EK-KA820-TM-003

KA820/KA825

Processor
Technical Manual

dlilgliltlall

EK-KA820-TM-003

KA820/KA825 Processor
Technical Manual

April 1987

This manual is written for people who install and replace the KA825 module
in the field and for people who incorporate KA825 modules into their own
products or systems. The manual gives detailed information about mainte-
nance functions. It also tells how to customize the processor and write system
software, including exception handlers, interrupt handlers, and device driv-
ers for dedicated devices.

digital equipment corporation * maynard, massachusetts

First Edition, December 1985
Second Edition, May 1986
Third Edition, April 1987

Information in this manual is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this manual.

Digital Equipment Corporation makes no representation that the intercon-
nection of its products in the manner described herein will not infringe on
existing or future patent rights, nor do the descriptions contained herein im-
ply the granting of license to make, use, or sell equipment constructed in ac-
cordance with this description.

© Digital Equipment Corporation 1985, 1986, 1987.
All Rights Reserved.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC dlifa]it/al! 8 VAX

DECnet DECUS VAXBI
DECsystem-10 DECwriter VAXELN
DECSYSTEM-20 DIBOL VMS
DECtape ULTRIX VT

UNIBUS

M474000

Contents

Page
Preface xi
Chapter 1 Introduction to the KA820 Module
1.1 KA820 Functional Sections.ottt [.1-2
1.1.1 CPU SeCtiOn . v vvv ittt ettt e e e e 1-2
1.1.2 VAXBI Interface Section.coiiiiiiinn.. 1-2
1.1.3 Port Controller and PCI Bus Devices Section............... 1-2
1.2 Customer Options.c.iit ittt ittt et 1-4
1.3 VAXBI OVEIVIEW . oo oottt e e e e e e e 1-4
1.3.1 VAXBIL Addressingouiitiiitiiniiiiiennennn 1-5
1.3.2 VAXBI Timing and Arbitration nn. 1-5
14 KA820Module Layout.ttt ittt 1-5
1.5 Power Requirementsooiiiiiiiiiiiiiiiiiiiiieann. 1-6
1.6 Environmental Requirements.............. 1-7
Chapter 2 KA820 Module Detailed Description
2.1 CPU SeCtion . v v vt vttt ettt e e e e 2-2
2.1.1 IEChipFunctionsc.oiiitiiiiinennn.. 2-2
2.1.2 M Chip, BTB, and Cache Functions. 2-4
2.1.2.1 BTB (Backup Translation Buffer)................. 2-4
2.1.22 Cache ..o e 2-6
2.1.2.3 Internal Processor Registers..................... 2-8
2124 Serial-LineUnits........... 2-8
2.1.3 FChipFunctions. ...ttt 2-9
2.14 Communication between the Processor Chip Set
andthe VAXBIBUS. oottt 2-9
2.1.5 Control-Store Operationcc.iiitiiinennnennn 2-10
2.2 VAXBIInterface...........iiiiiiiiiiiiiiiiiiiiiiiiinnns 2-11
221 VAXBI Address Space.coviiininiinnnnenn.. 2-11
2.2.2 KAB820 Registers Accessible to Other VAXBI Nodes 2-13
2.2.3 VAXBITransactionso.ouiiiieeennenennnn 2-14
2.2.3.1 KAB820-Initiated Transactions. 2-16
2.2.3.2 KA820 SlaveResponses.coovvuinenon.. 2-17
2.2.3.3 Device Interrupt Sequence 2-17

iii

Chapter 3

Chapter 4

iv

2.3 Port Controller and PCI Devices.covitiii e 2-19

2.3.1 PCIBus Addressingcoiiiiiiiiinnnnnn. 2-20
2.3.2 EEPROM Functionscciiiuin.... e 2-21
2.3.3 Watch Chip Interface 2-21
2.34 RCX50 Controller Interface 2-21

Sequences and Options on Power-Up

3.1 Power-Up Sequence and Related Signals and Jumpers............... 3-2

3.2 SelfTest ..o e 3-4

3.3 Imitialization......... i e 3-8

3.3.1 Power-Up Initialization 3-9

3.3.2 Processor Initialization. 3-9

3.3.3 System Initialization, 3-11

3.4 Restartand Bootstrap i 3-14

3.4.1 Restart Function (Warm Start). 3-14

3.4.2 Bootstrap Function (Cold Start).................. e 3-15
3.4.2.1 EEPROM and Boot RAM Bootstrap

Considerationsccouuiiriiinnennnnan. 3-16

3.4.2.2 Software Responsibilities in the Bootstrap 3-17

3.4.2.3" Loading Secondary Control-Store Patches......... 3-17

3.5 Sample Multiprocessor Configuration Start Sequence 3-21

Console Functions

4.1 Comnsole States ... 4-1
42 Console Entry. i i e e 4-2
4.2.1 Halt Codes. ...t e e i 4-3
4.3 Console Commandsvviiti ittt e e 4-4
4.3.1 Change Console Baud Rate Command ((BREAK)).......... 4-6
4.3.2 Boot Command (B)0iiiiiiiiiiiiiiiiennn 4-7
4.3.3 Continue Command (C).coiiiiiiiii i 4-9
43.4 Deposit and Examine Commands (D andE) 4-9
4.3.5 HaltCommand (H)c0 i, 4-13
4.3.6 Initialize Command (@) 4-13
4.3.7 Next Command N)oiiiiii e 4-13
4.3.8 Start Command (S) 4-13
4.3.9 Test Command (T)............ i ... 4-14
4.3.10 Test with Menu Command (T/M)ccvvvnuev... 4-15
4.3.11 Binary Load and Unload Command (X). 4-15
4312 VAXBIForwardCommand (Z)............ccvviinnnnno... 4-16
4.3.13 Console Comment Command (!)........... ..., 4-18
4.3.14 Enter Console Mode Command ((CTRL/P)) 4-18
4.3.15 Forward Next Character Command KESC)) 4-18
4.3.16 Stop Console Output Command ((CTRL/S))............... 4-18
4.3.17 Restart Console Output Command (CTRL/Q))............ 4-18
4.3.18 Abort Command Line Command (CTRL/U)) 4-19
44 Console Error Codes.coiiiiiiiiii it i e 4-19
4.5 Loading Control-Store Patches from the Console. 4-20
4.6 Logical Console Operation.ouuiiininininenenenenenn. 4-21

Chapter 5 Handling Exceptions and Interrupts

5.1 System Control Block. 5-3
5.2 Machine-Check Exceptions 5-5
5.2.1 Machine-Check Stack, 5-7
52.1.1 ByteCount,(SP)............ 5-7
5.2.1.2 Parameter 1, (SP) + 8, MTEMPB Register 5-8
5.2.1.3 Virtual Address Register,
(SP) + C, MTEMP13 Register. 5-8
5.2.1.4 Virtual Address Prime Register,
(SP) + 10, MTEMPPSL.TEMP Register............ 5-8
5.2.1.5 Memory Address Register, (SP) + 14,
MTEMP9 Register, 5-8
5.2.1.6 Status Word, (SP) + 18, MTEMPC Register. 5-8
5.2.1.7 Program Counter at Failure,(SP) + 1C........... 5-11
5.2.1.8 MicroPC at Failure, (SP) + 20 thex).............. 5-11
5.2.1.9 Current Program Counter, (SP) + 24 (hex). 5-11
5.2.1.10 Current Processor Status Longword,
(SP) + 28 (hexX) ..ot ii et ee e 5-11
5.3 CPU Double-Error Halt Considerations.......................... 5-11
5.4 Power-Up and Console Mode Errorscooiiin... 5-12

Chapter 6 Dedicated 1/0 and Memory Devices

6.1 Serial-LineUnits 6-2
6.1.1 Receive Control and Status Registers (Read/Write) 6-3
6.1.1.1 Bit (12) LP (Loopback Enable, Read/Write) 6-4
6.1.1.2 Bit (7) DON (Done,ReadOnly).................. 6-4
6.1.1.3 Bit (6) Interrupt Enable (Read/Write)............. 6-5
6.1.2 Receive Data Buffer Registers (Read Only)................. 6-5
6.1.2.1 Bit (15) ERR (Error on Received Character,
ReadOnly) i 6-5
6.1.2.2 Bit (14) BRK (Break,ReadOnly) 6-5
6.1.2.3 Bits (7:0) DATA (Received Data, Read Only) 6-6
6.1.3 Transmit Control and Status Registers (Read/Write)......... 6-6
6.1.3.1 Bit (13) LP (Loopback, Write Only)............... 6-7
6.1.3.2 Bit (12) BRK (Break, Write Only)................ 6-7
6.1.3.3 Bits (11:9) Baud Rate (Write Only)............... 6-7
6.1.3.4 Bit (8) BRE (Baud Rate Enable, Write Only)....... 6-7
6.1.3.5 Bit (7) RDY (Ready,ReadOnly).................. 6-8
6.1.3.6 Bit (6) IE (Interrupt Enable, Read/Write).......... 6-8
6.1.4 Transmit Data Buffer Registers (Write Only)............... 6-8
6.1.4.1 Bits (11:8) of TXDB (ID Field, Write Only). 6-9
6.1.4.2 Bits (7:0) of TXDB,
(Command or Transmit Data, Write Only).......... 6-9
6.1.4.3 Bits (7:0) of TXDB1, 2, and 3
(Transmit Data, Write Only). 6-9

vi

6.2
6.3
6.4

6.5

Using the EEPROMo\ttt ittt e e e 6-9

Boot RAM ... i e e 6-11
Usingthe Watch Chip i i i i 6-11
6.4.1 Watch Chip CSR A, Address 200B8014 6-14
6.4.2 Watch Chip CSR B, Address 200B80166-15
6.4.3 Watch Chip CSR C, Address 200B 8018 6-15
6.44 Watch Chip CSR D, Address 200B801A 6-15
6.4.5 Bootstrap Software Date and Time Responsibilities 6-16
6.4.6 Compatibility with VMS and ULTRIX 6-16
Controlling the RCX50 Controller i, 6-16
6.5.1 Data Transfer Examples. e e e 6-18
. 6.5.2 Register RX5CS0, Address 200B0004 6-19

6.5.2.1 RX5CS0 Command Function 6-19
6.5.2.2 RX5CS0 Data Transfer Status and
Maintenance Status., 6-22
6.5.3 Register RX5CS1, Address 200B0006 6-23
6.5.3.1 RX5CS1 Command Function, Track Register 6-23
6.5.3.2 RX5CS1 Data Transfer and
Maintenance Status Format, Error Register....... 6-24
6.5.4 Register RX5CS2, Address 200B 0008 6-25

6.5.4.1 RX5CS2 Data Transfer Format, Sector Register. . ..6-25
6.5.4.2 RX5CS2 Data Transfer and :
Maintenance Status Format, Current Track

Register.o 626
6.5.5 Register RX5CS3, Address 200B000A 6-26
6.5.5.1 RX5CS3 Data Transfer Status Format,
Current Sector Register. 6-26
6.5.5.2 RX5CS3 Maintenance Status Format,
Current Status Register 626
6.5.6 Register RX5CS4, Address 200B000C 6-28
6.5.6.1 RX5CS4 Data Transfer Status,
Incorrect Track Register 6-28
6.5.6.2 RX5CS4 Maintenance Status,
System Configuration Register.................. 6-28
6.5.7 Register RX5CS5, Address 200BO000E 6-29
6.5.8 Register RX5EB, Empty Sector Buffer Register,
Address200B 0010ttt e s 6-30
6.5.9 Register RX5CA, Clear Address Register,
Address200B 0012ottt e 6-30
6.5.10 Register RX5GO, Start Command Register,
Address 200B 0014 i e e, 6-30
6.5.11 Register RX5FB, Fill Sector Buffer Register,
Address200B 0016ccvtiit it 6-31

i

Chapter 7 'KA820 Diagnostics

71 LoadPathsiiiiiiii it
7.2 Test Sequence and Repair Recommendations
7.3 EVKAA, Hard-Core InstructionTest
7.3.1 Booting EVKAA on the Primary Processor
7.3.2 EVKAA Prerequisites and Functions
74 UsingVDSStand-Aloneccviviiiininvnen..

