Mwave™ System
Application Programmer’s Guide

Version 3.0
for
0S/2 and Windows

=+ This Document has been converted to Acrobat format.***
To view document in Acrobat, select view from the tool bar and select
“bookmarks and pages” (cntrl + 7). The list of contents will display
in left hand column. Click on the triangle beside each heading
to view the subheading.

“-'v

NOTE

Before using this information and the product it supports, be sure to read the information under
“Notices” on page iii.

Third Edition (July 1995)

This edition is prepared and maintained by IBM Microelectronics. For more information contact:

United States Japan
and Canada IBM
IBM Microelectronics Division 800, Ichimiyake,
1580 Route 52, Bldg. 504 Yasu-cho, Yasu-gun
Hopewell Junction, NY 12533-6531 Shiga-ken, Japan 520-23
Tel: (800) IBM-0181 ext. 500 Tel: (81) 775-87-4745

Fax: (81) 775-87-4735
Europe Europe
IBM Informations Systeme
La Pompignane BP 1021 GmbH
34006 Montpellier Laatzener Str. 1
France 30539 Hanover
(33) 6713-5757 (French) Germany
(33) 6713-5756 (Italian) (49) 511-516-3444 (English)
Fax: (33) 6713-5750* (49) 511-516-3555 (German)
*from Paris add 16 Fax: (49) 511-516-3888

© Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

MMWADKUMU-03

Notices

Any reference to an International Business Machines (IBM) licensed program in this document is not
intended to state or imply that only IBM’s program may be used.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. Y ou can
send license inquiries, in writing, to the IBM Director of Commercial Relations, IBM Corporation,
Purchase, New Y ork, 10577.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make them available in all countriesin which IBM operates.

This document represents a complete rewrite and replacement of previous versions of the Application
Programmer’s Guide. There are no indications of text or content changes. All previous versions of
this document should be considered obsolete.

This document is not intended for production use and is furnished “asis’ without any warranties of

any kind, and all warranties are hereby disclaimed including the warranties of mechantability and
fitness for a particular product.

Trademarks

Some trademarks of IBM and other companies are used in this document. The trademarks
used and how they are identified are described here.

The following are trademarks of IBM in the United States, in other countries, or both. These
IBM trademarks are identified by an asterisk (*) where they are first used later in this
document.

IBM Mwave

The following are trademarks of companies other than IBM. These trademarks are identified
by two asterisks (**) where they arefirst used later in this document.

Trademark Company Owning Trademark
Microsoft Windows Microsoft Corporation
MS-Windows Microsoft Corporation

This document contains information that is subject to iii

change without notice.

MMWADKUMU-03

This document contains information that is subject to
change without notice.

MMWADKUMU-03

Table Of Contents

Lo o= SR RTRUPUR i
=16 (= 00 T TSP i

L < 1o S PRSPPSO iX
BEFOIr@ YOU BEOIN. ...ttt ettt ettt ettt b et e e ae e e s st e e saeeesabeesanbeesabeesnbeeenseeeneeaneaanns iX
Contents Of thiS MANUAoiiiiee ettt et e s e e sate e s sabe e sabeeenbeeennee s iX
SAMPIE APPIICALIONS. ...ttt ettt e e bt e et e e be e e bt e e bt e e sasee e abeeessbeasabeesnnesenneean iX
Related DOCUMENTALION ... eiiiiieetie ettt ettt e et e e sbe e e s ae e e st e e saseeaabeeesaneesnbeesaneennns X
(O3 =V o] (= gl R o { oo (¥ [ox 1 o o FO PRSP 1
MWAVE SYSEEIM OVEI VIEWeeeeieetieetieetee ettt et e e bt e e bt e e aeeeaaeeesae e e e abee e aseeaaseeassseesaseeamneeesnseaanbeesnseennnen 1
Developing an Mwave APPLICALIONco.ueiiiaiiieiie ettt et e e be e s naeeeaeeesaeeeenees 4
Chapter 2 - AUGIO SEIVICES. ..ottt ettt ettt et e e e e s abe e e saeeesaeeesateesaseesabeesaabeesaseasnreeannen 5
Mwave AUAIO AFCRITECTUN........ ettt e et e e eanbe e sabe e snbeeennes 5
Windows Sound System 2.0 IMPlemENtationooiuiiiiiiiie e 5
The MWave AUCIO DEVICE DI TVEIS.......ooiiieiie ettt ettt st e et e be e be e s be e e eaeeesaeeesaeeesnneaeanneas 7
COMPONENTE DESCIIPLION. ...ttt ettt ettt e et et e bt e e s be e e be e e sbe e e aaeeesaeeesabeesaaneesaneesnreaannes 8
MWaVE AUIO OPEILTONS.ccuveiitee ettt ettt et ee et st e e siee e saeeesasee s sbeeesaeeesateesaseesaseesbeessabeasnbeeannes 10
D g DAY= B L= o] o (o] [PPSR 12
Developing an Mwave Audio APPLICALTON........o.uii i 16
AUdio MiXer APl REFEIENCE. ... et sbe e eaee s 17
Mixer CallDacks APl REFEIENCEccuui it 19
Chapter 3 - TEEPNONY SEIVICES.......eiiiiie ittt ettt ettt saee e saee e saeeesabeesaneesaneeesnrean 21
Mwave Tel€PNONY ArCHITECIUNE........coiuii ettt ettt sae e et e e s abe e s neesseesaneeesareans 21
Common Telephone INTEITACEoi it saee e 22
MCT EVENE HANAIET ...ttt ettt a e e be e e st e e st e e esbe e e saee e san e e snneeenns 23
Developing an Mwave Telephony APPlICALION..........cooiiiiiiie et e 23
INitializing the APPIICAITONcoiii ettt e ra e bt e et e e sae e e e rbe e e snee s 24
CAPLEL 4 - FAX SEIVICES. .. ieieeitieeetee et ee ettt e et e et e e bt e e bt e e be e e beeabeeabeeeneeeaneeeanbeeaaneeaaaeeanneeanns 37
Mwave Fax Device Driver ArChitECIUNE.ooi i 37
The Fax Application Programming INterface (APooueo o 37

FaxX DOCUMENE FIl@ FOIMAL........coiiiiaiii ettt ettt et e st e st e b e e nbe e enbeeenees 38
ComMEaNd M ESSAGE SUMIMEIYceueieuieaeiieateeeteeesteeateeareeeasseeaaaeeasseeeaabeeaaaseesaseesaseesseesseessnseasas 38
EVeNnt MESSA0E SUMIMEIYciuiiiiiiiie ettt ettt e ettt e st e e s e b e e e e sabee e e s bse e e s nneeesannneeeesanreeaeanes 39
Developing an Mwave Fax APPHICALIONcoiiiiiiieiieeiie ettt be e b e saeesneeanneeenes 39
FAXAPP Application DefiNITION.........cooiiiiieeeie et 40
HOW 10 TUN FAXAPP. ...ttt ettt e b et e e s st e e e e s be e e e e nne e e e e aareeeesanneeeanes 40

This document contains information that is subject to
change without notice.

MMWADKUMU-03

FAXAPP COO0E MOUEl DESIGN....utiiiiiiaiei ettt ettt ettt ettt st e st ssbe e sbe e sbeesbeeaneeenbeeenees 41
Opening and Initializing the Mwave Fax Driver - WindOWS...........cooeiiirieriieee e 43
Opening and Initializing the Mwave Fax Driver - OS/2........ooiiioiiiieie e 46
SeNAiNg @ FaX - WINOOWS.......couiiiiiieieeee ettt e e et e st e e e be e e sae e e saeeesaeeesaneeesaeeesnneanns 49
SENAING B FAX - OS/2..... ittt ettt e st e e s bt e e bt e e beeenbeeabeeaabeeeanneann 54
RECEIVING @ FAX - WINOOWS.......oiiiiiiiii ettt ettt sttt st ssbe et e e s beeeneeeneeesnbeeenees 59
RECEIVING B FAX = OS5/ 2.ttt ettt ettt she e s et e s st e e st e e sabeesabe e e sabeesnbeeennen 62
Converting Fax Document Files to/from DIB fOrMaL.........c.cooieiiiiiiiiieiiie e 65
Closing the MwWave FaxX DEVICE DIIVELooiiiiiieiieeeeee ettt st ae e sae e naee e 67

S 01001007 YOO U PP UPRPPTU PRt 67
Chapter 5 - Telephone Answering Maching (TAM) SEIVICEScoiueiiieeiiie e 69
MWEAVE TAM A CHITECIUIN ...ttt et sr bbbt e r e n e s n e e nreenneenneeneens 69
TAM FIlE FOMMEES. ...ttt b bbbt b e e bt e bt e bt e s be e sbeenbe e beenneennean 70
ComMMaNd M ESSAGE SUMIMEIYceueieuieaeieeateeateeasteaateeeateeasseeasaeeeaseeeaabeeaaaseaaaseaanseessessseessnseasas 71
EVENt M ESSA0E SUMIMEIYcooieiiiiiiiie et eet ettt e et e e e sttt e e s e b e e e e sabe e e e s sseeeenneeeaannneeeesanreeananes 71
Developing an Mwave TAM APPHICALION.ooiiiiiiaiieeiie ettt ae e e saeeeneearaeeenes 72
Handset/Speakerphone INTEIraCtiONS............ooueeiiieiiee et b e e ee e e e e eaeas 72
Sample Application DEfiNITIONooiiiiiie e e e s ee e e nee e 73
SAMPIE COUE DESIGN ...ttt ettt ettt ettt ettt s et e st e e sate e e anee e saee e sabeeameeeaaeeaneeanbeeabeeaaseeenneeanns 73
TAM State Maching OPErELION.oeeuei ittt ettt et e e te e e sbeeabee e sbeeesseeesaseesnseeeaneeas 75
Sample ApPlication SOUICE COOR.eiiiieeiie ettt ettt e et e st e e sbeesneesneeeaa 78
Using the TAM Sample APPLICALTONooueiiieeeee ettt e e e e e e s aee e 85
YA (1 S (U] o T ST USRI 86
UsSiNg the SPeaKErPRONE........o...i et be e e sabe e e e eaes 87
Reviewing MeSSageS LOCAIIY ...ttt 88
Reviewing Messages REMOLEIYoui ettt ae e e ae e e sae e e e 89
Chapter 6 - FAX API REFEIBNCE.......oi ettt e b s ae e sae e e saneaa 91
MCI Telephone EVENt HANAIEYoouiiiie ettt ettt s n e san e e sarean 91
FAX Event M eSSage DESCIIPLIONS.ccoiuuieieeiiieeiie ettt sieesie e tee e e e ae e st e st e s beeesaeeesneeesnaeesnees 92
FAX Driver APl Messages and FIAgSuoiiii it 100
Chapter 7- TAM APl REFEIENCEooiiiiiie ettt ettt e e e e e saee s 129
MCI Telephone EVENt HANAIEYooiiiiieee ettt s ae e e ees 129
TAM Event Message DESCIiPLIONS.c.eiiuiieieeiieeeiee sttt st ae e sbe s b e sae e s saeeesneeesneas 131
TAM Driver APl MeSSages and FIags.......oc.ui ottt ae e 135
Chapter 8 - Error COUES.uiiiieiee ettt ettt et e et e et e e s be e s abe e e be e e beeebeeenbeesnbeeebeeaneaan 175
FAXITAM DFIVEr EITOr COUES.eiiteetieieeiiesteeste sttt ettt neesne e e ne s 176
FAX DIIVEL EFTOr COUBS.....c.uiitiitieteeitteiee etttk esb e b e sbe e b e anesanenaneenes 178
TAM DIIVEN EFTOF COUES......cotietieiieie ettt ettt ettt b e sr e e r e bt b e e nesaneeabeesreenreenneens 181
DisSCrimiNALOr EFTOr COUES......c..eeitietietieteeteet sttt b ettt se e e s e e sbeesseesseesnreeanesaneenes 187
TIFF EFTOr COUBS ...ttt ettt ettt ettt ettt b e b e bt bt e bt e s e e s e eas e e sbeeareenneeneenneenneeas 189

This document contains information that is subject to Vi

change without notice.

MMWADKUMU-03

1= @ = g o] g ore o (== T TSR PTPP PP UP PPN 193
APPENDIX A - SEFiNQG INEEMTACES. ... tiiiiie ettt ettt e st e s ee e sneeennbeans 195
AL - SIFNG TNEEITACE FAX ..ottt ettt st e sab et e e st e e s be e sbeeebe e e snbeeebeeanneean 195
A2 - NG TNEEITACE TAM ...ttt ettt e s sab e e st e e st e e s be e sabeeasee e beesbeeanneean 204
APPENDIX B - Programmer’SINOLES........cooiiiiieiie ettt e s sre e nn e e nneeas 215
BL - FAXINOLES.......oiiiiiitie e e e 215
B2 - TAM NOEES......eeteeteet ettt ettt ettt ettt s b s b e e bt e b e e b e e bt e st e b e e sbeenbeesbe e b e e b e e nneenneennis 215
B3 - Integrated APPliCAtiON NOLES.........coiiiiiiii ittt st be e e ae e e raeeesaee e ees 216
APPENDI X C - Mwave Play and Record Mixer Definition File.........cccoooiiiiiiiiiiiiiieeeiee 219

This document contains information that is subject to vii

change without notice.

MMWADKUMU-03

This document contains information that is subject to viii

change without notice.

MMWADKUMU-03

Preface

Before You Begin

This manual describes how to develop OS/2* and Microsoft Windows** 3.1 applications which take
advantage of the Multimedia capabilities of Mwave* hardware. It assumes you are familiar with
developing applicationsin 'C' for OS/2 and Microsoft Windows 3.1, and are familiar with the
Multimedia services and the Media Control Interface (MCI) provided by these products.

Before attempting to develop an Mwave Multimedia application, install the respective Mwave
hardware and software components. In addition, appropriate OS/2 MMPM or Microsoft Windows 3.1
development software must be installed on your system.

Contents of this Manual
This manual is divided into two parts:

Chapters 2-5 provide a "how-to" introduction to Mwave audio, FAX and TAM
applications. Programming examples are used to illustrate important concepts.

Chapters 6-8 provide a complete reference guide for the Mwave driver
Application Programming Interfaces (API), including command messages, data
and structure types, and error messages.

Sample Applications

The Applications Programmer’ s Guide includes example Mwave applications. These
example applications, including complete source code, are provided on the companion
diskette. They illustrate how to call the Application Programming Interfaces to access the
FAX, and Telephone/Answering Machine (TAM) Multimedia capabilities of Mwave
compliant hardware. Each application is described in detail in later chapters of this manual.

Mwave audio application services are identical to those described in existing reference
material for OS/2 and Windows. For OS/2, thisincludesthe MMPM Application
Programming Guide and MM PM Programming Reference. Sample audio applications are
included in the Programmer’ s Guide and the MMPM/2 Toolkit.

For Windows, this includes the Microsoft Windows Software Development Kit Multimedia
Programmer’ s Guide and the Microsoft Windows Software Development Kit Multimedia
Programmer’s Reference. Sample audio applications are included in the Programmer’ s Guide
and the SDK.

This document contains information that is subject to
change without notice.

MMWADKUMU-03

Related Documentation

This manual describes how to develop applications which take advantage of the Multimedia
capabilities of Mwave hardware. The following manuals provide additional information pertaining to
the Mwave system and developing Microsoft Windows or OS/2 M ultimedia applications.

The Mwave Technical Brief describes the Mwave system, providing an overview
of the Mwave processor, Operating System, DSP tasks, Microsoft Windows
manager, application drivers, and the DSP development tools.

The Microsoft Windows Software Development Kit Multimedia Programmer's
Guide describes how to develop Multimedia applications for Microsoft Windows.

The Microsoft Windows Software Development Kit Multimedia Programmer's
Reference provides a summary of the Microsoft Windows Multimedia API,
including function and message descriptions, data types and structures, and
Multimedia file formats.

The Microsoft Windows Software Development Kit Programmer's Reference,
Volumes 1-4 describe the complete Microsoft Windows APl in detail.

The MMPM Application Programming Guide and the MMPM Programming
Reference provide information for developing applications in OS/2.

This document contains information that is subject to

change without notice.

MMWADKUMU-03

Mwave Developer’s Toolkit

The Mwave Developers Toolkit (MDK) provides a software development environment for
programming the Mwave DSP and documentation supporting the development of host device
drivers. It provides the following in addition to the material in this Application Programmer’s

Guide.

APIsfor Mwave Manager, Mwave External 1/0 (MEIO) services, and Data
Mover Services

A variety of programming and debugging tools including an Mwave Assembler,
debugger, C compiler, linker
Library support for both C and DSP

The MDK includes the following documentation:

Getting Started with the Mwave Devel opers Toolkit
Application Developer’s Guide

DSP Task Developer’s Guide

DSP Toolkit User’'s Guide

Assembly Language Reference Manual

Debugger User’s Guide

The Mwave Developer’s Toolkit can be purchased from IBM Microelectronics.

This document contains information that is subject to

change without notice.

Xi

MMWADKUMU-03

Documentation Conventions

Most of the Application Programmer’ s Guide documentation is applicable to both OS/2 and
Windows. In those cases where a difference exists, the text will indicate this explicitly or the
0S/2-specific test will be shaded.

This document contains information that is subject to 12

change without notice.

MMWADKUMU-03 Chapter 1 - Introduction

Chapter 1 - Introduction

This chapter provides an overview of the Mwave multimedia system and software environment, and
briefly describes how to get started integrating Mwave multimedia capabilities into your OS/2 or
Microsoft Windows 3.1 application.

Most of the Application Programmer’s Guide is applicable to both OS/2 and to Windows. In those
cases where a difference exists, the text will say so explicitly or the OS/2-specific text will be shaded.

Mwave System Overview

The Mwave system is a programmable DSP (Digital Signal Processor) based hardware and software
platform designed specifically to handle the demands of multimedia in the desktop PC environment. A
single Mwave system can integrate a variety of multimedia capabilities such as audio, speech, FAX,
modem, and Telephone Answering Machine (TAM).

0OS/2 and Microsoft Windows provide high-level and low-level services which enable an application
developer to take advantage of the extended capabilities of a multimedia PC. By providing Mwave
Application Programming Interfaces (APIs) which are compatible with OS/2 MMPM and Microsoft
Windows multimedia services, the application developer is able to develop powerful, portable
applications which utilize the multimedia capabilities offered by a wide range of Mwave products.

This manual describes the Mwave APIs and how to use them to develop Mwave multimedia
applications for OS/2 and Microsoft Windows 3.1.

Notice

This material is being made available to enable software developers to produce digital signal
processing applications, device drivers, and tasks of MwaveQ Technology Platforms. It is not
intended to enable others to provide the services of the applications interfaces described herein, rather
to enable others to interface to these services.

1
|
il
]
"

This document contains information that is subject to
change without notice.

MMWADKUMU-03

Chapter 1 - Introduction

The following figure illustrates the Mwave runtime software environment:

Mwave Application Program

| Application
v Programmin
Mwave Device Driver a
T \ 4
Mwave Manager
PC Host
DSP Code
l Mwave DSP

A 4
Mwave Operating
System

A 4
Mwave Virtual
Hardware Tasks

Figure 1-1: Mwave Runtime Software Environment

This document contains information that is subject to
change without notice.

MMWADKUMU-03

Chapter 1 - Introduction

The following functional blocks comprise the Mwave runtime software environment.

Mwave Application Program

Mwave Device Drivers

Mwave Manager

Mwave Operating System

Mwave DSP

Mwave Virtual Hardware Tasks

The application program communicates to a
device driver through standardized APIs,
thus performing a variety of multimedia
tasks on the Mwave platform.

These MCI compliant drivers provide the
software interface between the application
program and the Mwave manager, enabling
a single Mwave application to run on a
variety of Mwave platforms.

This host-based software manages DSP
resources and provides a hardware-
independent interface layer between the
Mwave Device Drivers and the underlying
Mwave hardware.

Real-time, multitasking DSP kernel that
allows concurrent processing of virtual
hardware tasks.

High-performance DSP optimized for the
demands of multimedia applications.

DSP-optimized software library that
emulates multimedia hardware components
such as audio, speech, FAX, and
communications.

This document contains information that is subject to

change without notice.

|||
|

Ill
]
w

MMWADKUMU-03 Chapter 1 - Introduction

Developing an Mwave Application

Before writing an Mwave multimedia application, you should have a working knowledge of the
following:

Programming in the Microsoft Windows environment

Understand the high-level and low-level multimedia services provided in OS/2
Multimedia Presentation Manager/2 (MMPM/2) or Microsoft Windows 3.1.

Be able to develop programs which use the C-language interface to MMPM’s or
Microsoft's Media Control Interface (MCI)

The Multimedia Presentation Manager Toolkit/2 and Microsoft Windows 3.1 Software Development
Kit provide documentation and program examples to help you understand these concepts.

If you are planning on adding audio multimedia capabilities to your application, consult Chapter 2,
"Audio Services' in thismanual for additional information.

If you are developing an application which will utilize the FAX and/or TAM capabilities of the Mwave
system, then start out by reviewing Chapter 3, "Telephony Services". This chapter provides an
overview of Mwave telephony features and how to access these capabilities from your application

program. Next, consult one of the following chapters for specific code examplesillustrating how to call
the FAX and TAM APIs from your application program:

For FAX application program examples, see Chapter 4, "FAX Services'. The
complete FAX API referenceislocated in Chapter 6, "FAX APl Reference”.

For TAM application program examples, see Chapter 5, "TAM Services'. The
complete TAM API reference islocated in Chapter 7, "TAM API Reference".

1
|
il
]
S

This document contains information that is subject to
change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

Chapter 2 - Audio Services

The audio services available to application developers for the purpose of developing Mwave
compatible audio applications are identical to those described in the OS/2 publications: MMPM
Application Programming Guide and MMPM Programming Reference, and the Windows publications:
Microsoft Windows Software Development Kit Multimedia Programmer's Guide and the Microsoft
Windows Software Development Kit Multimedia Programmer's Reference.

This chapter provides a brief overview of the Mwave Audio Architecture, the Mwave Audio Device
Driver, the Mwave Windows Sound System 2.0 audio architecture and implementation description,
and the facilities available for devel oping Mwave audio applications.

Mwave Audio Architecture

Application developers can access the audio capabilities of Mwave compliant audio hardware through
the high-level and low-level audio services provided in OS/2 MMPM/2 and Microsoft Windows 3.1.

The host high-level and low-level audio services provide a device-independent software interface,
which enables a multimedia application to take advantage of different levels of audio support on awide
range of audio hardware. The Mwave Audio device driver provides the link between the device-
independent high-level and low-level audio services of the host PC and the Mwave system software
and audio hardware.

Windows Sound System 2.0 Implementation

The Windows Sound System 2.0 API is a standardized, low level, Microsoft developed mixer APl that
provides applications and other PC based code the ability to gather information, setup, and remain
informed about the audio sources, destinations, and controls that exist on a particular hardware
platform. It provides developers with a central repository of information and an easy way to get that
information in the form of a standardized Windows API. It also allows developers to share a particular
piece of hardware in that each registered user is informed of any changes made by any other registered
user

The Mwave Sound System audio subsystem was architected to implement the Microsoft Windows
Sound System 2.0 APl and still retain the flexibility of Mwave, which can dynamically MAKE and
BREAK connections, as well as mix digital and analog connections in a single stream to a specific
destination. The design point included the following requirements:

Manage in a single functional module all audio sources that utilize common subsystem
components. These components consist of such things as SPEAKER (CDDAC), MICROPHONE
(ADC), master and source volumes, etc.

Allow 1SV’ s and ourselves to easily add controls and/or source/destinations to suit new hardware
and application requirements.

A desire to separate hardware specific code from non hardware specific code, in order to minimize
the amount of code that would have to be rewritten between hardware platforms

This document contains information that is subject to
change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

NOTE: Not all Mwave subsystems that utilize audio are completely integrated with Sound System.
For example, TAM currently uses the SPEAKER and MICROPHONE connections, but is not tied in
with the Sound System driver. Therefore, when TAM changes volume, gains, etc., the only user that
knows about those changesis TAM. Future releases of Mwave software will include further audio
interaction with Sound System.

The following diagram illustrates the relationship between the host PC high-level and low-level audio
services, the Mwave Audio device driver, and the Mwave system software and audio hardware:

HOST-RESIDENT

APPLICATION

LEVEL | Multimedia Audio Application i
1
TRANSLATION v
LEVEL High-level audio functions (MCI)
mciwave.drv, mciseq.drv
| Low-level audio functions i
MIDI Mapper h
DRIVER

LEVEL Y Y

Mwave-Windows Audio Device Driver I

MWAVE
HOST O/Ss -
LEVEL | Mwave Windows Manager i

Mwave O/S
|
Audio task 1 | Audio task 2 i | Audio task n i

MWAVE-RESIDENT

Figure 2-1: Mwave Audio Architecture
(Example for Microsoft Windows)

A multimedia application can access the audio capabilities of Mwave hardware in one of two ways:

Use the high-level audio services, the host PC's Media Control Interface (MCI) provides a high-level
command interface to control the audio capabilities of Mwave hardware. As the diagram above

illustrates, MCI uses the low-level audio functions to provide high-level audio services to a multimedia
audio application.

1
|
il
]
[e)]

This document contains information that is subject to
change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

The Mwave Audio Device Drivers

The Mwave Audio Sound System architecture is architected as shown in the following diagram:

Waveout
Driver:
WAVE,
WAVEOUTI

mwcmConnect, mwcembDisconnect, wemSetV olume, etc.
Wavein
Driver MWCM
WAVEIN

' Connect and Disconnect Information:
MIDI Driver v MXDM_USER CONNECT
MXDM USER DISCONNECT

MIDI,
MIDIOUTIN MWCM cals: Peak meters,

< Sound System Master Volime. Fffects

MIXER Driver

GAMES Driver «— |Application Messages:
GAMES, SetControlDetails
GAMESOUTIN

MixerOpen MIXER_CALLBACK:
/ MM_MIXM_CONTROL_CHANGE,
MM MIXM LINE CHANGE

Other registered

v

drivers
L MIXER_CALLBACK

to all registered drivers

Figure 2-2: Host Drivers Diagram

1
|
il
]
-

This document contains information that is subject to
change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

Component Description

The following paragraphs provide a brief description of each of the componentsin the audio
architecture.

MWCM

MWCM is an acronym for the Mwave Connection Manager. MWCM provides drivers with an API
that allows drivers to connect sources to destinations at driver specified source and destination data
rates. MWCM determines, based on the driver specified data rates, what interpolators, decimators,
and/or mixers are required for a particular audio connection. If any of these connections already exist
on the DSP for a different stream, it will hook into that connection, thereby saving DSP resources. It
will load and activate all required tasks, connect up all connections including the connections to the
source and destination provided by the driver, and set all volumes on the stream initially to a
maximum.

MWCM also provides volume set and get API’ s for both individual streams (set on the input of the
first mixer in the stream attached to the source) and master settings (set on the output of the LAST
mixer in a stream before a specified destination).

MWCM provides API’sto insert, delete, and control effectsin a stream based upon the destination
specified. Currently effects destined for the SPEAKER destination are inserted into the last mixer in
the stream prior to connecting to the SPEAKER destination. Effects destined for the RECORD
destination are placed after the first mixer connected to the analog input source (the 44K mixer
connected to MIC, LINE, and/or CD).

MWCM also provides an API to read the peak meters on all of its active streams. This peak meter
information is read from the input of the first mixer (the source mixer) attached to the specified source
type. There are no MASTER peak meters, a master peak is calculated in the mixer driver by reading
the individual peaks and summing their result.

Note: This has the effect of showing a master peak even when the master output is MUTED, because
the master peak meter isasum of all the input sources.

This document contains information that is subject to
change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

Multimedia Drivers

WAVE, MIDI, AUX, and WAVEIN are the standard Windows 3.1 drivers that interface to the
Microsoft multimedia software layer called MMSY STEM. The GAMES driver isa VDD that emulates
the SoundBlaster audio driver.

The following standard MCI drivers, provided in the OS/2 MMPM and Microsoft Windows 3.1, are
used for processing high-level MCI calls to Mwave audio hardware:

Device Type | Driver Filename | Description

cdaudio MCICDA.DRV An MCI device driver for playing
CDDA format files

sequencer MCISEQ.DRV An MCI device driver for playing
standard MIDI and RIFF MIDI
(RMID) files

waveaudio MCIWAVE.DRV | An MCI device driver for playing
and recording waveform audio
files

Table 2-1: MCI Drivers

These functions provide a device-independent interface which enable applications to communicate
directly with the Mwave Audio device driver.

Low-level audio functions provide additional control over the multimedia device, and as aresult,
require more programming and are usually more complicated than using high-level services.

Mixer Device Driver

The Mixer Device Driver interfaces to MWCM, to the multimedia drivers, and to the Microsoft Mixer
Manager. The Mixer Manager provides applications with alow level interface to/from the mixer
device driver.

This document contains information that is subject to
change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

Mwave Audio Operations

The following paragraphs describe the interaction between the audio components and Sound System
applications.

Connect and Disconnect

The interaction starts when a new audio stream is added to the system. This occurs when an
application starts to initiate a stream, say for example Media Player starts playing aWAVE file. The
app (Media Player) opens the WAVE driver, causing the WAVE driver to load its driver specific DSP
code, and make a connection to MWCM. When MWCM receives the connection, it loads and/or
modifies existing DSP tasks in order to connect the supplied source GPC and data rate (specified by
the driver in the MWCM connection) to the supplied destination GPC and datarate. In the example
provided the source would be the output of the WAVE PCM task, and the destination would be the
CDDACBIOSinput GPC. Once the connections are made (post connection) MWCM will inform the
mixer driver that a new connection was made.

The mixer driver, when it receives connection information, checks the connection information against
its “active map”. The active map is an internal data structure in the mixer driver used to describe
which sources and destinations are currently ACTIVE (asignal is flowing through them), MUTED, or
DISCONNECTED. If aline changes state (in the above example the line would go from
DISCONNECTED to ACTIVE) the mixer driver sends a callback to all registered devices indicating
this change. Then it returns control to MWCM, who returns control to the multimediadriver. The
connection has now been established.

The reverse occurs on a disconnect. On a disconnect, the multimedia application tells the multimedia
driver to close. The multimediadriver sends a DISCONNECT message to MWCM. MWCM, prior to
unloading any DSP code, sends a DISCONNECT message to the mixer driver (predisconnect). The
mixer driver checks the line status of the disconnecting line against its “active map”, changes the status
of the source to DISCONNECTED, and, if the destination has no active sources, changes the status of
the destination to DISCONNECTED. It then sends a callback to all registered devices indicating a
change in line status, and returns control to MWCM, which unloads the stream, and returns control to
the multimedia driver. The disconnect sequence is how complete.

Handling Mixer Callbacks

Mwave has a distinct advantage over fixed, hardware only based audio platformsin that the audio
streams are mixed digitally on the DSP. It then becomes very useful to provide control over this mix,
and allow multiple destinations to receive all possible sources. With the advent of Sound System,
control over these streams s relatively simple, and it just becomes necessary to manage stream mixing.
This management of stream mixing also uses the Sound System facilities and requires the drivers that
are Sound System enabled to follow afew simple rules. When the drivers implement these rules, play
destinations can be easily connected to the record destination (and any other destination that the drivers
choose), to provide digital mixing of analog (MIC, CD, LINE) and digital streams into the final output
(record file).

This document contains information that is subject to 10

change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

The rules for drivers to hook into the record destination are as follows.

1. Each driver has a new exported function entry point, in a FIXED code segment
(Microsoft requirement) to handle the mixer callbacks. This function must handle
the two callbacks: line status changes, and control status changes. It isup to each
driver to determine what they will do when they receive these callbacks.

2. Each driver must open the mixer, and register the callback function with the mixer
driver on the mixerOpen.

3. Once the mixerOpen has completed, drivers will then receive notice of all line and
control status changes that occur.

Control (e.g. Volume Status Change)

For control status changes, drivers are primarily interested in changes to their volumes that occur as a
result of some other mixer client changing volume. An example of another client may be a mixer
application where a user just adjusted the volume slider. When the slider changes the mixer driver will
callback the multimedia driver which can update its own volume parameters accordingly. In addition,
if an app sends a volume message to the driver, the driver should make a Sound System call
(SetControlDetails) to set the volume on a stream so that other applications will also receive callback
notice of the change and can update their own volume data.

Line status changes

For line status changes, drivers can use this information to hook into the record stream if they so
choose. For example, if WAVE play isin progress, and the RECORD destination becomes active as
the result of someone starting a recording, then WAV E play can make a second MWCM connection to
this new destination. The WAVE play stream will now be digitally mixed into the RECORD stream.
In order to do this, the conditions described below must be properly handled by the driver:

1. If WAVE isplaying and RECORD starts, when the callback occurs, WAVE calls
MWCM to connect to the new RECORD destination.

2. If RECORD isrecording and WAVE starts, WAVE, as a part of its open sequence,
calls MWCM to connect to both the PLAY and RECORD destinations. All line
status callbacks are ignored.

3. If WAVE is playing and RECORD stops, when the callback occurs, WAVE
disconnects the RECORD destination MWCM connection.

4. If RECORD is recording and WAVE stops, as a part of the WAV E close sequence,
WAVE disconnects both of its PLAY and RECORD destinations from MWCM. All
line status callbacks are ignored.

This document contains information that is subject to 11

change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

Mixer Driver Description

The following discusses the Sound System mixer driver architecture and implementation. This
discussion isincluded to give an overview of both the generic architecture, which can be updated and
modified to include new sources, destinations, and controls, and the specific implementation available
today for a set of customers based off of the Mwave WHALE DSP reference design.

Architecture

The mixer driver is architected to handle the standard WSS 2.0 messages, and to interface into the
existing Mwave multimedia drivers (MIDI, WAVE, AUX, GAMES). It was partitioned to separate
hardware specific functions from generic functions, and to allow modification of controls, sources and
destinations.

| Mixer M anager | F\’fCi:IeT(()ant
I Controls
Multimediadriver 5 -
+—
MIDI, WAVE, AUX [Mixer Driver | MWAVE.INI
initializations
of all controls

FIGURE 2-3: Mixer Architecture

The controls, sources, and destinations are defined in an RC text file that gets loaded and parsed at
Windows start. The initial values of all controls are contained in the MWAVE.INI file, and each
control isinitialized at Windows start to the value contained in the INI file. These values are written
by the driver at Windows exit back into the INI file.

Special note: Because the MSMIXMGR driver loads after MM SY STEM loads, the mixer controls are
not available to the AUX, WAVE, and MIDI drivers at windows start because MM SY STEM loads the
AUX and WAVE drivers and the MSMIXMGR has not yet been initialized. Therefore, the AUX

and WAVE drivers must read their initial volumes out of the MWAVE.INI file, they cannot query
them from the mixer driver at Windows start. Once Windows is up however, they must get their
control values from the mixer driver.

In order to manage controls, the mixer driver has a hardware specific piece of code, CONTROLS.C,
which contains all the hardware specific functions necessary to set the controls defined in the RC text
file. A table existsin the mixer driver based off of control type that calls each hardware specific
function (VOLUME, MUTE, etc.).

NOTE: In the future, this control specific piece of code, along with the table lookup, may existin a
separate DLL in order to facilitate adding or changing controls.

This document contains information that is subject to 12

change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

The RC text file is written to be human readable and changeable to allow users to change, add, or
delete destinations, sources, and controls. An INI file entry (SSRC=) in the PCMWAVE section of
MWAVE.INI tells the mixer driver to read from an RC file or directly from the text file to get its setup
information. This means that a user can modify the text file, try it, change it, and when they are
satisfied with the results they can recompile the text file in the RC file, and tell the driver to read from
RC file again. To read from the RC file, set SSRC equal to 1. To read directly from the text file, set
SSRC equal to 0.

It is envisioned that in the future, applications may exist that provide the user with a set of control
objects (VOLUME, MUTE, REVERSB, etc.), and a set of sources and destinations. Users could design
their own mixer driver by visually placing the objects on atemplate. Once satisfied with the design,
they could save the results, which would cause the application to write to the mixer text definition file,
which would then be picked up by the mixer driver when Windows is restarted.

This document contains information that is subject to 13

change without notice.

MMWADKUMU-03

Chapter 2 - Audio Services

The following diagrams describe the current set of controls that have been designed to suit the Mwave
hardware reference design for MDSP2780.

MIDI WAVE GAMES CD LINE MIC
Source Source Source Source Source Source
T I T I j T
Volume Volume Volume ON/OFF ON/OFF ON/OFF
ID:22 ID:26 ID:30 ID:38 ID:43 ID:48
VOLUME VOLUME VOLUME BOOLEAN BOOLEAN BOOLEAN
" " " Volume Volume Volume
Balance Balance Balance ID:34 ID:39 ID:44
ID:23 ID:27 ID:31 VOLUME VOLUME VOLUME
BALANCE BALANCE BALANCE
Balance Balance Balance
M ute M ute M ute ID:35 ID:40 ID:45
ID:24 ID:28 ID:32 BALANCE BALANCE BALANCE
MUTE MUTE MUTE
Mute Mute Mute
ID:36 ID:41 ID:46
PeakM eter PeakM eter PeakM eter MUTE MUTE MUTE
ID:25 ID:29 ID:33
PEAKMETER PEAKMETER PEAKMETER PeakMeter PeakMeter PeakMeter
ID:37 ID:42 ID:47
\ PEAKMETER PEAKMETER PEAKMETER
Volume Balance Mute PeakM eter
L, | ID:0(Oh) ID:1 (1h) ID:2 ID:3 (3h)
VOLUME BALANCE MUTE PEAKMETER
Qsound ON/OFF Slider Slider ON/OFF Slider Slider
ID:4 (4h) ID: 5 (5h) ID:6 (6h) ID:7 (7) ID:8 (8) ID:9 (9h) ID:10 (A)
STEREOENH BOOLEAN FADER FADER BOOLEAN FADER FADER
Reverb/Chorus | | Reverb Depth Chorus Depth Bass/Treble Treble Depth Bass Depth
FIGURE 2-4: Play Summing Junction (Outbound Audio) SPEAKER
Destination 0 | «

This document contains information that is subject to

change without notice.

14

MMWADKUMU-03

Chapter 2 - Audio Services

MIDI WAVE GAMES CD LINE MIC
Source Source Source Source Source Source
T I T I j T
Volume Volume Volume ON/OFF ON/OFF ON/OFF
ID:49 ID:53 ID:57 ID:65 ID:70 ID:75
VOLUME VOLUME VOLUME BOOLEAN BOOLEAN BOOLEAN
" " " Volume Volume Volume
Balance Balance Balance ID:61 ID:66 ID:71
1D:50 1D:54 1D:58 VOLUME VOLUME VOLUME
BALANCE BALANCE BALANCE
Balance Balance Balance
M ute M ute M ute ID:52 ID:67 ID:72
ID:51 ID:55 ID:59 BALANCE BALANCE BALANCE
MUTE MUTE MUTE
Mute Mute Mute
ID:63 ID:68 ID:73
PeakM eter PeakM eter PeakM eter MUTE MUTE MUTE
ID:52 ID:56 ID:60
PEAKMETER PEAKMETER PEAKMETER PeakMeter PeakMeter PeakMeter
ID:64 ID:69 ID:74
\ PEAKMETER PEAKMETER PEAKMETER
Volume Balance Mute PeakM eter
L, | ID:11(B) ID:12 (C) ID:13 ID:14 (E)
VOLUME BALANCE MUTE PEAKMETER
Qsound ON/OFF Slider Slider ON/OFF Slider Slider
ID:15 (F) ID: 16 (10h) ID:17 (11h) ID:18 (12h) ID:19 (13h) ID:20 (14h) ID:21 (15h)
STEREOENH BOOLEAN FADER FADER BOOLEAN FADER FADER
Reverb/Chorus | | Reverb Depth Chorus Depth Bass/Treble Treble Depth Bass Depth
RECORD
Destination 1 | «

FIGURE 2-5: Record Summing Junction (Inbound Audio)

This document contains information that is subject to

change without notice.

15

MMWADKUMU-03 Chapter 2 - Audio Services

Developing an Mwave Audio Application

The Mwave Audio device driver is 100% compliant with the low-level command interface of the OS/2
MMPM and Microsoft Windows 3.1 audio device driver specifications. As aresult, any OS2 MMPM
or Microsoft Windows 3.1 application which calls functions provided in the high or low level audio
services of these systems Windows will operate correctly on Mwave compliant audio hardware.

Mwave audio applications utilize the high-level and low-level audio services provided in OS/2 and
Microsoft Windows 3.1.

The following manuals, provided in the Microsoft Windows 3.1 Software Development Kit, describe
these services in detail, and also explain how to use these services to add multimedia audio capabilities
to your Microsoft Windows 3.1 application:

The Microsoft Windows Software Development Kit Multimedia Programmer's Guide
describes how to develop Multimedia applications for Microsoft Windows 3.1. Chapters
2-5 describe the programming interface and audio services provided in Microsoft
Windows 3.1.

The Microsoft Windows Software Development Kit Multimedia Programmer's Reference
provides a summary of the Microsoft Windows Multimedia API, including function and
message descriptions, data types and structures, and Multimediafile formats.

The following manuals, provided in the Multimedia Presentation Manager Toolkit/2 , describe these
services in detail, and also explain how to use these services to add multimedia audio capabilities to
your OS/2 application:

The MMPM Application Programming Guide describes how to develop Multimedia
applications for OS/2. Chapters 2-5 describe the programming interface and audio
services provided in OS/2.

The MMPM Programming Reference provides a summary of the MMPM API,
including function and message descriptions, data types and structures, and multimedia
file formats.

All audio capabilities described in the above documentation are available to Mwave audio application
developers.

This document contains information that is subject to 16

change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

Audio Mixer APl Reference

The following describes each of the Windows Sound System 2.0 messages and the Mwave Sound
System driver’s implementation of each of the messages provided by the Sound System API.

MXDM_OPEN

The calling client is added to the mixer driver’slist of registered clients. The calling client will be
notified, via callback, of changes in controls or line status.

Note that Microsoft does not require a client to open the mixer driver in order to use the mixer driver.
A client can access the mixer driver independent of the open/close message. The only service that
open and close provides is the ability of the client to receive a callback on any change to control or line
status.

MXDM_CLOSE

The calling client is removed from the mixer driver’slist of registered clients. The calling client will
no longer be notified, via callback, of changesin controls or line status.

MXDM_GETDEVCAPS

Returns the Mwave mixer device driver capabilities copied into the passed in MIXERCAPS structure.
Currently the returned values are as follows:

wMid: MM _MICROSOFT;

wPid: MM_MSFT_ WSS MIXER;
vDriverVersion: 0x200

fdwSupport: NULL

cDestinations. 2

szPname: “Mwave Mixer Audio Driver”

MXDM_GETNUMDEVS

Returns 1, only 1 mixer device supported.

This document contains information that is subject to 17

change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

MXDM_GETLINEINFO

Returns information about a specific source or destination. For queries of TARGETTY PE, valid
targettypes are WAVEOUT, WAVEIN, and MIDIOUT.

MXDM_GETLINECONTROLS

Returns information about a specific set of controls. This driver only supports the standard three
queries: ALL, ONEBYID, and ONEBYTY PE.

MXDM_GETCONTROLDETAILS

Returns the current setting(s) of a specific control.

MXDM_SETCONTROLDETAILS

Sets the control to the specified state, updates the driver’sinternal tables, and notifies all registered
users (those that OPENED the mixer driver via M XD_OPEN) of the change in the control. The mixer
driver retains thisinformation while Windows is running in its own internal data structures, and when
Windows is shut down in INI file entries in the PCMWAV E section of the MWAVE.INI file.

MXDM_USER_CONNECT

Notification from MWCM (Mwave Connection Manager) of the connection of aline. The following
parameters are expected in this call:

dwUser: Specific instance data (none used)
dwParam1: MWCM Connection name
dwParam2: MWCM connection handle, type HMWCM.

MXDM_USER_DISCONNECT

Notification from MWCM (Mwave Connection Manager) of the disconnection of aline. The
following parameters are expected in this call:

dwUser: Specific instance data (none used)
dwParam1: MWCM Connection name
dwParam2: MWCM connection handle, type HMWCM.

This document contains information that is subject to 18

change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

Mixer Callbacks API| Reference

Callbacks are passed to a function or a window handle based on the type of callback specified in the
clients call to mixerOpen. Note that only those devices that have opened the mixer driver will receive
callbacks. The callback messages notify clients of changesin line status (ACTIVE, MUTED,
DISCONNECTED), and changes in control values. Source lines are ACTIVE when they have data
flowing through them (which, on Mwave, is when they have a MWCM connection), and destination
lines are ACTIVE when any source lineis ACTIVE.

Callbacks are the mechanism used by Sound System enabled drivers (MIDI, WAVE, etc.) to
implement Record what you play, which allows users to record both digital and analog input streams,
and to update and modify global volume parameters.

MM_MIXM_LINE_CHANGE

This callback occurs when alineis connected or disconnected from MWCM, or changes state (MUTE,
UNMUTE).

MM_MIXM_CONTROL_CHANGE

This callback occurs when a control changes state.

This document contains information that is subject to 19

change without notice.

MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to 20

change without notice.

MMWADKUMU-03 Chapter 3 - Telephony Services

Chapter 3 - Telephony Services

This chapter describes the telephony services available to OS/2 and Microsoft Windows 3.1 application
developers for the purpose of developing Mwave compatible telephony based applications.

Mwave Telephony Architecture

The Mwave system hardware has the ability to play and record data to and from atelephone line, an
external microphone/speaker, a telephone handset (just the ear piece and microphone), or a telephone
deskset (standard analog telephone). For the purposes of this document, no distinction is made between
atelephone handset and a telephone deskset. The term "handset” refers to either one. The data obtained
from these devices can be in a variety of formats (voice data, fax data, etc.) as supported by
corresponding DSP code tasks. Along with the ability to record and play telephony media, the system
(with the required software tasks) has the ability to decode touch-tone type key presses coming either
from the telephone line or handset.

Building a complete application from alibrary of various DSP functionality would be tedious at best.
For this reason, the DSP tasks have been grouped into categories of applications, and have been
integrated with software device drivers. The types of telephone formats addressed by the current device
driversinclude voice and fax carrier data transmission. In future software releases, data transmission
may be integrated with voice, e.g. voice and data.

The following figure shows the Mwave telephony architecture:
HOST-RESIDENT

(APPLICATION LEVEL h
| Fax Application | | TAM Application | | Modem Application |
N y,
/DRIVER LEVEL N
| Fax Device Dri!er | | TPS Device Driver | | TPL Device Driver | | Cgmm Driver |
e Discriminator Driver il
N | | Y,
/MWAVE HOST}, O/S LEVEL I
| Mwave Windows Manager |
v
Mwave VxD
| Mwave O/S |
|
v v v v
Fax Tasks | | TAM Tasks | | Misc. Telephony Tasks | | AT Tasks

MWAVE-RESIDENT

Figure 3-1: Mwave Telephony Architecture

This document contains information that is subject to 21

change without notice.

MMWADKUMU-03 Chapter 3 - Telephony Services

The following standard MCI drivers, provided in the OS/2 MMPM and Microsoft Windows 3.1, are
used for processing high-level MCI calls to Mwave telephony hardware:

Device Type Driver Filename Description

fax mcifax.drv An MCI device driver for sending and receiving
fax.dll (0S/2) faxes

tps mcimsg.drv An MCI device driver for local message record and
tps.dll (0S/2) playback

tpl mciphone.drv An MCI device driver for message record and play
tpl.dll (0S/2) through the phone line only

Table 3-1: Telephony MCI Driver Summary

The Telephony Device Drivers

Two types of telephony drivers are supplied with the Mwave subsystem. These include fax send and
receive (FAX) and telephone answering machine (TAM). They are designed to comply with standard
MCI type command protocols, and are implemented as MCI extensions.

Common Telephone Interface

Because both drivers make use of the telephone device, potential conflicts arise when multiple
applications are active at once. Although the telephone can be physically used by only one type of
driver at atime, the Mwave telephony drivers were designed with the ability to share control of the
telephone device, and in essence, to virtualize the telephone line. This virtualization process has been
integrated into the M ClI telephone interface used by both drivers, and is performed transparently to the
application.

Using a common telephone interface has some significant advantages. The common interface presents
a standardized view of the telephone device to the application programmer. This allows the
programmer to create a personal library of telephony functions, and use them in a variety of
applications. Migrating from a FAX deviceto a TAM device does not require any retraining on
programming the telephone.

Most importantly in today's multi-tasking environment, having a common telephone interface allows
for transparent implementation of a virtual telephone device. Although multiple applications cannot
use the telephone simultaneously, they can constantly monitor for incoming calls. The job of sharing
the telephone device, discriminating between calls, and signaling the corresponding waiting application
is performed transparently by the device driver. This allows the application programmer to treat the
telephone device as a sharable resource, and does not require inter-communication between separate
FAX, TAM, and Modem applications. An application can wait for a call, and know that it will gain
control of the telephone when the call arrives. An application that owns the telephone knows that it can
complete the call without fear that another application will try to "steal" the telephone line. The
common telephone interface greatly simplifies any environment where the telephone line is shared.

Multiple applications can monitor for an incoming telephone call at any time. However, only one
application may monitor for any one particular type of call. For example, two applications can not be
simultaneously waiting for a voice call, but one application can wait for avoice call, and another
application can wait for afax or modem call. Only one application can own the telephone line at any
given time. Ownership of the telephone is the ability to actually use the telephone line (make a call).

This document contains information that is subject to 22

change without notice.

MMWADKUMU-03 Chapter 3 - Telephony Services

An application takes ownership of the phone line in three ways:

The application receives an incoming phone call.
The application executes a command to take the phone off-hook.
The application executes adial command.

Once an application takes ownership of the phone line, other applications can continue to wait for
incoming telephone calls, or wait for the phone line to free up, but these other applications are not
allowed to use the telephone device. If an application is just waiting for a call, active use of the
telephone by other applications is transparent to the waiting application. Any application can still
execute MCl commands to control the driver environment, even when the telephone isin use by
another application. The telephone line is owned by an application until it places the telephone on-
hook, or until the device driver detects that the call has been completed.

MCI Event Handler

One difficulty in using a telephone device is the random nature of telephone events. At any one time,
one or more applications might be waiting for a call, determining a data transmission baud rate,
checking to see if the handset is on-hook, and looking for touch tone key presses from either the
handset or the telephone line. Obviously, it isimpractical to constantly poll for these types of events,
especially in anon-real-time environment such as Microsoft Windows. Ideally, an application would
be notified (via messages) when any of these randomized real-time events occur. Under MCI for OS/2
and Microsoft Windows, an application notification message, MM_MCINOTIFY, is used to notify
an application when a function call has been completed, but unfortunately, no mechanism exists to
signal an application when a defined event occurs.

To handle the need for an on-demand messaging system, the MCI drivers for Fax and TAM include a
message posting system, which when combined with an application supplied message handler, can
signal telephony applications when a defined event occurs. The receiving application might or might
not act on this message. Some of the message events defined include:

Receiving atelephone call

Detecting call termination

Incoming caller identification string
Handset hook status

Handset touch-tone key press
Telephone line hook status
Telephone line touch-tone key press
Telephone ring detected

There are additional messages defined for the Fax and TAM drivers which notify an application about
more application specific events. The Microsoft Windows message chosen to signal these eventsis
MM _MCIEVENT, because of the function's similarity to its OS2 counterpart. "Initializing the
Application" on page 1-24 describesthe MM _M CIEVENT message in detail.

By using the supplied event handler, a telephony application need not poll the status of any of the
important telephony peripherals.

Developing an Mwave Telephony Application

The Mwave telephony device drivers are compliant with the guide-lines of the MCI command interface
of MMPM and Microsoft Windows. The drivers implement all required MCI commands, and include

This document contains information that is subject to 23

change without notice.

MMWADKUMU-03 Chapter 3 - Telephony Services

additional M ClI extensions to provide a simple yet comprehensive interface to the telephone device.
Information specific to the functionality of the individual driversis available in their corresponding
chapters.

Before developing an Mwave telephony application, you need to become familiar with the procedures
involved in using the MCI interface. This document assumes you are familiar with MCI. The following
manuals, provided in the Microsoft Windows 3.1 Software Development Kit, describe MCI command
execution in detail, and also explain the various commands and messages involved in writing an M CI-
based Microsoft Windows application:

The Microsoft Windows Software Development Kit Multimedia Programmer's Guide
contains an excellent overview of MCI, and provides code examples detailing the use of
the MCl interface.

The Microsoft Windows Software Development Kit Multimedia Programmer's Reference
provides a summary of the Microsoft Windows Multimedia API, including function and
message descriptions, data types and structures, and Multimediafile formats.

The following manuals, provided in the Multimedia Presentation Manager Toolkit/2, describe this
information for OS/2.

The MMPM/2 Sample Application Programming Guide (S71G-2221) contains an
excellent overview of MCI, and provides code examples detailing the use of the MCI
interface.

The MMPM/2 Programming Reference (S71G-2222) provides a summary of the
MMPM AP, including function and message descriptions, data types and structures, and
multimedia file formats.

This section illustrates the use of the common telephone interface, which is integrated into every
telephony device. The information supplied here applies to all of the supplied telephony device drivers,
although the code examples have references to specific drivers. More information on programming
each individual device driver is supplied in a separate chapter.

Initializing the Application

The most significant difference between traditional MCl devices and the telephony drivers supplied
here is the use of an event handing routine. Communication of real-time status information from the
MCI device to the application is performed through this application event handler. The handler should
be able to service messages posted by the MCI device, which contain real-time status information
about the device. The message, MM_MCIEVENT, is not a standard M Cl message under Microsoft
Windows. Thus, a Microsoft Windows application must call the Register WindowM essage function
with the string "MM_MCIEVENT" to obtain the numeric value of the notification message.

MM_MCIEVENT

In addition to the message itself, wParam and [Param are used to pass information to the
application.

WPARAM wParam
Contains a device specific event message wEvent.

This document contains information that is subject to 24

change without notice.

MMWADKUMU-03 Chapter 3 - Telephony Services

LPMCI_EVENT_PARMS [Param
Specifies afar pointer to the following MCI_EVENT_PARMS structure:

typedef struct {
DWCRD dwbDat aPar ami;
DWORD dwEvent Dat a;
} MJ _EVENT_PARNS;

The data parameters are defined as follows:

DWORD dwDataParaml
The low-order word specifies the device specific event message wEvent
(same as wParam). The high-order word specifies the device ID of the
device initiating the message.

DWORD dwEventData
Contains a data parameter, which is dependent on the message type. This
parameter is usually an on/ off indication, or a pointer to string data.

The message type contained in wEvent, and the message data (or pointer to data)
contained in dwEventData, comprise the event message. The value and meaning of the
message data varies according to the individual message. The individual telephony device
messages for each device are detailed in their corresponding MCI command reference
chapters of this document.

The following code example illustrates the initialization of a Microsoft Windows application, including
the MCI event handler. Modifications to the code include the implementation of three distinct
functions to handle the initialization of the MCI driver environment. These functions have been
isolated in the example for the sake of clarity, and could be integrated into the main program logic of
an actual Microsoft Windows application. The functions are as follows:

InitDriverEnv() Initializes the driver environment by opening the driver and installing the
event handler.

UninitDriverEnv() Uninitializes the driver, by simply closing the device.

EventHandler() Receives messages from MCI (both MM_M CINOTIFY and
MM _MCIEVENT), and acts on these messages. This routine is shown
as a separate window procedure, but the code could easily be merged
into the main window procedure.

An entire OS/2 and Microsoft Windows startup example is shown below. Some of the modifications
made to the generic application startup routines have been highlighted for easier reference.

/1 This exanple shows howt o open the MJ device, and initialize the
/1 event handler. The event handl er routine shown in this exanple,
/1 receives MM M NOTI FY nessages as well as MM MO EVENT nessages.

/1 WnMain() - Invokes initialization & contains nessage | oop
/1 1nitApplication() - Register w ndow cl asses
/1 Initlnstance() - Oreate application & event handl er w ndows

This document contains information that is subject to 25

change without notice.

