
HELIX™ DNA PRODUCER 10.0
 SDK DEVELOPER’S GUIDE

Release 10.0
Revision Date: 27 February 2004

RealNetworks, Inc.
2601 Elliott Avenue, Suite 1000
Seattle, WA 98121
U.S.A.

http://www.real.com
http://www.realnetworks.com

©2004 RealNetworks, Inc. All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced
or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of RealNetworks, Inc.

Printed in the United States of America.

Helix, Helix DNA, the Helix logo, the Real "bubble" (logo), RBN, RealArcade, RealAudio, Real Broadcast
Network, Real.com, RealJukebox, RealMedia, RealNetworks, RealOne, RealPix, RealPlayer, RealPresenter,
RealProducer, RealProxy, RealSystem, RealText, RealVideo, SureStream, and TurboPlay are trademarks or
registered trademarks of RealNetworks, Inc.

Other product and corporate names may be trademarks or registered trademarks of their respective companies.

CONTENTS
INTRODUCTION 1

Using the SDK .. 1
Header Files ... 1
Sample Files ... 1
SDK Notes ... 2

How this Book Is Organized .. 2
Additional Resources .. 3
Conventions Used in this Book.. 4
Technical Support .. 4
Helix Community Web Site ... 5
RealForum ... 5

QUICK START 7

Scenario 1.. 7
Sections ... 7
Interfaces ... 7
Sample Application .. 8

Scenario 2.. 8
Sections ... 8
Interfaces ... 8
Sample Applications... 9

Scenario 3.. 9
Sections ... 9
Interfaces ... 9
Sample Applications..10

Scenario 4...10
Sections ..10
Interfaces ..10
Sample Applications..10

NEW FEATURES IN HELIX DNA PRODUCER 11

What’s New in Helix DNA Producer 10.0 SDK...11
What’s New in Helix DNA Producer 9.1 SDK...13
What’s New in Helix DNA Producer 9.0 SDK...13
iii

Helix DNA Producer SDK Developer’s Guide
1 HELIX DNA PRODUCER SDK 17

Platforms..17
Installation ...18
Helix DNA Producer Interface Name Change ..18
Directory Structure ..20
Encoding System SDK Areas...20

Helix DNA Producer Encoding API ...20
Helix DNA Producer Plug-in API ...20
RealMedia Edit API ...21

Helix DNA Producer Encoding System ..21
Encoding Engine ...22
Filter Graph Manager ..22
Plug-ins ..23

Using the Helix DNA Producer SDK ..23
COM..23
Property Bags..24
XML Configuration Files ..24

2 SDK ORGANIZATION 27

The include Directory ..27
The samples Directory ...28
Using the Samples ...29

3 ENCODING OVERVIEW 31

Interfaces ..31
Getting Started..34
Class Factory...34
Setting Up an Encoding Job ...35

Input ..36
Prefilters ...41
Output Profile...45
Destination...51
Postfilters ...57
Media Profile ..58
Audiences ...59
Streams ..60

Setting Up Optional Encoding Job Features ..62
Metadata..62
Serialization ..63
Statistics...64
Logging ..65
Progress Events and Asynchronous Errors ...65
iv

Contents
Encoding RealMedia Events ...65
Audio and Video Preview ...74
Capture Device Manager and Capture Device Enumeration83
Automatic Codec Selection..85
Codec Manager and Codec Enumeration ...88
Load Management ..91

Starting and Shutting Down the Encoding Job ..92
SDK Threading Model ...92
Encoding Samples ...94

4 LOGGING SYSTEM 95

Interfaces ..95
Using the Logging System...96

Instantiating the Logging System ..97
Shutting Down the Logging System ..98

Receiving Log Messages ...98
Using the RealNetworks File Observer...99
Building Your Own Observer Class ...103

Sending Messages to the Logging System ..106
Logging Samples ...107

5 HELIX DNA PRODUCER PLUG-IN API 109

Plug-in Categories ...109
Input Plug-ins..111
Transform Plug-ins ..111
Output Plug-ins...112

Helper Classes...112
Creating Custom Media Plug-ins ..113

Organization of a Typical Helix DNA Producer Plug-in.................................114
Fitting New Code in the Plug-in Layers (Layer 4)..115
All Filter Interfaces (Layer 3)...116
IHXTFilter Interface ...117
IHXTInputFilter Interface ...127
IHXTTransformFilter Interface..130
IHXTOutputFilter Interface ..133
Configuration and Connection Agent Interfaces (Layer 2)............................135
IHXTConnectionAgent Interface...139
Audio and Video Media Formats ..143

Producer SDK Error Result Codes and Policies ..144
Plug-in Samples...144

6 REALMEDIA EDIT API 145

Editing RealMedia Files ..146
v

Helix DNA Producer SDK Developer’s Guide
Using the IHXRMEdit Interface ..146
Using the IHXRMEdit2 Interface ..148
Using the IHXRMEdit3 Interface ..150
Using the IHXRMFileSink Interface ...150

Processing Events ..153
Using the IHXRMEvents Interface ...153
Using the IHXRMEvents2 Interface ...155
Dumping Events and Image Maps from a .rm File155

Using the IHXProgressSink Interface ...155
RealMedia Samples ...157

A INTERFACE LIST 159

IHXTAsmConnectionProperty ..159
IHXTAsmHeaderSource ...159
IHXTAsmHeaderSink ...159
IHXTAsmHeaderTransform..159
IHXTAudience ...160

IHXTAudience::AddStreamConfig ..160
IHXTAudience::GetStreamConfig ...161
IHXTAudience::GetStreamConfigCount..161
IHXTAudience::MoveStreamConfig ..161
IHXTAudience::RemoveStreamConfig...161

IHXTAudienceEnumerator ...162
IHXTAudienceEnumerator::GetAudience ..162
IHXTAudienceEnumerator::GetAudienceCount...163
IHXTAudienceEnumerator::SetProfileDirectory ...163
IHXTAudienceEnumerator::SetProfileExtension...163

IHXTAudienceEnumerator2 ...164
IHXTAudienceEnumerator2::GetCodecUpdater ..164
IHXTAudienceEnumerator2::GetForceInitialize ...165
IHXTAudienceEnumerator2::GetProfileDirectory...165
IHXTAudienceEnumerator2::GetProfileExtension ..165
IHXTAudienceEnumerator2::SetCodecUpdater...166
IHXTAudienceEnumerator2::SetForceInitialize ..166

IHXTAudioPinFormat ..166
IHXTAudioPinFormat::GetChannelFormat ...167
IHXTAudioPinFormat::GetSampleFormat...167
IHXTAudioPinFormat::GetSampleRate...167
IHXTAudioPinFormat::SetChannelFormat ..168
IHXTAudioPinFormat::SetSampleFormat..168
IHXTAudioPinFormat::SetSampleRate..168

IHXTCaptureDialogControl ...169
vi

Contents
IHXTCaptureDialogControl::LaunchDialog ..169
IHXTClassFactory ..170

IHXTClassFactory::BuildInstance..170
IHXTClassFactory::BuildInstanceFromBuffer ...171
IHXTClassFactory::BuildInstanceFromFile...172
IHXTClassFactory::BuildInstanceFromObject..173
IHXTClassFactory::CreateInstance..174

IHXTCodecUpdater ...175
IHXTCodecUpdater::GetCodecMappingFile ...175
IHXTCodecUpdater::SetCodecMappingFile ..175
IHXTCodecUpdater::UpdateAudience ..176
IHXTCodecUpdater::UpdateJob...176

IHXTConfigurationAgent ...177
IHXTConfigurationAgent::Initialize...177

IHXTConnectionAgent...178
IHXTConnectionAgent::GetInputStreamCount ...179
IHXTConnectionAgent::GetNegotiatedInputFormat....................................179
IHXTConnectionAgent::GetNegotiatedOutputFormat.................................179
IHXTConnectionAgent::GetOutputStreamCount ..180
IHXTConnectionAgent::GetPreferredInputFormat180
IHXTConnectionAgent::GetPreferredOutputFormat180
IHXTConnectionAgent::GetSupportedInputFormat.....................................180
IHXTConnectionAgent::GetSupportedOutputFormat..................................181
IHXTConnectionAgent::SetNegotiatedInputFormat.....................................181
IHXTConnectionAgent::SetNegotiatedOutputFormat..................................181

IHXTCustomComparison...182
IHXTCustomComparison::Compare...183

IHXTDestination ...183
IHXTDestination::AddFailoverDestination ..184
IHXTDestination::AddPostfilter..184
IHXTDestination::GetFailoverDestination ...184
IHXTDestination::GetFailoverDestinationCount..184
IHXTDestination::GetPostfilter...185
IHXTDestination::GetPostfilterCount ...185
IHXTDestination::MoveFailoverDestination ..185
IHXTDestination::MovePostfilter..185
IHXTDestination::RemoveFailoverDestination...186
IHXTDestination::RemovePostfilter ..186

IHXTDestinationEnumerator..186
IHXTDestinationEnumerator::GetDestination ...187
IHXTDestinationEnumerator::GetDestinationCount....................................187
IHXTDestinationEnumerator::SetProfileDirectory..187
vii

Helix DNA Producer SDK Developer’s Guide
IHXTDestinationEnumerator::SetProfileExtension188
IHXTDoubleEnumerator ..188

IHXTDoubleEnumerator::Current ..188
IHXTDoubleEnumerator::First ...189
IHXTDoubleEnumerator::GetCount ...189
IHXTDoubleEnumerator::Next ...189

IHXTDoubleList ..190
IHXTDoubleList::Clear...190
IHXTDoubleList::Compare ..191
IHXTDoubleList::Contains ...191
IHXTDoubleList::GetBack..191
IHXTDoubleList::GetEnumerator ...191
IHXTDoubleList::GetFront ...192
IHXTDoubleList::GetIntersection..192
IHXTDoubleList::GetSize ...192
IHXTDoubleList::IsEmpty ..192
IHXTDoubleList::PopBack ...193
IHXTDoubleList::PopFront ..193
IHXTDoubleList::PushBack ..193
IHXTDoubleList::PushFront ...193

IHXTDoubleRange ..194
IHXTDoubleRange::Compare ..194
IHXTDoubleRange::GetError ...195
IHXTDoubleRange::GetMax...195
IHXTDoubleRange::GetMin ...195
IHXTDoubleRange::GetStepSize...195
IHXTDoubleRange::IsInRange..195
IHXTDoubleRange::Set..196

IHXTEncodingJob..196
IHXTEncodingJob::AddOutputProfile...197
IHXTEncodingJob::CancelEncoding ...197
IHXTEncodingJob::GetEventManager ...197
IHXTEncodingJob::GetInput ..198
IHXTEncodingJob::GetMetadata..198
IHXTEncodingJob::GetOutputProfile..198
IHXTEncodingJob::GetOutputProfileCount ..199
IHXTEncodingJob::MoveOutputProfile...199
IHXTEncodingJob::RemoveOutputProfile ...199
IHXTEncodingJob::SetInput ...199
IHXTEncodingJob::SetMetadata ..200
IHXTEncodingJob::StartEncoding ..200
IHXTEncodingJob::StopEncoding...200
viii

Contents
IHXTEventManager ...201
IHXTEventManager::Subscribe ...201
IHXTEventManager::Unsubscribe ...202

IHXTEventSample..202
IHXTEventSample::GetAction ..203
IHXTEventSample::SetAction ...203

IHXTEventSink ..205
IHXTEventSink::HandleEvent ...205

IHXTFileObserver ..211
IHXTFileObserver::Enable ..211
IHXTFileObserver::EnableSDKMessages..212
IHXTFileObserver::GetFilename..212
IHXTFileObserver::GetPreviousFilename ...212
IHXTFileObserver::Init ...212
IHXTFileObserver::SetCategoryFilter ...213
IHXTFileObserver::SetFilename ..213
IHXTFileObserver::SetFormat ...213
IHXTFileObserver::SetFuncAreaFilter ..214
IHXTFileObserver::SetLanguage..214
IHXTFileObserver::SetPreviousFilename ..214
IHXTFileObserver::SetSeperator ...214
IHXTFileObserver::SetSizeRoll ..215
IHXTFileObserver::SetTimeRoll ..215
IHXTFileObserver::Shutdown ...216

IHXTFilter ...216
IHXTFilter::DiscardCachedSamples ..216
IHXTFilter::Prime...217
IHXTFilter::SetFactory..217
IHXTFilter::SetGraphServices..218
IHXTFilter::Teardown ..218

IHXTFuncAreaEnum ..219
IHXTFuncAreaEnum::GetFirst ..219
IHXTFuncAreaEnum::GetNext ..219

IHXTInput...220
IHXTInput::AddPrefilter ...221
IHXTInput::GetPrefilter ..221
IHXTInput::GetPrefilterCount ..221
IHXTInput::MovePrefilter ...221
IHXTInput::RemovePrefilter ...222

IHXTInput2...222
IHXTInput2::AddInput ..223
IHXTInput2::GetInput ...223
ix

Helix DNA Producer SDK Developer’s Guide
IHXTInput2::GetInputCount..223
IHXTInput2::MoveInput ..224
IHXTInput2::RemoveInput...224

IHXTInputFilter ...224
IHXTInputFilter::ReadSample ..225
IHXTInputFilter::SetAllocator...226

IHXTInputPreviewControl ..226
IHXTInputPreviewControl::Close..226
IHXTInputPreviewControl::Open ...227

IHXTInt64Enumerator ...227
IHXTInt64Enumerator::Current ...227
IHXTInt64Enumerator::First ..228
IHXTInt64Enumerator::GetCount ..228
IHXTInt64Enumerator::Next ..228

IHXTInt64List ...228
IHXTInt64List::Clear..229
IHXTInt64List::Compare ...229
IHXTInt64List::Contains ..229
IHXTInt64List::GetBack...230
IHXTInt64List::GetEnumerator ..230
IHXTInt64List::GetFront ..230
IHXTInt64List::GetIntersection ..230
IHXTInt64List::GetSize ..231
IHXTInt64List::IsEmpty ...231
IHXTInt64List::PopBack ..231
IHXTInt64List::PopFront ...231
IHXTInt64List::PushBack ...232
IHXTInt64List::PushFront ..232

IHXTInt64Range ...232
IHXTInt64Range::Compare ...233
IHXTInt64Range::GetMax..233
IHXTInt64Range::GetMin ..233
IHXTInt64Range::GetStepSize..233
IHXTInt64Range::IsInRange...233
IHXTInt64Range::Set...234

IHXTIntEnumerator ...234
IHXTIntEnumerator::Current ...235
IHXTIntEnumerator::First ..235
IHXTIntEnumerator::GetCount ..235
IHXTIntEnumerator::Next ..235

IHXTIntList ...236
IHXTIntList::Clear ...237
x

Contents
IHXTIntList::Compare..237
IHXTIntList::Contains ..237
IHXTIntList::GetBack ...237
IHXTIntList::GetEnumerator ..237
IHXTIntList::GetFront ..238
IHXTIntList::GetIntersection...238
IHXTIntList::GetSize ..238
IHXTIntList::IsEmpty ...239
IHXTIntList::PopBack ..239
IHXTIntList::PopFront ...239
IHXTIntList::PushBack ...239
IHXTIntList::PushFront ..239

IHXTIntRange ...240
IHXTIntRange::Compare ...240
IHXTIntRange::GetMax..240
IHXTIntRange::GetMin ..241
IHXTIntRange::GetStepSize..241
IHXTIntRange::IsInRange...241
IHXTIntRange::Set...241

IHXTLoadAdjustment ..242
IHXTLoadAdjustment::GetLoadLevel..242
IHXTLoadAdjustment::SetLoadLevel...243

IHXTLogObserver ..243
IHXTLogObserver::OnEndService ...243
IHXTLogObserver::ReceiveMsg...244

IHXTLogObserver2 ..246
IHXTLogObserver2::Flush ..246

IHXTLogObserverManager ...246
IHXTLogObserverManager::SetFilter...247
IHXTLogObserverManager::SetLanguage ..247
IHXTLogObserverManager::Subscribe ..248
IHXTLogObserverManager::Unsubscribe ..248

IHXTLogObserverManager2 ...249
IHXTLogObserverManager2::FlushObservers ..249

IHXTLogSystem ...249
IHXTLogSystem::GetFunctionalAreaEnumerator ...250
IHXTLogSystem::GetObserverManagerInterface ..250
IHXTLogSystem::GetWriterInterface ...250
IHXTLogSystem::SetTranslationFileDirectory...251
IHXTLogSystem::Shutdown..251

IHXTLogWriter ..251
IHXTLogWriter::GetTranslatedMessage ..252
xi

Helix DNA Producer SDK Developer’s Guide
IHXTLogWriter::LogMessage..252
IHXTMediaInputPin ..257

IHXTMediaInputPin::EncodeSample ..257
IHXTMediaInputPin::GetPinEnabled ..257
IHXTMediaInputPin::SetPinEnabled...258

IHXTMediaProfile..258
IHXTMediaProfile::AddAudience..259
IHXTMediaProfile::GetAudience ..259
IHXTMediaProfile::GetAudienceCount ...259
IHXTMediaProfile::MoveAudience..259
IHXTMediaProfile::RemoveAudience ..260

IHXTMediaSample ..260
IHXTMediaSample::Clone ...261
IHXTMediaSample::CopyProperties ...261
IHXTMediaSample::GetDataSize..261
IHXTMediaSample::GetDataStartForReading ...262
IHXTMediaSample::GetDataStartForWriting ..262
IHXTMediaSample::GetSampleField...262
IHXTMediaSample::GetSampleFlags ..263
IHXTMediaSample::GetTime ...263
IHXTMediaSample::Initialize..263
IHXTMediaSample::SetDataSize ..264
IHXTMediaSample::SetDataStart ...264
IHXTMediaSample::SetSampleField ...264
IHXTMediaSample::SetSampleFlags ...265
IHXTMediaSample::SetTime ..266

IHXTOutputFilter ..266
IHXTOutputFilter::ReceiveSample ..266

IHXTOutputProfile ..267
IHXTOutputProfile::AddDestination ..268
IHXTOutputProfile::GetDestination ...268
IHXTOutputProfile::GetDestinationCount..268
IHXTOutputProfile::GetMediaProfile..268
IHXTOutputProfile::MoveDestination ..269
IHXTOutputProfile::RemoveDestination...269
IHXTOutputProfile::SetMediaProfile ..269

IHXTOutputProfile2 ..270
IHXTOutputProfile2::GetMetadata ..270
IHXTOutputProfile2::SetMetadata...270

IHXTPacketSource...271
IHXTPluginInfoEnum...271

IHXTPluginInfoEnum::GetCount..271
xii

Contents
IHXTPluginInfoEnum::GetPluginInfoAt...271
IHXTPluginInfoManager ..272

IHXTPluginInfoManager::GetPluginInfoEnum...272
IHXTPostfilter ...273
IHXTPrefilter ...273
IHXTPreviewSink ...274

IHXTPreviewSink::OnFormatChanged ..274
IHXTPreviewSink::OnSample..274

IHXTPreviewSinkControl ..275
IHXTPreviewSinkControl::AddSink ...275
IHXTPreviewSinkControl::GetOptimalSinkProperties...................................276
IHXTPreviewSinkControl::RemoveSink..276

IHXTPreviewSinkControl3 ..276
IHXTPreviewSinkControl3::DisableSink ..277
IHXTPreviewSinkControl3::EnableSink ...277

IHXTProperty ..278
IHXTProperty::GetBool ..279
IHXTProperty::GetDouble ..279
IHXTProperty::GetDoubleList...279
IHXTProperty::GetDoubleRange...280
IHXTProperty::GetInt...280
IHXTProperty::GetInt64...280
IHXTProperty::GetInt64List..280
IHXTProperty::GetInt64Range..281
IHXTProperty::GetIntList ...281
IHXTProperty::GetIntRange ...281
IHXTProperty::GetKey..281
IHXTProperty::GetPropertyBag...282
IHXTProperty::GetString ..282
IHXTProperty::GetType..282
IHXTProperty::GetUint ..282
IHXTProperty::GetUintList ...282
IHXTProperty::GetUintRange ...283
IHXTProperty::GetUnknown ..283
IHXTProperty::SetBool...283
IHXTProperty::SetDouble...283
IHXTProperty::SetDoubleList ...284
IHXTProperty::SetDoubleRange ...284
IHXTProperty::SetInt ...284
IHXTProperty::SetInt64..284
IHXTProperty::SetInt64List ..285
IHXTProperty::SetInt64Range ..285
xiii

Helix DNA Producer SDK Developer’s Guide
IHXTProperty::SetIntList ..285
IHXTProperty::SetIntRange ..285
IHXTProperty::SetPropertyBag ...286
IHXTProperty::SetString...286
IHXTProperty::SetUint ...286
IHXTProperty::SetUintList..286
IHXTProperty::SetUintRange..287
IHXTProperty::SetUnknown ...287

IHXTPropertyBag ..287
IHXTPropertyBag::GetBool ..289
IHXTPropertyBag::GetCount..289
IHXTPropertyBag::GetDouble ..289
IHXTPropertyBag::GetDoubleList...290
IHXTPropertyBag::GetDoubleRange...290
IHXTPropertyBag::GetInt ...290
IHXTPropertyBag::GetInt64 ...291
IHXTPropertyBag::GetInt64List..291
IHXTPropertyBag::GetInt64Range..291
IHXTPropertyBag::GetIntList..292
IHXTPropertyBag::GetIntRange..292
IHXTPropertyBag::GetProperty ..292
IHXTPropertyBag::GetPropertyBag...293
IHXTPropertyBag::GetPropertyBagEnumerator ...293
IHXTPropertyBag::GetPropertyEnumerator...294
IHXTPropertyBag::GetString ..294
IHXTPropertyBag::GetUint ..294
IHXTPropertyBag::GetUintList ...295
IHXTPropertyBag::GetUintRange ...295
IHXTPropertyBag::GetUnknown...295
IHXTPropertyBag::Remove ..296
IHXTPropertyBag::SetBool...296
IHXTPropertyBag::SetDouble...296
IHXTPropertyBag::SetDoubleList..297
IHXTPropertyBag::SetDoubleRange ...297
IHXTPropertyBag::SetInt..297
IHXTPropertyBag::SetInt64..298
IHXTPropertyBag::SetInt64List ..298
IHXTPropertyBag::SetInt64Range ..298
IHXTPropertyBag::SetIntList ..299
IHXTPropertyBag::SetIntRange ..299
IHXTPropertyBag::SetProperty ...300
IHXTPropertyBag::SetPropertyBag ...300
xiv

Contents
IHXTPropertyBag::SetString ...300
IHXTPropertyBag::SetUint ...300
IHXTPropertyBag::SetUintList ..301
IHXTPropertyBag::SetUintRange ..301
IHXTPropertyBag::SetUnknown ...302

IHXTPropertyEnumerator...303
IHXTPropertyEnumerator::Current ...303
IHXTPropertyEnumerator::First ..303
IHXTPropertyEnumerator::GetCount..304
IHXTPropertyEnumerator::Next..304

IHXTPropertyUtility ...304
IHXTPropertyUtility::ArePropertiesEquivalent..305
IHXTPropertyUtility::ArePropertyBagsEquivalent ...305
IHXTPropertyUtility::CloneProperty ..305
IHXTPropertyUtility::ClonePropertyBag ..306
IHXTPropertyUtility::IsPropertyBagCompatibleWith....................................306
IHXTPropertyUtility::IsPropertyCompatibleWith ...307

IHXTSampleAllocator ..308
IHXTSampleAllocator::GetMediaSampleOfSize...308

IHXTSampleSink..308
IHXTSampleSink::ReceiveSample..309

IHXTSerializeBuffer ..309
IHXTSerializeBuffer::ReadFromBuffer ...310
IHXTSerializeBuffer::WriteToBuffer...310

IHXTSerializationCallback..311
IHXTSerializationCallback::OnSerializeObject ...311

IHXTServiceBroker ...312
IHXTServiceBroker::GetService ...312

IHXTStatistics ...313
IHXTStatistics::GetCurrentStatistics ...313
IHXTStatistics::GetLifeTimeStatistics ..314

IHXTStreamConfig ..314
IHXTStringEnumerator ..315

IHXTStringEnumerator::Current ...315
IHXTStringEnumerator::First ..315
IHXTStringEnumerator::GetCount..316
IHXTStringEnumerator::Next ...316

IHXTTime ...316
IHXTTime::GetMilliSeconds ...317
IHXTTime::GetTime...317
IHXTTime::GetTimeString ..317
IHXTTime::SetMilliSeconds..318
xv

Helix DNA Producer SDK Developer’s Guide
IHXTTime::SetTime ...318
IHXTTime::SetTimeString ..318

IHXTTransformFilter..319
IHXTTransformFilter::ReceiveSample..319
IHXTTransformFilter::SetAllocator ...320
IHXTTransformFilter::SetSampleSink..320

IHXTUintEnumerator ..320
IHXTUintEnumerator::Current ...321
IHXTUintEnumerator::First ..321
IHXTUintEnumerator::GetCount..321
IHXTUintEnumerator::Next..322

IHXTUintList ...322
IHXTUintList::Clear ...323
IHXTUintList::Compare ...323
IHXTUintList::Contains ...323
IHXTUintList::GetBack ..323
IHXTUintList::GetEnumerator ..324
IHXTUintList::GetFront ...324
IHXTUintList::GetIntersection ..324
IHXTUintList::GetSize ..324
IHXTUintList::IsEmpty ...325
IHXTUintList::PopBack..325
IHXTUintList::PopFront ...325
IHXTUintList::PushBack ..325
IHXTUintList:PushFront...325

IHXTUintRange ...326
IHXTUintRange::Compare ...326
IHXTUintRange::GetMax ...327
IHXTUintRange::GetMin ...327
IHXTUintRange::GetStepSize ...327
IHXTUintRange::IsInRange ..327
IHXTUintRange::Set ..327

IHXTUserConfigFile ...328
IHXTUserConfigFile::ReadFromFile ..328
IHXTUserConfigFile::WriteToFile..329

IHXTVideoPinFormat...329
IHXTVideoPinFormat::GetColorFormat..330
IHXTVideoPinFormat::GetFrameDimensions ..332
IHXTVideoPinFormat::GetFrameRate ...332
IHXTVideoPinFormat::SetColorFormat...333
IHXTVideoPinFormat::SetFrameDimensions ...335
IHXTVideoPinFormat::SetFrameRate..335
xvi

Contents
IUnknown ...336
IUnknown::AddRef ..336
IUnknown::QueryInterface ...336
IUnknown::Release ..337

B REALMEDIA EDIT INTERFACE LIST 339

IHXProgressSink ..339
IHXProgressSink::NotifyFinish ..339
IHXProgressSink::NotifyStart..340
IHXProgressSink::SetProgress ...340

IHXProgressSinkControl...340
IHXRMEdit ...340

IHXRMEdit::AddInputFile ..342
IHXRMEdit::CloseLogFile...342
IHXRMEdit::CreateIRMABuffer ..342
IHXRMEdit::GetAuthor..342
IHXRMEdit::GetComment ...343
IHXRMEdit::GetCopyright ...343
IHXRMEdit::GetEndTime...344
IHXRMEdit::GetErrorString..344
IHXRMEdit::GetFileVersion ..344
IHXRMEdit::GetIndexedInputFile ...345
IHXRMEdit::GetMobilePlayback ..345
IHXRMEdit::GetNumInputFiles ..345
IHXRMEdit::GetOutputFile..346
IHXRMEdit::GetPerfectPlay..346
IHXRMEdit::GetSelectiveRecord...346
IHXRMEdit::GetStartTime ...346
IHXRMEdit::GetTitle ...347
IHXRMEdit::Log..347
IHXRMEdit::OpenLogFile ..347
IHXRMEdit::Process ..348
IHXRMEdit::RemoveRMFileSink...348
IHXRMEdit::SetAuthor ..348
IHXRMEdit::SetComment..348
IHXRMEdit::SetCopyright ..349
IHXRMEdit::SetEndTime ...349
IHXRMEdit::SetEndTime ...349
IHXRMEdit::SetInputFile..350
IHXRMEdit::SetMobilePlayback ...350
IHXRMEdit::SetOutputFile...350
IHXRMEdit::SetPerfectPlay ..351
xvii

Helix DNA Producer SDK Developer’s Guide
IHXRMEdit::SetRMFileSink..351
IHXRMEdit::SetSelectiveRecord ...351
IHXRMEdit::SetStartTime ..352
IHXRMEdit::SetStartTime ..352
IHXRMEdit::SetTitle ..352

IHXRMEdit2 ...353
IHXRMEdit2::GetMetaInformation ..353
IHXRMEdit2::GetVideoSize..353
IHXRMEdit2::HasAudio ..354
IHXRMEdit2::HasEvents..354
IHXRMEdit2::HasImageMaps ..354
IHXRMEdit2::HasVideo ...355

IHXRMEdit3 ...355
IHXRMEdit3::AddSaveProgressSink..355
IHXRMEdit3::RemoveSaveProgressSink ..356

IHXRMEvents..356
IHXRMEvents::CloseLogFile ...357
IHXRMEvents::GetDumpFile..357
IHXRMEvents::GetErrorString ..357
IHXRMEvents::GetEventFile ...358
IHXRMEvents::GetImageMapFile ...358
IHXRMEvents::GetInputFile ...358
IHXRMEvents::GetOutputFile ..359
IHXRMEvents::Log ..359
IHXRMEvents::OpenLogFile...359
IHXRMEvents::Process ..360
IHXRMEvents::SetDumpFile ..360
IHXRMEvents::SetEventFile ..360
IHXRMEvents::SetImageMapFile ..360
IHXRMEvents::SetInputFile ..361
IHXRMEvents::SetOutputFile ...361

IHXRMEvents2..361
IHXRMEvents2::AddSaveProgressSink ..362
IHXRMEvents2::RemoveSaveProgressSink...362

IHXRMFFDump ..363
IHXRMFFDump::Process ...363
IHXRMFFDump::SetEndTime ..363
IHXRMFFDump::SetInputFile ..364
IHXRMFFDump::SetOutputFile ...364
IHXRMFFDump::SetStartTime ...364

IHXRMFileSink ..364
IHXRMFileSink::OnMediaPropertyHeader ..365
xviii

Contents
IHXRMFileSink::OnPacket ...365
IHXRMFileSinkControl...366
IHXRMMetaInformation..366

C FUNCTION LIST 367

CreateFileObserver ..367
HXTCreateJobFactory ..367
RMACreateRMEdit..368
RMACreateRMEvents ..368
RMACreateRMFFDump...368
RMAGetLogSystemInterface...369
SetDLLAccessPath ...369

GLOSSARY 371

INDEX 381
xix

Helix DNA Producer SDK Developer’s Guide
xx

INTRODUCTION
Welcome to the Helix™ DNA Producer 10.0 Software Development
Kit (SDK), which RealNetworks has created for developers working
with media production. This developer’s guide will help you use the
SDK to configure and control encoding sessions, as well as create
custom media plug-ins used by the Helix DNA Producer media
engine.

For More Information: Be sure to read the SDK license
agreement in full. The license agreement is located in the
license.txt file provided with the Helix DNA Producer SDK.

Using the SDK
Because Helix DNA Producer is based on the Component Object Model
(COM) binary standard, you can develop producer components using virtually
any programming language. Using the SDK sample files, however, requires
using C++. It is important to familiarize yourself with COM before you begin
developing producer components. Note, however, that Helix DNA Producer
diverges from the COM standard to simplify cross-platform development.

Header Files

The Helix DNA Producer header files define the Helix DNA Producer
interfaces. When you are ready to begin developing producer components,
refer to the header files along with this documentation. The header files
contain information about function variables and return values not listed in
the documentation.

Sample Files

You can use the sample files included with this SDK as templates for building
your own Helix DNA Producer components. Using the sample code requires a
1

Helix DNA Producer SDK Developer’s Guide
knowledge of C or C++. All sample code supplied with this SDK is platform-
independent.

Note: RealNetworks recommends using specific compilers for
compiling code based on the sample files. For more
information, see “Platforms” on page 17.

SDK Notes

Before you begin using the Helix DNA Producer SDK, you should be aware of
the following:

• The Helix DNA Producer SDK APIs documented in this guide are
supported only in versions 9.0 and later of the producer product line, and
are not compatible with earlier versions of RealProducer.

How this Book Is Organized

Chapter 1: Helix DNA Producer SDK

This chapter contains installation and system requirements, general
information about using the SDK, and basic concepts of the Helix DNA
Producer SDK.

Chapter 2: SDK Organization

This chapter contains organizational information and a list of the files
supplied with the Helix DNA Producer SDK.

Chapter 3: Encoding Overview

This chapter describes how to use the Helix DNA Producer SDK interfaces to
configure and control encoding sessions.

Chapter 4: Logging System

This chapter discusses how to implement a system that produces log files for
your application.

Chapter 5: Helix DNA Producer Plug-In API

This chapter provides an in-depth explanation of the methods and policies
that go into writing low-level producer plug-ins.

Chapter 6: RealMedia Edit API

This chapter describes how to edit .rm files using the RealMedia Edit API.
2

 Introduction
Appendix A: Interface List

This appendix contains reference material that describes all of the Helix DNA
Producer interfaces and methods supplied with the Helix DNA Producer SDK.

Appendix B: RealMedia Edit Interface List

This appendix contains reference material that describes all of the RealMedia
Edit interfaces and methods supplied with the Helix DNA Producer SDK.

Appendix C: Function List

This appendix contains reference material that describes all of the functions
supplied with the Helix DNA Producer SDK.

Additional Resources
In addition to this guide, you may need the following RealNetworks
documentation resources, available at
http://service.real.com/help/library/index.html:

• Helix DNA Producer User’s Guide

This user’s guide gives you the step-by-step instructions for running Helix
DNA Producer, which turns audio and video files into streaming media
clips. An online version of this guide is available through the Helix DNA
Producer Help menu.

• Helix SDK Developer’s Guide

This SDK contains the architecture upon which the latest RealOne Player
and Helix Universal Server are built. Developers wanting to build client or
server applications for Helix should use this SDK. It contains
documentation, samples, and header files that demonstrate every
interface in the system, including documentation of the “IHX” interfaces
provided with this stand-alone Helix DNA Producer SDK.
3

Helix DNA Producer SDK Developer’s Guide
Conventions Used in this Book
The following table explains the typographical conventions used in this book.

Technical Support
To reach RealNetworks' Technical Support, please fill out the form at:

• http://customerrelations.real.com/scripts/rnforms
/contact_tech_service.asp

The information you provide in this form will help Technical Support
personnel respond promptly. For general information about RealNetworks’
Technical Support, visit this Web page:

Notational Conventions

Convention Meaning

emphasis Bold text is used for in-line headings, user-interface
elements, URLs, and e-mail addresses.

terminology Italic text is used for technical terms being introduced in
a given manual or other document, and to lend emphasis
to generic English words or phrases.

syntax This font is used for fragments or complete lines of
programming syntax (code or markup)—whether within
text or set off—and for command-line instructions.

syntax emphasis Bold syntax character formatting is used for program
names and to emphasize specific syntax elements.

variables Italic syntax character formatting denotes variables
within fragments or complete lines of syntax.

[options] Square brackets indicate values you may or may not need
to use. As a rule, when you use these optional values, you
do not include the brackets themselves.

choice 1|choice 2 Vertical lines, or “pipes,” separate values you can choose
between.

... Ellipses indicate nonessential information omitted from
code or markup examples.

“ ” Curly (“smart”) quotation marks are used for direct
quotes, to call out words or phrases that are being used to
mean something other than what they mean in everyday
English, and to enclose chapter titles and section
headings in cross-references.
4

 Introduction
• http://service.real.com/help/call.html

Helix Community Web Site
The Helix community is a collaborative effort between RealNetworks,
independent developers, and leading companies to create and extend the Helix
DNA platform, the first open and comprehensive platform for digital media
delivery. This community enables companies, institutions, and individual
developers to access and license the Helix platform source code to build Helix-
powered encoder, server, and client products and other media applications for
both commercial and non-commercial use. To learn more about the Helix
community, visit this Web page:

• https://www.helixcommunity.org/

To learn more about Helix DNA Producer, visit this Web page:

• https//helix-producer.helixcommunity.org/

RealForum
RealNetworks also encourages you to join RealForum, an e-mail discussion
group about RealNetworks products where developers and content producers
post tips and ask for assistance. RealNetworks employees monitor the
postings and offer suggestions as appropriate. You can sign up for RealForum
by connecting to http://realforum.real.com/ and clicking on New user.
5

Helix DNA Producer SDK Developer’s Guide
6

QUICK START
The Helix DNA Producer SDK provides support for a number of
different user scenarios. To accomplish this, the SDK is divided into
distinct areas of functionality and interfaces. The following
information is provided to help you identify which areas of the SDK
documentation to focus on.

Scenario 1
The information in this section identifies the parts of the guide you should
read first if you:

• Have an application that manipulates raw audio, video, and event data
and you want to export to a RealMedia file (.rm).

• Used RealProducer SDK 8.5 in the past and want to continue working
with the SDK in the same way.

Sections

The following sections of the guide contain relevant information:

• New Features in Helix DNA Producer

• Chapter 3: Encoding Overview

• Appendix A: Interface List

Interfaces

Primary interfaces you will use include:

• IHXTEncodingJob

• IHXTMediaInputPin

• IHXTAudioPinFormat

• IHXTVideoPinFormat
7

Helix DNA Producer SDK Developer’s Guide
• IHXTMediaSample

• IHXTEventSample

• IHXTAudienceEnumerator

• IHXTMediaProfile

• IHXTOutputProfile

• IHXTDestination

Sample Application

The following sample demonstrates a simple media sink application that can
be used as a starting point for your own application:

• \producersdk\samples\mediasinkencoder

Scenario 2
The information in this section identifies the parts of the guide you should
read first if you:

• Want to automate your encoding production process or provide remote
control and configuration using a custom-built application.

Sections

The following sections of the guide contain relevant information:

• Helix DNA Producer Encoding System section in Chapter 1: Helix DNA
Producer SDK.

• Chapter 3: Encoding Overview

Interfaces

Primary interfaces you will use:

• IHXTEncodingJob

• IHXTInput

• IHXTAudience

• IHXTAudienceEnumerator

• IHXTMediaProfile

• IHXTOutputProfile

• IHXTDestination
8

 Quick Start
• IHXTPropertyBag

Sample Applications

The following samples demonstrate applications that can be used as a starting
point for your own application:

• \producersdk\samples\encoder

• \producersdk\samples\advencoder

Scenario 3
The information in this section identifies the parts of the guide you should
read first if:

• You want to write a custom application that reads or edits existing
RealMedia (.rm) files.

• Your custom application needs to adds image map or RealMedia event
streams to existing RealMedia files.

Sections

The following sections of the guide contain relevant information:

• Chapter 6: RealMedia Edit API

• Appendix B: RealMedia Edit Interface List

Interfaces

Primary interfaces you will use:

• IHXRMEdit

• IHXRMEdit2

• IHXRMFFDump

• IHXPacket

• IHXBuffer

• IHXValues

• IHXRMFileSink

• IHXRMEvents
9

Helix DNA Producer SDK Developer’s Guide
Sample Applications

The following samples demonstrate applications that can be used as a starting
point for your own application:

• \producersdk\samples\rmeditor

• \producersdk\samples\rmevents

Scenario 4
The information in this section identifies the parts of the guide you should
read first if you:

• Want to extend the functionality of the encoder by providing custom
audio or video filters, support new file formats or capture devices, provide
custom encryption, or broadcast over proprietary networks.

Sections

The following sections of the guide contain relevant information:

• Chapter 5: Helix DNA Producer Plug-In API

• Plug-in Categories

• Creating Custom Media Plug-ins

Interfaces

Primary interfaces you will use:

• IHXTConfigurationAgent

• IHXTConnectionAgent

• IHXTFilter

• IHXTInputFilter

• IHXTTransformFilter

• IHXTOutputFilter

Sample Applications

The following samples demonstrate applications that can be used as a starting
point for your own application:

• \producersdk\samples\inputplugin

• \producersdk\samples\prefilterplugin
10

NEW FEATURES IN HELIX DNA PRODUCER
Many new features have been added to the Helix DNA Producer
SDK to build a robust, reliable, and fault-tolerant encoding tool
that creates high-quality media and provides increased encoding
efficiency and f lexibility. If you are familiar with previous versions
of the producer SDK, this chapter gives you a quick look at changes
in the latest release of the Helix DNA Producer SDK.

What’s New in Helix DNA Producer 10.0 SDK
The following list describes the new features included in the Helix DNA
Producer 10.0 SDK Developers Guide:

• The Helix DNA Producer 10.0 SDK supports parallel inputs, which
provide a means of encoding more than one input at a time. This is
especially useful if your audio and video sources are separate and you have
to encode them into a single file. For more information, see “Creating
Parallel Inputs” on page 40.

• In previous versions of Helix DNA Producer SDK, only one output profile
could be created at a time. The Helix DNA Producer 10.0 SDK supports
multiple output profiles. For more information, see “Multiple Output
Profiles” on page 46.

• Two new prefilters were added to the Helix DNA Producer 10.0 SDK: the
audio delay compensation prefilter and the video resize prefilter. For more
information, see “Prefilters” on page 41.

• RealMedia events can now be added to an on-demand RealMedia file or
inserted into a live broadcast stream during the encoding process. For
more information, see “Encoding RealMedia Events” on page 65.

• A new complexity mode property was added to set the complexity of audio
and video encoding. For more information on setting audio complexity,
see the Audio Stream Properties table under “Streams” on page 60. For
11

Helix DNA Producer SDK Developer’s Guide
more information on setting video complexity, see the Video Stream
Properties table under “Streams” on page 60.

• Audio and video preview has been updated to include new features. You
can now adjust the video width, height, and color format of a video
preview, and the sample rate, sample size, and number of channels of an
audio preview. In addition, you can also start and stop the previews during
an encoding session. For more information, see “Audio and Video
Preview” on page 74.

• Automatic selection of input (reader) file plug-in type and destination
(writer) file plug-ins are now automatically selected by Helix DNA
Producer. For more information on automatic selection of input file plug-
ins, see “Audio/Video Files” on page 36. For more information on
automatic selection of destination file plug-ins, see “File Writers” on page
51.

• Helix DNA Producer’s method of automatically renaming RealMedia files
has changed. For more information, see “Automatic File Renaming” on
page 52.

• Helix DNA Producer can now report its system resource availability to
codecs and plug-ins. With this information, your codec or plug-in can
modify its behavior to reduce or increase its use of system resources. For
more information, see “Load Management” on page 91.

• The Helix DNA Producer SDK now provides a mechanism to enable
applications to easily support new codecs without significant changes to
the application. Automatic codec selection gives your application the
ability to distinguish between codecs by using additional plug-in
properties. For more information, see “Automatic Codec Selection” on
page 85.

• The following interface information was added to “Appendix A: Interface
List” beginning on page 159:

• IHXTAudienceEnumerator2

• IHXTCodecUpdater

• IHXTDestinationEnumerator

• IHXTInput2

• IHXTLoadAdjustment

• IHXTOutputProfile2

• IHXTPreviewSinkControl3
12

 New Features in Helix DNA Producer
• IHXTPropertyUtility

What’s New in Helix DNA Producer 9.1 SDK
The following list describes the main differences between the Helix DNA
Producer 9.0 SDK and the Helix DNA Producer 9.1 SDK:

• Added support for Mac OS X. SDK users can create Mach-O applications
with the Helix DNA Producer SDK. In addition, CFM support for Mac OS
X has been dropped—the Helix DNA Producer SDK does not support
CFM applications. Information related to Mac OS X can be found
throughout the text of this guide. For information on using Mac OS X to
compile the samples included in this SDK, see “Using the Samples” on
page 29.

• To make all the APIs in the Helix DNA Platform consistent, header files
and interface names used in Helix DNA Producer were changed to IHXT
(IHX in some cases). For more information on updating existing
applications from the Helix Producer SDK to the Helix DNA Producer
SDK, see “Helix DNA Producer Interface Name Change” on page 18.

What’s New in Helix DNA Producer 9.0 SDK
The following list describes the main differences between the RealProducer 8.5
SDK and the Helix DNA Producer 9.0 SDK:

• Main Helix DNA Producer SDK object. The primary RealProducer 8.5
SDK configuration and control interface was the IRMABuildEngine
interface. The Helix DNA Producer 9.0 SDK equivalent is IRTAEncodingJob.
The IRMABuildClassFactory interface has been replaced with
IRTAClassFactory. The semantics for the two class factories are similar. The
CMediaSinkEncoderApp::CreateJob and CMediaSinkEncoderApp::SetupJob
methods in the mediasinkencoder sample application show how to
instantiate and configure an IRTAEncodingJob.

• Configuring encoding sessions. The RealProducer 8.5 SDK encoding
configuration was set through dedicated PNCOM interfaces and methods
such as IRMAVideoFilters::SetNoiseFilter or
IRMABuildEngine::SetDoMultiRateEncoding. The Helix DNA Producer 9.0
SDK uses the IRTAPropertyBag interface and its set property methods, such
as IRTAPropertyBag::SetBool or IRTAPropertyBag::SetUint with property
name/value pairs.
13

Helix DNA Producer SDK Developer’s Guide
• Inputs. The RealProducer 8.5 SDK did not have any support for inputs.
The SDK application was required to pass in uncompressed audio/video
samples. The Helix DNA Producer 9.0 SDK now has broad support for
inputs—it ships with file reader and capture plug-ins. You can use the
Helix DNA Producer 9.0 SDK without having to write any code that reads
files or deals with the operating system’s capture subsystem. SDK
applications can continue to provide custom input to the SDK by either
implementing an input plug-in or by passing media samples to the media
sink input (a pre-existing input plug-in of type
kValuePluginTypeInputMediaSink). The CMediaSinkEncoderApp::SetupInput
method in the mediasinkencoder sample application shows how to use the
media sink input.

• Prefilters. The majority of RealProducer 8.5 SDK prefilter settings were
specified using the IRMAVideoFilters interface. Prefilters are now full-blown
plug-ins, for example, kValuePluginNamePrefilterCropping or
kValuePluginTypePrefilterDeinterlace. The
CMediaSinkEncoderApp::SetupPrefilters method in the mediasinkencoder
sample application shows an example of how to configure prefilters.
Several new prefilters, such as the audio gain prefilter and the black level
prefilter, have been added in Helix DNA Producer 9.0.

• Destinations. The RealProducer 8.5 SDK allowed an encoding session to
have a single file output and a single broadcast output. The Helix DNA
Producer 9.0 SDK supports outputs as plug-ins. There is no limit to the
number of outputs. Outputs in the Helix DNA Producer 9.0 SDK are
independently viable destinations, that is, while encoding, a failure in one
destination will not cause the others to fail—the RealProducer 8.5 SDK
would stop an encoding session if any output failed. The Helix DNA
Producer 9.0 SDK only stops an encode if all outputs have failed or have
finished. There is a new broadcast plug-in that utilizes the Real broadcast
protocol. See the CMediaSinkEncoderApp::SetupDestination method in the
mediasinkencoder sample application.

• Audiences/Streams. The RealProducer 8.5 SDK allowed audiences to be
selected through IRMABasicTargetSettings. Audiences are now set on the
IRTAMediaProfile. The RealProducer 8.5 SDK allowed enumeration of pre-
built audiences through the IRMATargetAudienceManager interface. This has
been replaced with IRTAAudienceEnumerator. One major change from the
RealProcuer 8.5 SDK is that SureStream substreams are no longer
automatically generated—if you picked the 28k audience and set up a
14

 New Features in Helix DNA Producer
SureStream encode, the RealProducer 8.5 SDK would automatically
generate a 15k and 12k substream. With the Helix DNA Producer 9.0
SDK, it is now necessary to manually select the “12k Substream for 28k
Dial-up” and “16k Substream for 28k Dial-up”. See the
CMediaSinkEncoderApp::SetupAudiences method in the mediasinkencoder
sample application.

• Log system. The Helix DNA Producer 9.0 SDK includes a logging system
that allows SDK issues to be much more readily diagnosed. See the
CMediaSinkEncoderApp::InitializeLogSystem method in the mediasinkencoder
sample application for an example.

• Serialization. The Helix DNA Producer 9.0 SDK allows IRTAEncodingJob
and IRTAAudience to be serialized or deserialized. This may be useful for
saving the application state and restoring it at a later time. See the
CMediaSinkEncoderApp::SerializeJob method in the mediasinkencoder sample
application.
15

Helix DNA Producer SDK Developer’s Guide
16

C H A P T E R
1

 Chapter 1: HELIX DNA PRODUCER SDK
Welcome to the Helix DNA Producer software development kit
(SDK), which RealNetworks has created for developers working with
digital media production for broadcast streaming and download.
This developer’s guide will help you use the SDK to create and
modify various components and interfaces of Helix DNA Producer.

Helix DNA Producer SDK consists of three major areas:

• Helix DNA Producer Encoding API

• Helix DNA Producer Plug-in API

• RealMedia Edit API

Platforms
The Helix DNA Producer SDK 10.0 is supported on the following platforms:

• Windows 98 Second Edition, Windows ME, Windows NT 4.0, Windows
2000,and Windows XP.

• Mac OS X v10.2.

• Linux 2.2 kernel, libc6.

To compile the sample applications on Windows, Microsoft Visual C++ 6.0
SP3 or later is required. To compile the sample applications on a MacIntosh,
Project Builder 2.1 and gcc 3.1 are required. To compile the sample
applications on Linux, the gcc compiler, version 2.95.2 or later, is required (gcc
version 3.x is currently not supported).
17

Helix DNA Producer SDK Developer’s Guide
Installation
Install the Helix DNA Producer SDK by copying the appropriate compressed
file from the Helix community site on to your system. Then uncompress the
file using an appropriate application for your operating system.

Helix DNA Producer Interface Name Change
To make all the APIs in the Helix DNA platform consistent, header files and
interface names used in Helix Producer SDK from RealNetworks were
changed to IHXT (IHX in some cases). To help in updating existing
applications from the Helix Producer SDK from RealNetworks to the Helix
DNA Producer 10.0 SDK, a Python script is provided that works in
conjunction with the Helix DNA Producer SDK name change dictionary file.

Note: Because support for Mac OS X was not implemented in
the Helix DNA Producer SDK until after the header file and
interface name change, you do not need to run this script on
Mac OS X.

Python is a language used by the build system so you probably have it installed
already. If you don’t, it can be obtained at http://www.python.org. Python
2.2 is recommended to run the scripts. The Python script will search your
source code for Helix Producer SDK from RealNetworks interface names and
update them to Helix DNA Producer SDK interface names.

To run the name change script, you need:

• the producersdk interface name change dictionary file
(producersdkdict.txt)

• the Python script (namereplace.py)

You can obtain both of these from the Helix community web site in
https://producersdk.helixcommunity.org/source/browse/producersdk/i
nstaller/resource/convert/files/. These files need to be downloaded to your
hard drive.

The name change can be executed on a Windows-based machine with the
following syntax:

python namereplace.py --dict=producersdkdict.txt --word-chars=[\w.] --do-edits
mysdkapp *.cpp *.h
18

CHAPTER 1: Helix DNA Producer SDK
The name change can be executed on a UNIX-based machine with the
following syntax:

python namereplace.py --dict=producersdkdict.txt --word-chars='[\w.]' --do-edits
mysdkapp '*.cpp' '*.h'

Note: If Python is not in your path, you will need to type the
full path to the location of the Python executable.

The namereplace.py file is the Python script that changes the header files and
interface names. If the name change script is not in the working directory,
then specify the entire path.

The name of the dictionary file is declared under the --dict argument. For
Helix DNA Producer, this file is producersdkdict.txt.

The target directory is the directory containing the source code that is to be
updated with the new interface names. In the examples shown here, mysdkapp
is the target directory. Files in this directory matching the file extensions
specified in this command line that contain references to the Helix Producer
9.0 and 9.0.1 SDK header and interfaces will be updated to reference the new
Helix DNA Producer 10.0 SDK header and interfaces.

The file extension indicates the files for which search and replace will be
performed. Any files matching the file extension pattern will be searched for
the entries in the producersdk dictionary and be modified if matches are found.
Wildcards should be included. This parameter must be provided at least once,
but can be included multiple times for each file type you want to search and
replace. Generally you are going to want to specify “*.cpp” and “*.h” file
extensions. On UNIX machines, make sure to quote these file extensions to
avoid having the shell interpret the wildcards before they get to the Python
script.

Warning! The “--word-chars=[\w.]” argument defines a regular
expression that identifies the start of words. There should be
no reason to change this for C++ source code, but the
parameter must be included in the command line. It is advised
that you just leave this argument as-is. If you are going to
modify it, you do so at your own risk. Unless you know what
you are doing, regular expressions can be dangerous.
19

Helix DNA Producer SDK Developer’s Guide
Directory Structure
Previous versions of the Helix DNA Producer SDK required that you install all
the SDK DLLs in a fixed directory structure. However, now you can copy all of
the directories and files found in \producersdk\bin to a new directory you
specifically create for your own application. When you change directories, you
must specify the location of the Helix DNA Producer DLLs using
SetDLLAccessPath in your application for your application to execute properly.

For example, the Windows-based directory structure for your application
could look like this:

\MyApp
 \audiences
 \codecs
 \common
 \plugins
 \tools

Encoding System SDK Areas
The following areas are included as part of the Helix DNA Producer SDK:

• Helix DNA Producer Encoding API

• Helix DNA Producer Plug-in API

• RealMedia Edit API

Helix DNA Producer Encoding API

The Helix DNA Producer encoding API is a set of interfaces that configure
and control encoding sessions. This encoding API provides a means for you to
specify input, output, and encoding settings to create RealMedia files or
broadcast RealMedia streams to a Helix Universal Server.

Helix DNA Producer Plug-in API

The Helix DNA Producer Plug-in API lets you build custom media plug-ins
used by the Helix DNA Producer filter graph. The filter graph is then used by
an encoding job to execute an encoding session. Helix DNA Producer is built
on the concept of arranging media input filters, transform filters, and output
filters in a filter graph that can encode, manipulate, or broadcast media data.
The system is extensible in such a way that you can write plug-ins that are
20

CHAPTER 1: Helix DNA Producer SDK
either dynamically discovered and used at runtime, or can be
programmatically inserted in a filter graph.

RealMedia Edit API

The RealMedia Edit API consists of a set of interfaces that you use to edit
existing RealMedia (.rm) files. It also lets you to add RealMedia events and
image maps to RealMedia files. The RealMedia Edit API is divided into two
main interfaces which are referred to as the RealMedia edit and RealMedia
events interfaces.

The RealMedia edit interfaces allow you to perform the following operations
on a .rm file:

• Edit title, author, copyright, and comment fields.

• Modify Allow Recording and Allow Download settings.

• Trim the start and end times of a .rm file. This is referred to as a cut
operation.

• Paste two or more .rm files together. This is referred to as a paste
operation.

• Dump the contents of a .rm file to a text file. This is known as a dump
operation.

• Add meta information to the file that is specific to your application.

• Obtain information on the types of streams contained in the .rm file.

• Obtain the size of the video image.

• Determine whether a .rm file is single rate or SureStream.

The RealMedia events interfaces allow you to perform the following
operations on a .rm file:

• Add events and image maps to a .rm file.

• Dump events and image maps from a .rm file to a text file.

Helix DNA Producer Encoding System
The Helix DNA Producer encoding system provides the ability to configure
and run an encoding job for the purpose of creating media files or
broadcasting media to a Helix Universal Server. It also provides plug-in
21

Helix DNA Producer SDK Developer’s Guide
interfaces that allow developers to extend the capabilities of the encoding
system. The main components of the encoding system are:

• Encoding engine.

• Filter graph manager.

• Plug-ins.

The following figure shows the layers of the encoding system provided by
Helix DNA Producer.

Encoding Engine

The Helix DNA Producer encoding engine consists of a number of SDK
objects and interfaces used to configure and run an encoding job. Examples of
these objects include Encoding Job, Input, Prefilter, Output, and Stream. With
these objects, an application can specify a file or capture device for input,
configure a set streams and their encoding settings, and broadcast to Helix
Universal Server or generate a RealMedia file.

Filter Graph Manager

The Helix DNA Producer filter graph manager is used by the encoding engine
to manage the connection of various media filters, and manage data flow
through the filters once they are connected. There are no public interfaces for

Filter
Graph

Manager

Encoding
Engine

Input Transform

Filters

Transform Output
22

CHAPTER 1: Helix DNA Producer SDK
controlling the filter graph manager since simpler encoding-specific methods
are provided in the Helix DNA Producer SDK through the encoding engine
objects. This component is described here to give filter plug-in writers a better
understanding of the layer that is loading and pushing data through their
media filters.

Plug-ins

Helix DNA Producer plug-ins are media filters that can be dynamically
discovered and used in the Helix DNA Producer encoding system. These plug-
in filters fit into the filter graph at the lowest level of the architecture. There
are three different types of plug-in filters: input, transform and output.

There are distinct categories of each plug-in filter type. Inputs can be either
file reader or capture filters. Prefilters and postfilters are examples of
transforms. Output can be either broadcast or file output filters. These
categories are described in more detail in later chapters.

Plug-in filters either generate or receive media samples. These media samples
can be manipulated in the filter, then are passed on to the next filter in the
filter graph.

Using the Helix DNA Producer SDK
This section includes information about the basic components of the Helix
DNA Producer SDK. In addition, it includes material about new concepts
introduced for the first time in the Helix DNA Producer SDK.

COM

The Helix DNA Producer SDK is based on the Component Object Model
(COM) jointly developed by Microsoft Corporation and Digital Equipment
Corporation. Helix components use the COM IUnknown::QueryInterface
method to expose their interfaces.

Most interfaces in this SDK begin with the prefix “IHXT”. There are also
interfaces with the prefix “IHX”; these are interfaces shared between the Helix
SDK and the Helix DNA Producer SDK.

Helix DNA Producer does not employ all aspects of COM, however. It
implements a subset of COM functions to provide cross-platform operation
without requiring Windows libraries or Windows-emulation code on UNIX
23

Helix DNA Producer SDK Developer’s Guide
and Macintosh platforms. The Helix DNA Producer implementation of COM
eliminates the need for heavyweight Windows components like the registry
and the COM and OLE runtime libraries.

Property Bags

Property bags are used throughout the Helix DNA Producer SDK. A property
bag is an object that stores a collection of properties. Each property has a
name and a value. The property name is a string. The property value is a
distinct data type, such as a string, an unsigned integer, a double, and so on.

Property bags are useful because they provide a single interface for
configuring most components in the system. It is also flexible and doesn’t
require constantly updating an interface to support new properties of an
object.

XML Configuration Files

The Helix DNA Producer SDK supports the notion of serializing and
deserializing objects in the system using XML configuration files. The SDK
supports job files, audience template files, and server template files. The SDK
installs some sample audience files in the \producersdk\bin\audiences directory.
To understand how job files work, you can run the Helix DNA Producer 10.0
GUI application, set your encoding settings, then choose the File->Save Job
menu item. You can open up the resulting file in a text editor to examine how
your settings were saved.

The following figure demonstrates the relationship between XML
configuration files, property bags, and the encoding engine objects that use
the properties.
24

CHAPTER 1: Helix DNA Producer SDK
Encoding Engine

Input

Output

Audience

Etc.

Property
Bags

Configuration
File
25

Helix DNA Producer SDK Developer’s Guide
26

C H A P T E R
2

 Chapter 2: SDK ORGANIZATION
This chapter lists the header files and sample f iles you can use to
create Helix DNA Producer components. The chapters that follow
describe in detail how to use these f iles.

The include Directory
The include directory of the SDK download contains the header files that
describe Helix DNA Producer’s public interfaces. For descriptions of the
interfaces defined in these header files, see “Appendix A: Interface List”
beginning on page 159.

Header Files

File Defines

hxbastsd.h Definitions used by hxtypes.h that correctly define the basic size types.

hxccf.h RealMedia Architecture common class factory interface.

hxcom.h Definitions for items required for Component Object Model (COM)
interfaces in Helix.

hxcomm.h Common utility interfaces.

hxengin.h Callback, networking, and scheduling interfaces.

hxevtype.h Media sample event enumerators.

hxiids.h All interface IDs (IIDs) used in Helix interfaces.

hxplgns.h Additional plug-in interfaces.

hxplugn.h Plug-in inspector interface.

hxplugncompat.h Provides backward compatibility for previous versions of the producer
CreateInstance function.

hxresult.h Definitions for Helix status codes.

hxtypes.h Definitions for several types used in Helix.

hxvalue.h Option and key value interfaces.

ihxpckts.h Packet, buffer, and stream interfaces.
 (Table Page 1 of 2)
27

Helix DNA Producer SDK Developer’s Guide
The samples Directory
The samples directory contains sample C++ files, as well as header files and
make files, or project files, for making Helix DNA Producer components. Use

ihxtaudioformat.h Enumerators and macros for the audio format field.

ihxtbase.h The basic public classes for the Helix DNA Producer SDK components.

ixhtconfigagenthelper.h A configuration agent template for implementing the property bag and
configuration classes for external plug-in agent classes.

ihxtconstants.h Constants used by the Helix DNA Producer SDK components.

ihxtedit.h Main interfaces and functions used for the RealMedia file editing.

ihxtedit2.h Basic information about a RealMedia file.

ihxtencodingjob.h Encoding job interfaces.

ihxteventcodes.h Event codes for the Helix DNA Producer SDK components.

ihxtevnts.h Definitions for classes of events.

ixhtfdump.h Interface for dumping a RealMedia file to text file format.

ihxtfileobserver.h File observer interface to the logging system.

ihxtinputformathelper.h Helper class designed to consistently manage handling and display of input
properties for all input sources—file and capture based.

ihxtlogsystem.h Main interfaces for the logging system.

ihxtplugininfobase.h A template for implementing the IHXPlugin and IHXPluginProperties
interfaces that define an external plug-in for the Helix DNA Producer SDK
components.

ihxtpreviewsink.h Interfaces used to receive preview media samples.

ihxtpropertybag.h Defines a property bag for the Helix DNA Producer SDK components.

progsink.h Progress indication interfaces used for the RealMedia Edit API.

rmflsnk.h Definitions for the RealMedia file sink interface.

rmmetain.h Definitions for the “well-known” or automatically added metadata
property names.

setdllac.h Function pointer definition for SetDLLAccessPath exported by the
encoding engine.

Header Files (continued)

File Defines

 (Table Page 2 of 2)
28

CHAPTER 2: SDK Organization
the sample files to learn about the RealSystem Transform Architecture and to
build your own encoders and plug-ins.

Using the Samples
The Helix DNA Producer SDK contains several samples that demonstrate how
to develop customized Helix DNA Producer components. Each sample
contains three make files for compiling the components in Windows, Linux,
or Mac OS X.

To compile the samples, go to the directory of the sample you want to compile
and use the following command:

• For Windows

nmake /f win_vc6.mak

• For Mac OS X

make -f mach-o.mak && make -f mach-o.mak copy

• For Linux

make -f linux.mak && make -f linux.mak copy

To run the sample applications in Windows, Linux, and Mac OS X once they
are compiled, you will need to copy the executables over to the
\producersdk\bin directory. The sample applications are coded to load the main
Helix DNA Producer SDK DLL from this location.

To test Helix DNA Producer plug-in DLLs in Windows or Linux, copy the
plug-in DLLs to the \producersdk\bin\tools directory.

Sample Files

Directory Samples

advencoder An example encoder application that includes advanced features, such as
logging messages.

encoder An example encoder application that demonstrates basic encoding.

inputplugin An example input plug-in.

mediasinkencoder A command-line test application that demonstrates how to encode using a
media sink, which provides custom input without having to write a plug-in.

prefilterplugin An example generic prefilter transform plug-in.

rmeditor An example RealMedia editor application.

rmevents An example application that processes RealMedia events.
29

Helix DNA Producer SDK Developer’s Guide
To test a plug-in in Mac OS X, you must insert the plug-in bundle (directory)
in the /producersdk/bin/tools folder.

When you start creating your own applications, you can copy all of the
directories and files found in \producersdk\bin to a new directory you
specifically create for your own application. When you change directories, you
must specify the location of the Helix DNA Producer DLLs using
SetDLLAccessPath in your application for your application to execute properly.
30

C H A P T E R
3

 Chapter 3: ENCODING OVERVIEW
The RealSystem Transform Architecture encoding API is a set of
interfaces that configures and controls encoding sessions. This
encoding system provides a means for you to specify input, output,
and encoding settings to create RealMedia files or broadcast
RealMedia streams to a Helix Universal Server.

Interfaces
An encoding system typically implements the following interfaces:

• IHXTClassFactory. Header file: ixhtencodingjob.h.

This interface provides a means of creating Helix DNA Producer objects,
such as IHXTEncodingJob, IHXTInput, and so on. The class factory can either
just create the object, or create and initialize the object.

• IHXTConfigurationAgent. Header file: ixhtbase.h.

This interface initializes all of the encoding interfaces and configures all
of their encoding properties.

• IHXTEncodingJob. Header file: ihxtencodingjob.h.

This interface specifies the basic inputs, metafiles, and profiles, as well as
supplies the primary encoding session controls and access to the event
system manager. All other encoding session interfaces are essentially child
processes of the encoding job.

• IHXTInput. Header file: ihxtencodingjob.h.

This interface configures the input property bag for the encoding job
using the methods inherited from the IHXTConfigurationAgent interface. In
addition, you use this interface to add and manipulate prefilters used to
modify the data that is being input.
31

Helix DNA Producer SDK Developer’s Guide
• IHXTPrefilter. Header file: ihxtencodingjob.h.

This interface configures the prefilter property bag for the encoding job
using the methods inherited from the IHXTConfigurationAgent interface.

• IHXTPostfilter. Header file: ihxtencodingjob.h.

This interface configures the postfilter property bag for the encoding job
using the methods inherited from the IHXTConfigurationAgent interface.

• IHXTOutputProfile. Header file: ihxtencodingjob.h.

This interface associates a list of destinations (file writers or broadcast
transmitters) with a single media profile (how something will be
encoded). In addition, this interface inherits its configuration methods
from the IHXTConfigurationAgent interface.

• IHXTMediaProfile . Header file: ihxtencodingjob.h.

This interface configures the media profile property bag with the current
encoding mode (video and audio) using the methods inherited from the
IHXTConfigurationAgent interface. In addition, this interface adds, removes,
and manages audiences.

• IHXTDestination. Header file: ihxtencodingjob.h.

This interface designates the destination of the stream (either a file writer
or several broadcast destination types) with the destination property bag
created using the methods inherited from the IHXTConfigurationAgent
interface. In addition, this interface adds, deletes, and manages any
required postfilters.

• IHXTAudience . Header file: ihxtencodingjob.h.

This interface configures the audience property bag using the methods
inherited from the IHXTConfigurationAgent interface. In addition, this
interface adds, removes, and manages a list of stream configurations
(typically video and audio codecs).

• IHXTAudienceEnumerator. Header file: ihxtencodingjob.h.

This interface searches a specific directory path for audience template
files, such as 56k Dial-up.rpad and 150k LAN.rpad, and gets the audience
information from the specified files.
32

CHAPTER 3: Encoding Overview
• IHXTStreamConfig. Header file: ihxtencodingjob.h.

This interface configures the stream property bag for the specific stream
configurations required. This interface inherits all of its methods from
the IHXTConfigurationAgent interface.

The following figure demonstrates the hierarchical associations between the
basic interfaces for an encoding job.

Prefilters

Postfilter

Streams

Encoding Job

Media Profile

Audiences

Destinations

Input

Output Profile
33

Helix DNA Producer SDK Developer’s Guide
Getting Started
The starting point for all operations in the Helix DNA Producer encoding API
is the Helix DNA Producer DLL (encsession.dll on Windows, encsession.so on
Linux, and encsession.bundle on Mac OS X). To access the main class factory
object, load the DLL and get a function pointer to the exported function
HXTCreateJobFactory. Use this function to create the class factory for the SDK.
The class factory is used to create all objects needed to set up an encoding job.

Class Factory
The class factory creates all encoding objects. The IHXTClassFactory interface
offers various methods for creating objects. The most basic method is the
create instance method (IHXTClassFactory::CreateInstance). This method creates
objects specified by an interface GUID, but does not initialize the newly-
created objects. The following sample demonstrates how this method is used:

IHXTClassFactory* pFactory; // Created earlier with HXTCreateJobFactory
IHXTPropertyBag* pInitParams; // Created earlier IHXTClassFactory::CreateInstance
pInitParams->SetBool(kPropEnableTwoPass, FALSE);
IHXTEncodingJob* pJob = NULL;
HX_RESULT res = pFactory->CreateInstance(IID_IHXTEncodingJob, &pJob);
if (SUCCEEDED(res))
 res = pJob->Initialize(pInitParams);

Like IHXTClassFactory::CreateInstance, the build instance methods
(IHXTClassFactory::BuildInstance, IHXTClassFactory::BuildInstanceFromBuffer,
IHXTClassFactory::BuildInstanceFromFile, and
IHXTClassFactory::BuildInstanceFromObject) create objects specified by interface
GUID. However, these methods also attempt to initialize the newly-created
object using a caller-specified property bag. The following sample
demonstrates how these methods are used:

IHXTClassFactory* pFactory; // Created earlier with HXTCreateJobFactory
IHXTPropertyBag* pInitParams; // Created earlier IHXTClassFactory::CreateInstance
pInitParams->SetBool(kPropEnableTwoPass, FALSE);
IHXTEncodingJob* pJob = NULL;
HX_RESULT res = pFactory->BuildInstance(IID_IHXTEncodingJob, &pJob,
pInitParams);

In this sample, IHXTClassFactory::BuildInstance automatically initializes the
newly-created object with pInitParams.
34

CHAPTER 3: Encoding Overview
Setting Up an Encoding Job
The properties and collective child objects of an encoding job represent the
complete makeup of an encoding session. The encoding job object specifies
input, metadata, and ouptut profiles for an encoding session. It also provides
the primary encoding session controls, that is, controls to start encoding
(IHXTEncodingJob::StartEncoding), stop encoding
(IHXTEncodingJob::StopEncoding), and cancel encoding
(IHXTEncodingJob::CancelEncoding). Access to the event system manager is also
provided from the job object using the IHXTEncodingJob::GetEventManager
method.

To create an encoding job, call IHXTClassFactory::CreateInstance using the
IID_IHXTEncodingJob reference identifier.

All of the encoding interfaces (IHXTEncodingJob, IHXTInput, IHXTAudience, and
so on) inherit methods from IHXTConfigurationAgent. They must be initialized
by calling the IHXTConfigurationAgent::Initialize method prior to calling any
other method. Once IHXTConfigurationAgent::Initialize has been successfully
called, their encoding properties can be configured using the type-specific get
and set property methods (such as Get/SetUint and Get/SetString with property
name/value pairs). The following example shows this initalization process:

IHXTPropertyBag* pInitParams; // Created earlier IHXTClassFactory::CreateInstance
pInitParams->SetBool(kPropEnableTwoPass, FALSE);
IHXTEncodingJob* pJob; // Created earlier with IHXTClassFactory::CreateInstance
pJob->Initialize(pInitParams);
pJob->SetBool(kPropEnableTwoPass, FALSE);

Note: For reasons of brevity, return codes are not shown in this
sample.

The following table describes the encoding job properties contained in the
ihxtconstants.h header file.

Encoding Job Properties

Property Type Description

kPropObjectName string Descriptive name of the object instance.

kPropEnableTwoPass BOOL Enables two-pass encoding.
35

Helix DNA Producer SDK Developer’s Guide
Input

Input objects are created with the class factory interface using a property bag
to specify what type of input source you want. Three types of input are
supported: file readers, capture devices, and custom media inputs. In addition
to a single input, you can also create multiple, parallel inputs.

Once you have populated a property bag, call IHXTClassFactory::BuildInstance
using the IID_IHXTInput reference identifier and pass in the property bag.

The following table contains the properties supported by all input types.

Audio/Video Files

File inputs, such as audio/video readers, are input plug-ins that can read and
decompress input sources such as .AVI files, QuickTime files, .WAV files, and
so on. They require the plug-in type property and the input pathname
property be specified when the object is initialized. The following table
contains the properties supported by audio/video readers.

