0_0 __ 0 _0 __ 0 __ 0--,0 I

ML0-451-85

(

(

(

SCBB contains the physical address of the system (
control block (SCB). The SCB is a table of vectors
used to service exceptions and interrupts (see
Chapter 5).

F -6 Internal Processor Registers on the KA820 Module

(

(

(

READ

WRITE

READ

WRITE

READ

Hex Dec. Name Format

12 18. IPLR Interrupt Priority Level Register

31 30292827 262524232221 20 19 18 17 1615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10

Ix

13

o 0 o 0 01 IPL

x xl IPL

19.

MLO-452-85

Writing to IPLR with the MTPR instruction loads
the processor priority field of the PSL. PSL bits
(20:16) are loaded from IPLR bits (4:0). Reading
IPLR with the MFPR instruction reads the proces­
sor priority field of the PSL.

ASTLVL Asynchronous System Trap Level

3130292827262524232221201918171615141312111098765432 o

10

Ix

14

o 01
t

ASTLVL

x xl
t

20. SIRR

ASTLVL

ML0-453-85

ASTLVL tells the most privileged access mode
number for which an asynchronous system trap is
pending.

Software Interrupt Request Register

3130292827262524232221201918171615141312111098765432 1 0

ILLEGAL TO READ

WRITE Ix xl SIRR

MLO-454-85

Internal Processor Registers on the KA820 Module F-7

READ

WRITE

RI;AD

Hex Dec. Name

15 21. SISR

Format

Software can execute an MTPR instruction to
SIRR to request an int~rrupt at the level specified
in bits (3:0).

Software Interrupt Summary Register

31 30292827 262524232221 20 19 18 17 16 15 14 13 12 11 10 9 8 7 654 321 0

I
Ix

16

SISR

o 0 x x 0 x 0 0 0 0 0 x x x xl SISR I x I

22. IPm

MLO-455-85

When software reads SISR, bits(15:1) contain Is
in bit positions corresponding to levels at which
software interrupts are pending. In addition soft­
ware can post interrupts at several levels at once
by writing to SISR, setting any of the bits in the
field (15:1). Software should not set bits (31:16).

Interprocessor Interrupt Request Register

3130292827262524232221201918171615141312111098765432 1 0

ILLEGAL TO READ

WRITE 10 0 0 0 0 0 0 0 0 0 0 0 0 0001 IPI R DEST. MASK

MLO-456-85

To send an interprocessor interrupt (IPINTR), soft­
ware should write this register with the destina­
tion ID mask. Bit (0) of the mask corresponds to
VAXBI node 0, and bit (15) corresponds to VAXBI
node 15, and so on.

F-8 Internal Processor Registers on the KA820 Module

(

(

(

(

(

(

(-

(

Hex Dec. Name Format

18 24. ICCS Interval Clock Control Register

313029282726252423222120191817161514131211109 8 7 654 3 2 1 0

READ ItlO 0

ERR

WRITE ItlX x

ERR

ERR (Read, write-1-to-clear)
Bit (31) Error

OltllEloo 0 0 01 t I
INT RUN

XltlIEI;1 tlX x xl t I
INT SGL XFER RUN

MLO-457-85

Hardware sets ERR if INT is already set and the
Interval Count Register (ICR) overflows. ERR in­
dicates one or more missed clock ticks.

INT (Read, write-1-to-clear)
Bit (7) Interrupt
Hardware sets INT every time ICR overflows. IfIE
is set, then the overflow generates an interrupt.

IE (Read, write)
Bit (6) Interrupt Enable
When set, IE enables the hardware to interrupt
the processor every time ICR overflows.

SGL (Write only)
Bit (5) Signal
Each time this bit is set, it increments ICR by 1, if
RUN is set.

XFER (Write only)
Bit (4) Transfer
Each time this bit is set, the contents of NICR are
transferred to ICR.

RUN (Read/write)
Bit (0) Run
ICR increments every microsecond when RUN is
set. When RUN is clear, ICR does not increment
automatically.

Internal Processor Registers on the KA820 Module F-9

READ

WRITE

READ

WRITE

READ

WRITE

Hex Dec. Name Format

19 25. NICR Next Interval Count Register (Write only)

313029282726252423222120191817161514131211109876543210

ILLEGAL TO READ

1A 26. ICR

NICR

ML0-45B-85

NICR is a reload register that holds the value to be
loaded into ICR when ICR overflows.

Interval Count Register (Read/write)

3130292827262524232221201918171615141312111098765432 1 0

1B 27. TODR

ICR

ILLEGAL TO WRITE

MLO-459-85

Hardware increments this register every micro­
second if ICCS bit (0) (RUN) is set.

Time of Day Register

3130292827262524232221201918171615141312111098765432 1 0

TODR

TODR

MLO-460-85

TODR is a 32-bit binary counter driven by a preci­
sion clock source and incremented every 10 milli­
seconds. The counter cycles to zero after 497 days.

F-IO Internal Processor Registers on the KA820 Module

(

(

(

~--

(

READ

WRITE

(

(

(--_.
READ

WRITE

Hex Dec. Name Format

20 32. RXCS Console Receive Control and Status Register

31 30292827 262524232221 20 19 18 17 16 15 14 13 12 11 10 9 8 7 654 3 2 1 0

10

Ix

21

o 0 0 0 0 0 0 0 0 0 000 0 0 0 0 000 0 0 OltllEIO 0 0 0 0 oJ
DON

x x x x x x x x x x x x x x x x x x Ilx x x x xllElx x x x x xl

33. RXDB

t .
LP MLO-461-85

RXCS is the control and status register for receiv­
ing data from the console via serial-line unit o. The
IE bit should be set to allow interrupts when the
RXDB Register receives a character. If the IE bit is
set and a character is received, or if a character is
received, and then the IE bit is set, an interrupt
occurs at IPL 20 and the Done bit is set.

Ifbit (12) (Loopback - LP) is set, then the serial­
line unit's receiver is connected to the M chip's in­
ternal loopback bus and disconnected from the
external serial line. Any number of the four re­
ceiver loopback bits may be set at once, but only
one of the four transmitter loopback bits should be
set.

Console Receive Data Buffer Register

3130292827-262524232221201918171615141312111098765432 o

10 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 I t I tl 0 0 0 0 0 0 I DATA

ERR BR

ILLEGAL TO WRITE

MLO-462-85

RXDB is the data buffer register for serial-line
unit O. Bit (15), the Error bit, is set if the received
data has an overrun, or framing error.

Internal Processor Registers on the KA820 Module F-ll

Hex Dec. Name

22 34. TXCS

Format

Bit (14), the Break bit is set, and the Error bit is
not set, if a (BREAK) character is received. Wheh
software reads RXDB with an MFPR instruction,
microcode clears the Done bit in the RXCS
Register.

Console Transinit Control and Status Register

3130292827262524232221201918171615141312111098765432 0

READ 10 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 OltllElo 0 0 0 0 01

RD

WRITE a 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 00000

BR BRE
MLO-463-85

TXCS is the control and status register for trans­
mitting data to the console on serial-line unit O.
When the console transmitter is not busy, the
Ready bit is set, indicating that the TXDB Regis­
ter is ready to receive a character for transmission.
If the IE bit is set when the Ready bit gets set, or if
the Ready bit is set and the IE bit subsequently
gets set, an interrupt occurs at IPL 20. Software
can then write to the TXDB Register with an
MTPR instruction to transmit the next character.
The MTPR instruction automatically clears the
Ready bit. Ready stays cleared until the character
is transmitted.

Ifbit (8) (Baud rate enable - BRE) is set, the con­
tents of bits (11:9) are used to set the new baud
rate, both for the transmitter and receiver of
serial-line unit O. Ifbit (12) (Send BREAK - BR)
is set, the serial line sends a continuous BREAK
signal until bit (12) is cleared. Software can gen­
erate breaks of any duration.

F-12 Internal Processor Registers on the KA820 Module

,
(

(

(

(-- -

(

(

(

(

t--

READ

Hex Dec. Name

23 35. TXDB

Format

Ifbit (13) CLoopback - LP) is set, the transmitter
for serial-line unit 0 is connected to the M Chip's
internal loopback bus, and disconnected from the
external serial line (which is held idle). Only one of
the four transmitter loopback bits should be set,
but any number of the four receiver loopback bits
may be set at once.

The following is a table of the baud rates that may
be selected in bits (11:9):

Bits (11:9) Baud rate

000
001
010
011
100
101
110
111

150
300
600

1200
2400
4800
9600

19200

Console Transmit Data Buffer Register

3130292827262524232221201918171615141312111098765432 10

ILLEGAL TO READ

WRITE 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 ID DATA

MLO-464-85

TXDB is the data buffer register used to transmit
console data on serial-line unit O. Bits (11:8) form
the ID field, which the CPU uses to distinguish be­
tween console commands and data. For writing
data, bits (11:8) are written with 0000. For send­
ing a command, they are written with 1111. If the
ID field is set to 1111, the value in the dat~ field is
interpreted as follows:

2 = Boot CPU.
3 = Clear Warm-Start flag.
4 = Clear Cold-Start flag.

Internal Processor Registers on the KA820 Module F-13

Hex Dec. Name Format

24 36. TBDR Translation Buffer Disable Register

3130292827262524232221201918171615141312111098765432 1 0

READ 10 I t I
FM

WRITE Ix I I . t
FM

MLO-465-85

(

Processor initialization microcode sets or clears
bit (0) according to the BTB Enable bit in the (
EEPROM (location 2009 817E). For normal opera-

25 37. CADR

tion software should ensure that bit 0 is clear at
power-up.

Software can write TBDR to disable the backup
translation buffer (BTB); however, this is only ap­
propriate for diagnostics. TBDR has no effect on
the MTB (mini-translation buffer).

Disablingthe BTB does not work properly with 1-
stream (instruction stream) addresses, because of
MTB and prefetcher interaction. Therefore soft­
ware should disable the BTB only when it is oper­
ating from physical addresses. Note that bits
(31:1) are undefined on a read.

Cache Disable Register

3130292827262524232221201918171615141312111098765 4 321 0

READ 10 I t I
FM

WRITE Ix xJ t I
FM

MLO-466-85

F-14 Internal Processor Registers on the KA820 Module

(

(-_ ..

(

(

(

(--_.

(

READ

Hex Dec. Name Format

Processor initialization microcode sets or clears
bit (0) according to the Cache Enable bit in the
EEPROM (location 2009 817E). For normal opera­
tion software should ensure that bit 0 is clear at
power-up.

Software can write CADR to disable the cache;
however, this is only appropriate for diagnostics.
Microcode interprets data written to CADR and
then writes to the cache control/status register
within the M chip. Note that bits (31:1) are unde­
fined on a read, but bit (3) is normally read as 1.

26 38. MCESR Machine Check Error Summary Register

3130292827262524232221201918171615141312111098765432 1 0

I LLEGAL TO READ

WRITE 10 00 0 0 0 0 0 0 0 0 01

MLO-467-85

Software can use MCESR to clear the machine­
check condition flag within the CPU. When the
CPU begins to execute the machine-check han­
dling software, and a machine-check condition is
detected before this flag is cleared with an MTPR
instruction, a CPU double error halt will result.
The data written to this register is ignored, but the
condition codes will reflect the data. Machine­
check software must write to MCESR before re­
turning control to normal VAX code.

Internal Processor Registers on the KA820 Module F-15

Hex Dec. Name

28 40. ACCS

Format

Accelerator Control and Status Register (floating
point)

3130292827-262524232221201918171615141312111098765432 1 0

READ ,000 000 a a a 0 a Oltl
ON

WRITE Ix x x x x x x x x x x x x x x x x x x· x x x x x x x x x x x xl t I
ON

MLO-468-85

(

Software can disable the floating-point accelerator (
chip (F chip) by writing 0 to ACCS. Power-up ini­
tialization microcode sets bit (0) to enable the F

READ

WRITE

chip after reading the enable bit in the EEPROM
(location 2009 817E).

2C 44. WCSA Write able Control Store (Patch) Address Register

3130292827262524232221201918171615141312111098765432 1 0

10 a a a a a 0 a a 01

Ix x x x x x x x x xl

ADDRESS<0:13> DATA <16:9>

ADDRESS <0:13> DATA <16:9>

MLO-469-85

This register is used with the WCSD Register for
reading the contents of the control store. The order
of the address bits is reversed from the normal
VAX order, and the data bits are permuted in an
unusual way.

Software can read a control store location, by exe­
cuting a three-instruction sequence. First use an
MTPR instruction to write WCSA with a valid
control-store ROM address in bits (21:8) and
don't-care data. Then use an MFPR instruction to
read WCSD. Then use an MFPR instruction to
read WCSA. No interrupts or context changes
should be taken within this three-instruction

F-16 Internal Processor Registers on the KA820 Module

(

Hex Dec. Name

(

2D 45. WCSD

Format

sequence, or the internal address and data state
may be lost_ Addresses 0000 to 3BFF refer to
control-store ROM locations.

Addresses 3COO to 3FFB refer to patch RAM loca­
tions. Addresses 3FFC to 3FFF refer to the CAM
Match Register. When software reads a ROM loca­
tion that has been patched, the data returned is
the patch, not the original ROM word_ See Section
3.4.2.3 in Chapter 3 for details.

Writeable Control Store (Patch) Data Register

(3130292827262524232221201918171615141312111098765432 1 0

(

READ DATA <8:0,39,17:38>

WRITE ILLEGAL TOWRITE

2E 46. WCSL

MLO-470-85

This register is used with the WCSA Register for
reading the patch RAM portion of the control-store
ROMIRAM chips. It contaIns 32 bits of the 40 bit
microword. The data bits are permuted in an unu­
sual way.

Write able Control Store Load Register

3130292827262524232221201918171615141312111098765432 1 0

READ ~I~. __ ~ _________________ I_L_LE_G_A_L __ T_O_R_E_A_D ____ ~ ________________ ~

WRITE PHYSICAL ADDRESS OF A BLOCK OF PATCHES TO LOAD

MLO-471-85

Software can load control store patches by writing
WCSL with the physical memory address of the
block of patches to be loaded, using the MTPR in­
struction_ Microcode calculates a checksum for

Internal Processor Registers on the KA820 Module F -17

Hex Dec. Name Format

the block of patches and compares it with the
checksum stored with the block before loading. If
the checksum fails, the patches are not loaded, and
the V bit in the PSL is set to 1. Otherwise, micro­
code loads all the patches and clears the PSL V bit.
See Section 3.4.2.3 in Chapter 3 for details.

38 56. MAPEN Memory Management Enable Register

3130292827262524232221201918171615141312111098765432 1 0

READ 10 a a a a a a a a a a a a 0 a a a a a a a a a a a a a a a a 0~3

WR ITE Ix x x x x x x x x x x x x x x x x x x x, x x x x x x x x x x x~NI
ML0-472-85

READ

39 57. TBIA

Setting bit (0) enables memory management.
When bit (0) is clear, memory management is
disabled.