MMWADKUMU-03 Chapter 3 - Telephony Services

/1l InitDriverEnv() - Initialize MJ driver & register event handl er
// UninitDriverEnv() - Aose the MJ driver

/1 EventHandl er() - Process inconing MC nmessages

/1 Mai nWhdPr oc() - Main program wi ndow proc

#i ncl ude <wi ndows. h>
#i ncl ude <msystem h>
#i ncl ude <ntiftdd. h>
#i ncl ude <stdio. h>

HANDLE hl nst;
HWND hMai nWhd, hEvent Handl er ;
static U NT wQurDevicelD = 0;

/1

// WnMin - Programentry point

/1

int PASCAL W nMi n(hl nstance, hPrevlnstance, |pQmiLi ne, nOrdShow)
HANDLE hl nst ance;

HANDLE hPrevl nst ance;

LPSTR | pOndLi ne;

int nCmdShow;

{
M5G nsg;

/1 Register the window classes i f first tine through, else abort
if(hPrevinstance || !lInitApplication(hlnstance))
return (FALSE);

I/l Create the nmain wi ndows and event handl er
if(!Initlnstance(hlnstance, nCmShow))
return (FALSE);

/1l Initialize the MJ driver and begi n execution
if(InitDriverEnv())

{
whil e (Get Message(&rsg, NULL, NULL, NULL))
{

Tr ansl at eMessage(&sgQ) ;
Di spat chMessage(&sg) ;

}
/1 dose and clean up the M driver environment
UninitDriverEnv();

return (nmsg. wParan;

11

/1 1nitApplication - Register the w ndow classes to be used
11

BOCL | ni t Appl i cation(hl nstance)

HANDLE hl nst ance;

. hbr Background = 0;

. | pszMenuNane= 0;

.I pszd assNane = "Handl er WOl ass";
return(Registerd ass(&wc) & bTnp);

{

WADCLASS wc;

BOOL bTnp;

we. styl e = CS_OMDC | CS VREDRAW| CS HREDRAW
we. | pf n\WhdProc = Mai nWidPr oc;

wec. cbhd sExtra = 0;

wc. coWwidExtra = 0;

we. hl nst ance = hl nst ance;

we. hl con = Loadl con(hl nst ance, " Appl con") ;
we. hQur sor = LoadQur sor (NULL, | DC_ARROW;

we. hbr Backgr ound = Cet St ock@pj ect (BLACK_BRUSH) ;
we. | pszMenuNane = " AppMenu”;

we. | pszd assNane = "AppWd ass";

bTnp = Regi sterd ass(&wc);

we. style = 0;

we. | pf nwhdProc = Event Handl er;

we. cbCl sExtra = 0;

we. cbowhdExtra = 0O;

we. hl nst ance = hl nst ance;

we. hl con = 0;

we. hCur sor = 0;

we

we

we

11
/1 Initinstance - Create the main wi ndow and the event handl er w ndow

This document contains information that is subject to 26

change without notice.

MMWADKUMU-03 Chapter 3 - Telephony Services

11

BOCL I ni t1nstance(hlnstance, nCOmShow)
HANDLE hl nst ance;

i nt nGrdShow;

hl nst = hl nstance;

hMai nWhd = O eat eW ndow(" AppWO ass", "Event Handl er Exanp |e",
WE_OVERLAPPEDW NDOW CW USEDEFAULT,
CW USEDEFAULT, CW USEDEFAULT, CW USEDEFAULT,
NULL, NULL, hl nst ance, NULL);

hEvent Handl er = Cr eat eW ndow(" Handl er WO ass", 0, 0, 0, 0, O, O,
NULL, NULL, hl nst ance, NULL) ;

if (!hMainwid || !hEvent Handl er)
return (FALSE);

ShowwW ndow(hMai nWwid, nCmdShow) ;
Updat eW ndow(hMai nWid) ;

return (TRUE);
}

11

// InitDriverEnv - Initialize the MJ driver environment
11

U NT InitDriverEnv()

{
MC _CPEN _PARMB nti QpenPar nrs;
MO _FAX_SET_PARVB nti Set Par ns;

/1 Qpen the MO Driver of choice (in this case FAX), and register
/1 the message handl er using MJ _SET...
nti QpenPar s. dwCal | back = hEvent Handl er; //set handl e in dwCal | back for open
nti QpenPar ns. | pst r Devi ceType = "Mwavef ax";
i f(nti SendCommand(0, MJ _COPEN, MOl _CPEN_TYPE,
(DWORD) (LPVA D) &nti OpenPar ns))
MessageBox(hvai nWid, "MCI Cpen Error™,"MJ _CPEN', MB_(XK) ;
el se
{ _ _ _

wQur Devi cel D = nti QpenP ar rs. wbevi cel D,

nti Set Parms. dwl t em= MCl _FAX_SET_EVENT_HANDLER,

nti Set Par ns. dwSet Dat a = hEvent Handl er;

nti SendCommand(wQur Devi cel D, MJ _SET,

MJ _SET_I| TEM (DWORD) (LPVA D) &ti Set Par ns) ;

}
return(wQur Devi cel D) ;
}

11

// UninitDriverEnv - dose down the MJ driver
11

voi d UninitDriverEnv()

{
MC _GENER! C_PARMB nti Generi cPar ns;
I/l Here we'll sinply close the driver...
nci Generi cPar ns. dwCal | back = hEvent Handl er; //Set handle in dwCal | back for O ose
nti SendCommand(wQur Devicel D, M2 _CL OSE, MJ_WAIT, &ncti GenericParns);

}

11

/1 EventHandl er - Handl e nessages from MJ

11

I ong FAR PASCAL Event Handl er (hWwhd, nessage, wParam | Param
HMD hwid;

unsi gned nessage;
WPARAM wPar am
LPARAM | Par am

{
static UNI uMJ Message = Oxffff;
unsi gned short wbevi cel Dy
unsi gned short wEvent;
DWORD dwEvent Dat a;
char tpstr[80];

swi tch (message)

case WV CREATE:
/1 Register the new event nessage to be received
uMCl Message = Regi st er WndowMessage(" MM _MJ EVENT") ;
br eak;

case MM MO NOT | FY:
/1 *** Received a NOTI FY nessage ***

This document contains information that is subject to
change without notice.

27

MMWADKUMU-03

/1 Get DevicelD of the driver which is sending the nessage
wDevi cel D = LONRD(| Param);

/1 Check the message. ..
swi tch(wParam)

Handl e MM_MCI NOTI FY nessages here.

br eak;

defaul t:

i f(nmessage == uMd Message)

{
LPMO _EVENT_PARVB nep = (LPMJ _EVENT_PARVE) | Par am

/1 *** Received an EVENT nessage ***

// Get DevicelD of the driver which is sending the nessage
wDevi cel D = H WORD(nep- >dwDat aParanl) ;

/1 Get message being sent (wEvent). V& could sinply assign
/]l wEvent = wParam, but for illustration we'll use...
WEvent = LOACRD(nep- >dwDat aParantl);

/] Get the data associated w th the nessage (dwEvent Data)
dwEvent Dat a = mep- >dwEvent Dat a;

/1 Check the message. ..
swi tch(wEvent)
{

Handl e MM _MCl EVENT nessages here.

el se

}
return (NULL);
}

11

return (Def WndowPr oc(hWid, nessage, wParam |Paran));

/1 Mai nwhdProc - This is the wi ndow procedure for our main w ndow

11

| ong FAR PASCAL Mai nWhdPr oc(hwid, nessage, wParam | Paran)

HMWD hwid;

unsi gned nessage;

WPARAM wPar am
LPARAM | Par am
{

St andér d W ndow Procedure

}

[/l OS/2 MWPM Sanpl e Code

/1 This exanple shows how to open an MCI device and initialize the

/1 event handl er.

/1 main

/1 MyW ndowPr oc()

/1 1nitDriverEnv()
/1 UninitDriverEnv()
/1 main()

#i ncl ude <o0s2. h>
#i ncl ude "tam h"
#i ncl ude <string. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>

Process nessages from MCl

Initialize the MCl driver and register event handler

Close the MCl driver
Mai n program wi ndow procedure

/1 PM header file
/1 also includes ntiftdd. h

#defi ne STRI NGLENGTH 80 /1 Length of string

/1 Function prototypes
MRESULT EXPENTRY MyW ndowPr oc(HWND hwnd, ULONG nsg, MPARAM npl, MPARAM

m2);

static int InitDriverEnv(void);

This document contains information that is subject to

change without notice.

Chapter 3 - Telephony Services

genapp. ¢

MMWADKUMU-03

Chapter 3 - Telephony Services

static void UninitDriverEnv(void);

char *| pAppNane = "Mvave TAM'; ¢
char *I pl ni Name = "MATAM I NI'";
char *AnnounceFile = "\\announce.tant;
char *AnnounceTnp = "\\announce.tnp";
| ong dwBFE; ¢
HAB hab;
CHAR szTAM 11] = "TAM Sanpl e";
CHAR szString[STRI NGLENGTH] ;
PSZ pszErrMsg;
HWD hwndCl i ent = NULLHANDLE;
HWD hwndFr ane = NULLHANDLE;
HWD hwndMenu;
WORD nti _cnd_ctr = 1;
HWND hEvent Handl er;
Ul NT wTpl Devi cel D = 0;
Ul NT wTpsDevi cel D = 0;
I/
/Il lines omtted for clarity - see tam
I/
A e
/1 Main wi ndow procedure
INT mai n (VO D)
HVQ hng;
QVSG qmsg;
ULONG f I Creat e;
if ((hab = Wnlnitialize(0)) == 0OL)

Abor t Tan{ hwndFr ame, hwndC i ent);

if
Abor t Tan{ hwndFr ame, hwndC i ent);

if (!WnRegisterd ass(

hab,

(PSZ) " MyW ndow",

(PFNWP) M\yW ndowPr oc,

CS_S| ZEREDRAW

0

)) _

Abor t Tan{ hwndFr ame, hwndC i ent);

flCreate FCF_STANDARD &
~FCF_SHELLPOSI TI ON &
~FCF_MAXBUTTON &

~FCF_SI ZEBORDER &

((hmg = W nCreat eMsgQueue(hab, 0))

Defi ne paraneters by type
PM anchor bl ock handl e
String paraneters, set
procedure.

in

Client area w ndow handl e
Frame w ndow handl e
Handl e for the Menu bar

c for conplete code

/'l Message queue handl e
/'l Message from message queue
/1 W ndow creation control flags

/1 Initialize PM
/! Terminate the application

OL)// Create a nsg queue
/! Terminate the application

/] Regi ster wi ndow cl ass

/1 Anchor bl ock handl e

/1l W ndow cl ass nane

/] Address of wi ndow procedure
/] Class style

/1 No extra w ndow words

/! Terminate the application

/1 Set frame control flags to

~FCF_ACCELTABLE | FCF_DLGBORDER

if ((hwndFrane = W nCreat eSt dW ndow
HWND_DESKTOP,
W5_VI S| BLE,
&f | Create,
"MyW ndow",
szTAM
0,
(HMODULE) OL,
| D_W NDOW
&hwndCl i ent
)) == 0L) _
Abor t Tan{ hwndFr ame, hwndC i ent);

if (!WnSet WndowPos(hwndFrane,
HWND_TOP,
100, 100, 550, 80,
SWP_SI ZE | SWP_MOVE |

))
Abor t Tan{ hwndFrame, hwndClient); //

hEvent Handl er = hwndFr ane;

Deskt op wi ndow i s parent
STD. wi ndow styl es
Frame control flag
Client w ndow class nane
No wi ndow t ext
No special class style
Resource is in .EXE file
Frame wi ndow i dentifier
Client wi ndow handl e
/1 Terminate the application
/1 Shows and activates frane
/! w ndow at position 100, 100,
/1 and size 550, 70.

SWP_ACTI VATE | SWP_SHOW

Term nate the application

This document contains information that is subject to
change without notice.

29

MMWADKUMU-03 Chapter 3 - Telephony Services

/1 Get and di spatch nessages fromthe application message queue
/1 until WnGetMsg returns FALSE, indicating a WM QUI T nessage.

if (InitDriverEnv()) {
hwndMenu = W nW ndowFr oml D{ hwndFranme, FID_MENU);
whi | e(W nGet Msg(hab, &gnsg, OL, 0, 0))
W nDi spat chMsg(hab, &qnsg);

}
Uni nitDriverEnv();

W nDest r oyW ndow(hwndFr ane) ; /1 Tidy up...
W nDest royMsgQueue(hng); /1 Tidy up...
W nTerm nate(hab); /! Terminate the application

} // End of main

L e e
/!l InitDriverEnv - initialize the MC driver environnent

static int InitDriverEnv(void)

{
/'l Open the MClI driver (in this case, Mwavetpl)
nmci OpenPar ns. dwCal | back = hEvent Handl er;
nci OpenPar ns. | pstrDevi ceType = (INT *) "Mwavetpl";
dwBFE = nti SendCommand(0, MCl _OPEN, MCI _WAI T | MCI _OPEN_TYPE,
(DWORD) &nti OpenPar ns, nti _cnd_ctr++);
i f(dwBFE)
{
error_box();
return(0);
/] Get the device ID & register the Event Handl er
wTpl Devi cel D = nti OpenPar nms. wDevi cel D;
nti Set Par ms. dwCal | back = hEvent Handl er;
nti Set Par ms. dwi t em = MCI _TAM SET_EVENT_HANDLER;
nti Set Par ms. dwSet Data = hEvent Handl er;
nti SendCommand(wTpl Devi cel D, MCI _SET, MCI _"WAIT | MCI _SET_I TEM
(DWORD) &nti Set Parns, nti _cmd_ctr++);
/'l Open the MCI Driver (in this case, Mwavetps)
nci OpenPar ns. dwCal | back = hEvent Handl er;
nci OpenPar ns. | pstrDevi ceType = (I NT *)"Mwyavet ps";
dwBFE = nti SendCommand(0, MCl _OPEN, MCI _WAI T | MCI _OPEN_TYPE,
(DWORD) &nti OpenPar ns, nti _cnd_ctr ++);
i f(dwBFE)
{
error_box();
return(0);
/] Get the device ID & register the Event Handl er
wTpsDevi cel D = nti OpenPar nms. wDevi cel D;
nti Set Par ms. dwCal | back = hEvent Handl er;
nti Set Par ms. dwi t em = MCl _TAM SET_EVENT_HANDLER;
nti Set Par ms. dwSet Data = hEvent Handl er;
nti SendCommand(wTpsDevi cel D, MCI _SET, MCI _WAIT | MClI _SET_I TEM
(DWORD) &nti Set Parns, nti _cmd_ctr++);
/] Set to receive TAM phone calls
nti Set Par ms. dwi t em = MCI _TAM SET_CALL_FI LTER;
nti Set Par ns. dwSet Data = 1;
nti SendCommand(wTpl Devi cel D, MCI _SET, MCI _"WAIT | MCI _SET_I TEM
(DWORD) &nti Set Parns, nti _cmd_ctr ++) ;
return(wTpl Devi cel D) ;
}
R e
/1 UninitDriverEnv - close the MCl drivere
/1

This document contains information that is subject to 30

change without notice.

MMWADKUMU-03

Chapter 3 - Telephony Services

static void UninitDriverEnv(void)

{
nti Generi cPar ms. dwCal | back = hEvent Handl er;
dwBFE = nti SendConmand(wTpl Devi cel D, MCI _CLOSE, MCl _WAIT,
(DWORD) &nti Generi cParnms, nti_cnd_ctr++);
i f(dwBFE)
error_box();
dwBFE = nti SendConmand(wTpsDevi cel D, MCI _CLOSE, MCl _WAIT,
(DWORD) &nti Generi cParnms, nti_cnd_ctr++);
i f(dwBFE)
error_box();
}
R e
/1 MyW ndowProc - event handl er for nessages from M
/1
MRESULT EXPENTRY MyW ndowPr oc(HWND hwnd, ULONG nsg, MPARAM npl, MPARAM
o
HDC hdc;
static int I ni t Env = 0;
static short wKeys|[3] ; /] Last 3 keys entered
static short wQui et ; /1 Count for QU ET nmessages
static short wKeysPressed; /1 Count for 3 key conmand
static short wCndKey; /!l Flag for 5-x play ctrl
unsi gned short wEvent ;
unsi gned | ong dwEvent Dat a;

static int Fl ashState = 0;

switch(nmsg)

case MM _MCI NOTI FY:
swi tch(SHORT1FROMMP(npl))
{
case MClI _NOTI FY_FAI LURE:
case MClI _NOTI FY_SUCCESSFUL:
case MCI _NOTI FY_SUPERSEDED:
case MCI _NOTI FY_ABORTED:

switch(wranState)

case TS_COWMVAND_ MODE:
case TS_PLAY_MESSAGE:
Pl ayConpl et e() ;
br eak;

case TS _REMOTE PLAY:
Cont i nueRenot e() ;
wQui et = 0;

br eak;

case TS _PLAY_ANNOUNCEMENT:
Recor dMessage() ;
wQui et = 0;

br eak;

case TS _RECORD_MESSAGE:
SaveMessage();
br eak;

case TS_ARCHI VE_PLAY:
Pl ayConpl et e() ;

br eak;
defaul t:
br eak;
br eak;
}
br eak;

case MM _MCI EVENT:

This document contains information that is subject to 31

change without notice.

MMWADKUMU-03 Chapter 3 - Telephony Services

mep = (LPMCI _EVENT_PARMS) np2;

wEvent = LONORD(nep->dwDat aParaml); // or wParam
dwEvent Dat a = nmep- >dwEvent Dat a;

if (dwEventData >= '0')

dwEventData -= '0';

else if (dwEventData == "#')
dwEvent Data = 35;

else if (dwEventData == '*')

dwEvent Dat a == 42;

swi t ch(wEvent)
{
case PHONE_EVENT_CALL_TAM
wKeysPressed = 0;
Answer Cal | () ;
br eak;

case PHONE_EVENT_CALL_TERM NATED: »
Cal | Ter m nat ed() ;
br eak;

case PHONE_EVENT_CALL_PROGRESS:
i f(wlanBtate == TS _RECORD_MESSAGE | |
(wTanSt at e==TS_REMOTE_PLAY && wRenpt eSt at e==RS_WAI TI NG))
switch(dwEventData)

case DI ALTONE:
case SLOWBUSY:
case FASTBUSY:
Cal | Ter m nat ed();
br eak;

br eak;

case PHONE_EVENT_LI NE_KEY:

i f(wranState == TS REMOTE_PLAY)

{
if(wCdKey == 5) // Check for play ctrl sequence
{
wCndKey = -1;
switch(dwEventData)
{
case 1:
SeekMessage(TB_BACK) ;
br eak;
case 2:e

if(!(wPausenr=1))
nci SendCommand(wTpsDevi cel D, MCl _RESUME, MCI _WAIT,
(DWORD) &nti Generi cParnms, nti_cnd_ctr++);
el se
nmci SendCommand(wTpsDevi cel D, MCl _PAUSE, MCI _WAIT,
(DWORD) &nti Generi cParnms, nti_cnd_ctr++);

br eak;
case 3:
SeekMessage(TB_FORWARD) ;
br eak;
}
el se /] Standard Renpote Play command

swi tch(dwEvent Dat a)

case 1:
Renot eNext () ;
br eak;
case 2:
Renot eRenmove() ;
br eak;
case 3:
Renot eRepeat () ;
br eak;
case 4:
Renot eAr chi ve();
br eak;
case 5: /1 Initiate play ctrl sequence
wCndKey = (short) dwEvent Dat a;
br eak;

This document contains information that is subject to 32

change without notice.

MMWADKUMU-03 Chapter 3 - Telephony Services

el se /] Check for 3 digit command code

wKeys| 2] wKeys[1] ;

wKeys|[1] wKeys[0] ;

wKeys[0] = (short)dwEvent Dat a;
if(++wKeysPressed > 2)

i f((wKeys[2]*100+wKeys[1] *10+wKeys|[0]) ==wConmandCode)
{

Begi nRenpt e() ;
wCndKey = -1;

}

br eak;

defaul t:
br eak;

br eak;
case WM CREATE:
W nSt art Ti mer (hab, hwnd, 21000, 1000UL) ;
br eak;

case WM TI MER:
if(!'wNewMessages)

if(FlashState)

{
W nSet W ndowText (hwndFrame, szTAM ;
Fl ashState = 0;

}

}
else if(FlashState *= 1)
W nSet W ndowText (hwndFrane, " ");
el se
W nSet W ndowText (hwndFrame, szTAM ;
br eak;

case WM _COVIVAND:
I/
/1 When the user chooses option 1, 2, or 3 fromthe Options pull-
/'l down, the text string is set to 1, 2, or 3, and
/1 W nlnval i dat eRegi on sends a WM PAI NT nessage.
/1 When Exit is chosen, the application posts itself a WM CLOSE
/1 message.

{

USHORT command; /1 VWM_COVMAND conmmand val ue
comand = SHORT1FROMVP(npl); /! Extract the command val ue
switch (conmand)

case | D_RECANNOUNCE:

W nDl gBox(HWND_DESKTOP, /1 Place anywhere on desktop
hwndFr ame, /1 Omned by frane
Recor dAnnounce, /] Address of dialog procedure
(HMODULE) 0, /1 Modul e handl e
RECANNOUNCE, /1 Dialog identifier in resource
NULL) ; /1 Initialization data

W nl nval i dat eRegi on(hwnd, NULLHANDLE, FALSE); // Force a repaint
br eak;

case | D_SETRI NG

W nDl gBox(HWND_DESKTOP, /1 Place anywhere on desktop
hwndFr ame, /1 Omned by frane
Set Ri ngCount , /] Address of dialog procedure
(HMODULE) 0, /1 Modul e handl e
RI NGCOUNT, /1 Dialog identifier in resource
NULL) ; /1 lInitialization data

W nl nval i dat eRegi on(hwnd, NULLHANDLE, FALSE); // Force a repaint
br eak;

This document contains information that is subject to 33

change without notice.

MMWADKUMU-03

Chapter 3 - Telephony Services

}
br

}
case VW ERASEBACKGROUND:

/1

/!l Return TRUE to request PMto paint the w ndow background

/1

return (MRESULT)(TRUE);

case | D_COVVANDCODE:
W nDl gBox(HWND_DESKTOP,
hwndFr ane,
Set CommandCode,
(HMODULE) 0,
COVIVANDCODE,

NULL) ;

W nl nval i dat eRegi on(hwnd,

br eak;

case | D_RESET:

npl = (MPARAM | D_PHONE;

case | D_PHONE:
case | D TAM
case ID HANDSET:
case | D SPEAKER:
case | D FI RST:
case | D PREVI OUS:
case | D AGAI N:
case ID NEXT:
case ID ERASE:
case | D REVERSE:
case ID PAUSE:
case ID FORWARD:
case | D_FAST:
case | D_NORVAL

case | D_SLOW

NULLHANDLE, FALSE);

hdc = W nOpenW ndowDC(hwnd)

But t onAct i on(hdc, Menu2But t on] ’SHCRTlFRG\/I\/P(mpl) - | D_PHONE]) ;

Pl ace anywhere on deskt op

Owmned by frame

Address of dial og procedure

Modul e handl e

Dialog identifier in resource

Initialization data

Set Vol ume(SHORT1FROMVP(npl) - | D_VO) ;

(MPARAM 0, (MPARAM O);// Cause term nation

return W nDef WndowProc(hwnd, nsg, nmpl, nmp2);

br eak;
case | D _VO:
case | D V1.
case | D V2.
case | D V3.
case | D V4.
case | D V5:
case | D V6.
case | D V7.
case | D V8.
case | D V9.
br eak;
case ID QU T:
W nPost Msg(hwnd, WM QUI T,
br eak;
defaul t:
eak;

in SYSCLR W NDOW

case WM _PAI NT:

/1 W ndow contents are drawn here in

{

HPS hps;
RECTL rc;
PO NTL pt;

if

}

hps

('I'nitEnv) {
InitEnv = 1,
InitTanttate();

But t onAct i on(hdc, TB_TELEPHONE) ;

Set Vol ume(wWol une) ;

= W nBegi nPai nt (hwnd, OL, &c);

WM _PAI NT processi ng.

Presentati on Space handl e
Rect angl e coordi nat es
String screen coordinates
Create a presentation space

/] Force a repaint

This document contains information that is subject to
change without notice.

34

MMWADKUMU-03 Chapter 3 - Telephony Services

pt.x =1; pt.y =5; /] Set the text coordinates,
Gpi Set Col or (hps, CLR_NEUTRAL); /1 col our of the text,
Gpi Set BackCol or (hps, CLR BACKGROUND); // its background and
Gpi Set BackM x(hps, BM OVERPAINT); /1 how it m xes,

/1 and draw the string...
Gpi Char StringAt(hps, &dt, (LONGstrlen(szString), szString);
W nEndPai nt (hps); /1l Drawing is conplete
br eak;

}
case WM CLCSE:
I/

// This is the place to put your term nation routines
/1

sprintf(szString,"%", wWol une);
PrfWiteProfileString(hini, |pAppNane,"VOL",szString);
sprintf(szString,"%", wivsgQut);
PrfWiteProfileString(hini, |pAppNane,"MSGOUT", szString);
sprintf(szString,"%l", dwvsgl ndex);
PrfWiteProfileString(hini, |pAppNane," MG DX",szString);

Prfd oseProfile(hini);
W nPost Msg(hwnd, WM QUI T, (MPARAM 0, (MPARAM O);// Cause term nation
br eak;
defaul t:
/1
/1 Everything el se cones here. This call MJST exi st
/1 in your w ndow procedure.

return W nDef WndowProc(hwnd, nsg, nmpl, nmp2);
}
return (MRESULT) FALSE;
} /1 End of MyW ndowProc
e
/1 Abort Tam
VO D Abort Tam(HAND hwndFr ane, HWND hwndd i ent)

PERRI NFO pErr | nf oBl k;
pPSsz pszOf f Set ;

DosBeep(100, 10) ;
if ((pErrinfoBlk = WnGetErrorlnfo(hab)) !'= (PERR NFO) NULL)

pszOf f Set = ((PSZ) pErrinfoBl k) + pErrlnfoBl k->of faof fszMsg;

pszErrMsg = ((PSZ)pErrinfoBl k) + *((PSHORT)pszOif Set);

i f ((I NT) hwndFrame && (| NT)hwndd i ent)

W nMessageBox(HAND_DESKTOP, /] Parent w ndow is desk top

hwndFr ane, /1 Owner window is our frane
(PSZ) pszErr Msg, /1 PMANI'N Error nmessage
"Error Msg", /1 Title bar nessage
MSGBOXI D, /'l Message identifier

MB_MOVEABLE | MB_CUACRITICAL | MB_CANCEL); // Flags
W nFr eeError | nfo(pErrlnfoBlKk);

}
W nPost Msg(hwndCl i ent, WM QUI T, (MPARAM NULL, (MPARAM NULL);
} // End of AbortTam

The switch statements in the event handler routine are of special interest. As further code examples are
provided in the Fax and TAM sections of this document, the case code for the switch statements will
be filled in with code specific to the operation of the application. The event handler is the key section
to this example. First, it is new to even the experienced MMPM programmer, and secondly, it isthe
foundation on which to build message driven applications.

This document contains information that is subject to 35

change without notice.

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to 36

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

Chapter 4 - Fax Services

This chapter describes the telephony services available to application developers for the purpose of
developing Mwave compatible Fax based applications.

Mwave Fax Device Driver Architecture

In order to develop afunctional 0S/2 MMPM or Microsoft Windows fax application, three items are
required: 1) hardware capable of providing fax send/receive functions, 2) afax device driver to
control the fax hardware based on inputs from the application, and 3) a device-independent
programming interface between the application and the fax device driver to isolate the application
from specific device driver and hardware differences.

The following block diagram illustrates this architecture as provided by the Mwave system:

| Windows application I

A 4

Fax API

| Mwave Fax device driver

A ® Discriminator

| Mwave compliant hardware I

| Remote fax machine I

Figure 4-1

This section provides an overview of the FAX Application Programming Interface and the Mwave
Fax device driver used to develop an OS/2 or Microsoft Windows Mwave fax application.

The Fax Application Programming Interface (API)

The FAX Application Programming Interface (API), described fully in Chapter 6 of this manual,
provides the interface between an OS/2 MMPM or Microsoft Windows application and a fax device
driver compliant with the FAX API. The Mwave system provides such a fax device driver, enabling
any application calling the FAX API to access the fax capabilities of Mwave compliant hardware.

The FAX API was designed to be very similar to the Media Control Interface (MCI) standard used in
MMPM and Windows. The fax specific extensions to the MCl APl were designed to provide a
'hands-off' interface to a fax driver's send and receive capabilities, while supplying arich set of
features and options. The MCI command message format is ideal for setting and tracking device
status in an orderly manner, and with a couple of command extensions, allows the applications
programmer to easily incorporate fax send and receive capabilities into an application.

This document contains information that is subject to 37

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

The FAX API provides support for the following basic operations:

Receiving a Fax Document File

Sending a Fax Document File

Converting from Fax Document File format to Device Independent Bitmap (DIB) format
and visa-versa

The following sections describe various aspects and features of the FAX API, and how they relate to
the Mwave Fax device driver implementation.

Fax Document File Format

For simplicity, the FAX API command extensions to the standard M CI functions include file send
and file receive commands. Fax documents (single and multiple pages) are treated as a single Fax
Document File to simplify the process of communicating with the fax device driver. Under the single
file scheme, the application need only call a single send or receive command to send or receive an
entire fax document, allowing the application to monitor the progress of the operation, but not
requiring constant maintenance of the transmission procedure.

The native Fax Document File format used by the Mwave Fax device driver to send and receive fax image
datais TIFF Class F. This format was chosen because it provides efficient, multiple-page storage
capahility.

An Mwave fax application can work directly with fax filesin their native TIFF Class F format.
Alternatively, the FAX API provides commands to convert from device independent Fax Document
File format to Device Independent Bitmap (DIB) format and visa-versa. Thus, the application is able
to use DIB format when displaying and printing fax images, but use the more efficient Fax Document
File format to store the fax image data to disk.

The file format conversion commands provided by the Fax API enable an application to construct
Fax Document Files from DIB files, and extract a DIB format file from a Fax Document File. A Fax
Document File is composed of multiple pages of fax image data, while a DIB file represents asingle
page from a multi-page Fax Document File. Using the file format conversion commands allows the
extraction, insertion, and/or replacement of any page within a Fax Document File.

Command Message Summary

The main design goals when defining the MCI commands for the FAX APl were ease of use and
hands-off operation. The following table provides a summary of the MCI commands available
through the FAX APl and Mwave Fax device driver. For complete details on these commands, see
the FAX API Reference, Chapter 6 of this document.

This document contains information that is subject to 38

change without notice.

MMWADKUMU-03

Chapter 4 - Fax Services

MCI Command Description

MCI_CLOSE Close the device driver
MCI_CONVERT Convert to / from device dependent file data
MCI_DIAL Dial the telephone
MCI_GETDEVCAPS Get the capabilities of the device
MCI_INFO Get device string identifier
MCI_OPEN Open the device driver
MCI_RECEIVE Receive a fax file

MCI_SEND Send a fax file

MCI_SET Configure the device
MCI_STATUS Query device configuration

Table 4-1: MCI Command Summary

Programmers familiar with the standard M ClI specification will note the addition of the following

MCI commands to the FAX API:

MCI_CONVERT
MCI_DIAL
MCI_RECEIVE
MCI_SEND

The MCI_CONVERT command is required to convert device independent Fax Document Files
(TIFF Class F in the case of the Mwave Fax device driver) to/from DIB files. The MCI_DIAL
command is required to dial the telephone device. The other two new commands, MCI_RECEIVE

and MCI_SEND, provide generic multi-page file receive and send capability.

Event Message Summary

The Mwave Fax device driver uses event messages to inform an application when various telephony-

related events occur. The following table provides a summary of the MCI event messages which an
application can receive from the Mwave Fax device driver. For complete details on these event

messages, see Chapter 6 of this manual.

Event Message

Description

PHONE_EVENT_CALL_PROGRESS

Call progress state has changed

PHONE_EVENT_CALL_FAX

An incoming fax call has been received

PHONE_EVENT_CALL_TERMINATED

Call terminated (supplies termination code)

PHONE_EVENT_CALLER_ID

Caller ID string detected (supplies string
pointer)

PHONE_EVENT_FAX_CONNECT

Returns connection parameters

PHONE_EVENT_FAX_ HEADER

Supplies fax header from calling machine

PHONE_EVENT_FAX PAGE_COMPLETE

Signals that a fax page has been completed

PHONE_EVENT_FAX PAGE_STATUS

Supplies individual page completion status

PHONE_EVENT_FAX_POLL

Request to poll received

PHONE_EVENT_HANDSET

Change in handset status (supplies status)

PHONE_EVENT_HANDSET_KEY

Keypad press from handset (supplies
character)

PHONE_EVENT_LINE

Change in hook status (supplies status)

PHONE_EVENT_LINE_KEY

Keypad press from line (supplies character)

PHONE_EVENT_RING

Telephone ring status (supplies ring on/off)

Table 4-2: MCI Event Message Summary

This document contains information that is subject to
change without notice.

39

MMWADKUMU-03 Chapter 4 - Fax Services

Developing an Mwave Fax Application

This section describes how to develop an application which calls the FAX API to access the Mwave
Fax device driver, providing fax send and receive capabilities.

Throughout this section, code snippets are used to illustrate the basic concepts of how to use the
Mwave Fax device driver. These code snippets are part of a complete fax application example,
fax.exe (referred to as FAXAPP throughout the remainder of this section). included on the
companion diskette. One exampleis provided for OS/2 and one for Microsoft Windows. The source
code is provided for reference, and can also be used as a starting point from which you can develop
your own Mwave fax application.

The code snippets in this book are accompanied by the filename and function name (indicated by [
filename: function()]) of the FAXAPP source module where the corresponding source code can be
located.

FAXAPP Application Definition

FAXAPP demonstrates the basic concepts required to add fax send/receive/view capability to an
application through the use of the Mwave Fax device driver. These concepts are illustrated by
providing support for the following capabilities:

Send a Fax Document File or DIB file to aremote fax machine via a user specified
phone number. The send operation runs in the background, allowing other operations to
occur.

Receive a Fax Document File from a remote fax machine. The receive operation runsin
the background, allowing other operations to occur.

View auser specified page from a Fax Document File. The view operation runsin the
foreground.

The purpose of FAXAPP isto provide an example of using the basic fax send and receive capabilities
of the FAX API and the Mwave Fax device driver. As aresult, there are many other capabilities
provided by the FAX APl and Mwave Fax device driver which are not demonstrated in FAXAPP,

but might be useful for your particular application. Additionally, although the sample is a functional
fax machine, it doesn't contain the error handling or feature set of a complete robust application.

How to run FAXAPP

This section provides a brief overview of how to run the example fax application FAXAPP provided
in the Mwave system.

Starting FAXAPP

Copy the\fax subdirectory (for OS/2 or Windows) from the companion diskette to a\fax subdirectory
(or other convenient subdirectory) on your system. Add afax icon to the desktop if you wish. To start
FAXAPP, simply double-click on the Fax program icon (or start from an OS/2 command line or the
Windows File]Run menu). When the fax application starts, a screen appears to tell you that its
initialization has completed. Click OK to continue the operation.

Sending a fax

This document contains information that is subject to 40

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

Facsimile machines send and receive filesin aformat called TIFF Class F format. Many PC
programs generate and manipulate image files in a different format called BMP (bitmapped). The fax
application supports both these formats BMP files are converted to TIFF format before being sent
The Mwave FAX driver supports conversion of BMP filesto TIFF (and vice-versa), and the
application uses this conversion support. The application supports only black and white
(monochrome) files. Color BMP files are not supported by the Mwave FAX device driver.

To send afile:
1. Select the Send command from the Options menu.

2. Select thefile (either aBMP or TIFF file) to be sent. If the selected fileisa BMP file, the
application will convert the file from BMP format to TIFF format before being sent. The application
prompts you to enter the destination filename where the converted TIFF fileisto be stored. Be sure
and specify a.TIF filename extension for the destination file. Also, make surethe BMPfileis
monochrome. Color BMP files will not be sent correctly.

3. Enter the phone number of the remote fax machine when prompted. The specified file is then sent,
in the background, to the remote fax machine, allowing you to continue to use other applications. A
message box is displayed after successful completion or call termination due to an error.

Receiving a fax

The application automatically receives fax data from incoming fax calls.

The receive operation proceeds in the background, allowing you to continue working with other
applications. Message boxes are used to notify you that afax call has been received, to display the
receive operation's completion status (either success or failure), and to indicate the name of the
received TIFF file.

Viewing a fax

FAXAPP enables you to view fax datafrom a BMP file or a single page from a TIFF FAX Document
File. Toview afax:

1. Select the View command from the Options menu.

2. Select thefile (either aBMP or TIFF file) to be viewed. TIFF files will be converted to BMP
format before being viewed. For TIFF files, the application prompts you to enter the destination
filename where the converted BMP file will be stored. Be sure and specify a .BMP filename
extension for the destination file. If there are multiple pages of fax data within the specified TIFF
file, you are prompted to select the number of the page you wish to view.

3. When the conversion completes (if conversion was required...if you asked to view a TIFF file), the
fax application displays the file. (The application actually displays a negative image of thefile.
Where the original image is dark, the displayed image is light and vice-versa).

Other commands

Two additional commands are available from the FAXAPP Options menu. They are:

Hang up
This command hangs up the phone (places the phone device on hook). Y ou can

This document contains information that is subject to 41

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

hang up the phone any time.

Clear screen
This command clears the fax image currently displayed (if any) in the fax application window. Select
the View command if you want to view another fax.

FAXAPP Code Model Design
This section briefly describes afew of the design considerations used to develop FAXAPP.

The primary goal of FAXAPP isto illustrate the operation of afax device, which is event (message)
driven, and thusis able to execute as a background task. There are some functions which are
performed in the foreground, but these include only those functions (such as viewing aBMP file)
invoked when the user is using FAXAPP in the foreground.

Because FAXAPP is designed to be message and event driven, a brief review of the types of
messages and events which can be sent to FAXAPP by the host PC and the Mwave Fax device driver
is useful.

MM_MCIEVENT

The MM_MCIEVENT event message is sent by the Mwave Fax device driver as a direct result of an
external telephony event. All event messages are for notification purposes only, and the application is
not required to perform any action to handle any of these events. The event messages are very useful
however for writing event driven applications. The messages that are handled in FAXAPP are:

PHONE_EVENT_CALL_FAX
Anincoming fax call has been received. The application must begin receiving the
incoming fax data.

PHONE_EVENT_CALL_TERMINATED
An active call (send or receive) has been terminated, either successfully, or due to some
error condition.

MM_MCINOTIFY (Windows only)

The MCI notification message MM_MCINOTIFY is the standard method for MCI to notify an
application that an MCl command has been completed. This message is sent to an application
whenever an MCI command is called with the MCI_NOTIFY flag specified. In FAXAPP, the
MCI_NOTIFY flag is used instead of the MCI_WAIT flag for those MCI commands (MCI_DIAL
and MCIl_RECEIVE) which can take a substantial amount of time to complete, thus freeing the
Microsoft Windows system to respond to other actions.

The MM_MCINOTIFY message is handled in the WndProc() function in fax.c. Receipt of
MM_MCINOTIFY messages cause a change in the FAX APP state machine.

The FAXAPP State Machine (Windows only)

FAXAPP's send and receive operations are implemented using a very simple state machine. FAXAPP
can bein only one of the following states at any given time:

This document contains information that is subject to 42

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

State Description

STATE_IDLE No send or receive operation is in progress.

STATE_DIALING Fax driver is dialing and attempting to connect
with a remote fax machine.

STATE_SENDING_FAX Connection with remote fax machine complete.

Fax data is being sent.
STATE_RECEIVE_SETUP An incoming fax call has been detected. The fax
driver is now being set up to receive incoming
fax data from a remote fax machine.
STATE_RECEIVING FAX Fax driver is receiving incoming fax data.

Table 4-4: FAXAPP States

The FAXAPP state machine proceeds from state-to-state based on MM_MCINOTIFY messages
received from the MCI_DIAL and MCI_RECEIVE commands (which are called with the
MCI_NOTIFY flag specified). We'll get into more detail about these state changes in later sections,
which deal with how to send and receive fax files.

FAXAPP uses the same window procedure (WndProc() in fax.c) to handle messages sent by both
Microsoft Windows and the Mwave Fax device driver. The single message handling procedure
implemented in FAXAPP was done purely for demonstration purposes. A dual procedure approach
(one procedure handling Microsoft Windows messages and the other handling event message from
the Mwave Fax device driver) could just as easily been used. For an example of a dual-procedure
approach, see the TAM sample application provided on the companion diskette.

Received Fax Document Filenames

In order for FAXAPP to receive files in the background without requiring the user to specify a
destination filename, a simple file naming scheme is used to automatically store received Fax
Document Files.

Each time afax call is received, the corresponding fax image data (either a single page or multi-page
fax) is stored in afile with afile name format of FAX?2.TIF, where ??is a sequential decimal value
which isincremented after the completion of every fax call, and is reset to zero whenever FAXAPP is
started. Thus, FAXAPP overwrites an existing FAXO.TIF, FAX1.TIF, etc. whenever it receives new
incoming fax calls after being restarted.

FAXAPP Source File Descriptions

The following source files comprise the FAXAPP example application:

File Description

makefile Microsoft C 7.0 / Windows 3.1 or IBM C Set/2 compatible
make file

fax.c Contains FAXAPP initialization code and procedure to handle
all window messages

faxdlgs.c Contains functions to display and process dialog boxes

faxops.c Contains all functions which interface to the FAX API

view.c Contains functions to enable viewing of fax image data

fax.def Linker definition file

fax.h FAXAPP specific include file

mciftdd.h Mwave Fax/TAM device driver include file

fax.rc FAXAPP resource file

Table 4-5

43

This document contains information that is subject to
change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

Opening and Initializing the Mwave Fax Driver - Windows

The first thing FAXAPP must do before sending and/or receiving fax filesis to open and initialize the
Mwave Fax device driver. The steps required are:

Step 1. Register the MM_MCIEVENT message.
Step 2. Open the Mwave Fax device driver.
Step 3. Set up the fax driver event handler.

Step 4. Set up the call filter.

This sequence of stepsis performed automatically whenever FAXAPP is started (see the WinMain()
function in fax.c). Let's take a closer look at each step in the Mwave Fax device driver open and
initialization process.

Step 1. Register the MM_MCIEVENT message

The Mwave Fax device driver communicates events to the application through the use of the
"MM_MCIEVENT" message (see "Developing an Mwave Telephony Application” on page 1-23 for
complete details on the "MM_MCIEVENT" message). Because thisis not a standard M Cl message
under Microsoft Windows, it must be registered.

In addition, the"MM_MCIEVENT" message must be registered prior to setting the event handler
window procedure (Step 3 in the open/initialize process) which handles messages sent to our
application from the Mwave Fax device driver. Thisisto insure that our application does not miss
any "MM_MCIEVENT" messages which can be sent by the driver.

The following call registersthe"MM_MCIEVENT" message and assigns the numeric value returned
to the global variable uMZl Message .

uMCl Message = Regi st er WndowMessage("MV MO EVENT");

The Mwave Fax device driver issuesa"MM_MCIEVENT" message to Microsoft Windows
whenever the driver needs to inform the application that some telephony event has occurred.
Microsoft Windows then translates the "MM_MCIEVENT" message request and send the
corresponding numeric value returned from the RegisterWindowM essage() function to our
application's event handling procedure.

Now that the "MM_MCIEVENT" message has been registered, we can safely open the Mwave Fax
devicedriver.

Step 2. Open the Mwave Fax device driver

The Mwave Fax device driver isidentified by the device type "Mwavefax" (case is not sensitive).
This device type is used with the MCI_OPEN command to open the driver.

Resour ceMessageBox(hwid, I1DS_MSG INT_DRIVER, 0, szAppNane, MB (K);

Set Cur sor (hcWai t Qursor) ;

nti QpenPar s, dwCal | back = (DWORD) hwad;

nti QpenPar ns. | pst r Devi ceType = "Mwavef ax";

dwRet urn = nti SendComand(NULL, /!l device ID
MO _CPEN, /! comrand

This document contains information that is subject to 44

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

MO _WAIT | MO _OPEN_TYPE, /1 flags

(DWORD) | pnti QpenPar s) ; /1 paraneter bl ock
if(dwReturn)
{

Resour ceMessageBox(hwid, IDS ERR INT_DRIVER (U NT)dwReturn, NULL, MB_(K);
return(FALSE);

}
wMiaveFax| D = | pnti QpenPar ns- >wDevi cel D;

NOTE: For Windows, the handle of the window procedure responsible for processing
MM_MCINOTIFY messages MUST be specified by assigning it to
nti QpenPar ns. dwCallback prior to calling the MClI_OPEN command,
regardless of whether the MCI_WAIT or MCI_NOTIFY flag is specified in the
MCI_OPEN call. Failure to do so when using versions earlier than 2.1 will result in
erratic behavior of the Mwave Fax device driver.

If the MCI_OPEN command completes successfully, the device ID of the Mwave Fax device driver
(returned in | pnti QpenPar ns- >wDevi cel D) is assigned to the variable wwaveFax| D. This
variable is specified in the remaining mciSendCommand calls to identify the Mwave Fax device
driver.

Asillustrated in the code example above, you should always check the return value from the
MCI_OPEN command for an error. There are a number of conditions (insufficient memory or MIPS
available on the Mwave board) which can cause the Mwave Fax device driver to fail opening, and
these cases should be handled properly by the application.

Step 3. Set up the fax driver event handler

After opening the driver, the next step is to set the window procedure our application uses to handle
incoming "MM_MCIEVENT" event messages sent by the Mwave Fax device driver. This should be
done immediately after opening the driver to minimize the chance of missing any driver event
messages. The MCI_SET command with the MCI_FAX_SET_EVENT_HANDLER item is used to
set the event handler procedure.

Recall that FAXAPP uses the same window procedure (WndProc() in fax.c) to process messages sent
by both Microsoft Windows and the Mwave Fax device driver. This window procedure is assigned to
our main application window, identified as hwad . Thus, we specify hWwhd as the window to receive
"MM_MCIEVENT" messages.

__ */

/* Set up the FAX driver event handler to our main application */
/* wi ndow procedure, since this is where we will process event */
/* messages sent fromthe FAX driver. */

/* __ */
nti Set Par ns. dw t em = MO _FAX_SET_EVENT_HANDLER
nti Set Par ns. dwSet Dat a = (DWORD) hwid;
Set Cur sor (hcWai t Qursor) ;
dwRet urn = nti SendCommand(wMhaveFax! D,
MO _SET,
MJ_WAIT | MJ_SET_I TEM
(DWORD) | pnti Set Parns) ;
if(dwReturn)
{

Resour ceMessageBox(hwid, | DS _ERR SET_EVENT_HANDLER, (U NT) dwReturn, NULL,
MB_(K) ;
return(FALSE);
}

This document contains information that is subject to 45

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

Step 4. Set up the call filter

The last step required in the Mwave Fax device driver initialization process involves setting up the
call filter. Setting the call filter to TRUE informs the Mwave Fax device driver that it isto receive fax
calls.

Setting the call filter also provides a mechanism to insure that no other application is expecting to
receive afax call. Attempting to enable the call filter when another application has already enabled
the filter resultsin an error return.

nti Set Par ns. dw t em = MO _FAX_SET_CALL_FI LTER,
nti Set Par ns. dwSet Dat a = TRUE;
Set Cur sor (hcWai t Cursor) ;
dwRet urn = nti SendCommand(wMhaveFax! D,
MO _SET,
MJ_WAIT | MJ_SET_I TEM
(DWORD) | pnti Set Parns) ;
if(dwReturn)
{

Resour ceMessageBox(hwid, | DS ERR SET_FILTER, (U NT)dwReturn, NULL, MB_(X);
return(FALSE);

Opening and Initializing the Mwave Fax Driver - OS/2

The first thing FAXAPP must do before sending and/or receiving fax filesis to open and initialize the
Mwave FAX device driver. The steps required are:

1. Open the Mwave FAX device driver.
2. Set up the fax driver event handler.
3. Set up the call filter.

This sequence of steps is performed automatically whenever FAXAPP is started (see the main
function in fax.c). Let's take a closer look at each step in the Mwave FAX device driver open and
initialization process.

Step 1. Open the Mwave FAX device driver

The Mwave FAX device driver isidentified by the device type "Mwavefax" (case is not sensitive).
This device type is used with the MCI_OPEN command to open the driver.

faxops.c: InitFAX

int InitFax(HAWD hwhd)
{

char nmessagestring[255] ;

MessageBox (hwhd, "Initializing the fax driver",
szAppNanme, MB_OK| MB_| CONEXCLANMATI ON) ;

W nSet Poi nt er (HAND_DESKTOP,
W nQuer ySysPoi nt er (HAND_DESKTOP,
SPTR_WAI T, FALSE));

nmci OpenPar ns. | pstrDevi ceType = (LPSTR) " Mwaavef ax";
nmci OpenPar ns. dwCal | back = (DWORD) hWhd;

dwRet urn = nti SendComrand(wDevi cel D,

This document contains information that is subject to
change without notice.

46

MMWADKUMU-03 Chapter 4 - Fax Services

MCI _OPEN,
MCI _WAI T | MCI _OPEN_TYPE,
(DWORD) | pnti OpenPar ns, ++nti Call);

if (dwReturn)
{ /* Error, unable to open device */
if (!(mci GetErrorString(dwReturn,
(int *)messagestring, sizeof(nessagestring))))

MessageBox(hWhd, messagestring, NULL,
MB_OK| MB_ERROR) ;
}

el se

sprintf(nessagestring,
"Unabl e to open device or
GetErrorString. RC= %d",
(LOWORD(dwRet urn)));

MessageBox(hWhd, messagestring, NULL,
MB_OK| MB_ERROR) ;
}

return FALSE;

/* Device opened successfully, get the device ID */
wDevi cel D = | pnti OpenPar nms- >wDevi cel D;

If the MCI_OPEN command completes successfully, the device ID of the Mwave FAX device driver
is assigned to the variable wM waveFaxID. This variable is specified in the remaining
mciSendCommand calls to identify the Mwave FAX device driver.

Asillustrated in the code example above, you should always check the return value from the
MCI_OPEN command for an error. There are a number of conditions (such as insufficient memory or
MIPS available in the Mwave DSP) that can cause the Mwave FAX device driver to fail opening.
These cases should be handled properly by the application.

This document contains information that is subject to 47

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

Step 2. Set up thefax driver event handler

After opening the driver, the next step is to set the window procedure our application uses to handle
incoming "MM_MCIEVENT" event messages sent by the Mwave FAX device driver. This should be
done immediately after opening the driver to minimize the chance of missing any driver event
messages. The MCI_SET command with the MCI_FAX_SET_EVENT_HANDLER item is used to
set the event handler procedure.

Recall that FAXAPP uses the same window procedure (WndProc() in fax.c) to process messages sent
by both MM PM and the Mwave FAX device driver. This window procedure is assigned to our main
application window, identified as hWhd . Thus, we specify hWid as the window to receive
MM_MCIEVENT messages.

faxops.c: I nitFax

nci Set Par ms. dwCal | back = (DWORD) hWhd;

nci Set Parns. dwl t em = MCI_FAX_SET_EVENT_HANDLER
nci Set Par ms. dwSet Dat a = (DWORD) hWhd;

W nSet Poi nt er (HAND_DESKTOP, W nQuer ySysPoi nt er (HAND_DESKTOP, SPTR WAI T,
FALSE)) ;

dwRet urn = nti SendComrand(wDevi cel D, MCl _SET,

MCI_WAIT | MCl_SET_| TEM

(DWORD) | pnti Set Parns, ++nti Cal |);
if (dwReturn)

if (!(mci GetErrorString(dwReturn,
(int *)messagestring, sizeof(nessagestring))))

MessageBox (hWhd, messagestri ng,
NULL, MB_OK| MB_ERROR) ;

el se

MessageBox(hWhd, "Unabl e to set the event handler",
NULL, MB_OK);

}
return FALSE;
}

This document contains information that is subject to 48

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

Step 3. Set up the call filter

The last step required in the Mwave FAX device driver initialization process involves setting up the
call filter. Setting the call filter to TRUE informs the Mwave FAX device driver that it isto receive
fax calls.

Setting the call filter also provides a mechanism to insure that no other application is expecting to
receive afax call. Attempting to enable the call filter when another application has already enabled
thefilter resultsin an error return.

nti Set Parnms. dwl tem = MCI _FAX SET _CALL_FI LTER,
ncti Set Par ms. dwSet Dat a = TRUE;

W nSet Poi nt er (HWND_DESKTOP, W nQuerySysPoi nt er (HWND_DESKTOP,
SPTR_WAI T, FALSE));

dwRet urn = nti SendComand (wDevi cel D, MCI _SET,

MCI_WAIT | MCl_SET_| TEM

(DWORD) | pnti Set Parns, ++nti Cal |);
if (dwReturn)

if (!(nciGetErrorString (dwReturn,
(int *)messagestring, sizeof(nessagestring))))

MessageBox(hWhd, messagestri ng,
NULL, MB_OK| MB_ERROR) ;

el se
MessageBox (hwhd,
" Anot her tel ephony application is in use",
NULL, MB_CK);
return FALSE;

return TRUE;

This concludes the steps required to properly open and initialize the Mwave FAX device driver. We
can now proceed with other driver operations, such as sending and receiving FAX Document Files.

Sending a Fax - Windows

Sending a fax using the FAX API and the Mwave Fax device driver requires the following steps:
Step 1. Inform the Fax driver of the names of the Fax Document File(s) to be sent.
Step 2. Take the phone off-hook and dial the phone number of the destination fax machine.

Step 3. Respond to a change (either completion, status change, or error) to the send
operation.

This document contains information that is subject to 49

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

The send command is initiated by selecting the Send command from the FAXAPP Options menu.
The message procedure for the send command is:

[fax.c: WndProc()]
case | DM SEND:

/* __ */
/* Send a fax. */
/* __ */

strcpy(FileNane, "*.tif");

| pFi | eName = (GetFil eNane(hl nst, hwhd, "Send Fax", FileNane,
Fil eNanesz, TIF_FILTERSTRING);

if (IpFileNane!=NULL)

if (tif = 1sTif(lpFileNane))
SendFax(hwWhd, | pFil eNane);
else if (bnp = IsBnp(l pFil eNane))
i f (ConvertBMP2TI F(hWhd, | pFil eNane)
SendFax(hwWhd, | pFil eNane);
else if (I(tif || bnp))
Resour ceMessageBox(hwid, | DS ERR FI LE FORVAT, 0, NULL, MB X);

br eak;
Please note the following in the message procedure above:

a. FAXAPPisdesigned to allow only one file (single or multiple pages) to be sent at a
time. Thisisalimitation of FAXAPP, and not of the FAX APl and Mwave Fax device
driver, both of which provide support for sending multiple files at the same time.

b. FAXAPP allows the user to send either TIF files (TIFF Class F format) or BMP files
(DIB format). Since the Mwave FAX driver supports only TIF file sending, FAXAPP
converts BMP filesto TIF format via the ConvertBMP2TIF() function. See "Converting
Fax Document Files to/from DIB format" on page 1-65 for more information.

The SendFax() function initiates the three step procedure required to send a fax. Let's examine how
each of these steps isimplemented.

This document contains information that is subject to
change without notice.

50

MMWADKUMU-03 Chapter 4 - Fax Services

Step 1.Inform the Fax driver of the names of the Fax Document File(s) to be sent.

The MCI_SEND command is used to specify the name(s) of the Fax Document File(s) to be sent.
The filenames are specified by providing to MCI_SEND a pointer to an array of pointers to strings
containing the name of each file to be sent. For example, assume | pSendPt r isthe array of pointers
to the 'n' number of filename strings. It isinitialized as follows:

LPSTR | pSendPt r[n+1] ;

| pSendPt r [0]
| pSendPt r [1]

address of string containing file #1 fil ename
address of string containing file #2 fil ename

| pSendPt r[n-1]
| pSendPt r [n]

address of string containing file #n fil ename
(LPSTR) NULL;

Note that the filename list is terminated by a NULL filename pointer.

In FAXAPP, we declare atwo-dimensional array SendBuf f to store up to two filenames (although
only oneis used), and then assign the address of the SendBuf f stringsto thel pSendPtr array.
The filename to send (the address of which is passed as the argument sr cFi | eNane to the
SendFax() function), is copied into the first element of the SendBuf f array (pointed to by

| pSendPtr[0]). Finally, the address of the | pSendPt r array is sent to the MCI_SEND
command.