All Input Properties

Property Type Description

kPropObjectName string Descriptive name of object instance.

kPropHasAudio BOOL (read-only) Determines if input contains audio.

kPropHasVideo BOOL (read-only) Determines if input contains video.

kPropInputWidth UINT32 (read-only) If the input contains video,
determines input video width.

kPropInputHeight UINT32 (read-only) If the input contains video,
determines input video height.

Audio/video Readers Input Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Audio/video readers must have a plug-in
type of kValuePluginTypeInputAVFile.

kPropPluginName string
(initialization only)

Name of the plug-in to load. Not setting this property
allows the Helix DNA Producer SDK to pick the optimal
plug-in based on kPropInputPathname.

kPropInputPathname string (required,
initialization only)

Pathname of the source file.

 (Table Page 1 of 2)
36

CHAPTER 3: Encoding Overview
The encoder sample in the \producersdk\samples\encoder directory
demonstrates how these properties are used.

Helix DNA Producer provides a mechanism that enables applications to easily
support new input file formats without significant changes to the application.
You can add support for additional file formats by including file extension
support for the file format in your input plug-in’s plug-in property table.

When you add a new file format to the input plug-in’s property table, you
must also specify a ranking that determines which plug-in to use when two or
more plug-ins support the same file extension. The plug-in with the highest
priority is used to read the input. Priority ranking is set from 0 to 100, with 0
being the lowest priority and 100 being the highest, with 80 being the normal
value.

All file readers can also use a wildcard (*) and a priority for the wildcard to
indicate they will attempt to handle any file extension. A file reader that
cannot read a given file should return the proper error result to Helix DNA
Producer so that the producer can continue trying file readers until a suitable
reader for the input is found. Priorities for wildcard should be such that these
are tried as a last resort to minimize the number of failed attempts at reading
an input file.

The following table documents the priorities that are given the file reader
plug-ins that ship with Helix DNA Producer.

kPropDuration IUnknown /
IHXTTime (read-
only)

Duration of the source file.

kPropNumTracks UINT32 (read-only) Number of tracks available in the source file.

Audio/video Readers Input Properties (continued)

Property Type Description

 (Table Page 2 of 2)

Input Plug-in Priority Mapping

Plug-in Extensions Priority (factor 0-100)

rn-avfile-avireader * 60

rn-avfile-dsreader .AVI 70

* 80

.AVI 80

.MPG 80
* matches any file extension
37

Helix DNA Producer SDK Developer’s Guide
For example, you might want to create a plug-in that supports input in MPEG
file format. You would create an input plug-in for reading MPEG files (as well
as writing a codec plug-in for uncompressing media in the MPEG video
codec). Your MPEG plug-in would specify what file extensions that plug-in is
capable of reading and what priority to give that input plug-in.

The following sample shows the file extension and priority section of a plug-in
property table in an input plug-in designed for an MPEG file:

// STEP 4) fill in the use preference field
 { eStringType, kPropFileExtensions, (void*)
 ".MPEG:80,.MPG:80,.M1V:70,.M1A:70",NULL },

Once compiled, the new MPEG input plug-in can be added to the plugins
directory of an application built on the Helix DNA Producer architecture. If

.MP3 70

.WAV 50

.MPA 80

.WMA 80

.WMV 80

.MOV 20

.MPEG 80

.ASF 80

rn-avfile-movreader * 50

.MOV 80

rn-avfile-qtreader * 70

.AVI 60

.MPG 80

.MP3 40

.WAV 40

.MOV 60

.DV 80

.AIFF 80

rn-avfile-wavreader * 40

.WAV 80

Input Plug-in Priority Mapping

Plug-in Extensions Priority (factor 0-100)

* matches any file extension
38

CHAPTER 3: Encoding Overview
that application is designed to be extensible with respect to inputs, the user
can then specify the file extension from which they would like to input data.
The application only needs to identify the input filename (with extension) and
Helix DNA Producer will then take care of identifying the input plug-ins that
are capable of handling that file extension (hence that file type) and which
one has the highest priority.

Capture

Capture devices are plug-ins that wrap operating-specific capture subsystems,
such as DirectShow or Video4Linux. They require the plug-in type property
(kPropPluginType) to be specified when the object is initialized. The
kPropAudioDeviceID and kPropVideoDeviceID properties should be set to the
string name of the devices. A wildcard (*) value can also be used to specify the
first available device for both audio and video device identifiers. Optionally,
you can also provide audio and video ports in this property bag using
kPropAudioDevicePort and kPropVideoDevicePort string properties. The following
table contains the properties supported by capture devices.

Capture Device Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Capture devices must have a plug-in type
of kValuePluginTypeInputCapture.

kPropPluginName string
(initialization only)

Name of the plug-in to load. Not setting this property
allows the Helix DNA Producer SDK to pick the
optimal plug-in.

kPropDuration IUnknown /
IHXTTime

Length of time to capture the audio/video.

kPropAudioDeviceID string Name of the audio device (that is, which sound card)
from which to capture.

kPropAudioDevicePort string Name of the audio port (such as microphone, line in,
and so on) from which to capture.

kPropVideoDeviceID string Name of the video device (that is, which video capture
card) from which to capture.

kPropVideoDevicePort string Name of the video port (such as, composite, svideo, and
so on) from which to capture.

kPropVideoFrameWidth UINT32 Video frame width to capture.

kPropVideoFrameHeight UINT32 Video frame height to capture.
39

Helix DNA Producer SDK Developer’s Guide
Creating Parallel Inputs

Parallel inputs provide a means of encoding more than one input at a time.
This is especially useful if your audio and video sources are separate and you
have to encode them into a single file.

For example, some capture cards support capture of audio and video to
separate files. To encode these separate files, you need to use parallel inputs.
Alternatively, you might be encoding an audio/video file in multiple languages
in which you have created a video-only file and audio for each language. You
can then use parallel inputs to encode the audio and video for each language.

➤ To create multiple parallel inputs:

1. Use IHXTClassFactory::CreateInstance to create an IHXTPropertyBag interface.
Fill the created property bag with the parallel input initialization
parameters (kPropPluginType , kValuePluginTypeInputParGroup).

res = m_pFactory->CreateInstance(IID_IHXTPropertyBag,
(IUnknown**)ppInitParams);
if(SUCCEEDED(res))
{
 res = (*ppInitParams)->SetString(kPropPluginType,
kValuePluginTypeInputParGroup);
}

2. Use IHXTClassFactory::BuildInstance to create an instance of the first input
source (IHXTInput).

IHXTInput* pInput = NULL;
res = m_pFactory->BuildInstance(IID_IHXTInput, pInitParams,
(IUnknown**)&pInput);

3. Use IHXTEncodingJob::SetInput to set this IHXTInput instance as the input
source for the encoding job.

res = m_pJob->SetInput(pInput);

4. Query (IUnknown::QueryInterface) for the IHXTInput2 interface from the
IHXTInput interface.

res = pInput->QueryInterface(IID_IHXTInput2, (void**)&pInputGroup);

5. Release the IHXTInput interface.

For each additional input, perform the following:

6. Set up either a capture device or a file for the input source.
40

CHAPTER 3: Encoding Overview
7. Use IHXTClassFactory::BuildInstance to create an instance of the IHXTInput
interface for the input source.

8. Use IHXTInput2::AddInput to add the input source to the list of inputs.

res = pInputGroup->AddInput(pInput);

9. If the input source is a file, set up audio, video, events, and image maps as
required.

10. Release the IHXTInput interface.

11. Repeat steps 6 through 10 for each additional parallel input.

12. Release IHXTInput2.

The \samples\advencoder\encoder.cpp file included with the Helix DNA
Producer SDK provides an example implementation of parallel inputs.

Prefilters

Several types of audio and video prefilters can be set on the encoding job.
Some filters merely have a name and require no configuration.

The Helix DNA Producer SDK allows you to add and manipulate prefilters as
if they were in a container similar to a list or array. The prefilters are then
added to the underlying filter graph in that same order. Therefore, it is
important to load your prefilters in the order in which you want them used.
For example, you probably would not want to resize something before you
deinterlace it, since you would probably never end up doing any deinterlacing.

The order of the built-in Helix DNA Producer video prefilters is:

• Cropping

• Inverse telecine

• Deinterlace

• Video noise reduction

• Black level

• Resize

Note: If a resize filter is specified as a prefilter, resizing will be
performed at that point in the prefilter chain. In general, a
resize prefilter should not be used because it is more efficient
to have the video codec perform resizing. However, if the
41

Helix DNA Producer SDK Developer’s Guide
encoding job has multiple outputs, there may be a
performance advantage to using a resize filter (since it is
resized at one point, as opposed to at each video codec).

The following tables contain the properties supported by various types of
prefilters.

All Prefilter Properties

Property Type Description

kPropObjectName string Descriptive name of object instance.

kPropIsEnabled BOOL Enables or disables the prefilter.

Video Cropping Filter Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values:
kValuePluginTypePrefilterCropping.

kPropPluginName string
(initialization only)

Plug-in name. Possible values:
kValuePluginNamePrefilterCropping.

kPropCropLeft UINT32 Leftmost value of the crop region.

kPropCropTop UINT32 Top value of the crop region.

kPropCropWidth UINT32 Width value of the crop region.

kPropCropHeight UINT32 Height value of the crop region.

Video Black Level Filter Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values:
kValuePluginTypePrefilterBlackLevel.

kPropPluginName string
(initialization only)

Plug-in name. Possible values:
kValuePluginNamePrefilterBlackLevel.
42

CHAPTER 3: Encoding Overview
Video Noise Reduction Filter Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values:
kValuePluginTypePrefilterVideoNoiseReduction .

kPropPluginName string
(initialization only)

Plug-in name. Possible values:
kValuePluginNamePrefilterVideoNoiseReduction .

kPropNRLevel string Indicates the filter strength. One of the following:
kValueNROff
kValueNRLow
kValueNRHigh

Video Deinterlace/Inverse Telecine Filter Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values:
kValuePluginTypePrefilterDeinterlace.

kPropPluginName string
(initialization only)

Plug-in name. Possible values:
kValuePluginNamePrefilterDeinterlace.

kPropDITManual BOOL Determines whether the prefilter will attempt to
automatically sense if the deinterlace and inverse telecine
filters are needed.

kPropDITDeinterlace BOOL If the kPropDITManual property is TRUE, turns on the
deinterlace filter. Otherwise this value is ignored.

kPropDITInvTelecine BOOL If the kPropDITManual property is TRUE, turns on the
inverse telecine filter. Otherwise this value is ignored.

Video Resize Filter Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values:
kValuePluginTypePrefilterResizer.

kPropPluginName string
(initialization only)

Plug-in name. Possible values:
kValuePluginNamePrefilterResizer.

 (Table Page 1 of 2)
43

Helix DNA Producer SDK Developer’s Guide
kPropResizeQuality string Affects the resulting quality of an output video when
resize is applied. Choosing high quality results in a better
quality resize but uses considerably more CPU cycles.
Possible values:
kPropResizeQualityFast
kPropResizeQualityHigh

kPropOutputWidth UINT32 Sets the output video width in pixels. If this property is
set to 0, then the width is computed from the height
property and the input aspect ratio. If both the width
and height properties are set to 0 or the width and height
properties are omitted, no resize occurs. This value
should be set in an increment supported by the codec; if
it is not, the video is cropped down to the nearest
multiple that is supported.

kPropOutputHeight UINT32 Sets the output video height in pixels. If this property is
set to 0, then the height is computed from the width
property and the input aspect ratio.

Video Resize Filter Properties (continued)

Property Type Description

 (Table Page 2 of 2)

Audio Gain Filter Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values:
kValuePluginTypePrefilterAudioGain.

kPropPluginName string
(initialization only)

Plug-in name. Possible values:
kValuePluginNamePrefilterAudioGain.

kPropAudioLimiterGain UINT32 The audio gain (in dB) with a range from +12 dB gain
(amplification) to -12 dB gain (attenuation).

Audio “Watchdog” Filter Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values:
kValuePluginTypePrefilterLevelMeter.

kPropPluginName string
(initialization only)

Plug-in name. Possible values:
kValuePluginNamePrefilterLevelMeter.
44

CHAPTER 3: Encoding Overview
Output Profile

Output profiles are container objects that specify how media will be encoded
through the media profile, as well as where the encoded data is sent through
destinations. An output profile holds a single media profile (which contains
audience and stream settings) and multiple output destinations. It is
important to note that every destination in an output profile gets the same set
of streams with the same encoding settings as all other destinations in the
output profile.

Audio Delay Compensation Filter Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values:
kValuePluginTypePrefilterAudioDelayComp.

kPropPluginName string
(initialization only)

Plug-in name. Possible values:
kValuePluginNamePrefilterAudioDelayComp.

kPropAudioDelay IUnknown /
IHXTTime

The value, in seconds, by which timestamps are delayed.
If this property is set, the audio signal is delayed by the
amount of time specified by this property. This is done
by padding the specified number of seconds of silence at
the beginning of the audio stream and adjusting the
timestamp on all other audio samples so they occur the
specified number of seconds earlier. If both the delay and
advance properties are set, then they are summed such
that the two are essentially subtracted from one another
and the remainder is applied as delay or advance,
whichever is applicable.

kPropAudioAdvance IUnknown /
IHXTTime

The value, in seconds, by which timestamps are
advanced. If this property is set, the audio signal is
advanced by that amount of time by removing the
specified number of seconds of audio samples at the
beginning of the audio stream and adjusting the
timestamp on all other audio samples so they occur the
specified number of seconds later in time.
45

Helix DNA Producer SDK Developer’s Guide
To create an output profile, call IHXTClassFactory::CreateInstance using the
IID_IHXTOutputProfile reference identifier. The following table contains the
properties supported by output profiles.

Multiple Output Profiles

Multiple output profiles provide you with the ability to encode more than one
output at a time from a single input, each of which can address different uses.
That is, one input source file will be compressed to multiple output formats in
a single pass. For example, you can use multiple output profiles to:

• Encode to multiple bit rates.

• Broadcast at one bit rate and archiving at another.

• Provide audio only and audio-video output.

Encoding to Multiple Bit Rates

SureStream encodes one file that spans the range of a few kilobits to several
megabits. However, there may be times when you require additional
capabilities not supported by SureStream. In this case, multiple output
profiles allow you to simultaneously encode more than one file with a wide
range of capabilities.

Mulitple output profiles can provide you with the following capabilities:

• Different video frame sizes

Multiple output profiles allow you to independently set frame size for
different bit rates. For example,you might want to encode dial-up speeds
at a smaller frame size of about 176 by 144 pixels to maintain a reasonable
quality, and encode larger bit rates of 256 kilobits per secont (Kbps) and
up at higher frame sizes of 320 by 240 pixels. Download media in the 1
megabits per second (Mbps) range and up could even be encoded at even
larger frame sizes of 640 by 480 pixels, and possibly HDTV resolution
encoding.

• Large bit rate gaps

With multiple output profiles, you can create independent files with large
gaps in bit rate. Because of its original design, SureStream may not

Output Profile Properties

Property Type Description

kPropObjectName string Descriptive name of object instance.
46

CHAPTER 3: Encoding Overview
upshift over gaps in bit rate of 50 Kbps or greater. This sometimes occurs
at low bit rates because SureStream's algorithm for upshifting is based on
increasing the bit rate as a percentage of the current bit rate. In practice,
this means the client might not upshift from 56 Kbps streams to 128
Kbps or higher streams once a downshift occurs. Therefore if you are
encoding content with large gaps in bit rate, you should use mulitiple
output profiles to create two files,one for low bit rate users and a second
for high bit rate users.

By using multiple output profiles you can, for instance, target two distinct
audiences: those on low bit rate connections and those on high bit rate
connections. To do this, you can use multiple output profiles to target dial-up
users in the range of 28 Kbps to 56 Kbps and then a second group of users at
DSL speeds in the range of 256 Kbps to 512 Kbps. For example:

• Low bit rate: 12 Kbps, 16 Kbps, 28 Kbps, 26 Kbps, and 56 Kbps at 176 by
144 pixels

• High bit rate: 256 Kbps at 320 by 240 pixels

Broadcasting at One Bit Rate and Archiving at Another

You can also use multiple output profiles to broadcast content at a relatively
conservative bit rate and offer an on-demand copy of the media for download
or on-demand streaming at a later time. Often, a live event results in much
larger viewership at a single time than on-demand content due to the fact that
on-demand content can be viewed at any time by users all around the globe,
while live content must be viewed at a single time by everyone. Thus, while it
might be feasible to allow users to download a very high bit rate media file, it
would not be feasible to offer the same bit rates during the live broadcast.
Therefore, you could configure one output profile with a single server
destination and a second output profile with a high bit rate file destination.

For example, a company might want to broadcast their CEO All-Employees
Briefing over an intranet. They do not have a multicast-enabled network and
so decide to offer the webcast at a relatively low bit rate during the broadcast
but archive a copy at a much higher bit rate for on-demand viewing. To achieve
this goal, multiple output profiles with the following bit rates are used:

• 80 kbps audio/video stream for the live broadcast.

• 225 kbps audio/video archive file uploaded to a server after the webcast.
47

Helix DNA Producer SDK Developer’s Guide
Providing Audio-only and Audio/Video Output

Multiple output profiles can also be used to simultaneously create an audio-
only version of an audio/video clip. Without multiple output profiles, you
would have to encode the media file once as audio and video, and then a
second time as audio-only.

Using multiple output profiles, you can set up one encoding session with one
audio-only and one audio/video output. In most cases, both output profiles
could use the same target audience, although this is not required. For
example, if this was a live broadcast each output profile might have both an
archive file destination as well as a server broadcast destination. For on-
demand content creation, both output profiles would likely have only one
destination.

Output Filename Redundancy

It is possible for two destinations, either in the same output profile or in
different output profiles to use the same filename and path. This situation
will not result in a loss of data because Helix DNA Producer uses a filename
collision avoidance algorithm to prevent overwriting previous filenames.

During encoding, all files are written to a temporary filename. At the end of
encoding, Helix DNA Producer renames the output file to the name specified
by the user. If at that time the filename is in use by an existing file, Helix DNA
Producer renames the existing file by appending the string “_archNNN”, and
the new file is written to the requested name. Thus, Helix Producer simply
renames any existing file and does not overwrite it.

In addition, when an existing file is renamed the following warning category
log message is generated:

File %s already exists. Archiving existing file to %s. Writing new file to %s.

For More Information: See “Output Error Handling” on page 50.

Independent Metadata

When encoding content to different output profiles, you might want to add
different metadata for each output independently. For example, high bit rate
content might be encoded and targeted towards DSL connection users,
whereas low bit rate content would be targeted towards dial-up users. In this
case, it might be desirable to label each of these media outputs separately. In
another example, high bit rate archive outputs might be labeled differently
than lower bit rate live broadcast outputs.
48

CHAPTER 3: Encoding Overview
Using multiple output profiles, clip information can be defined in each
output profile independently. Any clip information values that could be
added in previous versions of Helix DNA Producer to the entire job can now
be added individually to a single output profile. Include the metadata you
require in the individual output profile using the
IHXTOutputProfile2::SetMetadata method. The clip information defined in a
given output profile is written to each of the destinations within that output
profile.

To maintain consistency with the previous model, clip information can still be
defined globally for an entire job. The clip information defined in an output
profile is in addition to the clip information defined globally in an encoding
job. Clip information in the output profile overrides clip information defined
in the encoding job on a field-by-field basis. In the event that a clip
information field is defined in both the encoding job and the output profile,
the clip information field in the output profile overrides the corresponding
clip information field in the job.

For example, assume a job has two output profiles. For the entire job the
following clip information fields are defined:

• Title="General Title"

• Copyright = "My company (c) 2003"

The first of the two output profiles also has the following clip information
defined:

• Title="Specific Title"

• Description="Some text string"

In this example, the first output profile contains the title and description
defined in the output (metadata defined in the output always overrides the
job metadata). The first output profile will also contain the copyright since it
was defined at the global job level only and not in that specific output profile.
The second output profile will contain just the title and copyright that were
defined globally since it had no clip information of its own defined.

Audience Restrictions

Any single output profile can have only one variable bit rate (VBR) audience,
or it can have one or more constant bit rate (CBR) audiences. With multiple
outputs, some output profiles with VBR audiences and others with CBR
audiences is allowed.
49

Helix DNA Producer SDK Developer’s Guide
Output Error Handling

When an error occurs during output, Helix DNA Producer simply raises an
error to the application and keeps going. Your code can then either choose to
stop the encoding and allow the user to make necessary modifications before
restarting encoding, or ignore the failed destination or output without
stopping the entire encode.

The following information outlines the error handling behavior for the Helix
DNA Producer 10.0 SDK:

• If one or more output profiles or destinations fail at start up (when
encoding starts), all other output profiles continue. An event is raised and
an error is logged.

• If one or more output profiles or destinations fails during steady-state
operation, all other output profiles continue. An event is raised and an
error is logged.

Creating Multiple Output Profiles

Use the following steps to create basic multiple output profiles:

➤ To create multiple outputs:

1. Use IHXTClassFactory::BuildInstance to create an instance of the
IHXTOutputProfile interface.

res = m_pFactory->BuildInstance(IID_IHXTOutputProfile, NULL,
(IUnknown**)&pOutputProfile);

2. Use IHXTEncodingJob::AddOutputProfile to add the new output file to the
encoding job.

res = m_pJob->AddOutputProfile(pOutputProfile);

3. Use IHXTEncodingJob::GetOutputProfileCount to get the number of available
output profiles.

*pnOutputIndex = m_pJob->GetOutputProfileCount() - 1;

4. Repeat steps 1 through 3 for each required output profile.

The \samples\advencoder\encoder.cpp file included with the Helix DNA
Producer SDK provides an example implementation of multiple outputs.
50

CHAPTER 3: Encoding Overview
Destination

Destinations specify where encoded packets are sent. One file writer and
several broadcast destination types are supported. To create a destination
object, call IHXTClassFactory::CreateInstance with IID_IHXTDestination. The
following table contains the properties supported by all destinations.

File Writers

File writers are file output destination plug-ins that can receive encoded data
packets. They require the plug-in type property to be specified when the object
is initialized. The following table contains the properties supported by file
writers.

All Destinations Properties

Property Type Description

kPropObjectName string Descriptive name of object instance.

File Writer Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values:
kValuePluginTypeDestinationFile .

kPropPluginName string
(initialization only)

Plug-in name. Possible values:
kValuePluginNameFileDestRealMedia.

kPropOutputPathname string Path name of the destination file.

kPropTempDirPath string Path name of the temporary directory used for scratch
files.

kPropFileRollSize UINT32 Files size limit (in megabytes) at which rollover should
occur. File rolling is only supported for RealMedia
files. The maximum allowable value for RealMedia
files is 4 gigabytes (GB), the limit of the RealMedia file
format. Setting destination roll size larger than this
value will result in an unreadable file being created.
The new file is appended with a number (for example,
movie1.rm). On Linux the destination file limit is 2
GB. On Macintosh OS X the file limit is 1.45 GB.

 (Table Page 1 of 2)
51

Helix DNA Producer SDK Developer’s Guide
Automatic File Renaming

Earlier versions of Helix DNA Producer automatically renamed RealMedia
files to either RM or RMVB. Any files passed to the RealMedia file writer
would be renamed to “.rm” if they were constant bit rate (CBR) files and
“.rmvb” if they were variable bit rate (VBR) files.

This behavior has changed as follows:

• Helix DNA Producer renames file extensions only if the file extension is
“.rm” (case insensitive) and the codec is VBR (for example, RealVideo
version 9 with VBR enabled or the lossless audio codec).

• If you specify the file extension as “.rmj” or any other file extension, Helix
DNA Producer does not rename the file.

• If no file extension is specified, then no automatic renaming occurs.

Helix DNA Producer (without additional plug-ins) also defaults to RealMedia
file format when the file extension is not recognized as a result of giving the
RealMedia file format writer the highest priority (80 out of a scale of 1-100).
However, new plug-ins added to the Helix DNA Producer SDK might assign a
higher priority for unrecognized file extensions and thus take priority for files
with no extension or unrecognized extensions.

kPropFileRollTime IUnknown (see
IHXTTime)

File time limit at which rollover should occur. A
duration with the syntax dd:hh:mm:ss where seconds
are ignored. Days and hours may be omitted if they are
0. File rolling is only supported for RealMedia files.
The maximum allowable value for RealMedia files is 4
GB (limit of RealMedia file format). Setting
destination roll time such that the corresponding size
is larger than this value results in an unreadable file
being created. The new file is appended with a number
(for example, movie1.rm). On Linux the destination
file limit is 2 GB. On Macintosh OS X the file limit is
1.45 GB.

kPropMergeWriteSize UINT32

kPropMergeWriteInterval UINT32

File Writer Properties (continued)

Property Type Description

 (Table Page 2 of 2)
52

CHAPTER 3: Encoding Overview
Adding New File Writer Formats

Helix DNA Producer provides a mechanism that enables applications to easily
support new output file formats without significant changes to the
application. You can add support for additional file formats by including file
extension support for the file format in your output destination plug-in’s
plug-in property table. When you add a new file format to the output
destination plug-in’s property table, you must also specify a ranking that
determines which plug-in to use when two or more plug-ins support the same
file extension. The plug-in with the highest priority is used to write the
output. Priority ranking is set from 0 to 100, with 0 being the lowest priority
and 100 being the highest, with 80 being the normal value.

Although applications can still explicitly request a specific file writer, by
including file extension support in your output destination plug-in,
applications can locate the “best” plug-in by enumerating all output
destination plug-ins.

For example, you might want to create a plug-in that supports output in
MPEG file format. You would create an output file destination plug-in for
writing MPEG files (as well as writing a codec plug-in for compressing media
in the MPEG video codec). Your MPEG plug-in would specify what file
extensions that plug-in is capable of writing and what priority to give that
output destination plug-in.

The following sample shows the file extension and priority section of a plug-in
property table in an output file destination plug-in designed for an MPEG
file:

// STEP 4) fill in the use preference field
 { eStringType, kPropFileExtensions, (void*)
 ".MPEG:80,.MPG:80,.M1V:70,.M1A:70",NULL },

Once compiled, the new MPEG output destination plug-in can be added to
the plugins directory of an application built on the Helix DNA Producer
architecture. If that application is designed to be extensible with respect to
outputs, the user can then specify the file extension to which they would like
to output data. The application only needs to set the output filename (with
extension) and Helix DNA Producer will then take care of identifying the
output destination plug-ins that are capable of handling that file extension
(hence that file type) and which one has the highest priority.
53

Helix DNA Producer SDK Developer’s Guide
Broadcast Destination Types

The following table contains properties supported by G2 Push Broadcast.

The following table contains the properties supported by RBS push (account-
based) broadcast

G2 Push Broadcast Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values:
kValuePluginTypeDestinationG2PushServer.

kPropPluginName string
(initialization only)

Plug-in name. Possible values:
kValuePluginNameServerg2Push .

kPropBroadcastAddress string Helix Universal Server address (IP address or
domain name).

kPropBroadcastPort UINT32 Helix Universal Server’s encoder port that will be
receiving the broadcast.

kPropBroadcastStreamname string Name of the live stream.

kPropBroadcastUsername string Helix Universal Server encoder account username.

kPropBroadcastPassword string Helix Universal Server encoder account password.

kPropBroadcastTransport string Broadcast transport type between the encoder and
Helix Universal Server.

Account-based RBS Push Broadcast Properties

Property Type Description

kPropPluginType string (required,
initialization
only)

Plug-in type. Possible values:
kValuePluginTypeDestinationPushServer.

kPropPluginName string
(initialization
only)

Plug-in name. Possible values:
kValuePluginNameServerRBS.

kPropBroadcastAuthType string Authentication type. Possible values:
kValueAccountBased.

kPropBroadcastAddress string Helix Universal Server address (IP address
or domain name).

kPropBroadcastPort UINT32 Helix Universal Server’s encoder port that
will be receiving the broadcast.

kPropBroadcastStreamname string Name of the live stream.
 (Table Page 1 of 2)
54

CHAPTER 3: Encoding Overview
kPropBroadcastPath string Broadcast path (appended to the stream
name).

kPropBroadcastUsername string Helix Universal Server encoder account
user name.

kPropBroadcastPassword string Helix Universal Server encoder account
password.

kPropBroadcastTransport string Broadcast transport type between the
encoder and Helix Universal Server.

kPropBroadcastListenAddress string Encoder IP address.

kPropBroadcastMulticastAddress string Multicast server address used when the
transport type is udp/multicast.

kPropBroadcastAllowResend BOOL Set to TRUE to allow resend of packets
from the encoder.

kPropBroadcastFecPercent UINT32 Percentage of error correction data.

kPropBroadcastFecOffset UINT32 Number of seconds to offset redundant
packets when FEC is 100%.

kPropBroadcastMulticastTTL UINT32 Multicast Time to Live.

kPropBroadcastMetadataResendInterval UINT32 Number of seconds between resending of
header packets.

kPropBroadcastEnableTCPReconnect BOOL If TRUE, then the encoder would keep on
reconnecting on TCP connection failure.

kPropBroadcastTCPReconnectInterval UINT32 Number of seconds the encoder waits
before attempting a reconnection after
losing a connection with a Helix Universal
Server.

Account-based RBS Push Broadcast Properties (continued)

Property Type Description

 (Table Page 2 of 2)
55

Helix DNA Producer SDK Developer’s Guide
The following table contains the properties supported by RBS push
(password-based) broadcast.

Password-based RBS Push Broadcast Properties

Property Type Description

kPropPluginType string (required,
initialization
only)

Plug-in type. Possible values:
kValuePluginTypeDestinationPushServer.

kPropPluginName string
(initialization
only)

Plug-in name. Possible values:
kValuePluginNameServerRBS.

kPropBroadcastAuthType string Authentication type. Possible values:
kValueSinglePassword.

kPropBroadcastAddress string Helix Universal Server address (IP address
or domain name).

kPropBroadcastPort UINT32 Start port of port range (in the receiver
configuration on Helix Universal Server).

kPropBroadcastPortEnd UINT32 End port of port range (in the receiver
configuration on Helix Universal Server).

kPropBroadcastStreamname string Name of the live stream.

kPropBroadcastPath string Broadcast path (prepended to the stream
name).

kPropBroadcastPassword string Helix Universal Server encoder account
password.

kPropBroadcastTransport string Broadcast transport type between the
encoder and Helix Universal Server.

kPropBroadcastListenAddress string Encoder IP address.

kPropBroadcastMulticastAddress string Multicast server address used when the
transport type is udp/multicast.

kPropBroadcastAllowResend BOOL Set to TRUE to allow resending of packets
from the encoder.

kPropBroadcastFecPercent UINT32 Percentage of error correction data.

kPropBroadcastFecOffset UINT32 Number of seconds to offset redundant
packets when FEC is 100%.

kPropBroadcastMulticastTTL UINT32 Multicast Time to Live.

kPropBroadcastMetadataResendInterval UINT32 Number of seconds between resending of
header packets.

 (Table Page 1 of 2)
56

CHAPTER 3: Encoding Overview
The following table contains the properties supported by RBS pull broadcast.

Postfilters

Postfilters operate on audio and video data that has already been encoded.
This is in contrast to prefilters which operate on uncompressed audio and
video data. An example of a postfilter plug-in is a digital rights management

kPropBroadcastEnableTCPReconnect BOOL If TRUE, then the encoder would keep on
reconnecting on TCP connection failure.

kPropBroadcastTCPReconnectInterval UINT32 Number of seconds the encoder waits
before attempting a reconnection after
losing a connection with a Helix Universal
Server.

Password-based RBS Push Broadcast Properties (continued)

Property Type Description

 (Table Page 2 of 2)

RBS Pull Broadcast Properties

Property Type Description

kPropPluginType string (required,
initialization
only)

Plug-in type. Possible values:
kValuePluginTypeDestinationPullServer.

kPropPluginName string
(initialization
only)

Plug-in name. Possible values:
kValuePluginNameServerRBS .

kPropBroadcastStreamname string Name of the live stream.

kPropBroadcastPath string Broadcast path (prepended to the stream
name).

kPropBroadcastListenAddress string Encoder IP address.

kPropListenPort UINT32 Port on which the encoder listens for the
pull request.

kPropBroadcastServerTimeout UINT32 Number of seconds encoder will wait for a
ping from the Helix Universal Server
before assuming no clients are connected
to the stream, and closing the connection.

kPropBroadcastEnableTCPReconnect BOOL If TRUE, the encoder would keep on
reconnecting on TCP connection failure.

kPropBroadcastTCPReconnectInterval UINT32 Number of seconds the encoder waits
before attempting a reconnect after losing
a connection with a Helix Universal Server.
57

Helix DNA Producer SDK Developer’s Guide
(DRM) postfilter that encrypts all packets. The Helix DNA Producer 10.0 SDK
does not ship with any prebuilt postfilters

Media Profile

The media profile specifies encoding settings, and also acts as a container for
one or more audiences in the encoding job. If the media profile contains only
one audience, then a single-rate file is generated. If it contains multiple
audiences, then a SureStream file is created.

It is important to note that, unlike previous versions of the Helix DNA
Producer SDK, no streams are automatically added to SureStream files. For
example, in previous versions of the SDK selecting the 28.8k audience with
SureStream enabled would also cause 12k and 16k substreams to be added to
the encoding job. To achieve the same effect with the current SDK, the “12k
Substream for 28k Dial-up” and “16k Substream for 28k Dial-up” audiences
must be explicitly added to the media profile. If a SureStream presentation is
created without substreams, the resulting .rm file presentation may play back
in a sub-optimal manner when network conditions are not pristine. Good
substream values are 80% and 60% of the actual audience.

To create a media profile, call IHXTClassFactory::CreateInstance using the
IID_IHXTMediaProfile reference identifier. The following table contains the
properties supported by media profiles.

Media Profile Properties

Property Type Description

kPropObjectName string Descriptive name of object instance.

kPropVideoMode string Video encoding mode. Possible values are:
kValueVideoModeNormal
kValueVideoModeSharp
kValueVideoModeSmooth
kValueVideoModeSlideshow

kPropDisableAudio BOOL If TRUE, disables the encoding of audio.

kPropDisableVideo BOOL If TRUE, disables the encoding of video.

kPropDisableEvents BOOL If TRUE, disables the encoding of events.

kPropDisableImageMa
ps

BOOL If TRUE, disables the encoding of image maps.

kPropAudioMode string Type of audio content being encoded.
 (Table Page 1 of 2)
58

CHAPTER 3: Encoding Overview
Audiences

An audience holds a set of streams for a particular target bit rate. The
audience defines a combination of audio, video, events, and image map
streams. Depending upon the type of input and the media profile settings,
different streams in the audience will be used. For example, if the input is
audio-only and audio format in the media profile specifies “music”, then only
an audio stream is generated using a music codec that takes up nearly all the
target bit rate

To create an audience, call IHXTClassFactory::CreateInstance using the
IID_IHXTAudience reference identifier. The following table contains the
properties supported by audiences.

An audience enumerator is provided to look through a directory of audience
template files and instantiate an audience object based on each settings file.
To create an audience enumerator, call IHXTClassFactory::CreateInstance with
IID_IHXTAudienceEnumerator.

kPropAudioResamplin
gQuality

string Resampler quality setting. Possible values are:
kValueAudioResamplingQualityFast
kValueAudioResamplingQualityHigh

kPropOutputWidth UINT32 Playback width of the encoded video.

kPropOutputHeight UINT32 Playback height of the encoded video.

kPropResizeQuality string Video resize quality setting. Possible values are:
kValueResizeQualityFast
kValueResizeQualityHigh

Media Profile Properties (continued)

Property Type Description

 (Table Page 2 of 2)

Audience Properties

Property Type Description

kPropObjectName string Descriptive name of object instance.

kPropAvgBitrate UINT32 Average bitrate for CBR and VBR target bitrate encodes.

kPropMaxBitrate UINT32 Maximum bitrate for VBR target bitrate and VBR quality
mode encodes.
59

Helix DNA Producer SDK Developer’s Guide
Streams

Stream objects describe a single media stream for a particular datatype. There
are four different types of streams supported in this SDK: audio, video, events,
and image map. A single-rate audio/video presentation consists of one audio
stream and one video stream. A SureStream audio/video presentation is made
up of multiple audio and video stream pairs. An audience designates which
streams are grouped together for a target bit rate and presentation type.

To create a stream property, call IHXTClassFactory::CreateInstance using the
IID_IHXTStreamConfig reference identifier. The following tables contain the
properties supported by audiences.

All Stream Properties

Property Type Description

kPropObjectName string Descriptive name of object instance. Possible values are:
kValueAudioCodec.

kPropEncodingType string Type of encoding. Possible values are:
kValueEncodingTypeCBR
kValueEncodingTypeVBRBitrate
kValueEncodingTypeVBRQuality

Audio Stream Properties

Property Type Description

kPropObjectName string Descriptive name of object instance.

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values are:
kValuePluginTypeAudioStream

kPropPluginName string
(initialization only)

Name of the plug-in to load. Possible values are:
kValuePluginNameCodecRealAudio.

kPropCodecName string Codec name. Possible values are cook, atrc, sipr.

kPropCodecFlavor UINT32 Codec flavor.

kPropEncodingComple
xity

string Controls the resulting size of the audio file by varying
the complexity of the encoding algorithm. One of the
following (from largest file size to smallest file size):
kValueEncodingComplexityVeryFast
kValueEncodingComplexityFast
kValueEncodingComplexityNormal
kValueEncodingComplexityHigh
kValueEncodingComplexityVeryHigh

 (Table Page 1 of 2)
60

CHAPTER 3: Encoding Overview
kPropAvgBitrate UINT32 (read-only) Average bitrate.

kPropMaxBitrate UINT32 (read-only) Maximum bitrate.

kPropStreamContext Property bag used by the Helix DNA Producer SDK to
select the audio stream if the audience contains multiple
audio streams (the contents of which are shown in the
following table).

Audio Stream Properties (continued)

Property Type Description

 (Table Page 2 of 2)

Audio Stream Context Property Bag

Property Type Description

kPropAudioMode string Audio mode. Possible values are:
kValueAudioModeMusic
kValueAudioModeVoice

kPropPresentationTyp
e

string Presentation type. Possible values are:
kValuePresentationAudioOnly
kValuePresentationAudioVideo

Video Stream Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values are:
kValuePluginTypeVideoStream

kPropPluginName string
(initialization only)

Name of plug-in to load. Possible values are:
kValuePluginNameCodecRealVideo.

kPropCodecName UINT32 Codec name. Possible values are:
kValueCodecNameRV9 (RealVideo 9)
kValueCodecNameRV8 (RealVideo 8)
kValueCodecNameRV6 (RealVideo G2 with SVT)

kPropEncodingComple
xity

string Controls the resulting encoding quality by varying the
complexity of the encoding algorithm. One of the
following (from lowest quality to highest quality):
kValueEncodingComplexityVeryFast
kValueEncodingComplexityFast
kValueEncodingComplexityNormal
kValueEncodingComplexityHigh
kValueEncodingComplexityVeryHigh

 (Table Page 1 of 2)
61

Helix DNA Producer SDK Developer’s Guide
Setting Up Optional Encoding Job Features
A basic encoding job can be enhanced by setting up additional encoding job
features.

Metadata

Metadata (also known as clip info) is set on the encoding job object to
describe the resulting output. The RealOne Player will then display the title,
author, and copyright metadata strings. You can also add your own custom
metadata that you can extract and utilize in your own custom applications.
This custom metadata is stored in the file header.

Metadata is stored in the encoding job object as a property bag. It can be
accessed using the IHXTEncodingJob::GetMetadata and
IHXTEncodingJob::SetMetadata methods. The following example demonstrates
how to use metadata:

IHXTPropertyBag* pMetadata = NULL;
HX_RESULT res = m_pJob->GetMetadata(&pMetadata);

if (SUCCEEDED(res))

kPropAvgBitrate UINT32 Average bitrate. Must be zero. Zero means the Helix DNA
Producer SDK will calculate the bitrate based on the
audience average bitrate and other active streams within
an audience.

kPropMaxBitrate UINT32 Maximum bitrate. Must be zero. Zero means the Helix
DNA Producer SDK will calculate the bitrate based on
the audience maximum bitrate and other active streams
in an audience.

kPropEncodingQuality double Variable bit rate (VBR)-quality mode setting.

kPropMaxStartupLaten
cy

UINT32 Maximum video preroll (initial buffering on playback).

kPropLossProtection BOOL Adds error correction codes to the stream.

kPropMaxOutputFrame
Rate

double Maximum encoded frame rate.

kPropMaxTimeBetwee
nKeyFrames

double Maximum amount of time between key frames.

Video Stream Properties (continued)

Property Type Description

 (Table Page 2 of 2)
62

CHAPTER 3: Encoding Overview
{
 pMetadata->SetBool(kPropAllowRecording, "FALSE");
 pMetadata->SetString(kPropTitle, szTitle);
 pMetadata->SetString(kPropKeywords, szKeywords);
 pMetadata->SetString(kPropDescription, szDescription);
 pMetadata->SetString(kPropAuthor, szAuthor);
 pMetadata->SetString(kPropCopyright, szCopyright);
 pMetadata->SetString("My Custom Data", szCustomData);
}

Note: Although metadata is supplied in a property bag, only
strings and UINTs are supported as metadata.

The sample demonstrates how to set values to specific properties supported as
metadata. In addition, you can include any custom metadata (shown as “My
Custom Data” in the sample). Although this custom metadata is not currently
interpreted or displayed by the player, you can extract and use this metadata in
your code.

Serialization

The serialization interfaces provided with the Helix DNA Producer SDK save
the configuration settings of an object to a file or to a buffer in memory.
These serialized settings can then be used later to recreate an object with
exactly the same settings. The primary use for these interfaces is to serialize
job and audience files. These files are used to save job or audience settings
beyond the lifetime of the application.

Two serialization interfaces are provided with the Helix DNA Producer SDK.
The first, IHXTSerializeBuffer, serializes information to a buffer that can later be
deserialized to create an exact copy of a specific object. The second,
IHXTUserConfigFile , saves specific object information to a file. This file can then
persist beyond the lifetime of the application using the object. Once the
application is restarted, the specific object information can be deserialized
from the file, recreating the settings from the previously saved information.

During serialization, you can also examine an object’s individual property bag
content, and modify or reject the serialization of the particular object you are
examining. Both IHXTSerializeBuffer::WriteToBuffer and
IHXTUserConfigFile::WriteToFile contain a pSerialCallback parameter that points
to an IHXTSerializationCallback interface that lets you control what is being
serialized. For example, each time an object with a property bag (such as
63

Helix DNA Producer SDK Developer’s Guide
inputs, outputs, prefilters, and so on) is serialized, the
IHXTSerializationCallback::OnSerializeObject method is called, allowing you the
chance to examine the contents of the property bag. You can then either
modify the contents of the property bag being serialized using the pObject
parameter, or prevent its serialization by setting the pbIsOkToSerialize
parameter to FALSE. If the pSerialCallback parameter in either
IHXTSerializeBuffer::WriteToBuffer or IHXTUserConfigFile::WriteToFile is set to NULL
(the default), no callbacks occur.

Both the \producersdk\samples\encoder\encoder.cpp and the
\producersdk\samples\mediasinkencoder\mediasinkencoder.cpp sample files
demonstrate how to save the setup of an encoding job to a file using
serialization.

Statistics

You can retrieve statistics from various objects in the encoding job using the
IHXTStatistics interface. The statistics returned from the
IHXTStatistics::GetCurrentStatistics method indicate the current status of the
object. The statistics returned from the IHXTStatistics::GetLifeTimeStatistics
method indicate the status of the object from the beginning of the encoding
job.

Note: Currently, only video and audio streams give out
statistics.

The statistics are returned as a set of properties in a property bag. For
example, statistics returned from a video stream include the average bit rate in
bits per second, the average frames per second, the minimum frames per
second, the average quality, the minimum quality, preroll, duration, and time.
Statistics returned from an audio stream include the average bit rate in bits
per second, preroll, duration, and time.

The duration statistic returned in the property bag refers to the duration of
time for which the statistics apply.

The time statistic refers to the time stamp of the last sample for which
statistics apply.

See the \producersdk\samples\encoder\encoder.cpp file for a demonstration of
setting up the statistics interface, and how to update statistics.
64

CHAPTER 3: Encoding Overview
Logging

Numerous log messages are provided throughout the Helix DNA Producer
SDK. These log messages can be used to see what is happening inside the
producer, and to determine the probable causes of any errors that occur.

To access these log messages, you must create an instance of the logging
system, and use the logging system interfaces to observe the messages being
sent from the producer.

For more information on using the logging system, see “Chapter 4: Logging
System” beginning on page 95.

See the \producersdk\samples\encoder\encoder.cpp file for a demonstration of
setting up the logging system.

Progress Events and Asynchronous Errors

Asynchronous events and errors are handled by the event system. To receive
events, you must implement the IHXTEventSink interface and subscribe to the
events through the event manager (IHXTEventManager). You can access the event
manager by calling the IHXTEncodingJob::GetEventManager method on the job
object. A pointer to the IHXTEventSink interface is passed to the
IHXTEventManager::Subscribe method to set up your event observer.

The types of events you can receive are documented in the ihxteventcodes.h file
located in the SDK’s include directory. The encoding job sends out a progress
event when encoding starts and stops, and during encoding with percent
complete updates. The event that handles percent complete progress is
eEventEncodeProgress. In the case of the eEventEncodeProgress event, the puValue
parameter passed to the IHXTEventSink::HandleEvent method is a pointer to a
unsigned integer from 1 to 100 representing percent complete. The same is
true for the eEventAnalysisProgress event, which gives you progress updates
during the analysis phase of two-pass encoding mode.

Encoding RealMedia Events

RealMedia events can be added to an on-demand RealMedia file or inserted
into a live broadcast stream during the encoding process using a media sink
plug-in. An event consists of two components: the event type and the event
value. All standard event types are supported, that is, URL, title, author, and
copyright events. In addition, you can also create a custom event that is made
up of any name/value pair.
65

Helix DNA Producer SDK Developer’s Guide
Note: To edit or add events to an existing RealMedia file, use
the RealMedia edit APIs as described in “Chapter 6: RealMedia
Edit API” beginning on page 145.

The following actions can be triggered by events:

• RealMedia URL events

Causes the client to send URLs to the user’s browser at a specified time
when the stream is played.

• Title, Author, or Copyright events

Changes the title, author or copyright information that can be displayed
in a client.

• Custom events

Initiates no pre-defined action in the player. Any action taken from a
custom event must be programmed into the client using one of the client
APIs, such as C++, Visual Basic, VBScript or JavaScript.

For More Information: See the Helix Software Development Kit
Developer’s Guide for information on programming the client
C++ APIs. See the RealOne Player Scripting Guide for information
on programming the RealOne Player in VBScript or JavaScript.

Event Components

The event value consists of a string that specifies the appropriate value for the
event. The strings have the following syntax.

• URL - <FRAME>:<URL>

<FRAME> is the name of a frame in which the event should be directed.
<URL> is the URL to be passed to the browser.

The format of the URL should not be assumed to follow any specific URL
syntax and in fact can be any legal string accepted by a browser including
“JavaScript:” syntax. This string can also contain multi-byte characters.
The length is limited to 65 kilobytes (K) - 1 bytes.

• Title, Author and Copyright

Strings which can contain any data up to 65K - 1 bytes in length. This
information should generally be characters but should not be assumed to
be single-byte characters.

• Custom
66

CHAPTER 3: Encoding Overview
Any string up to 65K - 1 characters. This information should generally be
characters but should not be assumed to be single-byte characters.

Event Duration

Every event, in both on-demand and live streams, has a start and end time.
With linear playback where there is no seeking on the timeline, such as during
live broadcasting, events are triggered at the start time only. If a user seeks to a
given point in the media with on-demand media, the event whose start time
and end time include that event is triggered.

The event’s end time can be specified either explicitly by setting a duration, or
implicitly by leaving the duration as its default value of infinite. If a
subsequent event is defined subsequently, the new event takes the place of the
last event as opposed to adding to the last event. That is, events never overlap.
This means that it is perfectly safe, and preferable, to always use infinite as the
duration of an event if the desired behavior is for an event to last up until the
next event is triggered.

The minimum event duration for URL and custom events is 200 milliseconds.
If a URL or custom event contains a duration lower than 200 milliseconds, the
duration is automatically modified by Helix DNA Producer to 200
milliseconds.

TAC events implicitly have an infinite duration, that is, the pTimeEnd
parameter of the IHXTMediaSample::SetTime method is set to 0xFFFFFFFF.

File to File Encoding Rules

The following rules describe how to insert events for file to file (on demand)
encoding:

• Events should be added prior to the start of encoding. Inserting an event
in a file to file encode after encoding has started is allowed but not
advised. Because the encoding is not being performed in real-time, the
timing of the event will therefore be unpredictable.

• Events must be added in order of increasing start time. Adding an event
with a start time less than a previously-added event results in an error.

• Start time is specified explicitly. Start time is required if set prior to
encode time. Not setting the start time before encoding is started results
in an error.
67

Helix DNA Producer SDK Developer’s Guide
• End time is computed from the duration. If the duration is not set,
duration automatically defaults to infinity (duration can also be explicitly
set to infinity by setting the pTimeEnd parameter of the
IHXTMediaSample::SetTime method to 0xFFFFFFFF). Subsequent events
overwrite existing events, that is, if the end time of one event overlaps the
start time of a subsequent event, the new event replaces the first event. For
example given the following events:

• Event1: StartTime=0, EndTime=60

• Event2: StartTime=30, EndTime=60

In this case, if the client seeks to time equals 45 seconds, only Event2 is
triggered.

Live Encoding

The following rules describe how to insert events during capture input or
broadcast output encoding:

• Events can be added prior to starting encoding or after encoding has
started.

• Events must be added in order of increasing start time. Adding an event
with a start time less than a previously added event results in an error.

• Start time must be specified explicitly in the call to add a RealMedia event.
A method is provided to get the current timestamp. If the time for the
event has passed, the method fails with an appropriate error.

• The end time must be defined explicitly in the call to add a RealMedia
event. The end time can be set to either a timestamp after the start time or
infinity.

• For URL and custom events, the minimum allowable value of duration is
200 milliseconds. If a URL or custom event contains a duration lower
than 200 milliseconds, the duration is automatically modified by the SDK
to 200 milliseconds.

• For TAC events, the minimum allowable duration is infinity. The duration
for TAC events are always set to infinity.

URL Events

URL events provide a mechanism to trigger a web page to be loaded on
playback. URL events can either be defined without a target frame, in which
68

CHAPTER 3: Encoding Overview
case the event loads into a new browser window, or it can be targeted to a
specific frame in a browser or a specific pane in RealOne Player.

For More Information: More information on RealMedia events
can be found in Chapter 4 (Clip-Encoded URLs) of the
Introduction to Streaming Media guide at
http://service.real.com/help/library/encoders.html.

URL events are specified by setting the nType parameter of the
IHXTEventSample::SetAction method to RSEventMediaSample_URL. The pString
parameter of this method is then set to the URL. This URL is encoded into the
RealMedia stream, delivered to the client, and is subsequently passed to the
browser at the appropriate time.

URL events can be targeted either to a new browser window or to a specific
frame of a multi-frame HTML page within the browser. In addition, URL
events can be targeted to one of the three panes in the three-pane RealOne
Player. By default, URL events open a new browser window. However, a frame
can be specified to target the URL event to a specific frame of a multi-frame
HTML document or to the related info or media browser panes of the
RealOne Player.

The following syntax targets a specific frame:

&&FRAME&&URL

In this example, FRAME is optional and identifies an HTML frame to be used as
the target and URL is the URL that is to be loaded.

URL events can be used with an embedded client or in a stand-alone client.

When URL events are used with a presentation embedded within the browser,
any frame, other than the current HTML frame, can be specified into which to
load the URL, as shown in the following figure.
69

Helix DNA Producer SDK Developer’s Guide
In this example, URL events containing URLs to slides to be synchronized
with a presentation would be targeted to the Slide Frame (main). The pString
value in IHXTEventSample::SetAction for this would be
&&main&&http://youserver.yourcompany.com/slides/slide1.htm, where the string
main between the double ampersands (&&) indicate that the URL should be
loaded into the Slide Frame.

When URL events are used with a presentation playing in RealOne Player, any
pane of the RealOne Player other than the media playback pane can be
specified into which to load the URL.

RealOne Player is split into the following display regions:

• Media playback pane (playback of audio, video and other multimedia data
types)

• Related info pane (display of related information)

• Media browser pane (display of related web pages)

• Secondary browser windows (other web pages displayed in a separate
window)

The following figure shows the different panes of RealOne Player.
70

CHAPTER 3: Encoding Overview
The related info pane, media browser pane, and the secondary browser
windows can display HTML pages and other web technologies like Flash or
Images. Anything that can be displayed in a browser can be loaded in either of
these panes.

You can control which pane of the RealOne Player an event is loaded in by
using the appropriate frame name for that pane. The following table lists the
frame name for each of the relevant panes:

For example, to load a URL into the media browser pane, the nType parameter
of the IHXTEventSample::SetAction method is set to RSEventMediaSample_URL and
the pString value would be
&&_rpbrowser&&http://youserver.yourcompany.com/slides/slide1.htm. The string

RealOne Player Frame Names

Pane Frame Name

Media playback pane NA (See below)

Related info pane _rpcontextwin

Media browser pane _rpbrowser

Secondary browsing window _rpexternal
71

Helix DNA Producer SDK Developer’s Guide
_rpbrowser between the double ampersands (&&) indicate that the URL should
be loaded into the media browser pane.

You can also use the rpcontextheight and rpcontextwidth parameters in the URL.
For more information on valid URL parameters, see the “Clip-Encoded URLs”
chapter of Introduction to Streaming Media with RealOne Player at
http://service.real.com/help/library/encoders.html.

For launching media, such as an audio or video clip, no frame name is
required because media clips always play back in the media playback pane and
there is no need to target that pane specifically. In some cases, audio or video
content that would otherwise play back in the media playback pane can be
loaded into the media browser pane by embedding that media in a separate
HTML page. The separate HTML page can then be loaded in the media
browser pane using the frame name identified in the RealOne Player Frame
Names table.

Setting a RealMedia Event

The following steps demonstrate how to set up a media sink plug-in to
provide a basic RealMedia event in your presentation.

1. Create a set of parallel inputs as described under “Creating Parallel
Inputs” on page 40. One of these inputs can provide input for an
audio/video source while the other will provide an input for the
RealMedia event.

2. Set up the media sink plug-in by creating the property bag that contains
the initialization parameters, setting the plug-in type, creating the input,
and setting the input on the encoding job.

// Create the property bag used to initialize the input
IHXTPropertyBag* pInitParams = NULL;
if (SUCCEEDED(res))
 res = m_pFactory->CreateInstance(IID_IHXTPropertyBag,
 (IUnknown**)&pInitParams);

// Set the plugin type
if (SUCCEEDED(res))
 res = pInitParams->SetString(kPropPluginType,
 kValuePluginTypeInputMediaSink);

// Media samples generated in StartEncoding are not strictly real-time
if (SUCCEEDED(res))
 res = pInitParams->SetBool(kPropIsRealTime, FALSE);
72

CHAPTER 3: Encoding Overview
// Create the input
IHXTInput* pInput = NULL;
if (SUCCEEDED(res))
 res = m_pFactory->BuildInstance(IID_IHXTInput, pInitParams,
 (IUnknown**)&pInput);
// Set the input on the encoding job
if (SUCCEEDED(res))
 res = pInputGroup->AddInput(pInput);

3. Get the event pin using the IHXTPropertyBag::GetUnknown method with the
kPropEventInputPin property.

// Get the event pin
IUnknown* pUnk = NULL;
res = pInput->GetUnknown(kPropEventInputPin, &pUnk);

4. Query (IUnknown::QueryInterface) for the IHXTMediaInputPin interface.

res = pUnk->QueryInterface(IID_IHXTMediaInputPin, (void**)&m_pEventPin);

5. Enable the event pin by setting the bEnable parameter of the
IHXTMediaInputPin::SetPinEnabled method to TRUE .

Once you have set up the media sink plug-in and have enabled the event pin,
use the following steps to set a RealMedia event.

1. Create an instance of the IHXTEventSample interface using
IHXTClassFactory::CreateInstance.

2. Set the event you want to occur using IHXTEventSample::SetAction. For
example, if the action type in the nType parameter is set to
RSEventMediaSample_URL, a web browser will be launched. You would also
need to set the URL address as the pString parameter, as shown below:

res = pEventSample->SetAction(HXEventMediaSample_URL,
"http://www.real.com", NULL);

3. Optionally, you can set a start and ending time for the event by calling
IHXTMediaSample::SetTime. The start and end times are given in
milliseconds, for example:

res = pEventSample->SetTime(0, 6000);

4. Encode the event using the IHXTMediaInputPin::EncodeSample method.

res = m_pEventPin->EncodeSample(pEventSample);

5. Release the IHXTEventSample interface.
73

Helix DNA Producer SDK Developer’s Guide
The \samples\mediasinkencoder\mediasinkencoder.cpp file included with the
Helix DNA Producer SDK provides an example implementation of RealMedia
events. This sample includes setting up a basic URL event, and also
demonstrates how to create a custom event.

Audio and Video Preview

You can register to receive preview audio or video samples from an encoding
filter graph at three different positions in the graph:

• Immediately after the input source.

• Immediately before the encoder.

• Immediately after the encoder.

The following figure demonstrates the positions where callers to audio and
video preview can plug into the filter graph.

Input Filter Prefilters

Preview Preview

Preview Stream,
Uncompressed

(56 Kbps Modem)

Encoded
Output Stream

(56 Kbps Modem)

Encoded
Output Stream

(256 Kbps)

Encoder
74

CHAPTER 3: Encoding Overview
After Input Source

To register to receive preview samples after the input source, callers must
perform the following steps:

1. Implement the IHXTPreviewSink interface on the object that receives
callbacks with the preview samples.

2. Find out the optimal preview settings, that is, the least CPU-intensive
format settings to request. You can choose to use the optimal settings or
modify the settings (for example, to resize the video to a larger window).
Use the following steps to get the optimal preview settings after the input
source:

a. Query the IHXTInput interface for the IHXTPreviewSinkControl interface.

b. Create an IHXTPropertyBag.

c. Call the IHXTPreviewSinkControl::GetOptimalSinkProperties method with
a pointer to the IHXTPropertyBag interface you created in the previous
step. This property bag is populated with all the optimal settings.
Refer to the ihxtpreviewsink.h header file for a description of these
returned properties.

3. Set the position of the preview in the filter graph. Call the
IHXTPropertyBag::SetUint method with the kPropPreviewSinkPosition
property and kValueBeforeAllPrefilters value.

4. Set how often you want to receive media samples. Currently you can only
receive all media samples (kValueAllSamples) or the first sample
(kValueFirstSample). Call the IHXTPropertyBag::SetInt method with the
kPropSinkUpdateInterval property, and either the kValueFirstSample or
kValueAllSamples value.

5. In addition, for video preview you can set the video width
(kPropVideoFrameWidth), height (kPropVideoFrameHeight), and color format
(kPropVideoColorFormat) you would like to preview:

a. Call the IHXTPropertyBag::SetUint method with the
kPropVideoFrameWidth property and the width you would like to
preview.

b. Call the IHXTPropertyBag::SetUint method with the
kPropVideoFrameHeight property and the height you would like to
preview.
75

Helix DNA Producer SDK Developer’s Guide
c. Call the IHXTPropertyBag::SetUint method with the
kPropVideoColorFormat property and the color format you would like to
preview. See ihxtconstants.h for a list of possible color formats.

For audio preview you can set the sample rate (kPropAudioSampleRate),
sample size (kPropAudioSampleFormat), and number of channels
(kPropAudioChannelFormat) you would like to preview:

a. Call the IHXTPropertyBag::SetUint method with the
kPropAudioSampleRate property and the sample rate you would like to
preview.

b. Call the IHXTPropertyBag::SetUint method with the
kPropAudioSampleFormat property and the sample format you would
like to preview.

c. Call the IHXTPropertyBag::SetUint method with the
kPropAudioChannelFormat property and the channel format you would
like to preview.

6. Register as a preview sink. Call the IHXTPreviewSinkControl::AddSink with a
pointer to the IHXTPreviewSink interface used to receive the preview media
samples, and a pointer to the IHXTPropertyBag interface that manages the
settings for the preview.

7. If you’re not encoding yet and want to preview the input, call the
IHXTInputPreviewControl::Open method. If you don’t want to preview before
encoding, you’ll begin receiving frames once you start encoding.

You can also enable and disable preview sampling after the input source
during an encoding process. To enable preview during run time, first query
(IUnknown::QueryInterface) IHXTInput for the IHXTPreviewSinkControl3 interface.
Call IHXTPreviewSinkControl3::EnableSink, passing in the pointer to the preview
sink to which you want to send the preview samples. To disable preview during
run time, first query (IUnknown::QueryInterface) IHXTInput for the
IHXTPreviewSinkControl3 interface. Next, call
IHXTPreviewSinkControl3::DisableSink, passing in the pointer to the preview sink
to which you want to stop sending the preview samples.

Before the Encoder

To register to receive preview samples after all prefilters, but before the
encoder, callers must perform the following steps:
76

CHAPTER 3: Encoding Overview
1. Implement the IHXTPreviewSink interface on the object that receives
callbacks with the preview samples.

2. Find out the optimal preview settings, that is, the least CPU-intensive
format settings to request. You can choose to use the optimal settings or
modify the settings (for example, to resize the video to a larger window).
Use the following steps to get the optimal preview settings after the last
prefilter:

a. Query the IHXTInput interface for the IHXTPreviewSinkControl interface.

b. Create an IHXTPropertyBag.

c. Call the IHXTPreviewSinkControl::GetOptimalSinkProperties method with
a pointer to the IHXTPropertyBag interface you created in the previous
step. This property bag is populated with all the optimal settings.
Refer to the ihxtpreviewsink.h header file for a description of these
returned properties.

3. Set the position of the preview in the filter graph. Call the
IHXTPropertyBag::SetUint method with the kPropPreviewSinkPosition
property and kValueAfterAllPrefilters value.

4. Set how often you want to receive media samples. Currently you can only
receive all media samples (kValueAllSamples) or the first sample
(kValueFirstSample). Call the IHXTPropertyBag::SetInt method with the
kPropSinkUpdateInterval property, and either the kValueFirstSample or
kValueAllSamples value.

5. In addition, for video preview you can set the video width
(kPropVideoFrameWidth), height (kPropVideoFrameHeight), and color format
(kPropVideoColorFormat) you would like to preview:

a. Call the IHXTPropertyBag::SetUint method with the
kPropVideoFrameWidth property and the width you would like to
preview.

b. Call the IHXTPropertyBag::SetUint method with the
kPropVideoFrameHeight property and the height you would like to
preview.

c. Call the IHXTPropertyBag::SetUint method with the
kPropVideoColorFormat property and the color format you would like to
preview. See ihxtconstants.h for a list of possible color formats.
77

Helix DNA Producer SDK Developer’s Guide
For audio preview you can set the sample rate (kPropAudioSampleRate),
sample size (kPropAudioSampleFormat), and number of channels
(kPropAudioChannelFormat) you would like to preview:

a. Call the IHXTPropertyBag::SetUint method with the
kPropAudioSampleRate property and the sample rate you would like to
preview.

b. Call the IHXTPropertyBag::SetUint method with the
kPropAudioSampleFormat property and the sample format you would
like to preview.

c. Call the IHXTPropertyBag::SetUint method with the
kPropAudioChannelFormat property and the channel format you would
like to preview.

6. Register as a preview sink. Call the IHXTPreviewSinkControl::AddSink with a
pointer to the IHXTPreviewSink interface used to receive the preview media
samples, and a pointer to the IHXTPropertyBag interface that manages the
settings for the preview.

7. If you’re not encoding yet and want to preview the prefiltered frames, call
the IHXTInputPreviewControl::Open method. If you don’t want to preview
before encoding, you’ll begin receiving frames once you start encoding.

You can also enable and disable preview sampling before the encoder during
an encoding process. To enable preview during run time, first query
(IUnknown::QueryInterface) IHXTInput for the IHXTPreviewSinkControl3 interface.
Call IHXTPreviewSinkControl3::EnableSink, passing in the pointer to the preview
sink to which you want to send the preview samples. To disable preview during
run time, first query (IUnknown::QueryInterface) IHXTInput for the
IHXTPreviewSinkControl3 interface. Next, call
IHXTPreviewSinkControl3::DisableSink, passing in the pointer to the preview sink
to which you want to stop sending the preview samples.

Just before the encoding filter graph starts, Helix DNA Producer calls
IHXTPreviewSink::OnFormatChanged with a property bag that contains the
properties of the media samples about to be encoded. This information is
useful because the format could have been changed, depending on what
prefilters are present and their settings. Because all the properties are known
about an input source before encoding begins, this is only relevant for preview
sinks placed just before or just after the encoder.
78

CHAPTER 3: Encoding Overview
If for some reason you need to be sure of the media dimensions before
encoding begins, you can inspect the prefilters to determine what the settings
would be at various points in the graph. Practically speaking, the only prefilter
that would affect these preview properties is the cropping filter.

To look for the cropping filter and determine its output dimensions:

1. Call IHXTInput::GetPrefilterCount to find out the number of prefilters.

2. Iterate though all the prefilters by calling IHXTInput::GetPrefilter with the
ulIndex parameter set from zero (0) to GetPrefilterCount-1.

3. On each prefilter, call IHXTPrefilter::GetString with the property
kPropPluginName to retrieve the prefilter’s name.

4. If you find a prefilter with the plug-in name of
kValuePluginNamePrefilterCropping, call IHXTPrefilter::GetBool with the
property kPropIsEnabled.

5. If the result of calling IHXTPrefilter::GetBool is true, then call
IHXTPrefilter::GetUint with the property kPropCropWidth, and again with
kPropCropHeight to get the cropped dimensions. The dimensions returned
by these calls will most likely be the dimensions of the “just before the
encoder” preview frames once encoding has begun.

After the Encoder

To register to receive preview samples after passing through the encoder,
callers must perform the following steps:

1. Call IHXTEncodingJob::GetOutputProfile to get a pointer to the
IHXTOutputProfile interface associated with the current job.

2. Call IHXTOutputProfile::GetMediaProfile to get a pointer to the
IHXTMediaProfile interface that manages the media profile.

3. Call IHXTMediaProfile::GetAudience with the index to the audience you want
to preview.

4. Query the retrieved audience for IHXTPreviewSinkControl.

5. Implement the IHXTPreviewSink interface on the object that receives
callbacks with the preview samples.

6. Find out the optimal preview settings, that is, the least CPU-intensive
format settings to request. You can choose to use the optimal settings or
modify the settings (for example, to resize the video to a larger window).
79

Helix DNA Producer SDK Developer’s Guide
Use the following steps to get the optimal preview settings after the
encoder:

a. Query the IHXTInput interface for the IHXTPreviewSinkControl interface.

b. Create an IHXTPropertyBag.

c. Call the IHXTPreviewSinkControl::GetOptimalSinkProperties method with
a pointer to the IHXTPropertyBag interface you created in the previous
step. This property bag is populated with all the optimal settings.
Refer to the ihxtpreviewsink.h header file for a description of these
returned properties.

7. Set the position of the preview in the filter graph. Call the
IHXTPropertyBag::SetUint method with the kPropPreviewSinkPosition
property and kValueAfterCodec value.

8. Set how often you want to receive media samples. Currently you can only
receive all media samples (kValueAllSamples) or the first sample
(kValueFirstSample). Call the IHXTPropertyBag::SetInt method with the
kPropSinkUpdateInterval property, and either the kValueFirstSample or
kValueAllSamples value.

9. In addition, for video preview you can set the video width
(kPropVideoFrameWidth), height (kPropVideoFrameHeight), and color format
(kPropVideoColorFormat) you would like to preview:

a. Call the IHXTPropertyBag::SetUint method with the
kPropVideoFrameWidth property and the width you would like to
preview.

b. Call the IHXTPropertyBag::SetUint method with the
kPropVideoFrameHeight property and the height you would like to
preview.

c. Call the IHXTPropertyBag::SetUint method with the
kPropVideoColorFormat property and the color format you would like to
preview. See ihxtconstants.h for a list of possible color formats.

For audio preview you can set the sample rate (kPropAudioSampleRate),
sample size (kPropAudioSampleFormat), and number of channels
(kPropAudioChannelFormat) you would like to preview:

a. Call the IHXTPropertyBag::SetUint method with the
kPropAudioSampleRate property and the sample rate you would like to
preview.
80

CHAPTER 3: Encoding Overview
b. Call the IHXTPropertyBag::SetUint method with the
kPropAudioSampleFormat property and the sample format you would
like to preview.

c. Call the IHXTPropertyBag::SetUint method with the
kPropAudioChannelFormat property and the channel format you would
like to preview.

10. Register as a preview sink. Call the IHXTPreviewSinkControl::AddSink with a
pointer to the IHXTPreviewSink interface used to receive the preview media
samples, and a pointer to the IHXTPropertyBag interface that manages the
settings for the preview.

You can also enable and disable preview sampling after the encoder during an
encoding process. To enable preview during run time, first query
(IUnknown::QueryInterface) IHXTAudience for the IHXTPreviewSinkControl3
interface. Call IHXTPreviewSinkControl3::EnableSink, passing in the pointer to
the preview sink to which you want to send the preview samples. To disable
preview during run time, first query (IUnknown::QueryInterface) IHXTAudience
for the IHXTPreviewSinkControl3 interface. Next, call
IHXTPreviewSinkControl3::DisableSink, passing in the pointer to the preview sink
to which you want to stop sending the preview samples.

If for some reason you need to be sure of the media dimensions before
encoding begins, you can inspect the prefilters and the media profile to
determine what the settings would be at various points in the graph.
Practically speaking, the only prefilter that would affect these preview
properties is the cropping filter.

To look for the cropping filter and determine its output dimensions:

1. Call IHXTInput::GetPrefilterCount to find out the number of prefilters.

2. Iterate though all the prefilters by calling IHXTInput::GetPrefilter with the
ulIndex parameter set from zero (0) to GetPrefilterCount-1.

3. On each prefilter, call IHXTPrefilter::GetString with the property
kPropPluginName to retrieve the prefilter’s name.

4. If you find a prefilter with the plug-in name of
kValuePluginNamePrefilterCropping, call IHXTPrefilter::GetBool with the
property kPropIsEnabled.

5. If the result of calling IHXTPrefilter::GetBool is true, then call
IHXTPrefilter::GetUint with the property kPropCropWidth, and again with
81

Helix DNA Producer SDK Developer’s Guide
kPropCropHeight to get the cropped dimensions. The dimensions returned
by these calls will most likely be the dimensions of the “just before the
encoder” preview frames once encoding has begun.

In addition to looking for prefilters that might affect the media dimensions,
you also have to check the media profile to determine if the encoded output
has been resized. Call IHXTMediaProfile::GetUint with the properties
kPropOutputWidth and kPropOutputHeight to get the resize dimensions. If both
the width and height returned are zero, then only the prefilters could affect
the size. If both the width and height are non-zero, then these values are the
dimensions of the encoded output.

If only one of the values for the width or height dimensions is zero but the
other is non-zero, the output will be automatically resized to maintain the
input source’s or cropped sources’ aspect ratio.

Use the following code sample to calculate the size of an unknown height
dimension (that is, if the value for the height dimension was zero):

UINT32 calculateHeight(UINT32 ulOutputWidth, UINT32 ulInputWidth, UINT32
ulInputHeight)
{
 float fOutputHeight = (((float) ulInputHeight / (float) ulInputWidth) * (float)
ulOutputWidth);

 // Round height up to nearest whole integer
 UINT32 ulOutputHeight = (UINT32) fOutputHeight +0.5;

 // Round height to nearest multiple of 4
 ulOutputHeight = nearestModulus4(ulOutputHeight);
}

Use the following code sample to calculate the size of an unknown width
dimension (that is, if the value for the width dimension was zero):

UINT32 calculateWidth(UINT32 ulOutputHeight, UINT32 ulInputWidth, UINT32
ulInputHeight)
{
 float fOutputWidth = (((float) ulInputWidth / (float) ulInputHeight) * (float)
ulOutputHeight);

 // Round width up to nearest whole integer
 UINT32 ulOutputWidth = (UINT32) fOutputWidth +0.5;

 // Round width to nearest multiple of 4
82

CHAPTER 3: Encoding Overview
 ulOutputWidth = nearestModulus4(ulOutputWidth);

 return ulOutputWidth;
}

Capture Device Manager and Capture Device Enumeration

This section describes how to get information about capture devices using the
Helix DNA Producer SDK.