Translation Buffer Invalidate All Register

3130292827262524232221201918171615141312111098765432 1 0

ILLEGAL TO READ

WRITE 10 a 0 a a 01

MLO-473-85

Software can invalidate the MTB, BTB, and in­
struction buffer by writing to TBIA. Microcode re­
sponds by clearing all of the valid bits in the
translation buffers. The data written to this regis­
ter is ignored, but the condition codes will reflect
the data.

F-18 Internal Processor Registers on the KA820 Module

(

(

(

E---

(

(

(

(

READ

WRITE

READ

WRITE

Hex Dec. Name Format

3A 58. TBIS Translation Buffer Invalidate Single Register

31302928272625242322212019181716151413121110987 654 3 2 1 0

3D 61.

ILLEGAL TO READ

VIRTUAL ADDRESS <31 :9> Ix x x x x x x x xl

PMR

MLO-474-85

Software can write TBIS to invalidate a specific
mapping entry in the BTB, the instruction buffer,
or the entire MTB.

Performance Monitor Enable Register

31 30292827262524232221 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E

t

3E

0000000 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 o 0 0 o 0
01 t I

PM

x
xl t I

62. SID

PM

MLO-475-85

Bit (0) in PMR controls a signal visible to an ex­
ternal hardware performance monitor. This bit re­
fers only to the current process.

System Identification Register

READ ,0 0 0 0 0 1 0 11 CPU REV PATCH REV lSi UCODE REV

WRITE Ix 11 (x x x x x x x x I
MLO-476-85

Internal Processor Registers on the KA820 Module F-19

Hex Dec. Name

3F 63. TBCHK

Format

Software uses the SIn Register for system identifi- ('
cation and revision control. Software should inter- .
pret the bits as follows:

Bits (31:24) identify the processor by a unique
type number. Type number for KA820 is 5.

Bit (23) identifies the CPU module as a KA825
when set.

Bits (22:19) contain a binary number, which when
converted to decimal, indicates the module revi­
sion. For example, 1 = rev A; 2 = rev B.

Bits (18:9) contain the revision level of the micro­
code patches.

Bit (8) is the secondary patch bit (SP), which is (
written by processor initialization microcode ac- .
cording to data in location 2009 816C in the EE­
PROM.

SP = 1 Either secondary patches are not
needed or they are needed and have
been loaded.

SP = 0 Secondary patches are needed and c·.-
have not been loaded.

The code that loads secondary patches should set
bit (8) when it finishes loading the patches.

Bits (7:0) contain the revision level ofthe contiol­
store ROMIRAM chips.

Software can write only bit (8), and should write it
after loading the secondary patches.

Translation Buffer Check Register

;3130292827262524232221201918171615141312111098765432 1 0

READ I ILLEGAL TO READ

WRITE TBCHK Ix x x x x x x x xl
MLO-477-85

F-20 Internal Processor Registers on the KA820 Module

(

(READ

WRITE

(--

Hex Dec. Name

50 80. RXCS1

Format

Software can check for the presence of a valid PTE in
the BTB by writing the corresponding virtual ad­
dress in TBCHK. The V bit in the PSL is set if the
PTE is valid.

The next 12 items describe the transmit and receive
status and data registers for serial-line units 1, 2,
and 3.

Serial-Line Unit 1 Receive Control and Status
Register

31 30292827262524232221 2019 18 17 1615 14 13 12 11 10 9 8 7 654 3 2 0

10

Ix

000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000
Oltl *1 0

0 0 0 0 01

DON IE

x x x x x x x x x x x x x x x x x x!t!x x x x xl t I x x x x x x I
LP IE

MLO-478-85

RXCS1 is the control and status register for receiv­
ing data from serial-line unit 1. The IE bit should be
set to allow interrupts when the RXDBI Register re­
ceives a character. If the IE bit is set and a character
is received, or if a character is received, and then the
IE bit is set, an interrupt occurs at IPL 20 and the
Done bit is set.

Ifbit (12) (Loopback - LP) is set, then the serial-line
unit's receiver is connected to the M chip's internal
loopback bus and disconnected from the external se­
rial line. Any number of the four receiver loopback
bits may be set at once, but only one ofthe four trans­
mitter loopback bits should be set.

Internal Processor Registers on the KA820 Module F -21

Hex Dec. Name Format

51 81. RXDB1 Serial-Line Unit 1 Receive Data Buffer Register
(

3130292827262524232221201918171615141312111098765432 10

READ 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OltltlO 00 0 0 01 DATA

ERR BR

WRITE ILLEGAL TO WRITE

MLO-479-85

RXDB1 is the data buffer register for serial-line unit
1. Bit < 15 >, the Error bit, is set if the received data
has an overrun, or framing error. (

READ

WRITE

Bit < 14>, the Break bit is set, and the Error bit is not
set, if a <BREAK> character is received. When soft-
ware reads RXDB1 with an MFPR instruction, mi-
crocode clears the Done bit in the RXCS1 Register.

52 82. TXCS1 Serial-Line Unit 1 Transmit Control and Status
Register

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

10

10

000 0 000 0 0 0 0 0 0 0 0 0 0 0 0 000 OltllElo 0 0 0 0 01

RD

000000000000000 0 o[~tl BAUDltlx IIElo o 0 0 0 01

BR BRE
MLO-48Q-85

TXCS1 is the control and status register for trans­
mitting data on serial-line unit 1. When the console
transmitter is not busy, the Ready bit is set, indicat­
ing that the TXDB1 Register is ready to receive a
character for transmission. If the IE bit is set when
the Ready bit gets set, or if the Ready bit is set and
the IE bit subsequently gets set, an interrupt occurs
at IPL 20. Software can then write to the TXDB1
Register with an MTPR instruction to transmit the
next character. The MTPR instruction automatically
clears the Ready bit. Ready stays cleared until the
character is transmitted.

F -22 Internal Processor Registers on the KA820 Module

(

(--

(

(

(

(--- .

(

READ

Hex Dec. Name Format

53 83_ TXDB1

If bit (8) (Baud rate enable - BRE) is set, the con­
tents of bits (11:9) are used to set the new baud rate,
both for the transmitter and receiver of serial-line
unit 1. Ifbit (12) (Send BREAK - BR) is set, the se­
rial line sends a continuous BREAK signal until bit
(12) is reset. Software can generate breaks of any
duration.

Ifbit (13) (Loopback - LP) is set, the transmitter for
serial-line unit 1 is connected to the M Chip's inter­
nalloopback bus, and disconnected from the external
serial line (which is held idle)_ Only one of the four
transmitter loopback bits should be set, but any
number of the four receiver loopback bits may be set
at once.

The following is a table of the baud rates that may be
selected in bits (11:9):

Bits (11:9) Baud rate

000 150
001 300
010 600
011 1200
100 2400
101 4800
110 9600
111 19200

Serial-Line Unit 1 Transmit Data Buffer Register

3130292827262524232221201918171615141312111098765432 1 0

ILLEGAL TO READ

WRITE 10 oJ DATA

MLO-481-85

T:XDB1 is the data buffer register used to transmit
data on serial-line unit 1.

Internal Processor Registers on the KA820 Module F -23

Hex Dec. Name

54 84. RXCS2

55 85. RXDB2

56 86. TXCS2

57 87. TXDB2

58 88. RXCS3

59 89. RXDB3

5A 90. TXCS3

5B 91. TXDB3

5C 92. RXCD

Format

NOTE

The operation of the registers for serial-line units 2
and 3 is exactly the same as the operation of the
registers for serial-line unit 1.

Serial-Line Unit 2 Receive Control and Status
Register

Serial-Line Unit 2 Receive Data Buffer Register

Serial-Line Unit 2 Transmit Control and Status
Register

Serial-Line Unit 2 Transmit Data Buffer Register

Serial-Line Unit 3 Receive Control and Status
Register

Serial-Line Unit 3 Receive Data Buffer Register

Serial-Line Unit 3 Transmit Control and Status
Register

Serial-Line Unit 3 Transmit Data Buffer Register

Receive Console Data Register

3130292827262524232221201918171615141312111098765432 1 0

READ 10 0 0 0 0 0 0 0 00 0 0 0 0 0 Olt lO 0 01 t DATA

BUSY FROM NODE

WRITE 1000 0 0 0 0 0 0 0 0 0 0 0 0 olxlo 0 OITONODEI DATA

MLO-482-85

F -24 Internal Processor Registers on the KA820 Module

(

(

(

l

(

(

(

(

READ

Hex Dec. Name Format

The RXCD Register provides for interprocessor
console communications on the VAXBI bus. Read­
ing this register picks up a console character (if
any) that has been sent to this processor from a
processor on another VAXBI node. Writing the
RXCD on another processor sends a console char­
acter to that processor.

Bit < 15) is the Busy bit. When software sends a
character, this bit is sent as 1, to indicate that the
receiving register is busy. When the receiving
processor executes an MFPR instruction to read
the character, its microcode resets the receiving
processor's RXCD bit < 15) to O.

Bits <11:8) identify the sender's VAXBI node
number.

When software reads a not-busy RXCD Register
(bit < 15) = 0), the MFPR microcode sets the PSW
V-bit. When software reads a busy RXCD Register,
the MFPR microcode clears the PSW V-bit.

When software writes to a busy RXCD Register on
a remote node (bit < 15) = 1), no data is sent and
the sending MFPR sets the PSW V-bit.

5D 93. CACHEX Cache Invalidate Register

3130292827262524232221201918171615141312111098765432 1 0

ILLEGAL TO READ

WRITE x x x x x x x x 0 CACHEX PHYSICAL ADDRESS BITS <28:8>

MLO-483-85

Software can invalidate a page in the cache by
writing physical address bits < 28:8) in bits < 20:0)
of CACHEX. The CPU clears the four valid bits of
up to eight cache tags at one time. Use CACHE X
when you use the KA820 module as an I/O
processor.

Internal Processor Registers on the KA820 Module F -25

Hex Dec. Name Format

5E 94. BINID VAXBI Node Identification Register

3130292827262524232221201918171615141312111098765432 1 0

READ 10 00 0 0 0 0 01 NODE

WRITE I LLEGAL TO WR ITE

MLO-484-85

(

Software can read BINID to determine the VAXBI
node ID of the processor. Bits (3:0) contain the
VAXBI node address. Microcode obtains the ad- (
dress from the BIlC Control/Status Register dur-
ing processor initialization.

5F 95. BISTOP VAXBI STOP Register

3130292827262524232221201918171615141312111098765432 1 0

READ ILLEGAL TO READ

WRITE ,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 oJ VAXBI MASK

MLO-485-85

Software uses BISTOP to initiate a VAXBI STOP
transaction. BISTOP is a write-only register that
software can write with a mask ofVAXBI nodes to
be stopped.

F -26 Internal Processor Registers on the KA820 Module

(

(--

Appendix G
Register Contents at Power-Up and Boot Entry

Contents at Contents at
Console Change to

Register Address Mode Entry Macrocode Comments

PCntl CSR 20088000 Varies Varies

(DTYPE 20080000 xxxx 0105 xxxx 0105 xxxx refers to the
bb+OO CPU revision

code, microcode
patch revision,
and secondary
patch loading

VAXBICSR 20080004 rrtt 0803 rrtt 0803 rrtt refers to the
bb+04 BIIC revision and

(type

Bus Error 20080008 00000000 00000000
Register bb+08

Error 2008000C 00000000 00000000
Interrupt bb+OC
Control
Register

BCI Control 20080028 00000778 00000778
(Register bb+28

RXCD 20080200 00000000 00000000
bb+200

RO RO Random Random

R1 R1 Random Random

R2 R2 Random Random

R3 R3 Random Boot device See Chapter 4
(ddxn)

(Continued on next page)

(

G-l

Contents at Contents at
(Console Change to

Register Address Mode Entry Macrocode Comments

R4 R4 Random Random

R5 R5 Random Boot control See Appendix I
flags

R6 R6 Random Random

R7 R7 Random Random

R8 R8 Random Random

R9 R9 Random Random

RIO RIO Random Halt PC

Rll Rll Random HaltPSL C-
AP RI2 Random Halt code

FP RI3 Random Random

SP RI4 Random Starting
address of
primary
bootstrap

PC R15 Random Random

C TBDR IPR24 00000000 00000000 Affected by
EEPROM
contents

CADR IPR25 00000000 00000000 Affected by
EEPROM
contents

ACCS IPR28 00000000 00000000 Affected by
EEPROM t-- . contents

MAPEN IPR38 00000000 00000000

G-2 Register Contents at Power-Up and Boot Entry

(

(----

I

l

Appendix H
EEPROM Contents

Address Contents

FIRST EEPROM CHIP

20098000
20098002
20098004
to
20098020
20098024

20098038
20098044
200980DO
200980EO
to
2009812E
20098130
20098140
to
20098152
20098154
20098156
20098158

20098160

FF constant used in EEPROM test
55 constant used in EEPROM test
14 bytes must be zero

10 bytes, module serial Number
2 characters = plant code
3 characters = numeric date code YWW

(Y = year, W = week)
5 characters = numeric module serial number

6 bytes, load server address (for the AlE module)
70 bytes unused and = 0
8 bytes unused; reserved for DIGITAL CSS

48 bytes reserved to DIGITAL
8 bytes unused; reserved for users

17 bytes reserved to DIGITAL

1 byte = AA, the constant that is 1.lsed in the EEPROM test
1 byte unused
4 bytes for the VAXBI self-test timeout constant

incremental value = 0.2 microsecond increment
4 bytes unused .

