
1

Mwave™ System
Application Programmer’s Guide

Version 3.0
for

OS/2 and Windows

 **** This Document has been converted to Acrobat format.****
 To view document in Acrobat, select view from the tool bar and select
 “bookmarks and pages” (cntrl + 7). The list of contents will display
 in left hand column. Click on the triangle beside each heading
 to view the subheading.

2

iii

NOTE
Before using this information and the product it supports, be sure to read the information under
“Notices” on page iii.

Third Edition (July 1995)

This edition is prepared and maintained by IBM Microelectronics. For more information contact:

United States Japan
and Canada IBM
IBM Microelectronics Division 800, Ichimiyake,
1580 Route 52, Bldg. 504 Yasu-cho, Yasu-gun
Hopewell Junction, NY 12533-6531 Shiga-ken, Japan 520-23
Tel: (800) IBM-0181 ext. 500 Tel: (81) 775-87-4745

Fax: (81) 775-87-4735

Europe Europe
IBM Informations Systeme
La Pompignane BP 1021 GmbH
34006 Montpellier Laatzener Str. 1
France 30539 Hanover
(33) 6713-5757 (French) Germany
(33) 6713-5756 (Italian) (49) 511-516-3444 (English)
Fax: (33) 6713-5750* (49) 511-516-3555 (German)
*from Paris add 16 Fax: (49) 511-516-3888

© Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

MMWADKUMU-03

This document contains information that is subject to
change without notice.

iii

Notices

Any reference to an International Business Machines (IBM) licensed program in this document is not
intended to state or imply that only IBM’s program may be used.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to the IBM Director of Commercial Relations, IBM Corporation,
Purchase, New York, 10577.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make them available in all countries in which IBM operates.

This document represents a complete rewrite and replacement of previous versions of the Application
Programmer’s Guide. There are no indications of text or content changes. All previous versions of
this document should be considered obsolete.

This document is not intended for production use and is furnished “as is” without any warranties of
any kind, and all warranties are hereby disclaimed including the warranties of mechantability and
fitness for a particular product.

Trademarks

Some trademarks of IBM and other companies are used in this document. The trademarks
used and how they are identified are described here.

The following are trademarks of IBM in the United States, in other countries, or both. These
IBM trademarks are identified by an asterisk (*) where they are first used later in this
document.

IBM Mwave

The following are trademarks of companies other than IBM. These trademarks are identified
by two asterisks (**) where they are first used later in this document.

Trademark Company Owning Trademark

Microsoft Windows Microsoft Corporation
MS-Windows Microsoft Corporation

MMWADKUMU-03

This document contains information that is subject to
change without notice.

iv

MMWADKUMU-03

This document contains information that is subject to
change without notice.

v

Table Of Contents
Notices ... iii

Trademarks .. iii

Preface... ix

Before You Begin...ix

Contents of this Manual ..ix

Sample Applications..ix

Related Documentation ..x

Chapter 1 - Introduction..1

Mwave System Overview ..1

Developing an Mwave Application ..4

Chapter 2 - Audio Services ..5

Mwave Audio Architecture...5

Windows Sound System 2.0 Implementation ..5

The Mwave Audio Device Drivers..7
Component Description..8
Mwave Audio Operations...10
Mixer Driver Description ...12

Developing an Mwave Audio Application..16
Audio Mixer API Reference ...17
Mixer Callbacks API Reference ...19

Chapter 3 - Telephony Services...21

Mwave Telephony Architecture..21
Common Telephone Interface ..22
MCI Event Handler ..23

Developing an Mwave Telephony Application...23
Initializing the Application...24

Chapter 4 - Fax Services..37

Mwave Fax Device Driver Architecture ...37
The Fax Application Programming Interface (API)..37
Fax Document File Format...38
Command Message Summary..38
Event Message Summary ...39

Developing an Mwave Fax Application ...39
FAXAPP Application Definition..40
How to run FAXAPP..40

MMWADKUMU-03

This document contains information that is subject to
change without notice.

vi

FAXAPP Code Model Design..41
Opening and Initializing the Mwave Fax Driver - Windows..43
Opening and Initializing the Mwave Fax Driver - OS/2...46
Sending a Fax - Windows...49
Sending a Fax - OS/2..54
Receiving a Fax - Windows..59
Receiving a FAX - OS/2...62
Converting Fax Document Files to/from DIB format...65
Closing the Mwave Fax Device Driver ..67

Summary ..67

Chapter 5 - Telephone Answering Machine (TAM) Services ...69

Mwave TAM Architecture...69
TAM File Formats..70
Command Message Summary..71
Event Message Summary ...71

Developing an Mwave TAM Application..72
Handset/Speakerphone Interactions..72
Sample Application Definition ...73
Sample Code Design ..73
TAM State Machine Operation...75
Sample Application Source Code...78

Using the TAM Sample Application ...85
System Setup ..86
Using the Speakerphone ...87
Reviewing Messages Locally ...88
Reviewing Messages Remotely..89

Chapter 6 - FAX API Reference..91

MCI Telephone Event Handler...91
FAX Event Message Descriptions..92

FAX Driver API Messages and Flags ..100

Chapter 7 - TAM API Reference ..129

MCI Telephone Event Handler...129
TAM Event Message Descriptions ...131

TAM Driver API Messages and Flags..135

Chapter 8 - Error Codes..175

FAX/TAM Driver Error Codes ...176

FAX Driver Error Codes..178

TAM Driver Error Codes ...181

Discriminator Error Codes ..187

TIFF Error Codes ..189

MMWADKUMU-03

This document contains information that is subject to
change without notice.

vii

MEIO error codes ..193

APPENDIX A - String Interfaces..195

A1 - String Interface FAX...195

A2 - String Interface TAM..204

APPENDIX B - Programmer’s Notes ...215

B1 - Fax Notes..215

B2 - TAM Notes..215

B3 - Integrated Application Notes..216

APPENDIX C - Mwave Play and Record Mixer Definition File ..219

MMWADKUMU-03

This document contains information that is subject to
change without notice.

viii

MMWADKUMU-03

This document contains information that is subject to
change without notice.

ix

Preface

Before You Begin

This manual describes how to develop OS/2* and Microsoft Windows** 3.1 applications which take
advantage of the Multimedia capabilities of Mwave* hardware. It assumes you are familiar with
developing applications in 'C' for OS/2 and Microsoft Windows 3.1, and are familiar with the
Multimedia services and the Media Control Interface (MCI) provided by these products.

Before attempting to develop an Mwave Multimedia application, install the respective Mwave
hardware and software components. In addition, appropriate OS/2 MMPM or Microsoft Windows 3.1
development software must be installed on your system.

Contents of this Manual

This manual is divided into two parts:

• Chapters 2-5 provide a "how-to" introduction to Mwave audio, FAX and TAM
applications. Programming examples are used to illustrate important concepts.

• Chapters 6-8 provide a complete reference guide for the Mwave driver
Application Programming Interfaces (API), including command messages, data
and structure types, and error messages.

Sample Applications

The Applications Programmer’s Guide includes example Mwave applications. These
example applications, including complete source code, are provided on the companion
diskette. They illustrate how to call the Application Programming Interfaces to access the
FAX, and Telephone/Answering Machine (TAM) Multimedia capabilities of Mwave
compliant hardware. Each application is described in detail in later chapters of this manual.

Mwave audio application services are identical to those described in existing reference
material for OS/2 and Windows. For OS/2, this includes the MMPM Application
Programming Guide and MMPM Programming Reference. Sample audio applications are
included in the Programmer’s Guide and the MMPM/2 Toolkit.

For Windows, this includes the Microsoft Windows Software Development Kit Multimedia
Programmer’s Guide and the Microsoft Windows Software Development Kit Multimedia
Programmer’s Reference. Sample audio applications are included in the Programmer’s Guide
and the SDK.

MMWADKUMU-03

This document contains information that is subject to
change without notice.

x

Related Documentation

This manual describes how to develop applications which take advantage of the Multimedia
capabilities of Mwave hardware. The following manuals provide additional information pertaining to
the Mwave system and developing Microsoft Windows or OS/2 Multimedia applications.

• The Mwave Technical Brief describes the Mwave system, providing an overview
of the Mwave processor, Operating System, DSP tasks, Microsoft Windows
manager, application drivers, and the DSP development tools.

• The Microsoft Windows Software Development Kit Multimedia Programmer's
Guide describes how to develop Multimedia applications for Microsoft Windows.

• The Microsoft Windows Software Development Kit Multimedia Programmer's
Reference provides a summary of the Microsoft Windows Multimedia API,
including function and message descriptions, data types and structures, and
Multimedia file formats.

• The Microsoft Windows Software Development Kit Programmer's Reference,
Volumes 1-4 describe the complete Microsoft Windows API in detail.

• The MMPM Application Programming Guide and the MMPM Programming
Reference provide information for developing applications in OS/2.

MMWADKUMU-03

This document contains information that is subject to
change without notice.

xi

Mwave Developer’s Toolkit

The Mwave Developers Toolkit (MDK) provides a software development environment for
programming the Mwave DSP and documentation supporting the development of host device
drivers. It provides the following in addition to the material in this Application Programmer’s
Guide.

• APIs for Mwave Manager, Mwave External I/O (MEIO) services, and Data
Mover Services

• A variety of programming and debugging tools including an Mwave Assembler,
debugger, C compiler, linker

• Library support for both C and DSP

The MDK includes the following documentation:

• Getting Started with the Mwave Developers Toolkit
• Application Developer’s Guide
• DSP Task Developer’s Guide
• DSP Toolkit User’s Guide
• Assembly Language Reference Manual
• Debugger User’s Guide

The Mwave Developer’s Toolkit can be purchased from IBM Microelectronics.

MMWADKUMU-03

This document contains information that is subject to
change without notice.

12

Documentation Conventions

Most of the Application Programmer’s Guide documentation is applicable to both OS/2 and
Windows. In those cases where a difference exists, the text will indicate this explicitly or the
OS/2-specific test will be shaded.

MMWADKUMU-03 Chapter 1 - Introduction

This document contains information that is subject to
change without notice.

1

Chapter 1 - Introduction

This chapter provides an overview of the Mwave multimedia system and software environment, and
briefly describes how to get started integrating Mwave multimedia capabilities into your OS/2 or
Microsoft Windows 3.1 application.

Most of the Application Programmer’s Guide is applicable to both OS/2 and to Windows. In those
cases where a difference exists, the text will say so explicitly or the OS/2-specific text will be shaded.

Mwave System Overview

The Mwave system is a programmable DSP (Digital Signal Processor) based hardware and software
platform designed specifically to handle the demands of multimedia in the desktop PC environment. A
single Mwave system can integrate a variety of multimedia capabilities such as audio, speech, FAX,
modem, and Telephone Answering Machine (TAM).

OS/2 and Microsoft Windows provide high-level and low-level services which enable an application
developer to take advantage of the extended capabilities of a multimedia PC. By providing Mwave
Application Programming Interfaces (APIs) which are compatible with OS/2 MMPM and Microsoft
Windows multimedia services, the application developer is able to develop powerful, portable
applications which utilize the multimedia capabilities offered by a wide range of Mwave products.

This manual describes the Mwave APIs and how to use them to develop Mwave multimedia
applications for OS/2 and Microsoft Windows 3.1.

Notice
This material is being made available to enable software developers to produce digital signal
processing applications, device drivers, and tasks of Mwave Technology Platforms. It is not
intended to enable others to provide the services of the applications interfaces described herein, rather
to enable others to interface to these services.

MMWADKUMU-03 Chapter 1 - Introduction

This document contains information that is subject to
change without notice.

2

The following figure illustrates the Mwave runtime software environment:

Mwave Application Program

Mwave Device Driver

Mwave Manager
PC Host

DSP Code
Mwave DSP

Mwave Operating
System

Mwave Virtual
Hardware Tasks

Figure 1-1: Mwave Runtime Software Environment

Application
Programmin
g

MMWADKUMU-03 Chapter 1 - Introduction

This document contains information that is subject to
change without notice.

3

The following functional blocks comprise the Mwave runtime software environment.

Mwave Application Program The application program communicates to a
device driver through standardized APIs,
thus performing a variety of multimedia
tasks on the Mwave platform.

Mwave Device Drivers These MCI compliant drivers provide the
software interface between the application
program and the Mwave manager, enabling
a single Mwave application to run on a
variety of Mwave platforms.

Mwave Manager This host-based software manages DSP
resources and provides a hardware-
independent interface layer between the
Mwave Device Drivers and the underlying
Mwave hardware.

Mwave Operating System Real-time, multitasking DSP kernel that
allows concurrent processing of virtual
hardware tasks.

Mwave DSP High-performance DSP optimized for the
demands of multimedia applications.

Mwave Virtual Hardware Tasks DSP-optimized software library that
emulates multimedia hardware components
such as audio, speech, FAX, and
communications.

MMWADKUMU-03 Chapter 1 - Introduction

This document contains information that is subject to
change without notice.

4

Developing an Mwave Application

Before writing an Mwave multimedia application, you should have a working knowledge of the
following:

• Programming in the Microsoft Windows environment

• Understand the high-level and low-level multimedia services provided in OS/2
Multimedia Presentation Manager/2 (MMPM/2) or Microsoft Windows 3.1.

• Be able to develop programs which use the C-language interface to MMPM’s or
Microsoft's Media Control Interface (MCI)

The Multimedia Presentation Manager Toolkit/2 and Microsoft Windows 3.1 Software Development
Kit provide documentation and program examples to help you understand these concepts.

If you are planning on adding audio multimedia capabilities to your application, consult Chapter 2,
"Audio Services" in this manual for additional information.

If you are developing an application which will utilize the FAX and/or TAM capabilities of the Mwave
system, then start out by reviewing Chapter 3, "Telephony Services". This chapter provides an
overview of Mwave telephony features and how to access these capabilities from your application
program. Next, consult one of the following chapters for specific code examples illustrating how to call
the FAX and TAM APIs from your application program:

• For FAX application program examples, see Chapter 4, "FAX Services". The
complete FAX API reference is located in Chapter 6, "FAX API Reference".

• For TAM application program examples, see Chapter 5, "TAM Services". The
complete TAM API reference is located in Chapter 7, "TAM API Reference".

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

5

Chapter 2 - Audio Services

The audio services available to application developers for the purpose of developing Mwave
compatible audio applications are identical to those described in the OS/2 publications: MMPM
Application Programming Guide and MMPM Programming Reference, and the Windows publications:
Microsoft Windows Software Development Kit Multimedia Programmer's Guide and the Microsoft
Windows Software Development Kit Multimedia Programmer's Reference.

This chapter provides a brief overview of the Mwave Audio Architecture, the Mwave Audio Device
Driver, the Mwave Windows Sound System 2.0 audio architecture and implementation description,
and the facilities available for developing Mwave audio applications.

Mwave Audio Architecture

Application developers can access the audio capabilities of Mwave compliant audio hardware through
the high-level and low-level audio services provided in OS/2 MMPM/2 and Microsoft Windows 3.1.

The host high-level and low-level audio services provide a device-independent software interface,
which enables a multimedia application to take advantage of different levels of audio support on a wide
range of audio hardware. The Mwave Audio device driver provides the link between the device-
independent high-level and low-level audio services of the host PC and the Mwave system software
and audio hardware.

Windows Sound System 2.0 Implementation

The Windows Sound System 2.0 API is a standardized, low level, Microsoft developed mixer API that
provides applications and other PC based code the ability to gather information, setup, and remain
informed about the audio sources, destinations, and controls that exist on a particular hardware
platform. It provides developers with a central repository of information and an easy way to get that
information in the form of a standardized Windows API. It also allows developers to share a particular
piece of hardware in that each registered user is informed of any changes made by any other registered
user

The Mwave Sound System audio subsystem was architected to implement the Microsoft Windows
Sound System 2.0 API and still retain the flexibility of Mwave, which can dynamically MAKE and
BREAK connections, as well as mix digital and analog connections in a single stream to a specific
destination. The design point included the following requirements:

• Manage in a single functional module all audio sources that utilize common subsystem
components. These components consist of such things as SPEAKER (CDDAC), MICROPHONE
(ADC), master and source volumes, etc.

• Allow ISV’s and ourselves to easily add controls and/or source/destinations to suit new hardware
and application requirements.

• A desire to separate hardware specific code from non hardware specific code, in order to minimize
the amount of code that would have to be rewritten between hardware platforms

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

6

NOTE: Not all Mwave subsystems that utilize audio are completely integrated with Sound System.
For example, TAM currently uses the SPEAKER and MICROPHONE connections, but is not tied in
with the Sound System driver. Therefore, when TAM changes volume, gains, etc., the only user that
knows about those changes is TAM. Future releases of Mwave software will include further audio
interaction with Sound System.

The following diagram illustrates the relationship between the host PC high-level and low-level audio
services, the Mwave Audio device driver, and the Mwave system software and audio hardware:

A multimedia application can access the audio capabilities of Mwave hardware in one of two ways:

Use the high-level audio services, the host PC's Media Control Interface (MCI) provides a high-level
command interface to control the audio capabilities of Mwave hardware. As the diagram above
illustrates, MCI uses the low-level audio functions to provide high-level audio services to a multimedia
audio application.

Multimedia Audio Application

High-level audio functions (MCI)
mciwave.drv, mciseq.drv

Low-level audio functions

MIDI Mapper

Mwave Windows Manager

Mwave VxD

Mwave O/S

APPLICATION
LEVEL

TRANSLATION
LEVEL

DRIVER
LEVEL

MWAVE
HOST O/S
LEVEL

HOST-RESIDENT

MWAVE-RESIDENT

Audio task 1 Audio task 2 Audio task n

Mwave-Windows Audio Device Driver

Figure 2-1: Mwave Audio Architecture
(Example for Microsoft Windows)

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

7

The Mwave Audio Device Drivers

The Mwave Audio Sound System architecture is architected as shown in the following diagram:

Connect and Disconnect Information:
MXDM_USER_CONNECT
MXDM_USER_DISCONNECT

Figure 2-2: Host Drivers Diagram

Waveout
Driver:

WAVE,
WAVEOUTI
N

Wavein
Driver

WAVEIN

MIDI Driver

MIDI,
MIDIOUTIN

GAMES Driver

GAMES,
GAMESOUTIN

MWCM

mwcmConnect, mwcmDisconnect, wcmSetVolume, etc.

Sound System
MIXER Driver

MIXER_CALLBACK:
MM_MIXM_CONTROL_CHANGE,
MM_MIXM_LINE_CHANGE

Application Messages:
SetControlDetails

MixerOpen

MIXER_CALLBACK
to all registered drivers

MWCM calls: Peak meters,
Master Volume, Effects

Other registered
drivers

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

8

Component Description

The following paragraphs provide a brief description of each of the components in the audio
architecture.

MWCM

MWCM is an acronym for the Mwave Connection Manager. MWCM provides drivers with an API
that allows drivers to connect sources to destinations at driver specified source and destination data
rates. MWCM determines, based on the driver specified data rates, what interpolators, decimators,
and/or mixers are required for a particular audio connection. If any of these connections already exist
on the DSP for a different stream, it will hook into that connection, thereby saving DSP resources. It
will load and activate all required tasks, connect up all connections including the connections to the
source and destination provided by the driver, and set all volumes on the stream initially to a
maximum.

MWCM also provides volume set and get API’s for both individual streams (set on the input of the
first mixer in the stream attached to the source) and master settings (set on the output of the LAST
mixer in a stream before a specified destination).

MWCM provides API’s to insert, delete, and control effects in a stream based upon the destination
specified. Currently effects destined for the SPEAKER destination are inserted into the last mixer in
the stream prior to connecting to the SPEAKER destination. Effects destined for the RECORD
destination are placed after the first mixer connected to the analog input source (the 44K mixer
connected to MIC, LINE, and/or CD).

MWCM also provides an API to read the peak meters on all of its active streams. This peak meter
information is read from the input of the first mixer (the source mixer) attached to the specified source
type. There are no MASTER peak meters; a master peak is calculated in the mixer driver by reading
the individual peaks and summing their result.

Note: This has the effect of showing a master peak even when the master output is MUTED, because
the master peak meter is a sum of all the input sources.

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

9

Multimedia Drivers

WAVE, MIDI, AUX, and WAVEIN are the standard Windows 3.1 drivers that interface to the
Microsoft multimedia software layer called MMSYSTEM. The GAMES driver is a VDD that emulates
the SoundBlaster audio driver.

The following standard MCI drivers, provided in the OS/2 MMPM and Microsoft Windows 3.1, are
used for processing high-level MCI calls to Mwave audio hardware:

Device Type Driver Filename Description
cdaudio MCICDA.DRV An MCI device driver for playing

CDDA format files
sequencer MCISEQ.DRV An MCI device driver for playing

standard MIDI and RIFF MIDI
(RMID) files

waveaudio MCIWAVE.DRV An MCI device driver for playing
and recording waveform audio
files

Table 2-1: MCI Drivers

These functions provide a device-independent interface which enable applications to communicate
directly with the Mwave Audio device driver.

Low-level audio functions provide additional control over the multimedia device, and as a result,
require more programming and are usually more complicated than using high-level services.

Mixer Device Driver

The Mixer Device Driver interfaces to MWCM, to the multimedia drivers, and to the Microsoft Mixer
Manager. The Mixer Manager provides applications with a low level interface to/from the mixer
device driver.

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

10

Mwave Audio Operations

The following paragraphs describe the interaction between the audio components and Sound System
applications.

Connect and Disconnect

The interaction starts when a new audio stream is added to the system. This occurs when an
application starts to initiate a stream, say for example Media Player starts playing a WAVE file. The
app (Media Player) opens the WAVE driver, causing the WAVE driver to load its driver specific DSP
code, and make a connection to MWCM. When MWCM receives the connection, it loads and/or
modifies existing DSP tasks in order to connect the supplied source GPC and data rate (specified by
the driver in the MWCM connection) to the supplied destination GPC and data rate. In the example
provided the source would be the output of the WAVE PCM task, and the destination would be the
CDDAC BIOS input GPC. Once the connections are made (post connection) MWCM will inform the
mixer driver that a new connection was made.

The mixer driver, when it receives connection information, checks the connection information against
its “active map”. The active map is an internal data structure in the mixer driver used to describe
which sources and destinations are currently ACTIVE (a signal is flowing through them), MUTED, or
DISCONNECTED. If a line changes state (in the above example the line would go from
DISCONNECTED to ACTIVE) the mixer driver sends a callback to all registered devices indicating
this change. Then it returns control to MWCM, who returns control to the multimedia driver. The
connection has now been established.

The reverse occurs on a disconnect. On a disconnect, the multimedia application tells the multimedia
driver to close. The multimedia driver sends a DISCONNECT message to MWCM. MWCM, prior to
unloading any DSP code, sends a DISCONNECT message to the mixer driver (predisconnect). The
mixer driver checks the line status of the disconnecting line against its “active map”, changes the status
of the source to DISCONNECTED, and, if the destination has no active sources, changes the status of
the destination to DISCONNECTED. It then sends a callback to all registered devices indicating a
change in line status, and returns control to MWCM, which unloads the stream, and returns control to
the multimedia driver. The disconnect sequence is now complete.

Handling Mixer Callbacks

Mwave has a distinct advantage over fixed, hardware only based audio platforms in that the audio
streams are mixed digitally on the DSP. It then becomes very useful to provide control over this mix,
and allow multiple destinations to receive all possible sources. With the advent of Sound System,
control over these streams is relatively simple, and it just becomes necessary to manage stream mixing.
This management of stream mixing also uses the Sound System facilities and requires the drivers that
are Sound System enabled to follow a few simple rules. When the drivers implement these rules, play
destinations can be easily connected to the record destination (and any other destination that the drivers
choose), to provide digital mixing of analog (MIC, CD, LINE) and digital streams into the final output
(record file).

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

11

The rules for drivers to hook into the record destination are as follows.

1. Each driver has a new exported function entry point, in a FIXED code segment
(Microsoft requirement) to handle the mixer callbacks. This function must handle
the two callbacks: line status changes, and control status changes. It is up to each
driver to determine what they will do when they receive these callbacks.

2. Each driver must open the mixer, and register the callback function with the mixer
driver on the mixerOpen.

3. Once the mixerOpen has completed, drivers will then receive notice of all line and
control status changes that occur.

Control (e.g. Volume Status Change)

For control status changes, drivers are primarily interested in changes to their volumes that occur as a
result of some other mixer client changing volume. An example of another client may be a mixer
application where a user just adjusted the volume slider. When the slider changes the mixer driver will
callback the multimedia driver which can update its own volume parameters accordingly. In addition,
if an app sends a volume message to the driver, the driver should make a Sound System call
(SetControlDetails) to set the volume on a stream so that other applications will also receive callback
notice of the change and can update their own volume data.

Line status changes

For line status changes, drivers can use this information to hook into the record stream if they so
choose. For example, if WAVE play is in progress, and the RECORD destination becomes active as
the result of someone starting a recording, then WAVE play can make a second MWCM connection to
this new destination. The WAVE play stream will now be digitally mixed into the RECORD stream.
In order to do this, the conditions described below must be properly handled by the driver:

1. If WAVE is playing and RECORD starts, when the callback occurs, WAVE calls
MWCM to connect to the new RECORD destination.

2. If RECORD is recording and WAVE starts, WAVE, as a part of its open sequence,
calls MWCM to connect to both the PLAY and RECORD destinations. All line
status callbacks are ignored.

3. If WAVE is playing and RECORD stops, when the callback occurs, WAVE
disconnects the RECORD destination MWCM connection.

4. If RECORD is recording and WAVE stops, as a part of the WAVE close sequence,
WAVE disconnects both of its PLAY and RECORD destinations from MWCM. All
line status callbacks are ignored.

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

12

Mixer Driver Description

The following discusses the Sound System mixer driver architecture and implementation. This
discussion is included to give an overview of both the generic architecture, which can be updated and
modified to include new sources, destinations, and controls, and the specific implementation available
today for a set of customers based off of the Mwave WHALE DSP reference design.

Architecture

The mixer driver is architected to handle the standard WSS 2.0 messages, and to interface into the
existing Mwave multimedia drivers (MIDI, WAVE, AUX, GAMES). It was partitioned to separate
hardware specific functions from generic functions, and to allow modification of controls, sources and
destinations.

The controls, sources, and destinations are defined in an RC text file that gets loaded and parsed at
Windows start. The initial values of all controls are contained in the MWAVE.INI file, and each
control is initialized at Windows start to the value contained in the INI file. These values are written
by the driver at Windows exit back into the INI file.

Special note: Because the MSMIXMGR driver loads after MMSYSTEM loads, the mixer controls are
not available to the AUX, WAVE, and MIDI drivers at windows start because MMSYSTEM loads the
AUX and WAVE drivers and the MSMIXMGR has not yet been initialized. Therefore, the AUX
and WAVE drivers must read their initial volumes out of the MWAVE.INI file, they cannot query
them from the mixer driver at Windows start. Once Windows is up however, they must get their
control values from the mixer driver.

In order to manage controls, the mixer driver has a hardware specific piece of code, CONTROLS.C,
which contains all the hardware specific functions necessary to set the controls defined in the RC text
file. A table exists in the mixer driver based off of control type that calls each hardware specific
function (VOLUME, MUTE, etc.).

NOTE: In the future, this control specific piece of code, along with the table lookup, may exist in a
separate DLL in order to facilitate adding or changing controls.

Mixer Driver

Mixer Manager

Multimedia driver
MIDI, WAVE, AUX

RC Text
file of

Controls

MWAVE.INI
initializations
of all controls

FIGURE 2-3: Mixer Architecture

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

13

The RC text file is written to be human readable and changeable to allow users to change, add, or
delete destinations, sources, and controls. An INI file entry (SSRC=) in the PCMWAVE section of
MWAVE.INI tells the mixer driver to read from an RC file or directly from the text file to get its setup
information. This means that a user can modify the text file, try it, change it, and when they are
satisfied with the results they can recompile the text file in the RC file, and tell the driver to read from
RC file again. To read from the RC file, set SSRC equal to 1. To read directly from the text file, set
SSRC equal to 0.

It is envisioned that in the future, applications may exist that provide the user with a set of control
objects (VOLUME, MUTE, REVERB, etc.), and a set of sources and destinations. Users could design
their own mixer driver by visually placing the objects on a template. Once satisfied with the design,
they could save the results, which would cause the application to write to the mixer text definition file,
which would then be picked up by the mixer driver when Windows is restarted.

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

14

The following diagrams describe the current set of controls that have been designed to suit the Mwave
hardware reference design for MDSP2780.

GAMES
Source

2

WAVE
Source

1

CD
Source

3

LINE
Source

4

MIC
Source

5

MIDI
Source

0

Volume
ID:0 (Oh)
VOLUME

Volume
ID:44

VOLUME

Volume
ID:39

VOLUME

Volume
ID:34

VOLUME

Volume
ID:22

VOLUME

Volume
ID:30

VOLUME

Volume
ID:26

VOLUME

Balance
ID:1 (1h)

BALANCE

Balance
ID:45

BALANCE

Balance
ID:40

BALANCE

Balance
ID:35

BALANCE

Balance
ID:27

BALANCE

Balance
ID:31

BALANCE

Balance
ID:23

BALANCE

Mute
ID:2

MUTE

Mute
ID:46

MUTE

Mute
ID:41

MUTE

Mute
ID:36

MUTE

Mute
ID:32

MUTE

Mute
ID:28

MUTE

Mute
ID:24

MUTE

PeakMeter
ID:3 (3h)

PEAKMETER

PeakMeter
ID:47

PEAKMETER

PeakMeter
ID:42

PEAKMETER

PeakMeter
ID:37

PEAKMETER

PeakMeter
ID:25

PEAKMETER

PeakMeter
ID:33

PEAKMETER

PeakMeter
ID:29

PEAKMETER

ON/OFF
ID:48

BOOLEAN

ON/OFF
ID:43

BOOLEAN

ON/OFF
ID:38

BOOLEAN

Qsound
ID:4 (4h)

STEREOENH

Slider
ID:6 (6h)
FADER

Reverb Depth

Slider
ID:7 (7)
FADER

Chorus Depth

ON/OFF
ID:8 (8)

BOOLEAN
Bass/Treble

Slider
ID:9 (9h)
FADER

Treble Depth

Slider
ID:10 (A)
FADER

Bass Depth

ON/OFF
ID: 5 (5h)

BOOLEAN
Reverb/Chorus

SPEAKER
Destination 0

FIGURE 2-4: Play Summing Junction (Outbound Audio)

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

15

GAMES
Source

2

WAVE
Source

1

CD
Source

3

LINE
Source

4

MIC
Source

5

MIDI
Source

0

Volume
ID:11 (B)
VOLUME

Volume
ID:71

VOLUME

Volume
ID:66

VOLUME

Volume
ID:61

VOLUME

Volume
ID:49

VOLUME

Volume
ID:57

VOLUME

Volume
ID:53

VOLUME

Balance
ID:12 (C)

BALANCE

Balance
ID:72

BALANCE

Balance
ID:67

BALANCE

Balance
ID:52

BALANCE

Balance
ID:54

BALANCE

Balance
ID:58

BALANCE

Balance
ID:50

BALANCE

Mute
ID:13

MUTE

Mute
ID:73

MUTE

Mute
ID:68

MUTE

Mute
ID:63

MUTE

Mute
ID:59

MUTE

Mute
ID:55

MUTE

Mute
ID:51

MUTE

PeakMeter
ID:14 (E)

PEAKMETER

PeakMeter
ID:74

PEAKMETER

PeakMeter
ID:69

PEAKMETER

PeakMeter
ID:64

PEAKMETER

PeakMeter
ID:52

PEAKMETER

PeakMeter
ID:60

PEAKMETER

PeakMeter
ID:56

PEAKMETER

ON/OFF
ID:75

BOOLEAN

ON/OFF
ID:70

BOOLEAN

ON/OFF
ID:65

BOOLEAN

Qsound
ID:15 (F)

STEREOENH

Slider
ID:17 (11h)

FADER
Reverb Depth

Slider
ID:18 (12h)

FADER
Chorus Depth

ON/OFF
ID:19 (13h)
BOOLEAN
Bass/Treble

Slider
ID:20 (14h)

FADER
Treble Depth

Slider
ID:21 (15h)

FADER
Bass Depth

ON/OFF
ID: 16 (10h)
BOOLEAN

Reverb/Chorus

RECORD
Destination 1

FIGURE 2-5: Record Summing Junction (Inbound Audio)

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

16

Developing an Mwave Audio Application

The Mwave Audio device driver is 100% compliant with the low-level command interface of the OS/2
MMPM and Microsoft Windows 3.1 audio device driver specifications. As a result, any OS/2 MMPM
or Microsoft Windows 3.1 application which calls functions provided in the high or low level audio
services of these systems Windows will operate correctly on Mwave compliant audio hardware.

Mwave audio applications utilize the high-level and low-level audio services provided in OS/2 and
Microsoft Windows 3.1.

 The following manuals, provided in the Microsoft Windows 3.1 Software Development Kit, describe
these services in detail, and also explain how to use these services to add multimedia audio capabilities
to your Microsoft Windows 3.1 application:

• The Microsoft Windows Software Development Kit Multimedia Programmer's Guide
describes how to develop Multimedia applications for Microsoft Windows 3.1. Chapters
2-5 describe the programming interface and audio services provided in Microsoft
Windows 3.1.

• The Microsoft Windows Software Development Kit Multimedia Programmer's Reference
provides a summary of the Microsoft Windows Multimedia API, including function and
message descriptions, data types and structures, and Multimedia file formats.

The following manuals, provided in the Multimedia Presentation Manager Toolkit/2 , describe these
services in detail, and also explain how to use these services to add multimedia audio capabilities to
your OS/2 application:

• The MMPM Application Programming Guide describes how to develop Multimedia
applications for OS/2. Chapters 2-5 describe the programming interface and audio
services provided in OS/2.

• The MMPM Programming Reference provides a summary of the MMPM API,
including function and message descriptions, data types and structures, and multimedia
file formats.

All audio capabilities described in the above documentation are available to Mwave audio application
developers.

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

17

Audio Mixer API Reference

The following describes each of the Windows Sound System 2.0 messages and the Mwave Sound
System driver’s implementation of each of the messages provided by the Sound System API.

MXDM_OPEN

The calling client is added to the mixer driver’s list of registered clients. The calling client will be
notified, via callback, of changes in controls or line status.

Note that Microsoft does not require a client to open the mixer driver in order to use the mixer driver.
A client can access the mixer driver independent of the open/close message. The only service that
open and close provides is the ability of the client to receive a callback on any change to control or line
status.

MXDM_CLOSE

The calling client is removed from the mixer driver’s list of registered clients. The calling client will
no longer be notified, via callback, of changes in controls or line status.

MXDM_GETDEVCAPS

Returns the Mwave mixer device driver capabilities copied into the passed in MIXERCAPS structure.
Currently the returned values are as follows:

wMid: MM_MICROSOFT;
wPid: MM_MSFT_WSS_MIXER;
vDriverVersion: 0x200
fdwSupport: NULL
cDestinations: 2
szPname: “Mwave Mixer Audio Driver”

MXDM_GETNUMDEVS

Returns 1, only 1 mixer device supported.

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

18

MXDM_GETLINEINFO

Returns information about a specific source or destination. For queries of TARGETTYPE, valid
targettypes are WAVEOUT, WAVEIN, and MIDIOUT.

MXDM_GETLINECONTROLS

Returns information about a specific set of controls. This driver only supports the standard three
queries: ALL, ONEBYID, and ONEBYTYPE.

MXDM_GETCONTROLDETAILS

Returns the current setting(s) of a specific control.

MXDM_SETCONTROLDETAILS

Sets the control to the specified state, updates the driver’s internal tables, and notifies all registered
users (those that OPENED the mixer driver via MXD_OPEN) of the change in the control. The mixer
driver retains this information while Windows is running in its own internal data structures, and when
Windows is shut down in INI file entries in the PCMWAVE section of the MWAVE.INI file.

MXDM_USER_CONNECT

Notification from MWCM (Mwave Connection Manager) of the connection of a line. The following
parameters are expected in this call:

dwUser: Specific instance data (none used)
dwParam1: MWCM Connection name
dwParam2: MWCM connection handle, type HMWCM.

MXDM_USER_DISCONNECT

Notification from MWCM (Mwave Connection Manager) of the disconnection of a line. The
following parameters are expected in this call:

dwUser: Specific instance data (none used)
dwParam1: MWCM Connection name
dwParam2: MWCM connection handle, type HMWCM.

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

19

Mixer Callbacks API Reference

Callbacks are passed to a function or a window handle based on the type of callback specified in the
clients call to mixerOpen. Note that only those devices that have opened the mixer driver will receive
callbacks. The callback messages notify clients of changes in line status (ACTIVE, MUTED,
DISCONNECTED), and changes in control values. Source lines are ACTIVE when they have data
flowing through them (which, on Mwave, is when they have a MWCM connection), and destination
lines are ACTIVE when any source line is ACTIVE.

Callbacks are the mechanism used by Sound System enabled drivers (MIDI, WAVE, etc.) to
implement Record what you play, which allows users to record both digital and analog input streams,
and to update and modify global volume parameters.

MM_MIXM_LINE_CHANGE

This callback occurs when a line is connected or disconnected from MWCM, or changes state (MUTE,
UNMUTE).

MM_MIXM_CONTROL_CHANGE

This callback occurs when a control changes state.

 MMWADKUMU-03 Chapter 2 - Audio Services

This document contains information that is subject to
change without notice.

20

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

21

Chapter 3 - Telephony Services

This chapter describes the telephony services available to OS/2 and Microsoft Windows 3.1 application
developers for the purpose of developing Mwave compatible telephony based applications.

Mwave Telephony Architecture

The Mwave system hardware has the ability to play and record data to and from a telephone line, an
external microphone/speaker, a telephone handset (just the ear piece and microphone), or a telephone
deskset (standard analog telephone). For the purposes of this document, no distinction is made between
a telephone handset and a telephone deskset. The term "handset" refers to either one. The data obtained
from these devices can be in a variety of formats (voice data, fax data, etc.) as supported by
corresponding DSP code tasks. Along with the ability to record and play telephony media, the system
(with the required software tasks) has the ability to decode touch-tone type key presses coming either
from the telephone line or handset.

Building a complete application from a library of various DSP functionality would be tedious at best.
For this reason, the DSP tasks have been grouped into categories of applications, and have been
integrated with software device drivers. The types of telephone formats addressed by the current device
drivers include voice and fax carrier data transmission. In future software releases, data transmission
may be integrated with voice, e.g. voice and data.

The following figure shows the Mwave telephony architecture:

MWAVE-RESIDENT

HOST-RESIDENT

Mwave O/S

AT Tasks

Figure 3-1: Mwave Telephony Architecture

Misc. Telephony TasksTAM Tasks

 MWAVE HOST O/S LEVEL

 DRIVER LEVEL

 APPLICATION LEVEL
Modem Application

Discriminator Driver

Mwave Windows Manager

TAM ApplicationFax Application

Mwave VxD

Fax Device Driver Comm DriverTPL Device DriverTPS Device Driver

Fax Tasks

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

22

The following standard MCI drivers, provided in the OS/2 MMPM and Microsoft Windows 3.1, are
used for processing high-level MCI calls to Mwave telephony hardware:

Device Type Driver Filename Description
fax mcifax.drv

fax.dll (OS/2)
An MCI device driver for sending and receiving
faxes

tps mcimsg.drv
tps.dll (OS/2)

An MCI device driver for local message record and
playback

tpl mciphone.drv
tpl.dll (OS/2)

An MCI device driver for message record and play
through the phone line only

Table 3-1: Telephony MCI Driver Summary

The Telephony Device Drivers
Two types of telephony drivers are supplied with the Mwave subsystem. These include fax send and
receive (FAX) and telephone answering machine (TAM). They are designed to comply with standard
MCI type command protocols, and are implemented as MCI extensions.

Common Telephone Interface

Because both drivers make use of the telephone device, potential conflicts arise when multiple
applications are active at once. Although the telephone can be physically used by only one type of
driver at a time, the Mwave telephony drivers were designed with the ability to share control of the
telephone device, and in essence, to virtualize the telephone line. This virtualization process has been
integrated into the MCI telephone interface used by both drivers, and is performed transparently to the
application.

Using a common telephone interface has some significant advantages. The common interface presents
a standardized view of the telephone device to the application programmer. This allows the
programmer to create a personal library of telephony functions, and use them in a variety of
applications. Migrating from a FAX device to a TAM device does not require any retraining on
programming the telephone.

Most importantly in today's multi-tasking environment, having a common telephone interface allows
for transparent implementation of a virtual telephone device. Although multiple applications cannot
use the telephone simultaneously, they can constantly monitor for incoming calls. The job of sharing
the telephone device, discriminating between calls, and signaling the corresponding waiting application
is performed transparently by the device driver. This allows the application programmer to treat the
telephone device as a sharable resource, and does not require inter-communication between separate
FAX, TAM, and Modem applications. An application can wait for a call, and know that it will gain
control of the telephone when the call arrives. An application that owns the telephone knows that it can
complete the call without fear that another application will try to "steal" the telephone line. The
common telephone interface greatly simplifies any environment where the telephone line is shared.

Multiple applications can monitor for an incoming telephone call at any time. However, only one
application may monitor for any one particular type of call. For example, two applications can not be
simultaneously waiting for a voice call, but one application can wait for a voice call, and another
application can wait for a fax or modem call. Only one application can own the telephone line at any
given time. Ownership of the telephone is the ability to actually use the telephone line (make a call).

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

23

An application takes ownership of the phone line in three ways:

• The application receives an incoming phone call.
• The application executes a command to take the phone off-hook.
• The application executes a dial command.

Once an application takes ownership of the phone line, other applications can continue to wait for
incoming telephone calls, or wait for the phone line to free up, but these other applications are not
allowed to use the telephone device. If an application is just waiting for a call, active use of the
telephone by other applications is transparent to the waiting application. Any application can still
execute MCI commands to control the driver environment, even when the telephone is in use by
another application. The telephone line is owned by an application until it places the telephone on-
hook, or until the device driver detects that the call has been completed.

MCI Event Handler

One difficulty in using a telephone device is the random nature of telephone events. At any one time,
one or more applications might be waiting for a call, determining a data transmission baud rate,
checking to see if the handset is on-hook, and looking for touch tone key presses from either the
handset or the telephone line. Obviously, it is impractical to constantly poll for these types of events,
especially in a non-real-time environment such as Microsoft Windows. Ideally, an application would
be notified (via messages) when any of these randomized real-time events occur. Under MCI for OS/2
and Microsoft Windows, an application notification message, MM_MCINOTIFY, is used to notify
an application when a function call has been completed, but unfortunately, no mechanism exists to
signal an application when a defined event occurs.

To handle the need for an on-demand messaging system, the MCI drivers for Fax and TAM include a
message posting system, which when combined with an application supplied message handler, can
signal telephony applications when a defined event occurs. The receiving application might or might
not act on this message. Some of the message events defined include:

• Receiving a telephone call
• Detecting call termination
• Incoming caller identification string
• Handset hook status
• Handset touch-tone key press
• Telephone line hook status
• Telephone line touch-tone key press
• Telephone ring detected

There are additional messages defined for the Fax and TAM drivers which notify an application about
more application specific events. The Microsoft Windows message chosen to signal these events is
MM_MCIEVENT, because of the function's similarity to its OS/2 counterpart. "Initializing the
Application" on page 1-24 describes the MM_MCIEVENT message in detail.

By using the supplied event handler, a telephony application need not poll the status of any of the
important telephony peripherals.

Developing an Mwave Telephony Application

The Mwave telephony device drivers are compliant with the guide-lines of the MCI command interface
of MMPM and Microsoft Windows. The drivers implement all required MCI commands, and include

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

24

additional MCI extensions to provide a simple yet comprehensive interface to the telephone device.
Information specific to the functionality of the individual drivers is available in their corresponding
chapters.

Before developing an Mwave telephony application, you need to become familiar with the procedures
involved in using the MCI interface. This document assumes you are familiar with MCI. The following
manuals, provided in the Microsoft Windows 3.1 Software Development Kit, describe MCI command
execution in detail, and also explain the various commands and messages involved in writing an MCI-
based Microsoft Windows application:

• The Microsoft Windows Software Development Kit Multimedia Programmer's Guide
contains an excellent overview of MCI, and provides code examples detailing the use of
the MCI interface.

• The Microsoft Windows Software Development Kit Multimedia Programmer's Reference
provides a summary of the Microsoft Windows Multimedia API, including function and
message descriptions, data types and structures, and Multimedia file formats.

The following manuals, provided in the Multimedia Presentation Manager Toolkit/2, describe this
information for OS/2.

• The MMPM/2 Sample Application Programming Guide (S71G-2221) contains an
excellent overview of MCI, and provides code examples detailing the use of the MCI
interface.

• The MMPM/2 Programming Reference (S71G-2222) provides a summary of the
MMPM API, including function and message descriptions, data types and structures, and
multimedia file formats.

This section illustrates the use of the common telephone interface, which is integrated into every
telephony device. The information supplied here applies to all of the supplied telephony device drivers,
although the code examples have references to specific drivers. More information on programming
each individual device driver is supplied in a separate chapter.

Initializing the Application

The most significant difference between traditional MCI devices and the telephony drivers supplied
here is the use of an event handing routine. Communication of real-time status information from the
MCI device to the application is performed through this application event handler. The handler should
be able to service messages posted by the MCI device, which contain real-time status information
about the device. The message, MM_MCIEVENT, is not a standard MCI message under Microsoft
Windows. Thus, a Microsoft Windows application must call the RegisterWindowMessage function
with the string "MM_MCIEVENT" to obtain the numeric value of the notification message.

MM_MCIEVENT

In addition to the message itself, wParam and lParam are used to pass information to the
application.

WPARAM wParam
Contains a device specific event message wEvent.

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

25

LPMCI_EVENT_PARMS lParam
Specifies a far pointer to the following MCI_EVENT_PARMS structure:

typedef struct {
DWORD dwDataParam1;
DWORD dwEventData;

} MCI_EVENT_PARMS;

The data parameters are defined as follows:

DWORD dwDataParam1
The low-order word specifies the device specific event message wEvent
(same as wParam). The high-order word specifies the device ID of the
device initiating the message.

DWORD dwEventData
Contains a data parameter, which is dependent on the message type. This
parameter is usually an on / off indication, or a pointer to string data.

The message type contained in wEvent, and the message data (or pointer to data)
contained in dwEventData, comprise the event message. The value and meaning of the
message data varies according to the individual message. The individual telephony device
messages for each device are detailed in their corresponding MCI command reference
chapters of this document.

The following code example illustrates the initialization of a Microsoft Windows application, including
the MCI event handler. Modifications to the code include the implementation of three distinct
functions to handle the initialization of the MCI driver environment. These functions have been
isolated in the example for the sake of clarity, and could be integrated into the main program logic of
an actual Microsoft Windows application. The functions are as follows:

InitDriverEnv() Initializes the driver environment by opening the driver and installing the
event handler.

UninitDriverEnv() Uninitializes the driver, by simply closing the device.

EventHandler() Receives messages from MCI (both MM_MCINOTIFY and
MM_MCIEVENT), and acts on these messages. This routine is shown
as a separate window procedure, but the code could easily be merged
into the main window procedure.

An entire OS/2 and Microsoft Windows startup example is shown below. Some of the modifications
made to the generic application startup routines have been highlighted for easier reference.

//--
// Windows Sample Code GENAPP.C
//--
//
// This example shows how t o open the MCI device, and initialize the
// event handler. The event handler routine shown in this example,
// receives MM_MCINOTIFY messages as well as MM_MCIEVENT messages.
//
// WinMain() - Invokes initialization & contains message loop
// InitApplication() - Register window classes
// InitInstance() - Create application & event handler windows

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

26

// InitDriverEnv() - Initialize MCI driver & register event handler
// UninitDriverEnv() - Close the MCI driver
// EventHandler() - Process incoming M CI messages
// MainWndProc() - Main program window proc
//--
#include <windows.h>
#include <mmsystem.h>
#include <mciftdd.h>
#include <stdio.h>

HANDLE hInst;
HWND hMainWnd,hEventHandler;
static UINT wOurDeviceID = 0;

//
// WinMain - Program entry point
//
int PASCAL WinMain(hInstance, hPrevInstance, lpCmdLine, nCmdShow)
HANDLE hInstance;
HANDLE hPrevInstance;
LPSTR lpCmdLine;
int nCmdShow;
{
MSG msg;

// Register the window classes i f first time through, else abort
if(hPrevInstance || !InitApplication(hInstance))

return (FALSE);

// Create the main windows and event handler
if(!InitInstance(hInstance, nCmdShow))

return (FALSE);

// Initialize the MCI driver and begin execution
if(InitDriverEnv())

{
while (GetMessage(&msg,NULL,NULL,NULL))

{
TranslateMessage(&msg);
DispatchMessage(&msg);

}
// Close and clean up the MCI driver environment
UninitDriverEnv();

}
return (msg.wParam);
}

//
// InitApplication - Register the window classes to be used
//
BOOL InitApplication(hInstance)
HANDLE hInstance;
{
WNDCLASS wc;
BOOL bTmp;

wc.style = CS_OWNDC | CS_VREDRAW | CS_HREDRAW;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(hInstance,"AppIcon");
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = GetStockObject(BLACK_BRUSH);
wc.lpszMenuName = "AppMenu";
wc.lpszClassName = "AppWClass";
bTmp = RegisterClass(&wc);

wc.style = 0;
wc.lpfnWndProc = EventHandler;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = 0;
wc.hCursor = 0;
wc.hbrBackground = 0;
wc.lpszMenuName= 0;
wc.lpszClassName = "HandlerWClass";
return(RegisterClass(&wc) && bTmp);
}

//
// InitInstance - Create the main window and the event handler window

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

27

//
BOOL InitInstance(hInstance, nCmdShow)
HANDLE hInstance;
intnCmdShow;
{
hInst = hInstance;

hMainWnd = CreateWindow("AppWClass","Event Handler Examp le",
 WS_OVERLAPPEDWINDOW,CW_USEDEFAULT,
 CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,
 NULL,NULL,hInstance,NULL);

hEventHandler = CreateWindow("HandlerWClass",0,0,0,0,0,0,
 NULL,NULL,hInstance,NULL);

if (!hMainWnd || !hEventHandler)
return (FALSE);

ShowWindow(hMainWnd, nCmdShow);
UpdateWindow(hMainWnd);

return (TRUE);
}

//
// InitDriverEnv - Initialize the MCI driver environment
//
UINT InitDriverEnv()
{
MCI_OPEN_PARMS mciOpenParms;
MCI_FAX_SET_PARMS mciSetParms;

// Open the MCI Driver of choice (in this case FAX), and register
// the message handler using MCI_SET...
mciOpenParms.dwCallback = hEventHandler; //set handle in dwCallback for open
mciOpenParms.lpstrDeviceType = "Mwavefax";
if(mciSendCommand(0,MCI_OPEN,MCI_OPEN_TYPE,
 (DWORD)(LPVOID)&mciOpenParms))

MessageBox(hMainWnd,"MCI Open Error","MCI_OPEN",MB_OK);
else

{
wOurDeviceID = mciOpenP arms.wDeviceID;
mciSetParms.dwItem= MCI_FAX_SET_EVENT_HANDLER;
mciSetParms.dwSetData = hEventHandler;
mciSendCommand(wOurDeviceID,MCI_SET,
 MCI_SET_ITEM,(DWORD)(LPVOID)&mciSetParms);

}
return(wOurDeviceID);
}

//
// UninitDriverEnv - Close down the MCI driver
//
void UninitDriverEnv()
{
MCI_GENERIC_PARMS mciGenericParms;
// Here we'll simply close the driver...
 mciGenericParms.dwCallback = hEventHandler; //Set handle in dwCallback for Close
mciSendCommand(wOurDeviceID, MCI_CL OSE, MCI_WAIT, &mciGenericParms);
}
//
// EventHandler - Handle messages from MCI
//
long FAR PASCAL EventHandler(hWnd, message, wParam, lParam)
HWND hWnd;
unsigned message;
WPARAM wParam;
LPARAM lParam;
{
static UINT uMCIMessage = 0xffff;
unsigned short wDeviceID;
unsigned short wEvent;
DWORD dwEventData;
char tmpstr[80];

switch (message)
{
case WM_CREATE:

// Register the new event message to be received
uMCIMessage = RegisterWindowMessage("MM_MCIEVENT");
break;

case MM_MCINOT IFY:
// *** Received a NOTIFY message ***

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

28

// Get DeviceID of the driver which is sending the message
wDeviceID = LOWORD(lParam);

// Check the message...
switch(wParam)

{
.