74.1 Booting VDS Stand-Alene on the Primary Processor
7.4.2 Booting VDS Stand-Alone on an Attached Processor

7.4.3 Help................ et e

744 Attaching and Selecting the KA820 Module

7.4.5 Flagsin VDS it it

7.4.6 Test Repetitions. o i,
75 Using VDS On-Line.........coitiiiiiiiinnniinnnnans
7.6 EVKAB, VAX Basic Instruction Exerciser................

7.7 EVKAC, Floating-Point Instruction Exerciser
7.8 EVKAE, VAX Privileged Architecture Exerciser
7.9 EBKAX, VAX 8200-Specific Cluster Exerciser
7.10 EBDAN, KA820 Serial-Line Unit Diagnostic

Appendix A KA820 Module I/0 Pins and Cables

A1l Module /OPin Definitions. covviiiiiiiieeinnnnnn.
A2 CablesRelatedtothe KA820o ivinnnn.

Appendix B Module Installation and Access to Cables

B.1 Module Installation and Replacement...................
B.2 Gaining AccesstotheCables

Appendix C Drive Load Characteristics of Off-Board Signals

C.1 Serial-LineUnitSignals............ ...,
C.2 PCIBusOff-BoardSignalsccovviiiuvnnnn..

Appendix D BIIC Registers

D.1 Device Register; DTYPE (R/W, DMW, DCLOL).............
D.2 VAXBI Control and Status Register, VAXBICSR

D.3 Bus Error Register, BER (W1C, DCLOC)............... e
D.3.1 Bus Error Register Hard Exror Bits
D.3.2 Bus Error Register Parity Mode
D.3.3 Bus Error Register Soft Error Bits
D.4 Error Interrupt Control Register, EINTRCSR.
D.5 BCI Control and Status Register, BCICSR
D.6 Receive Console Data Register, RXCD.
D.6.1 MFPR Instruction for the RXCD Register
D.6.2 MTPR Instruction for the RXCD Register

Appendix E Port Controller Control and Status Register

vii

Appendix F
Appendix G
Appendix H
Appendix |

Appendix J

Appendix K

Glossary
Index

Examples

Figures

viii

Internal Processor Registers on the KA820 Module
Register Contents at Power-Up and Boot Entry
EEPROM Contents

Software ‘Boot Control Flags

Sample Bootstrap Code

J.1 EEPROM Bootstrap Dispatcher J-1
J.2 Sample RX50 BootstrapCodet J—4
J.3 Sample DU Series Bootstrap Code (MSCP Devices). J-7

Unexpected Error Conditions

K.1 ID Parity Error Interrupts Following Retry Timeout................ K-1
K.2 Clearing the Bus Error Register oot K-1
K.3 Interrupts Following Initialization K-1

3-1 System Initialization Console OQutput. 3-12
3-2 Loading a Patch Block into the Control-Store RAM 3-19
3-3 Reading Control-Store Patches 3-20
3-4 Commands to Start an Attached Processor 3-22
4-1 Sample Console Output Following Entry to the Console Mode 4-4
4-2 Representative Boot Commands.................. 4-8
4-3 Sample Console Dialog Using the D and E Commands. 4-12
4-4 Console Output Showing a Successful Slow Self-Test 4-14
4-5 Console Output Showing a Slow Self-Test Failure. 4-14
4-6 Loading and Checking Control-Store Patches from the Console. 4-21
4-7 Logical Console Dialog Displayed on the Terminal................. 4-21
4-8 Primary Processor Software Performs Logical Console Functions. 4-22
7-1 Booting EVKAA on the Primary Processor 7-4
7-2 Booting VDS Stand-Alone on the Primary Processor 7-5
7-3 Booting VDS Stand-Alone on an Attached Processor 7-6
7-4 Running VDS On-Line from the SYSMAINT Directory 7-9
7-5 Running VDS On-Line from RX50 Diskette Drive 7-10
7-6 Running EBKAX i e e e 7-12
7-7 Running EBDAN e e 7-13
1-1 KA820 Block Diagram.ttt 1-3
1-2 VAXBI Physical Address Space.ottt 1-5
1-3 KA820 Module Layout.ttt 1-6
2-1 KA820 CPU Section, Block Diagramo e, 2-3
2-2 BTB and BTB Tag Addressingc.couuiueniienenneneeneannnn 2-5
2-3 PageTable Entry Formatouurriineeeeiiannnnnnnn 2-6
2-4 Cache and Cache Tag Addressingttt innenennn. 2-7
2-5 KAB820 VAXBI Interface, Block Diagram......................... 2-11

[I L e | |
BRWONMHRMEFEHOOIOODOUR WNHE©OI®

CD@@O)OT!-PCDCOC{OOJODOQCOODM[\DM[\'J

OO WNH-=O

CDO)OBCD@G)CD?)@)CDO)O‘JO?@
b ek e e e e 0O 00 =T O O

P9
DN =
O ©

6-21
A-1
A-2
A-3

|
H OO WNHFHI®

UUUU'UUD>D>

=
i

I/O Address Spaceonthe VAXBIBus.............. ... i, 2-12

BIIC Internal Register Addresses Used on the KA820 Module 2-14
Port Controller and PCI Devices, Block Diagram 2-19
PCIDevice Address Map ovviii i i e 2-20
BIACLOLand BIDCLO L Sequencing.covvtiiuenneann. 3-2
Power-Up Microcode Flowt 3-5
System Initialization Sequence.t 3-13
Restart Parameter Block Format 3-15
Control-Store Patch Block Format e 3-18
WCSL Register Format i 3-19
WCSA and WCSD Register Formats, 3-20
Sample Multiprocessor Configuration 3-21
Use of (ESC) withtheZ Command, 4-17
Machine-Check Status Word Bit Layout 5-7
Receive CSR Bit Formatot 6-4
Receive Data Buffer Register Format. 6-5
Transmit Control Status Register Format 6-6
Serial-Line Units 1, 2, and 3 Transmit Data Buffer (TXDB1, 2, 3)

Format 6-8
Serial-Line Unit 0 Transmit Data Buffer (TXDB) Format 6-9
Watch Chip Bit Rotationonthe PCIBus 6-12
Watch Chip CSRAFormatoiiiniiieii it 6-14
Watch Chip CSRBFormatottt 6-15
Watch Chip CSRD Format o it 6-15
Register RX5CS0 Command Function Format 6-19
Register RX5CS0 Status Format 6-22
RX5CS1 Command Function Format............................ 6-23
RX5CS2 Command Function Format: Sector Register 6-25
RX5CS2 Status Format: Current Track Register 6-26
RX5CS3 Data Transfer Status Format: Current Sector Register. 6-27
RX5CS3 Maintenance Status Format: Current Status Register 6-27
RX5CS4 Command Function Format: Incorrect Track Register. 6-28
RX5CS4 Maintenance Status Format: System Configuration

Register. e 6-29
RX5CS5 Format: Extended Function............................ 6-29
RX5EB Format: Empty Sector Buffer Register 6-30
RX5FB Format: Fill Sector Buffer Register....................... 6-31
Module I/O Pins on Segment A Viewed from the Backplane A-1
Module I/O Pins on Segment B Viewed from the Backplane.......... A-2
Module I/O Pins on Connectors C1 and C2 Viewed from the

Backplane i e A-2
Module I/O Pins on Connectors D1 and D2 Viewed from the

Backplane e e A-3
Module I/O Pins on Connectors E1 and E2 Viewed from the '
Backplane e A-3
A Backplane Slot Shown from the Backplane Side of the Card Cage . ..A-4
Cabling for C and D Connectors.c.oviiiienninennnnen.. A-5
Device Register (DTYPE) i e e D-2
VAXBI Control and Status Register (VAXBICSR). D-3
Bus Error Register BER) i D-5
Error Interrupt Control Register, D-9
BCI Control and Status Register D-11
RXCD Registeroiiii i e e et e D-14
Port Controller Control and Status Register. E-2

ix

Tables

1-1 KAB820 Module Power Requirementscviune.... 1-7
1-2 Environmental Requirements................, 1-7
2-1 Time Required for Read and Write Data Transactions 2-8
2-2 Node Space Base Address Assignments 2-13
2-3 BIIC Register Functions on the KA820 Module. 2-15
2-4 KAB820-Initiated Transactions.ottt nnn... 2-16
2-5 KA820 Slave Responses.viiiiiii it i 2-18
3-1 External Signals Affecting the Power-Up Sequence 3-3
3-2 PCM Module Jumper Configurations Affecting the

EEPROM Update Function........... ..., 3-4
3-3 Slow Self-Test Checksoiiiii ittt i 3-7
4-1 PCntl CSR Bits Relatedtothe Console 4-2
4-2 HaltCodesttt it i e e e 4-3
4-3 Symbols Used in Console Command Descriptions. 4-6
4-4 EEPROM Customer Option Section Addresses Accessible

with the D/E and E/E Commands................ot 4-11
4-5 Console Error Codes. ouiiiiiiiii ittt ittt it 4-19
5-1 Interrupt Priority Levels on the KA820 Module 5-2
5-2 System Control Block Vector Assignments on the KA820 Module. 5-3
5-3 Machine-Check Stack. it 5-6
5-4 VAXBI Event Codes: Status Word Bits (20:16) 5-10
6-1 PCI Device Addresses and Accessibility.................. 6-1
6-2 Serial-Line UnitRegisters. i, 6-3
6-3 Setting the Baud Rate for a Serial-Line Unit. 6-7
6-4 EEPROM Mapcoiiiiiiiiit it ettt et e, 6-10
6-5 Watch ChipRegisters.ttt 6-12
6-6 Watch Chip Data Interpretation............ 6-13
6-7 Watch Chip Date and Time Sample 6-13
6-8 RCX50 Controller Register Functions 6-17
6-9 Diskette Surface Selection Code Interpretation. 6-20
6-10 RCX50FunctionCodescuiiiiiniiiiiiii it 6-21
6-11 RCX50 Extended Functions, 6-21
6-12 RCX50 Error Codes Available in Register RX5CS1 624
7-1 Diagnostic Program Categories Related to the VAX 8200............. 7-1
7-2 Diagnostic Programs Described in this Chapter 7-2
C-1 Serial-Line Unit Output Signal Characteristics C-1
C-2 PCIBusOff-BoardSignalscciitiiiiiiiniennnnnn. C-2
C-3 Other Off-BoardSignalsttt C-3
C-4 Driver Output Voltages. ittt C-3
C-5 DriverOutput Currentttt iiiinninnnn C-3
C-6 PCI DAL (7:0) Lines Bidirectional Voltage Levels. C-4
C-7 PCIDAL (7:0) Lines Bidirectional Current Levels Cc4
C-8 PCI Bus Input Signal Voltage and Current Levels Cc4
D-1 Arbitration Control Codes i, D-4

L

Preface

This manual tells what you need to know about the KA820 processor to use
console commands for maintenance functions and to customize the processor
to suit your needs. It also gives information you need to write system software
tailored to the KA820 module, including device drivers for dedicated devices,
exception handlers, and interrupt handlers.