(Continued on next page)

H-l

Address Contents

VAXBI Device Type Data

20098168

2009816C

20098170
20098176

2 bytes, VAXBI device type for module = 0105 (hex) for
KA820

2 bytes, VAXBI revision level for module
bits (15:11) = CPU revision
bits (10:1) = patch revision
bit (0) = secondary patches not needed, default = 1

3 bytes unused
1 byte for RCX50 self-test disable

bit (4): RCX50 self-test disable (0 = enable,
1 = disable), default = 1

bit (3) must be zero
bits (7:5,2:0) = 0

Console Source Data

20098178

2009817A
2009817C

2009817E

20098180
to
200981CE
200981DO

200981EO
200981FC
200981FE

1 byte
bits (3:0) = VAXBI node number of logical console

(default = 2)
bits (7:4) must be zero

1 byte must be zero
1 byte, UARTO baud rate - default = 1200 baud

bits (7:0) = Baud rate as follows:
30 - 150 baud 34 - 2400 baud
31 - 300 baud 35 - 4800 baud
32 - 600 baud 36 - 9600 baud
33 - 1200 baud 37 - 19200 baud

F chip, BTB, and cache disable bits
bit (0) (1 = F chip disabled; 0 = F chip enabled),

default = 0
bit (1) (1 = BTB disabled; 0 = BTB enabled),

must be zero
bit (2) (1 = cache disabled; 0 = cache enabled),

default = 0
bits (7:3) must be zero

40 bytes unused
8 bytes: 40-bit checksum of control store with primary

patches installed
2 bytes reserved to DIGITAL
1 byte: constant 33 used in EEPROM test
1 byte: constant 01 used in EEPROM test

EEPROM Boot-Code Section

20098200

20098208
to
200987FE

B-2 EEPROM Contents

4 bytes of checksum for 1020 bytes (decimal)
of boot code

Boot dispatcher

(Continued on next page)

(

(

(

E---

(

\

(

(----

(

Address Contents

EEPROM Patch Section

20098AOO
20098A08
20098AOA
20098AOE
to
2009BFFE

4 bytes of checksum for all the patches
1 byte for the starting CAM address
2 bytes showing the number of patches

Start of patches,
7 bytes per patch ...

up to 984 patches (decimal)

SECOND EEPROM CHIP

2009 COOO

2009 C008

2009 COlO
2009 C020
2009 C030
2009 C040
2009 C050
2009 C060
2009 C070
2009 C080
2009 C090
2009COAO
2009 COBO

2009FFFE

Default boot device designation of form ddnu
(4 bytes)

Default TIM boot device designation of form
ddnu (4 bytes)

Boot-code descriptor A (8 bytes)
Boot-code descriptor B (8 bytes)
Boot-code descriptor C (8 bytes)
Boot-code descriptor D (8 bytes)
Boot-code descriptor E (8 bytes)
Boot-code descriptor F (8 bytes)
Boot-code descriptor G (8 bytes)
Boot-code descriptor H (8 bytes)
Boot-code descriptor I (8 bytes)
Boot-code descriptor J (8 bytes)
Boot code - including chksum

8104 bytes (decimal)

Boot code

LOCATIONS THAT CAN BE READ AND WRITTEN USING CONSOLE
COMMANDS EIE AND DIE

EEPROM
Address

20098170
to
20098174
20098176
20098178

2009817A
2009817C
2009817E
20098180
to
200981B8

Typed
Location Configuration Use

00-02
03
04

05
06
07
08-23

Reserved for future use
RCX50 self-test enable
Bits (3:0): VAXBI node number of

logical console
Unused
UARTO baud rate
F chip, BTB, and cache disables
16 bytes unused

EEPROM Contents H-3

(

(

(

(---

(

(

(

t--

(

Appendix I
Software Boot Control Flags

You can control various phases of the boot procedure by setting bits in Gen­
eral Purpose Register R5with the console command BIR5:(data) (see Chap­
ters 3 and 4). These bit functions are defined by the VMB primary boot
routine and by VMS. Note that the value -1 in R5 is reserved to DIGITAL.

R5 Bit Symbol

(1) RPB$V ~DEBUG

(2) RPB$V JNIBPT

(3)

Function

Conversational boot. At various points in the system
boot procedure, the bootstrap code solicits parameters
and other input from the console terminal. If bit (4)
is also set, the VAX Diagnostic Supervisor should
start, enter menu mode, and prompt you for devices
to test.

Debug. If this flag is set, VMS maps the code for the
XDELTA debugger into the system page tables of the
running VMS system.

Initial breakpoint. IfRPB$V _ DEBUG is set, VMS ex­
ecutes a breakpoint (BPT) instruction immediately
after enabling mapping.

Secondary boot from boot block. The secondary boot­
strap is a single 512-byte block whose logical block
number is specified in R4.

(4) RPB$V _DIAG Diagnostic boot. The secondary bootstrap is an image
called SYSMAINT DIAGBOOT.EXE.

(5) RPB$V.J300BPT Bootstrap breakpoint. This stops the primary and sec­
ondary bootstraps with a breakpoint (BPT) instruc­
tion before testing memory.

(6) RPB$V JiEADER Image header. The transfer address of the secondary
bootstrap image comes from the image header for
that file. If RPB$VHEADER is not set, control shifts
to the first byte of the secondary boot file.

(Continued on next page)

1-1

R5 Bit Symbol

(7) RPB$V _NOTEST

(8)

(9)

Function

Memory test inhibit. This function sets a bit in the
PFN bit map for each page of memory present, inhib­
iting the memory test.

File name. VMB prompts for the name of a secondary
bootstrap file.

Halt before transfer. VMB executes a HALT instruc­
tion before transferring control to the secondary boot­
strap.

(13) RPB$V _MEMTEST Specifies that a more extensive algorithm be used
when testing main memory for uncorrectable hard­
ware (RDS) errors.

(15) RPB$V_AUTOTEST Used by the VAX Diagnostic Supervisor.

(

(16) RPB$V _CRDTEST Specifies that memory pages with correctable (CRD) (

(31:28) RPB$V_TOPSYS

1-2 Software Boot Control Flags

errors not be discarded at bootstrap time. By default,
pages with CRD errors are removed from use during
the bootstrap memory test.

Specifies the top level directory number for system
disks in multiple systems.

(

(

(

(

(

(

(

Appendix J
Sample Bootstrap Code

J.1 EEPROM Bootstrap Dispatcher

.TITLE KA820 EEPROM BOOT DISPATCHER

.IDENT /V1.05/

iH

COPYRIGHT (c) 1985 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD,

MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION
OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER COPIES THEREOF
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO
TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE, AND
SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

iH

.PAGE
iH

FACILITY:

KA820 EEPROM BOOT CODE DISPATCHER

AUTHOR:

ABSTRACT:

This routine interprets the boot command device specification in R3.
R3 should contain a 4-byte ASCII device specification of the form
ddxn, where dd is the mnemonic for the generic device type, x is
the VAXBI node number and n is the unit number. When R3 is set to 0, it
indicates that the default boot device is being selected. If the
string is valid, an attempt is made to match the 2-character
device code with one of the boot device descriptors in the EEPROM.
If a match is found, control is passed to the appropriate boot
device. If no match is found, or if an invalid string was
detected, the message "?44" is printed on the console and the CPU
halts. All qualifiers to the boot command and the handling of the
cold and warm restart flags are handled by the CPU microcode.

J-l

This routine resides at offset 104 in the EEPROM.

INPUTS:
R3 pre loaded ~ithboot device specification of form ddxn.
R5 set to 11 hex if a CRD boot is to be performed.

Outputs:

; --
.PAGE

R0 - destroyed
R1 - VAXBI node number
R2 - destroyed
R3 - unit number
R8 - destroyed

REVISION HISTORY

. PAGE
BOOT DSC = AX0C0
PAKET RAM = AX20090000
TXDB -; 35
TXCS = 34
RDY ;: 7

1***
.LONG AXF63F4A15 1 CHKSUM FOR

1 FILE HANDLING
1***

STARTKA8: :
BRB STARTKA8B Br to start of code.
.WORD ENDKA8 - STARTKA8 Size of file
.WORD 105 Version number
. ASCII IAKI Device designation - reversed

STARTKA8B:
MOVL PAKET~RAM+BOOT_DSC+2,R0 1 Make R0 point to 1st boot

dev desc.
TSTL R3 Is R3 = 0?
BNEQ 1000$ Br if no.
CMPB II A Xl1, R5 This a CRD boot?
BNEQU 900$ Br if no to use normal default

(dev A).
MOVL 22(R0),R3 Put CRD default descriptor

in R3 (dev D).
BNEQU 1000$ Br if non 0-else load ~ith

normal default.
900$: MOVL -2(R0),R3 Load default device designation.
1000$: EXTZV 1116,1I16,R3,R2 Put device mnemonic in R2.

EXTZV 118,1I8,R3,R8 Put VAXBI node II in R8 to be
converted.

BSBB CONVERT Go convert VAXBI node to binary.
MOVL R8,R1 Put it in R1.
MOVL R3,R8 Setup to convert unit II.
BSBB CONVERT Go convert unit number.
MOVZBL R8,R3 Put binary unit number in R3.

J-2 Sample Bootstrap Code

(

(

C

E-

(

(

(

(

Match the 2-character device generic code in R2 with the same field
of the boot device descriptors. If a match is found, we dispatch to
the boot routine. Otherwise, print a hexadecimal 46 on the console,
and halt.

MOVZBL 114,R8 Loop count in R8.
5.00$: CMPW R2, CR~)+ Device match?

BEQL MATGH Br· if yes.
ADDB2 116,R0 Update pointer.
SOBGTR R8,500$ Br if more locations to check.

; Nothing matches - print error message and halt.

INVALID_DEV:
MOVZBL 1113,R0 Load {CR}.
BSB 1000$ Go send it.
MOVZBL 1110,R0 Load a line feed.
BSB 1000$ Go send it.
MOVZBL II A X3F,R0 LInd a "?" int,) R0.
BSB 1000$ Go send it.
MOVZBL II A X34,R0 Load a "4" into R0.
BSB 1000$ Go send it.
MOVZBL II A X34,R0 Load a "4" into R0.
BSB 1000$ Go send it.
HALT i Halt.

i Subroutine to print the character in R0 on the console

1000$: MTPR
2000$: MFPR

BBC
RSB

R0,IHXDB
IITXCS,R0
IIRDY,R0,2000$

Load character into data buffer.
Wait until character prints.
Ditto.
Print complete - return.

; A match was found - dispatch to boot routine.

MATCH: JMP @(R0) GO to boot routine.

Subroutine to convert ASCII character in R8 to binary and check if valid
(0 - 15 decimal). If not, an invalid boot device message is printed on
the console and a halt is executed. Note that it is the converted value
that is checked. Therefore, if the console accepts a 11:11, this will
convert to an AChex) which is valid.

CONVERT:
BBS

SUBB
BRB

100$:
SUBB

200$:
CMPB
BLSSU
RSB

ENDKA8:
. END

II A X6,R8,100$

II AX30,R8
200$

II A X3'i',R8

II A X0F,R8
INVALID_DEV

STARTKA8

Branch if its A thru F.
Character is in range 0 thru 9.
Subtract out ASCII.

Character is in range A thru F.

Verify character is in the
range 0 to F hex.

Is character valid (0-15)?
Br if no.

Delimit the end .
Remove for file inclusion.

Sample Bootstrap Code J-3

J.2 Sample RX50 Bootstrap Code

.TITLE RX50 ROM BOOTSTRAP ROUTINE

.ident /V1.14/

iff

COPYRIGHT (c) 1985 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD,

MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION
OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER COPIES THEREOF
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO
TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE, AND
SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

; --

iff

FACILITY :

VAXI8200 Device-Specific RX50 ROM BOOT

AUTHOR:

ABSTRACT:

This routine reads in the boot block from the RX50 diskette and
executes it. This is LBN 0 ~hich is track 1 sector 1.
The routine assumes that the standard VAX boot block with the
first 3 longwords is set up as follows:

(

(

(

1st longword: Number of blocks in primary boot
2nd longword: LBN of primary boot (s~apped) E-.
3rd longword: Load add relative to start of good 64k (200 hex)--

The boot block code starts immediately after the third longword.

Drive and disk selection are mapped to the unit number as follo~s:

UNIT 10
UNIT 11
UNIT 12
UNIT 13

'i REVISION HISTORY:

; --

J-4 Sample Bootstrap Code

Drive 0 Disk 0
Drive 0 Disk 1
Drive 1 Disk 0
Drive 1 Disk 1

(

(

E--

(

·page
.sbttl Declarations

READ =
A0100

DONE =
A010

RXCMD = A04
RXBUF =

A020
RXGO = A024
RXTRK = A06
RXSEC =

A010
RXCA = A022

DZ DEV TYPE = 64
BOOT_CODE_START = 12-AX200

i in boot block
RCX50 REGS = AX200B0000
SIGN_BIT = A~'7

. page

.sbttl Boot the boot block

RX50 drive specific definitions

Device type code
Offset to start of boot
code

RCX50 register space
Sign bit position (bit '7)

i**
.long AX602DE4BD i Patch chksum

i**

i++
Functional Description

Brings in Logical Block 0 from the RX50 drive 0, diskette 0

Inputs:
R3
R5
SP

- Unit number of boot device
- Software boot control flags
- Base address + AX200 of 64kb of good memory

Implicit inputs:

LBN of the boot block is 0
Boot block is to be read into -200(sp) - i.e. start of 64k block
Xfer address of boot block code is at BOOT_CODE_START(SP).

Outputs: - (inputs to BOOTBLK and primary boot)

j--

R0
Rl
R2
R3
R5
R6
SP

Device type code for RX50 console de~ice (64.)
- 0 (not UNIBUS or MASSBUS)
- 0 (not UNIBUS or MASSBUS)
- Unit number of boot device
- Software boot control flags
- Physical address of RX50 mini driver
- Base address + AX200 of 64kb of good memory - passed

parameter

i Boot file header

STARTCSBOOT:
RX50 BOOT:

- BRB
.WORD
.WORD
. ASCII

STARTCS
ENDCSBOOT-STARTCSBOO~
114
/SC/

Start of boot code

Br to start of code
Size of file in bytes
Version number
Device code reversed

Sample Bootstrap Code J-5

STARTCS:
ADDL II"X100,SP

CLRQ R1

CLRL R8
2000$: PUSHAB -"X300(SP)

100$:

.page

JSB
BLBS
HALT
MOVZBL
MOVAB
SUBL
JMP

B"DRIVER$ RX50
R0,100$ -

IIDZ DEV TYPE,R0
B"DRIVER$_RX50,RG
II"X100-4,SP
BOOT_CODE_START(SP)

.sbttl RX50 MINI DRIVER

i++

Move stack into middle of
2nd page to enable boot
into 1st page.
CLR R1+R2 (not UNIBUS
or MASSBUS).
LBN to read is set t00.
Push base add of good G4k on stack
(Load address of boot block).
Go read in a block.
Br if no error.
ERROR - HALT.
Load R0 with device type code.
Make RG point to start of driver.
Restore SP to original position.
Pass control to the boot block.

RX50 mini driOer. Reads in a logical block.
It is called as a subroutine. The physical address in which the
block is to be loaded must be placed on the stack prior
to calling, which will put it at 4(SP) upon entry.

Inputs:
R8 logical block number
4(SP) physical load address

Outputs:
R0 simple completion status - low bit set = success

i--

PUSHR II"M{R2rR3,R5,RG,R7,R8,R9} i Save volatile registers.

****** (affects offset @ 3000$)******
Convert unit number in R3 to drive and disk select.
Convert LBN in R8 to physical device address.

INPUTS: R8 LBN
R3 Unit Number

OUTPUTS: R5 drive and disk select data
RG track number
R8 sector number

NOTES: SIDE = 0
TRK = BN DIV 10

Convert unit number in R3
DECL R3

CMPB
BGTRU
ADDB3
CLRL

J-6 Sample Bootstrap Code

R3,1I3
ERROR
R3,R3,R5
R9

BN = LBN MOD 800 (BLK II on a side)
BNA = BN MOD 10 (BLK II on a track)

to disk and drive select
Dec unit number so unit 1 select
drive 0.
Is unit number valid (in range 0-3)?
Br if no.
Shift to left and put in R5.
Clear for EDIV.

(

(

E~----

l

(

(

(

(---_ ..

1t10.,RS,R6,R7
R6,RS
1t2,RS
1t5,R7
R7,RS
1t10.,RS,R0,RS
RS
R6

R6{=TRK R7{=BNA
RS{== BN + TRK
RS{== (BN+TRK)*2
R7{== BNA/5
RS{==(BNA/5 + ~(BN+TRK)*2»
RS {==RS MOD 10
Make sectors start at 1.
Make tracks start at 1.