1. Create an instance of the CaptureDeviceInfoManager class using the
IHXTClassFactory::CreateInstance interface, as shown in the following
example:

IUnknown*pICaptureDeviceInfoUnknown;
res = m_pFactory->CreateInstance(CLSID_IHXTCaptureDeviceInfoManager,
 (IUnknown**)&pICaptureDeviceInfoUnknown);

2. Query CaptureDeviceInfoManager for its IHXTPluginInfoManager interface, as
shown in the following example:

IHXTPluginInfoManager* pICaptureDeviceInfoManger = NULL;
res = pICaptureDeviceInfoUnknown->
 QueryInterface(IID_IHXTPluginInfoManager, &pICaptureDeviceInfoManger);

3. Use the IHXTPluginInfoManager::GetPluginInfoEnum method to obtain a
pointer to an IHXTPluginInfoEnum interface that manages the capture
device information you are requesting. Use this method’s
pIQueryPropertyBag parameter to narrow the list of capture devices that will
be enumerated by the IHXTPluginInfoEnum interface. Passing NULL to
pIQueryPropertyBag will return information about all the capture devices.

4. Use the IHXTPluginInfoEnum::GetCount method to get the number of
available capture devices matching your query, then use the
IHXTPluginInfoEnum::GetPluginInfoAt method to retrieve the specific
capture device information for each capture device that matches your
query.

The following example demonstrates how to retrieve all available capture
devices installed in Helix DNA Producer:

IHXTPluginInfoEnum *pIPluginInfoEnum;
pICaptureDeviceInfoManger->GetPluginInfoEnum(NULL, &pIPluginInfoEnum);

IHXTPropertyBag *pCaptureDeviceInfoBag;
83

Helix DNA Producer SDK Developer’s Guide
for (UINT32 i=0; i<pIPluginInfoEnum->GetCount(); i++)
{
 pIPluginInfoEnum->GetPluginInfoAt(i,&pCaptureDeviceInfoBag);
}

The next example demonstrates how to retrieve all available audio capture
devices installed in Helix DNA Producer:

pIQueryBag->
 SetString(kPropCaptureMediaType, kValueCaptureMediaTypeAudioCapture);

pICaptureDeviceInfoManger->GetPluginInfoEnum(pIQueryBag, &pIPluginInfoEnum);

IHXTPropertyBag *pCaptureDeviceInfoBag;
for (UINT32 i=0; i<pIPluginInfoEnum->GetCount(); i++)
{
 pIPluginInfoEnum->GetPluginInfoAt(i,&pCaptureDeviceInfoBag);
}

The next example demonstrates how to retrieve all available RealNetworks
video capture devices installed in Helix DNA Producer:

pIQueryBag->
 SetString(kPropCaptureMediaType, kValueCaptureMediaTypeVideoCapture);

pICaptureDeviceInfoManger->GetPluginInfoEnum(pIQueryBag, &pIPluginInfoEnum);

IHXTPropertyBag *pCaptureDeviceInfoBag;
for (UINT32 i=0; i<pIPluginInfoEnum->GetCount(); i++)
{
 pIPluginInfoEnum->GetPluginInfoAt(i,&pCaptureDeviceInfoBag);
}

Note: Be sure to release (IUnknown::Release) the
pCaptureDeviceInfoBag that you get from
IHXTPluginInfoEnum::GetPluginInfoAt to avoid memory leaks.
84

CHAPTER 3: Encoding Overview
The following table contains the properties returned by capture devices in the
ppIPluginInfo parameter of the IHXTPluginInfoEnum::GetPluginInfoAt method.

Automatic Codec Selection

The Helix DNA Producer SDK, beginning with version 10.0, provides a
mechanism for automatically selecting codecs to be loaded and used in your
application. In previous versions, a codec could only be identified if either a
plug-in name and plug-in type were given, in which case there was no
ambiguity about which codec to load, or by plug-in type only. If only the plug-
in type was supplied, Helix DNA Producer would search for a plug-in that
supports that specified plug-in type. This was a convenience for users or
developers since previous versions of Helix DNA Producer contained only
RealAudio and RealVideo codecs.

However, as additional codecs are added to Helix DNA Producer, applications
require a mechanism to easily support new codecs without requiring
significant changes to the application. Automatic codec selection gives your
application the ability to distinguish between various audio and video codecs
by using additional plug-in properties, and without the specific knowledge of
the plug-in name.

Codec Requirements

Before Helix DNA Producer can automatically select your codecs, you must
make a minor modification to the codec properties and place your codec plug-

Capture Device Properties

Property Type Description

kPropCaptureType string Capture device type. Possible values are:
kValuePluginNameCaptureAV

kPropVideoDeviceID string Video capture device identification.

kPropAudioDeviceID string Audio capture device identification.

kPropCaptureMediaTyp
e

string Capture media type. Possible values are:
kValueCaptureMediaTypeVideoCapture
kValueCaptureMediaTypeAudioCapture

kPropCapturePorts property bag Contains a series of index numbers used as keys for each
port, and a string value indicating the port name for each
key. For example, the index could be “0” and the port
name “Line-In”. This property lists all the devices and
ports.
85

Helix DNA Producer SDK Developer’s Guide
in in the proper Helix DNA Producer directory. Optionally if you are updating
a previously-existing codec, you need to modify the codec mapping file to map
your original codec to the new codec.

For Helix DNA Producer to automatically select your codecs, your codec must
provide a codec name (kPropCodecName property) and a plug-in type
(kPropPluginType property). Although explicitly setting the codec plug-in name
(kPropPluginName property) is still supported by Helix DNA Producer,
providing the codec name offers a more generic means of specifying the codec
to use independent of any single codec plug-in.

Each codec plug-in must define what codec names it can handle and the plug-
in type. The codec plug-in can also specify a priority. Priority determines
which plug-in to use when two or more plug-ins support the same codec
name. Priority ranking is set from 0 to 100, with 0 being the lowest priority
and 100 being the highest, with 80 being the normal value. The plug-in with
the highest priority is used to write the output. If no priority is specified, a
value of 0 is used.

All codecs can also use a wildcard (*) and a priority for the wildcard to indicate
they will attempt to handle any codec extension. Priorities for a wildcard
should be such that these are tried as a last resort to minimize the number of
failed attempts at loading a codec.

The following table documents the priorities given to the codec plug-ins that
ship with Helix DNA Producer.

Codec Plug-in Priorities

Plug-in Extensions Priority (0-100)

rn-audiocodec-realaudio * 80

cook 80

sipr 80

raac 80

racp 80

rn-videocodec-realvideo * 80

rv8 80

rv9 80

rv10 80

rn-file-ogg vorbis 80
The wildcard (*) matches any file extension.
86

CHAPTER 3: Encoding Overview
Modifying the Codec Mapping Table

If your new codec is replacing a previously-developed codec, you can map the
new codec to the old codec by modifying the codec mapping table contained
in the codec mapping file. The codec mapping file is a text file named
codecmapping.txt located in the/tools directory of the Helix DNA Producer
SDK. The file is comma delimited and consists of five columns, as shown in
the follow table:

For video, the codec flavor column is left blank.

Blank lines or lines starting with the # character are ignored. The file must
contain the correct number of strings separated by commas on each line or it
will be rejected. If any codec ID is not identified as a valid codec, the line is
rejected and ignored.

The following example shows the syntax of the codec mapping file:

Video codec mappings (old,,new,)
videostream,rvg2svt,,rv8

Audio Codec mappings
old-name,old-flavor,new-name,new-flavor
audiostream,atrc,0,cook,24
audiostream,atrc,1,cook,25
audiostream,atrc,2,cook,25
audiostream,atrc,3,raac,2
audiostream,atrc,4,raac,2
audiostream,atrc,5,raac,3
audiostream,atrc,6,raac,5
audiostream,atrc,7,raac,6
audiostream,atrc,8,raac,7
audiostream,atrc,9,raac,7
audiostream,atrc,10,raac,8
audiostream,atrc,11,raac,10
audiostream,atrc,12,raac,11

Column Contents

1 Stream type

2 Old codec name

3 Old codec f lavor

4 New codec name

5 New codec f lavor
87

Helix DNA Producer SDK Developer’s Guide
Directory Placement

Once you have completed your new codec, the resulting plug-in must be
placed in the producer’s /tools directory. The information Helix DNA
Producer obtains from querying the codecs in the /tools directory determines
which codec should be selected for a given audio or video stream.

Note: Do not place codecs intended to be loaded by the
automatic codec selection mechanism in the producer’s
/codecs directory. Codecs located in the codecs directory are
intended to be loaded by the RealAudio or RealVideo codec
wrappers (which themselves advertise a number of codec
names they support).

Codec Manager and Codec Enumeration

The codec manager provides enumeration capabilities that gathers
information about the codecs installed in Helix DNA Producer. (For
information on automatic loading and using codecs in the producer, see
“Automatic Codec Selection” on page 85.) The following steps describe how to
obtain the codec information:

1. Create an instance of the CodecInfoManager class using the
IHXTClassFactory::CreateInstance interface, as shown in the following
example:

IUnknown*pICodecInfoUnknown;
res = m_pFactory->CreateInstance(CLSID_IHXTCodecInfoManager,
 (IUnknown**)&pICodecInfoUnknown);

2. Query CodecInfoManager for its IHXTPluginInfoManager interface, as shown
in the following example:

IHXTPluginInfoManager* pICodecInfoManger = NULL;
res = pICodecInfoUnknown->QueryInterface(IID_IHXTPluginInfoManager,
 &pICodecInfoManger);

3. Use the IHXTPluginInfoManager::GetPluginInfoEnum method to obtain a
pointer to an IHXTPluginInfoEnum interface that manages the codec
information you are requesting. Use this method’s pIQueryPropertyBag
parameter to narrow the list of codecs that will be enumerated by the
IHXTPluginInfoEnum interface. Passing NULL to pIQueryPropertyBag will
return information about all the codecs.
88

CHAPTER 3: Encoding Overview
4. Use the IHXTPluginInfoEnum::GetCount method to get the number of
available codecs matching your query, then use the
IHXTPluginInfoEnum::GetPluginInfoAt method to retrieve the specific codec
information for each codec that matches your query.

The following example demonstrates how to retrieve all available codecs
installed in Helix DNA Producer:

IHXTPluginInfoEnum *pIPluginInfoEnum;
pICodecInfoManger->GetPluginInfoEnum(NULL, &pIPluginInfoEnum);

IHXTPropertyBag *pCodecInfoBag;
for (UINT32 i=0; i<pIPluginInfoEnum->GetCount(); i++)
{
 pIPluginInfoEnum->GetPluginInfoAt(i,&pCodecInfoBag);
}

The next example demonstrates how to retrieve all available audio codecs
installed in Helix DNA Producer:

pIQueryBag->SetString(kPropPluginType, kValuePluginTypeAudioStream);

pICodecInfoManger->GetPluginInfoEnum(pIQueryBag, &pIPluginInfoEnum);

IHXTPropertyBag *pCodecInfoBag;
for (UINT32 i=0; i<pIPluginInfoEnum->GetCount(); i++)
{
 pIPluginInfoEnum->GetPluginInfoAt(i,&pCodecInfoBag);
}

The next example demonstrates how to retrieve all available RealNetworks
video codecs installed in Helix DNA Producer:

pIQueryBag->SetString(kPropPluginType, kValuePluginTypeVideoStream);
pIQueryBag->SetString(kPropPluginName, kValuePluginNameCodecRealVideo);

pICodecInfoManger->GetPluginInfoEnum(pIQueryBag, &pIPluginInfoEnum);

IHXTPropertyBag *pCodecInfoBag;
for (UINT32 i=0; i<pIPluginInfoEnum->GetCount(); i++)
{
 pIPluginInfoEnum->GetPluginInfoAt(i,&pCodecInfoBag);
}

89

Helix DNA Producer SDK Developer’s Guide
The following table contains the properties returned by all codecs in the
ppIPluginInfo parameter of the IHXTPluginInfoEnum::GetPluginInfoAt method.

The following table contains the properties returned by audio codecs.

All Codec Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values are:
kValuePluginTypeAudioStream
kValuePluginTypeVideoStream

kPropPluginName string
(initialization only)

Name of the plug-in to load. Possible values are:
kValuePluginNameCodecRealVideo
kValuePluginNameCodecRealAudio
third-party codec name

kPropCodecName string Codec name.

Audio Codec Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values are:
kValuePluginTypeAudioStream

kPropPluginName string
(initialization only)

Name of the plug-in to load. Possible values are:
kValuePluginNameCodecRealAudio
third-party codec name

kPropCodecName string Codec name.

kPropCodecFlavor UINT32 Codec flavor.

kPropAudioSampleRat
e

UINT32 Audio sample rate.

kPropAudioSampleFor
mat

UINT32 Audio sample format. One of the sample formats
specified by the EHXTAudioSampleFormat enumerator in
ihxtaudioformat.h.

kPropAudioChannelFor
mat

UINT32 Audio channel format. One of the channel formats
specified by the EHXTAudioChannelFormat enumerator in
ihxtaudioformat.h.

kPropAvgBitrate UINT32 Average bit rate in bits per second.

kPropMaxBitrate UINT32 Maximum bit rate in bits per second.

kPropCodecPreferedTy
pe

string The preferred type of audio. Possible values are:
kValueAudioFormatMusic
kValueAudioFormatVoice

kPropCodecLongName string The long name of the codec.
90

CHAPTER 3: Encoding Overview
The following table contains the properties returned by video codecs.

Load Management

Load management is the process of enabling plug-ins to scale back resources
when Helix DNA Producer is working under overloaded conditions during
real-time encoding scenarios (capture input or broadcast output). Under non-
real-time encoding conditions (file to file) the load management system is
disabled and your plug-in will receive no load management updates.. System
resource availability is determined by Helix DNA Producer, and is reported to
codecs and plug-ins that require intensive processing.

Plug-ins implementing the IHXTLoadAdjustment interface will receive
information about the current load level from Helix DNA Producer. Your
plug-in should then modify its behavior to reduce its use of system resources
as the load level gets lower, or increase its system resources as the load level
gets higher. The load level is reported to your plug-in as a number from 0 to
100.

If your plug-in supports and exposes the IHXTLoadAdjustment interface, it will
automatically be connected to the Helix DNA Producer’s load management
system. As such, no calls need to be made to subscribe to receive the current
load level. This also means that the plug-in is never unsubscribed and
continues to receive load level updates for as long as data is being processed.

The IHXTLoadAdjustment::SetLoadLevel method is called by the producer’s load
management system to notify the plug-in that the current load level has
changed. Upon receiving this call, the plug-in should attempt to adjust its
processing to the percentage specified in the method’s uLoadLevel parameter.
For example, if the uLoadLevel value is 100, the plug-in should do as much
processing as it normally would normally do under ideal circumstances. By

Video Codec Properties

Property Type Description

kPropPluginType string (required,
initialization only)

Plug-in type. Possible values are:
kValuePluginTypeVideoStream

kPropPluginName string
(initialization only)

Name of the plug-in to load. Possible values are:
kValuePluginNameCodecRealVideo
third-party codec name

kPropCodecName string Codec name.

kPropCodecLongName string The long name of the codec.
91

Helix DNA Producer SDK Developer’s Guide
contrast, if uLoadLevel is 75, the plug-in should attempt to do 75 percent of the
work it would normally do. Plug-ins should apply all performance reduction
techniques before reaching a load level of 40. At a load level of 40, the load
management system will begin to drop video frames in a last-ditch effort to
reduce perofrmance to a sustainable level. Therefore, plug-ins should not
themselves ever drop video frames. Also, a plug-in should not drop audio
samples in an attempt to scale back performance since doing so impairs the
player’s ability to play the content. This method must be implemented in
plug-ins that require load management reports from Helix DNA Producer.
The producer’s load management system does not take any additional action
if this method fails, and will continue to call this method.

If you are implementing load management in your plug-in, the
IHXTLoadAdjustment::GetLoadLevel method is optional. If your plug-in
implements this method, it reports the location of the current load level to the
caller. If this method is not implemented, it must return HXR_NTOIMPL.

Starting and Shutting Down the Encoding Job
Once you have set up the encoding job and all of its child processes, you start
the encoding job by calling the IHXTEncodingJob::StartEncoding method. To
shut down the encoding job, release (IUnknown::Release) all of the interfaces
you used for your encoding job, and close all DLL connections.

You can also cancel or stop the encoding job at any time. If you cancel the
encoding job using the IHXTEncodingJob::CancelEncoding method, no output
files are created and encoding that occurred up to the time the job was
cancelled is lost. If you stop the encoding job using the
IHXTEncodingJob::StopEncoding method during a single-pass encoding job, all
of the encoded data up to the point the encoding job was stopped is written to
the output file. However, if you use this method to stop a two-pass encoding
job during the first pass, no data is saved (since none has been encoded).

SDK Threading Model
In general, the Helix DNA Producer SDK interfaces and their methods are not
thread-safe. The caller is responsible for serializing all calls into the SDK. For
example, one thread cannot use the IHXTEncodingJob interface while another
thread simultaneously calls the same encoding job object, or another object
92

CHAPTER 3: Encoding Overview
associated with the encoding job (such as a media profile, a destination, and
so on).

The follow methods are thread-safe and can be called simultaneously:

• IHXTEncodingJob::StartEncoding

• IHXTEncodingJob::StopEncoding

• IHXTEncodingJob::CancelEncoding

For example, it is possible to call the blocking version of
IHXTEncodingJob::StartEncoding, and call IHXTEncodingJob::StopEncoding with a
different thread.

It is acceptable to use multiple threads to make calls to objects that are not
associated with each other. For example, if two encoding jobs are running, two
different threads can be used to simultaneously call the SDK (that is, one
thread for each encoding job).

Any callback interface (events, logging, preview, and so on) can call back on
separate threads. For example, all events for a job can call back to the event
sink using one thread while all log messages for a job can call back using a
different thread. One important consequence of this is that if an SDK user’s
callback handler code ends up calling the Helix DNA Producer SDK interfaces
and their methods, those calls must be serialized with all other calls into the
SDK. Calls to callback interfaces will be serialized for a particular job. For
example, an event sink will never receive more than one event callback from a
particular job at a time. Of course, if a callback interface is registered for
callbacks spanning multiple jobs, it is possible to receive simultaneous
callbacks.

Helix DNA Producer SDK users must not release their last reference count on
a job in their event handlers. Doing so will cause the job to shut down and
wait for the event thread to exit, which will cause a deadlock.

Blocking a callback thread while waiting for an SDK method to complete can
result in a deadlock situation. For example calls to
IHXTEncodingJob::StopEncoding or IHXTEncodingJob::CancelEncoding does not
return until the event queue has been flushed. If the event callback thread is
blocked by application code that is waiting for IHXTEncodingJob::StopEncoding
or IHXTEncodingJob::CancelEncoding to complete, neither thread will be able to
execute any additional code.

SDK users should stop running jobs prior to releasing their last reference
count on the job. If a job is running when its last reference count is released,
the job will be cancelled.
93

Helix DNA Producer SDK Developer’s Guide
Encoding Samples
The Helix DNA Producer SDK provides three samples containing code that
demonstrate how to use the SDK’s encoding capabilities. These samples are
located in the following directories:

• \producersdk\samples\advencoder

• \producersdk\samples\encoder

• \producersdk\samples\mediasinkencoder
94

C H A P T E R
4

 Chapter 4: LOGGING SYSTEM
Helix DNA Producer now includes a globally-available message
logging system. This system allows individual components to send
messages to interested observers regardless of where they are in the
application, or how they were created. This creates a wealth of
information available to both developers and end users of the
products, useful both in understanding what is happening and
diagnosing problems.

Interfaces
A standard logging system typically implements the following interfaces:

• IHXTLogSystem. Header file: ihxtlogsystem.h.

This interface provides access to various areas of the log system, including
the functional area, log observer, and the log writer. An instance of this
interface is returned from the logging system shared library.

• IHXTFileObserver. Header file: ihxtfileobserver.h.

This interface provides all of the capabilities required to log messages
from the logging system to a log file.

A logging system that requires customization (for example, to send log
messages to a network server) typically implements the IHXTLogSystem
interface along with the following interfaces.

• IHXTLogObserver. Header file: ihxtlogsystem.h.

This interface receives messages from the logging system then passes
them on to your custom logging application.

• IHXTLogObserverManager. Header file: ihxtlogsystem.h.
95

Helix DNA Producer SDK Developer’s Guide
This interface subscribes and unsubscribes the IHXTLogObserver interface
to the logging system. Once subscribed, the log observer can then receive
messages from the logging system.

You can also send log messages from your application or plug-in back to the
producer’s logging system using the following interface:

• IHXTLogWriter. Header file: ihxtlogsystem.h.

This interface provides access to the producer’s logging system. Use the
IHXTLogWriter::LogMessage method to send all of your log messages back to
the logging system.

Using the Logging System
The following figure demonstrates the characteristics of the logging system
provided by the Helix DNA Producer SDK. You can manage log messages
either by using the file observer provided by the producer, or create your own
system of managing the log messages using the log observer (the numbers
indicate the order in which events occur using the log observer). In addition,
your application can send its own messages to the logging system.
96

CHAPTER 4: Logging System
The Helix DNA Producer SDK has been created with numerous logging
messages issued throughout the code to give users (both end-users and SDK
developers) an idea of what is happening (and what possibly went wrong in
the case of an error) inside the producer. For an application to make use of
these log messages, the application must explicitly instantiate (and shutdown)
the logging system.

Instantiating the Logging System

The logging system shared library (log.dll on Windows, log.so on Linux, or
log.bundle on Mac OS X) exports two entry point functions,
RMACreateLogSystem and RMAGetLogSystemInterface. RMACreateLogSystem is the
entry point that instantiates the logging system, and returns an interface
pointer to the instantiated logging system. RMAGetLogSystemInterface only
succeeds if RMACreateLogSystem has already been called once by the
application's process. Both of these entry points access a per-process singleton
logging system, so they always return interface pointers to the same logging
system.

File Observer

Log Observer

Log
Observer
Manager

Log Writer
Logging
System

File

Your Log
Messages

Your
Code

GetObserverManagerInterface

Log Messages

Log
Messages

Log Messages

Subscribe
97

Helix DNA Producer SDK Developer’s Guide
To instantiate the logging system, load the logging system shared library and
call the RMACreateLogSystem entry point, as shown in the following sample
(Windows-specific code):

HINSTANCE dllLogSystem = LoadLibrary("log.dll");
if (dllLogSystem)
{
 // get pointer to RMACreateLogSystem function
 FPRMAGETLOGSYSTEMINTERFACE fpCreate =
 (FPRMAGETLOGSYSTEMINTERFACE)GetProcAddress (m_dllLogSystem,
 "RMACreateLogSystem");
 if (fpCreate)
 {
 IHXTLogSystem pLogSystem = NULL;
 fpCreate(&pLogSystem);

The logging system is now instantiated, and any SDK component that
contains logging code will log a message to that logging system.

The sample code provided with this SDK demonstrates how to use the logging
system from the class factory. Using the class factory simplifies instantiating
the logging system.

Shutting Down the Logging System

To work properly, the logging system must be explicitly shut down prior to the
application’s main thread finishing. Behavior is undefined if the logging
system is created but not explicitly shut down. The logging system can be shut
down using the IHXTLogSystem::Shutdown method, as shown in the following
sample:

pLogSystem->Shutdown()

The IHXTLogSystem::Shutdown call might cause IHXTLogObserver::ReceiveMsg to
be called on any subscribed observers, so a mutex must not be held between
the caller of IHXTLogSystem::Shutdown and the observer during the
IHXTLogSystem::Shutdown call.

Receiving Log Messages
There are two ways you can receive the log message sent from the logging
system. You can either use the RealNetworks file observer that comes with the
Helix DNA Producer SDK, or build your own observer class.
98

CHAPTER 4: Logging System
Using the RealNetworks File Observer

The RealNetworks file observer has been provided as a fully-functional
observer that receives log messages and writes them to the specified file. The
file observer is designed to facilitate ease of use in the simple cases, but also
provides some advanced functionality.

Basic Use of the File Observer

There are two steps to instantiate a file observer:

1. Load the file observer DLL and create the file observer.

This is much like instantiating the logging system. The DLL must be
loaded, the address for the CreateFileObserver entry point must be
obtained, then the CreateFileObserver function can be called to create a file
observer. There is one major difference, for the file observer to discover the
log system, you must call the SetDLLAccessPath entry point on the DLL to
set the DT_EncSDK dll path to the location of the logging DLL used above
to create the log system. The following sample code shows how to load the
file observer DLL and create the file observer (Windows-specific):

// Create an instance of the RealNetworks File Observer
IHXTFileObserver* pFileLogObserver;
FPCREATEFILEOBSERVER pCreateObserverFunc;

HANDLE FileObserverDLL = LoadLibrary(".\\tools\\logobserver.dll");
if(m_FileObserverDLL)
{
 pCreateObserverFunc =
(FPCREATEFILEOBSERVER)(GetProcAddress(m_FileObserverDLL,
"CreateFileObserver"));

 // Must set dll access paths on the file observer dll in order for it
 // to properly locate the log dll

 // Get the SetDLLAccessPath entry point
FPRMBUILDSETDLLACCESSPATH fpSetDllAccessPath =
(FPRMBUILDSETDLLACCESSPATH)(::GetProcAddress(m_FileObserverDLL,
"SetDLLAccessPath"));
 // Set the DLL access paths
 HX_RESULT res = HXR_FAIL;
 if (fpSetDllAccessPath)
 {
 res = (*fpSetDllAccessPath)("DT_EncSDK=.\\tools");
99

Helix DNA Producer SDK Developer’s Guide
 }

 if(SUCCEEDED(res))
 {
 res = (*pCreateObserverFunc)(&pFileLogObserver);

2. Initialize the observer with basic settings and subscribe to the log system.

Once an instance of the file observer has been created from the file
observer DLL, it must be initialized with the basic required settings. The
only required setting is the file name to which the file observer will write
all the log messages it receives. The file name is the only parameter to the
IHXTFileObserver::Init method, and calling that method will subscribe the
observer to the logging system, and start receiving messages. Because of
this, if you want any settings to be applied to all messages the observer
might receive, you must set those settings before calling the
IHXTFileObserver::Init method.

Basic Settings

There are five settings on the file observer that most users should be aware of:
category filtering, functional area filtering, format, separator, and SDK
messages.

Category Filtering

You may only want to write log messages of a certain category, for example,
only errors. To set the category mask, you simply call
IHXTFileObserver::SetCategoryFilter, passing one or more bitmasks from the
EHXTLogCodeFilterMask enumerator found in ihxtlogsystem.h, logically ORed
together. For example, if you only wanted error level messages, you would call:

SetCategoryFilter(ERROR_MESSAGE_MASK)

Functional Area Filtering

Much like category filtering, you might only want to receive messages that
originate from a certain area in the Helix DNA Producer SDK. To do this, you
would pass a comma-separated list of the desired functional areas to the
IHXTFileObserver::SetFuncAreaFilter method. See the next section for more
details about filtering functional areas.

Format

The file observer supports the ability to write out log messages in two
different formats: short and detailed. Messages written in short format
include only the job name of the job that sent the message, and the message
100

CHAPTER 4: Logging System
text. The detailed formation includes the short format, plus the message
category, functional area, and the time the message was logged. To change the
format, call IHXTFileObserver::SetFormat, passing one of the enumerated values
of enumLogFormat .

Separator

Between each element of a log message, the file observer inserts a separator
character, which defaults to a comma, but may be changed to any character by
calling the IHXTFileObserver::SetSeperator method.

SDK Messages

By default, the file observer ignores an Helix DNA Producer SDK-category
messages it receives. To prevent this behavior, call the
IHXTFileObserver::EnableSDKMessages method with the parameter set to TRUE .

Advanced Settings

In addition to the basic settings on the file observer, there are advanced
settings the user should be aware of: file name, file rolling, and file appending.

File Name

The file observer supports variable replacement within the specified file name,
allowing the user to add certain data to the file name. This is useful in the
context of file rolling (explained in the next section) where the observer uses
the original file name multiple times, and will simply append an increasing
integer at the end of the file name (preceding the extension) to create a unique
file name. The file observer substitutes the following character combinations
with the following values:

Character sequence Replaced with

%% %

%h hour of file creation

%m minute of file creation

%s second of file creation

%D day (1-31) of file creation

%d day(1-365) of file creation

%M month of file creation

%Y 4 digit year of file creation

%y 2 digit year of file creation
101

Helix DNA Producer SDK Developer’s Guide
For example, if you pass the string "LogFile %h:%m:%s.log" as the parameter to
the IHXTFileObserver::Init method, the file observer will write to a log file that
will look like "LogFile 4:32:27.log".

File Rolling

The file observer supports the ability to roll the file it is currently writing to
based on either file size or system time (or both). To set a roll limit, use either
the IHXTFileObserver::SetSizeRoll or the IHXTFileObserver::SetTimeRoll method.

When a log file is rolled by the file observer, the observer uses the original file
name passed to the IHXTFileObserver::Init method and re-substitutes any
variables present in the file name. Using the example file name in the previous
section, if the user had set the file to roll at the 24-hour mark, a new file would
be generated, possibly named "LogFile 00:01:13.log" . This is due to the fact that
a log file doesn’t roll until a log message is actually received, and in our case, a
log message wasn’t received between midnight and 12:01:12 am.

File Appending

The file log observer is also designed to append whenever it is told to write to
a preexisting file. This way, you can configure your application to always write
to a log file called output.log, and you won’t end up with output1.log,
output2.log, output3.log, and so on (one for each time you run the application).
This behavior can also be seen when the file observer rolls a log file. For
example, assume you specified the name output.log as the target file, and set a
limit of 2 MB per file, and ran an encode that logged 3 MB worth of messages.
If you then run your application again, setting the same parameters to the file
observer, it will examine output.log, see that it is already past the file size limit,
then examine and start appending message to output2.log.

To have the same behavior when you use variable substitution in your file
name, you must make use of the IHXTFileObserver::SetPreviousFilename method.
The previous file name parameter tells the file observer that this is the last file
to which it was writing. For example, you run your application, setting the
observer file name to "Log %h:%m.log", and tell it to roll the file every day. It is
currently 3:45pm on day one. The application runs for 6 hours. At the end of
that run, you will have a log file called "Log 3:45.log". Now you immediately
start your application again. If all you did was pass the same parameter (file
name and roll limit), the file observer would generate a file name of "Log

9:45.log" and start writing to that new file. However, that’s not what you want
because you only want to roll the log file at the 24-hour mark of each day. To
prevent generating a new file, you must set the previous log file name to "Log
102

CHAPTER 4: Logging System
3:45.log" . The observer will examine this file, and determine from the file’s
creation date that it shouldn’t yet roll, and start appending to that file, until
the system time reaches midnight, at which point the observer will roll the
file, and use the file name passed to the IHXTFileObserver::Init method ("Log

%h:%m.log") to create a new file name.

Building Your Own Observer Class

There are two steps to creating an observer class that will receive log message
notification from the Helix DNA Producer SDK: implementing the required
interface and subscribing the observer to the logging system.

Required Interface

To receive log messages from the logging system, an observer class must
implement the IHXTLogObserver interface. This interface contains two methods:
IHXTLogObserver::OnEndService and IHXTLogObserver::ReceiveMsg.

The IHXTLogObserver::OnEndService method is called on the observer as
notification that the logging system is about to release its reference count on
that observer. This method tells the observer it will receive no
IHXTLogObserver::ReceiveMsg calls from the logging system, and that it can
release any resources it has reserved for that call.

The IHXTLogObserver::ReceiveMsg method is called by the logging system each
time the logging system receives a message that the observer wants to receive.
The logging system uses the filter the observer set using the
IHXTLogObserverManager::SetFilter method to determine whether the observer
wants to receive the message or not. See “Filtering” on page 105 for
information on per observer filters. The parameters for the call contain the
data for the log message (see “Appendix A: Interface List” beginning on page
159 for an explanation of each IHXTLogObserverManager::SetFilter parameter).

Subscribing to the Logging System

An observer must subscribe to the logging system to receive notification of log
messages. When an observer subscribes to the logging system, the logging
system queries (IUnknown::QueryInterface) for the IHXTLogObserver interface
and, if that succeeds, maintains a reference count on the observer until either
the observer explicitly unsubscribes from the logging system, or the logging
system shutdowns, calling the IHXTLogObserver::OnEndService method on each
observer before releasing the reference count it holds.
103

Helix DNA Producer SDK Developer’s Guide
There are two steps to subscribe an observer to the logging system. First, the
observer must acquire a pointer to the logging system. This is done by loading
the logging system DLL, obtaining the address of the
RMAGetLogSystemInterface function, and calling that function. An example of
this can be found in the CSampleLogObserver::Initialize method (found in the
RTASampleLogObserver.cpp files in the encoding samples supplied with this
SDK). If the RMAGetLogSystemInterface function succeeds, the parameter will be
initialized to point to the logging system. For that function call to succeed,
the logging system must have already been initialized (see “Instantiating the
Logging System” on page 97).

The next step is to subscribe. To do this, you must first obtain the
IHXTLogObserverManager interface from the logging system using the
IHXTLogSystem::GetObserverManagerInterface method on the IHXTLogSystem
interface you just obtained from the RMAGetLogSystemInterface function call.

IHXTLogObserverManager* pIObserverManager;
m_pLogSystem->GetObserverManagerInterface(&pIObserverManager);

Once you have the IHXTLogObserverManager interface, you can call the
IHXTLogObserverManager::Subscribe method, passing a pointer to your observer
class as the first parameter. The other three parameters are explained in
Appendix A beginning on page 159.

pIObserverManager->Subscribe((IUnknown*)this, NULL, NULL, TRUE);

The observer is now subscribed to the logging system, and will receive a call to
IHXTLogObserver::ReceiveMsg for each log message sent to the logging system.

Advanced Observer Operations

Missed Messages

When you start up your application, and connect your observer to the logging
system, you might discover that some log messages have already been sent by
the SDK or your own objects. As a result, your observer might not receive
certain messages it was interested in. The logging system provides a way to
avoid missing messages.

If you examine the fourth parameter in the IHXTLogObserverManager::Subscribe
call, you will see it is a boolean parameter named bCatchUp. This parameter
tells the logging system that the observer wants the logging system to send
any log messages that might have been processed before the observer
subscribed. The logging system will only store up to 1000 previously-received
104

CHAPTER 4: Logging System
messages while running, and that is the maximum number of messages the
observer can catch up by setting the bCatchUp parameter.

Filtering

You might have an observer that is only interested a specific category of log
messages (errors, for example), or perhaps only those messages that come
from a certain area within the product. While you could do this filtering on
your own, the logging system provides a per observer filtering system that
does this work for you.

An observer can set a filter for itself in the logging system in two different
ways. The observer can call the IHXTLogObserverManager::SetFilter method,
passing the filter XML string (described below) as the szFileterStr argument, or
it could pass that same string as the second parameter to the
IHXTLogObserverManager::Subscribe method call.

There are two important things to note about setting a filter. First, the
IHXTLogObserverManager::SetFilter method will only succeed after the
IHXTLogObserverManager::Subscribe method has been called for that observer.
The IHXTLogObserverManager::SetFilter method is mainly used to alter an
observer's filter while the observer is connected to the logging system. Second,
most observers will want to filter all messages they receive, including those
delivered by calling the IHXTLogObserverManager::Subscribe method with
bCatchUp set to true . To do this, the observer must send the filter string as the
second argument to the IHXTLogObserverManager::Subscribe call. That filter will
be applied to any missed messages that are sent, as well as all new messages
logged.

The format for an observer filter string is an XML string of the form:

<?xml version="1.0" encoding="UTF-8"?>
<Filter [LOGCODE="category bit mask"]
 [FUNCAREA="namespace:functional area index,…"]
 [MSGNUM="message numbers"]>

The LOGCODE attribute sets the filter for which values of the nCode parameter to
IHXTLogObserver::ReceiveMsg are allowed through. This attribute should
contain a bit mask that is applied to the nCode of all incoming messages, and if
the result of the bit mask is non-zero, the message is passed on to the observer.
For example, to only receive informational and error-level messages, you
would set the LOGCODE attribute equal to LC_SDK_ERROR|LC_SDK_INFO. The full
list of logging categories can be found in ihxtlogsystem.h.
105

Helix DNA Producer SDK Developer’s Guide
The FUNCAREA attribute sets the filter for which values of the unFuncArea
parameter to IHXTLogObserver::ReceiveMsg are allowed through. Note that
functional areas are tied to the szNamespace parameter in the logging system,
and therefore to set a filter on one or more functional areas, you must specify
the namespace along with the functional area number. For example, to only
receive messages from file readers and file writers within the SDK, you would
set the FUNCAREA attribute equal to "RealNetworks:8,RealNetworks:7" . If you look
in ixhxlogsystem.h, you will see that 8 is the functional area index for FILEREAD,
and 7 is the functional area index for FILEOUT. This attribute can also be set to
a special value of "all", which tells the logging system to send all functional
areas to the observer.

The MSGNUM attribute sets the filter for which values of the nMsg parameter to
IHXTLogObserver::ReceiveMsg are allowed through. Only messages logged with
one of the listed numbers will be send to the observer. For example, to only
receive messages 45 and 883, you would set the MSGNUM attribute equal to
"45,883".

One final important point on filters. All filter settings are applied using a
logical AND operation. This means that if you set the LOGCODE filter to
LC_SDK_ERROR and the FUNCAREA filter to RealNetworks:8, your observer will only
ever receive error-level log messages from file readers within the SDK. The
observer will not receive error-level messages from the file writer, nor will it
receive warning-level messages from file readers.

Sending Messages to the Logging System
The IHXTLogWriter interface sends log messages from any point in the code to
the logging system. There are two ways to obtain a reference to the
IHXTLogWriter interface:

• Use the IHXCommonClassFactory provided in IHXTFilter::SetFactory.

Whenever a Helix DNA Producer filter is instantiated, it's
IHXTFilter::SetFactory method is called to provide it a class factory interface
that it can use to create Helix DNA Producer SDK objects. This factory
also provides access to the logging system. The following code shows how
to ask that class factory for the IHXTLogWriter interface.

STDMETHODIMP CRSInPCMFilter::SetFactory(IHXCommonClassFactory* pCCF)
{
IHXTLogWriter* pILogWriter = NULL;
pCCF->CreateInstance(IID_IHXTLogWriter, (void**)&pILogWriter);
106

CHAPTER 4: Logging System
• Obtain the interface directly from the logging system.

When discussing how to create the logging system (see “Instantiating the
Logging System” on page 97), two entry points to the logging system
shared library were described, with RMACreateLogSystem used to initialize
the logging system. The other entrypoint, RMAGetLogSystemInterface, is
used to obtain a reference to the logging system once it has been
initialized. RMAGetLogSystemInterface, unlike RMACreateLogSystem, can be
called multiple times; however it will not succeed unless
RMACreateLogSystem has been called. Once you have a reference to the
IHXTLogSystem interface, you can call the IHXTLogSystem::GetWriterInterface
method to obtain the desired interface, as shown in the following sample:

FPGETLOGSYSTEMINTERFACE GetLogSystem = NULL;
IHXTLogSystem* pLogSystem = NULL;
IHXTLogWriter* pLogWriter = NULL;

HINSTANCE dllLogSystem = LoadLibrary("log.dll");

if (dllLogSystem)
{
 GetLogSystem =
(FPGETLOGSYSTEMINTERFACE)(::GetProcAddress(dllLogSystem ,
"RMAGetLogSystemInterface");
 if(GetLogSystem)
 {
 (*GetLogSystem)(&pLogSystem);
 }
}

if(pLogSystem)
{
 pLogSystem ->GetWriterInterface(&pLogWriter);

Once you have obtained the IHXTLogWriter interface, sending a message to the
logging system is accomplished by calling the IHXTLogWriter::LogMessage
method. The parameters of the IHXTLogWriter::LogMessage call are explained in
“Appendix A: Interface List” beginning on page 159.

Logging Samples
The Helix DNA Producer SDK provides three samples containing code that
demonstrate how to use the SDK’s logging capabilities:
107

Helix DNA Producer SDK Developer’s Guide
• \producersdk\samples\encoder\encoder.cpp

• \producersdk\samples\mediasinkencoder\mediasinkencoder.cpp

• \producersdk\samples\advencoder\logobserver.cpp
108

C H A P T E R
5

 Chapter 5: HELIX DNA PRODUCER PLUG-IN API
The plug-in portion of the Helix DNA Producer SDK provides
interfaces and helper classes with which you can build custom
media plug-ins used by the Helix DNA Producer filter graph. Helix
DNA Producer is built on the concept of arranging media input
filters, transforms filters, and output f ilters in a pipeline that can
encode, manipulate, or broadcast media data. The system is
extensible in such a way that you can write plug-ins that are either
dynamically discovered and used at runtime, or can be
programmatically inserted in a filter graph.

This chapter provides an in-depth explanation of the methods and policies
that go into writing the low-level Helix DNA Producer SDK plug-ins. Together
with the sample code, this chapter provides both an overview and enough
details to address the issues you will face when writing Helix DNA Producer
SDK plug-ins.

Plug-in Categories
The following categories of plug-ins are supported by the plug-in model of the
Helix DNA Producer SDK:

• Input plug-ins

• Transform plug-ins

• Output plug-ins.

Applications using the Helix DNA Producer SDK will configure input plug-
ins using the IHXTInput interface, transform plug-ins using the IHXTPrefilter,
IHXTPostfilter, and IHXTStreamConfig interfaces, and output plug-ins using the
IHXTDestination interface.
109

Helix DNA Producer SDK Developer’s Guide
This figure demonstrates the layout of a typical encoding session in Helix
DNA Producer. The figure shows a standard media file containing audio and

Postfilters

Media
File

Input Plug-in

Splitters

Splitter

Broadcast ServerFile

Codecs

Resample

ASM

Black
Level

Video
Noise

Video PrefiltersAudio Prefilters

Audio
Gain

Cropping Deinterlacer/
Inverse Telecine

Audio
Level Meter

Audio
Encoding

Video
Encoding

Preview

Preview

Audio Video
110

CHAPTER 5: Helix DNA Producer Plug-In API
video passing though an input plug-in that splits the audio and video into
separate channels. Each of these channels are processed by specific audio or
video transform plug-ins (prefilters), encoded, interleaved back into a single
audio/video channel, processed by a postfilter plug-in, and finally sent either
to a file, broadcast, or both.

Input Plug-ins

The following types of input plug-ins can be used to input data into Helix
DNA Producer:

• File reader plug-ins

• Capture device plug-ins

File reader plug-ins decode files of various formats into raw video and audio
data that can be then be manipulated and encoded in the Helix DNA
Producer media engine. File reader plug-ins are dynamically discovered and
utilized by the Helix DNA Producer media engine when a file input is
specified in a job.

File reader plug-ins specify which file extensions they handle. When the Helix
DNA Producer media engine is given an input file, it first checks for any file
reader plug-in that handles the given file extension. If all the plug-ins
advertising support for the particular file extension fail to read the file, all
other reader plug-ins will then be tried. See the input plug-in sample
(inputplugin) for an example of this.

A capture device plug-in is a specific kind of input plug-in designed for
obtaining audio and video samples from a capture device. Capture device
plug-ins support an enumeration interface for obtaining information about
capture devices, and also support a duration property for capture operations.

Transform Plug-ins

The following types of transform plug-ins can be used to transform data in
Helix DNA Producer:

• Pre-encode transform filters

• Post-encode transform filters

Pre-encode transform filters (or prefilters for short) manipulate raw audio and
video data prior to encoding. For example, you may want to write your own
audio reverb filter.
111

Helix DNA Producer SDK Developer’s Guide
A number of audio and video prefilters ship with Helix DNA Producer
including video black-level, video deinterlace, and audio gain filters. Not all
prefilter plug-ins appear in the Helix DNA Producer GUI application unless
they are selected. To use a custom prefilter, you must use the Helix DNA
Producer SDK encoding system to add your custom prefilter explicitly to the
encoding job.

Output Plug-ins

Output plug-ins can be used as a sink for media streams generated upstream
in the filter graph. Data received by an output plug-in is in the form of stream
headers and encoded packets. Output plug-ins then output the data in the
form appropriate for a designated destination, which could be a server, file, or
other device. Output plug-ins can be used to support proprietary network
protocols between encoder and server.

Helper Classes
The Helix DNA Producer SDK provides a set of helper classes that incorporate
many of the low-level interfaces, such as IHXTPropertyBag, IHXTUintList, and so
on, without requiring you to write low-level code to populate these interfaces
in your plug-in.

All of these helper classes are specifically designed for plug-in developers. They
include a configuration agent helper class for simplifying the plug-in
configuration (layer 2), an external plug-in helper class that provides a
template of your plug-in for the Helix DNA Producer SDK (layer 1), and an
input format helper class for consistently managing the handling and display
of input properties for all input sources—either file- or capture-based.

For more information on the configuration agent helper class, see
“Configuration and Connection Agent Interfaces (Layer 2)” on page 135. In
addition, examine the ihxtconfigagenthelper.h file and both the inputplugin and
prefilterplugin samples for an example implementation of the configuration
agent helper class.

For more information on the external plug-in helper class, see the
ihxtplugininfobase.h file and both the inputplugin and prefilterplugin samples for
an example implementation of this class.
112

CHAPTER 5: Helix DNA Producer Plug-In API
For more information on the input format helper class, see the
ihxtinputformathelper.h file and the inputplugin sample for an example
implementation of this class.

Creating Custom Media Plug-ins
At its core, the Helix DNA Producer SDK follows a filter graph model, where
input, transform, and output plug-ins are snapped together in filter graphs,
and data packages are passed downstream from component to component
until the desired transformation is accomplished. The Helix DNA Producer
SDK is cross platform, lightweight, and layered such that the developer can
build low level plug-ins—inputs, prefilters, postfilters, or outputs—to extend
existing encoding functionality or write higher-level client code to control
encoding operations through a dedicated Helix DNA Producer SDK encoding
engine.

With the Helix DNA Producer SDK, a developer does not directly interact with
the graph manager layer which sets up and manages component connection,
and data flow control of the data packages through the filter graph layer.

Another vital component of the Helix DNA Producer architecture is property
bags. Property bags—containers of varied types of property data—deliver
properties to the plug-ins during the connection and configuration process.
Property bags are also used with the Helix DNA Producer SDK encoding
system to programmatically pass property data to and from the plug-ins.

Before you get started there are a few things you need to know:

• There are three basic types of plug-ins: input, transform, and output.
When coupled together properly, these three types of plug-ins can
accomplish almost any transformation or encoding task. Transform plug-
ins further split into three categories: prefilters (which come before the
codec), codecs, and postfilters (which come after codecs).

• Helix DNA Producer plug-ins are typically built using a layered approach
and implement the following sets of interfaces:

• level 1—plug-in (describes the plug-in to the system)

• level 2—connection and configuration

• level 3—filter (interacts with media samples and other plug-ins)

• level 4—at the lowest working level, your actual operational code
113

Helix DNA Producer SDK Developer’s Guide
Organization of a Typical Helix DNA Producer Plug-in

At the lowest level (layer 4), in its own class, is the operational code that does
something, such as reads, writes, or transforms data. Ideally this code is
isolated from the other higher layers of the plug-in except for certain points of
contact with the other layers.

Above the operational code is the filter layer (layer 3) which generates or
accepts media samples, operates on them, and passes them on to the next
component in the data pipeline. The operational code interacts with this layer
in the IHXTInputFilter::ReadSample , IHXTTransformFilter::ReceiveSample, or
IHXTOutputFilter::ReceiveSample methods. The filter layer (layer 3) usually
derives from layer 4—the operational class described in the previous
paragraph.

Above the filter layer is the agent layer (layer 2). This is where the plug-in’s
property initialization and media format information is handled. Typically,
this level interacts with the lowest-level operational classes (layer 4) just
enough to obtain or pass on properties required for basic operations, such as
open or close, to occur. This agent class (layer 2) typically derives from the
lower filter-level class (layer 3) described above.

The highest layer is the plug-in layer (layer 1), which describes the
functionality of the plug-in to the system. It consists primarily of a table of
descriptive strings and numbers, and typically derives from the agent class
(layer 2).

The following table shows the four layers of a typical plug-in.

Plug-in Layers

Layer No. Layer 4 Layer 3 Layer 2 Layer 1

Description: Performs some
actual data
operation.

Processes media
samples at various
stages.

Handles property
and connection
data.

Describes plug-in
to the system.

Interface Names: Operational classes IHXTFilterXXX
interfaces

Configuration and
connection agent
interfaces

Plug-in
information table

File Name: MyOperation.cpp MyFilter.cpp MyAgent.cpp MyPlugin.cpp

Interface Methods: (examples include:) IHXTFilter (all
plug-ins)

IHXTConnectionA
gent

(contains fields:)

SetFactory GetInputStreamCo
unt

PluginType

 (Table Page 1 of 2)
114

CHAPTER 5: Helix DNA Producer Plug-In API
Fitting New Code in the Plug-in Layers (Layer 4)

If you already have code that performs an operation you want to design into a
plug-in, try to package it neatly into its own class with minimal or no
dependencies on the rest of the classes (layer 4). If you examine the code in the
sample plug-ins, such as /samples/inputplugin, you can see how the file reading
code is isolated from the rest of the plug-in. Follow the examples and do this
with your own operational code.

Input file reading SetGraphServices GetSupportedInput
Format

ComponentName

Input file capture Prime GetNegotiatedInpu
tFormat

PluginLongName

Teardown SetNegotiatedInpu
tFormat

PluginShortName

Transform
prefilters

DiscardCachedSam
ples

GetOutputStreamC
ount

ComponentCLSID

Transform codecs GetSupportedOutp
utFormat

Description

Transform
postfilters

IHXTInputFilter GetNegotiatedOut
putFormat

Copyright

SetAllocator SetNegotiatedOutp
utFormat

Output file writing ReadSample

Output
broadcasting

CHXConfiguration
AgentHelper

IHXTTransformFilt
er

OnInitialize

SetAllocator OnSetString

SetSampleSink OnSetUint

ReceiveSample OnSetXXXList

OnSetXXXRange

IHXTOutputFilter Other overrides if
needed

ReceiveSample

Plug-in Layers (continued)

Layer No. Layer 4 Layer 3 Layer 2 Layer 1

 (Table Page 2 of 2)
115

Helix DNA Producer SDK Developer’s Guide
Next, study the IHXTInputFilter::ReadSample, IHXTTransformFilter::ReceiveSample,
or IHXTOutputFilter::ReceiveSample methods in the filter class (layer 3), and
observe how data is obtained and passed on to the operational class (layer 4)
defined in the previous paragraph. You might need to add some helper
functions to actually access the operational code, but try to make the contact
between the filter and the actual operational code as clean as possible.
Additional points of contact between the layers might involve adding
initialization code in the IHXTFilter::Prime call, and closing or buffer releasing
code in the IHXTFilter::Teardown functions. The rest of the filter methods you
can probably leave untouched unless some special need dictates otherwise.

At the next highest level up (layer 2)—known as the agent level—you receive
initialization values and strings appropriate to your plug-in, which you must
translate and pass on (or gather) from the lower-level operational code. Try to
make explicit what the interaction between the layers is. You need ensure the
property bags describing your data format are appropriate for the specific
media type. The rest of the agent methods in the example plug-ins you can
probably leave as is unless some special need dictates otherwise.

Finally, fill in the tables of the plug-in class with data appropriate for your
specific type of plug-in. This way the plug-in handling methods can find and
instantiate your plug-in appropriately (layer 1).

All Filter Interfaces (Layer 3)

Filter Set Calls

IHXTFilter::SetFactory, IHXTFilter::SetGraphServices, IHXTInputFilter::SetAllocator,
IHXTTransformFilter::SetAllocator, and IHXTTransformFilter::SetSampleSink are
initialization methods that provide some essential service to the filter layer,

All Filter Interfaces

IHXTFilter (all plug-ins)
IHXTInputFilter (input
plug-ins only)

IHXTTransformFilter
(transform plug-ins only)

IHXTOutputFilter (output
plug-ins only)

SetFactory SetAllocator SetAllocator ReceiveSample

SetGraphServices ReadSample SetSampleSink

Prime ReceiveSample

Teardown

DiscardCachedSamples
116

CHAPTER 5: Helix DNA Producer Plug-In API
depending on where it is in the filter graph pipeline. IHXTFilter::SetFactory
provides an object factory the plug-in can use to create property bags and
related types. IHXTFilter::SetGraphServices supplies the filter layer with services,
such as an event sink that sends events (such as filter done) to higher layers.
IHXTInputFilter::SetAllocator and IHXTTransformFilter::SetAllocator provide a
memory allocator with which to obtain media samples. This method is only
required for input and transform filters. IHXTTransformFilter::SetSampleSink is
called only on transform plug-ins to provide a destination for their media
samples once data starts flowing.

Filter Data Setup and Teardown

IHXTFilter::Prime is called immediately before data starts flowing to allow final
initialization of objects. It is the opposite of IHXTFilter::Teardown, which is
called at the end to inform the plug-in to tear down and release any objects or
memory, as they are no longer needed. IHXTFilter::DiscardCachedSamples is
provided for any plug-in that caches data samples.

Filter Data Flow

Data flows through repeated calls to IHXTInputFilter::ReadSample,
IHXTTransformFilter::ReceiveSample, and IHXTOutputFilter::ReceiveSample, which
carry media samples from plug-in to plug-in through the encoding pipeline.

IHXTFilter Interface

All plug-ins must implement the following methods:

DECLARE_INTERFACE_(IHXTFilter, IHXTFilter)
{
 STDMETHOD(SetFactory) (THIS_ IHXCommonClassFactory* pCCF) PURE;
 STDMETHOD(SetGraphServices) (THIS_ IHXTServiceBroker* pGraphServices) PURE;
 STDMETHOD(Prime) (THIS_ UINT32 uStream) PURE;
 STDMETHOD(Teardown) (THIS_ UINT32 uStream) PURE;
 STDMETHOD(DiscardCachedSamples) (THIS_ UINT32 uStream) PURE;
}

IHXTFilter::SetFactory Method

Provides an object factory the plug-in can use to create property bags and
other objects.
117

Helix DNA Producer SDK Developer’s Guide
Application:
This method is typically overridden by an agent class (to obtain access to
the factory in the agent class), if one exists.

Parameters:
IHXCommonClassFactory* pFactory—call CreateInstance on factory to build
objects. For example, the factory could be used to create a log writer
interface for the plug-in. The log writer interface can be used by all layers
to log various types of messages. See the inputplugin sample for an example
plug-in log writer.

Requirements:

• Optionally, Addref pFactory object when received, Release pFactory when
plug-in is destroyed.

Code Example: (external)
Shows how to pass the factory to the base class configuration helper for
creation of property bags and media formats.

STDMETHODIMP CRSInPCMAgent::SetFactory(IHXCommonClassFactory* pFactory)
{
 if (!pFactory)
 return HXR_POINTER;

 HX_RESULT res = CHXConfigurationAgentHelper< IHXTConfigurationAgent >::Init(
pFactory);
 if (SUCCEEDED(res))
 FillInPropertyBags();
 return res;
}

Although Setfactory is a method on the IHXTFilter interface, it is typically
handled in two places in a plug-in: in layer 3 on the filter interface and on the
agent interface (layer 2) which derives from layer 3.

In the agent layer SetFactory first calls the filter base class which performs the
functions described earlier in this section. It then calls
CHXConfigurationAgentHelper::init(pFactory) which passes the factory to the
helper class and creates a default property bag for the plug-in to use. Once the
factory is made available, it is used to create additional property bags (as
shown in the CRSInWAVAgent::FillInPropertyBags method in the
\samples\inputplugin\InWAVAgent.cpp file).
118

CHAPTER 5: Helix DNA Producer Plug-In API
STDMETHODIMP CRSInWAVAgent::SetFactory(IHXCommonClassFactory* pFactory)
{
 if (!pFactory)
 {
 return HXR_POINTER;
 }

 HX_RESULT res = CRSInWAVFilter::SetFactory(pFactory);
 if (SUCCEEDED(res))
 {
 res = CHXConfigurationAgentHelper::init(pFactory);
 if (SUCCEEDED(res))
 res = FillInPropertyBags();
 }
 return res;
}

IHXTFilter::SetGraphServices Method

Provides service broker for retrieving event sink for message dispatching.

Application:
An event sink is only needed by asynchronous plug-ins to send events,
such as errors or stream done, to higher layers.

Parameters:
IHXTServiceBroker *pServiceBroker—provides access to the event sink.

Requirements:

• Return HXR_OK if the plug-in does nothing in this method.

• Addref any service, such as m_pEventSink, that you need to use. Make sure
to release m_pEventSink in destructor.

• Valid error codes are HXR_POINTER.

Code Example:
Shows how to use service broker to obtain event sink interface.

STDMETHODIMP CRSOutPCMFilter::SetGraphServices(IHXTServiceBroker
*pServiceBroker)
{
 HX_RESULT res = HXR_OK;
 IUnknown* pUnk = NULL;
 if (NULL == m_pEventSink)
 {
119

Helix DNA Producer SDK Developer’s Guide
 res = pServiceBroker->GetService(IID_IHXTEventSink, &pUnk);
 if (SUCCEEDED(res))
 res = pUnk->QueryInterface(IID_IHXTEventSink,
 (void**) &m_pEventSink);
 HX_RELEASE(pUnk);

 return res;
}

IHXTFilter::Prime Method

 Notification that IHXTInputFilter::ReadSample,
IHXTTransformFilter::ReceiveSample, or IHXTOutputFilter::ReceiveSample will be
called shortly.

Application:
Called to notify the filter that it will be receiving (or asked to provide)
media samples shortly on the given stream. This call always precedes calls
to IHXTInputFilter::ReadSample , IHXTTransformFilter::ReceiveSample, or
IHXTOutputFilter::ReceiveSample. Typically, various initialization procedures
are performed at this time. IHXTFilter::Prime is called once for each stream
on a plug-in, so make sure to account for the fact it will typically be called
a couple of times.

Parameters:
The stream identifier refers to output streams on input plug-ins, and
input streams on transform and output plug-ins. Note that input plug-ins
only have output streams, and output plug-ins only have input streams.

Threading Behavior:
This method should only return when it is prepared to process data on
the associated stream. While responsive behavior is desired, it may need to
block until this condition is met.

Requirements:
Upon successful completion of this method, the plug-in must be prepared
to process data for the corresponding stream.

• Return HXR_OK if the plug-in does nothing in this method.

• Returning a failure code will prevent the plug-in from receiving data
processing calls.

• Check for valid stream—ignore if stream ID is not used.
120

CHAPTER 5: Helix DNA Producer Plug-In API
• Check for flags showing connection calls have already occurred.
Otherwise, return HXR_ENC_IMPROPER_STATE.

• Check for required objects such as stream/fileheaders or required settings.
Otherwise return HXR_POINTER.

• Check interrelated settings for validity. If any are invalid, return
HXR_INVALID_PARAMETER.

• Create any required objects and optionally assert that important ones
exist.

• Allocate buffers.

• Initialize and start any child or primary objects.

• Create any stream tracking variables that depend on knowing actual
number of streams.

• If successful, set initialized flag, prevent on-the-fly changes f lag, and reset
variables used in read/receivesample.

• If failed, clean up any allocated buffers, release and/or close or delete
objects.

Code Example:
Shows almost every kind of initialization that can occur on a Prime call.

STDMETHODIMP CRMGenericPlugin::Prime(UINT32 ulInputStreamID)
{
 // check valid stream id if you are going to use it
 if (ulInputStreamID != 0)
 return HXR_INVALID_PARAMETER;

 // optional - check negotiation objects or required settings or required objects
 if (!m_bFormatReady || !m_bIsInputPropertiesSet || !m_pFileHeader)
 return HXR_ENC_IMPROPER_STATE;

 // optional -- assert that certain objects exist
 HX_ASSERT(m_spAllocator);

 // check settings against each other now that all have been set
 HX_RESULT res = GetUint(kPropCropLeft, &m_ulCroppedLeftTopX);
 if (SUCCEEDED(res) && m_bIsOutputCropped == TRUE && m_ulCroppedLeftTopX
< m_ulMinCropping)
 return HXR_INVALID_PARAMETER;

 // optional -- create any required objects
121

Helix DNA Producer SDK Developer’s Guide
 HX_RELEASE(m_pRBSActor);
 m_pRBSActor = new CRBSActor;
 m_pRBSActor->AddRef();

 // optional - initialize objects used at prime
 UINT32 uiBytesPerFrame;
 res = m_pVitalObject->Init(&uiBytesPerFrame);

 // optional - allocate any necessary buffers
 if (SUCCEEDED(res))
 m_pInputBinBuffer = new BYTE[uiBytesPerFrame];

 // optional -- handle stream related vars -- now that number of streams is known
 if (SUCCEEDED(res) && !m_abStreamDone)
 {
 m_nNumOutputStreams = GetNumTracks();
 m_abStreamDone = new BOOL[m_nNumOutputStreams];
 for (UINT32 i=0; i< m_nNumOutputStreams; i++)
 m_abStreamDone[i] = FALSE;
 }

 // optional -- pass on initializations to child objects
 if (SUCCEEDED(res))
 res = m_spAudioInput->SetRealTimeMode(m_bRealTimeInput);

 // optional -- Start child objects
 if (SUCCEEDED(res))
 res = StartReader();

 // optional -- Start objects
 if (SUCCEEDED(res))
 res = m_pRBSActor->Start();

 // if successful set initialization and other variables as necessary
 if (SUCCEEDED(res))
 {
 // optional -- set flag to prevent changes after prime call
 m_bAllowPropChanges = FALSE;

 // optional -- set initialized flags
 m_bIsCodecInitialized = TRUE;

 // optional -- reset variables that are used in read/ receivesample
 m_bStreamEnded = FALSE;
122

CHAPTER 5: Helix DNA Producer Plug-In API
 }
 // if prime failed -- cleanup
 else
 {
 // any allocated buffers
 HX_VECTOR_DELETE(m_pInputBinBuffer);

 // any objects
 HX_RELEASE(m_pRBSActor);

 }
 // optional -- make sure everything was okay
 assert(SUCCEEDED(res));
 return res;
}

Although Prime is a method on the IHXTFilter interface, it is typically handled
in two places in a plug-in: in layer 3 on the filter interface and on the agent
interface (layer 2) which derives from layer 3.

In the agent layer it first calls the base class, then calls
CHXConfigurationAgentHelper::setAllowPropertyChanges with FALSE to prevent any
property changes during encoding.

Note: In the Teardown call,
CHXConfigurationAgentHelper::setAllowPropertyChanges is called
with TRUE to allow property changes to the plug-in again.

STDMETHODIMP CRSInWAVAgent::Prime(UINT32 ulOutputStreamID)
{
 HX_RESULT res = CRSInWAVFilter::Prime(ulOutputStreamID);

 // once prime is called -- prevent any changes to properties
 if (SUCCEEDED(res))
 CHXConfigurationAgentHelper::setAllowPropertyChanges(FALSE);

 return res;
}

IHXTFilter::DiscardCachedSamples Method

Method to optionally release any cached media samples.
123

Helix DNA Producer SDK Developer’s Guide
Application:
Called to signal the plug-in to release any cached samples it may have.
This method can be called at any time between IHXTFilter::Prime and
IHXTFilter::Teardown. If IHXTTransformFilter::ReceiveSample or
IHXTOutputFilter::ReceiveSample is called after
IHXTFilter::DiscardCachedSamples, the sample will generally be marked with
end of stream.

Parameters:
The stream identifier refers to output streams on input plug-ins, and
input streams on transform and output plug-ins. Note that input plug-ins
only have output streams, and output plug-ins only have input streams.

Requirements:
This method should return HXR_OK if there were no cached samples or if
there were cached samples and they were released. It should return
HXR_FAIL if there were cached samples and they could not be released.

• Return HXR_OK if the plug-in does nothing in this method.

Code Example:
Shows release of a cached sample.

STDMETHODIMP CRSExample::DiscardCachedSamples(UINT32 ulOutputStreamID)
{
 if (ulOutputStreamID != 0)
 return HXR_INVALID_PARAMETER;

 m_pLastSample->Release();
 return HXR_OK;
}

IHXTFIlter::Teardown Method

Method to stop operations, shut down and release objects, free buffers and
reset f lags.

Application:
This method is called by the filter graph when the graph is to be stopped.
Teardown is equivalent to an abort or cancel call, so any devices or
running processes should be stopped here in case they were not shut down
elsewhere.
124

CHAPTER 5: Helix DNA Producer Plug-In API
Parameters:
The stream identifier refers to output streams on input plug-ins, and
input streams on transform and output plug-ins. Note that input plug-ins
only have output streams, and output plug-ins only have input streams.

Threading Behavior:
This method should not block, so as to avoid unresponsive behavior in
the graph.

Requirements:
The plug-in must guarantee that no samples are sent after
IHXTFilter::Teardown returns. The plug-in must be written to safely handle
being released after IHXTFilter::Teardown is called. This means that if the
plug-in uses threads internally, and since IHXTFilter::Teardown should not
block, the thread should gracefully exit asynchronously. It is
recommended that a thread AddRef the plug-in layer to help achieve this.

• Return HXR_OK if the plug-in does nothing in this method.

• Return HXR_INVALID_PARAMETER for an invalid stream ID.

• After IHXTFilter::Teardown, neither IHXTInputFilter::ReadSample,
IHXTTransformFilter::ReceiveSample, nor IHXTOutputFilter::ReceiveSample
will be called again without first receiving another IHXTFilter::Prime
call.

• Stop all operations.

• Close down child objects.

• Free outstanding buffers.

• Release or destroy remaining objects, including stream tracking
variables.

• Reset on-the-fly protection flags.

• Optional—reset initialization f lags.

Code Example:
Shows examples of various operations that can occur on a
IHXTFilter::Teardown call:

STDMETHODIMP CRMGenericFilter::Teardown(UINT32 ulInputStreamID)
{
 // check valid stream id
 if (ulInputStreamID != 0)
 return HXR_INVALID_PARAMETER;
125

Helix DNA Producer SDK Developer’s Guide
 // optional -- stop vital operations
 res = m_pRBSActor->Stop();

 // optional -- close down child objects
 TearDownReader();

 // optional -- example of special threadsafe shutdown
 if (m_pRMWriter)
 {
 // Block until writer finishes teardown
 m_pRMWriter->WaitForCompletion();

 // shutdown context thread and block until thread has exited
 m_pRMWriter->Shutdown();
 HX_RELEASE(m_pRMWriter);
 }

 // optional -- destroy buffers
 HX_VECTOR_DELETE(m_pInputBuffer);

 // optional -- release or destroy any existing objects
 HX_RELEASE(m_pRBSActor);

 // optional -- free any stream vars
 HX_VECTOR_DELETE(m_abStreamDone);

 // optional - reset protection flags
 m_bAllowPropChanges = TRUE;
 m_bFormatReady = FALSE;

 // optional -- reset initialization flags
 m_bIsCodecInitialized = TRUE;

 return res;
}

Although Teardown is a method on the IHXTFilter interface, it is typically
handled in two places in a plug-in: in layer 3 on the filter interface and on the
agent interface (layer 2) which derives from layer 3.

In the agent layer it first calls the base class, then calls
CHXConfigurationAgentHelper::setAllowPropertyChanges with TRUE to allow
property changes to the plug-in again.
126

CHAPTER 5: Helix DNA Producer Plug-In API
STDMETHODIMP CRSInWAVAgent::Teardown(UINT32 ulOutputStreamID)
{
 HX_RESULT res = CRSInWAVFilter::Teardown(ulOutputStreamID);

 // reset the ability to set changes to properties
 CHXConfigurationAgentHelper::setAllowPropertyChanges(TRUE);

 // notify the Filter layer that a negotiated format must be set again
 SetFormatReady(FALSE);

 return res;
}

IHXTInputFilter Interface
DECLARE_INTERFACE_(IHXTInputFilter, IHXTFilter)
{
 STDMETHOD(SetAllocator) (UINT32 uStreamID, IHXTSampleAllocator
*pAllocator) PURE;
 STDMETHOD(ReadSample)(UINT32 uStreamID, IHXTMediaSample** /*Out*/
ppSample) PURE;
};

IHXTInputFilter::SetAllocator Method

Suggested allocator to use for a particular stream provided by a higher-level
entity.

Application:
Provides an allocator for each of a plug-in’s output streams for creation of
media samples (only for the IHXTInputFilter and IHXTTransformFilter
interfaces). The allocator can be reset at any time. The plug-in might not
need an allocator (an example of this would be a plug-in that supports in-
place transforms). A plug-in can provide its own allocator.

Requirements:

• Return HXR_OK if the plug-in does nothing with the allocator provided
to it.

• A valid error code is HXR_INVALID_PARAMETER.

• Addref the allocator if you use it, and make sure it is released when
the plug-in is destroyed.
127

Helix DNA Producer SDK Developer’s Guide
Code Example:
Shows an allocator being AddReffed for later use in the creation of media
samples.

STDMETHODIMP CRSGeneral::SetAllocator (UINT32 ulOutputStreamID,
IHXTSampleAllocator* pAllocator)
{
 if (ulOutputStreamID != 0 || pAllocator == NULL)
 return HXR_INVALID_PARAMETER;

 HX_RELEASE(m_pAllocator);
 m_pAllocator = pAllocator;
 m_pAllocator->AddRef();
 return HXR_OK;
}

IHXTIntputFilter::ReadSample Method

Outside entity pulls a media sample from the plug-in.

Application:
Native push models, such as QuickTime or DirectShow readers should
internally buffer samples to convert push to pull when this method is
called. To do this push/pull conversion, you may need to create your own
media sample. In most pull cases, however, you obtain an IHXTMediaSample
interface for the data using the allocator’s
IHXTSampleAllocator::GetMediaSampleOfSize method. Optionally call
IHXTMediaSample::SetDataSize on the sample if the actual size is different
than that what you requested in
IHXTSampleAllocator::GetMediaSampleOfSize.

Requirements:

• Return HXR_OK if a valid sample is available.

• Return HXR_S_NOT_HANDLED if no sample is ready but more are
expected. IHXTInputFilter::ReadSample will continue to be called.

• Return HXR_S_END_OF_STREAM when no more data is available or the
end of the stream has been reached. The plug-in does not need to
produce a sample marked with end of stream, as one will be
manufactured by the system. After returning HXR_S_END_OF_STREAM, a
plug-in can expect that IHXTInputFilter::ReadSample will not be called
again.
128

CHAPTER 5: Helix DNA Producer Plug-In API
• Return HXR_FAIL if the plug-in cannot produce a sample and is not
able to recover. All calls to IHXTInputFilter::ReadSample on that stream
will stop. If the plug-in can recover, it should return
HXR_S_NOT_HANDLED instead.

• Set proper time stamps on the media sample. TimeStart (in the sample
below) is the number of milliseconds from the start-of-buffer to start-
of-stream.

• Set the TimeEnd field (if you don’t know the sample duration, use the
TimeStart value).

• Set the appropriate flags on the sample (such as
HXT_SAMPLE_ENDOFSTREAM). See “IHXTMediaSample::SetSampleFlags”
on page 265.

• The IHXTMediaSample::SetSampleFlag call clears previous f lags—you
must call IHXTMediaSample::GetSampleFlags prior to this call to preserve
the previous f lags.

• Set the appropriate fields on the sample (such as
HXT_FIELD_STREAM_ID). See “IHXTMediaSample::SetSampleField” on
page 264.

Code Example:
Illustrates typical things that occur on the IHXTInputFilter::ReadSample call.