Intended Audience
This manual is for;

¢ People who install and replace the KA820 module in the field.

¢ Engineers and system programmers who incorporate KA820 modules into
their own products or systems.

Before You Use This Manual

You should be familiar with the basic concepts and features of VAX com-
puters, including the:

1. VAX instruction set and data types
2. VAX addressing modes
3. VAX memory management system

4. VAX process structure

You can find this information in the VAX Architecture Handbook.

Structure of This Manual

Although the organization of this manual is tutorial, you can use the manual
as a reference as well. It consists of seven chapters and a set of appendixes:

Chapter 1 Describes the major functions, characteristics, and compo-
nents of the KA820 module. Together with the detailed de-
scription in Chapter 2, it gives you a context for assimilating
the programming and operating information in Chapters 3
through 7.

xi

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Completes the overview begun in Chapter 1. It describes the
operation of the KA820 module as a whole and explains the
function of each part.

Defines the power-up functions and options available to you on
the KA820 module.

Describes the console functions for the KA820. Console com-
mands such as Examine and Boot help you to maintain the
system.

Gives information you need to write exception and interrupt
handling software for the KA820.

Provides programming information for the dedicated devices
on the KA820 module: serial line units, boot RAM, EEPROM,
watch chip, and RCX50 diskette controller.

Gives an overview of the diagnostic software that tests the
KA820 and tells what you need to know to run the VAX
cluster exerciser programs and the serial-line unit diagnostic
program.

Appendixes A through K contain lists and tables too lengthy to include in the
text of the manual. A glossary and an index follow the appendixes.

Related Manuals

xii

The KA820 module is one of a family of processors, memories, and adapters
that use the 32-bit VAXBI bus. For a technical summary of all VAXBI mod-
ules, system components, and integrated circuits see the VAXBI Options

Handbook.

Other related technical manuals are the:

VAX 8200 Owner’s Manual

MS8200 Memory Technical Description

DWBUA VAXBI-TO-UNIBUS Adapter Technical Description
VAX Architecture Handbook

VAX Diagnostic Supervisor User’s Guide

VAX Diagnostic System User’s Guide

Conventions Used

CTRL/x

Number bases

Your input
Uppercase
Lowercase

[]

(CR)
(LF)

RET

Special font

You form a control character by pressing the CTRL
key and typing another key at the same time.

Most numbers in the text are expressed in decimal
form. Addresses are expressed in hexadecimal form.
Bit patterns are expressed in binary form. Numerals
for which the context does not make the number base
clear are labeled decimal, hex, or binary.

Examples show your input in red.
Command formats show literals in uppercase.
Command formats show variables in lowercase.

Command formats show optional qualifiers and
parameters enclosed in square brackets.

Carriage return.
Line feed.

Return key. Pressing on the terminal sends
(CR) (LF) to the system. Most console commands
terminate with ®ED. The key is not shown in
command examples, but you should assume that you
must press after typing a command, unless the
text indicates otherwise.

Text in this font indicates what you see on the console
terminal.

xiii

Chapter 1
Introduction to the KA825 Module

The KA825 module is a single-board VAX processor used in the VAX 8250 and
8350 computer systems. It performs at approximately 1.2 times the speed of
the VAX-11/780. A set of very large scale integrated circuits on the module
implements the VAX instructions. The KA825 module communicates with
other nodes in the system on the 32-bit VAXBI bus.

An earlier version of this module, the KA820, ran at approximately VAX-11/
780 speed. The KA825 is distinguished by bit 23 of the System Identification
Register being set. For the rest of this manual, the term KA820 refers to the
KA825 module; the terms VAX 8200 and VAX 8300 refer to VAX 8250 and
VAX 8350, respectively.

This introduction describes major features of the KA820 module and identi-
fies the options available to you. Chapter 2 completes this overview and pro-
vides a background for the operating and programming details that follow.

In multiprocessor systems, the first processor is called the primary processor;
it is installed in VAXBI slot K1J1. Additional processors are called attached
processors, and they can be installed in any slot in the VAXBI backplane. The
multiprocessor system can be symmetrical, where all processors share the
workload equally, or asymmetrical, where each processor is dedicated to spe-
cific functions such as I/O control or computation.

The KA820 module is designed to support three operating systems: VMS,
ULTRIX-32, and VAXELN. VMS and ULTRIX-32 are general-purpose, time-
sharing systems. VAXELN systems are dedicated, real-time systems devel-
oped under VMS. As a fourth alternative, you may prefer to develop your own
system software for the KA820 module.

The KA820 module protects the integrity of data and processes by checking
extensively for:

¢ Parity errors

e VAXBI transaction errors

¢ Unforeseen microcode conditions

¢ Interrupts that occur at unexpected levels

The machine-check function, which is invoked following detection of a hard-
ware error, passes control to appropriate exception-handling software. This
lets the software evaluate the situation and respond as required. In addition,
the KA820 module uses a microcode-based ASCII console and provides a
serial-line unit for the console terminal.

1-1

The KA820 module implements a self-test program in microcode. Self-test
runs automatically on power-up and in response to a console command, and it
checks the KA820 hardware thoroughly.

1.1 KAB820 Functional Sections
The KA820 module consists of three major sections:

1. CPU section
2. VAXBI interface section

3. Port controller and port controller interface (PCI) bus devices section

1.1.1 CPU Section

Three processor chips carry out processor functions according to 40-bit
microinstructions in control store.

e I/E chip (instruction decoding and execution)

e Mchip (memory management, processor registers, and four serial-line
units)

e Fchip (floating-point accelerator)

Control store consists of a 15K ROM and a 1K RAM implemented in five
ROM/RAM chips and protected by parity. The RAM stores microcode patches,
making microcode changes as simple as software changes: DIGITAL distrib-
utes microcode patches along with software updates on RX50 diskettes. The
MIB bus, which connects control store and the processor chip set, is also pro-
tected by parity.

An on-board translation buffer (BTB) stores virtual-to-physical address
translation information (page-table entries) for 512 pages of memory. The
BTB backs up a mini- translatlon buffer (MTB) in the I/E chip that stores five
page-table entries. And an on-board 8K-byte data cache stores data from the
most recently accessed locations in memory. The processor chips communi-
cate with the BTB and the cache on the parity-protected 32-bit DAL bus.

1.1.2 VAXBI Interface Section

The VAXBI interface forms a second section of the KA820 module. It consists
of the 32-bit, parity-protected BCI bus and the bus interconnect interface chip
(BIIC). The BIIC implements the VAXBI bus protocol, including the distrib-
uted arbitration scheme and bus error checking facilities.

1.1.3 Port Controller and PCI Bus Devices Section

The port controller and dedicated PCI bus devices make up a third section of
the KA820 module. The port controller buffers the transfer of addresses and
data between the CPU and the PCI bus devices, as well as between the CPU
and the VAXBI interface.

1-2 Introduction to the KA820 Module

—] SERIAL-LINE 0
=] EIA le—=s SERIAL-LINE 1
DRIVERS
&
CONTROL- CPU CLK ! RECEIVERS |e— SERIAL-LINE 2
STORE OSCILLATOR
_— fe—=s SERIAL-LINE 3
I
A |
<r MIB <40> >
Tx L '; cpP
I € [T e
E I/E PAL<7> A M CACHE BTB
CHIP CHIP CHIP . CAL <11> > RAM > RAM
A [L N
<) DAL< 32> >
L4
r CTRL
- PORT e A
BCI <32> CONTROLLER (PCI <16> DAL
(3PORTS) \
<8>DAL. 16 DAL <8>DAL
BOOT
BIIC BUFFERS RAM EEPROM
L= RCX50 INTERFACE & WATCH CHIP INTERFACE
N
¢ VAXBI BUS < 32> >
N | 4

Figure 1-1: KA820 Block Diagram

MLO-383-85

The EEPROM is a 16K-byte nonvolatile memory on the PCI bus. It stores
choices for KA820 options, VAX bootstrap macrocode, and a set of patches for
control-store microcode. A write-protection circuit keeps you from changing
EEPROM data by mistake. Microcode copies the bootstrap macrocode to an
8K-byte boot RAM on the PCI bus at the beginning of the boot process.

Introduction to the KA820 Module 1-3

The PCI bus also runs off the KA820 module to connect to the battery-backed-
up watch chip and the RCX50 controller for the RX50 diskette drive. The
watch chip keeps the time of year for up to 100 hours without system power,
and the diskette controller and drive let you install software and microcode
updates.

1.2 Customer Options

The KA820 module offers a variety of options that let you customize your
computer system. Data stored in the EEPROM and signals that run off the
module to switches on the control panel define the action and characteristics
of the KA820 module on power-up: '

¢ Perform the slow self-test or the fast self-test on power-up.
e Restart or halt on power-up following self-test.

Restart — If battery-backed-up memory has retained valid data during the
preceding power outage, and no VAXBI node is faulty, try a warm start to
continue the process that was executing when power failed. If memory does
not contain valid data or a VAXBI node fails its self-test, boot the system,
loading and starting a fresh copy of the operating system.

Halt — Enter the console mode instead of beginning program execution. In
this mode, the KA820 module accepts console commands from the console
terminal. Console commands are useful when you want to perform system
maintenance functions such as installing software or running diagnostics.

e Set the default console baud rate to one of eight values ranging from 150 to
19200.

e Select the processor node that serves as a logical console for an attached
KAB820 processor in a multiprocessor system.

e Enable or disable self-test on the RCX50 diskette drive controller.

1.3 VAXBI Overview

The VAXBI bus is a 32-bit synchronous bus. It joins the KA820 module to the
rest of the computer system. The important characteristics of the VAXBI bus
are its low cost, high bandwidth, moderate number of logical connections,
large address space, and high data integrity.

All devices in the VAXBI system can arbitrate for control of the bus, so no
processor is dedicated specifically to controlling bus use. Distributing the ar-
bitration maximizes the multiprocessing capability of the bus and lets you
configure systems to meet a variety of needs.

Each device on the VAXBI bus is called a node. A single VAXBI bus can have
16 nodes, which can be processors, memories, and adapters. An adapter is a
node that connects other buses, communication lines, and peripheral devices
to the VAXBI bus. Each of the 16 nodes can control the VAXBI bus, and slot

1-4 Introduction to the KA820 Module

placement has no effect on the relative priority of the node. A node receives
its priority and node ID, a number from 0 to 15 (decimal), from a plug on the
VAXBI backplane slot where the node is inserted.