EDIV
ADDL2
MULL2
DIVL2
ADDL2
"EDIV
INCL
INCL
CMPB
BNEQ
CLRL

ItS0.,R6
300$

Is this the last track on surface?
Br if no.

R6 Set track to 0 (last track=0).

Conversion of LBN to physical address is complete.
Read in a single block using the physical information.

300$: MOVL ItRCX50_REGS,R2 Load R2 with RX50 register add.
CLRL R0 Preset return status to error.
BISB ItREAD,R5 Combine read code with disk

and drive select.
MOVB R5,RXCMD(R2) Set func to read sector.

3000$: MOVL 4+2S(SP),R5 Move physical address of buffer
MOVB R6,RXTRK(R2) Select the track.
MOVB RS,RXSEC(R2) Select the sector.
MOVB 1t0,RXGO(R2) Start the read sector operation.

500$: BITB ItDONE,RXCMD(R2) Done yet?
BEQL 500$ i Br back to wait for done.
BBS ItSIGN BIT,RXCMD(R2),ERROR i Br if error.
TSTB RXCA(R2) Clear silo address.
MOV2WL 1t512,R9 Load loop count.

700$: MOVB RXBUFCR2), (R5)t i Load a byte into the buffer.

to R5.

SOBGTR R9 1 700$ i Loop until entire block is loaded.
INCL R0 i Indicat~ success.

ERROR: POPR It AM(R2,R3,R5,Re,R7,RS,R9} i Re~tore volatiie registers.
RSB Return.

ENDCSBOOT: Delimit the last location.
.end STARTCSBOOT Remove for multifile inclusion,

J.3 SampleDU Series Bootstrap Code (MSCP Devices)

.TITLE VAXltS200 BUA MSCP Boot ROM

.IDENT IV1.011

COPYRIGHT (c) 19S5 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD,

MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION
OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER COPIES THEREOF
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO
TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE, AND
SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

i++

Sample Bootstrap Code J-7

FACILITY:

VAXIB200 DU Boot Device Type Bootstrap ROM

ABSTRACT:

AUTHOR:

This ROM code reads in the boot block from an MSCP speaking device
which adheres to the UQSSP port specification. It supports the
VAXBI to UNIBUS adapter (BUA), the VAXBI Low End Storage
Interconnect Adapter (BLA) and the VAXBI to Disk Adapter (BDA).

The code reads in the boot block and executes it. It assumes the
boot block to be the VAX standard boot block,. The default addresses
for the SA a'nd IP registers are albJays used. There is no mechanism
for controller selection on a given node.

REVISION HISTORY:

; --
.PAGE
.SBTTL Memory Map Of Boot Process

Base of good
memory + o +---------------------------+

1FF

FA00

FFFF

.PAGE

+---------------------------+ (--- SP Passed to ROM
code boot block

+---------------------------+

+---------------------------+

(--- Available for file
brought in by
boot block

(--- Host
communications
area

(--- Available for file
brought in by
boot block

V Untested memory

. SBTTL Notes

There is no check that the BUA passed its self-test.
No check that_selected node has a BUA.
There is no mechanism for using an address other than the
default address.

J-8 Sample Bootstrap Code

(

(

(

(---

(

(

(

(

(-

(

. PAGE

The code for the BLA and BUA is identical. The BDA has
significant differences as follows:

1. The IP address reg is in the VAXBI node space at offset F2.
2. All addresses used by the BDA are physical. Addresses used

by the BUA and BLA are relative to the start of good 64k.
This affects the address of the communications area in the
initialization table and the addresses in the buffer
descriptors.

3. The BDA does not initiate initialization when the IP register
is written. It is started by setting the Node Reset (NRST)
bit in the VAXBI CSR.

4. ***RESTRICTIONS***
The communications area starts at FA00. If" the boot block
loads a program into the first 64k of good memory. the
communications area will be overwritten if the program is
too big. The boot block can however load large programs
starting beyond the communications area. This is the case
for VDS. ~hich loads into the second good 64k .

. The boot block and any program that it loads must be position
independent if it is to be guaranteed to work properly.
Otherwise problems will arise if the start of good memory is
not at location 0 .

.SBTTL Declarations

BUA BLA DTYPE
BDA-DTYPE
BOOT_CODE_START

= 17
= 33
= 12 - "X200

UDA I/O ADDRESSES

DU_UDAIP = "0012150

DU_UDASA = DU_UDAIP + 2

SA = DU_UDASA - DU_UDAIP

; Bit positions for initialization

ERR = 15
S4 = 14
S3 = 13
S2 = 12
S1 = 11

Bit definitions for initialization

GO = "0000001
STEP = "0100000

Host communications area definitions

Boot code device type for UDA BLA
Boot code device type for BDA

Address of initialize and polling
register
Address of status and address
register
Offset between the registers

Error bit
Step 4 bit
Step 3 bit
Step 2 bit
Step 1 bit

Go
Step indicator

Sample Bootstrap Code J-9

OWN = "X80000000

ComMuhications area offsets

~ING = 0
RMSG = RING + 12

RCMD = RMSG + 64
COMM_END = RCMD +48

i Command/response packet definitions

OP ONL = "011
OP:RD = "'041

P .UNIT :: 4

f'_LBN = 28
P_BUFF = 16
P.SHUN = 32
P_OPCD = e
p aCNT = 1~
P-STS = 10
P:LEN = -4

BUA Definitions and offsets

.PAGE

BIDEVCODE BUA = "X102
BID£VCODE-BLA = "X103
BIDEVCODE-BDA = "X10E
BI ADD =-"X20000000
BICSROFF = "XU
BDAIPADD OFF = "X0F2
NEXT NODE = "X00002000
ADAPiER WINDOW = "~20400000
NEXT WINDOW = "X40000
STARi ADD OFF = "X20
END ADD OFF = "X24
MAP:REG:OFF = "X800
VALID = {1@31)
SST = <1@10}

.SBTTL BUA Initialization and Set-up

Ownership of packet, 0 = host,
1 = UDA

128 bytes needed for host COMm
area
Host communications area
Buffer for response packet
from UDA
Buffer for cOMmand packet to UDA
Length of comm. area - 4 bytes

On-line command op-code
Read command op-code

Unit number offset into
packet
LBN offset into packet
Buffer descriptor offset into
Shadow unit number
Op-code offset into packet
Byte count offset into packet
End packet status offset
Length of packet offset

VAXBI device code for BUA
VAXBI device code for BLA
VAXBI device code for BDA
VAXBI node address space start
Offset to VAXBI CSR register
Offset to BDA IP reg
Offset to next VAXBI node

packet

Add of 1st adapter window
Offset to end of adapter window
Offset to starting address
Offset to end address
Offset to BUA map reg
Valid bit for map registers
Node reset bit in BICSR

i-."--._------------------
SET UP THE NODE

i--_·- -------------------
itt

FUNCTIONAL DESCRIPTION:

Loads R10 with the base address of the VAXBI node space, then
performs setup based on the node type as follows'

J-IO Satnple Bootstrap Code

(

(

(

E---

(

(

(

(---

BDA node

Load R11 with device type code for BDA.
Load R2 with address of IP reg.
Load R0 with R2 + 2 (BDA has separate SA registers for write
and read).
Make address of communications area in Init table physical (RINGAD).

"Load ADD_TVPE_FLAG with 1 to indicate BDA/Physical addressing.

INPUTS

Non BDA node

Load R11 with device type code for BUA/BLA.
Load R2 with physical address of controllers CSR (IP reg).
Load R0 with R2.
Sets UP the VAXBI node by loading the start and end addresses of
the adapter window into the BIIC of the BUA. Sets up the
UNIBUS map registers and sets up R2 with CSR (IP) address.

R1
R3
R5
SP

- VAXBI node number for this BUA
- Unit number of boot device in binary
Software boot control flags

- {base_address + AX200} of 64kb of good memory

OUTPUTS:

R1
R2
R3
R5
R10
SP,

Work Registers'
R4 and R8

- VAXBI node number for this BUA
- Physical address of the boot deviceTs CSR
- Unit number of boot device in binary
- Software boot control flags
- Base address of the VAXBI node
- (base_address + AX200) of 64kb 6f good memory

; --
;

;**
.LONG AX7A1E394D ; CHKSUM - FOR FILE HANDLING

; PURPOSES ONLV
;**

BOOT CODE HEADER
;

STARTDUBOOT:
BRB STARTDU ; Branch to start of code .
. WORD ENDDUBOOT - STARTDUBOOT; Size of file in bytes
.WORD 101 Version number
.ASCII IUDI Device designation reversed

;++
Location to change if you have a second controller on the UNIBUS !

AX1468 for 1st controller AX00DC for second controller
;++
UDAIPADD:

.LONG AX1468 ; UDA IP address

AZTEC_BOOT:
RA60_BOOT:
STARTDU:

ADDL

SUBL3 MAX300,SP,R7
MOVZBL MBUA_BLA_DTVPE,R11

Move stack off of page M0 for now
to make room for boot block.
Pointer to start of good 64k==}R7
Set device code for SUA, BLA.

Sample Bootstrap Code J-ll

Setup pointers: R10{=base add of VAXBI node, R8{=add of start add
field.

MULL3 R1,DNEXT NODE,R10
ADDL2 DBI ADD,R10

ADDL3 DSTART ADD_OFF,R10,R8

CMPW DBIDEVCODE_BDA,(R10)
BNEQU 100$

Node is verified to be a BDA

Calculate VAXBI node address.
Get starting add of VAXBI
node in R10.
Get add of starting add
field in R8 .
Is this VAXBI node a BDA?
Br if no - assume BUA or BLA.

j--- -----------------
Load R11 with device type code for BDA.
Load R2 with IP address.
Load R0 with R2 + 2.
Make add of communications area in the init table physical (RINGAD).
Load ADD_TYPE_FLAG with 1 to indicate physical addressing/BDA.

l'IOVZBL DBDA_DTYPE,R11 Load R11 with device code for BDA.
MOVAL BDAIPADD_OFF(R10),R2 Load R2 with phys address of

IP reg.
ADDL3 D2,R2,R0 Load R0 with IP add+2 (For

BDA writes.
ADDL2 R7,W ARINGAD Make add in init table physical.
MOVB D1,WAADD_TYPE_FLAG Indicate address type is physical.
BRB CONT Branch to continue.

Node is assumed to be BUA or BLA
j--

Setup starting and end address of adapter window in BIIC.
Load R2 with physical address of the controllers CSR IP add.

100$: MULL3 DNEXT_WINDOW,R1,R2 Calculate adapter window.
ADDL3 DADAPTER WINDOW,R2, (R8) i Load starting add in BIIC.
ADDL3 DA0760000,(R8),R2 R2{=addres of base of UNIBUS

I/O page.
ADDL2 UDAIPADD,R2 R2{==Physical add of

controllers CSR
MOVL R2,R0 R0{==CSR add (for BDA

compatiblty)
ADDL3 DNEXT WINDOW,(R8)+,(R8) i Load end add in BIlC.

Setup the UNIBUS map registers - Map registers 0 thru xxx are mapped
sequentially starting at start of 64K of good memory.
Mapping is such that address 0 is start of good 64k.
The VALID bit is set and the non buffered data path selected.
(At this point - R8 points to the end address field)

ADDL2 DMAP_REG_OFF-END_ADD_OFF,R8 i Pointer to Map
registers==}R8

MOVL R7,(R8) Starting add of good 64k =}
1st map reg

ASHL D-9,(R8),(R8) Position physical add 29:9
into 20:0.

BISL2 DVALID, (R8) Set Valid bit in 1st map
table entry.

MOVZWL D400-1,R4 Map tabl~ entry count ==} R8.
1000$: ADDL3 D1. (R8)+, (R8) Load map table entry.

SOBGTR R4,1000$ Br back if more to load.

.PAGE

.SBTTL ROM Control Subroutine

J-12 Sample Bootstrap Code

(

(

(

E-

(

(

(

(

(

i++

FUNCTIONAL DESCRIPTION:

The subroutine reads block 0 0" the boot device's volume,
loads it into the 'irst page 0' usable memory (the page
mapped by UNIBUS map register 110) and trans'ers control to
the 'ourth longword (byte 1112) 0' this boot block.

INPUTS:

R0 - Adjusted IP address
= R2 'or BLA and BUA
= R2+2 'or BDA (accommodates di"erent add 'or writes)

R1 - VAXBI node number 'or this BUA
R2 - Physical address 0' the boot devices CSR
R3 - Unit number 0' the boot device
R5 - So'tware boot control 'lags
SP - {base_address + "X200} 0' 64kb 0' good memory

IMPLICIT INPUTS:

LBN 0' boot block is 0.
Boot block is to be read into (SP)-"X200 (i.e. relative 0).
Trans'er address 0' boot block code is at BOOT CODE_START(SP).

OUTPUTS:

i --

CONT:

R0
= R2
= R2
R1
R2
R3
R5
R6
SP

- Adjusted IP address
'or BLA and BUA
+ 2 'or BDA (accommodates di"erent add 'or writes)

- VAXBI node number 'or this BUA
- Physical address 0' the boot device's CSR
- Unit number 0' the boot device
- So'tware boot control 'lags
- Address 0' the device-speci'ic read block routine
- {base_address + "X200} 0' 64kb 0' good memory

This routine preserves registers R3, R5, R10-R11, AP, and SP.

PUSHR II"M{R5} i Save register 'or temp.

j--- ----------------
INITIALIZE THE CONTROLLER AND TELL IT TO GO

j--- ----------------

MOVL 112,R6 Number 0' retries

IERROR: SOBGEQ R6,RETRY
HALT Halt a'ter two tries.

RETRY: BLBS ADD_TYPE_FLAG, 100$ Br if this is a BDA.
CLRW (R2) Start ini t by writing IP reg

(BUA/BLA).
BRB 500$ Br to continue.

100$: BISW IISST,BICSROFF(R10) Start init by setting SST
bit in BICSR.

500$: MOVL IIS1,R5 Step 1 compare data ==} R5.

MOVAB B"TABLE1,RB Pointer to init data table==}RB
ILOOP: MOVW SA(R2),R9 Read status address reg.

BLSS IERROR Br i' error to retry.
BBC R5,R9,ILOOP Wait 'or proper step bit to set.
MOVW (RB)+,SA(R0) Write next command to UDASA.
AOBLEQ IIS4,R5,ILOOP Repeat until finished.

Sample Bootstrap Code J-13

j---~--- ----------.----
; Do set-up and call primitive driver to load LBN 0 - pass control to
; boot block
i--- ----.----.------

Set up output registers and call a device-specific subroutine that
reads in one block off the boot device. The block is block 0, the
boot block.