STDMETHODIMP CRSInputPCM::ReadSample (UINT32 uStreamID, IHXTMediaSample**
/*Out*/ ppSample)
{
 if (ulOutputStreamID != 0)
 return HXR_INVALID_PARAMETER;

 IHXTMediaSample* pOutSample;
 HX_RESULT res = m_spAllocator->GetMediaSampleofSize(m_uOnePCMFrameSize,
&pOutSample);

 // example reader
 if (SUCCEEDED(res))
 {
 UINT32 uBytesRead = m_pIBS->Read(pOutSample->GetDataStartForWriting(),
m_uOnePCMFrameSize);
 pOutSample->SetDataSize(uBytesRead);

 HXT_TIME TimeStart = (m_uTotalReadBytes / m_uBytesPerSecond) * 1000.;
 uBytesRead += m_uTotalReadBytes;
129

Helix DNA Producer SDK Developer’s Guide
 HXT_TIME TimeEnd = m_uTotalReadBytes / m_uBytesPerSecond) * 1000.;

 pOutSample->SetSampleField(HXT_FIELD_STREAM_ID, uStreamID);

 pOutSample->SetTime(&TimeStart, &TimeEnd);

 if (uBytesRead != m_uOnePCMFrameSize)
 {
 pOutSample->SetSampleFlags(pOutSample->GetSampleFlags() |
HXT_SAMPLE_ENDOFSTREAM);
 res = HXR_S_END_OF_STREAM;
 }
 *ppSample = pOutSample;
 }
 return res;
}

IHXTTransformFilter Interface
DECLARE_INTERFACE_(IHXTTransformFilter, IHXTFilter)
{
 STDMETHOD(SetSampleSink) (UINT32 uStreamID, IHXTSampleSink* pOutputSink
) PURE;
 STDMETHOD(SetAllocator) (UINT32 uStreamID, IHXTSampleAllocator*
pAllocator) PURE;
 STDMETHOD(ReceiveSample)(UINT32 uStreamID, IHXTMediaSample* pSample)
PURE;
};

IHXTTransformFilter::SetAllocator Method

This method is used the same way as the IHXTInputFilter::SetAllocator method.

IHXTTransformFilter::SetSampleSink

Destination to send processed media samples.

Application:
A sample sink will be provided to the plug-in for sending media samples
to once they are ready. This call is guaranteed to come before
IHXTTransformFilter::ReceiveSample or IHXTFilter::Prime is called. The plug-in
can only send samples to the sink during the lifetime of a
IHXTTransformFilter::ReceiveSample call. This is only ever an issue for a
threaded transform plug-in.
130

CHAPTER 5: Helix DNA Producer Plug-In API
Requirements:

• Valid error codes are HXR_INVALID_PARAMETER.

• Addref the output sink and make sure it is released by the time the
plug-in is destroyed.

Code Example:
Illustrates the typical things that happen during a
IHXTTransformFilter::SetSampleSink call.

STDMETHODIMP CRSExample::SetSampleSink (UINT32 ulOutputStreamID,
IHXTSampleSink* pOutputSink)
{
 // check valid stream id and a valid Output sink
 if (ulOutputStreamID != 0 || pOutputSink == NULL)
 return HXR_INVALID_PARAMETER;

 HX_RELEASE(m_ pOutputSink);
 m_pOutputSink = pAllocator;
 m_pOutputSink ->AddRef();
 return HXR_OK;
}

IHXTTransformfilter::ReceiveSample Method

Handles the incoming media sample.

Application:
Typically in this method an outgoing media sample is obtained from the
allocator using IHXTSampleAllocator::GetMediaSampleOfSize and the
incoming media sample’s data is extracted, transformed, and sent on to
the next data sink with the outgoing media sample. In an “in place”
transformation the data is processed “in place” in the data buffer of the
incoming media sample.

Requirements:

• Return HXR_INVALID_PARAMETER for bad parameters or
HXR_ENC_IMPROPER_STATE for an invalid state.

• Plug-ins must return a failure code if they generate an error during
processing.

• Once an error is returned on a given stream ID, the plug-in will no
longer receive data on that stream.
131

Helix DNA Producer SDK Developer’s Guide
• Once a plug-in has received an error code from a sample sink, it must
not send additional data to that sink.

• Plug-ins with a single output should always return the error from
their m_pOutputSink->ReceiveSample call.

• Plug-ins with multiple outputs can choose to not return an error
error code from a failed m_pOutputSink->ReceiveSample call so they can
continue to send data to their remaining outputs.

• It is not necessary to call data processing operations on a zero-sized
media sample.

• If the media sample’s size is zero, you still must send the sample on to
downstream plug-ins.

• Always check for the HXT_SAMPLE_ENDOFSTREAM f lag and take
appropriate actions when it is found.

• Set the proper time stamps on the outgoing sample (or copy them
from the incoming sample using IHXTMediaSample::CopyProperties).

• Set any appropriate flags on the outgoing sample (such as
HXT_SAMPLE_ENDOFSTREAM). See “IHXTMediaSample::SetSampleFlags”
on page 265.

• Set any appropriate fields on the outgoing sample (see
“IHXTMediaSample::SetSampleField” on page 264).

• If the plug-in obtained an outgoing sample from their assigned
allocator (whether it contains data or not), they must release the
IHXTMediaSample interface immediately following the call to the
m_pOutputSink->ReceiveSample.

• An “in place” plug-in that operates on the incoming sample’s buffer
and merely passes the sample on to m_pOutputSink->ReceiveSample
should not release the sample.

• Use the CopyProperties helper method pOutSample->CopyProperties(

pInSample) to transfer sample properties such as timestamps, sample
flags and fields from an incoming to an outgoing sample.

Code Example:
Illustrates typical things that happen during an input plug-in’s
IHXTTransformFilter::ReceiveSample call.
132

CHAPTER 5: Helix DNA Producer Plug-In API
STDMETHODIMP CRSAnyTransFilter::ReceiveSample(UINT32 uInputStreamID,
IHXTMediaSample* pInSample)
{
 if (uInputStreamID != 0 || pInSample == NULL)
 return HXR_INVALID_PARAMETER;

 if (!m_bReadyToOutputSamples)
 return HXR_ENC_IMPROPER_STATE;

 IHXTMediaSample* pOutSample = NULL;
 m_pAllocator->GetMediaSampleOfSize(pInSample->GetDataSize(), &pOutSample
);

 // Copied properties will pick up the end of stream and pass it on
 pOutSample->CopyProperties(pInSample);
 UINT32 uLen = pInSample->GetDataSize();
 UCHAR* pOut = pOutSample->GetBufferStartForWriting();
 UCHAR* pIn = pInSample->GetBufferStartForReading();

 // simple transform operation
 memcpy(pOut, pIn, uLen);

 HX_RESULT res = m_spOutputSink->ReceiveSample(pOutSample);
 pOutSample->Release();
 return res;
}

IHXTOutputFilter Interface
DECLARE_INTERFACE_(IHXTOutputFilter, IHXTFilter)
{
 STDMETHOD(ReceiveSample)(UINT32 uStreamID, IHXTMediaSample* pSample)
PURE;
};

IHXTOutputFilter::ReceiveSample Method

Handles the incoming media sample.

Application:
This method is only similar to the IHXTTransformFilter::ReceiveSample
method. The data in the media sample is still received and some kind of
final processing is performed with it. However, no allocators or output
sinks are used as this is the final destination for the data. Nor are any “in
place” operations performed.
133

Helix DNA Producer SDK Developer’s Guide
Requirements:

• Return HXR_INVALID_PARAMETER for bad parameters or
HXR_ENC_IMPROPER_STATE for an invalid state.

• This method should track the HXT_SAMPLE_ENDOFSTREAM f lags on
different streams as they come through.

• When HXT_SAMPLE_ENDOFSTREAM is found on the final input stream,
send the eEventStreamDone on the m_pEventSink->HandleEvent call.

• Optionally, when HXT_SAMPLE_ENDOFSTREAM is found on the final
input stream, return HXR_S_END_OF_STREAM and an eEventStreamDone
will be automatically generated for the plug-in.

• In all other cases (even when the media sample has a data size of zero),
return HXR_OK.

Code Example:
Illustrates some typical things that happen during an output plug-in’s
IHXTOutputFilter::ReceiveSample call.

STDMETHODIMP CRSOutPCMFilter::ReceiveSample (UINT32 ulInputStreamID,
IHXTMediaSample* pInSample)
{
 if (uInputStreamID != 0 || pInSample == NULL)
 return HXR_INVALID_PARAMETER;

 if (!IsHeaderWritten())
 WriteHeader();

 HX_RESULT res = HXR_OK;

 INT32 nLen = pInSample->GetDataSize();
 WriteFile(pInSample->GetBufferStartForReading(), nLen);
 AddToCumulative(nLen);

 if (pInSample->GetSampleFlags() & HXT_SAMPLE_ENDOFSTREAM)
 {
 SeekToBeginning();
 WritePCMTailerWaveBuffer(GetHeader(), GetCumulative());
 WriteFile(m_pPCMHeader, GetHeaderSize());
 DoClose();
 // return either this
 m_pEventSink-
>HandleEvent(eEventStreamDone,&ulInputStreamID,NULL,(IHXTConfigurationAgent
*)this);
134

CHAPTER 5: Helix DNA Producer Plug-In API
 // or this
 res = HXR_OUTPUTFILTER_STREAM_DONE;
 }
 return res;
}

Configuration and Connection Agent Interfaces (Layer 2)

The agent layer is the next to the highest layer of the plug-in. It typically
derives from the filter layer methods described in the previous sections. The
agent layer negotiates connections between plug-ins, and handles all
properties sent to and from the plug-in. It is also responsible for configuring
plug-ins with the various strings, numbers, and types they need to carry out
their operations.

The IHXTConfigurationAgent interface derives from the IHXTPropertyBag
interface, and consequently must implement all of its methods.
IHXTConfigurationAgent also adds an IHXTConfigurationAgent::Initialize method,
which is called only once per plug-in. See “IHXTConfigurationAgent” on page
177 and “IHXTPropertyBag” on page 287 for information about the methods
included with these interfaces.

Also included at this level is a helper class called CHXConfigurationAgentHelper
which does most of the implementation work for you. Most plug-ins only
need to override a few methods—CHXConfigurationAgentHelper::OnInitialize ,
CHXConfigurationAgentHelper::OnSetUint, and
CHXConfigurationAgentHelper::OnSetString—to handle almost all property
configuration situations. To support other data types, override the
appropriate CHXConfigurationAgentHelper::OnSetXXX calls that apply to your
plug-in. The CHXConfigurationAgentHelper class provided with the SDK includes
the following methods:

• CHXConfigurationAgentHelper::OnInitialize

• CHXConfigurationAgentHelper::OnSetString

• CHXConfigurationAgentHelper::OnSetUint

• CHXConfigurationAgentHelper::OnSetInt64

• CHXConfigurationAgentHelper::OnSetDouble

• CHXConfigurationAgentHelper::OnSetIntList

• CHXConfigurationAgentHelper::OnSetUintList

• CHXConfigurationAgentHelper::OnSetInt64List

• CHXConfigurationAgentHelper::OnSetDoubleList
135

Helix DNA Producer SDK Developer’s Guide
• CHXConfigurationAgentHelper::OnSetIntRange

• CHXConfigurationAgentHelper::OnSetUintRange

• CHXConfigurationAgentHelper::OnSetInt64Range

• CHXConfigurationAgentHelper::OnSetDoubleRange

• CHXConfigurationAgentHelper::OnSetInt

• CHXConfigurationAgentHelper::OnSetUnknown

• CHXConfigurationAgentHelper::OnSetProperty

• CHXConfigurationAgentHelper::OnRemove

Overriding the OnInitialize Method in Your Agent Class

A one time startup call to verify properties in the incoming property bag.

STDMETHOD(OnInitialize)(IHXTPropertyBag* pPropBag,
 IHXTPropertyBag* pConsumedPropBag,
 IHXTPropertyBag* pErrorBag
) {
 return HXR_OK;
}

Application:
Your configuration agent layer derives from the
CHXConfigurationAgentHelper class that provides a default property bag
implementation and override methods such as the default
CHXConfigurationAgentHelper::OnInitialize method supplied in
ihxtconfigagenthelper.h. In your configuration agent layer, OnInitialize
checks that the required properties on a plug-in are set. For example,
input plug-ins require an input file name to properly acquire properties of
a file. Therefore, the OnInitialize call for input plug-ins validates that the
input file name property has been set—as well as any other required
settings. If it does not exist, the plug-in logs a warning and fails. Each
plug-in can have a unique set of required properties that should be
verified.

Requirements:

• OnInitialize should be called no more than once during the lifetime of
the plug-in.

• Every plug-in should set GetActualPropertyBag().SetString(

kPropPluginName, kValuePluginNameYourPlugin);.

• Prefilters should set GetActualPropertyBag().SetString(kPropPluginType,

kValuePluginTypeUniquePluginType);.
136

CHAPTER 5: Helix DNA Producer Plug-In API
• Following initialization, the plug-in’s property bag will be populated
with the set of properties accepted on the plug-in.

• Properties that can only be set at initialization time must use
OnInitialize properties that can be set on-the-f ly use the agent’s
OnSetXXX calls.

• If OnInitialize is given a property bag with an unsupported property or
invalid value, the call fails and an error is logged.

• Use any of the IHXTPropertyBag::GetXXX calls to obtain the expected
property fields—these can be strings, ints, property bags, and so on.

• Implement additional verification checks, such as whether a file loads
and whether it contains the desired data types.

• Depending on what occurs during the initialization call, it might be
necessary to update properties in other property bags.

• Once all properties are verified, call pConsumedBag->SetXXX() to place
property fields in the plug-in’s main property bag.

• If no property verification or plug-in initialization is required, it is not
necessary to implement this method.

• Valid error codes are HXR_POINTER, HXR_INVALID_PARAMETER,
HXR_INVALID_FILE , HXR_BAD_FORMAT, or other relevant specific
initialization errors from hxresult.h.

• When it makes sense, the plug-in can implement a PNCOM
configuration interface for which the client can
IUnknown::QueryInterface. This is in the case where there is a general set
of properties that make sense for a certain category of plug-ins and it
is unlikely that the set of properties will change from one release to
another.

Code Example:
An example of a configuration agent’s OnInitialize call for an audio-only
file reader.

STDMETHODIMP CRSGeneric::OnInitialize(IHXTPropertyBag*
pInitBag,IHXTPropertyBag* pConsumed, IHXTPropertyBag* pError)
{
 if (! pInitBag || ! pConsumed)
 return HXR_POINTER;

 GetActualPropertyBag().SetString(kPropPluginName,
137

Helix DNA Producer SDK Developer’s Guide
kValuePluginNameMyInput);
 GetActualPropertyBag().SetString(kPropPluginType, kValuePluginTypeMyInput);

 const char* pszFilename = NULL;
 HX_RESULT res = pInitBag ->GetString(kPropInputPathname, &pszFilename);
 if (SUCCEEDED(res))
 {
 if (!LoadFile(pszFilename))
 res = HXR_INVALID_FILE;

 if (SUCCEEDED(res))
 {
 m_pOutputFormat->SetUint(kPropAudioChannelFormat, m_uChannelFormat
);
 m_pOutputFormat->SetUint(kPropAudioBitsPerSample, m_uSampleRate);
 m_pOutputFormat->SetUint(kPropAudioSampleFormat,
 HXT_MAKE_SAMPLE_FORMAT(HXT_ENDIANNESS_LITTLE, m_uBitDepth,
m_uBitDepth / 8));

 res = pConsumedPropBag->SetString(kPropInputPathname, pszFilename);
 }
 }
 return res;
}

Overriding the OnSetXXX Methods in Your Agent Class
STDMETHOD(OnSetUint)(const CHAR* pName, UINT32 uValue);
STDMETHOD(OnSetString)(const CHAR* pName, const CHAR *cszValue);
STDMETHOD(OnSetPropertyBag)(const CHAR* pName, IHXTPropertyBag *pValue);

Note: OnSetXXX refers to the optional override methods in
rtaconfigagenthelper.h.

Application:

You write your configuration agent’s OnSetXXX methods to verify that only
known properties are being set by the clients when they make one of their
OnSetXXX calls on the plug-in. These calls might arrive at any time—even during
data processing.

Requirements:

• If a user of the configuration agent attempts to set a property that the
agent doesn’t recognize, the OnSetXXXType call should fail and an error
should be logged.
138

CHAPTER 5: Helix DNA Producer Plug-In API
• If an attempt is made to set a read-only property, the OnSetXXX call
should fail (it is up to the plug-in to enforce this).

• If a set property implies an action, the plug-in can choose to invoke it
in this method or defer it to a later call.

• Valid error codes are HXR_POINTER, HXR_INVALID_PARAMETER,
HXR_ENC_IMPROPER_STATE, or other relevant specific initialization
errors from hxresult.h.

Code Example:
Illustrates a configuration agent’s OnSetString call that only recognizes
kPropInputPathname as an accepted string.

STDMETHODIMP CRSInputPCM::OnSetString(const CHAR* szName, const CHAR*
szValue)
{
 HX_RESULT res = HXR_OK;
 // Validate params
 if (!szName || !szValue)
 return HXR_POINTER;

 if (!m_bAllowPropChanges)
 return HXR_ENC_IMPROPER_STATE;

 CPNString strName = szName;
 if (strcmp(kPropInputPathname, szName) == 0)
 SetReaderFileName(szValue);
 else
 res = HXR_INVALID_PARAMETER;
 return res;
}

IHXTConnectionAgent Interface

The following table lists the IHXTConnectionAgent methods used with various
types of plug-ins.

IHXTConnectionAgent Interface Methods (Layer3)

Input Plug-ins Transform Plug-ins Output Plug-ins

GetInputStreamCount GetInputStreamCount GetOutputStreamCount

GetSupportedInputFormat GetSupportedInputFormat GetSupportedOutputFormat

GetNegotiatedInputFormat GetNegotiatedInputFormat GetNegotiatedOutputFormat
 (Table Page 1 of 2)
139

Helix DNA Producer SDK Developer’s Guide
IHXTConnectionAgent::GetInputStreamCount,
IHXTConnectionAgent::GetSupportedInputFormat,
IHXTConnectionAgent::GetOutputStreamCount, and
IHXTConnectionAgent::GetSupportedOutputFormat identify which output streams
from one plug-in will connect to which input streams of the next plug-in.
These methods are called during the connection process in which media
properties (input and output formats) associated with each stream are
compared to determine the proper match between plug-ins. The final step of
the connection process is when IHXTConnectionAgent::SetNegotiatedInputFormat
and IHXTConnectionAgent::SetNegotiatedOutputFormat are called on a plug-in,
identifying the exact media format properties supplied on each stream of the
plug-in. These connection methods can be called many times until the various
streams and plug-ins for a given operation are properly connected.

IHXTConnectionAgent::GetInputStreamCount Method

IHXTConnectionAgent::GetOutputStreamCount Method

The IHXTConnectionAgent::GetInputStreamCount method gets the number of
possible input streams on a plug-in. The
IHXTConnectionAgent::GetOutputStreamCount method gets the number of
possible output streams on a plug-in.

Requirements:

• The number of streams may be variable rather than fixed depending
on configuration or connection.

SetNegotiatedInputFormat SetNegotiatedInputFormat SetNegotiatedOutputFormat

GetOutputStreamCount

GetSupportedOutputFormat

GetNegotiatedOutputFormat

SetNegotiatedOutputFormat

GetPreferredInputFormat (for
future use)

GetPreferredOutputFormat (for
future use)

IHXTConnectionAgent Interface Methods (Layer3)

Input Plug-ins Transform Plug-ins Output Plug-ins

 (Table Page 2 of 2)
140

CHAPTER 5: Helix DNA Producer Plug-In API
• Input plug-ins have only output streams, output plug-ins have only
input streams, and transforms have both.

Code Examples:
Here is an implementation from a transform mux which supports
multiple inputs, but only one output stream.

STDMETHODIMP_(UINT32) CRSExampleMux::GetInputStreamCount ()
{
 return m_nVideo + m_nAudio + m_nOther;
}

STDMETHODIMP_(UINT32) CRSExampleMux::GetOutputStreamCount ()
{
 return 1;
}

IHXTConnectionAgent::GetSupportedInputFormat Method

IHXTConnectionAgent::GetSupportedOutputFormat Method

The IHXTConnectionAgent::GetSupportedInputFormat method gets the supported
format(s) for a particular input stream expressed using a property bag. The
IHXTConnectionAgent::GetSupportedOutputFormat method gets the supported
format(s) for a particular output stream expressed using a property bag.

Requirements:

• Other valid error codes are HXR_POINTER and HXR_INVALID_PARAMETER.

Code Examples:
Here is an implementation from a plug-in that supports multiple input
formats—one audio and one video.

STDMETHODIMP CRSGeneric::GetSupportedInputFormat (UINT32 ulInputStreamID,
 IHXTPropertyBag** ppSupportedFormats)
{
 // Validate params
 if (!ppSupportedFormats)
 return HXR_POINTER;

 // This will greatly increase
 if (ulInputStreamID >= 2)
 return HXR_INVALID_PARAMETER;

 // Stream 0 is audio, Stream 1 is video
141

Helix DNA Producer SDK Developer’s Guide
 if (ulInputStreamID == 0)
 *ppSupportedFormats = m_pInputFormatAudio;
 else
 *ppSupportedFormats = m_pInputFormatVideo;

 (*ppSupportedFormats)->AddRef();
 return HXR_OK;
}

IHXTConnectionAgent::SetNegotiatedInputFormat Method

IHXTConnectionAgent::SetNegotiatedOutputFormat Method

The IHXTConnectionAgent::SetNegotiatedInputFormat method provides
notification to input stream data in a particular format. The
IHXTConnectionAgent::SetNegotiatedOutputFormat method provides notification
that an output stream will be receiving data in a particular format.

Requirements:

• Upon instantiation, no inputs or outputs are active.
IHXTConnectionAgent::SetNegotiatedInputFormat or
IHXTConnectionAgent::SetNegotiatedOutputFormat must be called to
enable the stream.

• IHXTConnectionAgent::SetNegotiatedInputFormat and
IHXTConnectionAgent::SetNegotiatedOutputFormat can be called multiple
times. When possible, the plug-in should support this.

• Return a failure code if the format property bag contains properties it
can’t support or doesn’t know about.

• If a plug-in requires certain output settings be set before it can receive
data, it can set a flag when this call is made.

• Return HXR_OK if the plug-in accepts the assigned media format.

• AddRef any incoming media format. Make sure to release it later in the
destructor.

• Valid error codes are HXR_INVALID_PARAMETER or HXR_FAIL.

Code Examples:
An example showing how the accepted connected format is AddReffed,
and the state of the plug-in is set to accept data.
142

CHAPTER 5: Helix DNA Producer Plug-In API
STDMETHODIMP CGeneric::SetNegotiatedOutputFormat (UINT32 ulOutputStreamID,
 IHXTPropertyBag* pOutputFormat)
{
 // Validate params -- this plugin will only ever have a single output
 if (ulOutputStreamID != 0 || pOutputFormat == NULL)
 return HXR_INVALID_PARAMETER;

 if (SUCCEEDED (res))
 {
 HX_RELEASE(m_pConnectedOutputFormat);
 m_pConnectedOutputFormat = pOutputFormat;
 m_pConnectedOutputFormat->AddRef();

 // Validate state by setting a flag that will be checked on data flow calls
 if (m_pConnectedOutputFormat && m_pAllocator && m_pOutputSink)
 m_bReadyToOutputSamples = TRUE;
 }
 return res;
}

Audio and Video Media Formats

The following fields make up the uncompressed audio media format and the
uncompressed video media format. See the ihxtconstants.h file for more
information on media formats.

Uncompressed audio will support the following properties:

kPropAudioChannelFormat[] = "audioChannelFormat"; // UINT32

kPropAudioSampleRate[] = "audioSampleRate"; // UINT32

kPropAudioSampleFormat [] = " audioSampleFormat "; // UINT32

Note: Use the macros and enumerators supplied in the
ihxtaudioformat.h file to condense audio channel and audio
sample information.

Uncompressed video will support the following properties:

kPropVideoColorFormat[] = "videoColorFormat"; // UINT32
kPropVideoFrameWidth[] = "videoFrameWidth"; // UINT32
kPropVideoFrameHeight[] = "videoFrameHeight"; // UINT32
kPropVideoFrameRate[] = "videoFrameRate"; // double
143

Helix DNA Producer SDK Developer’s Guide
Producer SDK Error Result Codes and Policies
The policy for choosing a result code is:

1. First check to see if one of the COM common errors is appropriate:

• Return HXR_INVALID_PARAMETER if a parameter does not exist or has an
incorrect value.

• Return HXR_POINTER if an incoming pointer is null.

• Return HXR_OUTOFMEMORY for any allocation or new failure.

• Return HXR_NOTIMPL when a COM method on an interface isn’t
implemented.

• Return HXR_NOINTERFACE when IUnknown::QueryInterface fails to find one.

2. Look next at these special case uses:

• Checking the state of a plug-in:

• Return HXR_ENC_IMPROPER_STATE if the filter is not in a state to accept
the call.

• Input readers:

• Return HXR_INVALID_STREAM if the plug-in can handle at least one
stream in a plug-in, but can’t handle one or more others.

• File handling:

• Return HXR_INVALID_FILE if the file does not exist.

• Return HXR_BAD_FORMAT if the file contains a format that cannot be
handled.

3. Look through hxresult.h for other relevant error codes.

4. Only as a last resort, return HXR_FAIL when no other code seems
appropriate.

Plug-in Samples
The Helix DNA Producer SDK provides two samples containing code that
demonstrate how to use the SDK’s plug-in capabilities. These samples are
located in the following directories:

• \producersdk\samples\inputplugin

• \producersdk\samples\prefilterplugin
144

C H A P T E R
6

 Chapter 6: REALMEDIA EDIT API
The RealMedia Edit API consists of a set of interfaces that allow you
to edit existing RealMedia (.rm) files. The RealMedia Edit API
supports both single rate and SureStream versions of .rm files. The
RealMedia Edit API is divided into two main interfaces, which are
referred to as the IHXRMEdit and IHXRMEvents interfaces.

With the IHXRMEdit interface, you can perform the following operations on a
.rm file:

• Edit title, author, copyright, and comment fields.

• Modify Allow Recording and Allow Download settings.

• Trim the start and end times of a .rm file. This is referred to as a cut
operation.

• Paste two or more .rm files together. This is referred to as a paste
operation.

• Dump the contents of a .rm file to a text file. This is known as a dump
operation.

• Add meta information to the file that is specific to your application.

• Obtain information on the types of streams contained in the .rm file.

• Obtain the size of the video image.

• Determine whether a .rm file is single rate or SureStream.

With the IHXRMEvents interface, you can perform the following operations on a
.rm file:

• Add events and image maps to a .rm file.

• Dump events and image maps from a .rm file to a text file.
145

Helix DNA Producer SDK Developer’s Guide
Editing RealMedia Files
This section describes how to use the RealMedia Edit API to create an
application that can edit a .rm file. A sample application demonstrating the
IHXRMEdit interface is located in the \samples\rmeditor directory.

Using the IHXRMEdit Interface

The following steps describe how to run an editing session with the IHXRMEdit
interface.

1. Create the IHXRMEdit interface directly from the RealMedia tools DLL
(rmto3260.dll on Windows and rmtools.so.6.0 on Linux) using the
RMACreateRMEdit function. Query the returned IUnKnown pointer for the
IHXRMEdit interface. For example:

IUnknown* pUnk = NULL;
IHXRMEdit* pEdit = NULL;
HX_RESULT res = RMACreateRMEdit(&pUnk);
// Get the IHXRMEdit interface
if (SUCCEEDED(res))
{
 res = pUnk->QueryInterface(IID_IHXRMEdit,(void**)&pEdit);
}
HX_RELEASE(pUnk); //no longer need the Iunknown pointer.
HX_RELEASE(pEdit); // release the IHXRMEdit pointer when you are
 // done using it.

2. Specify the path to the .rm file you want to edit using the
IHXRMEdit::SetInputFile method. You must specify the full path to the file.
An example of the Windows path would be:

c:\\RealMedia\files\foo.rm.

An example of the Linux path would be:

/usr/local/RealMedia/files/foo.rm

If you are pasting a number of .rm files together, call
IHXRMEdit::SetInputFile with the path to the first .rm file and
IHXRMEdit::AddInputFile for each of the remaining files. Note that start and
end times are ignored during a paste operation; only entire files are
pasted. Each of the files being pasted together must have been created
with exactly the same encoding settings. Otherwise, the paste operation
returns an error.
146

CHAPTER 6: RealMedia Edit API
3. Specify the path to the output .rm file you want to contain the edited
input file using the IHXRMEdit::SetOutputFile method. This file must be
different than the input file. You must specify the full path to the file. If
the file does not exit, the RealMedia Edit API will create a new file. If the
file already exists, it will be overwritten.

4. Specify the Title, Author, Copyright, and Comment strings using the
appropriate IHXRMEdit::SetXXX method. For example, to set the Title field
of the .rm file, use the IHXRMEdit::SetTitle method.

5. If you want to trim the beginning of the input .rm file, specify a start time
using the IHXRMEdit::SetStartTime method. You can specify the start time in
milliseconds or using a string containing the start time in the format
Days:Hours:Minutes:Seconds:Milliseconds (0:0:0:0:0).

6. If you want to trim the end of the input .rm file, specify an end time using
the IHXRMEdit::SetEndTime method. You can specify the end time in
milliseconds or using a string containing the start time in the format
Days:Hours:Minutes:Seconds:Milliseconds (0:0:0:0:0). You cannot specify an
end time earlier than the start time. Specifying an end time greater than
the duration of the input .rm file results in the end time occurring at the
end of the input file (EOF). You can also specify an endtime of 0 to indicate
that you want the duration of the input file to be used. If you do not call
IHXRMEdit::SetEndTime, the duration of the input file will be used.

7. Use the appropriate IHXRMEdit::SetXXX method if you want to specify the
settings for the Allow Recording or Allow Download features of the
output .rm file. For example, use the IHXRMEdit::SetSelectiveRecord method
to modify the Allow Download setting.

8. To process the edit, you must call the IHXRMEdit::Process method. This
method opens the input file and copies it to the output file according to
the settings you specified in the previous steps.

9. If any of the methods return an error, you can convert the error number
into an error string using the IHXRMEdit::GetErrorString method.

10. When you have finished editing, call HX_RELEASE on the IHXRMEdit
interface you created in Step 1.

Sample code demonstrating the use of the IHXRMEdit interface is in the file
\samples\rmeditor\crmedap.cpp.
147

Helix DNA Producer SDK Developer’s Guide
Using the IHXRMEdit2 Interface

The IHXRMEdit2 interface was added to the RealMedia Edit API to give you
access to more information about a .rm file. This interface is intended to be
used in conjunction with the IHXRMEdit interface. For example, you must
specify an input file with the IHXRMEdit::SetInputFile method before you can
use any of the methods in the IHXRMEdit2 interface.

1. Create the IHXRMEdit interface directly from the RealMedia tools DLL
(rmto3260.dll on Windows and rmtools.so.6.0 on Linux) using the
RMACreateRMEdit function. Query the returned IUnKnown pointer for the
IHXRMEdit2 interface. For example:

IUnknown* pUnk = NULL;
IHXRMEdit* pEdit = NULL;
IHXRMEdit2* pEdit2 = NULL;
HX_RESULT res = RMACreateRMEdit(&pUnk);
// Get the IHXRMEdit interface
if (SUCCEEDED(res))
{
 res = pUnk->QueryInterface(IID_IHXRMEdit,(void**)&pEdit);
}
// Get the IHXRMEdit2 interface
if (SUCCEEDED(res))
{
 res = pUnk->QueryInterface(IID_IHXRMEdit2,(void**)&pEdit2);
}
HX_RELEASE(pUnk); // no longer need the Iunknown pointer.
HX_RELEASE(pEdit); // release the IHXRMEdit pointer when you are
 // done using it.
HX_RELEASE(pEdit2); // release the IHXRMEdit2 pointer when you are
 // done using it.

2. Set the path to the input .rm file using the IHXRMEdit::SetInputFile method.

3. Use one of the IHXRMEdit2::HasXXX methods to determine if the .rm file
contains audio, video, events, or image maps. For example, to determine if
the file contains audio, use the IHXRMEdit2::HasAudio method.

4. If the input .rm file contains video, you can determine the size of the video
image using the IHXRMEdit2::GetVideoSize method.

5. Newer .rm files have a meta information section that contains information
about when the file was created and modified, the application used to
create the file, and the audio and video target setting used to create the
148

CHAPTER 6: RealMedia Edit API
file. This information is managed by an IHXValue interface, where each
piece of information is stored as a name/value pair. For more information
about the IHXValue interface, refer to the Helix SDK Developer’s Guide, which
can be found at
http://www.realnetworks.com/resource/sdk/index.html. The
IHXRMEdit2::GetMetaInformation method enables you to access the IHXValues
object containing the meta information.

This version of the RealMedia Edit API allows you to set the following
name/value pairs in the IHXValues object.

All tags starting with RM_ are reserved by RealNetworks. You can add your
own name/value pairs specific to your application.

The following properties are automatically added by the encoding engine.

Tag Name Value Type Description

RM_PROPERTY_GENERATOR "Generated By" string The name of the application that
created the file. This property defaults
to a value of "Helix DNA Producer
SDK [version] [platform]" when using
the Helix DNA Producer SDK. Your
application can override this property
with your own application name and
version information string.

Tag Name Value Type Description

RM_PROPERTY_CREATION_
DATE

"Creation Date" string The date the .rm file was first created.

RM_PROPERTY_MODIFICATI
ON_DATE

"Modification
Date"

string The date the .rm file was last modified.

RM_PROPERTY_TARGET_AU
DIENCES

"Audiences" string The Target Audience settings used to
create this file.

RM_PROPERTY_AUDIO_FOR
MAT

"audioMode" string The audio format setting used to create
this file, that is music or voice.

RM_PROPERTY_VIDEO_QUA
LITY

"videoMode" string The video quality setting used to create
this file, that is normal, smooth, sharp,
or slideshow.
149

Helix DNA Producer SDK Developer’s Guide
An example of how read the name/value pairs using the
IHXRMEdit2::GetMetaInformation method is located in the
CRMEditApp::DisplayMetaInformation method in the file
\samples\rmeditor\crmedap.cpp. An example of how to set name/value pairs
is located in the CRMEditApp::SetMetaInformationString method in the same
file.

Using the IHXRMEdit3 Interface

The RealMedia Edit API also includes the IHXRMEdit3 interface. This interface
provides access to callbacks that furnish status information during the
editing process.

The status information is provided through the IHXProgressSink interface. The
status information provided by this interface includes notification that the
process has started or stopped, and includes continuous callbacks that
indicate how far the process has progressed (in percent). See “Using the
IHXProgressSink Interface” on page 155 for more information.

Using the IHXRMFileSink Interface

The IHXRMEdit interface supports the use of a IHXRMFileSink interface. The
IHXRMFileSink interface enables your application to register itself to receive
callbacks containing the .rm file headers and the data packets before the
headers and data packets are written to the output .rm file. These callbacks
enable your application to modify or encrypt the headers and data packets
before they are written to the file. An example of using the IHXRMFileSink
interface is located in the file \samples\rmeditor\crmedap.cpp

To enable the sample code, make sure you modify the following line:

#define USE_RMFILESINK 0 // set USE_RMFILESINK to 1 in order to activate
 // the RMFileSink code

1. Your application must implement the IHXRMFileSink interface.

2. Register your IHXRMFileSink interface with the IHXRMEdit interface using
the IHXRMEdit::SetRMFileSink method.

3. After setting the input and output .rm files, call the IHXRMEdit::Process
method to begin the copying process.

4. During the copying of headers from the input file to the output file, the
IHXRMFileSink::OnMediaPropertyHeader method will be called for each
150

CHAPTER 6: RealMedia Edit API
MediaProperties header being written to the output file. You will receive
an IHXValues pointer you can use to read or modify the following fields:

5. During the copying of packets from the input file to the output file, the
IHXRMFileSink::OnPacket method will be called for each data packet being
written to the output file. The data packet information is managed by an
IHXPacket interface. You will need to retrieve the data packet from the
IHXPacket, modify it, then set the data back into the IHXPacket. The
following sample code from the CRMFileSink::OnPacket method in the
sample application demonstrates how to access and modify the data
packet.

STDMETHODIMP CRMFileSink::OnPacket(IHXPacket* pMediaPacket, BOOL
bIsKeyFrame)
{
 HX_RESULT res = HXR_OK;
 // get pointer to RMEditor SDK
 IHXRMEdit* pEdit =m_pOwnerApp->GetEditSDK();
 // Note: See /include/ihxpkts.h for the methods available in the
 // IHXPacket interface.
 // get the IHXBuffer containing the packet data
 IHXBuffer* pBuffer = pMediaPacket->GetBuffer();

Tag Name Value Type Description

RM_MEDIA_PROP_STREAM
_NUMBER

"RM_MEDIA_PR
OP_STREAM_NU
MBER"

UINT32 The stream number of the
MediaProperties header. Note: Do not
modify this field; this is a read only
field.

RM_MEDIA_PROP_MIMETY
PE

"RM_MEDIA_PR
OP_MIMETYPE"

C String The mime type for the stream. If you
alter the data packets or any of the
fields in the MediaProperties header,
you should set a new mime type for the
stream.

RM_MEDIA_PROP_TYPE_SP
ECIFIC_DATA

"RM_MEDIA_PR
OP_TYPE_SPECI
FIC_DATA"

Buffer The type specific data for the media
stream. This data is used by the
renderer in the RealOne Player to
decode the stream. If you modify this
data through encryption or add any
additional information to this buffer,
you must ensure that the original type
specific data can be restored, otherwise
playback of this stream will fail.
151

Helix DNA Producer SDK Developer’s Guide
 if(pBuffer)
 {
 // allocate a buffer to hold the packet data
 UINT32 ulDataSize = pBuffer->GetSize();
 UINT8* pTempBuf = new UINT8[ulDataSize];

 // copy the packet data into the temporary buffer
 memcpy(pTempBuf,pBuffer->GetBuffer(),ulDataSize);

 IHXBuffer* pDataBuffer = NULL;

 // create a new IHXBuffer to hold your modified type specific
 // data
 res = pEdit->CreateIHXBuffer(&pDataBuffer);
 if(SUCCEEDED(res))
 {
 pDataBuffer->AddRef();
 // modify the packet data here. In this example we will
 // just return the same packet data packet to the caller.
 // We first need to set the packet data into the new
 // IHXBuffer.
 res = pDataBuffer->Set(pTempBuf,ulDataSize);
 }
 // We now need to set the IHXBuffer into the IHXPacket.
 if(SUCCEEDED(res))
 {
 pMediaPacket->Set(pDataBuffer,
 pMediaPacket->GetTime(),
 pMediaPacket->GetStreamNumber(),
 pMediaPacket->GetASMFlags(),
 pMediaPacket->GetASMRuleNumber());
 }
 if(pTempBuf)
 {
 delete [] pTempBuf;
 }

 // create a new IHXBuffer to hold your modified type specific
 // data
 res = pEdit->CreateIHXBuffer(&pDataBuffer);
 if(SUCCEEDED(res))
 {
 pDataBuffer->AddRef();
 // modify the packet data here. In this example we will
 // just return the same packet data packet to the caller.
 // We first need to set the packet data into the new
 // IHXBuffer.
152

CHAPTER 6: RealMedia Edit API
 res = pDataBuffer->Set(pTempBuf,ulDataSize);
 }
 // We now need to set the IHXBuffer into the IHXPacket.
 if(SUCCEEDED(res))
 {
 pMediaPacket->Set(pDataBuffer,
 pMediaPacket->GetTime(),
 pMediaPacket->GetStreamNumber(),
 pMediaPacket->GetASMFlags(),
 pMediaPacket->GetASMRuleNumber());
 }
 if(pTempBuf)
 {
 delete [] pTempBuf;
 }
 HX_RELEASE(pDataBuffer);
 HX_RELEASE(pBuffer);

 }
 return res;
}

6. After all of the data packets have been copied to the output file, your
IHXRMFileSink::OnMediaPropertyHeader method will be called again for each
MediaProperties header being written to the output file. You should
repeat the actions you took in Step 4 to ensure the proper updating of the
headers to the output file.

Processing Events
This section describes how to use the RealMedia Edit API to create an
application that can modify events and image maps in a .rm file. A sample
application demonstrating the IHXRMEvents interface is located in the
\samples\rmevents directory.

Using the IHXRMEvents Interface

The following steps describe how to modify the events and image maps in a
.rm file with the IHXRMEvents interface.

1. Create the IHXRMEvents interface directly from the RealMedia tools DLL
(rmto3260.dll on Windows and rmtools.so.6.0 on Linux) using the
153

Helix DNA Producer SDK Developer’s Guide
RMACreateRMEvents function. Query the returned IUnKnown pointer for the
IHXRMEvents interface. For example:

IUnknown* pUnk = NULL;
IHXRMEvents* pEvents = NULL;
HX_RESULT res = RMACreateRMEvents(&pUnk);
// Get the IHXRMEvents interface
if (SUCCEEDED(res))
{
 res = pUnk->QueryInterface(IID_IHXRMEvents,(void**)&pEvents);

}
HX_RELEASE(pUnk); // no longer need the Iunknown pointer.
HX_RELEASE(pEvents); // release the IHXRMEvents pointer when you are
 // done using it.

2. Specify the path to the .rm file you want to add events or image maps to
using the IHXRMEvents::SetInputFile method. You must specify the full path
to the file. An example of the Windows path would be:

c:\\RealMedia\files\foo.rm.

An example of the Linux path would be:

/usr/local/RealMedia/files/foo.rm

3. Optionally specify the path to the input text file that contains the events
that you want to merge into the output .rm file.

4. Optionally specify the path to the input text file that contains the image
maps that you want to merge into the output .rm file.

5. Specify the path to the output .rm file you want to contain the merged
input files using the IHXRMEvents::SetOutputFile method. This file must be
different than the input file. You must specify the full path to the file. If
the file does not exit, the RealMedia Edit API will create a new file. If the
file already exists, it will be overwritten.

6. To merge the input files, you must call the IHXRMEvents::Process method.
This method will open the input file, convert the events and image maps
into the correct format, and merge them to the output file according to
the settings you specified in the previous steps.

7. If any of the methods return an error, you can convert the error number
into an error string using the IHXRMEvents::GetErrorString method.

8. When you are done with the interface, call HX_RELEASE on the IHXRMEvents
interface you created in Step 1.
154

CHAPTER 6: RealMedia Edit API
Using the IHXRMEvents2 Interface

The RealMedia Edit API also includes the IHXRMEvents2 interface. This
interface provides access to callbacks that furnish status information during
processing of events.

The status information is provided through the IHXProgressSink interface. The
status information provided by this interface includes notification that the
process has started or stopped, and includes continuous callbacks that
indicate how far the process has progressed (in percent). See “Using the
IHXProgressSink Interface” on page 155 for more information.

Dumping Events and Image Maps from a .rm File

The IHXRMEvents interface enables you to dump events and image maps
contained in a .rm file to text files. You can then edit events and image maps
contained in a .rm file.

1. Create the IHXRMEvents interface directly from the RealMedia tools DLL
(rmto3260.dll on Windows and rmtools.so.6.0 on Linux) using the
RMACreateRMEvents function. Query the returned IUnKnown pointer for the
IHXRMEvents interface.

2. Specify the path to the .rm file containing the events or image maps using
the IHXRMEvents::SetInputFile method.

3. Specify the path to the root file name that will contain the events and
image maps using the IHXRMEvents::SetDumpFile method. For example, if
you set the dump root path to c:\RealMedia\file\foo all events in the input
file will be dumped into the file c:\RealMedia\file\foo_evt.txt and all image
maps will be dumped to the file c:\RealMedia\file\foo_imap.txt .

4. Call IHXRMEvents::Process. All events in the input file will be dumped in
text format to the output xxx_evt.txt file. All image maps in the input file
will be dumped in text format to the output xxx_imap.txt file.

5. When you are done with the interface, call HX_RELEASE on the IHXRMEvents
interface you created in Step 1.

Using the IHXProgressSink Interface
The IHXProgressSink interface provides state and progress callbacks from the
object that performs editing of .rm files. In addition, you can also get state and
155

Helix DNA Producer SDK Developer’s Guide
progress callbacks for the object that encodes events and image maps. These
callbacks are useful because the calling application can provide feedback to
the user during potentially long editing and encoding processes.

To set up callbacks from an editing session:

1. Create the IHXRMEdit interface directly from the RealMedia tools DLL
(rmto3260.dll on Windows and rmtools.so.6.0 on Linux) using the
RMACreateRMEdit function. Query the returned IUnKnown pointer for the
IHXRMEdit3 interface. For example:

IUnknown* pUnk = NULL;
IHXRMEdit* pEdit = NULL;
IHXRMEdit3* pEdit3 = NULL;
HX_RESULT res = RMACreateRMEdit(&pUnk);
// Get the IHXRMEdit interface
if (SUCCEEDED(res))
{
 res = pUnk->QueryInterface(IID_IHXRMEdit,(void**)&pEdit);
}
// Get the IHXRMEdit3 interface
if (SUCCEEDED(res))
{
 res = pUnk->QueryInterface(IID_IHXRMEdit3,(void**)&pEdit3);
}
HX_RELEASE(pUnk); // no longer need the Iunknown pointer.
HX_RELEASE(pEdit); // release the IHXRMEdit pointer when you are
 // done using it.
HX_RELEASE(pEdit3); // release the IHXRMEdit3 pointer when you are
 // done using it.

2. Register the IHXRMProgressSink interface with the IHXRMEdit3 interface
using the IHXRMEdit3::AddSaveProgressSink method.

During processing, you will receive a call to IHXProgressSink::NotifyStart, a
number of IHXProgressSink::SetProgress calls, then a call to
IHXProgressSink::NotifyFinish. After the return from the IHXRMEdit::Process call,
you should call the IHXRMEdit3::RemoveSaveProgressSink method if you have no
more processing to do on other files.

To set up callbacks when processing events:

1. Create the IHXRMEvents interface directly from the RMTOOLS DLL
(rmto3260.dll on Windows and rmtools.so.6.0 on Linux) using the
RMACreateRMEvents function. Query the returned IUnKnown pointer for the
IHXRMEvents2 interface. For example:
156

CHAPTER 6: RealMedia Edit API
IUnknown* pUnk = NULL;
IHXRMEvents* pEvents = NULL;
IHXRMEvents2* pEvents2 = NULL;
HX_RESULT res = RMACreateRMEvents(&pUnk);
// Get the IHXRMEvents interface
if (SUCCEEDED(res))
{
 res = pUnk->QueryInterface(IID_IHXRMEvents,(void**)&pEvents);
}
// Get the IHXRMEvents2 interface
if (SUCCEEDED(res))
{
 res = pUnk->QueryInterface(IID_IHXRMEvents2,(void**)&pEvents2);
}
HX_RELEASE(pUnk); // no longer need the Iunknown pointer.
HX_RELEASE(pEvents); // release the IHXRMEvents pointer when you are
 // done using it.
HX_RELEASE(pEvents2); // release the IHXRMEvents2 pointer when you are
 // done using it.

2. Register the IHXRMProgressSink interface with the IHXRMEvents2 interface
using the IHXRMEvents2::AddSaveProgressSink method.

During processing, you will receive a call to IHXProgressSink::NotifyStart, a
number of IHXProgressSink::SetProgress calls, then a call to
IHXProgressSink::NotifyFinish. After the return from the IHXRMEvents::Process
call, you should call the IHXRMEvents2::RemoveSaveProgressSink method if you
have no more processing to do on other files.

RealMedia Samples
The Helix DNA Producer SDK provides two samples containing code that
demonstrate how to use the SDK’s RealMedia edit and event capabilities.
These samples are located in the following directories:

• \producersdk\samples\rmeditor

• \producersdk\samples\rmevents
157

Helix DNA Producer SDK Developer’s Guide
158

A P P E N D I X
A

 Appendix A: INTERFACE LIST
IHXTAsmConnectionProperty

This interface is reserved for future use.

IHXTAsmHeaderSource

This interface is reserved for future use.

IHXTAsmHeaderSink

This interface is reserved for future use.

IHXTAsmHeaderTransform

This interface is reserved for future use.

Header file: ihxtbase.h

Header file: ihxtbase.h

Header file: ihxtbase.h

Header file: ihxtbase.h
159

Helix DNA Producer SDK Developer’s Guide
IHXTAudience

This interface manipulates a list of stream configurations (typically audio and
video codecs). This interface inherits the configuration methods of
IHXTConfigurationAgent, which are used to configure the audience properties.

Note: For more information on the audience properties that
can be configured by this interface, see “Audiences” on page 59.

The IHXTAudience interface contains the following methods:

• IHXTAudience::AddStreamConfig

• IHXTAudience::GetStreamConfig

• IHXTAudience::GetStreamConfigCount

• IHXTAudience::MoveStreamConfig

• IHXTAudience::RemoveStreamConfig

As with all Component Object Model (COM) interfaces, the IHXTAudience
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTAudience::AddStreamConfig

Adds a stream configuration to the back of the stream configuration index
list.

STDMETHOD(AddStreamConfig) (
 THIS_
 IHXTStreamConfig* pStreamDef
) PURE;

pStreamDef
Pointer to an IHXTStreamConfig interface that manages the stream
configuration to add.

Purpose: Defines a set of possible audio/video streams for a target bit rate.

Implemented by: Encoding

Header file: ihxtencodingjob.h
160

APPENDIX A: Interface List
IHXTAudience::GetStreamConfig

Retrieves the specified stream configuration at index list.

STDMETHOD(GetStreamConfig) (
 THIS_
 UINT32 ulIndex,
 IHXTStreamConfig** ppStreamDef
) PURE;

ulIndex
The location of the stream configuration in the index list.

ppStreamDef
Address of a pointer to an IHXTStreamConfig interface that manages the
stream configuration information.

IHXTAudience::GetStreamConfigCount

Returns the number of stream configurations in the index list.

STDMETHOD_(UINT32, GetStreamConfigCount) (
 THIS
) PURE;

IHXTAudience::MoveStreamConfig

Moves a stream configuration from its original location in the index list to a
new location.

STDMETHOD(MoveStreamConfig) (
 UINT32 ulOrigIndex,
 UINT32 ulDestIndex
) PURE;

ulOrigIndex
The original location of the stream configuration in the index list.

ulDestIndex
The destination to which the stream configuration is to be moved.

IHXTAudience::RemoveStreamConfig

Removes the specified stream configuration from the index list.
161

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(RemoveStreamConfig) (
 THIS_
 UINT32 ulIndex
) PURE;

ulIndex
The location in the index list of the stream configuration to be removed.

IHXTAudienceEnumerator

The IHXTAudienceEnumerator interface contains the following methods:

• IHXTAudienceEnumerator::GetAudience

• IHXTAudienceEnumerator::GetAudienceCount

• IHXTAudienceEnumerator::SetProfileDirectory

• IHXTAudienceEnumerator::SetProfileExtension

As with all Component Object Model (COM) interfaces, the
IHXTAudienceEnumerator interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTAudienceEnumerator::GetAudience

Gets audience information from the specified file.

STDMETHOD(GetAudience) (
 THIS_
 UINT32 ulIndex,
 IHXTAudience** ppAudience,
 const char** ppszFilename
) PURE;

ulIndex
The location of the audience in the index list.

Purpose: Searches a given directory for audience template files and
provides an enumerator for deserialized audience objects.

Implemented by: Encoding

Header file: ihxtencodingjob.h
162

APPENDIX A: Interface List
ppAudience
Address of a pointer to an IHXTAudience interface that manages the
audience information.

ppszFilename
Address of a pointer to the pathname of the file that contains the
audience template.

IHXTAudienceEnumerator::GetAudienceCount

Returns the number of audiences in the index list.

STDMETHOD_(UINT32, GetAudienceCount) (
 THIS
) PURE;

IHXTAudienceEnumerator::SetProfileDirectory

Sets the directory location in which the audience enumerator looks for files.
The files being enumerated contain profiles (self-contained audience
definitions), and generally end in a .rpad extension, such as 56k Dial-up.rpad
and 150k LAN.rpad.

STDMETHOD(SetProfileDirectory) (
 THIS_
 const char* szDirectoryPath
) PURE;

szDirectoryPath
Pointer to directory location of the profile files.

IHXTAudienceEnumerator::SetProfileExtension

Sets the profile filename extension. By default, the profile filename extension
is .rpad.

STDMETHOD(SetProfileExtension) (
 THIS_
 const char* szProfileExtension
) PURE;

szProfileExtension
Pointer to the filename extension.
163

Helix DNA Producer SDK Developer’s Guide
IHXTAudienceEnumerator2

This interface provides additional enumeration capabilities in addition to
those provided by IHXTAudienceEnumerator. With this interface you can force
deserialization of audience files during initialization, and provide an
IHXTCodecUpdater interface for automatic codec selection. This method
inherits all of the methods from the IHXTAudienceEnumerator interface.

The IHXTAudienceEnumerator2 inteface contains the following methods:

• IHXTAudienceEnumerator2::GetCodecUpdater

• IHXTAudienceEnumerator2::GetForceInitialize

• IHXTAudienceEnumerator2::GetProfileDirectory

• IHXTAudienceEnumerator2::GetProfileExtension

• IHXTAudienceEnumerator2::SetCodecUpdater

• IHXTAudienceEnumerator2::SetForceInitialize

As with all Component Object Model (COM) interfaces, the
IHXTAudienceEnumerator2 interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTAudienceEnumerator2::GetCodecUpdater

Returns the location of the codec updater used in the automatic codec
selection.

STDMETHOD(GetCodecUpdater) (
 THIS_
 IHXTCodecUpdater** ppCodecUpdater
) PURE;

ppCodecUpdater
Address of a pointer to an IHXTCodecUpdater interface that finds the
mapping file containing the codec and updates an audience with the
codec information.

Purpose: Provides an enumerator for deserialized audience objects for
automatic codec selection.

Implemented by: Encoding

Header file: ihxtencodingjob.h
164

APPENDIX A: Interface List
IHXTAudienceEnumerator2::GetForceInitialize

Determines if forced deserialization of an audience file will occur during
initialization.

STDMETHOD(GetForceInitialize) (
 THIS_
 BOOL* pbForceInitialize
) PURE;

pbForceInitialize
If false (default), the producer will not force the deserialization of any
audience file that contains non-existant codecs. If this parameter is true ,
the producer is forced to deserialize the audience file even with a non-
existant codec.

IHXTAudienceEnumerator2::GetProfileDirectory

Gets the directory location from which the audience enumerator looks for
files. The files being enumerated contain profiles (self-contained audience
definitions), and generally end in a .rpad extension, such as 56k Dial-up.rpad
and 150k LAN.rpad.

STDMETHOD(GetProfileDirectory) (
 THIS_
 const char** cpszDirectoryPath
) PURE;

cpszDirectoryPath
Address of a pointer to the directory location of the profile files.

IHXTAudienceEnumerator2::GetProfileExtension

Gets the profile filename extension. Generally, the profile filename extension
is .rpad.

STDMETHOD(GetProfileExtension) (
 THIS_
 const char** cpszProfileExtension
) PURE;

cpszProfileExtension
Address of a pointer to the filename extension.
165

Helix DNA Producer SDK Developer’s Guide
IHXTAudienceEnumerator2::SetCodecUpdater

Sets the codec updater interface to be used in automatic codec selection.

STDMETHOD(SetCodecUpdater) (
 THIS_
 IHXTCodecUpdater* pCodecUpdater
) PURE;

pCodecUpdater
Pointer to an IHXTCodecUpdater interface that manages the mapping file
containing the codec, and is used to update an audience with the codec
information.

IHXTAudienceEnumerator2::SetForceInitialize

Forces deserialization of an audience file during intialization.

STDMETHOD(SetForceInitialize) (
 THIS_
 BOOL bForceInitialize
) PURE;

bForceInitialize
If set to false (default), the producer will not force the deserialization of
any audience file that contains non-existant codecs. If this parameter is
set to true, the producer is forced to deserialize the audience file even with
a non-existant codec.

IHXTAudioPinFormat

The IHXTAudioPinFormat interface contains the following methods:

• IHXTAudioPinFormat::GetChannelFormat

• IHXTAudioPinFormat::GetSampleFormat

• IHXTAudioPinFormat::GetSampleRate

• IHXTAudioPinFormat::SetChannelFormat

• IHXTAudioPinFormat::SetSampleFormat

• IHXTAudioPinFormat::SetSampleRate

Purpose: Specifies the format of audio samples that will be passed to the
encoding engine.

Implemented by: Encoding

Header file: ihxtbase.h
166

APPENDIX A: Interface List
As with all Component Object Model (COM) interfaces, the
IHXTAudioPinFormat interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTAudioPinFormat::GetChannelFormat

Gets the channel format (speaker layout) in audio samples passed to the
encoding manager. See the EHXTAudioChannelFormat enumerator in
ihxtaudioformat.h.

STDMETHOD(GetChannelFormat) (
 THIS_
 EHXTAudioChannelFormat* peChannelFormat
) PURE;

peChannelFormat
Pointer to an EHXTAudioChannelFormat enumerator that specifies the
channel format in the audio sample.

IHXTAudioPinFormat::GetSampleFormat

Gets the sample format (bits per sample, bit packing) of audio samples passed
to the encoding manager. See the EHXTAudioSampleFormat enumerator in
ihxtaudioformat.h.

STDMETHOD(GetSampleFormat) (
 THIS_
 EHXTAudioSampleFormat* peSampleFormat
) PURE;

peSampleFormat
Pointer to an EHXTAudioSampleFormat enumerator that specifies the sample
format of the audio sample.

IHXTAudioPinFormat::GetSampleRate

Gets the sample rate of audio samples passed to the encoding engine.

STDMETHOD(GetSampleRate) (
 THIS_
 UINT32* pulSamplesPerSec
) PURE;
167

Helix DNA Producer SDK Developer’s Guide
pulSamplesPerSec
Pointer to the sample rate, per second, of the audio sample.

IHXTAudioPinFormat::SetChannelFormat

Sets the channel format (speaker layout) in audio samples passed to the
encoding manager. See the EHXTAudioChannelFormat enumerator in
ihxtaudioformat.h.

STDMETHOD(SetChannelFormat) (
 THIS_
 EHXTAudioChannelFormat eChannelFormat
) PURE;

eChannelFormat
An EHXTAudioChannelFormat enumerator that specifies the channel format
in the audio sample.

IHXTAudioPinFormat::SetSampleFormat

Sets the sample format (bits per sample, bit packing) of audio samples passed
to the encoding manager. See the EHXTAudioSampleFormat enumerator in
ihxtaudioformat.h.

STDMETHOD(SetSampleFormat) (
 THIS_
 EHXTAudioSampleFormat eSampleFormat
) PURE;

eSampleFormat
An EHXTAudioSampleFormat enumerator that specifies the sample format of
the audio sample.

IHXTAudioPinFormat::SetSampleRate

Sets the sample rate of audio samples passed to the encoding engine.

STDMETHOD(SetSampleRate) (
 THIS_
 UINT32 ulSamplesPerSec
) PURE;

ulSamplesPerSec
The sample rate, per second.
168

APPENDIX A: Interface List
IHXTCaptureDialogControl

The capture dialog windows launched by this interface are provided by the
operating system or capture driver vendors.

The IHXTCaptureDialogControl interface contains the
IHXTCaptureDialogControl::LaunchDialog method.

As with all Component Object Model (COM) interfaces, the
IHXTCaptureDialogControl interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTCaptureDialogControl::LaunchDialog

Displays a dialog for changing the capture parameters. Each capture dialog
has its own unique identifier. The window pointer is operating system-
specific. For Windows DirectShow, it is the HWND window handle of the parent
window. This method returns an error for certain dialogs if a capture is
running. In this case, stop the capture, launch the dialog again, and restart the
capture.

When mapping identifiers to dialog name, the input source can be queried for
the kPropAudioCaptureDialogs and kPropVideoCaptureDialogs property bags. These
property bags each contain a kPropCaptureDialogNames property bag that holds
dialog name and identifier value pairs.

This method returns an error for certain dialogs if a capture is running. In this
case, stop the capture, launch the dialog again, and restart the capture.

STDMETHOD_(HX_RESULT, LaunchDialog) (
 THIS_
 INT32 nIdentifier,
 void* window
) PURE;

nIdentifier
The unique identifier for this specific capture dialog.

Purpose: Launches capture dialog windows.

Implemented by: GUI video capture setting’s dialog

Header file: ihxtbase.h
169

Helix DNA Producer SDK Developer’s Guide
window
Pointer to the operating system-specific window. For example, for
Windows DirectShow this parameter would point to the HWND window
handle of the parent window.

IHXTClassFactory

Any Helix DNA Producer SDK component can use this interface to create a
Helix DNA Producer SDK object.This is the preferred method for creating
objects used by multiple components. A component can use the C++ new
operator to create objects that it alone manipulates, however. When Helix
DNA Producer initializes a component, it passes the component a pointer to
the system context.The component can then use this pointer to call any of the
IHXClassFactory methods.

The IHXTClassFactory interface contains the following methods:

• IHXTClassFactory::BuildInstance

• IHXTClassFactory::BuildInstanceFromBuffer

• IHXTClassFactory::BuildInstanceFromFile

• IHXTClassFactory::BuildInstanceFromObject

• IHXTClassFactory::CreateInstance

As with all Component Object Model (COM) interfaces, the IHXTClassFactory
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTClassFactory::BuildInstance

Creates an instance of the specified interface, specifies the properties used by
that interface, and initializes the interface.

STDMETHOD(BuildInstance) (
 THIS_
 REFIID riid,
 IHXTPropertyBag* pInitParams,

Purpose: Creates RTA objects.

Implemented by: Any component

Header file: ihxtencodingjob.h
170

APPENDIX A: Interface List
 IUnknown** ppNewInstance,
 BOOL bForceInitialization=FALSE,
 IHXTPropertyBag** ppInitErrorBag=NULL
) PURE;

riid
Indicates the reference identifier for the interface being built.

pInitParams
Pointer to an IHXTPropertyBag interface that manages the collection of
properties used by this interface.

ppNewInstance
Address of a pointer to an IUnknown interface that identifies the new
interface.

bForceInitialization
If set to false (default), this method will not create the object if any of the
initialization properties fail to be validated. This ensures you never have
an object in a bad state. However, this can have undesirable side effects,
like causing a job file to fail to deserialize if the input filename does not
exist, or if the specified capture device is in use. If this parameter is set to
true , the object is forced to be created even with an invalid property. This
allows the object to be created even though it cannot be part of an
encode—the calling SDK application can then inspect the object and
determine the problem that occurred during initialization.

ppInitErrorBag
Address of a pointer to an IHXTPropertyBag interface that manages the
invalid properties that caused initialization to fail.

IHXTClassFactory::BuildInstanceFromBuffer

Creates an instance of the specified interface and initializes the interface from
a buffer containing XML code.

STDMETHOD(BuildInstanceFromBuffer) (
 THIS_
 REFIID riid,
 IHXBuffer* pXmlBuffer,
 IUnknown** ppNewInstance,
 BOOL bForceInitialization=FALSE,
 IHXTPropertyBag** ppInitErrorBag=NULL
) PURE;
171

Helix DNA Producer SDK Developer’s Guide
riid
Indicates the reference identifier for the interface being built.

pXmlBuffer
Pointer to an IHXBuffer interface that manages the XML code.

ppNewInstance
Address of a pointer to an IUnknown interface that identifies the new
interface.

bForceInitialization
If set to false (default), this method will not create the object if any of the
initialization properties fail to be validated. This ensures you never have
an object in a bad state. However, this can have undesirable side effects,
like causing a job file to fail to deserialize if the input filename does not
exist, or if the specified capture device is in use. If this parameter is set to
true , the object is forced to be created even with an invalid property. This
allows the object to be created even though it cannot be part of an
encode—the calling SDK application can then inspect the object and
determine the problem that occurred during initialization.

ppInitErrorBag
Address of a pointer to an IHXTPropertyBag interface that manages the
invalid properties that caused initialization to fail.

IHXTClassFactory::BuildInstanceFromFile

Creates an instance of the specified interface, along with any data required by
the interface. The data is supplied in an XML file specified in this method.

STDMETHOD(BuildInstanceFromFile) (
 THIS_
 REFIID riid,
 const char* szPathname,
 IUnknown** ppNewInstance,
 BOOL bForceInitialization=FALSE,
 IHXTPropertyBag** ppInitErrorBag=NULL
) PURE;

riid
Indicates the reference identifier for the interface being built.

szPathname
Pointer to the pathname of the XML file used to build this instance.
172

APPENDIX A: Interface List
ppNewInstance
Address of a pointer to an IUnknown interface that identifies the new
interface.

bForceInitialization
If set to false (default), this method will not create the object if any of the
initialization properties fail to be validated. This ensures you never have
an object in a bad state. However, this can have undesirable side effects,
like causing a job file to fail to deserialize if the input filename does not
exist, or if the specified capture device is in use. If this parameter is set to
true , the object is forced to be created even with an invalid property. This
allows the object to be created even though it cannot be part of an
encode—the calling SDK application can then inspect the object and
determine the problem that occurred during initialization.

ppInitErrorBag
Address of a pointer to an IHXTPropertyBag interface that manages the
invalid properties that caused initialization to fail.

IHXTClassFactory::BuildInstanceFromObject

Clones an existing interface and optionally replaces some parameters in the
new interface.

STDMETHOD(BuildInstanceFromObject) (
 THIS_
 REFIID riid,
 IUnknown* pUnkExistingObj,
 IUnknown** ppUnkNewInstance,
 IHXTPropertyBag** ppReplaceProps=NULL,
 BOOL bForceInitialization=FALSE,
 IHXTPropertyBag** ppInitErrorBag=NULL
) PURE;

riid
Indicates the reference identifier for the interface being built.

pUnkExistingObj
Pointer to an IUnknown interface that identifies the existing interface from
which the new interface can be built.

ppUnkNewInstance
Address of a pointer to an IUnknown interface that identifies the new
interface.
173

Helix DNA Producer SDK Developer’s Guide
ppReplaceProps
Address of a pointer to an IHXTPropertyBag interface that manages the
replacement parameters for the new interface.

bForceInitialization
If set to false (default), this method will not create the object if any of the
initialization properties fail to be validated. This ensures you never have
an object in a bad state. However, this can have undesirable side effects,
like causing a job file to fail to deserialize if the input filename does not
exist, or if the specified capture device is in use. If this parameter is set to
true , the object is forced to be created even with an invalid property. This
allows the object to be created even though it cannot be part of an
encode—the calling SDK application can then inspect the object and
determine the problem that occurred during initialization.

ppInitErrorBag
Address of a pointer to an IHXTPropertyBag interface that manages the
invalid properties that caused initialization to fail.

IHXTClassFactory::CreateInstance

Creates an instance of a Helix DNA Producer SDK interface. This method
does not perform any kind of initialization.

STDMETHOD(CreateInstance) (
 THIS_
 REFIID riid,
 IUnknown** ppNewInstance
) PURE;

riid
Indicates the reference identifier for the interface being created.

ppUnk
Address of a pointer to an IUnknown interface that identifies the new
interface.
174

APPENDIX A: Interface List
IHXTCodecUpdater

This interface specifies the location of a mapping file that is the source for
upgrading codecs. The user can have all audiences for an encoding job
updated or can select individual audiences to update.

For More Information: See “Automatic Codec Selection” on page
85.

The IHXTCodecUpdater interface contains the following methods:

• IHXTCodecUpdater::GetCodecMappingFile

• IHXTCodecUpdater::SetCodecMappingFile

• IHXTCodecUpdater::UpdateAudience

• IHXTCodecUpdater::UpdateJob

As with all Component Object Model (COM) interfaces, the IHXTCodecUpdater
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTCodecUpdater::GetCodecMappingFile

Gets the location of the codec mapping file.

STDMETHOD(GetCodecMappingFile) (
 THIS_
 const char** ppszMappingFile
) PURE;

ppszMappingFile
Address of a pointer to the location of the codec mapping file.

IHXTCodecUpdater::SetCodecMappingFile

Sets the location of the codec mapping file. The file will be parsed and errors
reported as applicable.

Purpose: Automatically updates codecs.

Implemented by: Encoding

Header file: ihxtencodingjob.h
175

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(SetCodecMappingFile) (
 THIS_
 const char* pszMappingFile
) PURE;

pszMappingFile
Pointer to the location of the codec mapping file.

IHXTCodecUpdater::UpdateAudience

Updates a single audience based on the mappings provided in the codec
mapping file. If no mappings are specified, an unexpected error is returned. If
any stream update fails in the audience, the entire method fails. The IN
audience is unaltered and the new updated job is returned as an OUT
parameter.

STDMETHOD(UpdateAudience) (
 THIS_
 IHXTAudience* pAudience,
 IHXTAudience** ppNewAudience,
 BOOL* pbAudienceUpdated = NULL
) PURE;

pAudience
Pointer to an IHXTAudience interface that manages the original audience.

ppNewAudience
Address of a pointer to an IHXTAudience interface that manages the new
audience that contains the updated codec.

pbAudienceUpdated
Pointer to a Boolean expression that indicates whether the audience has
been updated. If TRUE, the new audience has been successfully modified
from the original audience. If FALSE, the new audience has not been
modified. This parameter can be NULL, in which case no value is returned.

IHXTCodecUpdater::UpdateJob

Updates all audiences contained in an encoding job based on the mappings
provided in the codec mapping file. If no mappings are specified, an
unexpected error is returned. If any stream update fails in the audience, the
entire method fails.
176

APPENDIX A: Interface List
STDMETHOD(UpdateJob) (
 THIS_
 IHXTEncodingJob* pEncodingJob,
 BOOL* pbAudienceUpdated = NULL
) PURE;

pEncodingJob
Pointer to an IHXTEncodingJob interface that manages the audiences to be
updated.

pbAudienceUpdated
Pointer to a Boolean expression that indicates whether any of the
audiences have been updated. If TRUE, one or more of the new audiences
have been successfully modified from the original audiences. If FALSE , no
audience has been modified. This parameter can be NULL, in which case no
value is returned.

IHXTConfigurationAgent

This interface inherits the methods from the IHXTPropertyBag interface.

The IHXTConfigurationAgent method contains the
IHXTConfigurationAgent::Initialize method.

As with all Component Object Model (COM) interfaces, the
IHXTConfigurationAgent interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTConfigurationAgent::Initialize

Initializes an object with the specified properties. This method returns a
success code if the initialization is successful.

Purpose: Provides generic configuration that uses property bags.

Implemented by: Encoding and plug-ins

Header file: ihxtbase.h
177

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(Initialize) (
 THIS_
 IHXTPropertyBag* pPropBag,
 IHXTPropertyBag** ppErrorBag=NULL
) PURE;

pPropBag
Pointer to an IHXTPropertyBag interface that manages the properties for
the object being initialized.

ppErrorBag
If this parameter is set to a value other than NULL before initialization,
contains an address of a pointer to an IHXTPropertyBag interface that
identifies a failed property if the initialization process fails.

IHXTConnectionAgent

This interface must be implemented by all filters.

The IHXTConnectionAgent method contains the following methods:

• IHXTConnectionAgent::GetInputStreamCount

• IHXTConnectionAgent::GetNegotiatedInputFormat

• IHXTConnectionAgent::GetNegotiatedOutputFormat

• IHXTConnectionAgent::GetOutputStreamCount

• IHXTConnectionAgent::GetPreferredInputFormat

• IHXTConnectionAgent::GetPreferredOutputFormat

• IHXTConnectionAgent::GetSupportedInputFormat

• IHXTConnectionAgent::GetSupportedOutputFormat

• IHXTConnectionAgent::SetNegotiatedInputFormat

• IHXTConnectionAgent::SetNegotiatedOutputFormat

As with all Component Object Model (COM) interfaces, the
IHXTConnectionAgent interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

Purpose: Advertises the various formats with which a filter can connect.

Implemented by: Plug-ins

Header file: ihxtbase.h
178

APPENDIX A: Interface List
IHXTConnectionAgent::GetInputStreamCount

Returns the total number of possible input streams that can be connected.

STDMETHOD_(UINT32, GetInputStreamCount) (
 THIS
) PURE;

IHXTConnectionAgent::GetNegotiatedInputFormat

Retrieves the negotiated format previously set by
IHXTConnectionAgent::SetNegotiatedInputFormat . Filters can implement this
method by saving the property bag specified in
IHXTConnectionAgent::SetNegotiatedInputFormat .

