

GEEK GUIDE BEYOND CRON

2

Ease of Use ��� 8

Multi-Server-Friendly �� 10

Dependency Management �� 13

Easy to Visualize ��� 16

Delegation of Authority ��� 18

Management by Exception ��� 21

Flexible Scheduling ��� 23

Revision Control ��� 24

Conclusion �� 24

Table of Contents

MIKE DIEHL has been using Linux since the days when Slackware came on 14 5.25”
floppy disks and installed kernel version 0.83. He has built and managed several
servers configured with either hardware or software RAID storage under Linux,
and he has hands-on experience with both the VMware and KVM virtual machine
architectures. Mike has written numerous articles for Linux Journal on a broad
range of subjects, and he has a Bachelor’s degree in Mathematics with a minor in
Computer Science. He lives in Blythewood, South Carolina, with his wife and four sons.

GEEK GUIDE BEYOND CRON

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2015 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE BEYOND CRON

4

About the Sponsor
Skybot, A Division of HelpSystems

HelpSystems has more than 30 years of experience in providing

enterprise scheduling and automation solutions. Part of the

HelpSystems family of brands, Skybot provides an affordable

solution for cross-platform enterprise job scheduling, allowing

businesses to integrate workflows across servers and critical business

applications and monitor them from a central interface. Skybot

Scheduler incorporates your disparate job schedules to help you build

a unified enterprise schedule based on cross-server dependencies.

For cron users, in particular, Skybot Scheduler allows you to import

existing UNIX crontab data and use the cron expression to schedule

new jobs using familiar cron syntax, helping to connect your UNIX

cron job scheduling to enterprise operations. Skybot Scheduler also

includes reporting, auditing and security capabilities to ensure that

your enterprise job schedule is well documented and reliable.

For more information on Skybot Scheduler,

see www.helpsystems.com/skybot.

http://www.helpsystems.com/skybot

GEEK GUIDE BEYOND CRON

5

If you’ve spent any time around UNIX, you’ve no doubt

learned to use and appreciate cron, the ubiquitous job

scheduler that comes with almost every version of UNIX that

exists. Cron is simple and easy to use, and most important,

it just works. It sure beats having to remember to run your

backups by hand, for example.

Beyond
Cron
 How to Know When You’ve
 Outgrown Cron Scheduling—
 and What to Do Next

 MIKE DIEHL

GEEK GUIDE BEYOND CRON

6

But cron does have its limits. Today’s enterprises are

larger, more interdependent, and more interconnected

than ever before, and cron just hasn’t kept up. These

days, virtual servers can spring into existence on demand.

There are accounting jobs that have to run after billing

jobs have completed, but before the backups run.

And, there are enterprises that connect Web servers,

databases, and file servers. These enterprises may be in

one server room, or they may span several data centers.

If you’re l ike most system administrators, you’ve

worked around these l imitations by leveraging

other tools l ike scripting languages, configuration

management, SSH/scp, and so on. The results usually

work, but sometimes they are hard to manage.

Eventually, you have to ask yourself if you’ve outgrown

cron. Let’s take a quiz, just for fun.

Have you ever:

n Distributed a crontab file to multiple servers via scp,

only to have to update those files later on?

n Forgotten which column you were editing and

inadvertently scheduled a daily job to run every hour

or vice versa?

n Had a job start before the previous instance of the same

job had finished from the last run?

n Had to explain to your manager what jobs ran where and

when, via cron?

GEEK GUIDE BEYOND CRON

7

n Received 15 e-mail messages in one morning telling

you that everything ran properly the night before,

only to miss the one message warning of an impending

disk failure?

n Written a shell script or Makefile in order to manage

which jobs run on which servers?

n Tried to schedule a cron job to run on the last day of the

month...no matter which month?

n Allowed a junior system administrator access to

your server’s crontabs and hoped he or she didn’t

break something?

n Become proficient with cron, only to have the accounting

department deploy a Windows server, with its own job

scheduling mechanism?

n Put your crontabs under some kind of version control?

There’s no prize for answering all of these questions

correctly, but you do get points for honesty. If you found

yourself answering “yes” to a number of these questions,

or at least relating to the situation they describe, you may

be needing to rethink your job scheduling infrastructure.

Your organization may be deep enough that people of

varying skill levels may be looking at, or changing, job

schedules. Or, your organization may be wide enough

that you have to maintain many different types of

GEEK GUIDE BEYOND CRON

8

services, such as database, Web, file, and authorization

services. Your organization may be both wide and deep,

in which case, you have almost certainly outgrown cron.