Set up registers as follows:

R2 - boot device's CSR address
R3 - device unit number
RS - Relative address
R8 - LBN 0

CLRL RS
CLRL R8
PUSHL R7

BSBB BOO$UDAS0 QIO
BLBS R0,10$ -
HALT

Put relative load address in RS.
Set LBN to 0 ==) R8.
Put physical load address on
stack.
Call driver to read inLBN 0.
Branch on successful read ..
Error, halt processor.

Set up the remaInIng registers needed by VMB and by the boot block.
Then transfer control to the boot block code.

10$: Read was successful.
ADDL2

MOVAB
MOVL
POPR
SUBL
JMP

1t4,SP

BABOO$UDAS0_QIO,RG
Rl1,R0

Remove physical load add from
stack.

ItAM{RS}

Store address of driver.
Load device type.
Restore register.

It AX100,SP
BOOT_CODE_START(SP)

Restore original stack position.
Give control to boot block.

.PME

.SBTTL UDA TABLES - tables used for UDA initialization

1---
TABLES CONTAI"ING DATA FOR INITIALIZATION SEQUENCE

i---·· -----------------
The address of the ring base as given below is relative. If the
device does not MAP to the start of good G4k (such as the BDA),
then this address will be overwritten with the physical address as
part of the set-up .

TABLE1: . WORD STEP Step 1 - desc lengths = 1
(2**0), vector

RINGAD: .WORD AXFA04 Step 2 - 10 address of ring
.WORD 0 Step 3 - high address of

ring base

base

.WORD GO Step 4 - go bit to enable UDA

i--- -----------.----.
Boot code internal storage area

;-----------------~----------------------------------- --------.--------

FLAG field indicating type of address and BDA/non BDA

; 1=PHVSICAL-BDA/0=RELATIVE

J-14 Sample Bootstrap Code

(

(

l

(

(

E--

(

.PAGE

.SBTTL BOO$UDA50_QIO - primitive device-dependent ~ead/~rite driver

i~-- --------------.-.
UQ PORT PRIMITIVE DEVICE DRIVER

j--------_._-- ------------------

itt

FUNCTIONAL DESCRIPTION:

INPUTS:

R2
R3
R5
R8
4(SP)

- physical address of boot device's CSR (IP register)
- unit number of boot device
- starting address of transf.r (relative to load address)
- LBN to transfer from boot device
- physical address of transfer

IMPLICIT INPUTS:

RINGAD is loaded ~ith ~ither physical or relative address of
ring base ADD TYPE FLAG is set up to indicate physical or
relative addr;ssini for BUA and BLA. The UNIBUS adapter map
registers are already set up. The G4k of good memory are
mapped to map registers 0~127. Additional map registers
(up to 399) are set up to handle direct booting of the
VAX Diagnostic Supervisor.

OUTPUT:

i --

R0 - SS$ NORMAL on successful read
lo~-bit clear on error during read

R7-R9 - scratch registers

This routine preserves registers R1-RG, R10-R11, AP, and SP.

BOO$UDA50_QIO:
SUBL3 R5,4(SP),R7

ADDL2 RINGAD,R7

; Issue ONLINE command

100$: BSBB SETUP_IO

Get phys add of communications
area.
(Phys add - reI add + ringadd)

Subroutine sets UP parts of
packet common to ONLINE
and READ commands.

MOVW
TSTW

; NOTE: SETUP 10 returns R0 = 0.
lOP ONL,BARCMD+P OPCD(R7); Set ONLINE opcode into packet.
(R25 - Tickle UDA, cause it to initiate

XDONE0:TSTL
BLSS
TSTB
BNEQ

(R7)
XDONE0
BARMSG+P_STS(R7)
QIO_RETURN

polling.
Wait until UDA says that we
are finished (ownership bit==}0).
Check status in response packet.
Br on error to QIO_RETURN.

Set up the command packet to read a single logical block.

Sample Bootstrap Code J-15

BSBB

MOVW
MOVL
MOVL

BLBS·
MOVL

100$: MOVL

TSTW

XDONE1:TSTL
BLSS
TSTB
BNEQ

INCL

QIO RETURN:
- RSB

SETUP_IO Subroutine sets up parts of
packet common to ONLINE
and READ commands.

; NOTE: SETUP 10 returns R0 = 0.
MOP RD,BARCMD+P OPCD(R7); Load "READ~ opcode into packet.
R8,SARCMD+P LBN(R7) ; Load LBN in packet.
4(SP),BARCMD+P BUFF(R7); Load physical address of data

- buffer.
ADD TYPE FLAG,100$ Br if physical addressing (BDA).
R5,SARCMD+P_BUFF(R7) Overlay physical add with

relative.
M2,B ARCMD+P_BCNT+1(R7) Byte count is 512 (2*256).

(R2)

(Rn
XDONE1
BARMSG+P_STS(R7)
QIO_RETURN

R0

Access IP reg to cause
controller to initiate polling.
Wait until UDA says that we
are finished.
Check status.
Return error.

Return successful transfer.

Return to caller.
Return.

i--- -------------------
SUBROUTINE TO PERFORM COMMON PACKET SET-UP

i--- -------------------

Set up part of command packet common to ONLINE and READ commands.
Fill in ring pOinters for command response.

Implici t Inputs:
RINGAD must be adjusted with either the physical or relative
address of the communications area.

SETUP_IO:

CLOOp:

MOVL

MOVL

CLRQ
SOBGTR

MOVW
MOVW
MOVW
ADDL3

ADDL3

RSB

ENDDUBOOT:
. END STARTDU

J-16 Sample Bootstrap Code

R7,R9 Set up to zero communications
area.

MCOMM_END/8,R0 Ditto.

(R9)+ Clear packet storage area.
R0,CLOOP

; NOTE: this leaves R0 = 0.
M{RCMD-RMSG ,BARMSG+P LEN(R7); Load length into response.
M36,B ARCMD+P LEN(R7) -; Write length of command. '
R3,B ARCMD+P UNIT(R7) Load unit number.
MOWN!RMSG,RINGAD, (R7) Load resp descriptor with add of

response packet and owned
; by port.

MOWN!RCMD,RINGAD,B A4(R7) ; Load command descriptor
with add of command packet
and owned by port.

Delimit end of code.
Remove for file inclusion .

(

(

(

E-

(

(

(

Appendix K
Unexpected Error Conditions

K.1

K.2

K.3

10 Parity Error Interrupts Following Retry Timeout

A retry timeout error condition occurs if the KA820 module fails to access a
VAXBI node after 4096 retries, as specified by the VAXBI design. For exam­
ple, if a memory node is locked, and the KA820 module tries to perform an
mCI (interlock read with cache intent) to an address on that node, the KA820
module will retry the transaction up to 4096 times, incrementing the retry
timer with each try: If a write unlock transaction does not unlock the memory
before the retry timer expires, a timeout will occur. In response to this condi­
tion, KA820 microcode initiates a machine check and pushes a status word
with the event code lD (hex) on the stack.

Software can evaluate the condition and take appropriate action.

However, as a side effect of the retry timeout, the IPE (ID Parity Error) bit
may be set in the Bus Error Register (BER) of each node on the VAXBI bus.
Each node that has the HEIE (Hard Error Interrupt Enable) bit set in the
BICSR will then interrupt the processor.

Exception condition handling software should be written with this consider­
ation in mind.

Clearing the Bus Error Register

Error bits in the Bus Error Register (BER) on any node in a VAX 8200 com­
puter system may be set or cleared following power-up. Software should write
3FFF 0007 (hex) to each BER in the system to clear these bits.

Interrupts Following Initialization

The BR < 7:4) interrupt flags in the port controller may be set or cleared
following processor initialization. Software should deal with this situation by
setting up the system control block (SCB) before lowering the IPL below 17
(hex).

K-l

(

(

(

E--

(

c

E--

Glossary

This glossary defines terms used to describe the VAXBI bus, the BIlC, and the
KA820 module.

ACK data cycle

A data cycle of a read-type or write-type transaction during which the
slave asserts the ACK CNF code to acknowledge that no error has
been detected and that the cycle is not to be stalled.

ACLOL

A signal that indicates the condition of ac power to the computer sys­
tem. When AC LO L is false, dc power will remain steady for at least
4.2 milliseconds.

Adapter

A node that interfaces other buses, communication lines, or periph­
eral devices to the VAXBI bus.

Arbitration cycle

A cycle during which nodes arbitrate for control of the VAXBI bus.

Assert

To cause a signal to take the "true" or asserted state.

Asserted

To be in the "true" state.

Assertion

The transition of a signal from the "false" state to the "true" state.

Atomic

Pertaining to an indivisible operation.

Attached processor

A second or third processor in a multiprocessor system. Attached proc­
essors do not have direct access to the control panel, the console termi­
nal, serial-line units, the RCX50 controller, or the watch chip.

Backup translation buffer (BTB)-

A small memory on the KA820 module that stores translations (page
table entries) for 512 recently used virtual address pages, The backup
translation buffer backs up the mini~translation buffer (MTB).

Glossary-l

Glossary-2

Bandwidth

Bel

Bile

The data transfer rate measured in information units transferred per
unit of time (for example, megabytes per second). All bandwidth fig­
ures quoted in this manual take into account commandJaddress and
embedded ARB cycle overhead.

Bl chip interface; a synchronous interface bus that provides for all
communication between the BIle and the user interface.

Bus interconnect interface chip; a chip that serves as a general pur­
pose interface to the VAXBl bus.

Bile eSR space

The first 256 bytes ofthe 8K-byte nodespace, which is allocated to the
BIle's internal registers. See also Nodespace.

(

Bile-generated request (

A transaction request generated by the BIle rather than by the user
interface. The BIle can request only error interrupts.

Bile-generated transaction

A transaction performed solely by the BIle with no assistance from
the master port interface. Only lNTR and lPlNTR transactions can be
independently generated by the BIle. The user interface initiates
BIle-generated transactions by using the lPlNTRISTOP force bit, the (
user interface or error interrupt force bits, or by asserting one of the
Bel lNT(7:4) L lines. A BIle-generated transaction can also result
from a BIle-generated request, which results from a bus error that
sets a bit in the Bus Error Register.

Boot RAM

BTB

An 8K-byte memory on the KA820 module used as temporary storage
for boot macrocode.

See Backup translation buffer.

Bus access latency

The delay from the time a node desires to perform a transaction on the
VAXBl bus until it becomes master.

Bus adapter

A node that interfaces the VAXBl bus to another bus.

Busy extension cycle

A bus cycle during which a VAXBl node, not necessarily the master or
the slave of a transaction, asserts the Bl BSY L line to delay the start
of the next transaction.

(

(

(

(

(

(

Cache

A small, high-speed memory on the KA820 module that contains cop­
ies of recently accessed physical memory locations.

Cold start

Boot to bring a fresh copy of the operating system into memory.

Command/Address cycle

The first cycle of a VAXBI transaction. The information transmitted
in this cycle is used to determine slave selection. In some cases the
data on the BI D(31:0) L lines is not an actual address, but it serves
the same purpose: to select the desired slave node(s). For example, dur­
ing an INTR command a destination mask is used.

Command confirmation

The response sent by the slave(s) to the bus master to confirm partici­
pation in the transaction.

Command confirmation cycle

The third cycle of a VAXBI transaction during which slave(s) confirm
participation in the transaction.

Configuration data

Data loaded into the BIlC on power-up that includes the device type
and revision code, the parity mode, and the node ID.

Console

The manual control system integrated into the KA820 module in mi­
crocode. It lets you start and stop the processor and run diagnostics
using a terminal.

Console mode

A condition of the CPU in which the computer is halted and responds
only to machine control commands typed on the terminal connected to
serial-line unit O.

Control store

A set of five ROMIRAM chips containing KA820 microcode.

Corrected read data (CRD)

CRD

Cycle

Data sent on the VAXBI bus in response to a read transaction in which
the slave device has detected and corrected a data error. The slave de­
vice sends a corrected read data (CRD) code on the VAXBI bus when it
sends the data.

See Corrected read data.

The basic bus cycle of 200 nanoseconds (nominal), which is the time it
takes to transfer the smallest piece of information on the VAXBI bus.
A cycle begins at the leading edge of TO/50 and continues until the
leading edge of the next TO/50.

Glossary-3

Glossary-4

Data cycle

A cycle in which the VAXBI data path is dedicated to transferring data ("
(such as read or write data, as opposed to command/address or arbitra-
tion information) between the master and slave(s). During read
STALL data cycles, the BI D(3l:0) Land 1(3:0) L lines contain unde-
fined data. See also ACK data cycle, Read data cycle, STALL data cy-
cle, Vector data cycle, and Write data cycle.

Data transfer transactions

VAXBI transactions that involve the transfer of data as well as
command/address information: read-type, ·write-type, IDE NT, and
BDCST transactions.

DCLOL

A signal that indicates the condition of dc power to the VAXBI back­
plane. When DC LO L is false, power to the backplane is steady.

Deassert

To cause a signal to be in the "false" or deasserted state.

De.asserted

To be in the "false" state.

Oeassertion

. The transition of a signal from the "true" state to the "false" state.

OecodedlD

The node ID expressed as a single bit in a l6-bit field.

Device type

A l6-bit code that identifies the node type. This code is contained in
the BIIC's Device Register.

Direct memory access COMA) adapter

An adapter that directly performs block transfers of data to and from
memory.

EEPROM

A 16K-byte electrically erasable programmable read-only memory
used on the KA820 module to store customer choices for KA820 op­
tions, VAX bootstrap macrocode, and microcode patches.

Embedded arbitration cycle

An arbitration cycle that occurs (is embedded) in a VAXBI transac­
tion.

EncodedlD

The node ID expressed as a 4-bit binary number. The encoded ID is
used for the master's ID transmitted during an embedded ARB cycle.

(

(

(

(

c

E---

Even parity

The parity line is asserted if the number of asserted lines in the data
field is an odd number.

Event flag

A status posting bit maintained by an operating system or the VAX
Diagnostic Supervisor, used to pass signals between the operator and
software or between programs.

Expansion module

A VAXBI module that does not attach directly to the VAXBI bus. A
VAXBI node that requires more than one module has one module that
attaches directly to the VAXBI (that is, contains a BIlC) and one or
more expansion modules that communicate with the first module over
the user-defined I/O section.

Extension cycle

Fchip

H

A bus cycle during which a VAXBI transaction is made longer. See
STALL data cycle, Busy extension cycle, and Loopback extension
cycle.

One of three chips in the KA820 processor chip set: floating point ac­
celerator.

Designates a high-voltage logic level (that is, the logic level closest to
V cc). Contrast with L.

IDENT arbitration cycle

The fourth cycle of anIDENT transaction during which nodes arbi­
trate to determine which is to send the vector.

liE chip

One of three chips in the KA820 processor chip set, implementing the
instruction buffer, microsequencer, instruction execution unit, and
MTB.

Illegal confirmation code

A CNF code that is not permitted in a particular VAXBI cycle (such as
a RETRY comman.d confirmation to a multi-responder command).

Interlock commands

The two commands, IRCI (Interlock Read with Cache Intent) and
UWMCI (Unlock Write Mask with Cache Intent), that are used to im­
plement atomic read-modify-write operations.