Handle MM_MCINOTIFY messages here.
.

}
break;

default:
if(message == uMCIMessage)

{
LPMCI_EVENT_PARMS mep = (LPMCI_EVENT_PARMS)lParam;
// *** Received an EVENT message ***

// Get DeviceID of the driver which is sending the message
wDeviceID = HIWORD(mep->dwDataParam1) ;

// Get message being sent (wEvent). We could simply assign
// wEvent = wParam;, but for illustration we'll use...
wEvent = LOWORD(mep->dwDataParam1);

// Get the data associated with the message (dwEventData)
dwEventData = mep->dwEventData;

// Check the message...
switch(wEvent)

{
.

Handle MM_MCIEVENT messages here.
.

}
}

else
return (DefWindowProc(hWnd, message, wParam, lParam));

}
return (NULL);
}
//
// MainWndProc - This is the window procedure for our main window
//
long FAR PASCAL MainWndProc(hWnd, message, wParam, lParam)
HWND hWnd;
unsigned message;
WPARAM wParam;
LPARAM lParam;
{

.
Standard Window Procedure

.
}

// OS/2 MMPM Sample Code genapp.c
//
// This example shows how to open an MCI device and initialize the
// event handler.
//
// main
// MyWindowProc() Process messages from MCI
// InitDriverEnv() Initialize the MCI driver and register event handler
// UninitDriverEnv() Close the MCI driver
// main() Main program window procedure
//

#include <os2.h> // PM header file
#include "tam.h" // also includes mciftdd.h
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>

#define STRINGLENGTH 80 // Length of string

// Function prototypes
MRESULT EXPENTRY MyWindowProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM
mp2);
static int InitDriverEnv(void);

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

29

static void UninitDriverEnv(void);

char *lpAppName = "Mwave TAM";•
char *lpIniName = "MWTAM.INI";
char *AnnounceFile = "\\announce.tam";
char *AnnounceTmp = "\\announce.tmp";
long dwBFE;•
 // Define parameters by type
HAB hab; // PM anchor block handle
CHAR szTAM[11] = "TAM Sample"; // String parameters, set in
CHAR szString[STRINGLENGTH]; // procedure.
PSZ pszErrMsg;
HWND hwndClient = NULLHANDLE; // Client area window handle
HWND hwndFrame = NULLHANDLE; // Frame window handle
HWND hwndMenu; // Handle for the Menu bar
WORD mci_cmd_ctr = 1;
HWND hEventHandler;
UINT wTplDeviceID = 0;
UINT wTpsDeviceID = 0;

//
// lines omitted for clarity - see tam.c for complete code
//

// --
// Main window procedure

INT main (VOID)
{
 HMQ hmq; // Message queue handle
 QMSG qmsg; // Message from message queue
 ULONG flCreate; // Window creation control flags

 if ((hab = WinInitialize(0)) == 0L) // Initialize PM
 AbortTam(hwndFrame, hwndClient); // Terminate the application

 if ((hmq = WinCreateMsgQueue(hab, 0)) == 0L)// Create a msg queue
 AbortTam(hwndFrame, hwndClient); // Terminate the application

 if (!WinRegisterClass(// Register window class
 hab, // Anchor block handle
 (PSZ)"MyWindow", // Window class name
 (PFNWP)MyWindowProc, // Address of window procedure
 CS_SIZEREDRAW, // Class style
 0 // No extra window words
))
 AbortTam(hwndFrame, hwndClient); // Terminate the application

 flCreate = FCF_STANDARD & // Set frame control flags to
 ~FCF_SHELLPOSITION &
 ~FCF_MAXBUTTON &
 ~FCF_SIZEBORDER &
 ~FCF_ACCELTABLE | FCF_DLGBORDER;

 if ((hwndFrame = WinCreateStdWindow(
 HWND_DESKTOP, // Desktop window is parent
 WS_VISIBLE, // STD. window styles
 &flCreate, // Frame control flag
 "MyWindow", // Client window class name
 szTAM, // No window text
 0, // No special class style
 (HMODULE)0L, // Resource is in .EXE file
 ID_WINDOW, // Frame window identifier
 &hwndClient // Client window handle
)) == 0L)
 AbortTam(hwndFrame, hwndClient); // Terminate the application

 if (!WinSetWindowPos(hwndFrame, // Shows and activates frame
 HWND_TOP, // window at position 100, 100,
 100, 100, 550, 80, // and size 550, 70.
 SWP_SIZE | SWP_MOVE | SWP_ACTIVATE | SWP_SHOW
))
 AbortTam(hwndFrame, hwndClient); // Terminate the application

 hEventHandler = hwndFrame;

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

30

// Get and dispatch messages from the application message queue
// until WinGetMsg returns FALSE, indicating a WM_QUIT message.

 if (InitDriverEnv()) {
 hwndMenu = WinWindowFromID(hwndFrame, FID_MENU);
 while(WinGetMsg(hab, &qmsg, 0L, 0, 0))
 WinDispatchMsg(hab, &qmsg);
 }
 UninitDriverEnv();
 WinDestroyWindow(hwndFrame); // Tidy up...
 WinDestroyMsgQueue(hmq); // Tidy up...
 WinTerminate(hab); // Terminate the application
} // End of main

// --
// InitDriverEnv - initialize the MCI driver environment

static int InitDriverEnv(void)
{
 // Open the MCI driver (in this case, Mwavetpl)

 mciOpenParms.dwCallback = hEventHandler;
 mciOpenParms.lpstrDeviceType = (INT *) "Mwavetpl";
 dwBFE = mciSendCommand(0,MCI_OPEN,MCI_WAIT | MCI_OPEN_TYPE,
 (DWORD)&mciOpenParms, mci_cmd_ctr++);
 if(dwBFE)
 {
 error_box();
 return(0);
 }

 // Get the device ID & register the Event Handler

 wTplDeviceID = mciOpenParms.wDeviceID;
 mciSetParms.dwCallback = hEventHandler;
 mciSetParms.dwItem = MCI_TAM_SET_EVENT_HANDLER;
 mciSetParms.dwSetData = hEventHandler;
 mciSendCommand(wTplDeviceID,MCI_SET,MCI_WAIT | MCI_SET_ITEM,
 (DWORD)&mciSetParms, mci_cmd_ctr++);

 // Open the MCI Driver (in this case, Mwavetps)

 mciOpenParms.dwCallback = hEventHandler;
 mciOpenParms.lpstrDeviceType = (INT *)"Mwavetps";
 dwBFE = mciSendCommand(0,MCI_OPEN,MCI_WAIT | MCI_OPEN_TYPE,
 (DWORD)&mciOpenParms, mci_cmd_ctr++);
 if(dwBFE)
 {
 error_box();
 return(0);
 }

 // Get the device ID & register the Event Handler

 wTpsDeviceID = mciOpenParms.wDeviceID;
 mciSetParms.dwCallback = hEventHandler;
 mciSetParms.dwItem = MCI_TAM_SET_EVENT_HANDLER;
 mciSetParms.dwSetData = hEventHandler;
 mciSendCommand(wTpsDeviceID,MCI_SET,MCI_WAIT | MCI_SET_ITEM,
 (DWORD)&mciSetParms, mci_cmd_ctr++);

 // Set to receive TAM phone calls
 mciSetParms.dwItem = MCI_TAM_SET_CALL_FILTER;
 mciSetParms.dwSetData = 1;
 mciSendCommand(wTplDeviceID,MCI_SET,MCI_WAIT | MCI_SET_ITEM,
 (DWORD)&mciSetParms, mci_cmd_ctr++);

 return(wTplDeviceID);
}

// ---
// UninitDriverEnv - close the MCI driver•
//

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

31

static void UninitDriverEnv(void)
{
 mciGenericParms.dwCallback = hEventHandler;

 dwBFE = mciSendCommand(wTplDeviceID, MCI_CLOSE, MCI_WAIT,
 (DWORD)&mciGenericParms, mci_cmd_ctr++);
 if(dwBFE)
 error_box();

 dwBFE = mciSendCommand(wTpsDeviceID, MCI_CLOSE, MCI_WAIT,
 (DWORD)&mciGenericParms, mci_cmd_ctr++);
 if(dwBFE)
 error_box();
}

// --
// MyWindowProc - event handler for messages from MCI
//

MRESULT EXPENTRY MyWindowProc(HWND hwnd, ULONG msg, MPARAM mp1, MPARAM
mp2)
{
 HDC hdc;
 static int InitEnv = 0;
 static short wKeys[3]; // Last 3 keys entered
 static short wQuiet; // Count for QUIET messages
 static short wKeysPressed; // Count for 3 key command
 static short wCmdKey; // Flag for 5-x play ctrl
 unsigned short wEvent;
 unsigned long dwEventData;
 static int FlashState = 0;

 switch(msg)
 {
 case MM_MCINOTIFY:
 switch(SHORT1FROMMP(mp1))
 {
 case MCI_NOTIFY_FAILURE:
 case MCI_NOTIFY_SUCCESSFUL:
 case MCI_NOTIFY_SUPERSEDED:
 case MCI_NOTIFY_ABORTED:

 switch(wTamState)
 {
 case TS_COMMAND_MODE:
 case TS_PLAY_MESSAGE:
 PlayComplete();
 break;

 case TS_REMOTE_PLAY:
 ContinueRemote();
 wQuiet = 0;
 break;

 case TS_PLAY_ANNOUNCEMENT:
 RecordMessage();
 wQuiet = 0;
 break;

 case TS_RECORD_MESSAGE:
 SaveMessage();
 break;

 case TS_ARCHIVE_PLAY:
 PlayComplete();
 break;

 default:
 break;
 }
 break;
 }
 break;
 case MM_MCIEVENT:

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

32

 mep = (LPMCI_EVENT_PARMS)mp2;
 wEvent = LOWORD(mep->dwDataParam1); // or wParam
 dwEventData = mep->dwEventData;
 if (dwEventData >= '0')
 dwEventData -= '0';
 else if (dwEventData == '#')
 dwEventData = 35;
 else if (dwEventData == '*')
 dwEventData == 42;

 switch(wEvent)
 {
 case PHONE_EVENT_CALL_TAM:
 wKeysPressed = 0;
 AnswerCall();
 break;

 case PHONE_EVENT_CALL_TERMINATED:•
 CallTerminated();
 break;

 case PHONE_EVENT_CALL_PROGRESS:
 if(wTamState == TS_RECORD_MESSAGE ||
 (wTamState==TS_REMOTE_PLAY && wRemoteState==RS_WAITING))
 switch(dwEventData)
 {
 case DIALTONE:
 case SLOWBUSY:•
 case FASTBUSY:
 CallTerminated();
 break;
 }
 break;

 case PHONE_EVENT_LINE_KEY:
 if(wTamState == TS_REMOTE_PLAY)
 {
 if(wCmdKey == 5) // Check for play ctrl sequence
 {
 wCmdKey = -1;
 switch(dwEventData)
 {
 case 1:
 SeekMessage(TB_BACK);
 break;
 case 2:•
 if(!(wPause^=1))
 mciSendCommand(wTpsDeviceID, MCI_RESUME, MCI_WAIT,
 (DWORD)&mciGenericParms, mci_cmd_ctr++);
 else
 mciSendCommand(wTpsDeviceID, MCI_PAUSE, MCI_WAIT,
 (DWORD)&mciGenericParms, mci_cmd_ctr++);
 break;
 case 3:
 SeekMessage(TB_FORWARD);
 break;
 }
 }
 else // Standard Remote Play command
 {
 switch(dwEventData)
 {
 case 1:
 RemoteNext();
 break;
 case 2:
 RemoteRemove();
 break;
 case 3:
 RemoteRepeat();
 break;
 case 4:
 RemoteArchive();
 break;
 case 5: // Initiate play ctrl sequence
 wCmdKey = (short)dwEventData;
 break;

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

33

 }
 }
 }
 else // Check for 3 digit command code
 {
 wKeys[2] = wKeys[1];
 wKeys[1] = wKeys[0];
 wKeys[0] = (short)dwEventData;
 if(++wKeysPressed > 2)
 {
 if((wKeys[2]*100+wKeys[1]*10+wKeys[0])==wCommandCode)
 {
 BeginRemote();
 wCmdKey = -1;
 }
 }
 }
 break;

 default:
 break;
 }

 break;
 case WM_CREATE:
 WinStartTimer(hab, hwnd, 1000,1000UL);
 break;

 case WM_TIMER:
 if(!wNewMessages)
 {
 if(FlashState)
 {
 WinSetWindowText(hwndFrame, szTAM);
 FlashState = 0;
 }
 }
 else if(FlashState ^= 1)
 WinSetWindowText(hwndFrame," ");
 else
 WinSetWindowText(hwndFrame, szTAM);
 break;

 case WM_COMMAND:
 //
 // When the user chooses option 1, 2, or 3 from the Options pull-
 // down, the text string is set to 1, 2, or 3, and
 // WinInvalidateRegion sends a WM_PAINT message.
 // When Exit is chosen, the application posts itself a WM_CLOSE
 // message.

 {
 USHORT command; // WM_COMMAND command value
 command = SHORT1FROMMP(mp1); // Extract the command value
 switch (command)
 {
 case ID_RECANNOUNCE:
 WinDlgBox(HWND_DESKTOP, // Place anywhere on desktop
 hwndFrame, // Owned by frame
 RecordAnnounce, // Address of dialog procedure
 (HMODULE)0, // Module handle
 RECANNOUNCE, // Dialog identifier in resource
 NULL); // Initialization data

 WinInvalidateRegion(hwnd, NULLHANDLE, FALSE); // Force a repaint
 break;

 case ID_SETRING:
 WinDlgBox(HWND_DESKTOP, // Place anywhere on desktop
 hwndFrame, // Owned by frame
 SetRingCount, // Address of dialog procedure
 (HMODULE)0, // Module handle
 RINGCOUNT, // Dialog identifier in resource
 NULL); // Initialization data

 WinInvalidateRegion(hwnd, NULLHANDLE, FALSE); // Force a repaint
 break;

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

34

 case ID_COMMANDCODE:
 WinDlgBox(HWND_DESKTOP, // Place anywhere on desktop
 hwndFrame, // Owned by frame
 SetCommandCode, // Address of dialog procedure
 (HMODULE)0, // Module handle
 COMMANDCODE, // Dialog identifier in resource
 NULL); // Initialization data

 WinInvalidateRegion(hwnd, NULLHANDLE, FALSE); // Force a repaint
 break;

 case ID_RESET:
 mp1 = (MPARAM)ID_PHONE;
 case ID_PHONE:
 case ID_TAM:
 case ID_HANDSET:
 case ID_SPEAKER:
 case ID_FIRST:
 case ID_PREVIOUS:
 case ID_AGAIN:
 case ID_NEXT:
 case ID_ERASE:
 case ID_REVERSE:
 case ID_PAUSE:
 case ID_FORWARD:
 case ID_FAST:
 case ID_NORMAL:
 case ID_SLOW:
 hdc = WinOpenWindowDC(hwnd);
 ButtonAction(hdc,Menu2Button[SHORT1FROMMP(mp1)-ID_PHONE]);
 break;

 case ID_V0:
 case ID_V1:
 case ID_V2:
 case ID_V3:
 case ID_V4:
 case ID_V5:
 case ID_V6:
 case ID_V7:
 case ID_V8:
 case ID_V9:
 SetVolume(SHORT1FROMMP(mp1)-ID_V0);
 break;
 case ID_QUIT:
 WinPostMsg(hwnd, WM_QUIT, (MPARAM)0,(MPARAM)0);// Cause termination
 break;
 default:
 return WinDefWindowProc(hwnd, msg, mp1, mp2);
 }

 break;
 }
 case WM_ERASEBACKGROUND:
 //
 // Return TRUE to request PM to paint the window background
 // in SYSCLR_WINDOW.

 return (MRESULT)(TRUE);
 case WM_PAINT:

 // Window contents are drawn here in WM_PAINT processing.

 {
 HPS hps; // Presentation Space handle
 RECTL rc; // Rectangle coordinates
 POINTL pt; // String screen coordinates
 // Create a presentation space
 if(!InitEnv) {
 InitEnv = 1;
 InitTamState();
 ButtonAction(hdc,TB_TELEPHONE);
 SetVolume(wVolume);
 }
 hps = WinBeginPaint(hwnd, 0L, &rc);

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

35

 pt.x = 1; pt.y = 5; // Set the text coordinates,
 GpiSetColor(hps, CLR_NEUTRAL); // colour of the text,
 GpiSetBackColor(hps, CLR_BACKGROUND); // its background and
 GpiSetBackMix(hps, BM_OVERPAINT); // how it mixes,
 // and draw the string...
 GpiCharStringAt(hps, &pt, (LONG)strlen(szString), szString);
 WinEndPaint(hps); // Drawing is complete
 break;
 }
 case WM_CLOSE:
 //
 // This is the place to put your termination routines
 //

 sprintf(szString,"%d", wVolume);
 PrfWriteProfileString(hini, lpAppName,"VOL",szString);
 sprintf(szString,"%d", wMsgOut);
 PrfWriteProfileString(hini, lpAppName,"MSGOUT",szString);
 sprintf(szString,"%d", dwMsgIndex);
 PrfWriteProfileString(hini, lpAppName,"MSGIDX",szString);

 PrfCloseProfile(hini);
 WinPostMsg(hwnd, WM_QUIT, (MPARAM)0,(MPARAM)0);// Cause termination
 break;
 default:
 //
 // Everything else comes here. This call MUST exist
 // in your window procedure.

 return WinDefWindowProc(hwnd, msg, mp1, mp2);
 }
 return (MRESULT)FALSE;
} // End of MyWindowProc

// --
// AbortTam

VOID AbortTam(HWND hwndFrame, HWND hwndClient)
{
 PERRINFO pErrInfoBlk;
 PSZ pszOffSet;

 DosBeep(100,10);
 if ((pErrInfoBlk = WinGetErrorInfo(hab)) != (PERRINFO)NULL)
 {
 pszOffSet = ((PSZ)pErrInfoBlk) + pErrInfoBlk->offaoffszMsg;
 pszErrMsg = ((PSZ)pErrInfoBlk) + *((PSHORT)pszOffSet);
 if((INT)hwndFrame && (INT)hwndClient)
 WinMessageBox(HWND_DESKTOP, // Parent window is desk top
 hwndFrame, // Owner window is our frame
 (PSZ)pszErrMsg, // PMWIN Error message
 "Error Msg", // Title bar message
 MSGBOXID, // Message identifier
 MB_MOVEABLE | MB_CUACRITICAL | MB_CANCEL); // Flags
 WinFreeErrorInfo(pErrInfoBlk);
 }
 WinPostMsg(hwndClient, WM_QUIT, (MPARAM)NULL, (MPARAM)NULL);
} // End of AbortTam

The switch statements in the event handler routine are of special interest. As further code examples are
provided in the Fax and TAM sections of this document, the case code for the switch statements will
be filled in with code specific to the operation of the application. The event handler is the key section
to this example. First, it is new to even the experienced MMPM programmer, and secondly, it is the
foundation on which to build message driven applications.

MMWADKUMU-03 Chapter 3 - Telephony Services

This document contains information that is subject to
change without notice.

36

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

37

Chapter 4 - Fax Services

This chapter describes the telephony services available to application developers for the purpose of
developing Mwave compatible Fax based applications.

Mwave Fax Device Driver Architecture

In order to develop a functional OS/2 MMPM or Microsoft Windows fax application, three items are
required: 1) hardware capable of providing fax send/receive functions, 2) a fax device driver to
control the fax hardware based on inputs from the application, and 3) a device-independent
programming interface between the application and the fax device driver to isolate the application
from specific device driver and hardware differences.

The following block diagram illustrates this architecture as provided by the Mwave system:

This section provides an overview of the FAX Application Programming Interface and the Mwave
Fax device driver used to develop an OS/2 or Microsoft Windows Mwave fax application.

The Fax Application Programming Interface (API)

The FAX Application Programming Interface (API), described fully in Chapter 6 of this manual,
provides the interface between an OS/2 MMPM or Microsoft Windows application and a fax device
driver compliant with the FAX API. The Mwave system provides such a fax device driver, enabling
any application calling the FAX API to access the fax capabilities of Mwave compliant hardware.

The FAX API was designed to be very similar to the Media Control Interface (MCI) standard used in
MMPM and Windows. The fax specific extensions to the MCI API were designed to provide a
'hands-off' interface to a fax driver's send and receive capabilities, while supplying a rich set of
features and options. The MCI command message format is ideal for setting and tracking device
status in an orderly manner, and with a couple of command extensions, allows the applications
programmer to easily incorporate fax send and receive capabilities into an application.

Windows application

Fax API

Mwave Fax device driver

Mwave compliant hardware

Remote fax machine

Figure 4-1

Discriminator

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

38

The FAX API provides support for the following basic operations:

• Receiving a Fax Document File
• Sending a Fax Document File
• Converting from Fax Document File format to Device Independent Bitmap (DIB) format

and visa-versa

The following sections describe various aspects and features of the FAX API, and how they relate to
the Mwave Fax device driver implementation.

Fax Document File Format

For simplicity, the FAX API command extensions to the standard MCI functions include file send
and file receive commands. Fax documents (single and multiple pages) are treated as a single Fax
Document File to simplify the process of communicating with the fax device driver. Under the single
file scheme, the application need only call a single send or receive command to send or receive an
entire fax document, allowing the application to monitor the progress of the operation, but not
requiring constant maintenance of the transmission procedure.

The native Fax Document File format used by the Mwave Fax device driver to send and receive fax image
data is TIFF Class F. This format was chosen because it provides efficient, multiple-page storage
capability.

An Mwave fax application can work directly with fax files in their native TIFF Class F format.
Alternatively, the FAX API provides commands to convert from device independent Fax Document
File format to Device Independent Bitmap (DIB) format and visa-versa. Thus, the application is able
to use DIB format when displaying and printing fax images, but use the more efficient Fax Document
File format to store the fax image data to disk.

The file format conversion commands provided by the Fax API enable an application to construct
Fax Document Files from DIB files, and extract a DIB format file from a Fax Document File. A Fax
Document File is composed of multiple pages of fax image data, while a DIB file represents a single
page from a multi-page Fax Document File. Using the file format conversion commands allows the
extraction, insertion, and/or replacement of any page within a Fax Document File.

Command Message Summary

The main design goals when defining the MCI commands for the FAX API were ease of use and
hands-off operation. The following table provides a summary of the MCI commands available
through the FAX API and Mwave Fax device driver. For complete details on these commands, see
the FAX API Reference, Chapter 6 of this document.

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

39

MCI Command Description
MCI_CLOSE Close the device driver
MCI_CONVERT Convert to / from device dependent file data
MCI_DIAL Dial the telephone
MCI_GETDEVCAPS Get the capabilities of the device
MCI_INFO Get device string identifier
MCI_OPEN Open the device driver
MCI_RECEIVE Receive a fax file
MCI_SEND Send a fax file
MCI_SET Configure the device
MCI_STATUS Query device configuration

Table 4-1: MCI Command Summary

Programmers familiar with the standard MCI specification will note the addition of the following
MCI commands to the FAX API:

• MCI_CONVERT
• MCI_DIAL
• MCI_RECEIVE
• MCI_SEND

The MCI_CONVERT command is required to convert device independent Fax Document Files
(TIFF Class F in the case of the Mwave Fax device driver) to/from DIB files. The MCI_DIAL
command is required to dial the telephone device. The other two new commands, MCI_RECEIVE
and MCI_SEND, provide generic multi-page file receive and send capability.

Event Message Summary

The Mwave Fax device driver uses event messages to inform an application when various telephony-
related events occur. The following table provides a summary of the MCI event messages which an
application can receive from the Mwave Fax device driver. For complete details on these event
messages, see Chapter 6 of this manual.

Event Message Description
PHONE_EVENT_CALL_PROGRESS Call progress state has changed
PHONE_EVENT_CALL_FAX An incoming fax call has been received
PHONE_EVENT_CALL_TERMINATED Call terminated (supplies termination code)
PHONE_EVENT_CALLER_ID Caller ID string detected (supplies string

pointer)
PHONE_EVENT_FAX_CONNECT Returns connection parameters
PHONE_EVENT_FAX_HEADER Supplies fax header from calling machine
PHONE_EVENT_FAX_PAGE_COMPLETE Signals that a fax page has been completed
PHONE_EVENT_FAX_PAGE_STATUS Supplies individual page completion status
PHONE_EVENT_FAX_POLL Request to poll received
PHONE_EVENT_HANDSET Change in handset status (supplies status)
PHONE_EVENT_HANDSET_KEY Keypad press from handset (supplies

character)
PHONE_EVENT_LINE Change in hook status (supplies status)
PHONE_EVENT_LINE_KEY Keypad press from line (supplies character)
PHONE_EVENT_RING Telephone ring status (supplies ring on/off)

Table 4-2: MCI Event Message Summary

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

40

Developing an Mwave Fax Application

This section describes how to develop an application which calls the FAX API to access the Mwave
Fax device driver, providing fax send and receive capabilities.

Throughout this section, code snippets are used to illustrate the basic concepts of how to use the
Mwave Fax device driver. These code snippets are part of a complete fax application example,
fax.exe (referred to as FAXAPP throughout the remainder of this section). included on the
companion diskette. One example is provided for OS/2 and one for Microsoft Windows. The source
code is provided for reference, and can also be used as a starting point from which you can develop
your own Mwave fax application.

The code snippets in this book are accompanied by the filename and function name (indicated by [
filename: function()]) of the FAXAPP source module where the corresponding source code can be
located.

FAXAPP Application Definition

FAXAPP demonstrates the basic concepts required to add fax send/receive/view capability to an
application through the use of the Mwave Fax device driver. These concepts are illustrated by
providing support for the following capabilities:

• Send a Fax Document File or DIB file to a remote fax machine via a user specified
phone number. The send operation runs in the background, allowing other operations to
occur.

• Receive a Fax Document File from a remote fax machine. The receive operation runs in
the background, allowing other operations to occur.

• View a user specified page from a Fax Document File. The view operation runs in the
foreground.

The purpose of FAXAPP is to provide an example of using the basic fax send and receive capabilities
of the FAX API and the Mwave Fax device driver. As a result, there are many other capabilities
provided by the FAX API and Mwave Fax device driver which are not demonstrated in FAXAPP,
but might be useful for your particular application. Additionally, although the sample is a functional
fax machine, it doesn't contain the error handling or feature set of a complete robust application.

How to run FAXAPP

This section provides a brief overview of how to run the example fax application FAXAPP provided
in the Mwave system.

Starting FAXAPP

Copy the \fax subdirectory (for OS/2 or Windows) from the companion diskette to a \fax subdirectory
(or other convenient subdirectory) on your system. Add a fax icon to the desktop if you wish. To start
FAXAPP, simply double-click on the Fax program icon (or start from an OS/2 command line or the
Windows File|Run menu). When the fax application starts, a screen appears to tell you that its
initialization has completed. Click OK to continue the operation.

Sending a fax

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

41

Facsimile machines send and receive files in a format called TIFF Class F format. Many PC
programs generate and manipulate image files in a different format called BMP (bitmapped). The fax
application supports both these formats BMP files are converted to TIFF format before being sent
The Mwave FAX driver supports conversion of BMP files to TIFF (and vice-versa), and the
application uses this conversion support. The application supports only black and white
(monochrome) files. Color BMP files are not supported by the Mwave FAX device driver.

To send a file:

1. Select the Send command from the Options menu.

2. Select the file (either a BMP or TIFF file) to be sent. If the selected file is a BMP file, the
application will convert the file from BMP format to TIFF format before being sent. The application
prompts you to enter the destination filename where the converted TIFF file is to be stored. Be sure
and specify a .TIF filename extension for the destination file. Also, make sure the BMP file is
monochrome. Color BMP files will not be sent correctly.

3. Enter the phone number of the remote fax machine when prompted. The specified file is then sent,
in the background, to the remote fax machine, allowing you to continue to use other applications. A
message box is displayed after successful completion or call termination due to an error.

Receiving a fax

The application automatically receives fax data from incoming fax calls.

The receive operation proceeds in the background, allowing you to continue working with other
applications. Message boxes are used to notify you that a fax call has been received, to display the
receive operation's completion status (either success or failure), and to indicate the name of the
received TIFF file.

Viewing a fax

FAXAPP enables you to view fax data from a BMP file or a single page from a TIFF FAX Document
File. To view a fax:

1. Select the View command from the Options menu.

2. Select the file (either a BMP or TIFF file) to be viewed. TIFF files will be converted to BMP
format before being viewed. For TIFF files, the application prompts you to enter the destination
filename where the converted BMP file will be stored. Be sure and specify a .BMP filename
extension for the destination file. If there are multiple pages of fax data within the specified TIFF
file, you are prompted to select the number of the page you wish to view.

3. When the conversion completes (if conversion was required...if you asked to view a TIFF file), the
fax application displays the file. (The application actually displays a negative image of the file.
Where the original image is dark, the displayed image is light and vice-versa).

Other commands

Two additional commands are available from the FAXAPP Options menu. They are:

Hang up
This command hangs up the phone (places the phone device on hook). You can

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

42

hang up the phone any time.

Clear screen
This command clears the fax image currently displayed (if any) in the fax application window. Select
the View command if you want to view another fax.

FAXAPP Code Model Design

This section briefly describes a few of the design considerations used to develop FAXAPP.

The primary goal of FAXAPP is to illustrate the operation of a fax device, which is event (message)
driven, and thus is able to execute as a background task. There are some functions which are
performed in the foreground, but these include only those functions (such as viewing a BMP file)
invoked when the user is using FAXAPP in the foreground.

Because FAXAPP is designed to be message and event driven, a brief review of the types of
messages and events which can be sent to FAXAPP by the host PC and the Mwave Fax device driver
is useful.

MM_MCIEVENT
The MM_MCIEVENT event message is sent by the Mwave Fax device driver as a direct result of an
external telephony event. All event messages are for notification purposes only, and the application is
not required to perform any action to handle any of these events. The event messages are very useful
however for writing event driven applications. The messages that are handled in FAXAPP are:

• PHONE_EVENT_CALL_FAX
An incoming fax call has been received. The application must begin receiving the
incoming fax data.

• PHONE_EVENT_CALL_TERMINATED
An active call (send or receive) has been terminated, either successfully, or due to some
error condition.

MM_MCINOTIFY (Windows only)
The MCI notification message MM_MCINOTIFY is the standard method for MCI to notify an
application that an MCI command has been completed. This message is sent to an application
whenever an MCI command is called with the MCI_NOTIFY flag specified. In FAXAPP, the
MCI_NOTIFY flag is used instead of the MCI_WAIT flag for those MCI commands (MCI_DIAL
and MCI_RECEIVE) which can take a substantial amount of time to complete, thus freeing the
Microsoft Windows system to respond to other actions.

The MM_MCINOTIFY message is handled in the WndProc() function in fax.c. Receipt of
MM_MCINOTIFY messages cause a change in the FAXAPP state machine.

The FAXAPP State Machine (Windows only)

FAXAPP's send and receive operations are implemented using a very simple state machine. FAXAPP
can be in only one of the following states at any given time:

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

43

State Description
STATE_IDLE No send or receive operation is in progress.
STATE_DIALING Fax driver is dialing and attempting to connect

with a remote fax machine.
STATE_SENDING_FAX Connection with remote fax machine complete.

Fax data is being sent.
STATE_RECEIVE_SETUP An incoming fax call has been detected. The fax

driver is now being set up to receive incoming
fax data from a remote fax machine.

STATE_RECEIVING_FAX Fax driver is receiving incoming fax data.
Table 4-4: FAXAPP States

The FAXAPP state machine proceeds from state-to-state based on MM_MCINOTIFY messages
received from the MCI_DIAL and MCI_RECEIVE commands (which are called with the
MCI_NOTIFY flag specified). We'll get into more detail about these state changes in later sections,
which deal with how to send and receive fax files.

FAXAPP uses the same window procedure (WndProc() in fax.c) to handle messages sent by both
Microsoft Windows and the Mwave Fax device driver. The single message handling procedure
implemented in FAXAPP was done purely for demonstration purposes. A dual procedure approach
(one procedure handling Microsoft Windows messages and the other handling event message from
the Mwave Fax device driver) could just as easily been used. For an example of a dual-procedure
approach, see the TAM sample application provided on the companion diskette.

Received Fax Document Filenames

In order for FAXAPP to receive files in the background without requiring the user to specify a
destination filename, a simple file naming scheme is used to automatically store received Fax
Document Files.

Each time a fax call is received, the corresponding fax image data (either a single page or multi-page
fax) is stored in a file with a file name format of FAX??.TIF, where ?? is a sequential decimal value
which is incremented after the completion of every fax call, and is reset to zero whenever FAXAPP is
started. Thus, FAXAPP overwrites an existing FAX0.TIF, FAX1.TIF, etc. whenever it receives new
incoming fax calls after being restarted.

FAXAPP Source File Descriptions

The following source files comprise the FAXAPP example application:

File Description
makefile Microsoft C 7.0 / Windows 3.1 or IBM C Set/2 compatible

make file
fax.c Contains FAXAPP initialization code and procedure to handle

all window messages
faxdlgs.c Contains functions to display and process dialog boxes
faxops.c Contains all functions which interface to the FAX API
view.c Contains functions to enable viewing of fax image data
fax.def Linker definition file
fax.h FAXAPP specific include file
mciftdd.h Mwave Fax/TAM device driver include file
fax.rc FAXAPP resource file

Table 4-5

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

44

Opening and Initializing the Mwave Fax Driver - Windows

The first thing FAXAPP must do before sending and/or receiving fax files is to open and initialize the
Mwave Fax device driver. The steps required are:

Step 1. Register the MM_MCIEVENT message.
Step 2. Open the Mwave Fax device driver.
Step 3. Set up the fax driver event handler.
Step 4. Set up the call filter.

This sequence of steps is performed automatically whenever FAXAPP is started (see the WinMain()
function in fax.c). Let's take a closer look at each step in the Mwave Fax device driver open and
initialization process.

Step 1. Register the MM_MCIEVENT message

The Mwave Fax device driver communicates events to the application through the use of the
"MM_MCIEVENT" message (see "Developing an Mwave Telephony Application" on page 1-23 for
complete details on the "MM_MCIEVENT" message). Because this is not a standard MCI message
under Microsoft Windows, it must be registered.

In addition, the "MM_MCIEVENT" message must be registered prior to setting the event handler
window procedure (Step 3 in the open/initialize process) which handles messages sent to our
application from the Mwave Fax device driver. This is to insure that our application does not miss
any "MM_MCIEVENT" messages which can be sent by the driver.

The following call registers the "MM_MCIEVENT" message and assigns the numeric value returned
to the global variable uMCIMessage .

[fax.c: WinMain()]
/*--*/
/* Register the MM_MCIEVENT message */
/*--*/
uMCIMessage = RegisterWindowMessage("MM_MCIEVENT");

The Mwave Fax device driver issues a "MM_MCIEVENT" message to Microsoft Windows
whenever the driver needs to inform the application that some telephony event has occurred.
Microsoft Windows then translates the "MM_MCIEVENT" message request and send the
corresponding numeric value returned from the RegisterWindowMessage() function to our
application's event handling procedure.

Now that the "MM_MCIEVENT" message has been registered, we can safely open the Mwave Fax
device driver.

Step 2. Open the Mwave Fax device driver

The Mwave Fax device driver is identified by the device type "Mwavefax" (case is not sensitive).
This device type is used with the MCI_OPEN command to open the driver.

[faxops.c: InitFax()]
/*--*/
/* Open the device by specifying only the "Mwavefax" device type */
/*--*/
ResourceMessageBox(hWnd, IDS_MSG_INIT_DRIVER, 0, szAppName, MB_OK);
SetCursor(hcWaitCursor);
mciOpenParms.dwCallback = (DWORD)hWnd;
mciOpenParms.lpstrDeviceType = "Mwavefax";
dwReturn = mciSendCommand(NULL, // device ID
 MCI_OPEN, // command

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

45

 MCI_WAIT | MCI_OPEN_TYPE, // flags
 (DWORD)lpmciOpenParms); // parameter block
if(dwReturn)
{
 ResourceMessageBox(hWnd, IDS_ERR_INIT_DRIVER, (UINT)dwReturn, NULL, MB_OK);
 return(FALSE);
}
wMwaveFaxID = lpmciOpenParms->wDeviceID;

NOTE: For Windows, the handle of the window procedure responsible for processing
MM_MCINOTIFY messages MUST be specified by assigning it to
mciOpenParms. dwCallback prior to calling the MCI_OPEN command,
regardless of whether the MCI_WAIT or MCI_NOTIFY flag is specified in the
MCI_OPEN call. Failure to do so when using versions earlier than 2.1 will result in
erratic behavior of the Mwave Fax device driver.

If the MCI_OPEN command completes successfully, the device ID of the Mwave Fax device driver
(returned in lpmciOpenParms->wDeviceID) is assigned to the variable wMaveFaxID . This
variable is specified in the remaining mciSendCommand calls to identify the Mwave Fax device
driver.

As illustrated in the code example above, you should always check the return value from the
MCI_OPEN command for an error. There are a number of conditions (insufficient memory or MIPS
available on the Mwave board) which can cause the Mwave Fax device driver to fail opening, and
these cases should be handled properly by the application.

Step 3. Set up the fax driver event handler

After opening the driver, the next step is to set the window procedure our application uses to handle
incoming "MM_MCIEVENT" event messages sent by the Mwave Fax device driver. This should be
done immediately after opening the driver to minimize the chance of missing any driver event
messages. The MCI_SET command with the MCI_FAX_SET_EVENT_HANDLER item is used to
set the event handler procedure.

Recall that FAXAPP uses the same window procedure (WndProc() in fax.c) to process messages sent
by both Microsoft Windows and the Mwave Fax device driver. This window procedure is assigned to
our main application window, identified as hWnd . Thus, we specify hWnd as the window to receive
"MM_MCIEVENT" messages.

[faxops.c: InitFax()]
/*--*/
/* Set up the FAX driver event handler to our main application */
/* window procedure, since this is where we will process event */
/* messages sent from the FAX driver. */
/*--*/
mciSetParms.dwItem = MCI_FAX_SET_EVENT_HANDLER;
mciSetParms.dwSetData = (DWORD)hWnd;
SetCursor(hcWaitCursor);
dwReturn = mciSendCommand(wMwaveFaxID,
 MCI_SET,
 MCI_WAIT | MCI_SET_ITEM,
 (DWORD)lpmciSetParms);
if(dwReturn)
{
 ResourceMessageBox(hWnd, IDS_ERR_SET_EVENT_HANDLER, (UINT)dwReturn, NULL,

MB_OK);
 return(FALSE);
}

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

46

Step 4. Set up the call filter

The last step required in the Mwave Fax device driver initialization process involves setting up the
call filter. Setting the call filter to TRUE informs the Mwave Fax device driver that it is to receive fax
calls.

Setting the call filter also provides a mechanism to insure that no other application is expecting to
receive a fax call. Attempting to enable the call filter when another application has already enabled
the filter results in an error return.

[faxops.c: InitFax()]
/*--*/
/* Set the call filter */
/*--*/
mciSetParms.dwItem = MCI_FAX_SET_CALL_FILTER;
mciSetParms.dwSetData = TRUE;
SetCursor(hcWaitCursor);
dwReturn = mciSendCommand(wMwaveFaxID,
 MCI_SET,
 MCI_WAIT | MCI_SET_ITEM,
 (DWORD)lpmciSetParms);
if(dwReturn)
{
 ResourceMessageBox(hWnd, IDS_ERR_SET_FILTER, (UINT)dwReturn, NULL, MB_OK);
 return(FALSE);
}

Opening and Initializing the Mwave Fax Driver - OS/2

The first thing FAXAPP must do before sending and/or receiving fax files is to open and initialize the
Mwave FAX device driver. The steps required are:

1. Open the Mwave FAX device driver.
2. Set up the fax driver event handler.
3. Set up the call filter.

This sequence of steps is performed automatically whenever FAXAPP is started (see the main
function in fax.c). Let's take a closer look at each step in the Mwave FAX device driver open and
initialization process.

Step 1. Open the Mwave FAX device driver

The Mwave FAX device driver is identified by the device type "Mwavefax" (case is not sensitive).
This device type is used with the MCI_OPEN command to open the driver.

faxops.c: InitFAX

int InitFax(HWND hWnd)
{
char messagestring[255];

 MessageBox (hWnd, "Initializing the fax driver",
 szAppName, MB_OK|MB_ICONEXCLAMATION);

 WinSetPointer (HWND_DESKTOP,
 WinQuerySysPointer(HWND_DESKTOP,
 SPTR_WAIT, FALSE));

 mciOpenParms.lpstrDeviceType = (LPSTR) "Mwavefax";
 mciOpenParms.dwCallback = (DWORD) hWnd;

 dwReturn = mciSendCommand(wDeviceID,

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

47

 MCI_OPEN,
 MCI_WAIT | MCI_OPEN_TYPE,
 (DWORD) lpmciOpenParms, ++mciCall);

 if (dwReturn)
 { /* Error, unable to open device */
 if (!(mciGetErrorString(dwReturn,
 (int *)messagestring, sizeof(messagestring))))
 {
 MessageBox(hWnd, messagestring, NULL,
 MB_OK|MB_ERROR);
 }
 else
 {
 sprintf(messagestring,
 "Unable to open device or
 GetErrorString.RC= %d",
 (LOWORD(dwReturn)));

 MessageBox(hWnd, messagestring, NULL,
 MB_OK|MB_ERROR);
 }

 return FALSE;
 }
 /* Device opened successfully, get the device ID */
 wDeviceID = lpmciOpenParms->wDeviceID;

If the MCI_OPEN command completes successfully, the device ID of the Mwave FAX device driver
is assigned to the variable wMwaveFaxID. This variable is specified in the remaining
mciSendCommand calls to identify the Mwave FAX device driver.

As illustrated in the code example above, you should always check the return value from the
MCI_OPEN command for an error. There are a number of conditions (such as insufficient memory or
MIPS available in the Mwave DSP) that can cause the Mwave FAX device driver to fail opening.
These cases should be handled properly by the application.

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

48

Step 2. Set up the fax driver event handler

After opening the driver, the next step is to set the window procedure our application uses to handle
incoming "MM_MCIEVENT" event messages sent by the Mwave FAX device driver. This should be
done immediately after opening the driver to minimize the chance of missing any driver event
messages. The MCI_SET command with the MCI_FAX_SET_EVENT_HANDLER item is used to
set the event handler procedure.

Recall that FAXAPP uses the same window procedure (WndProc() in fax.c) to process messages sent
by both MMPM and the Mwave FAX device driver. This window procedure is assigned to our main
application window, identified as hWnd . Thus, we specify hWnd as the window to receive
MM_MCIEVENT messages.

faxops.c: InitFax
 mciSetParms.dwCallback = (DWORD) hWnd;
mciSetParms.dwItem = MCI_FAX_SET_EVENT_HANDLER;
mciSetParms.dwSetData = (DWORD) hWnd;

WinSetPointer (HWND_DESKTOP, WinQuerySysPointer(HWND_DESKTOP, SPTR_WAIT,
FALSE));

dwReturn = mciSendCommand(wDeviceID, MCI_SET,
 MCI_WAIT | MCI_SET_ITEM,
 (DWORD) lpmciSetParms, ++mciCall);
if (dwReturn)
 {
 if (!(mciGetErrorString(dwReturn,
 (int *)messagestring, sizeof(messagestring))))
 {
 MessageBox (hWnd, messagestring,
 NULL, MB_OK|MB_ERROR);
 }
 else
 {
 MessageBox(hWnd,"Unable to set the event handler",
 NULL, MB_OK);
 }
 return FALSE;•
 }

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

49

Step 3. Set up the call filter

The last step required in the Mwave FAX device driver initialization process involves setting up the
call filter. Setting the call filter to TRUE informs the Mwave FAX device driver that it is to receive
fax calls.

Setting the call filter also provides a mechanism to insure that no other application is expecting to
receive a fax call. Attempting to enable the call filter when another application has already enabled
the filter results in an error return.

mciSetParms.dwItem = MCI_FAX_SET_CALL_FILTER;
mciSetParms.dwSetData = TRUE;

WinSetPointer (HWND_DESKTOP, WinQuerySysPointer(HWND_DESKTOP,
 SPTR_WAIT, FALSE));

dwReturn = mciSendCommand (wDeviceID, MCI_SET,
 MCI_WAIT | MCI_SET_ITEM,
 (DWORD) lpmciSetParms, ++mciCall);

if (dwReturn)
 {
 if (!(mciGetErrorString (dwReturn,
 (int *)messagestring, sizeof(messagestring))))
 {
 MessageBox(hWnd, messagestring,
 NULL, MB_OK|MB_ERROR);
 }
 else
 {
 MessageBox (hWnd,
 "Another telephony application is in use",
 NULL, MB_OK);
 }
 return FALSE;
 }
 return TRUE;

This concludes the steps required to properly open and initialize the Mwave FAX device driver. We
can now proceed with other driver operations, such as sending and receiving FAX Document Files.

Sending a Fax - Windows

Sending a fax using the FAX API and the Mwave Fax device driver requires the following steps:

Step 1. Inform the Fax driver of the names of the Fax Document File(s) to be sent.

Step 2. Take the phone off-hook and dial the phone number of the destination fax machine.

Step 3. Respond to a change (either completion, status change, or error) to the send
operation.

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

50

The send command is initiated by selecting the Send command from the FAXAPP Options menu.
The message procedure for the send command is:

[fax.c: WndProc()]
case IDM_SEND:
 /*--*/
 /* Send a fax. */
 /*--*/
 strcpy(FileName, "*.tif");
 lpFileName = (GetFileName(hInst, hWnd, "Send Fax", FileName,
 FileNamesz, TIF_FILTERSTRING));
 if (lpFileName!=NULL)
 {
 if (tif = IsTif(lpFileName))
 SendFax(hWnd, lpFileName);
 else if (bmp = IsBmp(lpFileName))
 if (ConvertBMP2TIF(hWnd, lpFileName))
 SendFax(hWnd, lpFileName);
 else if (!(tif || bmp))
 ResourceMessageBox(hWnd, IDS_ERR_FILE_FORMAT, 0, NULL, MB_OK);
 }
 break;

Please note the following in the message procedure above:

a. FAXAPP is designed to allow only one file (single or multiple pages) to be sent at a
time. This is a limitation of FAXAPP, and not of the FAX API and Mwave Fax device
driver, both of which provide support for sending multiple files at the same time.

b. FAXAPP allows the user to send either TIF files (TIFF Class F format) or BMP files
(DIB format). Since the Mwave FAX driver supports only TIF file sending, FAXAPP
converts BMP files to TIF format via the ConvertBMP2TIF() function. See "Converting
Fax Document Files to/from DIB format" on page 1-65 for more information.

The SendFax() function initiates the three step procedure required to send a fax. Let's examine how
each of these steps is implemented.

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

51

Step 1. Inform the Fax driver of the names of the Fax Document File(s) to be sent.

The MCI_SEND command is used to specify the name(s) of the Fax Document File(s) to be sent.
The filenames are specified by providing to MCI_SEND a pointer to an array of pointers to strings
containing the name of each file to be sent. For example, assume lpSendPtr is the array of pointers
to the 'n' number of filename strings. It is initialized as follows:

LPSTR lpSendPtr[n+1];

lpSendPtr[0] = address of string containing file #1 filename
lpSendPtr[1] = address of string containing file #2 filename
 :
lpSendPtr[n-1] = address of string containing file #n filename
lpSendPtr[n] = (LPSTR)NULL;

Note that the filename list is terminated by a NULL filename pointer.

In FAXAPP, we declare a two-dimensional array SendBuff to store up to two filenames (although
only one is used), and then assign the address of the SendBuff strings to the lpSendPtr array.
The filename to send (the address of which is passed as the argument srcFileName to the
SendFax() function), is copied into the first element of the SendBuff array (pointed to by
lpSendPtr[0]). Finally, the address of the lpSendPtr array is sent to the MCI_SEND
command.

[faxops.c: SendFax()]
LPSTR lpSendPtr[10];
char SendBuff[2][128];

/*--*/
/* Send the fax file */
/*--*/
lpSendPtr[0] = SendBuff[0];
lpSendPtr[1] = SendBuff[1];
lstrcpy(lpSendPtr[0], srcFileName); // send file name
lpSendPtr[1] = '\0';
mciSendParms.lpstrFilename = (LPSTR)lpSendPtr;

SetCursor(hcWaitCursor);
dwReturn = mciSendCommand(wMwaveFaxID,
 MCI_SEND,
 MCI_WAIT | MCI_SEND_FILE,
 (DWORD)lpmciSendParms);
if(dwReturn)
 ResourceMessageBox(hWnd, IDS_ERR_SEND_FILE, (UINT)dwReturn, NULL, MB_OK);
else ...

The MCI_SEND command causes the Mwave Fax device driver to be configured for a send. Once
the MCI_SEND command completes, the driver has prepared the Fax Document Files for
transmission to a remote fax machine.

Step 2. Take the phone off-hook and dial the phone number of the destination fax
machine.

The next step is to dial and connect to the remote fax machine. This is done via the MCI_DIAL
command.

[faxops.c: SendFax()]
/*--*/
/* Prompt user for the phone number */
/*--*/
lpfnGetNbr = (DLGPROC)MakeProcInstance((FARPROC)GetNbr_DlgProc, hInst);
if(DialogBox(hInst, "phonenumdlg", hWnd, lpfnGetNbr))
{
 /*--*/
 /* Dial the phone number */
 /*--*/
 mciDialParms.lpstrDialString = (LPSTR)PhoneNumber;

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

52

 mciDialParms.dwCallback = (DWORD)hWnd;
 SetCursor(hcWaitCursor);
 uAppState = STATE_DIALING;
 mciSendCommand(wMwaveFaxID,
 MCI_DIAL,
 MCI_NOTIFY | MCI_DIAL_STRING | MCI_DIAL_MONITOR | MCI_DIAL_VERIFY,
 (DWORD)lpmciDialParms);
}

In FAXAPP, the user is prompted to enter the phone number of the destination fax machine. The
phone number is then supplied to the MCI_DIAL command.

Note that MCI_DIAL is called using the MCI_NOTIFY flag instead of the MCI_WAIT flag. This
was done for two reasons. The first is that the dial and connect operation could be a lengthy one, and
we do not want to tie up the Microsoft Windows system waiting for this operation to complete.
Secondly, it enables our message procedure to track the machine state via the MM_MCINOTIFY
message. Note that the FAXAPP state is set to STATE_DIALING prior to calling MCI_DIAL. A
transition from the dialing state to the send fax data state is handled by the message procedure.

Hint: In Microsoft Windows, it is best to use MCI_WAIT with MCI commands when debugging
your code. Using MCI_WAIT allows the application to get more descriptive error messages.

Also note that the MCI_DIAL_MONITOR flag is specified in the MCI_DIAL command. This allows
the user to monitor the connection negotiation and call progress via speakers or headphones attached
to the Mwave board's audio output connector.