1.3.1 VAXBI Addressing

The VAXBI bus supports 30-bit addressing, giving 2**30 addresses (1 giga-
byte of physical address space). This address space is split equally between
memory and I/O space (512 megabytes each).

HEX
ADDRESS
0000 0000
MEMORY SPACE
512M-BYTES 1FFF FFFF
2000 0000
/O SPACE
512M-BYTES 3FFF FFFF
MLO-384-85

Figure 1-2: VAXBI Physical Address Space

In I/O space, each node has an 8K-byte block of addresses known as its node-
space. The first 256 bytes of each nodespace are allocated to registers on the
BIIC. In addition, each node is allocated 3.75 megabytes of node private
space. The dedicated devices on the KA820 module PCI bus use addresses in
the node private space.

1.3.2 VAXBI Timing and Arbitration

Events occur on the VAXBI bus at fixed intervals. Data is clocked onto the bus
at the leading edge of a transmit clock signal and received and latched with a
receive clock signal at the end of a bus cycle. Information processing occurs
during the cycle following the one in which data is transmitted and latched.

Bus arbitration and address and data transmissions are time multiplexed
over 32 data lines. Interrupt sequences use command transactions and can be
directed to a single processor or to several processors. Arbitration logic is dis-
tributed among all the nodes and follows a dual round-robin priority scheme.

1.4 KA820 Module Layout

Figure 1-3 shows the major components of the KA820 module. The five seg-
ments along the bottom edge of the module provide a total of 300 external I/O
pins to connect with the rest of the computer system. Segments A and B carry
the VAXBI bus signals.

Introduction to the KA820 Module 1-5

CONTROL OPTION MODULE - SERIAL (
STORE NUMBER NUMBER NUMBER F CHIP

BTB
RAMS
VE CHIP
FIRST ; T :
BOOT;j!
RAM
\’ — MCHIP
SECOND
EEPROM
BIIC
E D c : B A
SEGMENT SEGMENT ~ SEGMENT pog SEGMENT SEGMENT
CONTROLLER yaxg
Figure 1-3: KA820 Module Layout
1.5 Power Requirements (

The KA820 module requires three voltages with the voltage regulation
shown in Table 1-1. The current and power columns indicate conditions at 70
degrees C (worst case). The maximum voltage ripple is 400 millivolts peak
to peak.

o~

1-6 Introduction to the KA820 Module

Table 1-1: KA820 Module Power Requirements

Voltage Regulation Current Power
+5.0 +/- 5% 9.0 amps 45.5 watts
+12.0 +/-10% 36 milliamps 0.4 watts
-12.0 +/- 10% 40 milliamps 0.5 watts

46.4 watts total

1.6 Environmental Requirements

The KA820 module requires air movement of at least 200 linear feet per min-
ute, at a maximum ambient temperature of 50 degrees C. Temperature, rela-

tive humidity, and altitude requirements depend on use of the RX50 diskette
drive with the KA820 module.

\

Table 1-2: Environmental Requirements

Relative
Configuration Temperature Humidity Altitude
Operation without the = 5-50 degrees C 10%-95% 0-2400 meters
RX50 (10-122 degrees F) (0-8000 feet)
Operation with the 15-32 degrees C 20%-80% 0-2400 meters
RX50 installed and in ~ (59-90 degrees F) (0-8000 feet)
use :
Operation with the 10-40 degrees C 10%-90% 0-2400 meters
RX50 installed but not (50-104 degrees F) (0-8000 feet)
in use
Allowable storage -40 to 66 degrees C 10-95% 0-9000 meters
conditions (~40 to 151 degrees F) (0-30000 feet)

Introduction to the KA820 Module 1-7

Chapter 2
KA820 Module Detailed Description

The KA820 central processor executes the full set of VAX instructions. Two
address translation buffers, a data cache, and a floating-point accelerator
help to make this processor efficient. The KA820 module can translate a vir-
tual address to its physical equivalent and access cached data in 160 nano-
seconds when there is a hit in the mini-translation buffer (MTB). When there
is a miss in the MTB but a hit in the backup translation buffer (BTB), access
to cached data requires 320 nanoseconds. In comparison, a read memory ac-
cess with misses in both translation buffers and the cache requires at least
3.84 microseconds (24 CPU bus cycles).

Three functionally distinct sections make up the KA820 module:

e CPU section
e Interface to the VAXBI bus

¢ Port controller and related memory and I/O devices

The CPU section consists of a three-chip processor unit, control store, the
backup translation buffer, and a cache. A 160-nanosecond CPU clock cycle,
divided into eight phases, controls timing for the CPU section.

The BIIC (bus interconnect interface chip) coordinates the transfer of infor-
mation between the KA820 module and the VAXBI bus. A separate 200-
nanosecond clock cycle controls timing for the VAXBI bus.

The port controller (PCntl) acts as a buffer and traffic director, routing ad-
dresses, control signals, and data between the BIIC and the CPU section. The
port controller communicates with the processor chips, the BTB, and the
cache on the 32-bit DAL (data and address lines) bus. It communicates with
the BIIC on the BCI bus. And it drives the 16-bit PCI, an asynchronous bus
that connects the port controller to external devices as well as devices on the
KA820 module:

¢ 8K-byte on-board boot RAM used to store bootstrap code during processor
initialization

¢ 16K-byte on-board EEPROM that provides permanent storage for boot-
strap code, control store patches, and configuration data

e RCX50 diskette controller external to the KA820 module
¢ Battery-backed-up watch chip external to the KA820 module

2.1 CPU Section

The KA820 module implements the VAX architecture in the CPU section,
and the heart of this section is the processor chip set. The chip set consists of
three custom-made, integrated circuits:

1. I/E chip (instruction/execution)
2. M chip (memory interface)

3. F chip (floating-point accelerator)

These chips carry out the VAX instruction set. Each VAX instruction involves
a sequence of steps to access and manipulate data. Microcode for each VAX
instruction controls the coordinating and sequencing of the steps. The
control-store hardware contains the microcode in an array of 40-bit words ar-
ranged as 15360 words of read-only memory (ROM) and 1024 words of
random-access memory (RAM). The RAM locations contain patches that up-
date the microcode.

The two translation buffers (BTB and MTB) and the cache supplement the
processor chip set with on-board storage that speeds execution time. The
translation buffers contain address translation information copied from main
memory. The cache holds program instructions and data, also copied from
main memory.

Figure 2-1 shows the CPU section of the KA820 module block diagram given
in Chapter 1.

Four buses connect the CPU components: MIB, DAL, PAL, and CAL. The
parity-protected MIB (microinstruction bus) carries microinstructions, con-
trol signals, and addresses between control store and the processor chip set.
Like the microword, it is 40 bits wide. The 32-bit DAL bus is also parity pro-
tected; it carries data and addresses among the processor chip set, the cache,
and the backup translation buffer RAMs, and from them to the rest of the
KA820 module through the port controller. The PAL bus carries address sig-
nals for the backup translation buffer tags and cache tags in the M chip. And
the CAL bus carries address signals from the M chip to the backup transla-
tion buffer and cache RAMs.

2.1.1 1/E Chip Functions

Four logically distinct areas make up the I/E (instruction/execution) chip:
e Instruction buffer

e Microsequencer

¢ Execution unit

¢ MTB (mini-translation buffer)

The instruction buffer is a silo that holds up to two longwords of prefetched
VAX instructions. This lets the CPU execute sequences of instructions rap-
idly, without waiting for memory read cycles to fetch instructions. The hard-

2-2 KA820 Module Detailed Description

ware attempts to keep the instruction buffer full. When it is not full and there
is no other activity on the DAL bus that takes precedence, the instruction
buffer initiates a read function. In addition, the instruction buffer sends in-
formation it gathers from decoding VAX instructions to the execution unit
and the F chip.

The microsequencer in the I/E chip determines the address of the next mi-
croinstruction to be executed, except at the beginning of a VAX instruction
and when the first part done (FPD) flag is set following an interrupt or excep-
tion. When a new VAX instruction is being decoded, the microaddress genera-
tor determines the entry point of the microroutine to be executed, based on
the VAX opcode, the operand specifiers, and the current microinstruction.
The I/E chip drives the microaddress over the MIB bus during the first half of
the CPU clock cycle, and control store sends the addressed microinstruction
word on the MIB bus to the execution unit during the second half of the cycle.
This prefetch function assures that the execution unit never waits for a mi-
croinstruction. A new microinstruction is available at the beginning of each
160-nanosecond CPU clock cycle.

The execution unit contains the general purpose registers (RO through R15),
the arithmetic and logic units, the shifter, and the data paths. It executes the
microinstructions needed to implement the macroinstructions in the instruc-
tion buffer, moving data and addresses to and from the registers and on the
DAL bus to the:

— le—s SERIAL-LINE 0
| EIA «— SERIAL-LINE 1
DRIVERS
&
CONTROL CPU CLK
= RECEIVERS le—s SERIAL-LINE 2
STORE OSCILLATOR
. e— SERIAL-LINE 3
r_
" ‘ N
<‘ MIB <40>)
(L (1 LT
F IVE PAL <7>

, CACHE BTB
CHIP cHIP [CHIP CAL <11> _)|RAM RAM

1 {

L S
) DAL< 32>)>
14
r CTRL
PORT

CONTROLLER

MLO-385-85

Figure 2-1: KA820 CPU Section, Block Diagram

KAB820 Module Detailed Description 2-3

F chip

M chip

BTB (backup translation buffer)
e Cache

e Port controller

When the execution unit derives a virtual address to be accessed, it sends
that address to the MTB for translation to a physical address.

The MTB stores physical address translations for five pages of virtual mem-
ory: four data-stream pages and one instruction-stream page. The informa-
tion for each address translation is called a page table entry (PTE). Each MTB
location contains a tag and a page table entry. The tag tells whether there is a
valid page table entry (a hit) in the MTB for a given virtual address. The page
table entry includes a 21-bit page frame number identifying the 512-byte
page of physical memory to be used on references to the virtual address. On a
hit, the MTB generates the physical address from the page table entry and
makes the required physical address available on the DAL bus without any
delay. See Section 2.1.2 for more information on address translation.

2.1.2 M Chip, BTB, and Cache Functions

The M (memory interface) chip functions complement the functions per-
formed by the I/E chip; they include:

e BTB tag store

¢ Cache tag store

¢ Internal processor register (IPR) implementation

¢ Interrupt handling

¢ Memory management

¢ CPU clock generation

e Serial-line unit implementation

® Port controller interface

2.1.2.1 BTB (Backup Tfanslation Buffer) — The BTB backs up the MTB with
512 page table entries (PTEs). The BTB has two sets of storage locations: tag

storage in the M chip and PTE storage in the BTB RAMs. Each BTB tag tells
whether four corresponding PTEs are valid.

The BTB RAM contains 256 PTEs for system-space pages and 256 PTEs for
process-space pages. This RAM is arranged as 128 blocks of four longwords.
Each longword contains one PTE. The M chip contains 128 BTB tags, one for
each block of four PTEs.