STDMETHOD(GetNegotiatedInputFormat) (
 THIS_
 UINT32 uIndex,
 IHXTPropertyBag** pSupportedFormats
) PURE;

uIndex
The index number of the stream.

pSupportedFormats
Address of a pointer to an IHXTPropertyBag interface that manages the
negotiated input formats.

IHXTConnectionAgent::GetNegotiatedOutputFormat

Retrieves the negotiated format set by
IHXTConnectionAgent::SetNegotiatedOutputFormat. Filters can implement this
method by saving the property bag specified in
IHXTConnectionAgent::SetNegotiatedOutputFormat.

STDMETHOD(GetNegotiatedOutputFormat) (
 THIS_
 UINT32 uIndex,
 IHXTPropertyBag** pSupportedFormats
) PURE;

uIndex
The index number of the stream.

pSupportedFormats
Address of a pointer to an IHXTPropertyBag interface that manages the
negotiated output formats.
179

Helix DNA Producer SDK Developer’s Guide
IHXTConnectionAgent::GetOutputStreamCount

Returns the total number of possible output streams that can be connected.

STDMETHOD_(UINT32, GetOutputStreamCount) (
 THIS
) PURE;

IHXTConnectionAgent::GetPreferredInputFormat

This method is reserved for future use

STDMETHOD(GetPreferredInputFormat) (
 THIS_
 UINT32 uIndex,
 UINT32 uPrefRank,
 IHXTPropertyBag** ppPreferredFormat
) PURE;

IHXTConnectionAgent::GetPreferredOutputFormat

Reserved for future use.

STDMETHOD(GetPreferredOutputFormat) (
 THIS_
 UINT32 uIndex,
 UINT32 uPrefRank,
 IHXTPropertyBag** ppPreferredFormat
) PURE;

IHXTConnectionAgent::GetSupportedInputFormat

Gets the format for a particular input stream. A filter can specify support for
multiple values for a single property (such as multiple audio sample rates) by
using list and range properties.

STDMETHOD(GetSupportedInputFormat) (
 THIS_
 UINT32 uIndex,
 IHXTPropertyBag** pSupportedFormats
) PURE;

uIndex
The index number of the stream.
180

APPENDIX A: Interface List
pSupportedFormats
Address of a pointer to an IHXTPropertyBag interface that manages the
supported input formats.

IHXTConnectionAgent::GetSupportedOutputFormat

Gets the format for a particular output stream. A filter can specify support for
multiple values for a single property (such as multiple audio sample rates) by
using list and range properties.

STDMETHOD(GetSupportedOutputFormat) (
 THIS_
 UINT32 uIndex,
 IHXTPropertyBag** pSupportedFormats
) PURE;

uIndex
 The index number of the stream.

pSupportedFormats
Address of a pointer to an IHXTPropertyBag interface that manages the
supported output formats.

IHXTConnectionAgent::SetNegotiatedInputFormat

Notifies the filter that an input stream has been connected.

STDMETHOD(SetNegotiatedInputFormat) (
 THIS_
 UINT32 uStreamID,
 IHXTPropertyBag* pInputFormat
) PURE;

uStreamID
The index number of the stream that has been connected.

pInputFormat
Pointer to an IHXTPropertyBag interface that manages the format that was
negotiated for the connection.

IHXTConnectionAgent::SetNegotiatedOutputFormat

Notifies the filter that an output stream has been connected.
181

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(SetNegotiatedOutputFormat) (
 THIS_
 UINT32 uStreamID,
 IHXTPropertyBag* pOutputFormat
) PURE;

uStreamID
The index number of the stream that has been connected.

pOutputFormat
Pointer to an IHXTPropertyBag interface that manages the format that was
negotiated for the connection.

IHXTCustomComparison

Typical connection properties are handled by the Helix DNA Producer SDK;
therefore, you don’t have to write any code that does any sort of property
comparison. For example, if you implement an audio prefilter, you might
advertise that you can handle one or two channels of incoming audio by
populating an IHXTUintList with the values {1,2}. But you don’t have to write
any code that checks if the connecting filter has either one or two channels of
audio—the SDK looks at both filters’ property bags and determines if they are
compatible.

However, if you are creating custom connection properties not specifically
supported by the Helix DNA Producer SDK, you must use this interface to
implement the code that compares and negotiates the final connected value of
a property.

The IHXTCustomComparison method contains the
IHXTCustomComparison::Compare method.

As with all Component Object Model (COM) interfaces, the
IHXTCustomComparison interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

Purpose: Provides a means of comparing custom properties.

Implemented by: Custom properties

Header file: ihxtpropertybag.h
182

APPENDIX A: Interface List
IHXTCustomComparison::Compare

Performs a comparison against a custom connecting property and negotiates
a mutually acceptable property, if possible

STDMETHOD(Compare) (
 THIS_
 IUnknown *pConnectingProperty,
 IUnknown **ppNegotiatedProperty
) PURE;

pConnectingProperty
Pointer to an IUnknown interface that identifies the custom connecting
property.

ppNegotiatedProperty
Address of a pointer to an IUnknown interface that identifies the property
that contains the final negotiated value.

IHXTDestination

This interface inherits the configuration methods of IHXTConfigurationAgent,
which are used to configure the destination properties. In addition, it adds,
deletes, and manipulates an index list of postfilters for the encoding engine.

Note: For more information on the destination properties that
can be configured by this interface, see “Destination” on page
51

The IHXTDestination interface contains the following methods:

• IHXTDestination::AddFailoverDestination

• IHXTDestination::AddPostfilter

• IHXTDestination::GetFailoverDestination

• IHXTDestination::GetFailoverDestinationCount

• IHXTDestination::GetPostfilter

• IHXTDestination::GetPostfilterCount

• IHXTDestination::MoveFailoverDestination

Purpose: Represents the output from the encoding job (either file or
server) and provides failover methods.

Implemented by: Encoding

Header file: ihxtencodingjob.h
183

Helix DNA Producer SDK Developer’s Guide
• IHXTDestination::MovePostfilter

• IHXTDestination::RemoveFailoverDestination

• IHXTDestination::RemovePostfilter

As with all Component Object Model (COM) interfaces, the IHXTDestination
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTDestination::AddFailoverDestination

Not currently implemented.

STDMETHOD(AddFailoverDestination) (
 THIS_
 IHXTDestination* pDestination
) PURE;

IHXTDestination::AddPostfilter

Adds a postfilter to the back of the postfilter list.

STDMETHOD(AddPostfilter) (
 THIS_
 IHXTPostfilter* pPostfilter
) PURE;

pPostfilter
Pointer to an IHXTPostfilter interface that manages the postfilter being
added to the postfilter list.

IHXTDestination::GetFailoverDestination

Not currently implemented.

STDMETHOD(GetFailoverDestination) (
 THIS_
 UINT32 ulIndex,
 IHXTDestination** ppDestination
) PURE;

IHXTDestination::GetFailoverDestinationCount

Not currently implemented.
184

APPENDIX A: Interface List
STDMETHOD_(UINT32, GetFailoverDestinationCount) (
 THIS
) PURE;

IHXTDestination::GetPostfilter

Retrieves the specified postfilter in the index list.

STDMETHOD(GetPostfilter) (
 THIS_
 UINT32 ulIndex,
 IHXTPostfilter** ppPostfilter
) PURE;

ulIndex
The position of the postfilter in the index list.

ppPostfilter
Address of a pointer to an IHXTPostfilter interface that manages the
postfilter information.

IHXTDestination::GetPostfilterCount

Returns the number of postfilters in the list.

STDMETHOD_(UINT32, GetPostfilterCount) (
 THIS
) PURE;

IHXTDestination::MoveFailoverDestination

Not currently implemented.

STDMETHOD(MoveFailoverDestination) (
 UINT32 ulOrigIndex,
 UINT32 ulDestIndex
) PURE;

IHXTDestination::MovePostfilter

Moves a postfilter from its original location in the index list to another
location. During encoding, audio/video samples propagate through
postfilters based on their list ordering (from lowest index number to highest).
185

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(MovePostfilter) (
 UINT32 ulOrigIndex,
 UINT32 ulDestIndex
) PURE;

ulOrigIndex
The original location of the postfilter in the index list.

ulDestIndex
The destination in the index list to which the postfilter is to be moved.

IHXTDestination::RemoveFailoverDestination

Not currently implemented.

STDMETHOD(RemoveFailoverDestination) (
 THIS_
 UINT32 ulIndex
) PURE;

IHXTDestination::RemovePostfilter

Removes the specified postfilter in the index list.

STDMETHOD(RemovePostfilter) (
 THIS_
 UINT32 ulIndex
) PURE;

ulIndex
The location in the index list of the postfilter to be removed.

IHXTDestinationEnumerator

The IHXTDestinationEnumerator interface contains the following methods:

• IHXTDestinationEnumerator::GetDestination

• IHXTDestinationEnumerator::GetDestinationCount

• IHXTDestinationEnumerator::SetProfileDirectory

• IHXTDestinationEnumerator::SetProfileExtension

Purpose: Identifies specific broadcast destinations.

Implemented by: Encoding

Header file: ihxtencodingjob.h
186

APPENDIX A: Interface List
As with all Component Object Model (COM) interfaces, the
IHXTDestinationEnumerator interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTDestinationEnumerator::GetDestination

Retrieves the specified broadcast destination in the index list.

STDMETHOD(GetDestination) (
 THIS_
 UINT32 ulIndex,
 IHXTDestination** ppBroadcastDef,
 const char** pszFilename
) PURE;

ulIndex
The location of the destination in the index list.

ppBroadcastDef
Address of a pointer to an IHXTDestination interface that manages the
destination information.

pszFilename
Address of a pointer to the broadcast destination file.

IHXTDestinationEnumerator::GetDestinationCount

Returns the number of destinations in the list.

STDMETHOD_(UINT32, GetDestinationCount) (
 THIS
) PURE;

IHXTDestinationEnumerator::SetProfileDirectory

Sets the directory for retrieving the broadcast definitions to deserialize.

STDMETHOD(SetProfileDirectory) (
 THIS_
 const char* szDirectoryPath
) PURE;

szDirectoryPath
Pointer to the directory path of the broadcast definitions.
187

Helix DNA Producer SDK Developer’s Guide
IHXTDestinationEnumerator::SetProfileExtension

Selects broadcast definitions by extension. At this time, this method will only
select definitions from .rpsd extensions. Currently, this method is not
implemented.

STDMETHOD(SetProfileExtension) (
 THIS_
 const char* szProfileExtension
) PURE;

szProfileExtension
Pointer to the filename extension that will contain the broadcast
definitions.

IHXTDoubleEnumerator

Note: This interface does not need to be implemented by itself,
but you can access this interface from a property bag.

The IHXTDoubleEnumerator interface contains the following methods:

• IHXTDoubleEnumerator::Current

• IHXTDoubleEnumerator::First

• IHXTDoubleEnumerator::GetCount

• IHXTDoubleEnumerator::Next

As with all Component Object Model (COM) interfaces, the
IHXTDoubleEnumerator interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTDoubleEnumerator::Current

Gets the double value at the current position of the internal iterator.

Purpose: Enumerates the values of a double list.

Implemented by: All components

Header file: ihxtpropertybag.h
188

APPENDIX A: Interface List
STDMETHOD(Current) (
 THIS_
 double *pValue
) PURE;

pValue
Pointer to the value of the double.

IHXTDoubleEnumerator::First

Gets the double value at the first position in the list of doubles.

STDMETHOD(First) (
 THIS_
 double *pValue
) PURE

pValue
Pointer to the value of the double.

IHXTDoubleEnumerator::GetCount

Returns the total number of properties in the list of doubles.

STDMETHOD_(UINT32, GetCount) (
 THIS
) const PURE;

IHXTDoubleEnumerator::Next

Advances the internal iterator and gets the double value at the next position in
the list of doubles.

STDMETHOD(Next) (
 THIS_
 double *pValue
) PURE;

pValue
Pointer to the value of the double.
189

Helix DNA Producer SDK Developer’s Guide
IHXTDoubleList

Note: This interface does not need to be implemented by itself,
but you can obtain an object that implements this interface
from the class factory.

The IHXTDoubleList interface contains the following methods:

• IHXTDoubleList::Clear

• IHXTDoubleList::Compare

• IHXTDoubleList::Contains

• IHXTDoubleList::GetBack

• IHXTDoubleList::GetEnumerator

• IHXTDoubleList::GetFront

• IHXTDoubleList::GetIntersection

• IHXTDoubleList::GetSize

• IHXTDoubleList::IsEmpty

• IHXTDoubleList::PopBack

• IHXTDoubleList::PopFront

• IHXTDoubleList::PushBack

• IHXTDoubleList::PushFront

As with all Component Object Model (COM) interfaces, the IHXTDoubleList
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTDoubleList::Clear

Clears all properties from the current list.

STDMETHOD(Clear) (
 THIS
) PURE;

Purpose: Stores a list of doubles.

Implemented by: All components

Header file: ihxtpropertybag.h
190

APPENDIX A: Interface List
IHXTDoubleList::Compare

This method is obsolete and should not be used.

STDMETHOD(Compare) (
 THIS_
 IHXTDoubleList *pList,
 double *puValue
) const PURE;

IHXTDoubleList::Contains

Returns TRUE if the specified value is contained in the current list. Returns
FALSE if the value is not in the current list.

STDMETHOD_(BOOL, Contains (
 THIS_
 double value
) const PURE;

value
The double value being searched for in the current list.

IHXTDoubleList::GetBack

Returns the value at the end of the list.

STDMETHOD_(double, GetBack) (
 THIS
) PURE;

IHXTDoubleList::GetEnumerator

Gets an enumerator that can be used to enumerate through all the items in
the list.

STDMETHOD(GetEnumerator) (
 THIS_
 IHXTDoubleEnumerator **pEnumerator
) PURE;

pEnumerator
Address of a pointer to an IHXTDoubleEnumerator interface that manages
the enumerator.
191

Helix DNA Producer SDK Developer’s Guide
IHXTDoubleList::GetFront

Returns the value at the beginning of the list.

STDMETHOD_(double, GetFront) (
 THIS
) PURE;

IHXTDoubleList::GetIntersection

Gets the intersection between the current list and another specified list.

STDMETHOD(GetIntersection) (
 THIS_
 IHXTDoubleList *pList,
 IHXTDoubleList **ppIntersection
) const PURE;

pList
Pointer to an IHXTDoubleList interface that manages the double list to
compare against the current double list.

ppIntersection
Address of a pointer to an IHXTDoubleList interface that manages the new
double list. This new list contains only those properties that were the
same in both of the compared lists.

IHXTDoubleList::GetSize

Returns the size of the current list.

STDMETHOD_(UINT32, GetSize) (
 THIS
) PURE;

IHXTDoubleList::IsEmpty

If TRUE, indicates the current list is empty. If FALSE, indicates there is at least
one property in the current list.

STDMETHOD_(BOOL, IsEmpty) (
 THIS
) PURE;
192

APPENDIX A: Interface List
IHXTDoubleList::PopBack

Returns the property value at the end of the list, and removes the value from
the list.

STDMETHOD_(double, PopBack) (
 THIS
) PURE;

IHXTDoubleList::PopFront

Returns the property value at the beginning of the list, and removes the value
from the list.

STDMETHOD_(double, PopFront) (
 THIS
) PURE;

IHXTDoubleList::PushBack

Places a property value at the end of the list.

STDMETHOD(PushBack) (
 THIS_
 double value
) PURE;

value
The value of the property to add to the end of the list.

IHXTDoubleList::PushFront

Places a property value at the beginning of the list.

STDMETHOD(PushFront) (
 THIS_
 double value
) PURE;

value
The value of the property to add to the beginning of the list.
193

Helix DNA Producer SDK Developer’s Guide
IHXTDoubleRange

This interface provides access to a range of values. For example, you might
have a resampler that supports resampling to all sampling rates between 0 and
96kHz. This interface can be used to represent all of these values using a range
(0, 96000) instead of a list with 96,000 discrete elements.

Note: This interface does not need to be implemented by itself,
but you can obtain an object that implements this interface
from the class factory.

The IHXTDoubleRange interface contains the following methods:

• IHXTDoubleRange::Compare

• IHXTDoubleRange::GetError

• IHXTDoubleRange::GetMax

• IHXTDoubleRange::GetMin

• IHXTDoubleRange::GetStepSize

• IHXTDoubleRange::IsInRange

• IHXTDoubleRange::Set

As with all Component Object Model (COM) interfaces, the IHXTDoubleRange
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTDoubleRange::Compare

This method is obsolete and should not be used.

STDMETHOD(Compare) (
 THIS_
 IHXTDoubleRange *pRange,
 IHXTDoubleRange **ppResult
) const PURE;

Purpose: Represents a range of double values.

Implemented by: All components

Header file: ihxtpropertybag.h
194

APPENDIX A: Interface List
IHXTDoubleRange::GetError

Returns an error value.

STDMETHOD_(double, GetError) (
 THIS
) const PURE;

IHXTDoubleRange::GetMax

Returns the maximum value in the current range.

STDMETHOD_(double, GetMax) (
 THIS
) const PURE;

IHXTDoubleRange::GetMin

Returns the minimum value in the current range.

STDMETHOD_(double, GetMin) (
 THIS
) const PURE;

IHXTDoubleRange::GetStepSize

Returns the step size of the range.

STDMETHOD_(double, GetStepSize) (
 THIS
) const PURE;

IHXTDoubleRange::IsInRange

Returns TRUE if the specified value is in range, or returns FALSE if the value is
out of range.

STDMETHOD_(BOOL, IsInRange) (
 THIS_
 double dValue
) const PURE;

dValue
The value being tested to see if it is in range.
195

Helix DNA Producer SDK Developer’s Guide
IHXTDoubleRange::Set

Sets the range parameters.

STDMETHOD(Set) (
 double dMin,
 double dMax,
 double dStepSize,
 double dError
) PURE;

dMin
The minimum value to be set in the range.

dMax
The maximum value to be set in the range.

dStepSize
The step size of the values in the range.

dError
This parameter is reserved and should not be used.

IHXTEncodingJob

This interface exposes the main encoding methods used by the encoding
manager. This interface inherits the configuration methods of
IHXTConfigurationAgent, which are used to configure the encoding job
properties. In addition, it starts, stops, or cancels encoding jobs.

Note: For more information on the encoding job properties
that can be set by this interface, see “Setting Up an Encoding
Job” on page 35.

The IHXTEncodingJob interface contains the following methods:

• IHXTEncodingJob::AddOutputProfile

• IHXTEncodingJob::CancelEncoding

• IHXTEncodingJob::GetEventManager

• IHXTEncodingJob::GetInput

• IHXTEncodingJob::GetMetadata

Purpose: Configures and manages a single encoding job.

Implemented by: Encoding

Header file: ihxtencodingjob.h
196

APPENDIX A: Interface List
• IHXTEncodingJob::GetOutputProfile

• IHXTEncodingJob::GetOutputProfileCount

• IHXTEncodingJob::MoveOutputProfile

• IHXTEncodingJob::RemoveOutputProfile

• IHXTEncodingJob::SetInput

• IHXTEncodingJob::SetMetadata

• IHXTEncodingJob::StartEncoding

• IHXTEncodingJob::StopEncoding

As with all Component Object Model (COM) interfaces, the IHXTEncodingJob
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTEncodingJob::AddOutputProfile

Adds an output profile to the back of the output profile list.

STDMETHOD(AddOutputProfile) (
 THIS_
 IHXTOutputProfile* pOutputProfile
) PURE;

pOutputProfile
Pointer to an IHXTOutputProfile interface that manages the output profile.

IHXTEncodingJob::CancelEncoding

Cancels the currently running encoding job. Output files will not be created.
Blocks until encoding has been canceled.

STDMETHOD(CancelEncoding) (
 THIS
) PURE;

IHXTEncodingJob::GetEventManager

Gets the event subsystem manager. Used to subscribe and unsubscribe for
events.
197

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(GetEventManager) (
 THIS_
 IHXTEventManager **ppEventManager
) PURE;

ppEventManager
Address of a pointer to an IHXTEventManager interface that manages the
event subsystem manager.

IHXTEncodingJob::GetInput

Gets the current input source, such as a file or capture device input.

STDMETHOD(GetInput) (
 THIS_
 IHXTInput** ppInput
) PURE;

ppInput
Address of a pointer to an IHXTInput interface that manages the input
source.

IHXTEncodingJob::GetMetadata

Gets the current metadata.

STDMETHOD(GetMetadata) (
 THIS_
 IHXTPropertyBag** ppMetadata
) PURE;

ppMetadata
Address of a pointer to an IHXTPropertyBag interface that manages the
metadata.

Note: Although metadata is supplied in a property bag, only
strings and UINTs are supported as metadata.

IHXTEncodingJob::GetOutputProfile

Retrieves the specified output profile in the index list.

STDMETHOD(GetOutputProfile) (
 THIS_
 UINT32 ulIndex,
 IHXTOutputProfile** ppOutputProfile
) PURE;
198

APPENDIX A: Interface List
ulIndex
The location of the output profile in the index list.

ppOutputProfile
Address of a pointer to an IHXTOutputProfile interface that manages output
profile information.

IHXTEncodingJob::GetOutputProfileCount

Returns the number of output profiles in the list.

STDMETHOD_(UINT32, GetOutputProfileCount) (
 THIS
) PURE;

IHXTEncodingJob::MoveOutputProfile

Moves an output profile from its original location in the index list to a new
location.

STDMETHOD(MoveOutputProfile) (
 UINT32 ulOrigIndex,
 UINT32 ulDestIndex
) PURE;

ulOrigIndex
The original location of the output profile in the index list.

ulDestIndex
The destination to which the output profile is moved in the index list.

IHXTEncodingJob::RemoveOutputProfile

Removes the output profile from the specified location in the index list.

STDMETHOD(RemoveOutputProfile) (
 THIS_
 UINT32 ulIndex
) PURE;

ulIndex
The location in the index list from which the output profile is to be
removed.

IHXTEncodingJob::SetInput

Sets the input source.
199

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(SetInput) (
 THIS_
 IHXTInput* pInput
) PURE;

pInput
Pointer to an IHXTInput interface that manages the input source.

IHXTEncodingJob::SetMetadata

Sets the metadata for the encoding job.

STDMETHOD(SetMetadata) (
 THIS_
 IHXTPropertyBag* pMetadata
) PURE;

pMetadata
Pointer to an IHXTPropertyBag interface that manages the metadata.

Note: Although metadata is supplied in a property bag, only
strings and UINTs are supported as metadata.

IHXTEncodingJob::StartEncoding

Starts the encoding job.

STDMETHOD(StartEncoding) (
 THIS_
 BOOL bBlockUntilComplete=TRUE
) PURE;

bBlockUntilComplete
If this parameter is TRUE , the call will block until encoding completes. A
SUCCESS return code indicates that one or more destinations completed
successfully. A FAIL return code indicates that no destinations completed
successfully. If this parameter is FALSE , the call will return once encoding
has started. The return code indicates whether encoding successfully
started or not.

IHXTEncodingJob::StopEncoding

Stops the current encoding job. Output files will be written with whatever
data has already been encoded. Blocks until encoding has stopped. Stopping
200

APPENDIX A: Interface List
an encoding job during the first pass of a two-pass encode has the same effect
as canceling the encode, since no data has been encoded.

STDMETHOD(StopEncoding) (
 THIS
) PURE;

IHXTEventManager

This interface provides subscription service to events from the encoding
system. To use this interface, you must have previously implemented an event
sink (IHXTEventSink interface) to handle the actual events. Then provide a
pointer to the IHXTEventSink interface using the IHXTEventManager::Subscribe
method.

The IHXTEventManager interface contains the following methods:

• IHXTEventManager::Subscribe

• IHXTEventManager::Unsubscribe

As with all Component Object Model (COM) interfaces, the IHXTEventManager
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTEventManager::Subscribe

Begins the process of receiving events. Before using this method, you must
have implemented an event sink (IHXTEventSink). Note that subscription
occurs asynchronously, and might not have actually occurred by the time the
call to this method returns.

STDMETHOD(Subscribe) (
 THIS_
 IHXTEventSink *pEventSink
) PURE;

pEventSink
Pointer to an IHXTEventSink interface that manages the events.

Purpose: Manages the event system.

Implemented by: Encoding

Header file: ihxtbase.h
201

Helix DNA Producer SDK Developer’s Guide
IHXTEventManager::Unsubscribe

Stops the process of receiving events. Note that unsubscribing occurs
asynchronously, and might not have actually occurred by the time the call to
this method returns.

STDMETHOD(Unsubscribe) (
 THIS_
 IHXTEventSink *pEventSink
) PURE;

pEventSink
Pointer to an IHXTEventSink interface that manages the events.

IHXTEventSample

This interface is created using the IHXTClassFactory interface. Once created and
filled out, this interface is sent to an IHXTMediaInputPin interface of an input
each time a media packet is set to be encoded.

This interface changes the display of events, such as the display of the Title,
Author, and Copyright information, in the RealOne Player as the presentation
plays.

Note: The “events” changed by this interface are not the same
as the events managed by the IHXTEventManager event
subsystem.

This interface inherits methods from the IHXTMediaSample interface.

The IHXTEventSample interface contains the following unique methods:

• IHXTEventSample::GetAction

• IHXTEventSample::SetAction

As with all Component Object Model (COM) interfaces, the IHXTEventSample
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

Purpose: Stores fields for event streams.

Implemented by: Encoding

Header file: ihxtbase.h
202

APPENDIX A: Interface List
IHXTEventSample::GetAction

Gets the event action.

STDMETHOD(GetAction) (
 THIS_
 UINT16* pnType,
 const char** ppString,
 IHXValues** ppOtherParam
) PURE;

pnType
Pointer to the action type. One of the following:

• HXEventMediaSample_Author

Indicates an author change will occur during playback.

• HXEventMediaSample_Copyright

Indicates a copyright change will occur during playback.

• HXEventMediaSample_Custom

Indicates a custom event will occur during playback.

• HXEventMediaSample_Title

Indicates a title change will occur during playback.

• HXEventMediaSample_URL

Indicates a web browser will be launched.

ppString
Address of a pointer to a string required by the action type.

ppOtherParam
Address of a pointer to an IHXValues interface that manages any other
values required by the action type.

IHXTEventSample::SetAction

Sets the event action.

STDMETHOD(SetAction) (
 THIS_
 UINT16 nType,
 const char* pString,
 IHXValues* pOtherParam
) PURE;
203

Helix DNA Producer SDK Developer’s Guide
nType
The action type. One of the following:

• HXEventMediaSample_Author

Causes an author property in a presentation to dynamically change
during playback.

• HXEventMediaSample_Copyright

Causes a copyright property in a presentation to dynamically change
during playback.

• HXEventMediaSample_Custom

Attaches one or more named key/value pairs to an event. The key
value is specified in the pString parameter of this method and the
value for the key is specified by an IHXValues interface in the
pOtherParam parameter. The value can be any type supported by
IHXValues. For example:

 "markin", "select XXX from XXX"

or

 "markin", 1000

• HXEventMediaSample_Title

Causes a title property in a presentation to dynamically change
during playback.

• HXEventMediaSample_URL

Launches a web browser with a URL as specified in the pString
parameter.

pString
Pointer to a string required by the action type.

pOtherParam
Pointer to an IHXValues interface that manages any other values required
by the action type.
204

APPENDIX A: Interface List
IHXTEventSink

 Objects that implement this interface can process events synchronously or
asynchronously.

The IHXTEventSink interface contains the IHXTEventSink::HandleEvent method.

As with all Component Object Model (COM) interfaces, the IHXTEventSink
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTEventSink::HandleEvent

Sends an event to the event sink.

STDMETHOD(HandleEvent) (
 THIS_
 EHXTEvent eEvent,
 UINT32 *puValue = NULL,
 const char *cszValue = NULL,
 IUnknown *pUnknown = NULL
) PURE;

eEvent
The event to be sent. One of the following:

• eEventEncodingStarted

Indicates that the encoding process has started.

• eEventEncodingFinished

Indicates that the encoding process is finished.

• eEventTwoPassAnalysisStarted

Indicates that a two-pass encoding process analysis has started.

• eEventTwoPassAnalysisFinished

Indicates that a two-pass encoding process analysis is finished.

Purpose: Handles events passed up from the media engine, including
progress and percent complete events, and asynchronous errors.

Implemented by: Encoding

Header file: ihxtbase.h
205

Helix DNA Producer SDK Developer’s Guide
• eEventTwoPassEncodingUsingAnalysisStarted

Indicates that a two-pass encoding process based on the previous
analysis has started.

• eEventTwoPassEncodingUsingAnalysisFinished

Indicates that a two-pass encoding process based on the previous
analysis is finished.

• eEventEncodeProgress

Indicates the progress of the encoding process. The puValue parameter
points to the percentage of the process completed (from 0 to 100).
The pUnknown parameter points to an IUnknown interface that
identifies the IHXTTime interface associated with this event.

• eEventAnalysisProgress

Indicates the progress of the encoding analysis in a two-pass encoding
process. The puValue parameter points to the percentage of the process
completed (from 0 to 100). The pUnknown parameter points to an
IUnknown interface that identifies the IHXTTime interface associated
with this event.

• eEventInputStarted

Indicates the input to the encoding process has started. The pUnknown
parameter points to an IUnknown interface that identifies the
IHXTInput interface associated with this event.

• eEventInputFinished

Indicates the input to the encoding process is finished. The pUnknown
parameter points to an IUnknown interface that identifies the
IHXTInput interface associated with this event.

• eEventInputError

Indicates an error occurred during input to the encoding process. The
puValue parameter points to the error code. The pUnknown parameter
points to an IUnknown interface that identifies the IHXTInput interface
associated with this event.

• eEventDestinationStarted

Indicates that output to a destination from the encoding process has
started. The pUnknown parameter points to an IUnknown interface that
identifies the IHXTDestination interface associated with this event.
206

APPENDIX A: Interface List
• eEventDestinationPostProcessProgress

Indicates the progress percentage of the output post processing to a
destination from the encoding process. The puValue parameter points
to the percentage of the process completed (from 0 to 100). The
pUnknown parameter points to an IUnknown interface that identifies
the IHXTDestination interface associated with this event.

• eEventDestinationFinished

Indicates that output to a destination from the encoding process is
finished. The pUnknown parameter points to an IUnknown interface
that identifies the IHXTDestination interface associated with this event.

• eEventDestinationError

Indicates an error occurred during output to a destination from the
encoding process. The puValue parameter points to the error code. The
pUnknown parameter points to an IUnknown interface that identifies
the IHXTDestination interface associated with this event.

• eEventDestinationCanceled

Indicates the output to a destination was cancelled. The pUnknown
parameter points to an IUnknown interface that identifies the
IHXTDestination interface associated with this event.

• eEventInputFilterStarted

Indicates that input prefiltering has started. The pUnknown parameter
points to an IUnknown interface that identifies the
IHXTConnectionAgent interface associated with this event.

• eEventInputFilterFinished

Indicates that input prefiltering is finished. The pUnknown parameter
points to an IUnknown interface that identifies the
IHXTConnectionAgent interface associated with this event.

• eEventInputFilterError

Indicates that an error occurred during input prefiltering. The
puValue parameter points to the error code. The pUnknown parameter
points to an IUnknown interface that identifies the
IHXTConnectionAgent interface associated with this event.

• eEventOutputFilterStarted
207

Helix DNA Producer SDK Developer’s Guide
Indicates that output postfiltering has started. The pUnknown
parameter points to an IUnknown interface that identifies the
IHXTConnectionAgent interface associated with this event.

• eEventOutputFilterPostProcessProgress

Indicates the progress percentage of the output postfiltering process.
The puValue parameter points to the percentage of the process
completed (from 0 to 100). The pUnknown parameter points to an
IUnknown interface that identifies the IHXTConnectionAgent interface
associated with this event.

• eEventOutputFilterFinished

Indicates that the output postfiltering is finished. The pUnknown
parameter points to an IUnknown interface that identifies the
IHXTConnectionAgent interface associated with this event.

• eEventOutputFilterError

Indicates an error occurred during output postfiltering. The puValue
parameter points to the error code. The pUnknown parameter points to
an IUnknown interface that identifies the IHXTConnectionAgent interface
associated with this event.

• eEventOutputFilterCanceled

Indicates the output postfiltering was cancelled. The pUnknown
parameter points to an IUnknown interface that identifies the
IHXTConnectionAgent interface associated with this event.

• eEventOutputFilterStreamDone

Indicates the output filter stream is done.

puValue
Pointer to a value associated with the specific event. If this parameter is
not used for a particular type of event, its value is NULL.

cszValue
Pointer to a string associated with the specific event. If this parameter is
not used for a particular type of event, its value is NULL.

pUnknown
Pointer to an IUnknown interface that identifies an interface associated
with the specific event. If this parameter is not used for a particular type
of event, its value is NULL.
208

APPENDIX A: Interface List
(Continued on next page.)
209

Helix DNA Producer SDK Developer’s Guide
210

IHXTFileObserver

This interface acts as a file observer to the log system. The file observer writes
received log messages to the specified file.

The IHXTFileObserver interface contains the following methods:

• IHXTFileObserver::Enable

• IHXTFileObserver::EnableSDKMessages

• IHXTFileObserver::GetFilename

• IHXTFileObserver::GetPreviousFilename

• IHXTFileObserver::Init

• IHXTFileObserver::SetCategoryFilter

• IHXTFileObserver::SetFilename

• IHXTFileObserver::SetFormat

• IHXTFileObserver::SetFuncAreaFilter

• IHXTFileObserver::SetLanguage

• IHXTFileObserver::SetPreviousFilename

• IHXTFileObserver::SetSeperator

• IHXTFileObserver::SetSizeRoll

• IHXTFileObserver::SetTimeRoll

• IHXTFileObserver::Shutdown

As with all Component Object Model (COM) interfaces, the IHXTFileObserver
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTFileObserver::Enable

Enables and disables the observer from writing to the file.

STDMETHOD(Enable) (
 THIS_
 BOOL bEnable
) PURE;

Purpose: Manages log messages being sent to a file.

Implemented by: Logging system

Header file: ihxtfileobserver.h
211

Helix DNA Producer SDK Developer’s Guide
bEnable
If set to true, the observer can write to the file. If set to false , the observer
cannot write to the file.

IHXTFileObserver::EnableSDKMessages

Instructs the observer to either accept or reject messages marked as SDK.

STDMETHOD_(void, EnableSDKMessages) (
 BOOL bEnable
) PURE;

bEnable
If set to true, messages marked as SDK are accepted and are logged. If set
to false, messages marked as SDK are rejected and are not logged.

IHXTFileObserver::GetFilename

Returns a pointer to the name of the file to which log messages are currently
being written.

STDMETHOD_(const char*, GetFilename)(
) PURE;

IHXTFileObserver::GetPreviousFilename

Returns a pointer to the string being used as the previous file name.

STDMETHOD_(const char*, GetPreviousFilename)(
) PURE;

IHXTFileObserver::Init

Initializes the file observer.

STDMETHOD(Init) (
 THIS_
 const char* szFilename
) PURE;

szFilename
Pointer to the name of the file to which log messages will be written.
212

IHXTFileObserver::SetCategoryFilter

Sets a bitmask filter that allows only those log messages with log codes that
pass the bitmask parameter to be sent.

STDMETHOD(SetCategoryFilter) (
 THIS_
 UINT32 nCategoryFilter
) PURE;

nCategoryFilter
The bitmask filter to compare against the log code.

IHXTFileObserver::SetFilename

Sets the filename to which the observer should write.

STDMETHOD(SetFilename) (
 THIS_
 const char* szFilename
) PURE;

szFilename
Pointer to the name of the file to which the observer writes.

IHXTFileObserver::SetFormat

Sets the format of log messages that are written to a file.

STDMETHOD(SetFormat) (
 THIS_
 enumLogFormat format
) PURE;

format
The format for the log messages. One of the following

• Short

Include only the job name of the job that sent the message and the
message text.

• Detailed.

Include the job name, message text, the message category, the
functional area, and the time the message was logged.
213

Helix DNA Producer SDK Developer’s Guide
IHXTFileObserver::SetFuncAreaFilter

Sets the log system so it only sends log messages with functional areas listed in
the parameter string.

STDMETHOD(SetFuncAreaFilter) (
 THIS_
 const char* szFuncAreaList
) PURE;

szFuncAreaList
Pointer to a list of accepted functional areas. The format of this list is a set
of one or more name space and functional area pairs (with differing values
for the name space, the functional area, or both), separated by a comma,
for example:

"Namespace:FunctionalArea, Namespace:FunctionalArea, ..."

IHXTFileObserver::SetLanguage

This method is currently not implemented.

STDMETHOD(SetLanguage) (
 THIS_
 const char* szLanguage
) PURE;

IHXTFileObserver::SetPreviousFilename

Sets the previous filename. This filename is used in some rolling calculations.

STDMETHOD(SetPreviousFilename) (
 THIS_
 const char* szFilename
) PURE;

szFilename
Pointer to the previous filename.

IHXTFileObserver::SetSeperator

Sets the separator that separates log message elements in a single log message.
For example, the separator could be a colon (:), a comma (,), or any other
separator character.
214

STDMETHOD(SetSeparator) (
 THIS_
 char cSep
) PURE;

cSep
The character used as a separator.

IHXTFileObserver::SetSizeRoll

Sets the roll size of the log file to which the observer writes. Once the specified
file size is met, the observer rolls the file.

STDMETHOD(SetSizeRoll) (
 THIS_
 UINT32 nNumMB
) PURE;

nNumMB
The number of megabytes the file size must reach before it is rolled.

IHXTFileObserver::SetTimeRoll

Sets a specific time interval for the log file before the observer to rolls the file.

STDMETHOD(SetTimeRoll) (
 THIS_
 enumRollType rolltype,
 UINT32 nTime,
 UINT32 nInterval,
 INT32 nTimeZone
) PURE;

rolltype
The period over which the log is rolled. One of the following:

• Monthly

• Weekly

• Daily

• Hourly

nTime
Not currently used.

nInterval
Not currently used.
215

Helix DNA Producer SDK Developer’s Guide
nTimeZone
Not currently used.

IHXTFileObserver::Shutdown

Shuts down (that is, unsubscribes and closes out the file) the observer.

STDMETHOD(Shutdown) (
 THIS
) PURE;

IHXTFilter

The IHXTFilter interface contains the following methods:

• IHXTFilter::DiscardCachedSamples

• IHXTFilter::Prime

• IHXTFilter::SetFactory

• IHXTFilter::SetGraphServices

• IHXTFilter::Teardown

As with all Component Object Model (COM) interfaces, the IHXTFilter
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTFilter::DiscardCachedSamples

Signals the filter to release any cached samples it may have. This method can
be called at any time between IHXTFilter::Prime and IHXTFilter::Teardown calls. If
IHXTTransformFilter::ReceiveSample or IHXTOutputFilter::ReceiveSample is called
after this method, the sample will generally be marked with end-of-stream.
This method returns HXR_OK if there were no cached samples or if there were
cached samples and they were released. It returns HXR_FAIL if there were cached
samples that could not be released.

Purpose: Provides basic filter operations.

Implemented by: Plug-ins

Header file: ihxtbase.h
216

STDMETHOD(DiscardCachedSamples) (
 THIS_
 UINT32 uStream
) PURE;

uStream
Indicates the output stream on an input filter, and the input stream on
transform and output filters.

Note: Input filters only have output streams, and output filters
only have input streams.

IHXTFilter::Prime

Prepares the filter for subsequent data on the given stream. A call to this
method always precedes calls to IHXTTransformFilter::ReceiveSample or
IHXTOutputFilter::ReceiveSample. Upon a successful completion of this method,
the filter must be prepared to process data for the corresponding stream.

In regard to threading behavior, this method should only return when it is
prepared to process data on the associated stream. While responsive behavior
is desired, it may need to block until this condition is met.

STDMETHOD(Prime) (
 THIS_
 UINT32 uStream
) PURE;

uStream
The stream to be prepared. This parameter refers to output streams on
input filters, and input streams on transform and output filters.

Note: Input filters only have output streams, and output filters
only have input streams.

IHXTFilter::SetFactory

Provides the filter with an object factory from which to construct property
bags and related types.

STDMETHOD(SetFactory) (
 THIS_
 IHXCommonClassFactory* pCCF
) PURE;
217

Helix DNA Producer SDK Developer’s Guide
pCCF
Pointer to an IHXCommonClassFactory interface that manages the factory
from which to build objects.

IHXTFilter::SetGraphServices

Provides the filter with a service broker from which to access shared resources
and services.

STDMETHOD(SetGraphServices) (
 THIS_
 IHXTServiceBroker* pGraphServices
) PURE;

pGraphServices
Pointer to an IHXTServiceBroker interface that manages the shared
resources and services.

IHXTFilter::Teardown

Signals that the filter graph will be stopped shortly. In regard to threading
behavior, this method should not block to avoid unresponsive behavior in the
graph.

The filter must guarantee that no samples are sent after this method returns.
In addition, the filter must be written to safely handle being released after this
method is called. That is, if the filter uses threads internally, and since this
method should not block, the thread should gracefully exit asynchronously.

STDMETHOD(Teardown) (
 THIS_
 UINT32 uStream
) PURE;

uStream
The stream to be stopped. This parameter refers to output streams on
input filters, and input streams on transform and output filters.

Note: Input filters only have output streams, and output filters
only have input streams.
218

IHXTFuncAreaEnum

The IHXTFuncAreaEnum interface contains the following methods:

• IHXTFuncAreaEnum::GetFirst

• IHXTFuncAreaEnum::GetNext

As with all Component Object Model (COM) interfaces, the IHXTFuncAreaEnum
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTFuncAreaEnum::GetFirst

Retrieves details about the first pre-loaded functional area and resets the
enumerator to that position.

STDMETHOD(GetFirst) (
 THIS_
 const char** ppszNamespace,
 UINT32* pnNum,
 const char** ppszName
) PURE;

ppszNamespace
Address of a pointer that points to the text of the namespace for this
functional area.

pnNum
Pointer to the integer that is set to the numeric value for this functional
area.

ppszName
Address of a pointer that is set to the localized translation of the text
representing the functional area.

IHXTFuncAreaEnum::GetNext

Retrieves details about the next pre-loaded functional area.

Purpose: Enurmerates through all functional areas pre-loaded by the log
system.

Implemented by: Logging

Header file: ihxtlogsystem.h
219

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(GetNext) (
 THIS_
 const char** ppszNamespace,
 UINT32* pnNum,
 const char** ppszName
) PURE;

ppszNamespace
Address of a pointer that points to the text of the namespace for this
functional area.

pnNum
Pointer to the integer that is set to the numeric value for this functional
area.

ppszName
Address of a pointer that is set to the localized translation of the text
representing the functional area.

IHXTInput

This interface manipulates a list of prefilters associated with the input. This
interface inherits the configuration methods of IHXTConfigurationAgent , which
are used to configure the input properties.

Note: For more information on the input properties that can
be configured by this interface, see “Input” on page 36.

The IHXTInput interface contains the following methods:

• IHXTInput::AddPrefilter

• IHXTInput::GetPrefilter

• IHXTInput::GetPrefilterCount

• IHXTInput::MovePrefilter

• IHXTInput::RemovePrefilter

As with all Component Object Model (COM) interfaces, the IHXTInput
interface inherits the following IUnknown methods:

• IUnknown::AddRef

Purpose: Configures an input source for an encoding job.

Implemented by: Encoding

Header file: ihxtencodingjob.h
220

• IUnknown::QueryInterface

• IUnknown::Release

IHXTInput::AddPrefilter

Adds a prefilter to the back of the prefilter list.

STDMETHOD(AddPrefilter) (
 THIS_
 IHXTPrefilter* pPrefilter
) PURE;

pPrefilter
Pointer to an IHXTPrefilter interface that manages the prefilter to be added.

IHXTInput::GetPrefilter

Retrieves the specified prefilter.

STDMETHOD(GetPrefilter) (
 THIS_
 UINT32 ulIndex,
 IHXTPrefilter** ppPrefilter
) PURE;

ulIndex
The position of the prefilter in the index list.

ppPrefilter
Address of a pointer to an IHXTPrefilter interface that manages the prefilter
information.

IHXTInput::GetPrefilterCount

Returns the number of prefilters in the index list.

STDMETHOD_(UINT32, GetPrefilterCount) (
 THIS
) PURE;

IHXTInput::MovePrefilter

Moves a prefilter from one position to another on the index list. During
encoding, audio/video samples propagate through prefilters based on their
list ordering (from lowest index number to highest).
221

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(MovePrefilter) (
 UINT32 ulOrigIndex,
 UINT32 ulDestIndex
) PURE;

ulOrigIndex
The original position of the prefilter in the index list.

ulDestIndex
The destination position of the prefilter in the index list.

IHXTInput::RemovePrefilter

Removes the specified prefilter in the index list.

STDMETHOD(RemovePrefilter) (
 THIS_
 UINT32 ulIndex
) PURE;

ulIndex
The location in the index list of the prefilter to be removed.

IHXTInput2

This interface provides a means of adding and configuring multiple inputs for
an encoding job. This interface inherits the input configuration methods
from IHXTInput, which in turn inherits the configuration methods of
IHXTConfigurationAgent, which are used to configure the input properties.

For More Information: See “Creating Parallel Inputs” on page 40
for more information on using this interface.

The IHXTInput2 interface contains the following methods:

• IHXTInput2::AddInput

• IHXTInput2::GetInput

• IHXTInput2::GetInputCount

• IHXTInput2::MoveInput

• IHXTInput2::RemoveInput

Purpose: Configures input sources and input groups for an encoding job.

Implemented by: Encoding

Header file: ihxtencodingjob.h
222

As with all Component Object Model (COM) interfaces, the IHXTInput2
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTInput2::AddInput

Add an input to the back of the input list.

STDMETHOD(AddInput) (
 THIS_
 IHXTInput* pSource
) PURE;

pSource
Pointer to an IHXTInput interface that manages the input that is added.

IHXTInput2::GetInput

Retrieves the specified input in the index list.

STDMETHOD(GetInput) (
 THIS_
 UINT32 ulIndex,
 IHXTInput** ppSource
) PURE;

ulIndex
The location of the input in the index list.

ppSource
Address of a pointer to an IHXTInput interface that manages the input
information.

IHXTInput2::GetInputCount

Returns the number of inputs in the list.

STDMETHOD_(UINT32, GetInputCount) (
 THIS
) PURE;
223

Helix DNA Producer SDK Developer’s Guide
IHXTInput2::MoveInput

Moves the specified input from its original location on the index list to a new
location in the index list.

STDMETHOD(MoveInput) (
 UINT32 ulOrigIndex,
 UINT32 ulDestIndex
) PURE;

ulOrigIndex
The original location of the input in the index list.

ulDestIndex
The destination in the index list to which the input is to be moved.

IHXTInput2::RemoveInput

Removes the input at the specified location in the index list.

STDMETHOD(RemoveInput) (
 THIS_
 UINT32 ulIndex
) PURE;

ulIndex
The location in the index list of the input to be removed.

IHXTInputFilter

This interface inherits methods from the IHXTFilter interface.

The IHXTInputFilter interface contains the following unique methods:

• IHXTInputFilter::ReadSample

• IHXTInputFilter::SetAllocator

As with all Component Object Model (COM) interfaces, the IHXTInputFilter
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

Purpose: Provides input filter operations on media samples.

Implemented by: Plug-ins

Header file: ihxtbase.h
224

IHXTInputFilter::ReadSample

Requests the next media sample for a particular stream. Filters will typically
use the allocator provided in IHXTInputFilter::SetAllocator to create the media
samples returned by the call to this method. If no sample is currently available
for a particular stream, but should be shortly (such as in the case of
audio/video capture), the filter should return HXR_S_NOT_HANDLED.

If a valid sample can be produced, the filter should assign the sample to the
ppSample in/out parameter and return HXR_OK. The sample does not need to
contain data, but it must have valid timestamps and flags. If data is available,
the filter should create a sample and return it. If no data is available, the filter
does not need to create the sample. Instead, the system will create one and
send it downstream. When the end of the stream has been reached, the filter
must either return HXR_S_END_OF_STREAM or set the HXT_SAMPLE_ENDOFSTREAM
f lag on the sample.

The filter should return HXR_S_NOT_HANDLED if no data is available but the end
of the stream has not been reached. This method will continue to be called
after this result.

During threading, a call to this method must not block. If no sample is
available, but there will be in the future, this method should return
HXR_S_NOT_HANDLED.

Note: Do not reuse (such as read from or write to the data
buffer) the media sample after passing it to this method. The
media sample is not automatically copied to memory
(memcpy), so accessing it might result in undefined behavior.
For example, some other object might have a reference count
on it and modify the buffer on another thread.

STDMETHOD(ReadSample) (
 THIS_
 UINT32 uStreamID,
 IHXTMediaSample** ppSample
) PURE;

uStreamID
The identity of the stream that contains the media sample.

ppSample
Address of a pointer to an IHXTMediaSample interface that manages the
media sample to be read.
225

Helix DNA Producer SDK Developer’s Guide
IHXTInputFilter::SetAllocator

Provides an allocator for each of a filter’s output streams. The allocator can be
reset at any time. The filter is also free to ignore the allocator (for example, in a
filter that supports in-place transforms). This method is always called before
data flow calls are made.

STDMETHOD(SetAllocator) (
 THIS_
 UINT32 uStreamID,
 IHXTSampleAllocator *pAllocator
) PURE;

uStreamID
The identity of the stream for which the allocator will be provided.

pAllocator
Pointer to an IHXTSampleAllocator interface that manages the allocation of
media sample data buffers.

IHXTInputPreviewControl

The IHXTInputPreviewControl interface contains the following methods:

• IHXTInputPreviewControl::Close

• IHXTInputPreviewControl::Open

As with all Component Object Model (COM) interfaces, the
IHXTInputPreviewControl interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTInputPreviewControl::Close

Stops passing media samples to the all registered sinks and tears down the
input graph.

STDMETHOD (Close) (
 THIS
) PURE;

Purpose: Controls the preview of an input media sample.

Implemented by: Encoding

Header file: ihxtpreviewsink.h
226

IHXTInputPreviewControl::Open

Builds the input graph for the purposes of preview and begins passing media
samples to registered sinks.

STDMETHOD (Open) (
 THIS
) PURE;

IHXTInt64Enumerator

Note: This interface does not need to be implemented by itself,
but you can access this interface from a property bag.

The IHXT64IntEnumerator interface contains the following methods:

• IHXTInt64Enumerator::Current

• IHXTInt64Enumerator::First

• IHXTInt64Enumerator::GetCount

• IHXTInt64Enumerator::Next

As with all Component Object Model (COM) interfaces, the
IHXTInt64Enumerator interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTInt64Enumerator::Current

Gets the 64-bit integer value at the current position of the internal iterator.

STDMETHOD(Current) (
 THIS_
 INT64 *pValue
) PURE;

pValue
Pointer to the value of the 64-bit integer.

Purpose: Enumerates the values of a 64-bit integer list.

Implemented by: All components

Header file: ihxtpropertybag.h
227

Helix DNA Producer SDK Developer’s Guide
IHXTInt64Enumerator::First

Gets the 64-bit integer value at the first position in the list of 64-bit integers.

STDMETHOD(First) (
 THIS_
 INT64 *pValue
) PURE;

pValue
Pointer to the value of the 64-bit integer.

IHXTInt64Enumerator::GetCount

Returns the total number of properties in the list of 64-bit integers.

STDMETHOD_(UINT32, GetCount) (
 THIS
) const PURE;

IHXTInt64Enumerator::Next

Advances the internal iterator and gets the 64-bit integer value at the next
position in the list of 64-bit integers.

STDMETHOD(Next) (
 THIS_
 INT64 *pValue
) PURE;

pValue
Pointer to the value of the 64-bit integer.

IHXTInt64List

Note: This interface does not need to be implemented by itself,
but you can obtain an object that implements this interface
from the class factory.

The IHXTInt64List interface contains the following methods:

• IHXTInt64List::Clear

Purpose: Stores a list of 64-bit integer values.

Implemented by: All components

Header file: ihxtpropertybag.h
228

• IHXTInt64List::Compare

• IHXTInt64List::Contains

• IHXTInt64List::GetBack

• IHXTInt64List::GetEnumerator

• IHXTInt64List::GetFront

• IHXTInt64List::GetIntersection

• IHXTInt64List::GetSize

• IHXTInt64List::IsEmpty

• IHXTInt64List::PopBack

• IHXTInt64List::PopFront

• IHXTInt64List::PushBack

• IHXTInt64List::PushFront

As with all Component Object Model (COM) interfaces, the IHXTInt64List
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTInt64List::Clear

Clears all properties from the current list.

STDMETHOD(Clear) (
 THIS
) PURE;

IHXTInt64List::Compare

This method is obsolete and should not be used.

STDMETHOD(Compare) (
 THIS_
 IHXTInt64List *pList,
 INT64 *puValue
) const PURE;

IHXTInt64List::Contains

Returns TRUE if the specified value is contained in the current list. Returns
FALSE if the value is not in the current list.
229

Helix DNA Producer SDK Developer’s Guide
STDMETHOD_(BOOL, Contains) (
 THIS_
 INT64 value
) const PURE;

value
The 64-bit integer value being searched for in the current list.

IHXTInt64List::GetBack

Returns the value of the property at the end of the current list.

STDMETHOD_(INT64, GetBack) (
 THIS
) PURE;

IHXTInt64List::GetEnumerator

Gets an enumerator that can be used to enumerate through all the items in
the list.

STDMETHOD(GetEnumerator) (
 THIS_
 IHXTInt64Enumerator **pEnumerator
) PURE;

pEnumerator
Address of a pointer to an IHXTInt64Enumerator interface that manages the
enumerator.

IHXTInt64List::GetFront

Returns the value of the property at the beginning of the current list.

STDMETHOD_(INT64, GetFront) (
 THIS
) PURE;

IHXTInt64List::GetIntersection

Gets the intersection between the current list and another specified list.

STDMETHOD(GetIntersection) (
 THIS_
 IHXTInt64List *pList,
 IHXTInt64List **ppIntersection
) const PURE;
230

pList
Pointer to an IHXTInt64List interface that manages the 64-bit integer list to
compare against the current 64-bit integer list.

ppIntersection
Address of a pointer to an IHXTInt64List interface that manages the new
64-bit integer list. This new list contains only those properties that were
the same in both of the compared lists.

IHXTInt64List::GetSize

Returns the size of the current list.

STDMETHOD_(UINT32, GetSize) (
 THIS
) PURE;

IHXTInt64List::IsEmpty

If TRUE, indicates the current list is empty. If FALSE, indicates there is at least
one property in the current list.

STDMETHOD_(BOOL, IsEmpty) (
 THIS
) PURE;

IHXTInt64List::PopBack

Returns the property value at the end of the list, and removes the value from
the list.

STDMETHOD_(INT64, PopBack) (
 THIS
) PURE;

IHXTInt64List::PopFront

Returns the property value at the beginning of the list, and removes the value
from the list.

STDMETHOD_(INT64, PopFront) (
 THIS
) PURE;
231

Helix DNA Producer SDK Developer’s Guide
IHXTInt64List::PushBack

Places a property value at the end of the list.

STDMETHOD(PushBack) (
 THIS_
 INT64 value
) PURE;

value
The value of the property to add to the end of the list.

IHXTInt64List::PushFront

Places a property value at the beginning of the list.

STDMETHOD(PushFront) (
 THIS_
 INT64 value
) PURE;

value
The value of the property to add to the beginning of the list.

IHXTInt64Range

Note: This interface does not need to be implemented by itself,
but you can obtain an object that implements this interface
from the class factory.

The IHXTInt64Range interface contains the following methods:

• IHXTInt64Range::Compare

• IHXTInt64Range::GetMax

• IHXTInt64Range::GetMin

• IHXTInt64Range::GetStepSize

• IHXTInt64Range::IsInRange

• IHXTInt64Range::Set

As with all Component Object Model (COM) interfaces, the IHXTInt64Range
interface inherits the following IUnknown methods:

Purpose: Represents a range of 64-bit integer values.

Implemented by: All components

Header file: ihxtpropertybag.h
232

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTInt64Range::Compare

This method is obsolete and should not be used.

STDMETHOD(Compare) (
 THIS_
 IHXTInt64Range *pRange,
 IHXTInt64Range **ppResult
) const PURE;

IHXTInt64Range::GetMax

Returns the maximum value in the current range.

STDMETHOD_(INT64, GetMax) (
 THIS
) const PURE;

IHXTInt64Range::GetMin

Returns minimum value in the current range.

STDMETHOD_(INT64, GetMin) (
 THIS
) const PURE;

IHXTInt64Range::GetStepSize

Returns the step size of the current range.

STDMETHOD_(INT64, GetStepSize) (
 THIS
) const PURE;

IHXTInt64Range::IsInRange

Returns TRUE if the specified value is in range or FALSE if the specified value is
out of range.
233

Helix DNA Producer SDK Developer’s Guide
STDMETHOD_(BOOL, IsInRange) (
 THIS_
 INT64 uValue
) const PURE;

uValue
The value being tested to see if it is in range.

IHXTInt64Range::Set

Sets the range parameters.

STDMETHOD(Set) (
 THIS_
 INT64 uMin,
 INT64 uMax,
 INT64 uStepSize = 1
) PURE;

uMin
The minimum value to be set in the range.

uMax
The maximum value to be set in the range.

uStepSize
The step size of the values in the range.

IHXTIntEnumerator

Note: This interface does not need to be implemented by itself,
but you can access this interface from a property bag.

The IHXTIntEnumerator interface contains the following methods:

• IHXTIntEnumerator::Current

• IHXTIntEnumerator::First

• IHXTIntEnumerator::GetCount

• IHXTIntEnumerator::Next

Purpose: Enumerates the values of an integer list.

Implemented by: All components

Header file: ihxtpropertybag.h
234

As with all Component Object Model (COM) interfaces, the IHXTIntEnumerator
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTIntEnumerator::Current

Gets the integer value at the current position of the internal iterator.

STDMETHOD(Current) (
 THIS_
 INT32 *pValue
) PURE;

pValue
Pointer to the value of the integer.

IHXTIntEnumerator::First

Gets the integer value at the first position in the list of integers.

STDMETHOD(First) (
 THIS_
 INT32 *pValue
) PURE;

pValue
Pointer to the value of the integer.

IHXTIntEnumerator::GetCount

Returns the total number of properties in the list of integers.

STDMETHOD_(UINT32, GetCount) (
 THIS
) const PURE;

IHXTIntEnumerator::Next

Advances the internal iterator and gets the integer value at the next position in
the list of integers.
235

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(Next) (
 THIS_
 INT32 *pValue
) PURE;

pValue
Pointer to value of the integer.

IHXTIntList

Note: This interface does not need to be implemented by itself,
but you can obtain an object that implements this interface
from the class factory.

The IHXTIntList interface contains the following methods:

• IHXTIntList::Clear

• IHXTIntList::Compare

• IHXTIntList::Contains

• IHXTIntList::GetBack

• IHXTIntList::GetEnumerator

• IHXTIntList::GetFront

• IHXTIntList::GetIntersection

• IHXTIntList::GetSize

• IHXTIntList::IsEmpty

• IHXTIntList::PopBack

• IHXTIntList::PopFront

• IHXTIntList::PushBack

• IHXTIntList::PushFront

As with all Component Object Model (COM) interfaces, the IHXTIntList
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

Purpose: Stores a list of integer values.

Implemented by: All components

Header file: ihxtpropertybag.h
236

IHXTIntList::Clear

Clears all properties from the current list.

STDMETHOD(Clear) (
 THIS
) PURE;

IHXTIntList::Compare

This method is obsolete and should not be used.

STDMETHOD(Compare) (
 THIS_
 IHXTIntList *pList,
 INT32 *puValue
) const PURE;

IHXTIntList::Contains

Returns TRUE if the specified value is contained in the current list. Returns
FALSE if the value is not in the current list.

STDMETHOD_(BOOL, Contains) (
 THIS_
 INT32 value
) const PURE;

value
The integer value being searched for in the current list.

IHXTIntList::GetBack

Returns the value of the property at the end of the current list.

STDMETHOD_(INT32, GetBack) (
 THIS
) PURE;

IHXTIntList::GetEnumerator

Gets an enumerator that can be used to enumerate through all the items in
the list.
237

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(GetEnumerator) (
 THIS_
 IHXTIntEnumerator **pEnumerator
) PURE;

pEnumerator
Address of a pointer to an IHXTIntEnumerator interface that manages the
enumerator.

IHXTIntList::GetFront

Returns the value of the property at the beginning of the current list.

STDMETHOD_(INT32, GetFront) (
 THIS
) PURE;

IHXTIntList::GetIntersection

Gets the intersection between the current list and another specified list.

STDMETHOD(GetIntersection) (
 THIS_
 IHXTIntList *pList,
 IHXTIntList **ppIntersection
) const PURE;

pList
Pointer to an IHXTIntList interface that manages the integer list to
compare against the current integer list.

ppIntersection
Address of a pointer to and IHXTIntList interface that manages the new
integer list. This new list contains only those properties that were the
same in both of the compared lists.

IHXTIntList::GetSize

Returns the size of the current list.

STDMETHOD_(UINT32, GetSize) (
 THIS
) PURE;
238

IHXTIntList::IsEmpty

If TRUE, indicates the current list is empty. If FALSE, indicates there is at least
one property in the current list.

STDMETHOD_(BOOL, IsEmpty) (
 THIS
) PURE;

IHXTIntList::PopBack

Returns the property value at the end of the list, and removes the value from
the list.

STDMETHOD_(INT32, PopBack) (
 THIS
) PURE;

IHXTIntList::PopFront

Returns the property value at the beginning of the list, and removes the value
from the list.

STDMETHOD_(INT32, PopFront) (
 THIS
) PURE;

IHXTIntList::PushBack

Places a property value at the end of the list.

STDMETHOD(PushBack) (
 THIS_
 INT32 value
) PURE;

value
The value of the property to add to the end of the list.

IHXTIntList::PushFront

Places a property value at the beginning of the list.

STDMETHOD(PushFront) (
 THIS_
 INT32 value
) PURE;
239

Helix DNA Producer SDK Developer’s Guide
value
The value of the property to add to the beginning of the list.

IHXTIntRange

Note: This interface does not need to be implemented by itself,
but you can obtain an object that implements this interface
from the class factory.

The IHXTIntRange interface contains the following methods:

• IHXTIntRange::Compare

• IHXTIntRange::GetMax

• IHXTIntRange::GetMin

• IHXTIntRange::GetStepSize

• IHXTIntRange::IsInRange

• IHXTIntRange::Set

As with all Component Object Model (COM) interfaces, the IHXTIntRange
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTIntRange::Compare

This method is obsolete and should not be used.

STDMETHOD(Compare) (
 THIS_
 IHXTIntRange *pRange,
 IHXTIntRange **ppResult
) const PURE;

IHXTIntRange::GetMax

Returns the maximum value in the current range.

Purpose: Represents a range of integer values.

Implemented by: All components

Header file: ihxtpropertybag.h
240

STDMETHOD_(INT32, GetMax) (
 THIS
) const PURE;

IHXTIntRange::GetMin

Returns the minimum value in the current range.

STDMETHOD_(INT32, GetMin) (
 THIS
) const PURE;

IHXTIntRange::GetStepSize

Returns the step size of the current range.

STDMETHOD_(INT32, GetStepSize) (
 THIS
) const PURE;

IHXTIntRange::IsInRange

Returns TRUE if the specified value is in range or FALSE if the specified value is
out of range.

STDMETHOD_(BOOL, IsInRange) (
 THIS_
 INT32 uValue
) const PURE;

uValue
The value being tested to see if it is in range.

IHXTIntRange::Set

Sets the range parameters.

STDMETHOD(Set) (
 THIS_
 INT32 uMin,
 INT32 uMax,
 INT32 uStepSize = 1
) PURE;

uMin
The minimum value to be set in the range.
241

Helix DNA Producer SDK Developer’s Guide
uMax
The maximum value to be set in the range.

uStepSize
The step size of the values in the range.

IHXTLoadAdjustment

This interface is implemented by any plug-in that consumes significant CPU
load. It provides a means of scaling load to meet external constraints, which is
necessary to gracefully degrade quality when the system is overloaded.

The IHXTLoadAdjustment interface contains the following methods:

• IHXTLoadAdjustment::GetLoadLevel

• IHXTLoadAdjustment::SetLoadLevel

As with all Component Object Model (COM) interfaces, the
IHXTLoadAdjustment interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTLoadAdjustment::GetLoadLevel

Retrieves the current load level the plug-in should try to achieve. Returns
HXR_OK if the puLoadLevel parameter has been successfully updated. Returns
HXR_NOTIMPL if the method is not implemented. This method is optional.

STDMETHOD(GetLoadLevel) (
 UINT32 *puLoadLevel
) PURE;

puLoadLevel
Pointer to the current load level, in percent. The value of this parameter
can be between 0 and 100.

Purpose: Adjusts load levels when the system is overloaded.

Implemented by: Plug-ins

Header file: ihxtbase.h
242

IHXTLoadAdjustment::SetLoadLevel

Sets the requested load level the plug-in should try to achieve. Returns HXR_OK
if the load level was successfully updated, HXR_FAIL if the load level could not
be updated, or HXR_NOTIMPL if the method is not implemented.

STDMETHOD(SetLoadLevel) (
 UINT32 uLoadLevel
) PURE;

uLoadLevel
The load level to be set, in percent. A load level of 100 indicates the
component should do what it normally does. A load level of 50 indicates
the component should do half of what it normally does. The value of this
parameter can be from 0 to 100.

IHXTLogObserver

This interface is used by the logging system to send log messages and the end
service notification to all observers connected to the logging system.
IHXTLogSystem must be implemented by any observer that intends to subscribe
to the log system.

The IHXTLogObserver interface contains the following methods:

• IHXTLogObserver::OnEndService

• IHXTLogObserver::ReceiveMsg

As with all Component Object Model (COM) interfaces, the IHXTLogObserver
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTLogObserver::OnEndService

Notifies the observer that the logging system is shutting down, and that all
log messages have been delivered.

Purpose: Communicates with all observers connected to the logging
system.

Implemented by: Logging

Header file: ihxtlogsystem.h
243

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(OnEndService) (
 THIS
) PURE;

IHXTLogObserver::ReceiveMsg

Method called on an observer when a log message is sent to the log system
that passes the observers filter.

STDMETHOD(ReceiveMsg) (
 THIS_
 const char* szNamespace,
 EHXTLogCode nCode,
 UINT32 unFuncArea,
 const char* szFuncArea,
 INT32 nTimeStamp,
 UINT32 nMsg,
 const char* szMsg,
 const char* szJobName
) PURE;

szNamespace
Pointer to the namespace used to qualify the functional area and
translated message.

nCode
The importance level of the message. One of the following:

• LC_APP_DIAG

Diagnostic messages of less importance than INFO messages (only
important if something goes wrong). These messages can be seen by
application end users and third-party developers.

• LC_APP_INFO

Very important messages (always want to see these messages). These
messages can be seen by application end users and third-party
developers.

• LC_APP_WARN

There was a problem, but it was handled and everything is probably
all right. These messages can be seen by application end users and
third-party developers.
244

• LC_APP_ERROR

There was a problem and it wasn’t handled. These messages can be
seen by application end users and third-party developers.

• LC_SDK_DIAG

Diagnostic messages of less importance than INFO messages (only
important if something goes wrong). These messages can be seen by
third-party developers.

• LC_SDK_INFO

Very important messages (always want to see these messages). These
messages can be seen by third-party developers.

• LC_SDK_WARN

There was a problem, but it was handled and everything is probably
all right. These messages can be seen by third-party developers.

• LC_SDK_ERROR

There was a problem and it wasn’t handled. These messages can be
seen by third-party developers.

unFuncArea
The numeric value used in the message as the functional area.

szFuncArea
Pointer to the translated string for the numeric functional area, if one was
found.

nTimeStamp
The time (in milliseconds since midnight, January 1, 1970) when the log
message was sent to the log.

nMsg
The numeric value used to identify the message for translation.

szMsg
Pointer to the actual message text; either the translation or the text sent to
the IHXTLogWriter::LogMessage method.

szJobName
Pointer to the name of the job from which the message originated.
245

Helix DNA Producer SDK Developer’s Guide
IHXTLogObserver2

This interface is used by the logging system to send log messages and the end
service notification to all observers connected to the logging system. In
addition, this interface supports flushing of the logging buffer. IHXTLogSystem
must be implemented by any observer that intends to subscribe to the log
system. This interface inherits all of the methods from the IHXTLogObserver
interface.

The IHXTLogObserver2 interface contains the IHXTLogObserver2::Flush method.

As with all Component Object Model (COM) interfaces, the IHXTLogObserver2
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTLogObserver2::Flush

Flushes any internal buffers when called by the log observer manager.

STDMETHOD(Flush) (
) PURE;

IHXTLogObserverManager

This interface manages the subscription of observer objects to the log system.

The IHXTLogObserverManager interface contains the following methods:

• IHXTLogObserverManager::SetFilter

• IHXTLogObserverManager::SetLanguage

• IHXTLogObserverManager::Subscribe

• IHXTLogObserverManager::Unsubscribe

Purpose: Communicates with all observers connected to the logging
system.

Implemented by: Logging

Header file: ihxtlogsystem.h

Purpose: Manages observers attached to the log system.

Implemented by: Logging

Header file: ihxtlogsystem.h
246

As with all Component Object Model (COM) interfaces, the
IHXTLogObserverManager interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTLogObserverManager::SetFilter

Applies the specified filter to all future log messages delivered to the specified
observer. This method always returns HXR_OK since the filter is applied
asynchronously.

STDMETHOD(SetFilter) (
 THIS_
 const char* szFilterStr,
 IUnknown* pObserver
) PURE;

szFilterStr
Pointer to an XML string specifying a filter for this observer.

pObserver
Pointer to an IUnknown interface that identifies a previously-subscribed
observer to which the filter will be applied.

IHXTLogObserverManager::SetLanguage

Sets the language that is used for translatable messages when messages are
delivered to the specified observer. This method is intended for future use.

STDMETHOD(SetLanguage) (
 THIS_
 const char* szLanguage,
 IUnknown* pObserver
) PURE;

szLanguage
Pointer to the language in which the observer will receive log messages.
This parameter is currently ignored.

pObserver
Pointer to an IUnknown interface that identifies the observer that will have
its language value set.
247

Helix DNA Producer SDK Developer’s Guide
IHXTLogObserverManager::Subscribe

Adds an observer to the log system that receives log messages, and initializes it
with the specified values.

STDMETHOD(Subscribe) (
 THIS_
 IUnknown* pUnknown,
 const char* szFilterStr,
 const char* szLocale,
 BOOL bCatchUp
) PURE;

pUnknown
Pointer to an IUnknown interface that identifies the observer object that
must support a QueryInterface for the IHXTLogObserver interface.

szFilterStr
Pointer to an XML string specifying an initial filter for this observer.

szLocale
Pointer to the language in which the observer will receive log messages.
This parameter is currently ignored.

bCatchUp
If set to true, the observer will receive all log messages (up to 1000)
previously delivered by the log system prior to this observer’s
subscription.

IHXTLogObserverManager::Unsubscribe

Removes an observer from the log system.

STDMETHOD(Unsubscribe) (
 THIS_
 IUnknown* pObserver,
 BOOL bReceiveUnsentMessages
) PURE;

pObserver
Pointer to an IUnknown interface that identifies the observer object to be
removed.

bReceiveUnsentMessages
If set to true, the observer will have all remaining messages delivered that
had been received by the log system, but were not yet delivered to this
observer.
248

IHXTLogObserverManager2

This interface manages the subscription of observer objects to the log system.
This interface inherits the methods of the IHXTLogObserverManager interface,
and includes a new method to flush the log messages from the logging queue.

The IHXTLogObserverManager2 interface contains the
IHXTLogObserverManager2::FlushObservers method.

As with all Component Object Model (COM) interfaces, the
IHXTLogObserverManager2 interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTLogObserverManager2::FlushObservers

Flushes the log messages from logging queue and calls IHXTLogObserver2::Flush
on all observers.