After dialing and connecting to the destination fax machine, the Mwave Fax device driver begins
sending the fax data to the destination fax machine. At the same time, MCI sends a
MM_MCINOTIFY message (since MCI_DIAL was called with the MCI_NOTIFY flag specified) to
indicate either successful completion or failure of the MCI_DIAL command. Our message procedure
(see below) responds to a successful connection by changing the machine state to
STATE_SENDING_FAX . If a dial or connection failure occurred, FAXAPP displays an error
message, hangs up the line, and resets the machine state to STATE_IDLE .

[fax.c: WndProc()]
case MM_MCINOTIFY:
 switch(wParam)
 {
 case MCI_NOTIFY_ABORTED:
 case MCI_NOTIFY_FAILURE:
 if(uAppState == STATE_DIALING)
 idResource = IDS_ERR_DIALING;
 else if(uAppState == STATE_RECEIVE_SETUP)
 idResource = IDS_ERR_RECEIVE;
 else
 idResource = IDS_ERR_UNKNOWN_STATE;
 ResourceMessageBox(hWnd, idResource, 0, "MM_MCINOTIFY", MB_OK);
 SetOnHook();
 uAppState = STATE_IDLE;
 break;

 case MCI_NOTIFY_SUCCESSFUL:
 if(uAppState == STATE_DIALING)
 {
 uAppState = STATE_SENDING_FAX;
 ResourceMessageBox(hWnd, IDS_MSG_SENDING_FILE, 0, szAppName,

MB_OK);
 }
 else if(uAppState == STATE_RECEIVE_SETUP)
 uAppState = STATE_RECEIVING_FAX;
 break;

 default:
 break;
 }
 break;

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

53

Step 3. Respond to a change (either completion, status change, or error) to the send
operation.

After completing a successful connection, the Mwave Fax device driver sends the fax data to the
destination fax machine (in the background) without requiring any support from the application.
Upon completion, either successful or due to an error, the driver sends a MM_MCIEVENT event
message of type PHONE_EVENT_CALL_TERMINATED to our application.

This message is processed by our event handling procedure as follows:

[fax.c: WndProc()]
if(Message == uMCIMessage)
{
 LPMCI_EVENT_PARMS lpMciEventParms = (LPMCI_EVENT_PARMS)lParam;

 /*--*/
 /* A MM_MCIEVENT message was issued by the Mwave FAX */
 /* driver. */
 /*--*/
 switch(wParam)
 {
 case PHONE_EVENT_CALL_TERMINATED:
 /*--*/
 /* Call was terminated. Check termination */
 /* code (in dwEventData) for cause. */
 /*--*/
 switch(lpMciEventParms->dwEventData)
 {
 case TERMINATION_NORMAL:
 if(uAppState == STATE_SENDING_FAX)
 idResource = IDS_MSG_SEND_OK;
 else if(uAppState == STATE_RECEIVING_FAX)
 idResource = IDS_MSG_RECEIVE_OK;
 else
 idResource = IDS_ERR_UNKNOWN_STATE;
 break;

 case TERMINATION_UNEXPECTED:
 case TERMINATION_ERROR_XMIT:
 case TERMINATION_ERROR_RECV:
 if(uAppState == STATE_SENDING_FAX)
 idResource = IDS_ERR_SEND_FAIL;
 else if(uAppState == STATE_RECEIVING_FAX)
 idResource = IDS_ERR_RECEIVE_FAIL;
 else
 idResource = IDS_ERR_UNKNOWN_STATE;
 break;

 default:
 idResource = 0;
 break;
 }
 if(idResource)
 ResourceMessageBox(hWnd, idResource, 0, "MM_MCIEVENT", MB_OK);
 /*--*/
 /* Hang up the phone */
 /*--*/
 SetOnHook();
 uAppState = STATE_IDLE;
 break;

Upon receipt of the PHONE_EVENT_CALL_TERMINATED case of the MM_MCIEVENT
message, FAXAPP displays either a success or failure message (using the context of the current
machine state), hangs up the phone, and resets the machine state back to STATE_IDLE .

You might want to respond to other types of MM_MCIEVENT messages (for example,
PHONE_EVENT_FAX_PAGE_STATUS) to provide real-time status information to the user during
the send operation.

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

54

Sending a Fax - OS/2

Sending a fax using the FAX API and the Mwave FAX device driver requires the following steps:

Step 1. Inform the FAX driver of the names of the FAX Document File(s) to be
sent.

Step 2. Take the phone off-hook and dial the phone number of the destination fax
machine.

Step 3. Respond to a change (either completion, status change, or error) to the send
operation.

The send command is initiated by selecting the Send command from the FAXAPP Options menu.
The message procedure for the send command is:

fax.c: WndProc

case IDM_SEND:
 /*---------------------------------*/
 /* Send a fax. */
 /*---------------------------------*/
 strcpy(FileName, "*.tif");
 lpFileName = (GetFileName("Send Fax",
 (LPSTR) FileName));
 if (strlen((char *)lpFileName) == 0)
 break;
 if (IS_TIF(lpFileName))
 {
 SendFax(hWnd, lpFileName, "");
 break;
 }
 if (IS_BMP(lpFileName))
 if (ConvertBMP2TIF(hWnd, wDeviceID,
 lpFileName))
 {
 SendFax(hWnd, lpFileName, "");
 break;
 }
 MessageBox(hWnd, "Unsupported File Format",
 NULL, MB_OK);
 break;

Please note the following in the message procedure above:

• FAXAPP is designed to allow only one file (single or multiple pages) to be
sent at a time. This is a limitation of FAXAPP, and not of the FAX API and
Mwave FAX device driver, both of which provide support for sending multiple
files at the same time.

• FAXAPP allows the user to send either TIF files (TIFF Class F format) or
BMP files (DIB format). Since the Mwave FAX driver supports only TIF file
sending, FAXAPP converts BMP files to TIF format via the ConvertBMP2TIF
function. See Section Converting Fax Document Files to/from DIB format on
page 1-65 for more information.

The SendFax function initiates the three step procedure required to send a fax. Let's examine how
each of these steps is implemented.

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

55

Step 1. Inform the FAX driver of the names of the FAX Document File(s) to be sent.

The MCI_SEND command is used to specify the name(s) of the FAX Document File(s) to be sent.
The filenames are specified by providing to MCI_SEND a pointer to an array of pointers to strings
containing the name of each file to be sent. For example, assume lpSendPtr is the array of pointers to
the 'n' number of filename strings. It is initialized as follows:

LPSTR lpSendPtr[n+1];

lpSendPtr[0] = address of string containing file #1
lpSendPtr[1] = address of string containing file #2
 :
lpSendPtr[n-1] = address of string containing file #n
lpSendPtr[n] = (LPSTR)NULL;

Note that the filename list is terminated by a NULL filename pointer.

In FAXAPP, we declare a two-dimensional array SendBuff to store up to two filenames (although
only one is used), and then assign the address of the SendBuff strings to the lpSendPtr array. The
filename to send (the address of which is passed as the argument srcFileName to the SendFax
function), is copied into the first element of the SendBuff array (pointed to by lpSendPtr[0]). Finally,
the address of the lpSendPtr array is sent to the MCI_SEND command.

faxops.c: SendFax

void SendFax(HWND hWnd, LPSTR srcFileName, char phonenbr[25])
{
 char * lpSendPtr[10];
 char SendBuff[2][256];

/* 1. Send the fax file */
 mciSendParms.dwCallback = hWnd;
 lpSendPtr[0] = SendBuff[0];
 lpSendPtr[1] = SendBuff[1];
 strcpy((CHAR *)lpSendPtr[0],(CHAR *)srcFileName);
 lpSendPtr[1] = '\0';
 mciSendParms.lpstrFilename = (char *)lpSendPtr;

 WinSetPointer(HWND_DESKTOP,
 WinQuerySysPointer(HWND_DESKTOP,
 SPTR_WAIT,FALSE));

 dwReturn = mciSendCommand(wDeviceID, MCI_SEND,
 MCI_WAIT | MCI_SEND_FILE,
 (DWORD) lpmciSendParms,
 mciCall++);
 if (dwReturn)
 {
 /* Error, unable to send file */
 MessageBox(hWnd, "Unable to send file", NULL, MB_OK);
 }
 else . . .

The MCI_SEND command causes the Mwave Fax device driver to be configured for a send. Once
the MCI_SEND command completes, the driver has prepared the Fax Document Files for
transmission to a remote fax machine.

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

56

Step 2. Take the phone off-hook and dial the phone number of the destination fax machine.

The next step is to dial and connect to the remote fax machine. This is done via the MCI_DIAL
command.

faxops.c: SendFax

if (WinDlgBox(HWND_DESKTOP, hWnd,
 GetNbr_DlgProc, 0, PHONENUMDLG, NULL))
 {
 mciDialParms.lpstrDialString = PhoneNumber;
 mciDialParms.dwCallback = hWnd;

 WinSetPointer(HWND_DESKTOP,
 WinQuerySysPointer(HWND_DESKTOP,
 SPTR_WAIT, FALSE));

 ulRC = mciSendCommand(wDeviceID, MCI_DIAL,
 MCI_WAIT |
 MCI_'DIAL_STRING |
 MCI_DIAL_VERIFY |
 MCI_DIAL_MONITOR_HANDSHAKING_ONLY,
 (DWORD) lpmciDialParms,
 mciCall++);
 }

In FAXAPP, the user is prompted to enter the phone number of the destination fax machine. The
phone number is then supplied to the MCI_DIAL command.

Also note that the MCI_DIAL_MONITOR_HANDSHAKING_ONLY flag is specified in the
MCI_DIAL command. This allows the user to monitor the connection negotiation via speakers or
headphones attached to the Mwave board's audio output connector.

After dialing and connecting to the destination fax machine, the Mwave FAX device driver begins
sending the fax data to the destination fax machine. If a dial or connection failure occurred,
FAXAPP displays an error message, and hangs up the line.
faxevnts.c: ProcessEvent

#include "mciftdd.h"
#include <stdio.h>
#include <string.h>
#include "fax.h"

extern int mciCall;

void ProcessEvent(HWND hWnd, WORD wParam,
 LPMCI_EVENT_PARMS lParam)
{
 char buf[256];

 switch(wParam)
 {
 case PHONE_EVENT_CALL_FAX:
 /* incoming call-- receive fax and notify user */
 ++NumFax;
 ReceiveFax(hWnd);
 break;

 case PHONE_EVENT_CALL_TERMINATED:
 /* notify user, enter into log */

 switch (lParam->dwEventData)
 {
 case TERMINATION_NORMAL:
 sprintf(buf, "Call completed normally");
 break;
 case TERMINATION_UNEXPECTED:

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

57

 sprintf(buf, "Call terminated unexpectedly");
 break;
 case TERMINATION_ERROR_XMIT:
 sprintf(buf,"Callterminated:transmit error");
 break;
 case TERMINATION_ERROR_RECV:
 sprintf(buf,"Callterminated:receive error");
 case TERMINATION_REQUESTED:
 sprintf(buf,"Callterminated:type requested");
 break;
 default:
 break;
 } /* switch */
 /* hang up the phone */

 MessageBox(hWnd, buf, "Fax Informations", MB_OK);
 SetOnHook(hWnd);
 break;

 case PHONE_EVENT_CALLER_ID:
 case PHONE_EVENT_FAX_HEADER:
 case PHONE_EVENT_FAX_PAGE_COMPLETE:
 case PHONE_EVENT_FAX_PAGE_STATUS:
 case PHONE_EVENT_FAX_CONNECT:
 case PHONE_EVENT_LINE:
 case PHONE_EVENT_HANDSET:
 case PHONE_EVENT_CALL_PROGRESS:
 break;

 default:
 break;
 }
 }

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

58

Step 3. Respond to a change (either completion, status change, or error) to the send operation.

After completing a successful connection, the Mwave FAX device driver sends the fax data to the
destination fax machine without requiring any support from the application. Upon completion, either
successful or due to an error, the driver sends a MM_MCIEVENT event message of type
PHONE_EVENT_CALL_TERMINATED to our application. This message is processed by our event
handling procedure as follows:

faxevnts.c: ProcessEvent

#include "mciftdd.h"
#include <stdio.h>
#include <string.h>
#include "fax.h"•

extern int mciCall;

void ProcessEvent(HWND hWnd, WORD wParam, LPMCI_EVENT_PARMS lParam)
{
 char buf[256];

 switch(wParam)
 {
 case PHONE_EVENT_CALL_FAX:
 /* incoming call, receive fax and notify user */
 ++NumFax;
 ReceiveFax(hWnd);
 break;

 case PHONE_EVENT_CALL_TERMINATED:
 /* notify user, enter into log */
 switch (lParam->dwEventData)
 {
 case TERMINATION_NORMAL:
 sprintf(buf, "Call completed normally");
 break;
 case TERMINATION_UNEXPECTED:
 sprintf(buf, "Call terminated unexpectedly");
 break;
 case TERMINATION_ERROR_XMIT:
 sprintfbuf,"Call terminated: transmit error");
 break;
 case TERMINATION_ERROR_RECV:
 sprintf(buf,"Call terminated: receive error");
 case TERMINATION_REQUESTED:
 sprintfbuf,"Call terminated: type requested");
 break;
 default:
 break;
 } /* switch */

 /* Hang up the phone */
 MessageBox(hWnd, buf, "Fax Informations", MB_OK);
 SetOnHook(hWnd);
 break;

 case PHONE_EVENT_CALLER_ID:
 case PHONE_EVENT_FAX_HEADER:
 case PHONE_EVENT_FAX_PAGE_COMPLETE:
 case PHONE_EVENT_FAX_PAGE_STATUS:
 case PHONE_EVENT_FAX_CONNECT:
 case PHONE_EVENT_LINE:
 case PHONE_EVENT_HANDSET:
 case PHONE_EVENT_CALL_PROGRESS:
 break;

 default:
 break;
 }
 }

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

59

Upon receipt of PHONE_EVENT_CALL_TERMINATED , FAXAPP displays either a success or
failure message and hangs up the phone.

You might want to respond to other types of MM_MCIEVENT messages (for example,
PHONE_EVENT_FAX_PAGE_STATUS) to provide real-time status information to the user during
the send operation.

This concludes the steps required to send fax data.

Receiving a Fax - Windows

Receiving a fax using the FAX API and the Mwave Fax device driver requires the following steps:

Step 1. Respond to the MM_MCIEVENT message PHONE_EVENT_CALL_FAX

Step 2. Initiate the receive operation in the Mwave Fax device driver.

Step 3. Respond to a change (either completion, status change, or error) to the receive
operation.

Let's look at how FAXAPP implements each of these steps.

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

60

Step 1. Respond to the MM_MCIEVENT message PHONE_EVENT_CALL_FAX

The Mwave Fax device driver notifies FAXAPP that an incoming fax call has been detected by
sending the PHONE_EVENT_CALL_FAX type of MM_MCIEVENT message. This message is
processed by our event handling procedure as follows:

[fax.c: WndProc()]
if(Message == uMCIMessage)
{
 LPMCI_EVENT_PARMS lpMciEventParms = (LPMCI_EVENT_PARMS)lParam;

 /*--*/
 /* A MM_MCIEVENT message was issued by the Mwave FAX */
 /* driver. */
 /*--*/
 switch(wParam)
 {
 case PHONE_EVENT_CALL_FAX:
 /*--*/
 /* Incoming call. Receive fax and notify user. */
 /*--*/
 ReceiveFax(hWnd);
 NumFax++; // counter for received fax's filenames
 break;

On receipt of this message, the application must initiate the receive operation of the Mwave Fax
device driver as soon as possible. FAXAPP calls the ReceiveFax() function which performs this
operation.

Step 2. Initiate the receive operation in the Mwave Fax device driver.

The Mwave Fax device driver begins to receive incoming fax data after the application calls the
MCI_RECEIVE command. FAXAPP uses file names of the form "FAX??.TIF" to store received fax
data. See"" on page 1-43 for more information on this file naming convention.

[faxops.c: ReceiveFax()]
void ReceiveFax(HWND hWnd)
{
 char buffer[32];

 wsprintf((LPSTR)buffer, "Fax%d.tif", NumFax);
 mciReceiveParms.lpstrFilename = (LPSTR)buffer;
 mciReceiveParms.dwCallback = (DWORD)hWnd;
 SetCursor(hcWaitCursor);
 uAppState = STATE_RECEIVE_SETUP;
 mciSendCommand(wMwaveFaxID,
 MCI_RECEIVE,
 MCI_NOTIFY | MCI_RECEIVE_FILE,
 (DWORD)lpmciReceiveParms);
 MessageBox(hWnd, (LPSTR)buffer, "RECEIVING FAX FILE", MB_OK);
}

Note that MCI_RECEIVE is called using the MCI_NOTIFY flag instead of the MCI_WAIT flag.
This was done for the sole purpose of allowing our message procedure to track the machine state via
the MM_MCINOTIFY message. Note that the FAXAPP state is set to STATE_RECEIVE_SETUP
prior to calling MCI_RECEIVE. A transition from the receive setup state to the receive fax data state
is handled by the message procedure.

After initiating the receive operation, the Mwave Fax device driver begins to receive the fax data
from the remote fax machine. At the same time, MCI sends a MM_MCINOTIFY message (since
MCI_RECEIVE was called with the MCI_NOTIFY flag specified) to indicate either successful
completion or failure of the MCI_RECEIVE command. Our message procedure (see below) responds
to a successful receive setup by changing the machine state to STATE_RECEIVING_FAX . If a failure
occurred during receive setup, FAXAPP displays an error, hangs up the line, and resets the machine
state to STATE_IDLE .

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

61

[fax.c: WndProc()]
case MM_MCINOTIFY:
 switch(wParam)
 {
 case MCI_NOTIFY_ABORTED:
 case MCI_NOTIFY_FAILURE:
 if(uAppState == STATE_DIALING)
 idResource = IDS_ERR_DIALING;
 else if(uAppState == STATE_RECEIVE_SETUP)
 idResource = IDS_ERR_RECEIVE;
 else
 idResource = IDS_ERR_UNKNOWN_STATE;
 ResourceMessageBox(hWnd, idResource, 0, "MM_MCINOTIFY", MB_OK);
 SetOnHook();
 uAppState = STATE_IDLE;
 break;

 case MCI_NOTIFY_SUCCESSFUL:
 if(uAppState == STATE_DIALING)
 {
 uAppState = STATE_SENDING_FAX;
 ResourceMessageBox(hWnd, IDS_MSG_SENDING_FILE, 0, szAppName,

MB_OK);
 } else if(uAppState == STATE_RECEIVE_SETUP)
 uAppState = STATE_RECEIVING_FAX;
 break;

 default:
 break;
 }
 break;

Step 3. Respond to a change (either completion, status change, or error) to the
receive operation.

After initiating the receive operation, the Mwave Fax device driver receives incoming fax data from
the remote fax machine (in the background) without requiring any support from the application.

Upon receive completion, either successful or due to an error, the driver sends a MM_MCIEVENT
event message of type PHONE_EVENT_CALL_TERMINATED to our application. This message is
processed by our event handling procedure as follows:

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

62

[fax.c: WndProc()]
if(Message == uMCIMessage)
{
 LPMCI_EVENT_PARMS lpMciEventParms = (LPMCI_EVENT_PARMS)lParam;

 /*--*/
 /* A MM_MCIEVENT message was issued by the Mwave FAX */
 /* driver. */
 /*--*/
 switch(wParam)
 {
 case PHONE_EVENT_CALL_TERMINATED:
 /*--*/
 /* Call was terminated. Check termination */
 /* code (in dwEventData) for cause. */
 /*--*/
 switch(lpMciEventParms->dwEventData)
 {
 case TERMINATION_NORMAL:
 if(uAppState == STATE_SENDING_FAX)
 idResource = IDS_MSG_SEND_OK;
 else if(uAppState == STATE_RECEIVING_FAX)
 idResource = IDS_MSG_RECEIVE_OK;
 else
 idResource = IDS_ERR_UNKNOWN_STATE;
 break;

 case TERMINATION_UNEXPECTED:
 case TERMINATION_ERROR_XMIT:
 case TERMINATION_ERROR_RECV:
 if(uAppState == STATE_SENDING_FAX)
 idResource = IDS_ERR_SEND_FAIL;
 else if(uAppState == STATE_RECEIVING_FAX)
 idResource = IDS_ERR_RECEIVE_FAIL;
 else
 idResource = IDS_ERR_UNKNOWN_STATE;
 break;

 default:
 idResource = 0;
 break;
 }
 if(idResource)
 ResourceMessageBox(hWnd, idResource, 0, "MM_MCIEVENT", MB_OK);
 /*--*/
 /* Hang up the phone */
 /*--*/
 SetOnHook();
 uAppState = STATE_IDLE;
 break;

Upon receipt of the PHONE_EVENT_CALL_TERMINATED case of the MM_MCIEVENT
message, FAXAPP displays either a success or failure message (using the context of the current
machine state), hangs up the phone, and resets the machine state back to STATE_IDLE .

Receiving a FAX - OS/2

Receiving a fax using the FAX API and the Mwave FAX device driver requires the following steps:

Step 1. Respond to the MM_MCIEVENT message PHONE_EVENT_CALL_FAX
Step 2. Initiate the receive operation in the Mwave FAX device driver.
Step 3. Respond to a change (either completion, status change, or error) to the

receive operation.

Let's look at how FAXAPP implements each of these steps.

Step 1. Respond to the MM_MCIEVENT message PHONE_EVENT_CALL_FAX

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

63

The Mwave FAX device driver notifies FAXAPP that an incoming fax call has been detected by
sending the PHONE_EVENT_CALL_FAX type of MM_MCIEVENT message. This message is
processed by our event handling procedure as follows:

faxevnts.c: ProcessEvent

void ProcessEvent(HWND hWnd, WORD wParam,
 LPMCI_EVENT_PARMS lParam)
{
 char buf[256];

 switch(wParam)
 {
 case PHONE_EVENT_CALL_FAX:
 /* incoming call - receive fax and notify user */
 ++NumFax;
 ReceiveFax(hWnd);
 break;

On receipt of this message, the application must initiate the receive operation of the Mwave FAX
device driver as soon as possible. FAXAPP calls the ReceiveFax function which performs this
operation.

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

64

Step 2. Initiate the receive operation in the Mwave FAX device driver.

The Mwave FAX device driver begins to receive incoming fax data after the application calls the
MCI_RECEIVE command. FAXAPP uses file names of the form "FAX??.TIF" to store received fax
data..

faxops.c: ReceiveFax
void ReceiveFax(HWND hWnd)
{
 char buff[256];
 LPSTR lpBuff = (LPSTR) buff;

 sprintf(buff,"c:\\Fax%d.tif",NumFax);
 mciReceiveParms.lpstrFilename = (char *) lpBuff;
 mciReceiveParms.dwCallback = (DWORD)hWnd;

 WinSetPointer(HWND_DESKTOP,
 WinQuerySysPointer(HWND_DESKTOP,
 SPTR_WAIT, FALSE));

 ulRC = mciSendCommand (wDeviceID, MCI_RECEIVE,
 MCI_WAIT | MCI_RECEIVE_FILE,
 (DWORD) lpmciReceiveParms,
 mciCall++);

 MessageBox(hWnd, buff, "RECEIVING FAX FILE", MB_OK);
} /* End ReceiveFax */

After initiating the receive operation, the Mwave FAX device driver begins to receive the fax data
from the remote fax machine. If a failure occurred during receive setup, FAXAPP displays an error
and hangs up the line.

Step 3. Respond to a change (either completion, status change, or error) to the receive operation.

After initiating the receive operation, the Mwave FAX device driver receives incoming fax data from
the remote fax machine (in the background) without requiring any support from the application.

Upon receive completion, either successful or due to an error, the driver sends a MM_MCIEVENT
event message of type PHONE_EVENT_CALL_TERMINATED to our application. This message is
processed by our event handling procedure as follows:

faxevnts.c:
void ProcessEvent(HWND hWnd, WORD wParam, LPMCI_EVENT_PARMS lParam)
{
 char buf[256];

 switch(wParam)
 {
 case PHONE_EVENT_CALL_FAX:
 /* incoming call time to receive fax and notify user */
 ++NumFax;
 ReceiveFax(hWnd);
 break;

 case PHONE_EVENT_CALL_TERMINATED:
 /* notify user, enter into log */
 switch (lParam->dwEventData)
 {
 case TERMINATION_NORMAL:
 sprintf(buf, "Call completed normally");
 break;
 case TERMINATION_UNEXPECTED:

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

65

 sprintf(buf, "Call terminated unexpectedly");
 break;
 case TERMINATION_ERROR_XMIT:
 sprintf(buf, "Call terminated: transmit error");
 break;
 case TERMINATION_ERROR_RECV:
 sprintf(buf,"Call terminated: receive error");
 case TERMINATION_REQUESTED:
 sprintf(buf,"Call terminated: type requested");
 break;
 default:
 break;
 } /* switch */
 /* Hang up the phone */
 MessageBox(hWnd, buf, "Fax Informations", MB_OK);
 SetOnHook(hWnd);
 break;

 case PHONE_EVENT_CALLER_ID:
 case PHONE_EVENT_FAX_HEADER:
 case PHONE_EVENT_FAX_PAGE_COMPLETE:
 case PHONE_EVENT_FAX_PAGE_STATUS:
 case PHONE_EVENT_FAX_CONNECT:
 case PHONE_EVENT_LINE:
 case PHONE_EVENT_HANDSET:
 case PHONE_EVENT_CALL_PROGRESS:
 break;

 default:
 break;
 }
 }

Upon receipt of the PHONE_EVENT_CALL_TERMINATED case of the MM_MCIEVENT
message, FAXAPP displays either a success or failure message and hangs up the phone,

This concludes the steps required to receive fax data.

Converting Fax Document Files to/from DIB format

As mentioned previously, the FAX API specifies several different Fax Document File formats which
might be supported by a compliant fax driver. In the case of the Mwave Fax device driver, the
supported Fax Document File format is TIFF Class F. However, in the Microsoft Windows
environment, it is much more convenient to view, print, and edit image data in Device Independent
Bitmap (DIB) format. For this reason, the FAX API supports the command MCI_CONVERT which
enables conversion from Fax Document File format to DIB format and visa versa.

FAXAPP uses the MCI_CONVERT command to enable sending of DIB files and viewing of TIFF
Class F files by first converting a given file into the correct format. To illustrate the use of
MCI_CONVERT, we'll use the example of sending a BMP file (a type of DIB file) to a destination
fax machine. See "Sending a Fax" on page 65 for an overview of the fax send operation. Recall that
the Mwave Fax device driver can only send files in TIFF Class F format, so we must first convert the
BMP file into TIFF Class F format.

FAXAPP uses the ConvertBMP2TIF() function to convert a BMP format source file to a TIFF Class
F format destination file using the MCI_CONVERT command as follows:

[faxops.c: ConvertBMP2TIF()] - Windows
int ConvertBMP2TIF(HWND hWnd, LPSTR SrcFileName)
{
 DLGPROC lpfnGetDest;
 char buffer[32];

 wFileConvertType = BMP_TO_TIF;

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

66

 /*--*/
 /* Prompt user for destination file name */
 /*--*/
 lpfnGetDest = (DLGPROC)MakeProcInstance((FARPROC)GetDest_DlgProc, hInst);
 if (!DialogBox(hInst, "DestinationFile", hWnd, lpfnGetDest))
 {
 FreeProcInstance(lpfnGetDest);
 return(FALSE);
 }
 lstrcpy((LPSTR)buffer, (LPCSTR)DestFile);
 mciConvertParms.lpstrDestFilename = (LPSTR)buffer;
 mciConvertParms.dwDestFormat = MCI_FAX_CONVERT_FMT_DEVFAX;
 mciConvertParms.lpstrSrcFilename = SrcFileName;

 SetCursor(hcWaitCursor);
 dwReturn = mciSendCommand(wMwaveFaxID,
 MCI_CONVERT,
 MCI_WAIT | MCI_CONVERT_SOURCE_FILE |
 MCI_CONVERT_CREATE |
 MCI_CONVERT_DESTINATION_FILE |
 MCI_CONVERT_DESTINATION_FORMAT,
 (DWORD) lpmciConvertParms);

:

faxops.c: ConvertBMP2TIF - OS/2
int ConvertBMP2TIF(HWND hWnd, WORD wDeviceID,
 LPSTR SrcFileName)
 {
 static HANDLE hBuff;
 LPSTR lpBuff;
 char buf[255];
 char messagestring[255];

 /* 1. Get Destination File Name */
 hBuff = (HANDLE) malloc(32);
 lpBuff = (LPSTR) hBuff;

 if (!WinDlgBox(HWND_DESKTOP, hWnd,
 GetDest_DlgProc, 0, DestinationFile, NULL))
 {
 return FALSE;
 }
 strcpy((CHAR *)lpBuff, DestFile);
 mciConvertParms.dwCallback = (DWORD)hWnd;
 mciConvertParms.lpstrDestFilename = (char *) lpBuff;
 mciConvertParms.dwDestFormat =
 MCI_FAX_CONVERT_FMT_DEVFAX;
 mciConvertParms.lpstrSrcFilename = (char *) SrcFileName;

 WinSetPointer(HWND_DESKTOP,
 WinQuerySysPointer(HWND_DESKTOP,
 SPTR_WAIT, FALSE));

 ulRC = mciSendCommand(wDeviceID, MCI_CONVERT,
 MCI_WAIT | MCI_CONVERT_SOURCE_FILE |
 MCI_CONVERT_CREATE |
 MCI_CONVERT_DESTINATION_FILE |
 MCI_CONVERT_DESTINATION_FORMAT,
 (DWORD) lpmciConvertParms, mciCall++);

 free((void *) hBuff);

 if (ulRC)
 {
 /* Error, unable to convert file */
 mciGetErrorString(ulRC, (int *)messagestring,
 sizeof(messagestring));

 sprintf(buf,
 "ERROR: %d: Unable to convert image file. %s",
 (LOWORD(ulRC)), messagestring);
 MessageBox(hWnd, buf, NULL, MB_OK);
 return FALSE;
 }
 strcpy((CHAR *)lpFileName,(CHAR *)DestFile);
 MessageBox(hWnd, "Bitmap file converted to TIFF",
 szAppName, MB_OK);
 return TRUE;

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

67

 } /* end ConvertBMP2TIF */

Note that MCI_CONVERT is called with the MCI_CONVERT_CREATE flag. This flag specifies
that the destination file should be created if it doesn't exist. If the destination file does exist, its
contents are destroyed and overwritten with the converted data (the same effect as using the
MCI_CONVERT_OVERWRITE flag).

Alternatively, converted data can be inserted into (or appended onto) an existing destination file. Set
the dwDestFrom field of the MCI_CONVERT_PARMS structure to the document page number
(starting at page zero) where you want the converted data to be written into the destination file. You'll
also need to include the MCI_CONVERT_DESTINATION_FROM flag and remove the
MCI_CONVERT_CREATE flag in the MCI_CONVERT call.

Closing the Mwave Fax Device Driver

Before exiting your application, you should always close the Mwave Fax device driver. Closing the
driver frees memory, processor, and connection resources on the Mwave board, making them
available for use by other Mwave applications.

When closing the FAX driver, always assign the window procedure handle to
mciGenericParms.dwCallback prior to issuing the MCI_CLOSE. Failure to do so will result in
erratic behavior. In FAXAPP, CloseFax looks like this:

[faxops.c: CloseFax()] - Windows
MCI_GENERIC_PARMS mciGenericParms;

mciGenericParms.dwCallBack=(DWORD)hWnd;
mciSendCommand(wMwaveFaxID, // device ID

MCI_CLOSE, // MCI command
MCI_WAIT, // flags

 (DWORD)(LPVOID) &mciGenericParms);

faxops.c: CloseFax - OS/2
void CloseFax(HWND hWnd)
{
 MCI_GENERIC_PARMS mciGenericParms;

 mciGenericParms.dwCallback = (DWORD)hWnd;
 mciSendCommand(wDeviceID,
 MCI_CLOSE,
 MCI_WAIT,
 (DWORD)&mciGenericParms, mciCall++);
}

Summary

FAXAPP provides a simple example of using the basic send and receive capabilities of the FAX API
and the Mwave Fax device driver. Using the programming techniques outlined in this chapter, you
should be able to add additional capabilities, such as providing real-time send and receive status
information, into your own Mwave fax application. Be sure to check the FAX API Reference for a
complete description of the available capabilities.

 MMWADKUMU-03 Chapter 4 - Fax Services

This document contains information that is subject to
change without notice.

68

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

69

Chapter 5 - Telephone Answering Machine (TAM)
Services

This chapter describes the telephony services available to application developers for the purpose of
developing Mwave compatible TAM based applications.

Mwave TAM Architecture

TAM functionality is provided with two separate MCI device drivers: Phone Line and Message. The
Phone Line driver is used for all operations involving the telephone line. This includes making a call,
answering a call and remotely (i.e. via a telephone call) reviewing or recording a message. The
Message driver is used only for those operations which do not involve use of the phone line (i.e. locally
reviewing or recording messages). This multiple driver approach allows simultaneous telephone
answering and message review. TAM can answer an incoming phone call at the same time a user is
reviewing (i.e. listening to) his messages.

TAM Programming Environment

For many MCI devices, including TAM, the MCI controls are similar to those of a tape recorder (for
example; record, play, stop, pause, and seek). The MCI command message API specification for TAM
applications begins with this conventional design, and adds enhancements such as voice compression
and speakerphone operation.

The Phone Line driver can record and play through the telephone line only. (for local message record
and review, the Message driver is used). The Phone Line driver can additionally be used to connect the
phone line to the handset (as with a standard telephone) or the audio port (speaker/microphone).

TAM resembles a media recorder and player which can be connected to various telephony related voice
channels. Each of the telephony related voice channels has an audio input and output driver. All
channels "connected" to the media are used for play or record operations. If multiple channels are
connected to the media, they are also connected to each other, even if no play or record operation is in
progress. The audio channels defined for use with the TAM device drivers are as follows:

• MCI_TAM_AUDIO (speaker & microphone) MSG
• MCI_TAM_HANDSET MSG
• MCI_TAM_PHONELINE PL
• MCI_TAM_AUDIO_PHONELINE PL
 (speakerphone)
• MCI_TAM_HANDSET_PHONELINE PL
 (standard phone operation)
• MCI_TAM_SPEAKER_PHONELINE PL
 (answering machine w/ call screening)

Various telephony operations are achieved by configuring or "connecting" the TAM drivers via calls to
MCI_SET. For the Message driver, this includes the following:

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

70

• Connect MCI_TAM_AUDIO to record a new announcement from the microphone or
review messages on the speaker.

• Connect MCI_TAM_HANDSET to record a new announcement or review messages
through the local handset or desk telephone.

For the Phone Line driver, this includes the following:

• Connect MCI_TAM_PHONELINE to play an announcement, record a new message, or
review messages from a remote telephone. This connection is required for all operations
involving an outside phoneline.

• Connect MCI_TAM_AUDIO_PHONELINE for speakerphone operation. Note that with
this operation, the media recorder/player is not available. No record or playback can be
done. Setting speakerphone operation disables call discrimination based on calling tones.
Also DTMF key detection is also disabled.

• Connect MCI_TAM_HANDSET_PHONELINE to allow the normal use of the desk
phone.

• Connect MCI_TAM_SPEAKER_PHONELINE to allow the user to screen calls. Note
that the microphone will not be connected.

As suggested above, both drivers can use the audio port (speaker/microphone) and telephone handset,
but they cannot share them. When either of these devices are in use by one of the drivers it is
unavailable to the other. Also, the handset must be available when opening the Phone Line driver
and the audio port must be free when opening the Message driver. Programmers must track the
device connection status of the two drivers to avoid device conflict errors.

Once again, the actual operation of the TAM device is similar to a physical answering machine. The
programming model incurs some complexity when implemented using a message driven architecture,
but its similarities to a tape recorder remain. See the code example at the end of this chapter for more
details.

TAM File Formats

Sound files are notorious for their size. One of the more significant problems with the accumulation of
large amounts of audio data is data storage. Although OS/2 MMPM and Microsoft Windows wave files
support several different data formats, most MCI devices support only uncompressed PCM.

To efficiently deal with data storage, the TAM API specification allows a device driver to support a
device dependent format (custom format tag), which allows the device driver to store data files in the
most optimum format available. This removes the burden of data compression from the application
writer, and at the same time, allows for increased functionality on the part of the device driver.

Support of the custom format tag is optional under this specification, and the application can still
choose to use the standard PCM wave file format. For those device drivers which do not support the
standard PCM format for play and record operations, a conversion command is available to convert
standard wave files to the custom format used by the device. In general, if a device supports a custom
format tag, it is to the advantage of the application (in terms of file storage) to use the custom tag in
place of the standard file tag. The custom format requires about 4K bytes per second of audio. (Note:
Standard PCM wave format is supported by version 3.1 and above of the TAM drivers).

The programming example described at the end of this chapter uses the custom format tag and does not
need to perform any file format conversions.

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

71

Command Message Summary

The following table lists the MCI commands, most of which are used by the sample application. For
more information on the actual command messages, see Chapter 7 of this document.

MCI Command Description
MCI_CLOSE Close the device driver
MCI_CONVERT Convert between device dependent and device

independent files
MCI_DIAL Dial the phone
MCI_GETDEVCAPS Get capabilities of the device
MCI_INFO Get device string identifier
MCI_LOAD Load a voice file for playing
MCI_OPEN Open the device driver
MCI_PAUSE Pause the voice stream play or record
MCI_PLAY Play a voice file
MCI_RECORD Record a voice file
MCI_RESUME Resume a paused voice stream
MCI_SAVE Save a recorded voice stream
MCI_SEEK Change current position of the media
MCI_SET Configure the device
MCI_STATUS Query device configuration
MCI_STOP Stop a voice stream

Table 5-1: TAM Driver MCI Command Messages

Programmers familiar with MCI will note the new command messages; MCI_CONVERT and
MCI_DIAL. For most TAM related applications, it is not necessary to make use of the
MCI_CONVERT message. (MCI_CONVERT is supported in TAM drivers version 3.1 and above.)

Event Message Summary

The following table is a summary of the MCI event messages which may be received from the TAM
device driver. Most of these event messages are used in the sample application. These messages are
described in more detail in Chapter 7 of this document.

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

72

Event Message Description
PHONE_EVENT_ADVANCED_RING Advanced format ring notification
PHONE_EVENT_CALL_PROGRESS Call progress state has changed
PHONE_EVENT_CALL_TAM Received an incoming voice telephone

call
PHONE_EVENT_CALL_TERMINATE
D

Call has been terminated (supplies
termination code)

PHONE_EVENT_CALLER_ID Caller ID string detected (supplies
completion status)

PHONE_EVENT_DISTINCTIVE_RING Distinctive ring detected
PHONE_EVENT_HANDSET Change in handset status (supplies

handset status)
PHONE_EVENT_HANDSET_KEY Keypad press from handset (supplies

character)
PHONE_EVENT_LINE Change in phone line hook status

(supplies status)
PHONE_EVENT_LINE_KEY Keypad press from phone line (supplies

character)
PHONE_EVENT_RING Telephone ring status change (supplies

ring on/off)
Table 5-2: TAM Driver Event Messages

Event messages are received by the event message handler which is declared to the TAM device driver
using MCI_SET. For more information on the event handler, and how it relates to the TAM device
driver, refer to Chapter 3 on Telephony Services.

Developing an Mwave TAM Application

This section describes how to develop an application, which calls the TAM API to access the Mwave
TAM device drivers, providing telephone answering capabilities.

Handset/Speakerphone Interactions

The following describes the interactions and application source required for changing from
speakerphone to handset and back again.

Scenario:
Assume the application is connected to speakerphone, a call has come in and the application has gone
off hook.

User Lifts Handset:
-App receives PHONE_EVENT_HANDSET with dwHandsetStatus = 1 (off hook)
-App issues set connect to MCI_TAM_HANDSET_PHONELINE
-App issues an onhook

Note: The application should issue on hook because connecting handset creates 2 extensions on the
phone line. When the application issues the “onhook” the line will only have one extension.
(Disconnecting TAIO from the line allows the handset to act as a normal phone) . For example, if the
application had not done the onhook after connecting to handset then when the user put the phone
down the call would still be offhook (because TAIO is still connected).

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

73

User Requests Speakerphone:
-App issues off hook (turn on second extension before connecting to that extension)
-App issues set phoneline/audio

User wants to do conversation record:
The app must be in either normal phone or speakerphone mode.
-App issues off hook (if in normal phone mode the app needs to reconnect the computer (TAIO) to the
phoneline by issuing and off hook) This will allow the remote side to be recorded.
-App issues Mciphone record (only voi supported for conversation record)

Sample Application Definition

The first step in developing a solid application, is the definition of its intended functionality. For the
purpose of demonstration, the application defined here is modeled after a simple telephone answering
machine. Defined functionality includes: playing announcements, recording messages, and reviewing
messages from the control panel or a remote telephone. Below is a diagram of how an incoming
telephone call is handled.

Play Announcement

Record Message
Set up command mode

announcement...
"You have X messages"End Call

Play command mode
message list

Build new message
list based on command

Get command key

3 digit command key sequence entered

Once placed in command mode, the touch-tone keypad of the remote telephone can be used for an
unlimited number of functions. Using keypad entries and voice menus, the remote telephone may be
used for anything from reviewing messages to requesting FAX documents. Keypad commands can
consist of one or multiple key entries. A list of the actual keypad commands used in the sample
application can be found later in this chapter.

The following sections assumes you are familiar with the operation of the TAM sample application
included on the companion diskette. See "Using the TAM Sample Application" on page 1-85 for
complete details.

Sample Code Design

The primary goal of this application example is to illustrate the operation of an event (message) driven
TAM device, which is able to execute as a background task.

Figure 5-1: Answering Machine Model

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

74

The TAM device has been defined as a finite state machine, which is mainly driven by the
MM_MCINOTIFY message issued on a MCI command completion. To implement the state concept,
a single variable is defined:

short wTamState; \\ Sta te of TAM device

This variable can have any of the following states:

• TS_IDLE
• TS_PLAY_ANNOUNCEMENT
• TS_RECORD_MESSAGE
• TS_COMMAND_MODE
• TS_PLAY_MESSAGE
• TS_REMOTE_PLAY
• TS_ARCHIVE_PLAY

These states correspond roughly to the diagram shown in the previous section. The 'idle' state, not
shown in the diagram, is the state where the application is waiting to answer a call. The
'COMMAND_MODE' state is the state of the TAM device when in message review mode. The state of
the TAM device is used to determine the next operation after receipt of successful completion messages
in the NOTIFY section of the event handler.

Some of the additional variables used in the program are listed below. Most of these values are user
definable, and are read from the application INI file when the program is first executed.

Because this example is targeted to show TAM operation and not necessarily efficient file
management, the file storage system for the voice messages is defined using a simple prefix and suffix
system. Under this system, all active messages contain a single letter prefix ('M'), a seven-digit suffix,
and the extension '.TAM'. For example, the first message stored in this system is 'M0000000.TAM'.

Global Variables (* Stored in INI file)
 wActiveMessages Number of active messages on disk
* wCommandCode digit command code
 wCurrentMessage Index of current message being played
* wMonitor Incoming call monitoring (0-Off 1-On)
 wMsgDate Current message data in MSDOS format
* dwMsgIndex Index of next message to be saved
 wMsgTime Current message time in MSDOS format
 wNewMessages New messages since last MSG review flag
 wPlaySpeed Message playback speed (0-Slow 1-Norm 2-Fast)
* wRingCount1 Ring count with messages
* wRingCount2 Ring count with out messages
 wTamState State of TAM system (See TAM States above)
* wVolume Speaker volume level
 wExclusive Set to '1' when app can not answer the telephone
 wBFE Error code used by error_box()

Global Strings (* Stored in INI file)
 CurrentTimeStamp String containing time stamp of current file
 MsgFileSpec Full path & filename of current message file
* MsgPath Path to message file storage on system

Table 5-3: Selected Global Variables and Strings

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

75

Recording and Playing the Announcement - The announcement file is stored as 'ANNOUNCE.TAM'
in the message directory. When recording a new announcement, a temporary filename is used until the
application user chooses to accept the new announcement.

Recording a New Message - New messages are recorded to a filename consisting of the letter 'M',
followed by a seven-digit suffix which is the current value of dwMsgIndex (master message index).
The extension '.TAM' is added to the filename, and the master message index is incremented. This
master message index is stored in the INI file, and is never reset. This allows for the creation of 10
million unique message filenames.

Playing Active Messages - To play the active messages, all files are searched and those matching the
'M???????.TAM' pattern are sorted alphabetically (also chronologically) and stored in a list. The list
can then be 'walked' forwards or backwards.

Erasing a Message - To erase a message, the message file is simply deleted.

The TAM device driver is obviously not dependent on any single file management system, and an
application programmer might want to use a more sophisticated system in the implementation of a
more complex TAM application.

TAM State Machine Operation

Most programmers familiar with MCI agree that programming to the MCI interface is not a difficult
task. The main 'trick' involved in programming a TAM application is writing the application in an
event driven fashion, so that when the system is idle, it consumes minimal processor time.

As mentioned above, the application is implemented as a state machine. The application proceeds from
state to state based on messages received by the event handler routine. Although most state changes
occur as a result of the MM_MCINOTIFY message, the MM_MCIEVENT message is also of
interest. Most of the application logic is executed based on event messages.

MCI Event Message Handling

MCI event messages are sent as a direct result of an external telephony event detected by the device
driver. All event messages are for notification purposes only, and the application is not required to
perform any action to 'handle' these events. The event messages are very useful however for writing
event driven applications. The messages that are handled in the TAM application example are listed
below:

•• PHONE_EVENT_CALL_TAM - This message initiates the TAM state machine
execution. The application starts by playing the announcement. Before the call has come
in, the application has already connected to the phone line (via MCI_SET_CONNECT)
and loaded the announcement (via MCI_LOAD). (Both these operations are performed by
the ExitExclusive() function.) At this point, the application executes an MCI_PLAY call
to begin playing the announcement. The MCI_NOTIFY flag is supplied with the PLAY
call so that the event handler is notified when the play is complete, and it is time to start
incoming message recording. The TAM state (dwTamState) is set to
TS_PLAY_ANNOUNCEMENT.

•• PHONE_EVENT_CALL_TERMINATED - Here a call has been terminated because the
caller has hung up the telephone. If a message record was in progress, the message is
saved. The ExitExclusive() function is called to stop any current operation, connect the

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

76

driver to the phone line, load the announcement file, and set the TAM state (dwTamState)
to TS_IDLE. At this point, the application is ready to answer another call.

•• PHONE_EVENT_CALL_PROGRESS - This message is used to detect a 'hang-up'
condition that does not produce a 'CALL_TERMINATED' message. If dialtone is
detected, the CallTerminated() is called to perform the same actions produced by a
'CALL_TERMINATED' message.

•• PHONE_EVENT_HANDSET - This message indicates that the handset on the local
telephone has been either picked-up, or replaced. Picking up the handset causes different
effects at different times. When the system is IDLE, picking up the handset auto-switches
from speakerphone to normal phone mode. When reviewing messages to the speaker,
picking up the handset disables the speaker and continues play to the handset. If the
handset is picked up while the system is recording a message, the record operation is
aborted and the system is placed into normal phone mode (connecting the phone line to
the handset).

*** This functionality is not implemented in the sample application!***

•• PHONE_EVENT_LINE_KEY - This message sends the ASCII character of the
telephone key which has been pressed on the incoming telephone line. The actions taken
on receipt of this key vary according to the current state of the TAM device.

If the TAM state machine is in command mode, this message is the potential gateway into
remote review mode. It tracks the keys that have been pressed, and if the correct 3 digit
sequence has been entered, the current operation is stopped, the TAM state is set to
TS_REMOTE_PLAY, and the remote review announcement is played ("You have
messages...").

If the TAM state machine is already in remote review mode when this message is
received, the key is interpreted as a new command. Key commands can be used to skip,
erase, save, repeat, and control the playback of messages stored on the system.

A second state variable (wRemoteState) is used to track the state of the remote message
review.

MCI Notification Message Handling

The MCI notification message system (MM_MCINOTIFY) is the standard method for MCI to notify
an application that a driver action has been completed. For the purposes of our application, we need to
be notified when a message play or record command has been completed. In most cases, the successful
completion of a play or record operation requires the execution of another event, and sometimes
advances the state of the TAM state machine.

The types of notification messages possible, as well as how they are treated, is as follows:

•• MCI_NOTIFY_ABORTED - There are cases when a play or record operation will be
aborted. The most common being when the user picks-up the telephone handset in order
to talk 'live' to the caller. Since aborting an operation is not a normal part of the TAM state
machine, this command does not examine or alter the state of the TAM device. *** This
functionality is not implemented in the Mwave TAM driver! ***

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

77

•• MCI_NOTIFY_SUCCESSFUL - The successful completion of an event is the only
automatic method to drive the state change in the TAM state machine. The application
should use the NOTIFY flag only for API calls requiring significant execution time.
These include playing and recording voice files. Below is a state change table based on the
completion of a play or record operation.

For example, when the machine is in the PLAY ANNOUNCEMENT state, the completion message
indicates that it is time to start recording an incoming message. The message handler starts the record
operation. Because detecting the command mode code digit entry is not handled by the event handler,
this routine assumes that the RECORD MESSAGE state always follows completion of the PLAY
ANNOUNCEMENT state. Similarly, the completion of the RECORD MESSAGE state is always
followed by the IDLE state and call termination.

•• MCI_NOTIFY_SUPERSEDED - This message should not occur under normal operating
conditions since all play and record operations using the NOTIFY flag are invoked as a
result of the notification that the previous play or record command has been completed. In
the event that a record or play operation is aborted due to user interruption, the
MCI_NOTIFY_ABORT message will be received. This message is treated the same as
the successful notification message.

•• MCI_NOTIFY_FAILURE - This message is treated the same as the successful
notification message. For debug purposes, it generates an error message, but the example
program supplied with the companion diskette does not attempt to correct for errors.

Remote Message Review

As mentioned above, the remote message playback feature of the application uses a separate state
system than the main program logic. When in remote message review mode, the TAM state
(wTamState) is set to TS_REMOTE_PLAY, and the remote state variable (wRemoteState)
determines the state of the remote playback operation. Possible remote state values are as follows:

• RS_WAIT
• RS_WAITING
• RS_PLAYMENU
• RS_PLAYEND

These states determine the current action, or the next action to be taken when the current play is
complete.

When the command key sequence for remote play is first entered, and messages are available,
wRemoteState is set to RS_WAIT, and a greeting file is played ("You have messages..."). When the
MCI_NOTIFY message is received indicating the end of the greeting, wRemoteState is changed to

Current State Next State
TS_PLAY_ANNOUNCEMENT TS_RECORD_MESSAGE
TS_RECORD_MESSAGE TS_IDLE
TS_PLAY_MESSAGE TS_COMMAND_MODE
TS_ARCHIVE_PLAY TS_COMMAND_MODE
TS_COMMAND_MODE TS_COMMAND_MODE
TS_REMOTE_PLAY TS_REMOTE_PLAY

Table 5-4

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

78

RS_WAITING, and the system does nothing until a key is pressed. If no key is pressed in a set amount
of time, the application disconnects the telephone and resets the system.

If there are no messages available when the command sequence is entered, wRemoteState is set to
RS_PLAYEND, and an exit message is played ("You have no messages..."). When the MCI_NOTIFY
message is received indicating the end of the exit greeting, the telephone is disconnected, and the
system is reset.

For normal message reviewing, wRemoteState is set to RS_PLAYMENU before a the message is
played indicating that when the play has completed that the system should then play the verbal menu
greeting ("Press 1 for next, 2 for erase..."). Before this menu is played, wRemoteState is set to
RS_WAIT, indicating that the system should wait for a key press after playing the verbal menu.