2-4 KA820 Module Detailed Description

TN

When there is a miss in the MTB, the I/E chip puts a 32-bit virtual address on
the DAL bus. At the same time, the I/E chip sends virtual address bits (31,
16:11) on the 7 PAL lines to identify one of the 128 BTB tags in the M chip.
Each tag consists of 14 virtual address bits (30:17) and 4 valid bits, one for
each PTE. The M chip compares the BTB tag entry with the address asserted
on the DAL bus. If the bits in the tag match bits (30:17) in the virtual ad-
dress, and the valid bit is set, there is a hit in the BTB. On the same CPU
clock cycle the M chip puts the address of the appropriate BTB RAM location
(virtual address bits {31, 16:9)) on the 11-bit CAL bus, even if there is a BTB
miss. Virtual address bits (10:9) identify one of the four longwords in the
four-longword block. The BTB RAM responds by sending the PTE to the
MTB, and the MTB updates the corresponding location. On the next cycle
the MTB gets a hit on the same virtual address, converts it to a physical ad-
dress, and asserts it on the DAL bus. Therefore with an MTB miss and a BTB
hit, the address translation is delayed by one cycle. Figure 2-2 shows the re-
lation of the tags to the BTB.

VIRTUAL ADDRESS

DAL bits |31]30 cOMPARE WITH TAGBITS 17| |16 9 VALID
TAG BIT
B k PARITY PARITY
128 BTB TAGS IN M CHIP
|
PAL—| A< 31,16:11> %—— 30 TAG ADDRESS BITS 17| pjv1jv2v3jv4] p
ADDRESS TAG
ARRAY
——
512 BTB ENTRIES IN RAMs
/
CAL—| A< 31,16:9> PTE 1 - 4 VALID
BITS
PTE 2 -
ADDRESS BTB
PTE 3 -
16 BYTE BTB BLOCK
PTE 4 -
MLO-386-85

Figure 2-2: BTB and BTB Tag Addressing

KA820 Module Detailed Description 2-5

m

V(VALID)

If areference to a virtual address misses in the MTB, the BTB may or may not
yield a hit. The MTB will be updated when there is a hit in the BTB. If there is
amiss in the BTB as well, the KA820 module begins a BTB fill cycle, perform-
ing a longword read transaction to the appropriate page table in VAXBI mem-
ory. The CPU then updates both the BTB and the MTB with a new page table
entry. Since the four PTEs associated with one BTB tag identify contiguous
pages in virtual memory, a change in the 14-bit address stored in the tag in-
validates the other three PTEs, in the same block, that were not accessed.

Figure 2-3 shows the format for each page table entry.

3130 272625 21 20 0

PROT (PROTECTION CODE)

M (MODIFY)

RESERVED TO DIGITAL

PFN (PAGE FRAME NUMBER, PHYSICAL ADDRESS BITS <29:9>)

MLO-387-85

Figure 2-3: Page Table Entry Format

See the VAX Architecture Handbook for an explanation of memory man-
agement.

2.1.2.2 Cache — The cache RAM stores copies of data from main memory
and, like main memory, uses physical addresses to access the data. The cache
operation resembles the BTB operation, and the cache tag store is also imple-
mented in the M chip.

The cache consists of an 8K-byte array, divided into 128 blocks of 4 octawords
(16 longwords or 64 bytes) each. The cache tag store contains 128 tags: one for
each 4-octaword block of data. Each tag includes:

e 16 bits of a physical address (bits (28:13)) with a parity bit

e 4 valid bits with a parity bit; the four valid bits apply to the four octawords
within a block of cache data

Figure 2—4 shows the cache and cache tag addressing scheme.

When the I/E chip begins a reference to a physical memory location, it puts
the entire physical address on the DAL bus. At the same time it asserts 7
address bits (12:6) on the PAL bus to identify one of the 128 cache tag loca-
tions in the M chip. The M chip compares the tag entry with the address as-
serted on the DAL bus. If the addresses match, and the valid bit is set, and
physical address bit (29) is 0 (not I/O space), there is a hit in the cache. This
means that the data in the corresponding lecation in the cache is valid.

2-6 KA820 Module Detailed Description

PHYSICAL ADDRESS

DAL BITS |28 COMPARE WITH TAG BITS 12 2 VALID
TAG BIT
K PARITY PARITY
' 128 CACHE TAGS IN M CHIP
y
PAL—| A<12:6>) =128 TAGADDRESsBITS 13|p|viv2lvahds)
ADDRESS TAG
ARRAY
N —
2048 CACHE DATA LONGWORDS
I IN RAMs
CAL—| A<12:2> > OCTAWORD # 1 < 4 VALID
BITS
ADDRESS CACHE OCTAWORD # 2 -
OCTAWORD # 3 -
64 BYTE
CACHE BLOCK OCTAWORD # 4 -
MLO-387A-85

Figure 2-4: Cache and Cache Tag Addressing

On the same CPU clock cycle the M chip puts the address of the appropriate
cache RAM location (physical address bits (12:2)) on the 11-bit CAL bus,
even if there is a miss. On aread transaction, the cache data is asserted on the
DAL bus for use by the I/E chip. On a write transaction, new data is written
both to the cache and to the corresponding location in main memory.

On a cache miss (read transaction only) the KA820 module begins a cache fill
cycle, reading an octaword from main memory to update the cache. The CPU
first reads the longword that was missed in the cache, completing the refer-
ence requested by the I/E chip. The CPU continues the cache fill cycle by read-
ing the remaining three longwords in the given octaword block. The address
in the tag entry will change to reflect the address of the new data, and the
valid bits will show that the other three octawords in the 64-byte cache block
are now invalid.

KAB820 Module Detailed Description 2-7

Note that a write transaction with a cache miss does not involve updating the
cache. (

Table 2-1 shows the number of CPU clock cycles and the time required for
data access with hits and misses in the MTB, the BTB, and the cache, when
there is no other activity on the VAXBI bus.

Table 2-1: Time Required for Read and Write Data Transactions

Read CPU Clock

or Cycles to Transaction Time

Write MTB BTB Cache Free DAL Longword Octaword

Read Hit - Hit 1 160 ns -

Read Miss Hit Hit 2 320 ns -

Read Miss Miss Hit 12+ 1.92 ps+ —

Read Hit — Miss 13+ 2.08 us+ — (
Read Miss Hit Miss 14+ 2.24 us+ —

Read Miss Miss) Miss 24+ 3.84 us+ —

Write Hit - - lor4 160 ns 640 ns

Write Miss Hit — 20rb 320 ns 800 ns

Write Miss Miss — 12+ or 15+ 1.92 us+ 2.4 us+ (

If another device on the VAXBI bus writes data to a memory location that is
cached by the KA820 module, the cached data becomes obsolete. To deal with
this condition, the BIIC monitors the VAXBI bus for write transactions initi-
ated by other devices. When a write transaction occurs, the BIIC forwards the
address to the port controller, which in turn forwards it to the M chip. If the
cache contains data for the address in question, the M chip changes the tag to
mark all four octawords invalid. <

2.1.2.3 Internal Processor Registers — In addition to tag storage, the M chip
contains 26 of the internal processor registers (IPRs). The microcode uses
these registers for temporary storage during the execution of long and com-
plex VAX instructions. Appendix F lists the IPRs, their addresses, and their
bit configurations. Note that privileged user software can read and write the
IPRs with MFPR and MTPR instructions.

2.1.2.4 Serial-Line Units — The four RS423-compatible serial-line units on
the M chip connect terminals and modems directly to the KA820 processor.
Signal lines from the serial-line units are converted to the standard RS232
format off the module. You can set the baud rate of each serial-line unit sepa-
rately by writing to the appropriate TXCS Register. In addition, you can
change the baud rate on serial-line unit 0, when the primary processor is in ,
the console mode, by pressing the key on the console terminal. Avail- (

2-8 KAB820 Module Detailed Description '

able baud rates range from 150 to 19200 (see Chapters 4 and 6 for details). You
can change the default baud rate for serial-line unit 0 by writing a location in
the EEPROM (see Table 4-4).

The serial-line units are not buffered. Each serial-line unit interrupts the
CPU each time it sends or receives a character.

Serial-line units are available only on the primary processor.

2.1.3 F Chip Functions

The F chip, a floating-point accelerator, increases the arithmetic efficiency of
the KA820 module by speeding up execution of the integer and floating-point
arithmetic instructions:

e ADDFD,G)

e CMP(FD,G)

e CVTL(F,D,&

e DIV(F,D,G,L)

e EDIV

¢ EMOD(F,D,G,H)
e EMUL

e INDEX

e MUL(2,3)XF,D,G,H,L)
e POLY(¥,D,G,H)
e SUB(F,D,G)

The F chip operates in parallel with the I/E chip. The I/E chip makes deci-
sions concerning the instruction being executed, while the F chip makes
calculations.

The MIB bus feeds the F chip with VAX opcodes from the I/E chip and microin-
structions from control store. The DAL bus carries operand data for the F chip
to and from memory or to and from the general purpose registers (GPRs) on
the I/E chip. Operation of the F chip is transparent to users.

2.1.4 Communication Between the Processor Chip Set and the
VAXBI Bus

The processor chip set communicates with the VAXBI bus through the port
controller and the backplane interconnect interface chip (BIIC). When the
KA820 module accesses a memory location or an I/O location, the I/E chip
sends the address to the port controller on the DAL bus. Then the M chip
asserts the CMISS (cache miss) signal to indicate that a memory reference is
required. Four command lines transmit the required transaction type from
the M chip to the port controller.

KA820 Module Detailed Description 2-9

On a read transaction with a cache miss, the port controller initiates a read
on the VAXBI bus. At the same time it stalls the DAL bus until it retrieves
the data and can send the data to the I/E chip and the cache. The port control-
ler includes a 4-longword data silo that buffers data during the transfer proc-
ess. When the VAXBI memory responds to the read command by sending four
longwords in four consecutive VAXBI cycles, the port controller stores them
in the data silo until it can transfer them. The requested longword goes to the
I/E chip and the entire octaword goes to the cache.

On a write transaction to memory, the port controller stores the data to be
written in the silo until the BIIC can send it on the VAXBI bus, freeing the
processor chip set to continue processing.

2.1.5 Control-Store Operation

Control store on the KA820 module provides microcode for three sets of
functions:

¢ VAX instruction execution control

e KA820 module initialization, bootstrapping, and console functions

e KAB820 self-test

Five custom-made ROM/RAM chips make up the control-store hardware. Al-
together they contain 15360 40-bit locations in ROM, 1024 40-bit locations in
RAM, and 160 14-bit locations in contents-addressable memory (CAM). The
15K ROM contains an initial version of the microcode. The 1K RAM lets you
add patches that change the microcode without replacing the control-store
chips. The CAM locations contain the addresses of ROM words that begin
sequences of microword patches in RAM.

During the first half of each CPU clock cycle the I/E chip puts a 14-bit address
on the microinstruction bus (MIB). If the current microword comes from the
control-store ROM, the address is asserted on MIB (13:0). In the second half
of each CPU clock cycle, control store checks for a match in the CAM and puts
the addressed microword on the MIB bus. If there is no match in the CAM,
this microword is used for the next microinstruction. However, if the CAM
does find a match, it signals the I/E chip to abort the current microinstruction
fetch cycle. The I/E chip then readdresses control store to read from the patch
RAM, leaving address bits (9:0) unchanged and asserting ones on bits
{14:10). The I/E chip continues to read microinstructions from the RAM un-
til it reaches the end of the patch sequence. The last instruction in a patch
sequence causes a jump back to a ROM location for the next microinstruction.