[faxops.c: SendFax()]
LPSTR | pSendPtr[10];
char SendBuf f [2] [128] ;

/* __ */
/* Send the fax file */
K o o o o e m . — - */
| pSendPt r [0] SendBuf f[0] ;

I pSendPtr[1] = SendBuff[1];

Istrcpy(| pSendPtr[0], srcFileNane); /1 send file name
I pSendPtr[1] = "'\0";

nti SendPar ns. | pstrFil enane = (LPSTR)| pSendPtr;

Set Cur sor (hcWai t Cursor) ;
dwRet urn = nti SendCommand(wMhaveFax! D,
MCI _SEND
MJ_WAIT | MO _SEND FILE,
(DWORD) | pnti SendPar s) ;
if(dwReturn)
Resour ceMessageBox(hwWid, 1 DS_ERR SEND FILE, (U NT)dwReturn, NULL, MB K);
else ...

The MCI_SEND command causes the Mwave Fax device driver to be configured for a send. Once
the MCI_SEND command completes, the driver has prepared the Fax Document Files for
transmission to a remote fax machine.

Step 2. Take the phone off-hook and dial the phone number of the destination fax
machine.

The next step isto dial and connect to the remote fax machine. Thisis done viathe MCI_DIAL
command.

__ */
/* Pronpt user for the phone nunber */
/* __ */

I pf nGet Nbor = (DLGPROC) MakePr ocl nst ance((FARPROC) Get Nor _Dl gProc, hlnst);
i f(D al ogBox(hlnst, "phonenundl g", hWd, |pfnGetNor))
{

/* __ */
/* Dial the phone nunber */
/* __ */

nci Dial Parms. | pstrD al String = (LPSTR) PhoneNunber ;

This document contains information that is subject to 51

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

nti Di al Par ms. dwCal | back = (DWORD) hwad;

Set Cur sor (hcWi t Cursor) ;

uAppSt ate = STATE DI ALING

nti SendCommand(wMhaveFax! D,
MCI _DI AL,
MJ_NOTIFY | MO_DIAL_STRING| MJ_DIAL_MNITOR | MJ_DiAL_VER FY,
(DWORD) | pnti Di al Parms) ;

}

In FAXAPP, the user is prompted to enter the phone number of the destination fax machine. The
phone number is then supplied to the MCI_DIAL command.

Note that MCI_DIAL iscalled using the MCI_NOTIFY flag instead of the MCI_WAIT flag. This
was done for two reasons. Thefirst is that the dial and connect operation could be a lengthy one, and
we do not want to tie up the Microsoft Windows system waiting for this operation to complete.
Secondly, it enables our message procedure to track the machine state viathe MM_MCINOTIFY
message. Note that the FAXAPP state is set to STATE DI ALI NG prior to calling MCI_DIAL. A
transition from the dialing state to the send fax data state is handled by the message procedure.

Hint: In Microsoft Windows, it is best to use MCI_WAIT with MCI commands when debugging
your code. Using MCI_WAIT allows the application to get more descriptive error messages.

Also note that the MCI_DIAL_MONITOR flag is specified in the MCI_DIAL command. This allows
the user to monitor the connection negotiation and call progress via speakers or headphones attached
to the Mwave board's audio output connector.

After dialing and connecting to the destination fax machine, the Mwave Fax device driver begins
sending the fax data to the destination fax machine. At the same time, MCI sends a
MM_MCINOTIFY message (since MCI_DIAL was called with the MCI_NOTIFY flag specified) to
indicate either successful completion or failure of the MCI_DIAL command. Our message procedure
(see below) responds to a successful connection by changing the machine state to

STATE_SENDI NG _FAX . If adial or connection failure occurred, FAXAPP displays an error
message, hangs up the line, and resets the machine state to STATE | DLE .

[fax.c: WndProc()]
case MM MJ NOTI FY:
swi t ch(wPar an)
{

case MO _NOTI FY_ABORTED:
case MO _NOTI FY_FAI LURE:
if(uAppState == STATE_DI ALI NG)
i dResource = I DS_ERR DI ALI NG
el se if(uAppState == STATE RECEl VE_SETUP)
i dResource = | DS_ERR RECHI VE;
el se
i dResource = | DS_ERR UNKNOMN_STATE;
Resour ceMessageBox(hwid, idResource, 0, "MV MJ NOTIFY', MB_(K);
Set OnHook() ;
uAppSt ate = STATE | DLE;
br eak;

case MZ_NOTI FY_SUCCESSFUL:
if(uAppState == STATE_DIALING)

uAppSt at e = STATE_SENDI NG_FAX;
Resour ceMessageBox(hwid, | DS_MSG SENDI NG FI LE, 0, szAppNane,
MB_(X) ;
}
el se if(uAppState == STATE RECEl VE_SETUP)
uAppSt at e = STATE_RECEI VI NG_FAX;
br eak;

defaul t:
br eak;

br eak;

52

This document contains information that is subject to
change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

Step 3.Respond to a change (either completion, status change, or error) to the send
operation.

After completing a successful connection, the Mwave Fax device driver sends the fax data to the
destination fax machine (in the background) without requiring any support from the application.
Upon completion, either successful or due to an error, the driver ssndsaMM_MCIEVENT event
message of type PHONE_EVENT_CALL_TERMINATED to our application.

This message is processed by our event handling procedure as follows:
[fax.c: WndProc()]

i f(Message == uMd Message)

LPMO _EVENT_PARMS | pMei Event Parns = (LPMO _EVENT_PARMS) | Par am

/* __ */
/* A MM M EVENT message was i ssued by the Mwave FAX */
/* driver. */
/* __ */

swi t ch(wPar an)

case PHONE_EVENT_CALL_TERM NATED:

/* __ */
/* Call was ternminated. Check termnation */
/* code (in dwEventData) for cause. */
/* __ */

swi tch(| pMei Event Par ns- >dwEvent Data)

case TERM NATI ON_NORVAL:

if(uAppState == STATE_SENDI NG_FAX)
i dResource = | DS_MSG SEND CX;

el se if(uAppState == STATE_RECEI VI NG FAX)
i dResource = | DS_MSG RECEI VE_CK;

el se
i dResource = | DS_ERR UNKNOWN_STATE;

br eak;

case TERM NATI ON_UNEXPECTED!
case TERM NATI ON_ERROR XM T:
case TERM NATI ON_ERROR _RECV:
if(uAppState == STATE_SENDI NG_FAX)
i dResource = I DS_ERR SEND FAI L;
el se if(uAppState == STATE_RECEI VI NG FAX)
i dResource = | DS_ERR RECEI VE_FAI L;

el se
i dResource = | DS_ERR_UNKNOMN_STATE;
br eak;
defaul t:
i dResource = 0;
br eak;

}
if(idResource)
Resour ceMessageBox(hwid, i dResource, 0, "MV MJ EVENT', MB_ (K);

/* __ */
/* Hang up the phone */
/* __ */
Set OnHook() ;

uAppSt ate = STATE_| DLE;

br eak;

Upon receipt of the PHONE_EVENT_CALL_TERMINATED case of the MM_MCIEVENT
message, FAXAPP displays either a success or failure message (using the context of the current
machine state), hangs up the phone, and resets the machine state back to STATE | DLE .

Y ou might want to respond to other types of MM_MCIEVENT messages (for example,
PHONE_EVENT_FAX_PAGE_STATUS) to provide real-time status information to the user during
the send operation.

This document contains information that is subject to 53

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

Sending a Fax - OS/2
Sending a fax using the FAX API and the Mwave FAX device driver requires the following steps:

Step 1. Inform the FAX driver of the names of the FAX Document File(s) to be
sent.

Step 2. Take the phone off-hook and dial the phone number of the destination fax
machine.

Step 3. Respond to a change (either completion, status change, or error) to the send
operation.

The send command is initiated by selecting the Send command from the FAXAPP Options menu.
The message procedure for the send command is:

fax.c: WndProc

case | DM_SEND:

strcpy(Fil eName, "*.tif");

| pFil eName = (GetFil eNane("Send Fax",
(LPSTR) Fil eNane));

if (strlen((char *)IpFileNane) == 0)

br eak;

if (IS_TIF(IpFileNane))

{
SendFax(hwhd, | pFileName, "");
br eak;

}
if (IS _BWMP(IpFileNane))
if (ConvertBMP2TI F(hWhd, wDevi cel D,
| pFi | eNane))

{
SendFax(hwhd, | pFileName, "");
br eak;

}

MessageBox(hWhd, "Unsupported File Format",
NULL, MB_OK);

br eak;

Please note the following in the message procedure above:

FAXAPP is designed to allow only one file (single or multiple pages) to be
sent at atime. Thisis alimitation of FAXAPP, and not of the FAX API and
Mwave FAX device driver, both of which provide support for sending multiple
files at the same time.

FAXAPP allows the user to send either TIF files (TIFF Class F format) or
BMP files (DIB format). Since the Mwave FAX driver supports only TIF file
sending, FAXAPP converts BMP filesto TIF format viathe ConvertBM P2TIF
function. See Section Converting Fax Document Files to/from DIB format on
page 1-65 for more information.

The SendFax function initiates the three step procedure required to send afax. Let's examine how
each of these steps isimplemented.

54

This document contains information that is subject to
change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

Step 1. Inform the FAX driver of the names of the FAX Document File(s) to be sent.

The MCI_SEND command is used to specify the name(s) of the FAX Document File(s) to be sent.
The filenames are specified by providing to MCI_SEND a pointer to an array of pointers to strings
containing the name of each file to be sent. For example, assume |pSendPtr is the array of pointers to
the 'n' number of filename strings. It isinitialized as follows:

LPSTR | pSendPt r[n+1] ;

| pSendPt r [0]
| pSendPt r[1]

= address of string containing file #1
= address of string containing file #2
| pSendPtr[n-l]
| pSendPt r [n]

address of string containing file #n
(LPSTR) NULL;

Note that the filename list is terminated by a NULL filename pointer.

In FAXAPP, we declare a two-dimensional array SendBuff to store up to two filenames (although
only oneis used), and then assign the address of the SendBuff strings to the |pSendPtr array. The
filename to send (the address of which is passed as the argument srcFileName to the SendFax
function), is copied into the first element of the SendBuff array (pointed to by IpSendPtr[0]). Finally,
the address of the IpSendPtr array is sent to the MCI_SEND command.

faxops.c: SendFax

voi d SendFax(HWD hWhd, LPSTR srcFil eNane, char phonenbr[25])

char * | pSendPtr[10];
char SendBuff[2][256];

/* 1. Send the fax file */
nti SendPar ns. dwCal | back = hWhd;
| pSendPtr[0] = SendBuff[0];
| pSendPtr[1] = SendBuff[1];
strcpy((CHAR *) I pSendPtr[0], (CHAR *)srcFil eNarme);
| pSendPtr[1] = "\0';
nci SendParns. | pstrFil enane = (char *)I| pSendPtr;

W nSet Poi nt er (HAND_DESKTOP,
W nQuer ySysPoi nt er (HAND_DESKTOP,
SPTR_VAI T, FALSE)) ;

dwRet urn = nti SendCommand(wDevi cel D, MClI _SEND,
MCI _WAIT | MCI _SEND FI LE,
(DWORD) | pnti SendPar s,
nmci Cal | ++)

if (dwReturn)

{

/* Error, unable to send file */
MessageBox(hWid, "Unable to send file", NULL, MB_OK);
}

el se .

The MCI_SEND command causes the Mwave Fax device driver to be configured for a send. Once
the MCI_SEND command completes, the driver has prepared the Fax Document Files for
transmission to a remote fax machine.

55

This document contains information that is subject to
change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

Step 2. Takethe phone off-hook and dial the phone number of the destination fax machine.

The next step isto dial and connect to the remote fax machine. Thisis done viathe MCI_DIAL
command.

faxops.c: SendFax

i f (W nD gBox(HWND_DESKTOP, hwd,
Get Nbr_Di gProc, 0, PHONENUMDLG, NULL))
{

nmci Di al Parns. | pstrDi al String = PhoneNunber;
nti Di al Par ms. dwCal | back = hWhd;

W nSet Poi nt er (HAND_DESKTOP,
W nQuer ySysPoi nt er (HAND_DESKTOP,
SPTR_WAI T, FALSE));

ul RC = nti SendCommand(wDevi cel D, MCI _DI AL,
MCI_WAIT |
MCI _' DI AL_STRI NG |
MCI _DI AL_VERI FY |
MCI _DI AL_MONI TOR_HANDSHAKI NG_ONLY,
(DWORD) | pnti Di al Par s,
nmci Cal | ++) ;

In FAXAPP, the user is prompted to enter the phone number of the destination fax machine. The
phone number is then supplied to the MCI_DIAL command.

Also note that the MCI_DIAL_MONITOR_HANDSHAKING_ONLY flag is specified in the
MCI_DIAL command. This allows the user to monitor the connection negotiation via speakers or
headphones attached to the Mwave board's audio output connector.

After dialing and connecting to the destination fax machine, the Mwave FAX device driver begins
sending the fax data to the destination fax machine. If adial or connection failure occurred,
FAXAPP displays an error message, and hangs up the line.

faxevnts.c: ProcessEvent

#i ncl ude "ntiftdd. h"
#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude "fax.h"

extern int ntiCall;

voi d ProcessEvent (HWND hWwid, WORD wPar am
LPMCI _EVENT_PARMS | Par am)
{

char buf [256] ;
swi t ch(wPar am)

case PHONE_EVENT_CALL_FAX:
/* incoming call-- receive fax and notify user */
++NunfFax;
Recei veFax(hwd) ;
br eak;

case PHONE_EVENT_CALL_TERM NATED:
/* notify user, enter into log */

switch (| Param >dwEvent Dat a)

{

case TERM NATI ON_NORVAL:
sprintf(buf, "Call conpleted normally");
br eak;

case TERM NATI ON_UNEXPECTED:

This document contains information that is subject to
change without notice.

56

MMWADKUMU-03

Chapter 4 - Fax Services

sprintf(buf, "Call term nated unexpectedl y");

br eak;
case TERM NATI ON_ERROR XM T:

sprintf(buf,"Callterm nated:transmt error");

br eak;
case TERM NATI ON_ERROR_RECV:

sprintf(buf,"Callterm nated: receive error");

case TERM NATI ON_REQUESTED:

sprintf(buf,"Callterninated:type requested");

br eak;
defaul t:
br eak;
} /* switch */
/* hang up the phone

MessageBox(hwihd, buf, "Fax |nformations",
Set OnHook (hwhd) ;
br eak;

case PHONE_EVENT_CALLER I D:
case PHONE_EVENT_FAX HEADER:
case PHONE_EVENT_FAX PAGE_COVPLETE:
case PHONE_EVENT_FAX PAGE_STATUS:
case PHONE_EVENT_FAX_CONNECT:
case PHONE_EVENT_LI NE:
case PHONE_EVENT_HANDSET:
case PHONE_EVENT_CALL_PROGRESS:
br eak;

defaul t:
br eak;

This document contains information that is subject to
change without notice.

57

MMWADKUMU-03

Chapter 4 - Fax Services

Step 3. Respond to a change (either completion, status change, or error) to the send operation.

After completing a successful connection, the Mwave FAX device driver sends the fax data to the
destination fax machine without requiring any support from the application. Upon completion, either
successful or due to an error, the driver sendsaMM_MCIEVENT event message of type
PHONE_EVENT_CALL_TERMINATED to our application. This message is processed by our event

handling procedure as follows:

faxevnts.c: ProcessEvent

"nci ftdd. h"
<stdi 0. h>
<string. h>
"fax.h"e

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

extern int nticCall;

voi d ProcessEvent (HAND hwid, WORD wParam LPMCI _EVENT_PARMS | Par am

{

char buf [256] ;

swi t ch(wPar am)

case PHONE_EVENT_CALL_FAX:
/* incom ng call,
++NunfFax;
Recei veFax(hwhd) ;
br eak;

case PHONE_EVENT_CALL_TERM NATED:
/* notify user, enter into |og
switch (| Param >dwEvent Dat a)

{

case TERM NATI ON_NORVAL:
sprintf(buf, "Call
br eak;

case TERM NATI ON_UNEXPECTED:
term nated unexpectedly");

sprintf(buf, "Call

br eak;

case TERM NATI ON_ERROR XM T:
t erm nat ed:

sprintfbuf,"Call
br eak;

case TERM NATI ON_ERROR_RECV:
t er m nat ed:

sprintf(buf,"Call
case TERM NATI ON_REQUESTED:
sprintfbuf,"Call
br eak;
defaul t:
br eak;
} /* switch */

/* Hang up the phone */
MessageBox(hwWhd, buf,
Set OnHook (hwhd) ;

br eak;

case
case
case
case
case
case

PHONE_EVENT_CALLER | D
PHONE_EVENT_FAX_HEADER:
PHONE_EVENT_FAX_PAGE_COWPLETE:
PHONE_EVENT_FAX_PAGE_STATUS:
PHONE_EVENT_FAX_CONNECT:
PHONE_EVENT_LI NE:
case PHONE_EVENT_HANDSET:
case PHONE_EVENT_CALL_PROGRESS:

br eak;

defaul t:
br eak;
}

t erm nat ed:

"Fax | nformations",

receive fax and notify user */

*/

conpl eted normal [y");

transmt error");

receive error");

type requested");

MB_CX) ;

This document contains information that is subject to
change without notice.

58

MMWADKUMU-03 Chapter 4 - Fax Services

Upon receipt of PHONE_EVENT_CALL_TERMINATED , FAXAPP displays either a success or
failure message and hangs up the phone.

Y ou might want to respond to other types of MM_MCIEVENT messages (for example,
PHONE_EVENT_FAX_PAGE_STATUSYS) to provide real-time status information to the user during
the send operation.

This concludes the steps required to send fax data.

Receiving a Fax - Windows

Receiving afax using the FAX APl and the Mwave Fax device driver requires the following steps:
Step 1. Respond to the MM_MCIEVENT message PHONE_EVENT_CALL_FAX
Step 2. Initiate the receive operation in the Mwave Fax device driver.

Step 3. Respond to a change (either completion, status change, or error) to the receive
operation.

Let'slook at how FAXAPP implements each of these steps.

This document contains information that is subject to 59

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

Step 1. Respond to the MM_MCIEVENT message PHONE_EVENT_CALL_FAX

The Mwave Fax device driver notifies FAXAPP that an incoming fax call has been detected by
sending the PHONE_EVENT_CALL_FAX type of MM_MCIEVENT message. This message is
processed by our event handling procedure as follows:

[fax.c: WndProc()]
i f(Message == uMd Message)

{
LPMO _EVENT_PARMS | pMei Event Parns = (LPMO _EVENT_PARMS) | Par am

/* __ */
/* A MM M EVENT message was i ssued by the Mwave FAX */
/* driver. */
/* __ */
swi t ch(wPar an)

case PHONE_EVENT_CALL_FAX
/* __ */
/* Inconming call. Receive fax and notify user. */
/* __ */
Recei veFax(hwid) ;
NunfFax++; // counter for received fax's fil enanes
br eak;

On receipt of this message, the application must initiate the receive operation of the Mwave Fax
device driver as soon as possible. FAXAPP calls the ReceiveFax() function which performs this
operation.

Step 2. Initiate the receive operation in the Mwave Fax device driver.

The Mwave Fax device driver begins to receive incoming fax data after the application calls the
MCI_RECEIVE command. FAXAPP uses file names of the form "FAX?2.TIF" to store received fax
data. See"" on page 1-43 for more information on this file naming convention.

[faxops.c: ReceiveFax() |
voi d Recei veFax(HWD hwd)

{
char buffer[32];

wsprintf((LPSTR) buffer, "Fax%l.tif", Nunfax);
nti Recei veParns. | pstrFi |l enane = (LPSTR) buffer;
nti Recei vePar ms. dwCal | back = (DWORD) hwhd;
Set Cur sor (hcWi t Cursor) ;
uAppSt at e = STATE_RECEI VE_SETUP;
nti SendCommand(wMhaveFax| D,
MCI _RECEI VE
M _NOTI FY | MO _RECE! VE_FI LE,
(DWORD) | pnti Recei vePar s) ;
MessageBox(hwid, (LPSTR)buffer, "RECEIVING FAX FILE', MB (X);
}

Note that MCI_RECEIVE is called using the MCI_NOTIFY flag instead of the MCI_WAIT flag.
This was done for the sole purpose of allowing our message procedure to track the machine state via
the MM_MCINOTIFY message. Note that the FAXAPP state is set to STATE_RECElI VE_SETUP
prior to calling MCI_RECEIVE. A transition from the receive setup state to the receive fax data state
is handled by the message procedure.

After initiating the receive operation, the Mwave Fax device driver begins to receive the fax data
from the remote fax machine. At the same time, MCI sendsaMM_MCINOTIFY message (since
MCI_RECEIVE was called with the MCI_NOTIFY flag specified) to indicate either successful
completion or failure of the MCIl_RECEIVE command. Our message procedure (see below) responds
to a successful receive setup by changing the machine state to STATE_RECElI VI NG_FAX . If afailure
occurred during receive setup, FAXAPP displays an error, hangs up the line, and resets the machine
state to STATE_| DLE .

This document contains information that is subject to 60

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

[fax.c: WndProc()]
case MM MJ NOTI FY:
swi t ch(wPar an)

case MO _NOTI FY_ABORTED:
case MO _NOTI FY_FAI LURE:
i f(uAppState == STATE DI ALING)
i dResource = I DS_ERR DI ALI NG
el se if(uAppState == STATE RECEI VE_SETUP)
i dResource = | DS_ERR RECHI VE;
el se
i dResource = | DS_ERR UNKNOMN_STATE;
Resour ceMessageBox(hwid, idResource, 0, "MV MJ NOTIFY', MB_(K);
Set OnHook() ;
UAppSt ate = STATE | DLE;
br eak;

case MZ_NOTI FY_SUCCESSFUL:
i f(uAppState == STATE DI ALING)

uAppSt at e = STATE_SENDI NG_FAX;
Resour ceMessageBox(hwid, | DS_MSG SENDI NG FI LE, 0, szAppNane,

MB_CX) ;
} else if(uAppState == STATE_RECEI VE_SETUP)
UAppSt at e = STATE_RECEI VI NG _FAX;
br eak;
defaul t:
br eak;
br eak;

Step 3.Respond to a change (either completion, status change, or error) to the
receive operation.

After initiating the receive operation, the Mwave Fax device driver receives incoming fax data from
the remote fax machine (in the background) without requiring any support from the application.

Upon receive completion, either successful or due to an error, the driver sendsaMM_MCIEVENT
event message of type PHONE_EVENT_CALL_TERMINATED to our application. This message is
processed by our event handling procedure as follows:

This document contains information that is subject to
change without notice.

61

Step 1.

MMWADKUMU-03

Chapter 4 - Fax Services

[fax.c: WndProc()]
i f(Message == uMd Message)

{

LPMO _EVENT_PARMB | pMei Event Parns = (LPMO _EVENT_PARMS) | Par am

/* __ */
/* A MM M EVENT message was i ssued by the Mwave FAX */
/* driver. */
/* __ */
swi t ch(wPar an)
case PHONE_EVENT_CALL_TERM NATED:
K o o e e e e e e e e e e e e e e e e e e e - */
/* Call was ternminated. Check termnation */
/* code (in dwEventData) for cause. */
K o o e e e e e e e e e e e e e e e e e e e - */
swi tch(| pMi Event Par ns- >dwEvent Data)
case TERM NATI ON_NORVAL:
if(uAppState == STATE_SENDI NG FAX)
i dResource = | DS_MSG SEND CXK;
el se if(uAppState == STATE_RECEI VI NG_FAX)
i dResource = | DS_MSG RECEI VE_CK;
el se
i dResource = | DS_ERR UNKNOM_STATE;
br eak;
case TERM NATI ON_UNEXPECTED!
case TERM NATI ON_ ERROR XM T:
case TERM NATI ON_ERROR _RECV:
if(uAppState == STATE_SENDI NG FAX)
idResource = I DS_ERR SEND FAIL;
else if(uAppState == STATE_RECEI VI NG_FAX)
i dResource = | DS_ERR RECEI VE_FAI L;
el se
i dResource = | DS_ERR UNKNOWN_STATE;
br eak;
defaul t:
i dResource = 0;
br eak;

if(idResource)

Resour ceMessageBox(hwWid, i dResource, 0, "MV MJ EVENT', MB_ (K);

Set OnHook() ;
uAppSt ate = STATE | DLE;
br eak;

Upon receipt of the PHONE_EVENT_CALL_TERMINATED case of the MM_MCIEVENT
message, FAXAPP displays either a success or failure message (using the context of the current
machine state), hangs up the phone, and resets the machine state back to STATE | DLE .

Receiving a FAX - OS/2

Receiving afax using the FAX API and the Mwave FAX device driver requires the following steps:

Step 1. Respond tothe MM_MCIEVENT message PHONE_EVENT_CALL_FAX
Step 2. Initiate the receive operation in the Mwave FAX device driver.
Step 3. Respond to a change (either completion, status change, or error) to the

receive operation.

Let'slook at how FAXAPP implements each of these steps.

Respond tothe MM _MCIEVENT message PHONE_EVENT_CALL_FAX

This document contains information that is subject to
change without notice.

62

MMWADKUMU-03 Chapter 4 - Fax Services

The Mwave FAX device driver notifies FAXAPP that an incoming fax call has been detected by
sending the PHONE_EVENT_CALL_FAX type of MM_MCIEVENT message. This message is
processed by our event handling procedure as follows:

faxevnts.c: ProcessEvent

voi d ProcessEvent (HWND hWwid, WORD wPar am
LPMCI _EVENT_PARMS | Par am)
{

char buf [256] ;
swi t ch(wPar am)
{

case PHONE_EVENT_CALL_FAX:
/* incoming call - receive fax and notify user */
++NunfFax;
Recei veFax(hwd) ;
br eak;

On receipt of this message, the application must initiate the receive operation of the Mwave FAX
device driver as soon as possible. FAXAPP calls the ReceiveFax function which performs this
operation.

This document contains information that is subject to
change without notice.

63

Step 2.

Step 3.

MMWADKUMU-03 Chapter 4 - Fax Services

Initiate the receive operation in the Mwave FAX devicedriver.

The Mwave FAX device driver begins to receive incoming fax data after the application calls the
MCI_RECEIVE command. FAXAPP uses file names of the form "FAX?2.TIF" to store received fax
data..

faxops.c: ReceiveFax
voi d Recei veFax(HWAND hwWhd)

{
char buff[256];

LPSTR | pBuff = (LPSTR) buff;

sprintf(buff,"c:\\Fax%.tif", NunfFax) ;
nci Recei veParms. | pstrFil ename = (char *) | pBuff;
nci Recei vePar ms. dwCal | back = (DWORD) hwWad;

W nSet Poi nt er (HAND_DESKTOP,
W nQuer ySysPoi nt er (HAND_DESKTOP,
SPTR_WAI T, FALSE));

ul RC = nti SendCommand (wDevi cel D, MCI _RECEI VE,
MCI _WAIT | MCl _RECEI VE_FI LE,
(DWORD) | pnti Recei vePar ns,
nmci Cal | ++) ;

MessageBox(hwid, buff, "RECEIVING FAX FILE", MB_OK);
} /* End Recei veFax */

After initiating the receive operation, the Mwave FAX device driver begins to receive the fax data
from the remote fax machine. If afailure occurred during receive setup, FAXAPP displays an error
and hangs up the line.

Respond to a change (either completion, status change, or error) to the receive operation.

After initiating the receive operation, the Mwave FAX device driver receivesincoming fax data from
the remote fax machine (in the background) without requiring any support from the application.

Upon receive completion, either successful or due to an error, the driver sendsaMM_MCIEVENT
event message of type PHONE_EVENT_CALL_TERMINATED to our application. This messageis
processed by our event handling procedure as follows:

faxevnts.c:
voi d ProcessEvent (HAWND hwid, WORD wParam LPMCI _EVENT_PARMS | Par am

char buf [256] ;
swi t ch(wPar am)

case PHONE_EVENT_CALL_FAX:
/* incoming call tine to receive fax and notify user */
++NunfFax;
Recei veFax(hwhd) ;
br eak;

case PHONE_EVENT_CALL_TERM NATED:
/* notify user, enter into |og */
switch (| Param >dwEvent Dat a)

{

case TERM NATI ON_NORVAL:
sprintf(buf, "Call conpleted normally");
br eak;

case TERM NATI ON_UNEXPECTED:

This document contains information that is subject to 64

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

sprintf(buf, "Call term nated unexpectedl y");
br eak;
case TERM NATI ON_ERROR XM T:
sprintf(buf, "Call term nated: transmit error");
br eak;
case TERM NATI ON_ERROR _RECV:
sprintf(buf,"Call term nated: receive error");
case TERM NATI ON_REQUESTED:
sprintf(buf,"Call term nated: type requested");

br eak;
defaul t:
br eak;

} /* switch */

/* Hang up the phone */

MessageBox(hwid, buf, "Fax Informations", MB_(K);
Set OnHook (hwhd) ;
br eak;

case PHONE_EVENT CALLER | D:
case PHONE_EVENT_FAX_HEADER

case PHONE_EVENT_FAX_PAGE_COMPLETE:
case PHONE_EVENT_FAX_PAGE_STATUS:
case PHONE_EVENT_FAX_CONNECT:

case PHONE_EVENT_LI NE:

case PHONE_EVENT_HANDSET:

case PHONE_EVENT_CALL_PROGRESS:
br eak;

defaul t:
br eak;
}

Upon receipt of the PHONE_EVENT_CALL_TERMINATED case of the MM_MCIEVENT
message, FAXAPP displays either a success or failure message and hangs up the phone,

This concludes the steps required to receive fax data.

Converting Fax Document Files to/from DIB format

As mentioned previously, the FAX API specifies several different Fax Document File formats which
might be supported by a compliant fax driver. In the case of the Mwave Fax device driver, the
supported Fax Document File format is TIFF Class F. However, in the Microsoft Windows
environment, it is much more convenient to view, print, and edit image data in Device Independent
Bitmap (DIB) format. For this reason, the FAX API supports the command MCI_CONVERT which
enables conversion from Fax Document File format to DIB format and visa versa

FAXAPP uses the MCI_CONVERT command to enable sending of DIB files and viewing of TIFF
Class F files by first converting a given file into the correct format. To illustrate the use of
MCI_CONVERT, well use the example of sending aBMP file (atype of DIB file) to a destination
fax machine. See "Sending a Fax" on page 65 for an overview of the fax send operation. Recall that
the Mwave Fax device driver can only send filesin TIFF Class F format, so we must first convert the
BMP fileinto TIFF Class F format.

FAXAPP uses the ConvertBMP2TI F() function to convert aBMP format source file to a TIFF Class
F format destination file using the MCI_CONVERT command as follows:

[faxops.c: ConvertBMP2TIF()] - Windows
int ConvertBWP2TI F(HWAD hwhd, LPSTR SrcFi | eNare)

{
DLGPRCC | pf nGet Dest ;
char buf fer[32];

WFi | eConvert Type = BW_TO TI F;

This document contains information that is subject to 65

change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

/* __ */
/* Pronpt user for destination file nane */
/* __ */

| pf nGet Dest = (DLGPROC) MakePr ocl nst ance((FARPROC) Get Dest _Dl gProc, hlnst);
if (!DialogBox(hlnst, "DestinationFile", hWhd, |pfnGetDest))

Fr eeProcl nst ance(| pf nGet Dest) ;
return(FALSE);

}

I strepy((LPSTR) buffer, (LPCSTR)DestFile);

nti Convert Parnms. | pstrDest Fi |l enane = (LPSTR) buffer;

nti Convert Par ms. dwDest For mat = MJ _FAX_CONVERT_FMI_DEVFAX;
nti Convert Parms. | pstrSrcFil ename = SrcFi |l eNarre;

Set Cur sor (hcWi t Cursor) ;

dwRet urn = nti SendCommand(wMiaveFax! D,
MCI _ CONVERT,
MJ_WAIT | MO _CONVERT_SOURCE_FI LE |
MOl _ CONVERT_CREATE |
MCI _ OONVERT_DESTI NATI ON_FI LE |
MCI _ CONVERT_DESTI NATI ON_FORVAT,
(DWORD) | pnti Convert Par ns) ;

faxops.c: ConvertBMP2TIF - OS/2
int Convert BMP2TI F(HMWND hWid, WORD wDevi cel D,
LPSTR SrcFi | eNane)
{

stati c HANDLE hBuff;
LPSTR | pBuff;

char buf [255] ;

char nmessagestring[255] ;

/* 1. Get Destination File Name */
hBuf f = (HANDLE) nal | oc(32);
| pBuff = (LPSTR) hBuff;

if (!WnDl gBox(HWND_DESKTOP, hWhd,
Get Dest _Dl gProc, 0, DestinationFile, NULL))
{

return FALSE;

}
strcpy((CHAR *) I pBuff, DestFile);
nmci Convert Par ms. dwCal | back = (DWORD) hwWad;
nmci Convert Parms. | pstrDest Fil enane = (char *) | pBuff;
nti Convert Par ms. dwDest For mat =
MCI _FAX_CONVERT_FMT_DEVFAX;
nmci Convert Parms. | pstrSrcFil enane = (char *) SrcFil eNane;

W nSet Poi nt er (HAND_DESKTOP,
W nQuer ySysPoi nt er (HAND_DESKTOP,
SPTR_WAI T, FALSE));

ul RC = nti SendCommand(wDevi cel D, MCl _CONVERT,
MCI _WAIT | MCI _CONVERT_SOURCE_FI LE |
MCl _CONVERT_CREATE |
MCI _CONVERT_DESTI NATI ON_FI LE |
MCl _CONVERT_DESTI NATI ON_FORNVAT,
(DWORD) | pnti Convert Parnms, nti Cal | ++);

free((void *) hBuff);
if (ul RO
{

/* Error, unable to convert file */
nmci Get Error String(ul RC, (int *)nessagestring,
si zeof (messagestring));

sprintf (buf,
"ERROR %d: Unable to convert image file. %",
(LONMORD(ul RC)) , messagestring);
MessageBox(hwWhd, buf, NULL, MB_CK);
return FALSE;

}
strcpy((CHAR *) I pFi | eNane, (CHAR *) DestFil e);
MessageBox(hwid, "Bitmap file converted to TIFF",

szAppNarme, MB_(XK);
return TRUE;

This document contains information that is subject to
change without notice.

MMWADKUMU-03 Chapter 4 - Fax Services

} [/* end ConvertBMP2TIF */

Note that MCI_CONVERT is called with the MCI_CONVERT_CREATE flag. This flag specifies
that the destination file should be created if it doesn't exist. If the destination file does exist, its
contents are destroyed and overwritten with the converted data (the same effect as using the
MCI_CONVERT_OVERWRITE flag).

Alternatively, converted data can be inserted into (or appended onto) an existing destination file. Set
the dwDest Fr om field of the MCI_CONVERT_PARMS structure to the document page number
(starting at page zero) where you want the converted data to be written into the destination file. You'll
also need to include the MCI_CONVERT_DESTINATION_FROM flag and remove the
MCI_CONVERT_CREATE flag in the MCI_CONVERT call.

Closing the Mwave Fax Device Driver

Before exiting your application, you should always close the Mwave Fax device driver. Closing the
driver frees memory, processor, and connection resources on the Mwave board, making them
available for use by other Mwave applications.

When closing the FAX driver, always assign the window procedure handle to
mciGenericParms.dwCallback prior to issuing the MCI_CLOSE. Failure to do so will result in
erratic behavior. In FAXAPP, CloseFax looks like this:

[faxops c: CloseFax()] - Windows
_GENERI C_PARMS nti Generi cPar rs;

nti Generi cPar ms. dwCal | Back=(DWORD) hWid;
nti SendCommand(wMhaveFax! D, /! device ID
MJ _CLCSE, // M2 command
MJ _WAIT, /1 flags
(DWORD) (LPVA D) &nti Generi cParns) ;

faxops.c: CloseFax - 0S/2
voi d C oseFax(HWND hwiad)

{
MCl _GENERI C_PARMS nti Generi cPar ns;

nmci Generi cPar ms. dwCal | back = (DWORD) hwWad;
nmci SendComand(wDevi cel D,
MCI _CLOSE,
MCI _WAI T,
(DWORD) &nti Generi cParns, nti Cal | ++) ;

Summary

FAXAPP provides a simple example of using the basic send and receive capabilities of the FAX API
and the Mwave Fax device driver. Using the programming techniques outlined in this chapter, you
should be able to add additional capabilities, such as providing real-time send and receive status
information, into your own Mwave fax application. Be sure to check the FAX APl Reference for a
complete description of the available capabilities.

This document contains information that is subject to 67

change without notice.

MMWADKUMU-03

Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

68

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

Chapter 5 - Telephone Answering Machine (TAM)
Services
I —

This chapter describes the telephony services available to application developers for the purpose of
developing Mwave compatible TAM based applications.

Mwave TAM Architecture

TAM functionality is provided with two separate M CI device drivers: Phone Line and Message. The
Phone Line driver is used for all operations involving the telephone line. This includes making a call,
answering a call and remotely (i.e. via atelephone call) reviewing or recording amessage. The
Message driver is used only for those operations which do not involve use of the phone line (i.e. locally
reviewing or recording messages). This multiple driver approach allows simultaneous telephone
answering and message review. TAM can answer an incoming phone call at the sametime auser is
reviewing (i.e. listening to) his messages.

TAM Programming Environment

For many MCI devices, including TAM, the MCI controls are similar to those of a tape recorder (for
example; record, play, stop, pause, and seek). The MCI command message API specification for TAM
applications begins with this conventional design, and adds enhancements such as voice compression
and speakerphone operation.

The Phone Line driver can record and play through the telephone line only. (for local message record
and review, the Message driver isused). The Phone Line driver can additionally be used to connect the
phone line to the handset (as with a standard telephone) or the audio port (speaker/microphone).

TAM resembles a media recorder and player which can be connected to various telephony related voice
channels. Each of the telephony related voice channels has an audio input and output driver. All
channels "connected" to the media are used for play or record operations. If multiple channels are
connected to the media, they are also connected to each other, even if no play or record operationisin
progress. The audio channels defined for use with the TAM device drivers are as follows:

MCI_TAM_AUDIO (speaker & microphone) M SG
MCI_TAM_HANDSET M SG
MCI_TAM_PHONELINE PL
MCI_TAM_AUDIO_PHONELINE PL
(speakerphone)

MCI_TAM_HANDSET_PHONELINE PL
(standard phone operation)

MCI_TAM_SPEAKER_PHONELINE PL

(answering machine w/ call screening)

Various telephony operations are achieved by configuring or "connecting” the TAM driversviacallsto
MCI_SET. For the Message driver, this includes the following:

This document contains information that is subject to 69

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

Connect MCI_TAM_AUDIO to record a new announcement from the microphone or
review messages on the speaker.

Connect MCI_TAM_HANDSET to record a new announcement or review messages
through the local handset or desk telephone.

For the Phone Line driver, this includes the following:

Connect MCI_TAM_PHONELINE to play an announcement, record a new message, or
review messages from a remote telephone. This connection is required for all operations
involving an outside phoneline.

Connect MCI_TAM_AUDIO_PHONELINE for speakerphone operation. Note that with
this operation, the media recorder/player is not available. No record or playback can be
done. Setting speakerphone operation disables call discrimination based on calling tones.
Also DTMF key detection is also disabled.

Connect MCI_TAM_HANDSET_PHONELINE to allow the normal use of the desk
phone.

Connect MClI_TAM_SPEAKER_PHONELINE to allow the user to screen calls. Note
that the microphone will not be connected.

As suggested above, both drivers can use the audio port (speaker/microphone) and telephone handset,
but they cannot share them. When either of these devicesarein use by one of thedriversit is
unavailable to the other. Also, the handset must be available when opening the Phone Line driver
and the audio port must be free when opening the Message driver. Programmers must track the
device connection status of the two driversto avoid device conflict errors.

Once again, the actual operation of the TAM device is similar to a physical answering machine. The
programming model incurs some complexity when implemented using a message driven architecture,
but its similarities to a tape recorder remain. See the code example at the end of this chapter for more
details.

TAM File Formats

Sound files are notorious for their size. One of the more significant problems with the accumulation of
large amounts of audio data is data storage. Although OS/2 MMPM and Microsoft Windows wave files
support several different data formats, most M Cl devices support only uncompressed PCM.

To efficiently deal with data storage, the TAM API specification allows a device driver to support a
device dependent format (custom format tag), which allows the device driver to store datafilesin the
most optimum format available. This removes the burden of data compression from the application
writer, and at the same time, allows for increased functionality on the part of the device driver.

Support of the custom format tag is optional under this specification, and the application can still
choose to use the standard PCM wave file format. For those device drivers which do not support the
standard PCM format for play and record operations, a conversion command is available to convert
standard wave files to the custom format used by the device. In general, if a device supports a custom
format tag, it isto the advantage of the application (in terms of file storage) to use the custom tag in
place of the standard file tag. The custom format requires about 4K bytes per second of audio. (Note:
Standard PCM wave format is supported by version 3.1 and above of the TAM drivers).

The programming example described at the end of this chapter uses the custom format tag and does not
need to perform any file format conversions.

This document contains information that is subject to 70

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

Command Message Summary

The following table lists the MCI commands, most of which are used by the sample application. For
more information on the actual command messages, see Chapter 7 of this document.

MCI Command Description

MCI_CLOSE Close the device driver

MCI_CONVERT Convert between device dependent and device
independent files

MCI_DIAL Dial the phone

MCI_GETDEVCAPS Get capabilities of the device

MCI_INFO Get device string identifier

MCI_LOAD Load a voice file for playing

MCI_OPEN Open the device driver

MCI_PAUSE Pause the voice stream play or record

MCI_PLAY Play a voice file

MCI_RECORD Record a voice file

MCI_RESUME Resume a paused voice stream

MCI_SAVE Save a recorded voice stream

MCI_SEEK Change current position of the media

MCI_SET Configure the device

MCI_STATUS Query device configuration

MCI_STOP Stop a voice stream

Table 5-1: TAM Driver MCI Command Messages

Programmers familiar with M CI will note the new command messages, MClI_CONVERT and
MCI_DIAL. For most TAM related applications, it is not necessary to make use of the
MCI_CONVERT message. (MCI_CONVERT issupported in TAM drivers version 3.1 and above.)

Event Message Summary

The following table is a summary of the MCI event messages which may be received from the TAM
device driver. Most of these event messages are used in the sample application. These messages are
described in more detail in Chapter 7 of this document.

This document contains information that is subject to 71

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

Event Message Description
PHONE_EVENT_ADVANCED_RING Advanced format ring notification
PHONE_EVENT_CALL PROGRESS | Call progress state has changed

PHONE_EVENT_CALL_TAM Received an incoming voice telephone
call

PHONE_EVENT_CALL_TERMINATE [Call has been terminated (supplies

D termination code)

PHONE_EVENT_CALLER_ID Caller ID string detected (supplies

completion status)
PHONE_EVENT_DISTINCTIVE_RING | Distinctive ring detected

PHONE_EVENT_HANDSET Change in handset status (supplies
handset status)

PHONE_EVENT_HANDSET_KEY Keypad press from handset (supplies
character)

PHONE_EVENT_LINE Change in phone line hook status
(supplies status)

PHONE_EVENT_LINE_KEY Keypad press from phone line (supplies
character)

PHONE_EVENT_RING Telephone ring status change (supplies

ring on/off)
Table 5-2: TAM Driver Event Messages

Event messages are received by the event message handler which is declared to the TAM device driver
using M Cl_SET. For more information on the event handler, and how it relates to the TAM device
driver, refer to Chapter 3 on Telephony Services.

Developing an Mwave TAM Application

This section describes how to develop an application, which callsthe TAM API to access the Mwave
TAM device drivers, providing telephone answering capabilities.

Handset/Speakerphone Interactions

The following describes the interactions and application source required for changing from
speakerphone to handset and back again.

Scenario:
Assume the application is connected to speakerphone, a call has come in and the application has gone
off hook.

User Lifts Handset:

-App receives PHONE_EVENT_HANDSET with dwHandsetStatus = 1 (off hook)
-App issues set connect to MCI_TAM_HANDSET_PHONELINE

-App issues an onhook

Note: The application should issue on hook because connecting handset creates 2 extensions on the
phone line. When the application issues the “onhook” the line will only have one extension.
(Disconnecting TAIO from the line allows the handset to act as a normal phone) . For example, if the
application had not done the onhook after connecting to handset then when the user put the phone
down the call would still be offhook (because TAIO is still connected).

This document contains information that is subject to 72

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

User Requests Speaker phone:
-App issues off hook (turn on second extension before connecting to that extension)
-App issues set phoneline/audio

User wantsto do conversation record:

The app must be in either normal phone or speakerphone mode.

-App issues off hook (if in normal phone mode the app needs to reconnect the computer (TAIO) to the
phoneline by issuing and off hook) Thiswill allow the remote side to be recorded.

-App issues Mciphone record (only voi supported for conversation record)

Sample Application Definition

Thefirst step in developing a solid application, is the definition of its intended functionality. For the
purpose of demonstration, the application defined here is modeled after a simple telephone answering
machine. Defined functionality includes: playing announcements, recording messages, and reviewing
messages from the control panel or a remote telephone. Below is a diagram of how an incoming
telephone call is handled.

| 3 digit command key sequence entered
Play Announcementl

'

| Record Message
Set up command mode

announcement...
"You have X messages"

\J

| End Call |

Y

Play command mode
Get command key [message list

Build new message
list based on command

Y

Figure 5-1: Answering Machine Model

Once placed in command mode, the touch-tone keypad of the remote telephone can be used for an
unlimited number of functions. Using keypad entries and voice menus, the remote telephone may be
used for anything from reviewing messages to requesting FAX documents. Keypad commands can
consist of one or multiple key entries. A list of the actual keypad commands used in the sample
application can be found later in this chapter.

The following sections assumes you are familiar with the operation of the TAM sample application

included on the companion diskette. See "Using the TAM Sample Application" on page 1-85 for
complete details.

Sample Code Design

The primary goal of this application example is to illustrate the operation of an event (message) driven
TAM device, which is able to execute as a background task.

This document contains information that is subject to 73

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

The TAM device has been defined as afinite state machine, which is mainly driven by the
MM _MCINOTIFY message issued on aMCIl command completion. To implement the state concept,
asinglevariable is defined:

short wranst at e; \\ State of TAM devi ce

This variable can have any of the following states:

TS IDLE

TS PLAY_ANNOUNCEMENT
TS RECORD_MESSAGE

TS COMMAND_MODE

TS PLAY_MESSAGE

TS REMOTE_PLAY

TS ARCHIVE_PLAY

These states correspond roughly to the diagram shown in the previous section. The 'idl€' state, not
shown in the diagram, is the state where the application is waiting to answer acall. The
'COMMAND_MODE state is the state of the TAM device when in message review mode. The state of
the TAM device is used to determine the next operation after receipt of successful completion messages
in the NOTIFY section of the event handler.

Some of the additional variables used in the program are listed below. Most of these values are user
definable, and are read from the application INI file when the program is first executed.

Global Variables

(* Stored in INI file)

wActiveMessages Number of active messages on disk

* wCommandCode digit command code

wCurrentMessage Index of current message being played

* wMonitor Incoming call monitoring (0-Off 1-On)

wMsgDate Current message data in MSDOS format

* dwMsglIndex Index of next message to be saved

wMsgTime Current message time in MSDOS format
wNewMessages New messages since last MSG review flag
wPlaySpeed Message playback speed (0-Slow 1-Norm 2-Fast)

* wRingCountl

Ring count with messages

* wRingCount2

Ring count with out messages

wTamState State of TAM system (See TAM States above)

* wVolume Speaker volume level

wEXxclusive Set to '1' when app can not answer the telephone
wBFE Error code used by error_box()

Global Strings

(* Stored in INI file)

CurrentTimeStamp

String containing time stamp of current file

MsgFileSpec

Full path & filename of current message file

* MsgPath

Path to message file storage on system

Table 5-3: Selected Global Variables and Strings

Because this example is targeted to show TAM operation and not necessarily efficient file
management, the file storage system for the voice messages is defined using a simple prefix and suffix
system. Under this system, all active messages contain a single letter prefix (‘M"), a seven-digit suffix,
and the extension . TAM'. For example, the first message stored in this system is '"M0000000.TAM".

This document contains information that is subject to 74

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

Recording and Playing the Announcement - The announcement file is stored as'’ANNOUNCE.TAM'
in the message directory. When recording a new announcement, atemporary filename is used until the
application user chooses to accept the new announcement.

Recording a New M essage - New messages are recorded to a filename consisting of the letter ‘M’,
followed by a seven-digit suffix which is the current value of dwM sglndex (master message index).
The extension " TAM' is added to the filename, and the master message index is incremented. This
master message index is stored in the INI file, and is never reset. This allows for the creation of 10
million unique message filenames.

Playing Active M essages - To play the active messages, al files are searched and those matching the
can then be 'walked' forwards or backwards.
Erasing a M essage - To erase a message, the message file is simply deleted.

The TAM device driver is obviously not dependent on any single file management system, and an
application programmer might want to use a more sophisticated system in the implementation of a
more complex TAM application.

TAM State Machine Operation

Most programmers familiar with M CI agree that programming to the MClI interface is not a difficult
task. The main 'trick' involved in programming a TAM application is writing the application in an
event driven fashion, so that when the system isidle, it consumes minimal processor time.

As mentioned above, the application isimplemented as a state machine. The application proceeds from
state to state based on messages received by the event handler routine. Although most state changes
occur as aresult of the MM_MCINOTIFY message, the MM _MCIEVENT message is also of
interest. Most of the application logic is executed based on event messages.

MCI Event Message Handling

MCI event messages are sent as a direct result of an external telephony event detected by the device
driver. All event messages are for notification purposes only, and the application is not required to
perform any action to 'handle' these events. The event messages are very useful however for writing
event driven applications. The messages that are handled in the TAM application example are listed
below:

PHONE_EVENT_CALL_TAM - This message initiates the TAM state machine
execution. The application starts by playing the announcement. Before the call has come
in, the application has already connected to the phone line (viaMCI_SET_CONNECT)
and loaded the announcement (via MCl_L OAD). (Both these operations are performed by
the ExitExclusive() function.) At this point, the application executesan MCI_PLAY call
to begin playing the announcement. The MCI_NOTIFY flag is supplied with the PLAY
call so that the event handler is notified when the play is complete, and it istime to start
incoming message recording. The TAM state (dwTamState) is set to

TS PLAY_ANNOUNCEMENT.

PHONE_EVENT_CALL_TERMINATED - Here acall has been terminated because the
caller has hung up the telephone. If a message record was in progress, the message is
saved. The ExitExclusive() function is called to stop any current operation, connect the

This document contains information that is subject to 75

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

driver to the phone line, load the announcement file, and set the TAM state (dwTamState)
to TS_IDLE. At this point, the application is ready to answer another call.

PHONE_EVENT_CALL_PROGRESS - This message is used to detect a'hang-up'
condition that does not produce a'CALL_TERMINATED' message. If dialtoneis
detected, the CallTerminated() is called to perform the same actions produced by a
'CALL_TERMINATED' message.

PHONE_EVENT_HANDSET - This message indicates that the handset on the local
telephone has been either picked-up, or replaced. Picking up the handset causes different
effects at different times. When the system is IDLE, picking up the handset auto-switches
from speakerphone to normal phone mode. When reviewing messages to the speaker,
picking up the handset disables the speaker and continues play to the handset. If the
handset is picked up while the system is recording a message, the record operation is
aborted and the system is placed into normal phone mode (connecting the phone line to
the handset).

*** This functionality is not implemented in the sample application!***

PHONE_EVENT_LINE_KEY - This message sends the ASCII character of the
telephone key which has been pressed on the incoming telephone line. The actions taken
on receipt of this key vary according to the current state of the TAM device.

If the TAM state machine isin command mode, this message is the potential gateway into
remote review mode. It tracks the keys that have been pressed, and if the correct 3 digit
sequence has been entered, the current operation is stopped, the TAM state is set to

TS REMOTE_PLAY, and the remote review announcement is played ("Y ou have

messages...").

If the TAM state machineis already in remote review mode when this message is
received, the key is interpreted as a new command. Key commands can be used to skip,
erase, save, repeat, and control the playback of messages stored on the system.

A second state variable (WRemoteState) is used to track the state of the remote message
review.

MCI Notification Message Handling

The MCI notification message system (MM _M CINOTIFY) is the standard method for MCI to notify
an application that a driver action has been completed. For the purposes of our application, we need to
be notified when a message play or record command has been completed. In most cases, the successful
completion of aplay or record operation requires the execution of another event, and sometimes
advances the state of the TAM state machine.

The types of notification messages possible, as well as how they are treated, is as follows:

MCI_NOTIFY_ABORTED - There are cases when a play or record operation will be
aborted. The most common being when the user picks-up the telephone handset in order
to talk 'live' to the caller. Since aborting an operation is not a normal part of the TAM state
machine, this command does not examine or alter the state of the TAM device. *** This
functionality is not implemented in the Mwave TAM driver! ***

This document contains information that is subject to 76

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

MCI_NOTIFY_SUCCESSFUL - The successful completion of an event is the only
automatic method to drive the state change in the TAM state machine. The application
should use the NOTIFY flag only for API calls requiring significant execution time.

These include playing and recording voice files. Below is a state change table based on the
completion of aplay or record operation.

Current State Next State

TS _PLAY _ANNOUNCEMENT TS _RECORD_MESSAGE

TS _RECORD_MESSAGE TS _IDLE

TS _PLAY MESSAGE TS _ COMMAND_ MODE

TS_ARCHIVE_PLAY TS _ COMMAND_ MODE

TS _ COMMAND_ MODE TS _ COMMAND_ MODE

TS REMOTE_PLAY TS _REMOTE_PLAY
Table 5-4

For example, when the machineisinthe PLAY ANNOUNCEMENT state, the completion message
indicates that it is time to start recording an incoming message. The message handler starts the record
operation. Because detecting the command mode code digit entry is not handled by the event handler,
this routine assumes that the RECORD M ESSAGE state always follows completion of the PLAY
ANNOUNCEMENT state. Similarly, the completion of the RECORD MESSAGE state is always
followed by the IDLE state and call termination.

MCI_NOTIFY_SUPERSEDED - This message should not occur under normal operating
conditions since al play and record operations using the NOTIFY flag are invoked as a
result of the notification that the previous play or record command has been completed. In
the event that arecord or play operation is aborted due to user interruption, the
MCI_NOTIFY_ABORT message will be received. This message is treated the same as
the successful notification message.

MCI_NOTIFY_FAILURE - Thismessage is treated the same as the successful
notification message. For debug purposes, it generates an error message, but the example
program supplied with the companion diskette does not attempt to correct for errors.

Remote Message Review

As mentioned above, the remote message playback feature of the application uses a separate state
system than the main program logic. When in remote message review mode, the TAM state
(wTamState) issetto TS REMOTE_PLAY, and the remote state variable (wWRemoteState)
determines the state of the remote playback operation. Possible remote state values are as follows:

RS WAIT
RS WAITING
RS PLAYMENU
RS _PLAYEND

These states determine the current action, or the next action to be taken when the current play is
complete.

When the command key sequence for remote play is first entered, and messages are available,
wRemoteState is set to RS WAIT, and agreeting file is played ("You have messages..."). When the
MCI_NOTIFY message is received indicating the end of the greeting, wRemoteState is changed to

This document contains information that is subject to 7

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

RS WAITING, and the system does nothing until akey is pressed. If no key is pressed in a set amount
of time, the application disconnects the telephone and resets the system.

If there are no messages available when the command sequence is entered, wRemoteState is set to
RS PLAYEND, and an exit message is played (" You have no messages..."). When the MCI_NOTIFY
message is received indicating the end of the exit greeting, the telephone is disconnected, and the
system is reset.

For normal message reviewing, wRemoteState is set to RS PLAYMENU before athe message is
played indicating that when the play has completed that the system should then play the verbal menu
greeting ("Press 1 for next, 2 for erase..."). Before this menu is played, wRemoteState is set to

RS WAIT, indicating that the system should wait for akey press after playing the verbal menu.

