

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

2

About the Sponsor �� 4

Introduction �� 5

Working with Redis ��� 10

Single-Server Redis �� 15

Multi-Server Redis and Replication ����������������������������� 18

IBM’s CAPI Technology ��� 21

Using Redis with CAPI �� 24

Is It Appropriate for Your Needs? ��������������������������������� 26

Conclusion �� 28

Table of Contents

REUVEN M. LERNER is a Web developer, consultant, trainer and longtime columnist
for Linux Journal. He recently completed his PhD in Learning Sciences from Northwestern
University. You can read his blog, Twitter feed and newsletter at http://lerner.co.il.
Reuven lives with his wife and three children in Modi’in, Israel.

http://lerner.co.il

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2015 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

4

About the Sponsor

IBM is a globally integrated technology and consulting company

headquartered in Armonk, New York. With operations in more

than 170 countries, IBM works to help solve problems and

provide an edge for businesses, governments and non-profits.

Innovation is at the core of IBM’s strategy. The company develops

and sells software and systems hardware and a broad range of

infrastructure, cloud and consulting services. As an example,

IBM Power Systems are built with open technologies for mission-

critical applications, offering servers designed for big data that

are optimized, secure and adapt to changing business demands.

Today, IBM is focused on five growth initiatives: Cloud,

Big Data and Analytics, Mobile, Social Business and Security.

IBMers are working with customers around the world to

apply the company’s business consulting, technology and R&D

expertise to enable systems of engagement that deliver dynamic

insights for businesses and governments worldwide.

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

5

Introduction
When I started to develop Web applications in the mid-

1990s, I naïvely thought that if I needed to persist data

across sessions, I could and should use a file. It quickly was

explained to me that using the filesystem for such purposes

was not a good idea, and that instead I should be using

my server’s relational database. Using a database made it

possible for me to access the same data from a number

of different servers. Moreover, using a relational database

Take Control
of Growing
Redis NoSQL
Server Clusters
 REUVEN M. LERNER

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

6

meant that I could store my data in an appropriate format,

using a data type (for example, a number or a text string)

that would express my intent more clearly.

Fast-forward 20 years, and you no longer have to

convince developers that they should use a database.

However, now the question isn’t whether you should use a

database, but rather what database technology you should

use. The debate between SQL and what has become known

as NoSQL continues to go on, with the SQL people pointing

to established normals for ACID compliance, normalization

and the many years of effort and knowledge that have gone

into relational databases. NoSQL adherents claim that in the

modern era of Web-scale applications, relational databases

are passé, and that you should be using one of the flexible,

schemaless, replicating databases.

I generally fall into the SQL category. I believe that relational

databases work well, and that they’re only getting better and

more sophisticated. This doesn’t mean NoSQL is always wrong,

but I tend to be something of a NoSQL skeptic.

However, there is one major exception to my NoSQL

skepticism, and that is Redis. I’m not the only one who is in

love with Redis; it is the best possible combination of easy to

I’m not the only one who is in love with
Redis; it is the best possible combination
of easy to use and very fast to execute,
and it’s full of functionality.

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

7

use and very fast to execute, and it’s full of functionality. I’ve

never come away from working with Redis disappointed.

How popular is Redis among businesses and developers?

It’s always hard to track the growth in popularity of an

open-source product. Redis does appear to be growing in

popularity, however, based on a few different metrics. The

DB-Engines (http://db-engines.com) relative ranking of

database popularity (by looking at mentions on Web sites,

social networks and job boards) indicates that Redis is

now at #10 in May 2015, up from #13 in May 2014. Redis

Labs, a commercial supplier of Redis software, recently

announced that it had 33% customer acquisition growth

in the first quarter of 2015. Redis also is on GitHub, which

provides some insights into the number of people interested

in a project or contributing to it. At the time of this writing,

1,365 people follow the Redis project, and it has more

than 170 contributors. By contrast, Memcached has 449

followers and 71 contributors.