The physical transition table for these states is as follows:

Sample Application Source Code

To better illustrate the concepts of the TAM state machine introduced in this section, the source code to
a sample application using the state machine is provided in the "\tam" subdirectory on the companion
diskette.

This section documents the structure of the sample application source code, and explains some of the
more interesting routines.

Source Code Organization

The TAM sample application is more complex than the average sample application. The purpose of
this is to fully demonstrate all the available functionality of the TAM MCI device drivers. The
following is a short synopsis of the files included on the companion diskette:

Source file Description
MAKEFILE Application makefile (for use with MS NMAKE.EXE)
MCIFTDD.H Mwave MCI FAXTAM include file
TAM.H TAM include - Global variable references
TAM.DEF Windows definition file for use with the linker
TAM.RC TAM resource source file. Contains system menus & dialog

box definitions
TAMDEFS.C Counterpart of TAM.H, containing global variable definitions
TAM.C Program entry point. Contains initialization logic, and user

interface code.
TAMFST.C Main TAM state logic. Contains event handler & the majority

of code which actually commands the MCI TAM driver.
DIALOG.C Contains dialog procs for controlling all the dialog boxes used

in the TAM application.
Table 5-6

Current State Next State
RS_WAIT RS_WAITING (wait for a key)
RS_WAITING undefined(continue waiting)
RS_PLAYMENU RS_WAIT (play verbal menu)
RS_PLAYEND Telephone disconnect & system reset

Table 5-5

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

79

In addition to the above, the diskette contains files with a .TAM extension. These are audio files used
during the operation of the sample.

Initializing the TAM driver environment

A startup example is supplied in the chapter on Telephony Services. The function shown below has
been taken from the startup example, and modified to perform a simple TAM environment
initialization. The steps to initialize the driver include:

1. Open the driver and register the event message handler.

2. Verifying minimum TAM capabilities (CAN_PLAY, CAN_RECORD, and CAN_SAVE).
Exit if any are not supported.

3. Check for optional speakerphone capability.

4. Check the supported file formats, and use the custom format tag when available.

5. Set the TAM call filter to have TAM auto answer incoming voice calls and route them to
our application. Exit if another application is screening voice calls.

These initialization steps have been simplified in the sample code below, because we know the
capabilities of the Mwave driver. This code would have to be adjusted for a more complex TAM
application.

Initializing the TAM Driver - Windows

// InitDriverEnv
//
// This routine is called to initialize the TAM driver environment
//
static InitDriverEnv()
{
 // Open the MCI TPL Driver
 mciOpenParms.dwCallback = hEventHandler; // Always required on OPEN and CLOSE
 mciOpenParms.lpstrDeviceType = "Mwavetpl";
 if(dwBFE = mciSendCommand(0,MCI_OPEN,MCI_WAIT | MCI_OPEN_TYPE,
 (DWORD)(LPVOID)&mciOpenParms))
 {
 error_box();
 return(0);
 }

 // Get the device ID & register the Event Handler for TPL so incoming phone
 // calls are sent to the application's event handler
 wTplDeviceID = mciOpenParms.wDeviceID;
 mciSetParms.dwCallback = hEventHandler;
 mciSetParms.dwItem = MCI_TAM_SET_EVENT_HANDLER;
 mciSetParms.dwSetData = hEventHandler;
 mciSendCommand(wTplDeviceID,MCI_SET,MCI_WAIT | MCI_SET_ITEM,
 (DWORD)(LPVOID) &mciSetParms);

 // Open the MCI TPS Driver
 mciOpenParms.dwCallback = hEventHandler;
 mciOpenParms.lpstrDeviceType = "Mwavetps";
 if(dwBFE = mciSendCommand(0,MCI_OPEN,MCI_WAIT | MCI_OPEN_TYPE,
 (DWORD)(LPVOID)&mciOpenParms))
 {
 error_box();
 //although not in sample, should close TPL here
 return(0);
 }

 // Get the device ID & register the Event Handler for TPS
 wTpsDeviceID = mciOpenParms.wDeviceID;
 mciSetParms.dwCallback = hEventHandler;
 mciSetParms.dwItem = MCI_TAM_SET_EVENT_HANDLER;
 mciSetParms.dwSetData = hEventHandler;
 mciSendCommand(wTpsDeviceID,MCI_SET,MCI_WAIT | MCI_SET_ITEM,

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

80

 (DWORD)(LPVOID) &mciSetParms);

 // Set to auto answer incoming phone calls
 mciSetParms.dwItem = MCI_TAM_SET_CALL_FILTER;
 mciSetParms.dwSetData = 1;
 mciSendCommand(wTplDeviceID,MCI_SET,MCI_WAIT | MCI_SET_ITEM,
 (DWORD)(LPVOID) &mciSetParms);

 return(wTplDeviceID);
}

NOTE: With Windows, the handle of the window procedure responsible for processing
MM_MCINOTIFY messages MUST be specified by assigning it to
mciOpenParms.dwCallback prior to calling the MCI_OPEN command,
regardless of whether the MCI_WAIT or MCI_NOTIFY flag is specified in the
MCI_OPEN call. Failure to do so when using versions earlier than 2.1 will result
in erratic behavior of the device driver.

Initializing the TAM Driver - OS/2

tam.c: InitDriverEnv
// InitDriverEnv
//
// This routine is called to initialize the TAM driver
//
static int InitDriverEnv(void)
{•
 // Open the MCI TPL Driver
 mciOpenParms.dwCallback = hEventHandler;
 mciOpenParms.lpstrDeviceType = (INT *) "Mwavetpl";

 dwBFE = mciSendCommand(0,
 MCI_OPEN,
 MCI_WAIT | MCI_OPEN_TYPE,
 (DWORD)&mciOpenParms,
 mci_cmd_ctr++);

 if(dwBFE)
 {
 error_box();
 return(0);
 }

 // Get the device ID & register Event Handler for TPL

 wTplDeviceID = mciOpenParms.wDeviceID;
 mciSetParms.dwCallback = hEventHandler;
 mciSetParms.dwItem = MCI_TAM_SET_EVENT_HANDLER;
 mciSetParms.dwSetData = hEventHandler;

 mciSendCommand(wTplDeviceID,
 MCI_SET,
 MCI_WAIT | MCI_SET_ITEM,
 (DWORD)&mciSetParms, mci_cmd_ctr++);

 // Open the MCI TPS Driver

 mciOpenParms.dwCallback = hEventHandler;
 mciOpenParms.lpstrDeviceType = (INT *)"Mwavetps";

 dwBFE = mciSendCommand(0,
 MCI_OPEN,
 MCI_WAIT | MCI_OPEN_TYPE,
 (DWORD)&mciOpenParms,
 mci_cmd_ctr++);

 if(dwBFE)
 {
 error_box();
 return(0);
 }

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

81

 // Get the device ID & register Event Handler for TPS

 wTpsDeviceID = mciOpenParms.wDeviceID;
 mciSetParms.dwCallback = hEventHandler;
 mciSetParms.dwItem = MCI_TAM_SET_EVENT_HANDLER;
 mciSetParms.dwSetData = hEventHandler;

 mciSendCommand(wTpsDeviceID,
 MCI_SET,
 MCI_WAIT | MCI_SET_ITEM,
 (DWORD)&mciSetParms,
 mci_cmd_ctr++);

 // Set to receive TAM phone calls

 mciSetParms.dwItem = MCI_TAM_SET_CALL_FILTER;
 mciSetParms.dwSetData = 1;

 mciSendCommand(wTplDeviceID,
 MCI_SET,
 MCI_WAIT | MCI_SET_ITEM,
 (DWORD)&mciSetParms,
 mci_cmd_ctr++);

 return(wTplDeviceID);
}

Implementation of the Event Handler

The event handler routine is the core of the TAM state machine. All state changes are a result of a
NOTIFY or EVENT message sent to this routine. Note that although this routine has been isolated into
its own procedure, the event handler code could be easily merged into the main window procedure,
eliminating the need to create a separate window. It is also possible to implement a design where
NOTIFY and EVENT messages are posted to different message procedures in the same application.

This module is the heart of the TAM application, and is the key for understanding the various
operations of the TAM state machine.

Handling Events - Windows

//
/EventHandler
//
//This function is called whenever a message is sent from the MCI TAM
//driver. These messages drive new states of the TAM state machine.
//
long FAR PASCAL EventHandler(hWnd, message, wParam, lParam)
HWND hWnd;
unsigned message;
WPARAM wParam;
LPARAM lParam;
{
static UINT uMCIMessage = 0xffff; // Initialize to invalid value
static short wKeys[3]; // Last 3 keys entered
static short wQuiet; // Count for QUIET messages
static short wKeysPressed; // Count for 3 key command
static short wCmdKey; // Flag for 5-x play ctrl
unsigned short wEvent;
unsigned long dwEventData;

switch (message)
{
case WM_CREATE:

// Register the message we wish to look for
uMCIMessage = RegisterWindowMessage("MM_MCIEVENT");
break;

case MM_MCINOTIFY:
// *** Received a NOTIFY message indicating earlier call
// w/ MCI_NOTIFY has completed
switch(wParam)

{
case MCI_NOTIFY_FAILURE:

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

82

case MCI_NOTIFY_SUCCESSFUL:
case MCI_NOTIFY_SUPERSEDED:
case MCI_NOTIFY_ABORTED:

switch(wTamState)
{
case TS_COMMAND_MODE:
case TS_PLAY_MESSAGE:

PlayComplete();
break;

case TS_REMOTE_PLAY:
ContinueRemote();
wQuiet = 0;
break;

case TS_PLAY_ANNOUNCEMENT:
RecordMessage();
wQuiet = 0;
break;

case TS_RECORD_MESSAGE:
SaveMessage();
break;

case TS_ARCHIVE_PLAY:
PlayComplete();
SendMessage(hMainWnd,WM_COMMAND,IDM_ARCHIVE,0l);
break;

default:
break;

}
break;

}
break;

default:
if(message == uMCIMessage)

{
// *** Received an EVENT message ***

// Isolate the message parameters
MCI_EVENT_PARMS far *mep = (MCI_EVENT_PARMS far *)lParam;
wEvent = LOWORD(mep->dwDataParam1); // or wParam
dwEventData = mep->dwEventData;

switch(wEvent)
{
case PHONE_EVENT_CALL_TAM:

wKeysPressed = 0;
AnswerCall();
break;

case PHONE_EVENT_CALL_TERMINATED:
CallTerminated();
break;

case PHONE_EVENT_CALL_PROGRESS:
if(wTamState == TS_RECORD_MESSAGE ||

(wTamState==TS_REMOTE_PLAY &&
wRemoteState==RS_WAITING))

switch(dwEventData)
{
case DIALTONE:
case SLOWBUSY:
case FASTBUSY:

CallTerminated();
break;

}
break;

case PHONE_EVENT_LINE_KEY:
if(wTamState == TS_REMOTE_PLAY)

{
if(wCmdKey == 5) // Check for play ctrl sequence

{
wCmdKey = -1;
switch(dwEventData)

{
case 1: // (51) Seek back 5 seconds

SeekMessage(TB_BACK);
break;

case 2: // (52) Pause (or resume)
if(!(wPause^=1))

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

83

mciSendComma nd(wOurDeviceID,
MCI_RESUME, MCI_WAIT, 0);

else
mciSendCommand(wOurDeviceID,

MCI_PAUSE, MCI_WAIT, 0);
break;

case 3: // (53) Seek ahead 5 seconds
SeekMessage(TB_FORWARD);
break;

}
}

else // Standard Remote Play command
{
switch(dwEventData)

{
case 1: // (1) Play first / next

RemoteNext();
break;

case 2: // (2) Remove current message
RemoteRemove();
break;

case 3: // (3) Repeat current message
RemoteRepeat();
break;

case 4: // (4) Archive current message
RemoteArchive();

break;
case 5: // Initiate 2 key (5x) sequence

wCmdKey = (short)dwEventData;
break;

}
}

}

else // Check for 3 digit command code
{
wKeys[2] = wKeys[1];
wKeys[1] = wKeys[0];
wKeys[0] = (short)dwEventData;
if(++wKeys Pressed > 2)

{
if((wKeys[2]*100+wKeys[1]*10+wKeys[0])==wCommandCode)

{
BeginRemote(); // Initiate remote playback
wCmdKey = -1; // Reset command key status

}
}

}
break;

default:
break;

}
}

else
return (DefWindowProc(hWnd, message, wParam, lParam));

}
return (NULL);
}

Handling Events - OS/2

MRESULT EXPENTRY MyWindowProc (HWND hwnd,
 ULONG msg,
 MPARAM mp1,
 MPARAM mp2)
{
 HDC hdc;
 static int InitEnv = 0;
 static short wKeys[3]; // Last 3 keys entered
 static short wQuiet; // Count for QUIET messages
 static short wKeysPressed; // Count for 3 key command
 static short wCmdKey; // Flag for 5-x play ctrl
 unsigned short wEvent;
 unsigned long dwEventData;
 static int FlashState = 0;

 switch(msg)
 {
 case MM_MCINOTIFY:

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

84

 switch(SHORT1FROMMP(mp1))
 {
 case MCI_NOTIFY_FAILURE:
 case MCI_NOTIFY_SUCCESSFUL:
 case MCI_NOTIFY_SUPERSEDED:
 case MCI_NOTIFY_ABORTED:
 switch(wTamState)
 {
 case TS_COMMAND_MODE:
 case TS_PLAY_MESSAGE:
 PlayComplete();
 break;

 case TS_REMOTE_PLAY:
 ContinueRemote();
 wQuiet = 0;
 break;

 case TS_PLAY_ANNOUNCEMENT:
 RecordMessage();
 wQuiet = 0;
 break;

 case TS_RECORD_MESSAGE:
 SaveMessage();
 break;

 case TS_ARCHIVE_PLAY:
 PlayComplete();
 break;

 default:
 break;
 }
 break;•
 }
 break;
 case MM_MCIEVENT:
 mep = (LPMCI_EVENT_PARMS)mp2;
 wEvent = LOWORD(mep->dwDataParam1); // or wParam
 dwEventData = mep->dwEventData;
 if (dwEventData >= '0')
 dwEventData -= '0';
 else if (dwEventData == '#')
 dwEventData = 35;
 else if (dwEventData == '*')
 dwEventData == 42;

 switch(wEvent)
 {
 case PHONE_EVENT_CALL_TAM:
 wKeysPressed = 0;
 AnswerCall();
 break;

 case PHONE_EVENT_CALL_TERMINATED:
 CallTerminated();
 break;

 case PHONE_EVENT_CALL_PROGRESS:
 if(wTamState == TS_RECORD_MESSAGE ||
 (wTamState==TS_REMOTE_PLAY && wRemoteState==RS_WAITING))
 switch(dwEventData)
 {
 case DIALTONE:
 case SLOWBUSY:
 case FASTBUSY:
 CallTerminated();
 break;
 }
 break;

 case PHONE_EVENT_LINE_KEY:
 if(wTamState == TS_REMOTE_PLAY)
 {
 if(wCmdKey == 5) // Check for play ctrl sequence
 {

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

85

 wCmdKey = -1;
 switch(dwEventData)
 {
 case 1:
 SeekMessage(TB_BACK);
 break;
 case 2:
 if(!(wPause^=1))
 mciSendCommand(wTpsDeviceID, MCI_RESUME, MCI_WAIT,
 (DWORD)&mciGenericParms, mci_cmd_ctr++);
 else
 mciSendCommand(wTpsDeviceID, MCI_PAUSE, MCI_WAIT,
 (DWORD)&mciGenericParms, mci_cmd_ctr++);
 break;
 case 3:
 SeekMessage(TB_FORWARD);
 break;
 }
 }
 else // Standard Remote Play command
 {
 switch(dwEventData)
 {
 case 1:
 RemoteNext();
 break;
 case 2:
 RemoteRemove();
 break;
 case 3:
 RemoteRepeat();
 break;
 case 4:
 RemoteArchive();
 break;
 case 5: // Initiate play ctrl sequence
 wCmdKey = (short)dwEventData;
 break;
 }
 }
 }
 else // Check for 3 digit command code
 {
 wKeys[2] = wKeys[1];
 wKeys[1] = wKeys[0];
 wKeys[0] = (short)dwEventData;
 if(++wKeysPressed > 2)
 {
 if((wKeys[2]*100+wKeys[1]*10+wKeys[0])==wCommandCode)
 {
 BeginRemote();
 wCmdKey = -1;
 }
 }
 }
 break;

 default:
 break;
 }

Using the TAM Sample Application

The sample application included on the companion diskette is designed primarily to illustrate some of
the concepts behind the creation of an event driven application using the Mwave TAM API. Although
the sample is also a functional telephone answering machine, it doesn't contain the error recovery or
feature set required of a robust application.

The TAM example applet requires the following hardware in addition to the base
Mwave hardware:

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

86

• A telephone handset attached to the Mwave adapter telephone port (if you want to try the
handset functions)

• An analog phone line attached to the public switch network (if you want to initiate and receive
real calls)

• A microphone attached to the Mwave adapter microphone input (if you want to use the
microphone functions)

• One or two speakers attached to the Mwave adapter speaker ports (if you want to use the
speaker functions)

The TAM applet is designed to operate both as a standard telephone and a telephone answering system.
When using either the telephone to take a call, or the answering system to review messages, the
application allows the user to select either a desk telephone handset or an external microphone/speaker
as an input/output device. This allows for private reviewing of messages through the handset, and adds
speakerphone capability to a standard telephone through the microphone and speaker devices.

To implement this dual functionality, the application operates in two distinct modes, a 'Telephone'
mode and a 'Message Review' mode. The operating mode is set by the user, through the 'Mode'
pulldown menu.

In 'Telephone' mode, the applet answers incoming calls, plays an announcement, and records
messages. When system output is set to 'Handset', the desk telephone is connected directly to the
telephone line and on-hook off-hook is . When the output is set to 'Speaker', the telephone is taken off
hook and the system microphone and speaker are enabled.

In 'Message Review' mode, the application can play recorded messages to either the speaker or
telephone handset. All message play controls are located under the 'Play Control' menu. When
message reviewing is taking place, the system does not answer incoming calls.

The handset volume is not adjustable with the applet, but the speaker volume (used for both
speakerphone and message review operations) can be set using the 'Volume' menu.

System Setup

The TAM applet is pre-loaded with a default announcement greeting and some other default settings,
but there are some initialization steps to perform if you wish to tailor it to your requirements. Below
are specific instructions for the various initialization procedures.

Recording an Announcement

To record a new announcement, select the 'Message Review' mode option under the 'Mode' menu, and
then select 'Record Announcement...' under the 'Configure' menu. A three part dialog box is displayed.

The top portion of the dialog box is used for recording. The 'Record from...' box in the upper left hand
corner of the dialog box determines the input recording device. The default device is set to
'Microphone' so if you wish to record your announcement from the telephone handset, first select the
'Telephone Handset' button in the 'Record from...' box.

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

87

After the input device has been chosen, click on the 'Begin Recording' button and start speaking (once
you hear a beep) into the input device you have chosen. When done, click on the 'End Recording'
button. To listen to the announcement you just recorded, select an output device in the 'Play to...' box,
and click on the 'Play Announcement' button. The announcement plays to the output device selected.
If you wish to use the newly recorded announcement, click on the 'OK' button. Otherwise, to keep the
old
announcement, click on the 'Cancel' button.

After closing the dialog box, place the application back into telephone mode by selecting the
'Telephone' mode option in the 'Mode' pulldown menu (to enable the system to take messages)

Setting the Ring Count

The ring count determines the number of rings before which the system answers the telephone to
record an incoming message. The TAM application has two ring counts, one for when messages are
available, and one for when no messages are available. A common ' toll saver' feature is to set the
device to answer on the first ring when new messages are available, but not to answer before the fourth
ring when there are no new messages. This allows the user to hang-up when calling remotely before
the system answers when there are no messages available.

To set the ring count, select the 'Set Ring Count...' item in the 'Configure' menu. A dialog box is
displayed, prompting for the two types of ring counts. After entering a new ring count for when
messages are available and one for when no messages available, press the 'OK' button to use the new
counts, or press the 'Cancel' button to abort any changes.

Setting the Command Code

The TAM application allows the user to retrieve messages from a remote telephone, by calling the
device, and when prompted to record a message, entering instead a 3-digit command code on the
touch-tone keypad. The command code is configurable, and can be changed any time. To set a new
command code, select the 'Set Command Code...' item on the 'Configure' menu. A dialog box
prompting for a new command code is displayed. After entering a new command code, press the 'OK'
button to accept the change, or press the 'Cancel' button to abort any changes and keep the original
code.

Using the Speakerphone

In addition to providing the answering machine function, the TAM application turns a
speaker/microphone connected to the Mwave Adapter into a speakerphone.

Initiating a Speakerphone Call

Before initiating a call for use with the speakerphone, verify that the application is in telephone mode
by selecting the 'Telephone' option under the 'Mode' pulldown menu, and that the system is connected
to the handset by selecting the 'Handset' item under the 'Mode' pulldown menu.

Note: These two options should always be set when you are not reviewing messages. Otherwise, the
system will not take messages

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

88

The speakerphone call is initiated by picking up the handset and dialing the number r using your
standard desk phone. After the number has been dialed, the speakerphone is initiated by selecting the
'Speaker' option under the 'Mode' pulldown menu. After this has been done, you can hang-up the
telephone handset.

Speakerphone Volume Control

While the speakerphone call is in progress, the output volume of the speaker can be adjusted by
selecting a volume level from the 'Volume' pulldown menu.

Terminating a Speakerphone Call

To terminate a speakerphone call, leave the desk phone handset on hook, and place the system back
into handset connect mode by selecting the 'Handset' item under the 'Mode' pulldown menu. This also
places the phone 'on-hook'.

Reviewing Messages Locally

The number of active messages on the system is shown in the application window whenever the
application is open on the desktop. If new messages arrive while the application is in icon form(i.e.
minimized), new messages can be detected by the flashing of the icon text (either on the desktop or in
the Minimized Window Viewer). If the TAM application window is open, its title bar flashes if new
messages have arrived since the last message review.

Playing Recorded Messages

To review messages, select the 'Message Review' mode from the 'Mode' pulldown menu. Incoming
calls are not answered while you are in this mode.

Next, select the output device to which to play your messages. You can play messages to either the
telephone handset or the external speaker. To use the handset, select the 'Handset' option on the 'Mode'
pulldown menu. To use an external speaker, select the 'Speaker' option on the 'Mode' pulldown menu.
When using the speaker, you can adjust the speaker volume be selecting a new volume level from the
'Speaker Volume' pulldown menu.

When in message review mode, some of the entries on the 'Play Control' pulldown menu become
visible. To start reviewing messages, select the 'First' item on the 'Play Control' pulldown menu. This
prompts the system to play the first active message. If the 'First' item is grayed on the menu, you have
no active messages.

After the first message has played, you have a choice of either replaying the message, keeping the
message and playing the next message (if any), or erasing the message and playing the next message
(if any). To replay the message, select the 'Repeat' option on the 'Play Control' pulldown menu. To
keep this message
and play the next message, select the 'Next' option. To erase this message and play the next message
(if any), select the 'Erase' option.

After playing one of multiple messages, you can go back and play the previous message by selecting
the 'Previous' option.

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

89

Note: When you have finished reviewing messages, re-enable call receiving by selecting the
'Telephone' mode option under the 'Mode' pulldown menu.

Message Positioning Controls

While a message is playing, you can step back 5 seconds in the message, step forward 5 seconds in the
message, or pause the message playback. When paused, the playback will remain stopped until
unpaused (pause selected a second time). These options are performed by selecting the 'Back 5
seconds', 'Ahead 5 seconds', or 'Pause' menu entries under the 'Play Control' pulldown menu.

Message Speed Controls

As well as being able to skip around in a message using 'Step Back' and 'Skip Forward', the TAM
application allows you to set the play speed of the message, so that you can play back messages at an
accelerated or decelerated rate. To change the message play speed, select a new speed (either 'Play
Slow', 'Play Normal', or 'Play Fast') from the 'Play Control' pulldown menu. The speed setting you
choose remains in effect until you exit the message review mode at which point it reverts to 'Play
Normal'.

Reviewing Messages Remotely

Message review is also possible using a touch-tone telephone, when calling from a remote location.
To gain access to the message review mode of the application, first call the system and let the
answering machine answer the call. While the announcement is playing, enter the 3 digit command
code you selected during the application setup process. The system now tells you how many active
messages you have. At this point, you can begin entering touch-tone keypad commands to review
messages as described in the previous section. Below is a list of the available keypad command
options:

Message Play Commands:
 Press '1' to play first/next active message
 Press '2' to erase current message and play next active message
 Press '3' to replay or restart the current message

 MMWADKUMU-03 Chapter 5 - Telephone Answering Machine (TAM) Services

This document contains information that is subject to
change without notice.

90

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

91

Chapter 6 - FAX API Reference

This chapter provides a complete reference of the Mwave FAX Application Program Interface (API).

MCI Telephone Event Handler

Communication of real-time status information from the FAX driver to the application is performed
through an application event handler. The handler should be able to service messages posted by the
FAX driver through the MCI device, which contain real-time status information about the device. The
message, MM_MCIEVENT, is not a standard MCI message under Microsoft Windows, thus a
Microsoft Windows application must call the RegisterWindowMessage function with the string
"MM_MCIEVENT", to obtain the numeric value of the notification message.

MM_MCIEVENT

In addition to the message itself, wParam and lParam are used to pass
information to the application.

WPARAM wParam
Contains a device specific event message wEvent.

LPMCI_EVENT_PARMS lParam
Specifies a far pointer to the following MCI_EVENT_PARMS structure:

typedef struct {
DWORD dwDataParam1;
DWORD dwEventData;

} MCI_EVENT_PARMS;

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

92

The data parameters are defined as follows:

DWORD dwDataParam1
The low-order word specifies the device specific event message
wEvent (same as wParam). The high-order word specifies the
device ID of the device initiating the message.

DWORD dwEventData
Contains a data parameter, which is dependent on the message
type. The actual parameters passed are listed in Table 0 below,
and detailed in the event message descriptions.

MM_MCIEVENT - OS/2

In addition to the message itself, wParam and lParam are used to pass information to the application.

DWORD MsgParam1
Contains a device-specific event message and device ID.

WORD wEvent
The low-order word of MsgParam1 specifies the device- specific event message
(same as usEventCode or wParam)

WORD wDeviceID
The high-order word of MsgParam1 specifies the device ID of the device initiating
the message.

LPMCI_EVENT_PARMS MsgParam2

LPMCI_EVENT_PARMS EventData
Specifies a pointer to the following structure:

typedef struct {
 DWORD dwDataParam1;
 DWORD dwEventData;

} MCI_EVENT_PARMS;

Note: The low-order word of dwDataParam1 contains the event code (same as
wEvent). The high-order word is not defined.

FAX Event Message Descriptions

This section describes the Event Messages generated by the FAX API. The following table provides a
summary of all the Event Messages (wEvent), along with a short description of the data parameter
associated with each:

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

93

Table 6-1: FAX Driver Event Messages

Event Message (wEvent) Data Parm.
(dwEventData)

PHONE_EVENT_CALL_FAX undefined
PHONE_EVENT_CALL_PROGRESS New call state
PHONE_EVENT_CALL_TERMINATED Call termination status
PHONE_EVENT_CALLER_ID Caller ID status
PHONE_EVENT_DISTINCTIVE_RING Ring Identifier
PHONE_EVENT_FAX_CONNECT DCS frame information
PHONE_EVENT_FAX_HEADER Pointer to fax header
PHONE_EVENT_FAX_PAGE_COMPLETE Document completion status
PHONE_EVENT_FAX_PAGE_STATUS Page completion status
PHONE_EVENT_FAX_POLL undefined
PHONE_EVENT_HANDSET Handset Status
PHONE_EVENT_HANDSET_KEY Keypress character
PHONE_EVENT_LINE Telephone line status
PHONE_EVENT_LINE_KEY Keypress character
PHONE_EVENT_ADVANCED_RING undefined, use lParam
PHONE_EVENT_RING Telephone ring status

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

94

For all messages posted to the event handler routine, the message value is MM_MCIEVENT. The
value of wEvent and dwEventData vary according to the specific message posted. Below is a more
detailed description of the event messages and their parameters.

Arguments wEvent: PHONE_EVENT_CALL_FAX
dwEventData: undefined

Description This message is posted when a call has been answered by the device, and has been
determined to have originated from a fax device. At this time, the application that is not doing fax
polling should immediately make a call to MCI_RECEIVE to receive any incoming fax data. At this
point, the application should expect any of four additional messages to be posted by the device:

• PHONE_EVENT_CALLER_ID (If Discriminator running)
• PHONE_EVENT_FAX_CONNECT
• PHONE_EVENT_FAX_HEADER
• PHONE_EVENT_FAX_POLL

These additional messages are documented below.
Note: If this message is posted then you are guaranteed to get a
PHONE_EVENT_CALL_TERMINATED. At which time, you must do a MCI_FAX_SET_HOOK
(ONHOOK).

Arguments wEvent: PHONE_EVENT_CALL_PROGRESS
dwEventData: dwCallProgress

Description This message is posted when there has been a change in the current call state (or
status). The new state of the call is supplied in dwCallProgress, and can be any of the following:

• DIALTONE
• ANSWERTONE
• SLOWBUSY
• FASTBUSY
• RINGTONE
• UNIDENTIFIEDTONE
• QUIET
• BUSY

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

95

Arguments wEvent: PHONE_EVENT_CALL_TERMINATED
dwEventData: dwTermination

Description This message is posted when a call has been terminated either by the caller, by the
owning application, or because of an error condition. The reason for call termination is given in
dwTermination, which may be any of the following values:

• TERMINATION_ERROR_RECV
• TERMINATION_ERROR_XMIT
• TERMINATION_NORMAL
• TERMINATION_REQUESTED
• TERMINATION_UNEXPECTED
• TERMINATION_DISK_FULL

Note: At this time the application MUST perform a MCI_FAX_SET_HOOK (ONHOOK).

Arguments wEvent: PHONE_EVENT_CALLER_ID
dwEventData: dwCallerId

Description This message is posted when a caller ID string has been decoded off a ringing line. It
is posted only if a caller ID signal is present. dwCallerID indicates the completion status.

• MCI_VALID_CALLER_ID_RECEIVED
• MCI_CALLER_ID_FRAME_ERROR

The application must issue an MCI_INFO message to retrieve the id (for
MCI_VALID_CALLER_ID_RECEIVED) or the error code (for
MCI_CALLER_ID_FRAME_ERROR).

PHONE_EVENT_CALLER_ID is only supported if Discriminator is loaded.

Arguments wEvent: PHONE_EVENT_DISTINCTIVE_RING PL
dwEventData: dwRingIdentifier

Description This message is posted when a distinctive ring has been decoded off a ringing line. It is
posted only if distinctive ring support is installed. dwRingIdentifier indicates which
distinctive ring has been decoded. The ring identifier is a number between 1 and 20.
This support is added with Ver 3.2. For FAX it is available only when running the
discriminator.

Arguments wEvent: PHONE_EVENT_FAX_CONNECT
dwEventData: dwConnect

Description This message is posted after a fax call has been answered by the device, and has
finished the negotiation period and established the Digital Command Signal (DCS) connection

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

96

parameters. The dwConnect specifies a far pointer to MCI_FAX_CONNECT_PARMS data structure
containing these connection parameters:

typedef struct {
DWORD dwSignalRate;
DWORD dwCompression;
DWORD dwErrorCorrection;
DWORD dwResolution;
DWORD dwWidth;
DWORD dwMinScanLineTime;

} MCI_FAX_CONNECT_PARMS;

The signal rate is passed in dwSignalRate, and can be any of the following:

• MCI_FAX_MODEM_V27TER_2400
• MCI_FAX_MODEM_V27TER_4800
• MCI_FAX_MODEM_V29_7200
• MCI_FAX_MODEM_V29_9600
• MCI_FAX_MODEM_V17_7200
• MCI_FAX_MODEM_V17_9600
• MCI_FAX_MODEM_V17_12000
• MCI_FAX_MODEM_V17_14400
• MCI_FAX_MODEM_ANY

The following compression types are passed in dwCompression. This message is especially useful if
the compression type is BFT (binary file transfer), because in this case, the file resulting from an
MCI_RECEIVE is an unencoded binary file.

• MCI_FAX_COMPRESSION_1D
• MCI_FAX_COMPRESSION_2D
• MCI_FAX_COMPRESSION_BFT

The error correction is passed in dwErrorCorrection, and can be either TRUE or FALSE.

The resolution is passed in dwResolution, and can be any of the following:

• MCI_FAX_RESOLUTION_NORMAL
• MCI_FAX_RESOLUTION_FINE

The document width in pels is passed in dwWidth.

The device specific minimum milliseconds to scan a line is passed in dwMinScanLineTime.

Arguments wEvent: PHONE_EVENT_FAX_HEADER
dwEventData: lpstrFaxHeader

Description This message is posted when a fax header string has been decoded off a fax call. It is
posted only if a header string is present. An application can use this string to identify the fax
sender/receiver. A pointer to the null terminated ASCII string is pointed to by lpstrFaxHeader.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

97

Arguments wEvent: PHONE_EVENT_FAX_PAGE_COMPLETE
dwEventData: dwCompletionStatus

Description This message is posted when the device has completed either sending or receiving a
fax document page. In the event that the device is in the middle of a MCI_SEND, the completion status
(measured in percent) is supplied in dwCompletionStatus.

Arguments wEvent: PHONE_EVENT_FAX_PAGE_STATUS
dwEventData: dwPageStatus

Description This message is posted several times per page during either sending or receiving a fax
document. The completion status (measured in percent) is supplied in dwPageStatus for MCI_SEND,
and is not supplied for MCI_RECEIVE except for 0% when incoming page is known.

Note: It is expected behavior to only get a the 0% and 100% on the first page of the outgoing fax. The
reason is due to the low priority of timer messages in Windows. Subsequent pages should give a %
every second.

Arguments wEvent: PHONE_EVENT_FAX_POLL
dwEventData: undefined

Description This message is posted after a call has been answered by the device, and has been
determined to have originated from a fax device and a poll command is received. At this time, the
application should immediately make a call to MCI_SEND to send the requested fax data.

Arguments wEvent: PHONE_EVENT_HANDSET
dwEventData: dwHandsetStatus

Description This message is posted when the status of the telephone handset changes, due to the
user either picking up or replacing the telephone handset. The value of dwHandsetStatus is as
follows:

dwHandsetStatus = 0 Handset is on-hook
dwHandsetStatus = 1 Handset is off-hook (in use)

The Discriminator must be running to enable receipt of this message.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

98

Arguments wEvent: PHONE_EVENT_HANDSET_KEY
dwEventData: dwKeypress

Description This message is posted when a key has been pressed on the handset device. The index
of the pressed key (0 to 11, 10 for '*' and 11 for '#') is supplied in dwKeypress.

PHONE_EVENT_HANDSET_KEY Is not supported in current FAX driver.

Arguments wEvent: PHONE_EVENT_LINE
dwEventData: dwLineStatus

Description This message is posted when the status of the telephone line changes, due to another
application in the system making use of the telephone line. When an application takes the telephone
line off hook, or is called to service an incoming call, it remains in possession of the telephone line for
the duration of the call. Applications which require use of the telephone line and find it busy, can
simply wait for this message to signal that the telephone line can be used. The value of dwLineStatus
is as follows:

dwLineStatus = 0 Telephone line is free
dwLineStatus = 1 Telephone line is in use

The Discriminator must be running to enable receipt of this message.

.
Arguments wEvent: PHONE_EVENT_LINE_KEY

dwEventData: dwKeypress

Description This message is posted when a key has been pressed on the incoming telephone line.
An ASCII character representing the pressed key ('0' - '9', 'a' - 'd', '#' or '*'), is supplied in dwKeypress.

PHONE_EVENT_LINE_KEY is not supported in current FAX driver.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

99

Arguments wEvent: PHONE_EVENT_RING
dwEventData: dwRingStatus

Description This message is posted when a ring signal change is detected by the device. This
message can be used by the application to count ring cycles, or determine ring length. The value of
dwRingStatus is as follows:

dwRingStatus = 0 Telephone ring signal end (not ringing)
dwRingStatus = 1 Telephone ring signal start (ringing)

Arguments wEvent: PHONE_EVENT_ADVANCED_RING
dwEventData: not used, actual ring count is in lParam

Description If the application has requested ‘advanced format ring notifications’ by setting
advanced ring notify to TRUE, PHONE_EVENT_ADVANCED_RING is sent to the application
instead of PHONE_EVENT_RING. In this case, lParam is not a pointer to a structure. Instead, the
low word of lParam contains the ring count, and the high word of lParam contains the device ID.

LOWORD(lParam) = 0 Telephone ring signal end (not ringing)
LOWORD(lParam) = ‘n’ Telephone ring count (where ‘n’ is the ring number)

The Discriminator must be running to enable receipt of this message.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

100

FAX Driver API Messages and Flags

This section describes the MCI compliant FAX API messages and flags. The following table provides
a summary of the MCI command messages used in the FAX API, and a short description of each:

Table 6-2: FAX Driver API Messages

MCI Message Description
MCI_CLOSE Close the device driver
MCI_CONVERT Convert from/to device dependent file

to/from device independent file.
MCI_DIAL Dial the telephone
MCI_GETDEVCAPS Get the capabilities of the device
MCI_INFO Get device string identifier
MCI_OPEN Open the device driver
MCI_RECEIVE Receive a fax file
MCI_SEND Send a fax file
MCI_SET Configure the device
MCI_STATUS Query device configuration
MCI_STOP Stop sending or receiving a FAX

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

101

MCI_CLOSE
This command message closes the FAX driver.

Parameters DWORD lParam1

The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application. The event handler window must be specified in
the dwCallback field regardless of whether MCI_NOTIFY or
MCI_WAIT is selected.

LPMCI_GENERIC_PARMS lParam2

Specifies a far pointer to the following MCI_GENERIC_PARMS data
structure:

typedef struct {
DWORD dwCallback;

} MCI_GENERIC_PARMS;

Note: Be sure to assign the handle of the window procedure responsible for processing
MM_MCINOTIFY messages to dwCallback prior to calling MCI_CLOSE regardless of whether
MCI_WAIT or MCI_NOTIFY is specified. Failure to do so results in erratic behavior of the Fax
device driver when using versions earlier than Ver 2.1 of the Fax device driver

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

102

MCI_CONVERT
This command message is used to convert data files between a MCI device dependent format, and a
standard device independent format. The call is used to convert to and from FAX multi-page
documents.

Parameters DWORD lParam1

The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

MCI_CONVERT_CREATE
Indicates that the destination file is a new file which should be
created. This overwrites any existing file.

MCI_CONVERT_DESTINATION_FILE
Indicates the lpstrDestFilename field of the data structure identified
by lParam2 contains a pointer to a buffer containing the destination
file name.

MCI_CONVERT_DESTINATION_FORMAT
Indicates the dwDestFormat field of the data structure identified by
lParam2 contains the desired format of the destination file. These
include:

• MCI_CONVERT_FMT_DIB_BMP (from source of type
DEVFAX)

• MCI_CONVERT_FMT_DIB_RLE (from source of type
DEVFAX..not supported in current FAX driver)

• MCI_FAX_CONVERT_FMT_DEVFAX (from DIB_BMP or
DIB_RLE. DIB_RLE conversion not supported in current FAX
driver)

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

103

MCI_CONVERT_DESTINATION_FROM
Specifies that a media starting position is included in the
dwDestFrom field of the data structure identified by lParam2. This
specifies the document page (starting at zero) at which the converted
data is written to the destination file.

MCI_CONVERT_INFO
Indicates that no conversion operation is to take place, but rather, the
dwLength field of the data structure identified by lParam2 should
be set to the length of the media of the supplied source device
dependent filename. For a device dependent FAX file, the value
returned is the document page count. If a device dependent file is
not specified, this call returns an error.

MCI_CONVERT_OVERWRITE
Indicates that newly converted information should overwrite any
existing data. If this flag is not specified, the new data is inserted
into the file.

MCI_CONVERT_SOURCE_FILE
Indicates the lpstrSrcFilename field of the data structure identified
by lParam2 contains a pointer to a buffer containing the file name.

MCI_CONVERT_SOURCE_FROM
Specifies that a media starting position is included in the
dwSrcFrom field of the data structure identified by lParam2. This
specifies the document page (starting at zero) at which the data to be
converted is read from the source file.

LPMCI_CONVERT_PARMS lParam2
Specifies a far pointer to the following MCI_CONVERT_PARMS data
structure:

typedef struct {
DWORD dwCallback;
LPCSTR lpstrDestFilename;
DWORD dwDestFormat;
DWORD dwDestFrom;
DWORD dwLength;
LPCSTR lpstrSrcFilename;
DWORD dwSrcFrom;

} MCI_CONVERT_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

104

MCI_DIAL
This command message takes the phone off-hook, and dials the supplied number. If the telephone is
owned by another application at the time of this call, the command will fail.

Parameters DWORD lParam1
The following flags apply to the telephone device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

MCI_DIAL_DIALMODE
Specifies that the dwDialMode field of the data structure identified
by lParam2 contains a constant specifying the phone dialing mode.
Two modes are defined:

• MCI_DIAL_MODE_PULSE
• MCI_DIAL_MODE_TONE

MCI_DIAL_FLASH
Indicates that the telephone should be flashed before dialing the
supplied number (if any).

MCI_DIAL_MONITOR
Specifies that the audio speaker device should be enabled during the
calling process.

MCI_DIAL_MONITOR_HANDSHAKING_ONLY
Specifies that the audio speaker device should be enabled only
during the negotiation period of the calling process.

MCI_DIAL_STRING
Specifies that the lpstrDialString field of the data structure
identified by lParam2 contains a pointer to a null terminated dialing
string. Numeric characters '0' to '9' correspond to phone digits. The
'*' and '#' characters, the alpha characters 'a' to 'd' and the '-' are also
supported ('-' is ignored). The 'w' character in the string specifies
that the device should wait for a second dial tone before proceeding,
and a ',' character indicates a pause in the dialing sequence. The
time-out limit for the wait command (default 30 seconds) and the
delay time for the pause command (default 2 seconds) are
configurable using MCI_SET. The ‘@’ character in the string
specifies wait for quiet. The ‘p’ character in the string specifies
switch to pulse dialing. The ‘t’ character in the string specifies
switch to tone dialing. The ‘!’ character in the string specifies flash
the line

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

105

The maximum size string that can be dialed is specified by
MAX_DIAL_STRING.

MCI_DIAL_VERIFY
Specifies that the call is to be verified. The phone is verified to be
off-hook, and that a dial tone is present before dialing. The correct
line type format is also verified.

LPMCI_DIAL_PARMS lParam2
Specifies a far pointer to the following MCI_DIAL_PARMS data structure:

typedef struct {
DWORD dwCallback;
DWORD dwDialMode;
LPCSTR lpstrDialString;

} MCI_DIAL_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

106

MCI_GETDEVCAPS
This command is used to obtain static information about a device.

Parameters DWORD lParam1
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

MCI_GETDEVCAPS_ITEM
Specifies that the dwItem field of the data structure identified by
lParam2 contains a constant specifying which device capability to
obtain. The following constants are defined:

MCI_GETDEVCAPS_CAN_EJECT
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS_CAN_PLAY
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS_CAN_RECORD
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS_CAN_SAVE
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS_COMPOUND_DEVICE
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS_DEVICE_TYPE
The dwReturn field is set to MCI_DEVTYPE_OTHER.

MCI_GETDEVCAPS_HAS_AUDIO
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS_HAS_VIDEO
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS_USES_FILES
The dwReturn field is set to TRUE.

MCI_FAX_GETDEVCAPS_COMPRESSION_TYPES
The dwReturn field is set to the logical ORing of the following
supported compression types:

• MCI_FAX_COMPRESSION_MH

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

107

• MCI_FAX_COMPRESSION_MR
• MCI_FAX_COMPRESSION_MMR
• MCI_FAX_COMPRESSION_NONE
• MCI_FAX_COMPRESSION_BFT

Only MCI_FAX_COMPRESSION_MH supported in current FAX
driver.

MCI_FAX_GETDEVCAPS_CAN_RECEIVE
The dwReturn field is set to TRUE if the device supports receiving
FAX file data from the telephone line. Otherwise, it is set to FALSE.

MCI_FAX_GETDEVCAPS_CAN_SEND
The dwReturn field is set to TRUE if the device supports sending
FAX file data to the telephone line. Otherwise, it is set to FALSE.

MCI_FAX_GETDEVCAPS_HAS_HANDSET
The dwReturn field is set to TRUE if the device supports call
monitoring through an external handset; otherwise, it returns
FALSE.

MCI_FAX_GETDEVCAPS_HAS_HANDSET not supported in
current FAX driver.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

108

MCI_FAX_GETDEVCAPS_MODEM_TYPES
The dwReturn field is set to the logical ORing of the following
supported modem types:

• MCI_FAX_MODEM_V27TER_2400
• MCI_FAX_MODEM_V27TER_4800
• MCI_FAX_MODEM_V29_7200
• MCI_FAX_MODEM_V29_9600
• MCI_FAX_MODEM_V17_7200
• MCI_FAX_MODEM_V17_9600
• MCI_FAX_MODEM_V17_12000
• MCI_FAX_MODEM_V17_14400

MCI_FAX_GETDEVCAPS_POLLING
The dwReturn field is set to TRUE if FAX polling is supported, and
FALSE if not.

MCI_FAX_GETDEVCAPS_RESOLUTION
The dwReturn field is set to the resolution of the device.

• MCI_FAX_RESOLUTION_FINE 200x200 PIXELS/INCH
• MCI_FAX_RESOLUTION_NORMAL 100x200

PIXELS/INCH

MCI_FAX_GETDEVCAPS_SUPPORTS_ECM
The dwReturn field is set to TRUE if FAX ECM is supported, and
FALSE if not.

MCI_FAX_GETDEVCAPS_FILE_FORMATS
File formats supported for fax send/receive. The dwReturn field is
set to logical ORing of the following file formats:

• TIFF_CLASS_F
• DCX
• RIFF
• TIFF_6.0

MCI_FAX_GETDEVCAPS_WIDTH
The dwReturn field is set to the width in pels of the device.

MCI_FAX_GETDEVCAPS_WIDTH not supported in current FAX
driver.

LPMCI_GETDEVCAPS_PARMS lParam2
Specifies a far pointer to the following MCI_GETDEVCAPS_PARMS data
structure:

typedef struct {
DWORD dwCallback;
DWORD dwReturn;
DWORD dwItem;

} MCI_GETDEVCAPS_PARMS;

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

109

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

110

MCI_INFO
This command message obtains string information from the device.

Parameters DWORD lParam1
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

MCI_INFO_PRODUCT
Obtains a description of the hardware associated with a device. The
description identifies both the driver and the hardware used. The
string is copied to the buffer pointer to by the lpstrReturn field of
the structure identified by lParam2. The size of this buffer is
specified by the dwRetSize field of the same structure, and if the
buffer is of insufficient size to contain the string, the string is
truncated to fit the buffer. The string contains a version number (i.e,
“Ver 3.0”). Driver enhancements will be denoted in this document
with the “Ver x.y”. that corresponds with the first release that the
feature shows up in. The version number will always increase in
future releases, so a program can parse the string, looking for “Ver “,
convert the characters that follow “Ver “ to a number, and do a
numeric greater-than-or-equal compare to determine if the function
is available in the release the application is running with.

Note: Unless otherwise noted, all functions are available as of Ver
2.2

MCI_INFO_CALLER_ID
Obtains a caller ID string. (See PHONE_EVENT_CALLER_ID).
The caller ID data is copied into the buffer pointed to by the
lpstrReturn field of the structure identified by lParam2. The size of
this buffer is specified by the dwRetSize field of the same structure
(maximum size = MCI_MAX_CALLER_ID_SIZE). If the buffer is
of insufficient size to contain the data, the data is truncated to fit the
buffer, the return code is set to MCIERR_INVALID_BUFFER, and
the dwRetSize is set to the size needed to retrieve the entire caller ID
buffer.

Note: The caller ID data is in the format defined by Bellcore’s
technical reference bulletin TR-TSY-000031 and TR-NWT-001188.
Also note that a checksum is included at the end of the caller ID
data.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

111

MCI_INFO_CALLER_ID is only supported when the discriminator
is loaded.

MCI_INFO_CALLER_ID_ERROR
Obtains the caller ID error code. (See
PHONE_EVENT_CALLER_ID). The code is copied into the buffer
pointed to by the lpstrReturn field of the structure identified by
lParam2. The size of this buffer is specified by the dwRetSize field
of the same structure. The error code is either
MCI_CHECKSUM_ERROR or MCI_FRAME_ERROR.

MCI_INFO_CALLER_ID_ERROR is only supported when the
discriminator is loaded.

MCI_INFO_CALLER_PARSED_CALLER_ID
Obtains a caller an already-parsed Caller ID string. (See
PHONE_EVENT_CALLER_ID). The information is copied into
the structure pointed to by the lpstrReturn (Windows) or dwReturn
(OS/2) field of the structure identified by lParam2. The structure is:

typedef struct
{
 char szDateTime[DATE_TIME_LEN+1];
 char szNumber[MCI_MAX_CALLER_ID_SIZE]; /* callers
number */
 char szName[MCI_MAX_CALLER_ID_SIZE]; /* callers name
(may
be null) */
} CIDINFO;

This function is implemented in “Ver 3.0” of the TAM driver.

MCI_INFO_CALLER_PARSED_CALLER_ID is only supported
when the discriminator is loaded.

LPMCI_INFO_PARMS lParam2
Specifies a far pointer to the following MCI_INFO_PARMS data structure:

typedef struct {
DWORD dwCallback;
LPSTR lpstrReturn;
DWORD dwRetSize;

} MCI_INFO_PARMS;

typedef struct {
DWORD dwCallback;
LPSTR lpstrReturn;
DWORD dwRetSize;

} MCI_INFO_PARMS; /*OS/2*/

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

112

MCI_OPEN
This command message initializes the telephony driver and hardware.

Parameters DWORD lParam1
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application. In older versions of the driver, the event handler
window must be specified in the dwCallback field regardless of
whether MCI_NOTIFY or MCI_WAIT is selected.

MCI_OPEN_ALIAS
Specifies that an alias is included in the lpstrAlias field of the data
structure identified by lParam2. This command is handled by MCI.

MCI_OPEN_SHAREABLE
Specifies that the device should be opened as shareable.

MCI_OPEN_SHAREABLE is not supported in current FAX driver.

MCI_OPEN_TYPE
Specifies that a device type name or constant is included in the
lpstrDeviceType field of the data structure identified by lParam2.
To open the fax driver, specify “Mwavefax” in the
lpstrDeviceType. This command is handled by MCI.

MCI_OPEN_TYPE_ID
Specifies that the low-order word of the lpstrDeviceType field of the
associated data structure contains a standard MCI device type ID and
the high-order word optionally contains the ordinal index for the
device. This command is handled by MCI.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

113

LPMCI_OPEN_PARMS lParam2
Specifies a far pointer to the following MCI_OPEN_PARMS data structure:

typedef struct {
DWORD dwCallback;
WORD wDeviceID;
WORD wReserved0;
LPCSTR lpstrDeviceType;
LPCSTR lpstrElementName;
LPCSTR lpstrAlias;

} MCI_OPEN_PARMS;

Note: With Microsoft Windows, be sure to assign the handle of the window procedure responsible
for processing MM_MCINOTIFY messages to dwCallback prior to calling MCI_OPEN regardless of
whether MCI_WAIT or MCI_NOTIFY is specified. Failure to do so results in erratic behavior when
using versions earlier than Ver 2.1 of the Fax device driver.

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

Remarks
• Case is ignored in the device name, but there must not be any leading or trailing

blanks.