The physical transition table for these states is as follows:

Current State Next State

RS_WAIT RS _WAITING (wait for a key)

RS_WAITING undefined(continue waiting)

RS_PLAYMENU RS WAIT (play verbal menu)

RS_PLAYEND Telephone disconnect & system reset
Table 5-5

Sample Application Source Code

To better illustrate the concepts of the TAM state machine introduced in this section, the source code to
a sample application using the state machine is provided in the "\tam" subdirectory on the companion
diskette.

This section documents the structure of the sample application source code, and explains some of the
more interesting routines.

Source Code Organization

The TAM sample application is more complex than the average sample application. The purpose of
thisisto fully demonstrate all the available functionality of the TAM MCI device drivers. The
following is a short synopsis of the files included on the companion diskette:

Source file Description

MAKEFILE Application makefile (for use with MS NMAKE.EXE)

MCIFTDD.H Mwave MCI FAXTAM include file

TAM.H TAM include - Global variable references

TAM.DEF Windows definition file for use with the linker

TAM.RC TAM resource source file. Contains system menus & dialog
box definitions

TAMDEFS.C Counterpart of TAM.H, containing global variable definitions

TAM.C Program entry point. Contains initialization logic, and user
interface code.

TAMFST.C Main TAM state logic. Contains event handler & the majority
of code which actually commands the MCI TAM driver.

DIALOG.C Contains dialog procs for controlling all the dialog boxes used
in the TAM application.

Table 5-6

This document contains information that is subject to 78

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

In addition to the above, the diskette contains fileswith a.TAM extension. These are audio files used
during the operation of the sample.

Initializing the TAM driver environment

A startup exampleis supplied in the chapter on Telephony Services. The function shown below has
been taken from the startup example, and modified to perform a simple TAM environment
initialization. The steps to initialize the driver include:

1. Open the driver and register the event message handler.

2. Verifying minimum TAM capabilities (CAN_PLAY, CAN_RECORD, and CAN_SAVE).
Exit if any are not supported.

Check for optional speakerphone capability.
4. Check the supported file formats, and use the custom format tag when available.

Set the TAM call filter to have TAM auto answer incoming voice calls and route them to
our application. Exit if another application is screening voice calls.

These initialization steps have been simplified in the sample code below, because we know the
capabilities of the Mwave driver. This code would have to be adjusted for a more complex TAM
application.

Initializing the TAM Driver - Windows

/1 1nitDriverEnv

/1

/1 This routine is called to initialize the TAMdriver environnent
/1

static InitDriverEnv()

/1 Qpen the MJ TPL Driver
nti QpenPar ms. dwCal | back = hEvent Handl er; // A ways required on OPEN and CLOSE
nti QpenPar ns. | pst r Devi ceType = "Mwavet pl ";
i f(dwBFE = nti SendConmand(0, MO _CPEN, MO _WAI T | MO _OPEN TYPE,
(DWORD) (LPVA D) &nti OpenPar ns))
{

error_box();
return(0);

/1 Get the device ID & register the Event Handler for TPL so i ncom ng phone
/1 calls are sent to the application's event handl er
wTpl Devi cel D = nti QpenPar ns. whevi cel D
nti Set Par ns. dwCal | back = hEvent Handl er;
nti Set Par ns. dwl t em MOl _TAM SET_EVENT_HANDLER
nti Set Par ns. dwSet Data = hEvent Handl er;
nti SendConmand(wrpl Devi cel D, MO _SET, MO _WAIT | MJ _SET_| TEM
(DWORD) (LPVA D) &nti Set Par ns) ;

/1 Qpen the MJ TPS Dri ver
nti QpenPar s. dwCal | back = hEvent Handl er;
nti QpenPar ns. | pst r Devi ceType = "Mwavet ps";
i f(dwBFE = nti SendConmand(0, MO _CPEN, MO _WAI T | MO _OPEN TYPE,
(DWORD) (LPVA D) &nti OpenPar ns))

{
error_box();
/1 al though not in sanple, should close TPL here
return(0);

}

// Get the device ID & register the Event Handler for TPS
wrpsDevi cel D = nti QpenPar ns. wDevi cel D

nti Set Par ns. dwCal | back = hEvent Handl er;

nti Set Par ns. dwl t em MO _TAM SET_EVENT_HANDLER

nti Set Par ns. dwSet Dat a hEvent Handl er ;

nti SendConmand(wTpsDevi cel D, MO _SET, MJ _WAIT | MJ _SET_I TEM

This document contains information that is subject to 79

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

(DADRD) (LPVOI D) &nti Set Par n1s) ;

/1 Set to auto answer incom ng phone calls
nti Set Par ns. dwl t em = MO _TAM SET_CALL_FI LTER,
nti Set Par ns. dwSet Data = 1;
nti SendConmand(wrpl Devi cel D, MO _SET, MO _WAIT | MJ _SET_| TEM
(DWORD) (LPVA D) &nti Set Par ns) ;

return(wrpl Devi cel D) ;

NOTE: With Windows, the handle of the window procedure responsible for processing
MM_MCINOTIFY messagesMUST be specified by assigning it to
nci QpenPar ns. dwCal | back prior to calling the MCI_OPEN command,
regardless of whether the MCI_WAIT or MCI_NOTIFY flag is specified in the
MCI_OPEN call. Failure to do so when using versions earlier than 2.1 will result
in erratic behavior of the device driver.

Initializing the TAM Driver - OS/2

tam.c: InitDriver Env
// InitDriver Env

/1

/!l This routine is called to initialize the TAMdri ver
/1

static int InitDriverEnv(void)

{

/1 Open the MCI TPL Driver
nci OpenPar ns. dwCal | back = hEvent Handl er;
nmci OpenPar ns. | pstrDevi ceType = (INT *) "Maavetpl";

dwBFE = nti SendConmand(0,
MCI _OPEN,
MCI _WAIT | MCI _OPEN_TYPE,
(DWORD) &nti OpenPar ns,
nmci _cnd_ctr++);

i f(dwBFE)
{

error_box();
return(0);

/] Get the device ID & register Event Handler for TPL

wTpl Devi cel D = nti OpenPar ns. wDevi cel D;

nti Set Par ns. dwCal | back = hEvent Handl er;

nci Set Parnms. dwl t em MCl _TAM SET_EVENT_HANDLER,;
nci Set Par ms. dwSet Dat a hEvent Handl er ;

nmci SendCommand(wTpl Devi cel D,
MCI _SET,
MCI_WAIT | MCl_SET_| TEM
(DWORD) &nti Set Parns, nti _cmd_ctr ++) ;

/1 Open the MCI TPS Driver

nmci OpenPar ns. dwCal | back = hEvent Handl er;
nci OpenPar ns. | pstrDevi ceType = (I NT *)"Mwavet ps";

dwBFE = nti SendConmand(0,
MCI _OPEN,
MCI _WAIT | MCI _OPEN_TYPE,
(DWORD) &nti OpenPar ns,
nmci _cnd_ctr++);

i f(dwBFE)
{

error_box();
return(0);

This document contains information that is subject to 80

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

/] Get the device ID & register Event Handler for TPS
wTpsDevi cel D = nti OpenPar ns. wDevi cel D;

nmci Set Par ms. dwCal | back hEvent Handl er ;

nti Set Par ms. dwi t em MClI _TAM SET_EVENT_HANDLER
nci Set Par ms. dwSet Dat a hEvent Handl er ;

nci SendComand(wTpsDevi cel D,
MCI _SET,
MCI_WAIT | MCl_SET_| TEM
(DWORD) &nti Set Par ns,
nmci _cnd_ctr++);

/] Set to receive TAM phone calls

nci Set Par ns. dw t em
ncti Set Par ms. dwSet Dat a

MCI _TAM SET_CALL_FI LTER,
al

nmci SendComrand(wTpl Devi cel D,
MCI _SET,
MCI_WAIT | MCl_SET_| TEM
(DWORD) &nti Set Par ns,
nmci _cnd_ctr++);

return(wTpl Devi cel D) ;

Implementation of the Event Handler

The event handler routine is the core of the TAM state machine. All state changes are a result of a

NOTIFY or EVENT message sent to this routine. Note that although this routine has been isolated into
its own procedure, the event handler code could be easily merged into the main window procedure,
eliminating the need to create a separate window. It is also possible to implement a design where
NOTIFY and EVENT messages are posted to different message procedures in the same application.

This module is the heart of the TAM application, and is the key for understanding the various

operations of the TAM state machine.

Handling Events - Windows

/1
/ Event Handl er
/1

//This function is called whenever a nmessage is sent fromthe MJ TAM

//driver.
/1

These nessages drive new states of the TAM state machi ne.

I ong FAR PASCAL Event Handl er (hWid, nessage, wParam | Paran)

HMD hwid;

unsi gned nessage;
WPARAM wPar am
LPARAM | Par am

{
static
static
static

U NT uMCl Message = Oxffff
short wKeys[3] ;

short wQui et ;

static short wKeysPressed,;
static short wOrdKey;

unsi gned short wEvent;

unsi gned long dwEvent Dat a;

swi tch (message)

{
case W CREATE:

/1 Initialize to invalid value

/1 Last 3 keys entered

/1 Count for QU ET nessages
/1 Count for 3 key command

/1 Flag for 5-x play ctrl

/1 Register the nessage we wish to | ook for
uMCl Message = Regi st er WndowMessage(" MM _MJ EVENT") ;

br eak;

case MV MO NOTI FY:

/1 *** Received a NOTI FY nessage indicating earlier
w M _NOTI FY has conpl et ed

11
swi tch(wParam)

call

case MZ _NOTI FY_FAl LURE:

This document contains information that is subject to
change without notice.

81

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

case MO _NOTI FY_SUCCESSFUL:

case MO _NOTI FY_SUPERSEDED:

case MO _NOTI FY_ABORTED:
switch(wranBtate)

case TS_OCOMVAND MODE:
case TS_PLAY_MESSAGE:
Pl ayConpl ete() ;
br eak;

case TS_REMOTE PLAY:
Cont i nueRenot e();
wQui et = 0;

br eak;

case TS _PLAY_ANNOUNCEMENT:

Recor dMessage() ;
wQuiet = 0;
br eak;

case TS _RECORD MESSAGE:
SaveMessage() ;
br eak;

case TS_ARCH VE_PLAY:
Pl ayConpl ete() ;
SendMessage(hMai nWid, W COMVAND, | DM ARCH VE, 0l) ;
br eak;

defaul t:
br eak;

br eak;
br eak;

defaul t:
i f(nmessage == uMd Message)

/1 *** Received an EVENT nessage ***

/1 1solate the nessage paraneters

MC _EVENT_PARMS far *nep = (MJ _EVENT_PARMS far *)I Param
wEvent = LOMRD(nep->dwDat aParanml); // or wParam
dwEvent Dat a = mep- >dwEvent Dat a;

switch(wEvent)
{

case PHONE EVENT_CALL_TAM
wWKeysPressed = 0;
Answer Cal | ();
br eak;

case PHONE_EVENT_CALL_TERM NATED:
Cal | Term nat ed();
br eak;

case PHONE_EVENT_CALL_PROGRESS:
if(wranBtate == TS_RECORD MESSAGE | |
(wranst at e==TS_REMOTE_PLAY &&
wRenot eSt at e==RS_WAI TI NG)
swi tch(dwEventData)
{

case DI ALTONE:

case SLOMBUSY:

case FASTBUSY:
Cal | Term nat ed();
br eak;

br eak;

case PHONE_EVENT_LI NE_KEY:
if(wranState == TS_REMOTE_PLAY)

if(wOGhdKey == 5) // Check for play ctrl sequence

wOndKey = -1;
swi tch(dwEventData)

case 1: /1 (51) Seek back 5 seconds
SeekMessage(TB_BACK) ;
br eak;

case 2: /1 (52) Pause (or resune)
i f(!(wPausenr=1))

This document contains information that is subject to
change without notice.

82

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

nti SendConmma nd(wQur Devi cel D,
MJ _RESUME, MCI_WAIT, 0);
el se
nti SendCommand(wQur Devi cel D,
MJ _PAUSE, MO _WAIT, 0);
br eak;
case 3: /1 (53) Seek ahead 5 seconds
SeekMessage(TB_FORWARD) ;
br eak;

}
el se /1 Standard Renote Play command

swi tch(dwEventData)
{

case 1: /1 (1) Play first / next
Renot eNext () ;
br eak;
case 2: /1 (2) Renove current nessage
Renot eRenove() ;
br eak;
case 3: /1 (3) Repeat current nessage
Renot eRepeat () ;
br eak;
case 4: /1 (4) Archive current nessage
Renot eAr chi ve();
br eak;
case 5: // Initiate 2 key (5x) sequence
wOndKey = (short)dwEvent Dat a;
br eak;
}
}
}
el se I/ Check for 3 digit comrand code
wKeys[2] = wKeys[1];
wKeys[1] = wKeys[O0];
wKeys[0] = (short)dwEvent Dat a;
if(++wKeysPressed > 2)
{
i f ((wKeys[2] *100+wKeys][1] * 10+wKeys][0]) ==wConmmrandCode)
{
Begi nRenote(); // Initiate remote playback
wOhdKey = -1; // Reset conmand key status
}
}
br eak;
defaul t:
br eak;
}
}
el se

return (Def WndowPr oc(hWid, nessage, wParam |Paran));

}
return (NULL);

Handling Events - OS/2

MRESULT EXPENTRY MyW ndowProc (HWND hwnd,

ULONG msg,

MPARAM np1,

MPARAM np2)

{

HDC hdc;
static int I ni t Env = 0;
static short wKeys|[3] ; /] Last 3 keys entered
static short wQui et ; /1 Count for QU ET nessages
static short wKeysPressed; /1 Count for 3 key conmand
static short wCndKey; /!l Flag for 5-x play ctrl
unsi gned short wEvent ;
unsi gned | ong dwEvent Dat a;
static int Fl ashState = O;

switch(nmsg)

case MM _MCI NOTI FY:

This document contains information that is subject to 83

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

switch(SHORT1FROMMP(npl))
{
case MClI _NOTI FY_FAI LURE:
case MClI _NOTI FY_SUCCESSFUL:
case MCl _NOTI FY_SUPERSEDED:
case MClI _NOTI FY_ABORTED:
switch(wranState)
{
case TS_COWMVAND MODE:
case TS_PLAY_MESSAGE:
Pl ayConpl et e() ;
br eak;

case TS _REMOTE PLAY:
Cont i nueRenot e() ;
wQui et = 0;

br eak;

case TS_PLAY_ANNOUNCEMENT:

Recor dMessage() ;
wQui et = 0;
br eak;

case TS _RECORD_MESSAGE:
SaveMessage();
br eak;

case TS_ARCHI VE_PLAY:
Pl ayConpl et e() ;
br eak;

defaul t:
br eak;
}

br eak;

br eak;
case MM _MCI EVENT:
mep = (LPMClI _EVENT_PARMS) np2;
wEvent = LOAMORD(mep->dwDataParanl); // or wParam
dwEvent Dat a = nmep- >dwEvent Dat a;
if (dwEventData >= '0')

dwEventData -= '0';

else if (dwEventData == "'#')
dwEvent Data = 35;

else if (dwEventData == "'*")

dwEvent Data == 42;
swi t ch(wEvent)

case PHONE_EVENT_CALL_TAM
wKeysPressed = 0;
Answer Cal | ();
br eak;

case PHONE_EVENT_CALL_TERM NATED:
Cal | Ter m nat ed();
br eak;

case PHONE_EVENT_CALL_PROGRESS:
if(wlanState == TS_RECORD_MESSAGE | |
(wTanft at e==TS_REMOTE_PLAY && wRenpt eSt at e==RS_WAI TI NG)
switch(dwEventData)
{
case DI ALTONE:
case SLOABUSY:
case FASTBUSY:
Cal | Ter m nat ed();
br eak;
}

br eak;

case PHONE_EVENT LI NE_KEY:
if(wranState == TS REMOTE_PLAY)

if(wCdKey == 5) // Check for play ctrl sequence
{

This document contains information that is subject to 84

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

wCndKey = -1;
switch(dwEventData)

case 1:
SeekMessage(TB_BACK) ;
br eak;
case 2:
if(!(wPausenr=1))
nci SendCommand(wTpsDevi cel D, MCl _RESUME, MCI _WAIT,
(DWORD) &nti Generi cParnms, nti_cnd_ctr++);
el se
nmci SendCommand(wTpsDevi cel D, MCl _PAUSE, MCI _WAIT,
(DWORD) &nti Generi cParnms, nti_cnd_ctr++);
br eak;
case 3:
SeekMessage(TB_FORWARD) ;
br eak;
; }
el se /] Standard Renpote Play conmand
swi tch(dwEvent Dat a)

case 1:
Renot eNext () ;
br eak;
case 2:
Renot eRenmove() ;
br eak;
case 3:
Renot eRepeat () ;
br eak;
case 4:
Renot eAr chi ve();
br eak;
case 5: /1 Initiate play ctrl sequence
wCndKey = (short) dwEvent Dat a;
br eak;

el se /] Check for 3 digit command code

wKeys| 2] wKeys[1] ;

wKeys[1] wKeys[0] ;

wKeys[0] = (short)dwEvent Dat a;
if(++wKeysPressed > 2)

i f((wKeys[2]*100+wKeys[1] *10+wKeys|[0]) ==wConmandCode)
{
Begi nRenpt e() ;
wCndKey = -1;
}
}
br eak;

defaul t:
br eak;

Using the TAM Sample Application

The sample application included on the companion diskette is designed primarily to illustrate some of
the concepts behind the creation of an event driven application using the Mwave TAM API. Although
the sampleis also afunctional telephone answering machine, it doesn't contain the error recovery or
feature set required of arobust application.

The TAM example applet requires the following hardware in addition to the base
Mwave hardware;

This document contains information that is subject to _="= 85

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

A telephone handset attached to the Mwave adapter telephone port (if you want to try the
handset functions)

An analog phone line attached to the public switch network (if you want to initiate and receive
real calls)

A microphone attached to the Mwave adapter microphone input (if you want to use the
microphone functions)

One or two speakers attached to the Mwave adapter speaker ports (if you want to use the
speaker functions)

The TAM applet is designed to operate both as a standard telephone and a telephone answering system.
When using either the telephone to take a call, or the answering system to review messages, the
application allows the user to select either a desk telephone handset or an external microphone/speaker
as an input/output device. This allowsfor private reviewing of messages through the handset, and adds
speakerphone capability to a standard telephone through the microphone and speaker devices.

To implement this dual functionality, the application operates in two distinct modes, a 'Telephone’
mode and a 'Message Review' mode. The operating mode is set by the user, through the ‘M ode'
pulldown menu.

In 'Telephone’ mode, the applet answers incoming calls, plays an announcement, and records
messages. When system output is set to 'Handset', the desk telephone is connected directly to the
telephone line and on-hook off-hook is. When the output is set to 'Speaker’, the telephone is taken off
hook and the system microphone and speaker are enabled.

In 'Message Review' mode, the application can play recorded messages to either the speaker or
telephone handset. All message play controls are located under the '‘Play Control' menu. When
message reviewing is taking place, the system does not answer incoming calls.

The handset volume is not adjustable with the applet, but the speaker volume (used for both
speakerphone and message review operations) can be set using the 'V olume' menu.

System Setup

The TAM applet is pre-loaded with a default announcement greeting and some other default settings,
but there are some initialization steps to perform if you wish to tailor it to your requirements. Below
are specific instructions for the various initialization procedures.

Recording an Announcement

To record a new announcement, select the 'Message Review' mode option under the ‘M ode' menu, and
then select 'Record Announcement..." under the ‘Configure’ menu. A three part dialog box is displayed.

The top portion of the dialog box is used for recording. The 'Record from..." box in the upper left hand
corner of the dialog box determines the input recording device. The default deviceis set to
'‘Microphone' so if you wish to record your announcement from the telephone handset, first select the
"Telephone Handset' button in the 'Record from..." box.

This document contains information that is subject to 86

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

After the input device has been chosen, click on the '‘Begin Recording' button and start speaking (once
you hear a beep) into the input device you have chosen. When done, click on the 'End Recording'
button. To listen to the announcement you just recorded, select an output device in the 'Play to..." box,
and click on the 'Play Announcement’ button. The announcement plays to the output device selected.
If you wish to use the newly recorded announcement, click on the 'OK" button. Otherwise, to keep the
old

announcement, click on the 'Cancel button.

After closing the dialog box, place the application back into telephone mode by selecting the
"Telephone’ mode option in the 'Mode' pulldown menu (to enable the system to take messages)

Setting the Ring Count

The ring count determines the number of rings before which the system answers the telephone to
record an incoming message. The TAM application has two ring counts, one for when messages are
available, and one for when no messages are available. A common 'toll saver' feature isto set the
device to answer on the first ring when new messages are available, but not to answer before the fourth
ring when there are no new messages. This allows the user to hang-up when calling remotely before
the system answers when there are no messages available.

To set the ring count, select the 'Set Ring Count..." item in the 'Configure’ menu. A dialog box is
displayed, prompting for the two types of ring counts. After entering a new ring count for when
messages are available and one for when no messages available, press the 'OK" button to use the new
counts, or press the ‘Cancel’ button to abort any changes.

Setting the Command Code

The TAM application allows the user to retrieve messages from a remote telephone, by calling the
device, and when prompted to record a message, entering instead a 3-digit command code on the
touch-tone keypad. The command code is configurable, and can be changed any time. To set a new
command code, select the 'Set Command Code..." item on the 'Configure’ menu. A dialog box
prompting for a new command code is displayed. After entering a new command code, press the 'OK'
button to accept the change, or press the ‘Cancel’ button to abort any changes and keep the original
code.

Using the Speakerphone

In addition to providing the answering machine function, the TAM application turns a
speaker/microphone connected to the Mwave Adapter into a speakerphone.

Initiating a Speakerphone Call

Beforeinitiating a call for use with the speakerphone, verify that the application is in telephone mode
by selecting the 'Telephone’ option under the ‘M ode' pulldown menu, and that the system is connected
to the handset by selecting the 'Handset' item under the 'Mode' pulldown menu.

Note: These two options should always be set when you are not reviewing messages. Otherwise, the
system will not take messages

This document contains information that is subject to 87

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

The speakerphone call isinitiated by picking up the handset and dialing the number r using your
standard desk phone. After the number has been dialed, the speakerphoneis initiated by selecting the
'‘Speaker’ option under the 'Mode' pulldown menu. After this has been done, you can hang-up the
telephone handset.

Speakerphone Volume Control

While the speakerphone call isin progress, the output volume of the speaker can be adjusted by
selecting avolume level from the 'V olume' pulldown menu.

Terminating a Speakerphone Call

To terminate a speakerphone call, leave the desk phone handset on hook, and place the system back
into handset connect mode by selecting the 'Handset' item under the 'Mode' pulldown menu. This also
places the phone 'on-hook'.

Reviewing Messages Locally

The number of active messages on the system is shown in the application window whenever the
application is open on the desktop. If new messages arrive while the application isin icon form(i.e.
minimized), new messages can be detected by the flashing of the icon text (either on the desktop or in
the Minimized Window Viewer). If the TAM application window is open, its title bar flashes if new
messages have arrived since the last message review.

Playing Recorded Messages

To review messages, select the 'Message Review' mode from the ‘M ode' pulldown menu. Incoming
calls are not answered while you are in this mode.

Next, select the output device to which to play your messages. Y ou can play messages to either the
telephone handset or the external speaker. To use the handset, select the 'Handset' option on the ‘M ode'
pulldown menu. To use an external speaker, select the 'Speaker’ option on the 'Mode' pulldown menu.
When using the speaker, you can adjust the speaker volume be selecting a new volume level from the
'‘Speaker Volume' pulldown menu.

When in message review mode, some of the entries on the 'Play Control' pulldown menu become
visible. To start reviewing messages, select the 'First' item on the 'Play Control' pulldown menu. This
prompts the system to play the first active message. If the 'First' item is grayed on the menu, you have
no active messages.

After the first message has played, you have a choice of either replaying the message, keeping the
message and playing the next message (if any), or erasing the message and playing the next message
(if any). To replay the message, select the 'Repeat’ option on the 'Play Control' pulldown menu. To
keep this message

and play the next message, select the 'Next' option. To erase this message and play the next message
(if any), select the 'Erase’ option.

After playing one of multiple messages, you can go back and play the previous message by selecting
the 'Previous' option.

This document contains information that is subject to 88

change without notice.

MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

Note: When you have finished reviewing messages, re-enable call receiving by selecting the
"Telephone’ mode option under the 'Mode' pulldown menu.

Message Positioning Controls

While a message is playing, you can step back 5 seconds in the message, step forward 5 seconds in the
message, or pause the message playback. When paused, the playback will remain stopped until
unpaused (pause selected a second time). These options are performed by selecting the '‘Back 5
seconds, 'Ahead 5 seconds), or 'Pause’ menu entries under the 'Play Control’ pulldown menu.

Message Speed Controls

Aswell as being able to skip around in a message using 'Step Back' and 'Skip Forward', the TAM
application allows you to set the play speed of the message, so that you can play back messages at an
accelerated or decelerated rate. To change the message play speed, select a new speed (either 'Play
Slow', 'Play Normal', or 'Play Fast') from the '‘Play Control' pulldown menu. The speed setting you
choose remains in effect until you exit the message review mode at which point it revertsto 'Play
Normal'.

Reviewing Messages Remotely

Message review is also possible using a touch-tone telephone, when calling from a remote location.
To gain access to the message review mode of the application, first call the system and let the
answering machine answer the call. While the announcement is playing, enter the 3 digit command
code you selected during the application setup process. The system now tells you how many active
messages you have. At this point, you can begin entering touch-tone keypad commands to review
messages as described in the previous section. Below isalist of the available keypad command
options:

M essage Play Commands:
Press'1' to play first/next active message
Press '2' to erase current message and play next active message
Press '3 to replay or restart the current message

This document contains information that is subject to 89

change without notice.

MMWADKUMU-03

Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

90

MMWADKUMU-03 Chapter 6 - Fax APl Reference

Chapter 6 - FAX APl Reference

This chapter provides a complete reference of the Mwave FAX Application Program Interface (API).

MCI Telephone Event Handler

Communication of real-time status information from the FAX driver to the application is performed
through an application event handler. The handler should be able to service messages posted by the
FAX driver through the MCI device, which contain real-time status information about the device. The
message, MM_MCIEVENT, is not a standard M Cl message under Microsoft Windows, thus a
Microsoft Windows application must call the Register WindowM essage function with the string
"MM_MCIEVENT", to obtain the numeric value of the notification message.

MM_MCIEVENT

In addition to the message itself, wParam and |Param are used to pass
information to the application.

WPARAM wParam
Contains a device specific event message wEvent.

LPMCI_EVENT_PARMS [Param
Specifies afar pointer to the following MCI_EVENT_PARMS structure:

typedef struct {
DWCRD dwbDat aPar ami;
DWORD dwEvent Dat a;
} MO _EVENT_PARVS;

This document contains information that is subject to 91

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

The data parameters are defined as follows:

DWORD dwDataParaml
The low-order word specifies the device specific event message
wEvent (same as wParam). The high-order word specifies the
device ID of the device initiating the message.

DWORD dwEventData
Contains a data parameter, which is dependent on the message
type. The actual parameters passed are listed in Table O below,
and detailed in the event message descriptions.

MM_MCIEVENT - OS/2
In addition to the message itself, wParam and |Param are used to pass information to the application.

DWORD MsgParaml
Contains a device-specific event message and device ID.

WORD wEvent
The low-order word of MsgParaml specifies the device- specific event message
(same as uskEventCode or wParam)

WORD wDevicelD
The high-order word of MsgParaml specifies the device ID of the device initiating

the message.

LPMCI_EVENT_PARMS MsgParam2

LPMCI_EVENT_PARMS EventData
Specifies a pointer to the following structure:

typedef struct {
DWCRD dwDat aPar ant;
DWRD dwEvent Dat a;
} MO _EVENT_PARMS;

Note: The low-order word of dwDataParam1 contains the event code (same as
wEvent). The high-order word is not defined.

FAX Event Message Descriptions

This section describes the Event M essages generated by the FAX API. The following table provides a
summary of all the Event Messages (wEvent), along with a short description of the data parameter
associated with each:

This document contains information that is subject to 92

change without notice.

MMWADKUMU-03

Chapter 6 - Fax APl Reference

Event Message (wEvent) Data Parm.
(dwEventData)
PHONE_EVENT_CALL_FAX undefined

PHONE_EVENT_CALL_PROGRESS

New call state

PHONE_EVENT_CALL_TERMINATED

Call termination status

PHONE_EVENT CALLER ID

Caller ID status

PHONE_EVENT_DISTINCTIVE_RING

Ring ldentifier

PHONE_EVENT_FAX_ CONNECT

DCS frame information

PHONE_EVENT_FAX HEADER

Pointer to fax header

PHONE_EVENT FAX PAGE_COMPLETE

Document completion status

PHONE_EVENT FAX PAGE_STATUS

Page completion status

PHONE_EVENT FAX_POLL

undefined

PHONE_EVENT_HANDSET

Handset Status

PHONE_EVENT_HANDSET_KEY

Keypress character

PHONE_EVENT_LINE

Telephone line status

PHONE_EVENT LINE KEY

Keypress character

PHONE_EVENT_ADVANCED_RING

undefined, use IParam

PHONE EVENT RING

Telephone ring status

Table 6-1: FAX Driver Event Messages

This document contains information that is subject to

change without notice.

93

MMWADKUMU-03 Chapter 6 - Fax APl Reference

For all messages posted to the event handler routine, the message valueisMM_MCIEVENT. The
value of wEvent and dwEventData vary according to the specific message posted. Below isamore
detailed description of the event messages and their parameters.

Arguments wEvent: PHONE_EVENT_CALL_FAX
dwEventData: undefined

Description This message is posted when a call has been answered by the device, and has been
determined to have originated from afax device. At thistime, the application that is not doing fax
polling should immediately make a call to MCI_RECEIVE to receive any incoming fax data. At this
point, the application should expect any of four additional messages to be posted by the device:

PHONE_EVENT_CALLER_ID (If Discriminator running)
PHONE_EVENT_FAX_CONNECT
PHONE_EVENT_FAX_HEADER
PHONE_EVENT_FAX_POLL

These additional messages are documented below.

Note: If thismessage is posted then you are guaranteed to get a
PHONE_EVENT_CALL_TERMINATED. At which time, you must doaMCI_FAX_SET_HOOK
(ONHOOK).

Arguments wEvent: PHONE_EVENT_CALL_PROGRESS
dwEventData: dwCallProgress

Description This message is posted when there has been a change in the current call state (or
status). The new state of the call is supplied in dwCallProgress, and can be any of the following:

DIALTONE
ANSWERTONE
SLOWBUSY
FASTBUSY
RINGTONE
UNIDENTIFIEDTONE
QUIET

BUSY

This document contains information that is subject to
change without notice.

94

MMWADKUMU-03 Chapter 6 - Fax APl Reference

Arguments wEvent: PHONE_EVENT_CALL TERMINATED
dwEventData: dwTermination

Description This message is posted when a call has been terminated either by the caller, by the
owning application, or because of an error condition. The reason for call termination is given in
dwTermination, which may be any of the following values:

TERMINATION_ERROR_RECV
TERMINATION_ERROR_XMIT
TERMINATION_NORMAL
TERMINATION_REQUESTED
TERMINATION_UNEXPECTED
TERMINATION_DISK_FULL

Note: At thistime the application MUST perform aMCI_FAX_SET_HOOK (ONHOOK).

Arguments wEvent: PHONE_EVENT_CALLER_ID
dwEventData: dwCallerld

Description This message is posted when a caller 1D string has been decoded off aringing line. It
is posted only if acaller ID signal is present. dwCaller I D indicates the completion status.

MCI_VALID_CALLER_ID_RECEIVED
MCI_CALLER_ID_FRAME_ERROR

The application must issue an MCI_INFO message to retrieve the id (for
MCI_VALID_CALLER_ID_RECEIVED) or the error code (for
MCI_CALLER_ID_FRAME_ERROR).

PHONE_EVENT_CALLER 1D isonly supported if Discriminator isloaded.

Arguments wEvent: PHONE_EVENT_DISTINCTIVE_RING PL
dwEventData: dwRingldentifier

Description This message is posted when a distinctive ring has been decoded off aringing line. It is
posted only if distinctive ring support isinstalled. dwRingldentifier indicates which
distinctive ring has been decoded. The ring identifier is a number between 1 and 20.
This support is added with Ver 3.2. For FAX it is available only when running the
discriminator.

Arguments wEvent: PHONE_EVENT_FAX _CONNECT
dwEventData: dwConnect

Description This message is posted after afax call has been answered by the device, and has
finished the negotiation period and established the Digital Command Signal (DCS) connection

This document contains information that is subject to 95

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

parameters. The dwConnect specifies afar pointer to MCI_FAX_CONNECT_PARMS data structure
containing these connection parameters:

typedef struct {

DWORD dwSignal Rate;
DWORD dwCompression;
DWORD dwErrorCorrection;
DWORD dwResolution;
DWORD dwWidth;

DWORD dwMinScanLineTime;

} MCI_FAX_CONNECT_PARMS;
The signal rate is passed in dwSignalRate, and can be any of the following:

MCI_FAX_MODEM_V27TER_2400
MCI_FAX_MODEM_V27TER_4800
MCI_FAX_MODEM_V29 7200
MCI_FAX_MODEM_V29 9600
MCI_FAX_MODEM_V17_7200
MCI_FAX_MODEM_V17_9600
MCI_FAX_MODEM_V17_12000
MCI_FAX_MODEM_V17_14400
MCI_FAX_MODEM_ANY

The following compression types are passed in dwCompression. This message is especially useful if
the compression type is BFT (binary file transfer), because in this case, the file resulting from an
MCI_RECEIVE is an unencoded binary file.

- MCI_FAX_COMPRESSION_1D

- MCI_FAX_COMPRESSION_2D

- MCI_FAX_COMPRESSION_BFT
The error correction is passed in dwError Correction, and can be either TRUE or FALSE.

The resolution is passed in dwResolution, and can be any of the following:

MCI_FAX_RESOLUTION_NORMAL
MCI_FAX_RESOLUTION_FINE

The document width in pelsis passed in dwWidth.

The device specific minimum milliseconds to scan aline is passed in dwMinScanLineTime.

Arguments wEvent: PHONE_EVENT_FAX_HEADER
dwEventData: |pstrFaxHeader

Description This message is posted when afax header string has been decoded off afax call. Itis
posted only if aheader string is present. An application can use this string to identify the fax
sender/receiver. A pointer to the null terminated ASCII string is pointed to by Ipstr FaxHeader .

This document contains information that is subject to 96

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

Arguments wEvent: PHONE_EVENT_FAX_PAGE_COMPLETE
dwEventData: dwCompletionStatus

Description This message is posted when the device has completed either sending or receiving a
fax document page. In the event that the device isin the middle of aMCI_SEND, the completion status
(measured in percent) is supplied in dwCompletionStatus.

Arguments wEvent: PHONE_EVENT_FAX_PAGE_STATUS
dwEventData: dwPageStatus

Description This message is posted several times per page during either sending or receiving a fax
document. The completion status (measured in percent) is supplied in dwPageStatus for MCI_SEND,
and is not supplied for MCI_RECEIVE except for 0% when incoming page is known.

Note: It isexpected behavior to only get athe 0% and 100% on the first page of the outgoing fax. The
reason is due to the low priority of timer messages in Windows. Subsequent pages should give a %
every second.

Arguments wEvent: PHONE_EVENT_FAX POLL
dwEventData: undefined

Description This message is posted after a call has been answered by the device, and has been
determined to have originated from afax device and a poll command is received. At thistime, the
application should immediately make a call to MCI_SEND to send the requested fax data.

Arguments wEvent: PHONE_EVENT_HANDSET
dwEventData: dwHandsetStatus

Description This message is posted when the status of the telephone handset changes, due to the
user either picking up or replacing the telephone handset. The value of dwHandsetStatusis as
follows:

dwHandsetStatus = 0 Handset is on-hook
dwHandsetStatus = 1 Handset is off-hook (in use)

The Discriminator must be running to enable receipt of this message.

This document contains information that is subject to 97

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

Arguments wEvent: PHONE_EVENT_HANDSET_KEY
dwEventData: dwKeypress

Description This message is posted when a key has been pressed on the handset device. The index
of the pressed key (0 to 11, 10 for *' and 11 for '#) is supplied in dwK eypr ess.

PHONE_EVENT_HANDSET_KEY Is not supported in current FAX driver.

Arguments wEvent: PHONE_EVENT_LINE
dwEventData: dwLineStatus

Description This message is posted when the status of the telephone line changes, due to another
application in the system making use of the telephone line. When an application takes the telephone
line off hook, or is called to service an incoming call, it remains in possession of the telephone line for
the duration of the call. Applications which require use of the telephone line and find it busy, can
simply wait for this message to signal that the telephone line can be used. The value of dwL ineStatus
isasfollows:

dwLineStatus =0 Telephone line isfree
dwLineStatus = 1 Telephonelineisin use

The Discriminator must be running to enable receipt of this message.

Arguments wEvent: PHONE_EVENT_LINE_KEY
dwEventData: dwKeypress

Description This message is posted when a key has been pressed on the incoming telephone line.
An ASCII character representing the pressed key ('0' - '9', 'a - 'd’, '# or "*"), is supplied in dwK eypr ess.

PHONE_EVENT_LINE_KEY is not supported in current FAX driver.

This document contains information that is subject to 98

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

Arguments wEvent: PHONE_EVENT_RING
dwEventData: dwRingStatus

Description This message is posted when aring signal change is detected by the device. This
message can be used by the application to count ring cycles, or determine ring length. The value of
dwRingStatusis as follows:

dwRingStatus=0 Telephonering signal end (not ringing)
dwRingStatus=1 Telephonering signal start (ringing)

Arguments wEvent: PHONE_EVENT_ADVANCED_RING
dwEventData: not used, actual ring count isin |Param

Description If the application has requested ‘ advanced format ring notifications' by setting
advanced ring notify to TRUE, PHONE_EVENT_ADVANCED_RING is sent to the application
instead of PHONE_EVENT_RING. In this case, |Param is not a pointer to a structure. Instead, the
low word of IParam contains the ring count, and the high word of IParam contains the device ID.

LOWORD(IParam) =0 Telephonering signal end (not ringing)
LOWORD(IParam) = ‘n’ Telephone ring count (where ‘n’ is the ring number)

The Discriminator must be running to enable receipt of this message.

This document contains information that is subject to
change without notice.

99

MMWADKUMU-03 Chapter 6 - Fax APl Reference

FAX Driver APl Messages and Flags

This section describes the MCI compliant FAX APl messages and flags. The following table provides

asummary of the MCI command messages used in the FAX API, and a short description of each:

MCI Message Description

MCI CLOSE Close the device driver

MCI_CONVERT Convert from/to device dependent file
to/from device independent file.

MCI_DIAL Dial the telephone

MCI_GETDEVCAPS Get the capabilities of the device

MCI_INFO Get device string identifier

MCI_OPEN Open the device driver

MCI RECEIVE Receive afax file

MCI SEND Send a fax file

MCI_SET Configure the device

MCI_STATUS Query device configuration

MCI STOP Stop sending or receiving a FAX

Table 6-2: FAX Driver APl Messages

This document contains information that is subject to
change without notice.

100

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_CLOSE
This command message closes the FAX driver.

Parameters DWORD [Paraml
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by IParam?2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application. The event handler window must be specified in
the dwCallback field regardiess of whether MCI_NOTIFY or
MCI_WAIT is selected.

LPMCI_GENERIC_PARMS |Param2

Specifies afar pointer to the following MClI_GENERIC_PARM S data
structure:

typedef struct {
DWORD dwCal | back;
} MJ _GENERI C_PARMS;

Note: Be sure to assign the handle of the window procedure responsible for processing
MM_MCINOTIFY messages to dwCallback prior to calling MCI_CLOSE regardless of whether
MCI_WAIT or MCI_NOTIFY is specified. Failureto do so resultsin erratic behavior of the Fax
device driver when using versions earlier than Ver 2.1 of the Fax device driver

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 101

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_CONVERT

This command message is used to convert data files between a MCl device dependent format, and a
standard device independent format. The call is used to convert to and from FAX multi-page
documents.

Parameters DWORD [Paraml
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by IParam?2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

MCI_CONVERT_CREATE
Indicates that the destination file is a new file which should be
created. This overwrites any existing file.

MCI_CONVERT_DESTINATION_FILE
Indicates the Ipstr DestFilename field of the data structure identified
by IParam?2 contains a pointer to a buffer containing the destination
file name.

MCI_CONVERT_DESTINATION_FORMAT
Indicates the dwDestFor mat field of the data structure identified by
|Param? contains the desired format of the destination file. These
include:

MCI_CONVERT_FMT_DIB_BMP (from sour ce of type
DEVFAX)

MCI_CONVERT_FMT_DIB_RLE (from source of type
DEVFAX..not supported in current FAX driver)
MCI_FAX_CONVERT_FMT_DEVFAX (from DIB_BMP or
DIB_RLE. DIB_RLE conversion not supported in current FAX
driver)

This document contains information that is subject to 102

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_CONVERT_DESTINATION_FROM
Specifies that a media starting position isincluded in the
dwDestFrom field of the data structure identified by |Param?2. This
specifies the document page (starting at zero) at which the converted
data is written to the destination file.

MCI_CONVERT_INFO
Indicates that no conversion operation isto take place, but rather, the
dwL ength field of the data structure identified by |Param2 should
be set to the length of the media of the supplied source device
dependent filename. For a device dependent FAX file, the value
returned is the document page count. If a device dependent fileis
not specified, this call returns an error.

MCI_CONVERT_OVERWRITE
Indicates that newly converted information should overwrite any
existing data. If this flag is not specified, the new data is inserted
into thefile.

MCI_CONVERT_SOURCE_FILE
Indicates the Ipstr SrcFilename field of the data structure identified
by IParam2 contains a pointer to a buffer containing the file name.

MCI_CONVERT_SOURCE_FROM
Specifies that a media starting position isincluded in the
dwSrcFrom field of the data structure identified by IParam?2. This
specifies the document page (starting at zero) at which the data to be
converted is read from the sourcefile.

LPMCI_CONVERT_PARMS [Param?2
Specifies afar pointer to the following MClI_CONVERT_PARMS data
structure:

typedef struct {
DWORD

dwCal | back;
LPCSTR | pst r Dest Fi | enarre;
DWCRD dwDest For mat ;
DWCRD dwbDest Fr om
DWCRD dwLengt h;
LPCSTR | pstr SrcFil enane;
DWCRD dwsr cFrom

} MO _COWERT _PARVS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 103

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_DIAL
This command message takes the phone off-hook, and dials the supplied number. If the telephone is
owned by another application at the time of this call, the command will fail.

Parameters DWORD |Paraml
The following flags apply to the telephone device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by IParam?2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

MCI_DIAL_DIALMODE
Specifies that the dwDialM ode field of the data structure identified
by IParam2 contains a constant specifying the phone dialing mode.
Two modes are defined:

MCI_DIAL_MODE_PULSE
MCI_DIAL_MODE_TONE

MCI_DIAL_FLASH
Indicates that the telephone should be flashed before dialing the
supplied number (if any).

MCI_DIAL_MONITOR
Specifies that the audio speaker device should be enabled during the
calling process.

MCI_DIAL_MONITOR_HANDSHAKING_ONLY
Specifies that the audio speaker device should be enabled only
during the negotiation period of the calling process.

MCI_DIAL_STRING
Specifies that the IpstrDial String field of the data structure
identified by IParam?2 contains a pointer to a null terminated dialing
string. Numeric characters '0' to '9' correspond to phone digits. The
*'and '# characters, the alpha characters'a to 'd' and the '-' are al'so
supported (-' isignored). The 'w' character in the string specifies
that the device should wait for a second dial tone before proceeding,
and a',’ character indicates a pause in the dialing sequence. The
time-out limit for the wait command (default 30 seconds) and the
delay time for the pause command (default 2 seconds) are
configurable using MCI_SET. The'@’ character in the string
specifieswait for quiet. The ‘p’ character in the string specifies
switch to pulse dialing. The ‘t’ character in the string specifies
switch to tone dialing. The*!” character in the string specifies flash
theline

This document contains information that is subject to 104

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

The maximum size string that can be dialed is specified by
MAX_DIAL_STRING.

MCI_DIAL_VERIFY
Specifies that the call isto be verified. The phoneis verified to be
off-hook, and that a dial tone is present before dialing. The correct
line type format is also verified.

LPMCI_DIAL_PARMS IParam2
Specifies afar pointer to the following MCIl_DIAL_PARM S data structure:

typedef struct {

DWORD dwCal | back;
DWORD dwDi al Mode;
LPCSTR I pstrD al String;

} MO _Di AL_PARVS,

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 105

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_GETDEVCAPS
This command is used to obtain static information about a device.

Parameters DWORD [Paraml
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by IParam?2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

MCI_GETDEVCAPS_ITEM
Specifies that the dwltem field of the data structure identified by
IParam?2 contains a constant specifying which device capability to
obtain. The following constants are defined:

MCI_GETDEVCAPS CAN_EJECT
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS CAN _PLAY
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS CAN_RECORD
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS CAN_SAVE
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS COMPOUND_ DEVICE
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS _DEVICE_TYPE
The dwReturn fieldis set to MCI_DEVTYPE_OTHER.

MCI_GETDEVCAPS HAS AUDIO
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS HAS VIDEO
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS USES FILES
The dwReturn field is set to TRUE.

MCI_FAX_GETDEVCAPS_COMPRESSION_TYPES
The dwReturn field is set to the logical ORing of the following
supported compression types:

MCI_FAX_COMPRESSION_MH

This document contains information that is subject to 106

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_FAX_COMPRESSION_MR
MCI_FAX_COMPRESSION_MMR
MCI_FAX_COMPRESSION_NONE
MCI_FAX_COMPRESSION_BFT

Only MCI_FAX_COMPRESSION_MH supported in current FAX
driver.

MCI_FAX_GETDEVCAPS_CAN_RECEIVE
The dwReturn field is set to TRUE if the device supports receiving
FAX file datafrom the telephone line. Otherwise, it is set to FALSE.

MCI_FAX_GETDEVCAPS_CAN_SEND
The dwReturn field is set to TRUE if the device supports sending
FAX file datato the telephone line. Otherwise, it is set to FAL SE.

MCI_FAX_GETDEVCAPS HAS HANDSET
The dwReturn field is set to TRUE if the device supports call
monitoring through an external handset; otherwise, it returns
FALSE.

MCI_FAX_GETDEVCAPS HAS HANDSET not supported in
current FAX driver.

This document contains information that is subject to 107

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_FAX_GETDEVCAPS MODEM_TYPES
The dwReturn field is set to the logical ORing of the following
supported modem types:

MCI_FAX_MODEM_V27TER_2400
MCI_FAX_MODEM_V27TER_4800
MCI_FAX_MODEM_V29 7200
MCI_FAX_MODEM_V29 9600
MCI_FAX_MODEM_V17_7200
MCI_FAX_MODEM_V17_9600
MCI_FAX_MODEM_V17_12000
MCI_FAX_MODEM_V17_14400

MCI_FAX_GETDEVCAPS POLLING
The dwReturn field is set to TRUE if FAX polling is supported, and
FALSE if not.

MCI_FAX_ GETDEVCAPS RESOLUTION
The dwReturn field is set to the resolution of the device.

MCI_FAX_RESOLUTION_FINE 200x200 PIXELS/INCH
MCI_FAX_RESOLUTION_NORMAL 100x200
PIXELS/INCH

MCI_FAX_GETDEVCAPS SUPPORTS_ECM
The dwReturn field is set to TRUE if FAX ECM is supported, and
FALSE if not.

MCI_FAX_GETDEVCAPS FILE_FORMATS
File formats supported for fax send/receive. The dwReturn field is
set to logical ORing of the following file formats:

TIFF_CLASS F
DCX

RIFF

TIFF_6.0

MCI_FAX_GETDEVCAPS WIDTH
The dwReturn field is set to the width in pels of the device.

MCI_FAX_GETDEVCAPS WIDTH not supported in current FAX
driver.

LPMCI_GETDEVCAPS PARMS |Param2
Specifies afar pointer to the following MClI_GETDEVCAPS PARMS data
structure:

typedef struct {
DWORD

dwCal | back;
DWORD dwRet ur n;
DWORD dwl tem

} MO _GETDEVCAPS PARVE;

This document contains information that is subject to 108

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 109

change without notice.

MMWADKUMU-03

Chapter 6 - Fax APl Reference

MCI_INFO

This command message obtains string information from the device.

Parameters

DWORD

|Paraml

The following flags apply to the FAX device:

MCI_NOTIFY

Specifies that MCI should post the MM _MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by IParam?2.

MCI_WAIT

Specifies that the operation should finish before MCI returns control
to the application.

MCI_INFO_PRODUCT

Obtains a description of the hardware associated with a device. The
description identifies both the driver and the hardware used. The
string is copied to the buffer pointer to by the Ipstr Return field of
the structure identified by IParam?2. The size of this buffer is
specified by the dwRetSize field of the same structure, and if the
buffer is of insufficient size to contain the string, the string is
truncated to fit the buffer. The string contains a version number (i.e,
“Ver 3.0"). Driver enhancements will be denoted in this document
with the “Ver x.y”. that corresponds with the first release that the
feature shows up in. The version number will always increasein
future releases, so a program can parse the string, looking for “Ver “,
convert the characters that follow “Ver * to anumber, and do a
numeric greater-than-or-equal compare to determine if the function
isavailable in the release the application is running with.

Note: Unless otherwise noted, all functions are available as of Ver
2.2

MCI_INFO_CALLER_ID

Obtainsacaller ID string. (See PHONE_EVENT_CALLER_ID).
The caller ID datais copied into the buffer pointed to by the
IpstrReturn field of the structure identified by IParam2. The size of
this buffer is specified by the dwRetSize field of the same structure
(maximum size= MCI_MAX_CALLER_ID_SIZE). If the buffer is
of insufficient size to contain the data, the data is truncated to fit the
buffer, the return code is set to MCIERR_INVALID_BUFFER, and
the dwRetSize is set to the size needed to retrieve the entire caller 1D
buffer.

Note: The caller ID dataisin the format defined by Bellcore's
technical reference bulletin TR-TSY -000031 and TR-NWT-001188.
Also note that a checksum isincluded at the end of the caller ID
data.

This document contains information that is subject to

change without notice.

110

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_INFO_CALLER_ID isonly supported when the discriminator
isloaded.

MCI_INFO_CALLER_ID_ERROR
Obtains the caller ID error code. (See
PHONE_EVENT_CALLER_ID). The code is copied into the buffer
pointed to by the IpstrReturn field of the structure identified by
IParam?2. The size of this buffer is specified by the dwRetSize field
of the same structure. The error code is either
MCI_CHECKSUM_ERROR or MCI_FRAME_ERROR.

MCI_INFO_CALLER_ID_ERROR is only supported when the
discriminator isloaded.

MCI_INFO_CALLER_PARSED_CALLER_ID
Obtains a caller an already-parsed Caller ID string. (See
PHONE_EVENT_CALLER_ID). Theinformation is copied into
the structure pointed to by the IpstrReturn (Windows) or dwReturn
(0S/2) field of the structure identified by |Param?2. The structureis:

typedef struct

{
char szDateTime[DATE_TIME_LEN+1];

char szZNumber[MCI_MAX_CALLER_ID_SIZE]; /* callers
number */

char szZNamelMCI_MAX_CALLER_ID_SIZE]; /* callersname
(may
be null) */
} CIDINFO;

This function isimplemented in “Ver 3.0 of the TAM driver.

MCI_INFO_CALLER_PARSED_CALLER ID isonly supported
when the discriminator is loaded.

LPMCI_INFO_PARMS |Param2
Specifies afar pointer to the following MCl_INFO_PARM S data structure:

typedef struct {
DWORD

dwCal | back;
LPSTR | pstrReturn;
DWORD dwRet Si ze;
} MJ _I NFO_PARVS;
typedef struct {
DWORD dwCal | back;
LPSTR | pstr Return;
DWORD dwRet Si ze;
} MJ _I NFO_PARVS; | *C8l 2%/

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 111

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_OPEN
This command message initializes the telephony driver and hardware.

Parameters DWORD [Paraml
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by IParam?2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application. In older versions of the driver, the event handler
window must be specified in the dwCallback field regardless of
whether MCI_NOTIFY or MCI_WAIT is selected.

MCI_OPEN_ALIAS
Specifies that an aliasisincluded in the Ipstr Alias field of the data
structure identified by IParam2. This command is handled by MCI.

MCI_OPEN_SHAREABLE
Specifies that the device should be opened as shareable.

MCI_OPEN_SHAREABLE is not supported in current FAX driver.

MCI_OPEN_TYPE
Specifies that a device type name or constant isincluded in the
IpstrDeviceType field of the data structure identified by [Param2.
To open the fax driver, specify “Mwavefax” in the
IpstrDeviceT ype. This command is handled by MCI.

MCI_OPEN_TYPE_ID
Specifies that the low-order word of the IpstrDeviceType field of the
associated data structure contains a standard MCI device type ID and
the high-order word optionally contains the ordinal index for the
device. This command is handled by MCI.

This document contains information that is subject to 112

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

LPMCI_OPEN_PARMS [Param2
Specifies afar pointer to the following MCl_OPEN_PARM S data structure:

typedef struct {
DWORD

dwCal | back;
WORD wDevi cel D;
WORD wReser vedO;
LPCSTR | pst r Devi ceType;
LPCSTR | pst r El enent Narre;
LPCSTR [pstrAlias;

} MO _OPEN_PARVS,

Note: With Microsoft Windows, be sure to assign the handle of the window procedure responsible
for processing MM_MCINOTIFY messages to dwCallback prior to calling MCI_OPEN regardless of
whether MCI_WAIT or MCI_NOTIFY is specified. Failureto do so resultsin erratic behavior when
using versions earlier than Ver 2.1 of the Fax device driver.

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

Remarks

Caseisignored in the device name, but there must not be any leading or trailing
blanks.

Note that the device type is the pszDeviceType field of the
M CIl_OPEN_PARM S data structure, but it does not have a corresponding flag
because it is required and does not have a command-string parameter.

For the Mwave Fax and TAM drivers, the device types are:

Mwavetpl
Mwavetps
M wavefax

OS/2 only: If automatic type selection is desired (through the extensions or EA
section or INI), the file name (including the extension) must be passed in the
pszElementName parameter, the pszDeviceT ype isleft null, and the
MCI_OPEN_ELEMENT flag is set.

This document contains information that is subject to
change without notice.

113

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_RECEIVE

This command message receives afile. In the case of FAX, thisfileis an OEM dependent FAX file
consisting of one or more image pages. The number of pages actually received is availablein
MCI_STATUS.

Parameters DWORD [Paraml
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by IParam?2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

MCI_RECEIVE_FILE
Indicates the Ipstr Filename field of the data structure identified by
[Param?2 contains a pointer to a buffer containing the file name
where the received fax datais to be stored.

MCI_ALREADY_DIALED
Indicates the document is to be received immediately because the
application has already connected to the partner fax machine. In
FAX vernacular, thisis often referred to as Manual Receive.

LPMCI_RECEIVE_PARMS [Param2
Specifies afar pointer to the following MClI_RECEIVE_PARMS data
structure:

typedef struct {
DWORD dwCal | back;
LPCSTR | pstrFil enane;
} MJ _RECEI VE_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 114

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_SEND

This command message sets up a document or documents for sending, which then takes place during a
following MCI_DIAL command message. In the case of FAX, thisfileisan OEM dependent FAX file
or files consisting of one or more image pages. The number of pages sent can be obtained via
MCI_STATUS.

Parameters DWORD [Paraml
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by IParam?2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control

to the application.

MCI_SEND_FILE
Indicates the Ipstr Filename field of the data structure identified by
[Param?2 contains an array of pointers to pointers to strings
identifying the file name of each FAX fileto send. The
IpstrFilename array is terminated with a NULL string pointer to
indicate the end of the file name list.

MCI_FAX_SEND_SINGLE_FILE
Indicates the Ipstr Filename field of the data structure identified by
[Param?2 contains a string identifying the file name of the FAX file
to send.