Internode transfer

A VAXBI transaction in which the master and slave(s) are in different
VAXBI nodes. Contrast with Intranode transfer.

Interrupt port

Those BCI signals that are used in generating INTR transactions.

Glossary-5

Glossary-6

Interrupt port interface

That portion of user logic used to interface to the interrupt port of the
BIlC.

Interrupt sublevel priority

Interrupt priority information used during an IDENT transaction to
determine which node with a pending interrupt is to provide the vec­
tor. The interrupt sublevel priority corresponds to the node ID.

Interrupt vector

In VAXNMS systems, an unsigned binary number used as an offset
into the system control block. The system control block entry pointed
to by the VAXBI interrupt vector contains the starting address of an
interrupt handling routine. (The system control block is defined in the
VAX Architecture Handbook.)

Intranode transfer

(

A transaction in which the master and slave are in the same node. (
Loopback transactions are intranode transfers. Contrast with Inter- .
node transfer.

Invalidate

L

To mark an entry in the cache, MTB, or BTB to show that it no longer
contains current information.

Designates a low-voltage logic level (that is, the logic level closest to C·.
ground). Contrast with H.

Latency

Read access time; see Bus access latency.

Local memory

VAXBI memory that can be accessed without using VAXBI transac­
tions; for example, VAXBI-accessible memory on a single board com-
puter. (--

Logical console

A CPU that performs console functions for another CPU.

Loopback extension cycle

A cycle of a loopback transaction during which a node asserts both BI
BSY Land BI NO ARB L to delay the start of the next transaction.

Loopback request

A request from the master port interface asserted on. the BCI RQ (1:0 >
L lines which permits intranode transfers to be performed without us­
ing the VAXBI bus.

Loopback transaction

A transaction in which information is transferred within a given node
without use of the VAXBI data path. Contrast with VAXBI transac- (
~a ~

(

(

(

(----

(

Macrocode

Instructions written in MACRO-32 or a higher level programming
language.

Mapped adapter

Master

A DMA adapter that performs data transfers between a system with a
contiguous memory space and VAXBI address space (in which mem­
ory need not be contiguous). The mapping is done by using a set of map
registers located in the adapter.

The node that gains control of the VAXBI bus and initiates a VAXBI or
loopback transaction. See also Pending master.

Master port

Those BCI signals used to generate VAXBI or loopback transactions.

Master port interface

That portion of user logic that interfaces to the master port of the
BIlC.

Master port request

A request (either VAXBI or loopback) generated by the master port
interface through the use of the BCI RQ(1:0) L lines.

Master port transaction

Mchip

Any transaction initiated as a result of a master port request.

One of three chips in the KA820 processor chip set, used for BTB and
cache tag storage, internal processor registers, interrupt handling,
memory management, clock generation, serial-line units, and inter­
face to the port controller.

Microcode

Instructions contained in control store that carry out the functions of
the VAX instruction set, console functions, and self-test.

Mini-translation buffer (MTB)

A translation buffer that stores translations (page table entries) for
five recently used virtual address pages.

Module

A single VAXBI card that attaches to a single VAXBI connector.

MTB

See Mini-translation buffer.

Multi-responder commands

VAXBI commands that allow for more than one responder. These in­
clude the INTR, IPINTR, STOp, INVAL, and BDCST commands.

Glossary-7

Glossary-8

Node

A VAXBI interface that occupies one of sixteen logical locations on a
VAXBI bus. A VAXBI node consists of one or more VAXBI modules.

Node 10

A number that identifies a VAXBI node. The source of the node 10 is
an 10 plug attached to the backplane.

Node reset

A sequence that causes an individual node to be initialized; initiated
by the setting of the Node Reset bit in the VAXBI Control and Status
Register.

Nodespace

An 8K-byte block ofI/O addresses that is allocated to each node. Each
node has a unique nodespace based on its node 10.

Null cycle

A cycle in which all VAXBI lines are de asserted (that is, no transac­
tion or arbitration is taking place).

Odd parity

The parity line is asserted if the number of asserted lines in the data
field is an even number.

Parity mode

Specifies whether parity is generated by the BIlC or by the user inter­
face.

Pending master

. A node that has won an arbitration but which has not yet begun a
transaction.

Pending request

A request of any type, whether from the master port or a BIlC­
generated request, that has not yet resulted in a transaction.

Physical address

A 30-bit integer identifying a byte location in physical memory or a
register in an I/O device,

Physical console

Serial-line unit 0 and the related microcode functions available on the
primary processor.

Pipeline request

A request from the master port that is asserted prior to the deasser­
tion of BCI RAK L for the present master port transaction; that is, a
new request is posted prior to the completion of the previous transac­
tion.

(

(

(

(-- .

l

(

c

(

Port controller

An interface that connects the processor section of the KA820 module
with the VAXBI interface and the PCI bus devices (EEPROM, boot
RAM, watch chip, and RCX50 controller).

Power-down/Power-up sequence

The sequencing of the BI AC LO Land BI bc LO L lines upon the loss
and restoration of power to a VAXBI system. See also System reset.

Primary processor

The processor installed in VAXBI slot KIJ1. This processor is con­
nected to the control panel, RCX50 controller, watch chip, serial-line
units 0-3.

Private memory

Memory that cannot be accessed from the VAXBI bus.

Program 1/0 mode

The normal condition of the CPU, in which the computer executes
software. Characters typed on the console terminal are passed
through to the operating system. The console terminal acts like a
standard terminal on one of the other serial-line units.

Programmed 1/0 (PIO) adapter

An adapter that does not access memory on the VAXBI bus but inter­
acts only with a host processor.

RCLK (receive clock)

RDS

The clock phase during which information is received from the VAXBI
bus; equivalent to TIOO/150.

See Read data substitute.

Read data cycle

A data cycle in which data is transmitted from a slave to a master.

Read data substitute (RDS)

Faulty, uncorrectable data sent on the VAXBI bus in response to a
read-type transaction. The slave device sends the read data substitute
(RDS) code on the VAXBI bus when it sends the bad data.

Read-type commands

Any of the various VAXBI read commands, including READ, RCI
(Read with Cache Intent), and IRCI (Interlock Read with Cache In­
tent).

RESERVED code

A code reserved for use by DIGITAL.

Glossary-9

Glossary-lO

RESERVED field

A field reserved for use by DIGITAL. The node driving the bus must
ensure that all VAXBI lines in the RESERVED field are deasserted. (
Nodes receiving VAXBI data must ignore RESERVED field informa-
tion. This requirement provides for adding functions to future VAXBI
node designs without affecting compatibility with present designs.
Example: The BI D(31:0) Land BI 1(3:0) L lines during the third
cycle of an INTR transaction are RESERVED fields.

Reset module

In a VAXBI system, the logic that monitors the BI RESET L line and
any battery backup voltages and that initiates the system reset se­
quence.

Resetting node

The node that asserts the BI RESET L line.

Retry state

A state that the BIIC enters upon receipt of a RETRY confirmation
code from a slave. If the master reasserts the transaction request, the
BIIC resends the transaction without having the user interface pro­
vide the transaction information again. The command/address infor­
mation and the first data longword, if a write transaction, are stored
in buffers in the BIIC.

Self-test

A microcoded test that identifies hardware faults on a VAXBI module.

Single-responder commands

Slave

VAXBI commands that allow for only one responder. These include
read-type and write-type commands and the IDENT command. Al­
though multiple nodes can be selected by an IDENT, only one returns
a vector.

A node that responds to a transaction initiated by a node that has
gained control of the VAXBI bus (the master).

Slave port

Those BCI signals used to respond to VAXBI and loopback transac­
tions.

Slave port interface

That portion of user logic that interfaces to the slave port of the BIIC.

STALL data cycle

A data cycle of a read-type or write-type transaction during which the
slave asserts the STALL CNF code to delay the transmission of the
next data word.

(

(

(--

(

(

(

System reset

An emulation of the power-downlpower-up sequence that causes all
nodes to initialize themselves; initiated by the assertion ofthe BI RE­
SETL line.

Target bus

The bus that a VAXBI node interfaces to the VAXBI bus.

TCLK (transmit clock)

The clock phase during which information is transmitted on the
VAXBI bus; equivalent to TO/50.

Transaction

The execution of a VAXBI command. The term "transaction" includes
both VAXBI and loopback transactions.

UNDEFINED field

A field that must be ignored by the receiving node(s). There are no
restrictions on the data pattern for the node driving the VAXBI bus.
Example: The BI D(31:0) Land BI 1(3:0) L lines during read STALL
data cycles and vector STALL data cycles are UNDEFINED fields.

User interface

All node logic exclusive of the BIIC.

User interface CSR space

That portion of each nodespace allocated for user interface registers.
The user interface CSR space is the BK-byte nodespace minus the low­
est 256 bytes, which comprise the BIIC CSR space.

User interface request

A transaction request from the user interface, which can take the
form of a master port request, an assertion of a BCI INT (7:4) L line, or
the setting of a force bit.

VAXBI primary interface

The portion of a node that provides the electrical connection to the
VAXBI signal lines and implements the VAXBI protocol; for example,
the BIIC.

VAXBI request

A request for a VAXBI transaction from the master port interface that
is asserted on the BCI RQ(1:0) L lines.

VAXBI system

All VAXBI cages, VAXBI modules, reset modules, and power supplies
that are required to operate a VAXBI bus. A VAXBI system can be a
subsystem of a larger computer system.

VAXBI transaction

A transaction in which information is transmitted on the VAXBI sig­
nallines. Contrast with Loopback transaction.

Glossary-ll

Glossary-12

VAX interrupt priority level (IPL)

In VAXNMS systems, a number between 0 and 31 that indicates the ('
priority level of an interrupt with 31 being the highest priority. When
a processor is executing at a particular level, it accepts only interrupts
at a higher level, and on acceptance starts executing at that higher
level.

VAX port adapter

Vector

In a VAXBI system, an adapter that conforms to the VAX port archi­
tecture, uses interlock transactions to access command and response
queues in VAXBI memory, and performs virtual-to-physical memory
translation by using page tables located in memory on the VAXBI bus.

An address pointing to a routine that services interrupts or excep­
tions. The system control block is a table of vectors.

Vector data cycle

A data cycle in which an interrupt vector is transmitted from a slave
to a master.

Virtual address

A 32-bit integer identifying a byte location mapped by memory man­
agement.

Warm start

Restarting the software at the point where processing stopped in a
power failure.

Window adapter

A bus adapter that maps addresses that fall within one contiguous re­
gion (a "window") of a bus's address space into addresses in a window
(possibly in a different region) in another bus's address space.

Window space

A 256-Kbyte block of I/O addresses allocated to each node based on
node ID and used by bus adapters to map VAXBI transactions to other
buses.

Write data cycle

A data cycle in which data is transmitted from a master to a slave.

Write-type command

Any of the various VAXBI write commands, including WRITE, WCI
(Write with Cache Intent), WMCI (Write Mask with Cache Intent),
and UWlVlCI (Unlock Write Mask with Cache Intent).

(

E---

l

(

(

(

E--

Index

abort
exception, 5-1

abort command line
console command, 4-18

ACLO
signal,3-2
timeout, 4-18

Accelerator CSR (ACCS), F-16
ACCS

(Accelerator CSR), F-16
Register

contents, G-l
ACK confirmation code, 2-17
address space qualifiers

for console command, 4-10
address translation, 2-5
AP (Argument Pointer), 4-3
ARB (arbitration control) bits, D-4
arbitration control (ARB) bits, D-4
Argument Pointer, 4-3
ASCII console, 4-1
ASTLVL (Asynchronous System Trap Level),

F-7
asymmetrical multiprocessor system, 1-1
Asynchronous System Trap Level (ASTLVL),

F-7
attached processor, 1-1, 3-4, 3-21, 4-15

starting, 3-22
attaching the KA820, 7-7
auto start, 3-1
Auto Start/Halt power-up option, E-l
automatic load device, 4-1, 4-15

B console command, 4-7
backup translation buffer, 2-5
bad parity, E-5

received, 5-10

basic instruction exerciser, 7-10 to 7-11
battery backup, 3-1
baud rate, 2-9

console, 4-6
BCI Control Register, D-I0 to D-14

contents, G-l
BDCST transaction, 2-18
BER (Bus Error Register), 2-14, D-5 to D-8
BI RESET, E-2
BI STF, E-3
BI STF L, 3~7
BIIC

internal register address, 2-14
registers, 2-14, D-l to D-14
test, 3-7
transaction bus timeout error, 5-10
VAXBI interface chip, 2-10

binary load and unload
console command, 4-15

BINID (VAXBI Node Identification Register),
F-26

BISTOP (VAXBI STOP Register), F-26
block diagram

CPU section, 2-2
KA820, 1-2
port controller and PCI devices, 2-20
VAXBI interface, 2-12

boot, 3-1, 3-14, 3-15 to 3-16
block,3-16
code sample, J-l
cold start, 3-1
console command, 4-7
control flags, 1-1
device, 3-17

default, 3-17
first, 4-12
second, 4-12

Index-l

specification, 4--8
dispatcher, J-2
failure, 4--18
parameter, 4--8
software date and time responsibilities,

6-16
software responsibilities, 3-17

boot RAM, 3-16, 6-11
test, 3-7

booting
EVKAA,7-4
VDS stand-alone, 7-5

bootstrap
see boot

bootstrap-in-progress flag, 3-14, 3-15
clearing, 3-17

BPM,5-10
BREAK command, 4--6
broadcast transaction, 2-18
Broke bit, 3-6, 3-11, D-4
BTB,2-5

addressing, 2-6
array test, 3-7
data parity error, 5-5
data parity error flag, 5-9
fill cycle, 2-7
miss, 2-6
tag addressing, 2-6
tag invalidate, 2-7
tag parity error, 5-5
tag parity error flag, 5-9
tags, 2-6

BTO error, 5-10
bus

timeout, E-5
Bus Error Register, 2-14, D-5 to D-8

contents, G-1

C console command, 4--9
cables, A-4
cache, 2-7

addressing, 2-7
array test, 3-7
data parity error, 5-5
data parity error flag, 5-9
fill cycle, 2-8
invalidate, 2-9
miss, 2-8
tag, 2-7
tag addressing, 2-7
tag parity error, 5-5
tag parity error flag, 5-9

Cache Disable Register (CADR), F-14
Cache Invalidate Register (CACHEX), F-25

Index-2

CACHEX (Cache Invalidate Register), F-25
CADR

(Cache Disable Register), F-14
Register

contents, G-1
CAL bus, 2-3, 2-6, 2-8
CAM (contents addressable memory), 2-11
change console baud rate command, 4--6
CHM

from interrupt stack
halt code, 4--3

to interrupt stack
halt code, 4--3

cluster exerciser, 7-2
CMISS, 2-10
CNSL ENB, E-2
CNSL INTR, E-8
cold start, 3-1, 3-14, 3-15 to 3-16
command/address cycle, 2-15
comment (!)