STDMETHOD(FlushObservers) (
 THIS
) PURE;

IHXTLogSystem

The IHXTLogSystem interface contains the following methods:

• IHXTLogSystem::GetFunctionalAreaEnumerator

• IHXTLogSystem::GetObserverManagerInterface

• IHXTLogSystem::GetWriterInterface

• IHXTLogSystem::SetTranslationFileDirectory

• IHXTLogSystem::Shutdown

Purpose: Manages observers attached to the log system.

Implemented by: Logging

Header file: ihxtlogsystem.h

Purpose: Provides access to various areas of the log system.

Implemented by: Logging

Header file: ihxtlogsystem.h
249

Helix DNA Producer SDK Developer’s Guide
As with all Component Object Model (COM) interfaces, the IHXTLogSystem
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTLogSystem::GetFunctionalAreaEnumerator

Retrieves an interface to an enumerator that will enumerate through all
functional areas in all namespaces in the specified language loaded during log
system initialization.

STDMETHOD(GetFunctionalAreaEnumerator) (
 IHXTFuncAreaEnum** pIEnum,
 const char* szLanguage
) PURE;

pIEnum
Address of a pointer to an IHXTFuncAreaEnum interface that manages the
functional area enumerator.

szLanguage
Pointer to the language of the functional areas to be enumerated.

IHXTLogSystem::GetObserverManagerInterface

Retrieves an interface to the observer manager, which subscribes, manages,
and unsubscribes listening observers that receive log messages.

STDMETHOD(GetObserverManagerInterface) (
 THIS_
 IHXTLogObserverManager** ppILogObserverManager
) PURE;

ppILogObserverManager
Address of a pointer to an IHXTLogObserverManager interface that manages
the observer manager.

IHXTLogSystem::GetWriterInterface

Retrieves an interface to the log writer, which sends messages to the log
system.
250

STDMETHOD(GetWriterInterface) (
 THIS_
 IHXTLogWriter** ppIWriter
) PURE;

ppIWriter
Address of a pointer to an IHXTLogWriter interface that manages the log
writer.

IHXTLogSystem::SetTranslationFileDirectory

Sets the translation file directory for the log system. The files at this location
will be used to translate message numbers to text strings.

STDMETHOD(SetTranslationFileDirectory) (
 THIS_
 const char* szTranslationFileDir
) PURE;

szTranslationFileDir
Pointer to all the log system translation files.

IHXTLogSystem::Shutdown

Shuts down the log system properly.

Note: Under Windows, this method should not be called from
within DllMain.

STDMETHOD(Shutdown) (
 THIS
) PURE;

IHXTLogWriter

The IHXTLogWriter interface contains the following methods:

• IHXTLogWriter::GetTranslatedMessage

• IHXTLogWriter::LogMessage

Purpose: Sends log messages to the log system.

Implemented by: Logging

Header file: ihxtlogsystem.h
251

Helix DNA Producer SDK Developer’s Guide
As with all Component Object Model (COM) interfaces, the IHXTLogWriter
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTLogWriter::GetTranslatedMessage

Retrieves the translated string for the message number provided by the log
system.

STDMETHOD(GetTranslatedMessage) (
 THIS_
 UINT32 nMessageNumber,
 const char* szNamespace,
 const char* szLanguage,
 const char** szMessage
) PURE;

nMessageNumber
Message number to be translated.

szNamespace
Pointer to the name space of the message to be translated.

szLanguage
Not currently implemented.

szMessage
Address of a pointer to the translated message string.

IHXTLogWriter::LogMessage

Logs a message in the log system with the specified information that will be
delivered to all observers.

STDMETHOD(LogMessage) (
 THIS_
 const char* szNamespace,
 EHXTLogCode nLogCode,
 EHXTLogFuncArea nFuncArea,
 UINT32 nMsg,
 const char* szMsg,
 va_list args
) PURE;
252

szNamespace
Pointer to the text identifier to qualify the functional area and numeric
message parameter.

nLogCode
The importance level of the message. One of the following:

• LC_APP_DIAG

Diagnostic messages of less importance than INFO messages (only
important if something goes wrong). These messages can be seen by
application end users and third-party developers.

• LC_APP_INFO

Very important messages (always want to see these messages). These
messages can be seen by application end users and third-party
developers.

• LC_APP_WARN

There was a problem, but it was handled and everything is probably
all right. These messages can be seen by application end users and
third-party developers.

• LC_APP_ERROR

There was a problem and it wasn’t handled. These messages can be
seen by application end users and third-party developers.

• LC_SDK_DIAG

Diagnostic messages of less importance than INFO messages (only
important if something goes wrong). These messages can be seen by
third-party developers.

• LC_SDK_INFO

Very important messages (always want to see these messages). These
messages can be seen by third-party developers.

• LC_SDK_WARN

There was a problem, but it was handled and everything is probably
all right. These messages can be seen by third-party developers.

• LC_SDK_ERROR

There was a problem and it wasn’t handled. These messages can be
seen by third-party developers.
253

Helix DNA Producer SDK Developer’s Guide
nFuncArea
The general area of the system where the message originated. One of the
following:

• NONE

The message either originated in an unknown area, or no functional
area is required.

• ACTIVEX

The message originated in the ActiveX control.

• AUDCODEC

The message originated in the audio codec.

• AUDPREFI

The message originated in the audio prefilter plug-in.

• BCAST

The message originated during the transmission to a server.

• CAPTURE

The message originated during capture.

• CMDLINE

The message originated in command line logic.

• FILEOUT

The message originated during a write to a file.

• FILEREAD

The message originated during the reading of audio files or the audio
component of a video file. This includes reading from a general file, a
DirectShow file, an uncompressed AVI file, an uncompressed
QuickTime file, a compressed QuickTime file, a WAV file, or an MP3
file.

• GUI

The message originated in the graphical user interface.

• JOBFILE

The message originated during job file processing, that is, during
serialization and deserialization.

• LIC
254

The message occurred because of license key activity, such as
expiration of the licence key.

• POSFIL

The message originated in the post filter.

• PUB

This member is intended for future use.

• REMOTE

This member is intended for future use.

• FA_SDK_CONFIG

The message originated during SDK configuration.

• FA_SDK_ENCODE

The message originated during SDK encoding.

• FA_SDK_CORE

The message originated in the SDK core.

• FA_GEN_FILTER

The message originated in some generic filter.

• STATS

The message originated during statistics processing.

• VIDCODEC

The message originated in the video codec.

• VIDPREFIL

The message originated in a video prefilter plug-in.

• VIDRENDR

The message originated during the rendering of video in a preview.

• MEDIASAMPLES

The message originated in the media sample filter.

nMsg
Identifies the log message to be used from the translation XML files
loaded by the log system upon startup. To use the szMsg parameter of this
method for the message instead, specify 0xFFFFFFFF for this parameter’s
value.
255

Helix DNA Producer SDK Developer’s Guide
szMsg
Pointer to the text that will be used for the log message if the nMsg
parameter is set to 0xFFFFFFFF.

args
A list of variable arguments that will be substituted into the log message
by the log system using sprintf.

(Continued on next page.)
256

IHXTMediaInputPin

The IHXTMediaInputPin interface can query for both IHXTVideoPinFormat and
IHXTAudioPinFormat to set encoding format.

The IHXTMediaInputPin interface contains the following methods:

• IHXTMediaInputPin::EncodeSample

• IHXTMediaInputPin::GetPinEnabled

• IHXTMediaInputPin::SetPinEnabled

As with all Component Object Model (COM) interfaces, the IHXTMediaInputPin
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTMediaInputPin::EncodeSample

Passes a media sample to the encoding engine.

STDMETHOD(EncodeSample) (
 THIS_
 IHXTMediaSample* pMediaSample
) PURE;

pMediaSample
Pointer to an IHXTMediaSample interface that manages the media sample.

Note: IHXTMediaSample interfaces are reference counted, and
should not be re-used.

IHXTMediaInputPin::GetPinEnabled

Determines if the media pin is enabled. By default, only the audio and video
media pins are enabled.

STDMETHOD(GetPinEnabled) (
 THIS_
 BOOL* pbEnablePin
) PURE;

Purpose: Passes uncompressed media samples to the encoding engine.

Implemented by: Encoding

Header file: ihxtbase.h
257

Helix DNA Producer SDK Developer’s Guide
pbEnablePin
Pointer to a boolean value that, if true, indicates the media pin is enabled.
If false, the media pin is disabled.

IHXTMediaInputPin::SetPinEnabled

Sets whether the media pin is enabled or disabled.

STDMETHOD(SetPinEnabled) (
 THIS_
 BOOL bEnablePin
) PURE;

bEnablePin
If set to true, the media pin is enabled. If set to false, the media pin is
disabled.

IHXTMediaProfile

This interface manipulates a list of audiences. This interface inherits the
configuration methods of IHXTConfigurationAgent, which are used to configure
the media profile properties.

Note: For more information on the media profile properties
that can be configured by this interface, see “Media Profile” on
page 58.

The IHXTMediaProfile interface contains the following methods:

• IHXTMediaProfile::AddAudience

• IHXTMediaProfile::GetAudience

• IHXTMediaProfile::GetAudienceCount

• IHXTMediaProfile::MoveAudience

• IHXTMediaProfile::RemoveAudience

As with all Component Object Model (COM) interfaces, the IHXTMediaProfile
interface inherits the following IUnknown methods:

• IUnknown::AddRef

Purpose: Provides a collection of audiences and post-filters for an output
profile.

Implemented by: Encoding

Header file: ihxtencodingjob.h
258

• IUnknown::QueryInterface

• IUnknown::Release

IHXTMediaProfile::AddAudience

Adds an audience to the back of the audience list.

STDMETHOD(AddAudience) (
 THIS_
 IHXTAudience* pAudience
) PURE;

pAudience
Pointer to an IHXTAudience interface that manages the audience being
added.

IHXTMediaProfile::GetAudience

Retrieves the specified audience in the index list.

STDMETHOD(GetAudience) (
 THIS_
 UINT32 ulIndex,
 IHXTAudience** ppAudience
) PURE;

ulIndex
The location of the audience in the index list.

ppAudience
Address of a pointer to an IHXTAudience interface that manages the
audience information.

IHXTMediaProfile::GetAudienceCount

Returns the number of audiences in the list.

STDMETHOD_(UINT32, GetAudienceCount) (
 THIS
) PURE;

IHXTMediaProfile::MoveAudience

Moves the specified audience from its original location in the index list to a
new location in the index list.
259

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(MoveAudience) (
 UINT32 ulOrigIndex,
 UINT32 ulDestIndex
) PURE;

ulOrigIndex
The original location of the audience in the index list.

ulDestIndex
The destination in the index list to which the audience is to be moved.

IHXTMediaProfile::RemoveAudience

Removes the audience at the specified location in the index list.

STDMETHOD(RemoveAudience) (
 THIS_
 UINT32 ulIndex
) PURE;

ulIndex
The location in the index list of the audience to be removed.

IHXTMediaSample

The IHXTMediaSample interface contains the following methods:

• IHXTMediaSample::Clone

• IHXTMediaSample::CopyProperties

• IHXTMediaSample::GetDataSize

• IHXTMediaSample::GetDataStartForReading

• IHXTMediaSample::GetDataStartForWriting

• IHXTMediaSample::GetSampleField

• IHXTMediaSample::GetSampleFlags

• IHXTMediaSample::GetTime

• IHXTMediaSample::Initialize

• IHXTMediaSample::SetDataSize

• IHXTMediaSample::SetDataStart

Purpose: Provides access to a data buffer, as well as f lags, fields, and times
associated with the data buffer.

Implemented by: Plug-ins

Header file: ihxtbase.h
260

• IHXTMediaSample::SetSampleField

• IHXTMediaSample::SetSampleFlags

• IHXTMediaSample::SetTime

As with all Component Object Model (COM) interfaces, the IHXTMediaSample
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTMediaSample::Clone

Creates an independent copy of the current media sample.

STDMETHOD(Clone) (
 THIS_
 IHXTMediaSample **ppMediaSample
) PURE;

ppMediaSample
Address of a pointer to an IHXTMediaSample interface that manages the
media sample created in the cloning process.

IHXTMediaSample::CopyProperties

Copies various properties of the media sample, such as flags, fields, and start
and end times.

STDMETHOD(CopyProperties) (
 THIS_
 IHXTMediaSample* pInSample
) PURE;

pInSample
Pointer to an IHXTMediaSample interface that manages the media sample
properties being copied.

IHXTMediaSample::GetDataSize

Returns the size of the data buffer.

STDMETHOD_(UINT32, GetDataSize) (
 THIS_
) PURE;
261

Helix DNA Producer SDK Developer’s Guide
IHXTMediaSample::GetDataStartForReading

Returns a read-only pointer to the beginning of the data buffer. The
implementation of IHXTMediaSample uses a copy-on-write scheme, therefore if
you intend to write to the data buffer, you should call the
IHXTMediaSample::GetDataStartForWriting method.

STDMETHOD_(const UCHAR*, GetDataStartForReading) (
) PURE;

IHXTMediaSample::GetDataStartForWriting

Returns a read/write pointer to the beginning of the data buffer.

STDMETHOD_(UCHAR*, GetDataStartForWriting)(
) PURE;

IHXTMediaSample::GetSampleField

Gets a specific sample field.

STDMETHOD(GetSampleField) (
 THIS_
 UINT32 uFieldId,
 UINT32* puFieldValue
) PURE;

uFieldId
The type of sample field. One of the following:

• HXT_FIELD_ASM_RULE

Indicates the sample field contains an ASM rule number.

• HXT_FIELD_ASM_FLAGS

Indicates the sample field contains ASM flags.

• HXT_FIELD_STREAM_ID

Indicates the sample field contains a stream identifier.

• HXT_FIELD_LOGICAL_STREAM_ID

Indicates the sample field contains a logical stream identifier.

• HXT_FIELD_MULTI_FRAME_SIZES

Reserved for future use.
262

puFieldValue
A pointer to the value contained in the field specified by the uFieldID
parameter.

IHXTMediaSample::GetSampleFlags

Returns the sample flags. One of the following:

• HXT_SAMPLE_DATADISCONTINUITY

Indicates the start of a new segment.

• HXT_SAMPLE_KEYFRAME

Indicates the sample is a keyframe.

• HXT_SAMPLE_ENDOFSTREAM

Indicates the last sample for the current stream.

• HXT_STREAM_ACCURATE_END_TIME

Indicates the actual end time of a particular stream (used when there is
extraneous padding at the end of a stream).

STDMETHOD_(UINT32, GetSampleFlags) (
 THIS
) PURE;

IHXTMediaSample::GetTime

Gets the start and end times of the data buffer.

STDMETHOD(GetTime) (
 THIS_
 HXT_TIME* pTimeStart,
 HXT_TIME* pTimeEnd
) PURE;

pTimeStart
Pointer to the start time (in milliseconds) of the data buffer.

pTimeEnd
Pointer to the end time (in milliseconds) of the data buffer.

IHXTMediaSample::Initialize

Initializes the data buffer.
263

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(Initialize) (
 THIS_
 UCHAR *pBuffer,
 UINT32 uSize
) PURE;

pBuffer
Pointer to data buffer being initialized.

uSize
Indicates the size (in bytes) of the data buffer being initialized.

IHXTMediaSample::SetDataSize

Sets the size of the data buffer. Calling this method will not cause the data
buffer to be re-allocated.

STDMETHOD(SetDataSize) (
 UINT32 uSize
) PURE;

uSize
The size of the data buffer (in bytes) being set. This parameter should not
exceed the size of the data buffer that was originally allocated.

IHXTMediaSample::SetDataStart

Sets the start of the data buffer. Calling this method will not cause the data
buffer to be re-allocated.

STDMETHOD(SetDataStart) (
 THIS_
 UCHAR *pDataStart
) PURE;

pDataStart
Pointer to start of the data buffer. This parameter should not precede the
start of the data buffer that was originally allocated.

IHXTMediaSample::SetSampleField

Sets a specific sample field.
264

STDMETHOD(SetSampleField) (
 THIS_
 UINT32 uFieldId,
 UINT32 uFieldValue
) PURE;

uFieldId
The type of sample field. One of the following:

• HXT_FIELD_ASM_RULE

Indicates the sample field contains an ASM rule number.

• HXT_FIELD_ASM_FLAGS

Indicates the sample field contains ASM flags.

• HXT_FIELD_STREAM_ID

Indicates the sample field contains a stream identifier.

• HXT_FIELD_LOGICAL_STREAM_ID

Indicates the sample field contains a logical stream identifier.

• HXT_FIELD_MULTI_FRAME_SIZES

Reserved for future use.

puFieldValue
The value to set in the field specified by the uFieldID parameter.

IHXTMediaSample::SetSampleFlags

Sets the specified sample f lag.

STDMETHOD(SetSampleFlags) (
 THIS_
 UINT32 uFlags
) PURE;

uFlags
The flag to be set. One of the following:

• HXT_SAMPLE_DATADISCONTINUITY

Indicates the start of a new segment.

• HXT_SAMPLE_KEYFRAME

Indicates the sample is a keyframe.

• HXT_SAMPLE_ENDOFSTREAM
265

Helix DNA Producer SDK Developer’s Guide
Indicates the last sample for the current stream.

• HXT_STREAM_ACCURATE_END_TIME

Indicates the actual end time of a particular stream (used when there is
extraneous padding at the end of a stream).

IHXTMediaSample::SetTime

Sets the start and end times of the data buffer.

STDMETHOD(SetTime) (
 THIS_
 HXT_TIME* pTimeStart,
 HXT_TIME* pTimeEnd
) PURE;

pTimeStart
Pointer to the start time (in milliseconds) of the data buffer.

pTimeEnd
Pointer to the end time (in milliseconds) of the data buffer. Setting this
parameter to 0xFFFFFFFF indicates infinity.

IHXTOutputFilter

This interface inherits methods from the IHXTFilter interface.

The IHXTOutputFilter interface contains the IHXTOutputFilter::ReceiveSample
method.

As with all Component Object Model (COM) interfaces, the IHXTOutputFilter
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTOutputFilter::ReceiveSample

Sends the filter the next media sample to process.

Purpose: Performs the final processing of a media sample.

Implemented by: Plug-ins

Header file: ihxtbase.h
266

STDMETHOD(ReceiveSample) (
 THIS_
 UINT32 uStreamID,
 IHXTMediaSample* pSample
) PURE;

uStreamID
The identity of the stream that contains the media sample

pSample
Pointer to an IHXTMediaSample interface that manages the media sample
data buffer sent to the filter.

IHXTOutputProfile

The output profile associates a list of destinations (that is, file writers or
broadcast transmitters) with a media profile (how something will be encoded).
This interface inherits the configuration methods of IHXTConfigurationAgent,
which are used to configure the output profile properties.

Note: For more information on the output profile properties
that can be configured by this interface, see “Output Profile”
on page 45.

The IHXTOutputProfile interface contains the following methods:

• IHXTOutputProfile::AddDestination

• IHXTOutputProfile::GetDestination

• IHXTOutputProfile::GetDestinationCount

• IHXTOutputProfile::GetMediaProfile

• IHXTOutputProfile::MoveDestination

• IHXTOutputProfile::RemoveDestination

• IHXTOutputProfile::SetMediaProfile

As with all Component Object Model (COM) interfaces, the IHXTOutputProfile
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

Purpose: Specifies one media profile and multiple output destinations.

Implemented by: Encoding

Header file: ihxtencodingjob.h
267

Helix DNA Producer SDK Developer’s Guide
• IUnknown::Release

IHXTOutputProfile::AddDestination

Adds a destination to the back of the destination list.

STDMETHOD(AddDestination) (
 THIS_
 IHXTDestination* pDestination
) PURE;

pDestination
Pointer to an IHXTDestination interface that manages the destination to be
added.

IHXTOutputProfile::GetDestination

Retrieves the specified destination in the index list.

STDMETHOD(GetDestination) (
 THIS_
 UINT32 ulIndex,
 IHXTDestination** ppDestination
) PURE;

ulIndex
The number of the destination in the index list.

ppDestination
Address of a pointer to an IHXTDestination interface that manages the
destination.

IHXTOutputProfile::GetDestinationCount

Returns the number of destinations in the list.

STDMETHOD_(UINT32, GetDestinationCount) (
 THIS
) PURE;

IHXTOutputProfile::GetMediaProfile

Gets the current media profile.
268

STDMETHOD(GetMediaProfile) (
 THIS_
 IHXTMediaProfile** ppMediaProfile
) PURE;

ppMediaProfile
Address of a pointer to an IHXTMediaProfile interface that manages the
media profile.

IHXTOutputProfile::MoveDestination

Moves a destination from its original location in the index list to a new
location. During encoding, audio/video samples propagate through
destinations based on their list ordering (from lowest index number to
highest).

STDMETHOD(MoveDestination) (
 UINT32 ulOrigIndex,
 UINT32 ulDestIndex
) PURE;

ulOrigIndex
The original location of the destination in the index list.

ulDestIndex
The location to which the destination is to be moved.

IHXTOutputProfile::RemoveDestination

Removes the specified destination in the index list.

STDMETHOD(RemoveDestination) (
 THIS_
 UINT32 ulIndex
) PURE;

ulIndex
The location in the index list of the destination to be removed.

IHXTOutputProfile::SetMediaProfile

Sets the media profile.

STDMETHOD(SetMediaProfile) (
 THIS_
 IHXTMediaProfile* pMediaProfile
) PURE;
269

Helix DNA Producer SDK Developer’s Guide
pMediaProfile
Pointer to an IHXTMediaProfile interface that manages the media profile.

IHXTOutputProfile2

This interface inherits the methods of the IHXTOutputProfile interface, which in
turn inherits the configuration methods of IHXTConfigurationAgent, which are
used to configure the output profile properties.

The IHXTOutputProfile2 interface contains the following methods:

• IHXTOutputProfile2::GetMetadata

• IHXTOutputProfile2::SetMetadata

As with all Component Object Model (COM) interfaces, the IHXTOutputProfile2
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTOutputProfile2::GetMetadata

Retrieves the metadata information.

STDMETHOD(GetMetadata) (
 THIS_
 IHXTPropertyBag** ppMetadata
) PURE;

ppMetadata
Address of a pointer to an IHXTPropertyBag interface that manages the
metadata to be retrieved.

IHXTOutputProfile2::SetMetadata

Sets the metadata information.

STDMETHOD(SetMetadata) (
 THIS_
 IHXTPropertyBag* pMetadata
) PURE;

Purpose: Provides metadata support for output profiles.

Implemented by: Encoding

Header file: ihxtencodingjob.h
270

pMetadata
Pointer to an IHXTPropertyBag interface that manages the metadata to be
set.

IHXTPacketSource
This interface is reserved for future use.

IHXTPluginInfoEnum

The IHXTPluginInfoEnum interface contains the following methods:

• IHXTPluginInfoEnum::GetCount

• IHXTPluginInfoEnum::GetPluginInfoAt

As with all Component Object Model (COM) interfaces, the
IHXTPluginInfoEnum interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTPluginInfoEnum::GetCount

Returns the total number of plug-in instances.

STDMETHOD_(UINT32, GetCount) (
 THIS
) PURE;

IHXTPluginInfoEnum::GetPluginInfoAt

Gets plug-in-specific information about a particular plug-in instance.

STDMETHOD(GetPluginInfoAt) (
 THIS_
 UINT32 ulIndex,
 IHXTPropertyBag ** ppIPluginInfo
) PURE;

Purpose: Enumerates a set of plug-in object instances.

Implemented by: Encoding

Header file: ihxtbase.h
271

Helix DNA Producer SDK Developer’s Guide
ulIndex
The index number of the property bag that contains the plug-in
information.

ppIPluginInfo
Address of a pointer to an IHXTPropertyBag interface that manages plug-in
information.

IHXTPluginInfoManager

The IHXTPluginInfoManager interface contains the
IHXTPluginInfoManager::GetPluginInfoEnum method.

As with all Component Object Model (COM) interfaces, the
IHXTPluginInfoManager interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTPluginInfoManager::GetPluginInfoEnum

Gets an enumerator interface that contains a list of “info-bags” describing
each of the plug-ins you can choose for encoding. The “info-bag” is a property
bag containing metadata about the plug-in, such as the name, sampling rate,
bitrate, and so on. The list of plug-ins returned are limited to the ones
containing the properties you supply.

Note: Currently, this method only enumerates codecs and
capture device plug-ins.

STDMETHOD(GetPluginInfoEnum) (
 IHXTPropertyBag *pIQueryPropertyBag,
 IHXTPluginInfoEnum ** ppIPluginInfoEnum
) PURE;

Purpose: Provides access to information about plug-ins installed in the
system.

Implemented by: Encoding

Header file: ihxtencodingjob.h
272

pIQueryPropertyBag
Pointer to an IHXTPropertyBag interface that manages the properties used
to query for the list of plug-ins. For example, to get a list of video codecs
you could put the property kPropPluginType with a value of
kValuePluginTypeVideoStream in this query property bag. Then only codecs
with this property would be returned in the list. Passing NULL to this
parameter will return information about all the codecs.

ppIPluginInfoEnum
Address of a pointer to an IHXTPluginInfoEnum interface that manages the
list of “info-bags” describing all plug-ins in the system.

IHXTPostfilter

The IHXTPostfilter interface contains no methods of its own. This interface
inherits the configuration methods of IHXTConfigurationAgent, which are used
to configure the postfilter properties.

As with all Component Object Model (COM) interfaces, the IHXTPostfilter
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTPrefilter

The IHXTPrefilter interface contains no methods of its own. This interface
inherits the configuration methods of IHXTConfigurationAgent, which are used
to configure the prefilter properties.

Note: For more information on the prefilter properties that
can be configured by this interface, see “Prefilters” on page 41.

Purpose: Configure a postfilter’s configuration properties.

Implemented by: Encoding

Header file: ihxtencodingjob.h

Purpose: Configure a prefilter’s configuration properties.

Implemented by: Encoding

Header file: ihxtencodingjob.h
273

Helix DNA Producer SDK Developer’s Guide
As with all Component Object Model (COM) interfaces, the IHXTPrefilter
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTPreviewSink

The IHXTPreviewSink interface contains the following methods:

• IHXTPreviewSink::OnFormatChanged

• IHXTPreviewSink::OnSample

As with all Component Object Model (COM) interfaces, the IHXTPreviewSink
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTPreviewSink::OnFormatChanged

Indicates the next sample sent using the IHXTPreviewSink::OnSample call is
going to have a different format.

STDMETHOD(OnFormatChanged) (
 THIS_
 IHXTPropertyBag* pProps
) PURE;

pProps
Pointer to an IHXTPropertyBag interface that manages the new format.

IHXTPreviewSink::OnSample

Indicates a new media sample is available.

Purpose: Receives preview media samples.

Implemented by: Encoding

Header file: ihxtpreviewsink.h
274

STDMETHOD(OnSample) (
 THIS_
 IHXTMediaSample* pSample
) PURE;

pSample
Pointer to an IHXTMediaSample interface that manages the new media
sample.

IHXTPreviewSinkControl

The IHXTPreviewSinkControl interface contains the following methods:

• IHXTPreviewSinkControl::AddSink

• IHXTPreviewSinkControl::GetOptimalSinkProperties

• IHXTPreviewSinkControl::RemoveSink

As with all Component Object Model (COM) interfaces, the
IHXTPreviewSinkControl interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTPreviewSinkControl::AddSink

Registers a preview sink for media samples. If this method return a success
code, then as soon as encoding begins, the caller will begin to receive media
sample callbacks (or if the sink is being added to input, samples will be
received as soon as IHXTInputPreviewControl::Open is called).

STDMETHOD(AddSink) (
 THIS_
 IHXTPreviewSink* pSink,
 IHXTPropertyBag* pProps
) PURE;

pSink
Pointer to an IHXTPreviewSink interface that manages the sink interface to
be called when new media samples are available.

Purpose: Registers preview sinks.

Implemented by: Encoding

Header file: ihxtpreviewsink.h
275

Helix DNA Producer SDK Developer’s Guide
pProps
Pointer to an IHXTPropertyBag interface that manages the properties of the
format that the caller wants to receive.

IHXTPreviewSinkControl::GetOptimalSinkProperties

Gets the optimal (the least CPU intensive) properties to use when registering
as a preview sink (by calling IHXTPreviewSinkControl::AddSink). If this call is
successful, the passed-in property bag is filled with the relevant property
information.

STDMETHOD(GetOptimalSinkProperties) (
 THIS_
 IHXTPropertyBag** ppProps
) PURE;

ppProps
Address of a pointer to an IHXTPropertyBag interface that manages optimal
properties.

IHXTPreviewSinkControl::RemoveSink

Unregisters the preview sink so that samples are no longer sent to the
specified preview sink.

STDMETHOD(RemoveSink) (
 THIS_
 IHXTPreviewSink* pSink
) PURE;

pSink
Pointer to an IHXTPreviewSink interface that manages the preview sink to
be removed.

IHXTPreviewSinkControl3

This interface inherits methods from the IHXTPreviewSinkControl interface.

Purpose: Enables or disables preview sampling.

Implemented by: Encoding

Header file: ihxtpreviewsink.h
276

For More Information: See “Audio and Video Preview” on page 74
for more information on enabling and disabling preview
sampling.

The IHXTPreviewSinkControl3 interface contains the following methods:

• IHXTPreviewSinkControl3::DisableSink

• IHXTPreviewSinkControl3::EnableSink

As with all Component Object Model (COM) interfaces, the
IHXTPreviewSinkControl3 interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTPreviewSinkControl3::DisableSink

Disables the specified preview sink.

STDMETHOD(DisableSink) (
 THIS_
 IHXTPreviewSink* pSink
) PURE;

pSink
Pointer to an IHXTPreviewSink interface that manages the preview sink to
disable.

IHXTPreviewSinkControl3::EnableSink

Enables the specified preview sink.

STDMETHOD(EnableSink) (
 THIS_
 IHXTPreviewSink* pSink
) PURE;

pSink
Pointer to an IHXTPreviewSink interface that manages the preview sink to
enable.
277

Helix DNA Producer SDK Developer’s Guide
IHXTProperty

This interface manages a single property; the interface for handling multiple
properties is IHXTPropertyBag.

The IHXTProperty interface contains the following methods:

• IHXTProperty::GetBool

• IHXTProperty::GetDouble

• IHXTProperty::GetDoubleList

• IHXTProperty::GetDoubleRange

• IHXTProperty::GetInt

• IHXTProperty::GetInt64

• IHXTProperty::GetInt64List

• IHXTProperty::GetInt64Range

• IHXTProperty::GetIntList

• IHXTProperty::GetIntRange

• IHXTProperty::GetKey

• IHXTProperty::GetPropertyBag

• IHXTProperty::GetString

• IHXTProperty::GetType

• IHXTProperty::GetUint

• IHXTProperty::GetUintList

• IHXTProperty::GetUintRange

• IHXTProperty::GetUnknown

• IHXTProperty::SetBool

• IHXTProperty::SetDouble

• IHXTProperty::SetDoubleList

• IHXTProperty::SetDoubleRange

• IHXTProperty::SetInt

• IHXTProperty::SetInt64

• IHXTProperty::SetInt64List

• IHXTProperty::SetInt64Range

Purpose: Generic property interface that supports a single name and value
pair.

Implemented by: Encoding

Header file: ihxtpropertybag.h
278

• IHXTProperty::SetIntList

• IHXTProperty::SetIntRange

• IHXTProperty::SetPropertyBag

• IHXTProperty::SetString

• IHXTProperty::SetUint

• IHXTProperty::SetUintList

• IHXTProperty::SetUintRange

• IHXTProperty::SetUnknown

As with all Component Object Model (COM) interfaces, the IHXTProperty
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTProperty::GetBool

Gets the boolean value of the current property.

STDMETHOD(GetBool) (
 BOOL *pbValue
) const PURE;

pbValue
Pointer to the value of the current property.

IHXTProperty::GetDouble

Gets the double value of the current property.

STDMETHOD(GetDouble) (
 double *pdValue
) const PURE;

pdValue
Pointer to the value of the current property.

IHXTProperty::GetDoubleList

Gets the double list of the current property.

STDMETHOD(GetDoubleList) (
 IHXTDoubleList **ppValue
) const PURE;
279

Helix DNA Producer SDK Developer’s Guide
ppValue
Address of a pointer to an IHXTDoubleList interface that manages the
double list.

IHXTProperty::GetDoubleRange

Gets the double range of the current property.

STDMETHOD(GetDoubleRange) (
 IHXTDoubleRange **ppValue
) const PURE;

ppValue
Address of a pointer to an IHXTDoubleRange interface that manages the
double range.

IHXTProperty::GetInt

Gets the integer value of the current property.

STDMETHOD(GetInt) (
 INT32 *pnValue
) const PURE;

pnValue
Pointer to the value of the current property.

IHXTProperty::GetInt64

Gets the 64-bit integer value of the current property.

STDMETHOD(GetInt64) (
 INT64 *pn64Value
) const PURE;

pn64Value
Pointer to the value of the current property.

IHXTProperty::GetInt64List

Gets the 64-bit integer list of the current property.

STDMETHOD(GetInt64List) (
 IHXTInt64List **ppValue
) const PURE;
280

ppValue
Address of a pointer to an IHXTInt64List interface that manages the 64-bit
integer list.

IHXTProperty::GetInt64Range

Gets the 64-bit integer range of the current property.

STDMETHOD(GetInt64Range) (
 IHXTInt64Range **ppValue
) const PURE;

ppValue
Address of a pointer to an IHXTInt64Range interface that manages the 64-
bit integer range.

IHXTProperty::GetIntList

Gets the integer list of the current property.

STDMETHOD(GetIntList) (
 IHXTIntList **ppValue
) const PURE;

ppValue
Address of a pointer to an IHXTIntList interface that manages the integer
list.

IHXTProperty::GetIntRange

Gets the integer range of the current property.

STDMETHOD(GetIntRange) (
 IHXTIntRange **ppValue
) const PURE;

ppValue
Address of a pointer to an IHXTIntRange interface that manages the integer
range.

IHXTProperty::GetKey

Returns the name of the current property.

STDMETHOD_(const CHAR*, GetKey) (
 THIS
) const PURE;
281

Helix DNA Producer SDK Developer’s Guide
IHXTProperty::GetPropertyBag

Gets the property bag values of the current property.

STDMETHOD(GetPropertyBag) (
 IHXTPropertyBag **ppValue
) const PURE;

ppValue
Address of a pointer to an IHXTPropertyBag interface that manages the
property bag.

IHXTProperty::GetString

Gets the string value of the current property.

STDMETHOD(GetString) (
 const CHAR **pcszValue
) const PURE;

pcszValue
Address of a pointer to the string value of the current property.

IHXTProperty::GetType

Returns the type (such as UINT, double, and so on) of the current property.

STDMETHOD_(UINT32, GetType) (
 THIS
) const PURE;

IHXTProperty::GetUint

Gets the unsigned integer value of the current property.

STDMETHOD(GetUint) (
 UINT32 *puValue
) const PURE;

puValue
Pointer to the value of the current property.

IHXTProperty::GetUintList

Gets the unsigned integer list of the current property.
282

STDMETHOD(GetUintList) (
 IHXTUintList **ppValue
) const PURE;

ppValue
Address of a pointer to an IHXTUintList interface that manages the
unsigned integer list.

IHXTProperty::GetUintRange

Gets the unsigned integer range of the current property.

STDMETHOD(GetUintRange) (
 IHXTUintRange **ppValue
) const PURE;

ppValue
Address of a pointer to an IHXTUintRange interface that manages the
unsigned integer range.

IHXTProperty::GetUnknown

Gets the interface value of the current property.

STDMETHOD(GetUnknown) (
 IUnknown **ppType
) const PURE;

ppType
Address of a pointer to an IUnknown interface that identifies the interface.

IHXTProperty::SetBool

Sets the boolean value of the current property.

STDMETHOD(SetBool) (
 BOOL bValue
) PURE;

bValue
The value to set the current property.

IHXTProperty::SetDouble

Sets the double value of the current property.
283

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(SetDouble) (
 double dValue
) PURE;

dValue
The value to set the current property.

IHXTProperty::SetDoubleList

Sets the double list of the current property.

STDMETHOD(SetDoubleList) (
 IHXTDoubleList *pValue
) PURE;

pValue
Pointer to an IHXTDoubleList interface that manages the double list value
to be set.

IHXTProperty::SetDoubleRange

Sets the double range of the current property.

STDMETHOD(SetDoubleRange) (
 IHXTDoubleRange *pValue
) PURE;

pValue
Pointer to an IHXTDoubleRange interface that manages the double range
value to be set.

IHXTProperty::SetInt

Sets the integer value of the current property.

STDMETHOD(SetInt) (
 INT32 nValue
) PURE;

nValue
The value to set the current property.

IHXTProperty::SetInt64

Sets the 64-bit integer value of the current property.
284

STDMETHOD(SetInt64) (
 INT64 n64Value
) PURE;

n64Value
The value to set the current property.

IHXTProperty::SetInt64List

Sets the 64-bit integer list of the current property.

STDMETHOD(SetInt64List) (
 IHXTInt64List *pValue
) PURE;

pValue
Pointer to an IHXTInt64List interface that manages the 64-bit list value to
be set.

IHXTProperty::SetInt64Range

Sets the 64-bit integer range of the current property.

STDMETHOD(SetInt64Range) (
 IHXTInt64Range *pValue
) PURE;

pValue
Pointer to an IHXTInt64Range interface that manages the 64-bit integer
range value to be set.

IHXTProperty::SetIntList

Sets the integer list of the current property.

STDMETHOD(SetIntList) (
 IHXTIntList *pValue
) PURE;

pValue
Pointer to an IHXTIntList interface that manages the integer list value to be
set.

IHXTProperty::SetIntRange

Sets the integer range of the current property.
285

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(SetIntRange) (
 IHXTIntRange *pValue
) PURE;

pValue
Pointer to an IHXTIntRange interface that manages the integer range value
to be set.

IHXTProperty::SetPropertyBag

Sets the property bag of the current property.

STDMETHOD(SetPropertyBag) (
 IHXTPropertyBag *pValue
) PURE;

pValue
Pointer to an IHXTPropertyBag interface that manages the property bag.

IHXTProperty::SetString

Sets the string value of the current property.

STDMETHOD(SetString) (
 const CHAR *cszValue
) PURE;

cszValue
Pointer to the value to set the current property.

IHXTProperty::SetUint

Sets the unsigned integer value of the current property.

STDMETHOD(SetUint) (
 UINT32 uValue
) PURE;

uValue
The value to set the current property.

IHXTProperty::SetUintList

Sets the unsigned integer list of the current property.

STDMETHOD(SetUintList) (
 IHXTUintList *pValue
) PURE;
286

pValue
Pointer to an IHXTUintList interface that manages the unsigned integer list
value to be set.

IHXTProperty::SetUintRange

Sets the unsigned integer range of the current property.

STDMETHOD(SetUintRange) (
 IHXTUintRange *pValue
) PURE;

pValue
Pointer to an IHXTUintRange interface that manages the unsigned integer
range value to be set.

IHXTProperty::SetUnknown

Sets the interface of the current property.

STDMETHOD(SetUnknown) (
 IUnknown *pType
) PURE;

pType
Pointer to an IUnknown interface that identifies the interface to be set.

IHXTPropertyBag

A property bag stores a collection of properties. Each property has a name and
a value. The property name is always a string. The values are a distinct data
type, such as a sting, an unsigned integer, a double, and so on.

The IHXTPropertyBag interface contains the following methods:

• IHXTPropertyBag::GetBool

• IHXTPropertyBag::GetCount

• IHXTPropertyBag::GetDouble

• IHXTPropertyBag::GetDoubleList

Purpose: Contains sets of properties including simple (UINT, string) and
complex (ranges, lists) data types.

Implemented by: All components

Header file: ihxtpropertybag.h
287

Helix DNA Producer SDK Developer’s Guide
• IHXTPropertyBag::GetDoubleRange

• IHXTPropertyBag::GetInt

• IHXTPropertyBag::GetInt64

• IHXTPropertyBag::GetInt64List

• IHXTPropertyBag::GetInt64Range

• IHXTPropertyBag::GetIntList

• IHXTPropertyBag::GetIntRange

• IHXTPropertyBag::GetProperty

• IHXTPropertyBag::GetPropertyBag

• IHXTPropertyBag::GetPropertyBagEnumerator

• IHXTPropertyBag::GetPropertyEnumerator

• IHXTPropertyBag::GetString

• IHXTPropertyBag::GetUint

• IHXTPropertyBag::GetUintList

• IHXTPropertyBag::GetUintRange

• IHXTPropertyBag::GetUnknown

• IHXTPropertyBag::Remove

• IHXTPropertyBag::SetBool

• IHXTPropertyBag::SetDouble

• IHXTPropertyBag::SetDoubleList

• IHXTPropertyBag::SetDoubleRange

• IHXTPropertyBag::SetInt

• IHXTPropertyBag::SetInt64

• IHXTPropertyBag::SetInt64List

• IHXTPropertyBag::SetInt64Range

• IHXTPropertyBag::SetIntList

• IHXTPropertyBag::SetIntRange

• IHXTPropertyBag::SetProperty

• IHXTPropertyBag::SetPropertyBag

• IHXTPropertyBag::SetString

• IHXTPropertyBag::SetUint

• IHXTPropertyBag::SetUintList

• IHXTPropertyBag::SetUintRange

• IHXTPropertyBag::SetUnknown
288

As with all Component Object Model (COM) interfaces, the IHXTPropertyBag
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTPropertyBag::GetBool

Gets a boolean value from the specified property.

STDMETHOD(GetBool) (
 THIS_
 const CHAR* pName,
 BOOL *pbValue
) PURE;

pName
Pointer to the name of the property from which to get the boolean value.

pbValue
Pointer to the boolean value of the property.

IHXTPropertyBag::GetCount

Returns the number of properties in the current property bag.

STDMETHOD_(UINT32, GetCount) (
 THIS
) PURE;

IHXTPropertyBag::GetDouble

Gets a double value from the specified property.

STDMETHOD(GetDouble) (
 THIS_
 const CHAR* pName,
 double *puValue
) PURE;

pName
Pointer to the name of the property from which to get the double value.

puValue
Pointer to value of the property.
289

Helix DNA Producer SDK Developer’s Guide
IHXTPropertyBag::GetDoubleList

Gets a double list from the specified property.

STDMETHOD(GetDoubleList) (
 THIS_
 const CHAR* pName,
 IHXTDoubleList **ppValue
) PURE;

pName
Pointer to name of the property from which to get the double list.

ppValue
Address of a pointer to an IHXTDoubleList interface that manages the
double list value.

IHXTPropertyBag::GetDoubleRange

Gets a double range from the specified property.

STDMETHOD(GetDoubleRange) (
 THIS_
 const CHAR* pName,
 IHXTDoubleRange **ppValue
) PURE;

pName
Pointer to the name of the property from which to get the double range.

ppValue
Address of a pointer to an IHXTDoubleRange interface that manages the
double range value.

IHXTPropertyBag::GetInt

Gets the integer value of the specified property.

STDMETHOD(GetInt) (
 THIS_
 const CHAR* pName,
 INT32 *puValue
) PURE;

pName
Pointer to the name of the property from which to get the integer value.
290

puValue
Pointer to the value of the property.

IHXTPropertyBag::GetInt64

Gets the 64-bit integer value of the specified property.

STDMETHOD(GetInt64) (
 THIS_
 const CHAR* pName,
 INT64 *puValue
) PURE;

pName
Pointer to the name of the property from which to get the 64-bit integer
value.

puValue
Pointer to value of the property.

IHXTPropertyBag::GetInt64List

Gets the 64-bit integer list of the specified property.

STDMETHOD(GetInt64List) (
 THIS_
 const CHAR* pName,
 IHXTInt64List **ppValue
) PURE;

pName
Pointer to name of the property from which to get the 64-bit integer list.

ppValue
Address of a pointer to an IHXTInt64List interface that manages the 64-bit
integer list value.

IHXTPropertyBag::GetInt64Range

Gets the 64-bit integer range of the specified property.

STDMETHOD(GetInt64Range) (
 THIS_
 const CHAR* pName,
 IHXTInt64Range **ppValue
) PURE;
291

Helix DNA Producer SDK Developer’s Guide
pName
Pointer to the name of the property from which to get the 64-bit integer
range.

ppValue
Address of a pointer to an IHXTInt64Range interface that manages the 64-
bit integer range value.

IHXTPropertyBag::GetIntList

Gets the integer list of the specified property.

STDMETHOD(GetIntList) (
 THIS_
 const CHAR* pName,
 IHXTIntList **ppValue
) PURE;

pName
Pointer to the name of the property from which to get the integer list.

ppValue
Address of a pointer to an IHXTIntList interface that manages the integer
list value.

IHXTPropertyBag::GetIntRange

Gets the integer range of the specified property.

STDMETHOD(GetIntRange) (
 THIS_
 const CHAR* pName,
 IHXTIntRange **ppValue
) PURE;

pName
Pointer to the name of the property from which to get the integer range.

ppValue
Address of a pointer to an IHXTIntRange interface that manages the integer
range value.

IHXTPropertyBag::GetProperty

Gets the property value of the specified property.
292

STDMETHOD(GetProperty) (
 THIS_
 const CHAR* pName,
 IHXTProperty **pProperty
) PURE;

pName
Pointer to the name of the property from which to get the property value.

pProperty
Address of a pointer to an IHXTProperty interface that manages the
property value.

IHXTPropertyBag::GetPropertyBag

Gets the property bag of the specified property. This method is provided for
nested property elements.

STDMETHOD(GetPropertyBag) (
 THIS_
 const CHAR* pName,
 IHXTPropertyBag **ppValue
) PURE;

pName
Pointer to the name of the property from which to get the property bag.

ppValue
Address of a pointer to an IHXTPropertyBag interface that manages the
property bag.

IHXTPropertyBag::GetPropertyBagEnumerator

Gets the property bag enumerator. The property bag enumerator can then be
used to enumerate through the nested property bags.

STDMETHOD(GetPropertyBagEnumerator) (
 THIS_
 IHXTPropertyEnumerator **ppEnumerator
) PURE;

ppEnumerator
Address of a pointer to an IHXTPropertyEnumerator interface that manages
the property bag enumerator.
293

Helix DNA Producer SDK Developer’s Guide
IHXTPropertyBag::GetPropertyEnumerator

Gets the property enumerator. The property enumerator lets you generically
enumerate through all the properties in a property bag. For example, you
could use this enumerator if you have some code that prints out the name of
each property within a property bag.

STDMETHOD(GetPropertyEnumerator) (
 THIS_
 IHXTPropertyEnumerator **ppEnumerator
) PURE;

ppEnumerator
Address of a pointer to an IHXTPropertyEnumerator interface that manages
the property enumerator.

IHXTPropertyBag::GetString

Gets the string value for the specified property.

STDMETHOD(GetString) (
 THIS_
 const CHAR* pName,
 const CHAR **pcszValue
) PURE;

pName
Pointer to the name of the property from which to get the string value.

pcszValue
Address of a pointer to string associated with the property.

IHXTPropertyBag::GetUint

Gets the unsigned integer value of the specified property.

STDMETHOD(GetUint) (
 THIS_
 const CHAR* pName,
 UINT32 *puValue
) PURE;

pName
Pointer to the name of the property from which to get the unsigned
integer value.
294

puValue
Pointer to the value of the property.

IHXTPropertyBag::GetUintList

Gets the unsigned integer list of the specified property.

STDMETHOD(GetUintList) (
 THIS_
 const CHAR* pName,
 IHXTUintList **ppValue
) PURE;

pName
Pointer to the name of the property from which to get the unsigned
integer list.

ppValue
Address of a pointer to an IHXTUintList interface that manages the
unsigned integer list value.

IHXTPropertyBag::GetUintRange

Gets the unsigned integer range of the specified property.

STDMETHOD(GetUintRange) (
 THIS_
 const CHAR* pName,
 IHXTUintRange **ppValue
) PURE;

pName
Pointer to name of the property from which to get the unsigned integer
range.

ppValue
Address of a pointer to an IHXTUintRange interface that manages the
unsigned integer range value.

IHXTPropertyBag::GetUnknown

Gets the interface of the specified property.
295

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(GetUnknown) (
 THIS_
 const CHAR* pName,
 IUnknown **ppType
) PURE;

pName
Pointer to name of the property from which to get the interface.

ppType
Address of a pointer to an IUnknown interface that identifies the interface.

IHXTPropertyBag::Remove

Removes the specified property from the property bag.

STDMETHOD(Remove) (
 THIS_
 const CHAR* pName
) PURE;

pName
Pointer to the name of the property to be removed.

IHXTPropertyBag::SetBool

Sets the specified property to a boolean value.

STDMETHOD(SetBool) (
 THIS_
 const CHAR* pName,
 BOOL bValue
) PURE;

pName
Pointer to the name of the property to be set.

bValue
The value to which the property is set.

IHXTPropertyBag::SetDouble

Sets the specified property to a double value.
296

STDMETHOD(SetDouble) (
 THIS_
 const CHAR* pName,
 double nValue
) PURE;

pName
Pointer to the name of the property to be set.

nValue
The value to which the property is set.

IHXTPropertyBag::SetDoubleList

Sets the specified property with a double list.

STDMETHOD(SetDoubleList) (
 THIS_
 const CHAR* pName,
 IHXTDoubleList *pValue
) PURE;

pName
Pointer to the name of the property to be set.

pValue
Pointer to an IHXTDoubleList interface that manages the double list.

IHXTPropertyBag::SetDoubleRange

Sets the specified property with a double range.

STDMETHOD(SetDoubleRange) (
 THIS_
 const CHAR* pName,
 IHXTDoubleRange *pValue
) PURE;

pName
Pointer to the name of the property to be set.

pValue
Pointer to an IHXTDoubleRange interface that manages the double range.

IHXTPropertyBag::SetInt

Sets the specified property to an integer.
297

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(SetInt) (
 THIS_
 const CHAR* pName,
 INT32 nValue
) PURE;

pName
Pointer to name of the property to be set.

nValue
The value to which the property is set.

IHXTPropertyBag::SetInt64

Sets the specified property to a 64-bit integer.

STDMETHOD(SetInt64) (
 THIS_
 const CHAR* pName,
 INT64 nValue
) PURE;

pName
Pointer to the name of the property to be set.

nValue
The value to which the property is set.

IHXTPropertyBag::SetInt64List

Sets the specified property with a 64-bit integer list.

STDMETHOD(SetInt64List) (
 THIS_
 const CHAR* pName,
 IHXTInt64List *pValue
) PURE;

pName
Pointer to the name of the property to be set.

pValue
Pointer to an IHXTInt64List interface that manages the 64-bit integer list.

IHXTPropertyBag::SetInt64Range

Sets the specified property with a 64-bit integer range.
298

STDMETHOD(SetInt64Range) (
 THIS_
 const CHAR* pName,
 IHXTInt64Range *pValue
) PURE;

pName
Pointer to the name of the property to be set.

pValue
Pointer to an IHXTInt64Range interface that manages the 64-bit integer
range.

IHXTPropertyBag::SetIntList

Sets the specified property with an integer list.

STDMETHOD(SetIntList) (
 THIS_
 const CHAR* pName,
 IHXTIntList *pValue
) PURE;

pName
Pointer to the name of the property to be set.

pValue
Pointer to an IHXTIntList interface that manages the integer list.

IHXTPropertyBag::SetIntRange

Sets the specified property with an integer range.

STDMETHOD(SetIntRange) (
 THIS_
 const CHAR* pName,
 IHXTIntRange *pValue
) PURE;

pName
Pointer to the name of the property to be set.

pValue
Pointer to an IHXTIntRange interface that manages the integer range.
299

Helix DNA Producer SDK Developer’s Guide
IHXTPropertyBag::SetProperty

Sets a property using the IHXTProperty interface.

STDMETHOD(SetProperty) (
 THIS_
 IHXTProperty *pProperty
) PURE;

pProperty
Pointer to an IHXTProperty interface that manages the property being set.

IHXTPropertyBag::SetPropertyBag

Sets the specified property with a property bag. This method is used to nest
property bags.

STDMETHOD(SetPropertyBag) (
 THIS_
 const CHAR* pName,
 IHXTPropertyBag *pValue
) PURE;

pName
Pointer to name of the property to be set.

pValue
Pointer to an IHXTPropertyBag interface that manages the property bag.

IHXTPropertyBag::SetString

Sets the specified property to a string.

STDMETHOD(SetString) (
 THIS_
 const CHAR* pName,
 const CHAR *cszValue
) PURE;

pName
Pointer to name of the property to be set.

cszValue
Pointer to a string that is associated with the property.

IHXTPropertyBag::SetUint

Sets the specified property to an unsigned integer value.
300

STDMETHOD(SetUint) (
 THIS_
 const CHAR* pName,
 UINT32 uValue
) PURE;

pName
Pointer to the name of the property to be set.

uValue
The value to which the property is set.

IHXTPropertyBag::SetUintList

Sets the specified property with an unsigned integer list.

STDMETHOD(SetUintList) (
 THIS_
 const CHAR* pName,
 IHXTUintList *pValue
) PURE;

pName
Pointer to the name of the property to be set.

pValue
Pointer to an IHXTUintList interface that manages the unsigned integer list.

IHXTPropertyBag::SetUintRange

Sets the specified property with an unsigned integer range.

STDMETHOD(SetUintRange) (
 THIS_
 const CHAR* pName,
 IHXTUintRange *pValue
) PURE;

pName
Pointer to the name of the property to be set.

pValue
Pointer to an IHXTUintRange interface that manages the unsigned integer
range.
301

Helix DNA Producer SDK Developer’s Guide
IHXTPropertyBag::SetUnknown

Sets the specified property to an interface.

STDMETHOD(SetUnknown) (
 THIS_
 const CHAR* pName,
 IUnknown *pType
) PURE;

pName
Pointer to then name of the property to be set.

pType
Pointer to an IUnknown interface that identifies the interface to which the
property is to be set.

(Continued on next page.)
302

IHXTPropertyEnumerator

The IHXTPropertyEnumerator interface contains the following methods:

• IHXTPropertyEnumerator::Current

• IHXTPropertyEnumerator::First

• IHXTPropertyEnumerator::GetCount

• IHXTPropertyEnumerator::Next

As with all Component Object Model (COM) interfaces, the
IHXTPropertyEnumerator interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTPropertyEnumerator::Current

Gets the property value at the current position of the internal iterator.

STDMETHOD(Current) (
 THIS_
 IHXTProperty **pValue
) PURE;

pValue
Address of a pointer to an IHXTProperty interface that manages the
property.

IHXTPropertyEnumerator::First

Gets the property value at the first position in the list of property values.

STDMETHOD(First) (
 THIS_
 IHXTProperty **pValue
) PURE;

pValue
Address of a pointer to an IHXTProperty interface that manages property.

Purpose: Provides generic enumeration of all properties in a property bag.

Implemented by: Encoding, plug-ins

Header file: ihxtpropertybag.h
303

Helix DNA Producer SDK Developer’s Guide
IHXTPropertyEnumerator::GetCount

Returns the total number of properties in the list of properties.

STDMETHOD_(UINT32, GetCount) (
 THIS
) const PURE;

IHXTPropertyEnumerator::Next

Advances the internal iterator and gets the property value at the next position
in the list of properties.

STDMETHOD(Next) (
 THIS_
 IHXTProperty **pValue
) PURE;

pValue
Address of a pointer to an IHXTProperty interface that manages the
property.

IHXTPropertyUtility

This interface is a utility class for managing property bags. Property bags are
used throughout the Helix DNA Producer SDK to initialize and configure
plug-ins with their set of properties. The common functionality of this
interface is to duplicate a property bag onto a new property bag and to
perform property bag comparisons.

The IHXTPropertyUtility interface contains the following methods:

• IHXTPropertyUtility::ArePropertiesEquivalent

• IHXTPropertyUtility::ArePropertyBagsEquivalent

• IHXTPropertyUtility::CloneProperty

• IHXTPropertyUtility::ClonePropertyBag

• IHXTPropertyUtility::IsPropertyBagCompatibleWith

• IHXTPropertyUtility::IsPropertyCompatibleWith

Purpose: Compares and clones properties and property bags.

Implemented by: Encoding, plug-ins

Header file: ihxtpropertybag.h
304

As with all Component Object Model (COM) interfaces, the IHXTPropertyUtility
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTPropertyUtility::ArePropertiesEquivalent

Compares two properties to determine if they are alike.

STDMETHOD(ArePropertiesEquivalent) (
 IHXTProperty *pProperty1,
 IHXTProperty *pProperty2
) PURE;

pProperty1
Pointer to an IHXTProperty interface that manages the first property to
compare.

pProperty2
Pointer to an IHXTProperty interface that manages the second property to
compare against the first property.

IHXTPropertyUtility::ArePropertyBagsEquivalent

Compares two property bags to determine if they are alike.

STDMETHOD(ArePropertyBagsEquivalent) (
 IHXTPropertyBag *pPropertyBag1,
 IHXTPropertyBag *pPropertyBag2
) PURE;

pPropertyBag1
Pointer to an IHXTPropertyBag interface that manages the first property
bag to compare.

pPropertyBag2
Pointer to an IHXTPropertyBag interface that manages the second property
bag to compare against the first property bag.

IHXTPropertyUtility::CloneProperty

Creates an exact copy of the specified property.
305

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(CloneProperty) (
 IHXTProperty *pSourceProp,
 IHXTProperty **ppClonedProp = NULL
) PURE;

pSourceProp
Pointer to an IHXTProperty interface that manages the property to be
cloned.

ppClonedProp
Address of a pointer to an IHXTProperty interface that manages the copy of
the property.

IHXTPropertyUtility::ClonePropertyBag

Creates an exact copy of the specified property bag.

STDMETHOD(ClonePropertyBag) (
 IHXTPropertyBag *pSourceBag,
 IHXTPropertyBag **ppClonedBag = NULL
) PURE;

pSourceBag
Pointer to an IHXTPropertyBag interface that manages the property bag to
be cloned.

ppClonedBag
Address of a pointer to an IHXTPropertyBag interface that manages the copy
of the property bag.

IHXTPropertyUtility::IsPropertyBagCompatibleWith

Compares two property bags and determines if they are compatible with each
other. That is, this method determines if all properties are present in both
property bags and that the values are equal. If the property bags contain
ranges or lists, this method determines if the first property bags’s value is
within the range or list of the other.

STDMETHOD(IsPropertyBagCompatibleWith) (
 IHXTPropertyBag *pPropertyBag1,
 IHXTPropertyBag *pPropertyBag2,
 IHXTPropertyBag **ppResult = NULL,
 IHXTPropertyBag **ppErrors = NULL
) PURE;
306

pPropertyBag1
Pointer to an IHXTPropertyBag interface that manages the first property
bag to compare.

pPropertyBag2
Pointer to an IHXTPropertyBag interface that manages the second property
bag to compare against the first property bag.

ppResult
Address of a pointer to an IHXTPropertyBag interface that manages the
result of the comparison between the property bags.

ppErrors
Address of a pointer to an IHXTPropertyBag interface that manages the
property name(s) in the case of either an error in atomic comparison, or if
the property was not present at all.

IHXTPropertyUtility::IsPropertyCompatibleWith

Compares two properties and determines if they are compatible with each
other. That is, this method determines if the value of all properties are equal.
If the properties contain ranges or lists, this method determines if the first
property’s value is within the range or list of the other.

STDMETHOD(IsPropertyCompatibleWith) (
 IHXTProperty *pProperty1,
 IHXTProperty *pProperty2,
 IHXTProperty **ppResult = NULL
) PURE;

pProperty1
Pointer to an IHXTProperty interface that manages the first property to
compare.

pProperty2
Pointer to an IHXTProperty interface that manages the second property to
compare against the first property.

ppResult
Address of a pointer to an IHXTProperty interface that manages the result
of the comparison between the two properties.
307

Helix DNA Producer SDK Developer’s Guide
IHXTSampleAllocator

The IHXTSampleAllocator interface contains the
IHXTSampleAllocator::GetMediaSampleOfSize methods.

As with all Component Object Model (COM) interfaces, the
IHXTSampleAllocator interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTSampleAllocator::GetMediaSampleOfSize

Gets a media sample data buffer of the specified size.

STDMETHOD(GetMediaSampleOfSize) (
 THIS_
 UINT32 uSize,
 IHXTMediaSample** ppMediaSample
) PURE;

uSize
The size of the data buffer in bytes.

ppMediaSample
Address of a pointer to an IHXTMediaSample interface that manages the
data buffer.

IHXTSampleSink

This interface is implemented by any component that can receive media
samples, for example filters.

The IHXTSampleSink interface contains the IHXTSampleSink::ReceiveSample
method.

Purpose: Allocates media sample data buffers.

Implemented by: Filters

Header file: ihxtbase.h

Purpose: Receives the media samples.

Implemented by: Filters

Header file: ihxtbase.h
308

As with all Component Object Model (COM) interfaces, the IHXTSampleSink
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTSampleSink::ReceiveSample

Retrieves the media sample data buffer.

Note: Do not reuse (such as read from or write to the data
buffer) the media sample after passing it to this method. The
media sample is not automatically copied to memory
(memcpy) so accessing it may result in undefined behavior. For
example, some other object might have a reference count on it
and modify the buffer on another thread.

STDMETHOD(ReceiveSample) (
 THIS_
 IHXTMediaSample *pSample
) PURE;

pSample
Pointer to an IHXTMediaSample interface that manages media sample data
buffer.

IHXTSerializeBuffer

This interface serializes objects. For example, you could have an
IHXTEncodingJob interface that is fully configured, serialize it to a buffer that
you write to disk, and quit your application. Then you run the application
again, deserialize the data from the disk, and you would have an
IHXTEncodingJob interface exactly like the interface you previously set.

The IHXTSerializeBuffer interface contains the following methods:

• IHXTSerializeBuffer::ReadFromBuffer

• IHXTSerializeBuffer::WriteToBuffer

Purpose: Serializes objects.

Implemented by: Encoding

Header file: ihxtencodingjob.h
309

Helix DNA Producer SDK Developer’s Guide
As with all Component Object Model (COM) interfaces, the IHXTSerializeBuffer
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTSerializeBuffer::ReadFromBuffer

Reads some XML code from a buffer.

STDMETHOD(ReadFromBuf) (
 THIS_
 IHXBuffer* pszXmlBody,
 BOOL bForceInitialization=FALSE,
 IHXTPropertyBag** ppInitErrorBag=NULL
) PURE;

pszXmlBody
Pointer to an IHXBuffer interface that manages the XML code to be read.

bForceInitialization
If set to false (default), this method will not create the object if any of the
initialization properties fail to be validated. This ensures you never have
an object in a bad state. However, this can have undesirable side effects,
like causing a job file to fail to deserialize if the input filename does not
exist, or if the specified capture device is in use. If this parameter is set to
true , the object is forced to be created even with an invalid property. This
allows the object to be created even though it cannot be part of an
encode—the calling SDK application can then inspect the object and
determine the problem that occurred during initialization.

ppInitErrorBag
Address of a pointer to an IHXTPropertyBag interface that manages the
invalid properties that caused initialization to fail.

IHXTSerializeBuffer::WriteToBuffer

Writes some XML code to a buffer.

STDMETHOD(WriteToBuffer) (
 THIS_
 IHXBuffer* pszXmlBody,
 IHXTSerializationCallback* pSerialCallback=NULL
) PURE;
310

pszXmlBody
Pointer to an IHXBuffer interface that manages the XML code to be written
to the buffer.

pSerialCallback
Pointer to an IHXTSerializationCallback interface that manages the callback
of the object being serialized. If this parameter is NULL, no callbacks will
occur.

IHXTSerializationCallback

If the pSerialCallback parameter in either the IHXTSerializeBuffer::WriteToBuffer
or the IHXTUserConfigFile::WriteToFile method is not set to NULL, this interface is
called before a particular object is serialized. This gives you the opportunity to
change the properties that are actually serialized or skip the serialization of
certain objects (for example, you may not want the audio gain settings to be
serialized—you could use this interface to prevent that from happening).

The IHXTSerializationCallback interface contains the
IHXTSerializationCallback::OnSerializeObject method.

As with all Component Object Model (COM) interfaces, the IHXTServiceBroker
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTSerializationCallback::OnSerializeObject

Provides an opportunity to modify or delete a particular object being
serialized. This method is called immediately before a particular object is
serialized. For example, if you have an encoding job that is being serialized,
you will get a callback for each child object, that is, a callback for the input, a
callback for each prefilter, and so on.

Purpose: Manages the callbacks of an object being serialized.

Implemented by: Custom serialization objects

Header file: ihxtencodingjob.h
311

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(OnSerializeObject) (
 THIS_
 const IUnknown* pObject,
 IHXTPropertyBag* pClonedBag,
 BOOL* pbIsOkToSerialize
) PURE;

pObject
Pointer to an IUnknown interface that identifies user-specified properties
of the property bag for the object currently being serialized.

pClonedBag
Pointer to an IHXTPropertyBag interface that manages a copy of the
individual properties of the object. Provided for future use.

pbIsOkToSerialize
Pointer to a boolean value that, if set to true , allows serialization of the
object to continue. If set to false, serialization of the current object will
not occur.

IHXTServiceBroker

Information provided by this interface is passed back to the user through the
IHXTFilter::SetGraphServices method.

The IHXTServiceBroker interface contains the IHXTServiceBroker::GetService
method.

As with all Component Object Model (COM) interfaces, the IHXTServiceBroker
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTServiceBroker::GetService

Requests an object that implements the interface specified by the GUID.

Purpose: Requests services using the interface GUID.

Implemented by: Helix DNA Producer

Header file: ihxtbase.h
312

STDMETHOD(GetService) (
 THIS_
 const GUID &guid,
 IUnknown **ppUnknown
) PURE;

guid
The GUID that corresponds to the required service.

ppUnknown
Address of a pointer to an IUnknown interface that identifies the interface
to use for this service.

IHXTStatistics

This interface is implemented by filter, stream, and destination objects that
give out statistics.

Note: Currently, only streams give out statistics. See
“Statistics” on page 64 for more information.

The IHXTStatistics interface contains the following methods:

• IHXTStatistics::GetCurrentStatistics

• IHXTStatistics::GetLifeTimeStatistics

As with all Component Object Model (COM) interfaces, the IHXTStatistics
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTStatistics::GetCurrentStatistics

Gets the current statistics.

STDMETHOD(GetCurrentStatistics) (
 IHXTPropertyBag* pStatsBag
) PURE;

Purpose: Gets statistics.

Implemented by: Encoding

Header file: ihxtbase.h
313

Helix DNA Producer SDK Developer’s Guide
pStatsBag
Pointer to an IHXTPropertyBag interface that manages the current statistics.

IHXTStatistics::GetLifeTimeStatistics

Gets all statistics available from the beginning of the encoding job.

STDMETHOD(GetLifeTimeStatistics) (
 IHXTPropertyBag* pStatsBag
) PURE;

pStatsBag
Pointer to an IHXTPropertyBag interface that manages the lifetime
statistics.

IHXTStreamConfig

Sets media-specific encoding properties, such as an audio or video codec. An
audience contains multiple audio stream configuration objects. When
encoding, one stream configuration is chosen based on the audio format
(music, voice) and whether encoding is audio only, or audio and video.

The IHXTStreamConfig interface currently contains no methods; it inherits all of
its methods from IHXTConfigurationAgent.

Note: For more information on the stream properties that can
be configured by this interface, see “Streams” on page 60.

As with all Component Object Model (COM) interfaces, the IHXTStreamConfig
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

Purpose: Sets media-specific encoding properties.

Implemented by: Encoding

Header file: ihxtencodingjob.h
314

IHXTStringEnumerator

Note: This interface does not need to be implemented by itself,
but you can obtain an object that implements this interface
from the class factory.

The IHXTStringEnumerator interface contains the following methods:

• IHXTStringEnumerator::Current

• IHXTStringEnumerator::First

• IHXTStringEnumerator::GetCount

• IHXTStringEnumerator::Next

As with all Component Object Model (COM) interfaces, the
IHXTStringEnumerator interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTStringEnumerator::Current

Gets the string at the current position of the internal iterator.

STDMETHOD(Current) (
 THIS_
 PCSTR *pValue
) PURE;

pValue
Pointer to the contents of the string.

IHXTStringEnumerator::First

Gets the string at the first position in the list of strings.

STDMETHOD(First) (
 THIS_
 PCSTR *pValue
) PURE;

Purpose: Enumerates the values of an string list.

Implemented by: All components

Header file: ihxtpropertybag.h
315

Helix DNA Producer SDK Developer’s Guide
pValue
Pointer to the contents of the string.

IHXTStringEnumerator::GetCount

Returns the total number of properties in the list of strings.

STDMETHOD_(UINT32, GetCount) (
 THIS
) const PURE;

IHXTStringEnumerator::Next

Advances the internal iterator and gets the string at the next position in the
list of strings.

STDMETHOD(Next) (
 THIS_
 PCSTR *pValue
) PURE;

pValue
Pointer to the contents of the string.

IHXTTime

The time being manipulated by this interface generally represents a duration,
but could also be the time on a time line.

The IHXTTime interface contains the following methods:

• IHXTTime::GetMilliSeconds

• IHXTTime::GetTime

• IHXTTime::GetTimeString

• IHXTTime::SetMilliSeconds

• IHXTTime::SetTime

• IHXTTime::SetTimeString

As with all Component Object Model (COM) interfaces, the IHXTTime interface
inherits the following IUnknown methods:

Purpose: Provides a general-purpose time interface.

Implemented by: Helix DNA Producer

Header file: ihxtbase.h
316

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTTime::GetMilliSeconds

Gets the time in milliseconds. Returns whether the call to this method was
successful or failed.

STDMETHOD_(HX_RESULT, GetMilliSeconds) (
 THIS_
 INT64* pnMilliSeconds
) const PURE;

pnMilliSeconds
Pointer to the integer value of the time in milliseconds.

IHXTTime::GetTime

Gets the time in milliseconds. Returns whether the call to this method was
successful or failed.

STDMETHOD_(HX_RESULT, GetTime) (
 THIS_
 double* pdMilliSeconds
) const PURE;

pdMilliSeconds
Pointer to the double value of the time in milliseconds.

IHXTTime::GetTimeString

Returns a pointer to the time string in the format ddd:hh:mm:ss.ms.

STDMETHOD_(const char*, GetTimeString) (
 THIS_
 BOOL bTerse = FALSE
) PURE;

bTerse
Determines how brief the time string is. If false (default), the time string
provides a more precise display of the time. If true , the time sting provides
less precision in the time displayed.
317

Helix DNA Producer SDK Developer’s Guide
IHXTTime::SetMilliSeconds

Sets the time in milliseconds. Use this method if you are using int values.
Returns whether the call to this method was successful or failed.

STDMETHOD_(HX_RESULT, SetMilliSeconds) (
 THIS_
 const INT64 nMilliSeconds
) PURE;

nMilliSeconds
The time to be set, in milliseconds.

IHXTTime::SetTime

Sets the time in milliseconds. Use this method if you are using double values.
Returns whether the call to this method was successful or failed.

STDMETHOD_(HX_RESULT, SetTime) (
 THIS_
 const double dMilliSeconds
) PURE;

dMilliSeconds
The time to be set, in milliseconds.

IHXTTime::SetTimeString

Sets the time using a string. Returns whether the call to this method was
successful or failed.

STDMETHOD_(HX_RESULT, SetTimeString) (
 THIS_
 const char* chTime
) PURE;

chTime
Pointer to the time string in the format ddd:hh:mm:ss.ms.
318

IHXTTransformFilter

A typical transform filter will receive an incoming media sample through
IHXTTransformFilter::ReceiveSample, allocate a new sample using the allocator
passed through IHXTTransformFilter::SetAllocator, and deliver the outgoing
sample to the IHXTSampleSink interface specified by
IHXTTransformFilter::SetSampleSink. This interface inherits methods from the
IHXTFilter interface.

The IHXTTransformFilter interface contains the following unique methods:

• IHXTTransformFilter::ReceiveSample

• IHXTTransformFilter::SetAllocator

• IHXTTransformFilter::SetSampleSink

As with all Component Object Model (COM) interfaces, the
IHXTTransformFilter interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTTransformFilter::ReceiveSample

Sends the filter the next media sample to process. A filter should only send a
sample to the IHXTSampleSink interface within the scope of the call to this
method (that is, if a filter processes samples on a separate thread, it must wait
until the next IHXTTransformFilter::ReceiveSample call to propagate the sample).