• Note that the device type is the pszDeviceType field of the
MCI_OPEN_PARMS data structure, but it does not have a corresponding flag
because it is required and does not have a command-string parameter.

 For the Mwave Fax and TAM drivers, the device types are:

Mwavetpl
Mwavetps
Mwavefax

• OS/2 only: If automatic type selection is desired (through the extensions or EA
section or INI), the file name (including the extension) must be passed in the
pszElementName parameter, the pszDeviceType is left null, and the
MCI_OPEN_ELEMENT flag is set.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

114

MCI_RECEIVE
This command message receives a file. In the case of FAX, this file is an OEM dependent FAX file
consisting of one or more image pages. The number of pages actually received is available in
MCI_STATUS.

Parameters DWORD lParam1
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

MCI_RECEIVE_FILE
Indicates the lpstrFilename field of the data structure identified by
lParam2 contains a pointer to a buffer containing the file name
where the received fax data is to be stored.

MCI_ALREADY_DIALED
Indicates the document is to be received immediately because the
application has already connected to the partner fax machine. In
FAX vernacular, this is often referred to as Manual Receive.

LPMCI_RECEIVE_PARMS lParam2
Specifies a far pointer to the following MCI_RECEIVE_PARMS data
structure:

typedef struct {
DWORD dwCallback;
LPCSTR lpstrFilename;

} MCI_RECEIVE_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

115

MCI_SEND
This command message sets up a document or documents for sending, which then takes place during a
following MCI_DIAL command message. In the case of FAX, this file is an OEM dependent FAX file
or files consisting of one or more image pages. The number of pages sent can be obtained via
MCI_STATUS.

Parameters DWORD lParam1
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

MCI_SEND_FILE
Indicates the lpstrFilename field of the data structure identified by
lParam2 contains an array of pointers to pointers to strings
identifying the file name of each FAX file to send. The
lpstrFilename array is terminated with a NULL string pointer to
indicate the end of the file name list.

MCI_FAX_SEND_SINGLE_FILE
Indicates the lpstrFilename field of the data structure identified by
lParam2 contains a string identifying the file name of the FAX file
to send.

MCI_ALREADY_DIALED
Indicates the document is to be sent immediately because the
application has already connected to the partner fax machine. In
FAX vernacular, this is often referred to as Manual Send.

MCI_SEND_HEADING
Indicates the lpstrHeading field of the data structure identified by
lParam2 contains a string identifying the full path and file name of
the heading file. The heading file must be in Tiff Class F format,
single strip. Each heading should be a tiff page.

Note: The heading file: should contain a heading for every page to
be sent, must have the same fill order and resolution as the page
being sent with it, and must be less than 24K.

This function is implemented in “Ver 3.0” of the FAX driver

LPMCI_SEND_PARMS lParam2
Specifies a far pointer to the following MCI_SEND_PARMS data structure:

typedef struct {
DWORD dwCallback;

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

116

LPCSTR lpstrFilename[];
 LPSTR lpstrHeading;
} MCI_SEND_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

117

MCI_SET
This command is used to set the FAX device configuration. This configuration determines the
environment used to send Fax Document Files. The item to set is specified by dwItem field of the
MCI_FAX_SET_PARMS structure, pointed to by lParam2, and set data information is passed in
dwSetData.

Parameters DWORD lParam1
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

MCI_SET_ITEM
Specifies that the dwItem field of the data structure identified by
lParam2 contains a constant specifying which item to set. The
following constants are defined:

MCI_FAX_SET_ADVANCED_RING_NOTIFY

The dwSetData field is set to the indicate the type of
message that is sent to the application when the phone
rings. When set to FALSE (the default), a
PHONE_EVENT_RING is sent to the application. When
the flag is set to TRUE, a
PHONE_EVENT_ADVANCED_RING is sent to the
application. With advanced format ring events, lParam
does not contain a pointer to dwSetData. Instead, lParam
contains the device ID and the actual ring count (not a
pointer to it). A ring count of zero signifies the end of a
ring.

MCI_FAX_SET_ADVANCED_RING_NOTIFY is not
supported in current driver.

MCI_FAX_SET_API_STYLE
Specifies that the dwSetData field of the data structure
identified by lParam2 contains the API style of the FAX
device. The possible values are:

• MCI_FAXTAM_STYLE_MMPM
• MCI_FAXTAM_STYLE_WINDOWS

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

118

The default style under Windows is WINDOWS. The
default style under OS/2 is MMPM. The API style
affects return codes for MCI_STATUS,
MCI_GETDEVCAPS, and MCI_INFO. The style also
affects return codes and return information for
MM_MCINOTIFY. See Microsoft Windows
Multimedia Programmer’s Reference and IBM’s
Programming Reference for Multimedia Presentation
Manager Toolkit/2 for details of the MCI interface as
specified for Windows and OS/2.

MCI_FAX_SET_AUDIO_VOLUME
Specifies that the dwSetData field of the data structure
identified by lParam2 contains a constant specifying the
volume level of the speaker device. The volume level is
specified from 0x0 (silence) to 0xFFFF (maximum volume)
and is interpreted logarithmically. This means the perceived
volume increase is the same when increasing the volume
level from 0x5000 to 0x6000 as it is from 0x4000 to
0x5000.

MCI_FAX_SET_CALL_FILTER
Specifies that the dwSetData field of the data structure
identified by lParam2 is set to TRUE if the device is to
receive fax calls; otherwise it is set to FALSE. If another
application has this filer enabled, attempting to enable the
filter causes an error return.

MCI_FAX_SET_COMPRESSION_TYPES
Specifies that the dwSetData field of the data structure
identified by lParam2 contains the allowable FAX
compression type(s) for files to be received. The following
type flags are defined:

• MCI_FAX_COMPRESSION_MH
• MCI_FAX_COMPRESSION_MR
• MCI_FAX_COMPRESSION_MMR
• MCI_FAX_COMPRESSION_NONE
• MCI_FAX_COMPRESSION_BFT
• MCI_FAX_COMPRESSION_ANY

Only MH compression type supported in current FAX
driver

MCI_FAX_SET_DIAL_FLASH_TIME
The dwSetData field is set to the desired flash time (in
milliseconds) of the telephone flash option in the
MCI_DIAL command. The default value is 500 (one half
second).

MCI_FAX_SET_DIAL_PAUSE_TIME

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

119

The dwSetData field is set to the desired pause time (in
milliseconds) that an embedded ',' character produces in the
dial string. The default value is 2000 (2 seconds).

MCI_FAX_SET_DIAL_WAIT_TIME
The dwSetData field is set to the desired time-out limit (in
milliseconds) that an embedded 'w' character in the dial
string allows, waiting for a second dial tone. The default
value is 30000 (30 seconds).

MCI_FAX_SET_ECM_LEVEL
Specifies that the dwSetData field of the data structure
identified by lParam2 contains the current Error Correction
Mode (ECM) quality level. The higher quality telephone
lines require less rigorous ECM checking. The following
line quality levels are defined:

• MCI_FAX_ECM_POOR_LINE
• MCI_FAX_ECM_AVERAGE_LINE
• MCI_FAX_ECM_QUALITY_LINE
• MCI_FAX_ECM_NONE

MCI_FAX_SET_ECM_LEVEL not supported in current
FAX driver
.

MCI_FAX_SET_EVENT_HANDLER
Specifies that the dwSetData field of the data structure
identified by lParam2 contains the handle of the application
event handler. The MCI driver posts MM_MCIEVENT
messages when an event occurs which changes the status of
the driver. Setting this value to zero disables event posting.
See the event handler section of the document for more
details.

MCI_FAX_SET_HOOK
The dwSetData field is set to the desired hook status of the
telephone line. It is set to TRUE to take the handset off-
hook, and FALSE to place the handset on-hook. If another
application owns the phone line, this call will fail. When an
application sets dwSetData to FALSE, it relinquishes
ownership of the line.

MCI_FAX_SET_MODEM_TYPES
Specifies that the dwSetData field of the data structure
identified by lParam2 contains the desired maximum and
minimum FAX modem types ORed together for calls
received and transmitted. If the actual negotiation speed is
lower than the selected minimum modem type, the call is
terminated. The following modem type flags are defined (in
fall back order; from highest speed to lowest):

• MCI_FAX_MODEM_ANY
• MCI_FAX_MODEM_V17_14400

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

120

• MCI_FAX_MODEM_V17_12000
• MCI_FAX_MODEM_V17_9600
• MCI_FAX_MODEM_V17_7200
• MCI_FAX_MODEM_V29_9600
• MCI_FAX_MODEM_V29_7200
• MCI_FAX_MODEM_V27TER_4800
• MCI_FAX_MODEM_V27TER_2400

MCI_FAX_MODEM_ANY not supported in current FAX
driver

MCI_FAX_SET_PASS_CALL
Specifies that the dwSetData field of the data structure
identified by lParam2 contains a constant specifying the
device to which the phone line should be passed. The line
can only be passed from the fax driver when the MODE is
OPEN (see MCI_STATUS_MODE). If the mode is not
open, the application must do a MCI_STOP to reset the fax
out of send or receive mode.
The possible values of dwSetData are:

• MCI_FAXTAM_PASS_VOICE
• MCI_FAXTAM_PASS_MODEM

MCI_FAX_SET_PASS_CALL is only supported when the
discriminator is loaded.

MCI_FAXTAM_PASS_MODEM not supported in current
driver.

MCI_FAX_SET_POLLING
Specifies that the dwSetData field of the data structure
identified by lParam2 is set to TRUE if the device is to be
set to receive a FAX poll for this application. Both calling
and called applications must issue this command followed
by an MCI_RECEIVE to set up for polling.

MCI_FAX_SET_RESOLUTION
Specifies that the dwSetData field of the data structure
identified by lParam2 contains the resolution mode of the
FAX device. This setting is used to tell the calling party the
fax device’s capabilities (DIS info) for negotiating the
receive. The possible values are:

• MCI_FAX_RESOLUTION_NORMAL
• MCI_FAX_RESOLUTION_FINE

MCI_FAX_SET_RING_COUNT
Specifies that the dwSetData field of the data structure
identified by lParam2 contains a constant specifying the
ring count at which the device should answer the telephone.
The default ring count for FAX is 1.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

121

If the discriminator is loaded, it will answer the telephone
on the shortest ring count request of all registered
applications (Windows), but never on less than two rings
(OS/2). Caller ID can arrive between rings 1 and 2.

The maximum ring count that can be set is specified by
MAX_RING_COUNT.

Note: If application is providing homologation support see
MCI_STATUS for more information on the min and max
ring count allowable.

MCI_FAX_SET_STATION_ID
Specifies that the dwSetData field of the data structure
identified by lParam2 contains a pointer to a null
terminated character string which gives the station identifier
that is sent by the device during negotiation.

LPMCI_FAX_SET_PARMS lParam2
Specifies a far pointer to the following MCI_FAX_SET_PARMS data
structure:

typedef struct {
DWORD dwCallback;
DWORD dwSetData;
DWORD dwItem;

} MCI_FAX_SET_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

122

MCI_STATUS
This command is used to obtain information about the FAX device configuration. Information is
returned in the dwReturn field of the MCI_STATUS_PARMS structure, pointed to by lParam2.

Parameters DWORD lParam1
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY
message when this command completes. The window to
receive this message is specified in the dwCallback field of
the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI
returns control to the application.

MCI_STATUS_ITEM
Specifies that the dwItem field of the data structure
identified by lParam2 contains a constant specifying which
status item to obtain. The following constants are defined:

MCI_STATUS_LENGTH
The dwReturn field is set to the number of pages of the last
Fax sent or received.

MCI_STATUS_MODE
The dwReturn field is set to the current mode of the device.
The following modes are defined:

• MCI_MODE_NOT_READY
• MCI_MODE_OPEN
• MCI_MODE_RECEIVE
• MCI_MODE_SEND

MCI_STATUS_POSITION
The dwReturn field is set to the current number of pages
received or sent.

MCI_STATUS_READY
The dwReturn field is set to TRUE if the device is ready;
otherwise, it is set to FALSE. If another telephony
application has ownership of the telephone line, this status
command returns FALSE.

MCI_STATUS_TIME_FORMAT
The dwReturn field is set to the time format of the
play/record media. This always returns
MCI_FAX_FORMAT_PAGES.

MCI_FAX_STATUS_AUDIO_VOLUME
The dwReturn field of the data structure identified by
lParam2 returns a constant specifying the volume level of

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

123

the speaker device. The volume level is specified from 0x0
(silence) to 0xFFFF (maximum volume) and is interpreted
logarithmically. This means the perceived volume increase
is the same when increasing the volume level from 0x5000
to 0x6000 as it is from 0x4000 to 0x5000.

MCI_FAX_STATUS_CALL_FILTER
The dwReturn field of the data structure identified by
lParam2 is set to TRUE if the device is currently set to
receive fax calls; otherwise it is set to FALSE.

MCI_FAX_STATUS_COMPRESSION_TYPES
Specifies that the dwReturn field of the data structure
identified by lParam2 is set to the allowable FAX
compression type(s) for calls received and sent. The
following type flags are defined:

• MCI_FAX_COMPRESSION_MH
• MCI_FAX_COMPRESSION_MR
• MCI_FAX_COMPRESSION_MMR
• MCI_FAX_COMPRESSION_NONE
• MCI_FAX_COMPRESSION_BFT
• MCI_FAX_COMPRESSION_ANY

Only MH compression type supported in current FAX
driver.

MCI_FAX_STATUS_DIAL_FLASH_TIME
The dwReturn field is set to the current flash time (in
milliseconds) of the telephone flash option in the
MCI_DIAL command.

MCI_FAX_STATUS_DIAL_PAUSE_TIME
The dwReturn field is set to the current pause time (in
milliseconds) that an embedded ',' character produces in the
dial string.

MCI_FAX_STATUS_DIAL_WAIT_TIME
The dwReturn field is set to the current time-out limit (in
milliseconds) that an embedded 'w' character in the dial
string allows, waiting for a second dial tone.

MCI_FAX_STATUS_ECM_LEVEL
Specifies that the dwReturn field of the data structure
identified by lParam2 is set to the current ECM quality
level. The higher quality telephone lines require less
rigorous ECM checking. The following line quality levels
are defined:

• MCI_FAX_ECM_POOR_LINE
• MCI_FAX_ECM_AVERAGE_LINE
• MCI_FAX_ECM_QUALITY_LINE

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

124

• MCI_FAX_ECM_NONE

MCI_FAX_STATUS_ECM_LEVEL not supported in current
FAX driver.

MCI_FAX_STATUS_HANDSET
The dwReturn field is set to the current status of the
telephone handset. It is set to TRUE if the handset is off-
hook; otherwise, it is set to FALSE.

MCI_FAX_STATUS_HANDSET not supported in current
FAX driver.

MCI_FAX_STATUS_HANDSET_VOLUME
The dwReturn field of the data structure identified by
lParam2 returns a constant specifying the volume level of
the speaker device. The volume level is specified from 0x0
(silence) to 0xFFFF (maximum volume). The perceived
volume increase is the same when increasing the volume
level from 0x5000 to 0x6000 as it is from 0x4000 to
0x5000.

MCI_FAX_STATUS_HANDSET_VOLUME not supported
in current FAX driver.

MCI_FAX_STATUS_HOOK
The dwReturn field is set to the current hook status of the
telephone line. It is set to TRUE if the phone is off-hook;
otherwise, it is set to FALSE.

MCI_FAX_STATUS_LINE
The dwReturn field is set to the current phone line status.
The following status modes are defined:

• MCI_FAX_LINE_ONHOOK
• MCI_FAX_LINE_DIALTONE
• MCI_FAX_LINE_BUSY
• MCI_FAX_LINE_RINGTONE
• MCI_FAX_LINE_FAX_CARRIER
• MCI_FAX_LINE_UNKNOWN

MCI_FAX_STATUS_MAX_MODEM_SPEED
Specifies that the dwReturn field of the data structure
identified by lParam2 is set to the highest speed FAX
modem type desired for calls received and sent. The
following modem type flags are defined (in order from
highest speed to lowest):

• MCI_FAX_MODEM_ANY
• MCI_FAX_MODEM_V17_14400
• MCI_FAX_MODEM_V17_12000
• MCI_FAX_MODEM_V17_9600
• MCI_FAX_MODEM_V17_7200

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

125

• MCI_FAX_MODEM_V29_9600
• MCI_FAX_MODEM_V29_7200
• MCI_FAX_MODEM_V27TER_4800
• MCI_FAX_MODEM_V27TER_2400

MCI_FAX_MODEM_ANY not supported in current FAX
driver

MCI_FAX_STATUS_MIN_MODEM_SPEED
Specifies that the dwReturn field of the data structure
identified by lParam2 is set to the lowest speed FAX
modem type desired for calls received and sent. The
following modem type flags are defined (in order from
lowest speed to highest):

• MCI_FAX_MODEM_ANY
• MCI_FAX_MODEM_V17_14400
• MCI_FAX_MODEM_V17_12000
• MCI_FAX_MODEM_V17_9600
• MCI_FAX_MODEM_V17_7200
• MCI_FAX_MODEM_V29_9600
• MCI_FAX_MODEM_V29_7200
• MCI_FAX_MODEM_V27TER_4800
• MCI_FAX_MODEM_V27TER_2400

MCI_FAX_MODEM_ANY not supported in current FAX
driver

MCI_FAX_STATUS_POLLING
Specifies that the dwReturn field of the data structure
identified by lParam2 is set to TRUE if the device is set for
fax polling for this application. Otherwise this value is
FALSE.

MCI_FAX_STATUS_RESOLUTION
Specifies that the dwReturn field of the data structure
identified by lParam2 is set to the resolution mode of the
FAX device. The possible return values are:

• MCI_FAX_RESOLUTION_NORMAL
• MCI_FAX_RESOLUTION_FINE

MCI_FAX_STATUS_RING_COUNT
The dwReturn field is set to a constant specifying the ring
count at which the device answers the telephone. The driver
answers on the shortest ring count request of all active
applications, so this value might not match the value
specified in MCI_SET.

MCI_FAX_STATUS_STATION_ID
The dwReturn field of the data structure identified by
lParam2 contains a pointer to a null terminated character
string containing the station identifier.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

126

MCI_FAX_STATUS_WORLDTRADE_SUPPORT
The dwReturn field is set to a binary encoded set of values
indicating restrictions that are in effect for the current
country. Some of the bit settings require the application to
make a subsequent MCI_STATUS call to determine a
maximum value. This support is added with driver version
3.4. The defined bits include:

• PULSE_DIAL_NOT_ALLOWED is set TRUE if pulse
 dialing is not supported.
• DTMF_DIAL_NOT_ALLOWED is set TRUE if DTMF
 dialing is not supported.
• BUSYTONE_DETECT_NOT_VALID is set TRUE if
 busy tone detection is not available in the country.
• BUSYTONE_DETECT_REQUIRED is set TRUE if
 busy tone detection is required in country.
• DIALTONE_DETECT_NOT_VALID is set TRUE if dial
 tone detection is not available in the country.
• DIALTONE_DETECT_REQUIRED is set TRUE if dial
 tone detection is required in country.

MCI_FAX_STATUS_COUNTRY_CODE
The dwReturn field is set to the current country code.
This can be used by applications that must change the looks
of the user interface for different countries like a French
keypad in France. This support is added with driver version
3.4. The following table shows the codes assigned to each
country:

COUNTRY CODE COUNTRY CODE COUNTRY CODE
USA/Canada 1 Australia 14 Norway 27

Belgium 2 Austria 15 Denmark 28
Hong Kong 3 Mexico 16 France 29
Singapore 4 South Africa 17 Netherlands 30

New Zealand 5 Chile 18 U. K. 31
Japan 6 Switzerland 19 Sweden 32

Portugal 7 Germany 20 Italy 33
Ireland 8 Brazil 21 Finland 34
Generic 9 Russia 22 Thailand 35
Spain 10 Yugoslavia 23 Korea 36

Greece 11 Hungary 24 Malaysia 37
Israel 12 Czechrepublic 25 PRC 38

Taiwan 13 Luxembourg 26 Slovakia 39
TABLE 6-3: Country Codes

MCI_FAX_STATUS_AUTO_ANSWER_MIN_RINGS
The dwReturn field contains the minimum number of rings
that can be set in MCI_FAX_SET_RING_COUNT. This
support is added with driver version 3.4.

MCI_FAX_STATUS_AUTO_ANSWER_MAX_RINGS

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

127

The dwReturn field contains the maximum number of
rings can be set in MCI_FAX_SET_RING_COUNT. If the
value is '7FFF'x then there is no limit in that country. This
support is added with driver version 3.4.

MCI_FAX_STATUS_MAX_CALL_RETRIES
The dwReturn field contains the maximum number of
unsuccessful retries allowed. If the value is '7FFF'x there is
no max in that country. This support is added with driver
version 3.4.

MCI_FAX_STATUS_MIN_CALL_RETRY_TIME
The dwReturn field contains the minimum time allowed
between retries. This support is added with driver version
3.4.

LPMCI_STATUS_PARMS lParam2
Specifies a far pointer to the following MCI_STATUS_PARMS data
structure:

typedef struct {
DWORD dwCallback;
DWORD dwReturn;
DWORD dwItem;

} MCI_STATUS_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

128

MCI_STOP
This command is used to cancel a fax send or a fax receive.

Parameters DWORD lParam1
The following flags apply to the FAX device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message
when this command completes. The window to receive this message
is specified in the dwCallback field of the data structure identified
by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control
to the application.

LPMCI_GENERIC_PARMS lParam2

Specifies a far pointer to the following MCI_GENERIC_PARMS data
structure:

typedef struct {
DWORD dwCallback;

} MCI_GENERIC_PARMS;

Note: It is necessary to wait for PHONE_EVENT_CALL_TERMINATED before hanging up the
phone.

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

 MMWADKUMU-03 Chapter 6 - Fax API Reference

This document contains information that is subject to
change without notice.

129

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

130

Chapter 7 - TAM API Reference

This chapter is a complete reference to the Mwave TAM Application Program Interface (API).

TAM functionality is provided by two separate, but related, drivers: TAM Phone Line and TAM
Message.

• The Phone Line driver is used for all operations involving the phone line. This includes
playing a recorded message to the phone line, recording a message from the phone line,
initiating calls, answering calls and speakerphone operation.

• The Message driver includes supports all TAM operations that do not involve the phone
line. This includes local (i.e. phone line not used) recording and playing of messages.

This chapter is divided into two parts. The first part describes the event messages issued by the two
drivers and the second part describes the API messages and flags for the two drivers. For the most
part, the event messages and API messages/flags are identical for the two drivers. Where the
description is specific to a particular driver, the description is marked as follows:

MSG Applicable to Message driver only
PL Applicable to Phone Line driver only

Descriptions containing neither mark are applicable to both drivers.

MCI Telephone Event Handler

Communication of real-time status information from the TAM driver to the application is performed
through an application event handler. The handler should be able to service messages posted by the
TAM driver through the MCI device, which contain real-time status information about the device.

MM_MCIEVENT, is not a standard MCI message under Microsoft Windows, thus a Microsoft
Windows application must call the RegisterWindowMessage function with the string
"MM_MCIEVENT", to obtain the numeric value of the notification message.

MM_MCIEVENT - Windows

In addition to the message itself, wParam and lParam are used to pass information to the
application.

WPARAM wParam
Contains a device specific event message wEvent.

LPMCI_EVENT_PARMS lParam
Specifies a far pointer to the following MCI_EVENT_PARMS structure:

typedef struct {
DWORD dwDataParam1;

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

131

DWORD dwEventData;
} MCI_EVENT_PARMS;

The data parameters are defined as follows:

DWORD dwDataParam1
The low-order word specifies the device specific event message wEvent
(same as wParam). The high-order word specifies the device ID of the
device initiating the message.

DWORD dwEventData
Contains a data parameter, which is dependent on the message type. The
actual parameters passed are listed in Table Error! Bookmark not
defined. below, and detailed in the event message descriptions.

MM_MCIEVENT - OS/2

In addition to the message itself, wParam and lParam are used to pass information to
the application.

DWORD MsgParam1
Contains a device-specific event message and device ID.

WORD wEvent
The low-order word of MsgParam1 specifies the device-specific event

code (same as usEventCode or wParam)

WORD wDeviceID
The high-order word of MsgParam1 specifies the device ID of the device
initiating the message.

LPMCI_EVENT_PARMS MsgParam2

typedef struct {
DWORD dwDataParam1;
DWORD dwEventData;

} MCI_EVENT_PARMS;

Note: The low-order word of dwDataParam1 contains the event code
(same as wEvent). The high-order word is not defined.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

132

TAM Event Message Descriptions

This section describes the Event Messages generated by the TAM API. The following table lists the
Event Messages (wEvent), a short description of the data parameters, and the associated drivers.

Event Message (wEvent) Data Parameter
(dwEventData)

Driver(s)

PHONE_EVENT_ADVANCED_RING undefined, use
lParam

PL

PHONE_EVENT_CALL_PROGRESS New call state PL
PHONE_EVENT_CALL_TAM undefined PL
PHONE_EVENT_CALL_TERMINATED Call termination status PL
PHONE_EVENT_CALLER_ID Caller ID Status PL
PHONE_EVENT_DISTINCTIVE_RING Ring Identifier PL
PHONE_EVENT_HANDSET Handset Status PL, MSG
PHONE_EVENT_HANDSET_KEY Keypress character MSG
PHONE_EVENT_LINE Telephone line status PL
PHONE_EVENT_LINE_KEY Keypress character PL
PHONE_EVENT_RING Telephone ring status PL

Table 7-1: TAM Driver Event Messages

For all messages posted to the event handler routine, the message value is MM_MCIEVENT. The
value of wEvent and dwEventData vary according to the specific message posted. Below is a more
detailed description of the event messages and their parameters.

Arguments wEvent: PHONE_EVENT_ADVANCED_RING PL
dwEventData: not used, actual ring count is in lParam

Description If the application has requested ‘advanced format ring notifications’ by setting advanced
ring notify to TRUE, PHONE_EVENT_ADVANCED_RING is sent to the application
instead of PHONE_EVENT_RING. In this case, lParam is not a pointer to a structure.
Instead, the low word of lParam contains the ring count, and the high word of lParam
contains the device ID.

LOWORD(lParam) = 0 Telephone ring signal end (not ringing)
LOWORD(lParam) = ‘n’ Telephone ring count (where ‘n’ is the ring number)

Arguments wEvent: PHONE_EVENT_CALL_PROGRESS PL
dwEventData: dwCallProgress

Description This message is posted when there has been a change in the current call state (or status).
The new state of the call is supplied in dwCallProgress, and can be any of the
following:

• CALL_PROGRESS_ANSWER_TONE (supported in version 3.0 and above of the
TAM driver)

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

133

• CALL_PROGRESS_BUSY (in current driver, returned for both Fast Busy and
Slow Busy)

• CALL_PROGRESS_DIAL_TONE
• CALL_PROGRESS_FAST_BUSY (unsupported in current driver)
• CALL_PROGRESS_QUIET
• CALL_PROGRESS_REMOTE_RINGING (supported in version 3.0 and above of

the TAM driver)
• CALL_PROGRESS_SLOW_BUSY (unsupported in current driver)
• CALL_PROGRESS_UNIDENTIFIED_TONE

Arguments wEvent: PHONE_EVENT_CALL_TAM PL
dwEventData: undefined

Description This message is posted when a call has been answered by the device, and has been
determined to have originated from a voice source. At this time, the application can play
a greeting and begin voice mail operations.

Arguments wEvent: PHONE_EVENT_CALL_TERMINATED PL
dwEventData: dwTermination

Description This message is posted when a call has been terminated either by the caller, by the
owning application, or because of an error condition. The reason for call termination is
given in dwTermination, which can be any of the following values:

• TERMINATION_ERROR_RECV
• TERMINATION_ERROR_XMIT
• TERMINATION_NORMAL
• TERMINATION_REQUESTED (returned when the Discriminator is handing call

off to a different driver)
• TERMINATION_UNEXPECTED (returned if the PC goes into power saving mode

in the middle of a call)

Arguments wEvent: PHONE_EVENT_CALLER_ID PL
dwEventData: dwCompStatus

Description This message is posted when a caller ID string has been decoded off a ringing line. It is
posted only if a caller ID signal is present. dwCompStatus indicates the completion
status.

• MCI_VALID_CALLER_ID_RECEIVED
• MCI_CALLER_ID_FRAME_ERROR

The application must issue an MCI_INFO message to retrieve the id (for
MCI_VALID_CALLER_ID_RECEIVED) or the error code (for
MCI_CALLER_ID_FRAME_ERROR).

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

134

Arguments wEvent: PHONE_EVENT_DISTINCTIVE_RING PL
dwEventData: dwRingIdentifier

Description This message is posted when a distinctive ring has been decoded off a ringing line. It is
posted only if distinctive ring support is installed. dwRingIdentifier indicates which
distinctive ring has been decoded. The ring identifier is a number between 1 and 20.
This support is added with Ver 3.2.

Arguments wEvent: PHONE_EVENT_HANDSET
dwEventData: dwHandsetStatus

Description This message is posted when the status of the telephone handset changes, due to the
user either picking up or replacing the telephone handset. This message can be
monitored to play an automatic greeting when the handset is removed from the cradle.
The value of dwHandsetStatus is as follows:

dwHandsetStatus = 0Handset is on-hook
dwHandsetStatus = 1Handset is off-hook (in use)

Arguments wEvent: PHONE_EVENT_HANDSET_KEY
dwEventData: dwKeypress

Description This message is posted when a key has been pressed on the handset device. An ASCII
character representing the pressed key ('0' - '9', 'a' - 'd', '#', '*', '!') is supplied in
dwKeypress.

The current PL driver reports only '!'. The '!' (flash) is reported only if the application
has set the min and/or max flash time.

Arguments wEvent: PHONE_EVENT_LINE PL
dwEventData: dwLineStatus

Description This message is posted when the status of the telephone line changes, due to another
application in the system making use of the telephone line. When an application takes
the telephone line off hook, or is called to service an incoming call, it remains in
possession of the telephone line for the duration of the call. Applications which require
use of the telephone line and find it busy, can simply wait for this message to signal that
the telephone line may be used. The value of dwLineStatus is as follows:

dwLineStatus = 0 Telephone line is free
dwLineStatus = 1 Telephone line is in use

Arguments wEvent: PHONE_EVENT_LINE_KEY PL
dwEventData: dwKeypress

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

135

Description This message is posted when a key has been pressed on the incoming telephone line.
An ASCII character representing the pressed key ('0' - '9', 'a' - 'd', '#' or '*'), is supplied
in dwKeypress.

Arguments wEvent: PHONE_EVENT_RING PL
dwEventData: dwRingStatus

Description This message is posted when a ring signal change is detected by the device. This
message can be used by the application to count ring cycles, or determine ring length.
The value of dwRingStatus is as follows:

dwRingStatus = 0 Telephone ring signal end (not ringing)
dwRingStatus = 1 Telephone ring signal start (ringing)

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

136

TAM Driver API Messages and Flags

This section describes the MCI compliant TAM API messages and flags. The following table lists MCI
command messages used in the TAM API, a short description of the message and the associated
drivers.

MCI Message Description Drivers
MCI_CLOSE Close the device driver PL, MSG
MCI_CONVERT Convert from/to device dependent file

to/from device independent file.
MSG

MCI_DIAL Dial the telephone PL
MCI_GETDEVCAPS Get the capabilities of the device PL, MSG
MCI_INFO Get device string identifier PL, MSG
MCI_LOAD Load a voice or wave file for playing PL, MSG
MCI_OPEN Open the device driver PL, MSG
MCI_PAUSE Pause the voice or wave stream play or

record
PL, MSG

MCI_PLAY Play a voice or wave file PL, MSG
MCI_RECORD Record a voice or wave file PL, MSG
MCI_RESUME Resume a paused voice or wave

stream
PL, MSG

MCI_SAVE Save a recorded voice or wave file PL, MSG
MCI_SEEK Change the current position of the

media
PL, MSG

MCI_SET Configure the device PL, MSG
MCI_STATUS Query device configuration PL, MSG
MCI_STOP Stop a voice or wave stream PL, MSG

Table 7-2: TAM Driver API Messages

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

137

MCI_CLOSE

This command message closes the TAM driver.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application. The event handler window must be specified in the dwCallback
field regardless of whether MCI_NOTIFY or MCI_WAIT is selected.

LPMCI_GENERIC_PARMS lParam2

Specifies a far pointer to the following MCI_GENERIC_PARMS data structure:

typedef struct {
DWORD dwCallback;

} MCI_GENERIC_PARMS;

Note: Be sure to assign the handle of the window procedure responsible for
processing MM_MCINOTIFY messages to dwCallback prior to calling
MCI_CLOSE regardless of whether MCI_WAIT or MCI_NOTIFY is specified.
Failure to do so results in erratic behavior when using versions earlier than Ver
2.1 of the TAM device driver.

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

138

MCI_CONVERT MSG

This command message is used to convert data files between an MCI device dependent format, and a
standard device independent format. The call is used to convert to and from device dependent format
(PCM Wave in the case of Microsoft Windows) and TAM compressed voice files.

MCI_CONVERT is intended to be run ‘off-line’ as it consumes a fair amount of MIPS, and conversion
time is the same as the duration of the file being converted.

MCI_CONVERT is supported in TAM drivers version 3.1 and above. Support may not be installed on
a system even if the driver version is 3.1 or above. MCI_CONVERT will return a non-zero return code
if it is not supported. An AP can issue MCI_GETDEVCAPS to determine if wave file support is
installed.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.
MCI_NOTIFY should be specified unless MCI_CONVERT_INFO is
specified.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

MCI_CONVERT_CREATE
Indicates that the destination file is a new file which should be created. This
will overwrite any existing file.

MCI_CONVERT_DESTINATION_FILE
Indicates the lpstrDestFilename field of the data structure identified by
lParam2 contains a pointer to a buffer containing the destination file name.

MCI_CONVERT_DESTINATION_FORMAT
Indicates the dwDestFormat field of the data structure identified by lParam2
contains the desired format of the destination file. These include:

• MCI_CONVERT_FMT_WAVE_PCM (from source of type DEVTAM)

• MCI_TAM_CONVERT_FMT_DEVTAM (from WAVE_PCM)

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

139

MCI_CONVERT_DESTINATION_FROM
Specifies that a media starting position is included in the dwDestFrom field
of the data structure identified by lParam2. This specifies the starting point at
which the converted data is written to an existing destination file. This option
is not supported with the MCI_CONVERT_CREATE option. For TAM, the
index is in units of milliseconds.

MCI_CONVERT_INFO
Indicates that no conversion operation is to take place, but rather, the
dwLength field of the data structure identified by lParam2 should be set to
the length of the media of the supplied source device dependent filename.
For a device dependent TAM file, the value is returned in milliseconds. If a
device dependent file is not specified, this call returns an error.

MCI_CONVERT_LENGTH
Indicates that the dwLength field if the structure identified by lParam2
contains a value specifying the length of the media to be converted. If this
value is not supplied, the entire media is converted from the starting index.
For TAM, the length is expressed in units of milliseconds.

MCI_CONVERT_OVERWRITE
Indicates that newly converted information should overwrite any existing
data. If this flag is not specified, the new data is inserted into the file.

MCI_CONVERT_SOURCE_FILE
Indicates the lpstrSrcFilename field of the data structure identified by
lParam2 contains a pointer to the source file name.

MCI_CONVERT_SOURCE_FROM
Specifies that a media starting position is included in the dwSrcFrom field
of the data structure identified by lParam2. This specifies the starting point at
which the data to be converted is read from the source file. For TAM, the
index is in units of milliseconds.

LPMCI_CONVERT_PARMS lParam2
Specifies a far pointer to the following MCI_CONVERT_PARMS data
structure:

typedef struct {
DWORD dwCallback;
LPCSTR lpstrDestFilename;
DWORD dwDestFormat;
DWORD dwDestFrom;
DWORD dwLength;
LPCSTR lpstrSrcFilename;
DWORD dwSrcFrom;

} MCI_CONVERT_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

140

MCI_DIAL PL

This command message takes the phone off-hook, and dials the supplied number. If the telephone is
owned by another application at the time of this call, the command will fail.

Parameters DWORD lParam1

The following flags apply to the telephone device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

MCI_DIAL_DIALMODE
Specifies that the dwDialMode field of the data structure identified by
lParam2 contains a constant specifying the phone dialing mode. Two modes
are defined:

• MCI_DIAL_MODE_PULSE
• MCI_DIAL_MODE_TONE

MCI_DIAL_FLASH
Indicates that the telephone should be flashed before dialing the supplied
number (if any).

MCI_DIAL_MONITOR
Specifies that the audio speaker device should be enabled during the calling
process.

MCI_DIAL_STRING
Specifies that the lpstrDialString field of the data structure identified by
lParam2 contains a pointer to a null terminated dialing string. Numeric
characters '0' to '9' correspond to phone digits. The '*' and '#' characters, the
alpha characters 'a' to 'd' and the '-' are also supported ('-' is ignored).

The 'w' character in the string specifies that the device should wait for a
second dial tone before proceeding, and a ',' character indicates a pause in the
dialing sequence. The time-out limit for the wait command (default 30
seconds) and the delay time for the pause command (default 2 seconds) are
configurable using MCI_SET. The ‘@’ character in the string specifies wait
for quiet. The ‘p’ character in the string specifies switch to pulse dialing.
The ‘t’ character in the string specifies switch to tone dialing. The ‘!’
character in the string specifies flash the line. Note that the setting of flash
time has no effect on the duration of flash that is specified with a ‘!’ in the
dial string. That setting only has effect on the flash that occurs as a result of
the MCI_DIAL_FLASH flag.

The maximum size string that can be dialed is specified by
MAX_DIAL_STRING.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

141

MCI_DIAL_VERIFY
Specifies that the call is to be verified. The phone is verified to be off-hook,
and that a dial tone is present before dialing.

LPMCI_DIAL_PARMS lParam2

Specifies a far pointer to the following MCI_DIAL_PARMS data structure:

typedef struct {
DWORD dwCallback;
DWORD dwDialMode;
LPCSTR lpstrDialString;

} MCI_DIAL_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

142

MCI_GETDEVCAPS

This command is used to obtain static information about a device.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

MCI_GETDEVCAPS_ITEM
Specifies that the dwItem field of the data structure identified by lParam2
contains a constant specifying which device capability to obtain. The
following constants are defined:

MCI_GETDEVCAPS_CAN_EJECT
The dwReturn field is set to FALSE.

MCI_GETDEVCAPS_CAN_PLAY
The dwReturn field is set to TRUE if the device supports playing voice
files to the speaker, handset, or telephone line. Otherwise, it is set to
FALSE.

MCI_GETDEVCAPS_CAN_RECORD
The dwReturn field is set to TRUE if the device supports voice
recording from the microphone, handset, or telephone line. Otherwise, it
is set to FALSE.

MCI_GETDEVCAPS_CAN_SAVE
The dwReturn field is set to TRUE if the device supports saving voice
data recorded from the microphone, handset, or telephone line.
Otherwise, it is set to FALSE.

MCI_GETDEVCAPS_COMPOUND_DEVICE
The dwReturn field is set to FALSE prior to Ver 3.1. For Ver 3.1 and
beyond, it is set TRUE.

MCI_GETDEVCAPS_DEVICE_TYPE
The dwReturn field is set to MCI_DEVTYPE_OTHER.

MCI_GETDEVCAPS_HAS_AUDIO
The dwReturn field is set to TRUE if the device supports play and
record through an external audio device (speaker and microphone).
Otherwise, it is set to FALSE.

MCI_GETDEVCAPS_HAS_VIDEO
The dwReturn field is set to FALSE.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

143

MCI_GETDEVCAPS_USES_FILES
The dwReturn field is set to TRUE if the device supports voice
recording or playing. Otherwise, it is set to FALSE.

MCI_TAM_GETDEVCAPS_SUPPORTS_CUSTOM_TAG
The dwReturn field is set to TRUE if the TAM operations support
custom audio file formats. These formats are intended to save disk space
over the conventional PCM wave file format.

MCI_TAM_GETDEVCAPS_SUPPORTS_PCM_TAG
The dwReturn field is set to non-zero if the TAM operations support the
use of standard PCM wave files in its play and record operations:
Otherwise it is set FALSE. See MCI_SET for
MCI_TAM_SET_LOW_LEVEL_WAVE_IO for related information.

LPMCI_GETDEVCAPS_PARMS lParam2

Specifies a far pointer to the following MCI_GETDEVCAPS_PARMS data
structure:

typedef struct {
DWORD dwCallback;
DWORD dwReturn;
DWORD dwItem;

} MCI_GETDEVCAPS_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

144

MCI_INFO

This command message obtains string information from the device.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

MCI_INFO_PRODUCT
Obtains a description of the hardware associated with a device. The
description identifies both the driver and the hardware used. The string is
copied to the buffer pointer to by the lpstrReturn field of the structure
identified by lParam2. The size of this buffer is specified by the dwRetSize
field of the same structure, and if the buffer is of insufficient size to contain
the string, the string is truncated to fit the buffer. The string contains a
version number (i.e., “Ver 3.0”). Driver enhancements will be denoted in
this document with the “Ver x.y”. that corresponds with the first release that
the feature shows up in. The version number will always increase in future
releases, so a program can parse the string, looking for “Ver “, convert the
characters that follow “Ver “ to a number, and do a numeric greater-than-or-
equal compare to determine if the function is available in the release the
application is running with.

Note: Unless otherwise noted, all functions are available as of Ver 2.2

MCI_INFO_CALLER_ID
Obtains a caller ID string. (See PHONE_EVENT_CALLER_ID). The string
is copied into the buffer pointed to by the lpstrReturn (Windows) or
dwReturn (OS/2) field of the structure identified by lParam2. The size of
this buffer is specified by the dwRetSize field of the same structure
(maximum size = MCI_MAX_CALLER_SIZE). If the buffer is of
insufficient size to contain the string, the string is truncated to fit the buffer.

The caller ID data is in the format defined by Bellcore's technical reference
bulletin TR-TSY-000031 and TR-NWT-001188. Also note that a checksum
is included at the end of the Caller ID data.

MCI_INFO_CALLER_ID_ERROR
Obtains the caller ID error code. (See PHONE_EVENT_CALLER_ID). The
code is copied into the buffer pointed to by the lpstrReturn (Windows) or
dwReturn (OS/2)field of the structure identified by lParam2. The size of this
buffer is specified by the dwRetSize field of the same structure. The error
code is either MCI_FRAME_ERROR or MCI_CHECKSUM_ERROR.

MCI_INFO_CALLER_PARSED_CALLER_ID

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

145

Obtains an already-parsed Caller ID string. (See
PHONE_EVENT_CALLER_ID). The information is copied into the
structure pointed to by the lpstrReturn (Windows) or dwReturn (OS/2)
field of the structure identified by lParam2. The structure is:

typedef struct
{
 char szDateTime[DATE_TIME_LEN+1];
 char szNumber[MCI_MAX_CALLER_ID_SIZE]; /* callers number */
 char szName[MCI_MAX_CALLER_ID_SIZE]; /* callers name (may

 be null) */
} CIDINFO;

If the call doesn’t not have a caller ID, szName will be ‘out of area caller’ if
one phone system doesn’t support delivering caller ID to another phone
system, or ‘private caller’ if the caller blocked the sending of caller ID.

This function is implemented in “Ver 3.0” of the TAM driver.

LPMCI_INFO_PARMS lParam2

Specifies a far pointer to the following MCI_INFO_PARMS data structure:

typedef struct {
DWORD dwCallback;
LPSTR lpstrReturn;
DWORD dwRetSize;

} MCI_INFO_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

146

MCI_LOAD

This command message loads a file, and the data used as the current media. The current position is set
to the start of the media.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

MCI_LOAD_FILE
Indicates the lpstrFilename field of the data structure identified by lParam2
contains a pointer to a buffer containing the file name.

To open a new file, you can either:
• Specify the MCI_LOAD_FILE and a null pointer for the file name.

• If running with API style set to MCI_FAXTAM_STYLE_MMPM, omit the
MCI_LOAD_FILE flag.

In driver version 3.1, the ability to play and record wave files over the telephone
is added. If the file extension is ‘wav’ the file is assumed to be a wave file. If a
new file is loaded, the value set by MCI_SET MCI_TAM_SET_FORMATTAG
is used to determine that the file is a wave file. The default setting is
TAM_WAVE_FORMAT_CUSTOM. Wave file support is a separately
installable option that may not be installed on a particular machine. If it is not
installed, the application will get a non-zero return code on MCI_LOAD,
MCI_PLAY or MCI_RECORD. The TAM application can issue
MCI_GETDEVCAPS for
MCI_TAM_GETDEVCAPS_SUPPORTS_PCM_TAG to determine if support is
installed. Recording to wave files is not recommended as it takes much more
disk space than recording to the custom formatted files.

Use LOADFILENAME instead of lpstrFilename (Windows) or
pszElementName (OS/2). This label makes it easier to port applications
between Windows and OS/2.

MCI_OPEN_ELEMENT
This flag is defined in mciftdd.h to be identical MCI_LOAD_FILE.

LPMCI_LOAD_PARMS lParam2

Specifies a far pointer to the following MCI_LOAD_PARMS data structure:

typedef struct {
DWORD dwCallback;
LPCSTR lpstrFilename;

} MCI_LOAD_PARMS;

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

147

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

148

MCI_OPEN

This command message initializes the telephony driver and hardware.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application. In older versions of the driver, the event handler window must
be specified in the dwCallback field regardless of whether MCI_NOTIFY or
MCI_WAIT is selected.

MCI_OPEN_ALIAS
Specifies that an alias is included in the lpstrAlias field of the data structure
identified by lParam2. This command is handled by MCI.

MCI_OPEN_ELEMENT
Specifies that a filename is included in the lpstrElementName field of the
data structure identified by lParam2. The file is loaded as part of
MCI_OPEN processing. This function is new to driver version 3.1.

MCI_OPEN_SHAREABLE
Specifies that the device should be opened as shareable.

MCI_OPEN_SHAREABLE is not supported in current TAM drivers.

MCI_OPEN_TYPE
Specifies that a device type name or constant is included in the
lpstrDeviceType field of the data structure identified by lParam2. This
command is handled by MCI. To open the telephone message driver, specify
"Mwavetps" in the lpstrDeviceType. To open the telephone line driver,
specify "Mwavetpl".

MCI_OPEN_TYPE_ID (Not supported in OS/2; defined as zero)
Specifies that the low-order word of the lpstrDeviceType field of the
associated data structure contains a standard MCI device type ID and the
high-order word optionally contains the ordinal index for the device. This
command is handled by MCI.

LPMCI_OPEN_PARMS lParam2

Specifies a far pointer to the following MCI_OPEN_PARMS data structure:

typedef struct {
DWORD dwCallback;
WORD wDeviceID;
WORD wReserved0;
LPCSTR lpstrDeviceType;
LPCSTR lpstrElementName;

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

149

LPCSTR lpstrAlias;
} MCI_OPEN_PARMS;

Note: With Microsoft Windows, be sure to assign the handle of the
window procedure responsible for processing MM_MCINOTIFY messages to
dwCallback prior to calling MCI_OPEN regardless of whether MCI_WAIT or
MCI_NOTIFY is specified. Failure to do so results in erratic behavior when
using versions earlier than Ver 2.1 of the TAM device driver.

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

Remarks
Case is ignored in the device name, but there must not be any leading or trailing blanks.

Note that the device type is the pszDeviceType field of the MCI_OPEN_PARMS data structure, but
it does not have a corresponding flag because it is required and does not have a command-string
parameter.

 For the Mwave Fax and TAM drivers, the device types are:

Mwavetpl
Mwavetps
Mwavefax

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

150

MCI_PAUSE

This command message pauses the current MCI_PLAY or MCI_RECORD operation.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

LPMCI_GENERIC_PARMS lParam2

Specifies a far pointer to the following MCI_GENERIC_PARMS data structure:

typedef struct {
DWORD dwCallback;

} MCI_GENERIC_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

151

MCI_PLAY

This command message plays the current media on the connected device(s).

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

If an MCI_NOTIFY_ABORTED is posted with the notification, the call
discriminator determined that the call was not a voice call. The application
can now wait for the next incoming call.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

MCI_FROM
Specifies that a media starting position is included in the dwFrom field of
the data structure identified by lParam2. The units assigned to the position
values are milliseconds (MCI_FORMAT_MILLISECONDS). If
MCI_FROM is not specified, the current position in the media is used.

MCI_TO
Specifies that a media ending position is included in the dwTo field of the
data structure identified by lParam2. The units assigned to the position
values are milliseconds (MCI_FORMAT_MILLISECONDS). If MCI_TO is
not specified, the device plays to the end of the media.

LPMCI_PLAY_PARMS lParam2

Specifies a far pointer to the following MCI_PLAY_PARMS data structure:

typedef struct {
DWORD dwCallback;
DWORD dwFrom;
DWORD dwTo;

} MCI_PLAY_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

152

MCI_RECORD

This command message records the connected device(s) to the current media.

The ability to record a conversation is added in version 3.1 of the TAM driver. This occurs if
MCI_RECORD is issued when the handset is connected to the phoneline, and the handset is up, or if
speakerphone is in use when MCI_RECORD is issued. If the conversation is being recorded, the
remote party will hear periodic beeps to indicate that the conversation is being recorded. If the user
wishes to change connections (i.e., from handset to microphone during conversation recording) it is
necessary for the application to issue MCI_STOP before issuing MCI_SET
MCI_TAM_SET_CONNECT. After the MCI_SET is complete, the application should issue
MCI_RECORD without specifying MCI_FROM to continue recording from the position where the
initial recording stopped

With Ver 3.1, the ability to record PCM files is supported. However, PCM files take up more disk
space than the default TAM sub-band-coded files. Also, when recording PCM files over the phone
line, neither silence nor dialtones are automatically removed from the recorded file. With sub-band-
coded files, recording over the phone is automatically terminated when the call is complete. With PCM
files, the application must issue MCI_STOP to terminate the record.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

If MCI_NOTIFY_ABORTED is posted with the notification, the call
discriminator determined that the call was not a voice call. The application
should not save the recorded file. If MCI_NOTIFY_FAILURE is reported, it
probably indicates that nothing but silence was recorded. There is no reason
to save the recorded file.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

MCI_RECORD_INSERT
Indicates that newly recorded information should be inserted or pasted into
the existing media data.

MCI_FROM
Specifies that a media starting position is included in the dwFrom field of
the data structure identified by lParam2. The units assigned to the position
values are milliseconds (MCI_FORMAT_MILLISECONDS). If
MCI_FROM is not specified, the current position in the media is used.

MCI_RECORD_OVERWRITE
Specifies that newly recorded data should overwrite existing data.

MCI_TO

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

153

Specifies that a media ending position is included in the dwTo field of the
data structure identified by lParam2. The units assigned to the position
values are mS (MCI_FORMAT_MILLISECONDS). If MCI_TO is not
specified, the device records to the end of the media (a substantial amount of
time in TAM).

MCI_TAM_BEEP
Specifies that a 500 Hz tone of 0.5 second duration should be played before
recording begins.

MCI_TAM_TO_MESSAGE_END
Specifies that the device should record until it detects the end of the message,
and then truncates prolonged silence or dial tone periods from the newly
recorded media. The MCI_TAM_TO_MESSAGE_END flag should always
be set when not using the MCI_TO option.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

154

LPMCI_RECORD_PARMS lParam2

Specifies a far pointer to the following MCI_RECORD_PARMS data structure:

typedef struct {
DWORD dwCallback;
DWORD dwFrom;
DWORD dwTo;

} MCI_RECORD_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI
error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

155

MCI_RESUME

This command message resumes the current MCI_PLAY or MCI_RECORD operation, after a
MCI_PAUSE operation has been issued.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

LPMCI_GENERIC_PARMS lParam2

Specifies a far pointer to the following MCI_GENERIC_PARMS data structure:

typedef struct {
DWORD dwCallback;

} MCI_GENERIC_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

156

MCI_SAVE

This command message saves the current media to a file, retaining its current format via the format tag.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

MCI_SAVE_FILE
Indicates the lpstrFilename field of the data structure identified by lParam2
contains a pointer to a buffer containing the file name where the current
media data is saved.