Today’s enterprise is different from what it was even

ten years ago. Let’s take a look at some of the differences

and discuss how an ideal enterprise job scheduling tool

might deal with them.

Ease of Use
Nobody ever has said that cron was difficult to use.

But let’s face it, we live in a point-and-click world now.

Editing a raw ASCII file with a simple editor like vi or

nano is an easy way to make a simple mistake that is

often difficult to spot.

It’s very easy simply to press the wrong key on your

keyboard. People who have worked with computers for

some time and have become “touch typists” sometimes

make mistakes without even knowing it. Another class

of common error is simply losing track of which column

in the crontab file is the day of week (DOW) and which

is the hour column. Most crontab files include headers

for each column by default. But these columns are often

removed by crontab editing software or cron expert users

who don’t feel the need to keep them. Finally, since

most people edit crontab files with simple editors, no

validation is performed on the actual script that they

request is run. For example, is your script in /usr/bin/

or /usr/local/bin? Did you remember to check? The editor

sure didn’t check for you.

GEEK GUIDE BEYOND CRON

9

These are all simple, “only human” mistakes. If you use

cron long enough, you learn to be careful and double-check

any changes you make. Usually this lesson is learned the hard

way though. And if you share system administration duties

with others, you have to wonder whether the other system

administrators are exercising the same diligence that you are.

Wouldn’t it be nice if the software you used to schedule

jobs guided you a bit by presenting viable options and

verifying input in order to prevent mistakes? Wouldn’t it

be nice to be able to use your mouse to click on buttons to

schedule a job? Instead of writing:

0 23 * * mon,tue,wed,thu,fri /usr/locel/bin/do_backups.sh

FIGURE 1. System administrators need to know which jobs ran

and which jobs failed. Skybot by HelpSystems brings all of this

information to you on a simple to use dashboard.

GEEK GUIDE BEYOND CRON

10

you simply could click on “at midnight, on the hour,

Monday through Friday, run the backup job”. Then

the software would verify that the job you scheduled

actually exists and is able to run. Software never wil l be

a replacement for human intell igence, but it should at

least watch your back. By the way, did you notice the

typo in that crontab entry?

Multi-Server-Friendly
Back in the good-old days, an IT enterprise might have

consisted of an e-mail server and a file server or two, or

maybe a handful of each. Usually, the system administrator

would use one of those servers as a print server as well.

Times have changed. Today’s IT enterprise often adds Web

servers, authentication servers, database servers, (sometimes

many different databases too) calendaring servers, business

process management servers, CMS servers, revision control

servers, and backup servers. In today’s enterprise, often

there are servers to monitor the other servers!

In addition to running an enterprise with more servers

that offer more and more different services, today’s

enterprise may employ virtualization to help drive costs

down. Virtualization creates situations where servers can

Software never will be a replacement for
human intelligence, but it should at least
watch your back.

GEEK GUIDE BEYOND CRON

11

come into existence and disappear based on demand

requirements. Even a virtual server may require that certain

jobs run on schedule. And since virtual machines don’t

require an increase in physical chassis count, there is a

propensity simply to spin up a new virtual machine any time

a customer or department manager requests a new server.

This results in a higher “virtual chassis” count. But, even a

virtual server has some job scheduling requirements. Logs

need to be rotated periodically, and depending on how

you architect your enterprise, it might make sense to run

backups from within the virtual machine or container.

So modern system administrators are faced with a two-

fold problem: they have to manage a wider variety of

servers, and they have to manage a larger number of them.

From a technical point of view, it’s not too terribly

difficult to replicate a crontab file to any given number of

servers. It’s just a matter of a bit of scripting. But from a

practical point of view, it’s just another manual step in what

should be an automated process.

But, then it gets worse. Not every server needs the

same crontab file. A Web server requires different jobs

to run from what a database server would. And the

accounting department may have jobs that need to run

on its servers before jobs in payroll can run. However, all

the servers in a given organization may share a core set

of jobs that run across the entire enterprise. Managing

this could prove painful.

In an ideal world, you’d like to be able to categorize

your servers based on things like operating system,

GEEK GUIDE BEYOND CRON

12

function, department, or development cycle such as

development or production.

You’d like to be able to run a log analysis job on your

Web servers that wouldn’t be meaningful to run on your

database servers, even though the database servers feed

their data to the Web servers. On the other hand, your

database servers require periodic table maintenance that

the mail servers don’t require.

If your sales department servers are customer-facing,

you might decide to run their server backups outside

business hours and run the accounting department’s

backups during the day so that their processing jobs can

run the following night.

Certainly, your Linux servers require different scheduled

jobs to run than your BSD and Windows servers, but you’d

still like to manage them all from a central location.