STDMETHOD(ReceiveSample) (
 THIS_
 UINT32 uStreamID,
 IHXTMediaSample* pSample
) PURE;

uStreamID
The identity of the stream that contains the media sample.

pSample
Pointer to an IHXTMediaSample interface that manages the media sample to
be processed.

Purpose: Provides transform filter operations on media samples.

Implemented by: Plug-ins

Header file: ihxtbase.h
319

Helix DNA Producer SDK Developer’s Guide
IHXTTransformFilter::SetAllocator

Provides the filter with a media sample allocator. The allocator can be reset at
any time. The filter is also free to ignore the allocator (for example, in a filter
that supports in-place transforms). This method is always called before data
flow calls are made.

STDMETHOD(SetAllocator) (
 THIS_
 UINT32 uStreamID,
 IHXTSampleAllocator* pAllocator
) PURE;

uStreamID
The identity of the stream for which the allocator will be provided.

pAllocator
Pointer to an IHXTSampleAllocator interface that manages the allocation of
media sample data buffers.

IHXTTransformFilter::SetSampleSink

Sets the media sample destination.

STDMETHOD(SetSampleSink) (
 THIS_
 UINT32 uStreamID,
 IHXTSampleSink* pOutputSink
) PURE;

uStreamID
The identity of the stream that contains the media sample.

pOutputSink
Pointer to an IHXTSampleSink interface that manages the destination’s
media sample data buffer.

IHXTUintEnumerator

Note: This interface does not need to be implemented by itself,
but you can access this interface from a property bag.

Purpose: Enumerates the values of an unsigned integer list.

Implemented by: All components

Header file: ihxtpropertybag.h
320

The IHXTUintEnumerator interface contains the following methods:

• IHXTUintEnumerator::Current

• IHXTUintEnumerator::First

• IHXTUintEnumerator::GetCount

• IHXTUintEnumerator::Next

As with all Component Object Model (COM) interfaces, the
IHXTUintEnumerator interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTUintEnumerator::Current

Gets the unsigned integer value at the current position of the internal iterator.

STDMETHOD(Current) (
 THIS_
 UINT32 *pValue
) PURE;

pValue
Pointer to the value of the unsigned integer.

IHXTUintEnumerator::First

Gets the unsigned integer value at the first position in the list of unsigned
integers.

STDMETHOD(First) (
 THIS_
 UINT32 *pValue
) PURE;

pValue
Pointer to the value of the unsigned integer.

IHXTUintEnumerator::GetCount

Returns the total number of properties in the list of unsigned integers.

STDMETHOD_(UINT32, GetCount) (
 THIS
) const PURE;
321

Helix DNA Producer SDK Developer’s Guide
IHXTUintEnumerator::Next

Advances the internal iterator and gets the unsigned integer value at the next
position in the list of unsigned integers.

STDMETHOD(Next) (
 THIS_
 UINT32 *pValue
) PURE;

pValue
Pointer to the value of the unsigned integer.

IHXTUintList

Note: This interface does not need to be implemented by itself,
but you can obtain an object that implements this interface
from the class factory.

The IHXTUintList interface contains the following methods:

• IHXTUintList::Clear

• IHXTUintList::Compare

• IHXTUintList::Contains

• IHXTUintList::GetBack

• IHXTUintList::GetEnumerator

• IHXTUintList::GetFront

• IHXTUintList::GetIntersection

• IHXTUintList::GetSize

• IHXTUintList::IsEmpty

• IHXTUintList::PopBack

• IHXTUintList::PopFront

• IHXTUintList::PushBack

• IHXTUintList:PushFront

As with all Component Object Model (COM) interfaces, the IHXTUintList
interface inherits the following IUnknown methods:

Purpose: Stores a list of unsigned integer values.

Implemented by: All components

Header file: ihxtpropertybag.h
322

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTUintList::Clear

Clears all properties from the current list.

STDMETHOD(Clear) (
 THIS
) PURE;

IHXTUintList::Compare

This method is obsolete and should not be used.

STDMETHOD(Compare) (
 THIS_
 IHXTUintList *pList,
 UINT32 *puValue
) const PURE;

IHXTUintList::Contains

Returns TRUE if the specified value is contained in the current list. Returns
FALSE if the value is not in the current list.

STDMETHOD_(BOOL, Contains) (
 THIS_
 UINT32 value
) const PURE;

value
The unsigned integer value being searched for in the current list.

IHXTUintList::GetBack

Returns the value of the property at the end of the current list.

STDMETHOD_(UINT32, GetBack) (
 THIS
) PURE;
323

Helix DNA Producer SDK Developer’s Guide
IHXTUintList::GetEnumerator

Gets an enumerator that can be used to enumerate through all the items in
the list.

STDMETHOD(GetEnumerator) (
 THIS_
 IHXTUintEnumerator **pEnumerator
) PURE;

pEnumerator
Address of a pointer to an IHXTUintEnumerator interface that manages the
enumerator.

IHXTUintList::GetFront

Returns the value of the property at the beginning of the current list.

STDMETHOD_(UINT32, GetFront) (
 THIS
) PURE;

IHXTUintList::GetIntersection

Gets the intersection between the current list and another specified list.

STDMETHOD(GetIntersection) (
 THIS_
 IHXTUintList *pList,
 IHXTUintList **ppIntersection
) const PURE;

pList
Pointer to an IHXTUintList interface that manages the unsigned integer list
to compare against the current unsigned integer list.

ppIntersection
Address of a pointer to an IHXTUintList interface that manages the new
unsigned integer list. This new list contains only those properties that
were the same in both of the compared lists.

IHXTUintList::GetSize

Returns the size of the current list.
324

STDMETHOD_(UINT32, GetSize) (
 THIS
) PURE;

IHXTUintList::IsEmpty

If TRUE, indicates the current list is empty. If FALSE, indicates there is at least
one property in the current list.

STDMETHOD_(BOOL, IsEmpty) (
 THIS
) PURE

IHXTUintList::PopBack

Returns the property value at the end of the list, and removes the value from
the list.

STDMETHOD_(UINT32, PopBack) (
 THIS
) PURE;

IHXTUintList::PopFront

Returns the property value at the beginning of the list, and removes the value
from the list.

STDMETHOD_(UINT32, PopFront) (
 THIS
) PURE;

IHXTUintList::PushBack

Places a property value at the end of the list.

STDMETHOD(PushBack) (
 UINT32 value
) PURE;

value
The value of the property to add to the end of the list.

IHXTUintList:PushFront

Places a property value at the beginning of the list.
325

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(PushFront) (
 THIS_
 UINT32 value
) PURE;

value
The value of the property to add to the beginning of the list.

IHXTUintRange

Note: This interface does not need to be implemented by itself,
but you can obtain an object that implements this interface
from the class factory.

The IHXTUintRange interface contains the following methods:

• IHXTUintRange::Compare

• IHXTUintRange::GetMax

• IHXTUintRange::GetMin

• IHXTUintRange::GetStepSize

• IHXTUintRange::IsInRange

• IHXTUintRange::Set

As with all Component Object Model (COM) interfaces, the IHXTUintRange
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTUintRange::Compare

This method is obsolete and should not be used.

STDMETHOD(Compare) (
 THIS_
 IHXTUintRange *pRange,
 IHXTUintRange **ppResult
) const PURE;

Purpose: Represents a range of unsigned integer values.

Implemented by: All components

Header file: ihxtpropertybag.h
326

IHXTUintRange::GetMax

Returns the maximum value in the current range.

STDMETHOD_(UINT32, GetMax) (
 THIS
) const PURE;

IHXTUintRange::GetMin

Returns the minimum value in the current range.

STDMETHOD_(UINT32, GetMin) (
 THIS
) const PURE;

IHXTUintRange::GetStepSize

Returns the step size of the current range.

STDMETHOD_(UINT32, GetStepSize) (
 THIS
) const PURE;

IHXTUintRange::IsInRange

Returns TRUE if the specified value is in range or FALSE if the specified value is
out of range.

STDMETHOD_(BOOL, IsInRange) (
 THIS_
 UINT32 uValue
) const PURE;

uValue
The value being tested to see if it is in range.

IHXTUintRange::Set

Sets the range parameters.

STDMETHOD(Set) (
 THIS_
 UINT32 uMin,
 UINT32 uMax,
 UINT32 uStepSize = 1
) PURE;
327

Helix DNA Producer SDK Developer’s Guide
uMin
The minimum value to be set in the range.

uMax
The maximum value to be set in the range.

uStepSize
The step size of the values in the range.

IHXTUserConfigFile

This interface is similar to IHXTSerializeBuffer. However, whereas the
IHXTSerializeBuffer interface’s behavior is strict serialization, this interface has
some custom behavior.

The IHXTUserConfigFile interface contains the following methods:

• IHXTUserConfigFile::ReadFromFile

• IHXTUserConfigFile::WriteToFile

As with all Component Object Model (COM) interfaces, the IHXTUserConfigFile
interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTUserConfigFile::ReadFromFile

Reads some XML code from either a job file (.rpjf) or an audience file (.rpad).

STDMETHOD(ReadFromFile) (
 THIS_
 const char* szPathname,
 BOOL bForceInitialization=FALSE,
 IHXTPropertyBag** ppInitErrorBag=NULL
) PURE;

szPathname
Pointer to the file from which to read.

Purpose: Serializes objects.

Implemented by: Encoding

Header file: ihxtencodingjob.h
328

bForceInitialization
If set to false (default), this method will not create the object if any of the
initialization properties fail to be validated. This ensures you never have
an object in a bad state. However, this can have undesirable side effects,
like causing a job file to fail to deserialize if the input filename does not
exist, or if the specified capture device is in use. If this parameter is set to
true , the object is forced to be created even with an invalid property. This
allows the object to be created even though it cannot be part of an
encode—the calling SDK application can then inspect the object and
determine the problem that occurred during initialization.

ppInitErrorBag
Address of a pointer to an IHXTPropertyBag interface that manages the
invalid properties that caused initialization to fail.

IHXTUserConfigFile::WriteToFile

Writes XML code to either a job file (.rpjf) or an audience file (.rpad).

STDMETHOD(WriteToFile) (
 THIS_
 const char* szPathname,
 IHXTSerializationCallback* pSerialCallback=NULL
) PURE;

szPathname
Pointer to the file to which data will be written.

pSerialCallback
Pointer to an IHXTSerializationCallback method that manages the callback
of the object being serialized. If this parameter is NULL, no callbacks will
occur.

IHXTVideoPinFormat

The IHXTVideoPinFormat interface contains the following methods:

• IHXTVideoPinFormat::GetColorFormat

• IHXTVideoPinFormat::GetFrameDimensions

Purpose: Specifies the format of video samples that will be passed to the
encoding engine.

Implemented by: Encoding

Header file: ihxtbase.h
329

Helix DNA Producer SDK Developer’s Guide
• IHXTVideoPinFormat::GetFrameRate

• IHXTVideoPinFormat::SetColorFormat

• IHXTVideoPinFormat::SetFrameDimensions

• IHXTVideoPinFormat::SetFrameRate

As with all Component Object Model (COM) interfaces, the
IHXTVideoPinFormat interface inherits the following IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXTVideoPinFormat::GetColorFormat

Gets the video color format of video samples passed to the encoding engine.

STDMETHOD(GetColorFormat) (
 THIS_
 EHXTVideoColorFormat* peVideoFormat
) PURE;

peVideoFormat
Pointer to the specific color format of the video sample. One of the
following:

• HXT_VIDEO_FORMAT_BGR24_INVERTED—default 24-bit format
on Windows platforms

• HXT_VIDEO_FORMAT_BGR24_NONINVERTED

• HXT_VIDEO_FORMAT_BGRA32_INVERTED—default-32 bit
format on Windows platforms

• HXT_VIDEO_FORMAT_BGRA32_NONINVERTED

• HXT_VIDEO_FORMAT_LE_ARGB555_INVERTED—default 16-bit
format on Windows platforms

• HXT_VIDEO_FORMAT_LE_ARGB555_NONINVERTED

• HXT_VIDEO_FORMAT_LE_RGB565_INVERTED—default 16-bit
format on Windows platforms

• HXT_VIDEO_FORMAT_LE_RGB565_NONINVERTED

• HXT_VIDEO_FORMAT_RGB24_INVERTED

• HXT_VIDEO_FORMAT_RGB24_NONINVERTED—default 24-bit
format on a MacIntosh
330

• HXT_VIDEO_FORMAT_ARGB32_INVERTED

• HXT_VIDEO_FORMAT_ARGB32_NONINVERTED—default 32-bit
format on a MacIntosh

• HXT_VIDEO_FORMAT_RGBA32_INVERTED

• HXT_VIDEO_FORMAT_RGBA32_NONINVERTED

• HXT_VIDEO_FORMAT_ABGR32_INVERTED

• HXT_VIDEO_FORMAT_ABGR32_NONINVERTED

• HXT_VIDEO_FORMAT_BE_ARGB555_INVERTED

• HXT_VIDEO_FORMAT_BE_ARGB555_NONINVERTED—default
16-bit format on a MacIntosh

• HXT_VIDEO_FORMAT_BE_RGB565_INVERTED

• HXT_VIDEO_FORMAT_BE_RGB565_NONINVERTED

• HXT_VIDEO_FORMAT_LE_RGBA555_INVERTED

• HXT_VIDEO_FORMAT_LE_RGBA555_NONINVERTED

• HXT_VIDEO_FORMAT_BGR8_INVERTED

• HXT_VIDEO_FORMAT_BGR8_NONINVERTED

Planar YUV formats

• HXT_VIDEO_FORMAT_I420—the codec's format; planar 4:2:0
(covers fourCC 'IYUV' as well)

• HXT_VIDEO_FORMAT_YV12—same as I420, but with UV planes
swapped

• HXT_VIDEO_FORMAT_YVU9—planar 16:2:0 format

• HXT_VIDEO_FORMAT_IF09—same as YVU9 but an additional 4x4
subsampled plane is appended containing delta information relative
to the last frame

Packed YUV formats

• HXT_VIDEO_FORMAT_YUY2—packed 4:2:2 format

• HXT_VIDEO_FORMAT_YUY2_INVERTED—packed 4:2:2 format,
inverted (Winnov Videum)

• HXT_VIDEO_FORMAT_UYVY—packed 4:2:2 format, different
ordering
331

Helix DNA Producer SDK Developer’s Guide
• HXT_VIDEO_FORMAT_IUYV

• HXT_VIDEO_FORMAT_IY41

• HXT_VIDEO_FORMAT_IYU1

• HXT_VIDEO_FORMAT_IYU2

• HXT_VIDEO_FORMAT_CYUV

• HXT_VIDEO_FORMAT_YVYU

• HXT_VIDEO_FORMAT_Y211

• HXT_VIDEO_FORMAT_Y41T

• HXT_VIDEO_FORMAT_Y42T

• HXT_VIDEO_FORMAT_CLJR

MacIntosh-specific YUVs and Y’CbCr

• HXT_VIDEO_FORMAT_YUV2

• HXT_VIDEO_FORMAT_V308

• HXT_VIDEO_FORMAT_V408

• HXT_VIDEO_FORMAT_V216

• HXT_VIDEO_FORMAT_V410

• HXT_NUM_VIDEO_FORMATS

IHXTVideoPinFormat::GetFrameDimensions

Gets the frame dimensions of video samples passed to the encoding engine.

STDMETHOD(GetFrameDimensions) (
 THIS_
 UINT32* pulWidth,
 UINT32* pulHeight
) PURE;

pulWidth
Pointer to the width of the frame, in pixels.

pulHeight
Pointer to the height of the frame, in pixels.

IHXTVideoPinFormat::GetFrameRate

Gets the frame rate of video samples passed to the encoding engine.
332

STDMETHOD(GetFrameRate) (
 THIS_
 double* pdFrameRate
) PURE;

pdFrameRate
The frame rate of the video sample, in frames per second.

IHXTVideoPinFormat::SetColorFormat

Sets the video color format of video samples passed to the encoding engine.

STDMETHOD(SetColorFormat) (
 THIS_
 EHXTVideoColorFormat eVideoFormat
) PURE;

eVideoFormat
The specific color format of the video sample. One of the following:

• HXT_VIDEO_FORMAT_BGR24_INVERTED—default 24-bit format
on Windows platforms

• HXT_VIDEO_FORMAT_BGR24_NONINVERTED

• HXT_VIDEO_FORMAT_BGRA32_INVERTED—default-32 bit
format on Windows platforms

• HXT_VIDEO_FORMAT_BGRA32_NONINVERTED

• HXT_VIDEO_FORMAT_LE_ARGB555_INVERTED—default 16-bit
format on Windows platforms

• HXT_VIDEO_FORMAT_LE_ARGB555_NONINVERTED

• HXT_VIDEO_FORMAT_LE_RGB565_INVERTED—default 16-bit
format on Windows platforms

• HXT_VIDEO_FORMAT_LE_RGB565_NONINVERTED

• HXT_VIDEO_FORMAT_RGB24_INVERTED

• HXT_VIDEO_FORMAT_RGB24_NONINVERTED—default 24-bit
format on a MacIntosh

• HXT_VIDEO_FORMAT_ARGB32_INVERTED

• HXT_VIDEO_FORMAT_ARGB32_NONINVERTED—default 32-bit
format on a MacIntosh

• HXT_VIDEO_FORMAT_RGBA32_INVERTED
333

Helix DNA Producer SDK Developer’s Guide
• HXT_VIDEO_FORMAT_RGBA32_NONINVERTED

• HXT_VIDEO_FORMAT_ABGR32_INVERTED

• HXT_VIDEO_FORMAT_ABGR32_NONINVERTED

• HXT_VIDEO_FORMAT_BE_ARGB555_INVERTED

• HXT_VIDEO_FORMAT_BE_ARGB555_NONINVERTED—default
16-bit format on a MacIntosh

• HXT_VIDEO_FORMAT_BE_RGB565_INVERTED

• HXT_VIDEO_FORMAT_BE_RGB565_NONINVERTED

• HXT_VIDEO_FORMAT_LE_RGBA555_INVERTED

• HXT_VIDEO_FORMAT_LE_RGBA555_NONINVERTED

• HXT_VIDEO_FORMAT_BGR8_INVERTED

• HXT_VIDEO_FORMAT_BGR8_NONINVERTED

Planar YUV formats

• HXT_VIDEO_FORMAT_I420—the codec's format; planar 4:2:0
(covers fourCC 'IYUV' as well)

• HXT_VIDEO_FORMAT_YV12—same as I420, but with UV planes
swapped

• HXT_VIDEO_FORMAT_YVU9—planar 16:2:0 format

• HXT_VIDEO_FORMAT_IF09—same as YVU9 but an additional 4x4
subsampled plane is appended containing delta information relative
to the last frame

Packed YUV formats

• HXT_VIDEO_FORMAT_YUY2—packed 4:2:2 format

• HXT_VIDEO_FORMAT_YUY2_INVERTED—packed 4:2:2 format,
inverted (Winnov Videum)

• HXT_VIDEO_FORMAT_UYVY—packed 4:2:2 format, different
ordering

• HXT_VIDEO_FORMAT_IUYV

• HXT_VIDEO_FORMAT_IY41

• HXT_VIDEO_FORMAT_IYU1

• HXT_VIDEO_FORMAT_IYU2
334

• HXT_VIDEO_FORMAT_CYUV

• HXT_VIDEO_FORMAT_YVYU

• HXT_VIDEO_FORMAT_Y211

• HXT_VIDEO_FORMAT_Y41T

• HXT_VIDEO_FORMAT_Y42T

• HXT_VIDEO_FORMAT_CLJR

MacIntosh-specific YUVs and Y’CbCr

• HXT_VIDEO_FORMAT_YUV2

• HXT_VIDEO_FORMAT_V308

• HXT_VIDEO_FORMAT_V408

• HXT_VIDEO_FORMAT_V216

• HXT_VIDEO_FORMAT_V410

• HXT_NUM_VIDEO_FORMATS

IHXTVideoPinFormat::SetFrameDimensions

Sets the frame dimensions of video samples passed to the encoding engine.

STDMETHOD(SetFrameDimensions) (
 THIS_
 UINT32 ulWidth,
 UINT32 ulHeight
) PURE;

ulWidth
The width of the video frame, in pixels.

ulHeight
The height of the video frame, in pixels.

IHXTVideoPinFormat::SetFrameRate

Sets the frame rate of video samples passed to the encoding engine.

STDMETHOD(SetFrameRate) (
 THIS_
 double dFrameRate
) PURE;
335

Helix DNA Producer SDK Developer’s Guide
dFrameRate
The frame rate of the video sample, in frames per second.

IUnknown
The IUnknown interface is the basis of all Component Object Model (COM)
interfaces. This interface contains a set of methods that control the lifetime of
a specific object, and provides a means of querying for the interfaces used by
an object. The IUnknown interface includes the following methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IUnknown::AddRef

Increases the object’s reference count by one. Whenever an object is created, its
reference count begins at 1. If an application calls IUnknown::AddRef, queries an
interface belonging to a specific object, or uses a creation function like
HXTCreateJobFactory, the reference count is incremented by 1.

STDMETHOD_(ULONG32,AddRef) (
 THIS
) PURE;

Return Values

Returns the new reference count.

Note: Use the IUnknown::Release method to decrease the
reference count by 1.

IUnknown::QueryInterface

Queries an object to determine whether it supports a specific interface. If the
call succeeds, you can then use the methods belonging to that interface.

STDMETHOD(QueryInterface) (
 THIS_
 REFIID riid,
 void** ppvObj
) PURE;

riid
Indicates the reference identifier of the interface being queried.
336

ppvObj
Points to an interface pointer that is filled in if the query succeeds.

Return Values

Returns HXR_OK if successful, or one of the following values:

• HXR_FAIL

• HXR_NOINTERFACE

• HXR_NOTIMPL

• HXR_OUTOFMEMORY

IUnknown::Release

Decreases the object’s reference count by one. Every call to IUnknown::AddRef
IUnknown::QueryInterface, or a creation function such as HXTCreateJobFactory
must have a corresponding call to IUnknown::Release. When the reference
count reaches 0 (zero), the object is destroyed.

STDMETHOD_(ULONG32,Release) (
 THIS
) PURE;

Return Values

Returns the new reference count.
337

Helix DNA Producer SDK Developer’s Guide
338

A P P E N D I X
B

 Appendix B : REALMEDIA EDIT INTERFACE LIST
IHXProgressSink

This interface supplies callbacks to your application indicating the status and
progress of a particular job. You can receive these callbacks for the object that
performs editing of .rm files, and the object that encodes events and image
maps into a .rm file. If the object performs editing of .rm file, create an
instance of the IHXRMEdit3 interface, then use the
IHXRMEdit3::AddSaveProgressSink method to create and enable the progress
sink. If the object encodes events and image maps into a .rm file, create an
instance of the IHXRMEvents2 interface, then use the
IHXRMEvents2::AddSaveProgressSink method to create and enable the progress
sink. Once you have finished the operation, use either the
IHXRMEdit3::RemoveSaveProgressSink or the
IHXRMEvents2::RemoveSaveProgressSink methods to remove the progress sink.

The IHXProgressSink interface contains the following methods:

• IHXProgressSink::NotifyFinish

• IHXProgressSink::NotifyStart

• IHXProgressSink::SetProgress

As with all COM interfaces, the IHXProgressSink interface inherits the following
IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXProgressSink::NotifyFinish

Notifies the caller that the job is complete.

Purpose: Supports callback notification about a job’s progress.

Implemented by: Helix DNA Producer

Header file: progsink.h
339

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(NotifyFinish) (
 THIS
) PURE;

IHXProgressSink::NotifyStart

Notifies the caller that the job is starting.

STDMETHOD(NotifyStart) (
 THIS
) PURE;

IHXProgressSink::SetProgress

Sets the percentage of the merge that is complete.

STDMETHOD(SetProgress) (
 THIS_
 UINT32 ulPercentComplete
) PURE;

ulPercentComplete
The amount of the merge that has completed so far, in percent.

IHXProgressSinkControl

This interface is obsolete and should not be used.

IHXRMEdit

The IHXRMEdit interface contains the following methods:

• IHXRMEdit::AddInputFile

• IHXRMEdit::CloseLogFile

• IHXRMEdit::CreateIRMABuffer

Purpose: Adds and removes the progress sink interface.

Implemented by: None

Header file: progsink.h

Purpose: Edits a .rm file.

Implemented by: RealMedia file editors

Header file: ihxtedit.h
340

APPENDIX B: RealMedia Edit Interface List
• IHXRMEdit::GetAuthor

• IHXRMEdit::GetComment

• IHXRMEdit::GetCopyright

• IHXRMEdit::GetEndTime

• IHXRMEdit::GetErrorString

• IHXRMEdit::GetFileVersion

• IHXRMEdit::GetIndexedInputFile

• IHXRMEdit::GetMobilePlayback

• IHXRMEdit::GetNumInputFiles

• IHXRMEdit::GetOutputFile

• IHXRMEdit::GetPerfectPlay

• IHXRMEdit::GetSelectiveRecord

• IHXRMEdit::GetStartTime

• IHXRMEdit::GetTitle

• IHXRMEdit::Log

• IHXRMEdit::OpenLogFile

• IHXRMEdit::Process

• IHXRMEdit::RemoveRMFileSink

• IHXRMEdit::SetAuthor

• IHXRMEdit::SetComment

• IHXRMEdit::SetCopyright

• IHXRMEdit::SetEndTime (in milliseconds)

• IHXRMEdit::SetEndTime (in days: hours: minutes: seconds: milliseconds)

• IHXRMEdit::SetInputFile

• IHXRMEdit::SetMobilePlayback

• IHXRMEdit::SetOutputFile

• IHXRMEdit::SetPerfectPlay

• IHXRMEdit::SetRMFileSink

• IHXRMEdit::SetSelectiveRecord

• IHXRMEdit::SetStartTime (in milliseconds)

• IHXRMEdit::SetStartTime (in days: hours: minutes: seconds: milliseconds)

• IHXRMEdit::SetTitle

As with all COM interfaces, the IHXRMEdit interface inherits the following
IUnknown methods:
341

Helix DNA Producer SDK Developer’s Guide
• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXRMEdit::AddInputFile

Indicates the file name of a .rm file to paste to the end of the input file
specified in IHXRMEdit::SetInputFile. Call IHXRMEdit::SetInputFile before using
this method.

STDMETHOD(AddInputFile) (
 THIS_
 const char szFileName
) PURE;

szFileName
The path to the .rm file to be pasted to the end of the file that was
designated by IHXRMEdit::SetInputFile.

IHXRMEdit::CloseLogFile

Closes the log file opened by IHXRMEdit::OpenLogFile .

STDMETHOD(CloseLogFile) (
 THIS
) PURE;

IHXRMEdit::CreateIRMABuffer

Creates an instance of an IHXBuffer interface.

STDMETHOD(CreateIRMABuffer) (
 THIS_
 IHXBuffer** pBuffer
) PURE;

pBuffer
Returns a pointer to the IHXBuffer interface.

IHXRMEdit::GetAuthor

Returns the current author string.
342

APPENDIX B: RealMedia Edit Interface List
STDMETHOD(GetAuthor) (
 THIS_
 char* szAuthor,
 UINT32 ulSize
) PURE;

szAuthor
Pointer to the author string. The size of the buffer for the author string
must be preallocated by the caller in ulSize.

ulSize
Indicates the size of the author string to be returned in szAuthor.

IHXRMEdit::GetComment

Returns the current comment string.

STDMETHOD(GetComment) (
THIS_
 char* szComment,
 UINT32 ulSize
) PURE;

szComment
Pointer to the comment string. The size of the buffer for the comment
string must be preallocated by the caller in ulSize.

ulSize
Indicates the size of the comment string to be returned in szComment .

IHXRMEdit::GetCopyright

Returns the current copyright string.

STDMETHOD(GetCopyright) (
 THIS_
 char* szCopyright,
 UINT32 ulSize
) PURE;

szCopyright
Pointer to the copyright string. The size of the buffer for the copyright
string must be preallocated by the caller in ulSize.

ulSize
Indicates the size of the copyright string to be returned in szCopyright.
343

Helix DNA Producer SDK Developer’s Guide
IHXRMEdit::GetEndTime

Returns the current end time in milliseconds.

STDMETHOD(GetEndTime) (
 THIS_
 UINT32* pulEndTime
) PURE;

pulEndTime
Pointer to the current end time.

IHXRMEdit::GetErrorString

Returns the error string associated with the specified result value.

STDMETHOD(GetErrorString) (
 THIS_
 HX_RESULT res,
 char* szErrString,
 UINT16 unMaxSize
) PURE;

res
The HX_RESULT value for which you want an error string.

szErrString
Pointer to the error string. The size of the buffer for the error string must
be preallocated by the caller in ulMaxSize.

unMaxSize
Indicates the size of the result string returned in szErrString.

IHXRMEdit::GetFileVersion

Returns the version number of the input file.

STDMETHOD(GetFileVersion) (
 THIS_
 UINT32* pulVersion
) PURE;

pulVersion
Pointer to the version information. If the value of this parameter is 1, the
file is a .rm1 file (Single Rate). If the value of this parameter is 2, the file is
a .rm2 file (Sure Stream).
344

APPENDIX B: RealMedia Edit Interface List
IHXRMEdit::GetIndexedInputFile

Returns the file name of the input file specified by index. Use
IHXRMEdit::GetNumInputFiles to determine how many files have been added to
the IHXRMEditor interface.

STDMETHOD(GetIndexedInputFile) (
 THIS_
 UINT32 index,
 char* szFileName,
 UINT32 ulMaxBufSize
) PURE;

index
The index of the required input file. This parameter must be in the range
of 0 to pulNumInputFiles - 1. (The value of pulNumInputFiles is returned in
IHXRMEdit::GetNumInputFiles.)

szFileName
Pointer to the path to the input file. The size of the buffer for the path
string must be preallocated by the caller in ulMaxBufSize.

ulMaxBufSize
The size of the path string returned in szFileName .

IHXRMEdit::GetMobilePlayback

Returns the current state of the Mobile Playback (Allow Download) f lag.

STDMETHOD(GetMobilePlayback) (
 THIS_
 BOOL* bEnabled
) PURE;

bEnabled
Indicates the state of the mobile playback flag.

IHXRMEdit::GetNumInputFiles

Returns the number of input files that have be added using the
IHXRMEdit::SetInputFile and IHXRMEdit::AddInputFile methods.

STDMETHOD(GetNumInputFiles) (
 THIS_
 UINT32* pulNumInputFiles
) PURE;
345

Helix DNA Producer SDK Developer’s Guide
pulNumInputFiles
Pointer to the current number of input files.

IHXRMEdit::GetOutputFile

Returns the file name of the output file.

STDMETHOD(GetOutputFile) (
 THIS_
 char* szFileName,
 UINT32 ulMaxBufSize
) PURE;

szFileName
Pointer to the output file name. The size of the buffer for the file name
string must be preallocated by the caller in ulMaxBufSize.

ulMaxBufSize
The size of the path string returned in szFileName.

IHXRMEdit::GetPerfectPlay

Returns the current state of the PerfectPlay (Buffered Playback) f lag.

STDMETHOD(GetPerfectPlay) (
 THIS_
 BOOL* bEnabled
) PURE;

bEnabled
Indicates the state of the PerfectPlay flag.

IHXRMEdit::GetSelectiveRecord

Returns the current state of the Selective Record (Allow Recording) f lag.

STDMETHOD(GetSelectiveRecord) (
 THIS_
 BOOL* bEnabled
) PURE;

bEnabled
Indicates the state of the selective record flag.

IHXRMEdit::GetStartTime

Returns the current start time in milliseconds.
346

APPENDIX B: RealMedia Edit Interface List
STDMETHOD(GetStartTime) (
 THIS_
 UINT32* pulStartTime
) PURE;

pulStartTime
Pointer to the current start time.

IHXRMEdit::GetTitle

Returns the current title string.

STDMETHOD(GetTitle) (
 THIS_
 char* szTitle,
 UINT32 ulSize
) PURE;

szTitle
Pointer to the current title string. The size of the buffer for the title string
must be preallocated by the caller in ulSize.

ulSize
The size of the title string returned in szTitle.

IHXRMEdit::Log

Logs the string to the log file.

STDMETHOD(Log) (
 THIS_
 const char* pLogString
) PURE;

pLogString
Pointer to the string to be logged to the log file.

IHXRMEdit::OpenLogFile

Opens the specified file for logging. All status and error messages are logged
to this file.

STDMETHOD(OpenLogFile) (
 THIS_
 const char* pFileName
) PURE;
347

Helix DNA Producer SDK Developer’s Guide
pFileName
Pointer to the file name of the log file.

IHXRMEdit::Process

Processes the edit using the current settings. Creates and writes to the output
file.

STDMETHOD(Process) (
 THIS
) PURE;

IHXRMEdit::RemoveRMFileSink

Removes the specified IHXRMFileSink interface from the IHXRMEditor interface.

STDMETHOD(RemoveRMFileSink) (
 THIS_
 IHXRMFileSink* pRMFileSink
) PURE;

pRMFileSink
Pointer to the IHXRMFileSink interface to be removed.

IHXRMEdit::SetAuthor

Sets the author string.

STDMETHOD(SetAuthor) (
 THIS_
 const char* szAuthor
) PURE;

szAuthor
Pointer to the author string for the file.

IHXRMEdit::SetComment

Sets the comment string.

STDMETHOD(SetComment) (
 THIS_
 const char* szComment
) PURE;

szComment
Pointer to the comment string for the file.
348

APPENDIX B: RealMedia Edit Interface List
IHXRMEdit::SetCopyright

Sets the copyright string.

STDMETHOD(SetCopyright) (
 THIS_
 const char* szCopyright
) PURE;

szCopyright
Pointer to the copyright string for the file.

IHXRMEdit::SetEndTime

Specifes the end time for the edit operation in milliseconds.

STDMETHOD(SetEndTime) (
 THIS_
 UINT32 ulEndTime
) PURE;

ulEndTime
The end time, in milliseconds.

Note: If you do not call this method, the default end time will
be the end of the file (EOF).

IHXRMEdit::SetEndTime

Specifes the end time in days:hours:minutes:seconds:milliseconds format for the
edit operation.

STDMETHOD(SetEndTime) (
 THIS_
 const char* szEndTime
) PURE;

szEndTime
Pointer to the end time, in days:hours:minutes:seconds:milliseconds format
(0:0:0:0:0).

Note: If you do not call this method, the default end time will
be the end of the file (EOF).
349

Helix DNA Producer SDK Developer’s Guide
IHXRMEdit::SetInputFile

Specifies the file name of the input .rm file. If you are pasting several .rm files,
call this method with the name of the first file, then IHXRMEdit::AddInputFile
for the remaining files.

STDMETHOD(SetInputFile) (
 THIS_
 const char* szFileName,
 BOOL bLoadFileInfo
) PURE;

szFileName
Pointer to the file name of the input file.

bLoadFileInfo
Indicates whether you want the RealMedia Edit API to load the input
file’s content information and property flags. If this parameter is set to
TRUE, the input file's content information (Title, Author, Copyright,
Comment) and property flags (Selective Record, Mobile Play, and so on)
are loaded. You can then access this information using the Get methods
(that is, IHXRMEdit::GetTitle, IHXRMEdit::GetAuthor, and so on).

IHXRMEdit::SetMobilePlayback

Enables or disables the Mobile Playback (Allow Download) flag.

STDMETHOD(SetMobilePlayback) (
 THIS_
 BOOL bEnable
) PURE;

bEnable
If this parameter is set to TRUE, Allow Download is enabled. If this
parameter is set to FALSE , Allow Download is disabled.

IHXRMEdit::SetOutputFile

Specifies the file name of the output file. This .rm file contains the results of
the edit operation.

STDMETHOD(SetOutputFile) (
 THIS_
 const char* szFileName
) PURE;
350

APPENDIX B: RealMedia Edit Interface List
szFileName
Pointer to the output .rm file. If the file already exists, it will be replaced. If
the file does not exist it will be created.

IHXRMEdit::SetPerfectPlay

Enables or disables the Perfect Play (Buffered Playback) flag.

STDMETHOD(SetPerfectPlay) (
 THIS_
 BOOL bEnable
) PURE;

bEnable
If this parameter is set to TRUE, Buffered Playback is enabled. If this
parameter is set to FALSE , Buffered Playback is disabled.

IHXRMEdit::SetRMFileSink

Adds an IHXRMFileSink interface to the IHXRMEditor interface. The IHXRMFileSink
interface is then notified whenever a media properties header or data packet is
written to the output file.

STDMETHOD(SetRMFileSink) (
 THIS_
 IHXRMFileSink* pRMFileSink
) PURE;

pRMFileSink
Pointer to the IHXRMFileSink interface that was added.

IHXRMEdit::SetSelectiveRecord

Enables or disables the Selective Record (Allow Recording) flag.

STDMETHOD(SetSelectiveRecord) (
 THIS_
 BOOL bEnable
) PURE;

bEnable
If this parameter is set to TRUE, Allow Recording is enabled. If this
parameter is set to FALSE , Allow Recording is disabled.
351

Helix DNA Producer SDK Developer’s Guide
IHXRMEdit::SetStartTime

Specifes the start time for the edit operation in milliseconds.

STDMETHOD(SetStartTime) (
 THIS_
 UINT32 ulStartTime
) PURE;

ulStartTime
The start time, in milliseconds.

Note: If you do not call this method, the default start time will
be start of the file.

IHXRMEdit::SetStartTime

Specifes the start time for the edit operation in
days:hours:minutes:seconds:milliseconds format.

STDMETHOD(SetStartTime) (
 THIS_
 const char* szStartTime
) PURE;

szStartTime
Pointer to the start time in days:hours:minutes:seconds:milliseconds format
(0:0:0:0:0).

Note: If you do not call this method, the default start time will
be start of the file.

IHXRMEdit::SetTitle

Sets the title string.

STDMETHOD(SetTitle) (
 THIS_
 const char* szTitle
) PURE;

szTitle
Pointer to the title string for the file.
352

APPENDIX B: RealMedia Edit Interface List
IHXRMEdit2

The IHXRMEdit2 interface contains the following methods:

• IHXRMEdit2::GetMetaInformation

• IHXRMEdit2::GetVideoSize

• IHXRMEdit2::HasAudio

• IHXRMEdit2::HasEvents

• IHXRMEdit2::HasImageMaps

• IHXRMEdit2::HasVideo

As with all COM interfaces, the IHXRMEdit2 interface inherits the following
IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXRMEdit2::GetMetaInformation

Gets the meta information currently stored in the active input file. This
method returns a pointer to the IHXValues interface that manages all of the
properties. You can then change the meta information fields in the returned
IHXValues interface.

STDMETHOD(GetMetaInformation) (
 THIS_
 IHXValues** ppValues
) PURE;

ppValues
Address of a pointer to the IHXValues interface that manages the current
meta information.

IHXRMEdit2::GetVideoSize

Returns the height and width of the video in pixels.

Purpose: Provides additional information about a .rm file.

Implemented by: RealMedia file editors

Header file: ihxtedit2.h
353

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(GetVideoSize) (
 THIS_
 UINT16* pHeight,
 UINT16* pWidth
) PURE;

pHeight
Pointer to the height of the video.

pWidth
Pointer to the width of the video.

IHXRMEdit2::HasAudio

Indicates whether the current .rm file contains audio.

STDMETHOD(HasAudio) (
 THIS_
 BOOL* pbHasAudio
) PURE;

pbHasAudio
If this parameter is set to TRUE, the file contains audio.

IHXRMEdit2::HasEvents

Indicates whether the current .rm file contains events.

STDMETHOD(HasEvents) (
 THIS_
 BOOL* pbHasEvents
) PURE;

pbHasEvents
If this parameter is set to TRUE, the file contains events.

IHXRMEdit2::HasImageMaps

Indicates whether the current .rm file contains image maps.

STDMETHOD(HasImageMaps) (
 THIS_
 BOOL* pbHasImageMaps
) PURE;

pbHasImageMaps
If this parameter is set to TRUE, the file contains image maps.
354

APPENDIX B: RealMedia Edit Interface List
IHXRMEdit2::HasVideo

Indicates whether the current .rm file contains video.

STDMETHOD(HasVideo) (
 THIS_
 BOOL* pbHasVideo
) PURE;

pbHasVideo
If this parameter is set to TRUE, the file contains video.

IHXRMEdit3

This interface is queried from the IHXRMEdit interface. You then call the
IHXRMEdit3::AddSaveProgressSink method to turn on status and progress
callbacks from the system. These callbacks include notifying the caller that
the processing of events has started or stopped, and a continuous callback
that provides the percent complete. Once your application returns from the
IHXRMEdit::Process call, use the IHXRMEdit3::RemoveSaveProgressSink method to
remove the progress sink if there are no other editing sessions to process.

The IHXRMEdit3 interface contains the following methods:

• IHXRMEdit3::AddSaveProgressSink

• IHXRMEdit3::RemoveSaveProgressSink

As with all COM interfaces, the IHXRMEdit3 interface inherits the following
IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXRMEdit3::AddSaveProgressSink

Adds a sink interface. This sink interface receives callbacks that indicate the
progress of the save operation, in percent.

Purpose: Adds and removes a progress sink for the editing session.

Implemented by: RealMedia file editors

Header file: ihxtedit.h
355

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(AddSaveProgressSink) (
 IHXProgressSink* pProgressSink
) PURE;

pProgressSink
Pointer to an IHXProgressSink interface that manages the callback
notification about a job’s progress.

IHXRMEdit3::RemoveSaveProgressSink

Removes the progress-during-save sink interface.

STDMETHOD(RemoveSaveProgressSink) (
 IHXProgressSink* pProgressSink
) PURE;

pProgressSink
Pointer to the IHXProgressSink interface to be removed.

IHXRMEvents

The IHXRMEvents interface contains the following methods:

• IHXRMEvents::CloseLogFile

• IHXRMEvents::GetDumpFile

• IHXRMEvents::GetErrorString

• IHXRMEvents::GetEventFile

• IHXRMEvents::GetImageMapFile

• IHXRMEvents::GetInputFile

• IHXRMEvents::GetOutputFile

• IHXRMEvents::Log

• IHXRMEvents::OpenLogFile

• IHXRMEvents::Process

• IHXRMEvents::SetDumpFile

• IHXRMEvents::SetEventFile

• IHXRMEvents::SetImageMapFile

• IHXRMEvents::SetInputFile

Purpose: Modifies events and image maps in a .rm file.

Implemented by: RealMedia file editors

Header file: ihxtevnts.h
356

APPENDIX B: RealMedia Edit Interface List
• IHXRMEvents::SetOutputFile

As with all COM interfaces, the IHXRMEvents interface inherits the following
IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXRMEvents::CloseLogFile

Closes the log file.

STDMETHOD(CloseLogFile) (
 THIS
) PURE;

IHXRMEvents::GetDumpFile

Returns the name of the dump file root name.

STDMETHOD(GetDumpFile) (
 THIS_
 char* szFileName,
 UINT32 ulMaxBufSize
) PURE;

szFileName
Pointer to the dump file root name. The size of the buffer for the file
name string must be preallocated by the caller in ulMaxBufSize.

ulMaxBufSize
Indicates the size of the file name string to be returned in szFileName.

IHXRMEvents::GetErrorString

Returns the error string associated with the specified result value.

STDMETHOD(GetErrorString) (
 THIS_
 HX_RESULT res,
 char* szErrString,
 UINT16 unMaxSize
) PURE;

res
The HX_RESULT value for which you want an error string.
357

Helix DNA Producer SDK Developer’s Guide
szErrString
Pointer to the error string. The size of the buffer for the error string must
be preallocated by the caller in unMaxSize.

unMaxSize
Indicates the size of the result string returned in szErrString.

IHXRMEvents::GetEventFile

Returns the file name of the event text file.

STDMETHOD(GetEventFile) (
 THIS_
 char* szFileName,
 UINT32 ulMaxBufSize
) PURE;

szFileName
Pointer to the event text file name. The size of the buffer for the file name
string must be preallocated by the caller in ulMaxBufSize.

ulMaxBufSize
Indicates the size of the file name string to be returned in szFileName.

IHXRMEvents::GetImageMapFile

Returns the file name of the image map text file.

STDMETHOD(GetImageMapFile) (
 THIS_
 char* szFileName,
 UINT32 ulMaxBufSize
) PURE;

szFileName
Pointer to the image map text file name. The size of the buffer for the file
name string must be preallocated by the caller in ulMaxBufSize.

ulMaxBufSize
Indicates the size of the file name string to be returned in szFileName.

IHXRMEvents::GetInputFile

Returns the file name of the input file.
358

APPENDIX B: RealMedia Edit Interface List
STDMETHOD(GetInputFile) (
 THIS_
 char* szFileName,
 UINT32 ulMaxBufSize
) PURE;

szFileName
Pointer to the input file name. The size of the buffer for the file name
string must be preallocated by the caller in ulMaxBufSize.

ulMaxBufSize
Indicates the size of the file name string to be returned in szFileName.

IHXRMEvents::GetOutputFile

Returns the file name of the output file.

STDMETHOD(GetOutputFile) (
 THIS_
 char* szFileName,
 UINT32 ulMaxBufSize
) PURE;

szFileName
Pointer to the output file name. The size of the buffer for the file name
string must be preallocated by the caller in ulMaxBufSize.

ulMaxBufSize
Indicates the size of the file name string to be returned in szFileName.

IHXRMEvents::Log

Logs the specified string to the log file.

STDMETHOD(Log) (
 THIS_
 const char* pLogString
) PURE;

pLogString
Pointer to the string to be logged to the log file.

IHXRMEvents::OpenLogFile

Opens the specified file for logging. All status and error messages are then
logged to this file.
359

Helix DNA Producer SDK Developer’s Guide
STDMETHOD(OpenLogFile) (
 THIS_
 const char* pFileName
) PURE;

pFileName
Pointer to the file name of the log file.

IHXRMEvents::Process

Merges the events and image maps with the input file. Creates and writes the
output file.

STDMETHOD(Process) (
 THIS
) PURE;

IHXRMEvents::SetDumpFile

Specifies the root file name of the dump file. All events in the input file are
dumped into szFileName_evt.txt. All image maps in the input file are dumped
into szFileName_imap.txt.

STDMETHOD(SetDumpFile) (
 THIS_
 const char* szFileName
) PURE;

szFileName
Pointer to the root file name of the dump file.

IHXRMEvents::SetEventFile

Specifies the file name of the event text file.

STDMETHOD(SetEventFile) (
 THIS_
 const char* szFileName
) PURE;

szFileName
Pointer to the file name of the event text file.

IHXRMEvents::SetImageMapFile

Specifies the file name of the image map text file.
360

APPENDIX B: RealMedia Edit Interface List
STDMETHOD(SetImageMapFile) (
 THIS_
 const char* szFileName
) PURE;

szFileName
Pointer to the file name of the image map text file.

IHXRMEvents::SetInputFile

Specifies the file name of the input .rm file.

STDMETHOD(SetInputFile) (
 THIS_
 const char* szFileName
) PURE;

szFileName
Pointer to the file name of the input file.

IHXRMEvents::SetOutputFile

Specifies the file name of the output file. This .rm file contains the results of
the merge operation.

STDMETHOD(SetOutputFile) (
 THIS_
 const char* szFileName
) PURE;

szFileName
Pointer to the file name of the output .rm file. If the file already exists, it
will be replaced. If the file does not exist, it will be created.

IHXRMEvents2

This interface is queried from the IHXRMEvents interface. You then call the
IHXRMEvents2::AddSaveProgressSink method to turn on status and progress
callbacks from the system. These callbacks include notifying the caller that
the processing of events has started or stopped, and a continuous callback

Purpose: Adds and removes a progress sink during processing of events.

Implemented by: RealMedia file editors

Header file: ihxtevnts.h
361

Helix DNA Producer SDK Developer’s Guide
that provides the percent complete. Once your application returns from the
IHXRMEvents::Process call, use the IHXRMEvents2::RemoveSaveProgressSink
method to remove the progress sink if there are no other events to process.

The IHXRMEvents2 interface contains the following methods:

• IHXRMEvents2::AddSaveProgressSink

• IHXRMEvents2::RemoveSaveProgressSink

As with all COM interfaces, the IHXRMEvents2 interface inherits the following
IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXRMEvents2::AddSaveProgressSink

Adds a sink interface. This sink interface receives callbacks that indicate the
progress of the save operation, in percent.

STDMETHOD(AddSaveProgressSink) (
IHXProgressSink* pProgressSink
) PURE;

pProgressSink
Pointer to an IHXProgressSink interface that manages the callback
notification about a job’s progress.

IHXRMEvents2::RemoveSaveProgressSink

Removes the progress-during-save sink interface.

STDMETHOD(RemoveSaveProgressSink) (
 IHXProgressSink* pProgressSink
) PURE;

pProgressSink
Pointer to the IHXProgressSink interface to be removed.
362

APPENDIX B: RealMedia Edit Interface List
IHXRMFFDump

An entry point, RMACreateRMFFDump, is exported by the RealMedia tools DLL
(rmto3260.dll on Windows and rmtools.6.0 on Linux). The object created with
this function can then be queried (IUnknown::QueryInterface) for this interface.

The IHXRMFFDump interface contains the following methods:

• IHXRMFFDump::Process

• IHXRMFFDump::SetEndTime

• IHXRMFFDump::SetInputFile

• IHXRMFFDump::SetOutputFile

• IHXRMFFDump::SetStartTime

As with all COM interfaces, the IHXRMFFDump interface inherits the following
IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXRMFFDump::Process

Begin the dump process.

STDMETHOD(Process) (
 THIS
) PURE;

IHXRMFFDump::SetEndTime

Sets the end time for the dump.

STDMETHOD(SetEndTime) (
 THIS_
 UINT32 ulEndTime
) PURE;

ulEndTime
The end time for the dump in milliseconds. If this value is set to zero (0),
the end time occurs at the end of file (EOF).

Purpose: Dumps the contents of an existing .rm file to a text file format.

Implemented by: RealMedia file editors

Header file: ihxtfdump.h
363

Helix DNA Producer SDK Developer’s Guide
IHXRMFFDump::SetInputFile

Sets the specified RealMedia file as the input file to be dumped.

STDMETHOD(SetInputFile) (
 THIS_
 const char* szFileName
) PURE;

szFileName
Pointer to the .rm file to be used as the input file.

IHXRMFFDump::SetOutputFile

Sets the specified text file as the output file.

STDMETHOD(SetOutputFile) (
 THIS_
 const char* szFileName
) PURE;

szFileName
Pointer to the .txt file to be used as the output file.

IHXRMFFDump::SetStartTime

Sets the start time for the dump.

STDMETHOD(SetStartTime) (
 THIS_
 UINT32 ulStartTime
) PURE;

ulStartTime
The start time for the dump in milliseconds.

IHXRMFileSink

A sink interface that can be registered with the IHXRMEdit interface allowing
the user to modify (encrypt) the RealMedia file headers and packets before
they are written to the file.

Purpose: Modifies header and packet information sent to a .rm file.

Implemented by: RealMedia file editors

Header file: rmflsnk.h
364

APPENDIX B: RealMedia Edit Interface List
The IHXRMFileSink interface contains the following methods:

• IHXRMFileSink::OnMediaPropertyHeader

• IHXRMFileSink::OnPacket

As with all COM interfaces, the IHXRMFileSink interface inherits the following
IUnknown methods:

• IUnknown::AddRef

• IUnknown::QueryInterface

• IUnknown::Release

IHXRMFileSink::OnMediaPropertyHeader

Retrieves the header information. After you have registered your IHXRMFileSink,
this method is called every time a header (Property, MediaProperty, or
Content) is about to be written to the .rm file. You then have the opportunity
to modify (encrypt) the type-specific data of the header or mime type before it
is written to the file.

STDMETHOD(OnMediaPropertyHeader) (
 THIS_
 IHXValues* pValues
) PURE;

pValues
Pointer to an IHXValues interface that manages the header information.

IHXRMFileSink::OnPacket

Retrieves the packet information. After you have registered your IHXRMFileSink,
this method is called every time a packet is about to be written to the .rm file.
You then have the opportunity to modify (encrypt) the data buffer of the
packet before it is written to the file.

STDMETHOD(OnPacket) (
 THIS_
 IHXPacket* pMediaPacket,
 BOOL bIsKeyFrame
) PURE;

pMediaPacket
Pointer to the IHXPacket interface that manages the data packet.

bIsKeyFrame
If this parameter is set to TRUE, the packet is a keyframe.
365

Helix DNA Producer SDK Developer’s Guide
IHXRMFileSinkControl

This interface is obsolete and should not be used.

IHXRMMetaInformation

This interface is obsolete and should not be used.

Purpose: Adds and removes the file sink interface.

Implemented by: None

Header file: rmflsnk.h

Purpose: Adds meta information to an .rm file.

Implemented by: None

Header file: rmmetain.h
366

A P P E N D I X
C

 Appendix C : FUNCTION LIST
CreateFileObserver

(STDAPICALLTYPE *FPCREATEFILEOBSERVER)(IHXTFileObserver** ppIFileObserver);

ppIFileObserver
Address of a pointer to an IHXTFileObserver interface returned from the
created object.

HXTCreateJobFactory

STDAPI HXTCreateJobFactory(
 IHXTClassFactory** ppJobClassFactory
);

ppJobClassFactory
Address of a pointer to the IHXTClassFactory interface returned from the
created object.

Purpose: Creates a file observer object and returns the IHXTFileObserver
interface from the created object.

Implemented by: Logging

Header file: ihxtfileobserver.h

Purpose: Creates an encoding job class factory.

Implemented by: Encoding

Header file: ihxtencodingjob.h
367

Helix DNA Producer SDK Developer’s Guide
RMACreateRMEdit

STDAPI RMACreateRMEdit(
 IUnknown** ppIUnknown
);

ppIUnknown
Address of a pointer to an IUnknown interface that identifies the instance
of the RealMedia editor object.

RMACreateRMEvents

STDAPI RMACreateRMEvents(
 IUnknown** ppIUnknown
);

ppIUnknown
Address of a pointer to an IUnknown inteface that identifies the instance of
the RealMedia events object.

RMACreateRMFFDump

STDAPI RMACreateRMFFDump(
 IUnknown** ppIUnknown
);

ppIUnknown
Address of a pointer to an IUnknown interface that identifies the instance
of the RealMedia file dump object.

Purpose: Creates an instance of a RealMedia editor object.

Implemented by: RealMedia editors

Header file: ihxtedit.h

Purpose: Creates an instance of a RealMedit events object.

Implemented by: RealMedia editors

Header file: ihxtevnts.h

Purpose: Creates an instance of a RealMedit file dump object.

Implemented by: RealMedia editors

Header file: ihxtfdump.h
368

APPENDIX C: Function List
RMAGetLogSystemInterface

(STDAPICALLTYPE *FPRMAGETLOGSYSTEMINTERFACE)(IHXTLogSystem**
ppLogSystem);

ppLogSystem
Address of a pointer to an instance of an IHXTLogSystem interface returned
from the created object. If the logging system has not yet been created, it is
created and initialized.

SetDLLAccessPath

STDAPI SetDLLAccessPath(
 const char* pPathDescriptor
);

pPathDescription
Pointer to the path to the DLLs.

Purpose: Creates a logging system object and returns the IHXTLogSystem
interface from the created object.

Implemented by: Logging

Header file: ihxtlogsystem.h

Purpose: Module entry point to the encoding system used to specify
DLL locations.

Implemented by: Encoding

Header file: ihxtencodingjob.h
369

Helix DNA Producer SDK Developer’s Guide
370

GLOSSARY
A API
Application programming interface. A technique specified by an
operating system or application whereby a programmer’s application can
make requests of that operating system or application.

ASM
Adaptive stream management. Rules that describe a streaming data type
to Helix DNA Producer.

activate
Only in the scope of the input and output lists, enabling the radio button
on an input and make that input the source for the encoded content, or to
enable the check box of an output and begin encoding to that output, in
addition to any other checked outputs.

agent layer
The part of a plug-in where the plug-in’s property initialization occurs
and media format information is handled.

audience
 An item that defines a set of stream properties that is designed as a
streaming configuration for a player connection at a specific bit rate. A
single audience definition contains information necessary to use that
audience for audio only, audio and video, and video only streams. For
example, “56k Modem” is the name of one audience. Unlike previous
producers, duress streams are no longer part of an audience, but are
themselves audiences.

audience template file
An XML file containing the properties and settings for a single audience.

audio clipping
Occurs when audio exceeds the maximum range of the recording
medium.

audio gain
The level of increase in audio signal strength, usually expressed in dB.
371

Helix DNA Producer SDK Developer’s Guide
B bit rate
The rate at which a presentation is streamed, usually expressed in kilobits
per second (Kbps).

black level
The amount of light in the darkest area of a video display.

C CBR
Constant bit rate. An encoding method in which all parts of the video play
back at the same bit rate. Contrast to VBR.

COM
Component object model. A technology used by the Helix DNA Producer
SDK for describing interfaces and exporting objects that implement those
interfaces.

capture device
An input filter that takes audio and video data from a hardware device
and sends it to the encoding engine. Common capture device hardware
are sound cards and video capture cards.

class factory
A COM object whose purpose is to create other objects of a particular
class ID, and return an interface pointer to that object.

clip information
Additional information regarding a presentation, such as the title, author,
copyright, and so on for any media file.

clipping
Defining new in and out points for a static input file such that only the
portion of the source between the markers is sent through the encoder.

codec
Coder/decoder. An algorithm for compressing files used with Helix DNA
Producer. A variety of codecs exist for different streaming bit-rates and
content types.

configuration agent
The part of a plug-in that gets and sets properties during the
configuration process in the plug-in.

connection agent
The part of the plug-in used by the filter graph manager to negotiate the
connections between filters in a data flow.
372

 Glossary
cropping
Setting a subset of the dimensions of a video source. This subset is what is
sent through the encoder (for example, cropping a source image with the
dimensions 640x480 to 640x360 letterbox).

D DRM
Digital rights management. A set of technology and rules that allows
content owners to set rights on how, when, and with what frequency end
users can view content.

deinterlace
The process of creating a single video frame from two interlaced fields of a
video frame. Deinterlacing removes interlacing artifacts for a still frame,
or if the video is being displayed at a different frame rate from the
original.

deserialize
The process of extracting information from an XML file and using that
information to recreate an encoding object. See also serialize.

destination
Refers to either a RealMedia file or Helix Universal Server that is a
location where the encoded data will be sent to or stored.

down-shift
The ability of a RealOne Player connected to a Helix Universal Server to
decrease the bit rate of a stream being received, such as in conditions of
constrained network bandwidth.

E encoding engine
The part of the encoding system that processes the media sample inputs
and produces a modified media sample output.

encoding job
A set of inputs, outputs, destinations, target audiences, metadata, and
filters: references to everything necessary to perform a single encode,
which is one or multiple inputs going to one or multiple files and/or
servers.

encoding session
The time during which the process of encoding audio and video data
from one format to another occurs.
373

Helix DNA Producer SDK Developer’s Guide
encoding system
A set of components that integrate with the purpose of encoding media.
The Helix DNA Producer encoding system consists of the encoding
engine, the filter graph manager, and all of the plug-ins associated with an
encoding session.

enumeration
The process of navigating through a list of objects.

event
An occurrence that provides notification throughout the encoding system
of a state change or an error condition. See RealMedia event.

F file observer
A part of the logging system that writes messages to a text file. The file
observer can be configured to remove certain messages before they are
saved in the text file. A file observer is the standard logging system
observer shipped with the Helix DNA Producer SDK. Contrast with log
observer.

file reader
An input filter that reads from a media file and provides audio and video
media for the encoding engine.

file rolling
The process of creating additional files at a certain time or after a
specified file size is reached to prevent the original file size from
becoming too large. During a file rolling process, a new file is
automatically created, the original file is renamed, and packets are then
sent to the new file.

filter
Any part of the encoding system that passes media data, and either
analyzes or modifies the data as it passes. Alternatively, any process that
removes artifacts that appear in the encoded clips because of the methods
used to create the source video.

filter graph manager
Part of the Helix DNA Producer encoding system that manages the
connection of various media filters, and also manages data flow through
the filters once they are connected.
374

 Glossary
filter layer
The part of a plug-in that generates or accepts media samples, modifies or
analyzes them, then passes them on to the next component in the data
pipeline.

H helper class
A code wrapper that provides access to low-level interfaces and methods
used by Helix DNA Producer. These helper classes allow you to create
plug-ins without having to populate these low-level interfaces and
methods.

I image map
A clickable region in a RealVideo presentation that can launch a URL in a
browser, cause the player to seek in the current presentation, or cause the
player to start playback of a new presentation.

input
A source, plus all of its associated filter and metadata settings. The name
is generally take from the source, and is displayed in the input list of the
main window.

inverse telecine
The process of stripping out redundant frames from video that was
produced by converting 24 frames per second (fps) cinematic film to 30
fps NTSC video (telecine). The inverse telecine process removes the
redundant frames and returns the video to its original 24 fps.

L log message
Information passed through the logging system that can be written to a
file or passed to other log observers. Log messages are commonly
categorized as errors, warnings, information, or diagnostic messages.
Alternatively, the log messages can be categorized by functional area, such
as file reader, capture, codec, audio prefilter, broadcast, and so on.

log observer
A custom component in the logging system that receives log messages and
can act on them, writing them to a file, showing them on a display, and so
on. Contrast to file observer.

logging system
A part of the encoding system that handles the input and output of
informational messages.
375

Helix DNA Producer SDK Developer’s Guide
M mark-in
The starting marker of a clipping region.

mark-out
The ending marker of a clipping region.

media format
The properties associated with a specific type of audio or video media.

media profile
A grouping for all items inside an output, excluding destinations.

media sample
A logical part of media data, for example, a frame of raw video or a raw
PCM audio frame.

media sink
An object into which you push media samples. The media sink interface
takes raw data that it then passes to the rest of the encoding system.

metadata
See clip information.

N NTSC
National Television System Committee. The name of one type of analog
transmission of television signals, consisting of a standard image format
of 525 lines with an aspect ratio of 4:3 displayed at 60 Hz for an effective
frame rate of 30 fps.

O output profile
One or more destinations, plus a set of one or more audiences, and a set of
filters: the data that defines the settings for the encoded data, plus where
that data will be stored and/or which server(s) it will be streamed to. This
can also be thought of as a group of destinations and their associated
settings (which are common to all destinations).

P PAL
Phase Alternate Line. The name of one type of analog transmission of
television signals, consisting of a standard image format of 625 lines with
an aspect ratio of 4:3 displayed at 50 Hz for an effective frame rate of 25
fps.
376

 Glossary
plug-in
A type of software that adds a specific capability to a program already on
your computer. For instance, your browser probably requires a plug-in to
see certain types of animation.

plug-in layer
The part of a plug-in that describes the functionality of the plug-in to the
rest of the encoding system.

postfilter
A filter applied to source content after encoding. For example, digital
rights management (DRM) is generally applied to an output source after
encoding.

prefilter
A filter applied to source content prior to encoding. The purpose of a
prefilter is generally to improve the quality of the source material or make
it more suitable for encoding.

preview
The act of receiving the video and/or audio media at certain points in the
encode sequence, either before it is encoded or during the encoding
process, but before the data is written to the final output.

property
A single name/value pair used for configuration of an object, or used as a
means for an object to describe itself.

property bag
A collection of properties.

pull broadcast
A form of broadcasting where the player initiates the stream of data from
the encoder to the server, then from the server to the player.

push broadcast
A form of broadcasting where the encoder immediately sends data to the
server as soon as the broadcast is initiated.

R RealMedia
A blanket term used to refer to the various “real” data types that Helix can
stream.
377

Helix DNA Producer SDK Developer’s Guide
RealMedia event
An occurrence within an .rm file that either changes the title, author, or
copyright clip information displayed in the player, or opens a specified
URL in a browser, or performs a custom task. Contrast to event.

remote administrator
The component of Helix DNA Producer that allows remote configuration
and monitoring of a cluster of encoder boxes, based on a web browser
client side interface.

remote agent
A component on the same machine as the encoder that can talk to
multiple encoder instances and external components, such as the remote
administrator.

resampling
The process of recalculating the sample rate of an audio source at a
different rate from which it was originally recorded. If the sample rate is
decreased, samples are removed from the audio source, making the audio
source smaller, but possibly decreasing the available frequency range. If
the sample rate is increased, samples are added to the audio source, but
the available frequency range is usually unchanged.

resize
The process of changing the size of a video presentation by removing
some video data. Helix DNA Producer removes video data by using either
a quick method (fast resize) or a complex analysis (high-quality resize). A
high-quality resize results in a superior image, but it also lengthens the
encoding time.

S select
To select an item from a list such that the item is highlighted, and any
operations performed effect that item. For example, selecting an input
would allow a user to copy or paste input settings, but would not activate
(that is, encode from or to) that input.

serialize
The process of saving the configuration settings of an object to a file or to
a buffer in memory by converting the settings to an XML document. See
also deserialize.
378

 Glossary
server definition
Defines all of the information required for Helix DNA Producer to
connect to a specified Helix Universal Server.

smart scaling
The ability to create streams of different dimensions inside a single
SureStream file, and the ability of the RealOne Player to switch between
those streams when appropriate for up shifting and down shifting.

source
Refers to a file or device that contains or otherwise provides references to
the data to be encoded.

splitter
The process of taking a live broadcast from a server acting as a
transmitter, and providing that broadcast to a number of downstream
proxies or servers acting as receivers, before providing the content locally
to clients.

statistics
Information provided by the encoder that describes either the current or
lifetime status of various aspects of the audio and video samples during
the encoding process.

stream
In the case of an single-rate audio file, the single audio track. In the case of
an audio/video file, the combination of the audio and video tracks makes
up the stream.

SureStream
A technology that makes it possible to switch to a lower-bandwidth
encoding in a RealAudio or RealVideo clip to compensate for network
congestion.

T telecine
The process of converting 24 frames per second (fps) cinematic film to 30
fps NTSC video by adding redundant video frames. The redundant frames
produced by this process can be reversed on the video using inverse telecine.

time stamp
A property set on a media sample that is primarily used to identify when
in the presentation the media sample will be played.
379

Helix DNA Producer SDK Developer’s Guide
two-pass encoding
The process of first analyzing the entire source video before making a
second pass to encode the stream. Two-pass encoding helps the most with
variable bit rate (VBR) encoding.

U up-shift
The ability of a RealOne Player connected to a Helix Universal Server to
increase the bit rate of a stream being received.

V VBR
Variable bit rate. An encoding method that varies the bit rates of different
parts of a video, even though the video is being streamed a a constant rate.
Contrast to CBR.

video noise
Any number of different types of distortion that result in the degradation
of the video media.