MCI_ALREADY_DIALED
Indicates the document is to be sent immediately because the
application has already connected to the partner fax machine. In
FAX vernacular, thisis often referred to as Manual Send.

MCI_SEND_HEADING
Indicates the Ipstr Heading field of the data structure identified by
[Param?2 contains a string identifying the full path and file name of
the heading file. The heading file must bein Tiff Class F format,
single strip. Each heading should be atiff page.

Note: The heading file: should contain a heading for every page to
be sent, must have the same fill order and resolution as the page
being sent with it, and must be less than 24K.

This function isimplemented in “Ver 3.0” of the FAX driver

LPMCI_SEND_PARMS [Param2
Specifies afar pointer to the following MClI_SEND_PARM S data structure:

typedef struct {
DWORD dwCal | back;

This document contains information that is subject to 115

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

LPCSTR | pstrFil enane[];
LPSTR | pst r Headi ng;
} MJ _SEND PARVS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 116

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_SET

This command is used to set the FAX device configuration. This configuration determines the
environment used to send Fax Document Files. The item to set is specified by dwltem field of the
MCI_FAX_SET_PARMS structure, pointed to by IParam?, and set data information is passed in
dwSetData.

Parameters DWORD [Paraml
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by IParam?2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

MCI_SET_ITEM
Specifies that the dwltem field of the data structure identified by
[Param?2 contains a constant specifying which item to set. The
following constants are defined:

MCI_FAX_SET_ADVANCED_RING_NOTIFY

The dwSetData field is set to the indicate the type of
message that is sent to the application when the phone
rings. When set to FAL SE (the default), a
PHONE_EVENT_RING is sent to the application. When
theflag issetto TRUE, a
PHONE_EVENT_ADVANCED_RING is sent to the
application. With advanced format ring events, |Param
does not contain a pointer to dwSetData. Instead, |Param
contains the device ID and the actual ring count (not a
pointer to it). A ring count of zero signifies the end of a
ring.

MCI_FAX_SET_ADVANCED_RING_NOTIFY is not
supported in current driver.

MCI_FAX_SET_API_STYLE
Specifies that the dwSetData field of the data structure
identified by IParam?2 contains the API style of the FAX
device. The possible values are:

MCI_FAXTAM_STYLE_MMPM
MCI_FAXTAM_STYLE_WINDOWS

This document contains information that is subject to
change without notice.

117

MMWADKUMU-03 Chapter 6 - Fax APl Reference

The default style under Windows is WINDOWS. The
default style under OS/2isMMPM. The API style
affects return codes for MCI_STATUS,
MCI_GETDEVCAPS, and MCI_INFO. The style also
affects return codes and return information for
MM_MCINOTIFY. See Microsoft Windows
Multimedia Programmer’ s Reference and IBM’s
Programming Reference for Multimedia Presentation
Manager Toolkit/2 for details of the MCI interface as
specified for Windows and OS/2.

MCI_FAX_SET_AUDIO_VOLUME
Specifies that the dwSetData field of the data structure
identified by IParam?2 contains a constant specifying the
volume level of the speaker device. The volume level is
specified from 0xO (silence) to OXFFFF (maximum volume)
and isinterpreted logarithmically. This means the perceived
volume increase is the same when increasing the volume
level from 0x5000 to 0x6000 as it is from 0x4000 to
0x5000.

MCI_FAX_SET_CALL_FILTER
Specifies that the dwSetData field of the data structure
identified by IParam?2 is set to TRUE if the deviceisto
receive fax calls; otherwise it is set to FALSE. If another
application has this filer enabled, attempting to enable the
filter causes an error return.

MCI_FAX_SET_COMPRESSION_TY PES
Specifies that the dwSetData field of the data structure
identified by IParam?2 contains the allowable FAX
compression type(s) for filesto be received. The following
type flags are defined:

MCI_FAX_COMPRESSION_MH
MCI_FAX_COMPRESSION_MR
MCI_FAX_COMPRESSION_MMR
MCI_FAX_COMPRESSION_NONE
MCI_FAX_COMPRESSION_BFT
MCI_FAX_COMPRESSION_ANY

Only MH compression type supported in current FAX
driver

MCI_FAX_SET_DIAL_FLASH_TIME
The dwSetData field is set to the desired flash time (in
milliseconds) of the telephone flash option in the
MCI_DIAL command. The default value is 500 (one half
second).

MCI_FAX_SET DIAL_PAUSE_TIME

This document contains information that is subject to 118

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

The dwSetData field is set to the desired pause time (in
milliseconds) that an embedded ', character producesin the
dial string. The default value is 2000 (2 seconds).

MCI_FAX_SET_DIAL_WAIT_TIME
The dwSetData field is set to the desired time-out limit (in
milliseconds) that an embedded 'w' character in the dial
string allows, waiting for a second dial tone. The default
value is 30000 (30 seconds).

MCI_FAX_SET_ECM_LEVEL
Specifies that the dwSetData field of the data structure
identified by IParam?2 contains the current Error Correction
Mode (ECM) quality level. The higher quality telephone
lines require less rigorous ECM checking. The following
line quality levels are defined:

MCI_FAX_ECM_POOR_LINE
MCI_FAX_ECM_AVERAGE_LINE
MCI_FAX_ECM_QUALITY_LINE
MCI_FAX_ECM_NONE

MCI_FAX_SET_ECM_LEVEL not supported in current
FAX driver

MCI_FAX_SET_EVENT_HANDLER
Specifies that the dwSetData field of the data structure
identified by IParam?2 contains the handle of the application
event handler. The MCI driver postsMM_MCIEVENT
messages when an event occurs which changes the status of
the driver. Setting this value to zero disables event posting.
See the event handler section of the document for more
details.

MCI_FAX_SET_HOOK
The dwSetData field is set to the desired hook status of the
telephone line. It is set to TRUE to take the handset off-
hook, and FAL SE to place the handset on-hook. If another
application owns the phone line, this call will fail. When an
application sets dwSetData to FALSE, it relinquishes
ownership of the line.

MCI_FAX_SET_MODEM_TYPES
Specifies that the dwSetData field of the data structure
identified by IParam?2 contains the desired maximum and
minimum FAX modem types ORed together for calls
received and transmitted. If the actual negotiation speed is
lower than the selected minimum modem type, the call is
terminated. The following modem type flags are defined (in
fall back order; from highest speed to lowest):

MCI_FAX_MODEM_ANY
MCI_FAX_MODEM_V17_14400

This document contains information that is subject to 119

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_FAX_MODEM_V17_12000
MCI_FAX_MODEM_V17_9600
MCI_FAX_MODEM_V17_7200
MCI_FAX_MODEM_V29 9600
MCI_FAX_MODEM_V29 7200
MCI_FAX_MODEM_V27TER_4800
MCI_FAX_MODEM_V27TER_2400

MCI_FAX_MODEM_ANY not supported in current FAX
driver

MCI_FAX_SET_PASS CALL
Specifies that the dwSetData field of the data structure
identified by |Param?2 contains a constant specifying the
device to which the phone line should be passed. Theline
can only be passed from the fax driver when the MODE is
OPEN (see MCI_STATUS _MODE). If the mode is not
open, the application must do aMCI_STOP to reset the fax
out of send or receive mode.
The possible values of dwSetData are:

MCI_FAXTAM_PASS VOICE
MCI_FAXTAM_PASS_ MODEM

MCI_FAX_SET_PASS CALL isonly supported when the
discriminator isloaded.

MCI_FAXTAM_PASS MODEM not supported in current
driver.

MCI_FAX_SET_POLLING
Specifies that the dwSetData field of the data structure
identified by IParam?2 is set to TRUE if the device isto be
set to receive a FAX poll for this application. Both calling
and called applications must issue this command followed
by an MCI_RECEIVE to set up for polling.

MCI_FAX_SET_RESOLUTION
Specifies that the dwSetData field of the data structure
identified by IParam?2 contains the resolution mode of the
FAX device. This setting is used to tell the calling party the
fax device's capabilities (DIS info) for negotiating the
receive. The possible values are:

MCI_FAX_RESOLUTION_NORMAL
MCI_FAX_RESOLUTION_FINE

MCI_FAX_SET_RING_COUNT
Specifies that the dwSetData field of the data structure
identified by IParam?2 contains a constant specifying the
ring count at which the device should answer the telephone.
The default ring count for FAX is 1.

This document contains information that is subject to 120

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

If the discriminator isloaded, it will answer the telephone
on the shortest ring count request of all registered
applications (Windows), but never on less than two rings
(0S/2). Caller ID can arrive between rings 1 and 2.

The maximum ring count that can be set is specified by
MAX_RING_COUNT.

Note: If application is providing homologation support see
MCI_STATUS for more information on the min and max
ring count allowable.

MCI_FAX_SET_STATION_ID
Specifies that the dwSetData field of the data structure
identified by IParam?2 contains a pointer to a null
terminated character string which gives the station identifier
that is sent by the device during negotiation.

LPMCI_FAX_SET_PARMS IParam2
Specifies afar pointer to the following MCI_FAX_SET_PARM S data
structure:

typedef struct {

DWORD dwCal | back;
DWORD dwSet Dat a;
DWORD dwl tem

} MO _FAX_SET_PAR\S;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 121

change without notice.

MMWADKUMU-03

Chapter 6 - Fax APl Reference

MCI_STATUS

This command is used to obtain information about the FAX device configuration. Information is
returned in the dwReturn field of the MCI_STATUS_PARMS structure, pointed to by [Param2.

Parameters DWORD |Paraml

The following flags apply to the FAX device:

MCI_NOTIFY

Specifies that MCI should post the MM_MCINOTIFY
message when this command completes. The window to
receive this message is specified in the dwCallback field of
the data structure identified by |Param?2.

MCI_WAIT

Specifies that the operation should finish before M CI
returns control to the application.

MCI_STATUS_ITEM

Specifies that the dwltem field of the data structure
identified by IParam?2 contains a constant specifying which
status item to obtain. The following constants are defined:

MCI_STATUS_LENGTH

The dwReturn field is set to the number of pages of the last
Fax sent or received.

MCI_STATUS MODE

The dwReturn field is set to the current mode of the device.
The following modes are defined:

MCI_MODE_NOT_READY
MCI_MODE_OPEN
MCI_MODE_RECEIVE
MCI_MODE_SEND

MCI_STATUS_POSITION

The dwReturn field is set to the current number of pages
received or sent.

MCI_STATUS_READY

The dwReturn field is set to TRUE if the device is ready;
otherwise, it is set to FALSE. If another telephony
application has ownership of the telephone line, this status
command returns FALSE.

MCI_STATUS _TIME_FORMAT

The dwReturn field is set to the time format of the
play/record media. This always returns
MCI_FAX_FORMAT_PAGES.

MCI_FAX_STATUS AUDIO_VOLUME

The dwReturn field of the data structure identified by
IParam2 returns a constant specifying the volume level of

This document contains information that is subject to
change without notice.

122

MMWADKUMU-03 Chapter 6 - Fax APl Reference

the speaker device. The volume level is specified from 0x0
(silence) to OXFFFF (maximum volume) and is interpreted
logarithmically. This means the perceived volume increase
is the same when increasing the volume level from 0x5000
to 0x6000 asiit is from 0x4000 to 0x5000.

MCI_FAX_STATUS CALL_FILTER
The dwReturn field of the data structure identified by
IParam?2 is set to TRUE if the device is currently set to
receive fax calls; otherwise it is set to FALSE.

MCI_FAX_STATUS COMPRESSION_TY PES
Specifies that the dwReturn field of the data structure
identified by IParam?2 is set to the allowable FAX
compression type(s) for calls received and sent. The
following type flags are defined:

MCI_FAX_COMPRESSION_MH
MCI_FAX_COMPRESSION_MR
MCI_FAX_COMPRESSION_MMR
MCI_FAX_COMPRESSION_NONE
MCI_FAX_COMPRESSION_BFT
MCI_FAX_COMPRESSION_ANY

Only MH compression type supported in current FAX
driver.

MCI_FAX_STATUS DIAL_FLASH_TIME
The dwReturn field is set to the current flash time (in
milliseconds) of the telephone flash option in the
MCI_DIAL command.

MCI_FAX_STATUS DIAL_PAUSE_TIME
The dwReturn field is set to the current pause time (in
milliseconds) that an embedded ', character producesin the
dial string.

MCI_FAX_STATUS DIAL_WAIT_TIME
The dwReturn field is set to the current time-out limit (in
milliseconds) that an embedded 'w' character in the dial
string allows, waiting for a second dial tone.

MCI_FAX_STATUS ECM_LEVEL
Specifies that the dwReturn field of the data structure
identified by IParam?2 is set to the current ECM quality
level. The higher quality telephone lines require less
rigorous ECM checking. The following line quality levels
are defined:

MCI_FAX_ECM_POOR_LINE
MCI_FAX_ECM_AVERAGE_LINE
MCI_FAX_ECM_QUALITY_LINE

This document contains information that is subject to 123

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_FAX_ECM_NONE

MCI_FAX_STATUS ECM_LEVEL not supported in current
FAX driver.

MCI_FAX STATUS HANDSET
The dwReturn field is set to the current status of the
telephone handset. It isset to TRUE if the handset is off-
hook; otherwise, it is set to FALSE.

MCI_FAX_STATUS HANDSET not supported in current
FAX driver.

MCI_FAX_STATUS HANDSET_VOLUME
The dwReturn field of the data structure identified by
[Param? returns a constant specifying the volume level of
the speaker device. The volume level is specified from 0x0
(silence) to OXFFFF (maximum volume). The perceived
volume increase is the same when increasing the volume
level from 0x5000 to 0x6000 as it is from 0x4000 to
0x5000.

MCI_FAX_STATUS HANDSET_VOLUME not supported
incurrent FAX driver.

MCI_FAX _STATUS HOOK
The dwReturn field is set to the current hook status of the
telephone line. It is set to TRUE if the phone is off-hook;
otherwise, it is set to FALSE.

MCI_FAX_STATUS LINE
The dwReturn field is set to the current phone line status.
The following status modes are defined:

MCI_FAX_LINE_ONHOOK
MCI_FAX_LINE_DIALTONE
MCI_FAX_LINE_BUSY
MCI_FAX_LINE_RINGTONE
MCI_FAX_LINE_FAX_CARRIER
MCI_FAX_LINE_UNKNOWN

MCI_FAX_STATUS MAX_MODEM_SPEED
Specifies that the dwReturn field of the data structure
identified by IParam?2 is set to the highest speed FAX
modem type desired for calls received and sent. The
following modem type flags are defined (in order from
highest speed to lowest):

MCI_FAX_MODEM_ANY
MCI_FAX_MODEM_V17_14400
MCI_FAX_MODEM_V17_12000
MCI_FAX_MODEM_V17_9600
MCI_FAX_MODEM_V17_7200

This document contains information that is subject to
change without notice.

124

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_FAX_MODEM_V29 9600
MCI_FAX_MODEM_V29 7200

MCI_FAX_MODEM_V27TER_4800
MCI_FAX_MODEM_V27TER_2400

MCI_FAX_MODEM_ANY not supported in current FAX
driver

MCI_FAX_STATUS_MIN_MODEM_SPEED
Specifies that the dwReturn field of the data structure
identified by IParam?2 is set to the lowest speed FAX
modem type desired for calls received and sent. The
following modem type flags are defined (in order from
lowest speed to highest):

MCI_FAX_MODEM_ANY
MCI_FAX_MODEM_V17_14400
MCI_FAX_MODEM_V17_12000
MCI_FAX_MODEM_V17_9600
MCI_FAX_MODEM_V17_7200
MCI_FAX_MODEM_V29 9600
MCI_FAX_MODEM_V29 7200
MCI_FAX_MODEM_V27TER_4800
MCI_FAX_MODEM_V27TER_2400

MCI_FAX_MODEM_ANY not supported in current FAX
driver

MCI_FAX_STATUS POLLING
Specifies that the dwReturn field of the data structure
identified by IParam?2 is set to TRUE if the deviceis set for
fax polling for this application. Otherwise thisvalueis
FALSE.

MCI_FAX_STATUS RESOLUTION
Specifies that the dwReturn field of the data structure
identified by IParam?2 is set to the resolution mode of the
FAX device. The possible return values are:

MCI_FAX_RESOLUTION_NORMAL
MCI_FAX_RESOLUTION_FINE

MCI_FAX_STATUS RING_COUNT
The dwReturn field is set to a constant specifying the ring
count at which the device answers the telephone. The driver
answers on the shortest ring count request of all active
applications, so this value might not match the value
specified in MCI_SET.

MCI_FAX_STATUS STATION_ID
The dwReturn field of the data structure identified by
[Param?2 contains a pointer to a null terminated character
string containing the station identifier.

This document contains information that is subject to 125

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_FAX_STATUS_WORLDTRADE_SUPPORT
The dwReturn field is set to a binary encoded set of values
indicating restrictions that are in effect for the current
country. Some of the bit settings require the application to
make a subsequent MCI_STATUS call to determine a
maximum value. This support is added with driver version
3.4. The defined bits include:

- PULSE_DIAL_NOT_ALLOWED isset TRUE if pulse
dialing is not supported.

- DTMF_DIAL_NOT_ALLOWED isset TRUE if DTMF
dialing is not supported.

- BUSYTONE_DETECT_NOT_VALID isset TRUE if
busy tone detection is not available in the country.

- BUSYTONE_DETECT_REQUIRED is set TRUE if
busy tone detection is required in country.

- DIALTONE_DETECT_NOT_VALID isset TRUE if dial
tone detection is not available in the country.

- DIALTONE_DETECT_REQUIRED isset TRUE if dia
tone detection is required in country.

MCI_FAX_STATUS COUNTRY_CODE
The dwReturn field is set to the current country code.
This can be used by applications that must change the looks
of the user interface for different countries like a French
keypad in France. This support is added with driver version
3.4. Thefollowing table shows the codes assigned to each

country:

COUNTRY [CODE COUNTRY CODE COUNTRY | CODE
USA/Canada 1 Australia 14 Norway 27
Belgium 2 Austria 15 Denmark 28
Hong Kong 3 Mexico 16 France 29
Singapore 4 South Africa 17 Netherlands 30
New Zealand 5 Chile 18 U. K. 31
Japan 6 Switzerland 19 Sweden 32
Portugal 7 Germany 20 Italy 33
Ireland 8 Brazil 21 Finland 34
Generic 9 Russia 22 Thailand 35
Spain 10 Y ugoslavia 23 Korea 36
Greece 11 Hungary 24 Malaysia 37
Israel 12 Czechrepublic 25 PRC 38
Taiwan 13 L uxembourg 26 Slovakia 39

TABLE 6-3: Country Codes

MCI_FAX_STATUS AUTO_ANSWER_MIN_RINGS
The dwReturn field contains the minimum number of rings
that can be set in MCI_FAX_SET_RING_COUNT. This
support is added with driver version 3.4.

MCI_FAX_STATUS AUTO_ANSWER_MAX_RINGS

This document contains information that is subject to 126

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

The dwReturn field contains the maximum number of
rings can be set in MCI_FAX_SET_RING_COUNT. If the
value is "7FFF'x then thereis no limit in that country. This
support is added with driver version 3.4.

MCI_FAX STATUS MAX_CALL_RETRIES
The dwReturn field contains the maximum number of
unsuccessful retries allowed. If the valueis'7FFF'x thereis
no max in that country. This support is added with driver
version 3.4.

MCI_FAX_STATUS MIN_CALL_RETRY_TIME
The dwReturn field contains the minimum time allowed
between retries. This support is added with driver version
34.

LPMCI_STATUS PARMS [Param?2
Specifies afar pointer to the following MCI_STATUS PARM S data
structure:

typedef struct {

DWORD dwCal | back;
DWORD dwRet ur n;
DWORD dw tem

} MO _STATUS PARVE;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 127

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

MCI_STOP
This command is used to cancel afax send or afax receive.

Parameters DWORD [Paraml
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by IParam?2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

LPMCI_GENERIC_PARMS |Param2

Specifies afar pointer to the following MClI_GENERIC_PARM S data
structure:

typedef struct {
DWORD dwCal | back;
} MJ _GENERI C_PARMS;

Not e: Itisnecessary to wait for PHONE_EVENT_CALL_TERMINATED before hanging up the
phone.

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 128

change without notice.

MMWADKUMU-03 Chapter 6 - Fax APl Reference

This document contains information that is subject to 129

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

Chapter 7 - TAM API Reference

This chapter is a complete reference to the Mwave TAM Application Program Interface (API).

TAM functionality is provided by two separate, but related, drivers: TAM Phone Lineand TAM
M essage.

The Phone Line driver is used for all operations involving the phone line. Thisincludes
playing arecorded message to the phone line, recording a message from the phone line,
initiating calls, answering calls and speakerphone operation.

The Message driver includes supports all TAM operations that do not involve the phone
line. Thisincludeslocal (i.e. phone line not used) recording and playing of messages.

This chapter is divided into two parts. The first part describes the event messages issued by the two
drivers and the second part describes the APl messages and flags for the two drivers. For the most
part, the event messages and APl messages/flags are identical for the two drivers. Where the
description is specific to a particular driver, the description is marked as follows:

MSG Applicable to Message driver only
PL Applicable to Phone Line driver only

Descriptions containing neither mark are applicable to both drivers.

MCI Telephone Event Handler

Communication of real-time status information from the TAM driver to the application is performed
through an application event handler. The handler should be able to service messages posted by the
TAM driver through the M CI device, which contain real-time status information about the device.

MM_MCIEVENT, isnot a standard M Cl message under Microsoft Windows, thus a Microsoft
Windows application must call the Register WindowM essage function with the string
"MM_MCIEVENT", to obtain the numeric value of the notification message.

MM_MCIEVENT - Windows

In addition to the message itself, wParam and |Param are used to pass information to the
application.

WPARAM wParam
Contains a device specific event message wEvent.

LPMCI_EVENT_PARMS [Param
Specifies afar pointer to the following MCI_EVENT_PARMS structure:

typedef struct {
DWORD dwDat aPar ant;

This document contains information that is subject to 130

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

DWRD dwEvent Dat a;
} MO _EVENT_PARVS;

The data parameters are defined as follows:

DWORD dwDataParaml
The low-order word specifies the device specific event message wEvent
(same as wParam). The high-order word specifies the device ID of the
device initiating the message.

DWORD dwEventData
Contains a data parameter, which is dependent on the message type. The
actual parameters passed arelisted in Table Error! Bookmark not
defined. below, and detailed in the event message descriptions.

MM_MCIEVENT - 0S/2

In addition to the message itself, wParam and |Param are used to pass information to
the application.

DWORD MsgParaml
Contains a device-specific event message and device ID.

WORD wEvent
The low-order word of MsgParaml specifies the device-specific event
code (same as uskEventCode or wParam)

WORD wDevicelD
The high-order word of MsgParaml specifies the device ID of the device
initiating the message.

LPMCI_EVENT_PARMS MsgParam2

typedef struct {
DNORD dwbDat aPar amd;
DWNRD dwEvent Dat a;
} MO _EVENT_PARMS;

Note: The low-order word of dwDataParam1 contains the event code
(same as wEvent). The high-order word is not defined.

This document contains information that is subject to 131

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

TAM Event Message Descriptions

This section describes the Event M essages generated by the TAM API. The following table lists the
Event Messages (wEvent), a short description of the data parameters, and the associated drivers.

Event Message (wEvent) Data Parameter Driver(s)
(dwEventData)
PHONE_EVENT_ADVANCED_RING undefined, use PL
IParam
PHONE EVENT CALL PROGRESS [New call state PL
PHONE EVENT CALL TAM undefined PL
PHONE EVENT CALL TERMINATED |Call termination status|PL
PHONE EVENT CALLER ID Caller ID Status PL
PHONE EVENT DISTINCTIVE _RING [Ring ldentifier PL
PHONE EVENT HANDSET Handset Status PL, MSG
PHONE EVENT HANDSET KEY Keypress character |MSG
PHONE EVENT LINE Telephone line status |PL
PHONE EVENT LINE KEY Keypress character |PL
PHONE EVENT RING Telephone ring status |PL

Table 7-1: TAM Driver Event Messages

For all messages posted to the event handler routine, the message valueisMM_MCIEVENT. The
value of wEvent and dwEventData vary according to the specific message posted. Below isamore
detailed description of the event messages and their parameters.

Arguments wEvent: PHONE_EVENT_ADVANCED_RING PL
dwEventData: not used, actual ring count isin |Param

Description If the application has requested ‘ advanced format ring notifications' by setting advanced
ring notify to TRUE, PHONE_EVENT_ADVANCED_RING is sent to the application
instead of PHONE_EVENT_RING. In this case, |Param is not a pointer to a structure.
Instead, the low word of |Param contains the ring count, and the high word of |Param
contains the device ID.

LOWORD(IParam) = 0 Telephone ring signal end (not ringing)
LOWORD(IParam) = ‘n’ Telephone ring count (where ‘n’ is the ring number)

Arguments wEvent: PHONE_EVENT_CALL_PROGRESS PL
dwEventData: dwCallProgress

Description This message is posted when there has been a change in the current call state (or status).
The new state of the call is supplied in dwCallProgress, and can be any of the
following:

CALL_PROGRESS ANSWER_TONE (supported in version 3.0 and above of the
TAM driver)

This document contains information that is subject to 132

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

CALL_PROGRESS BUSY (in current driver, returned for both Fast Busy and
Slow Busy)

CALL_PROGRESS DIAL_TONE

CALL_PROGRESS FAST_BUSY (unsupported in current driver)
CALL_PROGRESS QUIET

CALL_PROGRESS REMOTE_RINGING (supported in version 3.0 and above of
the TAM driver)

CALL_PROGRESS _SLOW_BUSY (unsupported in current driver)
CALL_PROGRESS UNIDENTIFIED_TONE

Arguments wEvent: PHONE_EVENT_CALL_TAM PL
dwEventData: undefined
Description This message is posted when a call has been answered by the device, and has been
determined to have originated from a voice source. At this time, the application can play
agreeting and begin voice mail operations.
Arguments wEvent: PHONE_EVENT_CALL_TERMINATED PL
dwEventData: dwTermination
Description This message is posted when a call has been terminated either by the caller, by the
owning application, or because of an error condition. The reason for call termination is
given in dwTermination, which can be any of the following values:
TERMINATION_ERROR_RECV
TERMINATION_ERROR_XMIT
TERMINATION_NORMAL
TERMINATION_REQUESTED (returned when the Discriminator is handing call
off to a different driver)
TERMINATION_UNEXPECTED (returned if the PC goes into power saving mode
in the middle of acall)
Arguments wEvent: PHONE_EVENT_CALLER_ID PL
dwEventData: dwCompStatus
Description This message is posted when a caller ID string has been decoded off aringing line. It is

posted only if acaller ID signal is present. dwCompStatus indicates the completion
status.

MCI_VALID_CALLER_ID_RECEIVED
MCI_CALLER_ID_FRAME_ERROR

The application must issue an MCI_INFO message to retrieve the id (for
MCI_VALID_CALLER_ID_RECEIVED) or the error code (for
MCI_CALLER_ID_FRAME_ERROR).

This document contains information that is subject to
change without notice.

133

MMWADKUMU-03 Chapter 7 - TAM API Reference

Arguments wEvent: PHONE_EVENT_DISTINCTIVE_RING PL
dwEventData: dwRingldentifier

Description This message is posted when a distinctive ring has been decoded off aringing line. It is
posted only if distinctive ring support isinstalled. dwRingldentifier indicates which
distinctive ring has been decoded. Thering identifier isanumber between 1 and 20.
This support is added with Ver 3.2.

Arguments wEvent: PHONE_EVENT_HANDSET
dwEventData: dwHandsetStatus

Description This message is posted when the status of the telephone handset changes, due to the
user either picking up or replacing the telephone handset. This message can be
monitored to play an automatic greeting when the handset is removed from the cradle.
The value of dwHandsetStatusis as follows:

dwHandsetStatus = O Handset is on-hook
dwHandsetStatus = 1 Handset is off-hook (in use)

Arguments wEvent: PHONE_EVENT_HANDSET_KEY
dwEventData: dwK eypress

Description This message is posted when a key has been pressed on the handset device. An ASCII
character representing the pressed key ('0' - '9', 'a’ - 'd', '#, *",'l") issuppliedin
dwK eypress.

The current PL driver reportsonly '!". The'!I" (flash) is reported only if the application
has set the min and/or max flash time.

Arguments wEvent: PHONE_EVENT_LINE PL
dwEventData: dwLineStatus

Description This message is posted when the status of the telephone line changes, due to another
application in the system making use of the telephone line. When an application takes
the telephone line off hook, or is called to service an incoming call, it remainsin
possession of the telephone line for the duration of the call. Applications which require
use of the telephone line and find it busy, can simply wait for this message to signal that
the telephone line may be used. The value of dwL ineStatusis as follows:

dwLineStatus=0 Telephonelineisfree
dwLineStatus=1 Telephonelineisin use

Arguments wEvent: PHONE_EVENT_LINE_KEY PL
dwEventData: dwKeypress

This document contains information that is subject to 134

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

Description This message is posted when a key has been pressed on the incoming telephone line.
An ASCII character representing the pressed key ('0' - '9', 'a’ - 'd’, '# or *"), is supplied
in dwK eypress.

Arguments wEvent: PHONE_EVENT_RING PL
dwEventData: dwRingStatus

Description This message is posted when aring signal change is detected by the device. This
message can be used by the application to count ring cycles, or determine ring length.
The value of dwRingStatusis as follows:

dwRingStatus = 0 Telephone ring signal end (not ringing)
dwRingStatus = 1 Telephonering signal start (ringing)

This document contains information that is subject to 135

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

TAM Driver APl Messages and Flags

This section describes the MCI compliant TAM API messages and flags. The following table lists M CI
command messages used in the TAM API, a short description of the message and the associated
drivers.

MCI Message Description Drivers
MCI CLOSE Close the device driver PL, MSG
MCI_CONVERT Convert from/to device dependent file MSG
to/from device independent file.
MCI_DIAL Dial the telephone PL
MCI_GETDEVCAPS | Get the capabilities of the device PL, MSG
MCI_INFO Get device string identifier PL, MSG
MCI_LOAD Load a voice or wave file for playing PL, MSG
MCI_OPEN Open the device driver PL, MSG
MCI_PAUSE Pause the voice or wave stream play or | PL, MSG
record
MCI_PLAY Play a voice or wave file PL, MSG
MCI RECORD Record a voice or wave file PL, MSG
MCI_RESUME Resume a pausedvoice or wave PL, MSG
stream
MCI SAVE Save a recorded voice or wave file PL, MSG
MCI_SEEK Change the current position of the PL, MSG
media
MCI_SET Configure the device PL, MSG
MCI_STATUS Query device configuration PL, MSG
MCI_STOP Stop a voice or wave stream PL, MSG

Table 7-2: TAM Driver APl Messages

This document contains information that is subject to 136

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_CLOSE

This command message closes the TAM driver.

Parameters DWORD I|Paraml
The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application. The event handler window must be specified in the dwCallback
field regardless of whether MCI_NOTIFY or MCI_WAIT is selected.

LPMCI_GENERIC_PARMS |Param?2
Specifies afar pointer to the following MCl_GENERIC_PARM S data structure:

typedef struct {
DWORD dwCal | back;
} MO _GENER C_PARME;

Note: Be sure to assign the handle of the window procedure responsible for
processing MM_MCINOTIFY messages to dwCallback prior to calling
MCI_CLOSE regardless of whether MCI_WAIT or MCI_NOTIFY is specified.
Failure to do so resultsin erratic behavior when using versions earlier than Ver
2.1 of the TAM devicedriver.

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to

137
change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_CONVERT M SG

This command message is used to convert data files between an M CI device dependent format, and a
standard device independent format. The call is used to convert to and from device dependent format
(PCM Wave in the case of Microsoft Windows) and TAM compressed voice files.

MCI_CONVERT isintended to be run ‘off-line’ asit consumes afair amount of MIPS, and conversion
time is the same as the duration of the file being converted.

MCI_CONVERT issupported in TAM driversversion 3.1 and above. Support may not be installed on
asystem even if the driver version is 3.1 or above. MCI_CONVERT will return a non-zero return code
if it isnot supported. An AP canissue MCI_GETDEV CAPS to determine if wave file support is
installed.

Parameters DWORD |Paraml
The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.
MCI_NOTIFY should be specified unless MCI_CONVERT_INFO is
specified.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application.

MCI_CONVERT_CREATE
Indicates that the destination file is a new file which should be created. This
will overwrite any existing file.

MCI_CONVERT_DESTINATION_FILE
Indicates the Ipstr DestFilename field of the data structure identified by
IParam?2 contains a pointer to a buffer containing the destination file name.

MCI_CONVERT_DESTINATION_FORMAT
Indicates the dwDestFor mat field of the data structure identified by [Param2
contains the desired format of the destination file. These include:

MCI_CONVERT_FMT_WAVE_PCM (from source of type DEVTAM)

MCI_TAM_CONVERT_FMT_DEVTAM (from WAVE_PCM)

This document contains information that is subject to 138

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_CONVERT_DESTINATION_FROM
Specifies that a media starting position is included in the dwDestFrom field
of the data structure identified by IParam?2. This specifies the starting point at
which the converted data is written to an existing destination file. This option
is not supported with the MCI_CONVERT_CREATE option. For TAM, the
index isin units of milliseconds.

MCI_CONVERT_INFO
Indicates that no conversion operation isto take place, but rather, the
dwL ength field of the data structure identified by IParam2 should be set to
the length of the media of the supplied source device dependent filename.
For a device dependent TAM file, the value is returned in milliseconds. If a
device dependent file is not specified, this call returns an error.

MCI_CONVERT_LENGTH
Indicates that the dwL ength field if the structure identified by [Param2
contains a value specifying the length of the mediato be converted. If this
value is not supplied, the entire media is converted from the starting index.
For TAM, the length is expressed in units of milliseconds.

MCI_CONVERT_OVERWRITE
Indicates that newly converted information should overwrite any existing
data. If thisflag is not specified, the new dataisinserted into the file.

MCI_CONVERT_SOURCE_FILE
Indicates the Ipstr SrcFilename field of the data structure identified by
[Param?2 contains a pointer to the source file name.

MCI_CONVERT_SOURCE_FROM
Specifies that a media starting position is included in the dwSr cFrom field
of the data structure identified by IParam?2. This specifies the starting point at
which the data to be converted is read from the source file. For TAM, the
index isin units of milliseconds.

LPMCI_CONVERT_PARMS IParam2
Specifies afar pointer to the following MCl_CONVERT_PARMS data
structure:

typedef struct {
DWORD

dwCal | back;
LPCSTR | pst r Dest Fi | enane;
DWORD dwDest For mat ;
DWORD dwDest Fr om
DWORD dwLengt h;
LPCSTR | pstr SrcFil enane;
DWORD dwSr cFrom

} MO _CONVERT PARVE,

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 139

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_DIAL

PL

This command message takes the phone off-hook, and dials the supplied number. If the telephone is
owned by another application at the time of this call, the command will fail.

Parameters

DWORD I|Paraml

The following flags apply to the telephone device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application.

MCI_DIAL_DIALMODE
Specifies that the dwDialM ode field of the data structure identified by
IParam?2 contains a constant specifying the phone dialing mode. Two modes
are defined:

MCI_DIAL_MODE_PULSE
MCI_DIAL_MODE_TONE

MCI_DIAL_FLASH
Indicates that the telephone should be flashed before dialing the supplied
number (if any).

MCI_DIAL_MONITOR
Specifies that the audio speaker device should be enabled during the calling
process.

MCI_DIAL_STRING
Specifies that the IpstrDialString field of the data structure identified by
IParam?2 contains a pointer to a null terminated dialing string. Numeric
characters '0' to '9' correspond to phone digits. The *' and '# characters, the
alpha characters'a to 'd' and the '-' are also supported (-' is ignored).

The'w' character in the string specifies that the device should wait for a
second dial tone before proceeding, and a’,' character indicates a pause in the
dialing sequence. The time-out limit for the wait command (default 30
seconds) and the delay time for the pause command (default 2 seconds) are
configurable using MCI_SET. The @’ character in the string specifies wait
for quiet. The‘p’ character in the string specifies switch to pulse dialing.
The*'t’ character in the string specifies switch to tone dialing. The ‘!’
character in the string specifies flash the line. Note that the setting of flash
time has no effect on the duration of flash that is specified with a‘!” in the
dial string. That setting only has effect on the flash that occurs as a result of
the MCI_DIAL_FLASH flag.

The maximum size string that can be dialed is specified by
MAX_DIAL_STRING.

This document contains information that is subject to

change without notice.

140

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_DIAL_VERIFY
Specifies that the call isto be verified. The phone is verified to be off-hook,
and that adial toneis present before dialing.

LPMCI_DIAL_PARMS IParam?2
Specifies afar pointer to the following MCIl_DIAL_PARM S data structure:

typedef struct {
DWORD dwCal | back;
DWORD dwh al Mbde;
LPCSTR I pstrDi al Stri ng;

} MO _Di AL_PARMVEB;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 141

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_GETDEVCAPS

This command is used to obtain static information about a device.

Parameters DWORD I|Paraml
The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application.

MCI_GETDEVCAPS_ITEM
Specifies that the dwltem field of the data structure identified by [Param2
contains a constant specifying which device capability to obtain. The
following constants are defined:

MCI_GETDEVCAPS CAN_EJECT
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS_CAN_PLAY
The dwReturn field is set to TRUE if the device supports playing voice
files to the speaker, handset, or telephone line. Otherwise, it is set to
FALSE.

MCI_GETDEVCAPS_CAN_RECORD
The dwReturn field is set to TRUE if the device supports voice
recording from the microphone, handset, or telephone line. Otherwise, it
isset to FALSE.

MCI_GETDEVCAPS_CAN_SAVE
The dwReturn field is set to TRUE if the device supports saving voice
data recorded from the microphone, handset, or telephone line.
Otherwise, it is set to FALSE.

MCI_GETDEVCAPS_COMPOUND_DEVICE
The dwReturn field is set to FALSE prior to Ver 3.1. For Ver 3.1 and
beyond, it is set TRUE.

MCI_GETDEVCAPS _DEVICE_TYPE
The dwReturn fieldisset to MCI_DEVTYPE_OTHER.

MCI_GETDEVCAPS_HAS AUDIO
The dwReturn field is set to TRUE if the device supports play and
record through an external audio device (speaker and microphone).
Otherwise, it is set to FALSE.

MCI_GETDEVCAPS HAS VIDEO
The dwReturn field is set to FALSE.

This document contains information that is subject to 142

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_GETDEVCAPS_USES FILES
The dwReturn field is set to TRUE if the device supports voice
recording or playing. Otherwise, it is set to FAL SE.

MCI_TAM_GETDEVCAPS_SUPPORTS _CUSTOM_TAG
The dwReturn field is set to TRUE if the TAM operations support
custom audio file formats. These formats are intended to save disk space
over the conventional PCM wave file format.

MCI_TAM_GETDEVCAPS_SUPPORTS PCM_TAG
The dwReturn field is set to non-zero if the TAM operations support the
use of standard PCM wavefilesin its play and record operations:
Otherwiseitisset FALSE. See MCI_SET for
MCI_TAM_SET_LOW_LEVEL_WAVE_IO for related information.

LPMCI_GETDEVCAPS_PARMS IParam2

Specifies afar pointer to the following MClI_GETDEVCAPS PARMS data
structure:

typedef struct {
DWORD

dwCal | back;
DWORD dwRet ur n;
DWORD dw t em

} MO _GETDEVCAPS PARVE;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 143

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_INFO

This command message obtains string information from the device.

Parameters DWORD I|Paraml
The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application.

MCI_INFO_PRODUCT
Obtains a description of the hardware associated with a device. The
description identifies both the driver and the hardware used. The string is
copied to the buffer pointer to by the IpstrReturn field of the structure
identified by IParam?2. The size of this buffer is specified by the dwRetSize
field of the same structure, and if the buffer is of insufficient size to contain
the string, the string is truncated to fit the buffer. The string contains a
version number (i.e., “Ver 3.0”). Driver enhancements will be denoted in
this document with the “Ver x.y”. that corresponds with the first rel ease that
the feature shows up in. The version number will always increase in future
releases, so a program can parse the string, looking for “Ver “, convert the
characters that follow “Ver “ to anumber, and do a numeric greater-than-or-
equal compare to determine if the function is available in the release the
application is running with.

Note: Unless otherwise noted, all functions are available as of Ver 2.2

MCI_INFO_CALLER_ID
Obtainsacaller ID string. (See PHONE_EVENT_CALLER_ID). The string
is copied into the buffer pointed to by the Ipstr Return (Windows) or
dwReturn (OS/2) field of the structure identified by IParam2. The size of
this buffer is specified by the dwRetSize field of the same structure
(maximum size= MClI_MAX_CALLER_SIZE). If the buffer is of
insufficient size to contain the string, the string is truncated to fit the buffer.

The caller ID dataisin the format defined by Bellcore's technical reference
bulletin TR-TSY -000031 and TR-NWT-001188. Also note that a checksum
isincluded at the end of the Caller ID data.

MCI_INFO_CALLER_ID_ERROR
Obtains the caller ID error code. (See PHONE_EVENT_CALLER_ID). The
code is copied into the buffer pointed to by the Ipstr Return (Windows) or
dwReturn (OS/2)field of the structure identified by IParam?2. The size of this
buffer is specified by the dwRetSize field of the same structure. The error
code is either MCI_FRAME_ERROR or MCI_CHECKSUM_ERROR.

MCI_INFO_CALLER_PARSED CALLER_ID

This document contains information that is subject to 144

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

Obtains an already-parsed Caller ID string. (See
PHONE_EVENT_CALLER_ID). Theinformation is copied into the
structure pointed to by the Ipstr Return (Windows) or dwReturn (OS/2)
field of the structure identified by IParam?2. The structure is:

typedef struct
{
char szDateTime[DATE_TIME_LEN+1];
char szZNumber[MCI_MAX_CALLER_ID_SIZE]; /* callers number */
char szZNamelMCI_MAX_CALLER_ID_SIZE]; /* callers name (may
be null) */
} CIDINFO;

If the call doesn’t not have acaller ID, szName will be ‘out of areacaller’ if
one phone system doesn’t support delivering caller ID to another phone
system, or ‘private caller’ if the caller blocked the sending of caller ID.

This function isimplemented in “Ver 3.0 of the TAM driver.

LPMCI_INFO_PARMS IParam?2
Specifies afar pointer to the following MCl_INFO_PARM S data structure:

typedef struct {
DWORD

dwCal | back;
LPSTR | pstrReturn;
DWORD dwRet Si ze;

} MO _I NFO PARVS,

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 145

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_LOAD

This command message loads afile, and the data used as the current media. The current position is set
to the start of the media

Parameters DWORD I|Paraml
The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application.

MCI_LOAD_FILE
Indicates the Ipstr Filename field of the data structure identified by [Param2
contains a pointer to a buffer containing the file name.

To open anew file, you can either:
Specify the MCI_LOAD_FILE and anull pointer for the file name.

If running with API style set to MCI_FAXTAM_STYLE_MMPM, omit the
MCI_LOAD_FILE flag.

In driver version 3.1, the ability to play and record wave files over the telephone
isadded. If thefile extensionis‘wav’ the fileisassumed to be awavefile. If a
new fileisloaded, the value set by MCI_SET MCI_TAM_SET_FORMATTAG
is used to determine that the fileis awave file. The default setting is
TAM_WAVE_FORMAT_CUSTOM. Wave file support is a separately
installable option that may not be installed on a particular machine. If it is not
installed, the application will get a non-zero return code on MCI_L OAD,
MCI_PLAY or MCI_RECORD. The TAM application can issue
MCI_GETDEVCAPS for

MCI_TAM_GETDEVCAPS _SUPPORTS PCM_TAG to determine if support is
installed. Recording to wave filesis not recommended as it takes much more
disk space than recording to the custom formatted files.

Use LOADFILENAME instead of IpstrFilename (Windows) or
pszElementName (OS/2). Thislabel makes it easier to port applications
between Windows and OS/2.

MCI_OPEN_ELEMENT
Thisflag is defined in mciftdd.h to be identical MCI_L OAD_FILE.

LPMCI_LOAD_PARMS [Param2
Specifies afar pointer to the following MCl_L OAD_PARM S data structure:

typedef struct {
DWORD dwCal | back;
LPCSTR | pstr Fi | enarre;

} MO _LOAD PARMNE;

This document contains information that is subject to 146

change without notice.

MMWADKUMU-03

Chapter 7 - TAM API Reference

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to
change without notice.

147

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_OPEN

This command message initializes the telephony driver and hardware.

Parameters DWORD I|Paraml
The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application. In older versions of the driver, the event handler window must
be specified in the dwCallback field regardless of whether MCI_NOTIFY or
MCI_WAIT is selected.

MCI_OPEN_ALIAS
Specifies that an aliasisincluded in the IpstrAlias field of the data structure
identified by IParam2. This command is handled by MCI.

MCI_OPEN_ELEMENT
Specifies that afilenameisincluded in the Ipstr ElementName field of the
data structure identified by IParam2. The file isloaded as part of
MCI_OPEN processing. Thisfunction is new to driver version 3.1.

MCI_OPEN_SHAREABLE
Specifies that the device should be opened as shareable.

MCI_OPEN_SHAREABLE is not supported in current TAM drivers.

MCI_OPEN_TY PE
Specifies that a device type name or constant isincluded in the
IpstrDeviceType field of the data structure identified by [Param2. This
command is handled by MCI. To open the telephone message driver, specify
"Mwavetps" in the IpstrDeviceType. To open the telephone line driver,
specify "Mwavetpl".

MCI_OPEN_TYPE_ID (Not supported in OS2; defined as zero)
Specifies that the low-order word of the Ipstr DeviceType field of the
associated data structure contains a standard M CI device type ID and the
high-order word optionally contains the ordinal index for the device. This
command is handled by MCI.

LPMCI_OPEN_PARMS [Param2
Specifies afar pointer to the following MCl_OPEN_PARM S data structure:

typedef struct {
DWORD

dwCal | back;
WORD wDevi cel D
WORD wReser vedO;
LPCSTR | pst r Devi ceType;
LPCSTR | pst r El enent Narre;

This document contains information that is subject to 148

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

LPCSTR | pstrAli as;
} MO _OPEN_PARMNE;

Note: With Microsoft Windows, be sure to assign the handle of the
window procedure responsible for processing MM_MCINOTIFY messages to
dwCallback prior to calling MCI_OPEN regardless of whether MCI_WAIT or
MCI_NOTIFY isspecified. Failureto do so resultsin erratic behavior when
using versions earlier than Ver 2.1 of the TAM device driver.

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

Remarks
Caseisignored in the device name, but there must not be any leading or trailing blanks.

Note that the device type is the pszDeviceTypefield of the MClI_OPEN_PARM S data structure, but
it does not have a corresponding flag because it is required and does not have a command-string
parameter.

For the Mwave Fax and TAM drivers, the device types are:
Mwavetpl

Mwavetps
Mwavefax

This document contains information that is subject to
change without notice.

149

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_PAUSE
This command message pauses the current MCI_PLAY or MCI_RECORD operation.

Parameters DWORD |Paraml
The following flags apply to the TAM device:
MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this

command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application.
LPMCI_GENERIC_PARMS |Param?2

Specifies afar pointer to the following MCl_GENERIC_PARM S data structure:

typedef struct {
DWORD dwCal | back;
} MO _GENER C_PARME;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 150

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_PLAY

This command message plays the current media on the connected device(s).

Parameters DWORD I|Paraml
The following flags apply to the TAM device:

MCI_NOTIFY

Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

If an MCI_NOTIFY_ABORTED is posted with the notification, the call
discriminator determined that the call was not avoice call. The application
can now wait for the next incoming call.

MCI_WAIT

Specifies that the operation should finish before M CI returns control to the
application.

MCI_FROM

Specifies that a media starting position is included in the dwFrom field of
the data structure identified by |Param?2. The units assigned to the position
values are milliseconds (MCI_FORMAT_MILLISECONDS). If
MCI_FROM is not specified, the current position in the mediais used.

MCI_TO
Specifies that a media ending position isincluded in the dwTo field of the
data structure identified by IParam?2. The units assigned to the position
values are milliseconds (MCI_FORMAT_MILLISECONDS). If MCI_TO is
not specified, the device plays to the end of the media.

LPMCI_PLAY_PARMS IParam2
Specifies afar pointer to the following MCI_PLAY_PARM S data structure:

typedef struct {
DWORD

dwCal | back;
DWORD dwFr om
DWORD dwrTo;

} MO _PLAY PARVS,

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to
change without notice.

151

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_RECORD

This command message records the connected device(s) to the current media.

The ability to record a conversation is added in version 3.1 of the TAM driver. Thisoccursif
MCI_RECORD isissued when the handset is connected to the phoneline, and the handset is up, or if
speakerphone isin use when MCI_RECORD isissued. If the conversation is being recorded, the
remote party will hear periodic beeps to indicate that the conversation is being recorded. If the user
wishes to change connections (i.e., from handset to microphone during conversation recording) it is
necessary for the application to issue MCl_STOP before issuing MCI_SET
MCI_TAM_SET_CONNECT. After the MCI_SET is complete, the application should issue
MCI_RECORD without specifying MCI_FROM to continue recording from the position where the
initial recording stopped

With Ver 3.1, the ability to record PCM filesis supported. However, PCM files take up more disk
space than the default TAM sub-band-coded files. Also, when recording PCM files over the phone
line, neither silence nor dialtones are automatically removed from the recorded file. With sub-band-
coded files, recording over the phone is automatically terminated when the call is complete. With PCM
files, the application must issue MCI_STOP to terminate the record.

Parameters DWORD |Paraml
The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

If MCI_NOTIFY_ABORTED is posted with the notification, the call
discriminator determined that the call was not avoice call. The application
should not save the recorded file. If MCI_NOTIFY_FAILURE isreported, it
probably indicates that nothing but silence was recorded. There is no reason
to save the recorded file.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application.

MCI_RECORD_INSERT
Indicates that newly recorded information should be inserted or pasted into
the existing media data.

MCI_FROM
Specifies that a media starting position is included in the dwFrom field of
the data structure identified by |Param?2. The units assigned to the position
values are milliseconds (MCI_FORMAT_MILLISECONDS). If
MCI_FROM is not specified, the current position in the mediais used.

MCI_RECORD_OVERWRITE
Specifies that newly recorded data should overwrite existing data.

MCI_TO

This document contains information that is subject to 152

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

Specifies that a media ending position isincluded in the dwTo field of the
data structure identified by IParam?2. The units assigned to the position
values are mS (MCI_FORMAT_MILLISECONDS). If MCI_TO is not
specified, the device records to the end of the media (a substantial amount of
timein TAM).

MCI_TAM_BEEP
Specifies that a 500 Hz tone of 0.5 second duration should be played before

recording begins.

MCI_TAM_TO_MESSAGE_END
Specifies that the device should record until it detects the end of the message,
and then truncates prolonged silence or dial tone periods from the newly
recorded media. The MCI_TAM_TO_MESSAGE_END flag should always
be set when not using the MCI_TO option.

This document contains information that is subject to 153

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

LPMCI_RECORD_PARMS IParam2
Specifies afar pointer to the following M Cl_RECORD_PARM S data structure:

typedef struct {
DWORD

dwCal | back;
DWORD dwFr om
DWORD dwrTo;

} MO _RECCRD PARVE;

Return Value Returns zero if successful. Otherwise, it returns an MCI
error code.

This document contains information that is subject to 154

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCIl_RESUME
This command message resumes the current MCI_PLAY or MCI_RECORD operation, after a
M Cl_PAUSE operation has been issued.
Parameters DWORD IParaml
The following flags apply to the TAM device:
MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this

command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application.
LPMCI_GENERIC_PARMS |Param?2

Specifies afar pointer to the following MCl_GENERIC_PARM S data structure:

typedef struct {
DWORD dwCal | back;
} MO _GENER C_PARME;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 155

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_SAVE

This command message saves the current mediato afile, retaining its current format via the format tag.

Parameters DWORD I|Paraml
The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application.

MCI_SAVE_FILE
Indicates the Ipstr Filename field of the data structure identified by [Param2
contains a pointer to a buffer containing the file name where the current
media datais saved.

LPMCI_SAVE_PARMS IParam2
Specifies afar pointer to the following MCl_SAVE_PARM S data structure:
typedef struct {
DWORD dwCal | back;

LPCSTR | pstr Fi | enarre;
} MO _SAVE PARMNE;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to
change without notice.

156

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_SEEK

This MCI command message changes the current position of the media. Audio output is disabled
during the seek. After the seek completes, the device stops.

Parameters DWORD I|Paraml
The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application.

MCI_SEEK_TO_END
Specifies that the device should seek to the end of the current media.

MCI_SEEK_TO_START
Specifies that the device should seek to the start of the current media.

MCI_TO
Specifies a position isincluded in the dwT o field of the structure identified
by IParam2, to which the device should seek using the current media. Seek
distance is specified in units of mS (MCI_FORMAT_MILLISECONDS).

LPMCI_SEEK_PARMS IParam2
Specifies afar pointer to the following MClI_SEEK _PARM S data structure:
typedef struct {
DWORD dwCal | back;

DWORD dwrTo;
} MO _SEEK PARMNE;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 157

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_SET

This command is used to set TAM device information. The item to set is specified by dwltem field of
the MCI_TAM_SET_PARMS structure, pointed to by [Param2, and set datainformation is passed in
dwSetData.

Parameters DWORD |Paraml
The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT

Specifies that the operation should finish before M CI returns control to the
application.

MCI_SET_ITEM
Specifies that the dwltem field of the data structure identified by [Param2

contains a constant specifying which item to set. The following constants are
defined:

MCI_TAM_SET_ADVANCED_RING_NOTIFY
The dwSetData field is set to the indicate the type of message that is
sent to the application when the phone rings. When set to FAL SE (the
default), aPHONE_EVENT_RING is sent to the application. When the
flag is set to TRUE, aPHONE_EVENT_ADVANCED_RING is sent to
the application. With advanced format ring events, |Param does not
contain a pointer to dwSetData. Instead, |Param contains the device ID
and the actual ring count (not a pointer to it). A ring count of zero
indicates the end of aring.

MCI_TAM_SET_AP_DISCRIMINATED PL

This function, new to driver version 3.1, gives the TAM application the
ability to influence the call-discrimination outcome. For example, a TAM
application that has a caller ID database can indicate the incoming call is for
FAX, MODEM, VOICE, or don't answer. The duration of the setting is for
the current call only.

The application should preferably issue this call before the current call is
answered.

The dwSetData field is set to indicate MClI_FAXTAM_PASS FAX,
MCI_FAXTAM_PASS MODEM, MCI_FAXTAM_PASS VOICE, or
MCI_FAXTAM_DONT_ANSWER. If thiscall isissued before the
discriminator discriminates, the AP’ s preference will take precedence over
any other discrimination criteria, and the discriminator will not discriminate
based on calling tones or information in the discriminator’ s database.

This document contains information that is subject to
change without notice.

158

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_TAM_SET_API_STYLE
Specifies that the dwSetData field contains the API style of the TAM
device. The possible values are:

MCI_FAXTAM_STYLE_MMPM
MCI_FAXTAM_STYLE_WINDOWS

The default style under OS/2 isMMPM. The default style under
Windowsis WINDOWS. The API style affects return codes for
MCI_STATUS, MCI_GETDEVCAPS and MCI_INFO. The style aso
affects return codes and return information for MM_MCINOTIFY. See
Microsoft Windows Multimedia Programmer's Reference and IBM's
Programming Reference for Multimedia Presentation Manager Toolkit/2
for details of the MCI interface as specified for Windows and OS/2.

MCI_TAM_SET_AUDIO_MUTE
The dwSetData field is set to the desired mute status of the system
microphone. When set to TRUE, the microphone (audio input of
TAM_AUDIO) is disconnected from the telephone line, and any record
operation in progress. When set to FAL SE, the device operates normally.

MCI_TAM_SET_AUDIO_VOLUME
Specifies that the dwSetData field of the data structure identified by
IParam?2 contains a constant specifying the volume level of the speaker
device. The volume level is specified from 0xO0 (silence) to OxFFFF
(maximum volume) and is interpreted logarithmically. This means the
perceived volume increase is the same when increasing the volume level
from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

MCI_TAM_SET_AVGBYTESPERSEC
Specifies that the dwSetData field of the data structure identified by
IParam?2 contains a constant specifying the desired average bytes per
second rate of any new RECORD operation.