FIGURE 2. The ideal job scheduling tool should work the same on

Windows and various flavors of UNIX.

GEEK GUIDE BEYOND CRON

13

Finally, you might like to back up your development

servers more frequently than the corresponding

production servers, because the development servers

change more frequently.

Being able to categorize servers and schedule jobs

on each server according to various criteria enables

system administrators to manage a larger enterprise

more efficiently. A good software tool would make

managing these criteria and the distribution of job

schedules as efficient and effortless as possible.

Dependency Management
One area of job scheduling that cron just doesn’t do well

is job dependency management. Some jobs simply cannot

run until other jobs have completed.

A classic example is the database server that requires

scheduled maintenance each night. It doesn’t do any

good to run the backup job on a database server that

is still running its daily maintenance. In fact, it can be

devastating. At best, both jobs conflict with each other

and slow each other down, causing them to run longer

One area of job scheduling that cron just
doesn’t do well at is job dependency
management. Some jobs simply can not
run until other jobs have completed.

GEEK GUIDE BEYOND CRON

14

than needed. At worst, one job corrupts the other; the

backup job backs up a database that is only partially

repaired, or the repair job attempts to repair a database

that is locked by the backup job.

As another example, it might make sense to process a

company’s accounts payable (AP) before processing the

accounts receivable (AR). In this way, you can be sure that

your accounts never are negative since all of the outgoing

money was spent before any of the incoming money came

in. Of course, if you work at a bank, it might make sense

to process withdrawals before deposits so as to increase

the potential of collecting insufficient funds penalties.

And to put this all together, it might make sense to

run the database backup job after the maintenance job,

which should be run only once both the AP and AR jobs

have completed.

Typically, this type of goal is accomplished by clever, and

perhaps sloppy, job scheduling. You would schedule the

AP processing right at 8 p.m. on the East coast, which is

still 5 p.m. on the West coast. Then, knowing that the AP

job typically only takes an hour to run, you would consider

running the AR job at 10 p.m., giving yourself an hour of

leeway in case the AP job takes longer than normal. Using

the same logic, you schedule the database repair at 11

p.m., and finally, the backup at 1 a.m. the next morning.

Remember, this is only about four hours of processing.

But because of the limitations in job scheduling with

cron, you’ve had to string it out over eight hours. Just in

case there’s a problem with any of these jobs, a system

GEEK GUIDE BEYOND CRON

15

administrator would need to be on call while they run, and

there’s a big difference between being on call until 9 p.m.

and being on call until 1 a.m.!

Simply put, cron doesn’t understand job dependency, so

you have to resort to clever, and inefficient, job sequencing.

The situation gets even worse when the various jobs

that depend upon each other are run on different

servers, perhaps in different data centers spread out

across timezones.

It would be nice to be able to schedule a job to run

as soon as all of its dependencies have been met. In this

case, if a given job runs faster than normal, the other

jobs get to run sooner. On the other hand, if a job runs

longer than normal, it just runs longer, and the other jobs

simply wait until it’s time for them to run.

FIGURE 3. The status of every job on every server is just a few

clicks away.

GEEK GUIDE BEYOND CRON

16

This kind of dependency management could be

accomplished using a make fi le, or another tool of

that nature. But even that doesn’t solve the problem

of being able to schedule jobs only after each and

every server involved has run its backups and had its

logs rotated. Dependency management is one thing;

dependency management across multiple servers is quite

another, and it’s really hard to accomplish with “clever

scheduling” and make fi les.

A good job scheduling tool needs to understand

job dependencies and understand that some of those

dependencies may not be on the same server.

Easy to Visualize
So, over time, you’ve managed to build up a large array

of scheduled jobs that automate much of the day-to-day

operations of your enterprise. You’ve created a complex

hierarchy of jobs and the servers that they run on. Everything

is working perfectly, and you are a happy camper. Then it

happens. Someone asks you how it all works.

Usually, this someone is another system administrator

or maybe a new, or junior, system administrator. Or, in

the worst case, it’s your manager, and he or she wants

to understand fully how it all “fits together”. Printing

out the crontab files for all of your servers obviously isn’t

going to provide anyone with the big picture. You might

be able to explain when the various jobs on a given server

run, but that doesn’t even begin to explain why they run

when they do. Perhaps you have some job dependency

GEEK GUIDE BEYOND CRON

17

issues, like I discussed earlier, and you’ve had to schedule

jobs with that in mind. Maybe you scheduled them to

run when they run because it seemed like a good idea

at the time. To put it differently, is job A scheduled after

job B because it’s convenient, or because job B actually

depends on job A completing first? Just looking at when

a job is scheduled doesn’t capture that distinction.