How and why are businesses using Redis? In many

cases, they’re using it for the caching of user data, such as

shopping carts or session information. But, Redis also can be

used as a sophisticated counter for page views and social-

network links. Additionally, it also can be used to identify

trends in recent data, in case you’re looking for fraud. You

also can use it for publish-and-subscribe protocols, as a form

of message queue that sits outside your application.

Redis is not the only key-value store, nor was it the

first one to be released under an open-source license. For

years, many developers used a similar system known as

Memcached. However, as the name implies, Memcached

http://db-engines.com

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

8

stored data only in memory. If and when the Memcached

server would fail or be rebooted, the contents would be

lost. Redis, by contrast, regularly stores information to disk,

such that even in the case of a power outage or other issue,

little or no data actually will be lost.

In addition, Redis provides a rich set of data types, letting

you store and manipulate not just text strings, but also lists

of strings, sets of strings (in which each element is unique),

sorted sets of strings and hash tables. If you want to use

Redis to keep track of a user’s current purchases, you can

do that using a hash table, associated with the user’s unique

ID. If you want a set of the different IP addresses that have

visited your server, or of the user IDs that have visited or

even of the search terms that people have entered into your

system, Redis’ sets can handle those things with ease.

Redis is also amazingly fast. This has led to its use in

many cases as a high-speed data cache, letting you store

user profiles and shopping carts in something that’s faster

than a relational database. Several years ago, I worked on

a project in the finance industry, where I needed to keep

Redis is also amazingly fast. This has led
to its use in many cases as a high-speed
data cache, letting you store user profiles
and shopping carts in something that’s
faster than a relational database.

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

9

track of currency prices. I used Redis to store the most

recent values of the currencies we were tracking; this was a

natural and easy mapping of the name-value pairs I needed

to retrieve frequently from a source that was both reliable

and faster than a database.

Redis is a client-server, key-value store. This means

you can connect to it via a network protocol, and that it

functions something like a hash table. Data is stored and

accessed by a key, which must be unique. Thus, you can

store the key-value pair:

a = 1

Or:

105 = reuven@lerner.co.il

This means that every key in Redis must be unique, but

that’s what you want in a key-value store. Redis does offer

different databases, each of which is numbered, which

you can specify when you connect to the server. However,

you indicate the database to which you want to connect at

connection time, not when you’re reading or writing data.

That said, if you plan your key names a bit, you can

ensure that there never will be collisions between the

keys. For example, if your software is called “foobar”, you

might want to consider naming all of your keys starting

with “foobar:”. The colon (:) character is a legal part of

a Redis key name, and it helps to create some degree of

namespacing within a specific Redis instance.

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

10

Working with Redis
Most modern programming languages have Redis clients.

A command-line client, known as redis-cli, lets you interact

with Redis directly, rather than via another language.

Within this interface, you use Redis commands, which are

numerous but fairly simple to remember. For example, you

can store the key-value pair a:b via redis-cli as:

set a b

You then can retrieve the value associated with “a” with:

get a

You even can modify the value with:

append a c

such that now, you see:

get a

returns

bc

You similarly can manipulate and work with lists, sets,

sorted sets and hash tables. Each data type has its own

commands. Those that have to do with lists generally begin

with the letter L, while those having to do with sets begin

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

11

with S, hash tables begin with H, and sorted sets begin

with Z. Operations in Redis are atomic, so you don’t have

to worry about what happens if you modify a set while

someone else is reading it.

One of the nice things about the Redis data types is that

they support the types of operations you would want. For

example, you might want to have a counter of some sort.