console command, 4--17
confirmation code, 2-17
connector

loopback, 7-12
wrap, 7-12

connectors C1 and C2, A-2
connectors D1 and D2, A-3
connectors E1 and E2, A-3
CONS LOG, E-1
console

baud rate, 4--6
default, 4--12

dialog
sample, 4--12

entry, 4--2 to 4--4
error code, 4--18
functions, 4--1
halt

halt code, 4--3
output

sample, 4--4
self-test, 4--14

secure/enabled selection, E-2
terminal, 4--1

console command, 4--4 to 4--18
!, 4--17
address space qualifier, 4--10
B,4--7
binary load and unload, 4--15
boot, 4--7
C,4--9
comment, 4--17
continue, 4--9
CTRLlP, 4--17

(

(

(

(

(

(

(

CTRL/Q, 4-17
CTRL/S, 4-17
D,4-9
data size qualifier, 4-10
deposit, 4-9
E,4-9
E/M,5-12
examine, 4-9
forward, 4-15
forward next character, 4-17
guidelines, 4-5
H,4-13
halt,4-13
1,4-13
initialize, 4-13
N,4-13
next, 4-13
S,4-13
start, 4-13
T,4-14
T/M,4-15
test, 4-14
test with menu, 4-15
U,4-18
X,4-15

console mode, 4-1
error, 5-12

Console Receive CSR (RXCS), F-11
Console Receive Data Buffer Register

(RXDB), F-11
Console Transmit CSR (TXCS), F-12
Console Transmit Data Buffer Register

(TXDB), F-13
contents-addressable memory, 2-11
continue

console command, 4-9
control store, 2-11

test, 3-7
corrected read data (CRD), D-8
CPU, 1-2

block diagram, 2-2
CPU double error, 5-5

halt, 5-11 to 5-12
halt code, 4-3

CPU revision code, D-2
CPU section, 2-2 to 2-12
CRD (corrected read data), D-8
CTRL/P,4-2

console command, 4-17
CTRLlQ

console command, 4-17
CTRL/S

console command, 4-17
CTRLlU

console command, 4-18
Current Processor Status Longword

at failure, 5-11
Current Program Counter

at failure, 5-11
customer options, 1-4

D console command, 4-9
DAL bus, 2-3, 2-7

interface
test, 3-7

data cycle, 2-15
data size qualifier

for console command, 4-10
Day-of-the-Month Register, 6--12
DCLO

signal,3-2
dedicated 1/0 device, 6--1 to 6--31
dedicated memory device, 6--1
default bootstrap device, 3-17
deposit

console command, 4-9
device interrupt sequence, 2-18
Device Register, 2-14, D-1
device type, D-2
diagnostic, 7-1 to 7-13

flags, 7-7
help, 7-6
program categories, 7-1
test repetition, 7-8

diskette, 6--16
double error, 5-5
double-bit error, 3-17
driver output

current
PCI bus, C-3

voltage
PCI bus, C-3

DTYPE,2-14
contents, G-1
Register, D-1

DU series bootstrap code (MSCP devices), J-4

E console command, 4-9
ElM console command, 5-12
EBDAN, 7-12 to 7-13
EBKAX, 7-12
EEPROM, 2-21, 3-16, 6--9

bootstrap dispatcher, J-2
contents, H-1
customer options

address, 4-9
DU series bootstrap code (MSCP devices),

J-4

Index-3

RX50 bootstrap code, J-3
sample bootstrap code, J-1
test, 3-7
update, 3-4
writing data, 4-10, 6--11

EINTRCSR, 2-14
ENBL PIPE, E-6
environmental requirements, 1-7
error

bad parity received, 5-10
BIIC transaction bus timeout, 5-10
BTO,5-10
console mode, 5-12
CPU double, 5-5
double, 5-5
flag

Memory Address Register, 5-9
VAXBI,5-9

ICRMC, 5-10
ICRMD,5-10
ID parity error interrupt following retry

timeout, K-1
illegal CNF received, 5-10
master port transaction retry timeout, 5-10
master transmit check, 5-10
MTB miss, 5-9
MTCE,5-10
NCRMC, 5-10
NO ACK CNF received, 5-10
parity, E-6
port controller detected, 5-9
power-up, 5-12
RDSR,5-10
read data substitute, 5-10
reserved status code received, 5-10
RTO,5-10
timeout, K-1
transaction error, 5-5
unexpected, K-1
VAXBI node, 5-5

Error Interrupt Control Register, 2-14, D-8
to D-10

contents, G-1
ESP (Executive Stack Pointer), F-3
event code, E-5

error, E-4
EVENT LOCK, E-4
EVKAA, 7-4 to 7-5
EVKAB, 7-10 to 7-11
EVKAC, 7-11
EVKAE, 7-11
examine

console command, 4-9
exception, 5-1

Index-4

abort, 5-1
fault, 5-1
handler, 5-1
trap, 5-1
vector, 5-1

execution unit, 2-4
Executive Stack Pointer (ESP), F-3
external signals affecting power-up, 3-2

F chip, 2-10
test, 3-7

failure
Current Processor Status Longword, 5-11
Current Program Counter, 5-11
microPC, 5-11
Program Counter, 5-11

fault
exception, 5-1

first part done
code, 3-10
(FPD) flag, 5-8, 5-11

flag
diagnostic, 7-7

floating-point instruction exerciser, 7-11
forward next character

console command, 4-17
forwarding console mode, 4-2, 4-15
FPD

code, 3-10
(first part done) flag, 5-8, 5-11

general register
address, 4-9

good memory
64K-byte block, 3-16

H console command, 4-13
halt

code, 4-3
console command, 4-13

HALT instruction
halt code, 4-3

hard error interrupt enable (HEIE) bit, D-4
hard-core instruction test, 7-4 to 7-5
hardware

error, 4-18
generated interrupt, 5-2

hardware-fault state
bit (HFSB), 3-6
flag, 5-5

HEIE (hard error interrupt enable) bit, D-4
help

diagnostic, 7-6
HFSB,3-6

(

(

(

(

(

(

(

c--

(

Hours Register, 6-12

I console command, 4-13
lIE chip, 2-3

and M chip interaction test, 3-7
internals test, 3-7

110 address, 2~21
space, 2-13

110 cables, A-4
110 device, 6-1
ICCS (Interval Clock Control Register), F-9
ICR (Interval Count Register), F-I0
ICRMC error, 5-10
ICRMD error, 5-10
IDENT transaction, 2-17, 2-18, 2-19
identify interrupting node, 2-17, 2-18
illegal CNF

received, 5-10
imbedded arbitration cycle, 2-15
initialization, 3-1, 3-8 to 3-12

power-up, 3-9
pro~essor, 3-9
system, 3-11

initialize
console command, 4-13

installation, B-1
instruction buffer, 2-3
interlock read with cache intent, 2-17, 2-18
interlock transaction, 2-18
internal processor register, 2-9, F-l to F-26

address, 4-9
interprocessor interrupt, 2-17, 2-18
Interprocessor Interrupt Request Register

(IPIR), F-8
interrupt, 2-17, 2-18, 5-1

arbitration, 2-19
hardware generated, 5-2
masking, 5-2
microcode generated, 5-2
priority level, 5-1, 5-2
service routine, 2-20
software generated, 5-1
sublevel,2-19
vector, 2-19, 5-1
with unexpected interrupt priority level,

5-5
Interrupt Destination Register, 2-14
interrupt priority level (lPL), 2-18, F-7
interrupt stack not valid

halt code, 4-3
Interrupt Stack Pointer (ISP), F-3
Interval Clock Control Register (ICCS), F-9
Interval Count Register (ICR), F-I0
INTR transaction, 2-17, 2-18

INTRDES Register, 2-14
INVAL transaction, 2-18
invalid access

to an internal processor register, 4-18
invalid CNF

code, E-5
invalid system control block

halt code, 4-3
invalidate, 2-18
IPINTR transaction, 2-17, 2-18
IPIR (Interprocessor Interrupt Request Regis-

ter), F-8
IPL (interrupt priority level), F-7
IPR,2-9
IRCI transaction, 2-17, 2-18
ISP (Interrupt Stack Pointer), F-3

jumper configuration, 3-4

KA820
block diagram, 1-2
module layout, 1-5

KA820 Serial-Line Unit Diagnostic, 7-12 to
7-13

Kernel Stack Pointer (KSP), F-2
KSP (Kernel Stack Pointer), F-2

LED,3-4
fault, 3-4
red, 3-4, 5-5
yellow, 3-4

level 2
diagnostic, 7-2

level2R
diagnostic, 7-2

level 3
diagnostic, 7-1

level 4
diagnostic, 7-1

level 7:4, n.:-l0
light emitting diode (LED), 3-4
load path, 7-2 to 7-3
loading microcode for other nodes, 3-17
local console mode, 4-2, 4-15
logical console, 3-4, 4-1

node ID, 4-12
operation, 4-20 to 4-21

loopback
mode, 2-14
transaction, 2-14

loopback connector, 7-12

M chip, 2-5
internal register, 4-9

Index-5

internals test, 3-7
Machine Check Error Summary Register

(MCESR), F-15
machine-check

condition flag, 5-5
exception, 5-5 to 5-11
Memory Address Register, 5-8
parameter 1, 5-8
recovery, 5-6
stack,5-6
status word, 5-8
Virtual Address Prime Register, 5-8
Virtual Address Register, 5-8

macrodiagnostic program c, 7-1
MAPEN

(Memory Management Enable Register),
F-18

Register
contents, G-l

masking interrupts, 5-2
master

node, 2-16
port transaction retry timeout, 5-10
transmit check error, 5-10

MCESR (Machine Check Error Summary
Register), F-15

memory
failure on boot, 4-18
node, 3-11
node ending address, 3-11
node starting address, 3-11
size, 3--11
write transaction status, E-5

Memory Address Register locked error flag,
5-9

memory device, 6-1
Memory Management Enable Register

(MAPEN), F-18
MFPR,2-9

to RXCD Register, D-15
MIB bus, 2-3

parity error, 5-5, 5-11
microaddress generator, 2-4
microcode

generated interrupt, 5-2
patch,2-21
patch revision, D-2
situation unforeseen, 5-5

microinstruction bus, 2-3
microPC

at failure, 5-11
microsequencer, 2-4
mini-translation buffer, 2-5
Minutes Register, 6-12

Index-6

module
110 pin definition, A-I

module installation, B-1
module replacement, B-1
Month Register, 6-12
MTB,2-5

miss, 2-6
miss error flag, 5-9

MTCE error, 5-10
MTPR,2-9

to RXCD Register, D-15
multiprocessor

configuration start, 3--21
system, 1-1

N console command, 4-13
NCRMC error, 5-10
next

console command,4-13
Next Interval Count Register (NICR), F-I0
NICR (Next Interval Count Register), F-I0
NOACK

confirmation code, 2-17, E-5
received, 5-10

Node
Reset bit (NRST), D-4

node, 1-4
ID, D-5
ID plug, 2-13, D-5
private space, 2-13

nodespace, 2-13
base addresses, 2-14

NRST (Node Reset) bit, D-4

operating systems, 1-1

PO Base Register (POBR), F-4
PO Length Register (POLR), F-4
POBR (PO Base Register), F-4
POLR (PO Length Register),F-4
PI Base Register (PIBR), F-5
PI Length Register (PILR), F-5
PIBR (PI Base Register), F-5
PILR (PI Length Register), F-5
page table entry, 2-5
PAL bus, 2-3, 2-7
parity error, E-6

BTB data, 5-5, 5-9
BTB tag, 5-5, 5-9
cache data, 5-5, 5-9
cache tag, 5-5, 5-9
MIB bus, 5-5, 5-11

passive release, 5-5
patch,2-11

(

(

(

(

(

(

t---

(

block format, 3-17
error, 4-18
load sequence

console commands, 4-19
loading from the console, 4-19
primary, 2-11, 3-6
reading, 3-20
secondary, 2-11

loading, 3-17
PC (Program Counter), 4-3
PCBB (Process Control Block Base), F-6
PCI bus, 6-1

addressing, 2-21, 6-1
bidirectional current level, C-4
bidirectional voltage level, C-4
cable, A-4
connector, A-4
device, 2-20
device address, 6-1
driver output current, C-3
driver output voltage, C-3
input signal current level, C-4
input signal voltage level, C-4
off-board signal, C-l
signal, A-3

PCM module, 3-2, 3-3
PCnt! CSR, 2-21, E-l to E-9

contents, G-l
Performance Monitor Enable Register (PMR),

F-19
physical address, 4-9
physical console, 3-4
physical/logical console selection, E-l
pipeline mode control, E-6
PMR (Performance Monitor Enable Register),

F-19
polling VAXBI nodes, 3-11
port controller, 2-10, 2-20 to 2-21

block diagram, 2-20
timeout, E-7

Port Controller CSR, E-l to E-9
port controller detected error flag, 5-9
power

outage, 2-21
requirements, 1-6

power-downlpower-up sequence, 3-2
power-fail restart

halt code, 4-3
power-up, 3-1

error, 5-12
initialization, 3-9
microcode flow, 3-4
options, 3-'1

prefetch function, 2-4

PRIM circuit, 3-2
primary bootstrap, 3-16
primary patch, 2-11, 3-6
primary processor, 1-1, 2-13, 3-4, 3-21, 4-15
privileged architecture exerciser, 7-11
process control block base (PCBB), F-6
processor chip set, 2-2
processor initialization, 3-9, 4-13
Processor Status Longword (PSL), 4-12
Program Counter, 4-3

at failure, 5-11
program I/O mode, 4-1
program mode run, E-4
PSL (Processor Status Longword), 4-12
PTE,2-5

invalidation, 2-7

RAM,2-11
RCI transaction, 2-17, 2-18
RCX50 controller, 6-16 to 6-31

Clear Address Register, 6-30
Current Sector Register, 6-26
Current Status Register, 6-26
Current Track Register, 6-26
data transfer examples, 6-18
data transfer status, 6-22
disable, 4-12
disk surface selection, 6-20
Empty Sector Buffer Register, 6-30
error code, 6-25
Error Register, 6-24
extend function, 6-21
Fill Sector ~uffer Register, 6-31
function codes, 6-21
Incorrect Track Register, 6-28
initialize, 6-21
interface, 2-21
interrupt enable (RXIE), E-8
interrupt request, E-8
maintenance mode, 6-20
read address, 6-22
read status, 6-20
restore drive, 6-21
RX5CA Register, 6-30
RX5CSO Register, 6-19
RX5CSI Register, 6-23
RX5CS2 Register, 6-25
RX5CS3 Register, 6-26
RX5CS4 Register, 6-26
RX5CS5 Register, 6-29
RX5FB Register, 6-31
RX5GO Register, 6-30
Sector Register, 6-25
Start Command Register, 6-30

Index-7

System Configuration Register, 6--28
test, 3-7
Track Register, 6--23
write sector, 6--22