X XML
Extensible markup language. XML is simplified SGML (Standard
Generalized Markup Language), the international standard for markup
languages. XML enables you to create your own markup tags and is
designed for use on the World Wide Web.
380

INDEX
A account-based RBS push broadcast, 54
AddAudience, IHXTMediaProfile, 259
AddDestination, IHXTOutputProfile, 268
AddFailoverDestination, IHXTDestination,

184
AddInput, IHXTInput2, 223
AddInputFile, IHXRMEdit, 342
AddOutputProfile, IHXTEncodingJob, 197
AddPostfilter, IHXTDestination, 184
AddPrefilter, IHXTInput, 221
AddRef, IUnknown, 336
AddSaveProgressSink, IHXRMEdit3, 355
AddSaveProgressSink, IHXRMEvents2, 362
AddSink, IHXTPreviewSinkControl, 275
AddStreamConfig, IHXTAudience, 160
advanced operations, log observer, 104
advanced settings, file observer, 101
agent layer, plug-ins, 114
all destinations properties, 51
all stream properties, 60
allow download feature, 147
allow recording feature, 147
appending files, 102
areas, encoding system, 20
ArePropertiesEquivalent, IHXTPropertyUtili-

ty, 305
ArePropertyBagsEquivalent, IHXTProper-

tyUtility, 305
audience template file, 32
audiences, 59
Audio

delay compensation, 45
audio

capture device identification, 85
capture devices, 84

codec name, 60
codec properties, 90
gain, 44
media formats, 143
mode, 61
music mode, 61, 90
preview, 74
resampler quality, 59
sample rate, 90
stream context property bag, 61
stream properties, 60
stream statistics, 64
uncompressed properties, 143
voice mode, 61, 90
watchdog prefilter, 43, 44, 45

audio/video files, 36
author string, setting, 147
automatic codec selection, 85

B basic file observer use, 99
black level, 42
black level prefilter, 42
broadcast

account-based RBS push, 54
G2 push, 54
password-based RBS push, 56
RBS Pull, 57

build instance, 34
BuildInstance, IHXTClassFactory, 170
BuildInstanceFromBuffer, IHXTClassFacto-

ry, 171
BuildInstanceFromFile, IHXTClassFactory,

172
BuildInstanceFromObject, IHXTClassFacto-

ry, 173
381

Helix DNA Producer SDK Developer’s Guide
C cached samples, discarding, 123
callbacks

edit status and progress, 355
event processing, 155
event status and progress, 361
preview, 75
RealMedia files, 150
serialization, 63
set up for editing, 156
set up for events, 156
state and progress, 155
status information, 150
threads, 93

cancel encoding job, 92
CancelEncoding, IHXTEncodingJob, 197
capture devices, 39

enumeration, 83
manager and enumeration, 83
plug-in, 111

catch up, log observer, 104
category filtering, 100
channel format, audio, 90
chapter list, 2
character sequence, file name, 101
CHXConfigurationAgentHelper, 135
class factory, 34
Clear, IHXTDoubleList, 190
Clear, IHXTInt64List, 229
Clear, IHXTIntList, 237
Clear, IHXTUintList, 323
clip info, 62
Clone, IHXTMediaSample, 261
CloneProperty, IHXTPropertyUtility, 305
ClonePropertyBag, IHXTPropertyUtility, 306
Close, IHXTInputPreviewControl, 226
CloseLogFile, IHXRMEdit, 342
CloseLogFile, IHXRMEvents, 357
codec

audio properties, 90
automatic selection, 85
enumeration samples, 89
manager and enumeration, 88
properties, 90
video properties, 91

codec name
audio, 60
video, 61

codes and policies, error result, 144
COM, 23
comment string, setting, 147
common class factory, log writer, 106
Compare, IHXTCustomComparison, 183
Compare, IHXTDoubleList, 191
Compare, IHXTDoubleRange, 194
Compare, IHXTInt64List, 229
Compare, IHXTInt64Range, 233
Compare, IHXTIntList, 237
Compare, IHXTIntRange, 240
Compare, IHXTUintList, 323
Compare, IHXTUintRange, 326
complexity, encoding, 60, 61
configuration

files, 24
settings, 63

configuration agent
initializing, 35
plug-in layer, 135

connecting outputs to inputs, 140
connection agent

description, 139
plug-in layer, 135

constant bit rate, 59
Contains, IHXTDoubleList, 191
Contains, IHXTInt64List, 229
Contains, IHXTIntLIst, 237
Contains, IHXTUintList, 323
conventions, 4
converting to error strings, 147
CopyProperties, IHXTMediaSample, 261
copyright string, setting, 147
count, getting input stream, 140
create instance, 34
CreateFileObserver, 99, 367
CreateInstance, IHXTClassFactory, 174
CreateIRMABuffer, IHXRMEdit, 342
creating the file observer, 99
cropping filter, 79
382

 Index
cropping, video, 42
Current, IHXTDoubleEnumerator, 188
Current, IHXTInt64Enumerator, 227
Current, IHXTIntEnumerator, 235
Current, IHXTPropertyEnumerator, 303
Current, IHXTStringEnumerator, 315
Current, IHXTUintEnumerator, 321
custom

logging, 95
media plug-ins, 113
metadata, 62

D data flow, filters, 117
deinterlace, 43
delay compensation, audio, 45
deserialization, 63
destinations, 51
digital rights management, 57
directory structure, 20
DisableSink, IHXTPreviewSinkControl3, 277
DiscardCachedSamples, IHXTFilter, 216
discarding cached samples, 123
DLL

encoding, 34
file observer, 99
logging system, 97
RealMedia tools, 146, 153

dumping
events, 155
image maps, 155

duration statistic, 64

E editing
RealMedia files, 146
setting up callbacks, 156

EHXTAudioChannelFormat, 90, 167
EHXTAudioSampleFormat, 90, 167
Enable, IHXTFileObserver, 211
EnableSDKMessages, IHXTFileObserver, 212
EnableSink, IHXTPreviewSinkControl3, 277
enabling substreams, 58
EncodeSample, IHXTMediaInputPin, 257
encoding

DLL, 34
hierarchy, 33
interfaces, 31
samples, 94
video VBR quality, 62

encoding complexity, 60, 61
encoding engine, 22

properties, 149
threading model, 92

encoding job
audiences, 59
audio and video preview, 74
capture devices, 83
codecs, 88
creating, 34
destination, 51
events and errors, 65
input, 36
logging, 65
media profile, 58
metadata, 62
optional features, 62
output profile, 45
prefilters, 41
properties, 35
serialization, 63
setting up, 35
start, stop, shut down, 92
statistics, 64
streams, 60

encoding session, typical, 110
encoding system

areas, 20
overview, 21

encoding, stream type, 60
end encoding job, 92
enumeration

capture device, 83
codecs, 88

error correction, video, 62
error result codes and policies, 144
error strings, converting to, 147
errors, asynchronous, 65
events

asynchronous, 65
383

Helix DNA Producer SDK Developer’s Guide
disabling encoding, 58
dumping, 155
if in RealMedia file, 148
merging, 154
processing, 153, 154
setting up callbacks, 156

F file appending, 102
file name, file observer, 101
file observer

advanced settings, 101
basic settings, 100
initializing, 100
using, 99

file reader plug-ins, 111
file rolling

destination property, 51
file observer, 102

file writers, 51
files

header, 1, 27
samples, 1
SureStream, 58
XML configuration, 24

filter data flow, 117
filter graph, 20
filter graph manager, 22
filter interfaces, plug-ins, 116
filter layer

intialization, 116
plug-ins, 114

filtering, log observer, 105
filters, transform, 111
First, IHXTDoubleEnumerator, 189
First, IHXTInt64Enumerator, 228
First, IHXTIntEnumerator, 235
First, IHXTPropertyEnumerator, 303
First, IHXTStringEnumerator, 315
First, IHXTUintEnumerator, 321
Flush, IHXTLogObserver2, 246
format change, preview, 78
format, log messages, 100
FUNCAREA attribute, 106
functional area

filtering, 100
log observer, 106

G G2 push broadcast, 54
gain, audio, 44
get writer interface, 107
GetAction, IHXTEventSample, 203
GetAudience, IHXTAudienceEnumerator,

162
GetAudience, IHXTMediaProfile, 259
GetAudienceCount, IHXTAudienceEnumera-

tor, 163
GetAudienceCount, IHXTMediaProfile, 259
GetAuthor, IHXRMEdit, 342
GetBack, IHXTDoubleList, 191
GetBack, IHXTInt64List, 230
GetBack, IHXTIntList, 237
GetBack, IHXTUintList, 323
GetBool, IHXTProperty, 279
GetBool, IHXTPropertyBag, 289
GetChannelFormat, IHXTAudioPinFormat,

167
GetCodecMappingFile, IHXTCodecUpdat-

er, 175
GetCodecUpdater,

IHXTAudienceEnumerator2, 164
GetColorFormat, IHXTVideoPinFormat, 330
GetComment, IHXRMEdit, 343
GetCopyright, IHXRMEdit, 343
GetCount, IHXTDoubleEnumerator, 189
GetCount, IHXTInt64Enumerator, 228
GetCount, IHXTIntEnumerator, 235
GetCount, IHXTPluginInfoEnum, 271
GetCount, IHXTPropertyBag, 289
GetCount, IHXTPropertyEnumerator, 304
GetCount, IHXTStringEnumerator, 316
GetCount, IHXTUintEnumerator, 321
GetCurrentStatistics, IHXTStatistics, 313
GetDataSize, IHXTMediaSample, 261
GetDataStartForReading, IHXTMediaSam-

ple, 262
GetDataStartForWriting, IHXTMediaSam-

ple, 262
384

 Index
GetDestination, IHXTDestinationEnumera-
tor, 187

GetDestination, IHXTOutputProfile, 268
GetDestinationCount, IHXTDestinationEnu-

merator, 187
GetDestinationCount, IHXTOutputProfile,

268
GetDouble, IHXTProperty, 279
GetDouble, IHXTPropertyBag, 289
GetDoubleList, IHXTProperty, 279
GetDoubleList, IHXTPropertyBag, 290
GetDoubleRange, IHXTProperty, 280
GetDoubleRange, IHXTPropertyBag, 290
GetDumpFile, IHXRMEvents, 357
GetEndTime, IHXRMEdit, 344
GetEnumerator, IHXTDoubleList, 191
GetEnumerator, IHXTInt64List, 230
GetEnumerator, IHXTIntList, 237
GetEnumerator, IHXTUintList, 324
GetError, IHXTDoubleRange, 195
GetErrorString, IHXRMEdit, 344
GetErrorString, IHXRMEvents, 357
GetEventFile, IHXRMEvents, 358
GetEventManager, IHXTEncodingJob, 197
GetFailoverDestination, IHXTDestination,

184
GetFailoverDestinationCount, IHXTDestina-

tion, 184
GetFilename, IHXTFileObserver, 212
GetFileVersion, IHXRMEdit, 344
GetFirst, IHXTFuncAreaEnum, 219
GetForceInitialize,

IHXTAudienceEnumerator2, 165
GetFrameDimensions, IHXTVideoPinFor-

mat, 332
GetFrameRate, IHXTVideoPinFormat, 332
GetFront, IHXTDoubleList, 192
GetFront, IHXTInt64List, 230
GetFront, IHXTIntList, 238
GetFront, IHXTUintList, 324
GetFunctionalAreaEnumerator, IHXTLog-

System, 250
GetImageMapFile, IHXRMEvents, 358

GetIndexedInputFile, IHXRMEdit, 345
GetInput, IHXTEncodingJob, 198
GetInput, IHXTInput2, 223
GetInputCount, IHXTInput2, 223
GetInputFile, IHXRMEvents, 358
GetInputStreamCount, IHXTConnection-

Agent, 179
GetInt, IHXTProperty, 280
GetInt, IHXTPropertyBag, 290
GetInt64, IHXTProperty, 280
GetInt64, IHXTPropertyBag, 291
GetInt64List, IHXTProperty, 280
GetInt64List, IHXTPropertyBag, 291
GetInt64Range, IHXTProperty, 281
GetInt64Range, IHXTPropertyBag, 291
GetIntersection, IHXTDoubleList, 192
GetIntersection, IHXTInt64List, 230
GetIntersection, IHXTIntList, 238
GetIntersection, IHXTUintList, 324
GetIntList, IHXTProperty, 281
GetIntList, IHXTPropertyBag, 292
GetIntRange, IHXTProperty, 281
GetIntRange, IHXTPropertyBag, 292
GetKey, IHXTProperty, 281
GetLifeTimeStatistics, IHXTStatistics, 314
GetLoadLevel, IHXTLoadAdjustment, 242
GetMan, IHXTDoubleRange, 195
GetMax, IHXTInt64Range, 233
GetMax, IHXTIntRange, 240
GetMax, IHXTUintRange, 327
GetMediaProfile, IHXTOutputProfile, 268
GetMediaSampleOfSize, IHXTSampleAllo-

cator, 308
GetMetadata, IHXTEncodingJob, 198
GetMetaData, IHXTOutputProfile2, 270
GetMetaInformation, IHXRMEdit2, 353
GetMilliSeconds, IHXTTime, 317
GetMin, IHXTDoubleRange, 195
GetMin, IHXTInt64Range, 233
GetMin, IHXTIntRange, 241
GetMin, IHXTUintRange, 327
GetMobilePlayback, IHXRMEdit, 345
385

Helix DNA Producer SDK Developer’s Guide
GetNegotiatedInputFormat, IHXTConnec-
tionAgent, 179

GetNegotiatedOutputFormat, IHXTConnec-
tionAgent, 179

GetNext, IHXTFuncAreaEnum, 219
GetNumInputFiles, IHXRMEdit, 345
GetObserverManagerInterface, IHXTLogSys-

tem, 250
GetOptimalSinkProperties, IHXTPreview-

SinkControl, 276
GetOutputFile, IHXRMEdit, 346
GetOutputFile, IHXRMEvents, 359
GetOutputProfile, IHXTEncodingJob, 198
GetOutputProfileCount, IHXTEncodingJob,

199
GetOutputStreamCount, IHXTConnection-

Agent, 180
GetPerfectPlay, IHXRMEdit, 346
GetPinEnabled, IHXTMediaInputPin, 257
GetPluginInfoAt, IHXTPluginInfoEnum, 271
GetPluginInfoEnum, IHXTPluginInfoMan-

ager, 272
GetPostfilter, IHXTDestination, 185
GetPostfilterCount, IHXTDestination, 185
GetPreferredInputFormat, IHXTConnection-

Agent, 180
GetPreferredOutputFormat, IHXTConnec-

tionAgent, 180
GetPrefilter, IHXTInput, 221
GetPrefilterCount, IHXTInput, 221
GetPreviousFilename, IHXTFileObserver,

212
GetProfileDirectory,

IHXTAudienceEnumerator2, 165
GetProfileExtension,

IHXTAudienceEnumerator2, 165
GetProperty, IHXTPropertyBag, 292
GetPropertyBag, IHXTProperty, 282
GetPropertyBag, IHXTPropertyBag, 293
GetPropertyBagEnumerator, IHXTProperty-

Bag, 293
GetPropertyEnumerator, IHXTPropertyBag,

294

GetSampleField, IHXTMediaSample, 262
GetSampleFlags, IHXTMediaSample, 263
GetSampleFormat, IHXTAudioPinFormat,

167
GetSampleRate, IHXTAudioPinFormat, 167
GetSelectiveRecord, IHXRMEdit, 346
GetService, IHXTServiceBroker, 312
GetSize, IHXTDoubleList, 192
GetSize, IHXTInt64List, 231
GetSize, IHXTIntList, 238
GetSize, IHXTUintList, 324
GetStartTime, IHXRMEdit, 346
GetStepSize, IHXTDoubleRange, 195
GetStepSize, IHXTInt64Range, 233
GetStepSize, IHXTIntRange, 241
GetStepSize, IHXTUintRange, 327
GetStreamConfig, IHXTAudience, 161
GetStreamConfigCount, IHXTAudience, 161
GetString, IHXTProperty, 282
GetString, IHXTPropertyBag, 294
GetSupportedInputFormat, IHXTConnectio-

nAgent, 180
GetSupportedOutputFormat, IHXTConnec-

tionAgent, 181
GetTime, IHXTMediaSample, 263
GetTime, IHXTTime, 317
GetTimeString, IHXTTime, 317
getting input stream count, 140
getting supported formats, 141
GetTitle, IHXRMEdit, 347
GetTranslatedMessage, IHXTLogWriter, 252
GetType, IHXTProperty, 282
GetUint, IHXTProperty, 282
GetUint, IHXTPropertyBag, 294
GetUintList, IHXTProperty, 282
GetUintList, IHXTPropertyBag, 295
GetUintRange, IHXTProperty, 283
GetUintRange, IHXTPropertyBag, 295
GetUnknown, IHXTProperty, 283
GetUnknown, IHXTPropertyBag, 295
GetVideoSize, IHXRMEdit2, 353
GetWriterInterface, IHXTLogSystem, 250
386

 Index
guide
conventions, 4
organization, 2

H HandleEvent, IHXTEventSink, 205
HasAudio, IHXRMEdit2, 354
HasEvents, IHXRMEdit2, 354
HasImageMaps, IHXRMEdit2, 354
HasVideo, IHXRMEdit2, 355
header files, 1, 27
height, determining video, 82
Helix community web site, 5
HXTCreateJobFactory, 34, 367

I IHXProgressSink, 155, 339
NotifyFinish, 339
NotifyStart, 340
SetProgress, 340

IHXRMEdit, 146, 340
AddInputFile, 342
CloseLogFile, 342
CreateIRMABuffer, 342
GetAuthor, 342
GetComment, 343
GetCopyright, 343
GetEndTime, 344
GetErrorString, 344
GetFileVersion, 344
GetIndexedInputFile, 345
GetMobilePlayback, 345
GetNumInputFiles, 345
GetOutputFile, 346
GetPerfectPlay, 346
GetSelectiveRecord, 346
GetStartTime, 346
GetTitle, 347
Log, 347
OpenLogFile, 347
Process, 348
RemoveRMFileSink, 348
SetAuthor, 348
SetComment, 348
SetCopyright, 349
SetEndTime, 349
SetInputFile, 350

SetMobilePlayback, 350
SetOutputFile, 350
SetPerfectPlay, 351
SetRMFileSink, 351
SetSelectiveRecord, 351
SetStartTime, 352
SetTitle, 352

IHXRMEdit2, 148, 353
GetMetaInformation, 353
GetVideoSize, 353
HasAudio, 354
HasEvents, 354
HasImageMaps, 354
HasVideo, 355

IHXRMEdit3, 150, 355
AddSaveProgressSink, 355
RemoveSaveProgressSink, 356

IHXRMEvents, 153, 356
CloseLogFile, 357
GetDumpFile, 357
GetErrorString, 357
GetEventFile, 358
GetImageMapFile, 358
GetInputFile, 358
GetOutputFile, 359
Log, 359
OpenLogFile, 359
Process, 360
SetDumpFile, 360
SetEventFile, 360
SetImageMapFile, 360
SetInputFile, 361
SetOutputFile, 361

IHXRMEvents2, 155, 361
AddSaveProgressSink, 362
RemoveSaveProgressSink, 362

IHXRMFileSink, 150, 364
OnMediaPropertyHeader, 365
OnPacket, 365

IHXTAsmConnectionProperty, 159
IHXTAsmHeaderSink, 159
IHXTAsmHeaderSource, 159
IHXTAsmHeaderTransform, 159
IHXTAudience, 160

AddStreamConfig, 160
387

Helix DNA Producer SDK Developer’s Guide
GetStreamConfig, 161
GetStreamConfigCount, 161
MoveStreamConfig, 161
RemoveStreamConfig, 161

IHXTAudienceEnumerator, 162
GetAudience, 162
GetAudienceCount, 163
GetCodecUpdater, 164
SetProfileDirectory, 163
SetProfileExtension, 163

IHXTAudienceEnumerator2, 164
GetForceInitialize, 165
GetProfile Directory, 165
GetProfileExtension, 165
SetCodecUpdater, 166
SetForceInitialize, 166

IHXTAudioPinFormat, 166
GetChannelFormat, 167
GetSampleFormat, 167
GetSampleRate, 167
SetChannelFormat, 168
SetSampleFormat, 168
SetSampleRate, 168

IHXTCaptureDialogControl, 169
LaunchDialog, 169

IHXTClassFactory, 170
BuildInstance, 170
BuildInstanceFromBuffer, 171
BuildInstanceFromFile, 172
BuildInstanceFromObject, 173
CreateInstance, 174

IHXTCodecUpdater, 175
GetCodecMappingFile, 175
SetCodecMappingFile, 175
UpdateAudience, 176
UpdateJob, 176

IHXTConfigurationAgent, 177
Initialize, 177

IHXTConnectionAgent, 139, 178
GetInputStreamCount, 179
GetNegotiatedInputFormat, 179
GetNegotiatedOutputFormat, 179
GetOutputStreamCount, 180
GetPreferredInputFormat, 180
GetPreferredOutputFormat, 180

GetSupportedInputFormat, 180
GetSupportedOutputFormat, 181
SetNegotiatedInputFormat, 181
SetNegotiatedOutputFormat, 181

IHXTCustomComparison, 182
Compare, 183

IHXTDestination, 183
AddFailoverDestination, 184
AddPostfilter, 184
GetFailoverDestination, 184
GetFailoverDestinationCount, 184
GetPostfilter, 185
GetPostfilterCount, 185
MoveFailoverDestination, 185
MovePostfilter, 185
RemoveFailoverDestination, 186
RemovePostfilter, 186

IHXTDestinationEnumerator, 186
GetDestination, 187
GetDestinationCount, 187
SetProfileDirectory, 187
SetProfileExtension, 188

IHXTDoubleEnumerator, 188
Current, 188
First, 189
GetCount, 189
Next, 189

IHXTDoubleList, 190
Clear, 190
Compare, 191
Contains, 191
GetBack, 191
GetEnumerator, 191
GetFront, 192
GetIntersection, 192
GetSize, 192
IsEmpty, 192
PopBack, 193
PopFront, 193
PushBack, 193
PushFront, 193

IHXTDoubleRange, 194
Compare, 194
GetError, 195
GetMax, 195
388

 Index
GetMin, 195
GetStepSize, 195
IsInRange, 195
Set, 196

IHXTEncodingJob, 196
AddOutputProfile, 197
CancelEncoding, 197
GetEventManager, 197
GetInput, 198
GetMetadata, 198
GetOutputProfile, 198
GetOutputProfileCount, 199
MoveOutputProfile, 199
RemoveOutputProfile, 199
SetInput, 199
SetMetadata, 200
StartEncoding, 200
StopEncoding, 200

IHXTEventManager, 201
Subscribe, 201
Unsubscribe, 202

IHXTEventSample, 202
GetAction, 203
SetAction, 203

IHXTEventSink, 205
HandleEvent, 205

IHXTFileObserver, 211
Enable, 211
EnableSDKMessages, 212
GetFilename, 212
GetPreviousFilename, 212
Init, 212
SetCategoryFilter, 213
SetFilename, 213
SetFormat, 213
SetFuncAreaFilter, 214
SetLanguage, 214
SetPreviousFilename, 214
SetSeperator, 214
SetSizeRoll, 215
SetTimeRoll, 215
Shutdown, 216

IHXTFilter, 117, 216
DiscardCachedSamples, 216
Prime, 217

SetFactory, 217
SetGraphServices, 218
Teardown, 218

IHXTFuncAreaEnum, 219
GetFirst, 219
GetNext, 219

IHXTInput, 220
AddPrefilter, 221
GetPrefilter, 221
GetPrefilterCount, 221
MovePrefilter, 221
RemovePrefilter, 222

IHXTInput2, 222
AddInput, 223
GetInput, 223
GetInputCount, 223
MoveInput, 224
RemoveInput, 224

IHXTInputFilter, 127, 224
ReadSample, 225
SetAllocator, 226

IHXTInputPreviewControl, 226
Close, 226
Open, 227

IHXTInt64Enumerator, 227
Current, 227
First, 228
GetCount, 228
Next, 228

IHXTInt64List, 228
Clear, 229
Compare, 229
Contains, 229
GetBack, 230
GetEnumerator, 230
GetFront, 230
GetIntersection, 230
GetSize, 231
IsEmpty, 231
PopBack, 231
PopFront, 231
PushBack, 232
PushFront, 232

IHXTInt64Range, 232
Compare, 233
389

Helix DNA Producer SDK Developer’s Guide
GetMax, 233
GetMin, 233
GetStepSize, 233
IsInRange, 233
Set, 234

IHXTIntEnumerator, 234
Current, 235
First, 235
GetCount, 235
Next, 235

IHXTIntList, 236
Clear, 237
Compare, 237
Contains, 237
GetBack, 237
GetEnumerator, 237
GetFront, 238
GetIntersection, 238
GetSize, 238
IsEmpty, 239
PopBack, 239
PopFront, 239
PushBack, 239
PushFront, 239

IHXTIntRange, 240
Compare, 240
GetMax, 240
GetMin, 241
GetStepSize, 241
IsInRange, 241
Set, 241

IHXTLoadAdjustment, 242
GetLoadLevel, 242
SetLoadLevel, 243

IHXTLogObserver, 103
OnEndService, 243
ReceiveMsg, 244

IHXTLogObserver2, 246
Flush, 246

IHXTLogObserverManager, 104, 246
SetFilter, 247
SetLanguage, 247
Subscribe, 248
Unsubscribe, 248

IHXTLogSystem, 249

GetFunctionalAreaEnumerator, 250
GetObserverManagerInterface, 250
GetWriterInterface, 250
SetTranslationFileDirectory, 251
Shutdown, 251

IHXTLogWriter, 106, 251
GetTranslatedMessage, 252
LogMessage, 252

IHXTMediaInputPin, 257
EncodeSample, 257
GetPinEnabled, 257
SetPinEnabled, 258

IHXTMediaProfile, 258
AddAudience, 259
GetAudience, 259
GetAudienceCount, 259
MoveAudience, 259
RemoveAudience, 260

IHXTMediaSample, 260
Clone, 261
CopyProperties, 261
GetaDataStartForWriting, 262
GetDataSize, 261
GetDataStartForReading, 262
GetSampleField, 262
GetSampleFlags, 263
GetTime, 263
Initialize, 263
SetDataSize, 264
SetDataStart, 264
SetSampleField, 264
SetSampleFlags, 265
SetTime, 266

IHXTOutputFilter, 133, 266
ReceiveSample, 266

IHXTOutputProfile, 267
AddDestination, 268
GetDestination, 268
GetDestinationCount, 268
GetMediaProfile, 268
MoveDestination, 269
RemoveDestination, 269
SetMediaProfile, 269

IHXTOutputProfile2, 270
GetMetaData, 270
390

 Index
SetMetaData, 270
IHXTPacketSource, 271
IHXTPluginInfoEnum, 271

GetCount, 271
GetPluginInfoAt, 271

IHXTPluginInfoManager, 83, 272
GetPluginInfoEnum, 272

IHXTPostfilter, 273
IHXTPrefilter, 273
IHXTPreviewSink, 274

OnFormatChanged, 274
OnSample, 274

IHXTPreviewSinkControl, 275
AddSink, 275
GetOptimalSinkProperties, 276
RemoveSink, 276

IHXTPreviewSinkControl3, 276
DisableSink, 277
EnableSink, 277

IHXTProperty, 278
GetBool, 279
GetDouble, 279
GetDoubleList, 279
GetDoubleRange, 280
GetInt, 280
GetInt64, 280
GetInt64List, 280
GetInt64Range, 281
GetIntList, 281
GetIntRange, 281
GetKey, 281
GetPropertyBag, 282
GetString, 282
GetType, 282
GetUint, 282
GetUintList, 282
GetUintRange, 283
GetUnknown, 283
SetBool, 283
SetDouble, 283
SetDoubleList, 284
SetDoubleRange, 284
SetInt, 284
SetInt64, 284
SetInt64List, 285

SetInt64Range, 285
SetIntList, 285
SetIntRange, 285
SetPropertyBag, 286
SetString, 286
SetUint, 286
SetUintList, 286
SetUintRange, 287
SetUnknown, 287

IHXTPropertyBag, 287
GetBool, 289
GetCount, 289
GetDouble, 289
GetDoubleList, 290
GetDoubleRange, 290
GetInt, 290
GetInt64, 291
GetInt64List, 291
GetInt64Range, 291
GetIntList, 292
GetIntRange, 292
GetProperty, 292
GetPropertyBag, 293
GetPropertyBagEnumerator, 293
GetPropertyEnumerator, 294
GetString, 294
GetUint, 294
GetUintList, 295
GetUintRange, 295
GetUnknown, 295
Remove, 296
SetBool, 296
SetDouble, 296
SetDoubleList, 297
SetDoubleRange, 297
SetInt, 297
SetInt64, 298
SetInt64List, 298
SetInt64Range, 298
SetIntList, 299
SetIntRange, 299
SetProperty, 300
SetPropertyBag, 300
SetString, 300
SetUint, 300
SetUintList, 301
391

Helix DNA Producer SDK Developer’s Guide
SetUintRange, 301
SetUnknown, 302

IHXTPropertyEnumerator, 303
Current, 303
First, 303
GetCount, 304
Next, 304

IHXTPropertyUtility, 304
ArePropertiesEquivalent, 305
ArePropertyBagsEquivalent, 305
CloneProperty, 305
ClonePropertyBag, 306
IsPropertyBagCompatibleWith, 306
IsPropertyCompatibleWith, 307

IHXTSampleAllocator, 308
GetMediaSampleOfSize, 308

IHXTSampleSink, 308
ReceiveSample, 309

IHXTSerializationCallback, 311
OnSerializeObject, 311

IHXTSerializeBuffer, 309
ReadFromBuffer, 310
WriteToBuffer, 310

IHXTServiceBroker, 312
GetService, 312

IHXTStatistics, 313
GetCurrentStatistics, 313
GetLifeTimeStatistics, 314

IHXTStreamConfig, 314
IHXTStringEnumerator, 315

Current, 315
First, 315
GetCount, 316
Next, 316

IHXTTime, 316
GetMilliSeconds, 317
GetTime, 317
GetTimeString, 317
SetMilliSeconds, 318
SetTime, 318
SetTimeString, 318

IHXTTransformFilter, 130, 319
ReceiveSample, 319
SetAllocator, 320
SetSampleSink, 320

IHXTUintEnumerator, 320
Current, 321
First, 321
GetCount, 321
Next, 322

IHXTUintList, 322
Clear, 323
Compare, 323
Contains, 323
GetBack, 323
GetEnumerator, 324
GetFront, 324
GetIntersection, 324
GetSize, 324
IsEmpty, 325
PopBack, 325
PopFront, 325
PushBack, 325
PushFront, 325

IHXTUintRange, 326, 327
Compare, 326
GetMax, 327
GetMin, 327
GetStepSize, 327
IsInRange, 327
Set, 327

IHXTUserConfigFile, 328
ReadFromFile, 328
WriteToFile, 329

IHXTVideoPinFormat, 329
GetColorFormat, 330
GetFrameDimensions, 332
GetFrameRate, 332
SetColorFormat, 333
SetFrameDimensions, 335
SetFrameRate, 335

image maps
disabling encoding, 58
dumping, 155
if in RealMedia file, 148
merging, 154
modifying, 153

importance level, log message, 105
include directory, 27
Init, IHXTFileObserver, 212
392

 Index
initialize
configuration agent helper, 136
encoding job, 35
file observer, 100
object property bags, 34

Initialize, IHXTConfigurationAgent, 177
Initialize, IHXTMediaSample, 263
input, 36

plug-ins, 111
stream count, 140

installation, 18
instantiating a file observer, 99
interfaces

encoding, 31
logging, 95

inverse telecine, 43
IsEmpty, IHXTDoubleList, 192
IsEmpty, IHXTInt64List, 231
IsEmpty, IHXTIntList, 239
IsEmpty, IHXTUintList, 325
IsInRange, IHXTDoubleRange, 195
IsInRange, IHXTInt64Range, 233
IsInRange, IHXTIntRange, 241
IsInRange, IHXTUintRange, 327
isolating your plug-in code, 115
IsPropertyBagCompatibleWith, IHXTProper-

tyUtility, 306
IsPropertyCompatibleWith, IHXTProper-

tyUtility, 307
IUnknown, 336

AddRef, 336
QueryInterface, 336
Release, 337

K key frames, 62
kPropAudioChannelFormat, 90
kPropAudioDeviceID, 39, 85
kPropAudioDevicePort, 39
kPropAudioLimiterGain, 44
kPropAudioMode, 58, 61
kPropAudioResampleingQuality, 59
kPropAudioSampleFormat, 90
kPropAudioSampleRate, 90

kPropAvgBitrate, 61
kPropBroadcastAddress, 54
kPropBroadcastAllowResend, 55
kPropBroadcastAuthType, 54
kPropBroadcastEnableTCPReconnect, 55
kPropBroadcastFecOffset, 55
kPropBroadcastFecPercent, 55
kPropBroadcastListenAddress, 55
kPropBroadcastMetadataResendInterval, 55
kPropBroadcastMulticastAddress, 55
kPropBroadcastMulticastTTL, 55
kPropBroadcastPassword, 54
kPropBroadcastPath, 55
kPropBroadcastPort, 54
kPropBroadcastServerTimeout, 57
kPropBroadcastStreamname, 54
kPropBroadcastTCPReconnectInterval, 55
kPropBroadcastTransport, 54
kPropBroadcastUsername, 54
kPropCaptureMediaType, 85
kPropCapturePorts, 85
kPropCaptureType, 85
kPropCodecFlavor, 60, 90
kPropCodecLongName, 90
kPropCodecName, 60, 90
kPropCodecPreferedType, 90
kPropCropHeight, 42
kPropCropLeft, 42
kPropCropTop, 42
kPropCropWidth, 42
kPropDisableAudio, 58
kPropDisableEvents, 58
kPropDisableImageMaps, 58
kPropDisableVideo, 58
kPropDITDeinterlace, 43
kPropDITInvTelecine, 43
kPropDITManual, 43
kPropDuration, 37
kPropEnableTwoPass, 35
kPropEncodingQuality, 62
kPropEncodingType, 60
kPropFileRollSize, 51
393

Helix DNA Producer SDK Developer’s Guide
kPropFileRollTime, 52
kPropHasAudio, 36
kPropHasVideo, 36
kPropInputHeight, 36
kPropInputPathname, 36
kPropInputWidth, 36
kPropListenPort, 57
kPropLossProtection, 62
kPropMaxBitrate, 61
kPropMaxOutputFrameRate, 62
kPropMaxStartupLatency, 62
kPropMaxTimeBetweenKeyFrames, 62
kPropMergeWriteInterval, 52
kPropMergeWriteSize, 52
kPropNRLevel, 43
kPropNumTracks, 37
kPropObjectName, 35
kPropOutputPathname, 51
kPropPluginName, 36
kPropPluginType, 36
kPropPresentationType, 61
kPropPreviewSinkPosition, 75
kPropResizeQuality, 59
kPropSinkUpdateInterval, 75
kPropStreamContext, 61
kPropTempDirPath, 51
kPropVideoDeviceID, 39, 85
kPropVideoDevicePort, 39
kPropVideoFrameHeight, 39
kPropVideoFrameWidth, 39
kValueAccountBased, 54
kValueAudioCodec, 60
kValuePluginNameCodecRealAudio, 60
kValuePluginNameCodecRealVideo, 61
kValuePluginNamePrefilterAudioGain, 44
kValuePluginNamePrefilterBlackLevel, 42
kValuePluginNamePrefilterCropping, 42
kValuePluginNamePrefilterDeinterlace, 43
kValuePluginNamePrefilterVideoNoiseR-

eduction, 43
kValuePluginTypeAudioStream, 60, 90
kValuePluginTypeDestinationFile, 51

kValuePluginTypeDestinationPullServer, 57
kValuePluginTypeDestinationPushServer

account-based, 54
password-based, 56

kValuePluginTypeInputAVFile, 36
kValuePluginTypeInputCapture, 39
kValuePluginTypePrefilterAudioDelayComp,

45
kValuePluginTypePrefilterAudioGain, 44
kValuePluginTypePrefilterBlackLevel, 42
kValuePluginTypePrefilterCropping, 42
kValuePluginTypePrefilterDeinterlace, 43
kValuePluginTypePrefilterLevelMeter, 44
kValuePluginTypePrefilterResizer, 43
kValuePluginTypePrefilterVideoNoiseReduc-

tion, 43
kValuePluginTypeVideoStream, 61, 91
kValueSinglePassword, 56

L LaunchDialog, IHXTCaptureDialogControl,
169

layer summary, plug-ins, 114
log messages

category, 100
format, 100
functional area, 100
importance level, 105
receiving, 98
SDK messages, 101
separator, 101

log observer
advanced operations, 104
filtering, 105
functional area, 106
implementing, 103
missed messages, 104
subscribing to logging system, 103

log observer manager, 104
log writer

common class factory, 106
get interface, 107

Log, IHXRMEdit, 347
Log, IHXRMEvents, 359
LOGCODE attribute, 105
394

 Index
logging, 65
logging system

building an observer class, 103
instantiating, 97
samples, 107
sending messages to, 106
shutting down, 98
using, 96

LogMessage, IHXTLogWriter, 252
long name, codec, 90

M macros, 143
managing codecs, 88
media dimensions, preview, 79
media profile, 58
MediaProperties header, 151
merging events and image maps, 154
meta information, RealMedia files, 148
metadata, 62
methods, thread-safe, 93
missed messages, 104
modifying

events and image maps, 153
object properties, 63
property bag content, 64
RealMedia headers and packets, 150

MoveAudience, IHXTMediaProfile, 259
MoveDestination, IHXTOutputProfile, 269
MoveFailoverDestination, IHXTDestination,

185
MoveInput, IHXTInput2, 224
MoveOutputProfile, IHXTEncodingJob, 199
MovePostfilter, IHXTDestination, 185
MovePrefilter, IHXTInput, 221
MoveStreamConfig, IHXTAudience, 161
MSGNUM attribute, 106
music audio mode, 61

N negotiating media format properties, 142
Next, IHXTDoubleEnumerator, 189
Next, IHXTInt64Enumerator, 228
Next, IHXTIntEnumerator, 235
Next, IHXTPropertyEnumerator, 304

Next, IHXTStringEnumerator, 316
Next, IHXTUintEnumerator, 322
noise reduction, 43
notes, SDK, 2
NotifyFinish, IHXProgressSink, 339
NotifyStart, IHXProgressSink, 340

O object
recreating, 63
status, 64

observer class, logging system, 103
OnEndService, IHXTLogObserver, 243
OnFormatChanged, IHXTPreviewSink, 274
OnInitialize, 136
OnMediaPropertyHeader, IHXRMFileSink,

365
OnPacket, IHXRMFileSink, 365
OnSample, IHXTPreviewSink, 274
OnSerializeObject, IHXTSerializationCall-

back, 311
OnSetXXX, 138
Open, IHXTInputPreviewControl, 227
OpenLogFile, IHXRMEdit, 347
OpenLogFile, IHXRMEvents, 359
operational class

passing data to, 116
plug-ins, 114

optimal preview settings, 75
optional features, encoding job, 62
order, prefilters, 41
organization of plug-ins, 114
output file, RealMedia, 147
output plug-ins, 112
output profile, 45
overriding

OnInitialize, 136
OnSetXXX, 138

P passing data to operational class, 116
password-based RBS push broadcast, 56
pasting RealMedia files, 146
percent complete event, 65
platforms, 17
395

Helix DNA Producer SDK Developer’s Guide
plug-ins
audio and video media formats, 143
capture device, 111
categories, 109
configuration and connection agent, 135
connecting outputs to inputs, 140
custom media, 113
file reader, 111
filter interfaces, 116
filter layer initialization, 116
getting supported formats, 141
input, 111
introduction to, 23
isolating your code, 115
layer summary, 114
layers, 114
negotiating media format properties, 142
organization, 114
output, 112
plug-in layer, 114
samples, 144
teardown, 117
transform, 111

policies and codes, erorr result, 144
PopBack, IHXTDoubleList, 193
PopBack, IHXTInt64List, 231
PopBack, IHXTIntList, 239
PopBack, IHXTUintList, 325
PopFront, IHXTDoubleList, 193
PopFront, IHXTInt64List, 231
PopFront, IHXTIntList, 239
PopFront, IHXTUintList, 325
postfilters, 57
preferred audio type, 90
prefilter order, 41
prefilters, 41
preroll, video, 62
presentation type, 61
preview

after the encoder, 79
after the input source, 75
audio and video, 74
before encoding starts, 76
before the encoder, 76

Prime, IHXTFilter, 217
Process, IHXRMEdit, 348
Process, IHXRMEvents, 360
processing

edits, 147
events, 153, 154

producer
encoding system, 21

Producer Encoding API, 20
Producer Plug-in API, 20
profile

media, 58
output, 45

progress
callbacks, 150
event, 65

properties
account-based RBS push broadcast, 54
all codec, 90
all prefilters, 42
all streams, 60
audio codec, 90
audio gain prefilter, 44
audio streams, 60
audio watchdog prefilter, 43, 44, 45
capture devices, 85
file writer, 51
G2 push broadcast, 54
inverse telecine prefilter, 43
password-based RBS push broadcast, 56
RBS pull broadcast, 57
video black level prefilter, 42
video codec, 91
video cropping prefilter, 42
video deinterlace prefilter, 43
video noise reduction prefilter, 43
video stream, 61

property bag
audio and video preview, 75
audio stream context, 61
capture devices, 39
capture port, 85
creating, 117
data format, 116
initializing objects, 34
396

 Index
input stream formats, 141
inputs, 36
media samples, 78
metadata, 62
plug-in intialization, 136
purpose, 24
serialization content, 63
statistics, 64
using, 113

pull broadcast, RBS, 57
push broadcast

account-based RBS, 54
G2, 54
password-based RBS, 56

PushBack, IHXTDoubleList, 193
PushBack, IHXTInt64List, 232
PushBack, IHXTIntList, 239
PushBack, IHXTUintList, 325
PushFront, IHXTDoubleList, 193
PushFront, IHXTInt64List, 232
PushFront, IHXTIntList, 239
PushFront, IHXTUintList, 325

Q QueryInterface, IUnknown, 336

R RBS pull broadcast, 57
RBS push broadcast

account-based, 54
password-based, 56

ReadFromBuffer, IHXTSerializeBuffer, 310
ReadFromFile, IHXTUserConfigFile, 328
ReadSample, IHXTInputFilter, 225
RealForum, 5
RealMedia

editing files, 146
modifying headers and packets, 150
samples, 157
tools DLL, 146

RealMedia Edit API, 21
receive messages, log observer, 103
ReceiveMsg, IHXTLogObserver, 244
ReceiveSample, IHXTOutputFilter, 266
ReceiveSample, IHXTSampleSink, 309
ReceiveSample, IHXTTransformFilter, 319

receiving log messages, 98
recreating objects, 63
reference count, threads, 93
reject serialization, 63
release objects, plug-ins, 117
Release, IUnknown, 337
releasing RealMedia edit interface, 147
Remove, IHXTPropertyBag, 296
RemoveAudience, IHXTMediaProfile, 260
RemoveDestination, IHXTOutputProfile,

269
RemoveFailoverDestination, IHXTDestina-

tion, 186
RemoveInput, IHXTInput2, 224
RemoveOutputProfile, IHXTEncodingJob,

199
RemovePostfilter, IHXTDestination, 186
RemovePrefilter, IHXTInput, 222
RemoveRMFileSink, IHXRMEdit, 348
RemoveSaveProgressSink, IHXRMEdit3, 356
RemoveSaveProgressSink, IHXRMEvents2,

362
RemoveSink, IHXTPreviewSinkControl, 276
RemoveStreamConfig, IHXTAudience, 161
replacement characters, file name, 101
resampler quality, 59
resize quality, video, 59
resources, SDK, 3
result codes and policies, 144
RMACreateRMEdit, 146, 368
RMACreateRMEvents, 154, 368
rolling, file, 51, 102

S sample files, 1
sample rate, audio, 90
samples

directory, 28
encoding, 94
input properties, 37
logging system, 107
plug-ins, 144
RealMedia, 157
serialization, 64
397

Helix DNA Producer SDK Developer’s Guide
statistics, 64
using, 29

SDK
error result codes, 144
log messages, 101
resources, 3

sending messages to logging system, 106
separator, log messages, 101
serialization, 63

property bag content, 63
XML configuration files, 24

set previous file name, 102
set up callbacks

editing, 156
events, 156

Set, IHXTDoubleRange, 196
Set, IHXTInt64Range, 234
Set, IHXTIntRange, 241
Set, IHXTUintRange, 327
SetAction, IHXTEventSample, 203
SetAllocator, IHXTInputFilter, 226
SetAllocator, IHXTTransformFilter, 320
SetAuthor, IHXRMEdit, 348
SetBool, IHXTProperty, 283
SetBool, IHXTPropertyBag, 296
SetCategoryFilter, IHXTFileObserver, 213
SetChannelFormat, IHXTAudioPinFormat,

168
SetCodecMappingFile, IHXTCodecUpdater,

175
SetCodecUpdater,

IHXTAudienceEnumerator2, 166
SetColorFormat, IHXTVideoPinFormat, 333
SetComment, IHXRMEdit, 348
SetCopyright, IHXRMEdit, 349
SetDataSize, IHXTMediaSample, 264
SetDataStart, IHXTMediaSample, 264
SetDLLAccessPath, 99, 369
SetDouble, IHXTProperty, 283
SetDouble, IHXTPropertyBag, 296
SetDoubleList, IHXTProperty, 284
SetDoubleList, IHXTPropertyBag, 297
SetDoubleRange, IHXTProperty, 284

SetDoubleRange, IHXTPropertyBag, 297
SetDumpFile, IHXRMEvents, 360
SetEndTime, IHXRMEdit, 349
SetEventFile, IHXRMEvents, 360
SetFactory, IHXTFilter, 217
SetFilename, IHXTFileObserver, 213
SetFilter, IHXTLogObserverManager, 247
SetForceInitialize,

IHXTAudienceEnumerator2, 166
SetFormat, IHXTFileObserver, 213
SetFrameDimenstions, IHXTVideoPinFor-

mat, 335
SetFrameRate, IHXTVideoPinFormat, 335
SetFuncAreaFilter, IHXTFileObserver, 214
SetGraphServices, IHXTFilter, 218
SetImageMapFile, IHXRMEvents, 360
SetInput, IHXTEncodingJob, 199
SetInputFile, IHXRMEdit, 350
SetInputFile, IHXRMEvents, 361
SetInt, IHXTProperty, 284
SetInt, IHXTPropertyBag, 297
SetInt64, IHXTProperty, 284
SetInt64, IHXTPropertyBag, 298
SetInt64List, IHXTProperty, 285
SetInt64List, IHXTPropertyBag, 298
SetInt64Range, IHXTProperty, 285
SetInt64Range, IHXTPropertyBag, 298
SetIntList, IHXTProperty, 285
SetIntList, IHXTPropertyBag, 299
SetIntRange, IHXTProperty, 285
SetIntRange, IHXTPropertyBag, 299
SetLanguage, IHXTFileObserver, 214
SetLanguage, IHXTLogObserverManager,

247
SetLoadLevel, IHXTLoadAdjustment, 243
SetMediaProfile, IHXTOutputProfile, 269
SetMetadata, IHXTEncodingJob, 200
SetMetaData, IHXTOutputProfile2, 270
SetMilliSeconds, IHXTTime, 318
SetMobilePlayback, IHXRMEdit, 350
SetNegotiatedInputFormat, IHXTConnectio-

nAgent, 181
SetNegotiatedOutputFormat, IHXTConnec-
398

 Index
tionAgent, 181
SetOutputFile, IHXRMEdit, 350
SetOutputFile, IHXRMEvents, 361
SetPerfectPlay, IHXRMedit, 351
SetPinEnabled, IHXTMediaInputPin, 258
SetPreviousFilename, IHXTFileObserver, 214
SetProfileDirectory, IHXTAudienceEnumera-

tor, 163
SetProfileDirectory, IHXTDestinationEnu-

merator, 187
SetProfileExtension, IHXTAudienceEnumera-

tor, 163
SetProfileExtension, IHXTDestinationEnu-

merator, 188
SetProgress, IHXProgressSink, 340
SetProperty, IHXTPropertyBag, 300
SetPropertyBag, IHXTProperty, 286
SetPropertyBag, IHXTPropertyBag, 300
SetRMFileSink, IHXRMEdit, 351
SetSampleField, IHXTMediaSample, 264
SetSampleFlags, IHXTMediaSample, 265
SetSampleFormat, IHXTAudioPinFormat,

168
SetSampleRate, IHXTAudioPinFormat, 168
SetSampleSink, IHXTTransformFilter, 320
SetSelectiveRecord, IHXRMEdit, 351
SetSeperator, IHXTFileObserver, 214
SetSizeRoll, IHXTFileObserver, 215
SetStartTime, IHXRMedit, 352
SetString, IHXTPropertyBag, 286, 300
SetTime, IHXTMediaSample, 266
SetTime, IHXTTime, 318
SetTimeRoll, IHXTFileObserver, 215
SetTimeString, IHXTTime, 318
setting TAC and comment strings, 147
settings, optimal preview, 75
SetTitle, IHXRMEdit, 352
SetTranslationFileDirectory, IHXTLogSys-

tem, 251
SetUint, IHXTProperty, 286
SetUint, IHXTPropertyBag, 300
SetUintList, IHXTProperty, 286
SetUintList, IHXTPropertyBag, 301

SetUintRange, IHXTProperty, 287
SetUintRange, IHXTPropertyBag, 301
SetUnknown, IHXTProperty, 287
SetUnknown, IHXTPropertyBag, 302
shut down encoding job, 92
Shutdown, IHXTFileObserver, 216
Shutdown, IHXTLogSystem, 251
single-rate file, 58
standard logging, 95
start encoding job, 92
StartEncoding, IHXTEncodingJob, 200
statistics, 64
status

event processing, 155
information callback, 150

StopEncoding, IHXTEncodingJob, 200
streams, 60

audio, 60
properties, 60
video, 61

string substution, file name, 101
Subscribe, IHXTEventManager, 201
Subscribe, IHXTLogObserverManager, 248
subscribing to logging system, 103
substitute characters, file name, 101
substreams, enabling, 58
support, technical, 4
SureStream file, 58

T TCP reconnect, 55
teardown, 124
Teardown, IHXTFilter, 218
teardown, plug-ins, 117
technical support, 4
telecine, inverse, 43
threads, encoding engine, 92
time statistic, 64
time to live, 55
title string, setting, 147
transform filters, 111
transform plug-ins, 111
trimming a RealMedia file, 147
two-pass encoding, 65
399

Helix DNA Producer SDK Developer’s Guide
typical encoding session, 110

U uncompressed
audio properties, 143
video properties, 143

Unsubscribe, IHXTEventManager, 202
Unsubscribe, IHXTLogObserverManager,

248
unsubscribing to logging system, 103
UpdateAudience, IHXTCodecUpdater, 176
UpdateJob, IHXTCodecUpdater, 176
using IHXRMEdit, 146
using the RealNetworks file observer, 99

V variable bit rate, 59
video

black level, 42
capture device identification, 85
capture devices, 84
codec name, 61
codec properties, 91
complexity, 60, 61
cropping, 42
cropping prefilter, 42
deinterlace, 43
determining width or height, 82
encoding modes, 58
inverse telecine, 43
media formats, 143
noise reduction, 43
preroll, 62
preview, 74
RealMedia file, 148
resize quality, 59
stream properties, 61
stream statistics, 64
uncompressed properties, 143

voice audio mode, 61

W watchdog, audio, 43, 44, 45
web site, Helix community, 5
width, determining video, 82
writers, file, 51
WriteToBuffer, IHXTSerializeBuffer, 310

WriteToFile, IHXTUserConfigFile, 329

X XML, 24
XML string filter, 105
400

	Introduction
	Using the SDK
	Header Files
	Sample Files
	SDK Notes

	How this Book Is Organized
	Additional Resources
	Conventions Used in this Book
	Technical Support
	Helix Community Web Site
	RealForum

	Quick Start
	Scenario 1
	Sections
	Interfaces
	Sample Application

	Scenario 2
	Sections
	Interfaces
	Sample Applications

	Scenario 3
	Sections
	Interfaces
	Sample Applications

	Scenario 4
	Sections
	Interfaces
	Sample Applications

	New Features in Helix DNA Producer
	What’s New in Helix DNA Producer 10.0 SDK
	What’s New in Helix DNA Producer 9.1 SDK
	What’s New in Helix DNA Producer 9.0 SDK

	Helix DNA Producer SDK
	Platforms
	Installation
	Helix DNA Producer Interface Name Change
	Directory Structure
	Encoding System SDK Areas
	Helix DNA Producer Encoding API
	Helix DNA Producer Plug-in API
	RealMedia Edit API

	Helix DNA Producer Encoding System
	Encoding Engine
	Filter Graph Manager
	Plug-ins

	Using the Helix DNA Producer SDK
	COM
	Property Bags
	XML Configuration Files

	SDK Organization
	The include Directory
	The samples Directory
	Using the Samples

	Encoding Overview
	Interfaces
	Getting Started
	Class Factory
	Setting Up an Encoding Job
	Input
	Prefilters
	Output Profile
	Destination
	Postfilters
	Media Profile
	Audiences
	Streams

	Setting Up Optional Encoding Job Features
	Metadata
	Serialization
	Statistics
	Logging
	Progress Events and Asynchronous Errors
	Encoding RealMedia Events
	Audio and Video Preview
	Capture Device Manager and Capture Device Enumeration
	Automatic Codec Selection
	Codec Manager and Codec Enumeration
	Load Management

	Starting and Shutting Down the Encoding Job
	SDK Threading Model
	Encoding Samples

	Logging System
	Interfaces
	Using the Logging System
	Instantiating the Logging System
	Shutting Down the Logging System

	Receiving Log Messages
	Using the RealNetworks File Observer
	Building Your Own Observer Class

	Sending Messages to the Logging System
	Logging Samples

	Helix DNA Producer Plug-In API
	Plug-in Categories
	Input Plug-ins
	Transform Plug-ins
	Output Plug-ins

	Helper Classes
	Creating Custom Media Plug-ins
	Organization of a Typical Helix DNA Producer Plug-in
	Fitting New Code in the Plug-in Layers (Layer 4)
	All Filter Interfaces (Layer 3)
	IHXTFilter Interface
	IHXTInputFilter Interface
	IHXTTransformFilter Interface
	IHXTOutputFilter Interface
	Configuration and Connection Agent Interfaces (Layer 2)
	IHXTConnectionAgent Interface
	Audio and Video Media Formats

	Producer SDK Error Result Codes and Policies
	Plug-in Samples

	RealMedia Edit API
	Editing RealMedia Files
	Using the IHXRMEdit Interface
	Using the IHXRMEdit2 Interface
	Using the IHXRMEdit3 Interface
	Using the IHXRMFileSink Interface

	Processing Events
	Using the IHXRMEvents Interface
	Using the IHXRMEvents2 Interface
	Dumping Events and Image Maps from a .rm File

	Using the IHXProgressSink Interface
	RealMedia Samples

	Interface List
	IHXTAsmConnectionProperty
	IHXTAsmHeaderSource
	IHXTAsmHeaderSink
	IHXTAsmHeaderTransform
	IHXTAudience
	IHXTAudience::AddStreamConfig
	IHXTAudience::GetStreamConfig
	IHXTAudience::GetStreamConfigCount
	IHXTAudience::MoveStreamConfig
	IHXTAudience::RemoveStreamConfig

	IHXTAudienceEnumerator
	IHXTAudienceEnumerator::GetAudience
	IHXTAudienceEnumerator::GetAudienceCount
	IHXTAudienceEnumerator::SetProfileDirectory
	IHXTAudienceEnumerator::SetProfileExtension

	IHXTAudienceEnumerator2
	IHXTAudienceEnumerator2::GetCodecUpdater
	IHXTAudienceEnumerator2::GetForceInitialize
	IHXTAudienceEnumerator2::GetProfileDirectory
	IHXTAudienceEnumerator2::GetProfileExtension
	IHXTAudienceEnumerator2::SetCodecUpdater
	IHXTAudienceEnumerator2::SetForceInitialize

	IHXTAudioPinFormat
	IHXTAudioPinFormat::GetChannelFormat
	IHXTAudioPinFormat::GetSampleFormat
	IHXTAudioPinFormat::GetSampleRate
	IHXTAudioPinFormat::SetChannelFormat
	IHXTAudioPinFormat::SetSampleFormat
	IHXTAudioPinFormat::SetSampleRate

	IHXTCaptureDialogControl
	IHXTCaptureDialogControl::LaunchDialog

	IHXTClassFactory
	IHXTClassFactory::BuildInstance
	IHXTClassFactory::BuildInstanceFromBuffer
	IHXTClassFactory::BuildInstanceFromFile
	IHXTClassFactory::BuildInstanceFromObject
	IHXTClassFactory::CreateInstance

	IHXTCodecUpdater
	IHXTCodecUpdater::GetCodecMappingFile
	IHXTCodecUpdater::SetCodecMappingFile
	IHXTCodecUpdater::UpdateAudience
	IHXTCodecUpdater::UpdateJob

	IHXTConfigurationAgent
	IHXTConfigurationAgent::Initialize

	IHXTConnectionAgent
	IHXTConnectionAgent::GetInputStreamCount
	IHXTConnectionAgent::GetNegotiatedInputFormat
	IHXTConnectionAgent::GetNegotiatedOutputFormat
	IHXTConnectionAgent::GetOutputStreamCount
	IHXTConnectionAgent::GetPreferredInputFormat
	IHXTConnectionAgent::GetPreferredOutputFormat
	IHXTConnectionAgent::GetSupportedInputFormat
	IHXTConnectionAgent::GetSupportedOutputFormat
	IHXTConnectionAgent::SetNegotiatedInputFormat
	IHXTConnectionAgent::SetNegotiatedOutputFormat

	IHXTCustomComparison
	IHXTCustomComparison::Compare

	IHXTDestination
	IHXTDestination::AddFailoverDestination
	IHXTDestination::AddPostfilter
	IHXTDestination::GetFailoverDestination
	IHXTDestination::GetFailoverDestinationCount
	IHXTDestination::GetPostfilter
	IHXTDestination::GetPostfilterCount
	IHXTDestination::MoveFailoverDestination
	IHXTDestination::MovePostfilter
	IHXTDestination::RemoveFailoverDestination
	IHXTDestination::RemovePostfilter

	IHXTDestinationEnumerator
	IHXTDestinationEnumerator::GetDestination
	IHXTDestinationEnumerator::GetDestinationCount
	IHXTDestinationEnumerator::SetProfileDirectory
	IHXTDestinationEnumerator::SetProfileExtension

	IHXTDoubleEnumerator
	IHXTDoubleEnumerator::Current
	IHXTDoubleEnumerator::First
	IHXTDoubleEnumerator::GetCount
	IHXTDoubleEnumerator::Next

	IHXTDoubleList
	IHXTDoubleList::Clear
	IHXTDoubleList::Compare
	IHXTDoubleList::Contains
	IHXTDoubleList::GetBack
	IHXTDoubleList::GetEnumerator
	IHXTDoubleList::GetFront
	IHXTDoubleList::GetIntersection
	IHXTDoubleList::GetSize
	IHXTDoubleList::IsEmpty
	IHXTDoubleList::PopBack
	IHXTDoubleList::PopFront
	IHXTDoubleList::PushBack
	IHXTDoubleList::PushFront

	IHXTDoubleRange
	IHXTDoubleRange::Compare
	IHXTDoubleRange::GetError
	IHXTDoubleRange::GetMax
	IHXTDoubleRange::GetMin
	IHXTDoubleRange::GetStepSize
	IHXTDoubleRange::IsInRange
	IHXTDoubleRange::Set

	IHXTEncodingJob
	IHXTEncodingJob::AddOutputProfile
	IHXTEncodingJob::CancelEncoding
	IHXTEncodingJob::GetEventManager
	IHXTEncodingJob::GetInput
	IHXTEncodingJob::GetMetadata
	IHXTEncodingJob::GetOutputProfile
	IHXTEncodingJob::GetOutputProfileCount
	IHXTEncodingJob::MoveOutputProfile
	IHXTEncodingJob::RemoveOutputProfile
	IHXTEncodingJob::SetInput
	IHXTEncodingJob::SetMetadata
	IHXTEncodingJob::StartEncoding
	IHXTEncodingJob::StopEncoding

	IHXTEventManager
	IHXTEventManager::Subscribe
	IHXTEventManager::Unsubscribe

	IHXTEventSample
	IHXTEventSample::GetAction
	IHXTEventSample::SetAction

	IHXTEventSink
	IHXTEventSink::HandleEvent

	IHXTFileObserver
	IHXTFileObserver::Enable
	IHXTFileObserver::EnableSDKMessages
	IHXTFileObserver::GetFilename
	IHXTFileObserver::GetPreviousFilename
	IHXTFileObserver::Init
	IHXTFileObserver::SetCategoryFilter
	IHXTFileObserver::SetFilename
	IHXTFileObserver::SetFormat
	IHXTFileObserver::SetFuncAreaFilter
	IHXTFileObserver::SetLanguage
	IHXTFileObserver::SetPreviousFilename
	IHXTFileObserver::SetSeperator
	IHXTFileObserver::SetSizeRoll
	IHXTFileObserver::SetTimeRoll
	IHXTFileObserver::Shutdown

	IHXTFilter
	IHXTFilter::DiscardCachedSamples
	IHXTFilter::Prime
	IHXTFilter::SetFactory
	IHXTFilter::SetGraphServices
	IHXTFilter::Teardown

	IHXTFuncAreaEnum
	IHXTFuncAreaEnum::GetFirst
	IHXTFuncAreaEnum::GetNext

	IHXTInput
	IHXTInput::AddPrefilter
	IHXTInput::GetPrefilter
	IHXTInput::GetPrefilterCount
	IHXTInput::MovePrefilter
	IHXTInput::RemovePrefilter

	IHXTInput2
	IHXTInput2::AddInput
	IHXTInput2::GetInput
	IHXTInput2::GetInputCount
	IHXTInput2::MoveInput
	IHXTInput2::RemoveInput

	IHXTInputFilter
	IHXTInputFilter::ReadSample
	IHXTInputFilter::SetAllocator

	IHXTInputPreviewControl
	IHXTInputPreviewControl::Close
	IHXTInputPreviewControl::Open

	IHXTInt64Enumerator
	IHXTInt64Enumerator::Current
	IHXTInt64Enumerator::First
	IHXTInt64Enumerator::GetCount
	IHXTInt64Enumerator::Next

	IHXTInt64List
	IHXTInt64List::Clear
	IHXTInt64List::Compare
	IHXTInt64List::Contains
	IHXTInt64List::GetBack
	IHXTInt64List::GetEnumerator
	IHXTInt64List::GetFront
	IHXTInt64List::GetIntersection
	IHXTInt64List::GetSize
	IHXTInt64List::IsEmpty
	IHXTInt64List::PopBack
	IHXTInt64List::PopFront
	IHXTInt64List::PushBack
	IHXTInt64List::PushFront

	IHXTInt64Range
	IHXTInt64Range::Compare
	IHXTInt64Range::GetMax
	IHXTInt64Range::GetMin
	IHXTInt64Range::GetStepSize
	IHXTInt64Range::IsInRange
	IHXTInt64Range::Set

	IHXTIntEnumerator
	IHXTIntEnumerator::Current
	IHXTIntEnumerator::First
	IHXTIntEnumerator::GetCount
	IHXTIntEnumerator::Next

	IHXTIntList
	IHXTIntList::Clear
	IHXTIntList::Compare
	IHXTIntList::Contains
	IHXTIntList::GetBack
	IHXTIntList::GetEnumerator
	IHXTIntList::GetFront
	IHXTIntList::GetIntersection
	IHXTIntList::GetSize
	IHXTIntList::IsEmpty
	IHXTIntList::PopBack
	IHXTIntList::PopFront
	IHXTIntList::PushBack
	IHXTIntList::PushFront

	IHXTIntRange
	IHXTIntRange::Compare
	IHXTIntRange::GetMax
	IHXTIntRange::GetMin
	IHXTIntRange::GetStepSize
	IHXTIntRange::IsInRange
	IHXTIntRange::Set

	IHXTLoadAdjustment
	IHXTLoadAdjustment::GetLoadLevel
	IHXTLoadAdjustment::SetLoadLevel

	IHXTLogObserver
	IHXTLogObserver::OnEndService
	IHXTLogObserver::ReceiveMsg

	IHXTLogObserver2
	IHXTLogObserver2::Flush

	IHXTLogObserverManager
	IHXTLogObserverManager::SetFilter
	IHXTLogObserverManager::SetLanguage
	IHXTLogObserverManager::Subscribe
	IHXTLogObserverManager::Unsubscribe

	IHXTLogObserverManager2
	IHXTLogObserverManager2::FlushObservers

	IHXTLogSystem
	IHXTLogSystem::GetFunctionalAreaEnumerator
	IHXTLogSystem::GetObserverManagerInterface
	IHXTLogSystem::GetWriterInterface
	IHXTLogSystem::SetTranslationFileDirectory
	IHXTLogSystem::Shutdown

	IHXTLogWriter
	IHXTLogWriter::GetTranslatedMessage
	IHXTLogWriter::LogMessage

	IHXTMediaInputPin
	IHXTMediaInputPin::EncodeSample
	IHXTMediaInputPin::GetPinEnabled
	IHXTMediaInputPin::SetPinEnabled

	IHXTMediaProfile
	IHXTMediaProfile::AddAudience
	IHXTMediaProfile::GetAudience
	IHXTMediaProfile::GetAudienceCount
	IHXTMediaProfile::MoveAudience
	IHXTMediaProfile::RemoveAudience

	IHXTMediaSample
	IHXTMediaSample::Clone
	IHXTMediaSample::CopyProperties
	IHXTMediaSample::GetDataSize
	IHXTMediaSample::GetDataStartForReading
	IHXTMediaSample::GetDataStartForWriting
	IHXTMediaSample::GetSampleField
	IHXTMediaSample::GetSampleFlags
	IHXTMediaSample::GetTime
	IHXTMediaSample::Initialize
	IHXTMediaSample::SetDataSize
	IHXTMediaSample::SetDataStart
	IHXTMediaSample::SetSampleField
	IHXTMediaSample::SetSampleFlags
	IHXTMediaSample::SetTime

	IHXTOutputFilter
	IHXTOutputFilter::ReceiveSample

	IHXTOutputProfile
	IHXTOutputProfile::AddDestination
	IHXTOutputProfile::GetDestination
	IHXTOutputProfile::GetDestinationCount
	IHXTOutputProfile::GetMediaProfile
	IHXTOutputProfile::MoveDestination
	IHXTOutputProfile::RemoveDestination
	IHXTOutputProfile::SetMediaProfile

	IHXTOutputProfile2
	IHXTOutputProfile2::GetMetadata
	IHXTOutputProfile2::SetMetadata

	IHXTPacketSource
	IHXTPluginInfoEnum
	IHXTPluginInfoEnum::GetCount
	IHXTPluginInfoEnum::GetPluginInfoAt

	IHXTPluginInfoManager
	IHXTPluginInfoManager::GetPluginInfoEnum

	IHXTPostfilter
	IHXTPrefilter
	IHXTPreviewSink
	IHXTPreviewSink::OnFormatChanged
	IHXTPreviewSink::OnSample

	IHXTPreviewSinkControl
	IHXTPreviewSinkControl::AddSink
	IHXTPreviewSinkControl::GetOptimalSinkProperties
	IHXTPreviewSinkControl::RemoveSink

	IHXTPreviewSinkControl3
	IHXTPreviewSinkControl3::DisableSink
	IHXTPreviewSinkControl3::EnableSink

	IHXTProperty
	IHXTProperty::GetBool
	IHXTProperty::GetDouble
	IHXTProperty::GetDoubleList
	IHXTProperty::GetDoubleRange
	IHXTProperty::GetInt
	IHXTProperty::GetInt64
	IHXTProperty::GetInt64List
	IHXTProperty::GetInt64Range
	IHXTProperty::GetIntList
	IHXTProperty::GetIntRange
	IHXTProperty::GetKey
	IHXTProperty::GetPropertyBag
	IHXTProperty::GetString
	IHXTProperty::GetType
	IHXTProperty::GetUint
	IHXTProperty::GetUintList
	IHXTProperty::GetUintRange
	IHXTProperty::GetUnknown
	IHXTProperty::SetBool
	IHXTProperty::SetDouble
	IHXTProperty::SetDoubleList
	IHXTProperty::SetDoubleRange
	IHXTProperty::SetInt
	IHXTProperty::SetInt64
	IHXTProperty::SetInt64List
	IHXTProperty::SetInt64Range
	IHXTProperty::SetIntList
	IHXTProperty::SetIntRange
	IHXTProperty::SetPropertyBag
	IHXTProperty::SetString
	IHXTProperty::SetUint
	IHXTProperty::SetUintList
	IHXTProperty::SetUintRange
	IHXTProperty::SetUnknown

	IHXTPropertyBag
	IHXTPropertyBag::GetBool
	IHXTPropertyBag::GetCount
	IHXTPropertyBag::GetDouble
	IHXTPropertyBag::GetDoubleList
	IHXTPropertyBag::GetDoubleRange
	IHXTPropertyBag::GetInt
	IHXTPropertyBag::GetInt64
	IHXTPropertyBag::GetInt64List
	IHXTPropertyBag::GetInt64Range
	IHXTPropertyBag::GetIntList
	IHXTPropertyBag::GetIntRange
	IHXTPropertyBag::GetProperty
	IHXTPropertyBag::GetPropertyBag
	IHXTPropertyBag::GetPropertyBagEnumerator
	IHXTPropertyBag::GetPropertyEnumerator
	IHXTPropertyBag::GetString
	IHXTPropertyBag::GetUint
	IHXTPropertyBag::GetUintList
	IHXTPropertyBag::GetUintRange
	IHXTPropertyBag::GetUnknown
	IHXTPropertyBag::Remove
	IHXTPropertyBag::SetBool
	IHXTPropertyBag::SetDouble
	IHXTPropertyBag::SetDoubleList
	IHXTPropertyBag::SetDoubleRange
	IHXTPropertyBag::SetInt
	IHXTPropertyBag::SetInt64
	IHXTPropertyBag::SetInt64List
	IHXTPropertyBag::SetInt64Range
	IHXTPropertyBag::SetIntList
	IHXTPropertyBag::SetIntRange
	IHXTPropertyBag::SetProperty
	IHXTPropertyBag::SetPropertyBag
	IHXTPropertyBag::SetString
	IHXTPropertyBag::SetUint
	IHXTPropertyBag::SetUintList
	IHXTPropertyBag::SetUintRange
	IHXTPropertyBag::SetUnknown

	IHXTPropertyEnumerator
	IHXTPropertyEnumerator::Current
	IHXTPropertyEnumerator::First
	IHXTPropertyEnumerator::GetCount
	IHXTPropertyEnumerator::Next

	IHXTPropertyUtility
	IHXTPropertyUtility::ArePropertiesEquivalent
	IHXTPropertyUtility::ArePropertyBagsEquivalent
	IHXTPropertyUtility::CloneProperty
	IHXTPropertyUtility::ClonePropertyBag
	IHXTPropertyUtility::IsPropertyBagCompatibleWith
	IHXTPropertyUtility::IsPropertyCompatibleWith

	IHXTSampleAllocator
	IHXTSampleAllocator::GetMediaSampleOfSize

	IHXTSampleSink
	IHXTSampleSink::ReceiveSample

	IHXTSerializeBuffer
	IHXTSerializeBuffer::ReadFromBuffer
	IHXTSerializeBuffer::WriteToBuffer

	IHXTSerializationCallback
	IHXTSerializationCallback::OnSerializeObject

	IHXTServiceBroker
	IHXTServiceBroker::GetService

	IHXTStatistics
	IHXTStatistics::GetCurrentStatistics
	IHXTStatistics::GetLifeTimeStatistics

	IHXTStreamConfig
	IHXTStringEnumerator
	IHXTStringEnumerator::Current
	IHXTStringEnumerator::First
	IHXTStringEnumerator::GetCount
	IHXTStringEnumerator::Next

	IHXTTime
	IHXTTime::GetMilliSeconds
	IHXTTime::GetTime
	IHXTTime::GetTimeString
	IHXTTime::SetMilliSeconds
	IHXTTime::SetTime
	IHXTTime::SetTimeString

	IHXTTransformFilter
	IHXTTransformFilter::ReceiveSample
	IHXTTransformFilter::SetAllocator
	IHXTTransformFilter::SetSampleSink

	IHXTUintEnumerator
	IHXTUintEnumerator::Current
	IHXTUintEnumerator::First
	IHXTUintEnumerator::GetCount
	IHXTUintEnumerator::Next

	IHXTUintList
	IHXTUintList::Clear
	IHXTUintList::Compare
	IHXTUintList::Contains
	IHXTUintList::GetBack
	IHXTUintList::GetEnumerator
	IHXTUintList::GetFront
	IHXTUintList::GetIntersection
	IHXTUintList::GetSize
	IHXTUintList::IsEmpty
	IHXTUintList::PopBack
	IHXTUintList::PopFront
	IHXTUintList::PushBack
	IHXTUintList:PushFront

	IHXTUintRange
	IHXTUintRange::Compare
	IHXTUintRange::GetMax
	IHXTUintRange::GetMin
	IHXTUintRange::GetStepSize
	IHXTUintRange::IsInRange
	IHXTUintRange::Set

	IHXTUserConfigFile
	IHXTUserConfigFile::ReadFromFile
	IHXTUserConfigFile::WriteToFile

	IHXTVideoPinFormat
	IHXTVideoPinFormat::GetColorFormat
	IHXTVideoPinFormat::GetFrameDimensions
	IHXTVideoPinFormat::GetFrameRate
	IHXTVideoPinFormat::SetColorFormat
	IHXTVideoPinFormat::SetFrameDimensions
	IHXTVideoPinFormat::SetFrameRate

	IUnknown
	IUnknown::AddRef
	IUnknown::QueryInterface
	IUnknown::Release

	RealMedia Edit Interface List
	IHXProgressSink
	IHXProgressSink::NotifyFinish
	IHXProgressSink::NotifyStart
	IHXProgressSink::SetProgress

	IHXProgressSinkControl
	IHXRMEdit
	IHXRMEdit::AddInputFile
	IHXRMEdit::CloseLogFile
	IHXRMEdit::CreateIRMABuffer
	IHXRMEdit::GetAuthor
	IHXRMEdit::GetComment
	IHXRMEdit::GetCopyright
	IHXRMEdit::GetEndTime
	IHXRMEdit::GetErrorString
	IHXRMEdit::GetFileVersion
	IHXRMEdit::GetIndexedInputFile
	IHXRMEdit::GetMobilePlayback
	IHXRMEdit::GetNumInputFiles
	IHXRMEdit::GetOutputFile
	IHXRMEdit::GetPerfectPlay
	IHXRMEdit::GetSelectiveRecord
	IHXRMEdit::GetStartTime
	IHXRMEdit::GetTitle
	IHXRMEdit::Log
	IHXRMEdit::OpenLogFile
	IHXRMEdit::Process
	IHXRMEdit::RemoveRMFileSink
	IHXRMEdit::SetAuthor
	IHXRMEdit::SetComment
	IHXRMEdit::SetCopyright
	IHXRMEdit::SetEndTime
	IHXRMEdit::SetEndTime
	IHXRMEdit::SetInputFile
	IHXRMEdit::SetMobilePlayback
	IHXRMEdit::SetOutputFile
	IHXRMEdit::SetPerfectPlay
	IHXRMEdit::SetRMFileSink
	IHXRMEdit::SetSelectiveRecord
	IHXRMEdit::SetStartTime
	IHXRMEdit::SetStartTime
	IHXRMEdit::SetTitle

	IHXRMEdit2
	IHXRMEdit2::GetMetaInformation
	IHXRMEdit2::GetVideoSize
	IHXRMEdit2::HasAudio
	IHXRMEdit2::HasEvents
	IHXRMEdit2::HasImageMaps
	IHXRMEdit2::HasVideo

	IHXRMEdit3
	IHXRMEdit3::AddSaveProgressSink
	IHXRMEdit3::RemoveSaveProgressSink

	IHXRMEvents
	IHXRMEvents::CloseLogFile
	IHXRMEvents::GetDumpFile
	IHXRMEvents::GetErrorString
	IHXRMEvents::GetEventFile
	IHXRMEvents::GetImageMapFile
	IHXRMEvents::GetInputFile
	IHXRMEvents::GetOutputFile
	IHXRMEvents::Log
	IHXRMEvents::OpenLogFile
	IHXRMEvents::Process
	IHXRMEvents::SetDumpFile
	IHXRMEvents::SetEventFile
	IHXRMEvents::SetImageMapFile
	IHXRMEvents::SetInputFile
	IHXRMEvents::SetOutputFile

	IHXRMEvents2
	IHXRMEvents2::AddSaveProgressSink
	IHXRMEvents2::RemoveSaveProgressSink

	IHXRMFFDump
	IHXRMFFDump::Process
	IHXRMFFDump::SetEndTime
	IHXRMFFDump::SetInputFile
	IHXRMFFDump::SetOutputFile
	IHXRMFFDump::SetStartTime

	IHXRMFileSink
	IHXRMFileSink::OnMediaPropertyHeader
	IHXRMFileSink::OnPacket

	IHXRMFileSinkControl
	IHXRMMetaInformation

	Function List
	CreateFileObserver
	HXTCreateJobFactory
	RMACreateRMEdit
	RMACreateRMEvents
	RMACreateRMFFDump
	RMAGetLogSystemInterface
	SetDLLAccessPath

	Glossary
	Index