Well, Redis doesn’t support a counter type per se, but if

you store an integer (really, a string containing only digits)

as a Redis scalar type, you can increment and decrement its

value using the incr and decr commands. For example:

set a 10

incr a

returns:

11

And if you again say:

get a

you’ll get:

11

Similarly, it’s very useful to treat Redis’ lists as stacks and

queues. You can do this by combining the lpush, rpush,

lpop and rpop commands. Indeed, you create a list by

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

12

invoking one of these commands; if the named list doesn’t

exist, Redis will create it. For example:

lpush numbers 1

lpush numbers 2

lpush numbers 1000

rpush numbers 555

Now you can ask for a list of numbers, from index 0 (the

start) to index -1 (the end):

lrange numbers 0 -1

Redis responds:

1) “1000”

2) “2”

3) “1”

4) “555”

And of course, you can sort the list:

sort numbers

which returns:

1) “1”

2) “2”

3) “555”

4) “1000”

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

13

Sets are like lists, except that they’re unordered and the

elements are unique. For example, let’s say that you want

to add a bunch of users to your “users” set, using the

sadd command:

sadd users reuven

sadd users root

sadd users atara

sadd users shikma

asdd users amotz

And, add three people to your “administrators” set:

sadd administrators reuven

sadd administrators root

sadd administrators joeshmoe

You now can ask Redis to tell you if anyone is listed as an

administrator who isn’t also a user:

sdiff administrators users

You also can ask Redis to find the intersection of these

two sets:

sinter administrators users

I have become a real fan of sets in the last few years, in all of

the programming languages that I use. The fact that they exist

in Redis only extends my affection for them and the number

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

14

of places in which I can and will use them to track things. For

tracking users, IP addresses and other such pieces of data, sets

are pretty much unparalleled in their simplicity and utility. If

your data also needs to be sorted, as well as unique, you might

well want to use the “sorted set” data type provided by Redis.

Finally, given that Redis is a key-value store (aka a hash table),

it might seem odd that one of the Redis data types is itself

a hash. Then again, this is also the most natural thing in the

world for Redis to provide—and it’s extremely useful, as well.

For example, you can say:

hset person first_name Reuven

hset person last_name Lerner

hset person email reuven@lerner.co.il

Not surprisingly, you then can use the hget command to

retrieve one of these fields:

hget person email

and you get:

“reuven@lerner.co.il”

For tracking users, IP addresses and other
such pieces of data, sets are pretty much
unparalleled in their simplicity and utility.

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

15

The hexists command takes a hash name and a key

name, returning 1 if the key exists and 0 if it doesn’t. If you

try to retrieve a non-existing key, Redis (as usual) will return

a “nil” value, rather than raising an exception or otherwise

having problems with it.

There is much more to say about all of Redis’s data

types. In some ways, the fact that they provide such rich

functionality makes Redis into something more than a plain-

old key-value store. Although you can’t say that Redis is

a document or object database, it’s doing more than just

storing a single, simple value with each key.

Single-Server Redis
Installing, configuring and running Redis is simpler than

you might imagine. In many cases, you can just download,

install and run Redis within a few minutes.

On my Linux box running Ubuntu, for example, I was able

to install the Redis server and redis-cli program (among

other command-line tools) with the following command:

sudo apt-get install redis-server redis-tools

Once installed, I was able to start it with:

sudo service redis-server start

The redis-server configuration in the Ubuntu package is

configured to be “demonized”, meaning that the server

runs in the background when you start it up. This is the

behavior that you normally would like, if you’re running a

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

16

server; although foreground execution can be convenient

when debugging, it’s otherwise pretty much unwarranted.

If you’re running a simple Redis server, there’s not more

to things than that. There is a configuration file, and

you might need to modify it, but I’ve always found the

configuration to be a simple and straightforward process.

The configuration file is in a typical UNIX-style format, with

a long set of setting names followed by the appropriate

values, each on its own line, and with hash marks (#)

indicating comment lines.

The configuration consists of several well-documented

sections. First is the basic configuration and networking,

telling Redis on which port it should listen and the IP

address(es) to which it should pay attention.

The next part of the configuration tells Redis how it

should handle saving its current data set (which is in RAM)

to disk. Older versions of Redis would save data to disk

every two seconds, which was good enough for many

purposes, but did mean that up to two seconds’ worth of

data might be lost.