With Ver 3.1, PCM files are supported. Average bytes per second used
with sub-band-coded files is treated as follows:

For most messages with normal speech, the data rate observed will be
close to this average. If this value is greater than zero, it overrides with a
finer granularity the current MCI_TAM_SET_QUALITY level.

The minimum non-zero value that can be input is 1000. The actual level
being used can be found by calling MCI_STATUS. If dwSetData is set
to zero, the value of MCI_TAM_SET_QUALITY isused. This request
does not effect message playback.

With PCM files, average bytes per second must be set to be consistent
with bits per second and bits per sample. The formulafor calculating
bytes per second is:

average bytes per second = bits per second * (bits per sample/8)

This document contains information that is subject to 159

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

The default for average bytes per second is 11025. The default for bits
per second is 11025. The default for bits per sampleis8. A list of valid
combinations includes:

Bytes/second Bits/sample Samples/second
11025 8 11025
22050 16 11025
22050 8 22050
44100 16 22050
44100 8 44100
88200 16 44100
TABLE 7-3

NOTE: TAM_WAVE_FORMAT_CUSTOM (sub band coded) files are
equivalent to 15 bits/sample at 11025 samples/second. On average, sub band
coded files take less than 4000 bytes/second of disk space.

MCI_TAM_SET_BITSPERSAMPLE
Sets the desired bits per sample (either 8 or 16) used for playing,
recording, and saving to the dwSetData field of the data structure
identified by IParam2. This command is used in conjunction with
MCI_TAMSET_SAMPLESPERSEC for PCM format wave files only.
Using 16 bits per sample sounds noticeably better than 8 bits per sample,
but uses twice the disk space.

Note: PCM format files are only supported by version 3.1 or above, of
the TAM driver. See MCI_TAM_SET_AVGBY TESPERSEC for more
information.

MCI_TAM_SET_CALLER_ID PL
Specifies that the dwSetData field of the data structure identified by
[Param?2 is set to FALSE to disable caller ID processing; otherwise, it is
set to TRUE. Caller ID processing uses Mwave DSP resources.
Disabling caller ID permits more concurrency. The default is TRUE on
systems that have Mwave call discrimination installed.

MCI_TAM_SET_CALL_FILTER PL
Specifies that the dwSetData field of the data structure identified by
[Param?2 is set to TRUE if the device is to receive voice calls; otherwise
it isset to FALSE. If another application has this filter enabled,
attempting to enable the filter causes an error return.

MCI_TAM_SET_CONNECT
Specifies that the dwSetData field of the data structure identified by
[Param?2 contains a constant specifying the new target play or record
device, and any inter-device connections. The device flags for the
devices to connect are OR'ed together, and the result is placed in
dwSetData. The TAM device flags are defined as follows:

MCI_TAM_AUDIO (speaker & microphone) M SG
MCI_TAM_HANDSET M SG
MCI_TAM_PHONELINE PL
MCI_TAM_AUDIO_PHONELINE PL

This document contains information that is subject to 160

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

(speakerphone)

MCI_TAM_HANDSET_PHONELINE PL
(standard phone operation)
MCI_TAM_SPEAKER_PHONELINE PL

(answering machine w/ call screening)

Note: The device MCI_TAM_PHONELINE isrequired for all
operations involving an outside phone line.

Note: Setting speakerphone operation disables call discrimination based
on calling tones. DTMF key detection is also disabled.

MCI_TAM_SET_DIAL_FLASH_TIME PL
The dwSetData field is set to the desired flash time (in milliseconds) of
the telephone flash option in the MCI_DIAL command. The default
value is 500 (one half second).

MCI TAM_SET_DIAL_PAUSE_TIME
The dwSetData field is set to the desired pause time (in milliseconds)
that an embedded ', character produces in the dial string. The default
value is 2000 (2 seconds).

MCI_TAM_SET_DIAL_WAIT_TIME PL
The dwSetData field is set to the desired time-out limit (in milliseconds)
that an embedded 'w' character in the dial string allows, waiting for a
second dial tone. The default value is 30000 (30 seconds).

MCI_TAM_SET_EVENT_HANDLER
Specifies that the dwSetData field of the data structure identified by
IParam?2 contains the handle of the application event handler. The MCI
driver posts MM_MCIEVENT messages when an event occurs which
changes the status of the driver. Setting this value to zero disables event
posting. See the event handler section of the document for more details.

MCI_TAM_SET_FORMATTAG
Specifies that the dwSetData field of the data structure identified by
[Param?2 contains a constant specifying the compression/format of the
mediato be played or recorded. The following formats are allowed:

WAVE_FORMAT_PCM (Supported by version 3.1 and above of
the TAM drivers)
TAM_WAVE_FORMAT_CUSTOM

MCI_TAM_SET_HANDSET_MUTE M SG
The dwSetData field is set to the desired mute status of the telephone
handset. When set to TRUE, the audio input of the handset is
disconnected from the telephone line, and any record operation in
progress. When set to FAL SE, the device operates normally.

MCI_TAM_SET_HANDSET_VOLUME M SG
Specifies that the dwSetData field of the data structure identified by
IParam?2 contains a constant specifying the volume level of the speaker
device. The volume level is specified from 0xO0 (silence) to OxFFFF
(maximum volume) and is interpreted logarithmically. This means the

This document contains information that is subject to 161

change without notice.

MMWADKUMU-03

Chapter 7 - TAM API Reference

perceived volume increase is the same when increasing the volume level
from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

MCI_TAM_SET_HOOK PL

The dwSetData field is set to the desired hook status of the telephone
line. It is set to TRUE to take the handset off-hook, and FAL SE to place
the handset on-hook. If another application owns the phone line, and the
valueis set to TRUE, this call will fail. When an application sets
dwSetData to FALSE, it relinquishes ownership of the line.

MCI_TAM_SET_LOW_LEVEL_WAVE_|O

The dwSetData field is set to inform TAM driver that the application
intends to use the low level wave audio API to play or record from the
phone. This function is available with Ver 3.2 of the TAM drivers.
Valid values include:

- MCI_TAM_WAVE_IN_START
MCI_TAM_WAVE_IN_STOP
MCI_TAM_WAVE_OUT_START
MCI_TAM_WAVE_OUT_STOP

In general, aTAM application that uses wave files will not use this
interface. However specialized applications, such as voice recognition
applications, cannot wait until an entire file has been recorded and saved.
Those applications will want to analyze the PCM dataasit arrives. To
examine buffers as they are received, the application must use the audio
driver directly.

Under Windows, the set of calls that the application should make are
MCI_GETDEVCAPS for

MCI_TAM_GETDEVCAPS_SUPPORTS PCM_TAG. Thisreturnsthe
device ID of the wave driver that can play to the telephone or handset.
The application uses this device ID on the low level audio calls (e.g.,
waveOutSetVolume). Before opening the wave driver, the application
should call MCI_SET to inform the TAM driver that it is about to open
the wave driver to start input or output. Likewise, after closing the wave
driver, MCI_SET isissued to inform the TAM driver that the low level
audio isdone.

Under MMPM (OS/2), there are no low level audio API's. However, if
the application wants to inspect PCM buffers it must use the audio driver
directly, and do I/O using memory playlists. To accomplish this, the
application issues MCI_SET to inform the TAM driver that the wave
driver is going to be used (as above). It then issues MCI_OPEN for the
wave audio device. After that, it issues ‘connection <alias> query type
wave stream alias conndev wait’. The connection command is followed
by ‘ connector conndev enable type phone line wait’. If using the MSG
driver, use ‘ phone set’ instead of ‘phone line’. After the application is
done using the wave device, MCI_SET isissued to inform the TAM
driver that the wave driver is no longer in use.

The application is responsible for setting the speaker volume if it uses
the low level audio API.

This document contains information that is subject to

change without notice.

162

MMWADKUMU-03

Chapter 7 - TAM API Reference

Most applications will not need this interface. To play or record wave
files, it is much simpler to issue ‘load’, and ‘play’ or ‘record’ directly to
the TAM driver.

MCI_TAM_SET_MAX_FLASH_TIME PL

Specifies that the dwSetData field of the data structure identified by
[Param?2 contains a constant maximum number of milliseconds used for
detecting when a handset flash has been pressed. A flash essentially is
an off-hook followed by an on-hook. The period of time between the
two events determines if the telco detects one flash hook or two separate
events (on-hook and off-hook). Different telcos may use different values.
This call allows the application to adjust to the different telcos. The
default is zero, meaning that flash will not be reported to the application.
When flash is detected, it is reported in a
PHONE_EVENT_HANDSET_KEY, with thekey value setto ‘!". If the
max flash timeis set less than the min flash time, it is treated as an error.

MCI_TAM_SET_MICROPHONE_GAIN

Specifies that the dwSetData field of the data structure identified by
IParam?2 contains a constant specifying the gain of the microphonein
dB. Valid values are from O to 100 decimal. The default is 50 dB.

MCI_TAM_SET_MIN_FLASH_TIME PL

Specifies that the dwSetData field of the data structure identified by
[Param?2 contains a constant indicating the smallest number of
milliseconds used for detecting when a handset flash has been pressed.
A flash essentially is an off-hook followed by an on-hook. The period of
time between the two events determines if the telco detects one flash
hook or two separate events (on-hook and off-hook). Different telcos
may use different values. This call allows the application to adjust to the
different telcos. The default is zero. When flash is detected, it is reported
inaPHONE_EVENT_HANDSET_KEY, with the key value setto ‘!". If
the min flash time is set greater than the max flash time, it is treated as
an error.

MCI_TAM_SET_PASS_CALL PL

The dwSetData field is set to a constant indicating the desired type of
application that the current phone call will be passed to. The possible
values are;

MCI_FAXTAM_PASS FAX to passto afax application

MCI_FAXTAM_PASS MODEM to passto amodem

application

If the specified application is not currently accepting incoming calls, the
application retains ownership of the call, and should remember to hang
up the phone.

This call can work only if the Mwave call discriminator is active.

MCI_TAM_SET_QUALITY

Specifies that the dwSetData field of the data structure identified by
[Param?2 contains a constant specifying the quality level of the phone

This document contains information that is subject to

change without notice.

163

MMWADKUMU-03 Chapter 7 - TAM API Reference

recording and playback. Quality range is (0-7), where "0" is lowest
quality, and "7" is highest quality.

MCI_TAM_SET_QUIET_DURATION PL
Specifies that the dwSetData field of the data structure identified by
[Param?2 contains a constant specifying the continuous phone line quiet
time in seconds before the application will get the first
MM_MCIEVENT message specifying CALL_PROGRESS_QUIET.
The minimum non-zero value is 4. Zero indicates that the application
doesn't want the CALL_PROGRESS_QUIET interrupt returned. The
default is 10. After thefirst CALL_PROGRESS QUIET, the application
will continue receiving this message every second until the call is
terminated.

MCI_TAM_SET_QUIET_DURATION is not supported in current TAM
drivers. Intheinterim, the first MM_MCIEVENT message specifying
CALL_PROGRESS QUIET isreturned after 4.5 seconds of continuous
phone line quiet time.

MCI_TAM_SET_RING_COUNT PL
Specifies that the dwSetData field of the data structure identified by
[Param?2 contains a constant specifying the ring count at which the
device should answer the telephone. The driver will answer on the
shortest ring count request of all active applications. Setting this value to
0 requests that the telephone not be answered. The default ring count for
TAM is3.

Prior to driver version 3.1 if the discriminator is loaded, it will answer
the telephone on the shortest ring count request of all registered
applications. In version 3.1 and above, the discriminator uses the
phoneline application’ s ring count if there is a phoneline application
active.

The maximum ring count that can be set is specified by
MAX_RING_COUNT.

MCI_TAM_SET_SAMPLESPERSEC
Sets the samples per second used for playing, recording, and saving to
the dwSetData field of the data structure identified by IParam2. Thisis
used for PCM format only.

MCI_TAM_SET_SAMPLESPERSEC is supported in version 3.1 and
above of the TAM drivers. See MCI_TAM_SET AVGBY TESPERSEC
for more information.

MCI_TAM_SET_SPEED M SG
Specifies that the dwSetData field of the data structure identified by
[Param?2 contains a constant specifying the speed to play to the current
media device. The speed index passed in dwSetData is the play speed
factor (1/32 to 2) multiplied by 32. Examples include (but are not limited
to) the following:

16 - 1/2 x normal speed

This document contains information that is subject to 164

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

24 - 3/4 x normal speed

32 - Normal (recorded) speed
40 - 1.25 x normal speed

438 - 1.5 x normal speed

56 - 1.75 x normal speed

63 - 2x normal speed

LPMCI_TAM_SET_PARMS IParam?2
Specifies afar pointer to the following MCI_TAM_SET_PARMS data

structure:

typedef struct {
DWORD dwCal | back;
DWORD dwSet Dat a;
DWORD dw t em

} MO _TAM SET_PARVE,

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 165

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_STATUS

This command is used to obtain information about the TAM device. Information is returned in the
dwReturn field of the MCI_STATUS_PARMS structure, pointed to by |Param?2.

Parameters DWORD I|Paraml
The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT
Specifies that the operation should finish before M CI returns control to the
application.

MCI_STATUS ITEM
Specifies that the dwltem field of the data structure identified by [Param2
contains a constant specifying which status item to obtain. The following
constants are defined:

MCI_STATUS CALLER_ID PL
The dwReturn field is set to the status of the caller ID processing. The
following status caller ID are defined:

MCI_CALLER_ID_ACTIVE (Mwave support isinstalled and
loaded)

MCI_CALLER_ID_NOT_SUPPORTED (Mwave support not
installed)

MCI_CALLER_ID_DISABLED (by application issuing
MCI_SET_CALLER_ID FALSE or because Mwave is processing a fax
or modem call)

MCI_STATUS_LENGTH
The dwReturn field is set to the length of the current play/record media
in milliseconds.

MCI_STATUS MODE
The dwReturn field is set to the current mode of the device. The
following modes are defined:

MCI_MODE_NOT_READY
MCI_MODE_PAUSE
MCI_MODE_PLAY
MCI_MODE_STOP
MCI_MODE_OPEN
MCI_MODE_RECORD
MCI_MODE_SEEK

MCI_STATUS POSITION
The dwReturn field is set to the current position of the play/record
mediain milliseconds.

This document contains information that is subject to 166

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_STATUS READY
The dwReturn field is set to TRUE if the device is ready to receive a
call; otherwise, it is set to FALSE. If another telephony application has
ownership of the telephone line, this status command returns FAL SE.

MCI_STATUS TIME_FORMAT
The dwReturn field is set to the time format of the play/record media.
This aways returns MCI_FORMAT_MILLISECONDS.

MCI_TAM_STATUS_AUDIO_MUTE
The dwReturn field of the data structure identified by |Param2 returns a
constant specifying the mute status of the system microphone. When set
to TRUE, the microphone (audio input of TAM_AUDIO) is
disconnected from the telephone line, and any record operation in
progress. When set to FAL SE, the device operates normally.

MCI_TAM_STATUS _AUDIO_VOLUME
The dwReturn field of the data structure identified by |Param2 returns a
constant specifying the volume level of the speaker device. The volume
level is specified from 0xO (silence) to OxFFFF (maximum volume) and
isinterpreted logarithmically. This means the perceived volume increase
is the same when increasing the volume level from 0x5000 to 0x6000 as
it is from 0x4000 to 0x5000.

MCI_TAM_STATUS_AVGBY TESPERSEC
The dwReturn field is set to the actual average bytes per second of the
current media record or play operation. Thisvalueisvalid only when a
desired rate has been set using MCI_TAM_SET_AVGBY TESPERSEC.
See MCI_SET for details.

MCI_TAM_STATUS_BITSPERSAMPLE
The dwReturn field is set to the number of bits per sample (8 or 16)
used for playing, recording, and saving, when using the PCM wave
format.

MCI_TAM_STATUS BITSPERSAMPLE is supported in version 3.1
and above of TAM drivers.

MCI_TAM_STATUS_CONNECT
The dwReturn field is set to the current device connections. Connected
device flags are OR'ed together, and the result returned to the
application. Connected devices are also the target of any play or record
operations, thus for some operations, applications "connect” only a
single device. The device flags are defined as follows:

MCI_TAM_AUDIO
MCI_TAM_HANDSET
MCI_TAM_PHONELINE

This document contains information that is subject to 167

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_TAM_STATUS_CALL_FILTER PL
The dwReturn field of the data structure identified by |Param2 is set to
TRUE if the deviceis currently set to receive voice calls; otherwiseit is
set to FALSE.

MCI_TAM_STATUS_DIAL_FLASH_TIME PL
The dwReturn field is set to the current flash time (in milliseconds) of
the telephone flash option in the MCI_DIAL command.

MCI_TAM_STATUS DIAL_FLASH_TIME is supported in version 2.2
and above of the TAM drivers.

MCI_TAM_STATUS_DIAL_PAUSE_TIME PL
The dwReturn field is set to the current pause time (in milliseconds) that
an embedded ',’ character produces in the dial string.

MCI_TAM_STATUS_DIAL_WAIT_TIME PL
The dwReturn field is set to the current time-out limit (in milliseconds)
that an embedded 'w' character in the dial string allows, waiting for a
second dial tone.

MCI_TAM_STATUS_FORMATTAG
The dwReturn field is set to the format tag of the current device being
recorded or played. The following formats are allowed:

WAVE_FORMAT_PCM (Supported in version 3.1 and above of the
TAM drivers)
TAM_WAVE_FORMAT_CUSTOM

MCI_TAM_STATUS HANDSET
The dwReturn field is set to the current status of the telephone handset.
It is set to TRUE if the handset is off-hook; otherwise, it is set to FAL SE.

MCI_TAM_STATUS_HANDSET_MUTE M SG
The dwReturn field of the data structure identified by |Param2 returns a
constant specifying the mute status of the telephone handset. When set to
TRUE, the audio input of the handset is disconnected from the telephone
line, and any record operation in progress. When set to FALSE, the
device operates normally.

MCI_TAM_STATUS_HANDSET_VOLUME M SG
The dwReturn field of the data structure identified by |Param2 returns a
constant specifying the volume level of the speaker device. The volume
level is specified from 0xO (silence) to OxFFFF (maximum volume) and
isinterpreted logarithmically. This means the perceived volume increase
is the same when increasing the volume level from 0x5000 to 0x6000 as
it is from 0x4000 to 0x5000.

MCI_TAM_STATUS_HOOK PL
The dwReturn field is set to the current hook status of the telephone
line. It is set to TRUE if the phone is off-hook; otherwise, it is set to
FALSE.

This document contains information that is subject to 168

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_TAM_STATUS_LINE PL
The dwReturn field is set to the current phone line status. The following
status modes are defined:

MCI_PHONE_LINE_ONHOOK
MCI_PHONE_LINE_DIALTONE
MCI_PHONE_LINE_BUSY
MCI_PHONE_LINE_QUIET
MCI_PHONE_LINE_RINGTONE
MCI_PHONE_LINE_VOICE
MCI_PHONE_LINE_FAX
MCI_PHONE_LINE_MODEM
MCI_PHONE_LINE_UNKNOWN

MCI_TAM_STATUS MAX_AUDIO_VOLUME
Some countries limit the maximum audio volume that the application can
set. To determine if the application is running in such a country, the
application should issue MCI_STATUS for
MCI_STATUS WORLD_TRADE_SUPPORT. If the information
returned from that call indicates LIMIT_MAX_VOLUME, the dwReturn
field of thiscall is set to the maximum audio volume permitted in the
country. This support is added with driver version 3.3.

MCI_TAM_STATUS MAX _FLASH TIME PL
The dwReturn field is set to the current maximum time between on-hook
and off-hook that will be reported as a handset flash on a
PHONE_EVENT_HANDSET_KEY event.

MCI_TAM_STATUS MAX_GREETING_LEN
Some countries limit the maximum duration a greeting may be. To
determine if the application is running in such a country, the application
should issue MCI_STATUS for
MCI_STATUS WORLDTRADE_SUPPORT. If the information returned
from that call indicates LIMIT_GREETING_LENGTH, the dwReturn
field of this call is set to the maximum greeting length, in seconds,
permitted in the country. It isup to the application to make sure the
greeting doesn’t exceed this length. This support is added with driver
version 3.3.

MCI_TAM_STATUS MAX_GREETING_LEN_NO_REC
Some countries limit the maximum duration a greeting may be when no
message is going to be recorded. To determine if the application is
running in such a country, the application should issue MCI_STATUS for
MCI_STATUS WORLDTRADE_SUPPORT. If the information returned
from that call indicates LIMIT_GREETING_LENGTH_NO_RECORD,
the dwReturn field of this call is set to the maximum permitted greeting
length, in seconds, when no message is going to be recorded. Itisup to
the application to make sure the greeting doesn’t exceed this length. This
support is added with driver version 3.3.

MCI_TAM_STATUS MAX_MIC_GAIN
The dwReturn field is set to the maximum permitted microphone gain, in
decibels. This supported is added with driver version 3.3.

This document contains information that is subject to 169

change without notice.

MMWADKUMU-03

Chapter 7 - TAM API Reference

MCI_TAM_STATUS MAX_MSG_RETRIEVE_LEN
Some countries limit the maximum time between user inputs. This would
require that the application gets input from the user at least every ‘n’
seconds. To determine if the application is running in such a country, the
application should issue MCI_STATUS for
MCI_STATUS WORLDTRADE_SUPPORT. If the information returned
from that call indicates LIMIT_MAX_MSG_RETRIEVE_LENGTH, the
dwReturn field of this call is set to the maximum length, in seconds, that
messages can be played without prompting the user for input (e.g., DTMF
keys). It isup to the application to make sure greetings don’t exceed this
length. This support is added with driver version 3.3.

MCI_TAM_STATUS MAX_RECORD_LEN
Some countries limit the maximum duration of a message recorded from
the phoneline. To determine if the application is running in such a
country, the application should issue MCI_STATUS for
MCI_STATUS WORLDTRADE_SUPPORT. If the information returned
from that call indicates LIMIT_MESSAGE_RECORD_LENGTH, the
dwReturn field of this call is set to the maximum length, in seconds, of a
message recorded from the phoneline, permitted in the country. Itisup to
the application to make sure the greeting doesn’t exceed this length. The
simplest way to accomplish thisisto specify MCI_TO on the
MCI_RECORD, and use the value returned from this call asthe MCI_TO
value. This support is added with driver version 3.3.

MCI_TAM_STATUS_MICROPHONE_GAIN
The dwReturn field is set to the current microphone gain, in decibels.

MCI_TAM_STATUS MIN_FLASH TIME PL
The dwReturn field is set to the current minimum time between on-hook
and off-hook that will be reported as a handset flash on a
PHONE_EVENT _HANDSET_KEY event.

MCI_TAM_STATUS_QUALITY
The dwReturn field is set to the current telephone device play/record
quality level. Expected range of quality isfrom O (lowest quality) to 7
(highest quality).

MCI_TAM_STATUS_QUIET_DURATION PL
The dwReturn field is set to the current value for the continuous phone
line quiet time in seconds before an application will get the first
MM_MCIEVENT message specifying CALL_PROGRESS_QUIET.
Zero indicates the application will not get the
CALL_PROGRESS QUIET interrupt returned. After receiving the first
CALL_PROGRESS _QUIET, the application continues receiving this
message every second until the call terminates.

MCI_TAM_STATUS QUIET_DURATION is not supported in current
driver.

This document contains information that is subject to

change without notice.

170

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_TAM_STATUS_RING_COUNT PL
The dwReturn field is set to a constant specifying the ring count at
which the device answers the telephone. The driver answers on the
shortest ring count request of all active applications, so this value might
not match the value specified in MCI_SET.

MCI_TAM_STATUS_SAMPLESPERSEC
The dwReturn field is set to the number of samples per second used for
playing, recording, and saving, when using the PCM wave format.
MCI_TAM_STATUS SAMPLESPERSEC is supported in version 3.1
and above of the TAM drivers.

MCI_TAM_STATUS_SPEED M SG
The dwReturn field is set to the device speed factor of the current
device. See MCI_TAM_SET_SPEED for details.

MCI_TAM_STATUS_WORLDTRADE_SUPPORT
The dwReturn field is set to a binary encoded set of values indicating
restrictions that are in effect for the current country. Some of the bit
settings require the application to make a subsequent MCI_STATUS call
to determine a maximum value. This support is added with driver
version 3.3. The defined bits include:

GAIN_CHANGE_NOT_ALLOWED is set TRUE if the application
is not permitted to change the microphone gain.
GAIN_CHANGE_NOT_ALLOWED_OFFHOOK is set TRUE if the
application is not permitted to change the microphone gain when the
phone is off hook.

LIMIT_MAX_VOLUME isset TRUE if the maximum speaker
volumeislimited. See MCI_STATUS for
MCI_TAM_STATUS_MAX_AUDIO_VOLUME for related
information.

LIMIT_GREETING_LENGTH isset TRUE if the greeting length is
limited. See MCI_STATUS for
MCI_TAM_STATUS_MAX_GREETING_LEN for related
information.

LIMIT_GREETING_LENGTH_NO_RECORD is set TRUE if the
greeting length is limited when no message will be recorded. See
MCI_STATUS for
MCI_TAM_STATUS_MAX_GREETING_LEN_NO_REC for
related information.
DISALLOW_GREETING_WITH_NO_RECORD is set TRUE if
informational greetings are not permitted.
LIMIT_MESSAGE_RECORD_LENGTH is set TRUE if the length
of messages recorded from the phone lineislimited. See
MCI_STATUS for MCI_TAM_STATUS_MAX_RECORD_LEN
for related information.
REMOTE_GREETING_RECORD_REVIEW is set TRUE if the
country requires the application to play back aremotely recorded
greeting before the new greeting goes into effect.
LIMIT_MAX_MSG_RETRIEVE_LENGTH is set TRUE if the
country limits the maximum time between user input. Thiswould
require that the application get input from the user every ‘n’

This document contains information that is subject to 171

change without notice.

MMWADKUMU-03

Chapter 7 - TAM API Reference

seconds. See MCI_STATUSfor

MCI_TAM_STATUS MAX_MSG_RETRIEVE_LEN for related
information.

NEVER_ANSWER_SILENT isset TRUE if the phone can never be
answered with silence.

TAM_NOT_ALLOWED_IN_COUNTRY isset TRUE if the
telephone answering machine functions are not permitted in the
country. If thisisthe case the PL application will get a bad return
code on MCI_OPEN. However the M SG application can query this
information.

SPK_PHONE_NOT_ALLOWED_IN_COUNTRY isset TRUE if
connecting to speaker phone is not permitted.
AUTODISCRIM_TAM_NOT_ALLOWED is set TRUE if the
automatic call discrimination of voice callsis not permitted.
AUTODISCRIM_FAX_NOT_ALLOWED is set TRUE if the
automatic call discrimination of FAX callsis not permitted.
AUTODISCRIM_MODEM_NOT_ALLOWED is set TRUE if the
automatic call discrimination of MODEM callsis not permitted.

This support is added with driver version 3.4.

PULSE_DIAL_NOT_ALLOWED isset TRUE if pulse dialing is
not supported.

DTMF_DIAL_NOT_ALLOWED isset TRUE if DTMF dialing is
not supported.

BUSYTONE_DETECT_NOT_VALID is set TRUE if busy tone
detection is not available in the country.
BUSYTONE_DETECT_REQUIRED is set TRUE if busy tone
detection is required in country.
DIALTONE_DETECT_NOT_VALID isset TRUE if dial tone
detection is not available in the country.
DIALTONE_DETECT_REQUIRED is set TRUE if dial tone
detection is required in country.
OFFHOOK_NOT_ALLOWED_HANDSET_UP if the application is
not permitted to have the phone electronically off hook (SET HOOK
TRUE) when the handset is up.

MCI_TAM_STATUS_COUNTRY_CODE

The dwReturn field is set to the current country code. This can be used
by applications that must change the looks of the user interface for
different countries like a French keypad in France. This support is added
with driver version 3.4. The following table shows the codes assigned to

each country:

COUNTRY [CODE COUNTRY CODE COUNTRY | CODE
USA/Canada 1 Australia 14 Norway 27
Belgium 2 Austria 15 Denmark 28
Hong Kong 3 Mexico 16 France 29
Singapore 4 South Africa 17 Netherlands 30
New Zealand 5 Chile 18 U. K. 31
Japan 6 Switzerland 19 Sweden 32
Portugal 7 Germany 20 Italy 33
Ireland 8 Brazil 21 Finland 34
Generic 9 Russia 22 Thailand 35

This document contains information that is subject to
change without notice.

172

MMWADKUMU-03 Chapter 7 - TAM API Reference

Spain 10 Y ugoslavia 23 Korea 36
Greece 11 Hungary 24 Malaysia 37
Israel 12 Czechrepublic 25 PRC 38
Taiwan 13 L uxembourg 26 Slovakia 39

TABLE 7-4: Country Codes

MCI_TAM_STATUS AUTO_ANSWER_MIN_RINGS
The dwReturn field contains the minimum number of rings that can be
setin MCI_TAM_SET_RING_COUNT. If the value is 'FFFF'x then
thereis no minin that country. This support is added with driver version
3.4.

MCI_TAM_STATUS AUTO_ANSWER_MAX_RINGS
The dwReturn field contains the maximum number of rings can be set
in MCI_TAM_SET_RING_COUNT. If the value is 'FFFF'x then there
isno limit in that country. This support is added with driver version 3.4.

MCI_TAM_STATUS MAX_CALL_RETRIES
The dwRetur n field contains the maximum number of unsuccessful
retries allowed. If the valueis 'FFFF'x there is no max in that country.
This support is added with driver version 3.4.

MCI_TAM_STATUS MIN_CALL RETRY_TIME
The dwReturn field contains the minimum time allowed between retries.
If the value is'FFFF'x then there is no min in that country. This support
is added with driver version 3.4.
LPMCI_STATUS PARMS IParam2

Specifies afar pointer to the following MCI_STATUS _PARM S data structure:

typedef struct {
DWORD

dwCal | back;
DWORD dwRet ur n;
DWORD dw t em

} MO _STATUS PARVE;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to 173

change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

MCI_STOP
This command message stopsan MCI_PLAY or MCI_RECORD command in operation.
Parameters DWORD |Paraml

The following flags apply to the TAM device:

MCI_NOTIFY

Specifies that MCI should post the MM _MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by |Param?2.

MCI_WAIT

Specifies that the operation should finish before M CI returns control to the
application.

MCI_STOP_REMOVE_DTMF
Specifiesthat if the MCI_STOP is stopping arecord operation, and the
record has recorded aDTMF key, all information recorded after the first
DTMF key was pressed will be removed from the recorded message.

LPMCI_GENERIC_PARMS IParam2

Specifies afar pointer to the following MCl_GENERIC_PARM S data structure:

typedef struct {
DWORD dwCal | back;
} MO _GENER C_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

This document contains information that is subject to

174
change without notice.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to 175

change without notice.

MMWADKUMU-03

Chapter 8 - Error Codes

Chapter 8 - Error Codes

This chapter contains descriptions of device specific error codes supported by the Mwave FAX and
TAM drivers. Other error codes that may be returned by the drivers are defined by the MM PM and

Windows M CI support.

The Mwave FAX and TAM driver errors are returned by the mciSendCommand and mciSendString
function when a failure occurs. The error code constants are defined in the MCIFTDD.H includefile.
The application can issue mciGetError String to retrieve a textual description of the given error code.

The error codes are comprised of seven functional groups; each group is represented by a range of error
codes and an error code prefix. The following table lists the error code ranges, the associated error code

prefix, and the issuing drivers.

Error Codes Error Codes | Prefix Issuing Driver

(Windows) (0S/2)

1-511 1-5255 MCIERR _ Errors defined by Windows or
MMPM

512-545 5256-5289 MCIERR FT Errors common to FAX and TAM

613-652 5357-5396 MCIERR FAX Errors specific to FAX

813-897 5557-5641 MCIERR_TAM Errors specificto TAM

913-932 5657-5676 MCIERR _DIS Errors specific to the Call
Discriminator

1025-1213 5769-6334 MCIERR_FAX_TIF | Errors specific to the FAX driver's

_ BMP/TIFF conversions.
1313 6569 MCIERR_MEIO Errors specific to MEIO
Table 8-1

When using wave filesin the TAM drivers, errors less than MCIERR_FT_DSP_NO_RESOURCES
(which is defined as MCIERR_CUSTOM_DRIVER_BASE) come directly from the wave device
driver. These are the codes below 512 (for Windows) and 5256 (for OS/2).

Error codes for the FAX and TAM specific errors are listed below in numeric order. Where appropriate,
possible causes and solutions to the error are provided.

This document contains information that is subject to

change without notice.

176

MMWADKUMU-03 Chapter 8 - Error Codes

FAX/TAM Driver Error Codes
The error codes described in this section are common to both the Mwave FAX and TAM drivers.
Win 0S/2

512 5256 MCIERR_FT_DSP_NO_ RESOURCES
Insufficient resources in the DSP card.

513 5257 MCIERR_FT _DSP_FILE_NOT_FOUND
DSP file or module in the DSP file not found.

514 5258 MCIERR_FT _DSP _LABEL_NOT_FOUND
Label of resource in the DSP card not found.

515 5259 MCIERR_FT _DSP_INVALID_HANDLE
Invalid handle for DSP resource.

516 5260 MCIERR_FT_DSP_CALL_FAILED
Call to the Mwave Manager failed.

517 5261 MCIERR_FT_UNRECOGNIZED_COMMAND
Invalid or unknown command requested.

518 5262 MCIERR_FT_CMD_COMPLETE_NOT_RTN
Command complete status for FAX or TAM command not
received.

519 5263 MCIERR_FT_UNRECOGNIZED MODE
Invalid or unknown FAX or TAM mode.

520 5264 MCIERR_FT_POSTMESSAGE
Error in executing function,PostMessage.

521 5265 MCIERR_FT_MAKEPROCINSTANCE
Error in executing function,MakeProclnstance.

522 5266 MCIERR_FT_SETWINDOWSHOOKEX
Error in executing function,tWindowsHookEX.

523 5267 MCIERR_FT_GLOBALALLOC
Error in executing function,GlobalAlloc.

524 5268 MCIERR_FT_GLOBALLOCK
Error in executing function,GlobalLock.

525 5269 MCIERR_FT_GLOBALPAGELOCK
Error in executing function,GlobalPagelLock.

526 5270 MCIERR_FT_GLOBALUNLOCK
Error in executing function,GlobalUnlock.

This document contains information that is subject to 177

change without notice.

MMWADKUMU-03 Chapter 8 - Error Codes

527 5271 MCIERR_FT_GLOBALPAGEUNLOCK
Error in executing function,GlobalPageUnlock.

528 5272 MCIERR_FT_GLOBALFREE
Error in executing function,GlobalFree.

529 5273 MCIERR_FT_DSP_HARDWARE_IN_USE
Requested hardware already allocated.

530 5274 MCIERR_FT_DSP_HARDWARE_UNAVAILABLE
Requested hardware unavailable for allocation.

531 5275 MCIERR_FT_MEIO_MIC_S1 _TO_CDADC_S1
Requested connection could not complete. Check to assure
audio is off.

532 5276 MCIERR_FT_MEIO_MIC_L1_TO_VOICEADC_1
Requested connection could not complete.

533 5277 MCIERR_FT_MEIO_HANDIN_1_TO_VOICEADC_1
Requested connection could not complete.

534 5278 MCIERR_FT_MEIO_HANDIN_1_TO_TELEOUT_1
Requested connection could not complete.

535 5279 MCIERR_FT_CDDAC_S1_TO_LINEOUT_1
Requested connection could not complete.

536 5280 MCIERR_FT_CDDAC_S1_TO_INTSPKROUT_L1
Requested connection could not complete.

537 5281 MCIERR_FT_MEIO_TELEDAC_1_TO_TELEOUT_1
Requested connection could not complete.

538 5282 MCIERR_FT_MEIO_VOICEDAC_1_TO_HANDOUT_1
Requested connection could not complete.

539 5283 MCIERR_FT_INSUFFICIENT_MIPS
Insufficient DSP MIPs available to satisfy the requested
operation.

540 5284 MCIERR_FT_INVALID_ABS_SEG_START
Invalid Mwave absolute segment start address (0). This
indicates that a DSP task was not loaded when I/O was
requested.

541 5285 MCIERR_FT _INI_LABEL_NOT_FOUND
Unable to find label in an ini file.

542 5286 MCIERR_FT_CALLER_ID_NOT_VALID
Caller ID is no longer available.

This document contains information that is subject to 178

change without notice.

MMWADKUMU-03

Chapter 8 - Error Codes

543

544

545

546

547

548

549

550

FAX Driver Error Codes

5050

5288

5289

5290

5291

5292

5293

5294

MCIERR_FT_INVALID BUFFER

The buffer length specified on MCI_INFO is not large enough to
hold all of the information. See MCI_INFO for further
explanation.

MCIERR_FT_POWERED_DOWN
System is in "power saving" mode.

MCIERR_FT_CANT_CALL_NOW

The system is not permitted to call this phone number at the
current time. Some countries restrict automated calling
machines from calling the same numtler too often.

MCIERR_FT_UNKNOWN_CALLER_ID_FORMAT
The received caller ID is not in a format that the driver knows
how to parse.

MCIERR_FT_PREEMPTED_BY_HIGHER_PRTY
The driver is temporarily unavailable because higher priority
work is using the DSP.

MCIERR_FT_FUNCTION_NOT_ALLOWED_IN_COUNTRY
The requested function is not permitted based on the laws of the
particular country.

MCIERR_FT_LINE_NOT_IN_USE
The phone is not in use by any application.

MCIERR_FT_WRONG_PHONE_COUPLER
FAX or TAM Error, the selected country does not match the
external telephone coupler.

The error codes in this section are specific to the Mwave FAX driver.

Win

613

614

615

616

617

0S/2

5357

5358

5359

5360

5361

MCIERR_FAX_GLOBALALLOC
Error in executing function,GlobalAlloc.

MCIERR_FAX_GLOBALLOCK
Error in executing function,GlobalLock.

MCIERR_FAX_GLOBALUNLOCK
Error in executing function,GlobalUnlock.

MCIERR_FAX_GLOBALFREE
Error in executing function,GlobalFree.

MCIERR_FAX_LCLOSE
Error in executing function, _Iclose.

This document contains information that is subject to

change without notice.

179

MMWADKUMU-03 Chapter 8 - Error Codes

618 5362 MCIERR_FAX_LLSEEK
Error in executing function, _llseek.

619 5363 MCIERR_FAX_LREAD
Error in executing function, _Iread.

620 5364 MCIERR_FAX_LSTRCPY
Error in executing function,Istrcpy.

621 5365 MCIERR_FAX_OPENFILE
Error in executing function,OpenFile.

622 5366 MCIERR_FAX_POSTMESSAGE
Error in executing function,PostMessage.

623 5367 MCIERR_FAX_NO_ELEMENT_ALLOWED
MCI_OPEN was called with a device element specified. No
device element is allowed for simple devices.

624 5368 MCIERR_FAX_FLAGS_NOT_COMPATIBLE
Flags cannot be set together.

625 5369 MCIERR_FAX_UNRECOGNIZED_KEYWORD
Invalid or unknown keyword used in request.

626 5370 MCIERR_FAX _CANNOT_SET HOOK
Phone hook cannot be set.

627 5371 MCIERR_FAX_UNRECOGNIZED_COMMAND
Invalid or unknown command requested.

628 5372 MCIERR_FAX_UNRECOGNIZED_FLAG
Invalid or unknown flag used in request.

629 5373 MCIERR_FAX_INVALID_DIAL_DIGIT
Invalid dial digit found in dial string.

630 5374 MCIERR_FAX_NULL_DIAL_STRING
Empty dial string.

631 5375 MCIERR_FAX_FILENAME_REQUIRED
Filename is required for the execution of command.

632 5376 MCIERR_FAX_UNSUPPORTED_FUNCTION
Requested function is not supported.

633 5377 MCIERR_FAX_MISSING_FLAG
Required flag not set.

634 5378 MCIERR_FAX_GLOBALREALLOC
Error in executing function,GlobalReAlloc.

635 5379 MCIERR_FAX_LSTRCAT
Error in executing function,Istrcat.

This document contains information that is subject to 180

change without notice.

MMWADKUMU-03

Chapter 8 - Error Codes

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

5380

5381

5382

5383

5384

5385

5386

5387

5388

5389

5390

5391

5392

5393

5394

5395

5396

MCIERR_FAX_WRONG_COMMAND
Command complete status received is not for outstanding
command.

MCIERR_FAX_ COMMAND_REJECT
Undefined command was received.

MCIERR_FAX NO_FREE_STATUS BLOCK
Insufficient buffers for status blocks.

MCIERR_FAX UNRECOGNIZED_ STATUS
Invalid or unknown FAX status received.

MCIERR_FAX_GLOBALPAGEUNLOCK
Error in executing GlobalPageUnlock

Unused

MCIERR_FAX_LWRITE
Error in executing function, lwrite.

MCIERR_FAX UNRECOGNIZED_STREAM_ID
Invalid or unknown stream identifier.

MCIERR_FAX_INVALID_CONFIG
Configuration requested is invalid.

MCIERR_FAX_FILTER_NOT_SET
MCI_RECEIVE issued when SET_CALL_FILTER is FALSE.

MCIERR_FAX_MULTIPLE_OPEN
MCI_OPEN issued when another application had device open.

MCIERR_FAX TASK_NOT_FOUND
Driver tried to find an address in a non-existent task.

MCIERR_FAX_INVALID_HANDLE
dwCallback specified an invalid HWND.

MCIERR_FAX_CONFLICT_FLAGS
Specified flags conflict with one another.

MCIERR_FAX_INVALID_STATE
Device is in incorrect state for option specified.

MCIERR_FAX_INVALID_PARM
Invalid parameter was used in the request.

MCIERR_FAX_HEADINGNOTSET
MCI_FAX_SET_HEADING was not performed before request to
use heading (MCI_SEND_HEADING).

This document contains information that is subject to

change without notice.

181

MMWADKUMU-03

Chapter 8 - Error Codes

TAM Driver Error Codes

The error codes in this section are specific to the Mwave TAM driver.

Win

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

0S/2

5557

5558

5559

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

5570

5571

MCIERR_TAM_GLOBALALLOC
Error in executing function,GlobalAlloc.

MCIERR_TAM_GLOBALLOCK
Error in executing function,GlobalLock.

MCIERR_TAM_GLOBALUNLOCK
Error in executing function,GlobalUnlock.

MCIERR_TAM_GLOBALFREE
Error in executing function,GlobalFree.

MCIERR_TAM_LCLOSE
Error in executing function, _Iclose.

MCIERR_TAM_LLSEEK
Error in executing function, _llseek.

MCIERR_TAM_LREAD
Error in executing function, _Iread.

MCIERR_TAM_LSTRCPY
Error in executing function,Istrcpy.

MCIERR_TAM_OPENFILE
Error in executing function,OpenFile.

MCIERR_TAM_POSTMESSAGE
Error in executing function,PostMessage.

MCIERR_TAM_NO_ELEMENT_ALLOWED

MCI_OPEN was called with a device element specified. No
device element is allowed for simple devices. This return code is
not returned after driver Version 2.2.

MCIERR_TAM_FLAGS_NOT_COMPATIBLE
Flags cannot be set together.

MCIERR_TAM_UNRECOGNIZED_KEYWORD:
Invalid or unknown keyword used in request.

MCIERR_TAM_CANNOT_SET_HOOK
Phone hook cannot be set.

MCIERR_TAM_UNRECOGNIZED_COMMAND
Invalid or unknown command requested.

This document contains information that is subject to

change without notice.

182

MMWADKUMU-03 Chapter 8 - Error Codes

828 5572 MCIERR_TAM_UNRECOGNIZED_FLAG
Invalid or unknown flag used in request.

829 5573 MCIERR_TAM_INVALID_DIAL_DIGIT
Invalid dial digit found in dial string.

830 5574 MCIERR_TAM_NULL_DIAL_STRING
Empty dial string.

831 5575 MCIERR_TAM_FILENAME_REQUIRED
Filename is required for the execution of command.

832 5576 MCIERR_TAM_UNSUPPORTED_FUNCTION
Requested function is not supported.

833 5577 MCIERR_TAM_MISSING_FLAG
Required flag not set.

834 5578 MCIERR_TAM_GLOBALREALLOC
Error in executing function,GlobalReAlloc.

835 5579 MCIERR_TAM_LSTRCAT
Error in executing function,Istrcat.

836 5580 MCIERR_TAM_WRONG_COMMAND
Command complete status received is not for outstanding
command.

837 5581 MCIERR_TAM_COMMAND_REJECT
Undefined command was receivedor the command is disallowed
in the particular country. This is also received if the application
indicates dial and wait for dial tone, but no dial tone is heard.

838 5582 MCIERR_TAM_NO_FREE_STATUS BLOCK
Insufficient buffers for status blocks.

839 5583 MCIERR_TAM_UNRECOGNIZED_STATUS
Invalid or unknown TAM status received.

840 5584 MCIERR_TAM_GLOBALPAGEUNLOCK
Error in executing GlobalPageUnlock.

841 5585 MCIERR_TAM_GLOBALPAGELOCK
Error in executing function,GlobalPagelLock.

842 5586 MCIERR_TAM_LWRITE
Error in executing function, _lwrite.

843 5587 MCIERR_TAM_UNRECOGNIZED STREAM_ID
Invalid or unknown stream identifier.

844 5588 MCIERR_TAM_UNHOOKWINDOWSHOOKEX
Error in executingUnhookWindowsHookEXx.

This document contains information that is subject to 183

change without notice.

MMWADKUMU-03 Chapter 8 - Error Codes

845 5589 MCIERR_TAM_INVALID MEDIA_HANDLE
Invalid handle for media.

846 5590 MCIERR_TAM_INVALID_MEDIA_LENGTH
Media length less than 1 quality word.

847 5591 MCIERR_TAM_INVALID_MEDIA_HEADER
Invalid quality word in media header.

848 5592 MCIERR_TAM_INVALID_MEDIA_FRAME
Invalid length for SSTM frame.

849 5593 MCIERR_TAM_INVALID _MEDIA _FORMAT
Invalid format for SSTM frame.

850 5594 MCIERR_TAM_INVALID _MEDIA_ DATA
Invalid data for SSTM frame.

851 5595 MCIERR_TAM_DWFROM_OUTOFRANGE
The dwFrom parameter greater thandwTo position or greater
than the length of the media.

852 5596 MCIERR_TAM_DWTO_OUTOFRANGE
The dwTo parameter greater than length of the media.

853 5597 MCIERR_TAM_ACCESS_ZERO_LENGTH
The interval betweendwFrom and dwTo is O or too small (i.e. it
is within the same frame) to be executed.

854 5598 MCIERR_TAM_EMPTY_MEDIA
Media (file) is empty.

855 5599 MCIERR_TAM_NO_STREAM_EXIST
Attempt to operate a non-existing stream.

856 5600 MCIERR_TAM_ANOTHER_STREAM_RUNNING
Attempt to operate a stream while another stream is running.

857 5601 MCIERR_TAM_MODULE_NOT_LOADED
Requested module not loaded.

858 5602 MCIERR_TAM_DEVICE_NOT_USED
An unused device is selected in keyword of MCI command.

859 5603 MCIERR_TAM_DATA_OUTOFRANGE
The value of keyword of MCI command is out of range.

860 5604 MCIERR_TAM_WRONG_CONNECT
Invalid connect to devices.

861 5605 MCIERR_TAM_INVALID FILE_HANDLE
Invalid file handle.

This document contains information that is subject to 184

change without notice.

MMWADKUMU-03 Chapter 8 - Error Codes

862 5606 MCIERR_TAM_INVALID_POSITION
Request to move to an invalid position in the media.

863 5607 MCIERR_TAM_INVALID_CONFIG
Configuration requested is invalid.

864 5608 MCIERR_TAM_INVALID_STATUS_BLOCK
Empty status block or its handle is null.

865 5609 MCIERR_TAM_UNSUITABLE_CONDITION
Operating conditions for a command are wrong or not ready.

866 5610 MCIERR_TAM_UNSUITABLE_OBJECT
Device exists but should not be operated for current command.

867 5611 MCIERR_TAM_DATA_INCORRECT
Parameter is within range, but is incorrect.

868 5612 MCIERR_TAM_MULTIPLE_OPEN
Open attempted for already open device.

869 5613 MCIERR_TAM_INVALID MODE
Invalid mode.

870 5614 MCIERR_TAM_TPL_MEIO_ALREADY_OPENED
TAM TPL error. MEIO already opened.

871 5615 MCIERR_TAM_TPS_MEIO_ALREADY_OPENED
TAM TPS error. MEIO already opened.

872 5616 MCIERR_TAM_SWITCH_TO_TPS_AUDIO
TAM error switching to TPS audio.

873 5617 MCIERR_TAM_SWITCH_TO_TPS_AUDIO_REC
TAM error switching to TPS audio record.

874 5618 MCIERR_TAM_SWITCH_TO_TPS_HANDSET
TAM error switching to TPS handset

875 5619 MCIERR_TAM_SWITCH_TO_TPL_PHONELINE
TAM error switching to TPL phoneline.

876 5620 MCIERR_TAM_SWITCH_TO_TPL_SPEAKERPHONE
TAM error switching to TPL speakerphone

877 5621 MCIERR_TAM_SWITCH_TO_TPL_NORMALPHONE
TAM error switching to TPL normal phone.

878 5622 MCIERR_TAM_SWITCH_TO_TPL_CALL_SCREEN
TAM error switching to TPL call screening

879 5623 MCIERR_TAM_NO_DIAL_TONE
No dial tone received.

This document contains information that is subject to 185

change without notice.

MMWADKUMU-03

Chapter 8 - Error Codes

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

5624

5625

5626

5627

5628

5629

5630

5631

5632

5633

5634

5635

5636

5637

5638

5639

5640

5641

MCIERR_TAM_UNSUPPORTED_FLAG
Flag combination is not allowed

MCIERR_TAM_INVALID_HANDLE
The dwCallback was specified with an invalidHWND.

MCIERR_FT_malloc
Error allocating storage.

MCIERR_FT_dspLockMem
Error locking memory down for DMA transfer.

MCIERR_FT_dspUnlockMem
Error unlocking memory after a DMA transfer.

MCIERR_TAM_OPEN_WAVE_DRIVER
The TAM driver was unable to open the supporting wave driver.

MCIERR_TAM_LOAD WAVE_DRIVER
The TAM driver was unable to load a wave file.

MCIERR_TAM_PLAY_WAVE_DRIVER
The TAM driver was unable to play a wave file.

MCIERR_TAM_RECORD_WAVE_DRIVER
The TAM driver was unable to record a wave file.

MCIERR_TAM_CLOSE_WAVE_DRIVER
The TAM driver was unable to close the supporting wave driver.

MCIERR_TAM_PAUSE_WAVE_DRIVER
The TAM driver was unable to pause a wave file.

MCIERR_TAM_SAVE_WAVE_DRIVER
The TAM driver was unable to save a wave file.

MCIERR_TAM_RESUME_WAVE_DRIVER
The TAM driver was unable to resume playing or recording a
wave file.

MCIERR_TAM_STOP_WAVE_DRIVER
The TAM driver was unable to stop a wave file.

MCIERR_TAM_SEEK_WAVE_DRIVER
The TAM driver was unable to seek in a wave file.

MCIERR_TAM_STATUS WAVE_DRIVER
The TAM driver was unable to determine the status of a wave
file.

MCIERR_TAM_SET_WAVE_DRIVER
The TAM driver was unable to set an item for a wave file.

MCIERR_TAM_CONVERT_WAVE_DRIVER
The TAM driver was unable to convert a wave file.

This document contains information that is subject to

change without notice.

186

MMWADKUMU-03 Chapter 8 - Error Codes

908 5652 MCIERR_TAM_GAIN_CHANGE_NOT_ALLOWED
The application tried to change the microphone sensitivity in a
country where that is not permitted at this time.

This document contains information that is subject to 187

change without notice.

MMWADKUMU-03

Chapter 8 - Error Codes

Discriminator Error Codes

The error codes in this section are specific to the Call Discriminator.

Win

913

914

915

916

917

918

919

920

921

922

923

924

925

926

0S/2

5657

5658

5659

5660

5661

5662

5663

5664

5665

5666

5667

5668

5669

5670

MCIERR_DIS_TYPE_ALREADY_REGISTERED
Discriminator type already registered.

MCIERR_DIS_TYPE_NOT_REGISTERED
Discriminator type not registered.

MCIERR_DIS_NOT_LOADED
Discriminator not loaded.

MCIERR_DIS_INVALID_TYPE
Discriminator invalid type.

MCIERR_DIS _LOAD_FAIL
Discriminator load failed.

MCIERR_DIS_APPLICATION_NOT_REGISTERED
Application of the specifiedtype is not registered for autoanswer.

DISCR_ALREADY_REGISTERED
An application of the specified typeis already registered for
autoanswer.

DISCR_TYPE_INVALID
The discriminator parameter usType is not valid.

DISCR_FAX_HAS_LINE
The line is already 'owned' by the fax application.

DISCR_TAM_HAS_LINE
The line is already 'owned' by the TAM application.

DISCR_MODEM_HAS_LINE
The line is already 'owned' by the modem application.

DISCR_REQUESTOR_NOT_REGISTERED
Not currently used.

DISCR_DISCRIM_ID_INVALID
The LinelD is greater than the maximum number ofphone lines
supported.

DISCR_PASS_PARM_INVALID
Parameter to set pass call is invalid.

This document contains information that is subject to

change without notice.

188

MMWADKUMU-03 Chapter 8 - Error Codes

927 5671 DISCR_OPERATING_SYSTEM_ERROR
Some operating system function failed.

928 5672 DISCR_HWND_INVALID
The specified window handle is not valid.

929 5673 DISCR_INVALID_STATE
Discriminator invalid state for requested action.

930 5674 MCIERR_DIS_LOADLIBRARY_ERROR
Unable to load the discriminator library (DLL).

931 5675 MCIERR_DIS_GETPROCADDR_ERROR
Unable to get the discriminator procedure address.

932 5676 DISCR_AT_FAX_HAS_LINE
The line is already ‘owned’ by a fax modem that uses the AT
command set.

This document contains information that is subject to 189

change without notice.

MMWADKUMU-03

Chapter 8 - Error Codes

TIFF Error Codes

The error codes in this section are specific to I/O problems with TIFF files. The Mwave FAX driver
uses the TIFF file format to store fax documents.

Win

1025

1026

1027

1028

1029

1030

1031

1032

1033

1063

Note: The following descriptions use the abbreviation MH to refer
to Modified-Huffman.

0S/2

5769

5770

5771

5772

5773

5774

5775

5776

5777

5778

MCIERR_FAX_TIF_MHTIF_CANNOTCREATETIFF

Cannot create a TIFF file for storing the MH images, because an
invalid TIFF file name was supplied. Use a TIFF file name that
conforms to DOS convention.

MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE
Cannot allocate sufficient global memory to store byte aligned
MH data. Increase available RAM.

MCIERR_FAX_TIF_MHTIF_GLOCKHWRITE

Cannot lock memory for storing byte aligned MH data because
either the memory block or handle is invalid, or the memory
block is 0 byte. Check the file handle.

MCIERR_FAX_TIF_MHTIF_GALLOCHTGT
Cannot allocate global memory to store MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE

MCIERR_FAX_TIF_MHTIF_GLOCKHTGT
Cannot lock global memory for storing MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_MHTIF_GALLOCHMEM
Cannot allocate global memory to read MH data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_MHTIF_GLOCKHMEM
Cannot lock global memory designated for reading MH data.
See MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX _TIF_MHTIF_WRITETIF
Unused.

MCIERR_FAX_TIF_MHTIF_IMAGEMH

Cannot open a MH file because the file is either invalid or does
not exist in the current directory. Check the MH filename for
validity.

MCIERR_FAX_TIF_TIFMH_GALLOCHR
Cannot allocate global memory for reading image data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

This document contains information that is subject to

change without notice.