Trying to make sense of the crontab fi les from multiple

servers could be l ike drinking from a fire hydrant. Most

parts of the fi les might even be identical, in which

case, the devil is in the subtle differences between the

various fi les.

You also might find yourself in the situation where the

Web development team members want to understand

how their stuff works, but they really don’t care how the

database administrators’ stuff works. To put a perverse

twist on things, the DBAs may ask to have their backup

jobs scheduled earlier in the day, but only because they

don’t understand that their backups can’t run until the

accounting department completes its processing.

Nobody understands how it all works but you, and you

don’t want to spend the rest of your l ife in meetings

trying to explain it al l.

Trying to make sense of the crontab files
from multiple servers could be like drinking
from a fire hydrant.

GEEK GUIDE BEYOND CRON

18

An enterprise-grade scheduling tool should help

you visualize when jobs run and what they depend

upon before they can run. This visualization should be

presented in a form that is intuitive and approachable

by people with a wide range of technical sophistication.

Moreover, this visualization should be based on

how things actually work, not just on how they are

documented to work. Maintaining the documentation

on how things work shouldn’t be a separate task

that needs to be (and almost never is) done when

changes are made.

Finally, an enterprise-grade scheduling tool should be

able to understand the entire enterprise, not just one

or a few servers. The tool should be able to correlate

how a job that runs on one server affects jobs that run

on any number of other servers. And rather than giving

everybody the same big picture, it would be nice if the

scheduling tool could show stakeholders just what they

need to see and nothing else.

Delegation of Authority
Most system administrators are extremely busy.

Scheduling, documenting, and monitoring jobs is just

simply something that needs to be delegated to other

staff, if available. Perhaps the Web developers want to

be able to manage the jobs that run on their servers,

while the DBAs certainly don’t want Web developers

breaking things on their servers. Although the tier 1

support staff needs to be able to see what jobs are

GEEK GUIDE BEYOND CRON

19

scheduled and determine if they ran correctly, they may

not need the abil ity to change job schedules. Managers

are always curious, and rightly so, but no one wants

them doing anything other than looking at what’s

scheduled and where.

A lot of people have an interest in enterprise job

scheduling. Some of them need only to be able to look, and

others obviously need to be able to make changes to a given

job’s schedule. These roles may reflect the relative skill level

of the various staff members, such as the difference between

a tier 1 technician and a senior system administrator. Or,

the roles may be segmented by departmental boundaries;

the development department doesn’t need to understand

how the sales department operates.

There’s nothing wrong with compartmentalizing

operations l ike this. Not only does it keep people

from inadvertently making changes that affect others,

but it also makes it easier for staff members to

understand how their department operates, since their

understanding isn’t clouded by having to understand

complex interactions between departments.

Making sure that changes are being made only by those

people who are authorized and qualified to change job

schedules is just part of the equation. The other side of

the equation is knowing who made what changes and

when. Change logging and accountability is important.

If something is found to be broken, it’s often helpful to

be able to know what was changed. Also, if changes are

made incorrectly, this might point out an opportunity for

GEEK GUIDE BEYOND CRON

20

additional training for the staff member or department head

who made the change. The purpose here isn’t to start a witch

hunt. The purpose is just to make sure that the people who

need to know about changes always know about changes.

FIGURE 4. Job flow diagrams make process dependencies easy to

understand. Role-based diagrams provide different stakeholders

with the information they need.

GEEK GUIDE BEYOND CRON

21

Being able to delegate the ability to make changes, and to

keep people accountable for the changes they make, actually

saves time. Changes don’t have to be escalated to more

senior staff if they can be handled by other staff members.

Managers who just need to know how things work can be

put into self-serve mode without having to take up the time

of busy support staff. And finally, if a change is made that

breaks something, logging is the best way to find out what

was done and how to undo it.

Management by Exception
Most system administrators are used to checking their e-mail

in the morning and seeing a number of messages triggered by

the various jobs that ran the night before. Usually, perusing

these messages becomes part of their morning workflow. At

first, you actually read every line of every e-mail message. Over

time, you get used to not finding anything untoward in these

messages, so you simply begin to skim over them, looking for

log entries that “stick out” at you. Eventually, you are tempted

to become complacent and simply ignore the messages. This

is the normal progression and is quite common—until it finally

happens. One of the status reports indicates something went

wrong. Usually this indication is camouflaged in the middle of

the e-mail message, neatly tucked away between two perfectly

normal log entries.