The KA820 module loads patches into the patch RAM in two sets: primary
patches and secondary patches. Microcode in the control-store ROM loads the
primary patches from the EEPROM at the beginning of the power-up initiali-
zation sequence. The primary patches modify basic microroutines that are
necessary to continue the processor initialization sequence. They may in-
volve such functions as self-test, console implementation, and loading the
bootstrap code. Secondary patches are not essential to the initialization proc-
ess. The macrocode in the primary bootstrap program loads these patches.

2-10 KAB820 Module Detailed Description

The 1024 patch RAM locations are mapped against all 15360 ROM locations.
Each RAM location can patch any of 15 ROM locations, all of which use the
same ten low-order address bits (¢(9:0)) on the MIB bus. The RAM cannot con-
tain patches for two ROM locations for which these ten address bits match.
For example, if ROM location 35C (hex) has been patched, another patch can-
not be written for ROM location B5C (hex) without overwriting the patch for
location 35C.

2.2 VAXBI Interface

The BIIC (backplane interconnect interface chip) mediates all VAXBI trans-
actions in which the KA820 module participates by implementing the VAXBI
protocol and sending and receiving commands, addresses, and data. It com-
municates with the port controller on the BCI bus, allowing the port control-
ler to act as a buffer between the BIIC and the processor chip set. Figure 2-5
shows the VAXBI interface portion of the KA820 module block diagram given
in Chapter 1.

A

<‘ DAL< 32>)

< ‘ \ roRT
BC'<32_>/ CONTROLLER

BIIC

A
(VAXBI BUS <32> >

N L4

MLO-388-85

Figure 2-5: KA820 VAXBI Interface, Block Diagram

The BIIC also contains a set of control and status registers. The software
uses them to handle device interrupts, interprocessor interrupts, and error
conditions.

2.2.1 VAXBI Address Space

VAXBI address space is divided into two major sections: memory space and
I/O space. Physical addresses with bit (29) set refer to I/O space; addresses
with bit {(29) clear refer to memory space. The following map shows the allo-
cation of I/O address space among the VAXBI nodes.

KA820 Module Detailed Description 2-11

2-12

HEX

ADDRESS
0000 0000
MEMORY SPACE 1FFF FFFF
2000 0000
NODESPACE (SEE TABLE 2-2) 2001 FEFF
2002 0000
RESERVED TO DIGITAL 2007 FFFF
2008 0000
KA820 BIIC INTERNAL REGISTERS

(SEE FIGURE 2-7) 2008 O0OFC
2008 0200

RXCD REGISTER
2008 0204
RESERVED TO DIGITAL 2008 FFFF
2009 0000

BOOT RAM
(SEE FIGURE 2-9) 2009 1FFF
2009 2000
RESERVED TO DIGITAL 2009 7FFF
2009 8000
EEPROM
(SEE FIGURE 2-9) 2009 FFFF
200A 0000
RESERVED TO DIGITAL 200A FFFF
200B 0000
RCX50
(SEE FIGURE 2-9) 200B 0017
RESERVED TO DIGITAL 200B 0020
2008 8000
WATCH CHIP

(SEE FIGURE 2-9)
200B 807F
RESERVED TO DIGITAL 200B 8080
203F FFFF
~ WINDOW SPACE 2040 0000

(SEE THE VAXBI OPTIONS HANDBOOK)

207F FFFF
RESERVED TO DIGITAL 2080 0000
3FFF FFFF
MLO-389A-85

Figure 2-6: I/O Address Space on the VAXBI Bus

The first 128K-bytes are allocated to the 16 VAXBI nodes, so that 8K-bytes
are available to each node. The nodespace for the KA820 module depends on
the node ID plug inserted in the backplane at its slot. The primary processor
uses slot K1J1. In addition, each node is allocated 3.75 megabytes for node
private space, ranging from address 2004 0000 to 203F FFFF (hex). Each
node can use this space to address its own registers and devices. The KA820
module implements PCI bus device addresses and one set of BIIC register

KA820 Module Detailed Description

N

T\

addresses (not accessible to software)in the portion of this space ranging from
address 2008 0000 to 200B 807E. When a node generates a reference to an
address in the node private space, it is a local reference (loopback transac-
tion), confined to that node. No corresponding VAXBI transaction takes place.
No node can access another node’s private space.

2.2.2 KAB820 Registers Accessible to Other VAXBI Nodes

The KA820 module implements the addresses for the RXCD Register and the
BIIC internal registers in the VAXBI nodespace and in the node private
space. However, software should access these registers only through the
VAXBI nodespace. Software access to the RXCD Register and the BIIC inter-
nal registers through node private space will produce errors.

Note that when you use console commands, you can access the RXCD Regis-
ter and the BIIC internal registers on the primary processor through their
node private space addresses as well as through their VAXBI nodespace ad-
dresses. Figure 2-7 shows the BIIC internal registers and the two sets of cor-
responding addresses. Under the heading VAXBI nodespace address, bb
stands for the nodespace base address of the VAXBI slot used. Table 2-2
shows the nodespace base address for each node.

Table 2-2: Node Space Base Address Assignments
Node Address

2000 0000
2000 2000
2000 4000
2000 6000
2000 8000
2000 A000
2000 C000
2000 E000
2001 0000
2001 2000
2001 4000
2001 6000
2001 8000
2001 A000
2001 C000
2001 E000

HEHOAQW> OO0 0tk W HO

Table 2-3 gives a brief description of the BIIC registers as they are used on
the KA820 module. See Appendix D for the bit functions and configurations
of relevant registers.

As the map in Figure 2-7 shows, the KA820 module leaves many of the regis-
ters and addresses in the BIIC unused. The RXCD Register, at address bb +
200 and 2008 0200 is implemented in the port controller, not the BIIC (see
Chapter 4 and Appendix D for more information). Note that software should
not access address 2008 0200.

KAB820 Module Detailed Description 2-13

VAXBI. NODESPACE
HEX ADDRESS

bb +00
bb + 04
bb +08
bb+0C
bb+10
bb+14
bb+18
bb+1C
bb +20
bb +24
bb+28
bb+2C
bb +30

bb+34
bb+3C

bb +40

bb+ 44
bb+EC

bb+FO
through
bb+FC

31 24 23 1615 08 07

NODE PRIVATE
00 SPACE ADDRESS

T =T

DEVICE REGISTER (DTYPE)

2008 0000

VAXBI CONTROL AND STATUS REGISTER (VAXBICSR)

2008 0004

BUS ERROR REGISTER (BER)

2008 0008

ERROR INTERRUPT CONTROL (EINTRCSR)

2008 000C

INTERRUPT DESTINATION REGISTER (INTRDES)

2008 0010

IP INTERRUPT MASK REGISTER (UNUSED)

2008 0014

FORCE IPINTR/STOP DESTINATION REGISTER (UNUSED)

2008 0018

FORCE IPINTR/STOP SOURCE REGISTER (UNUSED)

2008 001C

STARTING ADDRESS (UNUSED)

2008 0020

ENDING ADDRESS (UNUSED)

2008 0024

. S -

BCI CONTROL REGISTER (BCICSR)

2008 0028

WRITE STATUS REGISTER (UNUSED)

2008 002C

FORCE IPINTR/STOP COMMAND REGISTER (FIPSCMD)

L -

2008 0030

(UNUSED)

2008 0034
2008 003C

USER INTERFACE INTERRUPT CONTROL REGISTER (UINTRCSR)

2008 0040

(UNUSED)

] | i

2008 0044
2008 00EC

T T T

4 GENERAL PURPOSE REGISTERS (UNUSED)

2008 O0OFO0
through
2008 O0OFC

MLO-390-85

Figure 2-7: BIIC Internal Register Addresses Used on the KA820
Module (2008 0000 to 2008 0200 not accessible to software)

2.2.3 VAXBI Transactions

KA820 module microcode initiates transactions on the VAXBI bus to imple-
ment steps in VAX instructions and to respond to conditions and events on the
bus. When the KA820 module responds as a slave to VAXBI transactions ini-
tiated by other nodes, VAX instructions and microcode are not involved; cir-
cuits in the BIIC and the port controller generate slave responses.

Each VAXBI transaction involves a sequence of three kinds of cycles:

1. Command/Address cycle
2. Embedded arbitration cycle
3. Data cycle

2-14 KA820 Module Detailed Description

Table 2-3: BIIC Register Functions on the KA820 Module

Node

Private VAXBI

Space Nodespace Register

Address Address Name Function

2008 0000 bb+0 DTYPE DTYPE defines this node as a KA820.
Software can read it, but should not
write it except when loading secondary
patches (as described in Chapter 3).

2008 0004 Dbb+4 VAXBICSR Initialization software should load

2008 000C bb+C EINTRCSR these registers to enable the KA820’s

2008 0010 bb+10 INTRDES BIIC to interrupt the KA820 when it
detects VAXBI errors.

2008 0008 bb+8 BER When the BIIC on the KA820 inter-
rupts the KA820, the BER contains
error information. Software should
read and write this register whenever
a VAXBI error interrupt or machine
check occurs.

2008 0014 Dbb+14 IPINTRMSK These four registers are designed for

2008 0018 bb+18 IPDES transmission of VAXBI IPINTR and

2008 001C bb+1C IPINTRSRC VAXBI STOP transactions. However,

2008 0030 bb+30 FIPSCMD system software can ignore these
registers because the KA820 module
supplies internal processor registers
(IPIR and BISTOP) for these functions.

2008 0020 bb+20 SADR System software should ignore these

2008 0024 bb+24 EADR registers.

2008 0028 Dbb+28 BCICSR Microcode loads this register and
system software should not change it.

2008 0040 Dbb+40 UINTRCSR System software should normally
ignore this register, since the KA820
is not normally an I/O device.

2008 002C bb+2C WSTAT These five registers are unused and

2008 00F0 bb+F0 GPRO system software should ignore them.

2008 00F4 bb+F4 GPR1

2008 00F8 bb+F8 GPR2

2008 00FC bb+FC GPR3

During the first cycle of a VAXBI transaction the master node sends a com-
mand code on VAXBI lines I (3:0) and a slave address on VAXBI lines D
(31:0). If the command specifies a read or write function, the 32-bit field con-
tains a physical address. On an interrupt, the master sends its interrupt pri-
ority level and a destination mask to the slave during the command/address
cycle.

During the embedded arbitration cycle (the second cycle in all VAXBI trans-
actions), other nodes contend for control of the bus following the current
transaction.

KA820 Module Detailed Description 2-15

One or more data cycles complete the transaction. During a data cycle the
function of the 32-bit field depends on the transaction type. For example, the
master sends data to the slave on a write. The slave sends data to the master

on a read.

In all VAXBI transactions the slave returns one of four confirmation codes on

VAXBI lines CNF ¢(2:0):

ACK Transaction acknowledged.

NO ACK No node has been selected.

RETRY Busy, try later.

STALL Need more time, wait till data is ready.