LPMCI_SAVE_PARMS lParam2

Specifies a far pointer to the following MCI_SAVE_PARMS data structure:

typedef struct {
DWORD dwCallback;
LPCSTR lpstrFilename;

} MCI_SAVE_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

157

MCI_SEEK

This MCI command message changes the current position of the media. Audio output is disabled
during the seek. After the seek completes, the device stops.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

MCI_SEEK_TO_END
Specifies that the device should seek to the end of the current media.

MCI_SEEK_TO_START
Specifies that the device should seek to the start of the current media.

MCI_TO
Specifies a position is included in the dwTo field of the structure identified
by lParam2, to which the device should seek using the current media. Seek
distance is specified in units of mS (MCI_FORMAT_MILLISECONDS).

LPMCI_SEEK_PARMS lParam2

Specifies a far pointer to the following MCI_SEEK_PARMS data structure:

typedef struct {
DWORD dwCallback;
DWORD dwTo;

} MCI_SEEK_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

158

MCI_SET

This command is used to set TAM device information. The item to set is specified by dwItem field of
the MCI_TAM_SET_PARMS structure, pointed to by lParam2, and set data information is passed in
dwSetData.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

MCI_SET_ITEM
Specifies that the dwItem field of the data structure identified by lParam2
contains a constant specifying which item to set. The following constants are
defined:

MCI_TAM_SET_ADVANCED_RING_NOTIFY
The dwSetData field is set to the indicate the type of message that is
sent to the application when the phone rings. When set to FALSE (the
default), a PHONE_EVENT_RING is sent to the application. When the
flag is set to TRUE, a PHONE_EVENT_ADVANCED_RING is sent to
the application. With advanced format ring events, lParam does not
contain a pointer to dwSetData. Instead, lParam contains the device ID
and the actual ring count (not a pointer to it). A ring count of zero
indicates the end of a ring.

MCI_TAM_SET_AP_DISCRIMINATED PL
This function, new to driver version 3.1, gives the TAM application the
ability to influence the call-discrimination outcome. For example, a TAM
application that has a caller ID database can indicate the incoming call is for
FAX, MODEM, VOICE, or don’t answer. The duration of the setting is for
the current call only.

The application should preferably issue this call before the current call is
answered.

The dwSetData field is set to indicate MCI_FAXTAM_PASS_FAX,
MCI_FAXTAM_PASS_MODEM, MCI_FAXTAM_PASS_VOICE, or
MCI_FAXTAM_DONT_ANSWER. If this call is issued before the
discriminator discriminates, the AP’s preference will take precedence over
any other discrimination criteria, and the discriminator will not discriminate
based on calling tones or information in the discriminator’s database.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

159

MCI_TAM_SET_API_STYLE
Specifies that the dwSetData field contains the API style of the TAM
device. The possible values are:

• MCI_FAXTAM_STYLE_MMPM
• MCI_FAXTAM_STYLE_WINDOWS

The default style under OS/2 is MMPM. The default style under
Windows is WINDOWS. The API style affects return codes for
MCI_STATUS, MCI_GETDEVCAPS and MCI_INFO. The style also
affects return codes and return information for MM_MCINOTIFY. See
Microsoft Windows Multimedia Programmer's Reference and IBM's
Programming Reference for Multimedia Presentation Manager Toolkit/2
for details of the MCI interface as specified for Windows and OS/2.

MCI_TAM_SET_AUDIO_MUTE
The dwSetData field is set to the desired mute status of the system
microphone. When set to TRUE, the microphone (audio input of
TAM_AUDIO) is disconnected from the telephone line, and any record
operation in progress. When set to FALSE, the device operates normally.

MCI_TAM_SET_AUDIO_VOLUME
Specifies that the dwSetData field of the data structure identified by
lParam2 contains a constant specifying the volume level of the speaker
device. The volume level is specified from 0x0 (silence) to 0xFFFF
(maximum volume) and is interpreted logarithmically. This means the
perceived volume increase is the same when increasing the volume level
from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

MCI_TAM_SET_AVGBYTESPERSEC
Specifies that the dwSetData field of the data structure identified by
lParam2 contains a constant specifying the desired average bytes per
second rate of any new RECORD operation.

With Ver 3.1, PCM files are supported. Average bytes per second used
with sub-band-coded files is treated as follows:

For most messages with normal speech, the data rate observed will be
close to this average. If this value is greater than zero, it overrides with a
finer granularity the current MCI_TAM_SET_QUALITY level.

The minimum non-zero value that can be input is 1000. The actual level
being used can be found by calling MCI_STATUS. If dwSetData is set
to zero, the value of MCI_TAM_SET_QUALITY is used. This request
does not effect message playback.

With PCM files, average bytes per second must be set to be consistent
with bits per second and bits per sample. The formula for calculating
bytes per second is:

average bytes per second = bits per second * (bits per sample/8)

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

160

The default for average bytes per second is 11025. The default for bits
per second is 11025. The default for bits per sample is 8. A list of valid
combinations includes:

Bytes/second Bits/sample Samples/second
11025 8 11025
22050 16 11025
22050 8 22050
44100 16 22050
44100 8 44100
88200 16 44100

TABLE 7-3
NOTE: TAM_WAVE_FORMAT_CUSTOM (sub band coded) files are
equivalent to 15 bits/sample at 11025 samples/second. On average, sub band
coded files take less than 4000 bytes/second of disk space.

MCI_TAM_SET_BITSPERSAMPLE
Sets the desired bits per sample (either 8 or 16) used for playing,
recording, and saving to the dwSetData field of the data structure
identified by lParam2. This command is used in conjunction with
MCI_TAMSET_SAMPLESPERSEC for PCM format wave files only.
Using 16 bits per sample sounds noticeably better than 8 bits per sample,
but uses twice the disk space.

Note: PCM format files are only supported by version 3.1 or above, of
the TAM driver. See MCI_TAM_SET_AVGBYTESPERSEC for more
information.

MCI_TAM_SET_CALLER_ID PL
Specifies that the dwSetData field of the data structure identified by
lParam2 is set to FALSE to disable caller ID processing; otherwise, it is
set to TRUE. Caller ID processing uses Mwave DSP resources.
Disabling caller ID permits more concurrency. The default is TRUE on
systems that have Mwave call discrimination installed.

MCI_TAM_SET_CALL_FILTER PL
Specifies that the dwSetData field of the data structure identified by
lParam2 is set to TRUE if the device is to receive voice calls; otherwise
it is set to FALSE. If another application has this filter enabled,
attempting to enable the filter causes an error return.

MCI_TAM_SET_CONNECT
Specifies that the dwSetData field of the data structure identified by
lParam2 contains a constant specifying the new target play or record
device, and any inter-device connections. The device flags for the
devices to connect are OR'ed together, and the result is placed in
dwSetData. The TAM device flags are defined as follows:

• MCI_TAM_AUDIO (speaker & microphone) MSG
• MCI_TAM_HANDSET MSG
• MCI_TAM_PHONELINE PL
• MCI_TAM_AUDIO_PHONELINE PL

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

161

 (speakerphone)
• MCI_TAM_HANDSET_PHONELINE PL
 (standard phone operation)
• MCI_TAM_SPEAKER_PHONELINE PL
 (answering machine w/ call screening)

Note: The device MCI_TAM_PHONELINE is required for all
operations involving an outside phone line.
Note: Setting speakerphone operation disables call discrimination based
on calling tones. DTMF key detection is also disabled.

MCI_TAM_SET_DIAL_FLASH_TIME PL
The dwSetData field is set to the desired flash time (in milliseconds) of
the telephone flash option in the MCI_DIAL command. The default
value is 500 (one half second).

MCI TAM_SET_DIAL_PAUSE_TIME
The dwSetData field is set to the desired pause time (in milliseconds)
that an embedded ',' character produces in the dial string. The default
value is 2000 (2 seconds).

MCI_TAM_SET_DIAL_WAIT_TIME PL
The dwSetData field is set to the desired time-out limit (in milliseconds)
that an embedded 'w' character in the dial string allows, waiting for a
second dial tone. The default value is 30000 (30 seconds).

MCI_TAM_SET_EVENT_HANDLER
Specifies that the dwSetData field of the data structure identified by
lParam2 contains the handle of the application event handler. The MCI
driver posts MM_MCIEVENT messages when an event occurs which
changes the status of the driver. Setting this value to zero disables event
posting. See the event handler section of the document for more details.

MCI_TAM_SET_FORMATTAG
Specifies that the dwSetData field of the data structure identified by
lParam2 contains a constant specifying the compression/format of the
media to be played or recorded. The following formats are allowed:

• WAVE_FORMAT_PCM (Supported by version 3.1 and above of
the TAM drivers)
• TAM_WAVE_FORMAT_CUSTOM

MCI_TAM_SET_HANDSET_MUTE MSG
The dwSetData field is set to the desired mute status of the telephone
handset. When set to TRUE, the audio input of the handset is
disconnected from the telephone line, and any record operation in
progress. When set to FALSE, the device operates normally.

MCI_TAM_SET_HANDSET_VOLUME MSG
Specifies that the dwSetData field of the data structure identified by
lParam2 contains a constant specifying the volume level of the speaker
device. The volume level is specified from 0x0 (silence) to 0xFFFF
(maximum volume) and is interpreted logarithmically. This means the

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

162

perceived volume increase is the same when increasing the volume level
from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

MCI_TAM_SET_HOOK PL
The dwSetData field is set to the desired hook status of the telephone
line. It is set to TRUE to take the handset off-hook, and FALSE to place
the handset on-hook. If another application owns the phone line, and the
value is set to TRUE, this call will fail. When an application sets
dwSetData to FALSE, it relinquishes ownership of the line.

MCI_TAM_SET_LOW_LEVEL_WAVE_IO
The dwSetData field is set to inform TAM driver that the application
intends to use the low level wave audio API to play or record from the
phone. This function is available with Ver 3.2 of the TAM drivers.
Valid values include:
• MCI_TAM_WAVE_IN_START

 • MCI_TAM_WAVE_IN_STOP
 • MCI_TAM_WAVE_OUT_START
 • MCI_TAM_WAVE_OUT_STOP

In general, a TAM application that uses wave files will not use this
interface. However specialized applications, such as voice recognition
applications, cannot wait until an entire file has been recorded and saved.
Those applications will want to analyze the PCM data as it arrives. To
examine buffers as they are received, the application must use the audio
driver directly.

Under Windows, the set of calls that the application should make are
MCI_GETDEVCAPS for
MCI_TAM_GETDEVCAPS_SUPPORTS_PCM_TAG. This returns the
device ID of the wave driver that can play to the telephone or handset.
The application uses this device ID on the low level audio calls (e.g.,
waveOutSetVolume). Before opening the wave driver, the application
should call MCI_SET to inform the TAM driver that it is about to open
the wave driver to start input or output. Likewise, after closing the wave
driver, MCI_SET is issued to inform the TAM driver that the low level
audio is done.

Under MMPM (OS/2), there are no low level audio API’s. However, if
the application wants to inspect PCM buffers it must use the audio driver
directly, and do I/O using memory playlists. To accomplish this, the
application issues MCI_SET to inform the TAM driver that the wave
driver is going to be used (as above). It then issues MCI_OPEN for the
wave audio device. After that, it issues ‘connection <alias> query type
wave stream alias conndev wait’. The connection command is followed
by ‘connector conndev enable type phone line wait’. If using the MSG
driver, use ‘phone set’ instead of ‘phone line’. After the application is
done using the wave device, MCI_SET is issued to inform the TAM
driver that the wave driver is no longer in use.

The application is responsible for setting the speaker volume if it uses
the low level audio API.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

163

Most applications will not need this interface. To play or record wave
files, it is much simpler to issue ‘load’, and ‘play’ or ‘record’ directly to
the TAM driver.

MCI_TAM_SET_MAX_FLASH_TIME PL
Specifies that the dwSetData field of the data structure identified by
lParam2 contains a constant maximum number of milliseconds used for
detecting when a handset flash has been pressed. A flash essentially is
an off-hook followed by an on-hook. The period of time between the
two events determines if the telco detects one flash hook or two separate
events (on-hook and off-hook). Different telcos may use different values.
This call allows the application to adjust to the different telcos. The
default is zero, meaning that flash will not be reported to the application.
When flash is detected, it is reported in a
PHONE_EVENT_HANDSET_KEY, with the key value set to ‘!’. If the
max flash time is set less than the min flash time, it is treated as an error.

MCI_TAM_SET_MICROPHONE_GAIN
Specifies that the dwSetData field of the data structure identified by
lParam2 contains a constant specifying the gain of the microphone in
dB. Valid values are from 0 to 100 decimal. The default is 50 dB.

MCI_TAM_SET_MIN_FLASH_TIME PL
Specifies that the dwSetData field of the data structure identified by
lParam2 contains a constant indicating the smallest number of
milliseconds used for detecting when a handset flash has been pressed.
A flash essentially is an off-hook followed by an on-hook. The period of
time between the two events determines if the telco detects one flash
hook or two separate events (on-hook and off-hook). Different telcos
may use different values. This call allows the application to adjust to the
different telcos. The default is zero. When flash is detected, it is reported
in a PHONE_EVENT_HANDSET_KEY, with the key value set to ‘!’. If
the min flash time is set greater than the max flash time, it is treated as
an error.

MCI_TAM_SET_PASS_CALL PL
The dwSetData field is set to a constant indicating the desired type of
application that the current phone call will be passed to. The possible
values are:
• MCI_FAXTAM_PASS_FAX to pass to a fax application
• MCI_FAXTAM_PASS_MODEM to pass to a modem

application

If the specified application is not currently accepting incoming calls, the
application retains ownership of the call, and should remember to hang
up the phone.

This call can work only if the Mwave call discriminator is active.

MCI_TAM_SET_QUALITY
Specifies that the dwSetData field of the data structure identified by
lParam2 contains a constant specifying the quality level of the phone

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

164

recording and playback. Quality range is (0-7), where "0" is lowest
quality, and "7" is highest quality.

MCI_TAM_SET_QUIET_DURATION PL
Specifies that the dwSetData field of the data structure identified by
lParam2 contains a constant specifying the continuous phone line quiet
time in seconds before the application will get the first
MM_MCIEVENT message specifying CALL_PROGRESS_QUIET.
The minimum non-zero value is 4. Zero indicates that the application
doesn't want the CALL_PROGRESS_QUIET interrupt returned. The
default is 10. After the first CALL_PROGRESS_QUIET, the application
will continue receiving this message every second until the call is
terminated.

MCI_TAM_SET_QUIET_DURATION is not supported in current TAM
drivers. In the interim, the first MM_MCIEVENT message specifying
CALL_PROGRESS_QUIET is returned after 4.5 seconds of continuous
phone line quiet time.

MCI_TAM_SET_RING_COUNT PL
Specifies that the dwSetData field of the data structure identified by
lParam2 contains a constant specifying the ring count at which the
device should answer the telephone. The driver will answer on the
shortest ring count request of all active applications. Setting this value to
0 requests that the telephone not be answered. The default ring count for
TAM is 3.

Prior to driver version 3.1 if the discriminator is loaded, it will answer
the telephone on the shortest ring count request of all registered
applications. In version 3.1 and above, the discriminator uses the
phoneline application’s ring count if there is a phoneline application
active.

The maximum ring count that can be set is specified by
MAX_RING_COUNT.

MCI_TAM_SET_SAMPLESPERSEC
Sets the samples per second used for playing, recording, and saving to
the dwSetData field of the data structure identified by lParam2. This is
used for PCM format only.

MCI_TAM_SET_SAMPLESPERSEC is supported in version 3.1 and
above of the TAM drivers. See MCI_TAM_SET_AVGBYTESPERSEC
for more information.

MCI_TAM_SET_SPEED MSG
Specifies that the dwSetData field of the data structure identified by
lParam2 contains a constant specifying the speed to play to the current
media device. The speed index passed in dwSetData is the play speed
factor (1/32 to 2) multiplied by 32. Examples include (but are not limited
to) the following:
• 16 - 1/2 x normal speed

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

165

• 24 - 3/4 x normal speed
• 32 - Normal (recorded) speed
• 40 - 1.25 x normal speed
• 48 - 1.5 x normal speed
• 56 - 1.75 x normal speed
• 63 - 2x normal speed

LPMCI_TAM_SET_PARMS lParam2

Specifies a far pointer to the following MCI_TAM_SET_PARMS data
structure:

typedef struct {
DWORD dwCallback;
DWORD dwSetData;
DWORD dwItem;

} MCI_TAM_SET_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

166

MCI_STATUS

This command is used to obtain information about the TAM device. Information is returned in the
dwReturn field of the MCI_STATUS_PARMS structure, pointed to by lParam2.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

MCI_STATUS_ITEM
Specifies that the dwItem field of the data structure identified by lParam2
contains a constant specifying which status item to obtain. The following
constants are defined:

MCI_STATUS_CALLER_ID PL
The dwReturn field is set to the status of the caller ID processing. The
following status caller ID are defined:

• MCI_CALLER_ID_ACTIVE (Mwave support is installed and
loaded)
• MCI_CALLER_ID_NOT_SUPPORTED (Mwave support not
installed)
• MCI_CALLER_ID_DISABLED (by application issuing
MCI_SET_CALLER_ID FALSE or because Mwave is processing a fax
or modem call)

MCI_STATUS_LENGTH
The dwReturn field is set to the length of the current play/record media
in milliseconds.

MCI_STATUS_MODE
The dwReturn field is set to the current mode of the device. The
following modes are defined:

• MCI_MODE_NOT_READY
• MCI_MODE_PAUSE
• MCI_MODE_PLAY
• MCI_MODE_STOP
• MCI_MODE_OPEN
• MCI_MODE_RECORD
• MCI_MODE_SEEK

MCI_STATUS_POSITION
The dwReturn field is set to the current position of the play/record
media in milliseconds.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

167

MCI_STATUS_READY
The dwReturn field is set to TRUE if the device is ready to receive a
call; otherwise, it is set to FALSE. If another telephony application has
ownership of the telephone line, this status command returns FALSE.

MCI_STATUS_TIME_FORMAT
The dwReturn field is set to the time format of the play/record media.
This always returns MCI_FORMAT_MILLISECONDS.

MCI_TAM_STATUS_AUDIO_MUTE
The dwReturn field of the data structure identified by lParam2 returns a
constant specifying the mute status of the system microphone. When set
to TRUE, the microphone (audio input of TAM_AUDIO) is
disconnected from the telephone line, and any record operation in
progress. When set to FALSE, the device operates normally.

MCI_TAM_STATUS_AUDIO_VOLUME
The dwReturn field of the data structure identified by lParam2 returns a
constant specifying the volume level of the speaker device. The volume
level is specified from 0x0 (silence) to 0xFFFF (maximum volume) and
is interpreted logarithmically. This means the perceived volume increase
is the same when increasing the volume level from 0x5000 to 0x6000 as
it is from 0x4000 to 0x5000.

MCI_TAM_STATUS_AVGBYTESPERSEC
The dwReturn field is set to the actual average bytes per second of the
current media record or play operation. This value is valid only when a
desired rate has been set using MCI_TAM_SET_AVGBYTESPERSEC.
See MCI_SET for details.

MCI_TAM_STATUS_BITSPERSAMPLE
The dwReturn field is set to the number of bits per sample (8 or 16)
used for playing, recording, and saving, when using the PCM wave
format.

MCI_TAM_STATUS_BITSPERSAMPLE is supported in version 3.1
and above of TAM drivers.

MCI_TAM_STATUS_CONNECT
The dwReturn field is set to the current device connections. Connected
device flags are OR'ed together, and the result returned to the
application. Connected devices are also the target of any play or record
operations, thus for some operations, applications "connect" only a
single device. The device flags are defined as follows:

• MCI_TAM_AUDIO
• MCI_TAM_HANDSET
• MCI_TAM_PHONELINE

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

168

MCI_TAM_STATUS_CALL_FILTER PL
The dwReturn field of the data structure identified by lParam2 is set to
TRUE if the device is currently set to receive voice calls; otherwise it is
set to FALSE.

MCI_TAM_STATUS_DIAL_FLASH_TIME PL
The dwReturn field is set to the current flash time (in milliseconds) of
the telephone flash option in the MCI_DIAL command.

MCI_TAM_STATUS_DIAL_FLASH_TIME is supported in version 2.2
and above of the TAM drivers.

MCI_TAM_STATUS_DIAL_PAUSE_TIME PL
The dwReturn field is set to the current pause time (in milliseconds) that
an embedded ',' character produces in the dial string.

MCI_TAM_STATUS_DIAL_WAIT_TIME PL
The dwReturn field is set to the current time-out limit (in milliseconds)
that an embedded 'w' character in the dial string allows, waiting for a
second dial tone.

MCI_TAM_STATUS_FORMATTAG
The dwReturn field is set to the format tag of the current device being
recorded or played. The following formats are allowed:

• WAVE_FORMAT_PCM (Supported in version 3.1 and above of the
TAM drivers)

• TAM_WAVE_FORMAT_CUSTOM

MCI_TAM_STATUS_HANDSET
The dwReturn field is set to the current status of the telephone handset.
It is set to TRUE if the handset is off-hook; otherwise, it is set to FALSE.

MCI_TAM_STATUS_HANDSET_MUTE MSG
The dwReturn field of the data structure identified by lParam2 returns a
constant specifying the mute status of the telephone handset. When set to
TRUE, the audio input of the handset is disconnected from the telephone
line, and any record operation in progress. When set to FALSE, the
device operates normally.

MCI_TAM_STATUS_HANDSET_VOLUME MSG
The dwReturn field of the data structure identified by lParam2 returns a
constant specifying the volume level of the speaker device. The volume
level is specified from 0x0 (silence) to 0xFFFF (maximum volume) and
is interpreted logarithmically. This means the perceived volume increase
is the same when increasing the volume level from 0x5000 to 0x6000 as
it is from 0x4000 to 0x5000.

MCI_TAM_STATUS_HOOK PL
The dwReturn field is set to the current hook status of the telephone
line. It is set to TRUE if the phone is off-hook; otherwise, it is set to
FALSE.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

169

MCI_TAM_STATUS_LINE PL
The dwReturn field is set to the current phone line status. The following
status modes are defined:

• MCI_PHONE_LINE_ONHOOK
• MCI_PHONE_LINE_DIALTONE
• MCI_PHONE_LINE_BUSY
• MCI_PHONE_LINE_QUIET
• MCI_PHONE_LINE_RINGTONE
• MCI_PHONE_LINE_VOICE
• MCI_PHONE_LINE_FAX
• MCI_PHONE_LINE_MODEM
• MCI_PHONE_LINE_UNKNOWN

MCI_TAM_STATUS_MAX_AUDIO_VOLUME
Some countries limit the maximum audio volume that the application can
set. To determine if the application is running in such a country, the
application should issue MCI_STATUS for
MCI_STATUS_WORLD_TRADE_SUPPORT. If the information
returned from that call indicates LIMIT_MAX_VOLUME, the dwReturn
field of this call is set to the maximum audio volume permitted in the
country. This support is added with driver version 3.3.

MCI_TAM_STATUS_MAX_FLASH_TIME PL
The dwReturn field is set to the current maximum time between on-hook
and off-hook that will be reported as a handset flash on a
PHONE_EVENT_HANDSET_KEY event.

MCI_TAM_STATUS_MAX_GREETING_LEN
Some countries limit the maximum duration a greeting may be. To
determine if the application is running in such a country, the application
should issue MCI_STATUS for
MCI_STATUS_WORLDTRADE_SUPPORT. If the information returned
from that call indicates LIMIT_GREETING_LENGTH, the dwReturn
field of this call is set to the maximum greeting length, in seconds,
permitted in the country. It is up to the application to make sure the
greeting doesn’t exceed this length. This support is added with driver
version 3.3.

MCI_TAM_STATUS_MAX_GREETING_LEN_NO_REC
Some countries limit the maximum duration a greeting may be when no
message is going to be recorded. To determine if the application is
running in such a country, the application should issue MCI_STATUS for
MCI_STATUS_WORLDTRADE_SUPPORT. If the information returned
from that call indicates LIMIT_GREETING_LENGTH_NO_RECORD,
the dwReturn field of this call is set to the maximum permitted greeting
length, in seconds, when no message is going to be recorded. It is up to
the application to make sure the greeting doesn’t exceed this length. This
support is added with driver version 3.3.

MCI_TAM_STATUS_MAX_MIC_GAIN
The dwReturn field is set to the maximum permitted microphone gain, in
decibels. This supported is added with driver version 3.3.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

170

MCI_TAM_STATUS_MAX_MSG_RETRIEVE_LEN
Some countries limit the maximum time between user inputs. This would
require that the application gets input from the user at least every ‘n’
seconds. To determine if the application is running in such a country, the
application should issue MCI_STATUS for
MCI_STATUS_WORLDTRADE_SUPPORT. If the information returned
from that call indicates LIMIT_MAX_MSG_RETRIEVE_LENGTH, the
dwReturn field of this call is set to the maximum length, in seconds, that
messages can be played without prompting the user for input (e.g., DTMF
keys). It is up to the application to make sure greetings don’t exceed this
length. This support is added with driver version 3.3.

MCI_TAM_STATUS_MAX_RECORD_LEN
Some countries limit the maximum duration of a message recorded from
the phoneline. To determine if the application is running in such a
country, the application should issue MCI_STATUS for
MCI_STATUS_WORLDTRADE_SUPPORT. If the information returned
from that call indicates LIMIT_MESSAGE_RECORD_LENGTH, the
dwReturn field of this call is set to the maximum length, in seconds, of a
message recorded from the phoneline, permitted in the country. It is up to
the application to make sure the greeting doesn’t exceed this length. The
simplest way to accomplish this is to specify MCI_TO on the
MCI_RECORD, and use the value returned from this call as the MCI_TO
value. This support is added with driver version 3.3.

MCI_TAM_STATUS_MICROPHONE_GAIN
The dwReturn field is set to the current microphone gain, in decibels.

MCI_TAM_STATUS_MIN_FLASH_TIME PL
The dwReturn field is set to the current minimum time between on-hook
and off-hook that will be reported as a handset flash on a
PHONE_EVENT_HANDSET_KEY event.

MCI_TAM_STATUS_QUALITY
The dwReturn field is set to the current telephone device play/record
quality level. Expected range of quality is from 0 (lowest quality) to 7
(highest quality).

MCI_TAM_STATUS_QUIET_DURATION PL
The dwReturn field is set to the current value for the continuous phone
line quiet time in seconds before an application will get the first
MM_MCIEVENT message specifying CALL_PROGRESS_QUIET.
Zero indicates the application will not get the
CALL_PROGRESS_QUIET interrupt returned. After receiving the first
CALL_PROGRESS_QUIET, the application continues receiving this
message every second until the call terminates.

MCI_TAM_STATUS_QUIET_DURATION is not supported in current
driver.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

171

MCI_TAM_STATUS_RING_COUNT PL
The dwReturn field is set to a constant specifying the ring count at
which the device answers the telephone. The driver answers on the
shortest ring count request of all active applications, so this value might
not match the value specified in MCI_SET.

MCI_TAM_STATUS_SAMPLESPERSEC
The dwReturn field is set to the number of samples per second used for
playing, recording, and saving, when using the PCM wave format.
MCI_TAM_STATUS_SAMPLESPERSEC is supported in version 3.1
and above of the TAM drivers.

MCI_TAM_STATUS_SPEED MSG
The dwReturn field is set to the device speed factor of the current
device. See MCI_TAM_SET_SPEED for details.

MCI_TAM_STATUS_WORLDTRADE_SUPPORT
The dwReturn field is set to a binary encoded set of values indicating
restrictions that are in effect for the current country. Some of the bit
settings require the application to make a subsequent MCI_STATUS call
to determine a maximum value. This support is added with driver
version 3.3. The defined bits include:

• GAIN_CHANGE_NOT_ALLOWED is set TRUE if the application
is not permitted to change the microphone gain.

• GAIN_CHANGE_NOT_ALLOWED_OFFHOOK is set TRUE if the
application is not permitted to change the microphone gain when the
phone is off hook.

• LIMIT_MAX_VOLUME is set TRUE if the maximum speaker
volume is limited. See MCI_STATUS for
MCI_TAM_STATUS_MAX_AUDIO_VOLUME for related
information.

• LIMIT_GREETING_LENGTH is set TRUE if the greeting length is
limited. See MCI_STATUS for
MCI_TAM_STATUS_MAX_GREETING_LEN for related

 information.
• LIMIT_GREETING_LENGTH_NO_RECORD is set TRUE if the

greeting length is limited when no message will be recorded. See
MCI_STATUS for
MCI_TAM_STATUS_MAX_GREETING_LEN_NO_REC for
related information.

• DISALLOW_GREETING_WITH_NO_RECORD is set TRUE if
informational greetings are not permitted.

• LIMIT_MESSAGE_RECORD_LENGTH is set TRUE if the length
of messages recorded from the phone line is limited. See
MCI_STATUS for MCI_TAM_STATUS_MAX_RECORD_LEN
for related information.

• REMOTE_GREETING_RECORD_REVIEW is set TRUE if the
country requires the application to play back a remotely recorded
greeting before the new greeting goes into effect.

• LIMIT_MAX_MSG_RETRIEVE_LENGTH is set TRUE if the
country limits the maximum time between user input. This would
require that the application get input from the user every ‘n’

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

172

seconds. See MCI_STATUS for
MCI_TAM_STATUS_MAX_MSG_RETRIEVE_LEN for related
information.

• NEVER_ANSWER_SILENT is set TRUE if the phone can never be
answered with silence.

• TAM_NOT_ALLOWED_IN_COUNTRY is set TRUE if the
telephone answering machine functions are not permitted in the
country. If this is the case the PL application will get a bad return
code on MCI_OPEN. However the MSG application can query this
information.

• SPK_PHONE_NOT_ALLOWED_IN_COUNTRY is set TRUE if
connecting to speaker phone is not permitted.

• AUTODISCRIM_TAM_NOT_ALLOWED is set TRUE if the
automatic call discrimination of voice calls is not permitted.

• AUTODISCRIM_FAX_NOT_ALLOWED is set TRUE if the
automatic call discrimination of FAX calls is not permitted.

• AUTODISCRIM_MODEM_NOT_ALLOWED is set TRUE if the
automatic call discrimination of MODEM calls is not permitted.

This support is added with driver version 3.4.
• PULSE_DIAL_NOT_ALLOWED is set TRUE if pulse dialing is

not supported.
• DTMF_DIAL_NOT_ALLOWED is set TRUE if DTMF dialing is

not supported.
• BUSYTONE_DETECT_NOT_VALID is set TRUE if busy tone

detection is not available in the country.
• BUSYTONE_DETECT_REQUIRED is set TRUE if busy tone

detection is required in country.
• DIALTONE_DETECT_NOT_VALID is set TRUE if dial tone

detection is not available in the country.
• DIALTONE_DETECT_REQUIRED is set TRUE if dial tone

detection is required in country.
• OFFHOOK_NOT_ALLOWED_HANDSET_UP if the application is

not permitted to have the phone electronically off hook (SET HOOK
TRUE) when the handset is up.

MCI_TAM_STATUS_COUNTRY_CODE
The dwReturn field is set to the current country code. This can be used
by applications that must change the looks of the user interface for
different countries like a French keypad in France. This support is added
with driver version 3.4. The following table shows the codes assigned to
each country:

COUNTRY CODE COUNTRY CODE COUNTRY CODE
USA/Canada 1 Australia 14 Norway 27

Belgium 2 Austria 15 Denmark 28
Hong Kong 3 Mexico 16 France 29
Singapore 4 South Africa 17 Netherlands 30

New Zealand 5 Chile 18 U. K. 31
Japan 6 Switzerland 19 Sweden 32

Portugal 7 Germany 20 Italy 33
Ireland 8 Brazil 21 Finland 34
Generic 9 Russia 22 Thailand 35

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

173

Spain 10 Yugoslavia 23 Korea 36
Greece 11 Hungary 24 Malaysia 37
Israel 12 Czechrepublic 25 PRC 38

Taiwan 13 Luxembourg 26 Slovakia 39
TABLE 7-4: Country Codes

MCI_TAM_STATUS_AUTO_ANSWER_MIN_RINGS
The dwReturn field contains the minimum number of rings that can be
set in MCI_TAM_SET_RING_COUNT. If the value is 'FFFF'x then
there is no min in that country. This support is added with driver version
3.4.

MCI_TAM_STATUS_AUTO_ANSWER_MAX_RINGS
The dwReturn field contains the maximum number of rings can be set
in MCI_TAM_SET_RING_COUNT. If the value is 'FFFF'x then there
is no limit in that country. This support is added with driver version 3.4.

MCI_TAM_STATUS_MAX_CALL_RETRIES
The dwReturn field contains the maximum number of unsuccessful
retries allowed. If the value is 'FFFF'x there is no max in that country.
This support is added with driver version 3.4.

MCI_TAM_STATUS_MIN_CALL_RETRY_TIME
The dwReturn field contains the minimum time allowed between retries.
If the value is 'FFFF'x then there is no min in that country. This support
is added with driver version 3.4.

LPMCI_STATUS_PARMS lParam2

Specifies a far pointer to the following MCI_STATUS_PARMS data structure:

typedef struct {
DWORD dwCall back;
DWORD dwReturn;
DWORD dwItem;

} MCI_STATUS_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

174

MCI_STOP

This command message stops an MCI_PLAY or MCI_RECORD command in operation.

Parameters DWORD lParam1

The following flags apply to the TAM device:

MCI_NOTIFY
Specifies that MCI should post the MM_MCINOTIFY message when this
command completes. The window to receive this message is specified in the
dwCallback field of the data structure identified by lParam2.

MCI_WAIT
Specifies that the operation should finish before MCI returns control to the
application.

MCI_STOP_REMOVE_DTMF
Specifies that if the MCI_STOP is stopping a record operation, and the
record has recorded a DTMF key, all information recorded after the first
DTMF key was pressed will be removed from the recorded message.

LPMCI_GENERIC_PARMS lParam2

Specifies a far pointer to the following MCI_GENERIC_PARMS data structure:

typedef struct {
DWORD dwCallback;

} MCI_GENERIC_PARMS;

Return Value Returns zero if successful. Otherwise, it returns an MCI error code.

MMWADKUMU-03 Chapter 7 - TAM API Reference

This document contains information that is subject to
change without notice.

175

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

176

Chapter 8 - Error Codes

This chapter contains descriptions of device specific error codes supported by the Mwave FAX and
TAM drivers. Other error codes that may be returned by the drivers are defined by the MMPM and
Windows MCI support.

The Mwave FAX and TAM driver errors are returned by the mciSendCommand and mciSendString
function when a failure occurs. The error code constants are defined in the MCIFTDD.H include file.
The application can issue mciGetErrorString to retrieve a textual description of the given error code.

The error codes are comprised of seven functional groups; each group is represented by a range of error
codes and an error code prefix. The following table lists the error code ranges, the associated error code
prefix, and the issuing drivers.

Error Codes
(Windows)

Error Codes
(OS/2)

Prefix Issuing Driver

1-511 1-5255 MCIERR_ Errors defined by Windows or
MMPM

512-545 5256-5289 MCIERR_FT_ Errors common to FAX and TAM
613-652 5357-5396 MCIERR_FAX_ Errors specific to FAX
813-897 5557-5641 MCIERR_TAM_ Errors specific to TAM
913-932 5657-5676 MCIERR_DIS_ Errors specific to the Call

Discriminator
1025-1213 5769-6334 MCIERR_FAX_TIF

_
Errors specific to the FAX driver's
BMP/TIFF conversions.

1313 6569 MCIERR_MEIO_ Errors specific to MEIO
Table 8-1

When using wave files in the TAM drivers, errors less than MCIERR_FT_DSP_NO_RESOURCES
(which is defined as MCIERR_CUSTOM_DRIVER_BASE) come directly from the wave device
driver. These are the codes below 512 (for Windows) and 5256 (for OS/2).

Error codes for the FAX and TAM specific errors are listed below in numeric order. Where appropriate,
possible causes and solutions to the error are provided.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

177

FAX/TAM Driver Error Codes

The error codes described in this section are common to both the Mwave FAX and TAM drivers.

Win OS/2

512 5256 MCIERR_FT_DSP_NO_RESOURCES
Insufficient resources in the DSP card.

513 5257 MCIERR_FT_DSP_FILE_NOT_FOUND
DSP file or module in the DSP file not found.

514 5258 MCIERR_FT_DSP_LABEL_NOT_FOUND
Label of resource in the DSP card not found.

515 5259 MCIERR_FT_DSP_INVALID_HANDLE
Invalid handle for DSP resource.

516 5260 MCIERR_FT_DSP_CALL_FAILED
Call to the Mwave Manager failed.

517 5261 MCIERR_FT_UNRECOGNIZED_COMMAND
Invalid or unknown command requested.

518 5262 MCIERR_FT_CMD_COMPLETE_NOT_RTN
Command complete status for FAX or TAM command not
received.

519 5263 MCIERR_FT_UNRECOGNIZED_MODE
Invalid or unknown FAX or TAM mode.

520 5264 MCIERR_FT_POSTMESSAGE
Error in executing function, PostMessage.

521 5265 MCIERR_FT_MAKEPROCINSTANCE
Error in executing function, MakeProcInstance.

522 5266 MCIERR_FT_SETWINDOWSHOOKEX
Error in executing function, tWindowsHookEx.

523 5267 MCIERR_FT_GLOBALALLOC
Error in executing function, GlobalAlloc.

524 5268 MCIERR_FT_GLOBALLOCK
Error in executing function, GlobalLock.

525 5269 MCIERR_FT_GLOBALPAGELOCK
Error in executing function, GlobalPageLock.

526 5270 MCIERR_FT_GLOBALUNLOCK
Error in executing function, GlobalUnlock.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

178

527 5271 MCIERR_FT_GLOBALPAGEUNLOCK
Error in executing function, GlobalPageUnlock.

528 5272 MCIERR_FT_GLOBALFREE
Error in executing function, GlobalFree.

529 5273 MCIERR_FT_DSP_HARDWARE_IN_USE
Requested hardware already allocated.

530 5274 MCIERR_FT_DSP_HARDWARE_UNAVAILABLE
Requested hardware unavailable for allocation.

531 5275 MCIERR_FT_MEIO_MIC_S1_TO_CDADC_S1
Requested connection could not complete. Check to assure
audio is off.

532 5276 MCIERR_FT_MEIO_MIC_L1_TO_VOICEADC_1
Requested connection could not complete.

533 5277 MCIERR_FT_MEIO_HANDIN_1_TO_VOICEADC_1
Requested connection could not complete.

534 5278 MCIERR_FT_MEIO_HANDIN_1_TO_TELEOUT_1
Requested connection could not complete.

535 5279 MCIERR_FT_CDDAC_S1_TO_LINEOUT_1
Requested connection could not complete.

536 5280 MCIERR_FT_CDDAC_S1_TO_INTSPKROUT_L1
Requested connection could not complete.

537 5281 MCIERR_FT_MEIO_TELEDAC_1_TO_TELEOUT_1
Requested connection could not complete.

538 5282 MCIERR_FT_MEIO_VOICEDAC_1_TO_HANDOUT_1
Requested connection could not complete.

539 5283 MCIERR_FT_INSUFFICIENT_MIPS
Insufficient DSP MIPs available to satisfy the requested
operation.

540 5284 MCIERR_FT_INVALID_ABS_SEG_START
Invalid Mwave absolute segment start address (0). This
indicates that a DSP task was not loaded when I/O was
requested.

541 5285 MCIERR_FT_INI_LABEL_NOT_FOUND
Unable to find label in an ini file.

542 5286 MCIERR_FT_CALLER_ID_NOT_VALID
Caller ID is no longer available.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

179

543 5050 MCIERR_FT_INVALID BUFFER
The buffer length specified on MCI_INFO is not large enough to
hold all of the information. See MCI_INFO for further
explanation.

544 5288 MCIERR_FT_POWERED_DOWN
System is in "power saving" mode.

545 5289 MCIERR_FT_CANT_CALL_NOW
The system is not permitted to call this phone number at the
current time. Some countries restrict automated calling
machines from calling the same number too often.

546 5290 MCIERR_FT_UNKNOWN_CALLER_ID_FORMAT
The received caller ID is not in a format that the driver knows
how to parse.

547 5291 MCIERR_FT_PREEMPTED_BY_HIGHER_PRTY
The driver is temporarily unavailable because higher priority
work is using the DSP.

548 5292 MCIERR_FT_FUNCTION_NOT_ALLOWED_IN_COUNTRY
The requested function is not permitted based on the laws of the
particular country.

549 5293 MCIERR_FT_LINE_NOT_IN_USE
The phone is not in use by any application.

550 5294 MCIERR_FT_WRONG_PHONE_COUPLER
FAX or TAM Error, the selected country does not match the
external telephone coupler.

FAX Driver Error Codes

The error codes in this section are specific to the Mwave FAX driver.

Win OS/2

613 5357 MCIERR_FAX_GLOBALALLOC
Error in executing function, GlobalAlloc.

614 5358 MCIERR_FAX_GLOBALLOCK
Error in executing function, GlobalLock.

615 5359 MCIERR_FAX_GLOBALUNLOCK
Error in executing function, GlobalUnlock.

616 5360 MCIERR_FAX_GLOBALFREE
Error in executing function, GlobalFree.

617 5361 MCIERR_FAX_LCLOSE
Error in executing function, _lclose.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

180

618 5362 MCIERR_FAX_LLSEEK
Error in executing function, _llseek.

619 5363 MCIERR_FAX_LREAD
Error in executing function, _lread.

620 5364 MCIERR_FAX_LSTRCPY
Error in executing function, lstrcpy.

621 5365 MCIERR_FAX_OPENFILE
Error in executing function, OpenFile.

622 5366 MCIERR_FAX_POSTMESSAGE
Error in executing function, PostMessage.

623 5367 MCIERR_FAX_NO_ELEMENT_ALLOWED
MCI_OPEN was called with a device element specified. No
device element is allowed for simple devices.

624 5368 MCIERR_FAX_FLAGS_NOT_COMPATIBLE
Flags cannot be set together.

625 5369 MCIERR_FAX_UNRECOGNIZED_KEYWORD
Invalid or unknown keyword used in request.

626 5370 MCIERR_FAX_CANNOT_SET_HOOK
Phone hook cannot be set.

627 5371 MCIERR_FAX_UNRECOGNIZED_COMMAND
Invalid or unknown command requested.

628 5372 MCIERR_FAX_UNRECOGNIZED_FLAG
Invalid or unknown flag used in request.

629 5373 MCIERR_FAX_INVALID_DIAL_DIGIT
Invalid dial digit found in dial string.

630 5374 MCIERR_FAX_NULL_DIAL_STRING
Empty dial string.

631 5375 MCIERR_FAX_FILENAME_REQUIRED
Filename is required for the execution of command.

632 5376 MCIERR_FAX_UNSUPPORTED_FUNCTION
Requested function is not supported.

633 5377 MCIERR_FAX_MISSING_FLAG
Required flag not set.

634 5378 MCIERR_FAX_GLOBALREALLOC
Error in executing function, GlobalReAlloc.

635 5379 MCIERR_FAX_LSTRCAT
Error in executing function, lstrcat.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

181

636 5380 MCIERR_FAX_WRONG_COMMAND
Command complete status received is not for outstanding
command.

637 5381 MCIERR_FAX_COMMAND_REJECT
Undefined command was received.

638 5382 MCIERR_FAX_NO_FREE_STATUS_BLOCK
Insufficient buffers for status blocks.

639 5383 MCIERR_FAX_UNRECOGNIZED_STATUS
Invalid or unknown FAX status received.

640 5384 MCIERR_FAX_GLOBALPAGEUNLOCK
Error in executing GlobalPageUnlock

641 5385 Unused

642 5386 MCIERR_FAX_LWRITE
Error in executing function, _lwrite.

643 5387 MCIERR_FAX_UNRECOGNIZED_STREAM_ID
Invalid or unknown stream identifier.

644 5388 MCIERR_FAX_INVALID_CONFIG
Configuration requested is invalid.

645 5389 MCIERR_FAX_FILTER_NOT_SET
MCI_RECEIVE issued when SET_CALL_FILTER is FALSE.

646 5390 MCIERR_FAX_MULTIPLE_OPEN
MCI_OPEN issued when another application had device open.

647 5391 MCIERR_FAX_TASK_NOT_FOUND
Driver tried to find an address in a non-existent task.

648 5392 MCIERR_FAX_INVALID_HANDLE
dwCallback specified an invalid HWND.

649 5393 MCIERR_FAX_CONFLICT_FLAGS
Specified flags conflict with one another.

650 5394 MCIERR_FAX_INVALID_STATE
Device is in incorrect state for option specified.

651 5395 MCIERR_FAX_INVALID_PARM
Invalid parameter was used in the request.

652 5396 MCIERR_FAX_HEADINGNOTSET
MCI_FAX_SET_HEADING was not performed before request to
use heading (MCI_SEND_HEADING).

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

182

TAM Driver Error Codes

The error codes in this section are specific to the Mwave TAM driver.

Win OS/2

813 5557 MCIERR_TAM_GLOBALALLOC
Error in executing function, GlobalAlloc.

814 5558 MCIERR_TAM_GLOBALLOCK
Error in executing function, GlobalLock.

815 5559 MCIERR_TAM_GLOBALUNLOCK
Error in executing function, GlobalUnlock.

816 5560 MCIERR_TAM_GLOBALFREE
Error in executing function, GlobalFree.

817 5561 MCIERR_TAM_LCLOSE
Error in executing function, _lclose.

818 5562 MCIERR_TAM_LLSEEK
Error in executing function, _llseek.

819 5563 MCIERR_TAM_LREAD
Error in executing function, _lread.

820 5564 MCIERR_TAM_LSTRCPY
Error in executing function, lstrcpy.

821 5565 MCIERR_TAM_OPENFILE
Error in executing function, OpenFile.

822 5566 MCIERR_TAM_POSTMESSAGE
Error in executing function, PostMessage.

823 5567 MCIERR_TAM_NO_ELEMENT_ALLOWED
MCI_OPEN was called with a device element specified. No
device element is allowed for simple devices. This return code is
not returned after driver Version 2.2.

824 5568 MCIERR_TAM_FLAGS_NOT_COMPATIBLE
Flags cannot be set together.

825 5569 MCIERR_TAM_UNRECOGNIZED_KEYWORD:
Invalid or unknown keyword used in request.

826 5570 MCIERR_TAM_CANNOT_SET_HOOK
Phone hook cannot be set.

827 5571 MCIERR_TAM_UNRECOGNIZED_COMMAND
Invalid or unknown command requested.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

183

828 5572 MCIERR_TAM_UNRECOGNIZED_FLAG
Invalid or unknown flag used in request.

829 5573 MCIERR_TAM_INVALID_DIAL_DIGIT
Invalid dial digit found in dial string.

830 5574 MCIERR_TAM_NULL_DIAL_STRING
Empty dial string.

831 5575 MCIERR_TAM_FILENAME_REQUIRED
Filename is required for the execution of command.

832 5576 MCIERR_TAM_UNSUPPORTED_FUNCTION
Requested function is not supported.

833 5577 MCIERR_TAM_MISSING_FLAG
Required flag not set.

834 5578 MCIERR_TAM_GLOBALREALLOC
Error in executing function, GlobalReAlloc.

835 5579 MCIERR_TAM_LSTRCAT
Error in executing function, lstrcat.

836 5580 MCIERR_TAM_WRONG_COMMAND
Command complete status received is not for outstanding
command.

837 5581 MCIERR_TAM_COMMAND_REJECT
Undefined command was received or the command is disallowed
in the particular country. This is also received if the application
indicates dial and wait for dial tone, but no dial tone is heard.

838 5582 MCIERR_TAM_NO_FREE_STATUS_BLOCK
Insufficient buffers for status blocks.

839 5583 MCIERR_TAM_UNRECOGNIZED_STATUS
Invalid or unknown TAM status received.

840 5584 MCIERR_TAM_GLOBALPAGEUNLOCK
Error in executing GlobalPageUnlock.

841 5585 MCIERR_TAM_GLOBALPAGELOCK
Error in executing function, GlobalPageLock.

842 5586 MCIERR_TAM_LWRITE
Error in executing function, _lwrite.

843 5587 MCIERR_TAM_UNRECOGNIZED_STREAM_ID
Invalid or unknown stream identifier.

844 5588 MCIERR_TAM_UNHOOKWINDOWSHOOKEX
Error in executing UnhookWindowsHookEx.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

184

845 5589 MCIERR_TAM_INVALID_MEDIA_HANDLE
Invalid handle for media.

846 5590 MCIERR_TAM_INVALID_MEDIA_LENGTH
Media length less than 1 quality word.

847 5591 MCIERR_TAM_INVALID_MEDIA_HEADER
Invalid quality word in media header.

848 5592 MCIERR_TAM_INVALID_MEDIA_FRAME
Invalid length for SSTM frame.

849 5593 MCIERR_TAM_INVALID_MEDIA_FORMAT
Invalid format for SSTM frame.

850 5594 MCIERR_TAM_INVALID_MEDIA_DATA
Invalid data for SSTM frame.

851 5595 MCIERR_TAM_DWFROM_OUTOFRANGE
The dwFrom parameter greater than dwTo position or greater
than the length of the media.

852 5596 MCIERR_TAM_DWTO_OUTOFRANGE
The dwTo parameter greater than length of the media.

853 5597 MCIERR_TAM_ACCESS_ZERO_LENGTH
The interval between dwFrom and dwTo is 0 or too small (i.e. it
is within the same frame) to be executed.

854 5598 MCIERR_TAM_EMPTY_MEDIA
Media (file) is empty.

855 5599 MCIERR_TAM_NO_STREAM_EXIST
Attempt to operate a non-existing stream.

856 5600 MCIERR_TAM_ANOTHER_STREAM_RUNNING
Attempt to operate a stream while another stream is running.

857 5601 MCIERR_TAM_MODULE_NOT_LOADED
Requested module not loaded.

858 5602 MCIERR_TAM_DEVICE_NOT_USED
An unused device is selected in keyword of MCI command.

859 5603 MCIERR_TAM_DATA_OUTOFRANGE
The value of keyword of MCI command is out of range.

860 5604 MCIERR_TAM_WRONG_CONNECT
Invalid connect to devices.

861 5605 MCIERR_TAM_INVALID_FILE_HANDLE
Invalid file handle.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

185

862 5606 MCIERR_TAM_INVALID_POSITION
Request to move to an invalid position in the media.

863 5607 MCIERR_TAM_INVALID_CONFIG
Configuration requested is invalid.

864 5608 MCIERR_TAM_INVALID_STATUS_BLOCK
Empty status block or its handle is null.

865 5609 MCIERR_TAM_UNSUITABLE_CONDITION
Operating conditions for a command are wrong or not ready.

866 5610 MCIERR_TAM_UNSUITABLE_OBJECT
Device exists but should not be operated for current command.

867 5611 MCIERR_TAM_DATA_INCORRECT
Parameter is within range, but is incorrect.

868 5612 MCIERR_TAM_MULTIPLE_OPEN
Open attempted for already open device.

869 5613 MCIERR_TAM_INVALID_MODE
Invalid mode.

870 5614 MCIERR_TAM_TPL_MEIO_ALREADY_OPENED
TAM TPL error. MEIO already opened.

871 5615 MCIERR_TAM_TPS_MEIO_ALREADY_OPENED
TAM TPS error. MEIO already opened.