An alternative system, known as AOF (append-only

file), instead of writing the complete data set every two

seconds, writes a constant stream of data to the disk,

indicating what changes were made to the in-memory

data set. Thus, when the system is restarted, it’s possible

for Redis to replay the AOF and get back to the state

it was in before the shutdown occurred. The Redis

documentation suggests using both persistence systems

together for maximum safety.

In the Redis configuration file, you can indicate not

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

17

only where the files should go, but also the rules that

govern when the snapshots should be put on disk.

The “save” configuration directive takes two numbers

for how often saves should be made, giving Redis an

indication of how long it should wait to write information

to disk, based on how many keys have changed. Thus, the

default lines in my configuration file:

save 900 1

save 300 10

save 60 10000

mean that Redis should snapshot to disk after 900

seconds if one key has changed, after 300 seconds if ten

keys have changed and after 60 seconds if 10,000 keys

have changed. In other words, Redis will ratchet up the

frequency of dumping itself to disk when the number of

changed keys changes.

How should you tell Redis to back up your data? And,

should you use RDB, AOF or both? If the data is important

to you, I’d suggest going with the whole thing, storing

data using both methods for maximum safety. However,

if you’re just using Redis as a cache, and if all data exists

elsewhere, the fact that Redis provides persistence is a nice

How should you tell Redis to back up your
data? And, should you use RDB, AOF or both?

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

18

bonus, rather than something critical, and you can be a bit

more lax—possibly by using only the RDB snapshots and not

employing the AOF.

Perhaps the most important thing to realize when

configuring Redis is that for a large number of cases, the

system requires little or no tuning. You install it, modify

the configuration a bit, and you’re pretty much set to go.

Certainly, this has been one of the reasons why I have so

enjoyed working with Redis for many years.

Multi-Server Redis and Replication
However, as applications have grown, so have the data needs

of those applications. Redis can handle a very large number

of clients, almost certainly because it’s a key-value store,

rather than a full-fledged database. Even so, Redis also has

its limits. Unlike some NoSQL databases, support for sharding

is new and, thus, still (at the time of this writing) somewhat

untrusted. Without sharding, the entire data set exists in

a single computer’s memory. This means that the single

computer in question can become the bottleneck if too many

clients are trying to read or write data.

One solution to this problem is the use of master-slave

replication. The idea behind such replication in Redis, as

in other master-slave database configurations, is that one

computer is designated as the “master”, meaning where

the changes actually take place. In such a configuration,

only the master computer will accept write requests. The

assumption is that reads constitute the majority of queries,

and thus, they can be spread across one or more slave

machines, balancing the load. (Actually, you can configure

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

19

Redis such that it accepts write requests, but given that

writes to the slave aren’t permanent, the uses cases for

this appear to be fairly rare, and it’s quite possible that this

functionality will go away in the future.)

Master-slave replication in Redis is easy to set up. First, you

need to have two computers running Redis or (if you just

want to test things) a computer with two instances of Redis,

each running in a different directory and on a different port.

On the slave, you add the configuration directive:

slaveof IP PORT

where IP and PORT should be set to the IP address and

port of the master Redis server. If you have configured

your master Redis server to require a password for

authentication, you’ll need to add the password to your

client’s connection invocation.

Once you’ve got this set up, master-slave replication

should work fairly well. You can read from or write to the

master, or you can read from the slave. You can set up

multiple slave servers, and you even can tell Redis that the

master should accept write requests only if the number of

active slaves is higher than a certain minimum (min-slaves-

to-write) threshold.

Master-slave replication in Redis would thus appear to

be a good solution for a large number of organizations.

However, as organizations are scaling up, they’re

sometimes finding that master-slave doesn’t quite do the

job well enough. In such cases, they’re moving toward

Redis clusters. In master-slave replication, as you’ve seen,

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

20

each of the computers (the master and all slaves) have a

complete copy of the data set. In a Redis cluster, the data

is “sharded”, meaning that it’s split automatically among

a number of servers. If you have six Redis servers, no one

server will contain all of your data; it will be contained

across a number of them. This not only means greater

availability of your data, but it also helps ensure that if one

or more of the cluster’s nodes are unavailable, the data still

will be reachable via one or more of the remaining servers.