The port controller monitors activity on the VAXBI bus. When an error oc-
curs, the port controller interrupts the CPU. Microcode then initiates a trap
and jumps to an error-handling microroutine. It stores machine-state infor-
mation on the machine-check stack in memory, making the information
available to exception-handling software. The software can evaluate the data

on the stack and take appropriate action.

2.2.3.1

KA820-Initiated Transactions — Table 2-4 shows what transactions

the KA820 module can initiate, together with corresponding data lengths.

Table 2-4: KAS820-Initiated Transactions

VAXBI Transaction Initiated Data Length
Command Function Longword Octaword
RCI Read with cache intent I/O space or Cache fill

BTB fill
IRCI Interlock read with cache intent Memory and/or Cache fill
I/0O space
WCI Write with cache intent Memory only Memory only
UWMCI Unlock write mask with cache Memory and/or None
intent 1/0 space
WMCI Write mask with cache intent I/O space or None
memory
STOP Stop Not applicable Not
applicable
IPINTR Interprocessor interrupt Not applicable Not
applicable
INTR Interrupt Not applicable Not
applicable
IDENT Identify interrupting node Longword None

2-16 KAB820 Module Detailed Description

TN

Write mask transactions involve a read-modify-write sequence, unless the
mask is all ones, because a portion of the data in the target location must
remain unchanged. The port controller changes a WMCI transaction with a
mask of all ones to a WCI transaction.

When the KA820 module performs an IRCI transaction, the slave normally
sets a lock that remains set until the KA820 module issues a UWMCI com-
mand to the same address. The KA820 module issues an IRCI/UWMCI trans-
action pair as part of each of the seven VAX interlocked instructions:

ADAWI
BBCCI
BBSSI
INSQHI
INSQTI
REMQHI
REMQTI

The KA820 module can initiate a STOP transaction but cannot respond to
one. STOP is generally used for diagnostic functions. See the VAXBI Options
Handbook for more information.

As the VAXBI master, the KA820 module can interrupt another processor
with either an INTR or IPINTR transaction. However, KA820 modules in a
multiprocessor system normally communicate with each other by writing
data in the RXCD Registers.

2.2.3.2 KAB820 Slave Responses — Table 2—-5 shows VAXBI transactions and
the confirmation codes with which the KA820 module responds to each.

As a safety feature the RXCD lock is not set unless the interlock read transac-
tion is completed successfully. But the RXCD is unlocked by an unlock write
transaction, even if the transaction is not completed successfully.

The KA820 module can respond to both the interrupt and interprocessor in-
terrupt transactions.

2.2.3.3 Device Interrupt Sequence — When a VAXBI node (typically an I/O
device) needs to interrupt the KA820 module, it arbitrates for control of the
VAXBI bus according to its node number. When the node gains control of the
VAXBI bus, it initiates an INTR transaction, sending its interrupt priority
level on VAXBI lines D (19:16) and the decoded ID of the target processor on
VAXBI lines D (15:0).

The KA820 module compares its own decoded ID with the one sent by the
interrupting node and returns an ACK confirmation two cycles later if there
is a match (NO ACK otherwise).

KAB820 Module Detailed Description 2-17

Table 2-5: KA820 Slave Responses

KA820 Response
VAXBI Transaction Received on BI CNF
Command Description (2:0) L
READ or Read or read with cache intent to a BIIC ACK
RCI internal register or RXCD _
WRITE or Write or write with cache intent to a BIIC ACK
WCI internal register or RXCD
IRCI Interlock read with cache intent to RXCD ACK
(with RXCD unlocked)
IRCI Interlock read with cache intent to RXCD RETRY
(with RXCD locked)
UWMCI Unlock write mask with cache intent to RXCD ACK
(with RXCD unlocked)
UWMCI Unlock write mask with cache intent to RXCD ACK
(with RXCD locked)
INTR Interrupt ACK
IDENT Identify interrupting node ACK
IPINTR Interprocessor interrupt ACK
STOP Stop NO ACK
INVAL Invalidate ACK
BDCST Broadcast NO ACK

On a match, the KA820 module also sets one of four interrupt pending flags
in the port controller, corresponding to the interrupt level of the transaction.
The port controller then forwards the states of these flags (note that more
than one may be set) to the M chip. The M chip compares the interrupt level of
the highest flag with the priority of the process the KA820 module is cur-
rently executing. When the priority of the current process drops below that of
the highest-priority pending interrupt, microcode initiates an IDENT trans-
action to identify the interrupting node. The BIIC on the KA820 module then
arbitrates for control of the VAXBI bus, and eventually the KA820 module
becomes bus master.

As bus master, the KA820 module asserts the IDENT command code on
VAXBI lines I (3:0) and the level of the highest pending interrupt on VAXBI
lines D (19:16) during the command/address cycle. The second cycle of
IDENT allows arbitration for control of the VAXBI bus for the next transac-
tion. The master asserts its decoded ID on the bus during the third cycle.

Then, on the fourth cycle, IDENT arbitration takes place. If several nodes
have interrupts pending at the level indicated, each asserts its decoded ID
(used here as an interrupt sublevel) on VAXBI lines D (31:16). The arbitrat-
ing node with the lowest ID (highest priority) wins the arbitration. This node
returns its vector on the next cycle. If the winning node cannot respond imme-

2-18 KA820 Module Detailed Description

diately, it sends a STALL confirmation on VAXBI lines CNF (2:0) until it can
send its vector as read data. KA820 microcode uses this vector to find the
interrupt service routine for the interrupting node.

Interrupting nodes that lose an arbitration must start again, regenerating
interrupt transactions. The winning node must also interrupt again if it fails
to receive an ACK confirmation from the KA820 module in response to its
vector.

If the port controller detects a VAXBI error condition, it interrupts the M
chip. The M chip then initiates a microtrap to jump to error-handling micro-
code (see Chapter 5 for details).

2.3 Port Controller and PCI Devices

The three ports of the port controller (BCI port, DAL port, and PCI port) make
it central to the operation of the KA820 module. The BCI port connects the
port controller to the VAXBI bus through the BIIC. The DAL port connects
the port controller to the CPU. And the PCI port connects the port controller
to the 8K-byte boot RAM, a 16K-byte EEPROM, a watch chip, and an RCX50
diskette controller. The timing for each of the three ports is separate: the BCI
bus runs synchronously with the VAXBI clock cycle; the DAL bus runs on the
CPU clock cycle; and the PCI bus is asynchronous. The port controller keeps
the timing independent by buffering control signals, addresses, and data.

Three gate array chips make up the port controller: two data path chips and a
control chip. Figure 2-8 is a portion of the KA820 block diagram given in
Chapter 1; it shows the port controller and the devices that sit on the PCI bus.

A
Q DAL< 32> l>

PORT /L N\
CONTROLLER PCI <16> DAL >
(3PORTS) \ y
<8>DAL 16 DAL <8>DAL
BOOT
BUFFERS RAM EEPROM

L—— RCX50 INTERFACE & WATCH CHIP INTERFACE

MLO-291A-85

Figure 2-8: Port Controller and PCI Devices, Block Diagram

KA820 Module Detailed Description 2-19

A 32-bit control and status register (PCntl CSR) and the 4-longword data silo
contribute to the central function of the port controller. The data silo buffers
octaword transfers on the VAXBI bus. The PCntl CSR contains status infor-
mation for use by the microcode and software, control bits accessible to the
CPU, and control signals from the control panel. The status bits tell when an
interrupt is pending, when VAXBI transaction errors occur, and whether the
KA820 module has passed self-test. See Appendix E for details. The PCntl
CSR is located in the KA820 node private space at address 2008 8000 (hex); it
is inaccessible to other nodes on the VAXBI bus.

2.3.1 PCI Bus Addressing

Devices attached to the PCI bus have I/O addresses in the KA820 node pri-
vate space. They are accessible only to the KA820 CPU, through the DAL
port on the port controller. Other nodes on the VAXBI cannot read or write to
these devices. Figure 2-9 is a map showing PCI device addresses.

HEX
ADDRESS
2009 0000
BOOT RAM
(BK-BYTES) 2009 3FFC
(UNUSED; THESE ADDRESSES ACCESS
THE BOOT RAM)
2009 8000
EEPROM
(16K-BYTES) 2009 FFFE
RESERVED TO DIGITAL
200B 0000
RCX50 REGISTERS
200B 0016
(UNUSED; THESE ADDRESSES ACCESS
THE RCX50 REGISTERS)
200B 8000
WATCH CHIP REGISTERS
200B 807E
MLO-391-85

Figure 2-9: PCI Device Address Map

The 16 bits of the PCI bus are multiplexed for addresses and data, but address
bit 0 is unused. This means that all PCI devices are accessed on word bounda-
ries. However, software can access the packet buffer with all data types. The
EEPROM, RCX50 controller, and watch chip are byte-oriented devices. They
are accessible only with byte-length or word-length instructions on word
boundaries. When word-length instructions are used, data in the high-order
byte is undefined.

2-20 KA820 Module Detailed Description

2.3.2 EEPROM Functions

The EEPROM (electrically erasable programmable read-only memory) on
the PCI bus contains 8K-bytes of information defining options, the physical
configuration, primary microcode patches, and VAX boot code. The data in
the EEPROM remains valid when power goes down, so that on power-up the
microcode can initialize the KA820 and boot the system according to the re-
quirements of the configuration and the user.

DIGITAL distributes updates for the EEPROM together with software and
microcode patches on diskettes. You can use the EEPROM Utility to load the
update data into the EEPROM (see the VAX 8200 Owner’s Manual for
details). You can read and write 24 EEPROM locations with console D/E and
E/E commands (see Chapter 4). In addition, you can use kernel mode software
instructions to access any EEPROM location by using the EEPROM node pri-
vate space address. You can also read and write EEPROM data with the
EEPROM Utility (see the VAX 8200 Owner’s Manual for details. The KA820
module protects the EEPROM, so that you cannot inadvertently write in it.

2.3.3 Watch Chip Interface

The eight low-order PCI bus lines and several control lines run from the
KA820 module, through the backplane, to the watch chip. The watch chip lets
the KA820 module keep time through a power outage or system shutdown
that lasts up to 100 hours. The KA820 module stores a 32-bit time value in
the TODR (Time of Day Register) in the M chip, but the TODR loses this value
when the power goes down. The watch chip maintains the time after power is
removed because a battery keeps it going for up to 100 hours.

Three 8-bit control and status registers on the watch chip are accessible to
software, providing control that lets software write the time in the watch chip
registers during installation. Then, in normal operation, software reads the
watch chip to set the time in the TODR following a bootstrap operation. .
Because the watch chip stores time information in units of seconds, min-
utes, hours, days, and months, the operating system must convert this data to
a 32-bit format before updating the TODR Register.

2.3.4 RCX50 Controller Inferface

Like the watch chip, the RCX50 diskette controller is located off the KA820
module, and the low-order eight lines in the PCI bus run off the module to
connect to the controller through the backplane. This device is normally used
to load software updates and microcode patch distributions from DIGITAL.
However, some system configurations do not use the RCX50 controller.

The RCX50 controller contains control and status registers and a buffer capa-
ble of storing data for one 512-byte sector on the diskette. Software can trans-
fer commands, addresses, and data to or from the RCX50 controller in
byte-length register-to-register moves (see Chapter 6 for more information).