190

MMWADKUMU-03

Chapter 8 - Error Codes

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

5779

5780

5781

5782

5783

5784

5785

5786

5787

5788

5789

5790

5791

MCIERR_FAX_TIF_TIFMH_GLOCKHR
Cannot lock memory for reading image data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_TIFMH_GALLOCHW

Cannot allocate global memory for swapping every two bytes of
Modified Huffman data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_TIFMH_GLOCKHW
Cannot lock memory for swapping every two bytes of MH data.
See MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_TIFMH_GALLOCHMHLIST

Cannot allocate global memory for storing MH filenames to be
returned to calling function (FAX driver). See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_TIFMH_GLOCKHMHLIST
Cannot lock memory for storing MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE

MCIERR_FAX_TIF_TIFMH_GALLOCTIFTOMHBUF
Cannot allocate global memory for storing MH filenames. See
MCIERR_FAX_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_TIFMH_GLOCKTIFTOMHBUF
Cannot lock memory for storing MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_TIFMH_GALLOCHPART
Cannot allocate memory for storing MH filenames for sorting.
See MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_TIFMH_GLOCKHPART
Cannot lock memory for storing MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_TIFMH_GALLOCHTEMP

Cannot allocate memory for an intermediate buffer during sorting
of MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_TIFMH_GLOCKHTEMP
Cannot lock memory for sorting of MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX TIF_TIFMH_NOTINTELFORMAT
The TIFF file format is either invalid or not Intel. Use Intel format
TIFF file.

MCIERR_FAX_TIF_TIFMH_CANNOTCREATEMH
Cannot create the MH file because the specified filename is
invalid. Use proper MH filename.

This document contains information that is subject to

change without notice.

191

MMWADKUMU-03

Chapter 8 - Error Codes

1077

1103

1104

1105

1106

1107

1108

1109

1110

1133

1134

5792

5793

5794

5795

5796

5797

5798

5799

5800

5801

5802

MCIERR_FAX_TIF_TIFMH_CANNOTOPENTIFF

Cannot open the TIFF file because the specified filename is
either invalid or non-existent. Ensure TIFF file is present in the
current directory and specify its name correctly.

MCIERR_FAX_TIF_TIFBMP_CANNOTOPENTIFF

Cannot open the TIFF file because the TIFF file does not exist or
is invalid. Ensure TIFF file is present in current directory or
valid.

MCIERR_FAX_TIF_TIFBMP_NOSUCHPAGEINTIFF
Cannot find the specified page number in TIFF file because it
does not exit in the TIFF file. Specify a valid page number.

MCIERR_FAX_TIF_TIFBMP_CANNOTCREATETEMPMH
Cannot create temp.mh, which is the intermediate image file
extracted from the TIFF file for converting to BMP format

because there is insufficient disk space. Free up disk space.

MCIERR_FAX_TIF_TIFBMP_GALLOCHTIFF
Cannot allocate global memory for reading image data from
TIFF file. See MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_TIFBMP_GLOCKHTIFF
Cannot lock memory for reading image data from TIFF file. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_TIFBMP_LOADCCITTIMAGE

Cannot decode MH data into BMP format. Invalid MH image file,
device context, bitmap handle. Check image filename, device
context, bitmap handle.

MCIERR_FAX_TIF_TIFBMP_SAVEBITMAP

Cannot save the bitmap into a file because there is insufficient
memory for buffers to store bitmap. Ensure sufficient RAM and
hard disk space is available.

MCIERR_FAX TIF_TIFBMP_NOTTIFFFILE
Source file is not a TIFF file. Ensure source file is a valid TIFF
file.

MCIERR_FAX_TIF_INSERT_LOADBITMAPFROMFILE
Cannot load bitmap into memory from the BMP file, because
either the BMP file is invalid or there is insufficient memory to
load the bitmap. Ensure sufficient RAM space and valid BMP
file.

MCIERR_FAX_TIF_INSERT_SAVEBITMAPINCCITTFORMAT

Cannot save the memory bitmap into a MH file. The encoding of
the bitmap into MH format has failed; this indicates a device
context problem. Check device context and ensure the bitmap is
valid.

This document contains information that is subject to

change without notice.

192

MMWADKUMU-03

Chapter 8 - Error Codes

1135

1136

1137

1138

1163

1164

1165

1166

1167

1168

1169

5803

5804

5805

5806

5807

5808

MCIERR_FAX_TIF_INSERT_OPENTEMPMH

Cannot open thetemp.mh file created by
SaveBitmapInCcittFormat function. Too many files are open.
Check the FILE parameter inconfig.sys to ensure that it is
sufficiently large and close all unnecessary files.

MCIERR_FAX_TIF_INSERT_OPENTIFF

Cannot open the TIFF file because the specified TIFF file is
either invalid or non-existent. Check that TIFF file exists in
current directory and is a valid one.

MCIERR_FAX_TIF_INSERT_GALLOCHTIFF
Cannot allocate global memory for storing MH data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_INSERT_GLOCKHTIFF
Cannot lock memory for storing MH data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_REPLACE_LOADBITMAPFROMFILE
Cannot load bitmap into memory from the BMP file. Invalid BMP
file; insufficient memory to load the bitmap. Ensure sufficient
RAM space and valid BMP file.

MCIERR_FAX_TIF_REPLACE_SAVEBITMAPINCCITTFORMAT

5809

5810

5811

5812

5813

Cannot save the memory bitmap into a MH file. Encoding of
bitmap into MH format failed; device context problem. Check
device context; ensure valid bitmap.

MCIERR_FAX_TIF_REPLACE_CANNOTOPENTEMPMH
Cannot open thetemp.mh file created by
SaveBitmapInCcittFormat function because too many files
are open. Verify that the FILES parameter in config.sys is
sufficiently large and close all unnecessary files.

MCIERR_FAX_TIF_REPLACE_OPENTIFF
Cannot open the specified TIFF file. Check that TIFF file exists
in current directory and is valid.

MCIERR_FAX_TIF_REPLACE_OPENTEMPTIFF

Cannot create temp.tif for duplicating current TIFF file because
there is a DOS or Windows problem. Check system
configuration.

MCIERR_FAX_TIF_REPLACE_GALLOCHTIFF
Cannot allocate global memory for storing MH data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_REPLACE_GLOCKHTIFF
Cannot lock memory for storing MH data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

This document contains information that is subject to

change without notice.

193

MMWADKUMU-03

Chapter 8 - Error Codes

1170

1193

1194

1195

1196

1197

1198

1199

1213

MEIO error codes

5814

5815

5816

MCIERR_FAX_TIF_REPLACE_CANNOTCREATETIFF
Cannot create the new TIFF file because there is a DOS or
Windows problem. Check system configuration.

MCIERR_FAX_TIF_BMPTIF_LOADBITMAPFROMFILE
Cannot load bitmap into memory from the BMP file. If there is
insufficient memory to load the bitmap, increase the available
RAM space. Verify that the BMP file is valid.

MCIERR_FAX_TIF_BMPTIF_SAVEBITMAPINCCITTFORMAT

5817

5818

5819

5820

5821

5957

Cannot save the memory bitmap into a MH file. The encoding of
bitmap into MH format has failed, indicating a device context
problem. Check device context and ensure the bitmap is valid.

MCIERR_FAX_TIF_BMPTIF_CANNOTOPENTEMPMH
Cannot open thetemp.mh file created by
SaveBitmapInCcittFormat function because too many files
are open. Check the FILES parameter in config.sys to ensure
that it is sufficiently large and close all unnecessary files.

MCIERR_FAX_TIF_BMPTIF_CANNOTCREATETIFF
Cannot create the TIFF file because the specified TIFF filename
is invalid. Check that the TIFF filename supplied is valid.

MCIERR_FAX_TIF_BMPTIF_GALLOCHTIFF
Cannot allocate global memory for storing MH data. See
MCIERR_FAX_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_BMPTIF_GLOCKHTIFF
Cannot lock memory for storing MH data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MCIERR_FAX_TIF_BMPTIF_NOTBMPFILE
The specified source file is not a valid.bmp file. Ensure source
file is a valid BMP file.

MCIERR_FAX_TIF_NUMBER_CANNOTOPENTIFF
Unable to open the specified TIFF file. The TIFF file is either
invalid or non-existent. Check for TIFF file validity or that it
exists in the current directory.

One MEIO-specific error code exists:

1313

6057

MCIERR_MEIO_DSPMEIOCONNECT
Mwave MEIO disconnect error.

This document contains information that is subject to

change without notice.

194

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to 195

change without notice.

MMWADKUMU-03 Appendix A - String Interfaces

APPENDIX A - String Interfaces

The following two sections describe the MCI string interface for FAX and TAM. The string interface
allows you to use English-language commands to communicate with MCI devices. An overview of the
string interface is provided in the Microsoft Windows Multimedia Programmer's Reference and the
IBM Multimedia Presentation Manager Toolkit/2 Programming Reference.

Al - String Interface FAX

This section describes the string interface for Mwave FAX under OS/2 and Windows 3.1.

MCI_CLOSE

MCI_CLOSE contains no extensions specific to the Mwave FAX API. It isthe standard MCI_CLOSE
call. Seethe Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: close fax wait
MCI_CONVERT

MCI_CONVERT does contain Mwave specific values. These values pertain to bitmap and tiff file
formats.

String Interface Command Flag Equivalent
convert MCI_CONVERT
notify MCI_NOTIFY
wait MCI_WAIT
info MCI_CONVERT_INFO
overwrite MCI_CONVERT_OVERWRITE
Create MCI_CONVERT_CREATE
destination file MCI_CONVERT_DESTINATION_FILE
destination format MCI_CONVERT_DESTINATION_FORMAT
dib bmp MCI_CONVERT_FMT_DIB_BMP
dibrle MCI_CONVERT_FMT_DIB_RLE
devfax MCI_FAX_CONVERT_FMT_DEVFAX
destination from MCI_CONVERT_DESTINATION_FROM
source file MCI_CONVERT_SOURCE_FILE
source from MCI_CONVERT_SOURCE_FROM
Example: convert fax create wait destination file c:\viewfax.bmp

destination format dib bmp destination from 0
source file c:\rcvdfax.tif

This document contains information that is subject to 196

change without notice.

MMWADKUMU-03 Appendix A - String Interfaces

MCI_DIAL
MCI_DIAL isnot part of the base MCI calls. It is completely defined by Mwave.
String Interface Command Flag Equivalent
dial MCI_DIAL
notify MCI_NOTIFY
wait MCI_WAIT
flash MCI_DIAL_FLASH
monitor MCI_DIAL_MONITOR
monitor handshake MCI_DIAL_MONITOR_HANDSHAKING_ONLY
verify MCI_DIAL_VERIFY
dial mode MCI_DIAL_DIALMODE
pulse MCI_DIAL_MODE_PULSE
tone MCI_DIAL_MODE_TONE
Examples: dial fax 919-254-7410 wait

dial fax 9,1-900-555-1212 monitor handshake notify

MCI_GETDEVCAPS

MCI_GETDEV CAPS has some Mwave specific extensions. MCI_GETDEV CAPS returns
information as a null terminated string. Windows returns all information as an ASCII representation of
an integer. So, if the MCI API defines the output as TRUE, FAL SE, windows will return ‘0" or '1'.

For OS/2 MMPM, MCI_GETDEV CAPS has some Mwave specific extensions. MCI_GETDEVCAPS
returns a value that depends upon the particular capability that was queried. Under MM PM, the high
order word of the return code indicates the type of datathat isreturned. In most cases
MCI_TRUE_FALSE RETURN typeisreturned. This means the string that is returned contains
"TRUE" or "FALSE". A number of calls don't return true or false. They are:

- 'device type' which returns atype of MClI_DEVICENAME_RETURN. The returned string in this
caseis "Other".

- ‘compression types which returns atype of MCI_USER_RETURN_COMPRESS. The returned
string is"MH","MR", "MMR", "NONE" or "BFT", "ANY", "1D", "2D"

- 'modem types which returns atype of MCI_USER_RETURN_MODEMS. The returned string is
"V27TER 2400", "V27TER 4800" "V 29 7200", "V29 9600", "V 17 7200", "V 17 9600", "V 17 12000",
"V17 14400", "V 27TER(2400,4800), V29(7200, 9600)", or "V 27TER(2400,4800), V 29(7200, 9600),
or V17(7200, 9600, 12000, 14400)"

- 'resolution’ which returns atype of MCI_USER_RETURN_RESOLUTION. Thereturned string is
"Fine(200x200)", or "Normal (100x200)"

- 'file formats' which returns atype of MCI_USER_RETURN_FILE_FORMATS. The returned string
is"Tiff Class F", "DCX", "RIFF", or "TIFF 6",

String Interface Command Flag Equivalent
capability MCI_GETDEVCAPS

notify MCI_NOTIFY

wait MCI_WAIT

can gject MCI_GETDEVCAPS_CAN_EJECT

This document contains information that is subject to 197

change without notice.

MMWADKUMU-03

Appendix A - String Interfaces

can play MCI_GETDEVCAPS_CAN_PLAY
can record MCI_GETDEVCAPS_CAN_RECORD
can save MCI_GETDEVCAPS_CAN_SAVE
compound device MCI_GETDEVCAPS_COMPOUND_DEVICE
device type MCI_GETDEVCAPS DEVICE_TYPE
has audio MCI_GETDEVCAPS_HAS AUDIO
has video MCI_GETDEVCAPS_HAS VIDEO
uses files MCI_GETDEVCAPS_USES FILES
modem types MCI_FAX_GETDEVCAPS MODEM_TYPES
compression types MCI_FAX_GETDEVCAPS_COMPRESSION_TYPES
can receive MCI_FAX_GETDEVCAPS CAN_RECEIVE
can send MCI_FAX_GETDEVCAPS_CAN_SEND
has handset MCI_FAX_GETDEVCAPS HAS HANDSET
supports ecm MCI_FAX_GETDEVCAPS SUPPORTS_ECM
polling MCI_FAX_GETDEVCAPS POLLING
file formats MCI_FAX_GETDEVCAPS FILE_FORMATS
resolution MCI_FAX_GETDEVCAPS _RESOLUTION
width MCI_FAX_GETDEVCAPS WIDTH

Example: capability fax modem types wait

MCI_INFO

MCI_INFO is extended by Mwave to include Caller ID support. MCI info returnsastring. In the case

of caller ID, this string may not successfully be converted to ASCII since it contains non-ASCI|

characters.

String Interface

Command Flag Equivalent

info MCI_INFO
notify MCI_NOTIFY
wait MCI_WAIT
product MCI_INFO_PRODUCT
caler id error MCI_INFO_CALLER_ID_ERROR
calerid MCI_INFO_CALLER_ID
parsed caler id MCI_INFO_PARSED_CALLER_ID
Example: info fax caller id wait
MCI_OPEN

MCI_OPEN contains no extensions specific to the Mwave FAX API. Itisthe standard MCI_OPEN
call. Seethe Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia

Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: open mwavefax alias fax notify

This document contains information that is subject to

change without notice.

198

MMWADKUMU-03

Appendix A - String Interfaces

MCI_RECEIVE

MCI_RECEIVE isunique to Mwave FAX support. The already dialed parameter is used for manually

receiving afax.

String Interface
receive

notify

wait

already dialed

Examples:

Command Flag Equivalent
MCI_RECEIVE
MCI_NOTIFY

MCI_WAIT
MCI_ALREADY_DIALED

receive fax c:\newfax01.tif notify

receive fax c:\newfax01.tif already dialed wait

MCI_SEND

MCI_SEND is unique to Mwave FAX support. The already dialed parameter is used for manually
sending afax. If this parameter is not specified, the document is not sent until ‘dial’ is issued.

String Interface
send
notify
wait
already dialed
send heading

Examples:

Command Flag Equivalent
MCI_SEND

MCI_NOTIFY

MCI_WAIT
MCI_ALREADY_DIALED
MCI_SEND_HEADING

send fax c:\outfaxO1.tif notify

send fax c:\outfaxO1.tif already dialed wait

MCI_SET

MCI_SET contains many extensions specific to the Mwave API. The Windows version does not
permit symbolic keywords for the information that is being set. Further, in the windows version, it is
necessary to use the keyword 'value' before specifying the information you are setting. In the table
below, the third column shows the valid values that can be set.

String Interface
set
notify
wait
audio volume
call filter
APl style

dial flash time
dial pausetime
dial wait time
event handler
hook

pass call

advanced ring

Command Flag Equivalent
MCI_SET

MCI_NOTIFY

MCI_WAIT
MCI_FAX_SET_AUDIO_VOLUME
MCI_FAX_SET_CALL_FILTER
MCI_FAX_SET_API_STYLE

MCI_FAX_SET DIAL_FLASH_TIME
MCI_FAX_SET DIAL_PAUSE_TIME
MCI_FAX_SET_DIAL_WAIT_TIME
MCI_FAX_SET_EVENT_HANDLER
MCI_FAX_SET_HOOK
MCI_FAX_SET_PASS CALL

MCI_FAX_SET_ADVANCED_RING_NOTIFY

Valid Values

integer

0,1
1=MMPM
2 = windows
integer
integer
integer
integer

0,1

16 = voice
8 = modem
0,1

This document contains information that is subject to

change without notice.

199

MMWADKUMU-03

Appendix A - String Interfaces

compression types

ecm level
polling
resolution
station id

ring count
modem types

Examples:

MCI_FAX_SET_COMPRESSION_TYPES

MCI_FAX_SET_ECM_LEVEL

MCI_FAX_SET_POLLING
MCI_FAX_SET_RESOLUTION

MCI_FAX_SET_STATION_ID
MCI_FAX_SET_RING_COUNT
MCI_FAX_SET_MODEM_TYPES

set fax station id value 919-543-3113 wait

set fax hook value 1 notify
set fax event handler value 48937930 wait
set fax pass call value 16 notify

1=MH
2=MR
4=MMR
8 =NONE
16 = BFT
32 =ANY
64=1D
128 =2D

01

1 =normal
2 =fine
ASCII
integer
01 =V27TER 2400
02 =V27TER 4800
04 =V29 7200
08 =V29 9600
16 =V17_7200
32=V17 9600
64 =V17_ 12000
128 = V17_14400

MCI_SET in the MMPM version permits symbolic keywords for the information that is being set.
Further, in the MMPM version, it is not necessary to use the keyword 'value' before specifying the
information you are setting. In the table below, the third column shows the valid values that can be set.

String Interface
set

notify

wait

audio volume
call filter

APl style

dial flash time
dial pausetime
dial wait time
event handler
hook

pass call
advanced ring
compression types

Command Flag Equivalent
MCI_SET
MCI_NOTIFY
MCI_WAIT
MCI_FAX_SET_AUDIO_VOLUME
MCI_FAX_SET_CALL_FILTER
MCI_FAX_SET_API_STYLE
MCI_FAX_SET_DIAL_FLASH_TIME
MCI_FAX_SET_DIAL_PAUSE TIME
MCI_FAX_SET_DIAL_WAIT_TIME
MCI_FAX_SET_EVENT_HANDLER
MCI_FAX_SET_HOOK
MCI_FAX_SET_PASS CALL
MCI_FAX_SET_ADVANCED_RING_NOTIFY
MCI_FAX_SET_COMPRESSION_TY PES

Valid Values

integer

FALSE, TRUE

mmpm, windows

integer

integer

integer

integer

FALSE, TRUE

voice, modem

FALSE, TRUE
MH, MR, MMR,

NONE, BFT,ANY,

This document contains information that is subject to

change without notice.

200

MMWADKUMU-03

Appendix A - String Interfaces

ecm level
polling
resolution
station id

ring count
modem types

Examples:

MCI_STATUS

1D, 2D
MCI_FAX_SET ECM_LEVEL not supported
MCI_FAX_SET _POLLING FALSE, TRUE
MCI_FAX_SET _RESOLUTION normal, fine
MCI_FAX_SET _STATION_ID ASCII
MCI_FAX_SET_RING_COUNT integer
MCI_FAX_SET_MODEM_TYPES V27TER 2400,
V27TER 4800,
V29 7200,
V29 9600,
V17 7200,
V17 9600,
V17 12000,
V17 14400

set fax station id 919-543-3113 wait
set fax hook true notify

set fax event handler 48937930 wait
set fax pass call voice notify

MCI_STATUS has many Mwave FAX specific extensions. In addition, it returns information. Under
windows, it is up to the application to know how to interpret the information. The third column in the
table below indicates what the returned values mean.

String Interface
status
notify
wait
time format
length
mode

position

ready

audio volume
call filter

dial flash time
dial pausetime
dial wait time
handset

hook

line

Command Flag Equivalent Returned Values
MCI_STATUS
MCI_NOTIFY
MCI_WAIT
MCI_STATUS TIME_FORMAT 0 = milliseconds
MCI_STATUS LENGTH integer
MCI_STATUS MODE 1 =receive
2 =send
524 = not ready
530 = open
MCI_STATUS _POSITION integer
MCI_STATUS READY 0,1

MCI_FAX_STATUS AUDIO_VOLUME integer
MCI_FAX_STATUS CALL FILTER 0,1
MCI_FAX_STATUS DIAL_FLASH_TIME integer
MCI_FAX_STATUS DIAL_PAUSE TIME integer
MCI_FAX_STATUS DIAL_WAIT_TIME integer
MCI_FAX_STATUS HANDSET 0 =down
1=up

0 = on hook
1 = off hook
1 = on hook
2 =dial tone
3 = busy

4 =ring tone
6 = unknown

MCI_FAX_STATUS HOOK

MCI_FAX_STATUS LINE

This document contains information that is subject to

change without notice.

201

MMWADKUMU-03

Appendix A - String Interfaces

ring count
polling

resolution

station id
compression types

max modem types

min modem types

worldtrade support
country code

min rings allowed
max rings allowed
max call retries
min call retry time

Examples:

MCI_FAX_STATUS MAX_CALL_RETRIES
MCI_FAX_STATUS MIN_CALL_RETRY_TIME

MCI_FAX_STATUS RING_COUNT integer
MCI_FAX_STATUS POLLING 0 =no polling
1 = polling
MCI_FAX_STATUS RESOLUTION 1 =normal
2 =fine
MCI_FAX_STATUS STATION_ID ASCII

MCI_FAX_STATUS_COMPRESSION_TY PES

1=MH

2=MR

4=MMR

8 =NONE

16=BFT

32 =ANY

64 =1D

128=2D
MCI_FAX_STATUS MAX_MODEM_SPEED

01 = V27TER_2400

02 = V27TER_4800

04 =V29_7200

08 =V29_9600

16 =V17_7200

32=V17_9600

64 = V17_12000

128 = VV17_14400
MCI_FAX_STATUS_MIN_MODEM_SPEED

01 = V27TER_2400

02 = V27TER_4800

04 =V29_7200

08 =V29_9600

16 =V17_7200

32=V17_9600
MCI_FAX_STATUS WORLDTRADE_SUPPORT integer
MCI_FAX_STATUS COUNTRY_CODE integer
MCI_FAX_STATUS AUTO_ANSWER_MIN_RINGS integer
MCI_FAX_STATUS AUTO_ANSWER_MAX_RINGS integer
integer
integer (in seconds)

status fax hook wait

status fax station id notify
status fax ring count wait

In MMPM, MCI_STATUS has many Mwave FAX specific extensions. In addition, it returns
information. Under MMPM the high order word of the return code indicates the type of returned

information.

String Interface
status
notify
wait
time format
length

Command Flag Equivalent Returned Values
MCI_STATUS

MCI_NOTIFY

MCI_WAIT

MCI_STATUS TIME_FORMAT milliseconds
MCI_STATUS LENGTH integer

This document contains information that is subject to

change without notice.

202

MMWADKUMU-03

Appendix A - String Interfaces

mode

position

ready

call filter

dial flash time
dial pausetime
dial wait time
handset

hook

line

ring count
polling

resolution
station id
compression types

max modem types

min modem types

Examples:

MCI_STATUS MODE

MCI_STATUS_POSITION
MCI_STATUS READY
MCI_FAX_STATUS CALL_FILTER

not ready
sending
receiving

open

integer
FALSE, TRUE
FALSE, TRUE

MCI_FAX_STATUS DIAL_FLASH_TIME integer
MCI_FAX_STATUS DIAL_PAUSE_TIME integer
MCI_FAX_STATUS DIAL_WAIT_TIME integer

MCI_FAX_STATUS HANDSET
MCI_FAX_STATUS HOOK

MCI_FAX_STATUS LINE

MCI_FAX_STATUS RING_COUNT
MCI_FAX_STATUS POLLING

MCI_FAX_STATUS RESOLUTION
MCI_FAX_STATUS STATION_ID

down
up

on hook
off hook

on hook
dial tone
busy
ring tone
unknown
integer
FALSE (no polling)
TRUE (polling)
normal , fine
ASCII

MCI_FAX_STATUS COMPRESSION_TYPES

MH, MR, MMR, NONE,

ANY, 1D, 2D, BFT

MCI_FAX_STATUS MAX_MODEM_SPEED

V27TER 2400,
V27TER 4800,
V297200,
V29 9600,

V17 7200,

V17 9600,

V17 12000,
V17 14400

V 27TER(2400,4800), \/29(7200, 9600),
V 27TER(2400,4800), V 29(7200,9600), V 17(7200,9600,12000,14400)
MCI_FAX_STATUS MIN_MODEM_SPEED

V27TER 2400
V27TER 4800
V29 7200
V29 9600
V17 7200

V1 9600

V17 12000
V17 14400

V 27TER(2400,4800), V 29(7200, 9600),
V 27TER(2400,4800), \/29(7200,9600), V 17(7200,9600,12000,14400)

status fax hook wait

status fax station id notify
status fax ring count wait

This document contains information that is subject to

change without notice.

203

MMWADKUMU-03 Appendix A - String Interfaces

MCI_STOP
MCI_STOP has no Mwave FAX extensions.

Example: stop fax wait

This document contains information that is subject to 204

change without notice.

MMWADKUMU-03 Appendix A - String Interfaces

A2 - String Interface TAM

This section describes the string interface for Mwave TAM under OS/2 2.1 and Windows 3.1

MCI_CLOSE

MCI_CLOSE contains no extensions specific to the Mwave TAM API. Itisthe standard MCI_CLOSE
call. Seethe Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: close tam wait
MCI_CONVERT

MCI_CONVERT does contain Mwave specific values. Note that it is not supported in releases before
driver version 3.1.

String Interface Command Flag Equivalent
convert MCI_CONVERT
notify MCI_NOTIFY
wait MCI_WAIT
info MCI_CONVERT_INFO
overwrite MCI_CONVERT_OVERWRITE
Create MCI_CONVERT_CREATE
destination file MCI_CONVERT_DESTINATION_FILE
destination format MCI_CONVERT_DESTINATION_FORMAT
wave pcm MCI_CONVERT_FMT_WAVE_PCM
devtam MCI_TAM_CONVERT_FMT_DEVTAM
destination from MCI_CONVERT_DESTINATION_FROM
length MCI_CONVERT_LENGTH
source file MCI_CONVERT_SOURCE_FILE
source from MCI_CONVERT_SOURCE_FROM
Example: convert tps create wait destination file c:\newwave.wav

destination format wave pcm destination from 0
source file c:\recorded.voi

MCI_DIAL
MCI_DIAL isnot part of the base MCI calls. It is completely defined by Mwave.
String Interface Command Flag Equivalent
dial MCI_DIAL
notify MCI_NOTIFY
wait MCI_WAIT
flash MCI_DIAL_FLASH
monitor MCI_DIAL_MONITOR
verify MCI_DIAL_VERIFY
dial mode MCI_DIAL_DIALMODE
pulse MCI_DIAL_MODE_PULSE
tone MCI_DIAL_MODE_TONE

This document contains information that is subject to 205

change without notice.

MMWADKUMU-03 Appendix A - String Interfaces

Examples: dial tpl 919-254-7410 wait
dial tpl verify 9,1-900-555-1212 dial mode pulse notify

MCI_GETDEVCAPS

MCI_GETDEV CAPS has some Mwave specific extensions. MCI_GETDEV CAPS returns
information as a null terminated string. Windows returns all information as an ASCII representation of
an integer. So, if the MCI API defines the output as TRUE, FAL SE, windows will return ‘0" or '1'.

For MMPM, MCI_GETDEVCAPS returns a value that depends upon the particular capability that
was queried. The high order word of the return code indicates the type of datathat isreturned. 1n most
cases MCI_TRUE_FALSE_RETURN typeisreturned. This means the string that is returned contains
"TRUE" or "FALSE". The only exception is - ‘device type which returns a type of
MCI_DEVICENAME_RETURN. The returned string in this caseis "Other".

String Interface Command Flag Equivalent
capability MCI_GETDEVCAPS
notify MCI_NOTIFY
wait MCI_WAIT
can gject MCI_GETDEVCAPS_CAN_EJECT
can play MCI_GETDEVCAPS_CAN_PLAY
can record MCI_GETDEVCAPS_CAN_RECORD
can save MCI_GETDEVCAPS_CAN_SAVE
compound device MCI_GETDEVCAPS_COMPOUND_DEVICE
device type MCI_GETDEVCAPS DEVICE_TYPE
has audio MCI_GETDEVCAPS_HAS AUDIO
has video MCI_GETDEVCAPS_HAS VIDEO
uses files MCI_GETDEVCAPS_USES FILES
supports custom tag MCI_TAM_GETDEVCAPS_SUPPORTS _CUSTOM_TAG
supports pcm tag MCI_TAM_GETDEVCAPS_SUPPORTS PCM_TAG

Example: capability tps can save wait

MCI_INFO

MCI_INFO is extended by Mwave to include Caller ID support. MCI info returnsastring. In the case
of caller ID, this string may not successfully be converted to ASCII since it contains non-ASCI|
characters.

In the case of caller ID for MMPM, an integer is returned since the caller ID contains non-ASCII
characters. The application must type cast the integer to an address and then use the contents of the
address to retrieve the caller 1D information.

String Interface Command Flag Equivalent
info MCI_INFO
notify MCI_NOTIFY
wait MCI_WAIT
product MCI_INFO_PRODUCT
caler id error MCI_INFO_CALLER_ID_ERROR
calerid MCI_INFO_CALLER_ID
parsed caler id MCI_INFO_PARSED_CALLER_ID
Example: info tps product wait

This document contains information that is subject to 206

change without notice.

MMWADKUMU-03 Appendix A - String Interfaces

MCI_LOAD

MCI_LOAD contains no extensions specific to the Mwave TAM API. It isthe standard MCI_LOAD
call. Seethe Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: load tpl c:\greeting.voi wait
load tpl new wait /*this opens a new, empty file (OS/2)*/
load tpl """ wait /*this opens a new empty file (windows)*/
MCI_OPEN

MCI_OPEN contains no extensions specific to the Mwave TAM API. Itisthe standard MCI_OPEN
call. Seethe Windows Multimedia Developer's Manual or the MMPM/2 Programmer's Reference
Manual for the exact syntax.

Example: open mwavetps alias tps notify
open mwavetpl alias tpl wait

MCI_PAUSE

MCI_PAUSE contains no extensions specific to the Mwave TAM API. It isthe standard MCI_PAUSE
call. Seethe Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: pause tps wait

MCI_PLAY

MCI_PLAY contains no extensions specific to the Mwave TAM API. Itisthe standard MCI_PLAY
call. Seethe Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: play tpl notify
play tps from 10 to 50 wait

MCI_RECORD
MCI_RECORD has an Mwave-specific extension to the base MCI record call to allow beeping before
recording begins.

String Interface Command Flag Equivalent
record MCI_RECORD
notify MCI_NOTIFY
wait MCI_WAIT
insert MCI_RECORD_INSERT
overwrite MCI_RECORD_OVERWRITE
to message end MCI_TAM_TO_MESSAGE_END
beep MCI_TAM_BEEP
from MCI_FROM
to MCI_TO
Examples: record tps notify

record tps from 20 to 50 insert notify
record tpl beep notify

This document contains information that is subject to 207

change without notice.

MMWADKUMU-03

Appendix A - String Interfaces

MCI_RESUME

MCI_RESUME contains no extensions specific to the Mwave TAM API. It isthe standard
MCI_RESUME call. Seethe Microsoft Windows Multimedia Programmer's Reference or the 1BM
Multimedia Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: resume tps notify

MCI_SAVE

MCI_SAVE contains no extensions specific to the Mwave TAM API. Itisthe standard MCI_SAVE
call. Seethe Windows Multimedia Developer's Manual or the MMPM/2 Programmer's Reference
Manual for the exact syntax.

Example: save tps c:\newname.voi wait

MCI_SEEK

MCI_SEEK contains no extensions specific to the Mwave TAM API. Itisthe standard MCI_SEEK
call. Seethe Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example:

MCI_SET

seek tpl to 100 wait

MCI_SET contains many extensions specific to the Mwave API. The Windows version does not
permit symbolic keywords for the information that is being set. Further, in the windows version, it is
necessary to use the keyword 'value' before specifying the information you are setting. In the table
below, the third column shows the valid values that can be set.

String Interface
set
notify
wait
audio mute
audio volume
avgbytespersec
bitspersample
call filter
APl style

ap discriminated

connect

Command Flag Equivalent

MCI_SET

MCI_NOTIFY

MCI_WAIT
MCI_TAM_SET_AUDIO_MUTE
MCI_TAM_SET_AUDIO_VOLUME
MCI_TAM_SET_AVGBY TESPERSEC
MCI_TAM_SET_BITSPERSAMPLE
MCI_TAM_SET_CALL_FILTER
MCI_TAM_SET_API_STYLE

MCI_TAM_SET_AP DISCRIMINATED

MCI_TAM_SET_CONNECT

Valid Values

0,1
integer
integer
integer
0,1
1=MMPM
2 = windows
4 =FAX
8 = modem
16 = VOICE
32 = Don’'t Answer
1 =audio
2 = handset
4 = phoneline
5 = audio& phoneline
6 = handset& phoneline
8 = speaker
12 =gpeaker& phoneline

This document contains information that is subject to

change without notice.

208

MMWADKUMU-03

Appendix A - String Interfaces

dial flash time
dial pausetime
dial wait time
event handler
formattag

handset mute
handset volume
hook

caller id

quality

quiet

ring count
samplespersec
speed

pass call

advanced ring
microphone gain

dial min flash time
dial max flash time

low level waveio

Examples:

MCI_TAM_SET DIAL_FLASH_TIME
MCI_TAM_SET DIAL_PAUSE_TIME
MCI_TAM_SET DIAL_WAIT_TIME
MCI_TAM_SET_EVENT_HANDLER
MCI_TAM_SET_FORMATTAG

MCI_TAM_SET_HANDSET MUTE
MCI_TAM_SET_HANDSET VOLUME
MCI_TAM_SET_HOOK
MCI_TAM_SET_CALLER_ID
MCI_TAM_SET_QUALITY
MCI_TAM_SET_QUIET_DURATION
MCI_TAM_SET_RING_COUNT
MCI_TAM_SET_SAMPLESPERSEC
MCI_TAM_SET_SPEED
MCI_TAM_SET_PASS_CALL

MCI_TAM_SET_ADVANCED_RING_NOTIFY

MCI_TAM_SET_MICROPHONE_GAIN

MCI_TAM_SET DIAL_MIN_FLASH_TIME
MCI_TAM_SET DIAL_MAX_FLASH_TIME
MCI_TAM_SET_LOW_LEVEL_WAVE_|O

set tps microphone gain value 75 wait

set tpl hook value 1 notify
set tpl event handler value 48937930 wait
set tpl pass call value 4 notify

MCI_SET in the MMPM version permits symbolic keywords for the information that is being set.
Further, in the MMPM version, it is not necessary to use the keyword 'value' before specifying the

integer
integer
integer
integer
1=wave
2 = custom
0,1
integer
0,1
0,1
integer
integer
integer
integer
integer
4=FAX
8 = modem
0,1
integer
integer
integer
1= wavein start
2 =wavein stop
4 = wave out start
8 = wave out stop

information you are setting. In the table below, the third column shows the valid values that can be set.

String Interface
set
notify
wait
audio mute
audio volume
call filter
avgbytespersec
bitspersample
APl style
ap discriminated

connect

Command Flag Equivalent

MCI_SET

MCI_NOTIFY

MCI_WAIT
MCI_TAM_SET_AUDIO_MUTE
MCI_TAM_SET_AUDIO_VOLUME
MCI_TAM_SET_CALL_FILTER
MCI_TAM_SET_AVGBY TESPERSEC
MCI_TAM_SET_BITSPERSAMPLE
MCI_TAM_SET_API_STYLE
MCI_TAM_SET_AP_DISCRIMINATED

MCI_TAM_SET_CONNECT

Valid Values

FALSE, TRUE

integer

FALSE, TRUE

integer

integer

mmpm, windows
fax, modem,

voice, dont answer

audio
handset

This document contains information that is subject to

change without notice.

209

MMWADKUMU-03

Appendix A - String Interfaces

dial flash time

dial pausetime
dial wait time
event handler
formattag

handset mute
handset volume
hook

caller id

quality

quiet

ring count
samplespersec
speed

pass call

advanced ring
microphone gain
dial min flash time
dial max flash time
low level waveio

Examples: set tps microphone gain 75 wait

MCI_TAM_SET DIAL_FLASH_TIME
MCI_TAM_SET DIAL_PAUSE_TIME
MCI_TAM_SET DIAL_WAIT_TIME
MCI_TAM_SET_EVENT_HANDLER
MCI_TAM_SET_FORMATTAG
MCI_TAM_SET_HANDSET MUTE
MCI_TAM_SET_HANDSET VOLUME
MCI_TAM_SET_HOOK
MCI_TAM_SET_CALLER_ID
MCI_TAM_SET_QUALITY
MCI_TAM_SET_QUIET_DURATION
MCI_TAM_SET_RING_COUNT
MCI_TAM_SET_SAMPLESPERSEC
MCI_TAM_SET_SPEED
MCI_TAM_SET_PASS_CALL
MCI_TAM_SET_ADVANCED_RING_NOTIFY
MCI_TAM_SET_MICROPHONE_GAIN

phoneline

audio& phoneline
handset& phoneline

speaker

speaker& phoneline

integer
integer
integer
integer
pcm, custom

FALSE, TRUE

integer

FALSE, TRUE
FALSE, TRUE

integer
integer
integer
integer

integer

fax, modem

integer

MCI_TAM_SET DIAL_MIN_FLASH_TIME integer
MCI_TAM_SET DIAL_MAX_FLASH_TIME integer

MCI_TAM_SET _LOW_LEVEL_WAVE_|O

set tpl hook true notify

set tpl event handler 48937930 wait
set tpl pass call fax notify

MCI_STATUS

wave out stop

FALSE, TRUE

wavein start, wavein
stop, wave out start,

MCI_STATUS has many Mwave TAM specific extensions. In addition, it returns information. Under
windows, it is up to the application to know how to interpret the information. The third column in the

table below indicates what the returned values mean.

String Interface
status
notify
wait
time format
length
mode

position

Command Flag Equivalent

MCI_STATUS
MCI_NOTIFY
MCI_WAIT

MCI_STATUS _TIME_FORMAT
MCI_STATUS_LENGTH
MCI_STATUS MODE

MCI_STATUS_POSITION

Returned Values

0 = milliseconds
integer

524 = not ready

525 = stop

526 = play

527 = record

528 = seek

529 = pause

530 = open

integer

This document contains information that is subject to

change without notice.

210

MMWADKUMU-03

Appendix A - String Interfaces

ready

audio mute
audio volume
avgbytespersec
bitspersample
connect

call filter

dial flash time
dial pausetime
dial wait time
formattag
handset mute
handset volume
handset

hook

line

quality

quiet

ring count
samplespersec
speed

calerid

microphone gain
dial min flash time
dial max flash time
worldtrade support
max mic gain

max audio volume
max greeting len no rec
max greeting len
max record len

max msg retrieve len
country code

min rings allowed
max rings allowed
max call retries

MCI_STATUS_READY

MCI_TAM_STATUS AUDIO_ MUTE
MCI_TAM_STATUS AUDIO_VOLUME
MCI_TAM_STATUS AVGBY TESPERSEC

0,1
0,1
integer
integer

MCI_TAM_STATUS_BITSPERSAMPLEinteger

MCI_TAM_STATUS CONNECT

MCI_TAM_STATUS CALL_FILTER
MCI_TAM_STATUS DIAL_FLASH_TIME
MCI_TAM_STATUS DIAL_PAUSE_TIME
MCI_TAM_STATUS DIAL_WAIT_TIME
MCI_TAM_STATUS FORMATTAG
MCI_TAM_STATUS HANDSET MUTE
MCI_TAM_STATUS HANDSET VOLUME

MCI_TAM_STATUS HANDSET
MCI_TAM_STATUS HOOK

MCI_TAM_STATUS LINE

MCI_TAM_STATUS QUALITY

MCI_TAM_STATUS QUIET_DURATION
MCI_TAM_STATUS RING_COUNT
MCI_TAM_STATUS SAMPLESPERSEC

MCI_TAM_STATUS SPEED

MCI_TAM_STATUS CALLER_ID

MCI_TAM_STATUS MICROPHONE_GAIN
MCI_TAM_STATUS DIAL_MIN_FLASH_TIME
MCI_TAM_STATUS DIAL_MAX_FLASH_TIME

1 =audio
2 = handset
4 = phoneline
5 = audio& phoneline
6 = handset& phoneline
8 = speaker
12 = speaker& phoneline
0,1
integer
integer
integer
1 = wave; 2= custom
0,1
integer
0 =down
1=up
0 = on hook
1 = off hook
1 = on hook
2 = dial tone
3 = busy
4 =ring tone
5= quiet
6 = unknown
7 =voice
8 = modem
9 =fax
integer
integer
integer
integer
integer
1= active
2 =disabled
3 = unsupported
integer
integer
integer

MCI_TAM_STATUS WORLDTRADE_SUPPORT integer

MCI_TAM_STATUS MAX_MIC_GAIN

integer

MCI_TAM_STATUS MAX_AUDIO_VOLUME integer
MCI_TAM_STATUS MAX_GREETING_LEN_NO_REC integer

MCI_TAM_STATUS MAX_GREETING_LEN
MCI_TAM_STATUS MAX_RECORD_LEN

integer
integer

MCI_TAM_STATUS MAX_MSG_RETRIEVE_LEN integer

MCI_TAM_STATUS COUNTRY_CODE

integer

MCI_TAM_STATUS AUTO_ANSWER_MIN_RINGS integer
MCI_TAM_STATUS AUTO_ANSWER_MAX_RINGS integer

MCI_TAM_STATUS MAX_CALL_RETRIES

integer

This document contains information that is subject to

change without notice.

211

MMWADKUMU-03 Appendix A - String Interfaces

min call retry time MCI_TAM_STATUS MIN_CALL_RETRY_TIME integer (in seconds)

Examples: status tpl hook wait
status fax station id notify
status tpl handset volume wait

In MMPM, MCI_STATUS has many Mwave TAM specific extensions. In addition, it returns
information. Under MMPM the high order word of the return code indicates the type of returned

information.

String Interface Command Flag Equivalent Returned Values
status MCI_STATUS
notify MCI_NOTIFY
wait MCI_WAIT
time format MCI_STATUS TIME_FORMAT milliseconds
(typeisMCI_TIME_FORMAT_RETURN)
length MCI_STATUS LENGTH integer
mode MCI_STATUS MODE not ready
stop
play
record
seek
pause
open
(typeisMCI_MODE_RETURN)
position MCI_STATUS POSITION integer
ready MCI_STATUS READY FALSE, TRUE
audio mute MCI_TAM_STATUS AUDIO_MUTE FALSE, TRUE
audio volume MCI_TAM_STATUS _AUDIO_VOLUME integer
avgbytespersec MCI_TAM_STATUS_AVGBY TESPERSEC integer
bitspersample MCI_TAM_STATUS BITSPERSAMPLE integer
connect MCI_TAM_STATUS _CONNECT audio
handset
phoneline
audio& phoneline
handset& phoneline
speaker
speaker& phoneline
(typeisMCI_CONNECTOR_TYPE_RETURN)
call filter MCI_TAM_STATUS CALL_FILTER FALSE, TRUE
dial flash time MCI_TAM_STATUS DIAL_FLASH_TIME integer
dial pausetime MCI_TAM_STATUS DIAL_PAUSE_TIME integer
dial wait time MCI_TAM_STATUS DIAL_WAIT_TIME integer
formattag MCI_TAM_STATUS FORMATTAG custom format
wave format
(typeisMCI_FORMAT_TAG_RETURN)
handset mute MCI_TAM_STATUS HANDSET_MUTE FALSE, TRUE

handset volume
handset

hook

MCI_TAM_STATUS HANDSET VOLUME integer

MCI_TAM_STATUS HANDSET

MCI_TAM_STATUS HOOK

down
up

TRUE
FALSE

This document contains information that is subject to

change without notice.

212

MMWADKUMU-03

Appendix A - String Interfaces

COUNTRY

line MCI_TAM_STATUS LINE

busy
ringing
quiet

unknown

voice
modem
fax

on hook
dial tone

(typeisMCI_USER_RETURN_LINE)

quality MCI_TAM_STATUS QUALITY integer
quiet MCI_TAM_STATUS QUIET _DURATION integer
ring count MCI_TAM_STATUS RING_COUNT integer
samplespersec MCI_TAM_STATUS SAMPLESPERSEC integer
speed MCI_TAM_STATUS_SPEED integer
calerid MCI_TAM_STATUS CALLER _ID active
disabled
unsupported
(typeisMCI_USER_RETURN_CALLER_ID)
microphone gain MCI_TAM_STATUS MICROPHONE_GAIN integer
dial min flash time MCI_TAM_STATUS DIAL_MIN_FLASH_TIME integer
dial max flash time MCI_TAM_STATUS DIAL_MAX_FLASH_TIME integer

worldtrade support
max mic gain
max audio volume

MCI_TAM_STATUS WORLDTRADE_SUPPORT integer
MCI_TAM_STATUS MAX_MIC_GAIN
MCI_TAM_STATUS MAX_AUDIO_VOLUME integer

integer

max greeting lennorec MCI_TAM_STATUS MAX_GREETING_LEN_NO_REC integer

max greeting len
max record len
max msg retrieve len
country code

The following information is returned:

MCI_TAM_STATUS MAX_GREETING_LEN

MCI_TAM_STATUS MAX_RECORD_LEN

MCI_TAM_STATUS MAX_MSG_RETRIEVE_LEN integer
MCI_TAM_STATUS COUNTRY_CODE

integer
integer

string

MCI_RETURN_TYPE_STRING For Country Code

STRING

USA or Canada WT_COUNTRY_USA_CANADA,O,

Belgium WT_COUNTRY_BELGIUM,0,

Hong Kong WT_COUNTRY_HONG_KONG,0,
Singapore WT_COUNTRY_SINGAPORE,O,
New Zealand WT_COUNTRY_NEW_ZEALAND,O,
Japan WT_COUNTRY_JAPAN,O,

Portugal WT_COUNTRY_PORTUGAL,Q,
Ireland WT_COUNTRY_IRELAND,O,
Generic WT_COUNTRY_GENERIC,0,

Spain WT_COUNTRY _SPAIN,0,

Greece WT_COUNTRY _GREECE,O,

Israel WT_COUNTRY_ISRAEL,0,

Taiwan WT_COUNTRY_TAIWAN,O,
Australia WT_COUNTRY_AUSTRALIA,O
Austria WT_COUNTRY_AUSTRIA,Q,
Mexico WT_COUNTRY_MEXICO,0,

South Africa WT_COUNTRY_SOUTH_AFRICA,Q,
Chile WT_COUNTRY_CHILE,O,

Switzerland

WT_COUNTRY_SWITZERLAND,O,

COUNTRY
Germany
Brazil
Russia
Y ugoslavia
Hungary
Czech Republic

L uxembourg
Norway
Denmark
France
Netherlands
United Kingdom
Sweden

Italy

Finland
Thailand
Korea
Malaysia
China

STRING
WT_COUNTRY_GERMANY,0,
WT_COUNTRY_BRAZIL,0,
WT_COUNTRY_RUSSIA,0,
WT_COUNTRY_YUGOSLAVIA,O,
WT_COUNTRY_HUNGARY,0,
WT_COUNTRY_CZECHREPUBLIC,
0,
WT_COUNTRY_LUXEMBORG,0,
WT_COUNTRY_NORWAY 0,
WT_COUNTRY_DENMARK,0,
WT_COUNTRY_FRANCE,0,
WT_COUNTRY_NETHERLANDS,0,
WT_COUNTRY_U_K,0,
WT_COUNTRY_SWEDEN,0,
WT_COUNTRY_ITALY,0,
WT_COUNTRY_FINLAND,0,
WT_COUNTRY_THAILAND,0,
WT_COUNTRY_KOREA,0
WT_COUNTRY_MALAYSIA,0,
WT_COUNTRY_PRC,0,

This document contains information that is subject to
change without notice.

213

MMWADKUMU-03 Appendix A - String Interfaces

min rings allowed MCI_TAM_STATUS AUTO_ANSWER_MIN_RINGS integer
max rings allowed MCI_TAM_STATUS AUTO_ANSWER_MAX_RINGS integer
max call retries MCI_TAM_STATUS MAX_CALL_RETRIES integer

min call retry time MCI_TAM_STATUS MIN_CALL_RETRY_TIME integer (in seconds)

Examples: status tpl hook wait
status tps speed notify
status tpl handset volume wait

MCI_STOP
MCI_STOP has one Mwave TAM extension: the ability to stop arecording and remove DTMF keys.
String Interface Command Flag Equivalent
stop MCI_STOP
notify MCI_NOTIFY
wait MCI_WAIT
remove dtmf MCI_STOP_REMOVE_DTMF
Example: stop tps wait

stop tpl remove dtmf wait

This document contains information that is subject to 214

change without notice.

MMWADKUMU-03 Appendix B - Programmer’s Notes

This document contains information that is subject to 215

change without notice.

MMWADKUMU-03 Appendix B - Programmer’s Notes

APPENDIX B - Programmer’s Notes

B1 - Fax Notes

Warning: Thefax and TAM drivers are different. Do not assume they work the same way.
Do not hang up the phone in any situation other than PHONE_EVENT_CALL_TERMINATED.

NOTE: If the user wants to abort the call then the app should issue aMCI_STOP. The app will then
receivea PHONE_EVENT_CALL_TERMINATED.

B2 - TAM Notes

Warning: Thefax and TAM drivers are different. Do not assume they work the same way.

The app should hang up the phone for the following reasons:
5 uninterrupted CALL_PROGRESS_QUIET eventsin arow
5 CALL_PROGRESS DIAL_TONE eventsin arow
A CALL_PROGRESS_QUIET event during play

Warning: Not all phone systems put out a dial tone when a person has hung up. The application
should count the number of uninterrupted quiets when not in arecord or play state then hang up. The
TAM driver will not give you a phone event call terminated.

An unidentified tone event should reset the quiet and dial tone counter.

The application can load afile before a call in order to save processing time during the call.

Call progress event unidentified tone can be received during atransition state i.e. between ring tone
and answer tone.

Beware of connection conflicts (handset , audio) between the TPS and TPL drivers
When the TPL driver isopened it will come up connected to normal phone.
When the TPS driver is opened it will come up connected to audio.

If the dial fails then the application needs to hang up the phone (DO NOT DO THISWITH THE
FAX1!).

A mci-stop should be made with the notify flag set so that it will be queued up behind the outstanding
play or record.

The application should be aware that the discriminator can cause the record to be aborted. In such a
case the app will receive aPHONE_EVENT_CALL_TERMINATED as well.

This document contains information that is subject to 216

change without notice.

MMWADKUMU-03 Appendix B - Programmer’s Notes

Set audio volume vs. handset volume
Application MUST perform WinCreateM sgQueue(HAB, 100) - OS/2
SetM essageQueue(100) - Windows
Thiswill ensure that the application does not lose event messages. The windows default is only 8!!!
If arecord or play fails the application still needsto do aMCl_STOP
Set speed takes nearest match (rounding down) if no exact match.
Set speakerphone mode disables discrimination on calling tones.
The application can not load a file while a play or record isin progress.
If MCI_OPEN fails and the error code > 512 then just print out the number because GetErrorString will
not provide the correct information.
MciGetErrorString requires a device id along with the error code. When MCI_OPEN fails no deviceid
is returned therefore calling M ciGetErrorString with the error code > 512 (fax/tam error codes) will
return an incorrect error string. The error string that will be returned will be for a device driver
currently in the system and your error code may be something like (cdaudio error).
The microphone should not be right next to the monitor, it will cause problems.
If in speakerphone mode answer tone will not work properly.
On hook and Off hook is electrical.

TAM set audio volume cant be done during dial.

The application can only get handset key eventsin TPS if TPSis connected to handset. Currently TPL
only getsflash “1”.

Status position during Play From is not updated until play gets going. To get around this the
application should seek to O before play to get current position in right place.

Application can not set volume during dial
There is no volume change for the phoneline record or play.
Mci set quality only with new file loaded.

Rule: If app takes phone off hook it is responsible for putting it back on hook, else the driver does it.

B3 - Integrated Application Notes

If the app chooses to use the same event handler for both fax and tam, care should be taken as to which
device an event is from.

i.e. PHONE_EVENT_CALL_TERMINATED will be sent to the tam app when a call has been
discriminated as afax call. The app should issue an on hook (making sure to use the TAM DEVICE
ID).

This document contains information that is subject to 217

change without notice.

MMWADKUMU-03 Appendix B - Programmer’s Notes

The app writer should be aware that mci_set and mci_status use the same constants.
i.e. MCI_TAM_SET_EVENT_HANDLER isdifferent than MCI_FAX_SET_EVENT_HANDLER

This document contains information that is subject to 218

change without notice.

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

APPENDIX C - Mwave Play and Record Mixer Definition File

The following is example source code for the Mwave play and record mixer definition file. A copy of this
code can be found on the companion diskette.

1
/IMwave Play and Record mixer definition file

//Some hints in creating:

/I Dont use the pound sign it is a special character

/I Dont use any of the key words

/I Always put something as the last thing in the file so that we dont reach
/I eof before or during the read of the last record

/I Last modification 3 13 95

1

#DESTNUM

2, /I Number of Destinations (waveply, waverecord)

#SOURCENUM

6, /I Real Number of Sources IN THIS ORDER (MIDI, WAVE, SB, CD, LINE, MIC)
#TOTALCONTROLS

76, /I total number of controls

Il
/I source controls map

/I The first index is the dest no

/I The second is the "relative" source no

/I The value is the no of controls at this source as connected to this dest.
/I
#CONTROLSSRC

/1 d0, rsO (MIDI), 4 ¢ (VOL, BAL, MUTE, PM)

/1 dO, rs 1 (WAVE), 4 ¢ (VOL, BAL, MUTE, PM)

11 dO, rs 2 (SB), 3¢ (VOL, BAL, MUTE, PM)

/1 do, rs 3 (CD), 5 ¢ (VOL, BAL, MUTE, PM, SWITCH SELECT)
/1d0, rs4 (LINE), 5 ¢ (VOL, BAL, MUTE, PM, SWITCH SELECT)
/1d0, rs5 (MIC), 5 ¢ (VOL, BAL, MUTE, PM, SWITCH SELECT)
/1 d1, rsO (MIDI), 4 c (VOL, BAL, MUTE, PM)

/1 d1, rs 1 (WAVE), 4 ¢ (VOL, BAL, MUTE, PM)

/1 d1, rs2 (SB), 4 ¢ (VOL, BAL, MUTE, PM)

/1 d1, rs3(CD), 5¢ (VOL, BAL, MUTE, PM, SWITCH SELECT)
/1 d1, rs4 (LINE), 5¢ (VOL, BAL, MUTE, PM, SWITCH SELECT)
. 1/ d1,rs5(MIC),5¢c(VOL, BAL, MUTE, PM, SWITCH SELECT)

SRS RGINENENTS IS N WNENFN

1
/I auControlMap- these come in triplets

/I The index is the control number

/I The first UINT is the destination.

/I The second INT isthe "relative" source number

/I When "relative" source num is-1 (INT_MAX), the control is"at the dest.”
/I The third entry is the number of channels for this control

1
#CONTROLMAP

0, /IControl O (volume), dest O (waveply), at dest, 2 channels
-1,

2,

0, /IControl 1 (balance), dest O (waveply), at dest, 2 channels
-1,

2,

0, /I/Control 2 (mute), dest 0 (waveply), at dest, 1 channel

-1,

1,

0, /IControl 3 (peakmeter), dest O (waveply), at dest, 2 channels

This document contains information that is subject to 219

change without notice.