872 5616 MCIERR_TAM_SWITCH_TO_TPS_AUDIO
TAM error switching to TPS audio.

873 5617 MCIERR_TAM_SWITCH_TO_TPS_AUDIO_REC
TAM error switching to TPS audio record.

874 5618 MCIERR_TAM_SWITCH_TO_TPS_HANDSET
TAM error switching to TPS handset.

875 5619 MCIERR_TAM_SWITCH_TO_TPL_PHONELINE
TAM error switching to TPL phoneline.

876 5620 MCIERR_TAM_SWITCH_TO_TPL_SPEAKERPHONE
TAM error switching to TPL speakerphone.

877 5621 MCIERR_TAM_SWITCH_TO_TPL_NORMALPHONE
TAM error switching to TPL normal phone.

878 5622 MCIERR_TAM_SWITCH_TO_TPL_CALL_SCREEN
TAM error switching to TPL call screening.

879 5623 MCIERR_TAM_NO_DIAL_TONE
No dial tone received.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

186

880 5624 MCIERR_TAM_UNSUPPORTED_FLAG
Flag combination is not allowed.

881 5625 MCIERR_TAM_INVALID_HANDLE
The dwCallback was specified with an invalid HWND.

882 5626 MCIERR_FT_malloc
Error allocating storage.

883 5627 MCIERR_FT_dspLockMem
Error locking memory down for DMA transfer.

884 5628 MCIERR_FT_dspUnlockMem
Error unlocking memory after a DMA transfer.

885 5629 MCIERR_TAM_OPEN_WAVE_DRIVER
The TAM driver was unable to open the supporting wave driver.

886 5630 MCIERR_TAM_LOAD_WAVE_DRIVER
The TAM driver was unable to load a wave file.

887 5631 MCIERR_TAM_PLAY_WAVE_DRIVER
The TAM driver was unable to play a wave file.

888 5632 MCIERR_TAM_RECORD_WAVE_DRIVER
The TAM driver was unable to record a wave file.

889 5633 MCIERR_TAM_CLOSE_WAVE_DRIVER
The TAM driver was unable to close the supporting wave driver.

890 5634 MCIERR_TAM_PAUSE_WAVE_DRIVER
The TAM driver was unable to pause a wave file.

891 5635 MCIERR_TAM_SAVE_WAVE_DRIVER
The TAM driver was unable to save a wave file.

892 5636 MCIERR_TAM_RESUME_WAVE_DRIVER
The TAM driver was unable to resume playing or recording a
wave file.

893 5637 MCIERR_TAM_STOP_WAVE_DRIVER
The TAM driver was unable to stop a wave file.

894 5638 MCIERR_TAM_SEEK_WAVE_DRIVER
The TAM driver was unable to seek in a wave file.

895 5639 MCIERR_TAM_STATUS_WAVE_DRIVER
The TAM driver was unable to determine the status of a wave
file.

896 5640 MCIERR_TAM_SET_WAVE_DRIVER
The TAM driver was unable to set an item for a wave file.

897 5641 MCIERR_TAM_CONVERT_WAVE_DRIVER
The TAM driver was unable to convert a wave file.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

187

 908 5652 MCIERR_TAM_GAIN_CHANGE_NOT_ALLOWED
The application tried to change the microphone sensitivity in a
country where that is not permitted at this time.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

188

Discriminator Error Codes

The error codes in this section are specific to the Call Discriminator.

Win OS/2

913 5657 MCIERR_DIS_TYPE_ALREADY_REGISTERED
Discriminator type already registered.

914 5658 MCIERR_DIS_TYPE_NOT_REGISTERED
Discriminator type not registered.

915 5659 MCIERR_DIS_NOT_LOADED
Discriminator not loaded.

916 5660 MCIERR_DIS_INVALID_TYPE
Discriminator invalid type.

917 5661 MCIERR_DIS_LOAD_FAIL
Discriminator load failed.

918 5662 MCIERR_DIS_APPLICATION_NOT_REGISTERED
Application of the specified type is not registered for autoanswer.

919 5663 DISCR_ALREADY_REGISTERED
An application of the specified type is already registered for
autoanswer.

920 5664 DISCR_TYPE_INVALID
The discriminator parameter usType is not valid.

921 5665 DISCR_FAX_HAS_LINE
The line is already 'owned' by the fax application.

922 5666 DISCR_TAM_HAS_LINE
The line is already 'owned' by the TAM application.

923 5667 DISCR_MODEM_HAS_LINE
The line is already 'owned' by the modem application.

924 5668 DISCR_REQUESTOR_NOT_REGISTERED
Not currently used.

925 5669 DISCR_DISCRIM_ID_INVALID
The LineID is greater than the maximum number of phone lines
supported.

926 5670 DISCR_PASS_PARM_INVALID
Parameter to set pass call is invalid.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

189

927 5671 DISCR_OPERATING_SYSTEM_ERROR
Some operating system function failed.

928 5672 DISCR_HWND_INVALID
The specified window handle is not valid.

929 5673 DISCR_INVALID_STATE
Discriminator invalid state for requested action.

930 5674 MCIERR_DIS_LOADLIBRARY_ERROR
Unable to load the discriminator library (DLL).

931 5675 MCIERR_DIS_GETPROCADDR_ERROR
Unable to get the discriminator procedure address.

932 5676 DISCR_AT_FAX_HAS_LINE
The line is already ‘owned’ by a fax modem that uses the AT
command set.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

190

TIFF Error Codes

The error codes in this section are specific to I/O problems with TIFF files. The Mwave FAX driver
uses the TIFF file format to store fax documents.

Note: The following descriptions use the abbreviation MH to refer
to Modified-Huffman.

Win OS/2

1025 5769 MCIERR_FAX_TIF_MHTIF_CANNOTCREATETIFF
Cannot create a TIFF file for storing the MH images, because an
invalid TIFF file name was supplied. Use a TIFF file name that
conforms to DOS convention.

1026 5770 MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE
Cannot allocate sufficient global memory to store byte aligned
MH data. Increase available RAM.

1027 5771 MCIERR_FAX_TIF_MHTIF_GLOCKHWRITE
Cannot lock memory for storing byte aligned MH data because
either the memory block or handle is invalid, or the memory
block is 0 byte. Check the file handle.

1028 5772 MCIERR_FAX_TIF_MHTIF_GALLOCHTGT
Cannot allocate global memory to store MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE

1029 5773 MCIERR_FAX_TIF_MHTIF_GLOCKHTGT
Cannot lock global memory for storing MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1030 5774 MCIERR_FAX_TIF_MHTIF_GALLOCHMEM
Cannot allocate global memory to read MH data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1031 5775 MCIERR_FAX_TIF_MHTIF_GLOCKHMEM
Cannot lock global memory designated for reading MH data.
See MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1032 5776 MCIERR_FAX_TIF_MHTIF_WRITETIF
Unused.

1033 5777 MCIERR_FAX_TIF_MHTIF_IMAGEMH
Cannot open a MH file because the file is either invalid or does
not exist in the current directory. Check the MH filename for
validity.

1063 5778 MCIERR_FAX_TIF_TIFMH_GALLOCHR
Cannot allocate global memory for reading image data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

191

1064 5779 MCIERR_FAX_TIF_TIFMH_GLOCKHR
Cannot lock memory for reading image data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1065 5780 MCIERR_FAX_TIF_TIFMH_GALLOCHW
Cannot allocate global memory for swapping every two bytes of
Modified Huffman data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1066 5781 MCIERR_FAX_TIF_TIFMH_GLOCKHW
Cannot lock memory for swapping every two bytes of MH data.
See MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1067 5782 MCIERR_FAX_TIF_TIFMH_GALLOCHMHLIST
Cannot allocate global memory for storing MH filenames to be
returned to calling function (FAX driver). See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1068 5783 MCIERR_FAX_TIF_TIFMH_GLOCKHMHLIST
Cannot lock memory for storing MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1069 5784 MCIERR_FAX_TIF_TIFMH_GALLOCTIFTOMHBUF
Cannot allocate global memory for storing MH filenames. See
MCIERR_FAX_MHTIF_GALLOCHWRITE.

1070 5785 MCIERR_FAX_TIF_TIFMH_GLOCKTIFTOMHBUF
Cannot lock memory for storing MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1071 5786 MCIERR_FAX_TIF_TIFMH_GALLOCHPART
Cannot allocate memory for storing MH filenames for sorting.
See MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1072 5787 MCIERR_FAX_TIF_TIFMH_GLOCKHPART
Cannot lock memory for storing MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1073 5788 MCIERR_FAX_TIF_TIFMH_GALLOCHTEMP
Cannot allocate memory for an intermediate buffer during sorting
of MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1074 5789 MCIERR_FAX_TIF_TIFMH_GLOCKHTEMP
Cannot lock memory for sorting of MH filenames. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1075 5790 MCIERR_FAX_TIF_TIFMH_NOTINTELFORMAT
The TIFF file format is either invalid or not Intel. Use Intel format
TIFF file.

1076 5791 MCIERR_FAX_TIF_TIFMH_CANNOTCREATEMH
Cannot create the MH file because the specified filename is
invalid. Use proper MH filename.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

192

1077 5792 MCIERR_FAX_TIF_TIFMH_CANNOTOPENTIFF
Cannot open the TIFF file because the specified filename is
either invalid or non-existent. Ensure TIFF file is present in the
current directory and specify its name correctly.

1103 5793 MCIERR_FAX_TIF_TIFBMP_CANNOTOPENTIFF
Cannot open the TIFF file because the TIFF file does not exist or
is invalid. Ensure TIFF file is present in current directory or
valid.

1104 5794 MCIERR_FAX_TIF_TIFBMP_NOSUCHPAGEINTIFF
Cannot find the specified page number in TIFF file because it
does not exit in the TIFF file. Specify a valid page number.

1105 5795 MCIERR_FAX_TIF_TIFBMP_CANNOTCREATETEMPMH
Cannot create temp.mh, which is the intermediate image file
extracted from the TIFF file for converting to BMP format
because there is insufficient disk space. Free up disk space.

1106 5796 MCIERR_FAX_TIF_TIFBMP_GALLOCHTIFF
Cannot allocate global memory for reading image data from
TIFF file. See MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1107 5797 MCIERR_FAX_TIF_TIFBMP_GLOCKHTIFF
Cannot lock memory for reading image data from TIFF file. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1108 5798 MCIERR_FAX_TIF_TIFBMP_LOADCCITTIMAGE
Cannot decode MH data into BMP format. Invalid MH image file,
device context, bitmap handle. Check image filename, device
context, bitmap handle.

1109 5799 MCIERR_FAX_TIF_TIFBMP_SAVEBITMAP
Cannot save the bitmap into a file because there is insufficient
memory for buffers to store bitmap. Ensure sufficient RAM and
hard disk space is available.

1110 5800 MCIERR_FAX_TIF_TIFBMP_NOTTIFFFILE
Source file is not a TIFF file. Ensure source file is a valid TIFF
file.

1133 5801 MCIERR_FAX_TIF_INSERT_LOADBITMAPFROMFILE
Cannot load bitmap into memory from the BMP file, because
either the BMP file is invalid or there is insufficient memory to
load the bitmap. Ensure sufficient RAM space and valid BMP
file.

1134 5802
MCIERR_FAX_TIF_INSERT_SAVEBITMAPINCCITTFORMAT

Cannot save the memory bitmap into a MH file. The encoding of
the bitmap into MH format has failed; this indicates a device
context problem. Check device context and ensure the bitmap is
valid.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

193

1135 5803 MCIERR_FAX_TIF_INSERT_OPENTEMPMH
Cannot open the temp.mh file created by
SaveBitmapInCcittFormat function. Too many files are open.
Check the FILE parameter in config.sys to ensure that it is
sufficiently large and close all unnecessary files.

1136 5804 MCIERR_FAX_TIF_INSERT_OPENTIFF
Cannot open the TIFF file because the specified TIFF file is
either invalid or non-existent. Check that TIFF file exists in
current directory and is a valid one.

1137 5805 MCIERR_FAX_TIF_INSERT_GALLOCHTIFF
Cannot allocate global memory for storing MH data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1138 5806 MCIERR_FAX_TIF_INSERT_GLOCKHTIFF
Cannot lock memory for storing MH data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1163 5807 MCIERR_FAX_TIF_REPLACE_LOADBITMAPFROMFILE
Cannot load bitmap into memory from the BMP file. Invalid BMP
file; insufficient memory to load the bitmap. Ensure sufficient
RAM space and valid BMP file.

1164 5808
MCIERR_FAX_TIF_REPLACE_SAVEBITMAPINCCITTFORMAT

Cannot save the memory bitmap into a MH file. Encoding of
bitmap into MH format failed; device context problem. Check
device context; ensure valid bitmap.

1165 5809 MCIERR_FAX_TIF_REPLACE_CANNOTOPENTEMPMH
Cannot open the temp.mh file created by
SaveBitmapInCcittFormat function because too many files
are open. Verify that the FILES parameter in config.sys is
sufficiently large and close all unnecessary files.

1166 5810 MCIERR_FAX_TIF_REPLACE_OPENTIFF
Cannot open the specified TIFF file. Check that TIFF file exists
in current directory and is valid.

1167 5811 MCIERR_FAX_TIF_REPLACE_OPENTEMPTIFF
Cannot create temp.tif for duplicating current TIFF file because
there is a DOS or Windows problem. Check system
configuration.

1168 5812 MCIERR_FAX_TIF_REPLACE_GALLOCHTIFF
Cannot allocate global memory for storing MH data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1169 5813 MCIERR_FAX_TIF_REPLACE_GLOCKHTIFF
Cannot lock memory for storing MH data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

MMWADKUMU-03 Chapter 8 - Error Codes

This document contains information that is subject to
change without notice.

194

1170 5814 MCIERR_FAX_TIF_REPLACE_CANNOTCREATETIFF
Cannot create the new TIFF file because there is a DOS or
Windows problem. Check system configuration.

1193 5815 MCIERR_FAX_TIF_BMPTIF_LOADBITMAPFROMFILE
Cannot load bitmap into memory from the BMP file. If there is
insufficient memory to load the bitmap, increase the available
RAM space. Verify that the BMP file is valid.

1194 5816
MCIERR_FAX_TIF_BMPTIF_SAVEBITMAPINCCITTFORMAT

Cannot save the memory bitmap into a MH file. The encoding of
bitmap into MH format has failed, indicating a device context
problem. Check device context and ensure the bitmap is valid.

1195 5817 MCIERR_FAX_TIF_BMPTIF_CANNOTOPENTEMPMH
Cannot open the temp.mh file created by
SaveBitmapInCcittFormat function because too many files
are open. Check the FILES parameter in config.sys to ensure
that it is sufficiently large and close all unnecessary files.

1196 5818 MCIERR_FAX_TIF_BMPTIF_CANNOTCREATETIFF
Cannot create the TIFF file because the specified TIFF filename
is invalid. Check that the TIFF filename supplied is valid.

1197 5819 MCIERR_FAX_TIF_BMPTIF_GALLOCHTIFF
Cannot allocate global memory for storing MH data. See
MCIERR_FAX_MHTIF_GALLOCHWRITE.

1198 5820 MCIERR_FAX_TIF_BMPTIF_GLOCKHTIFF
Cannot lock memory for storing MH data. See
MCIERR_FAX_TIF_MHTIF_GALLOCHWRITE.

1199 5821 MCIERR_FAX_TIF_BMPTIF_NOTBMPFILE
The specified source file is not a valid .bmp file. Ensure source
file is a valid BMP file.

1213 5957 MCIERR_FAX_TIF_NUMBER_CANNOTOPENTIFF
Unable to open the specified TIFF file. The TIFF file is either
invalid or non-existent. Check for TIFF file validity or that it
exists in the current directory.

MEIO error codes

One MEIO-specific error code exists:

1313 6057 MCIERR_MEIO_DSPMEIOCONNECT
Mwave MEIO disconnect error.

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

195

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

196

APPENDIX A - String Interfaces

The following two sections describe the MCI string interface for FAX and TAM. The string interface
allows you to use English-language commands to communicate with MCI devices. An overview of the
string interface is provided in the Microsoft Windows Multimedia Programmer's Reference and the
IBM Multimedia Presentation Manager Toolkit/2 Programming Reference.

A1 - String Interface FAX

This section describes the string interface for Mwave FAX under OS/2 and Windows 3.1.

MCI_CLOSE
MCI_CLOSE contains no extensions specific to the Mwave FAX API. It is the standard MCI_CLOSE
call. See the Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: close fax wait

MCI_CONVERT
MCI_CONVERT does contain Mwave specific values. These values pertain to bitmap and tiff file
formats.

String Interface Command Flag Equivalent
convert MCI_CONVERT
 notify MCI_NOTIFY
 wait MCI_WAIT
 info MCI_CONVERT_INFO
 overwrite MCI_CONVERT_OVERWRITE
 create MCI_CONVERT_CREATE
 destination file MCI_CONVERT_DESTINATION_FILE
 destination format MCI_CONVERT_DESTINATION_FORMAT
 dib bmp MCI_CONVERT_FMT_DIB_BMP
 dib rle MCI_CONVERT_FMT_DIB_RLE
 devfax MCI_FAX_CONVERT_FMT_DEVFAX
 destination from MCI_CONVERT_DESTINATION_FROM
 source file MCI_CONVERT_SOURCE_FILE
 source from MCI_CONVERT_SOURCE_FROM

Example: convert fax create wait destination file c:\viewfax.bmp
 destination format dib bmp destination from 0
 source file c:\rcvdfax.tif

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

197

MCI_DIAL
MCI_DIAL is not part of the base MCI calls. It is completely defined by Mwave.

String Interface Command Flag Equivalent
dial MCI_DIAL
 notify MCI_NOTIFY
 wait MCI_WAIT
 flash MCI_DIAL_FLASH
 monitor MCI_DIAL_MONITOR
 monitor handshake MCI_DIAL_MONITOR_HANDSHAKING_ONLY
 verify MCI_DIAL_VERIFY
 dial mode MCI_DIAL_DIALMODE
 pulse MCI_DIAL_MODE_PULSE
 tone MCI_DIAL_MODE_TONE

Examples: dial fax 919-254-7410 wait
dial fax 9,1-900-555-1212 monitor handshake notify

MCI_GETDEVCAPS
MCI_GETDEVCAPS has some Mwave specific extensions. MCI_GETDEVCAPS returns
information as a null terminated string. Windows returns all information as an ASCII representation of
an integer. So, if the MCI API defines the output as TRUE, FALSE, windows will return '0' or '1'.

For OS/2 MMPM, MCI_GETDEVCAPS has some Mwave specific extensions. MCI_GETDEVCAPS
returns a value that depends upon the particular capability that was queried. Under MMPM, the high
order word of the return code indicates the type of data that is returned. In most cases
MCI_TRUE_FALSE_RETURN type is returned. This means the string that is returned contains
"TRUE" or "FALSE". A number of calls don't return true or false. They are:

- 'device type' which returns a type of MCI_DEVICENAME_RETURN. The returned string in this
case is "Other".

- 'compression types' which returns a type of MCI_USER_RETURN_COMPRESS. The returned
string is "MH","MR", "MMR", "NONE" or "BFT", "ANY", "1D", "2D"

- 'modem types' which returns a type of MCI_USER_RETURN_MODEMS. The returned string is
"V27TER 2400", "V27TER 4800" "V29 7200", "V29 9600", "V17 7200", "V17 9600", "V17 12000",
"V17 14400", "V27TER(2400,4800), V29(7200, 9600)", or "V27TER(2400,4800), V29(7200, 9600),
or V17(7200, 9600, 12000, 14400)"

- 'resolution' which returns a type of MCI_USER_RETURN_RESOLUTION. The returned string is
"Fine(200x200)", or "Normal(100x200)"

- 'file formats' which returns a type of MCI_USER_RETURN_FILE_FORMATS. The returned string
is "Tiff Class F", "DCX", "RIFF", or "TIFF 6",

String Interface Command Flag Equivalent
capability MCI_GETDEVCAPS
 notify MCI_NOTIFY
 wait MCI_WAIT
 can eject MCI_GETDEVCAPS_CAN_EJECT

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

198

 can play MCI_GETDEVCAPS_CAN_PLAY
 can record MCI_GETDEVCAPS_CAN_RECORD
 can save MCI_GETDEVCAPS_CAN_SAVE
 compound device MCI_GETDEVCAPS_COMPOUND_DEVICE
 device type MCI_GETDEVCAPS_DEVICE_TYPE
 has audio MCI_GETDEVCAPS_HAS_AUDIO
 has video MCI_GETDEVCAPS_HAS_VIDEO
 uses files MCI_GETDEVCAPS_USES_FILES
 modem types MCI_FAX_GETDEVCAPS_MODEM_TYPES
 compression types MCI_FAX_GETDEVCAPS_COMPRESSION_TYPES
 can receive MCI_FAX_GETDEVCAPS_CAN_RECEIVE
 can send MCI_FAX_GETDEVCAPS_CAN_SEND
 has handset MCI_FAX_GETDEVCAPS_HAS_HANDSET
 supports ecm MCI_FAX_GETDEVCAPS_SUPPORTS_ECM
 polling MCI_FAX_GETDEVCAPS_POLLING
 file formats MCI_FAX_GETDEVCAPS_FILE_FORMATS
 resolution MCI_FAX_GETDEVCAPS_RESOLUTION
 width MCI_FAX_GETDEVCAPS_WIDTH

Example: capability fax modem types wait

MCI_INFO
MCI_INFO is extended by Mwave to include Caller ID support. MCI info returns a string. In the case
of caller ID, this string may not successfully be converted to ASCII since it contains non-ASCII
characters.

String Interface Command Flag Equivalent
info MCI_INFO
 notify MCI_NOTIFY
 wait MCI_WAIT
 product MCI_INFO_PRODUCT
 caller id error MCI_INFO_CALLER_ID_ERROR
 caller id MCI_INFO_CALLER_ID
 parsed caller id MCI_INFO_PARSED_CALLER_ID

Example: info fax caller id wait

MCI_OPEN
MCI_OPEN contains no extensions specific to the Mwave FAX API. It is the standard MCI_OPEN
call. See the Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: open mwavefax alias fax notify

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

199

MCI_RECEIVE
MCI_RECEIVE is unique to Mwave FAX support. The already dialed parameter is used for manually
receiving a fax.

String Interface Command Flag Equivalent
receive MCI_RECEIVE
 notify MCI_NOTIFY
 wait MCI_WAIT
 already dialed MCI_ALREADY_DIALED

Examples: receive fax c:\newfax01.tif notify
receive fax c:\newfax01.tif already dialed wait

MCI_SEND
MCI_SEND is unique to Mwave FAX support. The already dialed parameter is used for manually
sending a fax. If this parameter is not specified, the document is not sent until 'dial' is issued.

String Interface Command Flag Equivalent
send MCI_SEND
 notify MCI_NOTIFY
 wait MCI_WAIT
 already dialed MCI_ALREADY_DIALED
 send heading MCI_SEND_HEADING

Examples: send fax c:\outfax01.tif notify
send fax c:\outfax01.tif already dialed wait

MCI_SET
MCI_SET contains many extensions specific to the Mwave API. The Windows version does not
permit symbolic keywords for the information that is being set. Further, in the windows version, it is
necessary to use the keyword 'value' before specifying the information you are setting. In the table
below, the third column shows the valid values that can be set.

String Interface Command Flag Equivalent Valid Values
set MCI_SET
 notify MCI_NOTIFY
 wait MCI_WAIT
 audio volume MCI_FAX_SET_AUDIO_VOLUME integer
 call filter MCI_FAX_SET_CALL_FILTER 0, 1
 API style MCI_FAX_SET_API_STYLE 1 = MMPM

2 = windows
 dial flash time MCI_FAX_SET_DIAL_FLASH_TIME integer
 dial pause time MCI_FAX_SET_DIAL_PAUSE_TIME integer
 dial wait time MCI_FAX_SET_DIAL_WAIT_TIME integer
 event handler MCI_FAX_SET_EVENT_HANDLER integer
 hook MCI_FAX_SET_HOOK 0, 1
 pass call MCI_FAX_SET_PASS_CALL 16 = voice

8 = modem
 advanced ring MCI_FAX_SET_ADVANCED_RING_NOTIFY 0, 1

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

200

 compression types MCI_FAX_SET_COMPRESSION_TYPES
1 = MH
2 = MR
4 = MMR
8 = NONE
16 = BFT
32 = ANY
64 = 1D
128 = 2D

 ecm level MCI_FAX_SET_ECM_LEVEL

 polling MCI_FAX_SET_POLLING 0, 1
 resolution MCI_FAX_SET_RESOLUTION 1 = normal

2 = fine
 station id MCI_FAX_SET_STATION_ID ASCII
 ring count MCI_FAX_SET_RING_COUNT integer
 modem types MCI_FAX_SET_MODEM_TYPES 01 = V27TER_2400

02 = V27TER_4800
04 = V29_7200
08 = V29_9600
16 = V17_7200
32 = V17_9600

 64 = V17_12000
128 = V17_14400

Examples: set fax station id value 919-543-3113 wait
set fax hook value 1 notify
set fax event handler value 48937930 wait
set fax pass call value 16 notify

MCI_SET in the MMPM version permits symbolic keywords for the information that is being set.
Further, in the MMPM version, it is not necessary to use the keyword 'value' before specifying the
information you are setting. In the table below, the third column shows the valid values that can be set.

 String Interface Command Flag Equivalent Valid Values
 set MCI_SET
 notify MCI_NOTIFY
 wait MCI_WAIT
 audio volume MCI_FAX_SET_AUDIO_VOLUME integer
 call filter MCI_FAX_SET_CALL_FILTER FALSE, TRUE
 API style MCI_FAX_SET_API_STYLE mmpm, windows
 dial flash time MCI_FAX_SET_DIAL_FLASH_TIME integer
 dial pause time MCI_FAX_SET_DIAL_PAUSE_TIME integer
 dial wait time MCI_FAX_SET_DIAL_WAIT_TIME integer
 event handler MCI_FAX_SET_EVENT_HANDLER integer
 hook MCI_FAX_SET_HOOK FALSE, TRUE
 pass call MCI_FAX_SET_PASS_CALL voice, modem
 advanced ring MCI_FAX_SET_ADVANCED_RING_NOTIFY FALSE, TRUE
 compression types MCI_FAX_SET_COMPRESSION_TYPES MH, MR, MMR,

NONE, BFT,ANY,

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

201

 1D, 2D
 ecm level MCI_FAX_SET_ECM_LEVEL not supported
 polling MCI_FAX_SET_POLLING FALSE, TRUE
 resolution MCI_FAX_SET_RESOLUTION normal, fine
 station id MCI_FAX_SET_STATION_ID ASCII
 ring count MCI_FAX_SET_RING_COUNT integer
 modem types MCI_FAX_SET_MODEM_TYPES V27TER 2400,

 V27TER 4800,
 V29 7200,
 V29 9600,
 V17 7200,
 V17 9600,
 V17 12000,
 V17 14400

Examples: set fax station id 919-543-3113 wait
set fax hook true notify
set fax event handler 48937930 wait
set fax pass call voice notify

MCI_STATUS
MCI_STATUS has many Mwave FAX specific extensions. In addition, it returns information. Under
windows, it is up to the application to know how to interpret the information. The third column in the
table below indicates what the returned values mean.

String Interface Command Flag Equivalent Returned Values
status MCI_STATUS
 notify MCI_NOTIFY
 wait MCI_WAIT
 time format MCI_STATUS_TIME_FORMAT 0 = milliseconds
 length MCI_STATUS_LENGTH integer
 mode MCI_STATUS_MODE 1 = receive

2 = send
524 = not ready

 530 = open
 position MCI_STATUS_POSITION integer
 ready MCI_STATUS_READY 0, 1
 audio volume MCI_FAX_STATUS_AUDIO_VOLUME integer
 call filter MCI_FAX_STATUS_CALL_FILTER 0, 1
 dial flash time MCI_FAX_STATUS_DIAL_FLASH_TIME integer
 dial pause time MCI_FAX_STATUS_DIAL_PAUSE_TIME integer
 dial wait time MCI_FAX_STATUS_DIAL_WAIT_TIME integer
 handset MCI_FAX_STATUS_HANDSET 0 = down

1 = up
 hook MCI_FAX_STATUS_HOOK 0 = on hook

1 = off hook
 line MCI_FAX_STATUS_LINE 1 = on hook
 2 = dial tone

3 = busy
4 = ring tone
6 = unknown

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

202

 ring count MCI_FAX_STATUS_RING_COUNT integer
 polling MCI_FAX_STATUS_POLLING 0 = no polling

1 = polling
 resolution MCI_FAX_STATUS_RESOLUTION 1 = normal

2 = fine
 station id MCI_FAX_STATUS_STATION_ID ASCII
 compression types MCI_FAX_STATUS_COMPRESSION_TYPES

1 = MH
2 = MR
4 = MMR

 8 = NONE
16=BFT
32 = ANY
64 = 1D
128 = 2D

 max modem types MCI_FAX_STATUS_MAX_MODEM_SPEED
01 = V27TER_2400
02 = V27TER_4800
04 = V29_7200
08 = V29_9600
16 = V17_7200
32 = V17_9600
64 = V17_12000
128 = V17_14400

 min modem types MCI_FAX_STATUS_MIN_MODEM_SPEED
01 = V27TER_2400
02 = V27TER_4800
04 = V29_7200
08 = V29_9600
16 = V17_7200
32 = V17_9600

worldtrade support MCI_FAX_STATUS_WORLDTRADE_SUPPORT integer
country code MCI_FAX_STATUS_COUNTRY_CODE integer
min rings allowed MCI_FAX_STATUS_AUTO_ANSWER_MIN_RINGS integer
max rings allowed MCI_FAX_STATUS_AUTO_ANSWER_MAX_RINGS integer
max call retries MCI_FAX_STATUS_MAX_CALL_RETRIES integer
min call retry time MCI_FAX_STATUS_MIN_CALL_RETRY_TIME integer (in seconds)

Examples: status fax hook wait
status fax station id notify
status fax ring count wait

In MMPM, MCI_STATUS has many Mwave FAX specific extensions. In addition, it returns
information. Under MMPM the high order word of the return code indicates the type of returned
information.

String Interface Command Flag Equivalent Returned Values
status MCI_STATUS
 notify MCI_NOTIFY
 wait MCI_WAIT
 time format MCI_STATUS_TIME_FORMAT milliseconds
 length MCI_STATUS_LENGTH integer

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

203

 mode MCI_STATUS_MODE not ready
sending
receiving
open

 position MCI_STATUS_POSITION integer
 ready MCI_STATUS_READY FALSE, TRUE
 call filter MCI_FAX_STATUS_CALL_FILTER FALSE, TRUE
 dial flash time MCI_FAX_STATUS_DIAL_FLASH_TIME integer
 dial pause time MCI_FAX_STATUS_DIAL_PAUSE_TIME integer
 dial wait time MCI_FAX_STATUS_DIAL_WAIT_TIME integer
 handset MCI_FAX_STATUS_HANDSET down

up
 hook MCI_FAX_STATUS_HOOK on hook

off hook
 line MCI_FAX_STATUS_LINE on hook

dial tone
 busy

ring tone
unknown

 ring count MCI_FAX_STATUS_RING_COUNT integer
 polling MCI_FAX_STATUS_POLLING FALSE (no polling)

TRUE (polling)
 resolution MCI_FAX_STATUS_RESOLUTION normal , fine
 station id MCI_FAX_STATUS_STATION_ID ASCII
 compression types MCI_FAX_STATUS_COMPRESSION_TYPES

MH, MR, MMR, NONE,
ANY, 1D, 2D, BFT

 max modem types MCI_FAX_STATUS_MAX_MODEM_SPEED
V27TER 2400 ,
V27TER 4800,
V29 7200 ,
V29 9600,
V17 7200,
V17 9600,
V17 12000,
V17 14400

V27TER(2400,4800), V29(7200, 9600),
V27TER(2400,4800), V29(7200,9600), V17(7200,9600,12000,14400)

 min modem types MCI_FAX_STATUS_MIN_MODEM_SPEED
V27TER 2400
V27TER 4800
V29 7200
V29 9600
V17 7200
V1 9600
V17 12000
V17 14400

V27TER(2400,4800), V29(7200, 9600),
V27TER(2400,4800), V29(7200,9600), V17(7200,9600,12000,14400)

Examples: status fax hook wait
status fax station id notify
status fax ring count wait

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

204

MCI_STOP
MCI_STOP has no Mwave FAX extensions.

Example: stop fax wait

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

205

A2 - String Interface TAM

This section describes the string interface for Mwave TAM under OS/2 2.1 and Windows 3.1

MCI_CLOSE
MCI_CLOSE contains no extensions specific to the Mwave TAM API. It is the standard MCI_CLOSE
call. See the Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: close tam wait

MCI_CONVERT
MCI_CONVERT does contain Mwave specific values. Note that it is not supported in releases before
driver version 3.1.

String Interface Command Flag Equivalent
convert MCI_CONVERT
 notify MCI_NOTIFY
 wait MCI_WAIT
 info MCI_CONVERT_INFO
 overwrite MCI_CONVERT_OVERWRITE
 create MCI_CONVERT_CREATE
 destination file MCI_CONVERT_DESTINATION_FILE
 destination format MCI_CONVERT_DESTINATION_FORMAT
 wave pcm MCI_CONVERT_FMT_WAVE_PCM
 devtam MCI_TAM_CONVERT_FMT_DEVTAM
 destination from MCI_CONVERT_DESTINATION_FROM
 length MCI_CONVERT_LENGTH
 source file MCI_CONVERT_SOURCE_FILE
 source from MCI_CONVERT_SOURCE_FROM

Example: convert tps create wait destination file c:\newwave.wav
 destination format wave pcm destination from 0
 source file c:\recorded.voi

MCI_DIAL
MCI_DIAL is not part of the base MCI calls. It is completely defined by Mwave.

String Interface Command Flag Equivalent
dial MCI_DIAL
 notify MCI_NOTIFY
 wait MCI_WAIT
 flash MCI_DIAL_FLASH
 monitor MCI_DIAL_MONITOR
 verify MCI_DIAL_VERIFY
 dial mode MCI_DIAL_DIALMODE
 pulse MCI_DIAL_MODE_PULSE
 tone MCI_DIAL_MODE_TONE

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

206

Examples: dial tpl 919-254-7410 wait
dial tpl verify 9,1-900-555-1212 dial mode pulse notify

MCI_GETDEVCAPS
MCI_GETDEVCAPS has some Mwave specific extensions. MCI_GETDEVCAPS returns
information as a null terminated string. Windows returns all information as an ASCII representation of
an integer. So, if the MCI API defines the output as TRUE, FALSE, windows will return '0' or '1'.

For MMPM, MCI_GETDEVCAPS returns a value that depends upon the particular capability that
was queried. The high order word of the return code indicates the type of data that is returned. In most
cases MCI_TRUE_FALSE_RETURN type is returned. This means the string that is returned contains
"TRUE" or "FALSE". The only exception is - 'device type' which returns a type of
MCI_DEVICENAME_RETURN. The returned string in this case is "Other".

String Interface Command Flag Equivalent
capability MCI_GETDEVCAPS
 notify MCI_NOTIFY
 wait MCI_WAIT
 can eject MCI_GETDEVCAPS_CAN_EJECT
 can play MCI_GETDEVCAPS_CAN_PLAY
 can record MCI_GETDEVCAPS_CAN_RECORD
 can save MCI_GETDEVCAPS_CAN_SAVE
 compound device MCI_GETDEVCAPS_COMPOUND_DEVICE
 device type MCI_GETDEVCAPS_DEVICE_TYPE
 has audio MCI_GETDEVCAPS_HAS_AUDIO
 has video MCI_GETDEVCAPS_HAS_VIDEO
 uses files MCI_GETDEVCAPS_USES_FILES
 supports custom tag MCI_TAM_GETDEVCAPS_SUPPORTS_CUSTOM_TAG
 supports pcm tag MCI_TAM_GETDEVCAPS_SUPPORTS_PCM_TAG

Example: capability tps can save wait

MCI_INFO
MCI_INFO is extended by Mwave to include Caller ID support. MCI info returns a string. In the case
of caller ID, this string may not successfully be converted to ASCII since it contains non-ASCII
characters.

In the case of caller ID for MMPM, an integer is returned since the caller ID contains non-ASCII
characters. The application must type cast the integer to an address and then use the contents of the
address to retrieve the caller ID information.

String Interface Command Flag Equivalent
info MCI_INFO
 notify MCI_NOTIFY
 wait MCI_WAIT
 product MCI_INFO_PRODUCT
 caller id error MCI_INFO_CALLER_ID_ERROR
 caller id MCI_INFO_CALLER_ID
 parsed caller id MCI_INFO_PARSED_CALLER_ID

Example: info tps product wait

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

207

MCI_LOAD
MCI_LOAD contains no extensions specific to the Mwave TAM API. It is the standard MCI_LOAD
call. See the Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: load tpl c:\greeting.voi wait
load tpl new wait /*this opens a new, empty file (OS/2)*/
load tpl "" wait /*this opens a new empty file (windows)*/

MCI_OPEN
MCI_OPEN contains no extensions specific to the Mwave TAM API. It is the standard MCI_OPEN
call. See the Windows Multimedia Developer's Manual or the MMPM/2 Programmer's Reference
Manual for the exact syntax.

Example: open mwavetps alias tps notify
open mwavetpl alias tpl wait

MCI_PAUSE
MCI_PAUSE contains no extensions specific to the Mwave TAM API. It is the standard MCI_PAUSE
call. See the Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: pause tps wait

MCI_PLAY
MCI_PLAY contains no extensions specific to the Mwave TAM API. It is the standard MCI_PLAY
call. See the Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: play tpl notify
play tps from 10 to 50 wait

MCI_RECORD
MCI_RECORD has an Mwave-specific extension to the base MCI record call to allow beeping before
recording begins.

String Interface Command Flag Equivalent
record MCI_RECORD
 notify MCI_NOTIFY
 wait MCI_WAIT
 insert MCI_RECORD_INSERT
 overwrite MCI_RECORD_OVERWRITE
 to message end MCI_TAM_TO_MESSAGE_END
 beep MCI_TAM_BEEP
 from MCI_FROM
 to MCI_TO

Examples: record tps notify
record tps from 20 to 50 insert notify
record tpl beep notify

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

208

MCI_RESUME
MCI_RESUME contains no extensions specific to the Mwave TAM API. It is the standard
MCI_RESUME call. See the Microsoft Windows Multimedia Programmer's Reference or the IBM
Multimedia Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: resume tps notify

MCI_SAVE
MCI_SAVE contains no extensions specific to the Mwave TAM API. It is the standard MCI_SAVE
call. See the Windows Multimedia Developer's Manual or the MMPM/2 Programmer's Reference
Manual for the exact syntax.

Example: save tps c:\newname.voi wait

MCI_SEEK
MCI_SEEK contains no extensions specific to the Mwave TAM API. It is the standard MCI_SEEK
call. See the Microsoft Windows Multimedia Programmer's Reference or the IBM Multimedia
Presentation Manager Toolkit/2 Programming Reference for the exact syntax.

Example: seek tpl to 100 wait

MCI_SET
MCI_SET contains many extensions specific to the Mwave API. The Windows version does not
permit symbolic keywords for the information that is being set. Further, in the windows version, it is
necessary to use the keyword 'value' before specifying the information you are setting. In the table
below, the third column shows the valid values that can be set.

String Interface Command Flag Equivalent Valid Values
set MCI_SET
 notify MCI_NOTIFY
 wait MCI_WAIT
 audio mute MCI_TAM_SET_AUDIO_MUTE 0, 1
 audio volume MCI_TAM_SET_AUDIO_VOLUME integer
 avgbytespersec MCI_TAM_SET_AVGBYTESPERSEC integer
 bitspersample MCI_TAM_SET_BITSPERSAMPLE integer
 call filter MCI_TAM_SET_CALL_FILTER 0, 1
 API style MCI_TAM_SET_API_STYLE 1 = MMPM

2 = windows
 ap discriminated MCI_TAM_SET_AP_DISCRIMINATED 4 = FAX

8 = modem
16 = VOICE
32 = Don’t Answer

 connect MCI_TAM_SET_CONNECT 1 = audio
2 = handset
4 = phoneline
5 = audio&phoneline
6 = handset&phoneline
8 = speaker
12 =speaker&phoneline

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

209

 dial flash time MCI_TAM_SET_DIAL_FLASH_TIME integer
 dial pause time MCI_TAM_SET_DIAL_PAUSE_TIME integer
 dial wait time MCI_TAM_SET_DIAL_WAIT_TIME integer
 event handler MCI_TAM_SET_EVENT_HANDLER integer
 formattag MCI_TAM_SET_FORMATTAG 1 = wave

2 = custom
 handset mute MCI_TAM_SET_HANDSET_MUTE 0, 1
 handset volume MCI_TAM_SET_HANDSET_VOLUME integer
 hook MCI_TAM_SET_HOOK 0, 1
 caller id MCI_TAM_SET_CALLER_ID 0, 1
 quality MCI_TAM_SET_QUALITY integer
 quiet MCI_TAM_SET_QUIET_DURATION integer
 ring count MCI_TAM_SET_RING_COUNT integer
 samplespersec MCI_TAM_SET_SAMPLESPERSEC integer
 speed MCI_TAM_SET_SPEED integer
 pass call MCI_TAM_SET_PASS_CALL 4 = FAX

8 = modem
 advanced ring MCI_TAM_SET_ADVANCED_RING_NOTIFY 0, 1
 microphone gain MCI_TAM_SET_MICROPHONE_GAIN integer
 dial min flash time MCI_TAM_SET_DIAL_MIN_FLASH_TIME integer
 dial max flash time MCI_TAM_SET_DIAL_MAX_FLASH_TIME integer
 low level wave io MCI_TAM_SET_LOW_LEVEL_WAVE_IO 1 = wave in start

2 = wave in stop
4 = wave out start
8 = wave out stop

Examples: set tps microphone gain value 75 wait
set tpl hook value 1 notify
set tpl event handler value 48937930 wait
set tpl pass call value 4 notify

MCI_SET in the MMPM version permits symbolic keywords for the information that is being set.
Further, in the MMPM version, it is not necessary to use the keyword 'value' before specifying the
information you are setting. In the table below, the third column shows the valid values that can be set.

String Interface Command Flag Equivalent Valid Values
set MCI_SET
 notify MCI_NOTIFY
 wait MCI_WAIT
 audio mute MCI_TAM_SET_AUDIO_MUTE FALSE, TRUE
 audio volume MCI_TAM_SET_AUDIO_VOLUME integer
 call filter MCI_TAM_SET_CALL_FILTER FALSE, TRUE
 avgbytespersec MCI_TAM_SET_AVGBYTESPERSEC integer
 bitspersample MCI_TAM_SET_BITSPERSAMPLE integer
 API style MCI_TAM_SET_API_STYLE mmpm, windows
 ap discriminated MCI_TAM_SET_AP_DISCRIMINATED fax, modem,

voice, dont answer

 connect MCI_TAM_SET_CONNECT audio
handset

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

210

phoneline
audio&phoneline
handset&phoneline
speaker
speaker&phoneline

 dial flash time MCI_TAM_SET_DIAL_FLASH_TIME integer
 dial pause time MCI_TAM_SET_DIAL_PAUSE_TIME integer
 dial wait time MCI_TAM_SET_DIAL_WAIT_TIME integer
 event handler MCI_TAM_SET_EVENT_HANDLER integer
 formattag MCI_TAM_SET_FORMATTAG pcm, custom
 handset mute MCI_TAM_SET_HANDSET_MUTE FALSE, TRUE
 handset volume MCI_TAM_SET_HANDSET_VOLUME integer
 hook MCI_TAM_SET_HOOK FALSE, TRUE
 caller id MCI_TAM_SET_CALLER_ID FALSE, TRUE
 quality MCI_TAM_SET_QUALITY integer
 quiet MCI_TAM_SET_QUIET_DURATION integer
 ring count MCI_TAM_SET_RING_COUNT integer
 samplespersec MCI_TAM_SET_SAMPLESPERSEC integer
 speed MCI_TAM_SET_SPEED integer
 pass call MCI_TAM_SET_PASS_CALL fax, modem
 advanced ring MCI_TAM_SET_ADVANCED_RING_NOTIFY FALSE, TRUE
 microphone gain MCI_TAM_SET_MICROPHONE_GAIN integer
 dial min flash time MCI_TAM_SET_DIAL_MIN_FLASH_TIME integer
 dial max flash time MCI_TAM_SET_DIAL_MAX_FLASH_TIME integer
 low level wave io MCI_TAM_SET_LOW_LEVEL_WAVE_IO wave in start, wave in

stop, wave out start,
wave out stop

Examples: set tps microphone gain 75 wait
 set tpl hook true notify

set tpl event handler 48937930 wait
 set tpl pass call fax notify

MCI_STATUS
MCI_STATUS has many Mwave TAM specific extensions. In addition, it returns information. Under
windows, it is up to the application to know how to interpret the information. The third column in the
table below indicates what the returned values mean.

String Interface Command Flag Equivalent Returned Values
status MCI_STATUS
 notify MCI_NOTIFY
 wait MCI_WAIT
 time format MCI_STATUS_TIME_FORMAT 0 = milliseconds
 length MCI_STATUS_LENGTH integer
 mode MCI_STATUS_MODE 524 = not ready

525 = stop
526 = play
527 = record
528 = seek
529 = pause
530 = open

 position MCI_STATUS_POSITION integer

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

211

 ready MCI_STATUS_READY 0, 1
 audio mute MCI_TAM_STATUS_AUDIO_MUTE 0, 1
 audio volume MCI_TAM_STATUS_AUDIO_VOLUME integer
 avgbytespersec MCI_TAM_STATUS_AVGBYTESPERSEC integer
 bitspersample MCI_TAM_STATUS_BITSPERSAMPLEinteger
 connect MCI_TAM_STATUS_CONNECT 1 = audio

2 = handset
4 = phoneline
5 = audio&phoneline
6 = handset&phoneline
8 = speaker
12 = speaker&phoneline

 call filter MCI_TAM_STATUS_CALL_FILTER 0, 1
 dial flash time MCI_TAM_STATUS_DIAL_FLASH_TIME integer
 dial pause time MCI_TAM_STATUS_DIAL_PAUSE_TIME integer
 dial wait time MCI_TAM_STATUS_DIAL_WAIT_TIME integer
 formattag MCI_TAM_STATUS_FORMATTAG 1 = wave; 2= custom
 handset mute MCI_TAM_STATUS_HANDSET_MUTE 0, 1
 handset volume MCI_TAM_STATUS_HANDSET_VOLUME integer
 handset MCI_TAM_STATUS_HANDSET 0 = down

1 = up
 hook MCI_TAM_STATUS_HOOK 0 = on hook

1 = off hook
 line MCI_TAM_STATUS_LINE 1 = on hook

2 = dial tone
3 = busy
4 = ring tone
5 = quiet
6 = unknown
7 = voice
8 = modem
9 = fax

 quality MCI_TAM_STATUS_QUALITY integer
 quiet MCI_TAM_STATUS_QUIET_DURATION integer
 ring count MCI_TAM_STATUS_RING_COUNT integer
 samplespersec MCI_TAM_STATUS_SAMPLESPERSEC integer
 speed MCI_TAM_STATUS_SPEED integer
 caller id MCI_TAM_STATUS_CALLER_ID 1 = active

2 = disabled
3 = unsupported

 microphone gain MCI_TAM_STATUS_MICROPHONE_GAIN integer
 dial min flash time MCI_TAM_STATUS_DIAL_MIN_FLASH_TIME integer
 dial max flash time MCI_TAM_STATUS_DIAL_MAX_FLASH_TIME integer
 worldtrade support MCI_TAM_STATUS_WORLDTRADE_SUPPORT integer
 max mic gain MCI_TAM_STATUS_MAX_MIC_GAIN integer
 max audio volume MCI_TAM_STATUS_MAX_AUDIO_VOLUME integer
 max greeting len no rec MCI_TAM_STATUS_MAX_GREETING_LEN_NO_REC integer
 max greeting len MCI_TAM_STATUS_MAX_GREETING_LEN integer
 max record len MCI_TAM_STATUS_MAX_RECORD_LEN integer
 max msg retrieve len MCI_TAM_STATUS_MAX_MSG_RETRIEVE_LEN integer
 country code MCI_TAM_STATUS_COUNTRY_CODE integer
 min rings allowed MCI_TAM_STATUS_AUTO_ANSWER_MIN_RINGS integer
 max rings allowed MCI_TAM_STATUS_AUTO_ANSWER_MAX_RINGS integer
 max call retries MCI_TAM_STATUS_MAX_CALL_RETRIES integer

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

212

 min call retry time MCI_TAM_STATUS_MIN_CALL_RETRY_TIME integer (in seconds)

Examples: status tpl hook wait
status fax station id notify
status tpl handset volume wait

In MMPM, MCI_STATUS has many Mwave TAM specific extensions. In addition, it returns
information. Under MMPM the high order word of the return code indicates the type of returned
information.