RDS (read data substitute), D-7, E-5
RDSR error, 5-10
read data substitute, D-7, E-5

error, 5-10
read sector, 6--21
READ transaction, 2-18
read with cache intent, 2-17, 2-18
read-modify-write, 2-18
Receive Console Data Register (RXCD), D-14

to D-15, F-24
recovery

from machine check, 5-6
red LED, 5-5
register contents

at boot entry, G-l
at power-up, G-l

registers accessible to other nodes, 2-14
repair recommendations, 7-3
replacement, B-1
reserved status code received

error, 5-10
Restart

push button, 3-2
restart, 3-14 to 3-15

parameter block (RPB), 3-14
warm stal't, 3-1

restart console output command, 4-17
restart-in-progress flag, 3-14

clearing, 3-17
RETRY confirmation code, 2-17
retry'timeout, E-5

error, K-l
ROM,2-11
ROM/RAM chips, 2-11
RPB (restart parameter block), 3-14
RS232,2-9
RS423 , 2-9
RSTRT HLT, E-l
RTO error, 5-10
RUN, E-4

command, 7-8
light, 3-16, 4-7

RX IRQ, E-8
RX50 bootstrap code, J-3
RXCD

console interrupt, E-8
lock,2-18
(Receive Console Data Register), D-14 to

D-15, F-24
Register

Index-8

contents, G-l
Register timeout, 4-18

RXCS (Console Receive CSR), F-11
RXCSI (Serial-Line Unit 1 Receive CSR),

F-21
RXDB (Console Receive Data Buffer Regis­

ter), F-11
RXDBI (Serial-Line Unit 1 Receive Data

Buffer Register), F-22
RXIE (RCX50 interrupt enable), E-8

S console command, 4-13.
sample

bootstrap code, J-l
console output, 4-4

SBR (System Base Register), F-5
SCBB (System Control Block Base), F-6
secondary bootstrap, 3-16
secondary patches, 2-11, 3-17

loaded, D-2
loading, 3-17

Seconds Register, 6--12
segment A, A-I
segment B, A-2
SEIE (soft error interrupt enable) bit, D-4
selecting the KA820, 7-7
self-test, 3-4 to 3-8, 4-14

console output, 3-8, 4-14
failure, 3-4, 4-14, 4-18
fast, 3-1
fast/slow selection, E-3
on attached processors, 3-8
slow, 3-1
status, E-3
status bit, D-4

SELF-TEST PASS, 3-6, E-3
serial-line unit, 2-9, 6--1

cable, A-4
connector, A-4
control and status register, 6--3
receive data buffer register, 6--5
signal, A-2, C-l
transmit control and status register, 6--6
transmit data buffer register, 6--8

serial-line unit 0, 4-1
default baud rate, 4-7

serial-line unit 1
Receive CSR (RXCSl), F-21
Receive Data Buffer Register (RXDB1),

F-22
Transmit CSR (TXCSl), F-22
Transmit Data Buffer Register (TXDBl),

F-23
SET EVENT command, 7-8

(

(

(

(

(

(

(

SET FLAGS command, 7-7
setting the time, 3-17
SHOW EVENT command, 7-8
SHOW FLAGS command, 7-7
SID (System Indentification Register), F-19
signal

off-board
drive load characteristics, C-l
autput characteristics, C-l

PCI bus, A-3, C-l
serial-line unit, A-2, C-l
VAXBI, A-I

single-processor system, 1-1
SIRR (Software Interrupt Request Register),

F-7
SISR (Software Interrupt Summary Register,

F-8
slave

node, 2-16
responses from the KA820, 2-18

SLR (System Length Register), F-5
soft error interrupt enable (SEIE) bit, D-4
software

boot control flags, 4-8, 1-1
restart-in-progress flag, 3-14

clearing, 3-17
software generated interrupt, 5-1
Software Interrupt Request Register (SIRR),

F-7
Software Interrupt Summary Register (SISR),

F-8
software updates, 2-21
SSP (Supervisor Stack Pointer), F-3
STALL

confirmation, 2-20
code, 2-17

start
console command, 4-13

STF,3-7
stop console output command, 4-17
STOP/transaction, 2-17, 2-18
STS/bit, D-4
Supervisor Stack Pointer (SSP), F-3
symmetrical multiprocessor system, 1-1
System Base Register (SBR), F-5
system control block, 5-3 to 5-5

read error
halt code, 4-3

System Control Block Base (SCBB), F-6
System Control Block Base Register, 5-3
System Indentification Register (SID), F-19
system initialization, 3-11

sequence, 3-12
System Length·Register (SLR), F-5

system reset control, E-2

T console command, 4-14
TIM console command, 4-15
TBCHK (Translation Buffer Check Register),

F-20
TBDR

(Translation Buffer Disable Register), F-14
TBDR Register

contents, G-l
TBIA (Translation Buffer Invalidate All Reg­

ister), F-18
TBIS (Translation Buffer Invalidate Single

Register), F-19
test

console command, 4-14
diagnostic program

repetitions, 7-8
sequence, 7-3

test with menu
console command, 4-15

time
setting, 3-17

Time of Day Register, 2-21, 6-11
(TODR), F-I0

time of year, 6-11
timeout

bus, E-5
error, K-l
port controller, E-7
retry, E-5

TIMEOUT bit, E-7
TODR, 2-21, 6-11

(Time of Day Register), F-I0
transaction, 2-17, 2-18

acknowledged, 2-17
KA820 generated, 2-17

translation buffer, 2-5
Translation Buffer Check Register (TBCHK),

F-20
Translation Buffer Disable Register (TBDR),

F-14
Translation Buffer Invalidate All Register

(TBIA), F-18
Translation Buffer Invalidate Single Register

(TBIS), F-19
transmit
ch~ck error, E-5

trap
exception, 5-1

TXCS (Console Transmit CSR), F-12
TXCSI (serial-line unit 1 Transmit CSR),

F-22

Index-9

TXDB (Console Transmit Data Buffer Regis­
ter), F-13

TXDB1 (serial-line unit 1 Transmit Data
Buffer Register), F-23

ULTRIX-32, 1-1
watch chip data format compatibility, 6-16

unexpected error conditions, K-1
unlock write mask with cache intent, 2-17,

2-18
unrecognized boot device specification, 4-18
unrecognized console command, 4-18
User Stack Pointer (USP), F-3
USP (User Stack Pointer), F-3
UWMCI transaction, 2-17, 2-18

VAX 8200-specific cluster exerciser, 7-12
VAX can't retry (VCR) flag, 5-8
VAX Diagnostic Supervisor (VDS), 7-1
VAX interlocked instructions, 2-18
VAXBI,1-4

address space, 2-12
addressing, 1-5
arbitration, 1-5
event code, 5-9, 5-10
forward

console command, 4-15
interface, 2-10, 2-12 to 2-20

block diagram, 2-12
memory node, 3-11
node or transaction error, 5-5
overview, 1-4 to 1-5
pipeline mode control, E-6
signal, A-1
timing, 1-5
transactions, 2-15

VAXBI Control and Status Register, 2-14,
3-11

VAXBI CSR
contents, G-1

VAXBI Node Identification Register (BINID),
F-26

VAXBI STOP Register (BISTOP), F -26
VAXBICSR, 2-14, D-2 to D-5
VAXELN,l-l
VCR (VAX can't retry) flag, 5-8
VDS

flag, 7-7
RUN command, 7-8
SET EVENT command, 7-8
SET FLAGS command, 7-7
SHOW EVENT command, 7-8
SHOW FLAGS command, 7-7
using it online, 7-9 to 7-10

Index-lO

using it stand-alone, 7-5 to 7-8
vector, 5-1, D-10

access control violation fault, 5-3
arithmetic fault, 5-3
arithmetic trap, 5-3
assignment, 5-3
breakpoint fault, 5-3
CHME instruction trap, 5-3
CHMK instruction trap, 5-3
CHMS instruction trap, 5-3
CHMU instruction trap, 5-3
console terminal receive, 5-3
console terminal transmit, 5-3
corrected read data (CRD), 5-3
exception, 5-1
interprocessor interrupt, 5-3
interrupt, 5-1
interval timer, 5-3
kernel stack not valid, 5-3
machine-check abort, 5-3
power fail, 5-3
privileged instruction fault, 5-3
RCX50 interface, 5-3
reserved instruction fault, 5-3
reserved operand abort, 5-3
reserved operand addressing mode fault,

5-3
reserved operand fault, 5-3
RXCD,5-3
serial-line unit 1 receive, 5-3
serial-line unit 1 transmit, 5-3
serial-line unit 2 receive, 5-3
serial-line unit 2 transmit, 5-3
serial-line unit 3 receive, 5-3
serial-line unit 3 transmit, 5-3
software interrupt, 5-3
trace pending fault, 5-3
translation not valid fault, 5-3
UNIBUS, 5-3
VAXBI bus error, 5-3
VAXBI passive release, 5-3
XFC instruction fault, 5-3

virtual address, 4-9
VMS, 1-1

watch chip data format compatibility, 6-16

warm start, 3-1, 3-14 to 3-15
failure, 4-18

watch chip, 6-11
address, 6-12
bit rotation, 6-12
CSR,6-12
CSR A, 6-14
CSR B, 6-15

(

(

(

(

(

(

(

E----

eSR D, 6-15
data format, 6-16
data interpretation, 6-13
date and time sample, 6-13
interface, 2-21
register, 6-12

WeI transaction, 2-17, 2-18
WeSA Register, 3-20, 4--19, F-16
WeSD Register, 3--':20, 4--19, F-17
WeSL Register, 3-19, 4--19, F-17
wrap connector, 7-12
Write Memory, E-5
write memory flag, 5-9
WRITE transaction, 2-18

write with cache intent, 2-17, 2-18
write wrong parity

WWPE, E-4
WWPO, E-6

WWPE (write wrong parity), E-4
WWPO (Write wrong parity), E-6

X console command, 4--15
incorrect checksum, 4--18

Year Register, 6-12

Z console command, 4--15

Index-ll

(

(

(

f-- -

(

(

(

Mnemonics and Abbreviations Associated with the KA820 Processor Module
EK-KA82Q-TM

ACCS
AC LO L
ACK
AP
ASTLVL
ARB
BAD
BBU
BCI
BCICSR
BDCST
BER
BIIC
BINID
BROKE
BTB
CAL
CAM
CMISS
CNF
CPUCLK
CPU
CRD
CSR
DAL
DATI
DATIP
DATO
DATOB
DC LO L
DTYPE
DWBUA
EBDAN
EBKAX
EBSAA
EEPROM
EIA
EINTRCSR
ENB APT
ENB PIPE
EVKAA
EVKAB
EVKAC
EVKAE
F chip
FP
FPD
GPR
HEX
HFSB
ICCS
ICR
ID ENT
lIE chip
IPL
IPR
IRCI
INTR
INVAL
IPINTR
K1J1
KK810
LED
LP
M chip
MFPR

Accelerator Control and Status Register
ac power is unsteady when this signal is true
acknowledge transaction confirmation on the VAXBI bus
Argument Pointer Register; also attached processor
asynchronous system trap level
arbitration cycle on the VAXBI bus
VAXBI signal indicating a failing node
battery-backup unit
bus connecting the BIIC with the other circuits on a node
BCI Control and Status Register
broadcast transaction
Bus Error Register
backplane interconnect interface chip
VAXBI Node ID Register
VAXBICSR bit indicating self-test failure
backup translation buffer
ll-bit address bus for cache and BTB RAMs
contents-addressable memory (part of control store)
cache miss or BTB miss
VAXBI transaction confirmation code
clock signal
central processor unit
corrected read data
a control and status register
32-bit data and address lines bus
data-in UNIBUS transaction
data-in-pause UNIBUS transaction
data-out UNIBUS transaction
data-out-byte UNIBUS transaction
dc power is unsteady when this signal is true
Device Register
VAXBI to UNIBUS adapter
KA820-specific serial-line unit diagnostic program
KA820-specific cluster exerciser diagnostic program
KA820-specific VAX diagnostic supervisor
electrically erasable programmable read-only memory
specification of voltage levels used by serial line units
Error Interrupt Control Register
enable APT signal
enable pipeline signal
hardcore instruction test diagnostic program
basic instruction exerciser diagnostic program
floating-point instruction exerciser diagnostic program
privileged architecture exerciser diagnostic program
floating-point accelerator chip in the CPU
Frame Pointer Register
First Part Done flag
a general purpose register (RO-R15)
hexadecimal (base 16 notation)
Hardware Fault State Bit
Interval Clock Control Register
Interval Count Register
the VAXBI transaction used to solicit an interrupt vector
instruction and execution chip in the CPU
interrupt priority level
an internal processor register
interlock read with cache intent VAXBI transaction
interrupt VAXBI transaction
invalidate VAXBI transaction
interprocessor interrupt VAXBI transaction
VAXBI slot assigned to the primary processor
system control panel assembly
light emitting diode
loopback
memory interface chip in the CPU
move from processor register instruction

MIB
MTB
MTPR
NO ACK
NODE 10
POBR
P1BR
POLR
P1LR
PAL
PC
PCBB
PCI
PCM
PCntl
PFN
PME
PP
PRIM
PSL
PTE
RAM
RCI
RCX50
RDS
REI
ROM
RPB
RX50
RXCD
RXCS
RXDB
SCB
SCBB
SID
SISR
SLU
SP
STOP
TODR
TXCS
TXDB
UART
UWMCI
VAXBI
VAXBICSR
VCR
VDS
VMB
WCI
WCSA
WCSD
WCSL
WMCI

40-bit microinstruction bus
mini-translation buffer
move to processor register instruction
no acknowledgment VAXBI transaction confirmation
a number that identifies a VAXBI node
PO Base Register
PI Base Register
PO Length Register
PI Length Register
7-bit bus used to address BTB and cache tags within the M chip
Program Counter Register
Process Control Block Base Register
I6-bit port controller interface bus
a VAXBI control module used in the KK810 assembly
port controller
page frame number
performance monitor enable signal
primary processor
a power control circuit used on the PCM module
Processor Status Longword
page table entry
random access memory
read with cache intent VAXBI transaction
controller for the RX50 diskette drive
read data substitute (containing an uncorrectable error)
return from exception or interrupt instruction
read-only memory
restart parameter block
diskette drive
Receive Console Data Register (for VAXBI internode communication)
Serial-Line Unit 0 Receive Control and Status Register
Serial-Line Unit 0 Receive Data Buffer Register
system control block
System Control Block Base Register
System Identification Register
Software Interrupt Summary Register
serial-line unit
Stack Pointer Register
stop V AXBI transaction
Time of Day Register
Serial-Line Unit 0 Transmit Control and Status Register
Serial-Line Unit 0 Transmit Data Buffer Register
universal asynchronous receiver transmitter used in SLU
unlock write mask with cache intent VAXBI transaction
32-bit synchronous system bus
VAXBI Control and Status Register
VAX Can't Retry flag
VAX Diagnostic Supervisor
primary bootstrap program
write with cache intent VAXBI transaction
first control-store read access register
second control-store read access register
control-store load register
write mask with cache intent VAXBI transaction

© Digital Equipment Corporation 1985.
All Rights Reserved.

M47100

(

(

(

(

(

Digital Equipment Corporation. Maynard, MA 01754