Redis is known for both its performance and its reliability.

Clustering changes this somewhat, in that it makes Redis

a distributed system, with some of the problems inherent

in such a system. For example, it’s possible that a write

query, already acknowledged to a Redis client, will have its

data invalidated, because another Redis node received a

competing write that won out. It’s possible that Redis nodes

will go up and down, or that data will be slightly different

and inconsistent across different nodes.

To some degree, many of the questions about Redis

clustering still are unanswered, because the cluster software

was only released into production on April 1, 2015, as part

of Redis 3.0.0. How reliable is it? How easily does it handle

failures? What’s involved in scaling a cluster up to 1,000

nodes or so?

I say these things not to take away from the amazing

progress that Redis has made through the years, nor to

detract people from trying out Redis clusters. That said, this

is a new technology—and any new technology, particularly

one that adds an element of distributed computing, is likely

to require at least a short shaking-out period.

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

21

IBM’s CAPI Technology
Another new innovation that might be of interest to large-

scale Redis users has come from a somewhat unlikely source,

IBM. IBM has long been developing and promoting its Power

architecture, with the POWER8 being the latest in this series.

Now, you might be wondering what a chip architecture

has to do with Redis. The answer lies in the CAPI (coherent

accelerator processor interface) that is available in the

POWER8 architecture.

The basic idea is as follows. Redis normally stores all of its

data in memory. This means if you have a very large data set,

you’re going to need to have a large investment in RAM, which

is quite expensive. With the release of Redis 3.0, you have an

alternative, which is to create a Redis cluster. However, this

means having multiple machines, which also can be expensive.

The ideal solution would be to have a single machine

with cheaper RAM. That’s not going to happen in the near

future. We do have Flash memory, which might not be

as fast as RAM, but it’s certainly faster than hard disks;

however, the big problem there is the latency. The usual

Now, you might be wondering what a chip
architecture has to do with Redis. The
answer lies in the CAPI (coherent accelerator
processor interface) that is available in the
POWER8 architecture.

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

22

way a computer and storage communicate isn’t fast enough

to give you the Redis performance you’re looking for.

IBM’s CAPI provides an interface that makes it possible to

offload processing to an external subsystem. This offloaded

processing can be used to complement actual processing of

computation-intensive algorithms or for high-speed storage.

In this particular case, CAPI makes it possible for the CPU to

speak directly with the external Flash storage system, reducing

latency and, thus, making Flash more comparable to RAM than

to a typical storage system in its responsiveness. Perhaps Flash

won’t be as fast as RAM, but you’re looking at pretty-fast/not-

too-expensive Flash, which is often a reasonable trade-off.

According to the white paper “Data Engine for NoSQL—IBM

Power Systems Edition” distributed by IBM engineers, their

system provides a special API for NoSQL. Now, I have to admit I

was a bit skeptical about a “NoSQL API”, given the wide variety

of different types of NoSQL databases out there. What I take

from their description is that they have provided a special API

that supports key-value stores such as Redis. The API doesn’t

currently support other NoSQL databases, such as MongoDB.

However, in my conversations with IBM staff, it was clear that

they are interested in pursuing this route, and that we probably

can expect to see additional NoSQL offerings in the future.

Now, these new features are fairly hardware-specific, and

the out-of-the-box Redis installation doesn’t know how to

take advantage of them. So, IBM has partnered with Redis

Labs, a private company that offers high-capacity Redis

hosting and software, to create a special version of Redis

that can work with this hardware. In a conversation I had

with Yiftach Shoolman, founder and CTO at Redis Labs, he

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

23

said that from the programmer’s perspective, there is no

difference between the API that Redis Labs’ implementation

offers and that of the standard Redis.