In the worst-case scenario, this error indication goes

unnoticed for a few days. By then, it usually becomes a crisis

situation. A hard drive that was merely failing a few days

ago, suddenly dies today, for example. A log entry that might

GEEK GUIDE BEYOND CRON

22

have indicated that your Web site had been compromised

becomes a situation where your Web site is used to send

SPAM, and then your mail server gets blacklisted, breaking

e-mail for your entire enterprise.

Logs are important. But no one actually has time to read

them, unless they’re important, and you can’t tell if they’re

important unless you read them—all of them.

As odd as it sounds, it would be so much easier if system

administrators received only the bad news. This is where

“management by exception” comes into play. System

administrators never need to react to having things run as

expected. This is normal. System administrators like this. The

only time system administrators should need to put down

their coffee cups is when something is broken. This is the

exception, and it should be indicated unambiguously by a

clear error indication.

A job scheduling tool that is worthy of running the entire

enterprise should be smart enough to tell the administrators

only when something goes wrong instead of drowning them

in a flood of good, but unimportant, news.

A job scheduling tool that is worthy of running
the entire enterprise should be smart enough
to tell the administrators only when something
goes wrong instead of drowning them in a
flood of good, but unimportant, news.

GEEK GUIDE BEYOND CRON

23

Flexible Scheduling
The cron scheduling system is pretty good at scheduling

simple recurring jobs. It’s easy to schedule a job to run

at midnight every night. Scheduling a job to run every

15 minutes, but only during the business week, is just

a l ittle bit more difficult, but it’s not something you’d

spend more than ten minutes doing. Let’s face it, cron

is pretty good at what it does and is pretty easy to use,

but its scheduling capabil it ies are l imited. For example,

sometimes you actually want to run a job on the very last

day of the month, instead of merely running it very early

on the first day of the month.

Enterprise job scheduling isn’t just about making sure

jobs run at a particular time. Sometimes you want a job to

run based on an external trigger—for example, a network

intrusion detection system might create a log file in response

to suspicious activity being detected. Although many network

intrusion detection systems can run scripts in response to

various triggers, it might make sense to consolidate that type

of job under the control of the scheduling system.

On the other hand, you might want a job to run when a

particular host is no longer reachable via ICMP. Once again,

your network management tools may be able to perform the

same function, but an enterprise job scheduler may be able

to do it in a more flexible fashion.

This is just a matter of being able to use the tool that

does the job best, and it seems reasonable to expect a job

scheduling tool to be able to manage various jobs no matter

what triggered them to run.

GEEK GUIDE BEYOND CRON

24

Revision Control
Most programmers are familiar with using a version control

system to track changes that are made to one or more

files, but most system administrators aren’t in the habit of

putting system configuration files under version control.

For one thing, it’s yet another tool that has to be set up

and maintained. Then there is the additional staff training.

Finally, everyone has to remember to use it.

Revision control allows system administrators to examine

and potentially back out changes that were made to a file,

even if the changes were made long ago. Revision control

doesn’t rely on your backups and even can bring back versions

of a given file that have long since expired in your backup

regimen. Unfortunately, cron isn’t version-control-friendly.

Everyone has been there. Someone made changes to a file two

weeks ago, but nobody remembers what changes were made. Of

course, backups were kept only for a week, so there’s no going

to the backups to see what changed. If the file changes had

been made under version control, you’d be able to see exactly

what changes were made and even back them out if needed.

Revision control isn’t something normally applied to job

scheduling, but it would sure be nice to have.

Conclusion
Cron is a great tool that’s been around for a long time. As

a system administrator in today’s world, however, you are

managing more servers, real and virtual, than ever before, and

you need to automate any process you can. In order to make

daily operations as efficient as possible, you need a tool that

GEEK GUIDE BEYOND CRON

25

allows you to manage jobs on any number of different servers

easily. You also likely now find yourself working in a larger and

more diverse group of administrators, managers, and developers

than ever before, so you need a means of not only documenting

how the enterprise operates, but also of delegating authority

over how it operates. Modern enterprise job scheduling tools,

such as Skybot by HelpSystems, offer superior functionality,

ease of use, and a more modern, graphical user interface. Visit

the Skybot Web site for more details and to try out the on-line

demonstration: http://www.helpsystems.com/skybot.n

FIGURE 5. Visit http://www.helpsystems.com/skybot to get

started with Skybot.

http://www.helpsystems.com/skybot
http://www.helpsystems.com/skybot

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Beyond Cron: How to Know When You've Outgrown Cron Scheduling—and What to Do Next
	Ease of Use
	Multi-Server-Friendly
	Dependency Management
	Easy to Visualize
	Delegation of Authority
	Management by Exception
	Flexible Scheduling
	Revision Control
	Conclusion