KA820 Module Detailed Description 2-21

Chapter 3
Sequences and Options on Power-Up

On power-up the KA820 processor tests and initializes itself and then initial-
izes the rest of the computer system. Initialization leaves the hardware in a
well-defined state (see Appendix G), ready for any of several courses of action.
You can define in advance what action the processor takes during self-test
and after initialization by choosing from a variety of options. Each option cor-
responds to a combination of inputs to the module I/O pins. In the VAX 8200
system the inputs come from switch settings on the control panel and jumper
connections on an auxiliary module.

The power-up options include:

e Slow self-test — Test the functions of the KA820 module. In case of failure,
report faults on the console terminal and enter console mode (if enabled).
Complete the test in 10 seconds.

o Fast self-test — Quickly test the critical functions of the KA820 module.
Enter console mode (if enabled) on failure. Complete the test in 0.25 second.

e Auto Start — Attempt to restart (warm start) the processor so that it con-
tinues executing the process that was running when the power failed. In
systems with battery backup for memory, memory retains power for up to
10 minutes. If the contents of memory remain valid, the warm start suc-
ceeds. If the contents of memory are no longer valid, the warm start fails.
Bootstrap (cold start) the system.

e Halt after initialization and enter console mode.
e Enable or disable the console.

e Use the physical console (serial-line unit 0) or the logical console (another
VAXBI node).

¢ Enable or disable writing to the EEPROM.

The KA820 microcode follows a sequence of steps for each of these options.

One other option you can specify in the EEPROM affects the efficiency and
behavior of the KA820 module after power-up, when it is running macro-level
software or console functions. You can preset the default baud rate for the
console serial-line unit. See Chapters 4 and 6 of this manual and the
VAX 8200 Owner’s Manual for information on selecting the console baud rate
and writing to the EEPROM.

A typical system with a single KA820 processor might be set up to take the
steps listed here on power-up:

1. Perform a slow self-test.

2. Initialize the KA820 processor and the rest of the computer system.

3. Attempt to restart the software that was running before the power failure.
4. Bootstrap the system if the restart attempt fails, loading the operating

system from a disk drive.

3.1 Power-Up Sequence and Related Signals and Jumpers

The KA820 power-up sequence occurs when the BIDC LO Land BIACLOL
signals are cycled from true to false. The deassertion of BI DC LO L indicates
that power to the VAXBI backplane is steady. BI AC LO L is deasserted next
to indicate that dc power will remain steady for at least 4.2 milliseconds. Fig-
ure 3-1 shows the sequential relation of these two signals.

CONTINUE

INITIALIZATION
SEQUENCE
BIACLOL
\ 4.2 MS /_‘
/7 7
BIDCLOL

Y

INITIALIZATION
SEQUENCE

MLO-392-85
Figure 3-1: BI AC LO L and BI DC LO L Sequencing

A Restart push button on the control panel lets you simulate the power-down/
power-up sequence to boot the system without actually removing power. See
the VAXBI Options Handbook for more complete power sequence informa-
tion.

Table 3-1 shows the external signals that implement the power-up options.

Table 3-2 lists the PCM module jumper configurations that affect the EE-
PROM update function. These jumpers control the external signal PNL ENB
WT EEPROM H, listed in Table 3-1.

3-2 Sequences and Options on Power-Up

TN

Table 3-1: External Signals Affecting the Power-Up Sequence

Accessible Standard Sources
External Module to Software onthe VAX
Signal I/OPin As 8200 System If True If False
BISTF L — D55 PCntl CSR Jumpers W1, W2, Perform self- Perform slow
fast self-test bit (27) W3 on the PCM test on power- self-test on
module up — jumper power-up —
W2 to W3 jumper W2 to
Wi
PNL RSTRT D51 PCntl CSR Control-panel lower Enable an Halt on
HILTH — bit (31) key switch — automatic power-up —
RESTART Update/Halt/ Auto restart or lower key
Start bootstrap on switch is in
power-up — the Halt
lower key position; this
switch is in signal is false
the Auto Start by default on
position attached
processors
PNL CNSL D53 PCntl CSR Control-panel upper Enable the Disable the
ENBH - bit (29) key switch — console — console —
console enable Standby/ Enable/ upper key upper key
Secure switch is in switch is in
the Enable the Secure
position position; this
signal is false
by default on
attached
processors
PN ENB WT D50 — Control-panel lower Enable writes Disable writes
EEPROM H — key switch — to the to the
EEPROM write Update/ Halt/ Auto = EEPROM — EEPROM —
enable Start and jumpers lower key lower key
W4, W5, W6, WC switch is in switch is in
on the PCM module the Update the Auto Start
position or Halt
position; this
signal is false
by default on
attached
processors
BIRESETL — B54 PCntl CSR PRIM circuit on the Imitate power- —
reset system bit (28) PCM module, up and
control-panel perform self-
Restart push button test and
initialization
sequence
BIDCLOL — B9 - PRIM circuit on the = Power has dc power to
dc power low PCM module failed; stop the backplane
processing is steady;
begin self-test
when BI DC
LO L becomes
false
BIACLOL — B40 — PRIM circuit on the Power is Incoming
ac power low PCM module failing, save power is
state steady;
proceed with
self-test and
initialization
when BI AC
LO L becomes
false

Sequences and Options on Power-Up 3-3

Table 3-2: PCM Module Jumper Configurations Affecting the
EEPROM Update Function

Jumper Use Action

W4to W6 Normal Drive PNL ENB WT EEPROM H high or low according to
position the lower key switch on the control panel

W4 to W5 Enable Enable writes to the EEPROM, overriding the control
position panel

W4 to W7 Secure Disable writes to the EEPROM, overriding the control
position panel

Note that in computer systems where two or more KA820 modules are in-
serted in a VAXBI backplane, the control-panel functions and the console
functions on serial-line unit 0 are available only for the primary processor
placed in VAXBI slot K1J1. The external signal enabling the physical console
function is PNL CNSL LOG H (module I/O pin D52). The PCM module drives
this signal false on the primary processor to enable the control-panel and con-
sole functions on the KA820 module in slot K1J1. On attached processors
PNL CNSL LOG H is true, enabling the logical console function.

Figure 3-2 shows the sequence of events and options on power-up. The re-
mainder of this chapter describes these sequences in detail.

NOTE

In Figure 3-2, W/C refers to the state of the warm start (restart-in-
progress) and cold start (bootstrap-in-progress) flags handled by
microcode. I cmd, T cmd, and N cmd refer to the Initialize, Test, and
Next commands (see Chapter 4).

3.2 Self-Test

Self-test is the first step in the KA820 power-up sequence. It consists of micro-
code that checks major KA820 functions. If self-test is successful, microcode
indicates success by lighting two yellow light-emitting diodes (LEDs) on the
module and printing messages on the console. Self-test then passes control to
the initialization and restart routines. If self-test detects an error, it fails to
light the yellow LEDs and enters console mode. (The red LEDs are lit when
the processor is in console mode, regardless of the self-test result.) The red
FAULT LED on the control panel lights during self-test and remains lit if any
VAXBI node fails self-test.

Self-test begins when the BI DC LO L signal becomes false, in response to any
of five events:

1. Normal power-up.

2. An operator pushes the Restart button on the control panel, simulating
power-up.

3. Console T command.

3-4 Sequences and Options on Power-Up

o~~~

SLOW SELF-TEST

DC LO DEASSERTED,
BEGIN SELF-TEST

ACLO
DEASSERTED

SEND ASCH #
CONSOLE SET DEFAULT
OPTIONS FROM EEPROM,
INIT CAM, RAM,
LOAD PATCHES,

TO

FAST OR SLOW
SELF-TEST

FAST SELF-TEST

PROCESSOR
| COMMAND INITIALIZATION
AUTO START WITH
WIC = 11
T COMMAND CONSOLE MODE
{ OR HALT OR
UPDATE
B COMMAND
N COMMAND SYSTEM
INITIALIZATION
CTRL/P COMMAND

SEND ASCH # TO CON-
SOLE, POWER-UP IN|-
TIALIZATION, PROCES-
SOR INITIALIZATION,
SYSTEM INITIALIZATION

LOWER KEYSWITCH =

BOOT

DECISION

LOWER KEYSWITCH =
-AUTO START, NO NODE
BROKEN W/C = 00

SET

WARM FLAG

LOWER KEYSWITCH =
AUTO START; W/C = 10

COLD START
SET COLD FLAG

PROCESSOR

FIND RESTART
PARAMETER

BLOCK

INITIALIZATION
LOAD PC FROM RPB,

START

VAX PROGRAM MODE, | ERROR HALT

RUN LIGHT ON

RESTART BUTTON

Figure 3-2: Power-Up Microcode Flow

MLO-393-85

Sequences and Options on Power-Up 3-5

4. Software sets the Reset bit (PCntl CSR bit (28)).
5. The KA820 module or another node sets the Node Reset (NRST) bit

(VAXBI CSR bit (10)).

BIDC LO L in turn:

Sets the Broke bit (BIIC CSR bit (12)). This bit makes the self-test status of

the KA820 module available to other nodes on the VAXBI bus.

Clears the Self-Test-Pass bit (PCntl CSR bit (25)). When clear, this bit
drives the wired-OR signal BI BAD L, which lights the red FAULT light on

the control panel. When set, this bit drives the two yellow LEDs on the
module and clears the Broke bit.

Sets the hardware-fault-state bit (HFSB). This bit lights the two red LEDs

on the module.

Microcode then waits for the deassertion of BI AC LO L before proceeding.
When BI AC LO L becomes false, microcode performs the following functions:

1.
2. Send (CR) (LF) to the console.
3.
4

10.

11.

Set the console serial-line unit baud rate.

Send a # character to the console, indicating that self-test has begun.

. Calculate a checksum on the control-store patches stored in the EE-

PROM.

Compare the stored checksum with the calculated checksum. If the com-
parison fails, print the error code ?4A on the console terminal and halt.

Initialize the control-store CAM and RAM.

Load and check primary control-store patches from the EEPROM into
the control-store RAM. On failure, print the error code ?4A on the console
terminal and halt.

Enable control-store patches.

Check the operation of the console serial-line unit for all baud rates in
loopback mode (see Chapter 4).

Clear the hardware-fault-state bit and turn off the red LEDs on the mod-
ule.

Read the EEPROM and set defaults according to the options specified
there:

F chip enable or disable
BTB enable or disable
Cache enable or disable

RCX50 self-test enable or disable

3-6 Sequences and Options on Power-Up

Then the self-test microcode branches according to the state of the BI STF bit,
port controller CSR bit (27).

If BI STF L is true, fast self-test is already complete.

If BI STF L is false (the normal condition) or microcode is executing a

console T command, slow self-test continues, performing a comprehen-
sive check of the KA820 module.

Thirteen sections make up the slow portion of self-test. On the successful com-
pletion of each section, microcode sends an uppercase ASCII character (A
through N, skipping L), corresponding to the hardware tested, to the console
terminal. If microcode detects an error, it passes control to the console micro-
code. Table 3-3 lists the slow self-test functions and the corresponding char-
acters displayed on the console terminal.

Table 3-3: Slow Self-Test Checks

Test Code Hardware Tested

Control-store test A Control store, primary patches,
MIB bus, I/<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>