String Interface Command Flag Equivalent Returned Values
status MCI_STATUS
 notify MCI_NOTIFY
 wait MCI_WAIT
 time format MCI_STATUS_TIME_FORMAT milliseconds

(type is MCI_TIME_FORMAT_RETURN)
 length MCI_STATUS_LENGTH integer
 mode MCI_STATUS_MODE not ready

stop
play
record
seek
pause
open

(type is MCI_MODE_RETURN)
 position MCI_STATUS_POSITION integer
 ready MCI_STATUS_READY FALSE, TRUE
 audio mute MCI_TAM_STATUS_AUDIO_MUTE FALSE, TRUE
 audio volume MCI_TAM_STATUS_AUDIO_VOLUME integer
 avgbytespersec MCI_TAM_STATUS_AVGBYTESPERSEC integer
 bitspersample MCI_TAM_STATUS_BITSPERSAMPLE integer
 connect MCI_TAM_STATUS_CONNECT audio

handset
phoneline
audio&phoneline
handset&phoneline
speaker
speaker&phoneline

(type is MCI_CONNECTOR_TYPE_RETURN)
 call filter MCI_TAM_STATUS_CALL_FILTER FALSE, TRUE
 dial flash time MCI_TAM_STATUS_DIAL_FLASH_TIME integer
 dial pause time MCI_TAM_STATUS_DIAL_PAUSE_TIME integer
 dial wait time MCI_TAM_STATUS_DIAL_WAIT_TIME integer
 formattag MCI_TAM_STATUS_FORMATTAG custom format

wave format
(type is MCI_FORMAT_TAG_RETURN)

 handset mute MCI_TAM_STATUS_HANDSET_MUTE FALSE, TRUE
 handset volume MCI_TAM_STATUS_HANDSET_VOLUME integer
 handset MCI_TAM_STATUS_HANDSET down

up
 hook MCI_TAM_STATUS_HOOK TRUE

FALSE

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

213

 line MCI_TAM_STATUS_LINE on hook
dial tone

 busy
ringing
quiet
unknown
voice
modem
fax

(type is MCI_USER_RETURN_LINE)
 quality MCI_TAM_STATUS_QUALITY integer
 quiet MCI_TAM_STATUS_QUIET_DURATION integer
 ring count MCI_TAM_STATUS_RING_COUNT integer
 samplespersec MCI_TAM_STATUS_SAMPLESPERSEC integer
 speed MCI_TAM_STATUS_SPEED integer
 caller id MCI_TAM_STATUS_CALLER_ID active

disabled
unsupported

(type is MCI_USER_RETURN_CALLER_ID)
 microphone gain MCI_TAM_STATUS_MICROPHONE_GAIN integer
 dial min flash time MCI_TAM_STATUS_DIAL_MIN_FLASH_TIME integer
 dial max flash time MCI_TAM_STATUS_DIAL_MAX_FLASH_TIME integer
 worldtrade support MCI_TAM_STATUS_WORLDTRADE_SUPPORT integer
 max mic gain MCI_TAM_STATUS_MAX_MIC_GAIN integer
 max audio volume MCI_TAM_STATUS_MAX_AUDIO_VOLUME integer
 max greeting len no rec MCI_TAM_STATUS_MAX_GREETING_LEN_NO_REC integer
 max greeting len MCI_TAM_STATUS_MAX_GREETING_LEN integer
 max record len MCI_TAM_STATUS_MAX_RECORD_LEN integer
 max msg retrieve len MCI_TAM_STATUS_MAX_MSG_RETRIEVE_LEN integer
 country code MCI_TAM_STATUS_COUNTRY_CODE string

The following information is returned:

MCI_RETURN_TYPE_STRING For Country Code
COUNTRY STRING COUNTRY STRING

USA or Canada WT_COUNTRY_USA_CANADA,0, Germany WT_COUNTRY_GERMANY,0,
Belgium WT_COUNTRY_BELGIUM,0, Brazil WT_COUNTRY_BRAZIL,0,
Hong Kong WT_COUNTRY_HONG_KONG,0, Russia WT_COUNTRY_RUSSIA,0,
Singapore WT_COUNTRY_SINGAPORE,0, Yugoslavia WT_COUNTRY_YUGOSLAVIA,0,
New Zealand WT_COUNTRY_NEW_ZEALAND,0, Hungary WT_COUNTRY_HUNGARY,0,
Japan WT_COUNTRY_JAPAN,0, Czech Republic WT_COUNTRY_CZECHREPUBLIC,

0,
Portugal WT_COUNTRY_PORTUGAL,0, Luxembourg WT_COUNTRY_LUXEMBORG,0,
Ireland WT_COUNTRY_IRELAND,0, Norway WT_COUNTRY_NORWAY,0,
Generic WT_COUNTRY_GENERIC,0, Denmark WT_COUNTRY_DENMARK,0,
Spain WT_COUNTRY_SPAIN,0, France WT_COUNTRY_FRANCE,0,
Greece WT_COUNTRY_GREECE,0, Netherlands WT_COUNTRY_NETHERLANDS,0,
Israel WT_COUNTRY_ISRAEL,0, United Kingdom WT_COUNTRY_U_K,0,
Taiwan WT_COUNTRY_TAIWAN,0, Sweden WT_COUNTRY_SWEDEN,0,
Australia WT_COUNTRY_AUSTRALIA,0 Italy WT_COUNTRY_ITALY,0,
Austria WT_COUNTRY_AUSTRIA,0, Finland WT_COUNTRY_FINLAND,0,
Mexico WT_COUNTRY_MEXICO,0, Thailand WT_COUNTRY_THAILAND,0,
South Africa WT_COUNTRY_SOUTH_AFRICA,0, Korea WT_COUNTRY_KOREA,0
Chile WT_COUNTRY_CHILE,0, Malaysia WT_COUNTRY_MALAYSIA,0,
Switzerland WT_COUNTRY_SWITZERLAND,0, China WT_COUNTRY_PRC,0,

MMWADKUMU-03 Appendix A - String Interfaces

This document contains information that is subject to
change without notice.

214

 min rings allowed MCI_TAM_STATUS_AUTO_ANSWER_MIN_RINGS integer
 max rings allowed MCI_TAM_STATUS_AUTO_ANSWER_MAX_RINGS integer
 max call retries MCI_TAM_STATUS_MAX_CALL_RETRIES integer
 min call retry time MCI_TAM_STATUS_MIN_CALL_RETRY_TIME integer (in seconds)

Examples: status tpl hook wait
status tps speed notify
status tpl handset volume wait

MCI_STOP
MCI_STOP has one Mwave TAM extension: the ability to stop a recording and remove DTMF keys.

String Interface Command Flag Equivalent
stop MCI_STOP
 notify MCI_NOTIFY
 wait MCI_WAIT
 remove dtmf MCI_STOP_REMOVE_DTMF

Example: stop tps wait
stop tpl remove dtmf wait

MMWADKUMU-03 Appendix B - Programmer’s Notes

This document contains information that is subject to
change without notice.

215

MMWADKUMU-03 Appendix B - Programmer’s Notes

This document contains information that is subject to
change without notice.

216

APPENDIX B - Programmer’s Notes

B1 - Fax Notes

Warning: The fax and TAM drivers are different. Do not assume they work the same way.

Do not hang up the phone in any situation other than PHONE_EVENT_CALL_TERMINATED.

NOTE: If the user wants to abort the call then the app should issue a MCI_STOP. The app will then
receive a PHONE_EVENT_CALL_TERMINATED.

B2 - TAM Notes

Warning: The fax and TAM drivers are different. Do not assume they work the same way.

The app should hang up the phone for the following reasons:
• 5 uninterrupted CALL_PROGRESS_QUIET events in a row
• 5 CALL_PROGRESS_DIAL_TONE events in a row
• A CALL_PROGRESS_QUIET event during play

Warning: Not all phone systems put out a dial tone when a person has hung up. The application
should count the number of uninterrupted quiets when not in a record or play state then hang up. The
TAM driver will not give you a phone event call terminated.
An unidentified tone event should reset the quiet and dial tone counter.

The application can load a file before a call in order to save processing time during the call.

Call progress event unidentified tone can be received during a transition state i.e. between ring tone
and answer tone.

Beware of connection conflicts (handset , audio) between the TPS and TPL drivers
When the TPL driver is opened it will come up connected to normal phone.
When the TPS driver is opened it will come up connected to audio.

If the dial fails then the application needs to hang up the phone (DO NOT DO THIS WITH THE
FAX!!).

A mci-stop should be made with the notify flag set so that it will be queued up behind the outstanding
play or record.

The application should be aware that the discriminator can cause the record to be aborted. In such a
case the app will receive a PHONE_EVENT_CALL_TERMINATED as well.

MMWADKUMU-03 Appendix B - Programmer’s Notes

This document contains information that is subject to
change without notice.

217

Set audio volume vs. handset volume

Application MUST perform WinCreateMsgQueue(HAB, 100) - OS/2
 SetMessageQueue(100) - Windows
This will ensure that the application does not lose event messages. The windows default is only 8!!!

If a record or play fails the application still needs to do a MCI_STOP

Set speed takes nearest match (rounding down) if no exact match.

Set speakerphone mode disables discrimination on calling tones.

The application can not load a file while a play or record is in progress.

If MCI_OPEN fails and the error code > 512 then just print out the number because GetErrorString will
not provide the correct information.
MciGetErrorString requires a device id along with the error code. When MCI_OPEN fails no device id
is returned therefore calling MciGetErrorString with the error code > 512 (fax/tam error codes) will
return an incorrect error string. The error string that will be returned will be for a device driver
currently in the system and your error code may be something like (cdaudio error).

The microphone should not be right next to the monitor, it will cause problems.

If in speakerphone mode answer tone will not work properly.

On hook and Off hook is electrical.

TAM set audio volume cant be done during dial.

The application can only get handset key events in TPS if TPS is connected to handset. Currently TPL
only gets flash “!”.

Status position during Play From is not updated until play gets going. To get around this the
application should seek to 0 before play to get current position in right place.

Application can not set volume during dial

There is no volume change for the phoneline record or play.

Mci set quality only with new file loaded.

Rule: If app takes phone off hook it is responsible for putting it back on hook, else the driver does it.

B3 - Integrated Application Notes

If the app chooses to use the same event handler for both fax and tam, care should be taken as to which
device an event is from.
 i.e. PHONE_EVENT_CALL_TERMINATED will be sent to the tam app when a call has been
discriminated as a fax call. The app should issue an on hook (making sure to use the TAM DEVICE
ID).

MMWADKUMU-03 Appendix B - Programmer’s Notes

This document contains information that is subject to
change without notice.

218

The app writer should be aware that mci_set and mci_status use the same constants.
 i.e. MCI_TAM_SET_EVENT_HANDLER is different than MCI_FAX_SET_EVENT_HANDLER

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

219

APPENDIX C - Mwave Play and Record Mixer Definition File

The following is example source code for the Mwave play and record mixer definition file. A copy of this
code can be found on the companion diskette.

//-------------------------------
//Mwave Play and Record mixer definition file
//Some hints in creating:
// Dont use the pound sign it is a special character
// Dont use any of the key words
// Always put something as the last thing in the file so that we dont reach
// eof before or during the read of the last record
// Last modification 3 13 95
//-------------------------------
#DESTNUM
2, // Number of Destinations (waveply, waverecord)
#SOURCENUM
6, // Real Number of Sources IN THIS ORDER (MIDI, WAVE, SB, CD, LINE, MIC)
#TOTALCONTROLS
76, // total number of controls
//-------------------------------
// source controls map
// The first index is the dest no
// The second is the "relative" source no
// The value is the no of controls at this source as connected to this dest.
//-------------------------------
#CONTROLSSRC
4, // d0, rs 0 (MIDI), 4 c (VOL, BAL, MUTE, PM)
4, // d0, rs 1 (WAVE), 4 c (VOL, BAL, MUTE, PM)
4, // d0, rs 2 (SB), 3 c (VOL, BAL, MUTE, PM)
5, // d0, rs 3 (CD), 5 c (VOL, BAL, MUTE, PM, SWITCH SELECT)
5, // d0, rs 4 (LINE), 5 c (VOL, BAL, MUTE, PM, SWITCH SELECT)
5, // d0, rs 5 (MIC), 5 c (VOL, BAL, MUTE, PM, SWITCH SELECT)
4, // d1, rs 0 (MIDI), 4 c (VOL, BAL, MUTE, PM)
4, // d1, rs 1 (WAVE), 4 c (VOL, BAL, MUTE, PM)
4, // d1, rs 2 (SB), 4 c (VOL, BAL, MUTE, PM)
5, // d1, rs 3 (CD), 5 c (VOL, BAL, MUTE, PM, SWITCH SELECT)
5, // d1, rs 4 (LINE), 5 c (VOL, BAL, MUTE, PM, SWITCH SELECT)
5, // d1, rs 5 (MIC), 5 c (VOL, BAL, MUTE, PM, SWITCH SELECT)
//------------------------------
// auControlMap- these come in triplets
// The index is the control number
// The first UINT is the destination.
// The second INT is the "relative" source number
// When "relative" source num is -1 (INT_MAX), the control is "at the dest."
// The third entry is the number of channels for this control
//-------------------------------
#CONTROLMAP
0, //Control 0 (volume), dest 0 (waveply), at dest, 2 channels
-1,
2,
0, //Control 1 (balance), dest 0 (waveply), at dest, 2 channels
-1,
2,
0, //Control 2 (mute), dest 0 (waveply), at dest, 1 channel
-1,
1,
0, //Control 3 (peakmeter), dest 0 (waveply), at dest, 2 channels

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

220

-1,
2,
0, //Control 4 (qsound on), dest 0 (waveply), at dest, 2 channels
-1,
1,
0, //Control 5 (reverb on), dest 0 (waveply), at dest, 1 channels
-1,
1,
0, //Control 6 (reverb depth), dest 0 (waveply), at dest, 2 channels
-1,
2,
0, //Control 7 (chorus depth), dest 0 (waveply), at dest, 2 channels
-1,
2,
0, //Control 8 (treble on), dest 0 (waveply), at dest, 1 channels
-1,
1,
0, //Control 9 (treble slider), dest 0 (waveply), at dest, 2 channels
-1,
2,
0, //Control 10(bass slider), dest 0 (waveply), at dest, 2 channels A
-1,
2,
1, //Control 11 (volume), dest 1 (waverec), at dest, 2 channels B
-1,
2,
1, //Control 12 (balance), dest 1 (waverec), at dest, 2 channels C
-1,
2,
1, //Control 13 (mute), dest 1 (waverec), at dest, 1 channel D
-1,
1,
1, //Control 14 (peakmeter), dest 1 (waverec), at dest, 2 channels E
-1,
2,
1, //Control 15 (qsound on), dest 1 (waverec), at dest, 1 channels F
-1,
1,
1, //Control 16(reverb on), dest 0 (waveply), at dest, 1 channels 10
-1,
1,
1, //Control 17(reverb depth), dest 1 (waveply), at dest, 2 channels 11
-1,
2,
1, //Control 18 (chorus depth), dest 1 (waveply), at dest, 2 channels 12
-1,
2,
1, //Control 19 (treble on), dest 1 (waverec), at dest, 1 channels 13
-1,
1,
1, //Control 20 (treble depth), dest 1 (waverec), at dest, 2 channels 14
-1,
2,
1, //Control 21 (bass depth), dest 1 (waverec), at dest, 2 channels 15
-1,
2,
0, //Control 22 (volume), dest 0 (waveply), source 0 (midiout), 2 channels 16
0,
2,
0, //Control 23 (balance), dest 0 (waveply), source 0 (midiout), 2 channels 17
0,
2,
0, //Control 24 (mute), dest 0 (waveply), source 0 (midi), 1 channels 18
0,

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

221

1,
0, //Control 25 (pm), dest 0 (waveply), source 0 (midi), 2 channels 19
0,
2,
0, //Control 26 (volume), dest 0 (waveply), source 1 (wave), 2 channels 1A
1,
2,
0, //Control 27 (balance), dest 0 (waveply), source 1 (wave), 2 channels 1B
1,
2,
0, //Control 28 (mute), dest 0 (waveply), source 1 (wave), 1 channels 1C
1,
1,
0, //Control 29 (pm), dest 0 (waveply), source 1 (wave), 2 channels 1D
1,
2,
0, //Control 30 (volume), dest 0 (waveply), source 2 (SB), 2 channels 1E
2,
2,
0, //Control 31 (balance), dest 0 (waveply), source 2 (SB), 2 channels 1F
2,
2,
0, //Control 32 (mute), dest 0 (waveply), source 2 (SB), 1 channels 20
2,
1,
0, //Control 33 (pm), dest 0 (waveply), source 2 (SB), 2 channels 21
2,
2,
0, //Control 34 (volume), dest 0 (waveply), source 3 (CD), 2 channels 22
3,
2,
0, //Control 35 (balance), dest 0 (waveply), source 3 (CD), 2 channels 23
3,
2,
0, //Control 36 (mute), dest 0 (waveply), source 3 (CD), 1 channels 24
3,
1,
0, //Control 37 (pm), dest 0 (waveply), source 3 (CD), 2 channels 25
3,
2,
0, //Control 38 (on or off), dest 0 (waveply), source 3 (CD), 1 channels 26
3,
1,
0, //Control 39 (volume), dest 0 (waveply), source 4 (LINE), 2 channels 27
4,
2,
0, //Control 40 (balance), dest 0 (waveply), source 4 (LINE), 2 channels 28
4,
2,
0, //Control 41 (mute), dest 0 (waveply), source 4 (LINE), 1 channels 29
4,
1,
0, //Control 42 (pm), dest 0 (waveply), source 4 (LINE), 2 channels 2A
4,
2,
0, //Control 43 (on or off), dest 0 (waveply), source 4 (LINE), 1 channels 2B
4,
1,
0, //Control 44 (volume), dest 0 (waveply), source 5 (MIC), 2 channels 2C
5,
2,
0, //Control 45 (balance), dest 0 (waveply), source 5 (MIC), 2 channels 2D
5,
2,

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

222

0, //Control 46 (mute), dest 0 (waveply), source 5 (MIC), 1 channels 2E
5,
1,
0, //Control 47 (pm), dest 0 (waveply), source 5 (MIC), 2 channels 2F
5,
2,
0, //Control 48 (on or off), dest 0 (waveply), source 5 (MIC), 1 channels 30
5,
1,
1, //Control 49 (volume), dest 1 (waverec), source 0 (midiout), 2 channels 31
0,
2,
1, //Control 50 (balance), dest 1 (waverec), source 0 (midiout), 2 channels 32
0,
2,
1, //Control 51 (mute), dest 1 (waverec), source 0 (midi), 1 channels 33
0,
1,
1, //Control 52 (pm), dest 1 (waverec), source 0 (midi), 2 channels 34
0,
2,
1, //Control 53 (volume), dest 1 (waverec), source 1 (wave), 2 channels 35
1,
2,
1, //Control 54 (balance), dest 1 (waverec), source 1 (wave), 2 channels
1,
2,
1, //Control 55 (mute), dest 1 (waverec), source 1 (wave), 1 channels
1,
1,
1, //Control 56 (pm), dest 1 (waverec), source 1 (wave), 2 channels
1,
2,
1, //Control 57 (volume), dest 1 (waverec), source 2 (SB), 2 channels
2,
2,
1, //Control 58 (balance), dest 1 (waverec), source 2 (SB), 2 channels
2,
2,
1, //Control 59 (mute), dest 1 (waverec), source 2 (SB), 1 channels
2,
1,
1, //Control 60 (pm), dest 1 (waverec), source 2 (SB), 2 channels
2,
2,
1, //Control 61 (volume), dest 1 (waverec), source 3 (CD), 2 channels
3,
2,
1, //Control 62 (balance), dest 1 (waverec), source 3 (CD), 2 channels
3,
2,
1, //Control 63 (mute), dest 1 (waverec), source 3 (CD), 1 channels
3,
1,
1, //Control 64 (pm), dest 1 (waverec), source 3 (CD), 2 channels
3,
2,
1, //Control 65 (on or off), dest 1 (waverec), source 3 (CD), 1 channels
3,
1,
1, //Control 66 (volume), dest 1 (waverec), source 4 (LINE), 2 channels
4,
2,
1, //Control 67 (balance), dest 1 (waverec), source 4 (LINE), 2 channels

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

223

4,
2,
1, //Control 68 (mute), dest 1 (waverec), source 4 (LINE), 1 channels
4,
1,
1, //Control 69 (pm), dest 1 (waverec), source 4 (LINE), 2 channels
4,
2,
1, //Control 70 (on or off), dest 1 (waverec), source 4 (LINE), 1 channels
4,
1,
1, //Control 71 (volume), dest 1 (waverec), source 5 (MIC), 2 channels
5,
2,
1, //Control 72 (balance), dest 1 (waverec), source 5 (MIC), 2 channels
5,
2,
1, //Control 73 (mute), dest 1 (waverec), source 5 (MIC), 1 channels
5,
1,
1, //Control 74 (pm), dest 1 (waverec), source 5 (MIC), 2 channels
5,
2,
1, //Control 75 (on or off), dest 1 (waverec), source 5 (MIC), 1 channels
5,
1,
//-------------------------------
// Source map, maps a relative source to the actual source per destination.
// these come in pairs
// The first index is the destination no
// the 2nd the relative source no (0,1,2 etc)
// then each one that doesnt exist at that dest gets a UINT_MAX
// and the third the actual source number
//-------------------------------
#SOURCEMAP
0, // for dest 0, relsource 0, actsource 0
1, // for dest 0, relsource 1, actsource 1
2, // for dest 0, relsource 2, actsource 2
3, // for dest 0, relsource 3, actsource 3
4, // for dest 0, relsource 4, actsource 4
5, // for dest 0, relsource 5, actsource 5
0, // for dest 1, relsource 0, actsource 0
1, // for dest 1, relsource 1, actsource 1
2, // for dest 1, relsource 2, actsource 2
3, // for dest 1, relsource 3, actsource 3
4, // for dest 1, relsource 4, actsource 4
5, // for dest 1, relsource 5, actsource 5
//-------------------------------
// Source Definitions
//-------------------------------
//Source0 - MidiOut
//-------------------------------
#SOURCEDEF
0, // dwDestination
0, // dwSource SOURCE_MIDIOUT
0, // dwLineID SOURCE_MIDIOUT
h80000000, // MIXERLINE_LINEF_SOURCE fdwLine
0, // dwUser
h00001004, // MIXERLINE_COMPONENTTYPE_SRC_SYNTHESIZER dwComponentType
2, // cChannels
0, // cConnections
0, // cControls
Midi, // short name
Midi Play Out,// long name

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

224

MIDI, // szLineTypeName (my keyword for type of line)
MIDIOUT, // szLineLongName (my keyword)
3, // MIXERLINE_TARGETTYPE_MIDIOUT target dwType
0, // target dwDeviceID
1, // target wMid MM_MICROSOFT
h7FFF, // PID_SYNTH target wPid
h0100, // DRV_VERSION_SYNTH target vDriverVersion
Mwave MIDI Synthesizer, // target szPname
//-------------------------------
// Source 1 - WaveOut
//-------------------------------

#SOURCEDEF
0, // dwDestination
1, // dwSource SOURCE_WAVEOUT
1, // dwLineID SOURCE_WAVEOUT
h80000000, // MIXERLINE_LINEF_SOURCE fdwLine
0, // dwUser
h00001008, // MIXERLINE_COMPONENTTYPE_SRC_WAVEOUT dwComponentType
2, // cChannels
0, // cConnections
0, // cControls
Wave, // short name
Wave Player Output, // long name
WAVE, // szLineTypeName (my keyword for type of line)
WAVEOUT, // szLineLongName (my keyword)
1, // MIXERLINE_TARGETTYPE_WAVEOUT target dwType
0, // target dwDeviceID
1, // target wMid MM_IBM
15, // PID_WAVEOUT target wPid
h0200, // DRV_VERSION_WAVEOUT target vDriverVersion
Mwave Wave Audio Driver,// target szPname
//------------------------------
// Source 2 - SB Out (games)
//-------------------------------
#SOURCEDEF
0, // dwDestination (not use for sources)
2, // dwSource SOURCE_SB
2, // dwLineID SOURCE_SB
h80000000, // MIXERLINE_LINEF_SOURCE fdwLine
0, // dwUser
h00001000, // MIXERLINE_COMPONENTTYPE_SRC_UNDEFINED dwComponentType
2, // cChannels
0, // cConnections
0, // cControls
SndBlstr, // short name
SoundBlaster, // long name
GAMES, // szLineTypeName (my keyword for type of line)
SOUNDBLASTER, // szLineLongName (my keyword)
0, // MIXERLINE_TARGETTYPE_UNDEFINED target dwType
0, // target dwDeviceID
0, // target wMid
0, // target wPid
0, // target vDriverVersion
Undefined, // target szPname
//------------------------------
// Source 3 - SB CD
//-------------------------------
#SOURCEDEF
0, // dwDestination (not used for sources)
3, // dwSource CD
3, // dwLineID CD
h80000000, // MIXERLINE_LINEF_SOURCE fdwLine

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

225

0, // dwUser
h00001005, // MIXERLINE_COMPONENTTYPE_SRC_COMPACTDISC dwComponentType
2, // cChannels
0, // cConnections
0, // cControls
CD, // short name
CD, // long name
CD, // szLineTypeName (my keyword for type of line)
CD, // szLineLongName (my keyword)
0, // MIXERLINE_TARGETTYPE_UNDEFINED target dwType
0, // target dwDeviceID
0, // target wMid
0, // target wPid
0, // target vDriverVersion
Undefined, // target szPname
//------------------------------
// Source 4 - SB LINE
//-------------------------------
#SOURCEDEF
0, // dwDestination (not used for sources)
4, // dwSource LINE
4, // dwLineID LINE
h80000000, // MIXERLINE_LINEF_SOURCE fdwLine
0, // dwUser
h00001002, // MIXERLINE_COMPONENTTYPE_SRC_LINE dwComponentType
2, // cChannels
0, // cConnections
0, // cControls
LINE, // short name
LINE, // long name
LINE, // szLineTypeName (my keyword for type of line)
LINE, // szLineLongName (my keyword)
0, // MIXERLINE_TARGETTYPE_UNDEFINED target dwType
0, // target dwDeviceID
0, // target wMid
0, // target wPid
0, // target vDriverVersion
Undefined, // target szPname
//------------------------------
// Source 5 - MIC
//-------------------------------
#SOURCEDEF
0, // dwDestination (not used for sources)
5, // dwSource MIC
5, // dwLineID MIC
h80000000, // MIXERLINE_LINEF_SOURCE fdwLine
0, // dwUser
h00001003, // MIXERLINE_COMPONENTTYPE_SRC_MICROPHONE dwComponentType
2, // cChannels
0, // cConnections
0, // cControls
MIC, // short name
MIC, // long name
MIC, // szLineTypeName (my keyword for type of line)
MIC, // szLineLongName (my keyword)
0, // MIXERLINE_TARGETTYPE_UNDEFINED target dwType
0, // target dwDeviceID
0, // target wMid
0, // target wPid
0, // target vDriverVersion
Undefined, // target szPname
//-------------------------------
// mxlDestinations
//-------------------------------

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

226

// Destination 0 - Waveout

//-------------------------------
#DESTDEF
0, // dwDestination DEST_WAVEOUT
0, // dwSource
hFFFF0000, // dwLineID
0, // fdwLine
0, // dwUser
h00000004, // MIXERLINE_COMPONENTTYPE_DST_SPEAKERS dwComponentType
2, // cChannels
6, // cConnections
11, // cControls
Master, // short name
Master Speaker Out, // long name
WAVE, // szLineTypeName (my keyword for type of line)
WAVEOUT, // szLineLongName (my keyword)
1, // MIXERLINE_TARGETTYPE_WAVEOUT target dwType
0, // target dwDeviceID
1, // target wMid MM_IBM
15, // PID_WAVEOUT target wPid
h0200, // DRV_VERSION_WAVEOUT target vDriverVersion
Mwave Wave Audio Driver,// target szPname
//-------------------------------
// Destination 1 - Wavein
//-------------------------------
#DESTDEF
1, // dwDestination DEST_WAVEIN
0, // dwSource
hFFFF0001, // dwLineID
0, // fdwLine
0, // dwUser
h00000007, // MIXERLINE_COMPONENTTYPE_DST_WAVEIN dwComponentType
2, // cChannels
6, // cConnections
11, // cControls
Master, // short name
Master Record In, // long name
WAVEIN, // szLineTypeName (my keyword for type of line)
WAVEIN, // szLineLongName (my keyword)
2, // MIXERLINE_TARGETTYPE_WAVEIN target dwType
0, // target dwDeviceID
1, // target wMid MM_IBM
14, // PID_WAVEIN target wPid
h0200, // DRV_VERSION_WAVEIN target vDriverVersion
Mwave Wave Audio Driver,// target szPname
//-------------------------------
// end of initialization of destinations
//---
// mxc (controls)
//---
//
// The following numbers are the destination numbers:
// DEST_WAVEOUT 0
// DEST_WAVEIN 1
//
// The following numbers are the relative source numbers for dest 0
// SOURCE_MIDIOUT 0
// SOURCE_WAVEOUT 1
// SOURCE_SB 2
// SOURCE_CD 3
// SOURCE_LINE 4
// SOURCE_MIC 5

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

227

//
// The following numbers are the relative source numbers for dest 1
// SOURCE_MIDIOUT 0
// SOURCE_WAVEOUT 1
// SOURCE_CD 3
// SOURCE_LINE 4
// SOURCE_MIC 5
//
//---
//Control0 - MASTER volume at DAC
//---
#CONTROLDEF
0, // VOL_OUTMIDI dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
MASTER, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
MASTER, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
16, // Metrics.cSteps
SPKRLVOL, // ini file entry
SPKRRVOL, // ini file entry
//---
//Control1 - MASTER balance at DAC
//---
#CONTROLDEF
1, // BAL_LINE dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
MASTER, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
MASTER, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
BALMAST, // INI file entry
BALMAST, // INI file entry (only 1 is used)
//---
//Control2 - MUTE of Master DAC
//---
#CONTROLDEF
2, // MUTE_OUTLINE dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
MASTER, // szName
MUTE, // szControlTypeName (my keyword for type of control)
MASTER, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
MUTEMAST, // ini file entry
//---
//Control3 - MASTER Peak meter at DAC
//---

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

228

#CONTROLDEF
3, // VU_LINEOUT dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
MASTER, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
MASTER, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control4 - Q Sound enable at DAC
//---
#CONTROLDEF
4, // QSND_ENABLE dwControlID
h20010005, // MIXERCONTROL_CONTROLTYPE_STEREOENH dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
ENABLE, // szShortName
QSOUND, // szName
QSOUND, // szControlTypeName (my keyword for type of control)
MASTER, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
0, // Metrics.cSteps
QSOUND, // INI file entry
//---
//Control5 - REVERB and CHORUS ON at DAC
//---
#CONTROLDEF
5, // REV_ENABLE dwControlID
h20010000, // MIXERCONTROL_CONTROLTYPE_BOOLEAN dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
ENABLE, // szShortName
EFFECTS ON, // szName
REVEN, // szControlTypeName (my keyword for type of control)
MASTER, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
REVEN, // INI file entry
//---
//Control6 - REVERB depth at DAC
//---
#CONTROLDEF
6, // REV_ENABLE dwControlID
h50030000, // MIXERCONTROL_CONTROLTYPE_FADER dwControlType
0, // fdwControl
0, // cMultipleItems
REVERB, // szShortName
REVERB DEPTH, // szName
REVERB, // szControlTypeName (my keyword for type of control)
MASTER, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
65535, // Bounds.dwMaximum
32, // Metrics.cSteps

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

229

REVMAST, // INI file entry
REVMAST, // INI file entry
//---
//Control7 - CHORUS DEPTH at DAC
//---
#CONTROLDEF
7, // REV_ENABLE dwControlID
h50030000, // MIXERCONTROL_CONTROLTYPE_FADER dwControlType
0, // fdwControl
0, // cMultipleItems
CHORUS, // szShortName
CHORUS DEPTH, // szName
CHORUS, // szControlTypeName (my keyword for type of control)
MASTER, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
65535, // Bounds.dwMaximum
32, // Metrics.cSteps
CHOMAST,
CHOMAST,
//---
//Control8 - MASTER BASS and TREBLE enable at DAC
//---
#CONTROLDEF
8, // BASS_LINEOUT dwControlID
h20010000, // MIXERCONTROL_CONTROLTYPE_BOOLEAN dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
ENABLE, // szShortName
TREBLE ENABLE, // szName
BASSEN, // szControlTypeName (my keyword for type of control)
MASTER, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
BASSEN, // INI file entry
//---
//Control9 - MASTER TREBLE slider at DAC
//---
#CONTROLDEF
9, // BASS_LINEOUT dwControlID
h50030003, // MIXERCONTROL_CONTROLTYPE_TREBLE dwControlType
0, // fdwControl
0, // cMultipleItems
TREBLE, // szShortName
TREBLE CONTROL, // szName
TREBLE, // szControlTypeName (my keyword for type of control)
MASTER, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
65535, // Bounds.dwMaximum
32, // Metrics.cSteps
TREMAST, // INI file entry
TREMAST, // INI file entry (only 1 is used)
//---
//Control10 - MASTER Bass slider at dac
//---
#CONTROLDEF
10, // BASS_LINEOUT dwControlID
h50030002, // MIXERCONTROL_CONTROLTYPE_BASS dwControlType
0, // fdwControl
0, // cMultipleItems
BASS, // szShortName

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

230

BASS SLIDER, // szName
BASS, // szControlTypeName (my keyword for type of control)
MASTER, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
65535, // Bounds.dwMaximum
32, // Metrics.cSteps
BASMAST, // INI file entry
BASMAST, // INI file entry (only 1 is used)
//---
//Control11 - MASTER volume at wavein
//---
#CONTROLDEF
11, // VOL_WAVEIN dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
MASTERIN, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
MASTERIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
16, // Metrics.cSteps
RECLVOL, // ini file entry
RECRVOL, // ini file entry
//---
//Control12 - MASTER balance at wavein
//---
#CONTROLDEF
12, // BAL_LINE dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
MASTERIN, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
MASTERIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
BALMASTIN, // INI file entry
BALMASTIN, // INI file entry (only 1 is used)
//---
//Control13 - MUTE of Master wavein
//---
#CONTROLDEF
13, // MUTE_OUTLINE dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
MASTERIN, // szName
MUTE, // szControlTypeName (my keyword for type of control)
MASTERIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
0, // Metrics.cSteps
MUTEMASTIN, // ini file entry
//---
//Control14 - Peak meter at wavin dest

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

231

//---
#CONTROLDEF
14, // VU_LINEOUT dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
MASTERIN, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
MASTERIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control15 - Q Sound enable at wi
//---
#CONTROLDEF
15, // QSND_ENABLE dwControlID
h20010005, // MIXERCONTROL_CONTROLTYPE_STEREOENH dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
ENABLE, // szShortName
QSOUND, // szName
QSOUND, // szControlTypeName (my keyword for type of control)
MASTERIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
QSOUNDIN, // INI file entry
//---
//Control16 - REVERB and CHORUS ON at wi
//---
#CONTROLDEF
16, // REV_ENABLE dwControlID
h20010000, // MIXERCONTROL_CONTROLTYPE_BOOLEAN dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
ENABLE, // szShortName
REVERB ON, // szName
REVEN, // szControlTypeName (my keyword for type of control)
MASTERIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
REVENIN, // INI file entry
//---
//Control17 - REVERB depth at wi
//---
#CONTROLDEF
17, // REV_ENABLE dwControlID
h50030000, // MIXERCONTROL_CONTROLTYPE_FADER dwControlType
0, // fdwControl
0, // cMultipleItems
REVERB, // szShortName
REVERB DEPTH, // szName
REVERB, // szControlTypeName (my keyword for type of control)
MASTERIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
65535, // Bounds.dwMaximum

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

232

32, // Metrics.cSteps

REVMASTI, // INI file entry
REVMASTI, // INI file entry
//---
//Control18 - CHORUS DEPTH at wi
//---
#CONTROLDEF
18, // REV_ENABLE dwControlID
h50030000, // MIXERCONTROL_CONTROLTYPE_FADER dwControlType
0, // fdwControl
0, // cMultipleItems
CHORUS, // szShortName
CHORUS DEPTH, // szName
CHORUS, // szControlTypeName (my keyword for type of control)
MASTERIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
65535, // Bounds.dwMaximum
32, // Metrics.cSteps
CHOMASTI,
CHOMASTI,
//---
//Control19 - MASTER BASS TREBLE on at wi
//---
#CONTROLDEF
19, // BASS_LINEOUT dwControlID
h20010000, // MIXERCONTROL_CONTROLTYPE_BOOLEAN dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
ENABLE, // szShortName
TONE CONTROL, // szName
BASSEN, // szControlTypeName (my keyword for type of control)
MASTERIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
BASSENIN, // INI file entry
//---
//Control20 - MASTER TREBLE slider at wi
//---
#CONTROLDEF
20, // BASS_LINEOUT dwControlID
h50030003, // MIXERCONTROL_CONTROLTYPE_TREBLE dwControlType
0, // fdwControl
0, // cMultipleItems
TREBLE, // szShortName
TREBLE CONTROL, // szName
TREBLE, // szControlTypeName (my keyword for type of control)
MASTERIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
h7FFF, // Bounds.dwMaximum
32, // Metrics.cSteps
TREMASTI, // INI file entry
TREMASTI, // INI file entry (only 1 is used)
//---
//Control21 - MASTER Bass slider at wi
//---
#CONTROLDEF
21, // BASS_LINEOUT dwControlID
h50030002, // MIXERCONTROL_CONTROLTYPE_BASS dwControlType

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

233

0, // fdwControl
0, // cMultipleItems
BASS, // szShortName
BASS SLIDER, // szName
BASS, // szControlTypeName (my keyword for type of control)
MASTERIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
65535, // Bounds.dwMaximum
32, // Metrics.cSteps
BASMASTI, // INI file entry
BASMASTI, // INI file entry (only 1 is used)
//---
//Control22 - Volume between MIDI and DAC
//---
#CONTROLDEF
22, // VOL_OUTMIDI dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
MIDI, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
MIDI, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
64, // Metrics.cSteps
MIDILVOL, // ini file entry
MIDIRVOL, // ini file entry
//---
//Control23 - Balance between midi and DAC
//---
#CONTROLDEF
23, // BAL_LINE dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
MIDI, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
MIDI, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
BALMIDI, // INI file entry
BALMIDI, // INI file entry (only 1 is used)
//---
//Control24 - MUTE of Midiout to DAC
//---
#CONTROLDEF
24, // MUTE_OUTMIDI dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
MIDI, // szName
MUTE, // szControlTypeName (my keyword for type of control)
MIDI, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
0, // Metrics.cSteps

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

234

MUTEMIDI, // ini file entry
//---
//Control25 - Peak meter at MIDIout to DAC
//---
#CONTROLDEF
25, // VU_MIDIOUT dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
MIDI, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
MIDI, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control26 - Volume between WAVE and DAC
//---
#CONTROLDEF
26, // VOL_OUTWAVE dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
WAVE, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
WAVE, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
64, // Metrics.cSteps
WAVELVOL, // ini file entry
WAVERVOL, // ini file entry
//---

//Control27 - Balance between wave and DAC
//---
#CONTROLDEF
27, // BAL_WAVE dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
WAVE, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
WAVE, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
BALWAVE, // INI file entry
BALWAVE, // INI file entry (only 1 is used)
//---
//Control28 - MUTE of WAVE to DAC
//---
#CONTROLDEF
28, // MUTE_OUTWAVE dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

235

MUTE, // szShortName
WAVE, // szName
MUTE, // szControlTypeName (my keyword for type of control)
WAVE, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
0, // Metrics.cSteps
MUTEWAVE, // ini file entry
//---
//Control29 - Peak meter at WAVEout to DAC
//---
#CONTROLDEF
29, // VU_WAVEOUT dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
WAVE, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
WAVE, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control30 - Volume between SB and DAC
//---
#CONTROLDEF
30, // VOL_OUTSB dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
GAMES, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
GAMES, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
64, // Metrics.cSteps
SBLVOL, // ini file entry
SBRVOL, // ini file entry
//---
//Control31 - Balance between SB and DAC
//---
#CONTROLDEF
31, // BAL_SB dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
GAMES, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
GAMES, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
BALSB, // INI file entry
BALSB, // INI file entry (only 1 is used)
//---
//Control32 - MUTE of SB to DAC

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

236

//---
#CONTROLDEF
32, // MUTE_OUTSB dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
GAMES, // szName
MUTE, // szControlTypeName (my keyword for type of control)
GAMES, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
0, // Metrics.cSteps
MUTESB, // ini file entry
//---
//Control33 - Peak meter at SBout to DAC
//---
#CONTROLDEF
33, // VU_SBOUT dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
GAMES, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
GAMES, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control34 - Volume between CD and DAC
//---
#CONTROLDEF
34, // VOL_OUTCD dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
CD, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
64, // Metrics.cSteps
AUXCDVL, // ini file entry
AUXCDVR, // ini file entry
//---
//Control35 - Balance between CD and DAC
//---
#CONTROLDEF
35, // BAL_CDOUT dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
CD, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

237

32767, // Bounds.dwMaximum
16, // Metrics.cSteps
AUXCDB, // INI file entry
AUXCDB, // INI file entry (only 1 is used)
//---
//Control36 - MUTE of CD to DAC
//---
#CONTROLDEF
36, // MUTE_OUTCD dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
CD, // szName
MUTE, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
0, // Metrics.cSteps
AUXCDM, // ini file entry
//---
//Control37 - Peak meter at CDout to DAC
//---
#CONTROLDEF
37, // VU_CDOUT dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
CD, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control38 - Switch on or off of CD
//---
#CONTROLDEF
38, // CDOUT_ENABLE dwControlID
h20010000, // MIXERCONTROL_CONTROLTYPE_BOOLEAN dwControlType
1, // fdwControl uniform
0, // cMultipleItems
ENABLE, // szShortName
CD, // szName
ENABLE, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
0, // Metrics.cSteps
AUXCDE, // INI file entry
//---
//Control39 - Volume between LINE and DAC
//---
#CONTROLDEF
39, // VOL_OUTLINE dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

238

LINE, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
64, // Metrics.cSteps
AUXLVL, // ini file entry
AUXLVR, // ini file entry
//---
//Control40 - Balance between LINE and DAC
//---
#CONTROLDEF
40, // BAL_CDOUT dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
LINE, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
AUXLB, // INI file entry
AUXLB, // INI file entry (only 1 is used)
//---
//Control41 - MUTE of LINE to DAC
//---
#CONTROLDEF
41, // MUTE_OUTLINE dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
LINE, // szName
MUTE, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
0, // Metrics.cSteps
AUXLM, // ini file entry
//---
//Control42 - Peak meter at LINEout to DAC
//---
#CONTROLDEF
42, // VU_LINEOUT dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
LINE, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control43 - Switch on or off of LINE to DAC
//---

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

239

#CONTROLDEF
43, // CDOUT_ENABLE dwControlID
h20010000, // MIXERCONTROL_CONTROLTYPE_BOOLEAN dwControlType
1, // fdwControl uniform
0, // cMultipleItems
ENABLE, // szShortName
LINE, // szName
ENABLE, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
0, // Metrics.cSteps
AUXLE, // INI file entry
//---
//Control44 - Volume between MIC and DAC
//---
#CONTROLDEF
44, // VOL_OUTMIC dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
MIC, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
64, // Metrics.cSteps
AUXMVL, // ini file entry
AUXMVR, // ini file entry
//---
//Control45 - Balance between MIC and DAC
//---
#CONTROLDEF
45, // BAL_CDOUT dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
MIC, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
AUXMB, // INI file entry
AUXMB, // INI file entry
//---
//Control46 - MUTE of MIC to DAC
//---
#CONTROLDEF
46, // MUTE_OUTMIC dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
MIC, // szName
MUTE, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

240

1, // Bounds.dwMaximum
0, // Metrics.cSteps
AUXMM, // ini file entry
//---
//Control47 - Peak meter at MICout to DAC
//---
#CONTROLDEF
47, // VU_MICOUT dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
MIC, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control48 - Switch on or off of MIC to DAC
//---
#CONTROLDEF
48, // CDOUT_ENABLE dwControlID
h20010000, // MIXERCONTROL_CONTROLTYPE_BOOLEAN dwControlType
1, // fdwControl uniform
0, // cMultipleItems
ENABLE, // szShortName
MIC, // szName
ENABLE, // szControlTypeName (my keyword for type of control)
AUX, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
0, // Metrics.cSteps
AUXME, // INI file entry
//---
// NOW STARTS THE SAME STUFF FOR RECORD IN!!!
//
//Control49 - Volume between MIDI and WAVEIN
//---
#CONTROLDEF
49, // VOL_INMIDI dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
MIDIOUTIN, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
MIDIOUTIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
64, // Metrics.cSteps
MIDILVOLIN, // ini file entry
MIDIRVOLIN, // ini file entry
//---
//Control50 - Balance between midi and WAVEIN
//---
#CONTROLDEF
50, // BAL_LINE dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

241

0, // cMultipleItems
BALANCE, // szShortName
MIDIOUTIN, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
MIDIOUTIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
BALMIDIIN, // INI file entry
BALMIDIIN, // INI file entry (only 1 is used)
//---
//Control51 - MUTE of Midiout to WAVEIN
//---
#CONTROLDEF
51, // MUTE_INMIDI dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
MIDIOUTIN, // szName
MUTE, // szControlTypeName (my keyword for type of control)
MIDIOUTIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
MUTEMIDIIN, // ini file entry
//---
//Control52 - Peak meter at MIDIout to WAVEIN
//---
#CONTROLDEF
52, // VU_MIDIOUTIN dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
MIDIOUTIN, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
MIDIOUTIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control53 - Volume between WAVE and WAVEIN
//---
#CONTROLDEF
53, // VOL_INWAVE dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
WAVEOUTIN, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
WAVEOUTIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
64, // Metrics.cSteps
WAVELVOLIN, // ini file entry
WAVERVOLIN, // ini file entry
//---

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

242

//Control54 - Balance between wave and WAVEIN
//---
#CONTROLDEF
54, // BAL_WAVE dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
WAVEOUTIN, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
WAVEOUTIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
BALWAVEIN, // INI file entry
BALWAVEIN, // INI file entry (only 1 is used)
//---
//Control55 - MUTE of WAVE to WAVEIN
//---
#CONTROLDEF
55, // MUTE_INWAVE dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
WAVEOUTIN, // szName
MUTE, // szControlTypeName (my keyword for type of control)
WAVEOUTIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
0, // Metrics.cSteps
MUTEWAVEIN, // ini file entry
//---
//Control56 - Peak meter at WAVEout to WAVEIN
//---
#CONTROLDEF
56, // VU_WAVEIN dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
WAVEOUTIN, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
WAVEOUTIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control57 - Volume between SB and wavein
//---
#CONTROLDEF
57, // VOL_OUTSB dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
SB, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
GAMESOUTIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

243

0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
64, // Metrics.cSteps
SBLVOLIN, // ini file entry
SBRVOLIN, // ini file entry
//---
//Control58 - Balance between SB and wavein
//---
#CONTROLDEF
58, // BAL_SB dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
SB, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
GAMESOUTIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
BALSBIN, // INI file entry
BALSBIN, // INI file entry (only 1 is used)
//---
//Control59 - MUTE of SB to wavein
//---
#CONTROLDEF
59, // MUTE_OUTSB dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
SB, // szName
MUTE, // szControlTypeName (my keyword for type of control)
GAMESOUTIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
MUTESBIN, // ini file entry
//---
//Control60 - Peak meter at SBoutin to wavein
//---
#CONTROLDEF
60, // VU_SBOUT dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
SB, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
GAMESOUTIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum

0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control61 - Volume between CD and WAVEIN
// This is same as waveout but just let the
// user think that they are different
//---

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

244

#CONTROLDEF
61, // VOL_INCD dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
CD, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
64, // Metrics.cSteps
RECCDVL, // ini file entry
RECCDVR, // ini file entry
//---
//Control62 - Balance between CD and WAVEIN
//---
#CONTROLDEF
62, // BAL_CDOUT dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
CD, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
RECCDB, // INI file entry
RECCDB, // INI file entry (only 1 is used)
//---
//Control63 - MUTE of CD to WAVEIN
//---
#CONTROLDEF
63, // MUTE_OUTCD dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
CD, // szName
MUTE, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum

1, // Bounds.dwMaximum
1, // Metrics.cSteps
RECCDM, // ini file entry
//---
//Control64 - Peak meter at CDout to WAVEIN
//---
#CONTROLDEF
64, // VU_CDOUT dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
CD, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

245

#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control65 - Switch on or off of CD
//---
#CONTROLDEF
65, // CDOUT_ENABLE dwControlID
h20010000, // MIXERCONTROL_CONTROLTYPE_BOOLEAN dwControlType
1, // fdwControl uniform
0, // cMultipleItems
ENABLE, // szShortName
CD, // szName
ENABLE, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
RECCDE, // INI file entry
//---
//Control66 - Volume between LINE and WAVEIN
//---
#CONTROLDEF
66, // VOL_OUTLINE dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
LINE, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
64, // Metrics.cSteps
RECLVL, // ini file entry
RECLVR, // ini file entry
//---
//Control67 - Balance between LINE and WAVEIN
//---
#CONTROLDEF
67, // BAL_CDOUT dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
LINE, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
RECLB, // INI file entry
RECLB, // INI file entry (only 1 is used)
//---
//Control68 - MUTE of LINE to WAVEIN
//---
#CONTROLDEF
68, // MUTE_OUTLINE dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

246

1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
LINE, // szName
MUTE, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
RECLM, // ini file entry
//---
//Control69 - Peak meter at LINEout to WAVEIN
//---
#CONTROLDEF
69, // VU_LINEOUT dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
LINE, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---

//Control70 - Switch on or off of LINE to WAVEIN
//---
#CONTROLDEF
70, // CDOUT_ENABLE dwControlID
h20010000, // MIXERCONTROL_CONTROLTYPE_BOOLEAN dwControlType
1, // fdwControl uniform
0, // cMultipleItems
ENABLE, // szShortName
LINE, // szName
ENABLE, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
RECLE, // INI file entry
//---
//Control71 - Volume between MIC and WAVEIN
//---
#CONTROLDEF
71, // VOL_OUTMIC dwControlID
h50030001, // MIXERCONTROL_CONTROLTYPE_VOLUME dwControlType
0, // fdwControl
0, // cMultipleItems
VOLUME, // szShortName
MIC, // szName
VOLUME, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
hFFFF, // Bounds.dwMaximum
64, // Metrics.cSteps
RECMVL, // ini file entry

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

247

RECMVR, // ini file entry
//---
//Control72 - Balance between MIC and WAVEIN
//---
#CONTROLDEF
72, // BAL_CDOUT dwControlID
h40020001, // MIXERCONTROL_CONTROLTYPE_PAN dwControlType
0, // fdwControl
0, // cMultipleItems
BALANCE, // szShortName
MIC, // szName
BALANCE, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
16, // Metrics.cSteps
RECMB, // INI file entry
RECMB, // INI file entry (only 1 is used)
//---
//Control73 - MUTE of MIC to WAVEIN

//---
#CONTROLDEF
73, // MUTE_OUTMIC dwControlID
h20010002, // MIXERCONTROL_CONTROLTYPE_MUTE dwControlType
1, // fdwControl MIXERCONTROL_CONTROLF_UNIFORM
0, // cMultipleItems
MUTE, // szShortName
MIC, // szName
MUTE, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
RECMM, // ini file entry
//---
//Control74 - Peak meter at MICout to WAVEIN
//---
#CONTROLDEF
74, // VU_MICOUT dwControlID
h10020001, // MIXERCONTROL_CONTROLTYPE_PEAKMETER dwControlType
0, // fdwControl
0, // cMultipleItems
PEAKMETER, // szShortName
MIC, // szName
PEAKMETER, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#LNGWORD
-32768, // Bounds.dwMinimum
32767, // Bounds.dwMaximum
0, // Metrics.cSteps
NONE, // ini file entry
//---
//Control75 - Switch on or off of MIC to WAVEIN
//---
#CONTROLDEF
75, // CDOUT_ENABLE dwControlID
h20010000, // MIXERCONTROL_CONTROLTYPE_BOOLEAN dwControlType
1, // fdwControl uniform
0, // cMultipleItems
ENABLE, // szShortName

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

248

MIC, // szName
ENABLE, // szControlTypeName (my keyword for type of control)
WAVEIN, // szControlLineName (my keyword for line this control applies to)
#DBLWORD
0, // Bounds.dwMinimum
1, // Bounds.dwMaximum
1, // Metrics.cSteps
RECME, // INI file entry
#ENDFILE // indicates end of text file (put something here!)

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition File

This document contains information that is subject to
change without notice.

249

 MMWADKUMU-03 Appendix C - Mwave Play and Record Mixer Definition
File

This document contains information that is subject to
change without notice.

250

	Acrobat
	Notices
	Trademarks

	Table Of Contents
	Preface
	Before You Begin
	Contents of this Manual
	Sample Applications
	Related Documentation

	Chapter 1 - Introduction
	Mwave System Overview
	Developing an Mwave Application

	Chapter 2 - Audio Services
	Mwave Audio Architecture
	Windows Sound System 2.0 Implementation
	The Mwave Audio Device Drivers
	Developing an Mwave Audio Application

	Chapter 3 - Telephony Services
	Mwave Telephony Architecture
	The Telephony Device Drivers
	Developing an Mwave Telephony Application

	Chapter 4 - Fax Services
	Mwave Fax Device Driver Architecture
	Developing an Mwave Fax Application
	Summary

	Chapter 5 - Telephone Answering Machine (TAM) Services
	Mwave TAM Architecture
	Developing an Mwave TAM Application
	Using the TAM Sample Application

	Chapter 6 - FAX API Reference
	MCI Telephone Event Handler
	FAX Driver API Messages and Flags

	Chapter 7 - TAM API Reference
	MCI Telephone Event Handler
	TAM Driver API Messages and Flags

	Chapter 8 - Error Codes
	FAX/TAM Driver Error Codes
	FAX Driver Error Codes
	TAM Driver Error Codes
	Discriminator Error Codes
	TIFF Error Codes
	MEIO error codes

	APPENDIX A - String Interfaces
	A1 - String Interface FAX
	A2 - String Interface TAM

	APPENDIX B - Programmer’s Notes
	B1 - Fax Notes
	B2 - TAM Notes
	B3 - Integrated Application Notes

	APPENDIX C - Mwave Play and Record Mixer Definition File