The basic idea, then, is that by using IBM’s hardware in

conjunction with Redis Labs software, you’ll be able to have

a high-speed, large-capacity Redis instance. But perhaps the

most interesting part of this, at least to me, is the fact that

the system as provided leaves the mix of RAM and Flash up

to the user. You can configure IBM’s system to use lots of

RAM and little Flash, for a very high-speed, but expensive,

system. By contrast, you can use lots of Flash and very

little RAM. The ultimate balance is left up to you, set via

a Web-based control panel that tells the POWER8 system

how to configure and balance the mix of RAM and Flash.

The paper provided by IBM estimates that when about 80%

of the storage is in Flash, users still will benefit from very

good performance. Because the control panel makes it easy

and straightforward to change the mix of RAM and Flash,

I expect that many customers, or potential customers, of

IBM’s storage solution will do a number of tests, trying a

variety of different combinations before finding the sweet

spot between performance and price.

But perhaps the most interesting part of this,
at least to me, is the fact that the system
as provided leaves the mix of RAM and Flash
up to the user.

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

24

Using Redis with CAPI
For the purposes of this Geek Guide, IBM provided me

with access to a set of systems using the POWER8 CAPI

interface and Redis. Specifically, I was given access to

three different machines:

n A virtual Linux machine running Red Hat Enterprise 6.6.

This machine was running PHP and Apache, with a Web

application that could be used to monitor and configure

the Redis Enterprise server.

n A POWER8 system running Ubuntu 14.10, with 20 cores and

256GB of memory. It was on this box that Redis Enterprise

Edition was running (more on that below). This box had the

CAPI adapter to which the Flash storage unit was attached.

n The third box was an IBM FlashSystem 840. Although it

had its own IP address and could be monitored via a Web

application, it is a storage system, and thus doesn’t run

an operating system that is directly of interest here.

The above configuration is a small, if reasonable, facsimile of

the configuration that you would expect organizations to use

if and when they want to use IBM’s Flash solution. Of course,

anyone who is interested in using this high-powered Redis

solution likely is going to have more than a single Web server.

Given that Redis provides a server, the only difference between

this sample configuration and the one that you would use for

yourself is the number of servers. Each one would be outfitted

with an appropriate Redis client, connected to the Flash server.

Remember that the version running on the IBM system is

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

25

using a system from Redis Labs, not the usual open-source

Redis edition. The behavior should be identical from the

client’s perspective; the difference is in the configuration.

However, the Redis Labs system is running a variant of Redis

2.8.12, which means that the Redis 3.0.0 features you

might want will not be available.

Whereas a normal Redis system, as described above, will have

a single process running, the Redis Labs system uses a number of

separate processes. Each Redis instance has its own configuration

file, which it references when it starts up. However, you’re

not supposed to change those configuration files directly.

Rather, you’re supposed to use a Web-based GUI, which then

uses a back-end API to modify the configuration files for you.

On the system I used, there were two different types of

Redis servers actually running. One was called “redis-server”,

and the other was called “redis-server-big”, reflecting whether

my Redis instance was running against RAM or Flash. I could

use the Web-based control panel to add or remove Redis

server instances running against each of the types of memory.

The Web control panel that Redis Labs provides makes it easier

to monitor and configure a Redis installation, especially when

you start to work with multi-machine clusters. It centralizes the

configuration functionality, allowing you to add and remove

Redis server instances according to your load-balancing needs.

At the same time, as someone who is used to working with

text-based configuration files, it took some time to understand

the mapping between those files and the configuration control

panels used by the Redis Labs enterprise cluster. Adding and

removing Redis instances couldn’t have been simpler though.

Moreover, changing the balance between RAM and Flash

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

26

storage was as simple as going into the configuration’s

control panel for the Flash system and moving a slider. It’s

thus possible to experiment with a number of different

potential configurations, trying them out by moving the

slider and seeing how the system behaves.

The RAM/Flash split configuration means that you’re

configuring two different Redis instances, one for RAM

and one for Flash. Redis clients connect to a single port,

and they aren’t aware of which back end they are using or

where the storage sits. Each of the configured Redis systems

(RAM and Flash) can be set separately to use either of the

Redis persistence models (AOF or a snapshot). In the case

of snapshot persistence, you must tell Redis how often to

dump the contents of the Redis database to disk.