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

-1,
2,

0, //Control 4 (gsound on), dest O (waveply), at dest, 2 channels

-1,

1,

0, //Control 5 (reverb on), dest 0 (waveply), at dest, 1 channels

-1,

1,

0, /IControl 6 (reverb depth), dest O (waveply), at dest, 2 channels
-1,

2,

0, /IControl 7 (chorus depth), dest O (waveply), at dest, 2 channels
-1,

2,

0, /I/Control 8 (treble on), dest O (waveply), at dest, 1 channels

-1,

1,

0, //Control 9 (treble slider), dest 0 (waveply), at dest, 2 channels
-1,

2,

0, //Control 10(bass slider), dest 0 (waveply), at dest, 2 channels A
-1,

2,

1, //Control 11 (volume), dest 1 (waverec), at dest, 2 channels B
-1,

2,

1, //Control 12 (balance), dest 1 (waverec), at dest, 2 channels C
-1,

2,

1, //Control 13 (mute), dest 1 (waverec), at dest, 1 channel D
-1,

1,

1, //Control 14 (peakmeter), dest 1 (waverec), at dest, 2 channelsE
-1,

2,

1, //Control 15 (gsound on), dest 1 (waverec), at dest, 1 channels F
-1,

1,

1, //Control 16(reverb on), dest O (waveply), at dest, 1 channels 10
-1,

1,

1, //Control 17(reverb depth), dest 1 (waveply), at dest, 2 channels 11
-1,

2,

1, //Control 18 (chorus depth), dest 1 (waveply), at dest, 2 channels 12
-1,

2,

1, //Control 19 (treble on), dest 1 (waverec), at dest, 1 channels 13
-1,

1,

P

/[Control 20 (treble depth), dest 1 (waverec), at dest, 2 channels 14

/IControl 21 (bass depth), dest 1 (waverec), at dest, 2 channels 15

' '
pENA

/IControl 22 (volume), dest O (waveply), source O (midiout), 2 channels 16

/IControl 23 (balance), dest 0 (waveply), source 0 (midiout), 2 channels 17

//Control 24 (mute), dest O (waveply), source O (midi), 1 channels 18

OCONOONOON

This document contains information that is subject to 220

change without notice.

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

//Control 25 (pm), dest O (waveply), source O (midi), 2 channels 19

/IControl 26 (volume), dest O (waveply), source 1 (wave), 2 channels 1A

//Control 27 (balance), dest 0 (waveply), source 1 (wave), 2 channels 1B

//Control 28 (mute), dest 0 (waveply), source 1 (wave), 1 channels 1C

//Control 29 (pm), dest O (waveply), source 1 (wave), 2 channels 1D

/IControl 30 (volume), dest O (waveply), source 2 (SB), 2 channels 1E

/IControl 31 (balance), dest 0 (waveply), source 2 (SB), 2 channels 1F

/IControl 32 (mute), dest O (waveply), source 2 (SB), 1 channels 20

//Control 33 (pm), dest O (waveply), source 2 (SB), 2 channels 21

/IControl 34 (volume), dest O (waveply), source 3 (CD), 2 channels 22

/IControl 35 (balance), dest 0 (waveply), source 3 (CD), 2 channels 23

/IControl 36 (mute), dest 0 (waveply), source 3 (CD), 1 channels 24

//Control 37 (pm), dest O (waveply), source 3 (CD), 2 channels 25

/IControl 38 (on or off), dest 0 (waveply), source 3 (CD), 1 channels 26

/IControl 39 (volume), dest O (waveply), source 4 (LINE), 2 channels 27

//Control 40 (balance), dest 0 (waveply), source 4 (LINE), 2 channels 28

//Control 41 (mute), dest O (waveply), source 4 (LINE), 1 channels 29

//Control 42 (pm), dest 0 (waveply), source 4 (LINE), 2 channels 2A

/IControl 43 (on or off), dest O (waveply), source 4 (LINE), 1 channels 2B

/IControl 44 (volume), dest O (waveply), source 5 (MIC), 2 channels 2C

/IControl 45 (balance), dest 0 (waveply), source 5 (MIC), 2 channels 2D

NOONUIORPPAPONPOPRPPONPONPOPRPWONWORPWONWONWONNORLPNONNONNONPOPLPPODNPONPEPONOOR

This document contains information that is subject to 221

change without notice.

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

, /IControl 46 (mute), dest O (waveply), source 5 (MIC), 1 channels 2E

//Control 47 (pm), dest O (waveply), source 5 (MIC), 2 channels 2F

/IControl 48 (on or off), dest 0 (waveply), source 5 (MIC), 1 channels 30

/IControl 49 (volume), dest 1 (waverec), source 0 (midiout), 2 channels 31

/IControl 50 (balance), dest 1 (waverec), source O (midiout), 2 channels 32

/[Control 51 (mute), dest 1 (waverec), source 0 (midi), 1 channels 33

/[Control 52 (pm), dest 1 (waverec), source 0 (midi), 2 channels 34

/IControl 53 (volume), dest 1 (waverec), source 1 (wave), 2 channels 35

/IControl 54 (balance), dest 1 (waverec), source 1 (wave), 2 channels

/[Control 55 (mute), dest 1 (waverec), source 1 (wave), 1 channels

/IControl 56 (pm), dest 1 (waverec), source 1 (wave), 2 channels

/IControl 57 (volume), dest 1 (waverec), source 2 (SB), 2 channels

//Control 58 (balance), dest 1 (waverec), source 2 (SB), 2 channels

/[Control 59 (mute), dest 1 (waverec), source 2 (SB), 1 channels

/[Control 60 (pm), dest 1 (waverec), source 2 (SB), 2 channels

/IControl 61 (volume), dest 1 (waverec), source 3 (CD), 2 channels

/[Control 62 (balance), dest 1 (waverec), source 3 (CD), 2 channels

/[Control 63 (mute), dest 1 (waverec), source 3 (CD), 1 channels

/[Control 64 (pm), dest 1 (waverec), source 3 (CD), 2 channels

/[Control 65 (on or off), dest 1 (waverec), source 3 (CD), 1 channels

/[Control 66 (volume), dest 1 (waverec), source 4 (LINE), 2 channels

0
5
1
0
5
2
0
5
1
1
0
2
1
0
2
1
0
1
1
0
2
1
1
2
1
1
2
1
1
1
1
1
2
1
2
2
1
2
2
1
2
1
1
2
2
1
3
2
1
3
2
1
3
1
1
3
2
1
3
1
1
4
2
1

/[Control 67 (balance), dest 1 (waverec), source 4 (LINE), 2 channels

This document contains information that is subject to
change without notice.

222

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

/[Control 68 (mute), dest 1 (waverec), source 4 (LINE), 1 channels

/[Control 69 (pm), dest 1 (waverec), source 4 (LINE), 2 channels

/[Control 70 (on or off), dest 1 (waverec), source 4 (LINE), 1 channels

/[Control 71 (volume), dest 1 (waverec), source 5 (MIC), 2 channels

/[Control 72 (balance), dest 1 (waverec), source 5 (MIC), 2 channels

/[Control 73 (mute), dest 1 (waverec), source 5 (MIC), 1 channels

/[Control 74 (pm), dest 1 (waverec), source 5 (MIC), 2 channels

/[Control 75 (on or off), dest 1 (waverec), source 5 (MIC), 1 channels

arNMNOORPPRPORPNOORNORPERPRARPNRARPRRAREREDNDA

1,
Il
/I Source map, maps a relative source to the actual source per destination.
// these come in pairs

/I The first index is the destination no

/I the 2nd the relative source no (0,1,2 etc)

/I then each one that doesnt exist at that dest getsa UINT_MAX

/I and the third the actual source number

/I
#SOURCEMAP

0, // for dest 0, relsource 0, actsource 0
1, // for dest O, relsource 1, actsource 1
2, // for dest 0, relsource 2, actsource 2
3, // for dest 0, relsource 3, actsource 3
4, [/ for dest 0, relsource 4, actsource 4
5, // for dest 0, relsource 5, actsource 5
0, // for dest 1, relsource 0, actsource 0
1, // for dest 1, relsource 1, actsource 1
2, // for dest 1, relsource 2, actsource 2
3, // for dest 1, relsource 3, actsource 3
4, [/ for dest 1, relsource 4, actsource 4
5, // for dest 1, relsource 5, actsource 5

Il

/I Source Definitions

Il

/ISource0 - MidiOut

Il

#SOURCEDEF

0, /I dwDestination

0, /I dwSource SOURCE_MIDIOUT
0, /l dwLinelD SOURCE_MIDIOUT
h80000000, // MIXERLINE_LINEF_SOURCE fdwLine
0 /I dwUser

h00001004, // MIXERLINE_COMPONENTTYPE_SRC_SYNTHESIZER dwComponentType
2, // cChannels

0, /I cConnections
0, /I cControls
Midi, // short name

Midi Play Out,// long name

This document contains information that is subject to
change without notice.

223

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

MIDI, Il szLineTypeName (my keyword for type of ling)
MIDIOUT, /I szLineLongName (my keyword)

3, // MIXERLINE_TARGETTYPE_MIDIOUT target dwType
0, /I target dwDevicel D

1, /I target wMid MM_MICROSOFT

h7FFF, // PID_SYNTH target wPid
h0100, /I DRV_VERSION_SYNTH target vDriverVersion

Mwave MIDI Synthesizer,

1

/I Source 1 - WaveOut

1

#SOURCEDEF
0,

1,

1,

h80000000,

0,

h00001008,

2,

0,

0,

Wave,

Wave Player Output,
WAVE,
WAVEOUT,

1,

0,

1,

15,

h0200,

/I target szPname

/I dwDestination

/I dwSource SOURCE_WAVEOUT

/l dwLinelD SOURCE_WAVEOUT

/I MIXERLINE_LINEF_SOURCE fdwLine

/I dwUser

/I MIXERLINE_COMPONENTTYPE_SRC_WAVEOUT dwComponentType
/I cChannels

/I cConnections

// cControls

/I short name

/I long name

/I szLineTypeName (my keyword for type of line)

/I szLinel.ongName (my keyword)

/I MIXERLINE_TARGETTYPE_WAVEOUT target dwType
/I target dwDevicel D

/Il target wMid MM _IBM

/I PID_WAVEOUT target wPid

/I DRV_VERSION_WAVEOUT target vDriverVersion

Mwave Wave Audio Driver,// target szPname

1

/] Source 2 - SB Out (games)

Il
#SOURCEDEF

0,

2,

2,

h80000000,

0,

h00001000,

2,

0,

0,

SndBlstr,
SoundBlaster,
GAMES,
SOUNDBLASTER,

0,
Undefined,
Il

/I Source 3 - SB CD
Il

#SOURCEDEF
0,

3,

3,

h80000000,

/I dwDestination (not use for sources)

/I dwSource SOURCE_SB

/l dwLinelD SOURCE_SB

/I MIXERLINE_LINEF_SOURCE fdwLine

/I dwUser

// MIXERLINE_COMPONENTTY PE_SRC_UNDEFINED dwComponentType
/I cChannels

/I cConnections

// cControls

/I short name

/l long name

/I szLineTypeName (my keyword for type of line)

/I szLinel.ongName (my keyword)

/I MIXERLINE_TARGETTYPE_UNDEFINED taget dwType
/I target dwDevicel D

/I target wMid

/I target wPid

/I target vDriverVersion

/I target szPname

/I dwDestination (not used for sources)

/I dwSource CD

// dwLinelD CD

/I MIXERLINE_LINEF_SOURCE fdwLine

This document contains information that is subject to

change without notice.

224

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

0,
h00001005,

0,
Undefined,
Il

/I Source 4 - SB LINE
Il

#SOURCEDEF
0,

4,

4,

h80000000,

0,

h00001002,

0,
Undefined,
Il

/I Source 5 - MIC
Il

#SOURCEDEF
0,

S5,

S5,

h80000000,

0,

h00001003,

0,
Undefined,
Il

/I mxIDestinations
Il

/I dwUser

// MIXERLINE_COMPONENTTY PE_SRC_COMPACTDISC dwComponentType
/I cChannels

/I cConnections

// cControls

/I short name

I/l long name

/I szLineTypeName (my keyword for type of line)

/I szLinel.ongName (my keyword)

/I MIXERLINE_TARGETTYPE_UNDEFINED target dwType
/I target dwDevicel D

/I target wMid

/I target wPid

/I target vDriverVersion

/I target szPname

/I dwDestination (not used for sources)

/I dwSource LINE

/l dwLinelD LINE

/I MIXERLINE_LINEF_SOURCE fdwLine

/I dwUser

/I MIXERLINE_COMPONENTTYPE_SRC_LINE dwComponentType
/I cChannels

/I cConnections

// cControls

/I short name

/l long name

/I szLineTypeName (my keyword for type of line)

/I szLinel.ongName (my keyword)

/I MIXERLINE_TARGETTYPE_UNDEFINED target dwType
/I target dwDevicel D

/I target wMid

/I target wPid

/I target vDriverVersion

/I target szPname

/I dwDestination (not used for sources)

/I dwSource MIC

/l dwLinelD MIC

/I MIXERLINE_LINEF_SOURCE fdwLine

/I dwUser

/l MIXERLINE_COMPONENTTY PE_SRC_MICROPHONE dwComponentType
/I cChannels

/I cConnections

// cControls

/I short name

/l long name

/I szLineTypeName (my keyword for type of line)

/I szLinel.ongName (my keyword)

/I MIXERLINE_TARGETTYPE_UNDEFINED target dwType
/I target dwDevicel D

/I target wMid

/I target wPid

/I target vDriverVersion

/I target szPname

This document contains information that is subject to

change without notice.

225

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

/I Destination 0 - Waveout

1

#DESTDEF

0, /I dwDestination DEST_WAVEOUT

0, /I dwSource

hFFFF0000, // dwLinelD

0, /l fdwLine

0, /I dwUser

h00000004, /I MIXERLINE_COMPONENTTY PE_DST_SPEAKERS dwComponentType
2, /I cChannels

6, /I cConnections

11, /I cControls

M aster, /I short name

Master Speaker Out, /I long name

WAVE, /I szLineTypeName (my keyword for type of line)
WAVEOUT, /I szLinel.ongName (my keyword)

1, /I MIXERLINE_TARGETTYPE_WAVEOUT target dwType
0, /I target dwDevicel D

1, /Il target wMid MM _IBM

15, I/ PID_WAVEOUT target wPid

h0200, /I DRV_VERSION_WAVEOUT target vDriverVersion

Mwave Wave Audio Driver,// target szPname
Il
/I Destination 1 - Wavein
Il

#DESTDEF

1, /I dwDestination DEST_WAVEIN

0, /I dwSource

hFFFF0001, /I dwLinelD

0, // fdwLine

0, /I dwUser

h00000007, /I MIXERLINE_COMPONENTTYPE_DST_WAVEIN dwComponentType
2, /I cChannels

6, /I cConnections

11, /I cControls

M aster, /I short name

Master Record In, /I long name

WAVEIN, /I szLineTypeName (my keyword for type of line)
WAVEIN, /I szLinel.ongName (my keyword)

2, /I MIXERLINE_TARGETTYPE_WAVEIN target dwType
0, /I target dwDevicel D

1, /Il target wMid MM _IBM

14, /I PID_WAVEIN target wPid

h0200, /I DRV_VERSION_WAVEIN target vDriverVersion

Mwave Wave Audio Driver,// target szPname
1
/I end of initialization of destinations
1
/I mxc (controls)
1
1
/I The following numbers are the destination numbers:
/I DEST_WAVEOUT 0

/I DEST_WAVEIN 1

/I The following numbers are the relative source numbers for dest 0
/I SOURCE_MIDIOUT 0
/I SOURCE_WAVEOUT 1

/I SOURCE_SB 2
/I SOURCE_CD 3
/I SOURCE_LINE 4
/I SOURCE_MIC 5

This document contains information that is subject to
change without notice.

226

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

/I The following numbers are the relative source numbers for dest 1
/I SOURCE_MIDIOUT 0
/I SOURCE_WAVEOUT 1

/I SOURCE_CD 3
/I SOURCE_LINE 4
/I SOURCE_MIC 5

/IControl0 - MASTER volume at DAC
Il

#CONTROLDEF

0, /I VOL_OUTMIDI dwControlID

h50030001, // MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
0, /1 fdwControl

0, /I cMultipleltems

VOLUME, /I szShortName

MASTER, /| szZName

VOLUME, /I szControl TypeName (my keyword for type of control)
MASTER, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwM inimum

hFFFF, /I Bounds.dwM aximum

16, /I Metrics.cSteps

SPKRLVOL, I/ ini file entry

SPKRRVOL, I/ ini file entry

Il
/IControll - MASTER baance at DAC
Il

#CONTROLDEF

1, /I BAL_LINE dwControlID

h40020001, // MIXERCONTROL_CONTROLTY PE_PAN dwControl Type
0, /I fdwControl

0, /I cMultipleltems

BALANCE, /I szShortName

MASTER, /| szZName

BALANCE, /I szControl TypeName (my keyword for type of control)
MASTER, /I szControlLineName (my keyword for line this control applies to)
#LNGWORD

-32768, // Bounds.dwM inimum

32767, /I Bounds.dwM aximum

16, /I Metrics.cSteps

BALMAST, /I'INI file entry

BALMAST, /I'INI file entry (only 1 is used)

Il
/IControl2 - MUTE of Master DAC
Il

#CONTROLDEF

2, /I MUTE_OUTLINE dwControlID

h20010002, /I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
1, /I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

0, /I cMultipleltems

MUTE, /I szShortName

MASTER, /l szZName

MUTE, /I szControl TypeName (my keyword for type of control)
MASTER, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwMinimum

1, /I Bounds.dwMaximum

1, /I Metrics.cSteps

MUTEMAST, I ini file entry

Il
/IControl3 - MASTER Peak meter at DAC
Il

This document contains information that is subject to
change without notice.

227

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

#CONTROLDEF

3, /I'VU_LINEOUT dwControlID

h10020001, /I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
0, /I fdwControl

0, /I cMultipleltems

PEAKMETER, /I szShortName

MASTER, /| szZName

PEAKMETER, /I szControl TypeName (my keyword for type of control)
MASTER, /I szControlLineName (my keyword for linethis control applies to)
#LNGWORD

-32768, // Bounds.dwMinimum

32767, /I Bounds.dwM aximum

0, /I Metrics.cSteps

NONE, I/ ini file entry

I

/IControl4 - Q Sound enable at DAC

I

#CONTROLDEF

4, /I QSND_ENABLE dwControlID

h20010005, /I MIXERCONTROL_CONTROLTY PE_STEREOENH dwControl Type
1, /I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

0, /I cMultipleltems

ENABLE, /I szShortName

QSOUND, /| szZName

QSOUND, /I szControl TypeName (my keyword for type of control)
MASTER, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwM inimum

1, /I Bounds.dwM aximum

0, /I Metrics.cSteps

QSOUND, /I'INI file entry

1

/IControl5 - REVERB and CHORUS ON at DAC

1

#CONTROLDEF
S5,

h20010000,

1,

0,

ENABLE,
EFFECTS ON,
REVEN,
MASTER,
#DBLWORD
0,

1,

1,

REVEN,

/I REV_ENABLE dwControlID

/I MIXERCONTROL_CONTROLTY PE_BOOLEAN dwControl Type
/I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

/I'INI file entry

1

/IControl6 - REVERB depth at DAC

1

#CONTROLDEF
6,

h50030000,

0,

0,

REVERB,
REVERB DEPTH,
REVERB,
MASTER,
#DBLWORD

0,

65535,

32,

/I REV_ENABLE dwControlID
/I MIXERCONTROL_CONTROLTY PE_FADER dwControl Type
// fdwControl
/I cMultipleltems
/I szShortName
/I szName
/I szControl TypeName (my keyword for type of control)
/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

This document contains information that is subject to

change without notice.

228

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

REVMAST, /I'INI file entry
REVMAST, /I'INI file entry
Il
/IControl7 - CHORUS DEPTH at DAC
Il

#CONTROLDEF

7, /I REV_ENABLE dwControlID

h50030000, /l MIXERCONTROL_CONTROLTY PE_FADER dwControl Type
0, /I fdwControl

0, /I cMultipleltems

CHORUS, /I szShortName

CHORUS DEPTH, /I szName

CHORUS, /I szControl TypeName (my keyword for type of control)
MASTER, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwM inimum

65535, /I Bounds.dwM aximum

32, /I Metrics.cSteps

CHOMAST,

CHOMAST,

Il
/IControl8 - MASTER BASS and TREBLE enable at DAC
Il

#CONTROLDEF

8, /I BASS _LINEOUT dwControlID

h20010000, /l MIXERCONTROL_CONTROLTY PE_BOOLEAN dwControl Type
1, /I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

0, /I cMultipleltems

ENABLE, /I szShortName

TREBLE ENABLE, /I szName

BASSEN, /I szControl TypeName (my keyword for type of control)
MASTER, /I szControlLineName (my keyword for line thiscontrol applies to)
#DBLWORD

0, // Bounds.dwM inimum

1, /I Bounds.dwM aximum

1, /I Metrics.cSteps

BASSEN, /I'INI file entry

Il
/IControl9 - MASTER TREBLE slider at DAC
Il

#CONTROLDEF

9, /I BASS _LINEOUT dwControlID

h50030003, /I MIXERCONTROL_CONTROLTY PE_TREBLE dwControl Type
0, /I fdwControl

0, /I cMultipleltems

TREBLE, /I szShortName

TREBLE CONTROL, /I szName

TREBLE, /I szControl TypeName (my keywad for type of control)

MASTER, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwMinimum

65535, /I Bounds.dwM aximum

32, /I Metrics.cSteps

TREMAST, /I'INI file entry

TREMAST, /I'INI file entry (only 1 is used)

Il
/IControl10 - MASTER Bass slider at dac
Il

#CONTROLDEF

10, /I BASS _LINEOUT dwcControlID

h50030002, // MIXERCONTROL_CONTROLTY PE_BASS dwControl Type
0, /I fdwControl

0, /I cM ultipleltems

BASS, /I szShortName

This document contains information that is subject to
change without notice.

229

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

BASS SLIDER,
BASS,
MASTER,
#DBLWORD

0,

65535,

32,

BASMAST,
BASMAST,

1l

/I szName
/I szControl TypeName (my keyword for type of control)
/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum

/I Bounds.dwM aximum

/I Metrics.cSteps

/I'INI file entry

/I'INI file entry (only 1 is used)

/IControl11 - MASTER volume at wavein

1

#CONTROLDEF
11,
h50030001,
0,

0,

VOLUME,
MASTERIN,
VOLUME,
MASTERIN,
#DBLWORD
0,

hFFFF,

16,
RECLVOL,
RECRVOL,

/I VOL_WAVEIN dwControlID

/I MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I/ ini file entry

I/ ini file entry

Il
/IControl12
Il

- MASTER balance at wavein

#CONTROLDEF
12,

h40020001,

0,

0,

BALANCE,
MASTERIN,
BALANCE,
MASTERIN,
#LNGWORD
-32768,

32767,

16,
BALMASTIN,
BALMASTIN,

Il

/I BAL_LINE dwControlID

// MIXERCONTROL_CONTROLTY PE_PAN dwControl Type

// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum

/I Bounds.dwM aximum

/I Metrics.cSteps

/I'INI file entry

/I'INI file entry (only 1 is used)

/IControl13
Il

- MUTE of Master wavein

#CONTROLDEF
13,

h20010002,

1,

0,

MUTE,
MASTERIN,
MUTE,
MASTERIN,
#DBLWORD

0,

1,

0,
MUTEMASTIN,
Il

/I MUTE_OUTLINE dwControlID

/I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
/I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I ini file entry

/IControl 14

- Peak meter at wavin dest

This document contains information that is subject to

change without notice.

230

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

1

#CONTROLDEF
14,

h10020001,

0,

0,

PEAKMETER,
MASTERIN,
PEAKMETER,
MASTERIN,
#LNGWORD
-32768,

32767,

0,

NONE,

Il

/I'VU_LINEOUT dwControlID

/I MIXERCONTROL_CONTROLTY PE_PEAKMETER dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I/ ini file entry

/IControl15 - Q Sound enable at wi

1

#CONTROLDEF
15,

h20010005,

1,

0,

ENABLE,
QSOUND,
QSOUND,
MASTERIN,
#DBLWORD

0,

1,

1,

QSOUNDIN,

il

/I QSND_ENABLE dwControlID

/I MIXERCONTROL_CONTROLTY PE_STEREOENH dwControl Type
/I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

/I'INI file entry

/IControl16 - REVERB and CHORUS ON at wi

1

#CONTROLDEF
16,

h20010000,

1,

0,

ENABLE,
REVERB ON,
REVEN,
MASTERIN,
#DBLWORD

0,

1,

1,

REVENIN,

Il

/I REV_ENABLE dwControlID

/l MIXERCONTROL_CONTROLTY PE_BOOLEAN dwControl Type
/I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

/I'INI file entry

/IControl17 - REVERB depth at wi

1

#CONTROLDEF
17,

h50030000,

0,

0,

REVERB,
REVERB DEPTH,
REVERB,
MASTERIN,
#DBLWORD

0,

65535,

/I REV_ENABLE dwControlID
/I MIXERCONTROL_CONTROLTY PE_FADER dwControl Type
// fdwControl
/I cM ultipleltems
/I szShortName
/I szName
/I szControl TypeName (my keyword for type of control)
/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum

This document contains information that is subject to

change without notice.

231

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

32, /I Metrics.cSteps
REVMASTI, /I'INI file entry
REVMASTI, /I'INI file entry

Il
/IControl18 - CHORUS DEPTH at wi
Il

#CONTROLDEF

18, /I REV_ENABLE dwControlID

h50030000, /l MIXERCONTROL_CONTROLTY PE_FADER dwControl Type
0, /I fdwControl

0, /I cMultipleltems

CHORUS, /I szShortName

CHORUS DEPTH, /I szName

CHORUS, /I szControl TypeName (my keyword for type of control)
MASTERIN, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwM inimum

65535, /I Bounds.dwM aximum

32, /I Metrics.cSteps

CHOMASTI,

CHOMASTI,

Il
/IControl19 - MASTER BASS TREBLE on at wi
Il

#CONTROLDEF

19, /I BASS_LINEOUT dwControlID

h20010000, /l MIXERCONTROL_CONTROLTY PE_BOOLEAN dwControl Type
1, /I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

0, /I cMultipleltems

ENABLE, /I szShortName

TONE CONTROL, /I szName

BASSEN, /I szControl TypeName (my keyword for type of control)
MASTERIN, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, /I Bounds.dwMinimum

1, /I Bounds.dwM aximum

1, /I Metrics.cSteps

BASSENIN, /I'INI file entry

Il
/IControl20 - MASTER TREBLE slider at wi
Il

#CONTROLDEF

20, /I BASS _LINEOUT dwControlID

h50030003, /I MIXERCONTROL_CONTROLTY PE_TREBLE dwControl Type
0, /I fdwControl

0, /I cM ultipleltems

TREBLE, /I szShortName

TREBLE CONTROL, /I szName

TREBLE, /I szControl TypeName (my keyword for type of control)
MASTERIN, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, /I Bounds.dwMinimum

h7FFF, /I Bounds.dwM aximum

32, /I Metrics.cSteps

TREMASTI, /I'INI file entry

TREMASTI, /I'INI file entry (only 1 is used)

Il
/IControl21 - MASTER Bass slider at wi
Il

#CONTROLDEF
21, /I BASS _LINEOUT dwcControlID
h50030002, // MIXERCONTROL_CONTROLTY PE_BASS dwControl Type

This document contains information that is subject to
change without notice.

232

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

0,

0,

BASS,

BASS SLIDER,
BASS,
MASTERIN,
#DBLWORD

0,

65535,

32,
BASMASTI,
BASMASTI,

Il

// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum

/I Bounds.dwM aximum

/I Metrics.cSteps

/I'INI file entry

/I'INI file entry (only 1 is used)

/IControl22

- Volume between MIDI and DAC

Il
#CONTROLDEF
22,

h50030001,

0,

0,

VOLUME,

MIDI,
VOLUME,

MIDI,
#DBLWORD

0,

hFFFF,

64,

MIDILVOL,
MIDIRVOL,

1l

/I VOL_OUTMIDI dwControlID

// MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I ini file entry

I/ ini file entry

/IControl23
Il

- Balance between midi and DAC

#CONTROLDEF
23,
h40020001,

0,

0,
BALANCE,
MIDI,
BALANCE,
MIDI,
#LNGWORD
-32768,
32767,

16,
BALMIDI,
BALMIDI,

/I BAL_LINE dwControlID

// MIXERCONTROL_CONTROLTY PE_PAN dwControl Type

// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum

/I Bounds.dwM aximum

/I Metrics.cSteps

/I'INI file entry

/I'INI file entry (only 1 is used)

Il
/IControl 24
Il

- MUTE of Midiout to DAC

#CONTROLDEF
24,

h20010002,

1,

0,

MUTE,

MIDI,

MUTE,

MIDI,
#DBLWORD

/I MUTE_OUTMIDI dwControlID

/I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
/I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

/I cM ultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

This document contains information that is subject to

change without notice.

233

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

MUTEMIDI,

I ini file entry

1

/IControl25 - Peak meter at MIDlout to DAC

1

#CONTROLDEF

25,

h10020001,

0,

0,
PEAKMETER,
MIDI,
PEAKMETER,
MIDI,
#LNGWORD
-32768,

32767,

0,

NONE,

/I'VU_MIDIOUT dwControlID

/I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I/ ini file entry

1

/IControl26 - Volume between WAVE and DAC

1

#CONTROLDEF

26,
h50030001,

0,

0,

VOLUME,
WAVE,
VOLUME,
WAVE,
#DBLWORD
0,

hFFFF,

64,
WAVELVOL,
WAVERVOL,

/I VOL_OUTWAVE dwControlID

// MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

// Bounds.dwMinimum
/I Bounds.dwM aximum
/I Metrics.cSteps

/I ini file entry

I/ ini file entry

1

/IControl27 - Balance between wave and DAC

1

#CONTROLDEF

27,
h40020001,

0,

0,
BALANCE,
WAVE,
BALANCE,
WAVE,
#LNGWORD
-32768,
32767,

16,
BALWAVE,
BALWAVE,
Il

/I BAL_WAVE dwControlID

// MIXERCONTROL_CONTROLTY PE_PAN dwControl Type

// fdwControl

/I cM ultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum

/I Bounds.dwM aximum

/I Metrics.cSteps

/I'INI file entry

/I'INI file entry (only 1 is used)

/IControl28 - MUTE of WAVE to DAC

1

#CONTROLDEF

28,
h20010002,
1,

0,

/I MUTE_OUTWAVE dwControlID

/I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
/I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

/I cMultipleltems

This document contains information that is subject to
change without notice.

234

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

MUTE,
WAVE,
MUTE,
WAVE,
#DBLWORD
0,

1,

0,
MUTEWAVE,
1l

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I ini file entry

/IControl29 - Peak meter at WAV Eout to DAC

1

#CONTROLDEF
29,

h10020001,

0,

0,

PEAKMETER,
WAVE,
PEAKMETER,
WAVE,
#LNGWORD
-32768,

32767,

0,

NONE,

Il

/I'VU_WAVEOUT dwControlID

/I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I/ ini file entry

/IControl30 - Volume between SB and DAC

1

#CONTROLDEF
30,
h50030001,
0,

0,
VOLUME,
GAMES,
VOLUME,
GAMES,
#DBLWORD
0,

hFFFF,

64,
SBLVOL,
SBRVOL,

/I'VOL_OUTSB dwControlID

// MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I ini file entry

I ini file entry

1

/IControl31 - Balance between SB and DAC

1

#CONTROLDEF
31,

h40020001,

0,

0,

BALANCE,
GAMES,
BALANCE,
GAMES,
#LNGWORD
-32768,

32767,

16,

BALSB,

BALSB,

I

/I BAL_SB dwControlID

/l MIXERCONTROL_CONTROLTY PE_PAN dwControl Type

// fdwControl

/I cM ultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum

/I Bounds.dwM aximum

/I Metrics.cSteps

/I'INI file entry

/I'INI file entry (only 1 is used)

/IControl32 - MUTE of SB to DAC

This document contains information that is subject to

change without notice.

235

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

1

#CONTROLDEF

32, /I MUTE_OUTSB dwControlID

h20010002, /I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
1, /I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

0, /I cMultipleltems

MUTE, /I szShortName

GAMES, /| szZName

MUTE, /I szControl TypeName (my keyword for type of control)

GAMES, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwMinimum

1, /I Bounds.dwM aximum

0, /I Metrics.cSteps

MUTESB, I ini file entry

Il

/IControl33 - Peak meter at SBout to DAC

Il

#CONTROLDEF

33, /I'VU_SBOUT dwControlID

h10020001, /I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
0, /I fdwControl

0, /I cMultipleltems

PEAKMETER, /I szShortName

GAMES, /| szZName

PEAKMETER, /I szControl TypeName (my keyword for type of control)

GAMES, /I szControlLineName (my keyword for line this control applies to)
#_.NGWORD

-32768, // Bounds.dwMinimum

32767, /I Bounds.dwM aximum

0, /I Metrics.cSteps

NONE, I ini file entry

Il

/IControl34 - Volume between CD and DAC

Il

#CONTROLDEF

34, /I VOL_OUTCD dwControlID

h50030001, // MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
0, /I fdwControl

0, /I cMuultipleltems

VOLUME, /I szShortName

CD, /| szZName

VOLUME, /I szControl TypeName (my keyword for type of control)

AUX, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwMinimum

hFFFF, /I Bounds.dwM aximum

64, /I Metrics.cSteps

AUXCDVL, I/ ini file entry

AUXCDVR, I ini file entry

Il

/IControl35 - Balance between CD and DAC

Il

#CONTROLDEF

35, /I BAL_CDOUT dwControlID

h40020001, // MIXERCONTROL_CONTROLTY PE_PAN dwControl Type
0, /I fdwControl

0, /I cM ultipleltems

BALANCE, /I szShortName

CD, /| szZName

BALANCE, /I szControl TypeName (my keyword for type of control)

AUX, /I szControlLineName (my keyword for line this control applies to)
#_.NGWORD

-32768, // Bounds.dwM inimum

This document contains information that is subject to

change without notice.

236

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

32767,

16,
AUXCDB,
AUXCDB,
1l

// Bounds.dwM aximum

/I Metrics.cSteps

/I'INI file entry

/I'INI file entry (only 1 is used)

/IControl36 - MUTE of CD to DAC

1l
#CONTROLDEF
36,

h20010002,

1,

0,

MUTE,

CD,

MUTE,

AUX,
#DBLWORD

0,

1,

0,

AUXCDM,

1l

/I MUTE_OUTCD dwControlID

/I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
/I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I/ ini file entry

/IControl37 - Peak meter at CDout to DAC

Il
#CONTROLDEF
37,

h10020001,

0,

0,

PEAKMETER,
CD,
PEAKMETER,
AUX,
#LNGWORD
-32768,

32767,

0,

NONE,

1l

/I'VU_CDOUT dwControlID

/I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I/ ini file entry

/IControl38 - Switch on or off of CD

1l
#CONTROLDEF
38,

h20010000,

1,

0,

ENABLE,

CD,

ENABLE,

AUX,
#DBLWORD

0,

1,

0,

AUXCDE,

Il

/I CDOUT_ENABLE dwControlID

// MIXERCONTROL_CONTROLTY PE_BOOLEAN dwControl Type
// fdwControl uniform

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

/I'INI file entry

/IControl39 - Volume between LINE and DAC

1
#CONTROLDEF
39,

h50030001,

0,

0,

VOLUME,

/I VOL_OUTLINE dwControlID

// MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
/I fdwControl

/I cM ultipleltems

/I szShortName

This document contains information that is subject to

change without notice.

237

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

LINE,
VOLUME,
AUX,
#DBLWORD
0,

hFFFF,

64,
AUXLVL,
AUXLVR,

1l

/I szName
/I szControl TypeName (my keyword for type of control)
/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I/ ini file entry

I ini file entry

/IControl40
Il

- Balance between LINE and DAC

#CONTROLDEF
40,
h40020001,

0,

0,
BALANCE,
LINE,
BALANCE,
AUX,
#LNGWORD
-32768,
32767,

16,

AUXLB,
AUXLB,

/I BAL_CDOUT dwControlID

I/ MIXERCONTROL_CONTROLTY PE_PAN dwContrd Type

// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum

/I Bounds.dwM aximum

/I Metrics.cSteps

/I'INI file entry

/I'INI file entry (only 1 is used)

Il
/IControl41
Il

- MUTE of LINE to DAC

#CONTROLDEF
41,
h20010002,

1,

0,

MUTE,
LINE,
MUTE,
AUX,
#DBLWORD
0,

1,

0,

AUXLM,

/I MUTE_OUTLINE dwControlID

/I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
/I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I ini file entry

Il
/IControl42
Il

- Peak meter at LINEout to DAC

#CONTROLDEF
42,

h10020001,

0,

0,
PEAKMETER,
LINE,
PEAKMETER,
AUX,
#LNGWORD
-32768,

32767,

0,

NONE,

/I'VU_LINEOUT dwControlID

/I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I ini file entry

1

/IControl43 - Switch on or off of LINE to DAC

1

This document contains information that is subject to

change without notice.

238

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

#CONTROLDEF
43,
h20010000,

1,

0,

ENABLE,
LINE,
ENABLE,
AUX,
#DBLWORD
0,

1,

0,

AUXLE,

/I CDOUT_ENABLE dwControlID

/I MIXERCONTROL_CONTROLTY PE_BOOLEAN dwControl Type
// fdwControl uniform

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for lire this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

II'INI file entry

1

/IControl44 - Volume between MIC and DAC

1

#CONTROLDEF
44,

h50030001,

0,

0,

VOLUME,

MIC,

VOLUME,

AUX,
#DBLWORD

0,

hFFFF,

64,

AUXMVL,
AUXMVR,

1l

/I'VOL_OUTMIC dwControlID

// MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword fa type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I/ ini file entry

I ini file entry

/IControl45
Il

- Balance between MIC and DAC

#CONTROLDEF
45,

h40020001,

0,

0,

BALANCE,
MIC,
BALANCE,
AUX,
#LNGWORD
-32768,

32767,

16,

AUXMB,
AUXMB,

I

/I BAL_CDOUT dwControlID

// MIXERCONTROL_CONTROLTY PE_PAN dwControl Type

// fdwControl

/I cMuultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

/I'INI file entry

/I'INI file entry

/IControl46
Il

- MUTE of MIC to DAC

#CONTROLDEF
46,
h20010002,

1,

0,

MUTE,

MIC,

MUTE,
AUX,
#DBLWORD
0,

/I MUTE_OUTMIC dwControllD

/I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
/I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

/I cM ultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum

This document contains information that is subject to

change without notice.

239

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

1, /I Bounds.dwM aximum
0, /I Metrics.cSteps
AUXMM, I ini file entry

Il
/IControl47 - Peak meter at M1Cout to DAC
Il

#CONTROLDEF

47, /I'VU_MICOUT dwControlID

h10020001, /I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
0, /I fdwControl

0, /I cMultipleltems

PEAKMETER, /I szShortName

MIC, /| szZName

PEAKMETER, /I szControl TypeName (my keyword for type of control)

AUX, /I szControlLineName (my keyword for line this control applies to)
#LNGWORD

-32768, // Bounds.dwM inimum

32767, /I Bounds.dwM aximum

0, /I Metrics.cSteps

NONE, I ini file entry

Il
/IControl48 - Switch on or off of MIC to DAC
Il

#CONTROLDEF

48, /I CDOUT_ENABLE dwControlID

h20010000, /I MIXERCONTROL_CONTROLTY PE_BOOLEAN dwControl Type
1, /I fdwControl uniform

0, /I cMultipleltems

ENABLE, /I szShortName

MIC, /| szZName

ENABLE, /I szControl TypeName (my keyword for type of control)

AUX, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwM inimum

1, /I Bounds.dwM aximum

0, /I Metrics.cSteps

AUXME, /I'INI file entry

Il
/Il NOW STARTS THE SAME STUFF FOR RECORD IN!!!
Il

/IControl49 - Volume between MIDI and WAVEIN

Il

#CONTROLDEF

49, /I VOL_INMIDI dwControlID

h50030001, // MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
0, /I fdwControl

0, /I cMultipleltems

VOLUME, /I szShortName

MIDIOUTIN, /l szName

VOLUME, /I szControl TypeName (my keyword for typeof control)
MIDIOUTIN, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwMinimum

hFFFF, /I Bounds.dwM aximum

64, /I Metrics.cSteps

MIDILVOLIN, I ini file entry

MIDIRVOLIN, I ini file entry

Il
/IControl50 - Balance between midi and WAV EIN
Il

#CONTROLDEF

50, /I BAL_LINE dwControlID

h40020001, /I MIXERCONTROL_CONTROLTY PE_PAN dwControl Type
0, /I fdwControl

This document contains information that is subject to
change without notice.

240

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

0,
BALANCE,
MIDIOUTIN,
BALANCE,
MIDIOUTIN,
#LNGWORD
-32768,
32767,

16,
BALMIDIIN,
BALMIDIIN,
Il

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum

/I Bounds.dwM aximum

/I Metrics.cSteps

/I'INI file entry

/I'INI file entry (only 1 is used)

/IControl51
Il

- MUTE of Midiout to WAVEIN

#CONTROLDEF
51,

h20010002,

1,

0,

MUTE,
MIDIOUTIN,
MUTE,
MIDIOUTIN,
#DBLWORD

0,

1,

1,
MUTEMIDIIN,
Il

/I MUTE_INMIDI dwControllD

/I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
/I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I/ ini file entry

/IControl52
Il

- Peak meter at MIDIlout to WAVEIN

#CONTROLDEF
52,

h10020001,

0,

0,

PEAKMETER,
MIDIOUTIN,
PEAKMETER,
MIDIOUTIN,
#LNGWORD
-32768,

32767,

0,

NONE,

Il

/I'VU_MIDIOUTIN dwControlID

/I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I ini file entry

/IControl53
Il

- Volume between WAVE and WAVEIN

#CONTROLDEF
53,

h50030001,

0,

0,

VOLUME,
WAVEOUTIN,
VOLUME,
WAVEOUTIN,
#DBLWORD

0,

hFFFF,

64,
WAVELVOLIN,
WAVERVOLIN,
I

/I VOL_INWAVE dwControlID

// MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I ini file entry

I ini file entry

This document contains information that is subject to

change without notice.

241

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

/IControl54 - Balance between wave and WAVEIN
Il

#CONTROLDEF

54, /I BAL_WAVE dwControlID

h40020001, // MIXERCONTROL_CONTROLTY PE_PAN dwControl Type
0, /I fdwControl

0, /I cMultipleltems

BALANCE, /I szShortName

WAVEOUTIN, /I szName

BALANCE, /I szControl TypeName (my keyword for type of control)
WAVEOUTIN, /I szControlLineName (my keyword for line this control applies to)
#LNGWORD

-32768, /I Bounds.dwMinimum

32767, /I Bounds.dwM aximum

16, /I Metrics.cSteps

BALWAVEIN, /I'INI file entry

BALWAVEIN, /I'INI file entry (only 1 is used)

Il
/[Control55 - MUTE of WAVE to WAVEIN
1l

#CONTROLDEF

55, /I MUTE_INWAVE dwControllD

h20010002, /I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
1, /I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

0, /I cM ultipleltems

MUTE, /I szShortName

WAVEOUTIN, /I szName

MUTE, /I szControl TypeName (my keyword for type of control)
WAVEOUTIN, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwMinimum

1, /I Bounds.dwM aximum

0, /I Metrics.cSteps

MUTEWAVEIN, I/ ini file entry

Il
/IControl56 - Peak meter at WAV Eout to WAVEIN
Il

#CONTROLDEF

56, /I'VU_WAVEIN dwControlID

h10020001, /I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
0, /I fdwControl

0, /I cMultipleltems

PEAKMETER, /I szShortName

WAVEOUTIN, /I szName

PEAKMETER, /I szControl TypeName (my keyword for type of control)
WAVEOUTIN, /I szControlLineName (my keyword for line this control applies to)
#LNGWORD

-32768, // Bounds.dwM inimum

32767, /I Bounds.dwM aximum

0, /I Metrics.cSteps

NONE, I ini file entry

Il
/IControl57 - Volume between SB and wavein
Il

#CONTROLDEF

57, /I'VOL_OUTSB dwControlID

h50030001, // MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
0, /I fdwControl

0, /I cM ultipleltems

VOLUME, /I szShortName

SB, /| szZName

VOLUME, /I szControl TypeName (my keyword for type of control)
GAMESOUTIN, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

This document contains information that is subject to
change without notice.

242

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

0,
hFFFF,

64,
SBLVOLIN,
SBRVOLIN,
1l

/I Bounds.dwMinimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I ini file entry

I/ ini file entry

/IControl58 - Balance between SB and wavein

1

#CONTROLDEF
58,

h40020001,

0,

0,

BALANCE,

SB,

BALANCE,
GAMESOUTIN,
#LNGWORD
-32768,

32767,

16,

BALSBIN,
BALSBIN,

/I BAL_SB dwControlID

// MIXERCONTROL_CONTROLTY PE_PAN dwControl Type

// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of cortrol)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum

/I Bounds.dwM aximum

/I Metrics.cSteps

II'INI file entry

/I'INI file entry (only 1 is used)

1

/IControl59 - MUTE of SB to wavein

1

#CONTROLDEF
59,

h20010002,

1,

0,

MUTE,

SB,

MUTE,
GAMESOUTIN,
#DBLWORD

0,

1,

1,

MUTESBIN,

/I MUTE_OUTSB dwControlID

/I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
/I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I ini file entry

1

/IControl60 - Peak meter at SBoutin to wavein

1

#CONTROLDEF

60, /I'VU_SBOUT dwControlID

h10020001, /I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
0, /I fdwControl

0, /I cMultipleltems

PEAKMETER, /I szShortName

SB, /l szZName

PEAKMETER, /I szControl TypeName (my keyword for type of control)
GAMESOUTIN, /I szControlLineName (my keyword for line this control applies to)
#LNGWORD

-32768, // Bounds.dwMinimum

32767, /I Bounds.dwM aximum

0, /I Metrics.cSteps

NONE, I ini file entry

1

/IControl61 - Volume between CD and WAVEIN

I Thisis same as waveout but just let the

I user think that they are different

1

This document contains information that is subject to

change without notice.

243

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

#CONTROLDEF
61,

h50030001,

0,

0,

VOLUME,

CD,

VOLUME,
WAVEIN,
#DBLWORD

0,

hFFFF,

64,

RECCDVL,
RECCDVR,

Il

/I VOL_INCD dwControlID

// MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I/ ini file entry

I/ ini file entry

/IControl62
Il

- Balance between CD and WAVEIN

#CONTROLDEF
62,

h40020001,

0,

0,

BALANCE,

CD,

BALANCE,
WAVEIN,
#LNGWORD
-32768,

32767,

16,

RECCDB,
RECCDB,

1l

/I BAL_CDOUT dwControlID

/l MIXERCONTROL_CONTROLTY PE_PAN dwControl Type

// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwMinimum

/I Bounds.dwM aximum

/I Metrics.cSteps

/I'INI file entry

/I'INI file entry (only 1 is used)

/IControl63

- MUTE of CD to WAVEIN

1l
#CONTROLDEF
63,

h20010002,

1,

0,

MUTE,

CD,

MUTE,
WAVEIN,
#DBLWORD

0,

1,
1,
RECCDM,

/I MUTE_OUTCD dwControlID

/I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
/I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

/I cM ultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum

/I Metrics.cSteps
I/ ini file entry

Il
/IControl64
Il

- Peak meter at CDout to WAVEIN

#CONTROLDEF
64,

h10020001,

0,

0,

PEAKMETER,
CD,
PEAKMETER,
WAVEIN,

/I'VU_CDOUT dwControlID

/I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

This document contains information that is subject to

change without notice.

244

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

#LNGWORD

-32768, /I Bounds.dwMinimum
32767, /I Bounds.dwM aximum
0, /I Metrics.cSteps
NONE, I/ ini file entry

Il
/IControl65 - Switch on or off of CD
Il

#CONTROLDEF

65, /I CDOUT_ENABLE dwControlID

h20010000, // MIXERCONTROL_CONTROLTY PE_BOOLEAN dwControl Type
1, /I fdwControl uniform

0, /I cMultipleltems

ENABLE, /I szShortName

CD, /l szZName

ENABLE, /I szControl TypeName (my keyword for type of control)
WAVEIN, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwM inimum

1, /I Bounds.dwM aximum

1, /I Metrics.cSteps

RECCDE, II'INI file entry

Il
/IControl66 - Volume between LINE and WAVEIN
Il

#CONTROLDEF

66, /I VOL_OUTLINE dwControlID

h50030001, // MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
0, /I fdwControl

0, /I cMultipleltems

VOLUME, /I szShortName

LINE, /| szZName

VOLUME, /I szControl TypeName (my keyword for type of control)
WAVEIN, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwMinimum

hFFFF, /I Bounds.dwM aximum

64, /I Metrics.cSteps

RECLVL, I ini file entry

RECLVR, I ini file entry

Il
/IControl67 - Balance between LINE and WAVEIN
Il

#CONTROLDEF

67, /I BAL_CDOUT dwControlID

h40020001, /l MIXERCONTROL_CONTROLTY PE_PAN dwControl Type
0, /I fdwControl

0, /I cMultipleltems

BALANCE, /I szShortName

LINE, /l szZName

BALANCE, /I szControl TypeName (my keyword for type of control)
WAVEIN, /I szControlLineName (my keyword for line this control applies to)
#LNGWORD

-32768, // Bounds.dwMinimum

32767, /I Bounds.dwM aximum

16, /I Metrics.cSteps

RECLB, /I'INI file entry

RECLB, /I'INI file entry (only 1 is used)

Il
/IControl68 - MUTE of LINE to WAVEIN
Il

#CONTROLDEF
68, /I MUTE_OUTLINE dwControlID
h20010002, /I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type

This document contains information that is subject to
change without notice.

245

MMWADKUMU-03

Appendix C - Mwave Play and Record Mixer Definition File

1,

0,

MUTE,
LINE,
MUTE,
WAVEIN,
#DBLWORD
0,

1,

1,

RECLM,

Il

/I fdwControl MIXERCONTROL_CONTRCOLF_UNIFORM

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I ini file entry

/IControl69 - Peak meter at LINEout to WAVEIN

1

#CONTROLDEF
69,

h10020001,

0,

0,

PEAKMETER,
LINE,
PEAKMETER,
WAVEIN,
#LNGWORD
-32768,

32767,

0,

NONE,

Il

/I'VU_LINEOUT dwContrdID

/I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I/ ini file entry

/IControl70 - Switch on or off of LINE to WAVEIN

1

#CONTROLDEF
70,

h20010000,

1,

0,

ENABLE,

LINE,

ENABLE,
WAVEIN,
#DBLWORD

0,

1,

1,

RECLE,

Il

/I CDOUT_ENABLE dwControlID

// MIXERCONTROL_CONTROLTY PE_BOOLEAN dwControl Type
// fdwControl uniform

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

/I'INI file entry

/IControl71 - Volume between MIC and WAVEIN

1

#CONTROLDEF
71,
h50030001,
0,

0,

VOLUME,
MIC,
VOLUME,
WAVEIN,
#DBLWORD
0,

hFFFF,

64,
RECMVL,

/I'VOL_OUTMIC dwControlID

// MIXERCONTROL_CONTROLTY PE_VOLUME dwControl Type
// fdwControl

/I cMultipleltems

/I szShortName

/I szName

/I szControl TypeName (my keyword for type of control)

/I szControlLineName (my keyword for line this control applies to)

/I Bounds.dwM inimum
/I Bounds.dwM aximum
/I Metrics.cSteps

I ini file entry

This document contains information that is subject to

change without notice.

246

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

RECMVR, I ini file entry
Il
/IControl72 - Balance between MIC and WAVEIN
Il

#CONTROLDEF

72, /I BAL_CDOUT dwControlID

h40020001, // MIXERCONTROL_CONTROLTY PE_PAN dwControl Type
0, /I fdwControl

0, /I cMultipleltems

BALANCE, /I szShortName

MIC, /| szZName

BALANCE, /I szControl TypeName (my keyword for type of control)
WAVEIN, /I szControlLineName (my keyword for line this control applies to)
#LNGWORD

-32768, // Bounds.dwM inimum

32767, /I Bounds.dwM aximum

16, /I Metrics.cSteps

RECMB, /I'INI file entry

RECMB, /I'INI file entry (only 1 is used)

Il
/IControl73 - MUTE of MIC to WAVEIN

1

#CONTROLDEF

73, /I MUTE_OUTMIC dwControlID

h20010002, /I MIXERCONTROL_CONTROLTY PE_MUTE dwControl Type
1, /I fdwControl MIXERCONTROL_CONTROLF_UNIFORM

0, /I cMultipleltems

MUTE, /I szShortName

MIC, /| szZName

MUTE, /I szControl TypeName (my keyword for type of control)
WAVEIN, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwMinimum

1, /I Bounds.dwM aximum

1, /I Metrics.cSteps

RECMM, I ini file entry

Il
/IControl74 - Peak meter at MICout to WAVEIN
Il

#CONTROLDEF

74, /I'VU_MICOUT dwControlID

h10020001, /I MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControl Type
0, /I fdwControl

0, /I cMultipleltems

PEAKMETER, /I szShortName

MIC, /| szZName

PEAKMETER, /I szControl TypeName (my keyword for type of control)
WAVEIN, /I szControlLineName (my keyword for line this control applies to)
#LNGWORD

-32768, /I Bounds.dwM inimum

32767, /I Bounds.dwM aximum

0, /I Metrics.cSteps

NONE, I ini file entry

Il
/IControl75 - Switch on or off of MIC to WAVEIN
Il

#CONTROLDEF

75, /I CDOUT_ENABLE dwControlID

h20010000, /I MIXERCONTROL_CONTROLTY PE_BOOLEAN dwControl Type
1, /I fdwControl uniform

0, /I cMultipleltems

ENABLE, /I szShortName

This document contains information that is subject to
change without notice.

247

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

MIC, /| szZName

ENABLE, /I szControl TypeName (my keyword for type of control)
WAVEIN, /I szControlLineName (my keyword for line this control applies to)
#DBLWORD

0, // Bounds.dwM inimum

1, /I Bounds.dwM aximum

1, /I Metrics.cSteps

RECME, /I'INI file entry

#ENDFILE /I indicates end of text file (put something herel)

This document contains information that is subject to 248

change without notice.

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to 249

change without notice.

MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition
File

This document contains information that is subject to 250

change without notice.

	Acrobat
	Notices
	Trademarks

	Table Of Contents
	Preface
	Before You Begin
	Contents of this Manual
	Sample Applications
	Related Documentation

	Chapter 1 - Introduction
	Mwave System Overview
	Developing an Mwave Application

	Chapter 2 - Audio Services
	Mwave Audio Architecture
	Windows Sound System 2.0 Implementation
	The Mwave Audio Device Drivers
	Developing an Mwave Audio Application

	Chapter 3 - Telephony Services
	Mwave Telephony Architecture
	The Telephony Device Drivers
	Developing an Mwave Telephony Application

	Chapter 4 - Fax Services
	Mwave Fax Device Driver Architecture
	Developing an Mwave Fax Application
	Summary

	Chapter 5 - Telephone Answering Machine (TAM) Services
	Mwave TAM Architecture
	Developing an Mwave TAM Application
	Using the TAM Sample Application

	Chapter 6 - FAX API Reference
	MCI Telephone Event Handler
	FAX Driver API Messages and Flags

	Chapter 7 - TAM API Reference
	MCI Telephone Event Handler
	TAM Driver API Messages and Flags

	Chapter 8 - Error Codes
	FAX/TAM Driver Error Codes
	FAX Driver Error Codes
	TAM Driver Error Codes
	Discriminator Error Codes
	TIFF Error Codes
	MEIO error codes

	APPENDIX A - String Interfaces
	A1 - String Interface FAX
	A2 - String Interface TAM

	APPENDIX B - Programmer’s Notes
	B1 - Fax Notes
	B2 - TAM Notes
	B3 - Integrated Application Notes

	APPENDIX C - Mwave Play and Record Mixer Definition File