The Redis Labs control panel also provides you with

monitoring capabilities. You can see the number of operations/

second that each of the two nodes (RAM and Flash) are

performing, and you can break that down over time to see the

latest few minutes, day or even year. In this way, you can keep

your fingers on the pulse of your Redis machine and understand

whether you need to rebalance the RAM vs. Flash ratio.

Is It Appropriate for Your Needs?
I must admit that I’m more of a software guy than a hardware

guy. But, in speaking with some of the IBM engineers who

The Redis Labs control panel also provides
you with monitoring capabilities.

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

27

were involved in creating the new Power-backed Redis

system, I was impressed by what I heard. The idea of basically

plugging the I/O system in to a lower-latency, higher-bandwidth

communication channel means you are no longer restricted to

using RAM for high-speed I/O.

I asked the IBM engineers if the open-source version of

Redis will be able to take advantage of this architecture, or

if databases, either SQL or NoSQL, will do so in the future

either. They indicated that Redis, and the commercial Redis

Labs implementation, is one of the first things they’ve done

with their CAPI connection, and that other things might well

be coming down the pike later on. Redis Labs does support

a version of Memcached for the Power systems, if you’re

interested in using it rather than Redis, although I’m not sure

what advantages there would be in doing so. But for now, the

commercial Redis Labs implementation is one of the first ways

that people will be able to take advantage of this technology.

This raises the question of whether this is worth considering.

The answer, from everything I’ve read and seen, is that it’s

definitely worth consideration, but the trade-offs will come

down to a business decision. If your Redis installation is large

enough that you need to find a high-speed solution, and if

RAM is simply too expensive for you to consider, then you

have to decide between a Redis cluster and IBM’s offering.

The trade-off there is between buying and managing a number

of servers, and buying the IBM product and the Redis Labs

commercial license—but a single server, rather than a num-

ber of them. According to information provided by IBM, the

POWER-based Redis store provides greater ROI as the size of the

storage increases, reaching as much as 3x savings for a 40TB

GEEK GUIDE TAKE CONTROL OF GROWING REDIS NOSQL SERVER CLUSTERS

28

Flash storage system. IBM’s products also mean that you replace

a large number of servers and storage systems with a single

server and a single storage unit, making it easier to maintain as

well as consume less rack space and electricity. If you’re looking

at multiple, large storage boxes for your Redis system, IBM’s

new products definitely are worth a look and comparison.

Both the Redis cluster and IBM’s offering are new on the

market and haven’t been used by many organizations yet. It

will be interesting to see how each of them fares. I’m optimistic

that some of the largest Redis installations will find this solution

from IBM and Redis Labs to be one that saves time and money.

Conclusion
Redis has long been a popular, stable, feature-rich and high-

speed key-value store. I’m not surprised to hear that it’s the most

popular NoSQL solution currently in use. As I described here, its

data types provide a wide variety of functionality, and the fact

that it provides both in-memory speed and persistent, on-disk

storage is an unbeatable combination. However, as Redis has

grown in popularity, and as companies have used it for larger

and larger data sets, it has hit a bit of a wall. Master-slave still

assumes that all of the data can reside in the memory of a single

computer. Redis cluster is new, and it requires the configuration

and maintenance of multiple machines. This new offering from

IBM and Redis Labs promises to give large-scale Redis installations

a smaller footprint, easier management and easier configuration,

thanks to a combination of the RAM/Flash mix and a useful

Web-based GUI. If you are currently managing a large Redis

installation and worry about how you will continue to scale it up,

you would be wise to consider this new product from IBM.n

	COVER
	Table of Contents
	Copyright Statement
	About the Sponsor
	Take Control of Growing Redis NoSQL Server Clusters
	Introduction
	Working with Redis
	Single-Server Redis
	Multi-Server Redis and Replication
	IBM's CAPI Technology
	Using Redis with CAPI
	Is It Appropriate for Your Needs?
	Conclusion

